WorldWideScience

Sample records for single-scattering rayleigh model

  1. RAYLEIGH SCATTERING MODELS WITH CORRELATION INTEGRAL

    Directory of Open Access Journals (Sweden)

    S. F. Kolomiets

    2014-01-01

    Full Text Available This article offers one of possible approaches to the use of the classical correlation concept in Rayleigh scattering models. Classical correlation in contrast to three types of correlations corresponding to stochastic point flows opens the door to the efficient explanation of the interaction between periodical structure of incident radiation and discreet stochastic structure of distributed scatters typical for Rayleigh problems.

  2. Rayleigh scattering in few-mode optical fibers.

    Science.gov (United States)

    Wang, Zhen; Wu, Hao; Hu, Xiaolong; Zhao, Ningbo; Mo, Qi; Li, Guifang

    2016-10-24

    The extremely low loss of silica fibers has enabled the telecommunication revolution, but single-mode fiber-optic communication systems have been driven to their capacity limits. As a means to overcome this capacity crunch, space-division multiplexing (SDM) using few-mode fibers (FMF) has been proposed and demonstrated. In single-mode optical fibers, Rayleigh scattering serves as the dominant mechanism for optical loss. However, to date, the role of Rayleigh scattering in FMFs remains elusive. Here we establish and experimentally validate a general model for Rayleigh scattering in FMFs. Rayleigh backscattering not only sets the intrinsic loss limit for FMFs but also provides the theoretical foundation for few-mode optical time-domain reflectometry, which can be used to probe perturbation-induced mode-coupling dynamics in FMFs. We also show that forward inter-modal Rayleigh scattering ultimately sets a fundamental limit on inter-modal-crosstalk for FMFs. Therefore, this work not only has implications specifically for SDM systems but also broadly for few-mode fiber optics and its applications in amplifiers, lasers, and sensors in which inter-modal crosstalk imposes a fundamental performance limitation.

  3. Rayleigh scattering in an emitter-nanofiber-coupling system

    Science.gov (United States)

    Tang, Shui-Jing; Gao, Fei; Xu, Da; Li, Yan; Gong, Qihuang; Xiao, Yun-Feng

    2017-04-01

    Scattering is a general process in both fundamental and applied physics. In this paper, we investigate Rayleigh scattering of a solid-state-emitter coupled to a nanofiber, by S -matrix-like theory in k -space description. Under this model, both Rayleigh scattering and dipole interaction are studied between a two-level artificial atom embedded in a nanocrystal and fiber modes (guided and radiation modes). It is found that Rayleigh scattering plays a critical role in the transport properties and quantum statistics of photons. On the one hand, Rayleigh scattering produces the transparency in the optical transmitted field of the nanofiber, accompanied by the change of atomic phase, population, and frequency shift. On the other hand, the interference between two kinds of scattering fields by Rayleigh scattering and dipole transition modifies the photon statistics (second-order autocorrelation function) of output fields, showing a strong wavelength dependence. This study provides guidance for the solid-state emitter acting as a single-photon source and can be extended to explore the scattering effect in many-body physics.

  4. Rayleigh scattering in coupled microcavities: theory.

    Science.gov (United States)

    Vörös, Zoltán; Weihs, Gregor

    2014-12-03

    In this paper we theoretically study how structural disorder in coupled semiconductor heterostructures influences single-particle scattering events that would otherwise be forbidden by symmetry. We extend the model of Savona (2007 J. Phys.: Condens. Matter 19 295208) to describe Rayleigh scattering in coupled planar microcavity structures, and find that effective filter theories can be ruled out.

  5. Rayleigh scattering from ions near threshold

    International Nuclear Information System (INIS)

    Roy, S.C.; Gupta, S.K.S.; Kissel, L.; Pratt, R.H.

    1988-01-01

    Theoretical studies of Rayleigh scattering of photons from neon atoms with different degrees of ionization, for energies both below and above the K-edges of the ions, are presented. Some unexpected structures both in Rayleigh scattering and in photoionization from neutral and weakly ionized atoms, very close to threshold, have been reported. It has recently been realized that some of the predicted structures may have a nonphysical origin and are due to the limitation of the independent-particle model and also to the use of a Coulombic Latter tail. Use of a K-shell vacancy potential - in which an electron is assumed to be removed from the K-shell - in calculating K-shell Rayleigh scattering amplitudes removes some of the structure effects near threshold. We present in this work a discussion of scattering angular distributions and total cross sections, obtained utilizing vacancy potentials, and compare these predictions with those previously obtained in other potential model. (author) [pt

  6. Computational study of the Rayleigh light scattering properties of atmospheric pre-nucleation clusters

    DEFF Research Database (Denmark)

    Elm, Jonas; Norman, Patrick; Bilde, Merete

    2014-01-01

    The Rayleigh and hyper Rayleigh scattering properties of the binary (H 2SO4)(H2O)n and ternary (H 2SO4)(NH3)(H2O)n clusters are investigated using a quantum mechanical response theory approach. The molecular Rayleigh scattering intensities are expressed using the dipole polarizability α...... and hyperpolarizability β tensors. Using density functional theory, we elucidate the effect of cluster morphology on the scattering properties using a combinatorial sampling approach. We find that the Rayleigh scattering intensity depends quadratically on the number of water molecules in the cluster and that a single...... ammonia molecule is able to induce a high anisotropy, which further increases the scattering intensity. The hyper Rayleigh scattering activities are found to be extremely low. This study presents the first attempt to map the scattering of atmospheric molecular clusters using a bottom-up approach...

  7. Threshold and maximum power evolution of stimulated Brillouin scattering and Rayleigh backscattering in a single mode fiber segment

    International Nuclear Information System (INIS)

    Sanchez-Lara, R; Alvarez-Chavez, J A; Mendez-Martinez, F; De la Cruz-May, L; Perez-Sanchez, G G

    2015-01-01

    The behavior of stimulated Brillouin scattering (SBS) and Rayleigh backscattering phenomena, which limit the forward transmission power in modern, ultra-long haul optical communication systems such as dense wavelength division multiplexing systems is analyzed via simulation and experimental investigation of threshold and maximum power. Evolution of SBS, Rayleigh scattering and forward powers are experimentally investigated with a 25 km segment of single mode fiber. Also, a simple algorithm to predict the generation of SBS is proposed where two criteria of power thresholds was used for comparison with experimental data. (paper)

  8. Experimental investigation of quantum effects in time-resolved resonance Rayleigh scattering from quantum well excitons

    DEFF Research Database (Denmark)

    Birkedal, Dan; Shah, Jagdeep; Shchegrov, Andrei V.

    2000-01-01

    Resonant Rayleigh scattering from quantum well excitons is investigated using ultrafast spectral interferometry. We isolate the coherent Rayleigh scattering from incoherent luminescence in a single speckle. Averaging the resonant Rayleigh intensity over several speckles allows us to identify...... features in support of quantum corrections to the classical description of the underlying scattering process....

  9. Rayleigh scattering and depolarization ratio in linear alkylbenzene

    International Nuclear Information System (INIS)

    Liu, Qian; Zhou, Xiang; Huang, Wenqian; Zhang, Yuning; Wu, Wenjie; Luo, Wentai; Yu, Miao; Zheng, Yangheng; Zhou, Li; Cao, Jun; Wang, Yifang

    2015-01-01

    It is planned to use linear alkylbenzene (LAB) as the organic solvent for the Jiangmen Underground Neutrino Observatory (JUNO) liquid scintillator detectors, due to its ultra-transparency. However, the current Rayleigh scattering length calculation for LAB disagrees with the experimental measurement. This paper reports for the first time that the Rayleigh scattering of LAB is anisotropic, with a depolarization ratio of 0.31±0.01(stat.)±0.01(sys.). We use an indirect method for Rayleigh scattering measurement with the Einstein–Smoluchowski–Cabannes formula, and the Rayleigh scattering length of LAB is determined to be 28.2±1.0 m at 430 nm

  10. The effect of pressure on spontaneous Rayleigh-Brillouin scattering spectrum in nitrogen

    Science.gov (United States)

    Yang, Chuanyin; Wu, Tao; Shang, Jingcheng; Zhang, Xinyi; Hu, Rongjing; He, XingDao

    2018-05-01

    In order to study the effect of gas pressure on spontaneous Rayleigh-Brillouin scattering spectrum and verify the validity of Tenti S6 model at pressures up to 8 atm, the spontaneous Rayleigh-Brillouin scattering experiment in nitrogen was performed for a wavelength of 532 nm at the constant room temperature of 296 K and a 90° scattering angle. By comparing the experimental spectrum with the theoretical spectrum, the normalized root mean square deviation was calculated and found less than 2.2%. It is verified that Tenti S6 model can be applied to the spontaneous Rayleigh-Brillion scattering of nitrogen under higher pressures. The results of the experimental data analysis demonstrate that pressure has more effect on Brillouin peak intensity and has negligible effect on Brillouin frequency shift, and pressure retrieval based on spontaneous Rayleigh-Brillouin scattering profile is a promising method for remote of pressure, such as harsh environment applications. Some factors that caused experiment deviations are also discussed.

  11. Nd:YAG Laser-Based Dual-Line Detection Rayleigh Scattering and Current Efforts on UV, Filtered Rayleigh Scattering

    Science.gov (United States)

    Otugen, M. Volkan; Popovic, Svetozar

    1996-01-01

    Ongoing research in Rayleigh scattering diagnostics for variable density low speed flow applications and for supersonic flow measurements are described. During the past several years, the focus has been on the development and use of a Nd:YAG-based Rayleigh scattering system with improved signal-to-noise characteristics and with applicability to complex, confined flows. This activity serves other research projects in the Aerodynamics Laboratory which require the non-contact, accurate, time-frozen measurement of gas density, pressure, and temperature (each separately), in a fairly wide dynamic range of each parameter. Recently, with the acquisition of a new seed-injected Nd:YAG laser, effort also has been directed to the development of a high-speed velocity probe based on a spectrally resolved Rayleigh scattering technique.

  12. Recent results in Rayleigh scattering

    International Nuclear Information System (INIS)

    Kahane, S.; Shahal, O.; Moreh, R.; Ben-Gurion Univ. of the Negev, Beer-Sheva

    1997-01-01

    New measurements of Rayleigh scattering, employing neutron capture γ rays are presented. Experimental conditions are achieved such that the Rayleigh contribution is dominant and much larger than other competing coherent process. A detailed comparison with the modified relativistic form factor approximation (MRFF) is made. It is found that MRFF overestimates the true cross sections by 3-4%. (author)

  13. Dynamics of globular molecules: moisture effect on the Rayleigh scattering spectrum of the Moessbauer radiation

    International Nuclear Information System (INIS)

    Chesskaya, T.Yu.

    1998-01-01

    The Rayleigh scattering spectrum of the Moessbauer radiation is plotted on the model simulating globular macromolecules. The modeling results are compared with experimental data on the spectra of the Rayleigh scattering of the Moessbauer radiation for various moisture content and hydratation dependence of the elastic scattering portion

  14. Rayleigh scattering and nonlinear inversion of elastic waves

    Energy Technology Data Exchange (ETDEWEB)

    Gritto, Roland [Univ. of California, Berkeley, CA (United States)

    1995-12-01

    Rayleigh scattering of elastic waves by an inclusion is investigated and the limitations determined. In the near field of the inhomogeneity, the scattered waves are up to a factor of 300 stronger than in the far field, excluding the application of the far field Rayleigh approximation for this range. The investigation of the relative error as a function of parameter perturbation shows a range of applicability broader than previously assumed, with errors of 37% and 17% for perturbations of -100% and +100%, respectively. The validity range for the Rayleigh limit is controlled by large inequalities, and therefore, the exact limit is determined as a function of various parameter configurations, resulting in surprisingly high values of up to kpR = 0.9. The nonlinear scattering problem can be solved by inverting for equivalent source terms (moments) of the scatterer, before the elastic parameters are determined. The nonlinear dependence between the moments and the elastic parameters reveals a strong asymmetry around the origin, which will produce different results for weak scattering approximations depending on the sign of the anomaly. Numerical modeling of cross hole situations shows that near field terms are important to yield correct estimates of the inhomogeneities in the vicinity of the receivers, while a few well positioned sources and receivers considerably increase the angular coverage, and thus the model resolution of the inversion parameters. The pattern of scattered energy by an inhomogeneity is complicated and varies depending on the object, the wavelength of the incident wave, and the elastic parameters involved. Therefore, it is necessary to investigate the direction of scattered amplitudes to determine the best survey geometry.

  15. Rayleigh scattering under light-atom coherent interaction

    OpenAIRE

    Takamizawa, Akifumi; Shimoda, Koichi

    2012-01-01

    Semi-classical calculation of an oscillating dipole induced in a two-level atom indicates that spherical radiation from the dipole under coherent interaction, i.e., Rayleigh scattering, has a power level comparable to that of spontaneous emission resulting from an incoherent process. Whereas spontaneous emission is nearly isotropic and has random polarization generally, Rayleigh scattering is strongly anisotropic and polarized in association with incident light. In the case where Rabi frequen...

  16. Depolarization Rayleigh scattering as a means of molecular concentration determination in plasmas

    NARCIS (Netherlands)

    Meulenbroeks, R.F.G.; Schram, D.C.; Jaegers, L.J.M.; Sanden, van de M.C.M.

    1992-01-01

    The difference in polarization for Rayleigh scattered radiation on spherically and nonspherically symmetric scattering objects has been used to obtain molecular species concentrations in plasmas of simple composition. Using a Rayleigh scattering diagnostic, the depolarized component of the scattered

  17. Spontaneous Rayleigh-Brillouin scattering spectral analysis based on the Wiener filter

    Directory of Open Access Journals (Sweden)

    Tao Wu

    2018-01-01

    Full Text Available In this paper, a spontaneous Rayleigh-Brillouin scattering spectrometer is developed to measure the gaseous spontaneous Rayleigh-Brillouin scattering profiles over the pressure range from 1 to 5 atm for a wavelength of 532nm at a constant room temperature of 296K and a 90o scattering angle. In order to make a direct comparison between the experimentally obtained spectrum and the theoretical spectrum calculated from the Tenti S6 model, the measured spontaneous Rayleigh-Brillouin scattering signal is deconvolved by the Wiener filtering. The purpose is to remove the effect on the spectrum by the transmission function of the Fabry-Perrot scanning interferometer. The results of the comparison show that the deconvolved spectra are consistent with the theoretical spectra calculated from the Tenti S6 model, and thus confirm that the deconvolution based on the Wiener filter is able to process the measured spectra and improve the spectral resolution. Some factors that influence the accuracy of deconvolution are analyzed and discussed. At the same time, another comparison between the raw experimentally obtained spectra and the theoretical spectra calculated by convolving the Tenti S6 model with instrument function of the measurement system is performed in the same experimental condition. The results of the two comparisons show that, compared with the raw experimentally obtained spectrum, the deconvolved spectrum matches the theoretically calculated spectrum more accurately under lower pressure (≤2atm than under relative higher pressure (>2atm.

  18. What is the contribution of scattering to the Love-to-Rayleigh ratio in ambient microseismic noise?

    Science.gov (United States)

    Ziane, D.; Hadziioannou, C.

    2015-12-01

    Several observations show the existence of both Rayleigh and Love waves in the secondary microseism. While the Rayleigh wave excitation is well described by Longuet-Higgins, the process responsible for Love wave generation still needs further investigation. Several different mechanisms could excite Love waves in this frequency band: broadly speaking, we can differentiate between source effects, like pressure variations on the oblique sea floor, or internal effects in the medium along the propagation path, such as scattering and conversions. Here we will focus on the internal effects. We perform single scattering tests in 2D and 3D to gain a better understanding of the scattering radiation pattern and the conversion between P, S, Rayleigh and Love waves. Furthermore, we use random media with continuous variations of the elastic parameters to create a scattering regime similar to the Earths interior, e.g. Gaussian or von Karmann correlation functions. The aim is to explore the contribution of scattering along the propagation path to the observed Love to Rayleigh wave energy ratios, assuming a purely vertical force source mechanism. We use finite different solvers to calculate the synthetic seismograms, and to separate the different wave types we measure the rotational and divergent components of the wave field.

  19. Chemical Applications of Second Harmonic Rayleigh Scattering ...

    Indian Academy of Sciences (India)

    Chemical Applications of Second Harmonic Rayleigh Scattering Puspendu Kumar Das Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012, India pkdas@ipc.iisc.ernet.in.

  20. In situ nanoparticle diagnostics by multi-wavelength Rayleigh-Mie scattering ellipsometry

    CERN Document Server

    Gebauer, G

    2003-01-01

    We present and discuss the method of multiple-wavelength Rayleigh-Mie scattering ellipsometry for the in situ analysis of nanoparticles. It is applied to the problem of nanoparticles suspended in low-pressure plasmas. We discuss experimental results demonstrating that the size distribution and the complex refractive index can be determined with high accuracy and present a study on the in situ analysis of etching of melamine-formaldehyde nanoparticles suspended in an oxygen plasma. It is also shown that particles with a shell structure (core plus mantle) can be analysed by Rayleigh-Mie scattering ellipsometry. Rayleigh-Mie scattering ellipsometry is also applicable to in situ analysis of nanoparticles under high gas pressures and in liquids.

  1. Scattering Light by а Cylindrical Capsule with Arbitrary End Caps in the Rayleigh-Gans-Debye Approximation

    Directory of Open Access Journals (Sweden)

    K. A. Shapovalov

    2015-01-01

    Full Text Available The paper concerns the light scattering problem of biological objects of complicated structure.It considers optically “soft” (having a refractive index close to that of a surrounding medium homogeneous cylindrical capsules, composed of three parts: central one that is cylindrical and two symmetrical rounding end caps. Such capsules can model more broad class of biological objects than the ordinary shapes of a spheroid or sphere. But, unfortunately, if a particle has other than a regular geometrical shape, then it is very difficult or impossible to solve the scattering problem analytically in its most general form that oblige us to use numerical and approximate analytical methods. The one of such approximate analytical method is the Rayleigh-Gans-Debye approximation (or the first Born approximation.So, the Rayleigh-Gans-Debye approximation is valid for different objects having size from nanometer to millimeter and depending on wave length and refractive index of an object under small phase shift of central ray.The formulas for light scattering amplitude of cylindrical capsule with arbitrary end caps in the Rayleigh-Gans-Debye approximation in scalar form are obtained. Then the light scattering phase function [or element of scattering matrix f11] for natural incident light (unpolarized or arbitrary polarized light is calculated.Numerical results for light scattering phase functions of cylindrical capsule with conical, spheroidal, paraboloidal ends in the Rayleigh-Gans-Debye approximation are compared. Also numerical results for light scattering phase function of cylindrical capsule with conical ends in the Rayleigh-Gans-Debye approximation and in the method of Purcell-Pennypacker (or Discrete Dipole method are compared. The good agreement within an application range of the RayleighGans-Debye approximation is obtained.Further continuation of the work, perhaps, is a consideration of multilayer cylindrical capsule in the Rayleigh

  2. Propagation and attenuation of sound waves as well as spectrally resolved Rayleigh scattering in weakly ionized plasmas

    International Nuclear Information System (INIS)

    Kopainsky, J.

    1975-01-01

    In weakly ionized plasmas the scattering of electromagnetic waves on free electrons (Thompson scattering) can be neglected as compared with the scattering on bound electrons (Rayleigh scattering). If the scattering process can be described by a fluid dynamical model it is caused by sound waves which are generated or annihilated by the incident electromagnetic wave. The propagation of sound waves results in a shift of the scattered line whereas their absorption within the plasma produces the broadening of the scattered line. The theory of propagation of sound in weakly ionized plasmas is developed and extended to Rayleigh scattering. The results are applied to laser scattering in a weakly ionized hydrogen plasma. (Auth.)

  3. Rayleigh-wave scattering by shallow cracks using the indirect boundary element method

    International Nuclear Information System (INIS)

    Ávila-Carrera, R; Rodríguez-Castellanos, A; Ortiz-Alemán, C; Sánchez-Sesma, F J

    2009-01-01

    The scattering and diffraction of Rayleigh waves by shallow cracks using the indirect boundary element method (IBEM) are investigated. The detection of cracks is of interest because their presence may compromise structural elements, put technological devices at risk or represent economical potential in reservoir engineering. Shallow cracks may give rise to scattered body and surface waves. These waves are sensitive to the crack's geometry, size and orientation. Under certain conditions, amplitude spectra clearly show conspicuous resonances that are associated with trapped waves. Several applications based on the scattering of surface waves (e.g. Rayleigh and Stoneley waves), such as non-destructive testing or oil well exploration, have shown that the scattered fields may provide useful information to detect cracks and other heterogeneities. The subject is not new and several analytical and numerical techniques have been applied for the last 50 years to understand the basis of multiple scattering phenomena. In this work, we use the IBEM to calculate the scattered fields produced by single or multiple cracks near a free surface. This method is based upon an integral representation of the scattered displacement fields, which is derived from Somigliana's identity. Results are given in both frequency and time domains. The analyses of the displacement field using synthetic seismograms and snapshots reveal some important effects from various configurations of cracks. The study of these simple cases may provide an archetype to geoscientists and engineers to understand the fundamental aspects of multiple scattering and diffraction by cracks

  4. A diode laser-based velocimeter providing point measurements in unseeded flows using modulated filtered Rayleigh scattering (MFRS)

    Science.gov (United States)

    Jagodzinski, Jeremy James

    2007-12-01

    The development to date of a diode-laser based velocimeter providing point-velocity-measurements in unseeded flows using molecular Rayleigh scattering is discussed. The velocimeter is based on modulated filtered Rayleigh scattering (MFRS), a novel variation of filtered Rayleigh scattering (FRS), utilizing modulated absorption spectroscopy techniques to detect a strong absorption of a relatively weak Rayleigh scattered signal. A rubidium (Rb) vapor filter is used to provide the relatively strong absorption; alkali metal vapors have a high optical depth at modest vapor pressures, and their narrow linewidth is ideally suited for high-resolution velocimetry. Semiconductor diode lasers are used to generate the relatively weak Rayleigh scattered signal; due to their compact, rugged construction diode lasers are ideally suited for the environmental extremes encountered in many experiments. The MFRS technique utilizes the frequency-tuning capability of diode lasers to implement a homodyne detection scheme using lock-in amplifiers. The optical frequency of the diode-based laser system used to interrogate the flow is rapidly modulated about a reference frequency in the D2-line of Rb. The frequency modulation is imposed on the Rayleigh scattered light that is collected from the probe volume in the flow under investigation. The collected frequency modulating Rayleigh scattered light is transmitted through a Rb vapor filter before being detected. The detected modulated absorption signal is fed to two lock-in amplifers synchronized with the modulation frequency of the source laser. High levels of background rejection are attained since the lock-ins are both frequency and phase selective. The two lock-in amplifiers extract different Fourier components of the detected modulated absorption signal, which are ratioed to provide an intensity normalized frequency dependent signal from a single detector. A Doppler frequency shift in the collected Rayleigh scattered light due to a change

  5. Measurement of the Rayleigh scattering length in liquid scintillators for JUNO

    Energy Technology Data Exchange (ETDEWEB)

    Hackspacher, Paul [Johannes Gutenberg-Universitaet Mainz, PRISMA Excellence Cluster (Germany); Collaboration: JUNO-Collaboration

    2016-07-01

    In liquid scintillator neutrino detectors such as the upcoming Jiangmen Underground Neutrino Observatory (JUNO), neutrino interactions are being detected by means of inverse beta decay and analysis of the resulting luminescent light. In order to reliably reconstruct these events from photomultiplier signals, the scattering properties of the detector materials need to be sufficiently well known. In the LAB-based liquid scintillator that has been proposed for JUNO, the primary contribution to the scattering process comes from Rayleigh scattering. The characteristic Rayleigh scattering length can be experimentally obtained in an optical laboratory setup. This talk presents the approach, the current status and the future plans of the experiment.

  6. Experimental study of Rayleigh scattering with a ruby laser beam: relative variation of scattered light with the number of scattering center and the gases nature

    International Nuclear Information System (INIS)

    Bayer, Charles

    1973-06-01

    The experimental variation of the scattered light with the number of scattering centers and with the refraction index of gases is in agreement with the theoretical Rayleigh scattering. A direct calibration System gives the absolute value of the Rayleigh ratio. The experimental value appears to be half of the theoretical one. (author) [fr

  7. Direct measurement of the Rayleigh scattering cross section in various gases

    International Nuclear Information System (INIS)

    Sneep, Maarten; Ubachs, Wim

    2005-01-01

    Using the laser-based technique of cavity ring-down spectroscopy extinction measurements have been performed in various gases straightforwardly resulting in cross sections for Rayleigh scattering. For Ar and N 2 measurements are performed in the range 470-490nm, while for CO 2 cross sections are determined in the wider range 470-570nm. In addition to these gases also for N 2 O, CH 4 , CO, and SF 6 the scattering cross section is determined at 532nm, a wavelength of importance for lidar applications and combustion laser diagnostics. In O 2 the cross section at 532nm is found to depend on pressure due to collision-induced light absorption. The obtained cross sections validate the cross sections for Rayleigh scattering as derived from refractive indices and depolarization ratios through Rayleigh's theory at the few %-level, although somewhat larger discrepancies are found for CO, N 2 O and CH 4

  8. Dynamical narrowing of the Rayleigh scattering ring from a semiconductor microcavity

    DEFF Research Database (Denmark)

    Langbein, W.; Hvam, Jørn Märcher

    2001-01-01

    In resonant secondary emission of light (SE), scattering by static disorder leads to coherent resonant Rayleigh scattering (RRS), while the scattering with other quasi-particles (e.g. phonons) leads to an incoherent emission called photoluminescence (PL). For a bare quantum well (QW) the SE does...

  9. Filtered Rayleigh Scattering Measurements in a Buoyant Flow Field

    National Research Council Canada - National Science Library

    Meents, Steven M

    2008-01-01

    Filtered Rayleigh Scattering (FRS) is a non-intrusive, laser-based flow characterization technique that consists of a narrow linewidth laser, a molecular absorption filter, and a high resolution camera behind the filter to record images...

  10. Rayleigh scatter in kilovoltage x-ray imaging: is the independent atom approximation good enough?

    OpenAIRE

    Poludniowski, G; Evans, PM; Webb, S

    2009-01-01

    Monte Carlo simulation is the gold standard method for modelling scattering processes in medical x-ray imaging. General-purpose Monte Carlo codes, however, typically use the independent atom approximation (IAA). This is known to be inaccurate for Rayleigh scattering, for many materials, in the forward direction. This work addresses whether the IAA is sufficient for the typical modelling tasks in medical kilovoltage x-ray imaging. As a means of comparison, we incorporate a more realistic 'inte...

  11. Chemical Applications of Second Harmonic Rayleigh Scattering ...

    Indian Academy of Sciences (India)

    Chemical Applications of Second Harmonic Rayleigh Scattering Puspendu Kumar Das Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012, India pkdas@ipc.iisc.ernet.in · Slide 2 · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13.

  12. In-Flight Calibration of GF-1/WFV Visible Channels Using Rayleigh Scattering

    Directory of Open Access Journals (Sweden)

    Xingfeng Chen

    2017-05-01

    Full Text Available China is planning to launch more and more optical remote-sensing satellites with high spatial resolution and multistep gains. Field calibration, the current operational method of satellite in-flight radiometric calibration, still does not have enough capacity to meet these demands. Gaofen-1 (GF-1, as the first satellite of the Chinese High-resolution Earth Observation System, has been specially arranged to obtain 22 images over clean ocean areas using the Wide Field Viewing camera. Following this, Rayleigh scattering calibration was carried out for the visible channels with these images after the appropriate data processing steps. To guarantee a high calibration precision, uncertainty was analyzed in advance taking into account ozone, aerosol optical depth (AOD, seawater salinity, chlorophyll concentration, wind speed and solar zenith angle. AOD and wind speed were found to be the biggest error sources, which were also closely coupled to the solar zenith angle. Therefore, the best sample data for Rayleigh scattering calibration were selected at the following solar zenith angle of 19–22° and wind speed of 5–13 m/s to reduce the reflection contributed by the water surface. The total Rayleigh scattering calibration uncertainties of visible bands are 2.44% (blue, 3.86% (green, and 4.63% (red respectively. Compared with the recent field calibration results, the errors are −1.69% (blue, 1.83% (green, and −0.79% (red. Therefore, the Rayleigh scattering calibration can become an operational in-flight calibration method for the high spatial resolution satellites.

  13. Instantaneous Rayleigh scattering from excitons localized in monolayer islands

    DEFF Research Database (Denmark)

    Langbein, Wolfgang; Leosson, Kristjan; Jensen, Jacob Riis

    2000-01-01

    We show that the initial dynamics of Rayleigh scattering from excitons in quantum wells can be either instantaneous or delayed, depending on the exciton ensemble studied. For excitation of the entire exciton resonance, a finite rise time given by the inverse inhomogeneous broadening: of the exciton...

  14. RAYLEIGH SCATTERING IN THE ATMOSPHERE OF THE WARM EXO-NEPTUNE GJ 3470B

    International Nuclear Information System (INIS)

    Dragomir, Diana; Benneke, Björn; Pearson, Kyle A.; Crossfield, Ian J. M.; Barman, Travis; Eastman, Jason; Biddle, Lauren I.

    2015-01-01

    GJ 3470b is a warm Neptune-size planet transiting an M dwarf star. Like the handful of other small exoplanets for which transmission spectroscopy has been obtained, GJ 3470b exhibits a flat spectrum in the near- and mid-infrared. Recently, a tentative detection of Rayleigh scattering in its atmosphere has been reported. This signal manifests itself as an observed increase of the planetary radius as a function of decreasing wavelength in the visible. We set out to verify this detection and observed several transits of this planet with the LCOGT network and the Kuiper telescope in four different bands (Sloan g, Sloan i, Harris B, and Harris V). Our analysis reveals a strong Rayleigh scattering slope, thus confirming previous results. This makes GJ 3470b the smallest known exoplanet with a detection of Rayleigh scattering. We find that the most plausible scenario is a hydrogen/helium-dominated atmosphere covered by clouds which obscure absorption features in the infrared and hazes which give rise to scattering in the visible. Our results demonstrate the feasibility of exoplanet atmospheric characterization from the ground, even with meter-class telescopes

  15. RAYLEIGH SCATTERING IN THE ATMOSPHERE OF THE WARM EXO-NEPTUNE GJ 3470B

    Energy Technology Data Exchange (ETDEWEB)

    Dragomir, Diana [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive Suite 102, Goleta, CA 93117 (United States); Benneke, Björn [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Pearson, Kyle A. [Department of Physics and Astronomy, Northern Arizona University, Flagstaff, AZ 86001 (United States); Crossfield, Ian J. M.; Barman, Travis [Department of Planetary Sciences, Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Eastman, Jason [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Biddle, Lauren I., E-mail: diana@oddjob.uchicago.edu [Gemini Observatory, Northern Operations Center, 670 N. Aohoku Place, Hilo, HI 96720 (United States)

    2015-12-01

    GJ 3470b is a warm Neptune-size planet transiting an M dwarf star. Like the handful of other small exoplanets for which transmission spectroscopy has been obtained, GJ 3470b exhibits a flat spectrum in the near- and mid-infrared. Recently, a tentative detection of Rayleigh scattering in its atmosphere has been reported. This signal manifests itself as an observed increase of the planetary radius as a function of decreasing wavelength in the visible. We set out to verify this detection and observed several transits of this planet with the LCOGT network and the Kuiper telescope in four different bands (Sloan g, Sloan i, Harris B, and Harris V). Our analysis reveals a strong Rayleigh scattering slope, thus confirming previous results. This makes GJ 3470b the smallest known exoplanet with a detection of Rayleigh scattering. We find that the most plausible scenario is a hydrogen/helium-dominated atmosphere covered by clouds which obscure absorption features in the infrared and hazes which give rise to scattering in the visible. Our results demonstrate the feasibility of exoplanet atmospheric characterization from the ground, even with meter-class telescopes.

  16. Measurement of the stimulated thermal Rayleigh scattering instability

    International Nuclear Information System (INIS)

    Karr, T.J.; Rushford, M.C.; Murray, J.R.; Morris, J.R.

    1989-04-01

    Growth of perturbations due to stimulated thermal Rayleigh scattering was observed on a laser beam propagating in a 1 meter cell of CC14. Initial sinusoidal irradiance perturbations were seeded onto the laser leam, and their amplification in the cell was recorded by a near field camera. The perturbation growth rate is in agreement with analytical predictions of linearized propagation theory

  17. Size estimates of nobel gas clusters by Rayleigh scattering experiments

    Institute of Scientific and Technical Information of China (English)

    Pinpin Zhu (朱频频); Guoquan Ni (倪国权); Zhizhan Xu (徐至展)

    2003-01-01

    Noble gases (argon, krypton, and xenon) are puffed into vacuum through a nozzle to produce clusters for studying laser-cluster interactions. Good estimates of the average size of the argon, krypton and xenon clusters are made by carrying out a series of Rayleigh scattering experiments. In the experiments, we have found that the scattered signal intensity varied greatly with the opening area of the pulsed valve. A new method is put forward to choose the appropriate scattered signal and measure the size of Kr cluster.

  18. Resonance scattering of Rayleigh waves by a mass defect

    International Nuclear Information System (INIS)

    Croitoru, M.; Grecu, D.

    1978-06-01

    The resonance scattering of an incident Rayleigh wave by a mass defect extending over a small cylindrical region situated in the surface of a semi-infinite isotropic, elastic medium is investigated by means of the Green's function method. The form of the differential cross-section for the scattering into different channels exhibits a strong resonance phenomenon at two frequencies. The expression of the resonance frequencies as well as of the corresponding widths depends on the relative change in mass density. The main assumption that the wavelengths of incoming and scattered wave are large compared to the defect dimension implies a large relative mass-density change. (author)

  19. Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner

    Science.gov (United States)

    Gordon, Howard R.; Brown, James W.; Evans, Robert H.

    1988-01-01

    The radiance reflected from a plane-parallel atmosphere and flat sea surface in the absence of aerosols has been determined with an exact multiple scattering code to improve the analysis of Nimbus-7 CZCS imagery. It is shown that the single scattering approximation normally used to compute this radiance can result in errors of up to 5 percent for small and moderate solar zenith angles. A scheme to include the effect of variations in the surface pressure in the exact computation of the Rayleigh radiance is discussed. The results of an application of these computations to CZCS imagery suggest that accurate atmospheric corrections can be obtained for solar zenith angles at least as large as 65 deg.

  20. Effect of diffraction on stimulated Brillouin scattering from a single laser hot spot

    International Nuclear Information System (INIS)

    Eliseev, V.V.; Rozmus, W.; Tikhonchuk, V.T.; Capjack, C.E.

    1996-01-01

    A single laser hot spot in an underdense plasma is represented as a focused Gaussian laser beam. Stimulated Brillouin scattering (SBS) from such a Gaussian beam with small f/numbers 2-4 has been studied in a three-dimensional slab geometry. It is shown that the SBS reflectivity from a single laser hot spot is much lower than that predicted by a simple three wave coupling model because of the diffraction of the scattered light from the spatially localized ion acoustic wave. SBS gain per one Rayleigh length of the incident laser beam is proposed as a quantitative measure of this effect. Diffraction-limited SBS from a randomized laser beam is also discussed. copyright 1996 American Institute of Physics

  1. Absorption and scattering properties of arbitrarily shaped particles in the Rayleigh domain

    International Nuclear Information System (INIS)

    Min, M.; Hovenier, J.W.; Dominik, C.; Koter, A. de; Yurkin, M.A.

    2006-01-01

    We provide a theoretical foundation for the statistical approach for computing the absorption properties of particles in the Rayleigh domain. We present a general method based on the discrete dipole approximation to compute the absorption and scattering properties of particles in the Rayleigh domain. The method allows to separate the geometrical aspects of a particle from its material properties. Doing the computation of the optical properties of a particle once, provides them for any set of refractive indices, wavelengths and orientations. This allows for fast computations of e.g. absorption spectra of arbitrarily shaped particles. Other practical applications of the method are in the interpretation of atmospheric and radar measurements as well as computations of the scattering matrix of small particles as a function of the scattering angle. In the statistical approach, the optical properties of irregularly shaped particles are represented by the average properties of an ensemble of particles with simple shapes. We show that the absorption cross section of an ensemble of arbitrarily shaped particles with arbitrary orientations can always be uniquely represented by the average absorption cross section of an ensemble of spheroidal particles with the same composition and fixed orientation. This proves for the first time that the statistical approach is generally viable in the Rayleigh domain

  2. Measurement of molecular polarizability on Rayleigh light scattering

    International Nuclear Information System (INIS)

    Nerushev, O.A.; Novopashin, S.A.

    1994-01-01

    The installation for measuring the polarizability of atoms and molecules on Rayleigh light scattering is described. The measurements in gases with the known polarizability are used for a calibration. Test measurements are carried out on nitrogen, argon, carbon dioxide, vapours of water and acetone. The results of measurements are compared with the table data. The technique is used for measuring the polarizability of fullerene molecules. 6 refs., 2 figs

  3. Hyper-Rayleigh scattering and hyper-Raman scattering of dye-adsorbed silver nanoparticles induced by a focused continuous-wave near-infrared laser

    International Nuclear Information System (INIS)

    Itoh, Tamitake; Ozaki, Yukihiro; Yoshikawa, Hiroyuki; Ihama, Takashi; Masuhara, Hiroshi

    2006-01-01

    We report that hyper-Rayleigh scattering, surface-enhanced hyper-Raman scattering, and two-photon excited luminescence occur intermittently by focusing a continuous-wave near-infrared (cw-NIR) laser into a colloidal silver solution including rhodamine 6G (R6G) and sodium chloride (NaCl). On the other hand, continuous hyper-Rayleigh scattering is observed from colloidal silver free from R6G and NaCl, demonstrating that hyper-Raman scattering and two-photon excited luminescence are attributed to R6G and their intermittent features are dependent on the colloidal dispersion. These results suggest that the cw-NIR laser has three roles; the source of the nonlinear response, optical trapping of nanoparticles, and making nanoparticle aggregates possessing the high activity for the nonlinear response

  4. Calculating Rayleigh scattering amplitudes from 100 eV to 10 MeV

    International Nuclear Information System (INIS)

    Parker, J.C.; Reynaud, G.W.; Botto, D.J.; Pratt, R.H.

    1979-01-01

    An attempt is made to explain how to calculate the contribution to elastic photon-atom scattering due to Rayleigh scattering (the scattering off bound electrons) in the photon energy range 100 eV less than or equal to W less than or equal to 10 MeV. All intermediate calculations are described, including the calculation of the potential, bound state wave functions, matrix elements, and final cross sections. 12 references

  5. Analytical evaluation of atomic form factors: Application to Rayleigh scattering

    Energy Technology Data Exchange (ETDEWEB)

    Safari, L., E-mail: laleh.safari@ist.ac.at [IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg (Austria); Department of Physics, University of Oulu, Box 3000, FI-90014 Oulu (Finland); Santos, J. P. [Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Amaro, P. [Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Physikalisches Institut, Universität Heidelberg, D-69120 Heidelberg (Germany); Jänkälä, K. [Department of Physics, University of Oulu, Box 3000, FI-90014 Oulu (Finland); Fratini, F. [Department of Physics, University of Oulu, Box 3000, FI-90014 Oulu (Finland); Institute of Atomic and Subatomic Physics, TU Wien, Stadionallee 2, 1020 Wien (Austria); Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG (Brazil)

    2015-05-15

    Atomic form factors are widely used for the characterization of targets and specimens, from crystallography to biology. By using recent mathematical results, here we derive an analytical expression for the atomic form factor within the independent particle model constructed from nonrelativistic screened hydrogenic wave functions. The range of validity of this analytical expression is checked by comparing the analytically obtained form factors with the ones obtained within the Hartee-Fock method. As an example, we apply our analytical expression for the atomic form factor to evaluate the differential cross section for Rayleigh scattering off neutral atoms.

  6. Ultraviolet Rayleigh Scatter Imaging for Spatial Temperature Profiles in Atmospheric Microdischarges

    Science.gov (United States)

    2014-09-01

    approximation of Rayleigh scattering for atomic gases, such as helium and argon . 13 Approved for public release; distribution unlimited. Figure 3... polarizability tensor , as [13] = + + = + + ...22�. (25) 16 Approved for public release; distribution unlimited. To further define the polarizability

  7. Resonant Rayleigh scattering of exciton-polaritons in multiple quantum wells

    DEFF Research Database (Denmark)

    Malpuech, Guillaume; Kavokin, Alexey; Langbein, Wolfgang Werner

    2000-01-01

    A theoretical concept of resonant Rayleigh scattering (RRS) of exciton-polaritons in multiple quantum wells (QWs) is presented. The optical coupling between excitons in different QWs can strongly affect the RRS dynamics, giving rise to characteristic temporal oscillations on a picosecond scale....... Bragg and anti-Bragg arranged QW structures with the same excitonic parameters are predicted to have drastically different RRS spectra. Experimental data on the RRS from multiple QWs show the predicted strong temporal oscillations at small scattering angles, which are well explained by the presented...

  8. A new MesosphEO dataset of temperature profiles from 35 to 85 km using Rayleigh scattering at limb from GOMOS/ENVISAT daytime observations

    Science.gov (United States)

    Hauchecorne, A.; Blanot, L.; Wing, R., Jr.; Keckhut, P.; Khaykin, S. M.

    2017-12-01

    The scattering of sunlight by the Earth atmosphere above the top of the stratospheric layer, about 30-35 km altitude, is only due to Rayleigh scattering by atmospheric molecules. Its intensity is then directly proportional to the atmospheric density. It is then possible to retrieve a temperature profile in absolute value using the hydrostatic equation and the perfect gas law, assuming that the temperature is known from a climatological model at the top of the density profile. This technique is applied to Rayleigh lidar observations since more than 35 years (Hauchecorne and Chanin, 1980). The GOMOS star occultation spectrometer observed the sunlight scattering at limb during daytime to remove it from the star spectrum. In the frame of the ESA funded MesosphEO project, GOMOS Rayleigh scattering profiles in the spectral range 400-460 nm have been used to retrieve temperature profiles from 35 to 85 km with a 2-km vertical resolution. A dataset of more than 310 thousands profiles from 2002 to 2012 is available for climatology and atmospheric dynamics studies. The validation of this dataset using NDACC Rayleigh lidars and MLS-AURA and SABER-TIMED will be presented. Preliminary results on the variability of the upper stratosphere and the mesosphere will be shown. We propose to apply this technique in the future to ALTIUS observations. The Rayleigh scattering technique can be applied to any sounder observing the day-time limb on the near-UV and visible spectrum.

  9. Rayleigh-Brillouin scattering in SF6 in the kinetic regime

    Science.gov (United States)

    Wang, Yuanqing; Yu, Yin; Liang, Kun; Marques, Wilson; van de Water, Willem; Ubachs, Wim

    2017-02-01

    Rayleigh-Brillouin spectral profiles are measured with a laser-based scatterometry setup for a 90° scattering angle at a high signal-to-noise ratio (r.m.s. noise below 0.15% w.r.t. peak intensity) in sulfur-hexafluoride gas for pressures in the range 0.2-5 bar and for a wavelength of λ = 403.0 nm. The high quality data are compared to a number of light scattering models in order to address the effects of rotational and vibrational relaxation. While the vibrational relaxation rate is so slow that vibration degrees of freedom remain frozen, rotations relax on time scales comparable to those of the density fluctuations. Therefore, the heat capacity, the thermal conductivity and the bulk viscosity are all frequency-dependent transport coefficients. This is relevant for the Tenti model that depends on the values chosen for these transport coefficients. This is not the case for the other two models considered: a kinetic model based on rough-sphere interactions, and a model based on fluctuating hydrodynamics. The deviations with the experiment are similar between the three different models, except for the hydrodynamic model at pressures p≲ 2bar . As all models are in line with the ideal gas law, we hypothesize the presence of real gas effects in the measured spectra.

  10. Molecular Rayleigh Scattering Diagnostic for Dynamic Temperature, Velocity, and Density Measurements

    Science.gov (United States)

    Mielke, Amy R.; Elam, Kristie A.; Sung, Chi-Jen

    2006-01-01

    A molecular Rayleigh scattering technique is developed to measure dynamic gas temperature, velocity, and density in unseeded turbulent flows at sampling rates up to 16 kHz. A high power CW laser beam is focused at a point in an air jet plume and Rayleigh scattered light is collected and spectrally resolved. The spectrum of the light, which contains information about the temperature and velocity of the flow, is analyzed using a Fabry-Perot interferometer. The circular interference fringe pattern is divided into four concentric regions and sampled at 1 and 16 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows for measurement of gas temperature and velocity. Independently monitoring the total scattered light intensity provides a measure of gas density. A low speed heated jet is used to validate the measurement of temperature fluctuations and an acoustically excited nozzle flow is studied to validate velocity fluctuation measurements. Power spectral density calculations of the property fluctuations, as well as mean and fluctuating quantities are presented. Temperature fluctuation results are compared with constant current anemometry measurements and velocity fluctuation results are compared with constant temperature anemometry measurements at the same locations.

  11. Ultrafast spectral interferometry of resonant secondary emission from quantum wells: From Rayleigh scattering to coherent emission from biexcitons

    DEFF Research Database (Denmark)

    Birkedal, Dan; Shah, Jagdeep; Pfeiffer, L. N.

    1999-01-01

    Recent investigations of secondary emission from quantum well excitons following ultrafast resonant excitation have demonstrated an intricate interplay of coherent Rayleigh scattering and incoherent luminescence. We have very recently demonstrated that it is possible to isolate and time resolve...... the coherent field associated with Rayleigh component using ultrafast spectral interferometry or Tadpole, thus, obtaining substantial and new information of the nature of resonant secondary emission. Our observation demonstrates that Rayleigh scattering from static disorder is inherently a non-ergodic process...... invalidating the use of current theories using ensemble averages to describe our observations. Furthermore, we report here a new and hitherto unknown coherent scattering mechanism involving the two-photon coherence associated with the biexciton transition. The process leaves an exciton behind taking up...

  12. Rayleigh to Compton ratio scatter tomography applied to breast cancer diagnosis: A preliminary computational study

    International Nuclear Information System (INIS)

    Antoniassi, M.; Conceição, A.L.C.; Poletti, M.E.

    2014-01-01

    In the present work, a tomographic technique based on Rayleigh to Compton scattering ratio (R/C) was studied using computational simulation in order to assess its application to breast cancer diagnosis. In this preliminary study, some parameters that affect the image quality were evaluated, such as: (i) energy beam, (ii) size and glandularity of the breast, and (iii) statistical count noise. The results showed that the R/C contrast increases with increasing photon energy and decreases with increasing glandularity of the sample. The statistical noise showed to be a significant parameter, although the quality of the obtained images was acceptable for a considerable range of noise level. The preliminary results suggest that the R/C tomographic technique has a potential of being applied as a complementary tool in the breast cancer diagnostic. - Highlights: ► A tomographic technique based on Rayleigh to Compton scattering ratio is proposed in order to study breast tissues. ► The Rayleigh to Compton scattering ratio technique is compared with conventional transmission technique. ► The influence of experimental parameters (energy, sample, detection system) is studied

  13. Influence of a variable Rayleigh scattering-loss coefficient on the light backscattering in multimode optical fibers.

    Science.gov (United States)

    Bisyarin, M A; Kotov, O I; Hartog, A H; Liokumovich, L B; Ushakov, N A

    2017-06-01

    The recently developed diffraction technique of analytical investigation of the Rayleigh backscattering produced by an incident fundamental mode in a multimode optical fiber with an arbitrary refractive index profile is supplemented by taking into account the Rayleigh scattering-loss coefficient, which could be variable within the fiber cross section. The relative changes in various radial and azimuthal modes' excitation levels, due to some typical radial dependences of this coefficient, are computed for the quadratic- and step-index fibers. It is stated that the excitation efficiency could either rise or decay for different modes. The effect of the variable Rayleigh scattering-loss coefficient is shown to be more noticeable in the fibers with a quadratic refractive index profile, whereas it is negligible in actual multimode step-index fibers.

  14. Rayleigh scatter in kilovoltage x-ray imaging: is the independent atom approximation good enough?

    Science.gov (United States)

    Poludniowski, G.; Evans, P. M.; Webb, S.

    2009-11-01

    Monte Carlo simulation is the gold standard method for modelling scattering processes in medical x-ray imaging. General-purpose Monte Carlo codes, however, typically use the independent atom approximation (IAA). This is known to be inaccurate for Rayleigh scattering, for many materials, in the forward direction. This work addresses whether the IAA is sufficient for the typical modelling tasks in medical kilovoltage x-ray imaging. As a means of comparison, we incorporate a more realistic 'interference function' model into a custom-written Monte Carlo code. First, we conduct simulations of scatter from isolated voxels of soft tissue, adipose, cortical bone and spongiosa. Then, we simulate scatter profiles from a cylinder of water and from phantoms of a patient's head, thorax and pelvis, constructed from diagnostic-quality CT data sets. Lastly, we reconstruct CT numbers from simulated sets of projection images and investigate the quantitative effects of the approximation. We show that the IAA can produce errors of several per cent of the total scatter, across a projection image, for typical x-ray beams and patients. The errors in reconstructed CT number, however, for the phantoms simulated, were small (typically < 10 HU). The IAA can therefore be considered sufficient for the modelling of scatter correction in CT imaging. Where accurate quantitative estimates of scatter in individual projection images are required, however, the appropriate interference functions should be included.

  15. Rayleigh-Brillouin scattering in SF6 in the kinetic regime

    NARCIS (Netherlands)

    Wang, Yuanqing; Yu, Yin; Liang, Kun; Marques, Wilson; van de Water, Willem; Ubachs, Wim

    2017-01-01

    Rayleigh-Brillouin spectral profiles are measured with a laser-based scatterometry setup for a 90° scattering angle at a high signal-to-noise ratio (r.m.s. noise below 0.15% w.r.t. peak intensity) in sulfur-hexafluoride gas for pressures in the range 0.2–5 bar and for a wavelength of λ=403.0 nm. The

  16. Ultrasensitive detection of target analyte-induced aggregation of gold nanoparticles using laser-induced nanoparticle Rayleigh scattering.

    Science.gov (United States)

    Lin, Jia-Hui; Tseng, Wei-Lung

    2015-01-01

    Detection of salt- and analyte-induced aggregation of gold nanoparticles (AuNPs) mostly relies on costly and bulky analytical instruments. To response this drawback, a portable, miniaturized, sensitive, and cost-effective detection technique is urgently required for rapid field detection and monitoring of target analyte via the use of AuNP-based sensor. This study combined a miniaturized spectrometer with a 532-nm laser to develop a laser-induced Rayleigh scattering technique, allowing the sensitive and selective detection of Rayleigh scattering from the aggregated AuNPs. Three AuNP-based sensing systems, including salt-, thiol- and metal ion-induced aggregation of the AuNPs, were performed to examine the sensitivity of laser-induced Rayleigh scattering technique. Salt-, thiol-, and metal ion-promoted NP aggregation were exemplified by the use of aptamer-adsorbed, fluorosurfactant-stabilized, and gallic acid-capped AuNPs for probing K(+), S-adenosylhomocysteine hydrolase-induced hydrolysis of S-adenosylhomocysteine, and Pb(2+), in sequence. Compared to the reported methods for monitoring the aggregated AuNPs, the proposed system provided distinct advantages of sensitivity. Laser-induced Rayleigh scattering technique was improved to be convenient, cheap, and portable by replacing a diode laser and a miniaturized spectrometer with a laser pointer and a smart-phone. Using this smart-phone-based detection platform, we can determine whether or not the Pb(2+) concentration exceed the maximum allowable level of Pb(2+) in drinking water. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Ribosome formation from subunits studied by stopped-flow and Rayleigh light scattering

    Directory of Open Access Journals (Sweden)

    Antoun Ayman

    2004-01-01

    Full Text Available Light scattering and standard stopped-flow techniques were used to monitor rapid association of ribosomal subunits during initiation of eubacterial protein synthesis. The effects of the initiation factors IF1, IF2, IF3 and buffer conditions on subunit association were studied along with the role of GTP in this process. The part of light scattering theory that is essential for kinetic measurements is high-lighted in the main text and a more general treatment of Rayleigh scattering from macromolecules is given in an appendix.

  18. Rayleigh theory of ultrasound scattering applied to liquid-filled contrast nanoparticles.

    Science.gov (United States)

    Flegg, M B; Poole, C M; Whittaker, A K; Keen, I; Langton, C M

    2010-06-07

    We present a novel modified theory based upon Rayleigh scattering of ultrasound from composite nanoparticles with a liquid core and solid shell. We derive closed form solutions to the scattering cross-section and have applied this model to an ultrasound contrast agent consisting of a liquid-filled core (perfluorooctyl bromide, PFOB) encapsulated by a polymer shell (poly-caprolactone, PCL). Sensitivity analysis was performed to predict the dependence of the scattering cross-section upon material and dimensional parameters. A rapid increase in the scattering cross-section was achieved by increasing the compressibility of the core, validating the incorporation of high compressibility PFOB; the compressibility of the shell had little impact on the overall scattering cross-section although a more compressible shell is desirable. Changes in the density of the shell and the core result in predicted local minima in the scattering cross-section, approximately corresponding to the PFOB-PCL contrast agent considered; hence, incorporation of a lower shell density could potentially significantly improve the scattering cross-section. A 50% reduction in shell thickness relative to external radius increased the predicted scattering cross-section by 50%. Although it has often been considered that the shell has a negative effect on the echogeneity due to its low compressibility, we have shown that it can potentially play an important role in the echogeneity of the contrast agent. The challenge for the future is to identify suitable shell and core materials that meet the predicted characteristics in order to achieve optimal echogenity.

  19. Elucidating the contribution of Rayleigh scattering to the bluish appearance of veins

    Science.gov (United States)

    Van Leeuwen, Spencer R.; Baranoski, Gladimir V. G.

    2018-02-01

    The bluish appearance of veins located immediately beneath the skin has long been a topic of interest for biomedical optics researchers. Despite this interest, a thorough identification of the specific optical processes responsible for this phenomenon remains to be achieved. We employ controlled in silico experiments to address this enduring open problem. Our experiments, which are supported by measured data available in the scientific literature, are performed using first-principles models of light interaction with human skin and blood. Using this investigation approach, we quantitatively demonstrate that Rayleigh scattering caused by collagen fibrils present in the papillary dermis, a sublayer of the skin, can play a pivotal role in the bluish appearance of veins as suggested by previous works in this area. Moreover, also taking color perception aspects into account, we systematically assess the effects of variations in fibril radius and papillary dermis thickness on the coloration of veins under different illuminants. Notably, this assessment indicates that Rayleigh scattering elicited by reticulin fibrils, another type of fibril found in the papillary dermis, is unlikely to significantly contribute to the bluish appearance of veins. By strengthening the current understanding of light attenuation mechanisms affecting the appearance of skin and blood, our investigation contributes to the development of more effective technologies aimed at the noninvasive measurement of the physiological properties of these tissues.

  20. Diagnostic of the Symbiotic Stars Environment by Thomson, Raman and Rayleigh Scattering Processes

    Directory of Open Access Journals (Sweden)

    M. Sekeráš

    2015-02-01

    Full Text Available Symbiotic stars are long-period interacting binaries consisting of a cool giant as the donor star and a white dwarf as the acretor. Due to acretion of the material from the giant’s stellar wind, the white dwarf becomes very hot and luminous. The circumstellar material partially ionized by the hot star, represents an ideal medium for processes of scattering. To investigate the symbiotic nebula we modeled the wide wings of the resonance lines OVI λ1032 Å, λ1038 Å and HeII λ1640 Å emission line in the spectrum of AG Dra, broadened by Thomson scattering. On the other hand, Raman and Rayleigh scattering arise in the neutral part of the circumstellar matter around the giant and provide a powerful tool to probe e.g. the ionization structure of the symbiotic systems and distribution of the neutral hydrogen atoms in the giant’s wind.

  1. Study on the ternary mixed ligand complex of palladium(II)-aminophylline-fluorescein sodium by resonance Rayleigh scattering, second-order scattering and frequency doubling scattering spectrum and its analytical application.

    Science.gov (United States)

    Chen, Peili; Liu, Shaopu; Liu, Zhongfang; Hu, Xiaoli

    2011-01-01

    The interaction between palladium(II)-aminophylline and fluorescein sodium was investigated by resonance Rayleigh scattering, second-order scattering and frequency doubling scattering spectrum. In pH 4.4 Britton-Robinson (BR) buffer medium, aminophylline (Ami) reacted with palladium(II) to form chelate cation([Pd(Ami)]2+), which further reacted with fluorescein sodium (FS) to form ternary mixed ligand complex [Pd(Ami)(FS)2]. As a result, resonance Rayleigh scattering (RRS), second-order scattering (SOS) and frequency doubling scattering spectrum (FDS) were enhanced. The maximum scattering wavelengths of [Pd(Ami)(FS)2] were located at 300 nm (RRS), 650 nm (SOS) and 304 nm (FDS). The scattering intensities were proportional to the Ami concentration in a certain range and the detection limits were 7.3 ng mL(-1) (RRS), 32.9 ng mL(-1) (SOS) and 79.1 ng mL(-1) (FDS), respectively. Based on it, the new simple, rapid, and sensitive scattering methods have been proposed to determine Ami in urine and serum samples. Moreover, the formation mechanism of [Pd(Ami)(FS)2] and the reasons for enhancement of RRS were fully discussed. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  2. Rayleigh-Brillouin scattering in NH4Cl under hydrostatic pressure

    International Nuclear Information System (INIS)

    Hikita, Tomoyuki; Kitabatake, Makoto; Ikeda, Takuro

    1981-01-01

    Rayleigh-Brillouin scattering in NH 4 Cl has been studied under hydrostatic pressure. Brillouin shifts of the longitudinal phonons propagating along the and directions and of the transverse phonons propagating along the direction are measured as a function of temperature at four fixed pressures up to 2.3 kbar. All components increase almost linearly with decreasing temperature in the disordered phase and show incremental increases similar to the temperature dependence of the long range order parameter in the ordered phase. It was found that the longitudinal modes exhibit large despersion effect even at high pressures. On the other hand, the transverse mode appears to give no dispersion effect. The intensity of the Rayleigh component in the VV polarization condition increases as the temperature approaches the transition point, while that in the VH polarization does not show such anomalous increase. (author)

  3. Enhancement of Rayleigh scatter in optical fiber by simple UV treatment: an order of magnitude increase in distributed sensing sensitivity

    Science.gov (United States)

    Loranger, Sébastien; Parent, François; Lambin-Iezzi, Victor; Kashyap, Raman

    2016-02-01

    Rayleigh scatter in optical fiber communication systems has long been considered a nuisance as a loss mechanism, although applications have used such scatter to probe the fiber for faults and propagation loss using time domain reflectometry (OTDR). It is however only with the development of Frequency domain reflectometry (OFDR) and coherent-phase OTDR that Rayleigh scatter has been probed to its deepest and can now be used to measure strain and temperature along a fiber, leading to the first distributed sensing applications. However, Rayleigh scatter remains very weak giving rise to very small signals which limits the technique for sensing. We show here a new technique to significantly enhance the Rayleigh scatter signal by at least two orders of magnitude, in a standard optical fiber with simple UV exposure of the core. A study of various exposures with different types of fibers has been conducted and a phenomenological description developed. We demonstrate that such an increase in signal can enhance the temperature and strain sensitivity by an order of magnitude for distributed sensing with an OFDR technique. Such improved performance can lead to temperature/strain RMS noise levels of 6 mK and 50 nɛ for 1 cm spatial resolution in UV exposed SMF-28, compared to the typical noise level of 100 mK for the same spatial resolution in the similar unexposed fiber.

  4. On the intensity and polarization of radiation emerging from a thick Rayleigh scattering atmosphere

    Directory of Open Access Journals (Sweden)

    V. Natraj

    2011-09-01

    Full Text Available We compute the intensity and polarization of reflected and transmitted light in optically thick Rayleigh scattering atmospheres. We obtain results accurate to seven decimal places. The results have been validated using a variety of methods.

  5. Fiber optic quench detection via optimized Rayleigh Scattering in high-field YBCO accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, Gene [North Carolina State Univ., Raleigh, NC (United States)

    2016-02-17

    Yttrium barium copper oxide (YBCO) coated conductors are known for their ability to operate in the superconducting state at relatively high temperatures, even above the boiling point of liquid nitrogen (77 K). When these same conductors are operated at lower temperatures, they are able to operate in much higher magnetic fields than traditional superconductors like NiTi or Nb3Sn. Thus, YBCO superconducting magnets are one of the primary options for generating the high magnetic fields needed for future high energy physics devices. Due to slow quench propagation, quench detection remains one of the primary limitations to YBCO magnets. Fiber optic sensing, based upon Rayleigh scattering, has the potential for spatial resolution approaching the wavelength of light, or very fast temporal resolution at low spatial resolution, and a continuum of combinations in between. This project has studied, theoretically and experimentally, YBCO magnets and Rayleigh scattering quench detection systems to demonstrate feasibility of the systems for YBCO quench protection systems. Under this grant an experimentally validated 3D quench propagation model was used to accurately define the acceptable range of spatial and temporal resolutions for effective quench detection in YBCO magnets and to evaluate present-day and potentially improved YBCO conductors. The data volume and speed requirements for quench detection via Rayleigh scattering required the development of a high performance fiber optic based quench detection/data acquisition system and its integration with an existing voltage tap/thermo-couple based system. In this project, optical fibers are tightly co-wound into YBCO magnet coils, with the fiber on top of the conductor as turn-to-turn insulation. Local changes in the temperature or strain of the conductor are sensed by the optical fiber, which is in close thermal and mechanical contact with the conductor. Intrinsic imperfections in the fiber reflect Rayleigh

  6. Study on the Interaction between Cadmium Sulphide Nanoparticles and Proteins by Resonance Rayleigh Scattering Spectra

    Directory of Open Access Journals (Sweden)

    Weiwei Zhu

    2013-01-01

    Full Text Available The interaction of cadmium sulphide nanoparticles [(CdSn] with proteins has been studied by resonance Rayleigh scattering spectra (RRS. Below the isoelectric point, proteins such as bovine serum albumin (BSA, human serum albumin (HSA, lysozyme (Lys, hemoglobin (HGB, and ovalbumin (OVA can bind with CdSn to form macromolecules by virtue of electrostatic attraction and hydrophobic force. It can result in the enhancement of resonance Rayleigh scattering spectra (RRS intensity. Their maximum scattering peaks were 280 nm, and there was a smaller peak at 370 nm. The scattering enhancement (ΔIRRS is directly proportional to the concentration of proteins. A new RRS method for the determination of trace proteins using uncapped CdSn nanoparticles probe has been developed. The detection limits are 19.6 ng/mL for HSA, 16.7 ng/mL for BSA, 18.5 ng/mL for OVA, 80.2 ng/mL for HGB, and 67.4 ng/mL for Lys, separately. In this work, the optimum condition of reaction, the effect of foreign, and the analytical application had been investigated.

  7. Rayleigh scattering of a cylindrical sound wave by an infinite cylinder.

    Science.gov (United States)

    Baynes, Alexander B; Godin, Oleg A

    2017-12-01

    Rayleigh scattering, in which the wavelength is large compared to the scattering object, is usually studied assuming plane incident waves. However, full Green's functions are required in a number of problems, e.g., when a scatterer is located close to the ocean surface or the seafloor. This paper considers the Green's function of the two-dimensional problem that corresponds to scattering of a cylindrical wave by an infinite cylinder embedded in a homogeneous fluid. Soft, hard, and impedance cylinders are considered. Exact solutions of the problem involve infinite series of products of Bessel functions. Here, simple, closed-form asymptotic solutions are derived, which are valid for arbitrary source and receiver locations outside the cylinder as long as its diameter is small relative to the wavelength. The scattered wave is given by the sum of fields of three linear image sources. The viability of the image source method was anticipated from known solutions of classical electrostatic problems involving a conducting cylinder. The asymptotic acoustic Green's functions are employed to investigate reception of low-frequency sound by sensors mounted on cylindrical bodies.

  8. Amplitude of Light Scattering by a Truncated Pyramid and Cone in the Rayleigh-Gans-Debye Approximation

    Directory of Open Access Journals (Sweden)

    Konstantin A. Shapovalov

    2013-01-01

    Full Text Available The article considers general approach to structured particle and particle system form factor calculation in the Rayleigh-Gans-Debye (RGD approximation. Using this approach, amplitude of light scattering by a truncated pyramid and cone formulas in RGD approximation are obtained. Light scattering indicator by a truncated pyramid and cone in the RGD approximation are calculated.

  9. Bayesian Predictive Models for Rayleigh Wind Speed

    DEFF Research Database (Denmark)

    Shahirinia, Amir; Hajizadeh, Amin; Yu, David C

    2017-01-01

    predictive model of the wind speed aggregates the non-homogeneous distributions into a single continuous distribution. Therefore, the result is able to capture the variation among the probability distributions of the wind speeds at the turbines’ locations in a wind farm. More specifically, instead of using...... a wind speed distribution whose parameters are known or estimated, the parameters are considered as random whose variations are according to probability distributions. The Bayesian predictive model for a Rayleigh which only has a single model scale parameter has been proposed. Also closed-form posterior...... and predictive inferences under different reasonable choices of prior distribution in sensitivity analysis have been presented....

  10. Molecular Rayleigh Scattering Diagnostic for Measurement of High Frequency Temperature Fluctuations

    Science.gov (United States)

    Mielke, Amy F.; Elam, Kristie A.

    2005-01-01

    A novel technique for measurement of high frequency temperature fluctuations in unseeded gas flows using molecular Rayleigh scattering is investigated. The spectrum of laser light scattered from molecules in a gas flow is resolved using a Fabry-Perot interferometer. The width of the spectral peak is broadened by thermal motion of the molecules and hence is related to gas temperature. The interference fringe pattern containing spectral information is divided into four concentric regions using a series of mirrors angled with respect to one another. Light from each of these regions is directed towards photomultiplier tubes and sampled at 10 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows measurement of gas temperature. Independently monitoring the total scattered intensity provides a measure of gas density. This technique also has the potential to simultaneously measure a single component of flow velocity by monitoring the spectral peak location. Measurements of gas temperature and density are demonstrated using a low speed heated air jet surrounded by an unheated air co-flow. Mean values of temperature and density are shown for radial scans across the jet flow at a fixed axial distance from the jet exit plane. Power spectra of temperature and density fluctuations at several locations in the jet are also shown. The instantaneous measurements have fairly high uncertainty; however, long data records provide highly accurate statistically quantities, which include power spectra. Mean temperatures are compared with thermocouple measurements as well as the temperatures derived from independent density measurements. The accuracy for mean temperature measurements was +/- 7 K.

  11. Hyper-Rayleigh scattering in centrosymmetric systems

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Mathew D.; Ford, Jack S.; Andrews, David L., E-mail: david.andrews@physics.org [School of Chemistry, University of East Anglia, Norwich NR4 7TJ (United Kingdom)

    2015-09-28

    Hyper-Rayleigh scattering (HRS) is an incoherent mechanism for optical second harmonic generation. The frequency-doubled light that emerges from this mechanism is not emitted in a laser-like manner, in the forward direction; it is scattered in all directions. The underlying theory for this effect involves terms that are quadratic in the incident field and involves an even-order optical susceptibility (for a molecule, its associated hyperpolarizability). In consequence, HRS is often regarded as formally forbidden in centrosymmetric media. However, for the fundamental three-photon interaction, theory based on the standard electric dipole approximation, representable as E1{sup 3}, does not account for all experimental observations. The relevant results emerge upon extending the theory to include E1{sup 2}M1 and E1{sup 2}E2 contributions, incorporating one magnetic dipolar or electric quadrupolar interaction, respectively, to a consistent level of multipolar expansion. Both additional interactions require the deployment of higher orders in the multipole expansion, with the E1{sup 2}E2 interaction analogous in rank and parity to a four-wave susceptibility. To elicit the correct form of response from fluid or disordered media invites a tensor representation which does not oversimplify the molecular components, yet which can produce results to facilitate the interpretation of experimental observations. The detailed derivation in this work leads to results which are summarized for the following: perpendicular detection of polarization components both parallel and perpendicular to the pump radiation, leading to distinct polarization ratio results, as well as a reversal ratio for forward scattered circular polarizations. The results provide a route to handling data with direct physical interpretation, to enable the more sophisticated design of molecules with sought nonlinear optical properties.

  12. Importance sampling the Rayleigh phase function

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall

    2011-01-01

    Rayleigh scattering is used frequently in Monte Carlo simulation of multiple scattering. The Rayleigh phase function is quite simple, and one might expect that it should be simple to importance sample it efficiently. However, there seems to be no one good way of sampling it in the literature....... This paper provides the details of several different techniques for importance sampling the Rayleigh phase function, and it includes a comparison of their performance as well as hints toward efficient implementation....

  13. Distinct Rayleigh scattering from hot spot mutant p53 proteins reveals cancer cells.

    Science.gov (United States)

    Jun, Ho Joon; Nguyen, Anh H; Kim, Yeul Hong; Park, Kyong Hwa; Kim, Doyoun; Kim, Kyeong Kyu; Sim, Sang Jun

    2014-07-23

    The scattering of light redirects and resonances when an electromagnetic wave interacts with electrons orbits in the hot spot core protein and oscillated electron of the gold nanoparticles (AuNP). This report demonstrates convincingly that resonant Rayleigh scattering generated from hot spot mutant p53 proteins is correspondence to cancer cells. Hot spot mutants have unique local electron density changes that affect specificity of DNA binding affinity compared with wild types. Rayleigh scattering changes introduced by hot-spot mutations were monitored by localized surface plasmon resonance (LSPR) shift changes. The LSPR λmax shift for hot-spot mutants ranged from 1.7 to 4.2 nm for mouse samples and from 0.64 nm to 2.66 nm for human samples, compared to 9.6 nm and 15 nm for wild type and mouse and human proteins, respectively with a detection sensitivity of p53 concentration at 17.9 nM. It is interesting that hot-spot mutants, which affect only interaction with DNA, launches affinitive changes as considerable as wild types. These changes propose that hot-spot mutants p53 proteins can be easily detected by local electron density alterations that disturbs the specificity of DNA binding of p53 core domain on the surface of the DNA probed-nanoplasmonic sensor. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Unusual features of long-range density fluctuations in glass-forming organic liquids: A Rayleigh and Rayleigh-Brillouin light scattering study

    International Nuclear Information System (INIS)

    Patkowski, A.; Fischer, E. W.; Steffen, W.; Glaser, H.; Baumann, M.; Ruths, T.; Meier, G.

    2001-01-01

    A new feature of glass-forming liquids, i.e., long-range density fluctuations of the order of 100 nm, has been extensively characterized by means of static light scattering, photon correlation spectroscopy and Rayleigh-Brillouin spectroscopy in orthoterphenyl (OTP) and 1,1-di(4 # prime#-methoxy-5 # prime#methyl-phenyl)-cyclohexane (BMMPC). These long-range density fluctuations result in the following unusual features observed in a light scattering experiment, which are not described by the existing theories: (i) strong q-dependent isotropic excess Rayleigh intensity, (ii) additional slow component in the polarized photon correlation function, and (iii) high Landau-Placzek ratio. These unusual features are equilibrium properties of the glass-forming liquids and depend only on temperature, provided that the sample has been equilibrated long enough. The temperature-dependent equilibration times were measured for BMMPC and are about 11 orders of magnitude longer than the α process. It was found that the glass-forming liquid OTP may occur in two states: with and without long-range density fluctuations ('clusters'). We have characterized the two states by static and dynamic light scattering in the temperature range from T g to T g +200 K. The relaxation times of the α process as well as the parameters of the Brillouin line are identical in both OTP with and without clusters. The α process (density fluctuations) in OTP was characterized by measuring either the polarized (VV) or depolarized (VH) correlation function, which are practically identical and q-independent. This feature, which is commonly observed in glass-forming liquids, is not fully explained by the existing theories

  15. Fast analytical scatter estimation using graphics processing units.

    Science.gov (United States)

    Ingleby, Harry; Lippuner, Jonas; Rickey, Daniel W; Li, Yue; Elbakri, Idris

    2015-01-01

    To develop a fast patient-specific analytical estimator of first-order Compton and Rayleigh scatter in cone-beam computed tomography, implemented using graphics processing units. The authors developed an analytical estimator for first-order Compton and Rayleigh scatter in a cone-beam computed tomography geometry. The estimator was coded using NVIDIA's CUDA environment for execution on an NVIDIA graphics processing unit. Performance of the analytical estimator was validated by comparison with high-count Monte Carlo simulations for two different numerical phantoms. Monoenergetic analytical simulations were compared with monoenergetic and polyenergetic Monte Carlo simulations. Analytical and Monte Carlo scatter estimates were compared both qualitatively, from visual inspection of images and profiles, and quantitatively, using a scaled root-mean-square difference metric. Reconstruction of simulated cone-beam projection data of an anthropomorphic breast phantom illustrated the potential of this method as a component of a scatter correction algorithm. The monoenergetic analytical and Monte Carlo scatter estimates showed very good agreement. The monoenergetic analytical estimates showed good agreement for Compton single scatter and reasonable agreement for Rayleigh single scatter when compared with polyenergetic Monte Carlo estimates. For a voxelized phantom with dimensions 128 × 128 × 128 voxels and a detector with 256 × 256 pixels, the analytical estimator required 669 seconds for a single projection, using a single NVIDIA 9800 GX2 video card. Accounting for first order scatter in cone-beam image reconstruction improves the contrast to noise ratio of the reconstructed images. The analytical scatter estimator, implemented using graphics processing units, provides rapid and accurate estimates of single scatter and with further acceleration and a method to account for multiple scatter may be useful for practical scatter correction schemes.

  16. Air-mass flux measurement system using Doppler-shifted filtered Rayleigh scattering

    Science.gov (United States)

    Shirley, John A.; Winter, Michael

    1993-01-01

    An optical system has been investigated to measure mass flux distributions in the inlet of a high speed air-breathing propulsion system. Rayleigh scattered light from air is proportional to the number density of molecules and hence can be used to ascertain the gas density in a calibrated system. Velocity field measurements are achieved by spectrally filtering the elastically-scattered Doppler-shifted light with an absorbing molecular filter. A novel anamorphic optical collection system is used which allows optical rays from different scattering angles, that have different Doppler shifts, to be recorded separately. This is shown to obviate the need to tune the laser through the absorption to determine velocities, while retaining the ability to make spatially-resolved measurements along a line. By properly selecting the laser tuning and filter parameters, simultaneous density measurements can be made. These properties are discussed in the paper and experiments demonstrating the velocimetry capability are described.

  17. Numerical Simulations of Scattering of Light from Two-Dimensional Rough Surfaces Using the Reduced Rayleigh Equation

    Directory of Open Access Journals (Sweden)

    Tor eNordam

    2013-09-01

    Full Text Available A formalism is introduced for the non-perturbative, purely numerical, solution of the reduced Rayleigh equation for the scattering of light from two-dimensional penetrable rough surfaces. Implementation and performance issues of the method, and various consistency checks of it, are presented and discussed. The proposed method is found, within the validity of the Rayleigh hypothesis, to give reliable results. For a non-absorbing metal surface the conservation of energy was explicitly checked, and found to be satisfied to within 0.03%, or better, for the parameters assumed. This testifies to the accuracy of the approach and a satisfactory discretization. As an illustration, we calculate the full angular distribution of the mean differential reflection coefficient for the scattering of p- or s-polarized light incident on two-dimensional dielectric or metallic randomly rough surfaces defined by (isotropic or anisotropic Gaussian and cylindrical power spectra. Simulation results obtained by the proposed method agree well with experimentally measured scattering data taken from similar well-characterized, rough metal samples, or to results obtained by other numerical methods.

  18. Solution of the radiative transfer equation for Rayleigh scattering using the infinite medium Green's function

    Science.gov (United States)

    Biçer, M.; Kaşkaş, A.

    2018-03-01

    The infinite medium Green's function is used to solve the half-space albedo, slab albedo and Milne problems for the unpolarized Rayleigh scattering case; these problems are the most classical problems of radiative transfer theory. The numerical results are obtained and are compared with previous ones.

  19. Spectral Dependent Degradation of the Solar Diffuser on Suomi-NPP VIIRS Due to Surface Roughness-Induced Rayleigh Scattering

    Directory of Open Access Journals (Sweden)

    Xi Shao

    2016-03-01

    Full Text Available The Visible Infrared Imaging Radiometer Suite (VIIRS onboard Suomi National Polar Orbiting Partnership (SNPP uses a solar diffuser (SD as its radiometric calibrator for the reflective solar band calibration. The SD is made of Spectralon™ (one type of fluoropolymer and was chosen because of its controlled reflectance in the Visible/Near-Infrared/Shortwave-Infrared region and its near-Lambertian reflectance property. On-orbit changes in VIIRS SD reflectance as monitored by the Solar Diffuser Stability Monitor showed faster degradation of SD reflectance for 0.4 to 0.6 µm channels than the longer wavelength channels. Analysis of VIIRS SD reflectance data show that the spectral dependent degradation of SD reflectance in short wavelength can be explained with a SD Surface Roughness (length scale << wavelength based Rayleigh Scattering (SRRS model due to exposure to solar UV radiation and energetic particles. The characteristic length parameter of the SD surface roughness is derived from the long term reflectance data of the VIIRS SD and it changes at approximately the tens of nanometers level over the operational period of VIIRS. This estimated roughness length scale is consistent with the experimental result from radiation exposure of a fluoropolymer sample and validates the applicability of the Rayleigh scattering-based model. The model is also applicable to explaining the spectral dependent degradation of the SDs on other satellites. This novel approach allows us to better understand the physical processes of the SD degradation, and is complementary to previous mathematics based models.

  20. Effective single scattering albedo estimation using regional climate model

    CSIR Research Space (South Africa)

    Tesfaye, M

    2011-09-01

    Full Text Available In this study, by modifying the optical parameterization of Regional Climate model (RegCM), the authors have computed and compared the Effective Single-Scattering Albedo (ESSA) which is a representative of VIS spectral region. The arid, semi...

  1. Modeling of Non-WSSUS Double-Rayleigh Fading Channels for Vehicular Communications

    Directory of Open Access Journals (Sweden)

    Carlos A. Gutiérrez

    2017-01-01

    Full Text Available This paper deals with the modeling of nonstationary time-frequency (TF dispersive multipath fading channels for vehicle-to-vehicle (V2V communication systems. As a main contribution, the paper presents a novel geometry-based statistical channel model that facilitates the analysis of the nonstationarities of V2V fading channels arising at a small-scale level due to the time-varying nature of the propagation delays. This new geometrical channel model has been formulated following the principles of plane wave propagation (PWP and assuming that the transmitted signal reaches the receiver antenna through double interactions with multiple interfering objects (IOs randomly located in the propagation area. As a consequence of such interactions, the first-order statistics of the channel model’s envelope are shown to follow a worse-than-Rayleigh distribution; specifically, they follow a double-Rayleigh distribution. General expressions are derived for the envelope and phase distributions, four-dimensional (4D TF correlation function (TF-CF, and TF-dependent delay and Doppler profiles of the proposed channel model. Such expressions are valid regardless of the underlying geometry of the propagation area. Furthermore, a closed-form solution of the 4D TF-CF is presented for the particular case of the geometrical two-ring scattering model. The obtained results provide new theoretical insights into the correlation and spectral properties of small-scale nonstationary V2V double-Rayleigh fading channels.

  2. Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Yan, R.; Aluie, H.; Betti, R.; Sanz, J.; Liu, B.; Frank, A.

    2016-01-01

    The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. The vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume

  3. Adaptive handling of Rayleigh and Raman scatter of fluorescence data based on evaluation of the degree of spectral overlap

    Science.gov (United States)

    Hu, Yingtian; Liu, Chao; Wang, Xiaoping; Zhao, Dongdong

    2018-06-01

    At present the general scatter handling methods are unsatisfactory when scatter and fluorescence seriously overlap in excitation emission matrix. In this study, an adaptive method for scatter handling of fluorescence data is proposed. Firstly, the Raman scatter was corrected by subtracting the baseline of deionized water which was collected in each experiment to adapt to the intensity fluctuations. Then, the degrees of spectral overlap between Rayleigh scatter and fluorescence were classified into three categories based on the distance between the spectral peaks. The corresponding algorithms, including setting to zero, fitting on single or both sides, were implemented after the evaluation of the degree of overlap for individual emission spectra. The proposed method minimized the number of fitting and interpolation processes, which reduced complexity, saved time, avoided overfitting, and most importantly assured the authenticity of data. Furthermore, the effectiveness of this procedure on the subsequent PARAFAC analysis was assessed and compared to Delaunay interpolation by conducting experiments with four typical organic chemicals and real water samples. Using this method, we conducted long-term monitoring of tap water and river water near a dyeing and printing plant. This method can be used for improving adaptability and accuracy in the scatter handling of fluorescence data.

  4. Monte Carlo Modelling of Single-Crystal Diffuse Scattering from Intermetallics

    Directory of Open Access Journals (Sweden)

    Darren J. Goossens

    2016-02-01

    Full Text Available Single-crystal diffuse scattering (SCDS reveals detailed structural insights into materials. In particular, it is sensitive to two-body correlations, whereas traditional Bragg peak-based methods are sensitive to single-body correlations. This means that diffuse scattering is sensitive to ordering that persists for just a few unit cells: nanoscale order, sometimes referred to as “local structure”, which is often crucial for understanding a material and its function. Metals and alloys were early candidates for SCDS studies because of the availability of large single crystals. While great progress has been made in areas like ab initio modelling and molecular dynamics, a place remains for Monte Carlo modelling of model crystals because of its ability to model very large systems; important when correlations are relatively long (though still finite in range. This paper briefly outlines, and gives examples of, some Monte Carlo methods appropriate for the modelling of SCDS from metallic compounds, and considers data collection as well as analysis. Even if the interest in the material is driven primarily by magnetism or transport behaviour, an understanding of the local structure can underpin such studies and give an indication of nanoscale inhomogeneity.

  5. Measurements of the initial density distribution of gas puff liners by using Rayleigh scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, Yu G; Shashkov, A Yu [Kurchatov Institute, Moscow (Russian Federation)

    1997-12-31

    Rayleigh scattering of a laser beam in a gas jet is proposed for the measurements of initial density distribution of gas-puff liners. The scattering method has several advantages when compared with interferometry. In particular, it provides information on the local gas density, it is more sensitive, and the output data can be absolutely calibrated. Theoretical background of the method is briefly discussed in the paper and the optical setup used in real experiments is described. Imaging of the scattering object make it possible to detect detailed profiles of the investigated gas jet, as illustrated by several examples taken from the experiment. In some cases even the gas jet stratification has been observed. (J.U.). 1 tab., 3 figs., 1 ref.

  6. Violation of a Bell-like inequality by a combination of Rayleigh scattering with a Mach–Zehnder setup

    International Nuclear Information System (INIS)

    Rother, Tom

    2016-01-01

    In this paper I propose a classical optics experiment that results in a maximum violation of a Bell-like inequality. The first part is concerned with the Bell-like inequality (the so-called CHSH-inequality) itself. Its importance and its maximum violation in Quantum Mechanics (QM) are discussed in detail by employing an abstract probability state concept in a 4-dim. but classical event space. A T-matrix that represents the integral part of a corresponding Green's function as well as a statistical operator that contains a negative quasi-probability can be related to the corresponding quantum mechanical experiment. It is demonstrated that the derivation and usage of the T-matrix and the Green's function is equivalent to what is known from classical scattering theory. It is shown moreover that the negative quasi-probability of the statistical operator may be interpreted as a sink of probabilities related to two single events of the considered 4-dim. event space. A necessary condition for the violation of the CHSH-inequality is derived and discussed afterwards. In the second part of this paper I discuss a modification of the 4-dim. event space considered in the first part. It is shown that a combination of conventional Rayleigh scattering with a Mach–Zehnder setup would be able to put this modification into practice. Thus it becomes possible to achieve a maximum violation of the CHSH-inequality, if formulated in terms of intensities, on a pure classical way. The combination of classical light scattering with correlation experiments such as proposed in this paper may open new ways to study and to use the violation of Bell-like inequalities in modern optics. - Highlights: • Consistent Green's function formulation of the quantum mechanical Bell's experiment and its classical counterpart. This description is closely related to what is known from electromagnetic wave scattering. This is achieved by introducing an abstract probability state concept. • Discussion of a

  7. Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation.

    Science.gov (United States)

    El-Taher, A E; Harper, P; Babin, S A; Churkin, D V; Podivilov, E V; Ania-Castanon, J D; Turitsyn, S K

    2011-01-15

    We experimentally demonstrate a Raman fiber laser based on multiple point-action fiber Bragg grating reflectors and distributed feedback via Rayleigh scattering in an ~22-km-long optical fiber. Twenty-two lasing lines with spacing of ~100 GHz (close to International Telecommunication Union grid) in the C band are generated at the watt level. In contrast to the normal cavity with competition between laser lines, the random distributed feedback cavity exhibits highly stable multiwavelength generation with a power-equalized uniform distribution, which is almost independent on power.

  8. Comparison of the GHSSmooth and the Rayleigh-Rice surface scatter theories

    Science.gov (United States)

    Harvey, James E.; Pfisterer, Richard N.

    2016-09-01

    The scalar-based GHSSmooth surface scatter theory results in an expression for the BRDF in terms of the surface PSD that is very similar to that provided by the rigorous Rayleigh-Rice (RR) vector perturbation theory. However it contains correction factors for two extreme situations not shared by the RR theory: (i) large incident or scattered angles that result in some portion of the scattered radiance distribution falling outside of the unit circle in direction cosine space, and (ii) the situation where the relevant rms surface roughness, σrel, is less than the total intrinsic rms roughness of the scattering surface. Also, the RR obliquity factor has been discovered to be an approximation of the more general GHSSmooth obliquity factor due to a little-known (or long-forgotten) implicit assumption in the RR theory that the surface autocovariance length is longer than the wavelength of the scattered radiation. This assumption allowed retaining only quadratic terms and lower in the series expansion for the cosine function, and results in reducing the validity of RR predictions for scattering angles greater than 60°. This inaccurate obliquity factor in the RR theory is also the cause of a complementary unrealistic "hook" at the high spatial frequency end of the predicted surface PSD when performing the inverse scattering problem. Furthermore, if we empirically substitute the polarization reflectance, Q, from the RR expression for the scalar reflectance, R, in the GHSSmooth expression, it inherits all of the polarization capabilities of the rigorous RR vector perturbation theory.

  9. Initial stage of cavitation in liquids and its observation by Rayleigh scattering

    Energy Technology Data Exchange (ETDEWEB)

    Pekker, M [Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC 20052, United States of America (United States); Shneider, M N, E-mail: m.n.shneider@gmail.com [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, United States of America (United States)

    2017-06-15

    A theory is developed for the initial stage of cavitation in the framework of Zel’dovich–Fisher theory of nucleation in the field of negative pressure, while taking into account the surface tension dependence on the nanopore radius. A saturation mechanism is proposed that limits the exponential dependence of the nucleation rate on the energy required to create nanopores. An estimate of the saturated density of nanopores at the nucleation stage is obtained. It is shown that Rayleigh scattering can detect nanopores arising at the initial stage of cavitation development. (paper)

  10. Selective Rayleigh light scattering determination of trace quercetin with silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Usoltseva, Liliya O.; Samarina, Tatiana O. [Department of Chemistry, M.V.Lomonosov Moscow State University, 119991 GSP-1 Moscow (Russian Federation); Abramchuk, Sergei S. [Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation); Prokhorova, Aleksandra F. [Department of Chemistry, M.V.Lomonosov Moscow State University, 119991 GSP-1 Moscow (Russian Federation); Beklemishev, Mikhail K., E-mail: mkb@analyt.chem.msu.ru [Department of Chemistry, M.V.Lomonosov Moscow State University, 119991 GSP-1 Moscow (Russian Federation)

    2016-11-15

    Rayleigh light scattering (RLS) is a simple technique with a high potential of sensitive determination of small organic molecules. We have found that ppb amounts of quercetin (Qu) greatly enhance the RLS of the solution of silver nanoparticles (AgNPs) stabilized with cetyltrimethylammonium bromide (CTAB) or sodium n-dodecyl sulfate (SDS). Enhancement of light scattering is observed only in the presence of an excess of AgNO{sub 3}, which implies that it is a result of nanoparticle growth; another reason for the enhanced scattering is the aggregation of AgNPs by the analyte that was confirmed by dynamic light scattering technique. The conditions were chosen for the determination of Qu in aqueous solution with the detection limits of 0.01 and 0.03 μmol L{sup −1} and linear ranges of 0.1–1.3 and 0.1–2.0 μmol L{sup −1} for SDS- and CTAB-stabilized AgNPs, respectively; the intra-day RSDs did not exceed 7%. Unexpectedly, other bioflavonoids (rutin, dihydroquercetin, and naringenin) did not change the signal of Qu and did not interfere with its determination in 1:1 M ratio (0.5 μmol L{sup −1} each). Other compounds (asparagin, uric acid, urea and some inorganic ions) were also tolerated in high amounts. - Highlights: • Low concentrations of quercetin enhance the light scattering by silver nanoparticles. • Main processes are aggregation, nanoparticle growth and formation of new particles. • Other compounds exert a weaker effect on the light scattering signal.

  11. Extended Rayleigh Damping Model

    Directory of Open Access Journals (Sweden)

    Naohiro Nakamura

    2016-07-01

    Full Text Available In dynamic analysis, frequency domain analysis can be used if the entire structure is linear. However, time history analysis is generally used if nonlinear elements are present. Rayleigh damping has been widely used in time history response analysis. Many articles have reported the problems associated with this damping and suggested remedies. A basic problem is that the frequency area across which the damping ratio is almost constant is too narrow. If the area could be expanded while incurring only a small increase in computational cost, this would provide an appropriate remedy for this problem. In this study, a novel damping model capable of expanding the constant frequency area by more than five times was proposed based on the study of a causal damping model. This model was constructed by adding two terms to the Rayleigh damping model and can be applied to the linear elements in the time history analysis of a nonlinear structure. The accuracy and efficiency of the model were confirmed using example analyses.

  12. Possibilities for direct optical observation of negative hydrogen ions in ion beam plasma sources via Rayleigh or Thomson scattering

    International Nuclear Information System (INIS)

    Burgess, D.D.

    1985-01-01

    The possibilities of applying optical scattering techniques to the determination of H - concentrations in plasma sources relevant to negative ion beam generation are considered. Rayleigh scattering measurements for incident wavelengths just below the H - photoionization limit appear to be only just feasible experimentally. A more promising possibility is observation of the modification in a plasma containing negative ions of the collective ion-feature in Thomson scattering. Numerical predictions of the effects of H - concentration on the spectral distribution of the ion-feature are presented. (author)

  13. A dual-wavelength overlapping resonance Rayleigh scattering method for the determination of chondroitin sulfate with nile blue sulfate

    Science.gov (United States)

    Cui, Zhiping; Hu, Xiaoli; Liu, Shaopu; Liu, Zhongfang

    2011-12-01

    A dual-wavelength overlapping resonance Rayleigh scattering (DWO-RRS) method was developed to detect chondroitin sulfate (CS) with nile blue sulfate (NBS). At pH 3.0-4.0 Britton-Robinson (BR) buffer medium, CS interacted with NBS to form an ion-association complex. As a result, the new spectra of resonance Rayleigh scattering (RRS), second order scattering (SOS) and frequence doubling scattering (FDS) appeared and their intensities were enhanced greatly. Their maximum wavelengths were located at 303 nm (RRS), 362 nm (RRS), 588 nm (SOS) and 350 nm (FDS), respectively. The scattering intensities of the three methods were proportional to the concentration of CS in certain ranges. The methods had high sensitivity and the detection limits were between 1.5 and 7.1 ng mL -1. The DWO-RRS method had the highest sensitivity with the detection limit being 1.5 ng mL -1. The characteristics of the spectra and optimal reaction conditions of RRS method were investigated. The effects of coexistent substances on the determination of CS were evaluated. Owing to the high sensitivity, RRS method had been applied to the determination of CS in eye drops with satisfactory results. The recovery range was between 99.4% and 104.6% and the relative standard deviation (RSD) was between 0.4% and 0.8%. In addition, the reasons for RRS enhancement were discussed and the shape of ion-association complex was characterized by atomic force microscopy (AFM).

  14. Sandwich immunoassay for alpha-fetoprotein in human sera using gold nanoparticle and magnetic bead labels along with resonance Rayleigh scattering readout

    International Nuclear Information System (INIS)

    Lu, Yao; Huang, Xiangyi; Ren, Jicun

    2013-01-01

    We describe a sensitive sandwich immunoassay for alpha-fetoprotein (AFP). It is making use of gold nanoparticles (GNPs) and magnetic beads (MBs) as labels, and of resonance Rayleigh scattering for detection. Two antibodies were labeled with GNPs and MBs, respectively, and MB-antigen-GNP complexes were formed in the presence of antigens. The MB labels also serve as solid phase carriers that can be used to magnetically separate the immuno complex. The GNP labels are used as optical probes, and Rayleigh scattering was used to determine the concentration of free GNPs-antibody after separation of the MB-antigen-GNP complexes. The concentration of AFP is related to the intensity of light scattered by free GNPs in the 13.6 pM to 436 pM concentration range, and the limit of detection is 13.6 pM. The method was applied to the determination of AFP in sera of cancer patients, and the results agree well with those obtained by conventional ELISA. (author)

  15. Scattering of atoms by a stationary sinusoidal hard wall: Rigorous treatment in (n+1) dimensions and comparison with the Rayleigh method

    International Nuclear Information System (INIS)

    Goodman, F.O.

    1977-01-01

    A rigorous treatment of the scattering of atoms by a stationary sinusoidal hard wall in (n+1) dimensions is presented, a previous treatment by Masel, Merrill, and Miller for n=1 being contained as a special case. Numerical comparisons are made with the GR method of Garcia, which incorporates the Rayleigh hypothesis. Advantages and disadvantages of both methods are discussed, and it is concluded that the Rayleigh GR method, if handled properly, will probably work satisfactorily in physically realistic cases

  16. Rayleigh scattering of x-ray and {gamma}-ray by 1s and 2s electrons in ions and neutral atoms

    Energy Technology Data Exchange (ETDEWEB)

    Costescu, A; Karim, K; Stoica, C [Department of Physics, University of Bucharest, MG11, Bucharest-Magurele 077125 (Romania); Moldovan, M [Department of Physics, UMF Targu Mures, Targu Mures 540142 (Romania); Spanulescu, S, E-mail: severspa2004@yahoo.com [Department of Physics, Hyperion University of Bucharest, Bucharest 030629 (Romania)

    2011-02-28

    Using the Coulomb-Green function method and considering the nonrelativistic limit for the two-photon S-matrix element, the right nonrelativistic 2s Rayleigh scattering amplitudes are obtained. Our result takes into account all multipoles, retardation and relativistic kinematics contributions, and the old dipole approximation result of Costescu is retrieved as a limit case. The total photoeffect cross-section which is related to the imaginary part of the Rayleigh forward scattering amplitude through the optical theorem is also obtained. Our Coulombian formulae are used in the more realistic case of elastic scattering of photons by bound 1s and 2s electrons in ions and neutral atoms. Screening effects are considered in the independent particle approximation through the Hartree-Fock method. The effective charge Z{sub eff} is obtained by fitting the Hartree-Fock charge distribution by a Coulombian one. Good agreement (within 10%) is found when comparing the numerical predictions given by our nonrelativistic formulae with the full relativistic numerical results of Kissel in the case of elastic scattering of photons by 1s and 2s electrons and Scofield [3] in the case of K-shell and 2s subshell photoionization for neutral atoms with 18 {<=} Z {<=} 92 and photon energies {omega} {<=} {alpha}Zm.

  17. Linear systems formulation of scattering theory for rough surfaces with arbitrary incident and scattering angles.

    Science.gov (United States)

    Krywonos, Andrey; Harvey, James E; Choi, Narak

    2011-06-01

    Scattering effects from microtopographic surface roughness are merely nonparaxial diffraction phenomena resulting from random phase variations in the reflected or transmitted wavefront. Rayleigh-Rice, Beckmann-Kirchhoff. or Harvey-Shack surface scatter theories are commonly used to predict surface scatter effects. Smooth-surface and/or paraxial approximations have severely limited the range of applicability of each of the above theoretical treatments. A recent linear systems formulation of nonparaxial scalar diffraction theory applied to surface scatter phenomena resulted first in an empirically modified Beckmann-Kirchhoff surface scatter model, then a generalized Harvey-Shack theory that produces accurate results for rougher surfaces than the Rayleigh-Rice theory and for larger incident and scattered angles than the classical Beckmann-Kirchhoff and the original Harvey-Shack theories. These new developments simplify the analysis and understanding of nonintuitive scattering behavior from rough surfaces illuminated at arbitrary incident angles.

  18. Acoustofluidic particle dynamics: Beyond the Rayleigh limit.

    Science.gov (United States)

    Baasch, Thierry; Dual, Jürg

    2018-01-01

    In this work a numerical model to calculate the trajectories of multiple acoustically and hydrodynamically interacting spherical particles is presented. The acoustic forces are calculated by solving the fully coupled three-dimensional scattering problem using finite element software. The method is not restricted to single re-scattering events, mono- and dipole radiation, and long wavelengths with respect to the particle diameter, thus expanding current models. High frequency surface acoustic waves have been used in the one cell per well technology to focus individual cells in a two-dimensional wave-field. Sometimes the cells started forming clumps and it was not possible to focus on individual cells. Due to a lack of existing theory, this could not be fully investigated. Here, the authors use the full dynamic simulations to identify limiting factors of the one-cell-per-well technology. At first, the authors demonstrate good agreement of the numerical model with analytical results in the Rayleigh limiting case. A frequency dependent stability exchange between the pressure and velocity was then demonstrated. The numerical formulation presented in this work is relatively general and can be used for a multitude of different high frequency applications. It is a powerful tool in the analysis of microscale acoustofluidic devices and processes.

  19. Determination of Rayleigh wave ellipticity using single-station and array-based processing of ambient seismic noise

    Science.gov (United States)

    Workman, Eli Joseph

    We present a single-station method for the determination of Rayleigh wave ellipticity, or Rayleigh wave horizontal to vertical amplitude ratio (H/V) using Frequency Dependent Polarization Analysis (FDPA). This procedure uses singular value decomposition of 3-by-3 spectral covariance matrices over 1-hr time windows to determine properties of the ambient seismic noise field such as particle motion and dominant wave-type. In FPDA, if the noise is mostly dominated by a primary singular value and the phase difference is roughly 90° between the major horizontal axis and the vertical axis of the corresponding singular vector, we infer that Rayleigh waves are dominant and measure an H/V ratio for that hour and frequency bin. We perform this analysis for all available data from the Earthscope Transportable Array between 2004 and 2014. We compare the observed Rayleigh wave H/V ratios with those previously measured by multicomponent, multistation noise cross-correlation (NCC), as well as classical noise spectrum H/V ratio analysis (NSHV). At 8 sec the results from all three methods agree, suggesting that the ambient seismic noise field is Rayleigh wave dominated. Between 10 and 30 sec, while the general pattern agrees well, the results from FDPA and NSHV are persistently slightly higher ( 2%) and significantly higher (>20%), respectively, than results from the array-based NCC. This is likely caused by contamination from other wave types (i.e., Love waves, body waves, and tilt noise) in the single station methods, but it could also reflect a small, persistent error in NCC. Additionally, we find that the single station method has difficulty retrieving robust Rayleigh wave H/V ratios within major sedimentary basins, such as the Williston Basin and Mississippi Embayment, where the noise field is likely dominated by reverberating Love waves.

  20. Study on Software Quality Improvement based on Rayleigh Model and PDCA Model

    OpenAIRE

    Ning Jingfeng; Hu Ming

    2013-01-01

    As the software industry gradually becomes mature, software quality is regarded as the life of a software enterprise. This article discusses how to improve the quality of software, applies Rayleigh model and PDCA model to the software quality management, combines with the defect removal effectiveness index, exerts PDCA model to solve the problem of quality management objectives when using the Rayleigh model in bidirectional quality improvement strategies of software quality management, a...

  1. Calibration and Process of Signal of Photomultiplier Tube in Rayleigh Scattering of Supersonic Jet Clusters

    International Nuclear Information System (INIS)

    Lu Jianfeng; Liu Meng; Han Jifeng; Li Jia; Luo Xiaobing; Miao Jingwei; Yang Chaowen

    2009-01-01

    In the experiments of Rayleigh scattering of gas-jet clusters, the signal amplitude of PMT is not only affected by duster itself, but also by the intensity of light source and work voltage of PMT. When the back pressure of cluster source varies from 10 atm to about 100atm, the signal amplitude of PMT may be from linear to nonlinear. In order to solve the problem, signal calibration of PMT under different intensifies of light and voltage of PMT has been done. The relationship between the amplitude of signal and intensities of light as well as voltage of PMT has been obtained. The function of scatter factor of Ar clusters with the back pressure of cluster source is gotten experimentally, and agrees with related experimental and theoretical results. (authors)

  2. The effects of surface roughness on the scattering properties of hexagonal columns with sizes from the Rayleigh to the geometric optics regimes

    International Nuclear Information System (INIS)

    Liu, Chao; Lee Panetta, R.; Yang, Ping

    2013-01-01

    Effects of surface roughness on the optical scattering properties of ice crystals are investigated using a random wave superposition model of roughness that is a simplification of models used in studies of scattering by surface water waves. Unlike previous work with models of rough surfaces applicable only in limited size ranges, such as surface perturbation methods in the small particle regime or the tilted-facet (TF) method in the large particle regime, ours uses a single roughness model to cover a range in sizes extending from the Rayleigh to the geometric optics regimes. The basic crystal shape we examine is the hexagonal column but our roughening model can be used for a wide variety of particle geometries. To compute scattering properties over the range of sizes we use the pseudo-spectral time domain method (PSTD) for small to moderate sized particles and the improved geometric optics method (IGOM) for large ones. Use of the PSTD with our roughness model is straightforward. By discretizing the roughened surface with triangular sub-elements, we adapt the IGOM to give full consideration of shadow effects, multiple reflections/refractions at the surface, and possible reentrance of the scattered beams. We measure the degree of roughness of a surface by the variance (σ 2 ) of surface slopes occurring on the surfaces. For moderately roughened surfaces (σ 2 ≤0.1) in the large particle regime, the scattering properties given by the TF and IGOM agree well, but differences in results obtained with the two methods become noticeable as the surface becomes increasingly roughened. Having a definite, albeit idealized, roughness model we are able to use the combination of the PSTD and IGOM to examine how a fixed degree of surface roughness affects the scattering properties of a particle as the size parameter of the particle changes. We find that for moderately rough surfaces in our model, as particle size parameter increases beyond about 20 the influence of surface

  3. Scattering of particles with inclusions. Modeling and inverse problem solution in the Rayleigh-Gans approximation

    International Nuclear Information System (INIS)

    Otero, F A; Frontini, G L; Elicabe, G E

    2011-01-01

    An analytic model for the scattering of a spherical particle with spherical inclusions has been proposed under the RG approximation. The model can be used without limitations to describe an X-ray scattering experiment. However, for light scattering several conditions must be fulfilled. Based on this model an inverse methodology is proposed to estimate the radii of host particle and inclusions, the number of inclusions and the Distance Distribution Functions (DDF's) of the distances between inclusions and the distances between inclusions and the origin of coordinates. The methodology is numerically tested in a light scattering example in which the host particle is eliminated by matching the refractive indices of host particle and medium. The results obtained for this cluster particle are very satisfactory.

  4. Rayleigh scattering of Moessbauer radiation in superionic conductor RbAg4I5

    International Nuclear Information System (INIS)

    Ovanesyan, N.S.; Goffman, V.G.; Sokolov, V.B.; Tkachev, V.V.

    1984-01-01

    The dynamical properties of RbAg 4 I 5 has been investiaated by Rayleigh scattering of Moessbauer radiation (RSMR) with wave-length lambda = 0.86 A. The character of Ag + ion oscillatory motion and diffusion in RbAg 4 I 5 depending on temperature including the phase transitions region is studied. It is shown that in the superionic crystal RbAg 4 I 5 the diffusion process is strongly correlated, i.e. a great number of initial and final states at diffusion jumps coincides. The observed broadening can be less than the expected one by value orders. Diffusion correlation can strongly reduce the activation barrier and lead to anomalously high ionic conduction

  5. Compton-scatter tissue densitometry: calculation of single and multiple scatter photon fluences

    International Nuclear Information System (INIS)

    Battista, J.J.; Bronskill, M.J.

    1978-01-01

    The accurate measurement of in vivo electron densities by the Compton-scatter method is limited by attenuations and multiple scattering in the patient. Using analytic and Monte Carlo calculation methods, the Clarke tissue density scanner has been modelled for incident monoenergetic photon energies from 300 to 2000 keV and for mean scattering angles of 30 to 130 degrees. For a single detector focussed to a central position in a uniform water phantom (25 x 25 x 25 cm 3 ) it has been demonstrated that: (1) Multiple scatter contamination is an inherent limitation of the Compton-scatter method of densitometry which can be minimised, but not eliminated, by improving the energy resolution of the scattered radiation detector. (2) The choice of the incident photon energy is a compromise between the permissible radiation dose to the patient and the tolerable level of multiple scatter contamination. For a mean scattering angle of 40 degrees, the intrinsic multiple-single scatter ratio decreases from 64 to 35%, and the radiation dose (per measurement) increases from 1.0 to 4.1 rad, as the incident photon energy increases from 300 to 2000 keV. These doses apply to a sampled volume of approximately 0.3 cm 3 and an electron density precision of 0.5%. (3) The forward scatter densitometer configuration is optimum, minimising both the dose and the multiple scatter contamination. For an incident photon energy of 1250 keV, the intrinsic multiple-single scatter ratio reduces from 122 to 27%, and the dose reduces from 14.3 to 1.2 rad, as the mean scattering angle decreases from 130 to 30 degrees. These calculations have been confirmed by experimental measurements. (author)

  6. Multi-scattering inversion for low model wavenumbers

    KAUST Repository

    Alkhalifah, Tariq Ali

    2015-08-19

    A successful full wavenumber inversion (FWI) implementation updates the low wavenumber model components first for proper wavefield propagation description, and slowly adds the high-wavenumber potentially scattering parts of the model. The low-wavenumber components can be extracted from the transmission parts of the recorded data given by direct arrivals or the transmission parts of the single and double-scattering wave-fields developed from a predicted scatter field. We develop a combined inversion of data modeled from the source and those corresponding to single and double scattering to update both the velocity model and the component of the velocity (perturbation) responsible for the single and double scattering. The combined inversion helps us access most of the potential model wavenumber information that may be embedded in the data. A scattering angle filter is used to divide the gradient of the combined inversion so initially the high wavenumber (low scattering angle) components of the gradient is directed to the perturbation model and the low wavenumber (high scattering angle) components to the velocity model. As our background velocity matures, the scattering angle divide is slowly lowered to allow for more of the higher wavenumbers to contribute the velocity model.

  7. On the interaction of Rayleigh surface waves with structures

    International Nuclear Information System (INIS)

    Simpson, I.C.

    1976-12-01

    A two-dimensional soil-structure interaction analysis is carried out for transient Rayleigh surface waves that are incident on a structure. The structure is modelled by a three-degree of freedom rigid basemat to which is attached a flexible superstructure, modelled by a single mass-spring system. The structural responses to a given Rayleigh wave train are compared with those that would have been obtained if the free-field acceleration-time history had been applied as a normally incident body wave. The results clearly exhibit the 'frequency filtering' effects of the rigid basemat on the incident Rayleigh waves. It is shown that, if seismic excitation of a structure is, in fact, due to Rayleigh surface waves, then an analysis assuming normally incident body waves can considerably over-estimate structural response, both at basemat level for horizontal and vertical oscillations of the superstructure. However, in the examples considered here, relatively large rocking effects were induced by the Rayleigh waves, thus giving maximum horizontal accelerations in the superstructure that were of comparable magnitude for Rayleigh and normally incident body waves. (author)

  8. Passive retrieval of Rayleigh waves in disordered elastic media

    International Nuclear Information System (INIS)

    Larose, Eric; Derode, Arnaud; Clorennec, Dominique; Margerin, Ludovic; Campillo, Michel

    2005-01-01

    When averaged over sources or disorder, cross correlation of diffuse fields yields the Green's function between two passive sensors. This technique is applied to elastic ultrasonic waves in an open scattering slab mimicking seismic waves in the Earth's crust. It appears that the Rayleigh wave reconstruction depends on the scattering properties of the elastic slab. Special attention is paid to the specific role of bulk to Rayleigh wave coupling, which may result in unexpected phenomena, such as a persistent time asymmetry in the diffuse regime

  9. Time-dependent radiation transfer with rayleigh scattering in finite plane-parallel media using pomraning-eddington approximation

    International Nuclear Information System (INIS)

    El-Wakil, S.A.; Sallah, M.; Degheidy, A.R.

    2005-01-01

    The time-dependent radiation transfer equation in plane geometry with Rayleigh scattering is studied. The traveling wave transformation is used to obtain the corresponding stationary-like equation. Pomraning-Eddington approximation is then used to calculate the radiation intensity in finite plane-parallel media. Numerical results and shielding calculations are shown for reflectivity and transmissivity at different times. The medium is assumed to have specular-reflecting boundaries. For the sake of comparison, two different weight functions are introduced and to force the boundary conditions to be fulfilled

  10. Room-temperature phosphorescence chemosensor and Rayleigh scattering chemodosimeter dual-recognition probe for 2,4,6-trinitrotoluene based on manganese-doped ZnS quantum dots.

    Science.gov (United States)

    Zou, Wen-Sheng; Sheng, Dong; Ge, Xin; Qiao, Jun-Qin; Lian, Hong-Zhen

    2011-01-01

    Rayleigh scattering (RS) as an interference factor to detection sensitivity in ordinary fluorescence spectrometry is always avoided in spite of considerable efforts toward the development of RS-based resonance Rayleigh scattering (RRS) and hyper-Rayleigh scattering (HRS) techniques. Here, combining advantages of quantum dots (QDs) including chemical modification of functional groups and the installation of recognition receptors at their surfaces with those of phosphorescence such as the avoidance of autofluorescence and scattering light, l-cys-capped Mn-doped ZnS QDs have been synthesized and used for room-temperature phosphorescence (RTP) to sense and for RS chemodosimetry to image ultratrace 2,4,6-trinitrotoluene (TNT) in water. The l-cys-capped Mn-doped ZnS QDs interdots aggregate with TNT species induced by the formation of Meisenheimer complexes (MHCs) through acid-base pairing interaction between l-cys and TNT, hydrogen bonding, and electrostatic interaction between l-cys intermolecules. Although the resultant MHCs may quench the fluorescence at 430 nm, interdots aggregation can greatly influence the light scattering property of the aqueous QDs system, and therefore, dominant RS enhancement at defect-related emission wavelength was observed under the excitation of violet light of Mn-doped ZnS QDs, which was applied in chemodosimetry to image TNT in water. Meanwhile, Mn-doped ZnS QDs also exhibited a highly selective response to the quenching of the (4)T(1)-(6)A(1) transition emission (RTP) and showed a very good linearity in the range of 0.0025-0.45 μM TNT with detection limit down to 0.8 nM and RSD of 2.3% (n = 5). The proposed methods are well-suited for detecting the ultratrace TNT and distinguishing different nitro compounds.

  11. Determination of the mass attenuation coefficients for X-ray fluorescence measurements correction by the Rayleigh to Compton scattering ratio

    Science.gov (United States)

    Conti, C. C.; Anjos, M. J.; Salgado, C. M.

    2014-09-01

    X-ray fluorescence technique plays an important role in nondestructive analysis nowadays. The development of equipment, including portable ones, enables a wide assortment of possibilities for analysis of stable elements, even in trace concentrations. Nevertheless, despite of the advantages, one important drawback is radiation self-attenuation in the sample being measured, which needs to be considered in the calculation for the proper determination of elemental concentration. The mass attenuation coefficient can be determined by transmission measurement, but, in this case, the sample must be in slab shape geometry and demands two different setups and measurements. The Rayleigh to Compton scattering ratio, determined from the X-ray fluorescence spectrum, provides a link to the mass attenuation coefficient by means of a polynomial type equation. This work presents a way to construct a Rayleigh to Compton scattering ratio versus mass attenuation coefficient curve by using the MCNP5 Monte Carlo computer code. The comparison between the calculated and literature values of the mass attenuation coefficient for some known samples showed to be within 15%. This calculation procedure is available on-line at www.macx.net.br.

  12. Filtered Rayleigh scattering mixing measurements of merging and non-merging streamwise vortex interactions in supersonic flow

    Science.gov (United States)

    Ground, Cody R.; Gopal, Vijay; Maddalena, Luca

    2018-04-01

    By introducing large-scale streamwise vortices into a supersonic flow it is possible to enhance the rate of mixing between two fluid streams. However, increased vorticity content alone does not explicitly serve as a predictor of mixing enhancement. Additional factors, particularly the mutual interactions occurring between neighboring vortical structures, affect the underlying fundamental physics that influence the rate at which the fluids mix. As part of a larger systematic study on supersonic streamwise vortex interactions, this work experimentally quantifies the average rate of mixing of helium and air in the presence of two separate modes of vortex interaction, the merging and non-merging of a pair of co-rotating vortices. In these experiments vortex-generating expansion ramps are placed on a strut injector. The freestream Mach number is set at 2.5 and helium is injected as a passive scalar. Average injectant mole fractions at selected flow planes downstream of the injector are measured utilizing the filtered Rayleigh scattering technique. The filtered Rayleigh scattering measurements reveal that, in the domain surveyed, the merging vortex interaction strongly displaces the plume from its initial horizontal orientation while the non-merging vortex interaction more rapidly mixes the helium and air. The results of the current experiments are consistent with associated knowledge derived from previous analyses of the two studied configurations which have included the detailed experimental characterization of entrainment, turbulent kinetic energy, and vorticity of both modes of vortex interaction.

  13. LIGHT SCATTERING FROM EXOPLANET OCEANS AND ATMOSPHERES

    International Nuclear Information System (INIS)

    Zugger, M. E.; Kane, T. J.; Kasting, J. F.; Williams, D. M.; Philbrick, C. R.

    2010-01-01

    Orbital variation in reflected starlight from exoplanets could eventually be used to detect surface oceans. Exoplanets with rough surfaces, or dominated by atmospheric Rayleigh scattering, should reach peak brightness in full phase, orbital longitude (OL) = 180 0 , whereas ocean planets with transparent atmospheres should reach peak brightness in crescent phase near OL = 30 0 . Application of Fresnel theory to a planet with no atmosphere covered by a calm ocean predicts a peak polarization fraction of 1 at OL = 74 0 ; however, our model shows that clouds, wind-driven waves, aerosols, absorption, and Rayleigh scattering in the atmosphere and within the water column dilute the polarization fraction and shift the peak to other OLs. Observing at longer wavelengths reduces the obfuscation of the water polarization signature by Rayleigh scattering but does not mitigate the other effects. Planets with thick Rayleigh scattering atmospheres reach peak polarization near OL = 90 0 , but clouds and Lambertian surface scattering dilute and shift this peak to smaller OL. A shifted Rayleigh peak might be mistaken for a water signature unless data from multiple wavelength bands are available. Our calculations suggest that polarization alone may not positively identify the presence of an ocean under an Earth-like atmosphere; however, polarization adds another dimension which can be used, in combination with unpolarized orbital light curves and contrast ratios, to detect extrasolar oceans, atmospheric water aerosols, and water clouds. Additionally, the presence and direction of the polarization vector could be used to determine planet association with the star, and constrain orbit inclination.

  14. Preliminary study of Rayleigh-Taylor instability in wire-array Z-pinch

    International Nuclear Information System (INIS)

    He Kaihui; Feng Kaiming; Li Qiang; Gao Chunming

    2000-01-01

    It is important to research into the MHD Rayleigh-Taylor instability developed in Z-pinch implosion. A snowplough model of the single wire Z-pinch is presented. The perturbation amplitude of Rayleigh-Taylor instability in the wire-array Z-pinch is analyzed quantitatively. Sheared axial flow is put forward to mitigate and reduce the Rayleigh-Taylor instability. And other approaches used to mitigate MHD instability in such a super-fast process are explored

  15. Testing ion structure models with x-ray Thomson scattering

    Directory of Open Access Journals (Sweden)

    Wünsch K.

    2013-11-01

    Full Text Available We investigate the influence of various ionic structure models on the interpretation of the X-ray Thomson scattering signal. For the calculation of the ion structure, classical hypernetted chain equations are used applying different effective inter-particle potentials. It is shown that the different models lead to significant discrepancies in the theoretically predicted weight of the Rayleigh peak, in particular for small k-values where correlation effects are important. Here, we propose conditions which might allow for an experimental verification of the theories under consideration of experimental constraints of k-vector blurring.

  16. Dirac Coulomb Green's function and its application to relativistic Rayleigh scattering

    International Nuclear Information System (INIS)

    Wong, M.K.F.; Yeh, E.H.Y.

    1985-01-01

    The Dirac Coulomb Green's function is obtained in both coordinate and momentum space. The Green's function in coordinate space is obtained by the eigenfunction expansion method in terms of the wave functions obtained by Wong and Yeh. The result is simpler than those obtained previously by other authors, in that the radial part for each component contains one term only instead of four terms. Our Green's function reduces to the Schroedinger Green's function upon some simple conditions, chiefly by neglecting the spin and replacing lambda by l. The Green's function in momentum space is obtained as the Fourier transform of the coordinate space Green's function, and is expressed in terms of basically three types of functions: (1) F/sub A/ (α; β 1 β 2 β 3 ; γ 1 γ 2 γ 3 ; z 1 z 2 z 3 ), (2) the hypergeometric function, and (3) spherical harmonics. The matrix element for Rayleigh scattering, or elastic Compton scattering, from relativistically bound electrons is then obtained in analytically closed form. The matrix element is written basically in terms of the coordinate space Dirac Coulomb Green's function. The technique used in the evaluation of the matrix element is based on the calculation of the momentum space Dirac Coulomb Green's function. Finally the relativistic result is compared with the nonrelativistic result

  17. Rayleigh imaging in spectral mammography

    Science.gov (United States)

    Berggren, Karl; Danielsson, Mats; Fredenberg, Erik

    2016-03-01

    Spectral imaging is the acquisition of multiple images of an object at different energy spectra. In mammography, dual-energy imaging (spectral imaging with two energy levels) has been investigated for several applications, in particular material decomposition, which allows for quantitative analysis of breast composition and quantitative contrast-enhanced imaging. Material decomposition with dual-energy imaging is based on the assumption that there are two dominant photon interaction effects that determine linear attenuation: the photoelectric effect and Compton scattering. This assumption limits the number of basis materials, i.e. the number of materials that are possible to differentiate between, to two. However, Rayleigh scattering may account for more than 10% of the linear attenuation in the mammography energy range. In this work, we show that a modified version of a scanning multi-slit spectral photon-counting mammography system is able to acquire three images at different spectra and can be used for triple-energy imaging. We further show that triple-energy imaging in combination with the efficient scatter rejection of the system enables measurement of Rayleigh scattering, which adds an additional energy dependency to the linear attenuation and enables material decomposition with three basis materials. Three available basis materials have the potential to improve virtually all applications of spectral imaging.

  18. Discrete ordinate theory of radiative transfer. 2: Scattering from maritime haze

    Science.gov (United States)

    Kattawar, G. W.; Plass, G. N.; Catchings, F. E.

    1971-01-01

    Discrete ordinate theory was used to calculate the reflected and transmitted radiance of photons which have interacted with plane parallel maritime haze layers. The results are presented for three solar zenith angles, three values of the surface albedo, and a range of optical thicknesses from very thin to very thick. The diffuse flux at the lower boundary and the cloud albedo were tabulated. The forward peak and other features in the single scattered phase function caused the radiance in many cases to be very different from that for Rayleigh scattering. The variation of the radiance with both the zenith or nadir angle and the azimuthal angle is more marked, and the relative limb darkening under very thick layers is greater, for haze than for Rayleigh scattering. The downward diffuse flux at the lower boundary for A = O is always greater and the cloud albedo is always less for haze than for Rayleigh layers.

  19. Improved Holistic Analysis of Rayleigh Waves for Single- and Multi-Offset Data: Joint Inversion of Rayleigh-Wave Particle Motion and Vertical- and Radial-Component Velocity Spectra

    Science.gov (United States)

    Dal Moro, Giancarlo; Moustafa, Sayed S. R.; Al-Arifi, Nassir S.

    2018-01-01

    Rayleigh waves often propagate according to complex mode excitation so that the proper identification and separation of specific modes can be quite difficult or, in some cases, just impossible. Furthermore, the analysis of a single component (i.e., an inversion procedure based on just one objective function) necessarily prevents solving the problems related to the non-uniqueness of the solution. To overcome these issues and define a holistic analysis of Rayleigh waves, we implemented a procedure to acquire data that are useful to define and efficiently invert the three objective functions defined from the three following "objects": the velocity spectra of the vertical- and radial-components and the Rayleigh-wave particle motion (RPM) frequency-offset data. Two possible implementations are presented. In the first case we consider classical multi-offset (and multi-component) data, while in a second possible approach we exploit the data recorded by a single three-component geophone at a fixed offset from the source. Given the simple field procedures, the method could be particularly useful for the unambiguous geotechnical exploration of large areas, where more complex acquisition procedures, based on the joint acquisition of Rayleigh and Love waves, would not be economically viable. After illustrating the different kinds of data acquisition and the data processing, the results of the proposed methodology are illustrated in a case study. Finally, a series of theoretical and practical aspects are discussed to clarify some issues involved in the overall procedure (data acquisition and processing).

  20. Determination of the mass attenuation coefficients for X-ray fluorescence measurements correction by the Rayleigh to Compton scattering ratio

    Energy Technology Data Exchange (ETDEWEB)

    Conti, C.C., E-mail: ccconti@ird.gov.br [Institute for Radioprotection and Dosimetry – IRD/CNEN, Rio de Janeiro (Brazil); Physics Institute, State University of Rio de Janeiro – UERJ, Rio de Janeiro (Brazil); Anjos, M.J. [Physics Institute, State University of Rio de Janeiro – UERJ, Rio de Janeiro (Brazil); Salgado, C.M. [Nuclear Engineering Institute – IEN/CNEN, Rio de Janeiro (Brazil)

    2014-09-15

    Highlights: •This work describes a procedure for sample self-absorption correction. •The use of Monte Carlo simulation to calculate the mass attenuation coefficients curve was effective. •No need for transmission measurement, saving time, financial resources and effort. •This article provides de curves for the 90° scattering angle. •Calculation on-line at (www.macx.net.br). -- Abstract: X-ray fluorescence technique plays an important role in nondestructive analysis nowadays. The development of equipment, including portable ones, enables a wide assortment of possibilities for analysis of stable elements, even in trace concentrations. Nevertheless, despite of the advantages, one important drawback is radiation self-attenuation in the sample being measured, which needs to be considered in the calculation for the proper determination of elemental concentration. The mass attenuation coefficient can be determined by transmission measurement, but, in this case, the sample must be in slab shape geometry and demands two different setups and measurements. The Rayleigh to Compton scattering ratio, determined from the X-ray fluorescence spectrum, provides a link to the mass attenuation coefficient by means of a polynomial type equation. This work presents a way to construct a Rayleigh to Compton scattering ratio versus mass attenuation coefficient curve by using the MCNP5 Monte Carlo computer code. The comparison between the calculated and literature values of the mass attenuation coefficient for some known samples showed to be within 15%. This calculation procedure is available on-line at (www.macx.net.br)

  1. SEARCH FOR RAYLEIGH SCATTERING IN THE ATMOSPHERE OF GJ1214b

    International Nuclear Information System (INIS)

    De Mooij, E. J. W.; Jayawardhana, R.; Brogi, M.; Snellen, I. A. G.; Hoekstra, H.; Otten, G. P. P. L.; Bekkers, D. H.; Haffert, S. Y.; Van Houdt, J. J.; De Kok, R. J.; Croll, B.

    2013-01-01

    We investigate the atmosphere of GJ1214b, a transiting super-Earth planet with a low mean density, by measuring its transit depth as a function of wavelength in the blue optical portion of the spectrum. It is thought that this planet is either a mini-Neptune, consisting of a rocky core with a thick, hydrogen-rich atmosphere, or a planet with a composition dominated by water. Most observations favor a water-dominated atmosphere with a small scale-height, however, some observations indicate that GJ1214b could have an extended atmosphere with a cloud layer muting the molecular features. In an atmosphere with a large scale-height, Rayleigh scattering at blue wavelengths is likely to cause a measurable increase in the apparent size of the planet toward the blue. We observed the transit of GJ1214b in the B band with the FOcal Reducing Spectrograph at the Very Large Telescope and in the g band with both ACAM on the William Herschel Telescope (WHT) and the Wide Field Camera at the Isaac Newton Telescope (INT). We find a planet-to-star radius ratio in the B band of 0.1162 ± 0.0017, and in the g band 0.1180 ± 0.0009 and 0.1174 ± 0.0017 for the WHT and INT observations, respectively. These optical data do not show significant deviations from previous measurements at longer wavelengths. In fact, a flat transmission spectrum across all wavelengths best describes the combined observations. When atmospheric models are considered, a small scale-height water-dominated model fits the data best.

  2. Multi-scattering inversion for low model wavenumbers

    KAUST Repository

    Alkhalifah, Tariq Ali; Wu, Zedong

    2015-01-01

    modeled from the source and those corresponding to single and double scattering to update both the velocity model and the component of the velocity (perturbation) responsible for the single and double scattering. The combined inversion helps us access most

  3. Estimation of Rayleigh-wave spectral ratio from microtremors using a three-component single-station seismograph; Itten sanseibun bido kansoku ni motozuita Rayleigh ha shinpukuhi no suitei

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H; Mizutani, K; Saito, t [Iwate University, Iwate (Japan). Faculty of Engineering

    1997-10-22

    Discussions were given on the possibility of estimating Rayleigh-wave spectral ratio utilizing phase difference between horizontal movements and vertical movements by using a three-component single-station seismograph. The test has selected as an observation point a location in the city of Kushiro where a pulp and paper mill generating microtremors is the focal point, and the underground structure at that point has been estimated by using the vertical array observation method. The observation system has used three components of a velocity type seismograph having a natural period of one second, an amplifier and an analog data recorder. As a result of the discussions, the following matters were made clear: the spectral ratio with a phase difference of 90 degrees agrees with the frequency at a peak trough of the theoretical Rayleigh-wave spectral ratio; the values of the spectral ratio at the phase difference of 90 degrees and the values of the theoretical Rayleigh-wave spectral ratio correspond well excepting in frequency bands of the peak trough; and these results suggest that the Rayleigh-wave spectral ratio may be estimated by utilizing the phase difference between horizontal movements and vertical movements. Estimation of the underground structure by using the inverse analysis of this Rayleigh-wave spectral ratio is expected in the future. 6 refs., 5 figs., tab.

  4. Neutron Brillouin scattering in dense fluids

    Energy Technology Data Exchange (ETDEWEB)

    Verkerk, P [Technische Univ. Delft (Netherlands); FINGO Collaboration

    1997-04-01

    Thermal neutron scattering is a typical microscopic probe for investigating dynamics and structure in condensed matter. In contrast, light (Brillouin) scattering with its three orders of magnitude larger wavelength is a typical macroscopic probe. In a series of experiments using the improved small-angle facility of IN5 a significant step forward is made towards reducing the gap between the two. For the first time the transition from the conventional single line in the neutron spectrum scattered by a fluid to the Rayleigh-Brillouin triplet known from light-scattering experiments is clearly and unambiguously observed in the raw neutron data without applying any corrections. Results of these experiments are presented. (author).

  5. Quantitative use of Rayleigh waves to locate and size subsurface holes

    International Nuclear Information System (INIS)

    Zachary, L.W.

    1982-01-01

    An ultrasonic inspection method is used to obtain the circumference of a subsurface hole and the depth of the hole below the surface. A pitch-catch Rayleigh wave transducer set-up was used to launch a Rayleigh surface wave at the flaw and to capture and record the scattered waves. The frequency spectrum of the scattered waves can be used to obtain the depth of the hole. The ligament of material between the hole and the surface is sent into resonance, and this feature can be extracted from the scattered waves' frequency spectrum. The frequency is a function of the ligament length; thus the hole depth can be obtained. The circumference of the hole is found from a time of flight measurement. A Rayleigh wave is formed that travels around the hole's surface. The length of time required for the wave to travel around the hole is a measure of the circumference

  6. A hybrid approach to simulate multiple photon scattering in X-ray imaging

    International Nuclear Information System (INIS)

    Freud, N.; Letang, J.-M.; Babot, D.

    2005-01-01

    A hybrid simulation approach is proposed to compute the contribution of scattered radiation in X- or γ-ray imaging. This approach takes advantage of the complementarity between the deterministic and probabilistic simulation methods. The proposed hybrid method consists of two stages. Firstly, a set of scattering events occurring in the inspected object is determined by means of classical Monte Carlo simulation. Secondly, this set of scattering events is used as a starting point to compute the energy imparted to the detector, with a deterministic algorithm based on a 'forced detection' scheme. For each scattering event, the probability for the scattered photon to reach each pixel of the detector is calculated using well-known physical models (form factor and incoherent scattering function approximations, in the case of Rayleigh and Compton scattering respectively). The results of the proposed hybrid approach are compared to those obtained with the Monte Carlo method alone (Geant4 code) and found to be in excellent agreement. The convergence of the results when the number of scattering events increases is studied. The proposed hybrid approach makes it possible to simulate the contribution of each type (Compton or Rayleigh) and order of scattering, separately or together, with a single PC, within reasonable computation times (from minutes to hours, depending on the number of pixels of the detector). This constitutes a substantial benefit, compared to classical simulation methods (Monte Carlo or deterministic approaches), which usually requires a parallel computing architecture to obtain comparable results

  7. A hybrid approach to simulate multiple photon scattering in X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Freud, N. [CNDRI, Laboratory of Nondestructive Testing using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex (France)]. E-mail: nicolas.freud@insa-lyon.fr; Letang, J.-M. [CNDRI, Laboratory of Nondestructive Testing using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex (France); Babot, D. [CNDRI, Laboratory of Nondestructive Testing using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex (France)

    2005-01-01

    A hybrid simulation approach is proposed to compute the contribution of scattered radiation in X- or {gamma}-ray imaging. This approach takes advantage of the complementarity between the deterministic and probabilistic simulation methods. The proposed hybrid method consists of two stages. Firstly, a set of scattering events occurring in the inspected object is determined by means of classical Monte Carlo simulation. Secondly, this set of scattering events is used as a starting point to compute the energy imparted to the detector, with a deterministic algorithm based on a 'forced detection' scheme. For each scattering event, the probability for the scattered photon to reach each pixel of the detector is calculated using well-known physical models (form factor and incoherent scattering function approximations, in the case of Rayleigh and Compton scattering respectively). The results of the proposed hybrid approach are compared to those obtained with the Monte Carlo method alone (Geant4 code) and found to be in excellent agreement. The convergence of the results when the number of scattering events increases is studied. The proposed hybrid approach makes it possible to simulate the contribution of each type (Compton or Rayleigh) and order of scattering, separately or together, with a single PC, within reasonable computation times (from minutes to hours, depending on the number of pixels of the detector). This constitutes a substantial benefit, compared to classical simulation methods (Monte Carlo or deterministic approaches), which usually requires a parallel computing architecture to obtain comparable results.

  8. Parameter identification in a generalized time-harmonic Rayleigh damping model for elastography.

    Directory of Open Access Journals (Sweden)

    Elijah E W Van Houten

    Full Text Available The identifiability of the two damping components of a Generalized Rayleigh Damping model is investigated through analysis of the continuum equilibrium equations as well as a simple spring-mass system. Generalized Rayleigh Damping provides a more diversified attenuation model than pure Viscoelasticity, with two parameters to describe attenuation effects and account for the complex damping behavior found in biological tissue. For heterogeneous Rayleigh Damped materials, there is no equivalent Viscoelastic system to describe the observed motions. For homogeneous systems, the inverse problem to determine the two Rayleigh Damping components is seen to be uniquely posed, in the sense that the inverse matrix for parameter identification is full rank, with certain conditions: when either multi-frequency data is available or when both shear and dilatational wave propagation is taken into account. For the multi-frequency case, the frequency dependency of the elastic parameters adds a level of complexity to the reconstruction problem that must be addressed for reasonable solutions. For the dilatational wave case, the accuracy of compressional wave measurement in fluid saturated soft tissues becomes an issue for qualitative parameter identification. These issues can be addressed with reasonable assumptions on the negligible damping levels of dilatational waves in soft tissue. In general, the parameters of a Generalized Rayleigh Damping model are identifiable for the elastography inverse problem, although with more complex conditions than the simpler Viscoelastic damping model. The value of this approach is the additional structural information provided by the Generalized Rayleigh Damping model, which can be linked to tissue composition as well as rheological interpretations.

  9. What is measured by hyper-Rayleigh scattering from a liquid?

    Science.gov (United States)

    Rodriquez, Micheal B.; Shelton, David P.

    2018-04-01

    Polarization and angle dependence of hyper-Rayleigh scattering (HRS) measured for liquid acetonitrile and dimethyl sulfoxide (DMSO) is analyzed in terms of contributions from randomly oriented molecules and additional contributions produced during intermolecular collisions and induced by the electric field of dissolved ions. All three contributions show the effect of long-range correlation, and the correlation functions are determined using the HRS observations combined with the results of molecular dynamics simulations. HRS from acetonitrile is polarized transverse to the scattering vector. This is due to long-range molecular orientation correlation produced by the dipole-dipole interaction, and correlation at distances r > 100 nm must be included to account for the HRS observations. Analysis of the HRS measurements for acetonitrile determines the length scale a = 0.185 nm for the long-range longitudinal and transverse orientation correlation functions BL=-2 BT=a3/r3. Transverse polarized collision-induced HRS is also observed for acetonitrile, indicating long-range correlation of intermolecular modes. Strong longitudinal HRS is induced by the radial electric field of dissolved ions in acetonitrile. For DMSO, the angle between the molecular dipole and the vector part of the first hyperpolarizability tensor is about 100°. As a result, HRS from the randomly oriented molecules in DMSO is nearly unaffected by dipole correlation, and ion-induced HRS is weak. The strong longitudinal polarized HRS observed for DMSO is due to the collision-induced contribution, indicating long-range correlation of intermolecular modes. The HRS observations require correlation that has r-3 long-range asymptotic form, for molecular orientation and for intermolecular vibration and libration, for both acetonitrile and DMSO.

  10. Rayleigh scattering of Moessbauer radiation in superionic conductor RbAg/sub 4/I/sub 5/

    Energy Technology Data Exchange (ETDEWEB)

    Ovanesyan, N.S.; Goffman, V.G.; Sokolov, V.B.; Tkachev, V.V. (AN SSSR, Chernogolovka. Otdelenie Inst. Khimicheskoj Fiziki)

    1984-04-01

    The dynamical properties of RbAg/sub 4/I/sub 5/ has been investiaated by Rayleigh scattering of Moessbauer radiation (RSMR) with wave-length lambda = 0.86 A. The character of Ag/sup +/ ion oscillatory motion and diffusion in RbAg/sub 4/I/sub 5/ depending on temperature including the phase transitions region is studied. It is shown that in the superionic crystal RbAg/sub 4/I/sub 5/ the diffusion process is strongly correlated, i.e. a great number of initial and final states at diffusion jumps coincide. The observed broadening can be less than the expected one by value orders. Diffusion correlation can strongly reduce the activation barrier and lead to anomalously high ionic conduction.

  11. Analyses of the energy-dependent single separable potential models for the NN scattering

    International Nuclear Information System (INIS)

    Ahmad, S.S.; Beghi, L.

    1981-08-01

    Starting from a systematic study of the salient features regarding the quantum-mechanical two-particle scattering off an energy-dependent (ED) single separable potential and its connection with the rank-2 energy-independent (EI) separable potential in the T-(K-) amplitude formulation, the present status of the ED single separable potential models due to Tabakin (M1), Garcilazo (M2) and Ahmad (M3) has been discussed. It turned out that the incorporation of a self-consistent optimization procedure improves considerably the results of the 1 S 0 and 3 S 1 scattering phase shifts for the models (M2) and (M3) up to the CM wave number q=2.5 fm -1 , although the extrapolation of the results up to q=10 fm -1 reveals that the two models follow the typical behaviour of the well-known super-soft core potentials. It has been found that a variant of (M3) - i.e. (M4) involving one more parameter - gives the phase shifts results which are generally in excellent agreement with the data up to q=2.5 fm -1 and the extrapolation of the results for the 1 S 0 case in the higher wave number range not only follows the corresponding data qualitatively but also reflects a behaviour similar to the Reid soft core and Hamada-Johnston potentials together with a good agreement with the recent [4/3] Pade fits. A brief discussion regarding the features resulting from the variations in the ED parts of all the four models under consideration and their correlations with the inverse scattering theory methodology concludes the paper. (author)

  12. A fully computerized multi-pass Fabry-Perot interferometer for Rayleigh-Brillouin scattering experiments

    International Nuclear Information System (INIS)

    Bohidar, H.; Berland, T.; Boger, F.; Joessang, T.; Feder, J.

    1987-01-01

    The development of a Multipass Fabry-Perot interforometer assembly for use in Rayleigh-Brillouin scattering experiments is reported. The optical alignment and the scattered signal data acquisition have been completely computerized. Digital scanning and alignment strategies of the Fabry-Perot resonator have been incorporated, which makes this instrument quite unique in this respect. The high contrast (∼10 10 ) and finesse (∼50) offered by this instrument makes it possible to detect Brillouin peaks from samples that have a small Brillouin scattering cross-section. As part of this system a compatible and precision sample chamber has been constructed, which has been designed to operate in the pressure and temperature ranges of 1-1000B and 20-150 o C, respectively. The cell has been constructed to be small and compact, but it still has a large heat capacity (∼250J/K) which ensures easy and stable temperature control of the liquid sample volume which has a size of 40 mm 3 . The achievable temperature stability is +-1mK and +-2mK for operating temperatures below and above 100 o C, respectively. The pressure stability is in the range of +-0.05B of the set pressure for pressures below 100B and it is +-0.05% for higher pressures up to 1000B. Both pressure and temperature are remotely monitored and controlled by a ND/100 computer. Special care has been taken in designing the optics of the pressure cell to ensure that both the primary and secondary reflections from the entrance window, as well as the main beam, go out of the scattering region in order to achieve higher signal-to-noise ratio in actual experiments

  13. Dispersion corrections to the forward Rayleigh scattering amplitudes of tantalum, mercury and lead derived using photon interaction cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Appaji Gowda, S.B. [Department of Studies in Physics, Manasagangothri, University of Mysore, Mysore 570006 (India); Umesh, T.K. [Department of Studies in Physics, Manasagangothri, University of Mysore, Mysore 570006 (India)]. E-mail: tku@physics.uni-mysore.ac.in

    2006-01-15

    Dispersion corrections to the forward Rayleigh scattering amplitudes of tantalum, mercury and lead in the photon energy range 24-136 keV have been determined by a numerical evaluation of the dispersion integral that relates them through optical theorem to the photo effect cross sections. The photo effect cross sections have been extracted by subtracting the coherent and incoherent scattering contribution from the measured total attenuation cross section, using high-resolution high-purity germanium detector in a narrow beam good geometry set up. The real part of the dispersion correction to which the relativistic corrections calculated by Kissel and Pratt (S-matrix approach) or Creagh and McAuley (multipole corrections) have been included are in better agreement with the available theoretical values.

  14. Real-time molecular imaging throughout the entire cell cycle by targeted plasmonic-enhanced Rayleigh/Raman spectroscopy.

    Science.gov (United States)

    Kang, Bin; Austin, Lauren A; El-Sayed, Mostafa A

    2012-10-10

    Due to their strong enhancement of scattered light, plasmonic nanoparticles have been utilized for various biological and medical applications. Here, we describe a new technique, Targeted Plasmonic-Enhanced Single-Cell Rayleigh/Raman Spectroscopy, to monitor the molecular changes of any cell-component, such as the nucleus, during the different phases of its full cell cycle by simultaneously recording its Rayleigh images and Raman vibration spectra in real-time. The analysis of the observed Raman DNA and protein peaks allowed the different phases of the cell cycle to be identified. This technique could be used for disease diagnostics and potentially improve our understanding of the molecular mechanisms of cellular functions such as division, death, signaling, and drug action.

  15. Snow particles extracted from X-ray computed microtomography imagery and their single-scattering properties

    Science.gov (United States)

    Ishimoto, Hiroshi; Adachi, Satoru; Yamaguchi, Satoru; Tanikawa, Tomonori; Aoki, Teruo; Masuda, Kazuhiko

    2018-04-01

    Sizes and shapes of snow particles were determined from X-ray computed microtomography (micro-CT) images, and their single-scattering properties were calculated at visible and near-infrared wavelengths using a Geometrical Optics Method (GOM). We analyzed seven snow samples including fresh and aged artificial snow and natural snow obtained from field samples. Individual snow particles were numerically extracted, and the shape of each snow particle was defined by applying a rendering method. The size distribution and specific surface area distribution were estimated from the geometrical properties of the snow particles, and an effective particle radius was derived for each snow sample. The GOM calculations at wavelengths of 0.532 and 1.242 μm revealed that the realistic snow particles had similar scattering phase functions as those of previously modeled irregular shaped particles. Furthermore, distinct dendritic particles had a characteristic scattering phase function and asymmetry factor. The single-scattering properties of particles of effective radius reff were compared with the size-averaged single-scattering properties. We found that the particles of reff could be used as representative particles for calculating the average single-scattering properties of the snow. Furthermore, the single-scattering properties of the micro-CT particles were compared to those of particle shape models using our current snow retrieval algorithm. For the single-scattering phase function, the results of the micro-CT particles were consistent with those of a conceptual two-shape model. However, the particle size dependence differed for the single-scattering albedo and asymmetry factor.

  16. Multi-property isotropic intermolecular potentials and predicted spectral lineshapes of collision-induced absorption (CIA), collision-induced light scattering (CILS) and collision-induced hyper-Rayleigh scattering (CIHR) for H2sbnd Ne, -Kr and -Xe

    Science.gov (United States)

    El-Kader, M. S. A.; Godet, J.-L.; Gustafsson, M.; Maroulis, G.

    2018-04-01

    Quantum mechanical lineshapes of collision-induced absorption (CIA), collision-induced light scattering (CILS) and collision-induced hyper-Rayleigh scattering (CIHR) at room temperature (295 K) are computed for gaseous mixtures of molecular hydrogen with neon, krypton and xenon. The induced spectra are detected using theoretical values for induced dipole moment, pair-polarizability trace and anisotropy, hyper-polarizability and updated intermolecular potentials. Good agreement is observed for all spectra when the literature and the present potentials which are constructed from the transport and thermo-physical properties are used.

  17. Modifying infrared scattering effects of single yeast cells with plasmonic metal mesh

    Science.gov (United States)

    Malone, Marvin A.; Prakash, Suraj; Heer, Joseph M.; Corwin, Lloyd D.; Cilwa, Katherine E.; Coe, James V.

    2010-11-01

    The scattering effects in the infrared (IR) spectra of single, isolated bread yeast cells (Saccharomyces cerevisiae) on a ZnSe substrate and in metal microchannels have been probed by Fourier transform infrared imaging microspectroscopy. Absolute extinction [(3.4±0.6)×10-7 cm2 at 3178 cm-1], scattering, and absorption cross sections for a single yeast cell and a vibrational absorption spectrum have been determined by comparing it to the scattering properties of single, isolated, latex microspheres (polystyrene, 5.0 μm in diameter) on ZnSe, which are well modeled by the Mie scattering theory. Single yeast cells were then placed into the holes of the IR plasmonic mesh, i.e., metal films with arrays of subwavelength holes, yielding "scatter-free" IR absorption spectra, which have undistorted vibrational lineshapes and a rising generic IR absorption baseline. Absolute extinction, scattering, and absorption spectral profiles were determined for a single, ellipsoidal yeast cell to characterize the interplay of these effects.

  18. Dynamics of single-bubble sonoluminescence. An alternative approach to the Rayleigh-Plesset equation

    Science.gov (United States)

    de Barros, Ana L. F.; Nogueira, Álvaro L. M. A.; Paschoal, Ricardo C.; Portes, Dirceu, Jr.; Rodrigues, Hilario

    2018-03-01

    Sonoluminescence is the phenomenon in which acoustic energy is (partially) transformed into light as a bubble of gas collapses inside a liquid medium. One particular model used to explain the motion of the bubble’s wall forced by acoustic pressure is expressed by the Rayleigh-Plesset equation, which can be obtained from the Navier-Stokes equation. In this article, we describe an alternative approach to derive the Rayleigh-Plesset equation based on Lagrangian mechanics. This work is addressed mainly to undergraduate students and teachers. It requires knowledge of calculus and of many concepts from various fields of physics at the intermediate level.

  19. Microwave single-scattering properties of randomly oriented soft-ice hydrometeors

    Directory of Open Access Journals (Sweden)

    D. Casella

    2008-11-01

    Full Text Available Large ice hydrometeors are usually present in intense convective clouds and may significantly affect the upwelling radiances that are measured by satellite-borne microwave radiometers – especially, at millimeter-wavelength frequencies. Thus, interpretation of these measurements (e.g., for precipitation retrieval requires knowledge of the single scattering properties of ice particles. On the other hand, shape and internal structure of these particles (especially, the larger ones is very complex and variable, and therefore it is necessary to resort to simplifying assumptions in order to compute their single-scattering parameters.

    In this study, we use the discrete dipole approximation (DDA to compute the absorption and scattering efficiencies and the asymmetry factor of two kinds of quasi-spherical and non-homogeneous soft-ice particles in the frequency range 50–183 GHz. Particles of the first kind are modeled as quasi-spherical ice particles having randomly distributed spherical air inclusions. Particles of the second kind are modeled as random aggregates of ice spheres having random radii. In both cases, particle densities and dimensions are coherent with the snow hydrometeor category that is utilized by the University of Wisconsin – Non-hydrostatic Modeling System (UW-NMS cloud-mesoscale model. Then, we compare our single-scattering results for randomly-oriented soft-ice hydrometeors with corresponding ones that make use of: a effective-medium equivalent spheres, b solid-ice equivalent spheres, and c randomly-oriented aggregates of ice cylinders. Finally, we extend to our particles the scattering formulas that have been developed by other authors for randomly-oriented aggregates of ice cylinders.

  20. Surface roughness considerations for atmospheric correction of ocean color sensors. I - The Rayleigh-scattering component. II - Error in the retrieved water-leaving radiance

    Science.gov (United States)

    Gordon, Howard R.; Wang, Menghua

    1992-01-01

    The first step in the Coastal Zone Color Scanner (CZCS) atmospheric-correction algorithm is the computation of the Rayleigh-scattering (RS) contribution, L sub r, to the radiance leaving the top of the atmosphere over the ocean. In the present algorithm, L sub r is computed by assuming that the ocean surface is flat. Calculations of the radiance leaving an RS atmosphere overlying a rough Fresnel-reflecting ocean are presented to evaluate the radiance error caused by the flat-ocean assumption. Simulations are carried out to evaluate the error incurred when the CZCS-type algorithm is applied to a realistic ocean in which the surface is roughened by the wind. In situations where there is no direct sun glitter, it is concluded that the error induced by ignoring the Rayleigh-aerosol interaction is usually larger than that caused by ignoring the surface roughness. This suggests that, in refining algorithms for future sensors, more effort should be focused on dealing with the Rayleigh-aerosol interaction than on the roughness of the sea surface.

  1. A Numerical Model for Prediction of Residual Stress Using Rayleigh Waves

    International Nuclear Information System (INIS)

    Yuan, Mao Dan; Kang, To; Kim, Hak Joon; Song, Sung Jin

    2011-01-01

    In this work, a numerical model is proposed for the relation between the magnitudes and the depth residual stress with the velocity of Rayleigh wave. Three cases, stress-free, uniform stress and layered stress, are investigated for the change tendency of the Rayleigh wave speed. Using the simulated signal with variation of residual stress magnitude and depth, investigation of the parameters for fitting residual stress and velocity change are performed. The speed change of Rayleigh wave shows a linear relation with the magnitude and an exponential relation with the depth of residual stress. The combination of these two effects could be used for the depth profile evaluation of the residual stress

  2. Study on the interaction between albendazole and eosin Y by fluorescence, resonance Rayleigh scattering and frequency doubling scattering spectra and their analytical applications

    Science.gov (United States)

    Tian, Fengling; Huang, Wei; Yang, Jidong; Li, Qin

    In pH 3.25-3.35 Britton-Robinson (BR) buffer solution, albendazole (ABZ) could react with eosin Y (EY) to form a 1:1 ion-association complex, which not only results in the quenching of fluorescence, but also resulted in the great enhancement of resonance Rayleigh scattering (RRS) and frequency doubling scattering (FDS). Furthermore, a new RRS spectrum will appear, and the maximum RRS wavelength was located at about 356 nm. The detection limit for ABZ were 21.51 ng mL-1 for the fluorophotometry, 6.93 ng mL-1 for the RRS method and 12.89 ng mL-1 for the FDS method. Among them, the RRS method had the highest sensitivity. The experimental conditions were optimized and effects of coexisting substances were evaluated. Meanwhile, the influences of coexisting substances were tested. The methods have been successfully applied to the determination of ABZ in capsules and human urine samples. The composition and structure of the ion-association complex and the reaction mechanism were discussed.

  3. Study on interaction between palladium(ІІ)-Linezolid chelate with eosin by resonance Rayleigh scattering, second order of scattering and frequency doubling scattering methods using Taguchi orthogonal array design

    Science.gov (United States)

    Thakkar, Disha; Gevriya, Bhavesh; Mashru, R. C.

    2014-03-01

    Linezolid reacted with palladium to form 1:1 binary cationic chelate which further reacted with eosin dye to form 1:1 ternary ion association complex at pH 4 of Walpole's acetate buffer in the presence of methyl cellulose. As a result not only absorption spectra were changed but Resonance Rayleigh Scattering (RRS), Second-order Scattering (SOS) and Frequency Doubling Scattering (FDS) intensities were greatly enhanced. The analytical wavelengths of RRS, SOS and FDS (λex/λem) of ternary complex were located at 538 nm/538 nm, 240 nm/480 nm and 660 nm/330 nm, respectively. The linearity range for RRS, SOS and FDS methods were 0.01-0.5 μg mL-1, 0.1-2 μg mL-1 and 0.2-1.8 μg mL-1, respectively. The sensitivity order of three methods was as RRS > SOS > FDS. Accuracy of all methods were determined by recovery studies and showed recovery between 98% and 102%. Intraday and inter day precision were checked for all methods and %RSD was found to be less than 2 for all methods. The effects of foreign substances were tested on RRS method and it showed the method had good selectivity. For optimization of process parameter, Taguchi orthogonal array design L8(24) was used and ANOVA was adopted to determine the statistically significant control factors that affect the scattering intensities of methods. The reaction mechanism, composition of ternary ion association complex and reasons for scattering intensity enhancement was discussed in this work.

  4. Assessing the measurement of aerosol single scattering albedo by Cavity Attenuated Phase-Shift Single Scattering Monitor (CAPS PMssa)

    Science.gov (United States)

    Perim de Faria, Julia; Bundke, Ulrich; Onasch, Timothy B.; Freedman, Andrew; Petzold, Andreas

    2016-04-01

    The necessity to quantify the direct impact of aerosol particles on climate forcing is already well known; assessing this impact requires continuous and systematic measurements of the aerosol optical properties. Two of the main parameters that need to be accurately measured are the aerosol optical depth and single scattering albedo (SSA, defined as the ratio of particulate scattering to extinction). The measurement of single scattering albedo commonly involves the measurement of two optical parameters, the scattering and the absorption coefficients. Although there are well established technologies to measure both of these parameters, the use of two separate instruments with different principles and uncertainties represents potential sources of significant errors and biases. Based on the recently developed cavity attenuated phase shift particle extinction monitor (CAPS PM_{ex) instrument, the CAPS PM_{ssa instrument combines the CAPS technology to measure particle extinction with an integrating sphere capable of simultaneously measuring the scattering coefficient of the same sample. The scattering channel is calibrated to the extinction channel, such that the accuracy of the single scattering albedo measurement is only a function of the accuracy of the extinction measurement and the nephelometer truncation losses. This gives the instrument an accurate and direct measurement of the single scattering albedo. In this study, we assess the measurements of both the extinction and scattering channels of the CAPS PM_{ssa through intercomparisons with Mie theory, as a fundamental comparison, and with proven technologies, such as integrating nephelometers and filter-based absorption monitors. For comparison, we use two nephelometers, a TSI 3563 and an Aurora 4000, and two measurements of the absorption coefficient, using a Particulate Soot Absorption Photometer (PSAP) and a Multi Angle Absorption Photometer (MAAP). We also assess the indirect absorption coefficient

  5. Q-space analysis of light scattering by ice crystals

    Science.gov (United States)

    Heinson, Yuli W.; Maughan, Justin B.; Ding, Jiachen; Chakrabarti, Amitabha; Yang, Ping; Sorensen, Christopher M.

    2016-12-01

    Q-space analysis is applied to extensive simulations of the single-scattering properties of ice crystals with various habits/shapes over a range of sizes. The analysis uncovers features common to all the shapes: a forward scattering regime with intensity quantitatively related to the Rayleigh scattering by the particle and the internal coupling parameter, followed by a Guinier regime dependent upon the particle size, a complex power law regime with incipient two dimensional diffraction effects, and, in some cases, an enhanced backscattering regime. The effects of significant absorption on the scattering profile are also studied. The overall features found for the ice crystals are similar to features in scattering from same sized spheres.

  6. First measurement of the Rayleigh cross section

    NARCIS (Netherlands)

    Naus, H.; Ubachs, W.

    2000-01-01

    Rayleigh cross section for N2, Ar and SF6 was performed using the technique of cavity ring-down spectroscopy (CRDS). The experiment was based on the assumption that scattering cross section is equal to the extinction in the absence of absorption. The theory explains the molecular origin of

  7. A method of atmospheric density measurements during Shuttle entry using UV laser Rayleigh scattering

    Science.gov (United States)

    Mckenzie, Robert L.

    1987-01-01

    A detailed study is described of the performance capabilities and the hardware requirements for a method in which ambient density is measured along the Space Shuttle flight path using on-board optical instrumentation. The technique relies on Rayleigh scattering of light from a pulsed, ultraviolet, ArF excimer laser operating at a wavelength of 193 nm. The method is shown to be capable of providing direct measurements of ambient density with an uncertainty of less than 1 percent and with a spatial resolution of 1 km, over an altitude range from 50 to 90 km. In addition, extensions of this concept are discussed that allow measurements of the shock wave location and the density profile within the shock layer. Two approaches are identified that appear to be feasible, in which the same laser system is used for the extended measurements as that required for the ambient density measurements.

  8. A Hierarchical Volumetric Shadow Algorithm for Single Scattering

    OpenAIRE

    Baran, Ilya; Chen, Jiawen; Ragan-Kelley, Jonathan Millar; Durand, Fredo; Lehtinen, Jaakko

    2010-01-01

    Volumetric effects such as beams of light through participating media are an important component in the appearance of the natural world. Many such effects can be faithfully modeled by a single scattering medium. In the presence of shadows, rendering these effects can be prohibitively expensive: current algorithms are based on ray marching, i.e., integrating the illumination scattered towards the camera along each view ray, modulated by visibility to the light source at each sample. Visibility...

  9. Pseudospectral modeling and dispersion analysis of Rayleigh waves in viscoelastic media

    Science.gov (United States)

    Zhang, K.; Luo, Y.; Xia, J.; Chen, C.

    2011-01-01

    Multichannel Analysis of Surface Waves (MASW) is one of the most widely used techniques in environmental and engineering geophysics to determine shear-wave velocities and dynamic properties, which is based on the elastic layered system theory. Wave propagation in the Earth, however, has been recognized as viscoelastic and the propagation of Rayleigh waves presents substantial differences in viscoelastic media as compared with elastic media. Therefore, it is necessary to carry out numerical simulation and dispersion analysis of Rayleigh waves in viscoelastic media to better understand Rayleigh-wave behaviors in the real world. We apply a pseudospectral method to the calculation of the spatial derivatives using a Chebyshev difference operator in the vertical direction and a Fourier difference operator in the horizontal direction based on the velocity-stress elastodynamic equations and relations of linear viscoelastic solids. This approach stretches the spatial discrete grid to have a minimum grid size near the free surface so that high accuracy and resolution are achieved at the free surface, which allows an effective incorporation of the free surface boundary conditions since the Chebyshev method is nonperiodic. We first use an elastic homogeneous half-space model to demonstrate the accuracy of the pseudospectral method comparing with the analytical solution, and verify the correctness of the numerical modeling results for a viscoelastic half-space comparing the phase velocities of Rayleigh wave between the theoretical values and the dispersive image generated by high-resolution linear Radon transform. We then simulate three types of two-layer models to analyze dispersive-energy characteristics for near-surface applications. Results demonstrate that the phase velocity of Rayleigh waves in viscoelastic media is relatively higher than in elastic media and the fundamental mode increases by 10-16% when the frequency is above 10. Hz due to the velocity dispersion of P

  10. Energy and intensity distributions of 0.279 MeV multiply Compton-scattered photons in soldering material

    International Nuclear Information System (INIS)

    Singh, Manpreet; Singh, Gurvinderjit; Singh, Bhajan; Sandhu, B.S.

    2007-01-01

    An inverse response matrix converts the observed pulse-height distribution of a NaI(Tl) scintillation detector to a photon spectrum. This also results in extraction of intensity distribution of multiply scattered events originating from interactions of 0.279 MeV photons with thick targets of soldering material. The observed pulse-height distributions are a composite of singly and multiply scattered events in addition to bremmstrahlung-and Rayleigh-scattered events. To evaluate the contribution of multiply scattered events, the spectrum of singly scattered events contributing to inelastic Compton peak is reconstructed analytically. The optimum thickness (saturation depth), at which the number of multiply scattered events saturates, has been measured. Monte Carlo calculations also support the present results

  11. Thomson scattering measurements on an atmospheric Ar dc discharge lamp

    NARCIS (Netherlands)

    Zhu, Xiao-Yan; Redwitz, M.; Kieft, E.R.; Sande, van de M.J.; Mullen, van der J.J.A.M.

    2004-01-01

    Thomson scattering (TS) experiments have been performed in the region near the electrodes of a dc powered model lamp filled with 1-2 bar argon gas. In order to suppress the false stray light and Rayleigh scattered photons, a triple grating spectrograph was used. In this way the electron density and

  12. Distributed Optical Fiber Sensors with Ultrafast Laser Enhanced Rayleigh Backscattering Profiles for Real-Time Monitoring of Solid Oxide Fuel Cell Operations.

    Science.gov (United States)

    Yan, Aidong; Huang, Sheng; Li, Shuo; Chen, Rongzhang; Ohodnicki, Paul; Buric, Michael; Lee, Shiwoo; Li, Ming-Jun; Chen, Kevin P

    2017-08-24

    This paper reports a technique to enhance the magnitude and high-temperature stability of Rayleigh back-scattering signals in silica fibers for distributed sensing applications. With femtosecond laser radiation, more than 40-dB enhancement of Rayleigh backscattering signal was generated in silica fibers using 300-nJ laser pulses at 250 kHz repetition rate. The laser-induced Rayleigh scattering defects were found to be stable from the room temperature to 800 °C in hydrogen gas. The Rayleigh scatter at high temperatures was correlated to the formation and modification of nanogratings in the fiber core. Using optical fibers with enhanced Rayleigh backscattering profiles as distributed temperature sensors, we demonstrated real-time monitoring of solid oxide fuel cell (SOFC) operations with 5-mm spatial resolution at 800 °C. Information gathered by these fiber sensor tools can be used to verify simulation results or operated in a process-control system to improve the operational efficiency and longevity of SOFC-based energy generation systems.

  13. Concentric layered Hermite scatterers

    Science.gov (United States)

    Astheimer, Jeffrey P.; Parker, Kevin J.

    2018-05-01

    The long wavelength limit of scattering from spheres has a rich history in optics, electromagnetics, and acoustics. Recently it was shown that a common integral kernel pertains to formulations of weak spherical scatterers in both acoustics and electromagnetic regimes. Furthermore, the relationship between backscattered amplitude and wavenumber k was shown to follow power laws higher than the Rayleigh scattering k2 power law, when the inhomogeneity had a material composition that conformed to a Gaussian weighted Hermite polynomial. Although this class of scatterers, called Hermite scatterers, are plausible, it may be simpler to manufacture scatterers with a core surrounded by one or more layers. In this case the inhomogeneous material property conforms to a piecewise continuous constant function. We demonstrate that the necessary and sufficient conditions for supra-Rayleigh scattering power laws in this case can be stated simply by considering moments of the inhomogeneous function and its spatial transform. This development opens an additional path for construction of, and use of scatterers with unique power law behavior.

  14. Inelastic light scattering in crystals

    Science.gov (United States)

    Sushchinskii, M. M.

    The papers presented in this volume are concerned with a variety of problems in optics and solid state physics, such as Raman scattering of light in crystals and disperse media, Rayleigh and inelastic scattering during phase transitions, characteristics of ferroelectrics in relation to the general soft mode concept, and inelastic spectral opalescence. A group-theory approach is used to classify the vibrational spectra of the crystal lattice and to analyze the properties of idealized crystal models. Particular attention is given to surface vibrational states and to the study of the surface layers of crystals and films by light scattering methods.

  15. Combined effect of viscosity and vorticity on single mode Rayleigh-Taylor instability bubble growth

    International Nuclear Information System (INIS)

    Banerjee, Rahul; Mandal, Labakanta; Roy, S.; Khan, M.; Gupta, M. R.

    2011-01-01

    The combined effect of viscosity and vorticity on the growth rate of the bubble associated with single mode Rayleigh-Taylor instability is investigated. It is shown that the effect of viscosity on the motion of the lighter fluid associated with vorticity accumulated inside the bubble due to mass ablation may be such as to reduce the net viscous drag on the bubble exerted by the upper heavier fluid as the former rises through it.

  16. Reflectance of Biological Turbid Tissues under Wide Area Illumination: Single Backward Scattering Approach

    Directory of Open Access Journals (Sweden)

    Guennadi Saiko

    2014-01-01

    Full Text Available Various scenarios of light propagation paths in turbid media (single backward scattering, multiple backward scattering, banana shape are discussed and their contributions to reflectance spectra are estimated. It has been found that a single backward or multiple forward scattering quasi-1D paths can be the major contributors to reflected spectra in wide area illumination scenario. Such a single backward scattering (SBS approximation allows developing of an analytical approach which can take into account refractive index mismatched boundary conditions and multilayer geometry and can be used for real-time spectral processing. The SBS approach can be potentially applied for the distances between the transport and reduced scattering domains. Its validation versus the Kubelka-Munk model, path integrals, and diffusion approximation of the radiation transport theory is discussed.

  17. Diode Laser Velocity Measurements by Modulated Filtered Rayleigh Scattering

    Science.gov (United States)

    Mach, J. J.; Varghese, P. L.; Jagodzinski, J. J.

    1999-01-01

    The ability of solid-state lasers to be tuned in operating frequency at MHz rates by input current modulation, while maintaining a relatively narrow line-width, has made them useful for spectroscopic measurements. Their other advantages include low cost, reliability, durability, compact size, and modest power requirements, making them a good choice for a laser source in micro-gravity experiments in drop-towers and in flight. For their size, they are also very bright. In a filtered Rayleigh scattering (FRS) experiment, a diode laser can be used to scan across an atomic or molecular absorption line, generating large changes in transmission at the resonances for very small changes in frequency. The hyperfine structure components of atomic lines of alkali metal vapors are closely spaced and very strong, which makes such atomic filters excellent candidates for sensitive Doppler shift detection and therefore for high-resolution velocimetry. In the work we describe here we use a Rubidium vapor filter, and work with the strong D(sub 2) transitions at 780 nm that are conveniently accessed by near infrared diode lasers. The low power output of infrared laser diodes is their primary drawback relative to other laser systems commonly used for velocimetry. However, the capability to modulate the laser frequency rapidly and continuously helps mitigate this. Using modulation spectroscopy and a heterodyne detection scheme with a lock-in amplifier, one can extract sub-microvolt signals occurring at a specific frequency from a background that is orders of magnitude stronger. The diode laser modulation is simply achieved by adding a small current modulation to the laser bias current. It may also be swept repetitively in wavelength using an additional lower frequency current ramp.

  18. Advection diffusion model for particles deposition in Rayleigh-Benard turbulent flows

    International Nuclear Information System (INIS)

    Oresta, P.; Lippolis, A.; Verzicco, R.; Soldati, A.

    2005-01-01

    In this paper, Direct Numerical Simulation (DNS) and Lagrangian Particle Tracking are used to precisely investigate the turbulent thermally driven flow and particles dispersion in a closed, slender cylindrical domain. The numerical simulations are carried out for Rayleigh (Ra) and Prandtl numbers (Pr) equal to Ra = 2X10 8 and Pr = 0.7, considering three sets of particles with Stokes numbers, based on Kolmogorov scale, equal to St k 1.3, St k 0.65 and St k = 0.13. This data are used to calculate a priori the drift velocity and the turbulent diffusion coefficient for the Advection Diffusion model. These quantities are function of the Stokes, Froude, Rayleigh and Prandtl numbers only. One dimensional, time dependent, Advection- Diffusion Equation (ADE) is presented to predict particles deposition in Rayleigh-Benard flow in the cylindrical domain. This archetype configuration models flow and aerosol dynamics, produced in case of accident in the passive containment cooling system (PCCS) of a nuclear reactor. ADE results show a good agreement with DNS data for all the sets of particles investigated. (author)

  19. Measurement of time series variation of thermal diffusivity of magnetic fluid under magnetic field by forced Rayleigh scattering method

    Energy Technology Data Exchange (ETDEWEB)

    Motozawa, Masaaki, E-mail: motozawa.masaaki@shizuoka.ac.jp [Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu-shi, Shizuoka 432-8561 (Japan); Muraoka, Takashi [Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu-shi, Shizuoka 432-8561 (Japan); Motosuke, Masahiro, E-mail: mot@rs.tus.ac.jp [Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585 (Japan); Fukuta, Mitsuhiro, E-mail: fukuta.mitsuhiro@shizuoka.ac.jp [Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu-shi, Shizuoka 432-8561 (Japan)

    2017-04-15

    It can be expected that the thermal diffusivity of a magnetic fluid varies from time to time after applying a magnetic field because of the growth of the inner structure of a magnetic fluid such as chain-like clusters. In this study, time series variation of the thermal diffusivity of a magnetic fluid caused by applying a magnetic field was investigated experimentally. For the measurement of time series variation of thermal diffusivity, we attempted to apply the forced Rayleigh scattering method (FRSM), which has high temporal and high spatial resolution. We set up an optical system for the FRSM and measured the thermal diffusivity. A magnetic field was applied to a magnetic fluid in parallel and perpendicular to the heat flux direction, and the magnetic field intensity was 70 mT. The FRSM was successfully applied to measurement of the time series variation of the magnetic fluid from applying a magnetic field. The results show that a characteristic configuration in the time series variation of the thermal diffusivity of magnetic fluid was obtained in the case of applying a magnetic field parallel to the heat flux direction. In contrast, in the case of applying a magnetic field perpendicular to the heat flux, the thermal diffusivity of the magnetic fluid hardly changed during measurement. - Highlights: • Thermal diffusivity was measured by forced Rayleigh scattering method (FRSM). • FRSM has high temporal and high spatial resolutions for measurement. • We attempted to apply FRSM to magnetic fluid (MF). • Time series variation of thermal diffusivity of MF was successfully measured by FRSM. • Anisotropic thermal diffusivity of magnetic fluid was also successfully confirmed.

  20. Modeling single-scattering properties of small cirrus particles by use of a size-shape distribution of ice spheroids and cylinders

    International Nuclear Information System (INIS)

    Liu Li; Mishchenko, Michael I.; Cairns, Brian; Carlson, Barbara E.; Travis, Larry D.

    2006-01-01

    In this study, we model single-scattering properties of small cirrus crystals using mixtures of polydisperse, randomly oriented spheroids and cylinders with varying aspect ratios and with a refractive index representative of water ice at a wavelength of 1.88 μm. The Stokes scattering matrix elements averaged over wide shape distributions of spheroids and cylinders are compared with those computed for polydisperse surface-equivalent spheres. The shape-averaged phase function for a mixture of oblate and prolate spheroids is smooth, featureless, and nearly flat at side-scattering angles and closely resembles those typically measured for cirrus. Compared with the ensemble-averaged phase function for spheroids, that for a shape distribution of cylinders shows a relatively deeper minimum at side-scattering angles. This may indicate that light scattering from realistic cirrus crystals can be better represented by a shape mixture of ice spheroids. Interestingly, the single-scattering properties of shape-averaged oblate and prolate cylinders are very similar to those of compact cylinders with a diameter-to-length ratio of unity. The differences in the optical cross sections, single-scattering albedo, and asymmetry parameter between the spherical and the nonspherical particles studied appear to be relatively small. This may suggest that for a given optical thickness, the influence of particle shape on the radiative forcing caused by a cloud composed of small ice crystals can be negligible

  1. Stochastic model of Rayleigh-Taylor turbulent mixing

    International Nuclear Information System (INIS)

    Abarzhi, S.I.; Cadjan, M.; Fedotov, S.

    2007-01-01

    We propose a stochastic model to describe the random character of the dissipation process in Rayleigh-Taylor turbulent mixing. The parameter alpha, used conventionally to characterize the mixing growth-rate, is not a universal constant and is very sensitive to the statistical properties of the dissipation. The ratio between the rates of momentum loss and momentum gain is the statistic invariant and a robust parameter to diagnose with or without turbulent diffusion accounted for

  2. Determination of Atmospheric Aerosol Characteristics from the Polarization of Scattered Radiation

    Science.gov (United States)

    Harris, F. S., Jr.; McCormick, M. P.

    1973-01-01

    Aerosols affect the polarization of radiation in scattering, hence measured polarization can be used to infer the nature of the particles. Size distribution, particle shape, real and absorption parts of the complex refractive index affect the scattering. From Lorenz-Mie calculations of the 4-Stokes parameters as a function of scattering angle for various wavelengths the following polarization parameters were plotted: total intensity, intensity of polarization in plane of observation, intensity perpendicular to the plane of observation, polarization ratio, polarization (using all 4-Stokes parameters), plane of the polarization ellipse and its ellipticity. A six-component log-Gaussian size distribution model was used to study the effects of the nature of the polarization due to variations in the size distribution and complex refractive index. Though a rigorous inversion from measurements of scattering to detailed specification of aerosol characteristics is not possible, considerable information about the nature of the aerosols can be obtained. Only single scattering from aerosols was used in this paper. Also, the background due to Rayleigh gas scattering, the reduction of effects as a result of multiple scattering and polarization effects of possible ground background (airborne platforms) were not included.

  3. Rayleigh Scattering Density Measurements, Cluster Theory, and Nucleation Calculations at Mach 10

    Science.gov (United States)

    Balla, R. Jeffrey; Everhart, Joel L.

    2012-01-01

    In an exploratory investigation, quantitative unclustered laser Rayleigh scattering measurements of density were performed in the air in the NASA Langley Research Center's 31 in. Mach 10 wind tunnel. A review of 20 previous years of data in supersonic and Mach 6 hypersonic flows is presented where clustered signals typically overwhelmed molecular signals. A review of nucleation theory and accompanying nucleation calculations are also provided to interpret the current observed lack of clustering. Data were acquired at a fixed stagnation temperature near 990Kat five stagnation pressures spanning 2.41 to 10.0 MPa (350 to 1454 psi) using a pulsed argon fluoride excimer laser and double-intensified charge-coupled device camera. Data averaged over 371 images and 210 pixels along a 36.7mmline measured freestream densities that agree with computed isentropic-expansion densities to less than 2% and less than 6% at the highest and lowest densities, respectively. Cluster-free Mach 10 results are compared with previous clustered Mach 6 and condensation-free Mach 14 results. Evidence is presented indicating vibrationally excited oxygen and nitrogen molecules are absorbed as the clusters form, release their excess energy, and inhibit or possibly reverse the clustering process. Implications for delaying clustering and condensation onset in hypersonic and hypervelocity facilities are discussed.

  4. Potential Flow Model for Compressible Stratified Rayleigh-Taylor Instability

    Science.gov (United States)

    Rydquist, Grant; Reckinger, Scott; Owkes, Mark; Wieland, Scott

    2017-11-01

    The Rayleigh-Taylor Instability (RTI) is an instability that occurs when a heavy fluid lies on top of a lighter fluid in a gravitational field, or a gravity-like acceleration. It occurs in many fluid flows of a highly compressive nature. In this study potential flow analysis (PFA) is used to model the early stages of RTI growth for compressible fluids. In the localized region near the bubble tip, the effects of vorticity are negligible, so PFA is applicable, as opposed to later stages where the induced velocity due to vortices generated from the growth of the instability dominate the flow. The incompressible PFA is extended for compressibility effects by applying the growth rate and the associated perturbation spatial decay from compressible linear stability theory. The PFA model predicts theoretical values for a bubble terminal velocity for single-mode compressible RTI, dependent upon the Atwood (A) and Mach (M) numbers, which is a parameter that measures both the strength of the stratification and intrinsic compressibility. The theoretical bubble terminal velocities are compared against numerical simulations. The PFA model correctly predicts the M dependence at high A, but the model must be further extended to include additional physics to capture the behavior at low A. Undergraduate Scholars Program - Montana State University.

  5. Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering

    Directory of Open Access Journals (Sweden)

    M. Alpers

    2004-01-01

    Full Text Available For the first time, three different temperature lidar methods are combined to obtain time-resolved complete temperature profiles with high altitude resolution over an altitude range from the planetary boundary layer up to the lower thermosphere (about 1–105 km. The Leibniz-Institute of Atmospheric Physics (IAP at Kühlungsborn, Germany (54° N, 12° E operates two lidar instruments, using three different temperature measurement methods, optimized for three altitude ranges: (1 Probing the spectral Doppler broadening of the potassium D1 resonance lines with a tunable narrow-band laser allows atmospheric temperature profiles to be determined at metal layer altitudes (80–105 km. (2 Between about 20 and 90 km, temperatures were calculated from Rayleigh backscattering by air molecules, where the upper start values for the calculation algorithm were taken from the potassium lidar results. Correction methods have been applied to account for, e.g. Rayleigh extinction or Mie scattering of aerosols below about 32 km. (3 At altitudes below about 25 km, backscattering in the Rotational Raman lines is strong enough to obtain temperatures by measuring the temperature dependent spectral shape of the Rotational Raman spectrum. This method works well down to about 1 km. The instrumental configurations of the IAP lidars were optimized for a 3–6 km overlap of the temperature profiles at the method transition altitudes. We present two night-long measurements with clear wave structures propagating from the lower stratosphere up to the lower thermosphere.

  6. Ultimate regime of high Rayleigh number convection in a porous medium.

    Science.gov (United States)

    Hewitt, Duncan R; Neufeld, Jerome A; Lister, John R

    2012-06-01

    Well-resolved direct numerical simulations of 2D Rayleigh-Bénard convection in a porous medium are presented for Rayleigh numbers Ra≤4×10(4) which reveal that, contrary to previous indications, the linear classical scaling for the Nusselt number, Nu~Ra, is attained asymptotically. The flow dynamics are analyzed, and the interior of the vigorously convecting system is shown to be increasingly well described as Ra→∞ by a simple columnar "heat-exchanger" model with a single horizontal wave number k and a linear background temperature field. The numerical results are approximately fitted by k~Ra(0.4).

  7. Refinement of the Compton–Rayleigh scatter ratio method for use on the Mars Science Laboratory alpha particle X-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.L., E-mail: icampbel@uoguelph.ca [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); Perrett, G.M. [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); Maxwell, J.A. [3A 47 Surrey St. East, Guelph, Ontario, Canada N1H 3P6 (Canada); Nield, E.; Gellert, R. [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); King, P.L. [Research School of Earth Sciences, Australian National University, Canberra, ACT 0200 (Australia); Lee, M.; O’Meara, J.M.; Pradler, I. [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada)

    2013-05-01

    Spectra from the Mars rover alpha particle X-ray spectrometers contain the elastic and inelastic scatter peaks of the plutonium L X-rays emitted by the instrument’s {sup 244}Cm source. Various spectrum fitting approaches are tested using the terrestrial twin of the APXS instrument on the Mars Science Laboratory Curiosity rover, in order to provide accurate extraction of the Lα and Lβ Compton/Rayleigh intensity ratios, which can provide information about light “invisible” constituents such as water in geological samples. A well-defined dependence of C/R ratios upon mean sample atomic number is established using a large and varied set of geochemical reference materials, and the accuracy of this calibration is examined. Detailed attention is paid to the influence of the rubidium and strontium peaks which overlap the Lα scatter peaks. Our Monte Carlo simulation code for prediction of C/R ratios from element concentrations is updated. The ratio between measured and simulated C/R ratios provides a second means of calibration.

  8. Light scattering microscopy measurements of single nuclei compared with GPU-accelerated FDTD simulations

    International Nuclear Information System (INIS)

    Stark, Julian; Rothe, Thomas; Kienle, Alwin; Kieß, Steffen; Simon, Sven

    2016-01-01

    Single cell nuclei were investigated using two-dimensional angularly and spectrally resolved scattering microscopy. We show that even for a qualitative comparison of experimental and theoretical data, the standard Mie model of a homogeneous sphere proves to be insufficient. Hence, an accelerated finite-difference time-domain method using a graphics processor unit and domain decomposition was implemented to analyze the experimental scattering patterns. The measured cell nuclei were modeled as single spheres with randomly distributed spherical inclusions of different size and refractive index representing the nucleoli and clumps of chromatin. Taking into account the nuclear heterogeneity of a large number of inclusions yields a qualitative agreement between experimental and theoretical spectra and illustrates the impact of the nuclear micro- and nanostructure on the scattering patterns. (paper)

  9. Light scattering microscopy measurements of single nuclei compared with GPU-accelerated FDTD simulations.

    Science.gov (United States)

    Stark, Julian; Rothe, Thomas; Kieß, Steffen; Simon, Sven; Kienle, Alwin

    2016-04-07

    Single cell nuclei were investigated using two-dimensional angularly and spectrally resolved scattering microscopy. We show that even for a qualitative comparison of experimental and theoretical data, the standard Mie model of a homogeneous sphere proves to be insufficient. Hence, an accelerated finite-difference time-domain method using a graphics processor unit and domain decomposition was implemented to analyze the experimental scattering patterns. The measured cell nuclei were modeled as single spheres with randomly distributed spherical inclusions of different size and refractive index representing the nucleoli and clumps of chromatin. Taking into account the nuclear heterogeneity of a large number of inclusions yields a qualitative agreement between experimental and theoretical spectra and illustrates the impact of the nuclear micro- and nanostructure on the scattering patterns.

  10. A scattering model for rain depolarization

    Science.gov (United States)

    Wiley, P. H.; Stutzman, W. L.; Bostian, C. W.

    1973-01-01

    A method is presented for calculating the amount of depolarization caused by precipitation for a propagation path. In the model the effects of each scatterer and their interactions are accounted for by using a series of simplifying steps. It is necessary only to know the forward scattering properties of a single scatterer. For the case of rain the results of this model for attenuation, differential phase shift, and cross polarization agree very well with the results of the only other model available, that of differential attenuation and differential phase shift. Calculations presented here show that horizontal polarization is more sensitive to depolarization than is vertical polarization for small rain drop canting angle changes. This effect increases with increasing path length.

  11. Schwinger–Keldysh canonical formalism for electronic Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yuehua, E-mail: suyh@ytu.edu.cn

    2016-03-01

    Inelastic low-energy Raman and high-energy X-ray scatterings have made great progress in instrumentation to investigate the strong electronic correlations in matter. However, theoretical study of the relevant scattering spectrum is still a challenge. In this paper, we present a Schwinger–Keldysh canonical perturbation formalism for the electronic Raman scattering, where all the resonant, non-resonant and mixed responses are considered uniformly. We show how to use this formalism to evaluate the cross section of the electronic Raman scattering off an one-band superconductor. All the two-photon scattering processes from electrons, the non-resonant charge density response, the elastic Rayleigh scattering, the fluorescence, the intrinsic energy-shift Raman scattering and the mixed response, are included. In the mean-field superconducting state, Cooper pairs contribute only to the non-resonant response. All the other responses are dominated by the single-particle excitations and are strongly suppressed due to the opening of the superconducting gap. Our formalism for the electronic Raman scattering can be easily extended to study the high-energy resonant inelastic X-ray scattering.

  12. A model for near-wall dynamics in turbulent Rayleigh Bénard convection

    Science.gov (United States)

    Theerthan, S. Ananda; Arakeri, Jaywant H.

    1998-10-01

    Experiments indicate that turbulent free convection over a horizontal surface (e.g. Rayleigh Bénard convection) consists of essentially line plumes near the walls, at least for moderately high Rayleigh numbers. Based on this evidence, we propose here a two-dimensional model for near-wall dynamics in Rayleigh Bénard convection and in general for convection over heated horizontal surfaces. The model proposes a periodic array of steady laminar two-dimensional plumes. A plume is fed on either side by boundary layers on the wall. The results from the model are obtained in two ways. One of the methods uses the similarity solution of Rotem & Classen (1969) for the boundary layer and the similarity solution of Fuji (1963) for the plume. We have derived expressions for mean temperature and temperature and velocity fluctuations near the wall. In the second approach, we compute the two-dimensional flow field in a two-dimensional rectangular open cavity. The number of plumes in the cavity depends on the length of the cavity. The plume spacing is determined from the critical length at which the number of plumes increases by one. The results for average plume spacing and the distribution of r.m.s. temperature and velocity fluctuations are shown to be in acceptable agreement with experimental results.

  13. Calibration of the ORNL two-dimensional Thomson scattering system

    International Nuclear Information System (INIS)

    Thomas, C.E. Jr.; Lazarus, E.A.; Kindsfather, R.R.; Murakami, M.; Stewart, K.A.

    1985-10-01

    A unified presentation of the calibrations needed for accurate calculation of electron temperature and density from Thomson scattering data for the Oak Ridge National Laboratory two-dimensional Thomson scattering system (SCATPAK II) is made. Techniques are described for measuring the range of wavelengths to which each channel is responsive. A statistical method for calibrating the gain of each channel in the system is given, and methods of checking for internal consistency and accuracy are presented. The relationship between the constants describing the relative light collection efficiency of each channel and plasma light-scattering theory is developed, methods for measuring the channel efficiencies and evaluating their accuracy are described, and the effect on these constants of bending fiber optics is discussed. The use of Rayleigh or Raman scattering for absolute efficiency (density) calibration, stray light measurement, and system efficiency evaluation is discussed; the relative merits of Rayleigh vs Raman scattering are presented; and the relationship among the Rayleigh/Raman calibrations, relative channel efficiency constants, and absolute efficiencies is developed

  14. Elastic scattering of gamma radiation in solids

    International Nuclear Information System (INIS)

    Goncalves, O.D.

    1987-01-01

    The elastic scattering of gamma rays in solids is studied: Rayleigh scattering as well as Bragg scattering in Laue geometries. We measured Rayleigh cross sections for U, Pb, Pt, W, Sn, Ag, Mo, Cd, Zn, and Cu with gamma energies ranging from 60 to 660 KeV and angles between 5 0 and 140 0 . The experimental data are compared with form factor theories and second order perturbation theories and the limits of validity of both are established. In the 60 KeV experiment, a competition between Rayleigh and Bragg effects is found in the region of low momentum transfer. The Bragg experiments were performed using the gamma ray diffractometer from the Hahn-Meitner Institut (Berlin) with gammas of 317 KeV and angles up to 2 0 . In particular, we studied the effect of annealing in nearly perfect Czochralski Silicon crystals with high perfection in the crystallographic structure. The results are compared with Kinematical and Dynamical theories. (author)

  15. Modeling of the attenuation of stress waves in concrete based on the Rayleigh damping model using time-reversal and PZT transducers

    Science.gov (United States)

    Tian, Zhen; Huo, Linsheng; Gao, Weihang; Li, Hongnan; Song, Gangbing

    2017-10-01

    Wave-based concrete structural health monitoring has attracted much attention. A stress wave experiences significant attenuation in concrete, however there is a lack of a unified method for predicting the attenuation coefficient of the stress wave. In this paper, a simple and effective absorption attenuation model of stress waves in concrete is developed based on the Rayleigh damping model, which indicates that the absorption attenuation coefficient of stress waves in concrete is directly proportional to the square of the stress wave frequency when the damping ratio is small. In order to verify the theoretical model, related experiments were carried out. During the experiments, a concrete beam was designed in which the d33-model piezoelectric smart aggregates were embedded to detect the propagation of stress waves. It is difficult to distinguish direct stress waves due to the complex propagation paths and the reflection and scattering of stress waves in concrete. Hence, as another innovation of this paper, a new method for computing the absorption attenuation coefficient based on the time-reversal method is developed. Due to the self-adaptive focusing properties of the time-reversal method, the time-reversed stress wave focuses and generates a peak value. The time-reversal method eliminates the adverse effects of multipaths, reflection, and scattering. The absorption attenuation coefficient is computed by analyzing the peak value changes of the time-reversal focused signal. Finally, the experimental results are found to be in good agreement with the theoretical model.

  16. Chromo-Rayleigh interactions of dark matter

    International Nuclear Information System (INIS)

    Bai, Yang; Osborne, James

    2015-01-01

    For a wide range of models, dark matter can interact with QCD gluons via chromo-Rayleigh interactions. We point out that the Large Hadron Collider (LHC), as a gluon machine, provides a superb probe of such interactions. In this paper, we introduce simplified models to UV-complete two effective dark matter chromo-Rayleigh interactions and identify the corresponding collider signatures, including four jets or a pair of di-jet resonances plus missing transverse energy. After performing collider studies for both the 8 TeV and 14 TeV LHC, we find that the LHC can be more sensitive to dark matter chromo-Rayleigh interactions than direct detection experiments and thus provides the best opportunity for future discovery of this class of models.

  17. Double-wavelength overlapping resonance Rayleigh scattering technique for the simultaneous quantitative analysis of three β-adrenergic blockade

    Science.gov (United States)

    Tan, Xuanping; Yang, Jidong; Li, Qin; Yang, Qiong; Shen, Yizhong

    2016-05-01

    Four simple and accurate spectrophotometric methods were proposed for the simultaneous determination of three β-adrenergic blockade, e.g. atenolol, metoprolol and propranolol. The methods were based on the reaction of the three drugs with erythrosine B (EB) in a Britton-Robinson buffer solution at pH 4.6. EB could combine with the drugs to form three ion-association complexes, which resulted in the resonance Rayleigh scattering (RRS) intensity that is enhanced significantly with new RRS peaks that appeared at 337 nm and 370 nm, respectively. In addition, the fluorescence intensity of EB was also quenched. The enhanced scattering intensities of the two peaks and the fluorescence quenched intensity of EB were proportional to the concentrations of the drugs, respectively. What is more, the RRS intensity overlapped with the double-wavelength of 337 nm and 370 nm (so short for DW-RRS) was also proportional to the drugs concentrations. So, a new method with highly sensitive for simultaneous determination of three bisoprolol drugs was established. Finally, the optimum reaction conditions, influencing factors and spectral enhanced mechanism were investigated. The new DW-RRS method has been applied to simultaneously detect the three β-blockers in fresh serum with satisfactory results.

  18. A MULTIPLE SCATTERING POLARIZED RADIATIVE TRANSFER MODEL: APPLICATION TO HD 189733b

    Energy Technology Data Exchange (ETDEWEB)

    Kopparla, Pushkar; Yung, Yuk L. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA (United States); Natraj, Vijay; Swain, Mark R. [Jet Propulsion Laboratory (NASA-JPL), Pasadena, CA (United States); Zhang, Xi [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ (United States); Wiktorowicz, Sloane J., E-mail: pkk@gps.caltech.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA (United States)

    2016-01-20

    We present a multiple scattering vector radiative transfer model that produces disk integrated, full phase polarized light curves for reflected light from an exoplanetary atmosphere. We validate our model against results from published analytical and computational models and discuss a small number of cases relevant to the existing and possible near-future observations of the exoplanet HD 189733b. HD 189733b is arguably the most well observed exoplanet to date and the only exoplanet to be observed in polarized light, yet it is debated if the planet’s atmosphere is cloudy or clear. We model reflected light from clear atmospheres with Rayleigh scattering, and cloudy or hazy atmospheres with Mie and fractal aggregate particles. We show that clear and cloudy atmospheres have large differences in polarized light as compared to simple flux measurements, though existing observations are insufficient to make this distinction. Futhermore, we show that atmospheres that are spatially inhomogeneous, such as being partially covered by clouds or hazes, exhibit larger contrasts in polarized light when compared to clear atmospheres. This effect can potentially be used to identify patchy clouds in exoplanets. Given a set of full phase polarimetric measurements, this model can constrain the geometric albedo, properties of scattering particles in the atmosphere, and the longitude of the ascending node of the orbit. The model is used to interpret new polarimetric observations of HD 189733b in a companion paper.

  19. Hybrid Rayleigh, Raman and TPE fluorescence spectral confocal microscopy of living cells

    NARCIS (Netherlands)

    Pully, V.V.; Lenferink, Aufrid T.M.; Otto, Cornelis

    2010-01-01

    A hybrid fluorescence–Raman confocal microscopy platform is presented, which integrates low-wavenumber-resolution Raman imaging, Rayleigh scatter imaging and two-photon fluorescence (TPE) spectral imaging, fast ‘amplitude-only’ TPE-fluorescence imaging and high-spectral-resolution Raman imaging.

  20. The single scattering properties of the aerosol particles as aggregated spheres

    International Nuclear Information System (INIS)

    Wu, Y.; Gu, X.; Cheng, T.; Xie, D.; Yu, T.; Chen, H.; Guo, J.

    2012-01-01

    The light scattering and absorption properties of anthropogenic aerosol particles such as soot aggregates are complicated in the temporal and spatial distribution, which introduce uncertainty of radiative forcing on global climate change. In order to study the single scattering properties of anthorpogenic aerosol particles, the structures of these aerosols such as soot paticles and soot-containing mixtures with the sulfate or organic matter, are simulated using the parallel diffusion limited aggregation algorithm (DLA) based on the transmission electron microscope images (TEM). Then, the single scattering properties of randomly oriented aerosols, such as scattering matrix, single scattering albedo (SSA), and asymmetry parameter (AP), are computed using the superposition T-matrix method. The comparisons of the single scattering properties of these specific types of clusters with different morphological and chemical factors such as fractal parameters, aspect ratio, monomer radius, mixture mode and refractive index, indicate that these different impact factors can respectively generate the significant influences on the single scattering properties of these aerosols. The results show that aspect ratio of circumscribed shape has relatively small effect on single scattering properties, for both differences of SSA and AP are less than 0.1. However, mixture modes of soot clusters with larger sulfate particles have remarkably important effects on the scattering and absorption properties of aggregated spheres, and SSA of those soot-containing mixtures are increased in proportion to the ratio of larger weakly absorbing attachments. Therefore, these complex aerosols come from man made pollution cannot be neglected in the aerosol retrievals. The study of the single scattering properties on these kinds of aggregated spheres is important and helpful in remote sensing observations and atmospheric radiation balance computations.

  1. Retrievals and uncertainty analysis of aerosol single scattering albedo from MFRSR measurements

    International Nuclear Information System (INIS)

    Yin, Bangsheng; Min, Qilong; Joseph, Everette

    2015-01-01

    Aerosol single scattering albedo (SSA) can be retrieved from the ratio of diffuse horizontal and direct normal fluxes measured from multifilter rotating shadowband radiometer (MFRSR). In this study, the measurement channels at 415 nm and 870 nm are selected for aerosol optical depth (AOD) and Angstrom coefficient retrievals, and the measurements at 415 nm are used for aerosol SSA retrievals with the constraint of retrieved Angstrom coefficient. We extensively assessed various issues impacting on the accuracy of SSA retrieval from measurements to input parameters and assumptions. For cloud-free days with mean aerosol loading of 0.13–0.60, our sensitivity study indicated that: (1) 1% calibration uncertainty can result in 0.8–3.7% changes in retrieved SSA; (2) without considering the cosine respond correction and/or forward scattering correction will result in underestimation of 1.1–3.3% and/or 0.73% in retrieved SSA; (3) an overestimation of 0.1 in asymmetry factor can result in an underestimation of 2.54–3.4% in retrieved SSA; (4) for small aerosol loading (e.g., 0.13), the uncertainty associated with the choice of Rayleigh optical depth value can result in non-negligible change in retrieved SSA (e.g., 0.015); (5) an uncertainty of 0.05 for surface albedo can result in changes of 1.49–5.4% in retrieved SSA. We applied the retrieval algorithm to the MFRSR measurements at the Atmospheric Radiation Measurements (ARM) Southern Great Plains (SGP) site. The retrieved results of AOD, Angstrom coefficient, and SSA are basically consistent with other independent measurements from co-located instruments at the site. - Highlights: • Aerosol SSA is derived from MFRSR measured diffuse to direct normal irradiance ratio. • We extensively assessed various issues impacting on the accuracy of SSA retrieval. • The issues are mainly from measurements and model input parameters and assumptions. • We applied the retrieval algorithm to the MFRSR measurements at ARM SGP

  2. Approximations to the Non-Isothermal Distributed Activation Energy Model for Biomass Pyrolysis Using the Rayleigh Distribution

    Directory of Open Access Journals (Sweden)

    Dhaundiyal Alok

    2017-09-01

    Full Text Available This paper deals with the influence of some parameters relevant to biomass pyrolysis on the numerical solutions of the nonisothermal nth order distributed activation energy model using the Rayleigh distribution. Investigated parameters are the integral upper limit, the frequency factor, the heating rate, the reaction order and the scale parameters of the Rayleigh distribution. The influence of these parameters has been considered for the determination of the kinetic parameters of the non-isothermal nth order Rayleigh distribution from the experimentally derived thermoanalytical data of biomass pyrolysis.

  3. Short Rayleigh length free electron lasers

    Directory of Open Access Journals (Sweden)

    W. B. Colson

    2006-03-01

    Full Text Available Conventional free electron laser (FEL oscillators minimize the optical mode volume around the electron beam in the undulator by making the resonator Rayleigh length about one third to one half of the undulator length. This maximizes gain and beam-mode coupling. In compact configurations of high-power infrared FELs or moderate power UV FELs, the resulting optical intensity can damage the resonator mirrors. To increase the spot size and thereby reduce the optical intensity at the mirrors below the damage threshold, a shorter Rayleigh length can be used, but the FEL interaction is significantly altered. We model this interaction using a coordinate system that expands with the rapidly diffracting optical mode from the ends of the undulator to the mirrors. Simulations show that the interaction of the strongly focused optical mode with a narrow electron beam inside the undulator distorts the optical wave front so it is no longer in the fundamental Gaussian mode. The simulations are used to study how mode distortion affects the single-pass gain in weak fields, and the steady-state extraction in strong fields.

  4. Single and multiple electromagnetic scattering by dielectric obstacles from a resonance perspective

    International Nuclear Information System (INIS)

    Riley, D.J.

    1987-03-01

    A new application of the singularity expansion method (SEM) is explored. This application combines the classical theory of wave propagation through a multiple-scattering environment and the SEM. Because the SEM is generally considered to be a theory for describing surface currents on conducting scatters, extensions are made which permit, under certain conditions, a singularity expansion representation for the electromagnetic field scattered by a dielectric scatterer. Application of this expansion is then made to the multiple-scattering case using both single and multiple interactions. A resonance scattering tensor form is used for the SEM description which leds to an associated tensor form for the solution to the multiple-scattering problem with each SEM pole effect appearing explicitly. The coherent field is determined for both spatial and SEM parameter random variations. A numerical example for the case of an ensemble of dielectric spheres which possess frequency-dependent loss is also made. Accurate resonance expansions for the single-scattering problem are derived, and resonance trajectories based on the Debye relaxation model for the refractive index are introduced. Application of these resonance expansions is then made to the multiple-scattering results for a slab containing a distribution of spheres with varying radii. Conditions are discussed which describe when the hybrid theory is appropriate. 53 refs., 21 figs., 9 tabs

  5. Experimental study on stimulated scattering of ZnO nanospheres dispersed in water

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jiulin, E-mail: hyq1304@126.com; Wu, Haopeng [Nanchang Hangkong University, Jiangxi Engineering Laboratory for Optoelectronics Testing Technology (China); Yan, Feng; Yang, Junjie [Nanchang Hangkong University, School of Measuring and Optical Engineering (China); He, Xingdao, E-mail: xingdaohe@126.com [Nanchang Hangkong University, Jiangxi Engineering Laboratory for Optoelectronics Testing Technology (China)

    2016-01-15

    The backward stimulated scattering (BSS) from ZnO nanospheres dispersed in water has been investigated experimentally by employing a Nd:YAG pulse laser with ∼532 nm wavelength and ∼8 ns pulse width as the pump laser source. The present results show that the BSS effect is uniquely and unequivocally different compared to other known stimulated scattering, such as stimulated Rayleigh scattering, stimulated Brillouin scattering, and stimulated Raman scattering, and it displays the characteristics of no frequency shift and threshold dependence on initial spontaneous Mie scattering seed source. These can be understood by means of the Mie scattering theory and a laser-induced stationary Bragg grating model.

  6. Extended wavelength anisotropy resolved multidimensional emission spectroscopy (ARMES) measurements: better filters, validation standards, and Rayleigh scatter removal methods

    Science.gov (United States)

    Casamayou-Boucau, Yannick; Ryder, Alan G.

    2017-09-01

    Anisotropy resolved multidimensional emission spectroscopy (ARMES) provides valuable insights into multi-fluorophore proteins (Groza et al 2015 Anal. Chim. Acta 886 133-42). Fluorescence anisotropy adds to the multidimensional fluorescence dataset information about the physical size of the fluorophores and/or the rigidity of the surrounding micro-environment. The first ARMES studies used standard thin film polarizers (TFP) that had negligible transmission between 250 and 290 nm, preventing accurate measurement of intrinsic protein fluorescence from tyrosine and tryptophan. Replacing TFP with pairs of broadband wire grid polarizers enabled standard fluorescence spectrometers to accurately measure anisotropies between 250 and 300 nm, which was validated with solutions of perylene in the UV and Erythrosin B and Phloxine B in the visible. In all cases, anisotropies were accurate to better than ±1% when compared to literature measurements made with Glan Thompson or TFP polarizers. Better dual wire grid polarizer UV transmittance and the use of excitation-emission matrix measurements for ARMES required complete Rayleigh scatter elimination. This was achieved by chemometric modelling rather than classical interpolation, which enabled the acquisition of pure anisotropy patterns over wider spectral ranges. In combination, these three improvements permit the accurate implementation of ARMES for studying intrinsic protein fluorescence.

  7. Plane-dependent ML scatter scaling: 3D extension of the 2D simulated single scatter (SSS) estimate

    Science.gov (United States)

    Rezaei, Ahmadreza; Salvo, Koen; Vahle, Thomas; Panin, Vladimir; Casey, Michael; Boada, Fernando; Defrise, Michel; Nuyts, Johan

    2017-08-01

    Scatter correction is typically done using a simulation of the single scatter, which is then scaled to account for multiple scatters and other possible model mismatches. This scaling factor is determined by fitting the simulated scatter sinogram to the measured sinogram, using only counts measured along LORs that do not intersect the patient body, i.e. ‘scatter-tails’. Extending previous work, we propose to scale the scatter with a plane dependent factor, which is determined as an additional unknown in the maximum likelihood (ML) reconstructions, using counts in the entire sinogram rather than only the ‘scatter-tails’. The ML-scaled scatter estimates are validated using a Monte-Carlo simulation of a NEMA-like phantom, a phantom scan with typical contrast ratios of a 68Ga-PSMA scan, and 23 whole-body 18F-FDG patient scans. On average, we observe a 12.2% change in the total amount of tracer activity of the MLEM reconstructions of our whole-body patient database when the proposed ML scatter scales are used. Furthermore, reconstructions using the ML-scaled scatter estimates are found to eliminate the typical ‘halo’ artifacts that are often observed in the vicinity of high focal uptake regions.

  8. Precise tests of x-ray scattering theories in the Compton regime

    International Nuclear Information System (INIS)

    Dunford, R. W.; Gemmell, D. S.; Kanter, E. P.; Kraessig, B.; Southworth, S. H.; Young, L.

    1999-01-01

    The authors report two experiments intended to test the accuracy of state-of-the-art theoretical predictions for x-ray scattering from low-Z atoms. The first one deals with the differential x-ray scattering cross sections in Ne and He from 11-22 keV and the Ne Compton-to-Rayleigh scattering ratio in this energy range. It was found that, in order to be consistent with the experimental results, an accurate description at low Z must include nonlocal exchange, electron correlation, and dynamic effects. The second experiment concerns the ratio of helium double-to-single ionization for Compton scattering in the 8-28 keV energy range where published experimental and theoretical results so far fail to give a consistent picture. The progress of the experiment and the data analysis is reported

  9. Simulation of resonance hyper-Rayleigh scattering of molecules and metal clusters using a time-dependent density functional theory approach.

    Science.gov (United States)

    Hu, Zhongwei; Autschbach, Jochen; Jensen, Lasse

    2014-09-28

    Resonance hyper-Rayleigh scattering (HRS) of molecules and metal clusters have been simulated based on a time-dependent density functional theory approach. The resonance first-order hyperpolarizability (β) is obtained by implementing damped quadratic response theory using the (2n + 1) rule. To test this implementation, the prototypical dipolar molecule para-nitroaniline (p-NA) and the octupolar molecule crystal violet are used as benchmark systems. Moreover, small silver clusters Ag 8 and Ag 20 are tested with a focus on determining the two-photon resonant enhancement arising from the strong metal transition. Our results show that, on a per atom basis, the small silver clusters possess two-photon enhanced HRS comparable to that of larger nanoparticles. This finding indicates the potential interest of using small metal clusters for designing new nonlinear optical materials.

  10. Resonance estimates for single spin asymmetries in elastic electron-nucleon scattering

    International Nuclear Information System (INIS)

    Barbara Pasquini; Marc Vanderhaeghen

    2004-01-01

    We discuss the target and beam normal spin asymmetries in elastic electron-nucleon scattering which depend on the imaginary part of two-photon exchange processes between electron and nucleon. We express this imaginary part as a phase space integral over the doubly virtual Compton scattering tensor on the nucleon. We use unitarity to model the doubly virtual Compton scattering tensor in the resonance region in terms of γ* N → π N electroabsorption amplitudes. Taking those amplitudes from a phenomenological analysis of pion electroproduction observables, we present results for beam and target normal single spin asymmetries for elastic electron-nucleon scattering for beam energies below 1 GeV and in the 1-3 GeV region, where several experiments are performed or are in progress

  11. Study on Brilliant Blue-chitosan System by Dual-wavelength Overlapping Resonance Rayleigh Scattering Method and its Analytical Applications

    Science.gov (United States)

    Ma, Caijuan; Sun, Zijun; Liu, Guihua; Su, Zhengquan; Bai, Yan

    2018-02-01

    The method was presented for the sensitive and selective determination of chitosan (CTS) in health products with Brilliant Blue (BB) as a probe, based on dual-wavelength overlapping resonance Rayleigh scattering (DWO-RRS). In weakly acidic buffer solution, the binding of CTS and BB could result in the RRS intensities getting enhanced significantly at RRS peaks of 344 nm and 452 nm, and the scattering intensities of the two peaks were proportional to the concentration of CTS within a certain range. When the RRS intensities of the two wavelengths were superposed, the results showed higher sensitivity. Under the optimum experimental conditions, the total of the two increased RRS intensities was linear to the CTS concentration in the range of 0.02-1.80 μg/mL and the limit of detection (LOD) was 7.45 ng/mL. In this work, the optimum conditions and the effects of some foreign substances were studied. Accordingly, the new method based on DWO-RRS for the determination of CTS was developed. In addition, the effect of the molecular weight and the deacetylation degree between different chitosan molecules was discussed. Finally, this assay was applied to determine the concentration of CTS in health products with satisfactory results.

  12. Zernike polynomial based Rayleigh-Ritz model of a piezoelectric unimorph deformable mirror

    CSIR Research Space (South Africa)

    Long, CS

    2012-04-01

    Full Text Available , are routinely and conveniently described using Zernike polynomials. A Rayleigh-Ritz structural model, which uses Zernike polynomials directly to describe the displacements, is proposed in this paper. The proposed formulation produces a numerically inexpensive...

  13. Plume structure in high-Rayleigh-number convection

    Science.gov (United States)

    Puthenveettil, Baburaj A.; Arakeri, Jaywant H.

    2005-10-01

    Near-wall structures in turbulent natural convection at Rayleigh numbers of 10^{10} to 10^{11} at A Schmidt number of 602 are visualized by a new method of driving the convection across a fine membrane using concentration differences of sodium chloride. The visualizations show the near-wall flow to consist of sheet plumes. A wide variety of large-scale flow cells, scaling with the cross-section dimension, are observed. Multiple large-scale flow cells are seen at aspect ratio (AR)= 0.65, while only a single circulation cell is detected at AR= 0.435. The cells (or the mean wind) are driven by plumes coming together to form columns of rising lighter fluid. The wind in turn aligns the sheet plumes along the direction of shear. the mean wind direction is seen to change with time. The near-wall dynamics show plumes initiated at points, which elongate to form sheets and then merge. Increase in rayleigh number results in a larger number of closely and regularly spaced plumes. The plume spacings show a common log normal probability distribution function, independent of the rayleigh number and the aspect ratio. We propose that the near-wall structure is made of laminar natural-convection boundary layers, which become unstable to give rise to sheet plumes, and show that the predictions of a model constructed on this hypothesis match the experiments. Based on these findings, we conclude that in the presence of a mean wind, the local near-wall boundary layers associated with each sheet plume in high-rayleigh-number turbulent natural convection are likely to be laminar mixed convection type.

  14. Rayleigh's hypothesis and the geometrical optics limit.

    Science.gov (United States)

    Elfouhaily, Tanos; Hahn, Thomas

    2006-09-22

    The Rayleigh hypothesis (RH) is often invoked in the theoretical and numerical treatment of rough surface scattering in order to decouple the analytical form of the scattered field. The hypothesis stipulates that the scattered field away from the surface can be extended down onto the rough surface even though it is formed by solely up-going waves. Traditionally this hypothesis is systematically used to derive the Volterra series under the small perturbation method which is equivalent to the low-frequency limit. In this Letter we demonstrate that the RH also carries the high-frequency or the geometrical optics limit, at least to first order. This finding has never been explicitly derived in the literature. Our result comforts the idea that the RH might be an exact solution under some constraints in the general case of random rough surfaces and not only in the case of small-slope deterministic periodic gratings.

  15. From Leonardo to the graser: light scattering in historical perspective. Pt. 5. The fourth Baron Rayleigh

    Energy Technology Data Exchange (ETDEWEB)

    Hey, J D

    1986-07-01

    The optical research of Robert John Strutt, fourth Baron Rayleigh, on the transparency of the terrestrial atmosphere as determined by the distribution of ozone, is reviewed in relation to the studies of Hartley, Cornu, Fabry and Buisson, and Fowler on this subject. It is shown that the basis of Rayleigh's work is now incorporated in the modern optical techniques for atmospheric monitoring.

  16. Elastic scattering of low energy γ-rays

    International Nuclear Information System (INIS)

    Whittingham, I.B.

    1978-01-01

    The current status of the theory of the elastic scattering of low energy γ rays is reviewed and a detailed analysis of the theoretical background to the recent calculation of Rayleigh scattering by W.R.Johnson and co-workers is presented

  17. Constraints on seismic anisotropy beneath the Appalachian Mountains from Love-to-Rayleigh wave scattering

    Science.gov (United States)

    Servali, A.; Long, M. D.; Benoit, M.

    2017-12-01

    The eastern margin of North America has been affected by a series of mountain building and rifting events that have likely shaped the deep structure of the lithosphere. Observations of seismic anisotropy can provide insight into lithospheric deformation associated with these past tectonic events, as well as into present-day patterns of mantle flow beneath the passive margin. Previous work on SKS splitting beneath eastern North America has revealed fast splitting directions parallel to the strike of the Appalachian orogen in the central and southern Appalachians. A major challenge to the interpretation of SKS splitting measurements, however, is the lack of vertical resolution; isolating anisotropic structures at different depths is therefore difficult. Complementary constraints on the depth distribution of anisotropy can be provided by surface waves. In this study, we analyze the scattering of Love wave energy to Rayleigh waves, which is generated via sharp lateral gradients in anisotropic structure along the ray path. The scattered phases, known as quasi-Love (QL) waves, exhibit amplitude behavior that depend on the strength of the anisotropic contrast as well as the angle between the propagation azimuth and the anisotropic symmetry axis. We analyze data collected by the dense MAGIC seismic array across the central Appalachians. We examine teleseismic earthquakes of magnitude 6.7 and greater over a range of backazimuths, and isolate surface waves at periods between 100 and 500 seconds. We compare the data to synthetic seismograms generated by the Princeton Global ShakeMovie initiative to identify anomalous QL arrivals. We find evidence significant QL arrivals at MAGIC stations, with amplitudes depending on propagation azimuth and station location. Preliminary results are consistent with a sharp lateral gradient in seismic anisotropy across the Appalachian Mountains in the depth range between 100-200 km.

  18. Spatial and temporal resolution requirements for quench detection in (RE)Ba2Cu3Ox magnets using Rayleigh-scattering-based fiber optic distributed sensing

    International Nuclear Information System (INIS)

    Chan, W K; Schwartz, J; Flanagan, G

    2013-01-01

    One of the key remaining challenges to safe and reliable operation of large, high temperature superconductor (HTS)-based magnet systems is quench detection and protection. Due to the slow quench propagation in HTS systems, the conventional discrete voltage-tap approach developed for NbTi and Nb 3 Sn magnets may not be sufficient. In contrast, a distributed temperature profile, generated by a distributed temperature sensor and facilitating continuous monitoring of the temperature at any monitored locations within a magnet with high spatial resolution, may be required. One such distributed temperature sensing option is the use of Rayleigh-based fiber optic sensors (FOS), which are immune to electromagnetic interference. The detection of a quench via Rayleigh-based FOS relies on converting the spectral shifts in the Rayleigh scattering spectra into temperature variations. As a result, the higher the spatial sampling resolution the larger the data processing volume, and thus the lower the temporal sampling resolution. So, for effective quench detection, which requires the quick and accurate identification of a hot spot, it is important to find a balance between the spatial and temporal resolutions executable on a given data acquisition and processing (DAQ) system. This paper discusses a method for finding an appropriate DAQ technology that matches the characteristic of a superconducting coil, and determining the acceptable resolutions for efficient and safe quench detection. A quench detection algorithm based on distributed temperature sensing is proposed and its implementation challenges are discussed. (paper)

  19. Optimal numerical methods for determining the orientation averages of single-scattering properties of atmospheric ice crystals

    International Nuclear Information System (INIS)

    Um, Junshik; McFarquhar, Greg M.

    2013-01-01

    The optimal orientation averaging scheme (regular lattice grid scheme or quasi Monte Carlo (QMC) method), the minimum number of orientations, and the corresponding computing time required to calculate the average single-scattering properties (i.e., asymmetry parameter (g), single-scattering albedo (ω o ), extinction efficiency (Q ext ), scattering efficiency (Q sca ), absorption efficiency (Q abs ), and scattering phase function at scattering angles of 90° (P 11 (90°)), and 180° (P 11 (180°))) within a predefined accuracy level (i.e., 1.0%) were determined for four different nonspherical atmospheric ice crystal models (Gaussian random sphere, droxtal, budding Bucky ball, and column) with maximum dimension D=10μm using the Amsterdam discrete dipole approximation at λ=0.55, 3.78, and 11.0μm. The QMC required fewer orientations and less computing time than the lattice grid. The calculations of P 11 (90°) and P 11 (180°) required more orientations than the calculations of integrated scattering properties (i.e., g, ω o , Q ext , Q sca , and Q abs ) regardless of the orientation average scheme. The fewest orientations were required for calculating g and ω o . The minimum number of orientations and the corresponding computing time for single-scattering calculations decreased with an increase of wavelength, whereas they increased with the surface-area ratio that defines particle nonsphericity. -- Highlights: •The number of orientations required to calculate the average single-scattering properties of nonspherical ice crystals is investigated. •Single-scattering properties of ice crystals are calculated using ADDA. •Quasi Monte Carlo method is more efficient than lattice grid method for scattering calculations. •Single-scattering properties of ice crystals depend on a newly defined parameter called surface area ratio

  20. Surface Brillouin scattering measurement of the elastic constants of single crystal InAs0.91Sb0.09

    International Nuclear Information System (INIS)

    Kotane, L M; Comins, J D; Every, A G; Botha, J R

    2011-01-01

    Surface Brillouin scattering of light has been used to measure the angular dependence of the Rayleigh surface acoustic wave (SAW), pseudo surface acoustic wave (PSAW) and longitudinal lateral wave (LLW) speeds in a (100)-oriented single crystal of the ternary semiconductor alloy InAs 0.91 Sb 0.09 . The wave speed measurements have been used to determine the room temperature values of the elastic constants C 11 , C 12 and C 44 of the alloy. A simple and robust fitting procedure has been implemented for recovering the elastic constants, in which the merit function is constructed from explicit secular functions that determine the surface and lateral wave speeds in the [001] and [011] crystallographic directions. In the fitting, relatively larger weighting factors have been assigned to the SAW and PSAW data because of the greater precision with which the surface modes can be measured as compared with the lateral wave.

  1. High-frequency Rayleigh-wave method

    Science.gov (United States)

    Xia, J.; Miller, R.D.; Xu, Y.; Luo, Y.; Chen, C.; Liu, J.; Ivanov, J.; Zeng, C.

    2009-01-01

    High-frequency (???2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  2. Investigation of single-mode and multi-mode hydromagnetic Rayleigh-Taylor instability in planar geometry

    International Nuclear Information System (INIS)

    Roderick, N.F.; Cochrane, K.; Douglas, M.R.

    1998-01-01

    Previous investigations carried out to study various methods of seeding the hydromagnetic Rayleigh-Taylor instability in magnetohydrodynamic simulations showed features similar to those seen in hydrodynamic calculations. For periodic single-mode initiations the results showed the appearance of harmonics as the single modes became nonlinear. For periodic multi-mode initiations new modes developed that indicated the presence of mode coupling. The MHD simulations used parameters of the high velocity large radius z-pinch experiments performed in the Z-accelerator at Sandia National Laboratories. The cylindrical convergent geometry and variable acceleration of these configurations made comparison with analytic, developed for planar geometry with constant acceleration, difficult. A set of calculations in planar geometry using constant current to produce acceleration and parameters characteristic of the cylindrical implosions has been performed to allow a better comparison. Results of these calculations, comparison with analytic theory, and comparison with the cylindrical configuration calculations will be discussed

  3. Polarimetric SAR interferometry-based decomposition modelling for reliable scattering retrieval

    Science.gov (United States)

    Agrawal, Neeraj; Kumar, Shashi; Tolpekin, Valentyn

    2016-05-01

    Fully Polarimetric SAR (PolSAR) data is used for scattering information retrieval from single SAR resolution cell. Single SAR resolution cell may contain contribution from more than one scattering objects. Hence, single or dual polarized data does not provide all the possible scattering information. So, to overcome this problem fully Polarimetric data is used. It was observed in previous study that fully Polarimetric data of different dates provide different scattering values for same object and coefficient of determination obtained from linear regression between volume scattering and aboveground biomass (AGB) shows different values for the SAR dataset of different dates. Scattering values are important input elements for modelling of forest aboveground biomass. In this research work an approach is proposed to get reliable scattering from interferometric pair of fully Polarimetric RADARSAT-2 data. The field survey for data collection was carried out for Barkot forest during November 10th to December 5th, 2014. Stratified random sampling was used to collect field data for circumference at breast height (CBH) and tree height measurement. Field-measured AGB was compared with the volume scattering elements obtained from decomposition modelling of individual PolSAR images and PolInSAR coherency matrix. Yamaguchi 4-component decomposition was implemented to retrieve scattering elements from SAR data. PolInSAR based decomposition was the great challenge in this work and it was implemented with certain assumptions to create Hermitian coherency matrix with co-registered polarimetric interferometric pair of SAR data. Regression analysis between field-measured AGB and volume scattering element obtained from PolInSAR data showed highest (0.589) coefficient of determination. The same regression with volume scattering elements of individual SAR images showed 0.49 and 0.50 coefficients of determination for master and slave images respectively. This study recommends use of

  4. Spectroscopic study of light scattering in linear alkylbenzene for liquid scintillator neutrino detectors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiang; Zhang, Zhenyu [Wuhan University, Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan (China); Liu, Qian; Zheng, Yangheng [University of Chinese Academy of Sciences, School of Physics, Beijing (China); Han, Junbo [Huazhong University of Science and Technology, Wuhan National High Magnetic Field Center, Wuhan (China); Zhang, Xuan; Ding, Yayun; Zhou, Li; Cao, Jun; Wang, Yifang [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China)

    2015-11-15

    We have set up a light scattering spectrometer to study the depolarization of light scattering in linear alkylbenzene. The scattering spectra show that the depolarized part of light scattering is due to Rayleigh scattering. The additional depolarized Rayleigh scattering can make the effective transparency of linear alkylbenzene much better than expected. Therefore, sufficient scintillation photons can transmit through large liquid scintillator detector, such as that of the JUNO experiment. Our study is crucial to achieving an unprecedented energy resolution of 3 %/√(E(MeV)) required for the JUNO experiment to determine the neutrino mass hierarchy. The spectroscopic method can also be used to examine the depolarization of other organic solvents used in neutrino experiments. (orig.)

  5. Spectroscopic study of light scattering in linear alkylbenzene for liquid scintillator neutrino detectors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiang, E-mail: xiangzhou@whu.edu.cn [Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, 430072, Wuhan (China); Liu, Qian, E-mail: liuqian@ucas.ac.cn [School of Physics, University of Chinese Academy of Sciences, 100049, Beijing (China); Han, Junbo [Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan (China); Zhang, Zhenyu [Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, 430072, Wuhan (China); Zhang, Xuan; Ding, Yayun [Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing (China); Zheng, Yangheng [School of Physics, University of Chinese Academy of Sciences, 100049, Beijing (China); Zhou, Li; Cao, Jun; Wang, Yifang [Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing (China)

    2015-11-21

    We have set up a light scattering spectrometer to study the depolarization of light scattering in linear alkylbenzene. The scattering spectra show that the depolarized part of light scattering is due to Rayleigh scattering. The additional depolarized Rayleigh scattering can make the effective transparency of linear alkylbenzene much better than expected. Therefore, sufficient scintillation photons can transmit through large liquid scintillator detector, such as that of the JUNO experiment. Our study is crucial to achieving an unprecedented energy resolution of 3 %/√(E(MeV)) required for the JUNO experiment to determine the neutrino mass hierarchy. The spectroscopic method can also be used to examine the depolarization of other organic solvents used in neutrino experiments.

  6. Reduced-Order Modeling of 3D Rayleigh-Benard Turbulent Convection

    Science.gov (United States)

    Hassanzadeh, Pedram; Grover, Piyush; Nabi, Saleh

    2017-11-01

    Accurate Reduced-Order Models (ROMs) of turbulent geophysical flows have broad applications in science and engineering; for example, to study the climate system or to perform real-time flow control/optimization in energy systems. Here we focus on 3D Rayleigh-Benard turbulent convection at the Rayleigh number of 106 as a prototype for turbulent geophysical flows, which are dominantly buoyancy driven. The purpose of the study is to evaluate and improve the performance of different model reduction techniques using this setting. One-dimensional ROMs for horizontally averaged temperature are calculated using several methods. Specifically, the Linear Response Function (LRF) of the system is calculated from a large DNS dataset using Dynamic Mode Decomposition (DMD) and Fluctuation-Dissipation Theorem (FDT). The LRF is also calculated using the Green's function method of Hassanzadeh and Kuang (2016, J. Atmos. Sci.), which is based on using numerous forced DNS runs. The performance of these LRFs in estimating the system's response to weak external forcings or controlling the time-mean flow are compared and contrasted. The spectral properties of the LRFs and the scaling of the accuracy with the length of the dataset (for the data-driven methods) are also discussed.

  7. Radiative transfer equation accounting for rotational Raman scattering and its solution by the discrete-ordinates method

    International Nuclear Information System (INIS)

    Rozanov, Vladimir V.; Vountas, Marco

    2014-01-01

    Rotational Raman scattering of solar light in Earth's atmosphere leads to the filling-in of Fraunhofer and telluric lines observed in the reflected spectrum. The phenomenological derivation of the inelastic radiative transfer equation including rotational Raman scattering is presented. The different forms of the approximate radiative transfer equation with first-order rotational Raman scattering terms are obtained employing the Cabannes, Rayleigh, and Cabannes–Rayleigh scattering models. The solution of these equations is considered in the framework of the discrete-ordinates method using rigorous and approximate approaches to derive particular integrals. An alternative forward-adjoint technique is suggested as well. A detailed description of the model including the exact spectral matching and a binning scheme that significantly speeds up the calculations is given. The considered solution techniques are implemented in the radiative transfer software package SCIATRAN and a specified benchmark setup is presented to enable readers to compare with own results transparently. -- Highlights: • We derived the radiative transfer equation accounting for rotational Raman scattering. • Different approximate radiative transfer approaches with first order scattering were used. • Rigorous and approximate approaches are shown to derive particular integrals. • An alternative forward-adjoint technique is suggested as well. • An additional spectral binning scheme which speeds up the calculations is presented

  8. On the ""early-time"" evolution of variables relevant to turbulence models for Rayleigh-Taylor instability

    Energy Technology Data Exchange (ETDEWEB)

    Rollin, Bertrand [Los Alamos National Laboratory; Andrews, Malcolm J [Los Alamos National Laboratory

    2010-01-01

    We present our progress toward setting initial conditions in variable density turbulence models. In particular, we concentrate our efforts on the BHR turbulence model for turbulent Rayleigh-Taylor instability. Our approach is to predict profiles of relevant parameters before the fully turbulent regime and use them as initial conditions for the turbulence model. We use an idealized model of the mixing between two interpenetrating fluids to define the initial profiles for the turbulence model parameters. Velocities and volume fractions used in the idealized mixing model are obtained respectively from a set of ordinary differential equations modeling the growth of the Rayleigh-Taylor instability and from an idealization of the density profile in the mixing layer. A comparison between predicted initial profiles for the turbulence model parameters and initial profiles of the parameters obtained from low Atwood number three dimensional simulations show reasonable agreement.

  9. The upgrade of the Thomson scattering system for measurement on the C-2/C-2U devices

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, K.; Schindler, T.; Kinley, J.; Deng, B.; Thompson, M. C. [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States)

    2016-11-15

    The C-2/C-2U Thomson scattering system has been substantially upgraded during the latter phase of C-2/C-2U program. A Rayleigh channel has been added to each of the three polychromators of the C-2/C-2U Thomson scattering system. Onsite spectral calibration has been applied to avoid the issue of different channel responses at different spots on the photomultiplier tube surface. With the added Rayleigh channel, the absolute intensity response of the system is calibrated with Rayleigh scattering in argon gas from 0.1 to 4 Torr, where the Rayleigh scattering signal is comparable to the Thomson scattering signal at electron densities from 1 × 10{sup 13} to 4 × 10{sup 14} cm{sup −3}. A new signal processing algorithm, using a maximum likelihood method and including detailed analysis of different noise contributions within the system, has been developed to obtain electron temperature and density profiles. The system setup, spectral and intensity calibration procedure and its outcome, data analysis, and the results of electron temperature/density profile measurements will be presented.

  10. Retrieving mesospheric water vapour from observations of volume scattering radiances

    Directory of Open Access Journals (Sweden)

    P. Vergados

    2009-02-01

    Full Text Available This study examines the possibility for a theoretical approach in the estimation of water vapour mixing ratios in the vicinity of polar mesospheric clouds (PMC using satellite observations of Volume Scattering Radiances (VSR obtained at the wavelength of 553 nm. The PMC scattering properties perturb the underlying molecular Rayleigh scattered solar radiance of the background atmosphere. As a result, the presence of PMC leads to an enhancement in the observed VSR at the altitude of the layer; the PMC VSRs are superimposed on the exponentially decreasing with height Rayleigh VSR, of the PMC-free atmosphere. The ratio between the observed and the Rayleigh VSR of the background atmosphere is used to simulate the environment in which the cloud layer is formed. In addition, a microphysical model of ice particle formation is employed to predict the PMC VSRs. The initial water vapour profile is perturbed until the modelled VSRs match the observed, at which point the corresponding temperature and water vapour profiles can be considered as a first approximation of those describing the atmosphere at the time of the observations. The role of temperature and water vapour in the cloud formation is examined by a number of sensitivity tests suggesting that the water vapour plays a dominant role in the cloud formation in agreement with experimental results. The estimated water vapour profiles are compared with independent observations to examine the model capability in the context of this study. The results obtained are in a good agreement at the peak of the PMC layer although the radiance rapidly decreases with height below the peak. This simplified scenario indicates that the technique employed can give a first approximation estimate of the water vapour mixing ratio, giving rise to the VSR observed in the presence of PMC.

  11. Modelling of strong heterogeneities in aerosol single scattering albedos over a polluted region

    Science.gov (United States)

    Mallet, M.; Pont, V.; Liousse, C.

    2005-05-01

    To date, most models dedicated to the investigation of aerosol direct or semi-direct radiative forcings have assumed the various aerosol components to be either completely externally mixed or homogeneously internally mixed. Some recent works have shown that a core-shell treatment of particles should be more realistic, leading to significant differences in the radiative impact as compared to only externally or well-internally mixed states. To account for these studies, an optical module, ORISAM-RAD, has been developed for computing aerosol radiative properties under the hypothesis of internally mixed particles with a n-layer spherical concentric structure. Mesoscale simulations using ORISAM-RAD, coupled with the 3D mesoscale model Meso-NH-C, have been performed for one selected day (06/24/2001) during the ESCOMPTE experiment in the Marseilles-Fos/Berre region, which illustrate the ability of this new module to reproduce spatial heterogeneities of measured single scattering albedo (ωo), due to industrial and/or urban pollution plumes.

  12. A numerical model for ocean ultra-low frequency noise: wave-generated acoustic-gravity and Rayleigh modes.

    Science.gov (United States)

    Ardhuin, Fabrice; Lavanant, Thibaut; Obrebski, Mathias; Marié, Louis; Royer, Jean-Yves; d'Eu, Jean-François; Howe, Bruce M; Lukas, Roger; Aucan, Jerome

    2013-10-01

    The generation of ultra-low frequency acoustic noise (0.1 to 1 Hz) by the nonlinear interaction of ocean surface gravity waves is well established. More controversial are the quantitative theories that attempt to predict the recorded noise levels and their variability. Here a single theoretical framework is used to predict the noise level associated with propagating pseudo-Rayleigh modes and evanescent acoustic-gravity modes. The latter are dominant only within 200 m from the sea surface, in shallow or deep water. At depths larger than 500 m, the comparison of a numerical noise model with hydrophone records from two open-ocean sites near Hawaii and the Kerguelen islands reveal: (a) Deep ocean acoustic noise at frequencies 0.1 to 1 Hz is consistent with the Rayleigh wave theory, in which the presence of the ocean bottom amplifies the noise by 10 to 20 dB; (b) in agreement with previous results, the local maxima in the noise spectrum support the theoretical prediction for the vertical structure of acoustic modes; and (c) noise level and variability are well predicted for frequencies up to 0.4 Hz. Above 0.6 Hz, the model results are less accurate, probably due to the poor estimation of the directional properties of wind-waves with frequencies higher than 0.3 Hz.

  13. Cyclic and seasonal features in the behaviour of linear growth increment of Rayleigh-Taylor instability in equatorial F-region

    International Nuclear Information System (INIS)

    Farkullin, M.N.; Nikitin, M.A.; Kashchenko, N.M.

    1989-01-01

    Calculations of linear increment of the Rayleigh-Taylor instability for various geophysical conditions are presented. It is shwn that space-time characteristics of increment depend strongly on conditions of solar activity and seasons. The calculation results are in a good agreement with statistical regularities of F-scattering observation in equatorial F-area, which points to the Rayleigh-Taylor natur of the penomena

  14. Single particle analysis with a 3600 light scattering photometer

    International Nuclear Information System (INIS)

    Bartholdi, M.F.

    1979-06-01

    Light scattering by single spherical homogeneous particles in the diameter range 1 to 20 μm and relative refractive index 1.20 is measured. Particle size of narrowly dispersed populations is determined and a multi-modal dispersion of five components is completely analyzed. A 360 0 light scattering photometer for analysis of single particles has been designed and developed. A fluid stream containing single particles intersects a focused laser beam at the primary focal point of an ellipsoidal reflector ring. The light scattered at angles theta = 2.5 0 to 177.5 0 at phi = 0 0 and 180 0 is reflected onto a circular array of photodiodes. The ellipsoidal reflector is situated in a chamber filled with fluid matching that of the stream to minimize refracting and reflecting interfaces. The detector array consists of 60 photodiodes each subtending 3 0 in scattering angle on 6 0 centers around 360 0 . 32 measurements on individual particles can be acquired at rates of 500 particles per second. The intensity and angular distribution of light scattered by spherical particles are indicative of size and relative refractive index. Calculations, using Lorenz--Mie theory, of differential scattering patterns integrated over angle corresponding to the detector geometry determined the instrument response to particle size. From this the expected resolution and experimental procedures are determined.Ultimately, the photometer will be utilized for identification and discrimination of biological cells based on the sensitivity of light scattering to size, shape, refractive index differences, internal granularity, and other internal morphology. This study has demonstrated the utility of the photometer and indicates potential for application to light scattering studies of biological cells

  15. Measurements of Atomic Rayleigh Scattering Cross-Sections: A New Approach Based on Solid Angle Approximation and Geometrical Efficiency

    Science.gov (United States)

    Rao, D. V.; Takeda, T.; Itai, Y.; Akatsuka, T.; Seltzer, S. M.; Hubbell, J. H.; Cesareo, R.; Brunetti, A.; Gigante, G. E.

    Atomic Rayleigh scattering cross-sections for low, medium and high Z atoms are measured in vacuum using X-ray tube with a secondary target as an excitation source instead of radioisotopes. Monoenergetic Kα radiation emitted from the secondary target and monoenergetic radiation produced using two secondary targets with filters coupled to an X-ray tube are compared. The Kα radiation from the second target of the system is used to excite the sample. The background has been reduced considerably and the monochromacy is improved. Elastic scattering of Kα X-ray line energies of the secondary target by the sample is recorded with Hp Ge and Si (Li) detectors. A new approach is developed to estimate the solid angle approximation and geometrical efficiency for a system with experimental arrangement using X-ray tube and secondary target. The variation of the solid angle is studied by changing the radius and length of the collimators towards and away from the source and sample. From these values the variation of the total solid angle and geometrical efficiency is deduced and the optimum value is used for the experimental work. The efficiency is larger because the X-ray fluorescent source acts as a converter. Experimental results based on this system are compared with theoretical estimates and good agreement is observed in between them.

  16. Simulating Microwave Scattering for Wetland Vegetation in Poyang Lake, Southeast China, Using a Coherent Scattering Model

    Directory of Open Access Journals (Sweden)

    Jingjuan Liao

    2015-07-01

    Full Text Available We developed a polarimetric coherent electromagnetic scattering model for Poyang Lake wetland vegetation. Realistic canopy structures including curved leaves and the lodging situation of the vegetation were taken into account, and the situation at the ground surface was established using an Advanced Integral Equation Model combined with Oh’s 2002 model. This new model can reasonably describe the coherence effect caused by the phase differences of the electromagnetic fields scattered from different particles by different scattering mechanisms. We obtained good agreement between the modeling results and C-band data from the Radarsat-2 satellite. A simulation of scattering from the vegetation in Poyang Lake showed that direct vegetation scattering and the single-ground-bounce mechanism are the dominant scattering mechanisms in the C-band and L-band, while the effects of the double-ground-bounce mechanism are very small. We note that the curvature of the leaves and the lodging characteristics of the vegetation cannot be ignored in the modeling process. Monitoring soil moisture in the Poyang Lake wetland with the C-band data was not feasible because of the density and depth of Poyang Lake vegetation. When the density of Poyang Lake Carex increases, the backscattering coefficient either decreases or remains stable.

  17. Study of the relationship between peaks scattering Rayleigh to Compton ratio and effective atomic number in biological samples

    International Nuclear Information System (INIS)

    Pereira, Marcelo O.; Conti, Claudio de Carvalho; Anjos, Marcelino J.; Lopes, Ricardo T.

    2011-01-01

    The aim of this work was to develop a new method to correct the absorbed radiation (the mass attenuation coefficient curve) in low energy (E B O 3 , Na 2 CO 3 , CaCO 3 , Al 2 O 3 , K 2 SO 4 and MgO) of radiation produced by a gamma-ray source of Am-241(59.54 keV) also applied to certified biological samples of milk powder, hay powder and bovine liver (NIST 155 7B). In addition, six methods of effective atomic number determination were used as described in literature to determinate the Rayleigh to Compton scattering ratio (R/C) , in order to calculate the mass attenuation coefficient. The results obtained by the proposed method were compared with those obtained using the transmission method. The experimental results were in good agreement with transmission values suggesting that the method to correct radiation absorption presented in this paper is adequate for biological samples. (author)

  18. QUADRO: A SUPERVISED DIMENSION REDUCTION METHOD VIA RAYLEIGH QUOTIENT OPTIMIZATION.

    Science.gov (United States)

    Fan, Jianqing; Ke, Zheng Tracy; Liu, Han; Xia, Lucy

    We propose a novel Rayleigh quotient based sparse quadratic dimension reduction method-named QUADRO (Quadratic Dimension Reduction via Rayleigh Optimization)-for analyzing high-dimensional data. Unlike in the linear setting where Rayleigh quotient optimization coincides with classification, these two problems are very different under nonlinear settings. In this paper, we clarify this difference and show that Rayleigh quotient optimization may be of independent scientific interests. One major challenge of Rayleigh quotient optimization is that the variance of quadratic statistics involves all fourth cross-moments of predictors, which are infeasible to compute for high-dimensional applications and may accumulate too many stochastic errors. This issue is resolved by considering a family of elliptical models. Moreover, for heavy-tail distributions, robust estimates of mean vectors and covariance matrices are employed to guarantee uniform convergence in estimating non-polynomially many parameters, even though only the fourth moments are assumed. Methodologically, QUADRO is based on elliptical models which allow us to formulate the Rayleigh quotient maximization as a convex optimization problem. Computationally, we propose an efficient linearized augmented Lagrangian method to solve the constrained optimization problem. Theoretically, we provide explicit rates of convergence in terms of Rayleigh quotient under both Gaussian and general elliptical models. Thorough numerical results on both synthetic and real datasets are also provided to back up our theoretical results.

  19. A numerical study of super-resolution through fast 3D wideband algorithm for scattering in highly-heterogeneous media

    KAUST Repository

    Létourneau, Pierre-David

    2016-09-19

    We present a wideband fast algorithm capable of accurately computing the full numerical solution of the problem of acoustic scattering of waves by multiple finite-sized bodies such as spherical scatterers in three dimensions. By full solution, we mean that no assumption (e.g. Rayleigh scattering, geometrical optics, weak scattering, Born single scattering, etc.) is necessary regarding the properties of the scatterers, their distribution or the background medium. The algorithm is also fast in the sense that it scales linearly with the number of unknowns. We use this algorithm to study the phenomenon of super-resolution in time-reversal refocusing in highly-scattering media recently observed experimentally (Lemoult et al., 2011), and provide numerical arguments towards the fact that such a phenomenon can be explained through a homogenization theory.

  20. Ultrafast interfeometric investigation of resonant secondary emission from quantum well excitons

    DEFF Research Database (Denmark)

    Birkedal, Dan; Shah, Jagdeep; Pfeiffer, L. N.

    1999-01-01

    Coherent Rayleigh scattering and incoherent luminescence comprise the secondary emission from quantum well exciton following ultrafast resonant excitation. We show that coherent Rayleigh scattering forms a time-dependent speckle pattern and isolate in a single speckle the Rayleigh component from...

  1. Modelling grain-scattered ultrasound in austenitic stainless-steel welds: A hybrid model

    International Nuclear Information System (INIS)

    Nowers, O.; Duxbury, D. J.; Velichko, A.; Drinkwater, B. W.

    2015-01-01

    The ultrasonic inspection of austenitic stainless steel welds can be challenging due to their coarse grain structure, charaterised by preferentially oriented, elongated grains. The anisotropy of the weld is manifested as both a ‘steering’ of the beam and the back-scatter of energy due to the macroscopic granular structure of the weld. However, the influence of weld properties, such as mean grain size and orientation distribution, on the magnitude of scattered ultrasound is not well understood. A hybrid model has been developed to allow the study of grain-scatter effects in austenitic welds. An efficient 2D Finite Element (FE) method is used to calculate the complete scattering response from a single elliptical austenitic grain of arbitrary length and width as a function of the specific inspection frequency. A grain allocation model of the weld is presented to approximate the characteristic structures observed in austenitic welds and the complete scattering behaviour of each grain calculated. This model is incorporated into a semi-analytical framework for a single-element inspection of a typical weld in immersion. Experimental validation evidence is demonstrated indicating excellent qualitative agreement of SNR as a function of frequency and a minimum SNR difference of 2 dB at a centre frequency of 2.25 MHz. Additionally, an example Monte-Carlo study is presented detailing the variation of SNR as a function of the anisotropy distribution of the weld, and the application of confidence analysis to inform inspection development

  2. Nonlinear Displacement Discontinuity Model for Generalized Rayleigh Wave in Contact Interface

    Energy Technology Data Exchange (ETDEWEB)

    Kim, No Hyu; Yang, Seung Yong [Korea University of Technology and Education, Cheonan (Korea, Republic of)

    2007-12-15

    Imperfectly jointed interface serves as mechanical waveguide for elastic waves and gives rise to two distinct kinds of guided wave propagating along the interface. Contact acoustic nonlinearity (CAN) is known to plays major role in the generation of these interface waves called generalized Rayleigh waves in non-welded interface. Closed crack is modeled as non-welded interface that has nonlinear discontinuity condition in displacement across its boundary. Mathematical analysis of boundary conditions and wave equation is conducted to investigate the dispersive characteristics of the interface waves. Existence of the generalized Rayleigh wave(interface wave) in nonlinear contact interface is verified in theory where the dispersion equation for the interface wave is formulated and analyzed. It reveals that the interface waves have two distinct modes and that the phase velocity of anti-symmetric wave mode is highly dependent on contact conditions represented by linear and nonlinear dimensionless specific stiffness

  3. Nonlinear Displacement Discontinuity Model for Generalized Rayleigh Wave in Contact Interface

    International Nuclear Information System (INIS)

    Kim, No Hyu; Yang, Seung Yong

    2007-01-01

    Imperfectly jointed interface serves as mechanical waveguide for elastic waves and gives rise to two distinct kinds of guided wave propagating along the interface. Contact acoustic nonlinearity (CAN) is known to plays major role in the generation of these interface waves called generalized Rayleigh waves in non-welded interface. Closed crack is modeled as non-welded interface that has nonlinear discontinuity condition in displacement across its boundary. Mathematical analysis of boundary conditions and wave equation is conducted to investigate the dispersive characteristics of the interface waves. Existence of the generalized Rayleigh wave(interface wave) in nonlinear contact interface is verified in theory where the dispersion equation for the interface wave is formulated and analyzed. It reveals that the interface waves have two distinct modes and that the phase velocity of anti-symmetric wave mode is highly dependent on contact conditions represented by linear and nonlinear dimensionless specific stiffness

  4. Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy

    Science.gov (United States)

    Lau, Condon; Šćepanović, Obrad; Mirkovic, Jelena; McGee, Sasha; Yu, Chung-Chieh; Fulghum, Stephen; Wallace, Michael; Tunnell, James; Bechtel, Kate; Feld, Michael

    2009-01-01

    Model-based light scattering spectroscopy (LSS) seemed a promising technique for in-vivo diagnosis of dysplasia in multiple organs. In the studies, the residual spectrum, the difference between the observed and modeled diffuse reflectance spectra, was attributed to single elastic light scattering from epithelial nuclei, and diagnostic information due to nuclear changes was extracted from it. We show that this picture is incorrect. The actual single scattering signal arising from epithelial nuclei is much smaller than the previously computed residual spectrum, and does not have the wavelength dependence characteristic of Mie scattering. Rather, the residual spectrum largely arises from assuming a uniform hemoglobin distribution. In fact, hemoglobin is packaged in blood vessels, which alters the reflectance. When we include vessel packaging, which accounts for an inhomogeneous hemoglobin distribution, in the diffuse reflectance model, the reflectance is modeled more accurately, greatly reducing the amplitude of the residual spectrum. These findings are verified via numerical estimates based on light propagation and Mie theory, tissue phantom experiments, and analysis of published data measured from Barrett’s esophagus. In future studies, vessel packaging should be included in the model of diffuse reflectance and use of model-based LSS should be discontinued. PMID:19405760

  5. A stochastic model for density-dependent microwave Snow- and Graupel scattering coefficients of the NOAA JCSDA community radiative transfer model

    Science.gov (United States)

    Stegmann, Patrick G.; Tang, Guanglin; Yang, Ping; Johnson, Benjamin T.

    2018-05-01

    A structural model is developed for the single-scattering properties of snow and graupel particles with a strongly heterogeneous morphology and an arbitrary variable mass density. This effort is aimed to provide a mechanism to consider particle mass density variation in the microwave scattering coefficients implemented in the Community Radiative Transfer Model (CRTM). The stochastic model applies a bicontinuous random medium algorithm to a simple base shape and uses the Finite-Difference-Time-Domain (FDTD) method to compute the single-scattering properties of the resulting complex morphology.

  6. a Proposed Benchmark Problem for Scatter Calculations in Radiographic Modelling

    Science.gov (United States)

    Jaenisch, G.-R.; Bellon, C.; Schumm, A.; Tabary, J.; Duvauchelle, Ph.

    2009-03-01

    Code Validation is a permanent concern in computer modelling, and has been addressed repeatedly in eddy current and ultrasonic modeling. A good benchmark problem is sufficiently simple to be taken into account by various codes without strong requirements on geometry representation capabilities, focuses on few or even a single aspect of the problem at hand to facilitate interpretation and to avoid that compound errors compensate themselves, yields a quantitative result and is experimentally accessible. In this paper we attempt to address code validation for one aspect of radiographic modeling, the scattered radiation prediction. Many NDT applications can not neglect scattered radiation, and the scatter calculation thus is important to faithfully simulate the inspection situation. Our benchmark problem covers the wall thickness range of 10 to 50 mm for single wall inspections, with energies ranging from 100 to 500 keV in the first stage, and up to 1 MeV with wall thicknesses up to 70 mm in the extended stage. A simple plate geometry is sufficient for this purpose, and the scatter data is compared on a photon level, without a film model, which allows for comparisons with reference codes like MCNP. We compare results of three Monte Carlo codes (McRay, Sindbad and Moderato) as well as an analytical first order scattering code (VXI), and confront them to results obtained with MCNP. The comparison with an analytical scatter model provides insights into the application domain where this kind of approach can successfully replace Monte-Carlo calculations.

  7. Rayleigh wave ellipticity across the Iberian Peninsula and Morocco

    Science.gov (United States)

    Gómez García, Clara; Villaseñor, Antonio

    2015-04-01

    Spectral amplitude ratios between horizontal and vertical components (H/V ratios) from seismic records are useful to evaluate site effects, predict ground motion and invert for S velocity in the top several hundred meters. These spectral ratios can be obtained from both ambient noise and earthquakes. H/V ratios from ambient noise depend on the content and predominant wave types: body waves, Rayleigh waves, a mixture of different waves, etc. The H/V ratio computed in this way is assumed to measure Rayleigh wave ellipticity since ambient vibrations are dominated by Rayleigh waves. H/V ratios from earthquakes are able to determine the local crustal structure at the vicinity of the recording station. These ratios obtained from earthquakes are based on surface wave ellipticity measurements. Although long period (>20 seconds) Rayleigh H/V ratio is not currently used because of large scatter has been reported and uncertainly about whether these measurements are compatible with traditional phase and group velocity measurements, we will investigate whether it is possible to obtain stable estimates after collecting statistics for many earthquakes. We will use teleseismic events from shallow earthquakes (depth ≤ 40 km) between 2007 January 1 and 2012 December 31 with M ≥ 6 and we will compute H/V ratios for more than 400 stations from several seismic networks across the Iberian Peninsula and Morocco for periods between 20 and 100 seconds. Also H/V ratios from cross-correlations of ambient noise in different components for each station pair will be computed. Shorter period H/V ratio measurements based on ambient noise cross-correlations are strongly sensitive to near-surface structure, rather than longer period earthquake Rayleigh waves. The combination of ellipticity measurements based on earthquakes and ambient noise will allow us to perform a joint inversion with Rayleigh wave phase velocity. Upper crustal structure is better constrained by the joint inversion compared

  8. On the ""early-time"" evolution of variables relevant to turbulence models for the Rayleigh-Taylor instability

    Energy Technology Data Exchange (ETDEWEB)

    Rollin, Bertrand [Los Alamos National Laboratory; Andrews, Malcolm J [Los Alamos National Laboratory

    2010-01-01

    We present our progress toward setting initial conditions in variable density turbulence models. In particular, we concentrate our efforts on the BHR turbulence model for turbulent Rayleigh-Taylor instability. Our approach is to predict profiles of relevant variables before fully turbulent regime and use them as initial conditions for the turbulence model. We use an idealized model of mixing between two interpenetrating fluids to define the initial profiles for the turbulence model variables. Velocities and volume fractions used in the idealized mixing model are obtained respectively from a set of ordinary differential equations modeling the growth of the Rayleigh-Taylor instability and from an idealization of the density profile in the mixing layer. A comparison between predicted profiles for the turbulence model variables and profiles of the variables obtained from low Atwood number three dimensional simulations show reasonable agreement.

  9. Estimates of the Spectral Aerosol Single Sea Scattering Albedo and Aerosol Radiative Effects during SAFARI 2000

    Science.gov (United States)

    Bergstrom, Robert W.; Pilewskie, Peter; Schmid, Beat; Russell, Philip B.

    2003-01-01

    Using measurements of the spectral solar radiative flux and optical depth for 2 days (24 August and 6 September 2000) during the SAFARI 2000 intensive field experiment and a detailed radiative transfer model, we estimate the spectral single scattering albedo of the aerosol layer. The single scattering albedo is similar on the 2 days even though the optical depth for the aerosol layer was quite different. The aerosol single scattering albedo was between 0.85 and 0.90 at 350 nm, decreasing to 0.6 in the near infrared. The magnitude and decrease with wavelength of the single scattering albedo are consistent with the absorption properties of small black carbon particles. We estimate the uncertainty in the single scattering albedo due to the uncertainty in the measured fractional absorption and optical depths. The uncertainty in the single scattering albedo is significantly less on the high-optical-depth day (6 September) than on the low-optical-depth day (24 August). On the high-optical-depth day, the uncertainty in the single scattering albedo is 0.02 in the midvisible whereas on the low-optical-depth day the uncertainty is 0.08 in the midvisible. On both days, the uncertainty becomes larger in the near infrared. We compute the radiative effect of the aerosol by comparing calculations with and without the aerosol. The effect at the top of the atmosphere (TOA) is to cool the atmosphere by 13 W/sq m on 24 August and 17 W/sq m on 6 September. The effect on the downward flux at the surface is a reduction of 57 W/sq m on 24 August and 200 W/sq m on 6 September. The aerosol effect on the downward flux at the surface is in good agreement with the results reported from the Indian Ocean Experiment (INDOEX).

  10. Rayleigh's, Stoneley's, and Scholte's Interface Waves in Elastic Models Using a Boundary Element Method

    Directory of Open Access Journals (Sweden)

    Esteban Flores-Mendez

    2012-01-01

    Full Text Available This work is focused on studying interface waves for three canonical models, that is, interfaces formed by vacuum-solid, solid-solid, and liquid-solid. These interfaces excited by dynamic loads cause the emergence of Rayleigh's, Stoneley's, and Scholte's waves, respectively. To perform the study, the indirect boundary element method is used, which has proved to be a powerful tool for numerical modeling of problems in elastodynamics. In essence, the method expresses the diffracted wave field of stresses, pressures, and displacements by a boundary integral, also known as single-layer representation, whose shape can be regarded as a Fredholm's integral representation of second kind and zero order. This representation can be considered as an exemplification of Huygens' principle, which is equivalent to Somigliana's representation theorem. Results in frequency domain for the three types of interfaces are presented; then, using the fourier discrete transform, we derive the results in time domain, where the emergence of interface waves is highlighted.

  11. Capability of simultaneous Rayleigh LiDAR and O2 airglow measurements in exploring the short period wave characteristics

    Science.gov (United States)

    Taori, Alok; Raghunath, Karnam; Jayaraman, Achuthan

    We use combination of simultaneous measurements made with Rayleigh lidar and O2 airglow monitoring to improve lidar investigation capability to cover a higher altitude range. We feed instantaneous O2 airglow temperatures instead the model values at the top altitude for subsequent integration method of temperature retrieval using Rayleigh lidar back scattered signals. Using this method, errors in the lidar temperature estimates converges at higher altitudes indicating better altitude coverage compared to regular methods where model temperatures are used instead of real-time measurements. This improvement enables the measurements of short period waves at upper mesospheric altitudes (~90 km). With two case studies, we show that above 60 km the few short period wave amplitude drastically increases while, some of the short period wave show either damping or saturation. We claim that by using such combined measurements, a significant and cost effective progress can be made in the understanding of short period wave processes which are important for the coupling across the different atmospheric regions.

  12. Scattering of light and other electromagnetic radiation

    CERN Document Server

    Kerker, Milton

    1969-01-01

    The Scattering of Light and Other Electromagnetic Radiation discusses the theory of electromagnetic scattering and describes some practical applications. The book reviews electromagnetic waves, optics, the interrelationships of main physical quantities and the physical concepts of optics, including Maxwell's equations, polarization, geometrical optics, interference, and diffraction. The text explains the Rayleigh2 theory of scattering by small dielectric spheres, the Bessel functions, and the Legendre functions. The author also explains how the scattering functions for a homogenous sphere chan

  13. Absorption line profiles in a moving atmosphere - A single scattering linear perturbation theory

    Science.gov (United States)

    Hays, P. B.; Abreu, V. J.

    1989-01-01

    An integral equation is derived which linearly relates Doppler perturbations in the spectrum of atmospheric absorption features to the wind system which creates them. The perturbation theory is developed using a single scattering model, which is validated against a multiple scattering calculation. The nature and basic properties of the kernels in the integral equation are examined. It is concluded that the kernels are well behaved and that wind velocity profiles can be recovered using standard inversion techniques.

  14. Hydrogen bond dynamics and water structure in glucose-water solutions by depolarized Rayleigh scattering and low-frequency Raman spectroscopy

    Science.gov (United States)

    Paolantoni, Marco; Sassi, Paola; Morresi, Assunta; Santini, Sergio

    2007-07-01

    The effect of glucose on the relaxation process of water at picosecond time scales has been investigated by depolarized Rayleigh scattering (DRS) experiments. The process is assigned to the fast hydrogen bonding dynamics of the water network. In DRS spectra this contribution can be safely separated from the slower relaxation process due to the sugar. The detected relaxation time is studied at different glucose concentrations and modeled considering bulk and hydrating water contributions. As a result, it is found that in diluted conditions the hydrogen bond lifetime of proximal water molecules becomes about three times slower than that of the bulk. The effect of the sugar on the hydrogen bond water structure is investigated by analyzing the low-frequency Raman (LFR) spectrum sensitive to intermolecular modes. The addition of glucose strongly reduces the intensity of the band at 170cm-1 assigned to a collective stretching mode of water molecules arranged in cooperative tetrahedral domains. These findings indicate that proximal water molecules partially lose the tetrahedral ordering typical of the bulk leading to the formation of high density environments around the sugar. Thus the glucose imposes a new local order among water molecules localized in its hydration shell in which the hydrogen bond breaking dynamics is sensitively retarded. This work provides new experimental evidences that support recent molecular dynamics simulation and thermodynamics results.

  15. Seasonal variation of the single scattering albedo of the Jungfraujoch aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Collaud Coen, M.; Weingartner, E.; Corrigan, C.; Baltensperger, U.

    2003-03-01

    The single scattering albedo ({omega}{sub 0}) represents the fraction of the light extinction due to scattering. It is there-fore a key parameter to estimate the aerosol direct radiative forcing. The seasonal and diurnal variation of the single scattering albedo was calculated for the Jungfraujoch dry aerosol, which is representative for clean remote continental conditions. The values of {omega}{sub 0} vary between 0.7 and 0.9 depending on the season and on the wavelength. (author)

  16. Rayleigh scattering for a magnetized cold plasma sphere

    International Nuclear Information System (INIS)

    Li Yingle; Wang Mingjun; Tang Gaofeng; Li Jin

    2010-01-01

    The transformation of parameter tensors for anisotropic medium in different coordinate systems is derived. The electric field for a magnetized cold plasma sphere and the general expression of scattering field from anisotropic target are obtained. The functional relations of differential scattering cross section and the radar cross section for the magnetized plasma sphere are presented. Simulation results agree with that in the literatures, which shows the method used is correct and therefore the results may provide a theoretical base for anisotropic target identification. (authors)

  17. Low SNR capacity for MIMO Rician and Rayleigh-product fading channels with single co-channel interferer and noise

    KAUST Repository

    Zhong, Caijun

    2010-09-01

    This paper studies the ergodic capacity of multiple-input multiple-output (MIMO) systems with a single co-channel interferer in the low signal-to-noise-ratio (SNR) regime. Two MIMO models namely Rician and Rayleigh-product channels are investigated. Exact analytical expressions for the minimum energy per information bit, {Eb/N0min, and wideband slope, S0, are derived for both channels. Our results show that the minimum energy per information bit is the same for both channels while their wideband slopes differ significantly. Further, the impact of the numbers of transmit and receive antennas, the Rician K factor, the channel mean matrix and the interference-to-noise-ratio (INR) on the capacity, is addressed. Results indicate that interference degrades the capacity by increasing the required minimum energy per information bit and reducing the wideband slope. Simulation results validate our analytical results. © 2010 IEEE.

  18. Highly sensitive and selective determination of fluorine ion by graphene oxide/nanogold resonance Rayleigh scattering-energy transfer analytical platform.

    Science.gov (United States)

    Liang, Aihui; Peng, Jing; Liu, Qingye; Wen, Guiqing; Lu, Zhujun; Jiang, Zhiliang

    2015-08-15

    In pH 4.0 acetate buffer solution, fluorine ions react with fluorine reagent (FR) and La(III) to generate blue ternary complex that exhibited strong absorption at about 370 nm. Upon addition of graphene oxide/nanogold (GO/NG) as resonance Rayleigh scattering (RRS) spectral probe with strong RRS peak at 370 nm, the color changed to gray, and the RRS intensity decreased with the increase of fluorine ion concentration due to the RRS energy transfer (RRSET) from GO/NG to the complex. Under the selected condition, the decreased RRS peak ΔI370 nm was linear to fluorine ion concentration in the range of 6.0 × 10(-8)-1.3 × 10(-5)mol/L, with a detection limit of 3.0 × 10(-8)mol/L F(-). This RRSET method was applied to the analysis of fluorine in toothpaste and water samples, with satisfactory results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. An algorithm to determine backscattering ratio and single scattering albedo

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Desa, E.; Matondkar, S.G.P.; Mascarenhas, A.A.M.Q.; Nayak, S.R.; Naik, P.

    Algorithms to determine the inherent optical properties of water, backscattering probability and single scattering albedo at 490 and 676 nm from the apparent optical property, remote sensing reflectance are presented here. The measured scattering...

  20. Channel modelling and performance analysis of V2I communication systems in blind bend scattering environments

    KAUST Repository

    Chelli, Ali; Hamdi, Rami; Alouini, Mohamed-Slim

    2014-01-01

    In this paper, we derive a new geometrical blind bend scattering model for vehicle-to- infrastructure (V2I) communications. The proposed model takes into account single-bounce and double- bounce scattering stemming from fixed scatterers located

  1. Rayleigh radiance computations for satellite remote sensing: accounting for the effect of sensor spectral response function.

    Science.gov (United States)

    Wang, Menghua

    2016-05-30

    To understand and assess the effect of the sensor spectral response function (SRF) on the accuracy of the top of the atmosphere (TOA) Rayleigh-scattering radiance computation, new TOA Rayleigh radiance lookup tables (LUTs) over global oceans and inland waters have been generated. The new Rayleigh LUTs include spectral coverage of 335-2555 nm, all possible solar-sensor geometries, and surface wind speeds of 0-30 m/s. Using the new Rayleigh LUTs, the sensor SRF effect on the accuracy of the TOA Rayleigh radiance computation has been evaluated for spectral bands of the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (SNPP) satellite and the Joint Polar Satellite System (JPSS)-1, showing some important uncertainties for VIIRS-SNPP particularly for large solar- and/or sensor-zenith angles as well as for large Rayleigh optical thicknesses (i.e., short wavelengths) and bands with broad spectral bandwidths. To accurately account for the sensor SRF effect, a new correction algorithm has been developed for VIIRS spectral bands, which improves the TOA Rayleigh radiance accuracy to ~0.01% even for the large solar-zenith angles of 70°-80°, compared with the error of ~0.7% without applying the correction for the VIIRS-SNPP 410 nm band. The same methodology that accounts for the sensor SRF effect on the Rayleigh radiance computation can be used for other satellite sensors. In addition, with the new Rayleigh LUTs, the effect of surface atmospheric pressure variation on the TOA Rayleigh radiance computation can be calculated precisely, and no specific atmospheric pressure correction algorithm is needed. There are some other important applications and advantages to using the new Rayleigh LUTs for satellite remote sensing, including an efficient and accurate TOA Rayleigh radiance computation for hyperspectral satellite remote sensing, detector-based TOA Rayleigh radiance computation, Rayleigh radiance calculations for high altitude

  2. The applicability of physical optics in the millimetre and sub-millimetre spectral region. Part II: Application to a three-component model of ice cloud and its evaluation against the bulk single-scattering properties of various other aggregate models

    Science.gov (United States)

    Baran, Anthony J.; Ishimoto, Hiroshi; Sourdeval, Odran; Hesse, Evelyn; Harlow, Chawn

    2018-02-01

    The bulk single-scattering properties of various randomly oriented aggregate ice crystal models are compared and contrasted at a number of frequencies between 89 and 874 GHz. The model ice particles consist of the ten-branched plate aggregate, five-branched plate aggregate, eight-branched hexagonal aggregate, Voronoi ice aggregate, six-branched hollow bullet rosette, hexagonal column of aspect ratio unity, and the ten-branched hexagonal aggregate. The bulk single-scattering properties of the latter two ice particle models have been calculated using the light scattering methods described in Part I, which represent the two most extreme members of an ensemble model of cirrus ice crystals. In Part I, it was shown that the method of physical optics could be combined with the T-matrix at a size parameter of about 18 to compute the bulk integral ice optical properties and the phase function in the microwave to sufficient accuracy to be of practical value. Here, the bulk single-scattering properties predicted by the two ensemble model members and the Voronoi model are shown to generally bound those of all other models at frequencies between 89 and 874 GHz, thus representing a three-component model of ice cloud that can be generally applied to the microwave, rather than using many differing ice particle models. Moreover, the Voronoi model and hollow bullet rosette scatter similarly to each other in the microwave. Furthermore, from the various comparisons, the importance of assumed shapes of the particle size distribution as well as cm-sized ice aggregates is demonstrated.

  3. Observations of short period seismic scattered waves by small seismic arrays

    Directory of Open Access Journals (Sweden)

    M. Simini

    1997-06-01

    Full Text Available The most recent observations of well correlated seismic phases in the high frequency coda of local earthquakes recorded throughout the world are reported. In particular the main results, obtained on two active volcanoes, Teide and Deception, using small array are described. The ZLC (Zero Lag Cross-correlation method and polarization analysis have been applied to the data in order to distinguish the main phases in the recorded seismograms and their azimuths and apparent velocities. The results obtained at the Teide volcano demonstrate that the uncorrelated part of the seismograms may be produced by multiple scattering from randomly distributed heterogeneity, while the well correlated part, showing SH type polarization or the possible presence of Rayleigh surface waves, may be generated by single scattering by strong scatterers. At the Deception Volcano strong scattering, strongly focused in a precise direction, is deduced from the data. In that case, all the coda radiation is composed of surface waves.

  4. 3.5. Apparatus for plasma electron temperature measurement by Thomson scattering

    International Nuclear Information System (INIS)

    Kolacek, K.; Babicky, V.

    1981-01-01

    Equipment was developed and tested for measuring time-resolved local electron plasma temperature and density by the Thomson scattering of ruby laser light. The laser consists of a Q-switched generator (ruby 12 mm in diameter by 150 mm long) followed by one amplifier (ruby 16 mm indi long) followed by one amplifier (ruby 16 mm in diameter by 250 mm long). For Q-switching a Pockels cell with a z-cut ADP crystal was used. The laser is capable of delivering 4 J of energy in a pulse of 50 ns in duration. The spectrum of the laser light scattered at an angle of 9a degrees is analyzed by a six-channel polychromator. Fibre optics and photomultipliers with gated amplifiers are used. Output signals are transmitted via a parallel-to-series converter to a single-trace oscilloscope. The whole Thomson scattering apparatus was successfully tested by the Rayleigh scattering in the air at atmospheric pressure. (J.U.)

  5. Statistical approach of weakly nonlinear ablative Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Garnier, J.; Masse, L.

    2005-01-01

    A weakly nonlinear model is proposed for the Rayleigh-Taylor instability in presence of ablation and thermal transport. The nonlinear effects for a single-mode disturbance are computed, included the nonlinear correction to the exponential growth of the fundamental modulation. Mode coupling in the spectrum of a multimode disturbance is thoroughly analyzed by a statistical approach. The exponential growth of the linear regime is shown to be reduced by the nonlinear mode coupling. The saturation amplitude is around 0.1λ for long wavelengths, but higher for short instable wavelengths in the ablative regime

  6. Single spin asymmetries in semi-inclusive deep inelastic scattering

    International Nuclear Information System (INIS)

    Mulders, P.J.

    1998-01-01

    In this talk I want to illustrate the many possibilities for studying the structure of hadrons in hard scattering processes by giving a number of examples involving increasing complexity in the demands for particle polarization, particle identification or polarimetry. In particular the single spin asymmetries will be discussed. The measurements discussed in this talk are restricted to lepton-hadron scattering, but can be found in various other hard processes such as Drell-Yan scattering or e + e - annihilation. (author)

  7. Ion-reversibility studies in amorphous solids using the two-atom scattering model

    International Nuclear Information System (INIS)

    Oen, O.S.

    1981-06-01

    An analytical two-atom scattering model has been developed to treat the recent discovery of the enhancement near 180 0 of Rutherford backscattering yields from disordered solids. In contrast to conventional calculations of Rutherford backscattering that treat scattering from a single atom only (the backscattering atom), the present model includes the interaction of a second atom lying between the target surface and the backscattering plane. The projectile ion makes a glancing collision with this second atom both before and after it is backscattered. The model predicts an enhancement effect whose physical origin arises from the tolerance of path for those ions whose inward and outward trajectories lie in the vicinity of the critical impact parameter. Results using Moliere scattering show how the yield enhancement depends on ion energy, backscattering depth, exit angle, scattering potential, atomic numbers of the projectile and target, and target density. In the model the critical impact parameter and critical angle play important roles. It is shown that these quantities depend on a single dimensionless parameter and analytical expressions for them are given which are accurate to better than 1%

  8. A simple and selective resonance Rayleigh scattering-energy transfer spectral method for determination of trace neomycin sulfate using Cu2O particle as probe

    Science.gov (United States)

    Ouyang, Huixiang; Liang, Aihui; Jiang, Zhiliang

    2018-02-01

    The stable Cu2O nanocubic (Cu2ONC) sol was prepared, based on graphene oxide (GO) catalysis of glucose-Fehling's reagent reaction, and its absorption and resonance Rayleigh scattering (RRS) spectra, transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) were examined. Using the as-prepared Cu2ONC as RRS probe, and coupling with the neomycin sulfate (NEO) complex reaction, a new, simple, sensitive and selective RRS-energy transfer (RRS-ET) method was established for detection of neomycin sulfate, with a linear range of 1.4-112 μM and a detection limit of 0.4 μM. The method has been applied to the detection of neomycin sulfate in samples with satisfactory results.

  9. Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows

    DEFF Research Database (Denmark)

    Bekshaev, A. Ya; Angelsky, O. V.; Hanson, Steen Grüner

    2012-01-01

    between the forward- and backward-scattered momentum fluxes in the Rayleigh scattering regime appears due to the spin part of the internal energy flow in the incident beam. The transverse ponderomotive forces exerted on dielectric and conducting particles of different sizes are calculated and special......Based on the Mie theory and on the incident beam model via superposition of two plane waves, we analyze numerically the momentum flux of the field scattered by a spherical, nonmagnetic microparticle placed within the spatially inhomogeneous circularly polarized paraxial light beam. The asymmetry...

  10. Thomson scattering on non-equilibrium low density plasmas : principles, practice and challenges

    NARCIS (Netherlands)

    Carbone, E.A.D.; Nijdam, S.

    2015-01-01

    In this paper, we review the main challenges related to laser Thomson scattering on low temperature plasmas. The main features of the triple grating spectrometer used to discriminate Thomson and Raman scattering signals from Rayleigh scattering and stray light are presented. The main parameters

  11. Comparison of analytic source models for head scatter factor calculation and planar dose calculation for IMRT

    International Nuclear Information System (INIS)

    Yan Guanghua; Liu, Chihray; Lu Bo; Palta, Jatinder R; Li, Jonathan G

    2008-01-01

    The purpose of this study was to choose an appropriate head scatter source model for the fast and accurate independent planar dose calculation for intensity-modulated radiation therapy (IMRT) with MLC. The performance of three different head scatter source models regarding their ability to model head scatter and facilitate planar dose calculation was evaluated. A three-source model, a two-source model and a single-source model were compared in this study. In the planar dose calculation algorithm, in-air fluence distribution was derived from each of the head scatter source models while considering the combination of Jaw and MLC opening. Fluence perturbations due to tongue-and-groove effect, rounded leaf end and leaf transmission were taken into account explicitly. The dose distribution was calculated by convolving the in-air fluence distribution with an experimentally determined pencil-beam kernel. The results were compared with measurements using a diode array and passing rates with 2%/2 mm and 3%/3 mm criteria were reported. It was found that the two-source model achieved the best agreement on head scatter factor calculation. The three-source model and single-source model underestimated head scatter factors for certain symmetric rectangular fields and asymmetric fields, but similar good agreement could be achieved when monitor back scatter effect was incorporated explicitly. All the three source models resulted in comparable average passing rates (>97%) when the 3%/3 mm criterion was selected. The calculation with the single-source model and two-source model was slightly faster than the three-source model due to their simplicity

  12. Comparison of analytic source models for head scatter factor calculation and planar dose calculation for IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Yan Guanghua [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611 (United States); Liu, Chihray; Lu Bo; Palta, Jatinder R; Li, Jonathan G [Department of Radiation Oncology, University of Florida, Gainesville, FL 32610-0385 (United States)

    2008-04-21

    The purpose of this study was to choose an appropriate head scatter source model for the fast and accurate independent planar dose calculation for intensity-modulated radiation therapy (IMRT) with MLC. The performance of three different head scatter source models regarding their ability to model head scatter and facilitate planar dose calculation was evaluated. A three-source model, a two-source model and a single-source model were compared in this study. In the planar dose calculation algorithm, in-air fluence distribution was derived from each of the head scatter source models while considering the combination of Jaw and MLC opening. Fluence perturbations due to tongue-and-groove effect, rounded leaf end and leaf transmission were taken into account explicitly. The dose distribution was calculated by convolving the in-air fluence distribution with an experimentally determined pencil-beam kernel. The results were compared with measurements using a diode array and passing rates with 2%/2 mm and 3%/3 mm criteria were reported. It was found that the two-source model achieved the best agreement on head scatter factor calculation. The three-source model and single-source model underestimated head scatter factors for certain symmetric rectangular fields and asymmetric fields, but similar good agreement could be achieved when monitor back scatter effect was incorporated explicitly. All the three source models resulted in comparable average passing rates (>97%) when the 3%/3 mm criterion was selected. The calculation with the single-source model and two-source model was slightly faster than the three-source model due to their simplicity.

  13. Kernel integration scatter model for parallel beam gamma camera and SPECT point source response

    International Nuclear Information System (INIS)

    Marinkovic, P.M.

    2001-01-01

    Scatter correction is a prerequisite for quantitative single photon emission computed tomography (SPECT). In this paper a kernel integration scatter Scatter correction is a prerequisite for quantitative SPECT. In this paper a kernel integration scatter model for parallel beam gamma camera and SPECT point source response based on Klein-Nishina formula is proposed. This method models primary photon distribution as well as first Compton scattering. It also includes a correction for multiple scattering by applying a point isotropic single medium buildup factor for the path segment between the point of scatter an the point of detection. Gamma ray attenuation in the object of imaging, based on known μ-map distribution, is considered too. Intrinsic spatial resolution of the camera is approximated by a simple Gaussian function. Collimator is modeled simply using acceptance angles derived from the physical dimensions of the collimator. Any gamma rays satisfying this angle were passed through the collimator to the crystal. Septal penetration and scatter in the collimator were not included in the model. The method was validated by comparison with Monte Carlo MCNP-4a numerical phantom simulation and excellent results were obtained. The physical phantom experiments, to confirm this method, are planed to be done. (author)

  14. Introducing single-crystal scattering and optical potentials into MCNPX: Predicting neutron emission from a convoluted moderator

    Energy Technology Data Exchange (ETDEWEB)

    Gallmeier, F.X., E-mail: gallmeierfz@ornl.gov [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Iverson, E.B.; Lu, W. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Baxter, D.V. [Center for the Exploration of Energy and Matter, Indiana University, Bloomington, IN 47408 (United States); Muhrer, G.; Ansell, S. [European Spallation Source, ESS AB, Lund (Sweden)

    2016-04-01

    Neutron transport simulation codes are indispensable tools for the design and construction of modern neutron scattering facilities and instrumentation. Recently, it has become increasingly clear that some neutron instrumentation has started to exploit physics that is not well-modeled by the existing codes. In particular, the transport of neutrons through single crystals and across interfaces in MCNP(X), Geant4, and other codes ignores scattering from oriented crystals and refractive effects, and yet these are essential phenomena for the performance of monochromators and ultra-cold neutron transport respectively (to mention but two examples). In light of these developments, we have extended the MCNPX code to include a single-crystal neutron scattering model and neutron reflection/refraction physics. We have also generated silicon scattering kernels for single crystals of definable orientation. As a first test of these new tools, we have chosen to model the recently developed convoluted moderator concept, in which a moderating material is interleaved with layers of perfect crystals to provide an exit path for neutrons moderated to energies below the crystal's Bragg cut–off from locations deep within the moderator. Studies of simple cylindrical convoluted moderator systems of 100 mm diameter and composed of polyethylene and single crystal silicon were performed with the upgraded MCNPX code and reproduced the magnitude of effects seen in experiments compared to homogeneous moderator systems. Applying different material properties for refraction and reflection, and by replacing the silicon in the models with voids, we show that the emission enhancements seen in recent experiments are primarily caused by the transparency of the silicon and void layers. Finally we simulated the convoluted moderator experiments described by Iverson et al. and found satisfactory agreement between the measurements and the simulations performed with the tools we have developed.

  15. Surface Brillouin scattering measurement of the elastic constants of single crystal InAs{sub 0.91}Sb{sub 0.09}

    Energy Technology Data Exchange (ETDEWEB)

    Kotane, L M; Comins, J D; Every, A G [Materials Physics Research Institute, School of Physics, University of the Witwatersrand, Johannesburg, Wits 2050 (South Africa); Botha, J R, E-mail: Lesias.Kotane@wits.ac.z [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)

    2011-01-01

    Surface Brillouin scattering of light has been used to measure the angular dependence of the Rayleigh surface acoustic wave (SAW), pseudo surface acoustic wave (PSAW) and longitudinal lateral wave (LLW) speeds in a (100)-oriented single crystal of the ternary semiconductor alloy InAs{sub 0.91}Sb{sub 0.09}. The wave speed measurements have been used to determine the room temperature values of the elastic constants C{sub 11}, C{sub 12} and C{sub 44} of the alloy. A simple and robust fitting procedure has been implemented for recovering the elastic constants, in which the merit function is constructed from explicit secular functions that determine the surface and lateral wave speeds in the [001] and [011] crystallographic directions. In the fitting, relatively larger weighting factors have been assigned to the SAW and PSAW data because of the greater precision with which the surface modes can be measured as compared with the lateral wave.

  16. Laser scattering on an atmospheric pressure plasma jet : disentangling Rayleigh, Raman and Thomson scattering

    NARCIS (Netherlands)

    Gessel, van A.F.H.; Carbone, E.A.D.; Bruggeman, P.J.; Mullen, van der J.J.A.M.

    2012-01-01

    Laser scattering provides a very direct method for measuring the local densities and temperatures inside a plasma. We present new experimental results of laser scattering on an argon atmospheric pressure microwave plasma jet operating in an air environment. The plasma is very small so a high spatial

  17. Single- and coupled-channel radial inverse scattering with supersymmetric transformations

    International Nuclear Information System (INIS)

    Baye, Daniel; Sparenberg, Jean-Marc; Pupasov-Maksimov, Andrey M; Samsonov, Boris F

    2014-01-01

    The present status of the three-dimensional inverse-scattering method with supersymmetric transformations is reviewed for the coupled-channel case. We first revisit in a pedagogical way the single-channel case, where the supersymmetric approach is shown to provide a complete, efficient and elegant solution to the inverse-scattering problem for the radial Schrödinger equation with short-range interactions. A special emphasis is put on the differences between conservative and non-conservative transformations, i.e. transformations that do or do not conserve the behaviour of solutions of the radial Schrödinger equation at the origin. In particular, we show that for the zero initial potential, a non-conservative transformation is always equivalent to a pair of conservative transformations. These single-channel results are illustrated on the inversion of the neutron–proton triplet eigenphase shifts for the S- and D-waves. We then summarize and extend our previous works on the coupled-channel case, i.e. on systems of coupled radial Schrödinger equations, and stress remaining difficulties and open questions of this problem by putting it in perspective with the single-channel case. We mostly concentrate on two-channel examples to illustrate general principles while keeping mathematics as simple as possible. In particular, we discuss the important difference between the equal-threshold and different-threshold problems. For equal thresholds, conservative transformations can provide non-diagonal Jost and scattering matrices. Iterations of such transformations in the two-channel case are studied and shown to lead to practical algorithms for inversion. A convenient particular technique where the mixing parameter can be fitted without modifying the eigenphases is developed with iterations of pairs of conjugate transformations. This technique is applied to the neutron–proton triplet S–D scattering matrix, for which exactly-solvable matrix potential models are constructed

  18. Rayleigh Wave Ellipticity Modeling and Inversion for Shallow Structure at the Proposed InSight Landing Site in Elysium Planitia, Mars

    Science.gov (United States)

    Knapmeyer-Endrun, Brigitte; Golombek, Matthew P.; Ohrnberger, Matthias

    2017-10-01

    The SEIS (Seismic Experiment for Interior Structure) instrument onboard the InSight mission will be the first seismometer directly deployed on the surface of Mars. From studies on the Earth and the Moon, it is well known that site amplification in low-velocity sediments on top of more competent rocks has a strong influence on seismic signals, but can also be used to constrain the subsurface structure. Here we simulate ambient vibration wavefields in a model of the shallow sub-surface at the InSight landing site in Elysium Planitia and demonstrate how the high-frequency Rayleigh wave ellipticity can be extracted from these data and inverted for shallow structure. We find that, depending on model parameters, higher mode ellipticity information can be extracted from single-station data, which significantly reduces uncertainties in inversion. Though the data are most sensitive to properties of the upper-most layer and show a strong trade-off between layer depth and velocity, it is possible to estimate the velocity and thickness of the sub-regolith layer by using reasonable constraints on regolith properties. Model parameters are best constrained if either higher mode data can be used or additional constraints on regolith properties from seismic analysis of the hammer strokes of InSight's heat flow probe HP3 are available. In addition, the Rayleigh wave ellipticity can distinguish between models with a constant regolith velocity and models with a velocity increase in the regolith, information which is difficult to obtain otherwise.

  19. Measuring the complex field scattered by single submicron particles

    Energy Technology Data Exchange (ETDEWEB)

    Potenza, Marco A. C., E-mail: marco.potenza@unimi.it; Sanvito, Tiziano [Department of Physics, University of Milan, via Celoria, 16 – I-20133 Milan (Italy); CIMAINA, University of Milan, via Celoria, 16 – I-20133 Milan (Italy); EOS s.r.l., viale Ortles 22/4, I-20139 Milan (Italy); Pullia, Alberto [Department of Physics, University of Milan, via Celoria, 16 – I-20133 Milan (Italy)

    2015-11-15

    We describe a method for simultaneous measurements of the real and imaginary parts of the field scattered by single nanoparticles illuminated by a laser beam, exploiting a self-reference interferometric scheme relying on the fundamentals of the Optical Theorem. Results obtained with calibrated spheres of different materials are compared to the expected values obtained through a simplified analytical model without any free parameters, and the method is applied to a highly polydisperse water suspension of Poly(D,L-lactide-co-glycolide) nanoparticles. Advantages with respect to existing methods and possible applications are discussed.

  20. Study on the interactions of antiemetic drugs and 12-tungstophosphoric acid by absorption and resonance Rayleigh scattering spectra and their analytical applications

    Science.gov (United States)

    Wang, Yaqiong; Liu, Shaopu; Liu, Zhongfang; Yang, Jidong; Hu, Xiaoli

    2013-03-01

    In 0.1 mol L-1 HCl medium, antiemetic drugs (ATM), such as granisetron hydrochloride (GS) and tropisetron hydrochloride (TS), reacted with H3PW12O40·nH2O and formed 3:1 ion-association complex of [(ATM)3PW12O40], then self-aggregated into nanoparticles-[(ATM)3PW12O40]n with an average size of 100 nm. The reaction resulted in the enhancement of resonance Rayleigh scattering (RRS) and the absorption spectra. The increments of scattering intensity (ΔIRRS) and the change of absorbance (ΔA) were both directly proportional to the concentrations of ATM in certain ranges. Accordingly, two new RRS and spectrophotometric methods were proposed for ATM detection. The detection limits (3σ) of GS and TS were 3.2 ng mL-1 and 4.0 ng mL-1(RRS method), 112.5 ng mL-1 and 100.0 ng mL-1(spectrophotometric method). These two methods were applied to determine GS in orally disintegrating tablets and the results were in good agreement with the official method. The ground-state geometries and electronic structures of GS and TS were optimized by the hybrid density functional theory (DFT) method and the shape of [(ATM)3PW12O40]n was characterized by atomic force microscopy (AFM). Take the RRS method with higher sensitivity as an example, the reaction mechanism and the reasons for enhancement of scattering were discussed.

  1. A 3% Measurement of the Beam Normal Single Spin Asymmetry in Forward Angle Elastic Electron-Proton Scattering using the Qweak Setup

    Energy Technology Data Exchange (ETDEWEB)

    Waidyawansa, Dinayadura Buddhini [Ohio Univ., Athens, OH (United States)

    2013-08-01

    The beam normal single spin asymmetry generated in the scattering of transversely polarized electrons from unpolarized nucleons is an observable of the imaginary part of the two-photon exchange process. Moreover, it is a potential source of false asymmetry in parity violating electron scattering experiments. The Q{sub weak} experiment uses parity violating electron scattering to make a direct measurement of the weak charge of the proton. The targeted 4% measurement of the weak charge of the proton probes for parity violating new physics beyond the Standard Model. The beam normal single spin asymmetry at Q{sub weak} kinematics is at least three orders of magnitude larger than 5 ppb precision of the parity violating asymmetry. To better understand this parity conserving background, the Q{sub weak} Collaboration has performed elastic scattering measurements with fully transversely polarized electron beam on the proton and aluminum. This dissertation presents the analysis of the 3% measurement (1.3% statistical and 2.6% systematic) of beam normal single spin asymmetry in electronproton scattering at a Q2 of 0.025 (GeV/c)2. It is the most precise existing measurement of beam normal single spin asymmetry available at the time. A measurement of this precision helps to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process.

  2. Folding models for elastic and inelastic scattering

    International Nuclear Information System (INIS)

    Satchler, G.R.

    1982-01-01

    The most widely used models are the optical model potential (OMP) for elastic scattering, and its generalization to non-spherical shapes, the deformed optical model potential (DOMP) for inelastic scattering. These models are simple and phenomenological; their parameters are adjusted so as to reproduce empirical data. Nonetheless, there are certain, not always well-defined, constraints to be imposed. The potential shapes and their parameter values must be reasonable and should vary in a smooth and systematic way with the masses of the colliding nuclei and their energy. One way of satisfying these constraints, without going back to a much more fundamental theory, is through the use of folding models. The basic justification for using potentials of the Woods-Saxon shape for nucleon-nucleus scattering, for example, is our knowledge that a nuclear density distribution is more-or-less constant in the nuclear interior with a diffuse surface. When this is folded with a short-range nucleon-nucleon interaction, the result is a similar shape with a more diffuse surface. Folding procedures allow us to incorporate many aspects of nuclear structure (although the nuclear size is one of the most important), as well as theoretical ideas about the effective interaction of two nucleons within nuclear matter. It also provides us with a means of linking information obtained from nuclear (hadronic) interactions with that from other sources, as well as correlating that from the use of different hadronic probes. Folding model potentials, single-folded potentials, and the double-folding model including applications to heavy-ion scattering are discussed

  3. Localization and Poincaré catastrophe in the problem of a photon scattering on a pair of Rayleigh particles

    Science.gov (United States)

    Maksimenko, V. V.; Zagaynov, V. A.; Agranovski, I. E.

    2013-11-01

    It is shown that complexities in a problem of elastic scattering of a photon on a pair of Rayleigh particles (two small metallic spheres) are similar to the complexities of the classic problem of three bodies in celestial mechanics. In the latter problem, as is well known, the phase trajectory of a system becomes a nonanalytical function of its variables. In our problem, the trajectory of a virtual photon at some frequency could be considered such as the well-known Antoine set (Antoine's necklace) or a chain with interlaced sections having zero topological dimension and fractal structure. Such a virtual “zero-dimensional” photon could be localized between the particles of the pair. The topology suppresses the photon's exit to the real world with dimensional equal-to-or-greater-than units. The physical reason for this type of photon localization is related to the “mechanical rigidity” of interlaced sections of the photon trajectory due to a singularity of energy density along these sections. Within the approximations used in this paper, the effect is possible if the frequency of the incident radiation is equal to double the frequency of the dipole surface plasmon in an isolated particle, which is the only character frequency in the problem. This condition and transformation of the photon trajectory to the zero-dimensional Antoine set reminds of some of the simplest variants of Poincaré's catastrophe in the dynamics of some nonintegrable systems. The influence of the localization on elastic light scattering by the pair is investigated.

  4. Modeling the radiation transfer of discontinuous canopies: results for gap probability and single-scattering contribution

    Science.gov (United States)

    Zhao, Feng; Zou, Kai; Shang, Hong; Ji, Zheng; Zhao, Huijie; Huang, Wenjiang; Li, Cunjun

    2010-10-01

    In this paper we present an analytical model for the computation of radiation transfer of discontinuous vegetation canopies. Some initial results of gap probability and bidirectional gap probability of discontinuous vegetation canopies, which are important parameters determining the radiative environment of the canopies, are given and compared with a 3- D computer simulation model. In the model, negative exponential attenuation of light within individual plant canopies is assumed. Then the computation of gap probability is resolved by determining the entry points and exiting points of the ray with the individual plants via their equations in space. For the bidirectional gap probability, which determines the single-scattering contribution of the canopy, a gap statistical analysis based model was adopted to correct the dependence of gap probabilities for both solar and viewing directions. The model incorporates the structural characteristics, such as plant sizes, leaf size, row spacing, foliage density, planting density, leaf inclination distribution. Available experimental data are inadequate for a complete validation of the model. So it was evaluated with a three dimensional computer simulation model for 3D vegetative scenes, which shows good agreement between these two models' results. This model should be useful to the quantification of light interception and the modeling of bidirectional reflectance distributions of discontinuous canopies.

  5. Numerical simulation of Rayleigh-Taylor turbulent mixing layers

    International Nuclear Information System (INIS)

    Poujade, O.; Lardjane, N.; Peybernes, M.; Boulet, M.

    2009-01-01

    Accelerations in actual Rayleigh-Taylor instabilities are often variable. This article focuses on a particular class of variable accelerations where g(t) ∝ t n . A reference database is built from high resolution hydrodynamic numerical simulations. The successful comparison with a simple OD analytical model and the statistical 2SFK (2-Structure, 2-Fluid, 2-Turbulence) turbulence model is provided. Moreover, we show the difference between the mechanism at play in the Rayleigh-Taylor turbulent mixing zone and Kolmogorov's in the self similar developed turbulent regime. (authors)

  6. Experimental confirmation of neoclassical Compton scattering theory

    Energy Technology Data Exchange (ETDEWEB)

    Aristov, V. V., E-mail: aristov@iptm.ru [Russian Academy of Sciences, Institute of Microelectronics Technology and High Purity Materials (Russian Federation); Yakunin, S. N. [National Research Centre “Kurchatov Institute” (Russian Federation); Despotuli, A. A. [Russian Academy of Sciences, Institute of Microelectronics Technology and High Purity Materials (Russian Federation)

    2013-12-15

    Incoherent X-ray scattering spectra of diamond and silicon crystals recorded on the BESSY-2 electron storage ring have been analyzed. All spectral features are described well in terms of the neoclassical scattering theory without consideration for the hypotheses accepted in quantum electrodynamics. It is noted that the accepted tabular data on the intensity ratio between the Compton and Rayleigh spectral components may significantly differ from the experimental values. It is concluded that the development of the general theory (considering coherent scattering, incoherent scattering, and Bragg diffraction) must be continued.

  7. Scattering of atomic and molecular ions from single crystal surfaces of Cu, Ag and Fe

    International Nuclear Information System (INIS)

    Zoest, J.M. van.

    1986-01-01

    This thesis deals with analysis of crystal surfaces of Cu, Ag and Fe with Low Energy Ion scattering Spectroscopy (LEIS). Different atomic and molecular ions with fixed energies below 7 keV are scattered by a metal single crystal (with adsorbates). The energy and direction of the scattered particles are analysed for different selected charge states. In that way information can be obtained concerning the composition and atomic and electronic structure of the single crystal surface. Energy spectra contain information on the composition of the surface, while structural atomic information is obtained by direction measurements (photograms). In Ch.1 a description is given of the experimental equipment, in Ch.2 a characterization of the LEIS method. Ch.3 deals with the neutralization of keV-ions in surface scattering. Two different ways of data interpretation are presented. First a model is treated in which the observed directional dependence of neutralization action of the first atom layer of the surface is presented by a laterally varying thickness of the neutralizing layer. Secondly it is shown that the data can be reproduced by a more realistic, physical model based on atomic transition matrix elements. In Ch.4 the low energy hydrogen scattering is described. The study of the dissociation of H 2 + at an Ag surface r0230ted in a model based on electronic dissociation, initialized by electron capture into a repulsive (molecular) state. In Ch.5 finally the method is applied to the investigation of the surface structure of oxidized Fe. (Auth.)

  8. Elastic scattering of electrons from singly ionized argon

    International Nuclear Information System (INIS)

    Griffin, D.C.; Pindzola, M.S.

    1996-01-01

    Recently, Greenwood et al. [Phys. Rev. Lett. 75, 1062 (1995)] reported measurements of large-angle elastic scattering of electrons from singly ionized argon at an energy of 3.3 eV. They compared their results for the differential cross section with cross sections determined using phase shifts obtained from two different scattering potentials and found large discrepancies between theory and experiment at large angles. They state that these differences may be due to the effects of polarization of the target, which are not included in their calculations, as well as inaccurate representations of electron exchange in the local scattering potentials that are employed to determine the phase shifts. In order to test these proposed explanations of the discrepancies, we have carried out calculations of elastic scattering from Ar + using the R-matrix method. We compare both a single-state calculation, which does not include polarization, and a 17-state calculation, in which the effects of dipole polarizability are included through the use of polarization pseudostates within the close-coupling expansion, to each other and with the measurements. We find some differences between the two calculations at intermediate scattering angles, but very close agreement at angles above 100 degree. Although the calculated cross sections agree with experiment between 120 degree and 135 degree, large discrepancies persist at angles above 135 degree. We conclude that the differences between the measurements and theory cannot be explained on the basis of an inaccurate representation of electron exchange or polarization of the target. copyright 1996 The American Physical Society

  9. Thermal Rayleigh-Marangoni convection in a three-layer liquid-metal-battery model

    Science.gov (United States)

    Köllner, Thomas; Boeck, Thomas; Schumacher, Jörg

    2017-05-01

    The combined effects of buoyancy-driven Rayleigh-Bénard convection (RC) and surface tension-driven Marangoni convection (MC) are studied in a triple-layer configuration which serves as a simplified model for a liquid metal battery (LMB). The three-layer model consists of a liquid metal alloy cathode, a molten salt separation layer, and a liquid metal anode at the top. Convection is triggered by the temperature gradient between the hot electrolyte and the colder electrodes, which is a consequence of the release of resistive heat during operation. We present a linear stability analysis of the state of pure thermal conduction in combination with three-dimensional direct numerical simulations of the nonlinear turbulent evolution on the basis of a pseudospectral method. Five different modes of convection are identified in the configuration, which are partly coupled to each other: RC in the upper electrode, RC with internal heating in the molten salt layer, and MC at both interfaces between molten salt and electrode as well as anticonvection in the middle layer and lower electrode. The linear stability analysis confirms that the additional Marangoni effect in the present setup increases the growth rates of the linearly unstable modes, i.e., Marangoni and Rayleigh-Bénard instability act together in the molten salt layer. The critical Grashof and Marangoni numbers decrease with increasing middle layer thickness. The calculated thresholds for the onset of convection are found for realistic current densities of laboratory-sized LMBs. The global turbulent heat transfer follows scaling predictions for internally heated RC. The global turbulent momentum transfer is comparable with turbulent convection in the classical Rayleigh-Bénard case. In summary, our studies show that incorporating Marangoni effects generates smaller flow structures, alters the velocity magnitudes, and enhances the turbulent heat transfer across the triple-layer configuration.

  10. A Novel Approach for Blind Estimation of Reverberation Time using Rayleigh Distribution Model

    Directory of Open Access Journals (Sweden)

    AMAD HAMZA

    2016-10-01

    Full Text Available In this paper a blind estimation approach is proposed which directly utilizes the reverberant signal for estimating the RT (Reverberation Time.For estimation a very well-known method is used; MLE (Maximum Likelihood Estimation. Distribution of the decay rate is the core of the proposed method and can be achieved from the analysis of decay curve of the energy of the sound or from enclosure impulse response. In a pre-existing state of the art method Laplace distribution is used to model reverberation decay. The method proposed in this paper make use of the Rayleigh distribution and a spotting approach for modelling decay rate and identifying region of free decay in reverberant signal respectively. Motivation for the paper was deduced from the fact, when the reverberant speech RT falls in specific range then the signals decay rate impersonate Rayleigh distribution. On the basis of results of the experiments carried out for numerous reverberant signal it is clear that the performance and accuracy of the proposed method is better than other pre-existing methods

  11. A Novel Approach for Blind Estimation of Reverberation Time using Rayleigh Distribution Model

    International Nuclear Information System (INIS)

    Hamza, A.; Jan, T.; Ali, A.

    2016-01-01

    In this paper a blind estimation approach is proposed which directly utilizes the reverberant signal for estimating the RT (Reverberation Time). For estimation a very well-known method is used; MLE (Maximum Likelihood Estimation). Distribution of the decay rate is the core of the proposed method and can be achieved from the analysis of decay curve of the energy of the sound or from enclosure impulse response. In a pre-existing state of the art method Laplace distribution is used to model reverberation decay. The method proposed in this paper make use of the Rayleigh distribution and a spotting approach for modelling decay rate and identifying region of free decay in reverberant signal respectively. Motivation for the paper was deduced from the fact, when the reverberant speech RT falls in specific range then the signals decay rate impersonate Rayleigh distribution. On the basis of results of the experiments carried out for numerous reverberant signal it is clear that the performance and accuracy of the proposed method is better than other pre-existing methods. (author)

  12. A simple proposal for Rayleigh's scaterring experiment

    Directory of Open Access Journals (Sweden)

    Adriano José Ortiz

    2010-03-01

    Full Text Available This work presents an alternative proposal for Rayleigh's scattering experiment presented and discussed in Krapas and Santos (2002 in this journal. Besides being simple and low-cost, the proposal suggested here is also proposing to demonstrate experimentally other physical phenomena such as polarization of light from the sky, the rainbow and reflection on non-conductive surfaces, as well as determine the direction of these biases. The polarization will be observed with the aid of Polaroid obtained from liquid crystal displays taken from damaged electronic devices and the Polaroid polarization direction will be established by the observation of Brewester's angle in reflection experiment.

  13. Computational investigation of single mode vs multimode Rayleigh endash Taylor seeding in Z-pinch implosions

    International Nuclear Information System (INIS)

    Douglas, M.R.; Deeney, C.; Roderick, N.F.

    1998-01-01

    A series of two-dimensional magnetohydrodynamic calculations have been carried out to investigate single and multimode growth and mode coupling for magnetically-driven Rayleigh endash Taylor instabilities in Z pinches. Wavelengths ranging from 5.0 mm down to 1.25 mm were considered. Such wavelengths are comparable to those observed at stagnation using a random density open-quotes seedingclose quotes method. The calculations show that wavelengths resolved by less than 10 cells exhibit an artificial decrease in initial Fourier spectrum amplitudes and a reduction in the corresponding amplitude growth. Single mode evolution exhibits linear exponential growth and the development of higher harmonics as the mode transitions into the nonlinear phase. The mode growth continues to exponentiate but at a slower rate than determined by linear hydrodynamic theory. In the two and three mode case, there is clear evidence of mode coupling and inverse cascade. In addition, distinct modal patterns are observed late in the implosion, resulting from finite shell thickness and magnetic field effects. copyright 1998 American Institute of Physics. thinsp

  14. Sizing of single evaporating droplet with Near-Forward Elastic Scattering Spectroscopy

    Science.gov (United States)

    Woźniak, M.; Jakubczyk, D.; Derkachov, G.; Archer, J.

    2017-11-01

    We have developed an optical setup and related numerical models to study evolution of single evaporating micro-droplets by analysis of their spectral properties. Our approach combines the advantages of the electrodynamic trapping with the broadband spectral analysis with the supercontinuum laser illumination. The elastically scattered light within the spectral range of 500-900 nm is observed by a spectrometer placed at the near-forward scattering angles between 4.3 ° and 16.2 ° and compared with the numerically generated lookup table of the broadband Mie scattering. Our solution has been successfully applied to infer the size evolution of the evaporating droplets of pure liquids (diethylene and ethylene glycol) and suspensions of nanoparticles (silica and gold nanoparticles in diethylene glycol), with maximal accuracy of ± 25 nm. The obtained results have been compared with the previously developed sizing techniques: (i) based on the analysis of the Mie scattering images - the Mie Scattering Lookup Table Method and (ii) the droplet weighting. Our approach provides possibility to handle levitating objects with much larger size range (radius from 0.5 μm to 30 μm) than with the use of optical tweezers (typically radius below 8 μm) and analyse them with much wider spectral range than with commonly used LED sources.

  15. Effects of Major Sudden Stratospheric Warmings Identified in Midlatitude Mesospheric Rayleigh-Scatter Lidar Temperatures

    Science.gov (United States)

    Sox, L.; Wickwar, V. B.; Fish, C. S.; Herron, J. P.

    2014-12-01

    Mesospheric temperature anomalies associated with Sudden Stratospheric Warmings (SSWs) have been observed extensively in the polar regions. However, observations of these anomalies at midlatitudes are sparse. The very dense 11-year data set, collected between 1993-2004, with the Rayleigh-scatter lidar at the Atmospheric Lidar Observatory (ALO; 41.7°N, 111.8°W) at the Center for Atmospheric and Space Sciences (CASS) on the campus of Utah State University (USU), has been carefully examined for such anomalies. The temperatures derived from these data extend over the mesosphere, from 45 to 90 km. During this period extensive data were acquired during seven major SSW events. In this work we aim to determine the characteristics of the midlatitude mesospheric temperatures during these seven major SSWs. To do this, comparisons were made between the temperature profiles on individual nights before, during, and after the SSW events and the corresponding derived climatological temperature profiles (31-day by 11-year average) for those nights. A consistent disturbance pattern was observed in the mesospheric temperatures during these SSWs. A distinct shift from the nominal winter temperature pattern to a pattern more characteristic of summer temperatures was seen in the midlatitude mesosphere close to when the zonal winds in the polar stratosphere (at 10 hPa, 60° N) reversed from eastward to westward. This shift lasted for several days. This change in pattern included coolings in the upper mesosphere, comparable to those seen in the polar regions, and warmings in the lower mesosphere.

  16. Automatic scatter detection in fluorescence landscapes by means of spherical principal component analysis

    DEFF Research Database (Denmark)

    Kotwa, Ewelina Katarzyna; Jørgensen, Bo Munk; Brockhoff, Per B.

    2013-01-01

    In this paper, we introduce a new method, based on spherical principal component analysis (S‐PCA), for the identification of Rayleigh and Raman scatters in fluorescence excitation–emission data. These scatters should be found and eliminated as a prestep before fitting parallel factor analysis...... models to the data, in order to avoid model degeneracies. The work is inspired and based on a previous research, where scatter removal was automatic (based on a robust version of PCA called ROBPCA) and required no visual data inspection but appeared to be computationally intensive. To overcome...... this drawback, we implement the fast S‐PCA in the scatter identification routine. Moreover, an additional pattern interpolation step that complements the method, based on robust regression, will be applied. In this way, substantial time savings are gained, and the user's engagement is restricted to a minimum...

  17. Determining Complex Structures using Docking Method with Single Particle Scattering Data

    Directory of Open Access Journals (Sweden)

    Haiguang Liu

    2017-04-01

    Full Text Available Protein complexes are critical for many molecular functions. Due to intrinsic flexibility and dynamics of complexes, their structures are more difficult to determine using conventional experimental methods, in contrast to individual subunits. One of the major challenges is the crystallization of protein complexes. Using X-ray free electron lasers (XFELs, it is possible to collect scattering signals from non-crystalline protein complexes, but data interpretation is more difficult because of unknown orientations. Here, we propose a hybrid approach to determine protein complex structures by combining XFEL single particle scattering data with computational docking methods. Using simulations data, we demonstrate that a small set of single particle scattering data collected at random orientations can be used to distinguish the native complex structure from the decoys generated using docking algorithms. The results also indicate that a small set of single particle scattering data is superior to spherically averaged intensity profile in distinguishing complex structures. Given the fact that XFEL experimental data are difficult to acquire and at low abundance, this hybrid approach should find wide applications in data interpretations.

  18. Rayleigh waves ellipticity and mode mis-identification in multi-channel analysis of surface waves

    DEFF Research Database (Denmark)

    Boaga, Jacopo; Cassiani, Giorgio; Strobbia, Claudio

    dispersion curve which is then inverted. Typically, single component vertical and multi channel receivers are used. In most cases the inversion of the dispersion properties is carried out assuming that the experimental dispersion curve corresponds to a single mode, mostly the fundamental Rayleigh mode...... to each other reaching similar Rayleigh velocity. It is known ‘osculation’ happens generally in presence of strong velocity contrasts, typically with a fast bedrock underlying loose sediments. The practical limitations of the acquired data affect the spectral and modal resolution, making it often...

  19. A Path Loss Model for Non-Line-of-Sight Ultraviolet Multiple Scattering Channels

    Directory of Open Access Journals (Sweden)

    Sadler BrianM

    2010-01-01

    Full Text Available An ultraviolet (UV signal transmission undergoes rich scattering and strong absorption by atmospheric particulates. We develop a path loss model for a Non-Line-of-Sight (NLOS link. The model is built upon probability theory governing random migration of photons in free space, undergoing scattering, in terms of angular direction and distance. The model analytically captures the contributions of different scattering orders. Thus it relaxes the assumptions of single scattering theory and provides more realistic results. This allows us to assess the importance of high-order scattering, such as in a thick atmosphere environment, where short range NLOS UV communication is enhanced by hazy or foggy weather. By simulation, it is shown that the model coincides with a previously developed Monte Carlo model. Additional numerical examples are presented to demonstrate the effects of link geometry and atmospheric conditions. The results indicate the inherent tradeoffs in beamwidth, pointing angles, range, absorption, and scattering and so are valuable for NLOS communication system design.

  20. Effect of the single-scattering phase function on light transmission through disordered media with large inhomogeneities

    International Nuclear Information System (INIS)

    Marinyuk, V V; Sheberstov, S V

    2017-01-01

    We calculate the total transmission coefficient (transmittance) of a disordered medium with large (compared to the light wavelength) inhomogeneities. To model highly forward scattering in the medium we take advantage of the Gegenbauer kernel phase function. In a subdiffusion thickness range, the transmittance is shown to be sensitive to the specific form of the single-scattering phase function. The effect reveals itself at grazing angles of incidence and originates from small-angle multiple scattering of light. Our results are in a good agreement with numerical solutions to the radiative transfer equation. (paper)

  1. Scattered-field FDTD and PSTD algorithms with CPML absorbing boundary conditions for light scattering by aerosols

    International Nuclear Information System (INIS)

    Sun, Wenbo; Videen, Gorden; Fu, Qiang; Hu, Yongxiang

    2013-01-01

    As fundamental parameters for polarized-radiative-transfer calculations, the single-scattering phase matrix of irregularly shaped aerosol particles must be accurately modeled. In this study, a scattered-field finite-difference time-domain (FDTD) model and a scattered-field pseudo-spectral time-domain (PSTD) model are developed for light scattering by arbitrarily shaped dielectric aerosols. The convolutional perfectly matched layer (CPML) absorbing boundary condition (ABC) is used to truncate the computational domain. It is found that the PSTD method is generally more accurate than the FDTD in calculation of the single-scattering properties given similar spatial cell sizes. Since the PSTD can use a coarser grid for large particles, it can lower the memory requirement in the calculation. However, the Fourier transformations in the PSTD need significantly more CPU time than simple subtractions in the FDTD, and the fast Fourier transform requires a power of 2 elements in calculations, thus using the PSTD could not significantly reduce the CPU time required in the numerical modeling. Furthermore, because the scattered-field FDTD/PSTD equations include incident-wave source terms, the FDTD/PSTD model allows for the inclusion of an arbitrarily incident wave source, including a plane parallel wave or a Gaussian beam like those emitted by lasers usually used in laboratory particle characterizations, etc. The scattered-field FDTD and PSTD light-scattering models can be used to calculate single-scattering properties of arbitrarily shaped aerosol particles over broad size and wavelength ranges. -- Highlights: • Scattered-field FDTD and PSTD models are developed for light scattering by aerosols. • Convolutional perfectly matched layer absorbing boundary condition is used. • PSTD is generally more accurate than FDTD in calculating single-scattering properties. • Using same spatial resolution, PSTD requires much larger CPU time than FDTD

  2. Self-consistent model of the Rayleigh--Taylor instability in ablatively accelerated laser plasma

    International Nuclear Information System (INIS)

    Bychkov, V.V.; Golberg, S.M.; Liberman, M.A.

    1994-01-01

    A self-consistent approach to the problem of the growth rate of the Rayleigh--Taylor instability in laser accelerated targets is developed. The analytical solution of the problem is obtained by solving the complete system of the hydrodynamical equations which include both thermal conductivity and energy release due to absorption of the laser light. The developed theory provides a rigorous justification for the supplementary boundary condition in the limiting case of the discontinuity model. An analysis of the suppression of the Rayleigh--Taylor instability by the ablation flow is done and it is found that there is a good agreement between the obtained solution and the approximate formula σ = 0.9√gk - 3u 1 k, where g is the acceleration, u 1 is the ablation velocity. This paper discusses different regimes of the ablative stabilization and compares them with previous analytical and numerical works

  3. Sound propagation in dilute suspensions of spheres: Analytical comparison between coupled phase model and multiple scattering theory.

    Science.gov (United States)

    Valier-Brasier, Tony; Conoir, Jean-Marc; Coulouvrat, François; Thomas, Jean-Louis

    2015-10-01

    Sound propagation in dilute suspensions of small spheres is studied using two models: a hydrodynamic model based on the coupled phase equations and an acoustic model based on the ECAH (ECAH: Epstein-Carhart-Allegra-Hawley) multiple scattering theory. The aim is to compare both models through the study of three fundamental kinds of particles: rigid particles, elastic spheres, and viscous droplets. The hydrodynamic model is based on a Rayleigh-Plesset-like equation generalized to elastic spheres and viscous droplets. The hydrodynamic forces for elastic spheres are introduced by analogy with those of droplets. The ECAH theory is also modified in order to take into account the velocity of rigid particles. Analytical calculations performed for long wavelength, low dilution, and weak absorption in the ambient fluid show that both models are strictly equivalent for the three kinds of particles studied. The analytical calculations show that dilatational and translational mechanisms are modeled in the same way by both models. The effective parameters of dilute suspensions are also calculated.

  4. Frequency-Stabilized Source of Single Photons from a Solid-State Qubit

    Directory of Open Access Journals (Sweden)

    Jonathan H. Prechtel

    2013-10-01

    Full Text Available Single quantum dots are solid-state emitters that mimic two-level atoms but with a highly enhanced spontaneous emission rate. A single quantum dot is the basis for a potentially excellent single-photon source. One outstanding problem is that there is considerable noise in the emission frequency, making it very difficult to couple the quantum dot to another quantum system. We solve this problem here with a dynamic feedback technique that locks the quantum-dot emission frequency to a reference. The incoherent scattering (resonance fluorescence represents the single-photon output, whereas the coherent scattering (Rayleigh scattering is used for the feedback control. The fluctuations in emission frequency are reduced to 20 MHz, just approximately 5% of the quantum-dot optical linewidth, even over several hours. By eliminating the 1/f-like noise, the relative fluctuations in quantum-dot noise power are reduced to approximately 10^{-5} at low frequency. Under these conditions, the antibunching dip in the resonance fluorescence is described extremely well by the two-level atom result. The technique represents a way of removing charge noise from a quantum device.

  5. THEORETICAL MODELLING STUDY ON THE RELATIONSHIP BETWEEN MULTI-FREQUENCY MICROWAVE VEGETATION INDEX AND VEGETATION PROPERTIES (OPTICAL DEPTH AND SINGLE SCATTERING ALBEDO

    Directory of Open Access Journals (Sweden)

    S. Talebi

    2018-04-01

    Full Text Available This paper presents a theoretical study of derivation Microwave Vegetation Indices (MVIs in different pairs of frequencies using two methods. In the first method calculating MVI in different frequencies based on Matrix Doubling Model (to take in to account multi scattering effects has been done and analyzed in various soil properties. The second method was based on MVI theoretical basis and its independency to underlying soil surface signals. Comparing the results from two methods with vegetation properties (single scattering albedo and optical depth indicated partial correlation between MVI from first method and optical depth, and full correlation between MVI from second method and vegetation properties. The second method to derive MVI can be used widely in global microwave vegetation monitoring.

  6. SCAP-82, Single Scattering, Albedo Scattering, Point-Kernel Analysis in Complex Geometry

    International Nuclear Information System (INIS)

    Disney, R.K.; Vogtman, S.E.

    1987-01-01

    1 - Description of problem or function: SCAP solves for radiation transport in complex geometries using the single or albedo scatter point kernel method. The program is designed to calculate the neutron or gamma ray radiation level at detector points located within or outside a complex radiation scatter source geometry or a user specified discrete scattering volume. Geometry is describable by zones bounded by intersecting quadratic surfaces within an arbitrary maximum number of boundary surfaces per zone. Anisotropic point sources are describable as pointwise energy dependent distributions of polar angles on a meridian; isotropic point sources may also be specified. The attenuation function for gamma rays is an exponential function on the primary source leg and the scatter leg with a build- up factor approximation to account for multiple scatter on the scat- ter leg. The neutron attenuation function is an exponential function using neutron removal cross sections on the primary source leg and scatter leg. Line or volumetric sources can be represented as a distribution of isotropic point sources, with un-collided line-of-sight attenuation and buildup calculated between each source point and the detector point. 2 - Method of solution: A point kernel method using an anisotropic or isotropic point source representation is used, line-of-sight material attenuation and inverse square spatial attenuation between the source point and scatter points and the scatter points and detector point is employed. A direct summation of individual point source results is obtained. 3 - Restrictions on the complexity of the problem: - The SCAP program is written in complete flexible dimensioning so that no restrictions are imposed on the number of energy groups or geometric zones. The geometric zone description is restricted to zones defined by boundary surfaces defined by the general quadratic equation or one of its degenerate forms. The only restriction in the program is that the total

  7. Scatter measurement and correction method for cone-beam CT based on single grating scan

    Science.gov (United States)

    Huang, Kuidong; Shi, Wenlong; Wang, Xinyu; Dong, Yin; Chang, Taoqi; Zhang, Hua; Zhang, Dinghua

    2017-06-01

    In cone-beam computed tomography (CBCT) systems based on flat-panel detector imaging, the presence of scatter significantly reduces the quality of slices. Based on the concept of collimation, this paper presents a scatter measurement and correction method based on single grating scan. First, according to the characteristics of CBCT imaging, the scan method using single grating and the design requirements of the grating are analyzed and figured out. Second, by analyzing the composition of object projection images and object-and-grating projection images, the processing method for the scatter image at single projection angle is proposed. In addition, to avoid additional scan, this paper proposes an angle interpolation method of scatter images to reduce scan cost. Finally, the experimental results show that the scatter images obtained by this method are accurate and reliable, and the effect of scatter correction is obvious. When the additional object-and-grating projection images are collected and interpolated at intervals of 30 deg, the scatter correction error of slices can still be controlled within 3%.

  8. A full-angle Monte-Carlo scattering technique including cumulative and single-event Rutherford scattering in plasmas

    Science.gov (United States)

    Higginson, Drew P.

    2017-11-01

    We describe and justify a full-angle scattering (FAS) method to faithfully reproduce the accumulated differential angular Rutherford scattering probability distribution function (pdf) of particles in a plasma. The FAS method splits the scattering events into two regions. At small angles it is described by cumulative scattering events resulting, via the central limit theorem, in a Gaussian-like pdf; at larger angles it is described by single-event scatters and retains a pdf that follows the form of the Rutherford differential cross-section. The FAS method is verified using discrete Monte-Carlo scattering simulations run at small timesteps to include each individual scattering event. We identify the FAS regime of interest as where the ratio of temporal/spatial scale-of-interest to slowing-down time/length is from 10-3 to 0.3-0.7; the upper limit corresponds to Coulomb logarithm of 20-2, respectively. Two test problems, high-velocity interpenetrating plasma flows and keV-temperature ion equilibration, are used to highlight systems where including FAS is important to capture relevant physics.

  9. Modal model for the nonlinear multimode Rayleigh endash Taylor instability

    International Nuclear Information System (INIS)

    Ofer, D.; Alon, U.; Shvarts, D.; McCrory, R.L.; Verdon, C.P.

    1996-01-01

    A modal model for the Rayleigh endash Taylor (RT) instability, applicable at all stages of the flow, is introduced. The model includes a description of nonlinear low-order mode coupling, mode growth saturation, and post-saturation mode coupling. It is shown to significantly extend the range of applicability of a previous model proposed by Haan, to cases where nonlinear mode generation is important. Using the new modal model, we study the relative importance of mode coupling at late nonlinear stages and resolve the difference between cases in which mode generation assumes a dominant role, leading to the late time inverse cascade of modes and loss of memory of initial conditions, and cases where mode generation is not important and memory of initial conditions is retained. Effects of finite density ratios (Atwood number A<1) are also included in the model and the difference between various measures of the mixing zone penetration depth for A<1 is discussed. copyright 1996 American Institute of Physics

  10. Laser light scattering in a laser-induced argon plasma: Investigations of the shock wave

    Energy Technology Data Exchange (ETDEWEB)

    Pokrzywka, B. [Obserwatorium Astronomiczne na Suhorze, Uniwersytet Pedagogiczny, ulica Podchorazych 2, 30-084 Krakow (Poland); Mendys, A., E-mail: agata.mendys@uj.edu.pl [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Dzierzega, K.; Grabiec, M. [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Pellerin, S. [GREMI, site de Bourges, Universite d' Orleans, CNRS, rue Gaston Berger BP 4043, 18028 Bourges (France)

    2012-08-15

    Shock wave produced by a laser induced spark in argon at atmospheric pressure was examined using Rayleigh and Thomson scattering. The spark was generated by focusing a laser pulse from the second harmonic ({lambda} = 532 nm) of a nanosecond Nd:YAG laser using an 80 mm focal length lens, with a fluence of 2 kJ{center_dot}cm{sup -2}. Images of the spark emission were recorded for times between 30 ns and 100 {mu}s after the laser pulse in order to characterize its spatial evolution. The position of the shock wave at several instants of its evolution and for several plasma regions was determined from the Rayleigh-scattered light of another nanosecond Nd:YAG laser (532 nm, 40 J{center_dot}cm{sup -2} fluence). Simultaneously, Thomson scattering technique was applied to determine the electron density and temperature in the hot plasma core. Attempts were made to describe the temporal evolution of the shock wave within a self-similar model, both by the simple Sedov-Taylor formula as well as its extension deduced by de Izarra. The temporal radial evolution of the shock position is similar to that obtained within theory taking into account the counter pressure of the ambient gas. Density profiles just behind the shock front are in qualitative agreement with those obtained by numerically solving the Euler equations for instantaneous explosion at a point with counter pressure. - Highlights: Black-Right-Pointing-Pointer We investigated shock wave evolution by Rayleigh scattering method. Black-Right-Pointing-Pointer 2D map of shockwave position for several times after plasma generation is presented. Black-Right-Pointing-Pointer Shock wave evolution is not satisfactorily described within self-similar models. Black-Right-Pointing-Pointer Evolution of shock position similar to theory taking into account counter pressure. Black-Right-Pointing-Pointer Density profile behind the shock similar to numerical solution of Euler equations.

  11. Role of Shape and Numbers of Ridges and Valleys in the Insulating Effects of Topography on the Rayleigh Wave Characteristics

    Science.gov (United States)

    Narayan, J. P.; Kumar, Neeraj; Chauhan, Ranu

    2018-03-01

    This research work is inspired by the recently accepted concept that high frequency Rayleigh waves are generated in the epicentral zone of shallow earthquakes. Such high frequency Rayleigh waves with large amplitude may develop much of spatial variability in ground motion which in turn may cause unexpected damage to long-span structures like bridges, underground pipelines, dams, etc., in the hilly regions. Further, it has been reported that topography acts as an insulator for the Rayleigh waves (Ma et al. BSSA 97:2066-2079, 2007). The above mentioned scientific developments stimulated to quantify the role of shape and number of ridges and valleys falling in the path of Rayleigh wave in the insulating effect of topography on the Rayleigh waves. The simulated results reveals very large amplification of the horizontal component of Rayleigh wave near the top of a triangular ridge which may cause intensive landslides under favorable condition. The computed snapshots of the wave-field of Rayleigh wave reveals that the interaction of Rayleigh wave with the topography causes reflection, splitting, and diffraction of Rayleigh wave in the form of body waves which in turn provides the insulating capacity to the topography. Insulating effects of single valley is more than that of single ridge. Further this effect was more in case of elliptical ridge/valley than triangular ridge/valley. The insulating effect of topography was proportional to the frequency of Rayleigh wave and the number of ridges and valleys in the string. The obtained level of insulation effects of topography on the Rayleigh wave (energy of Rayleigh wave reduced to less than 4% after crossing a topography of span 4.5 km) calls for the consideration of role of hills and valleys in seismic hazard prediction, particularly in case of shallow earthquakes.

  12. Channel modelling and performance analysis of V2I communication systems in blind bend scattering environments

    KAUST Repository

    Chelli, Ali

    2014-01-01

    In this paper, we derive a new geometrical blind bend scattering model for vehicle-to- infrastructure (V2I) communications. The proposed model takes into account single-bounce and double- bounce scattering stemming from fixed scatterers located on both sides of a curved street. Starting from the geometrical blind bend model, the exact expression of the angle of departure (AOD) is derived. Based on this expression, the probability density function (PDF) of the AOD and the Doppler power spectrum are determined. Analytical expressions for the channel gain and the temporal autocorrelation function (ACF) are provided under non-line-of-sight (NLOS) conditions. Additionally, we investigate the impact of the position of transmitting vehicle relatively to the receiving road-side unit on the channel statistics. Moreover, we study the performance of different digital modulations over a sum of singly and doubly scattered (SSDS) channel. Note that the proposed V2I channel model falls under the umbrella of SSDS channels since the transmitted signal undergoes a combination of single-bounce and double-bounce scattering. We study some characteristic quantities of SSDS channels and derive expressions for the average symbol error probability of several modulation schemes over SSDS channels with and without diversity combining. The validity of these analytical expressions is confirmed by computer-based simulations.

  13. Elastic scattering of low energy γ-rays

    International Nuclear Information System (INIS)

    Whittingham, I.B.

    1978-05-01

    Theoretical cross sections for the elastic scattering of 245, 334, 444, 779, 1086, 1112 and 1408 keV γ-rays by Pb are obtained for scattering angles up to 150 degrees. Three sets of Rayleigh scattering amplitudes have been computed using (1) the calculations of Johnson and Cheng, (2) the K shell calculations of Brown and co-workers supplemented by form factors amplitudes for higher shells, and (3) form factor amplitudes for all shells. Nuclear Thomson amplitudes have been included for all energies and, for 1408 keV, Delbruck scattering based upon the calculations of Papatzacos and Mork has been included. Nuclear resonance scattering is show to be negligble for all energies

  14. Performance evaluation of a dual fringe-imaging Michelson interferometer for air parameter measurements with a 355 nm Rayleigh-Mie lidar.

    Science.gov (United States)

    Cézard, Nicolas; Dolfi-Bouteyre, Agnès; Huignard, Jean-Pierre; Flamant, Pierre H

    2009-04-20

    A new concept of spectrum analyzer is proposed for short-range lidar measurements in airborne applications. It implements a combination of two fringe-imaging Michelson interferometers to analyze the Rayleigh-Mie spectrum backscattered by molecules and particles at 355 nm. The objective is to perform simultaneous measurements of four variables: the air speed, the air temperature and density, and the particle scattering ratio. The Cramer-Rao bounds are calculated to evaluate the best expectable measurement accuracies. The performance optimization shows that a Michelson interferometer with a path difference of 3 cm is optimal for air speed measurements in clear air. To optimize density, temperature, and scattering ratio measurements, the second interferometer should be set to a path difference of 10 cm at least; 20 cm would be better to be less sensitive to the actual Rayleigh-Brillouin line shape.

  15. Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar.

    Science.gov (United States)

    Xia, Haiyun; Dou, Xiankang; Shangguan, Mingjia; Zhao, Ruocan; Sun, Dongsong; Wang, Chong; Qiu, Jiawei; Shu, Zhifeng; Xue, Xianghui; Han, Yuli; Han, Yan

    2014-09-08

    Temperature detection remains challenging in the low stratosphere, where the Rayleigh integration lidar is perturbed by aerosol contamination and ozone absorption while the rotational Raman lidar is suffered from its low scattering cross section. To correct the impacts of temperature on the Rayleigh Doppler lidar, a high spectral resolution lidar (HSRL) based on cavity scanning Fabry-Perot Interferometer (FPI) is developed. By considering the effect of the laser spectral width, Doppler broadening of the molecular backscatter, divergence of the light beam and mirror defects of the FPI, a well-behaved transmission function is proved to show the principle of HSRL in detail. Analysis of the statistical error of the HSRL is carried out in the data processing. A temperature lidar using both HSRL and Rayleigh integration techniques is incorporated into the Rayleigh Doppler wind lidar. Simultaneous wind and temperature detection is carried out based on the combined system at Delhi (37.371°N, 97.374°E; 2850 m above the sea level) in Qinghai province, China. Lower Stratosphere temperature has been measured using HSRL between 18 and 50 km with temporal resolution of 2000 seconds. The statistical error of the derived temperatures is between 0.2 and 9.2 K. The temperature profile retrieved from the HSRL and wind profile from the Rayleigh Doppler lidar show good agreement with the radiosonde data. Specifically, the max temperature deviation between the HSRL and radiosonde is 4.7 K from 18 km to 36 km, and it is 2.7 K between the HSRL and Rayleigh integration lidar from 27 km to 34 km.

  16. Model for the saturation of the hydromagnetic Rayleigh--Taylor instability

    International Nuclear Information System (INIS)

    Roderick, N.F.; Hussey, T.W.

    1984-01-01

    The saturation of the hydromagnetic Rayleigh--Taylor instability is caused by the reduction of driving current in the bubble region between the spikes formed as the instability develops. For short wavelengths linear magnetic field diffusion provides the necessary smoothing of the magnetic field to reduce the driving force. For wavelengths longer than the magnetic field diffusion length, the current is shorted through material which expands into the bubble region. This initially low density accumulates in the bubble and eventually provides a source of sufficiently high conductivity plasma which reduces the magnetic field penetration to the front of the bubble. Simple analytic models have been developed to verify and and quantify these predictions. These models have been compared with two-dimensional magnetohydrodynamic calculations for imploding plasma shells and give good agreement with these more detailed simulations

  17. Application of artificial neural networks for the determination of proteins with CPA-pI by rayleigh light scattering technique

    Energy Technology Data Exchange (ETDEWEB)

    Dong Lijun [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Chen Xingguo [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China)]. E-mail: chenxg@lzu.edu.cn; Hu Zhide [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China)

    2007-05-15

    The determination of proteins with 2-(4-chloro-2-phosphonophenylazo)-7-(4-iodophenylazo) -1,8-dihydroxynaphthalene-3,6-disulfonic acid (CPA-pI) by Rayleigh light scattering (RLS) was studied in this paper. The weak RLS of CPA-pI and BSA can be enhanced greatly by the addition of Al{sup 3+} at the pH 5.6 and an enhanced RLS signal was produced at 365-385 nm. Based on the reaction of CPA-pI, Al{sup 3+} and proteins, a new quantitative determination method for proteins has been developed. The effect of three variables for the determination of proteins was optimized by means of artificial neural networks (ANNs) using extended delta-bar-delta (EDBD) algorithms with the optimal network structure of 3-5-1. This method is very sensitive (2.5-35.4 {mu}g/ml for bovine serum albumin (BSA)), rapid (<2 min), simple (one step) and tolerance of most interfering substances. Six samples of protein in human serum were determined and the maximum relative error is no more than 2% and the recovery is between 95% and 105%.

  18. Centrifugally Driven Rayleigh-Taylor Instability

    Science.gov (United States)

    Scase, Matthew; Hill, Richard

    2017-11-01

    The instability that develops at the interface between two fluids of differing density due to the rapid rotation of the system may be considered as a limit of high-rotation rate Rayleigh-Taylor instability. Previously the authors have considered the effect of rotation on a gravitationally dominated Rayleigh-Taylor instability and have shown that some growth modes of instability may be suppressed completely by the stabilizing effect of rotation (Phys. Rev. Fluids 2:024801, Sci. Rep. 5:11706). Here we consider the case of very high rotation rates and a negligible gravitational field. The initial condition is of a dense inner cylinder of fluid surrounded by a lighter layer of fluid. As the system is rotated about the generating axis of the cylinder, the dense inner fluid moves away from the axis and the familiar bubbles and spikes of Rayleigh-Taylor instability develop at the interface. The system may be thought of as a ``fluid-fluid centrifuge''. By developing a model based on an Orr-Sommerfeld equation, we consider the effects of viscosity, surface tension and interface diffusion on the growth rate and modes of instability. We show that under particular circumstances some modes may be stabilized. School of Mathematical Sciences.

  19. A heuristic model for the nonlinear Rayleigh--Taylor instability in fast Z pinches

    International Nuclear Information System (INIS)

    Hussey, T.W.; Roderick, N.F.; Shumlak, U.; Spielman, R.B.; Deeney, C.

    1995-01-01

    A simple, heuristic model for the early nonlinear phase of the Rayleigh--Taylor instability (RTI) in thin-cylindrical-shell Z-pinch implosions has been developed. This model is based on the fact that, as the field--plasma interface is deformed, there is a component of the applied force that acts to move mass from the low mass per unit area bubble region into the higher mass per unit area spike region. The resulting reduced mass per unit area of the bubble causes it to be preferentially accelerated ahead of the spike. The pinch begins to radiate as the bubble mass first reaches the axis, and it continues to radiate while the mass that is entrained within the spikes and within unperturbed parts of the shell also arrives on axis. This model relates the time at which the bubble arrives on axis to an initial wavelength and amplitude of a single mode of the RTI. Then, by comparing this to the time at which the unperturbed mass reaches the axis, one estimates pinch thermalization time, a quantity that is determined experimentally. Experimental data, together with analytic models, have been used to choose appropriate initial wavelength and amplitude both for foils and for certain gas puff implosions. By noting that thermalization time is a weak function of these parameters, it is argued that one may use the same values for an extrapolative study of qualitatively similar implosions

  20. Temporary electron localization and scattering in disordered single strands of DNA

    International Nuclear Information System (INIS)

    Caron, Laurent; Sanche, Leon

    2006-01-01

    We present a theoretical study of the effect of structural and base sequence disorders on the transport properties of nonthermal electron scattering within and from single strands of DNA. The calculations are based on our recently developed formalism to treat multiple elastic scattering from simplified pseudomolecular DNA subunits. Structural disorder is shown to increase both the elastic scattering cross section and the attachment probability on the bases at low energy. Sequence disorder, however, has no significant effect

  1. Incorporation of flow injection analysis with dual-wavelength overlapping resonance Rayleigh scattering for rapid determination of malachite green and its metabolite in fish.

    Science.gov (United States)

    Zhu, Jinghui; Qin, Mingyou; Liu, Shaopu; Liu, Zhongfang; Yang, Jidong; Hu, Xiaoli

    2014-09-15

    A flow injection analysis (FIA) system combined with dual-wavelength overlapping resonance Rayleigh scattering (DWO-RRS) has been established and validated for rapid determination of malachite green (MG) and its metabolite in fish samples. Under experimental condition, MG would react with Erythrosin (Ery) to form ion-association complexes, resulting in the occurrence of two RRS peaks and a dramatic enhancement of RRS intensity. The maximum RRS peaks were located at 286 nm and 337 nm. It is noted that the increments of both of these two peaks were proportional to the concentration of MG. The detection limit of DWO-RRS was 1.5 ng/mL, which was comparable to several reported methods. Moreover, the results of real sample analysis exhibited an acceptable recovery between 97.5% and 103.6%, indicating that the method had good reproducibility. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. A Pseudo-3D Model for Electromagnetic Acoustic Transducers (EMATs

    Directory of Open Access Journals (Sweden)

    Wuliang Yin

    2018-03-01

    Full Text Available Previous methods for modelling Rayleigh waves produced by a meander-line-coil electromagnetic acoustic transducer (EMAT consisted mostly of two-dimensional (2D simulations that focussed on the vertical plane of the material. This paper presents a pseudo-three-dimensional (3D model that extends the simulation space to both vertical and horizontal planes. For the vertical plane, we combines analytical and finite-difference time-domain (FDTD methods to model Rayleigh waves’ propagation within an aluminium plate and their scattering behaviours by cracks. For the horizontal surface plane, we employ an analytical method to investigate the radiation pattern of Rayleigh waves at various depths. The experimental results suggest that the models and the modelling techniques are valid.

  3. Development of Rayleigh Doppler lidar for measuring middle atmosphere winds

    Science.gov (United States)

    Raghunath, K.; Patra, A. K.; Narayana Rao, D.

    Interpretation of most of the middle and upper atmospheric dynamical and chemical data relies on the climatological description of the wind field Rayleigh Doppler lidar is one instrument which monitors wind profiles continuously though continuity is limited to clear meteorological conditions in the middle atmosphere A Doppler wind lidar operating in incoherent mode gives excellent wind and temperature information at these altitudes with necessary spectral sensitivity It observes atmospheric winds by measuring the spectral shift of the scattered light due to the motions of atmospheric molecules with background winds and temperature by spectral broadening The presentation is about the design and development of Incoherent Doppler lidar to obtain wind information in the height regions of 30-65 km The paper analyses and describes various types of techniques that can be adopted viz Edge technique and Fringe Imaging technique The paper brings out the scientific objectives configuration simulations error sources and technical challenges involved in the development of Rayleigh Doppler lidar The presentation also gives a novel technique for calibrating the lidar

  4. Rayleigh scattering in the atmospheres of hot stars

    Czech Academy of Sciences Publication Activity Database

    Fišák, J.; Krtička, J.; Munzar, D.; Kubát, Jiří

    2016-01-01

    Roč. 590, June (2016), A95/1-A95/6 ISSN 0004-6361 R&D Projects: GA ČR(CZ) GA14-02385S Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:67985815 Keywords : atomic processes * scattering * stars: chemically peculiar Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  5. Comparison of the auxiliary function method and the discrete-ordinate method for solving the radiative transfer equation for light scattering.

    Science.gov (United States)

    da Silva, Anabela; Elias, Mady; Andraud, Christine; Lafait, Jacques

    2003-12-01

    Two methods for solving the radiative transfer equation are compared with the aim of computing the angular distribution of the light scattered by a heterogeneous scattering medium composed of a single flat layer or a multilayer. The first method [auxiliary function method (AFM)], recently developed, uses an auxiliary function and leads to an exact solution; the second [discrete-ordinate method (DOM)] is based on the channel concept and needs an angular discretization. The comparison is applied to two different media presenting two typical and extreme scattering behaviors: Rayleigh and Mie scattering with smooth or very anisotropic phase functions, respectively. A very good agreement between the predictions of the two methods is observed in both cases. The larger the number of channels used in the DOM, the better the agreement. The principal advantages and limitations of each method are also listed.

  6. Single- and multi- component inversion of Rayleigh waves acquired by a single 3-component geophone: an illustrative case study

    Czech Academy of Sciences Publication Activity Database

    Dal Moro, Giancarlo; Puzzilli, L.M.

    2017-01-01

    Roč. 14, č. 4 (2017), s. 431-444 ISSN 1214-9705 Institutional support: RVO:67985891 Keywords : surface wave analysis * Rayleigh wave dispersion * joint inversion * Vs30 Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Volcanology Impact factor: 0.699, year: 2016

  7. Hermite scatterers in an ultraviolet sky

    Science.gov (United States)

    Parker, Kevin J.

    2017-12-01

    The scattering from spherical inhomogeneities has been a major historical topic in acoustics, optics, and electromagnetics and the phenomenon shapes our perception of the world including the blue sky. The long wavelength limit of ;Rayleigh scattering; is characterized by intensity proportional to k4 (or λ-4) where k is the wavenumber and λ is the wavelength. With the advance of nanotechnology, it is possible to produce scatterers that are inhomogeneous with material properties that are functions of radius r, such as concentric shells. We demonstrate that with proper choice of material properties linked to the Hermite polynomials in r, scatterers can have long wavelength scattering behavior of higher powers: k8, k16, and higher. These ;Hermite scatterers; could be useful in providing unique signatures (or colors) to regions where they are present. If suspended in air under white light, the back-scattered spectrum would be shifted from blue towards violet and then ultraviolet as the higher order Hermite scatterers were illuminated.

  8. Two-component scattering model and the electron density spectrum

    Science.gov (United States)

    Zhou, A. Z.; Tan, J. Y.; Esamdin, A.; Wu, X. J.

    2010-02-01

    In this paper, we discuss a rigorous treatment of the refractive scintillation caused by a two-component interstellar scattering medium and a Kolmogorov form of density spectrum. It is assumed that the interstellar scattering medium is composed of a thin-screen interstellar medium (ISM) and an extended interstellar medium. We consider the case that the scattering of the thin screen concentrates in a thin layer represented by a δ function distribution and that the scattering density of the extended irregular medium satisfies the Gaussian distribution. We investigate and develop equations for the flux density structure function corresponding to this two-component ISM geometry in the scattering density distribution and compare our result with the observations. We conclude that the refractive scintillation caused by this two-component ISM scattering gives a more satisfactory explanation for the observed flux density variation than does the single extended medium model. The level of refractive scintillation is strongly sensitive to the distribution of scattering material along the line of sight (LOS). The theoretical modulation indices are comparatively less sensitive to the scattering strength of the thin-screen medium, but they critically depend on the distance from the observer to the thin screen. The logarithmic slope of the structure function is sensitive to the scattering strength of the thin-screen medium, but is relatively insensitive to the thin-screen location. Therefore, the proposed model can be applied to interpret the structure functions of flux density observed in pulsar PSR B2111 + 46 and PSR B0136 + 57. The result suggests that the medium consists of a discontinuous distribution of plasma turbulence embedded in the interstellar medium. Thus our work provides some insight into the distribution of the scattering along the LOS to the pulsar PSR B2111 + 46 and PSR B0136 + 57.

  9. Modeling of the thermal boundary layer in turbulent Rayleigh-Bénard convection

    Science.gov (United States)

    Emran, Mohammad; Shishkina, Olga

    2016-11-01

    We report modeling of the thermal boundary layer in turbulent Rayleigh-Bénard convection (RBC), which incorporates the effect of turbulent fluctuations. The study is based on the thermal boundary layer equation from Shishkina et al., and new Direct Numerical Simulations (DNS) of RBC in a cylindrical cell of the aspect ratio 1, for the Prandtl number variation of several orders of magnitude. Our modeled temperature profiles are found to agree with the DNS much better than those obtained with the classical Prandtl-Blasius or Falkner-Skan approaches. The work is supported by the Deutsche Forschungsgemeinschaft (DFG) under the Grant Sh405/4 - Heisenberg fellowship and SFB963, Project A06.

  10. Interaction between insulin and calf thymus DNA, and quantification of insulin and calf thymus DNA by a resonance Rayleigh scattering method

    International Nuclear Information System (INIS)

    Kong, L.; Liu, Z.; Hu, X.; Liu, S.; Li, W.

    2012-01-01

    The interaction of insulin with calf thymus deoxyribonucleic acid (ctDNA) leads to a complex that displays remarkably enhanced resonance Rayleigh scattering (RRS). The complex and its formation were investigated by atomic force microscopy and by absorption, fluorescence and circular dichroism spectroscopies. We show that the Tyr B16, Tyr B26 and Phe B24 amino acids near the active center (Phe B25) were influenced by the interaction, whereas Tyr A14, Tyr A19 and Phe B1 (which are located far away from the active center) were less influenced. The interaction provide a way in the quantitation of both ctDNA and insulin with high sensitivity. When ctDNA is used as a probe to quantify insulin, the detection limit (3σ) is 6.0 ng mL -1 . If, inversely, insulin is used as a probe to quantify ctDNA, the detection limit (3σ) is 7.2 ng mL -1 . The analysis of synthetic DNA samples and an insulin infection sample provided satisfactory results. (author)

  11. Measurement of Rayleigh Wave Beams Using Angle Beam Wedge Transducers as the Transmitter and Receiver with Consideration of Beam Spreading.

    Science.gov (United States)

    Zhang, Shuzeng; Li, Xiongbing; Jeong, Hyunjo

    2017-06-20

    A theoretical model, along with experimental verification, is developed to describe the generation, propagation and reception of a Rayleigh wave using angle beam wedge transducers. The Rayleigh wave generation process using an angle beam wedge transducer is analyzed, and the actual Rayleigh wave sound source distributions are evaluated numerically. Based on the reciprocity theorem and considering the actual sound source, the Rayleigh wave beams are modeled using an area integral method. The leaky Rayleigh wave theory is introduced to investigate the reception of the Rayleigh wave using the angle beam wedge transducers, and the effects of the wave spreading in the wedge and transducer size are considered in the reception process. The effects of attenuations of the Rayleigh wave and leaky Rayleigh wave are discussed, and the received wave results with different sizes of receivers are compared. The experiments are conducted using two angle beam wedge transducers to measure the Rayleigh wave, and the measurement results are compared with the predictions using different theoretical models. It is shown that the proposed model which considers the wave spreading in both the sample and wedges can be used to interpret the measurements reasonably.

  12. Determination of X-ray anomalous scattering in silicon

    International Nuclear Information System (INIS)

    Cusatis, C.

    1987-01-01

    The linear attenuation coeficient for X-ray in silicon was measured with approximately 0,1% accuracy, for 6 diferent wavelenghts of caracteristic radiation. From these result the imaginary parts of the atomic scattering factors, for silicon and for those wavelenghts, were obtained with the same accuracy. The results are compared with the most recent published values. The proposed method to avoid Rayleigh scattering can be used for any type of ''perfect'' crystal. (author) [pt

  13. Delbrueck scattering of monoenergetic photons

    International Nuclear Information System (INIS)

    Kahane, S.

    1978-05-01

    The Delbrueck effect was experimentally investigated in high Z nuclei with monoenergetic photons in the range 6.8-11.4 MeV. Two different methods were used for measurements of the differential scattering cross-section, in the 25-140 deg range and in the forward direction (theta = 1.5 deg), respectively. The known Compton scattering cross-section was used in a new and unique way for the determination of the elastic scattering cross-section. Isolation of the contribution of the real Delbrueck amplitudes to the cross-section was crried out successfully. Experimental confirmation of the theoretical calculations of Papatzacos and Mork and measurement, for the first time, of the Rayleigh scattering in the 10 MeV region are also reported. One of the most interesting findings is the presence of Coulomb corrections in Delbrueck scattering at these energies. More theoretical effort is needed in this last direction. (author)

  14. Modelling Hyperboloid Sound Scattering

    DEFF Research Database (Denmark)

    Burry, Jane; Davis, Daniel; Peters, Brady

    2011-01-01

    The Responsive Acoustic Surfaces workshop project described here sought new understandings about the interaction between geometry and sound in the arena of sound scattering. This paper reports on the challenges associated with modelling, simulating, fabricating and measuring this phenomenon using...... both physical and digital models at three distinct scales. The results suggest hyperboloid geometry, while difficult to fabricate, facilitates sound scattering....

  15. A vehicle-to-infrastructure channel model for blind corner scattering environments

    KAUST Repository

    Chelli, Ali

    2013-09-01

    In this paper, we derive a new geometrical blind corner scattering model for vehicle-to-infrastructure (V2I) communications. The proposed model takes into account single-bounce and double-bounce scattering stemming from fixed scatterers located on both sides of the curved street. Starting from the geometrical blind corner model, the exact expression of the angle of departure (AOD) is derived. Based on this expression, the probability density function (PDF) of the AOD and the Doppler power spectrum are determined. Analytical expressions for the channel gain and the temporal autocorrelation function (ACF) are provided under non-line-of-sight (NLOS) conditions. Moreover, we investigate the impact of the position of transmitting vehicle relatively to the receiving road-side unit on the channel statistics. The proposed channel model is useful for the design and analysis of future V2I communication systems. Copyright © 2013 by the Institute of Electrical and Electronic Engineers, Inc.

  16. Experimental and numerical investigations of beryllium strength models using the Rayleigh-Taylor instability

    Energy Technology Data Exchange (ETDEWEB)

    Henry de Frahan, M. T. [Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA; Belof, J. L. [Lawrence Livermore National Laboratory Livermore, California 94551-0808, USA; Cavallo, R. M. [Lawrence Livermore National Laboratory Livermore, California 94551-0808, USA; Raevsky, V. A. [Russian Federal Nuclear Center-VNIIEF, Sarov 607188, Russia; Ignatova, O. N. [Russian Federal Nuclear Center-VNIIEF, Sarov 607188, Russia; Lebedev, A. [Russian Federal Nuclear Center-VNIIEF, Sarov 607188, Russia; Ancheta, D. S. [Lawrence Livermore National Laboratory Livermore, California 94551-0808, USA; El-dasher, B. S. [Lawrence Livermore National Laboratory Livermore, California 94551-0808, USA; Florando, J. N. [Lawrence Livermore National Laboratory Livermore, California 94551-0808, USA; Gallegos, G. F. [Lawrence Livermore National Laboratory Livermore, California 94551-0808, USA; Johnsen, E. [Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA; LeBlanc, M. M. [Lawrence Livermore National Laboratory Livermore, California 94551-0808, USA

    2015-06-14

    A recent collaboration between LLNL and VNIIEF has produced a set of high explosive driven Rayleigh-Taylor strength data for beryllium. Design simulations using legacy strength models from Steinberg-Lund and Preston-Tonks-Wallace (PTW) suggested an optimal design that would delineate between not just different strength models, but different parameters sets of the PTW model. Application of the models to the post-shot results, however, shows close to classical growth. We characterize the material properties of the beryllium tested in the experiments. We also discuss recent efforts to simulate the data using the legacy strength models as well as the more recent RING relaxation model developed at VNIIEF. Finally, we present shock and ramp-loading recovery experiments conducted as part of the collaboration.

  17. The Rayleigh-Taylor instability in the spherical pinch

    International Nuclear Information System (INIS)

    Chen, H.B.; Hilko, B.; Panarella, E.

    1994-01-01

    The spherical pinch (SP) concept is an outgrowth of the inertial confinement model (ICF). Unlike the ICF where instabilities, especially the Rayleigh-Taylor instability, have been studied extensively, the instability study of the spherical pinch has just begun. The Raleigh-Taylor instability is investigated for the first time in the SP in the present work. By using the simple condition for the Rayleigh-Taylor instability ∇p · ∇p < O (density and pressure gradients have opposite direction), we have qualitatively identified the regions for development of instabilities in the SP. It is found that the explosion phase (central discharge) is stable and instabilities take place in the imploding phase. However, the growth rate for the instability is not in exponential form, and the appearance of the Rayleigh-Taylor instability does not prevent the main shock wave from converging to the center of the sphere

  18. Single-photon switch: Controllable scattering of photons inside a one-dimensional resonator waveguide

    Science.gov (United States)

    Zhou, L.; Gong, Z. R.; Liu, Y. X.; Sun, C. P.; Nori, F.

    2010-03-01

    We analyze the coherent transport of a single photon, which propagates in a one-dimensional coupled-resonator waveguide and is scattered by a controllable two-level system located inside one of the resonators of this waveguide. Our approach, which uses discrete coordinates, unifies low and high energy effective theories for single-photon scattering. We show that the controllable two-level system can behave as a quantum switch for the coherent transport of a single photon. This study may inspire new electro-optical single-photon quantum devices. We also suggest an experimental setup based on superconducting transmission line resonators and qubits. References: L. Zhou, Z.R. Gong, Y.X. Liu, C.P. Sun, F. Nori, Controllable scattering of photons inside a one-dimensional resonator waveguide, Phys. Rev. Lett. 101, 100501 (2008). L. Zhou, H. Dong, Y.X. Liu, C.P. Sun, F. Nori, Quantum super-cavity with atomic mirrors, Phys. Rev. A 78, 063827 (2008).

  19. Noctilucent clouds in the polar sumer mesopause: Investigations using the ALOMAR Rayleigh/Mie/Raman Lidar; Leuchtende Nachtwolken an der polaren Sommermesopause: Untersuchungen mit dem ALOMAR Rayleigh/Mie/Raman Lidar

    Energy Technology Data Exchange (ETDEWEB)

    Baumgarten, G.

    2001-09-01

    Noctilucent clouds (NLC) are rare, tenuous clouds in the terrestrial atmosphere that occur at polar latitudes in summer near 83 km altitude. These clouds where studied using the ALOMAR Rayleigh/Mie/Raman lidar located at 69 N, 16 E. The depolarization of light, which was backscattered on NLC particles was measured for the first time by the ALOMAR RMR-Lidar. Considering the small ratio of particle size over wavelength an unexpectedly large depolarization of 1.7% was observed. Comparing this result to T-matrix calculations for scattering on randomly oriented aspherical particles implies that the shape of the NLC particles is needle like. The ALOMAR RMR-Lidar is a twin-lidar equipped with two steerable telescopes which were used to observe a single NLC layer in two separate measurement volumes about 50 km apart at NLC altitudes. Cross correlation technique reveal the layer to be tilted with imbedded periodic horizontal structures showing wavelengths of about 30 to 50 km. These structures drift horizontally through the measurement volumes rather than being microphysically formed during the observation period. (orig.)

  20. Role of electron-electron scattering on spin transport in single layer graphene

    Directory of Open Access Journals (Sweden)

    Bahniman Ghosh

    2014-01-01

    Full Text Available In this work, the effect of electron-electron scattering on spin transport in single layer graphene is studied using semi-classical Monte Carlo simulation. The D’yakonov-P’erel mechanism is considered for spin relaxation. It is found that electron-electron scattering causes spin relaxation length to decrease by 35% at 300 K. The reason for this decrease in spin relaxation length is that the ensemble spin is modified upon an e-e collision and also e-e scattering rate is greater than phonon scattering rate at room temperature, which causes change in spin relaxation profile due to electron-electron scattering.

  1. Epp: A C++ EGSnrc user code for x-ray imaging and scattering simulations

    International Nuclear Information System (INIS)

    Lippuner, Jonas; Elbakri, Idris A.; Cui Congwu; Ingleby, Harry R.

    2011-01-01

    Purpose: Easy particle propagation (Epp) is a user code for the EGSnrc code package based on the C++ class library egspp. A main feature of egspp (and Epp) is the ability to use analytical objects to construct simulation geometries. The authors developed Epp to facilitate the simulation of x-ray imaging geometries, especially in the case of scatter studies. While direct use of egspp requires knowledge of C++, Epp requires no programming experience. Methods: Epp's features include calculation of dose deposited in a voxelized phantom and photon propagation to a user-defined imaging plane. Projection images of primary, single Rayleigh scattered, single Compton scattered, and multiple scattered photons may be generated. Epp input files can be nested, allowing for the construction of complex simulation geometries from more basic components. To demonstrate the imaging features of Epp, the authors simulate 38 keV x rays from a point source propagating through a water cylinder 12 cm in diameter, using both analytical and voxelized representations of the cylinder. The simulation generates projection images of primary and scattered photons at a user-defined imaging plane. The authors also simulate dose scoring in the voxelized version of the phantom in both Epp and DOSXYZnrc and examine the accuracy of Epp using the Kawrakow-Fippel test. Results: The results of the imaging simulations with Epp using voxelized and analytical descriptions of the water cylinder agree within 1%. The results of the Kawrakow-Fippel test suggest good agreement between Epp and DOSXYZnrc. Conclusions: Epp provides the user with useful features, including the ability to build complex geometries from simpler ones and the ability to generate images of scattered and primary photons. There is no inherent computational time saving arising from Epp, except for those arising from egspp's ability to use analytical representations of simulation geometries. Epp agrees with DOSXYZnrc in dose calculation, since

  2. Rayleigh-Taylor mixing in supernova experiments

    International Nuclear Information System (INIS)

    Swisher, N. C.; Abarzhi, S. I.; Kuranz, C. C.; Arnett, D.; Hurricane, O.; Remington, B. A.; Robey, H. F.

    2015-01-01

    We report a scrupulous analysis of data in supernova experiments that are conducted at high power laser facilities in order to study core-collapse supernova SN1987A. Parameters of the experimental system are properly scaled to investigate the interaction of a blast-wave with helium-hydrogen interface, and the induced Rayleigh-Taylor instability and Rayleigh-Taylor mixing of the denser and lighter fluids with time-dependent acceleration. We analyze all available experimental images of the Rayleigh-Taylor flow in supernova experiments and measure delicate features of the interfacial dynamics. A new scaling is identified for calibration of experimental data to enable their accurate analysis and comparisons. By properly accounting for the imprint of the experimental conditions, the data set size and statistics are substantially increased. New theoretical solutions are reported to describe asymptotic dynamics of Rayleigh-Taylor flow with time-dependent acceleration by applying theoretical analysis that considers symmetries and momentum transport. Good qualitative and quantitative agreement is achieved of the experimental data with the theory and simulations. Our study indicates that in supernova experiments Rayleigh-Taylor flow is in the mixing regime, the interface amplitude contributes substantially to the characteristic length scale for energy dissipation; Rayleigh-Taylor mixing keeps order

  3. The second-order S-matrix element for the elastic scattering of photons by K-shell bound electrons: the nonrelativistic limit

    Energy Technology Data Exchange (ETDEWEB)

    Costescu, A [Department of Physics, University of Bucharest, MG11, Bucharest-Magurele 76900 (Romania); Spanulescu, S [Department of Physics, University of Bucharest, MG11, Bucharest-Magurele 76900 (Romania); Stoica, C [Department of Physics, University of Bucharest, MG11, Bucharest-Magurele 76900 (Romania)

    2007-08-14

    The right expressions of the nonrelativistic K-shell Rayleigh scattering amplitudes and cross-sections are obtained by using the Coulomb Green's function method. Our analytical result does not have the spurious poles that occur in the old nonrelativistic result with retardation (Gavrila and Costescu 1970 Phys. Rev. A 2 1752). Starting from the expression of the second-order S-matrix element for the case of the elastic scattering of photons by K-shell bound electrons, we obtain the correct nonrelativistic Rayleigh angular distribution (valid for photon energies {omega} up to {alpha}Zm) by removing the relativistic higher order terms in {alpha}Z and {omega}/m. The imaginary part of the Rayleigh amplitudes is obtained for any scattering angles in a closed form in terms of elementary functions. Thereby a simple formula for the exact nonrelativistic photoeffect total cross-section is obtained via the optical theorem, giving significantly better predictions than Fischer's nonrelativistic photoeffect formula. Comparing the predictions given by our formulae with the full relativistic numerical calculations of Kissel et al (Phys. Rev. 1980 A 22 1970), and with experimental results, a fairly good agreement within 10% is found for the angular distribution of Rayleigh scattering for photon energies up to 200 keV and both below and above the first resonance.

  4. Violation of the Cauchy-Schwarz inequality in collective Raman scattering

    International Nuclear Information System (INIS)

    Shumovskij, A.S.; Tran Quang

    1988-01-01

    The violation of Cauchy-Schwarz (C-S) inequality for correlations between spectrum components of the Reyleigh line and between components of the Stokes line in the collective Raman scattering is discussed. It is shown that the violation of the C-S inequailty occurs only in the Rayleigh line, moreover, for the sidebands of the Rayleigh line the violation of the C-S inequality takes place for a large number of atoms, which means that this quantum effect has the macroscopic nature. 20 refs.; 3 figs

  5. Modeling of Rayleigh wave dispersion in Iberia

    Directory of Open Access Journals (Sweden)

    José Badal

    2011-01-01

    Full Text Available Phase and group velocities of 15–70 s Rayleigh waves propagating across the Iberian Peninsula have been transformed into local dispersion curves by linear inversion of travel times. The procedure permits that the waveform dispersion to be obtained as a continuous period-dependent velocity function at grid points belonging to the area probed by the waves, thus providing phase- and group-velocity contour maps for several periods within the interval of interest. The regionalization process rests on a homogeneous initial data set in which the number of observations remains almost constant for all periods of reference. Damped least-squares inversion of the local dispersion curves for shear-wave velocity structure is performed to obtain depth-dependent S-wave velocity profiles at the grid points covering the model region. The reliability of the results should improve significantly owing to the use of phase and group velocities simultaneously. On this basis, we have built horizontal depth sections that give an updated view of the seismic velocity structure of the peninsula at lithospheric and upper mantle depths (20–200 km. After averaging all the pure-path S-wave velocities previously determined at each grid point, the velocity-depth models so obtained for major tectonic units allow the comparison between the Hercynian basement and other areas of Mesozoic folding and Tertiary basins.

  6. Dipping-interface mapping using mode-separated Rayleigh waves

    Science.gov (United States)

    Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.; Miller, R.D.; Liu, Q.

    2009-01-01

    Multichannel analysis of surface waves (MASW) method is a non-invasive geophysical technique that uses the dispersive characteristic of Rayleigh waves to estimate a vertical shear (S)-wave velocity profile. A pseudo-2D S-wave velocity section is constructed by aligning 1D S-wave velocity profiles at the midpoint of each receiver spread that are contoured using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. Based on the assumption that a dipping-layer model can be regarded as stepped flat layers, high-resolution linear Radon transform (LRT) has been proposed to image Rayleigh-wave dispersive energy and separate modes of Rayleigh waves from a multichannel record. With the mode-separation technique, therefore, a dispersion curve that possesses satisfactory accuracy can be calculated using a pair of consecutive traces within a mode-separated shot gather. In this study, using synthetic models containing a dipping layer with a slope of 5, 10, 15, 20, or 30 degrees and a real-world example, we assess the ability of using high-resolution LRT to image and separate fundamental-mode Rayleigh waves from raw surface-wave data and accuracy of dispersion curves generated by a pair of consecutive traces within a mode-separated shot gather. Results of synthetic and real-world examples demonstrate that a dipping interface with a slope smaller than 15 degrees can be successfully mapped by separated fundamental waves using high-resolution LRT. ?? Birkh??user Verlag, Basel 2009.

  7. Possibility of single biomolecule imaging with coherent amplification of weak scattering x-ray photons.

    Science.gov (United States)

    Shintake, Tsumoru

    2008-10-01

    The number of photons produced by coherent x-ray scattering from a single biomolecule is very small because of its extremely small elastic-scattering cross section and low damage threshold. Even with a high x-ray flux of 3 x 10;{12} photons per 100-nm -diameter spot and an ultrashort pulse of 10 fs driven by a future x-ray free electron laser (x-ray FEL), it has been predicted that only a few 100 photons will be produced from the scattering of a single lysozyme molecule. In observations of scattered x rays on a detector, the transfer of energy from wave to matter is accompanied by the quantization of the photon energy. Unfortunately, x rays have a high photon energy of 12 keV at wavelengths of 1A , which is required for atomic resolution imaging. Therefore, the number of photoionization events is small, which limits the resolution of imaging of a single biomolecule. In this paper, I propose a method: instead of directly observing the photons scattered from the sample, we amplify the scattered waves by superimposing an intense coherent reference pump wave on it and record the resulting interference pattern on a planar x-ray detector. Using a nanosized gold particle as a reference pump wave source, we can collect 10;{4}-10;{5} photons in single shot imaging where the signal from a single biomolecule is amplified and recorded as two-dimensional diffraction intensity data. An iterative phase retrieval technique can be used to recover the phase information and reconstruct the image of the single biomolecule and the gold particle at the same time. In order to precisely reconstruct a faint image of the single biomolecule in Angstrom resolution, whose intensity is much lower than that of the bright gold particle, I propose a technique that combines iterative phase retrieval on the reference pump wave and the digital Fourier transform holography on the sample. By using a large number of holography data, the three-dimensional electron density map can be assembled.

  8. Thermal diffuse scattering in time-of-flight neutron diffraction studied on SBN single crystals

    International Nuclear Information System (INIS)

    Prokert, F.; Savenko, B.N.; Balagurov, A.M.

    1994-01-01

    At time-of-flight (TOF) diffractometer D N-2, installed at the pulsed reactor IBR-2 in Dubna, Sr x Ba 1-x Nb 2 O 6 mixed single crystals (SBN-x) of different compositions (0.50 < x< 0.75) were investigated between 15 and 773 K. The diffraction patterns were found to be strongly influenced by the thermal diffuse scattering (TDS). The appearance of the TDS from the long wavelength acoustic models of vibration in single crystals is characterized by the ratio of the velocity of sound to the velocity of neutron. Due to the nature of the TOF Laue diffraction technique used on D N-2, the TDS around Bragg peaks has rather a complex profile. An understanding of the TDS close to Bragg peaks is essential in allowing the extraction of the diffuse scattering occurring at the diffuse ferroelectric phase transition in SBN crystals. 11 refs.; 9 figs.; 1 tab. (author)

  9. Analytical and numerical analysis of finite amplitude Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Meiron, D.I.; Saffman, P.G.

    1987-01-01

    We summarize the results obtained in the last year. These include a simple model of bubble competition in Rayleigh-Taylor unstable flows which gives results which are in good agreement with experiment. In addition the model has been compared with two dimensional numerical simulations of inviscid Rayleigh-Taylor instability using the cloud-in-cell method. These simulations can now be run into the late time regime and can track the competition of as many as ten bubbles. The improvement in performance over previous applications of the cloud-in-cell approach is due to the application of finite difference techniques designed to handle shock-like structures in the vorticity of the interface which occur at late times. We propose to extend the research carried thus far to Rayleigh-Taylor problems in three dimensional and convergent geometries as well as to two-fluid instabilities in which interface roll-up is observed. Finally we present a budget for the fiscal year 1987-1988. 6 refs

  10. Evaluation of scatter correction using a single isotope for simultaneous emission and transmission data

    International Nuclear Information System (INIS)

    Yang, J.; Kuikka, J.T.; Vanninen, E.; Laensimies, E.; Kauppinen, T.; Patomaeki, L.

    1999-01-01

    Photon scatter is one of the most important factors degrading the quantitative accuracy of SPECT images. Many scatter correction methods have been proposed. The single isotope method was proposed by us. Aim: We evaluate the scatter correction method of improving the quality of images by acquiring emission and transmission data simultaneously with single isotope scan. Method: To evaluate the proposed scatter correction method, a contrast and linearity phantom was studied. Four female patients with fibromyalgia (FM) syndrome and four with chronic back pain (BP) were imaged. Grey-to-cerebellum (G/C) and grey-to-white matter (G/W) ratios were determined by one skilled operator for 12 regions of interest (ROIs) in each subject. Results: The linearity of activity response was improved after the scatter correction (r=0.999). The y-intercept value of the regression line was 0.036 (p [de

  11. Single-mode Rayleigh-Taylor growth-rate measurements with the OMEGA laser system

    International Nuclear Information System (INIS)

    Knauer, J.P.; Verdon, C.P.; Meyerhofer, D.D.; Boehly, T.R.; Bradley, D.K.; Smalyuk, V.A.; Ofer, D.; McKenty, P.W.; Glendinning, S.G.; Kalantar, D.H.; Watt, R.G.; Gobby, P.L.; Willi, O.; Taylor, R.J.

    1997-01-01

    The results from a series of single-mode Rayleigh-Taylor (RT) instability growth experiments performed on the OMEGA laser system using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five to six 351-nm laser beams overlapped with total intensities up to 2.5x10 14 W/cm 2 . Experiments were performed with both 3-ns ramp and 3-ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4%endash 7% over a 600-μm-diam region defined by the 90% intensity contour. The temporal growth of the modulation in optical depth was measured using through-foil radiography and was detected with an x-ray framing camera for CH targets with and without a foam buffer. The growth of both 31-μm and 60-μm wavelength perturbations was found to be in good agreement with ORCHID simulations when the experimental details, including noise, were included. The addition of a 30-mg/cc, 100-μm-thick polystyrene foam buffer layer resulted in reduced growth of the 31-μm perturbation and essentially unchanged growth for the 60-μm case when compared to targets without foam. copyright 1997 American Institute of Physics

  12. Rayleigh-Taylor convective overturn in stellar collapse

    International Nuclear Information System (INIS)

    Bruenn, S.W.; Buchler, J.R.; Livio, M.

    1979-01-01

    Rayleigh--Taylor convective overturn in collapsing stellar cores is modeled with a one-dimensional parametrization. The results of a numerical hydrodynamic study are very encouraging and indicate that such an overturn could well be a dominant feature in the supernova explosion mechanism

  13. Refinement of the Compton–Rayleigh scatter ratio method for use on the Mars Science Laboratory alpha particle X-ray spectrometer: II – Extraction of invisible element content

    Energy Technology Data Exchange (ETDEWEB)

    Perrett, Glynis M. [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Campbell, John L., E-mail: icampbel@uoguelph.ca [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Gellert, Ralf [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); King, Penelope L. [Research School of Earth Sciences, Australian National University, Canberra, ACT 0200 (Australia); Nield, Emily; O’Meara, Joanne M.; Pradler, Irina [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario N1G 2W1 (Canada)

    2016-02-01

    The intensity ratio C/R between Compton and Rayleigh scatter peaks of the exciting Pu L X-rays in the alpha particle X-ray spectrometer (APXS) is strongly affected by the presence of very light elements such as oxygen which cannot be detected directly by the APXS. C/R values are determined along with element concentrations by fitting APXS spectra of geochemical reference materials (GRMs) with the GUAPX code. A quantity K is defined as the ratio between the C/R value determined by Monte Carlo simulation based on the measured element concentrations and the fitted C/R value from the spectrum. To ensure optimally accurate K values, the choice of appropriate GRMs is explored in detail, with attention paid to Rb and Sr, whose characteristic Kα X-ray peaks overlap the Pu Lα scatter peaks. The resulting relationship between the ratio K and the overall oxygen fraction is linear. This provides a calibration from which the concentration of additional light invisible constituents (ALICs) such as water may be estimated in unknown rock and conglomerate samples. Several GRMs are used as ‘unknowns’ in order to evaluate the accuracy of ALIC concentrations derived in this manner.

  14. Design Aspects of the Rayleigh Convection Code

    Science.gov (United States)

    Featherstone, N. A.

    2017-12-01

    Understanding the long-term generation of planetary or stellar magnetic field requires complementary knowledge of the large-scale fluid dynamics pervading large fractions of the object's interior. Such large-scale motions are sensitive to the system's geometry which, in planets and stars, is spherical to a good approximation. As a result, computational models designed to study such systems often solve the MHD equations in spherical geometry, frequently employing a spectral approach involving spherical harmonics. We present computational and user-interface design aspects of one such modeling tool, the Rayleigh convection code, which is suitable for deployment on desktop and petascale-hpc architectures alike. In this poster, we will present an overview of this code's parallel design and its built-in diagnostics-output package. Rayleigh has been developed with NSF support through the Computational Infrastructure for Geodynamics and is expected to be released as open-source software in winter 2017/2018.

  15. GPU Implementation of High Rayleigh Number Three-Dimensional Mantle Convection

    Science.gov (United States)

    Sanchez, D. A.; Yuen, D. A.; Wright, G. B.; Barnett, G. A.

    2010-12-01

    Although we have entered the age of petascale computing, many factors are still prohibiting high-performance computing (HPC) from infiltrating all suitable scientific disciplines. For this reason and others, application of GPU to HPC is gaining traction in the scientific world. With its low price point, high performance potential, and competitive scalability, GPU has been an option well worth considering for the last few years. Moreover with the advent of NVIDIA's Fermi architecture, which brings ECC memory, better double-precision performance, and more RAM to GPU, there is a strong message of corporate support for GPU in HPC. However many doubts linger concerning the practicality of using GPU for scientific computing. In particular, GPU has a reputation for being difficult to program and suitable for only a small subset of problems. Although inroads have been made in addressing these concerns, for many scientists GPU still has hurdles to clear before becoming an acceptable choice. We explore the applicability of GPU to geophysics by implementing a three-dimensional, second-order finite-difference model of Rayleigh-Benard thermal convection on an NVIDIA GPU using C for CUDA. Our code reaches sufficient resolution, on the order of 500x500x250 evenly-spaced finite-difference gridpoints, on a single GPU. We make extensive use of highly optimized CUBLAS routines, allowing us to achieve performance on the order of O( 0.1 ) µs per timestep*gridpoint at this resolution. This performance has allowed us to study high Rayleigh number simulations, on the order of 2x10^7, on a single GPU.

  16. Experimental and numerical investigations of beryllium strength models using the Rayleigh-Taylor instability

    Energy Technology Data Exchange (ETDEWEB)

    Henry de Frahan, M. T., E-mail: marchdf@umich.edu; Johnsen, E. [Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Belof, J. L.; Cavallo, R. M.; Ancheta, D. S.; El-dasher, B. S.; Florando, J. N.; Gallegos, G. F.; LeBlanc, M. M. [Lawrence Livermore National Laboratory Livermore, California 94551-0808 (United States); Raevsky, V. A.; Ignatova, O. N.; Lebedev, A. [Russian Federal Nuclear Center-VNIIEF, Sarov 607188 (Russian Federation)

    2015-06-14

    We present a set of high explosive driven Rayleigh-Taylor strength experiments for beryllium to produce data to distinguish predictions by various strength models. Design simulations using existing strength model parameterizations from Steinberg-Lund and Preston-Tonks-Wallace (PTW) suggested an optimal design that would delineate between not just different strength models, but different parameters sets of the PTW model. Application of the models to the post-shot results, however, suggests growth consistent with little material strength. We focus mostly on efforts to simulate the data using published strength models as well as the more recent RING relaxation model developed at VNIIEF. The results of the strength experiments indicate weak influence of strength in mitigating the growth with the RING model coming closest to predicting the material behavior. Finally, we present shock and ramp-loading recovery experiments.

  17. A Spectral Geometrical Model for Compton Scatter Tomography Based on the SSS Approximation

    DEFF Research Database (Denmark)

    Kazantsev, Ivan G.; Olsen, Ulrik Lund; Poulsen, Henning Friis

    2016-01-01

    The forward model of single scatter in the Positron Emission Tomography for a detector system possessing an excellent spectral resolution under idealized geometrical assumptions is investigated. This model has the form of integral equations describing a flux of photons emanating from the same ann...

  18. Scattering of acoustic and electromagnetic waves by small impedance bodies of arbitrary shapes applications to creating new engineered materials

    CERN Document Server

    Ramm, Alexander G

    2013-01-01

    The behavior of acoustic or electromagnetic waves reflecting off, and scattering from, intercepted bodies of any size and kind can make determinations about the materials of those bodies and help in better understanding how to manipulate such materials for desired characteristics. This book offers analytical formulas which allow you to calculate acoustic and electromagnetic waves, scattered by one and many small bodies of an arbitrary shape under various boundary conditions. Equations for the effective (self-consistent) field in media consisting of many small bodies are derived. These results and formulas are new and not available in the works of other authors. In particular, the theory developed in this book is different from the classical work of Rayleigh on scattering by small bodies: not only analytical formulas are derived for the waves scattered by small bodies of an arbitrary shape, but the amplitude of the scattered waves is much larger, of the order O(a 2-k), than in Rayleigh scattering, where the or...

  19. Efficient scattering-angle enrichment for a nonlinear inversion of the background and perturbations components of a velocity model

    KAUST Repository

    Wu, Zedong

    2017-07-04

    Reflection-waveform inversion (RWI) can help us reduce the nonlinearity of the standard full-waveform inversion (FWI) by inverting for the background velocity model using the wave-path of a single scattered wavefield to an image. However, current RWI implementations usually neglect the multi-scattered energy, which will cause some artifacts in the image and the update of the background. To improve existing RWI implementations in taking multi-scattered energy into consideration, we split the velocity model into background and perturbation components, integrate them directly in the wave equation, and formulate a new optimization problem for both components. In this case, the perturbed model is no longer a single-scattering model, but includes all scattering. Through introducing a new cheap implementation of scattering angle enrichment, the separation of the background and perturbation components can be implemented efficiently. We optimize both components simultaneously to produce updates to the velocity model that is nonlinear with respect to both the background and the perturbation. The newly introduced perturbation model can absorb the non-smooth update of the background in a more consistent way. We apply the proposed approach on the Marmousi model with data that contain frequencies starting from 5 Hz to show that this method can converge to an accurate velocity starting from a linearly increasing initial velocity. Also, our proposed method works well when applied to a field data set.

  20. Improved Holistic Analysis of Rayleigh Waves for Single- and Multi-Offset Data: Joint Inversion of Rayleigh-Wave Particle Motion and Vertical- and Radial-Component Velocity Spectra

    Czech Academy of Sciences Publication Activity Database

    Dal Moro, Giancarlo; Moustafa, S.S.R.; Al-Arifi, N.

    2018-01-01

    Roč. 175, č. 1 (2018), s. 67-88 ISSN 0033-4553 Institutional support: RVO:67985891 Keywords : surface wave dispersion * joint inversion of seismic data * Rayleigh waves * holistic analysis of surface waves Impact factor: 1.591, year: 2016

  1. Correlation between porosity and roughness as obtained by porous silicon nano surface scattering spectrum

    Directory of Open Access Journals (Sweden)

    R Dariani

    2015-01-01

    Full Text Available Reflection spectra of four porous silicon samples under etching times of 2, 6, 10, and 14 min with current density of 10 mA/cm2 were measured. Reflection spectra behaviors for all samples were the same, but their intensities were different and decreased by increasing the etching time. The similar behavior of reflection spectra could be attributed to the electrolyte solution concentration which was the same during fabrication and reduction of reflection spectrum due to the reduction of particle size. Also, the region for the lowest intensity at reflection spectra was related to porous silicon energy gap which shows blue shift for porous silicon energy gap. Roughness study of porous silicon samples was done by scattering spectra measurements, Rayleigh criteria, and Davis-Bennet equation. Scattering spectra of the samples were measured at 10, 15, and 20 degrees by using spectrophotometer. Reflected light intensity reduced by increasing the scattering angle except for the normal scattering which agreed with Rayleigh criteria. Also, our results showed that by increasing the etching time, porosity (sizes and numbers of pores increases and therefore light absorption increases and scattering from surface reduces. But since scattering varies with the observation scale (wavelength, the relationship between scattering and porosity differs by varying the observation scale (wavelength

  2. Single Crystal Diffuse Neutron Scattering

    Directory of Open Access Journals (Sweden)

    Richard Welberry

    2018-01-01

    Full Text Available Diffuse neutron scattering has become a valuable tool for investigating local structure in materials ranging from organic molecular crystals containing only light atoms to piezo-ceramics that frequently contain heavy elements. Although neutron sources will never be able to compete with X-rays in terms of the available flux the special properties of neutrons, viz. the ability to explore inelastic scattering events, the fact that scattering lengths do not vary systematically with atomic number and their ability to scatter from magnetic moments, provides strong motivation for developing neutron diffuse scattering methods. In this paper, we compare three different instruments that have been used by us to collect neutron diffuse scattering data. Two of these are on a spallation source and one on a reactor source.

  3. Thomson scattering on the PRETEXT Tokamak

    International Nuclear Information System (INIS)

    McCool, S.C.

    1982-03-01

    Ruby laser Thomson scattering was performed on the PRETEXT tokamak. A 10 Joule Q-switched laser and a 1 meter 10 channel polychromator were used to diagnose the electron temperature and density profiles in the PRETEXT plasma. These parameters were measured as a function of time and radial position on a shot to shot basis. The density measurement was calibrated by Rayleigh and Raman scattering and by comparison with data from a 4 mm microwave interferometer. Electron densities ranging from 1 x 10 12 cm -3 to 2 x 10 13 cm -3 and temperatures ranging from 3 eV to 400 eV were observed. Detailed measurements were made throughout the 40 ms discharge with particular emphasis on the current rise phase. The Thomson scattering data was used as input to a one dimensional magnetic diffusion code. This code modelled the evolution of the current density and safety factor profiles. The results of this analysis were compared with existing theories of tokamak current penetration. The growth of resitive MHD tearing modes was proposed as a likely explanation for the anomalously rapid current penetration observed in PRETEXT

  4. Fatigue and damage tolerance scatter models

    Science.gov (United States)

    Raikher, Veniamin L.

    1994-09-01

    Effective Total Fatigue Life and Crack Growth Scatter Models are proposed. The first of them is based on the power form of the Wohler curve, fatigue scatter dependence on mean life value, cycle stress ratio influence on fatigue scatter, and validated description of the mean stress influence on the mean fatigue life. The second uses in addition are fracture mechanics approach, assumption of initial damage existence, and Paris equation. Simple formulas are derived for configurations of models. A preliminary identification of the parameters of the models is fulfilled on the basis of experimental data. Some new and important results for fatigue and crack growth scatter characteristics are obtained.

  5. Rayleigh beacon for measuring the surface profile of a radio telescope.

    Science.gov (United States)

    Padin, S

    2014-12-01

    Millimeter-wavelength Rayleigh scattering from water droplets in a cloud is proposed as a means of generating a bright beacon for measuring the surface profile of a radio telescope. A λ=3  mm transmitter, with an output power of a few watts, illuminating a stratiform cloud, can generate a beacon with the same flux as Mars in 10 GHz bandwidth, but the beacon has a narrow line width, so it is extremely bright. The key advantage of the beacon is that it can be used at any time, and positioned anywhere in the sky, as long as there are clouds.

  6. Short Rayleigh Length Free Electron Lasers

    CERN Document Server

    Crooker, P P; Armstead, R L; Blau, J

    2004-01-01

    Conventional free electron laser (FEL) oscillators minimize the optical mode volume around the electron beam in the undulator by making the resonator Rayleigh length about one third of the undulator length. This maximizes gain and beam-mode coupling. In compact configurations of high-power infrared FELs or moderate power UV FELs, the resulting optical intensity can damage the resonator mirrors. To increase the spot size and thereby reduce the optical intensity at the mirrors below the damage threshold, a shorter Rayleigh length can be used, but the FEL interaction is significantly altered. A new FEL interaction is described and analyzed with a Rayleigh length that is only one tenth the undulator length, or less. The effect of mirror vibration and positioning are more critical in the short Rayleigh length design, but we find that they are still within normal design tolerances.

  7. A Single Mode Study of a Quasi-Geostrophic Convection-Driven Dynamo Model

    Science.gov (United States)

    Plumley, M.; Calkins, M. A.; Julien, K. A.; Tobias, S.

    2017-12-01

    Planetary magnetic fields are thought to be the product of hydromagnetic dynamo action. For Earth, this process occurs within the convecting, turbulent and rapidly rotating outer core, where the dynamics are characterized by low Rossby, low magnetic Prandtl and high Rayleigh numbers. Progress in studying dynamos has been limited by current computing capabilities and the difficulties in replicating the extreme values that define this setting. Asymptotic models that embrace these extreme parameter values and enforce the dominant balance of geostrophy provide an option for the study of convective flows with actual relevance to geophysics. The quasi-geostrophic dynamo model (QGDM) is a multiscale, fully-nonlinear Cartesian dynamo model that is valid in the asymptotic limit of low Rossby number. We investigate the QGDM using a simplified class of solutions that consist of a single horizontal wavenumber which enforces a horizontal structure on the solutions. This single mode study is used to explore multiscale time stepping techniques and analyze the influence of the magnetic field on convection.

  8. Rayleigh-Taylor instability and mixing in SN 1987A

    International Nuclear Information System (INIS)

    Ebisuzaki, T.; Shigeyama, T.; Nomoto, K.

    1989-01-01

    The stability of the supernova ejecta is compared with the Rayleigh-Taylor instability for a realistic model of SN 1987A. A linear analysis indicates that the layers around the composition interface between the hydrogen-rich and helium zones, and become Rayleigh-Taylor unstable between the helium and metal zones. In these layers, the pressure increases outward because of deceleration due to the reverse shock which forms when the blast shock hits the massive hydrogen-rich envelope. On the contrary, the density steeply decreases outward because of the preexisting nuclear burning shell. Then, these layers undergo the Raleigh-Taylor instability because of the opposite signs of the pressure and density gradients. The estimated growth rate is larger than the expansion rate of the supernova. The Rayleigh-Taylor instability near the composition interface is likely to induce mixing, which has been strongly suggested from observations of SN 1987A. 25 refs

  9. Direct numerical simulation of the Rayleigh-Taylor instability with the spectral element method

    International Nuclear Information System (INIS)

    Zhang Xu; Tan Duowang

    2009-01-01

    A novel method is proposed to simulate Rayleigh-Taylor instabilities using a specially-developed unsteady three-dimensional high-order spectral element method code. The numerical model used consists of Navier-Stokes equations and a transport-diffusive equation. The code is first validated with the results of linear stability perturbation theory. Then several characteristics of the Rayleigh-Taylor instabilities are studied using this three-dimensional unsteady code, including instantaneous turbulent structures and statistical turbulent mixing heights under different initial wave numbers. These results indicate that turbulent structures of Rayleigh-Taylor instabilities are strongly dependent on the initial conditions. The results also suggest that a high-order numerical method should provide the capability of simulating small scale fluctuations of Rayleigh-Taylor instabilities of turbulent flows. (authors)

  10. Design of Wideband MIMO Car-to-Car Channel Models Based on the Geometrical Street Scattering Model

    Directory of Open Access Journals (Sweden)

    Nurilla Avazov

    2012-01-01

    Full Text Available We propose a wideband multiple-input multiple-output (MIMO car-to-car (C2C channel model based on the geometrical street scattering model. Starting from the geometrical model, a MIMO reference channel model is derived under the assumption of single-bounce scattering in line-of-sight (LOS and non-LOS (NLOS propagation environments. The proposed channel model assumes an infinite number of scatterers, which are uniformly distributed in two rectangular areas located on both sides of the street. Analytical solutions are presented for the space-time-frequency cross-correlation function (STF-CCF, the two-dimensional (2D space CCF, the time-frequency CCF (TF-CCF, the temporal autocorrelation function (ACF, and the frequency correlation function (FCF. An efficient sum-of-cisoids (SOCs channel simulator is derived from the reference model. It is shown that the temporal ACF and the FCF of the SOC channel simulator fit very well to the corresponding correlation functions of the reference model. To validate the proposed channel model, the mean Doppler shift and the Doppler spread of the reference model have been matched to real-world measurement data. The comparison results demonstrate an excellent agreement between theory and measurements, which confirms the validity of the derived reference model. The proposed geometry-based channel simulator allows us to study the effect of nearby street scatterers on the performance of C2C communication systems.

  11. Large-scale patterns in Rayleigh-Benard convection

    International Nuclear Information System (INIS)

    Hardenberg, J. von; Parodi, A.; Passoni, G.; Provenzale, A.; Spiegel, E.A.

    2008-01-01

    Rayleigh-Benard convection at large Rayleigh number is characterized by the presence of intense, vertically moving plumes. Both laboratory and numerical experiments reveal that the rising and descending plumes aggregate into separate clusters so as to produce large-scale updrafts and downdrafts. The horizontal scales of the aggregates reported so far have been comparable to the horizontal extent of the containers, but it has not been clear whether that represents a limitation imposed by domain size. In this work, we present numerical simulations of convection at sufficiently large aspect ratio to ascertain whether there is an intrinsic saturation scale for the clustering process when that ratio is large enough. From a series of simulations of Rayleigh-Benard convection with Rayleigh numbers between 10 5 and 10 8 and with aspect ratios up to 12π, we conclude that the clustering process has a finite horizontal saturation scale with at most a weak dependence on Rayleigh number in the range studied

  12. Memory effects in microscopic traffic models and wide scattering in flow-density data

    Science.gov (United States)

    Treiber, Martin; Helbing, Dirk

    2003-10-01

    By means of microscopic simulations we show that noninstantaneous adaptation of the driving behavior to the traffic situation together with the conventional method to measure flow-density data provides a possible explanation for the observed inverse-λ shape and the wide scattering of flow-density data in “synchronized” congested traffic. We model a memory effect in the response of drivers to the traffic situation for a wide class of car-following models by introducing an additional dynamical variable (the “subjective level of service”) describing the adaptation of drivers to the surrounding traffic situation during the past few minutes and couple this internal state to parameters of the underlying model that are related to the driving style. For illustration, we use the intelligent-driver model (IDM) as the underlying model, characterize the level of service solely by the velocity, and couple the internal variable to the IDM parameter “time gap” to model an increase of the time gap in congested traffic (“frustration effect”), which is supported by single-vehicle data. We simulate open systems with a bottleneck and obtain flow-density data by implementing “virtual detectors.” The shape, relative size, and apparent “stochasticity” of the region of the scattered data points agree nearly quantitatively with empirical data. Wide scattering is even observed for identical vehicles, although the proposed model is a time-continuous, deterministic, single-lane car-following model with a unique fundamental diagram.

  13. The S-wave model for electron-hydrogen scattering revisited

    International Nuclear Information System (INIS)

    Bartschat, K.; Bray, I.

    1996-03-01

    The R-matrix with pseudo-states (RMPS) and convergent close-coupling (CCC) methods are applied to the calculation of elastic, excitation, and total as well as single-differential ionization cross sections for the simplified S-wave model of electron-hydrogen scattering. Excellent agreement is obtained for the total cross section results obtained at electron energies between 0 and 100 eV. The two calculations also agree on the single-differential ionization cross section at 54.4 eV for the triplet spin channel, while discrepancies are evident in the singlet channel which shows remarkable structure. 18 refs., 3 figs

  14. Dynamics of a self-Q-switched fiber laser with a Rayleigh-stimulated Brillouin scattering ring mirror

    Science.gov (United States)

    Fotiadi, Andrei A.; Mégret, Patrice; Blondel, Michel

    2004-05-01

    Backward light scattering can cause passive Q switching in fiber lasers. We propose a self-consistent description of the laser dynamics. Our model quantitatively reproduces the temporal structure of pulsation and is also attractive for analysis of laser stability and statistics. The validity of the model is directly verified in an experiment.

  15. Quantitative and Isolated Measurement of Far-Field Light Scattering by a Single Nanostructure

    Science.gov (United States)

    Kim, Donghyeong; Jeong, Kwang-Yong; Kim, Jinhyung; Ee, Ho-Seok; Kang, Ju-Hyung; Park, Hong-Gyu; Seo, Min-Kyo

    2017-11-01

    Light scattering by nanostructures has facilitated research on various optical phenomena and applications by interfacing the near fields and free-propagating radiation. However, direct quantitative measurement of far-field scattering by a single nanostructure on the wavelength scale or less is highly challenging. Conventional back-focal-plane imaging covers only a limited solid angle determined by the numerical aperture of the objectives and suffers from optical aberration and distortion. Here, we present a quantitative measurement of the differential far-field scattering cross section of a single nanostructure over the full hemisphere. In goniometer-based far-field scanning with a high signal-to-noise ratio of approximately 27.4 dB, weak scattering signals are efficiently isolated and detected under total-internal-reflection illumination. Systematic measurements reveal that the total and differential scattering cross sections of a Au nanorod are determined by the plasmonic Fabry-Perot resonances and the phase-matching conditions to the free-propagating radiation, respectively. We believe that our angle-resolved far-field measurement scheme provides a way to investigate and evaluate the physical properties and performance of nano-optical materials and phenomena.

  16. Study of effective atomic number of breast tissues determined using the elastic to inelastic scattering ratio

    International Nuclear Information System (INIS)

    Antoniassi, M.; Conceicao, A.L.C.; Poletti, M.E.

    2011-01-01

    In this work we have measured Compton and Rayleigh scattering radiation from normal (adipose and fibroglandular), benign (fibroadenoma) and malignant (ductal carcinoma) breast tissues using a monoenergetic beam of 17.44 keV and a scattering angle of 90 o (x=0.99 A -1 ). A practical method using the area of Rayleigh and Compton scattering was used for determining the effective atomic number (Z eff ) of the samples, being validated through measurements of several reference materials. The results show that there are differences in the distributions of Z eff of breast tissues, which are mainly related to the elemental composition of carbon (Z=6) and oxygen (Z=8) of each tissue type. The results suggest that is possible to use the method to characterize the breast tissues permitting study histological features of the breast tissues related to their elemental composition.

  17. Study of effective atomic number of breast tissues determined using the elastic to inelastic scattering ratio

    Science.gov (United States)

    Antoniassi, M.; Conceição, A. L. C.; Poletti, M. E.

    2011-10-01

    In this work we have measured Compton and Rayleigh scattering radiation from normal (adipose and fibroglandular), benign (fibroadenoma) and malignant (ductal carcinoma) breast tissues using a monoenergetic beam of 17.44 keV and a scattering angle of 90° ( x=0.99 Å -1). A practical method using the area of Rayleigh and Compton scattering was used for determining the effective atomic number ( Zeff) of the samples, being validated through measurements of several reference materials. The results show that there are differences in the distributions of Zeff of breast tissues, which are mainly related to the elemental composition of carbon ( Z=6) and oxygen ( Z=8) of each tissue type. The results suggest that is possible to use the method to characterize the breast tissues permitting study histological features of the breast tissues related to their elemental composition.

  18. A simple and sensitive resonance Rayleigh scattering-energy transfer method for amino acids coupling its Ruhemann's purple and graphene oxide probe

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yanghe [School of Food and Bioengineering, Hezhou University, Hezhou 542899 (China); Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection of Ministry Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guangxi Normal University, Guilin 541004 (China); Li, Chongnin; Qin, Aimian [Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection of Ministry Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guangxi Normal University, Guilin 541004 (China); Liang, Aihui, E-mail: ahliang2008@163.com [Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection of Ministry Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guangxi Normal University, Guilin 541004 (China); Jiang, Zhiliang, E-mail: zljiang@mailbox.gxnu.edu.cn [School of Food and Bioengineering, Hezhou University, Hezhou 542899 (China); Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection of Ministry Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guangxi Normal University, Guilin 541004 (China)

    2017-05-15

    In pH 7.2 KH{sub 2}PO{sub 4}-NaOH buffer solution, graphene oxide (GO) has strong resonance Rayleigh scattering (RRS) effect at 400 nm, and amino acid reacted with ninhydrin to form blue-violet complex Ruhemann's purple (RP) with a absorption peak at 400 nm. RPs can strongly adsorbed on the surface of GO, and the RRS donor of GO probes coupled with the receptor of RP that reduced the RRS intensity at 400 nm due to the RRS-energy transfer (RRS-ET) from the GO to RP. With the increase of amino acid concentration, the RRS intensity quenched linearly at 400 nm due to the RRS-ET enhancing. The quenched intensity responds linearly with glutamic acid concentration in the range of 0.2–200 μmol L{sup −1}, with a detection limit of 0.08 µmol L{sup −1}. This simple and sensitive RRS-ET method was used to detect the content of amino acid in oral liquid, with satisfactory results.

  19. Rayleigh wave effects in an elastic half-space.

    Science.gov (United States)

    Aggarwal, H. R.

    1972-01-01

    Consideration of Rayleigh wave effects in a homogeneous isotropic linearly elastic half-space subject to an impulsive uniform disk pressure loading. An approximate formula is obtained for the Rayleigh wave effects. It is shown that the Rayleigh waves near the center of loading arise from the portion of the dilatational and shear waves moving toward the axis, after they originate at the edge of the load disk. A study is made of the vertical displacement due to Rayleigh waves at points on the axis near the surface of the elastic half-space.

  20. Rayleigh-Taylor/gravitational instability in dense magnetoplasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S., E-mail: shahid.ali@ncp.edu.p [National Centre for Physics, Quaid-i-Azam University Campus, Islamabad (Pakistan); IPFN, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Ahmed, Z. [COMSATS Institute of Information Technology, Department of Physics, Wah Campus (Pakistan); Mirza, Arshad M. [Theoretical Plasma Physics Group, Physics Department, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Ahmad, I. [COMSATS Institute of Information Technology, Department of Physics, Islamabad Campus (Pakistan)

    2009-08-10

    The Rayleigh-Taylor instability is investigated in a nonuniform dense quantum magnetoplasma. For this purpose, a quantum hydrodynamical model is used for the electrons whereas the ions are assumed to be cold and classical. The dispersion relation for the Rayleigh-Taylor instability becomes modified with the quantum corrections associated with the Fermi pressure law and the quantum Bohm potential force. Numerically, it is found that the quantum speed and density gradient significantly modify the growth rate of RT instability. In a dense quantum magnetoplasma case, the linear growth rate of RT instability becomes significantly higher than its classical value and the modes are found to be highly localized. The present investigation should be useful in the studies of dense astrophysical magnetoplasmas as well as in laser-produced plasmas.

  1. Rayleigh-Taylor/gravitational instability in dense magnetoplasmas

    International Nuclear Information System (INIS)

    Ali, S.; Ahmed, Z.; Mirza, Arshad M.; Ahmad, I.

    2009-01-01

    The Rayleigh-Taylor instability is investigated in a nonuniform dense quantum magnetoplasma. For this purpose, a quantum hydrodynamical model is used for the electrons whereas the ions are assumed to be cold and classical. The dispersion relation for the Rayleigh-Taylor instability becomes modified with the quantum corrections associated with the Fermi pressure law and the quantum Bohm potential force. Numerically, it is found that the quantum speed and density gradient significantly modify the growth rate of RT instability. In a dense quantum magnetoplasma case, the linear growth rate of RT instability becomes significantly higher than its classical value and the modes are found to be highly localized. The present investigation should be useful in the studies of dense astrophysical magnetoplasmas as well as in laser-produced plasmas.

  2. Resonance Rayleigh Scattering Spectra of an Ion-Association Complex of Naphthol Green B–Chitosan System and Its Application in the Highly Sensitive Determination of Chitosan

    Directory of Open Access Journals (Sweden)

    Weiai Zhang

    2016-04-01

    Full Text Available This work describes a highly-sensitive and accurate approach for the determination of chitosan (CTS using Naphthol Green B (NGB as a probe in the Resonance Rayleigh scattering (RRS method. The interaction between CTS and NGB leads to notable enhancement of RRS, and the enhancement is proportional to the concentration of CTS over a certain range. Under optimum conditions, the calibration curve of ΔI against CTS concentration was ΔI = 1860.5c + 86.125 (c, µg/mL, R2 = 0.9999, and the linear range and detection limit (DL were 0.01–5.5 µg/mL and 8.87 ng/mL. Moreover, the effect of the molecular weight of CTS on the accurate quantification of CTS was studied. The experimental data were analyzed through linear regression analysis using SPSS20.0, and the molecular weight was found to have no statistical significance. This method has been applied to assay two CTS samples and obtained good recovery and reproducibility.

  3. Feasibility of waveform inversion of Rayleigh waves for shallow shear-wave velocity using a genetic algorithm

    Science.gov (United States)

    Zeng, C.; Xia, J.; Miller, R.D.; Tsoflias, G.P.

    2011-01-01

    Conventional surface wave inversion for shallow shear (S)-wave velocity relies on the generation of dispersion curves of Rayleigh waves. This constrains the method to only laterally homogeneous (or very smooth laterally heterogeneous) earth models. Waveform inversion directly fits waveforms on seismograms, hence, does not have such a limitation. Waveforms of Rayleigh waves are highly related to S-wave velocities. By inverting the waveforms of Rayleigh waves on a near-surface seismogram, shallow S-wave velocities can be estimated for earth models with strong lateral heterogeneity. We employ genetic algorithm (GA) to perform waveform inversion of Rayleigh waves for S-wave velocities. The forward problem is solved by finite-difference modeling in the time domain. The model space is updated by generating offspring models using GA. Final solutions can be found through an iterative waveform-fitting scheme. Inversions based on synthetic records show that the S-wave velocities can be recovered successfully with errors no more than 10% for several typical near-surface earth models. For layered earth models, the proposed method can generate one-dimensional S-wave velocity profiles without the knowledge of initial models. For earth models containing lateral heterogeneity in which case conventional dispersion-curve-based inversion methods are challenging, it is feasible to produce high-resolution S-wave velocity sections by GA waveform inversion with appropriate priori information. The synthetic tests indicate that the GA waveform inversion of Rayleigh waves has the great potential for shallow S-wave velocity imaging with the existence of strong lateral heterogeneity. ?? 2011 Elsevier B.V.

  4. Osmotic virial coefficients for model protein and colloidal solutions: Importance of ensemble constraints in the analysis of light scattering data

    Science.gov (United States)

    Siderius, Daniel W.; Krekelberg, William P.; Roberts, Christopher J.; Shen, Vincent K.

    2012-05-01

    Protein-protein interactions in solution may be quantified by the osmotic second virial coefficient (OSVC), which can be measured by various experimental techniques including light scattering. Analysis of Rayleigh light scattering measurements from such experiments requires identification of a scattering volume and the thermodynamic constraints imposed on that volume, i.e., the statistical mechanical ensemble in which light scattering occurs. Depending on the set of constraints imposed on the scattering volume, one can obtain either an apparent OSVC, A2,app, or the true thermodynamic OSVC, {B_{22}^{osm}}, that is rigorously defined in solution theory [M. A. Blanco, E. Sahin, Y. Li, and C. J. Roberts, J. Chem. Phys. 134, 225103 (2011), 10.1063/1.3596726]. However, it is unclear to what extent A2,app and {B_{22}^{osm}} differ, which may have implications on the physical interpretation of OSVC measurements from light scattering experiments. In this paper, we use the multicomponent hard-sphere model and a well-known equation of state to directly compare A2,app and {B_{22}^{osm}}. Our results from the hard-sphere equation of state indicate that A2,app underestimates {B_{22}^{osm}}, but in a systematic manner that may be explained using fundamental thermodynamic expressions for the two OSVCs. The difference between A2,app and {B_{22}^{osm}} may be quantitatively significant, but may also be obscured in experimental application by statistical uncertainty or non-steric interactions. Consequently, the two OSVCs that arise in the analysis of light scattering measurements do formally differ, but in a manner that may not be detectable in actual application.

  5. Acoustic modeling of shell-encapsulated gas bubbles

    NARCIS (Netherlands)

    P.J.A. Frinking (Peter); N. de Jong (Nico)

    1998-01-01

    textabstractExisting theoretical models do not adequately describe the scatter and attenuation properties of the ultrasound contrast agents Quantison(TM) and Myomap(TM). An adapted version of the Rayleigh-Plesset equation, in which the shell is described by a viscoelastic solid, is proposed and

  6. The interpretation of the intensity of components of laser scattering by interaction with matter

    Science.gov (United States)

    Fidanovski, Z.; Srećković, M.; Ostojić, S.; Ilić, J.; Merkle, M.

    2012-05-01

    The measurement of scattered light properties offers many optical, acoustic, dielectric, thermodynamic data about the scattering medium. Brillouin spectroscopy with various modifications and different laser types has been a measurement technique in acoustics for a long time, but it is still important as an autonomous technique. It enables more detailed and exhaustive knowledge of the acoustic and optical properties of matter. A series of Rayleigh-Brillouin spectra are recorded for a set of organic solvents and phytol. The equipment used in spectra recordings enables the measurement of four components of scattered laser intensity Ihh, Ihv, Ivv and Ivh. The ratios of the linewidth, as well as shifts, are determined for Rayleigh-Brillouin spectra. According to them, the hypersound velocity and absorption coefficients can be calculated. There is much software for data processing obtained in laser interaction with matter, with different programming tools. An analysis of spectra is performed, i.e. an examination of which distribution (Gaussian or Lorentzian) better explains the experimentally obtained diagrams.

  7. Bivariate Rayleigh Distribution and its Properties

    Directory of Open Access Journals (Sweden)

    Ahmad Saeed Akhter

    2007-01-01

    Full Text Available Rayleigh (1880 observed that the sea waves follow no law because of the complexities of the sea, but it has been seen that the probability distributions of wave heights, wave length, wave induce pitch, wave and heave motions of the ships follow the Rayleigh distribution. At present, several different quantities are in use for describing the state of the sea; for example, the mean height of the waves, the root mean square height, the height of the “significant waves” (the mean height of the highest one-third of all the waves the maximum height over a given interval of the time, and so on. At present, the ship building industry knows less than any other construction industry about the service conditions under which it must operate. Only small efforts have been made to establish the stresses and motions and to incorporate the result of such studies in to design. This is due to the complexity of the problem caused by the extensive variability of the sea and the corresponding response of the ships. Although the problem appears feasible, yet it is possible to predict service conditions for ships in an orderly and relatively simple manner Rayleigh (1980 derived it from the amplitude of sound resulting from many independent sources. This distribution is also connected with one or two dimensions and is sometimes referred to as “random walk” frequency distribution. The Rayleigh distribution can be derived from the bivariate normal distribution when the variate are independent and random with equal variances. We try to construct bivariate Rayleigh distribution with marginal Rayleigh distribution function and discuss its fundamental properties.

  8. Carrier thermalization dynamics in single zincblende and wurtzite InP Nanowires.

    Science.gov (United States)

    Wang, Yuda; Jackson, Howard E; Smith, Leigh M; Burgess, Tim; Paiman, Suriati; Gao, Qiang; Tan, Hark Hoe; Jagadish, Chennupati

    2014-12-10

    Using transient Rayleigh scattering (TRS) measurements, we obtain photoexcited carrier thermalization dynamics for both zincblende (ZB) and wurtzite (WZ) InP single nanowires (NW) with picosecond resolution. A phenomenological fitting model based on direct band-to-band transition theory is developed to extract the electron-hole-plasma density and temperature as a function of time from TRS measurements of single nanowires, which have complex valence band structures. We find that the thermalization dynamics of hot carriers depends strongly on material (GaAs NW vs InP NW) and less strongly on crystal structure (ZB vs WZ). The thermalization dynamics of ZB and WZ InP NWs are similar. But a comparison of the thermalization dynamics in ZB and WZ InP NWs with ZB GaAs NWs reveals more than an order of magnitude slower relaxation for the InP NWs. We interpret these results as reflecting their distinctive phonon band structures that lead to different hot phonon effects. Knowledge of hot carrier thermalization dynamics is an essential component for effective incorporation of nanowire materials into electronic devices.

  9. First experimental observation of double-photon Compton scattering using single gamma detector

    International Nuclear Information System (INIS)

    Sandhu, B.S.; Saddi, M.B.; Singh, B.; Ghumman, B.S.

    2003-01-01

    Full text: The phenomenon of double-photon Compton scattering has been successfully observed using single gamma detector, a technique avoiding the use of complicated slow-fast coincidence set-up used till now for observing this higher order process. Here doubly differentiated collision cross-section integrated over direction of one of the two final photons, the direction of other one being kept fixed, has been measured experimentally for 0.662 MeV incident gamma photons. The energy spectra of the detected photons are observed as a long tail to the single-photon Compton line on the lower side of the full energy peak in the recorded scattered energy spectrum. The present results are in agreement with theory of this process

  10. New phenomena in variable-density Rayleigh-Taylor turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Livescu, D; Ristorcelli, J R; Petersen, M R; Gore, R A, E-mail: livescu@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2010-12-15

    This paper presents several issues related to mixing and turbulence structure in buoyancy-driven turbulence at low to moderate Atwood numbers, A, found from direct numerical simulations in two configurations: classical Rayleigh-Taylor instability and an idealized triply periodic Rayleigh-Taylor flow. Simulations at A up to 0.5 are used to examine the turbulence characteristics and contrast them with those obtained close to the Boussinesq approximation. The data sets used represent the largest simulations to date in each configuration. One of the more remarkable issues explored, first reported in (Livescu and Ristorcelli 2008 J. Fluid Mech. 605 145-80), is the marked difference in mixing between different density fluids as opposed to the mixing that occurs between fluids of commensurate densities, corresponding to the Boussinesq approximation. Thus, in the triply periodic configuration and the non-Boussinesq case, an initially symmetric density probability density function becomes skewed, showing that the mixing is asymmetric, with pure heavy fluid mixing more slowly than pure light fluid. A mechanism producing the mixing asymmetry is proposed and the consequences for the classical Rayleigh-Taylor configuration are discussed. In addition, it is shown that anomalous small-scale anisotropy found in the homogeneous configuration (Livescu and Ristorcelli 2008 J. Fluid Mech. 605 145-80) and Rayleigh-Taylor turbulence at A=0.5 (Livescu et al 2008 J. Turbul. 10 1-32) also occurs near the Boussinesq limit. Results pertaining to the moment closure modelling of Rayleigh-Taylor turbulence are also presented. Although the Rayleigh-Taylor mixing layer width reaches self-similar growth relatively fast, the lower-order terms in the self-similar expressions for turbulence moments have long-lasting effects and derived quantities, such as the turbulent Reynolds number, are slow to follow the self-similar predictions. Since eddy diffusivity in the popular gradient transport hypothesis

  11. Scattering cross-sections of common calibration gases measured by IBBCEAS technique

    Directory of Open Access Journals (Sweden)

    S.I. Issac

    Full Text Available In this study, incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS was used to measure scattering cross-sections of a few common gases in the 650–670 nm spectral range relative to that of dry air. Precise measurements of scattering cross-sections of these calibration gases in the visible spectral range are important. The IBBCEAS system developed in the laboratory was calibrated with a low-loss optical window. The measurements made at 660 nm were compared with previously measured cross-section values and found to be in good agreement with the existing measurements. Keywords: IBBCEAS, Rayleigh scattering, Scattering cross section

  12. Study of effective atomic number of breast tissues determined using the elastic to inelastic scattering ratio

    Energy Technology Data Exchange (ETDEWEB)

    Antoniassi, M.; Conceicao, A.L.C. [Departamento de Fisica e Matematica, Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo (Brazil); Poletti, M.E., E-mail: poletti@ffclrp.usp.br [Departamento de Fisica e Matematica, Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo (Brazil)

    2011-10-01

    In this work we have measured Compton and Rayleigh scattering radiation from normal (adipose and fibroglandular), benign (fibroadenoma) and malignant (ductal carcinoma) breast tissues using a monoenergetic beam of 17.44 keV and a scattering angle of 90{sup o} (x=0.99 A{sup -1}). A practical method using the area of Rayleigh and Compton scattering was used for determining the effective atomic number (Z{sub eff}) of the samples, being validated through measurements of several reference materials. The results show that there are differences in the distributions of Z{sub eff} of breast tissues, which are mainly related to the elemental composition of carbon (Z=6) and oxygen (Z=8) of each tissue type. The results suggest that is possible to use the method to characterize the breast tissues permitting study histological features of the breast tissues related to their elemental composition.

  13. Study on the Single Scattering of Elastic Waves by a Cylindrical Fiber with a Partially Imperfect Bonding Using the Collocation Point Method

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2018-01-01

    Full Text Available The single scattering of P- and SV-waves by a cylindrical fiber with a partially imperfect bonding to the surrounding matrix is investigated, which benefits the characterization of the behavior of elastic waves in composite materials. The imperfect interface is modelled by the spring model. To solve the corresponding single scattering problem, a collocation point (CP method is introduced. Based on this method, influence of various aspects of the imperfect interface on the scattering of P- and SV-waves is studied. Results indicate that (i the total scattering cross section (SCS is almost symmetric about the axis α=π/2 with respect to the location (α of the imperfect interface, (ii imperfect interfaces located at α=0 and α=π highly reduce the total SCS under a P-wave incidence and imperfect interfaces located at α=π/2 reduce the total SCS most significantly under SV-incidence, and (iii under a P-wave incidence the SCS has a high sensitivity to the bonding level of imperfect interfaces when α is small, while it becomes more sensitive to the bonding level when α is larger under SV-wave incidence.

  14. The resonance Rayleigh light scattering spectral investigation on the interaction of DNA with camellia sinensis in the presence of CPC and its analytical application

    Science.gov (United States)

    Bi, Shuyun; Wang, Tianjiao; Zhao, Tingting; Wang, Yu

    2014-06-01

    A novel method with high sensitivity was designed for the determination of trace nucleic acids by using cationic surfactant cetylpyridinium chloride (CPC) and camellia sinensis (CS) as resonance Rayleigh light scattering (RLS) probes. It was found DNA could combine with CS and CPC in Tris-HCl buffer (pH = 7.4). Under optimum conditions, the RLS intensity of DNA can be enhanced by CPC-CS obviously at 294 nm, and the enhanced RLS intensity was directly proportional to DNA concentration in the range from 0.024 to 3.48 μg mL-1 with a good linear relationship (r = 0.9940). The limit of detection (LOD) was 1.49 ng mL-1 (S/N = 3). In addition, the effects of some interferences including K+, Na+, Mg2+, Zn2+, Cu2+, Ca2+ and glucose on the determination were studied. The developed RLS assay was successfully applied to three synthetic samples to measure DNA, the recovery was 94.7-106.3% and RSD was 0.58-3.33%.

  15. Modeling X-Ray Scattering Process and Applications of the Scattering Model

    Science.gov (United States)

    Al-Jundi, Taher Lutfi

    1995-01-01

    Computer modeling of nondestructive inspections with x-rays is proving to be a very useful tool for enhancing the performance of these techniques. Two x-ray based inspection techniques are considered in this study. The first is "Radiographic Inspection", where an existing simulation model has been improved to account for scattered radiation effects. The second technique is "Inspection with Compton backscattering", where a new simulation model has been developed. The effect of scattered radiation on a simulated radiographic image can be insignificant, equally important, or more important than the effect of the uncollided flux. Techniques to account for the scattered radiation effects include Monte Carlo techniques, and solving the particle transport equation for photons. However, these two techniques although accurate, are computationally expensive and hence inappropriate for use in computer simulation of radiography. A less accurate approach but computationally efficient is the principle of buildup factors. Traditionally, buildup factors are defined for monoenergetic photons of energies typical of a nuclear reactor. In this work I have expanded the definition of buildup factors to include a bremsstrahlung spectrum of photons with energies typically used in radiography (keV's instead of MeV's). This expansion of the definition relies on an intensive experimental work to measure buildup factors for a white spectrum of x-rays. I have also developed a monte carlo code to reproduce the measured buildup factors. The code was then converted to a parallel code and distributed on a network of workstations to reduce the execution time. The second inspection technique is based on Compton backscattering, where photons are scattered at large angles, more than 90 degrees. The importance of this technique arises when the inspected object is very large, or when access is limited to only one side of the specimen. The downside of detecting photons from backscattering is the low

  16. Controlled light scattering in transparent polycrystalline ferroelectrics

    International Nuclear Information System (INIS)

    Vasilevskaya, A.S.; Grodnenskij, I.M.; Sonin, A.S.

    1977-01-01

    Scattering indicatrices, birefringence, attenuation factor and time characteristics of the light scattering effect have been investigated in a polycrystal solid solution of Pbsub(0.92)Lasub(0.08)(Zrsub(0.65)Tisub(0.35))Osub(3) with the crystallite dimension 4-5 μm. The measurements have been taken for longitudinal and transverse scattering effects in the visible range of spectrum in the temperature range 20-200 deg C. The time characteristics of the scattering effect have been found to be significantly different when a sample transfers from a thermally depolarized state to an electrically polarized one and from an electrically polarized state to an electrically depolarized one. The shape of the scattering indicatrices depends on the polarization state of a sample. The distribution of the scattered light intensity in the part of the indicatrix characterizing the fundamental scattering is satisfactorily described by the Rayleigh-Hans theory. The diameter of scattering centres responsible for the scattering has been determined to be 6-7 μm. The experimental data show that there are different types of scattering centres, in the material. The fundamental scattering is caused by centres arising irreversibly during initial polarization of the sample. The second type of centres is responsible for the controlled part of scattering during repolarization

  17. Imaging through scattering media by Fourier filtering and single-pixel detection

    Science.gov (United States)

    Jauregui-Sánchez, Y.; Clemente, P.; Lancis, J.; Tajahuerce, E.

    2018-02-01

    We present a novel imaging system that combines the principles of Fourier spatial filtering and single-pixel imaging in order to recover images of an object hidden behind a turbid medium by transillumination. We compare the performance of our single-pixel imaging setup with that of a conventional system. We conclude that the introduction of Fourier gating improves the contrast of images in both cases. Furthermore, we show that the combination of single-pixel imaging and Fourier spatial filtering techniques is particularly well adapted to provide images of objects transmitted through scattering media.

  18. Single-shot Thomson scattering on argon plasmas created by the Microwave Plasma Torch; evidence for a new plasma class

    NARCIS (Netherlands)

    Mullen, van der J.J.A.M.; Sande, van de M.J.; Vries, de N.; Broks, B.H.P.; Iordanova, E.I.; Gamero, A.; Torres, J.; Sola, A.

    2007-01-01

    To determine the fine-structure size of plasmas created by a Microwave Plasma Torch (MPT), single-shot Thomson scattering (TS) measurements were performed. The aim was to find a solution for the long-standing discrepancy between experiments and Global Plasma Models (GPMs). Since these GPMs are based

  19. Intermediate energy nucleon-deuteron scattering theory.

    Science.gov (United States)

    Wilson, J. W.

    1973-01-01

    Sloan's conclusion (1969) that terms of the multiple-scattering series beyond single scattering contribute only to S- and P-wave amplitudes in an S-wave separable model is examined. A comparison of experiments with the calculation at 146 MeV shows that the conclusion is valid in nucleon-deuteron scattering applications.

  20. NUMERICAL SIMULATIONS OF THE MAGNETIC RAYLEIGH-TAYLOR INSTABILITY IN THE KIPPENHAHN-SCHLÜTER PROMINENCE MODEL. I. FORMATION OF UPFLOWS

    International Nuclear Information System (INIS)

    Hillier, Andrew; Isobe, Hiroaki; Shibata, Kazunari; Berger, Thomas

    2012-01-01

    The launch of the Hinode satellite led to the discovery of rising plumes, dark in chromospheric lines, that propagate from large (∼10 Mm) bubbles that form at the base of quiescent prominences. The plumes move through a height of approximately 10 Mm while developing highly turbulent profiles. The magnetic Rayleigh-Taylor instability was hypothesized to be the mechanism that drives these flows. In this study, using three-dimensional (3D) MHD simulations, we investigate the nonlinear stability of the Kippenhahn-Schlüter prominence model for the interchange mode of the magnetic Rayleigh-Taylor instability. The model simulates the rise of a buoyant tube inside the quiescent prominence model, where the interchange of magnetic field lines becomes possible at the boundary between the buoyant tube and the prominence. Hillier et al. presented the initial results of this study, where upflows of constant velocity (maximum found 6 km s –1 ) and a maximum plume width ≈1.5 Mm which propagate through a height of approximately 6 Mm were found. Nonlinear interaction between plumes was found to be important for determining the plume dynamics. In this paper, using the results of ideal MHD simulations, we determine how the initial parameters for the model and buoyant tube affect the evolution of instability. We find that the 3D mode of the magnetic Rayleigh-Taylor instability grows, creating upflows aligned with the magnetic field of constant velocity (maximum found 7.3 km s –1 ). The width of the upflows is dependent on the initial conditions, with a range of 0.5-4 Mm which propagate through heights of 3-6 Mm. These results are in general agreement with the observations of the rising plumes.

  1. A new method for non-labeling attomolar detection of diseases based on an individual gold nanorod immunosensor

    DEFF Research Database (Denmark)

    Phuoc Long, Truong; Cao, Cuong; Park, Sungho

    2011-01-01

    Herein, we present the use of a single gold nanorod sensor for detection of diseases on an antibodyfunctionalized surface, based on antibody–antigen interaction and the localized surface plasmon resonance (LSPR) lmax shifts of the resonant Rayleigh light scattering spectra. By replacing...... can be equally compared to the assays based on DNA biobarcodes. This study shows that a gold nanorod has been used as a single nanobiosensor to detect antigens for the first time; and the detection method based on the resonant Rayleigh scattering spectrum of individual gold nanorods enables a simple...

  2. On the Earth Microwave Background: Absorption and Scattering by the Atmosphere

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2007-07-01

    Full Text Available The absorption and scattering of microwave radiation by the atmosphere of the Earth is considered under a steady state scenario. Using this approach, it is demonstrated that the microwave background could not have a cosmological origin. Scientific observations in the microwave region are explained by considering an oceanic source, combined with both Rayleigh and Mie scattering in the atmosphere in the absence of net absorption. Importantly, at high frequencies, Mie scattering occurs primarily with forward propagation. This helps to explain the lack of high frequency microwave background signals when radio antennae are positioned on the Earth’s surface.

  3. A successive order of scattering model for solving vector radiative transfer in the atmosphere

    International Nuclear Information System (INIS)

    Min Qilong; Duan Minzheng

    2004-01-01

    A full vector radiative transfer model for vertically inhomogeneous plane-parallel media has been developed by using the successive order of scattering approach. In this model, a fast analytical expansion of Fourier decomposition is implemented and an exponent-linear assumption is used for vertical integration. An analytic angular interpolation method of post-processing source function is also implemented to accurately interpolate the Stokes vector at arbitrary angles for a given solution. It has been tested against the benchmarks for the case of randomly orientated oblate spheroids, illustrating a good agreement for each stokes vector (within 0.01%). Sensitivity tests have been conducted to illustrate the accuracy of vertical integration and angle interpolation approaches. The contribution of each scattering order for different optical depths and single scattering albedos are also analyzed

  4. Near-infrared turbidity of beta-FeOOH particle suspensions

    International Nuclear Information System (INIS)

    Berdahl, P.; Espinoza, L.H.; Littlejohn, D.; Lucas, D.; Perry, D.L.

    1999-01-01

    Near-infrared transmission spectroscopy can be complicated by the light scattering from heterogeneous materials. To examine an evolving system exhibiting such light scattering, transmission spectra are obtained during the hydrolysis of iron chloride solutions. At first, the resulting turbid suspension of cigar-shaped beta-FeOOH particles exhibits single-particle scattering, including a Rayleigh regime (attenuation proportional to the fourth power of the wavenumber). At later times, the scattering increases strongly as the particles aggregate, and becomes proportional to the wavenumber squared, consistent with scattering models which interpret the structure of aggregates in terms of a fractal dimension roughly equal to 2

  5. Thermal-neutron multiple scattering: critical double scattering

    International Nuclear Information System (INIS)

    Holm, W.A.

    1976-01-01

    A quantum mechanical formulation for multiple scattering of thermal-neutrons from macroscopic targets is presented and applied to single and double scattering. Critical nuclear scattering from liquids and critical magnetic scattering from ferromagnets are treated in detail in the quasielastic approximation for target systems slightly above their critical points. Numerical estimates are made of the double scattering contribution to the critical magnetic cross section using relevant parameters from actual experiments performed on various ferromagnets. The effect is to alter the usual Lorentzian line shape dependence on neutron wave vector transfer. Comparison with corresponding deviations in line shape resulting from the use of Fisher's modified form of the Ornstein-Zernike spin correlations within the framework of single scattering theory leads to values for the critical exponent eta of the modified correlations which reproduce the effect of double scattering. In addition, it is shown that by restricting the range of applicability of the multiple scattering theory from the outset to critical scattering, Glauber's high energy approximation can be used to provide a much simpler and more powerful description of multiple scattering effects. When sufficiently close to the critical point, it provides a closed form expression for the differential cross section which includes all orders of scattering and has the same form as the single scattering cross section with a modified exponent for the wave vector transfer

  6. Diffuse scattering in Ih ice

    International Nuclear Information System (INIS)

    Wehinger, Björn; Krisch, Michael; Bosak, Alexeï; Chernyshov, Dmitry; Bulat, Sergey; Ezhov, Victor

    2014-01-01

    Single crystals of ice Ih, extracted from the subglacial Lake Vostok accretion ice layer (3621 m depth) were investigated by means of diffuse x-ray scattering and inelastic x-ray scattering. The diffuse scattering was identified as mainly inelastic and rationalized in the frame of ab initio calculations for the ordered ice XI approximant. Together with Monte-Carlo modelling, our data allowed reconsidering previously available neutron diffuse scattering data of heavy ice as the sum of thermal diffuse scattering and static disorder contribution. (paper)

  7. Cell structures caused by settling particles in turbulent Rayleigh-Bénard convection

    Science.gov (United States)

    Lee, Changhoon; Park, Sangro

    2016-11-01

    Turbulent thermal convection is an important phenomenon frequently found in nature and industrial processes, often with laden particles. In the last several decades, the vast majority of studies have addressed single phase convective flow with focus on the scaling relation of flow parameters associated with heat transfer. Particle-laden Rayleigh-Bénard convection, however, has not been sufficiently studied. In this study, modulation of cell structures by settling particles in turbulent Rayleigh-Bénard convection in a doubly periodic square channel is investigated using direct numerical simulation with a point particle approach. Flow parameters are fixed at Rayleigh number=106, Prandtl number=0.7, the aspect ratio=6, and Froude number=0.19. We report from the simulations that settling heavy particles modulate irregular large-scale thermal plume structures into organized polygonal cell structures. Different shapes of flow structures are obtained for different particle diameters and mass loadings. We found that polygonal cell structures arise due to asymmetric feedback force exerted by particles onto hot and cold plumes. Increasing the number of particles augments the asymmetry and the polygonal cell structures become smaller, eventually going to the hexagonal structures.

  8. A Novel Simulator of Nonstationary Random MIMO Channels in Rayleigh Fading Scenarios

    Directory of Open Access Journals (Sweden)

    Qiuming Zhu

    2016-01-01

    Full Text Available For simulations of nonstationary multiple-input multiple-output (MIMO Rayleigh fading channels in time-variant scattering environments, a novel channel simulator is proposed based on the superposition of chirp signals. This new method has the advantages of low complexity and implementation simplicity as the sum of sinusoids (SOS method. In order to reproduce realistic time varying statistics for dynamic channels, an efficient parameter computation method is also proposed for updating the frequency parameters of employed chirp signals. Simulation results indicate that the proposed simulator is effective in generating nonstationary MIMO channels with close approximation of the time-variant statistical characteristics in accordance with the expected theoretical counterparts.

  9. Operation of ADITYA Thomson scattering system: measurement of temperature and density

    International Nuclear Information System (INIS)

    Thomas, Jinto; Pillai, Vishal; Singh, Neha; Patel, Kiran; Lingeshwari, G.; Hingrajiya, Zalak; Kumar, Ajai

    2015-01-01

    ADITYA Thomson scattering (TS) system is a single point measurement system operated using a 10 J ruby laser and a 1 meter grating spectrometer. Multi-slit optical fibers are arranged at the image plane of the spectrometer so that each fiber slit collects 2 nm band of scattered spectrum. Each slit of the fiber bundle is coupled to high gain Photomultiplier tubes (PMT). Standard white light source is used to calibrate the optical fiber transmission and the laser light itself is used to calibrate the relative gain of the PMT. Rayleigh scattering has been performed for the absolute calibration of the TS system. The temperature of ADITYA plasma has been calculated using the conventional method of estimation (calculated using the slope of logarithmic intensity vs the square of delta lambda). It has been observed that the core temperature of ADITYA Tokamak plasma is in the range of 300 to 600 eV for different plasma shots and the density 2-3 X 10 13 /cc. The time evolution of the plasma discharge has been studied by firing the laser at different times of the discharge assuming the shots are identical. In some of the discharges, the velocity distribution appears to be non Maxwellian. (author)

  10. Resonances in a two-dimensional electron waveguide with a single δ-function scatterer

    International Nuclear Information System (INIS)

    Boese, Daniel; Lischka, Markus; Reichl, L. E.

    2000-01-01

    We study the conductance properties of a straight two-dimensional electron waveguide with an s-like scatterer modeled by a single δ-function potential with a finite number of modes. Even such a simple system exhibits interesting resonance phenomena. These resonances are explained in terms of quasibound states both by using a direct solution of the Schroedinger equation and by studying the Green's function of the system. Using the Green's function we calculate the survival probability as well as the power absorption, and show the influence of the quasibound states on these two quantities. (c) 2000 The American Physical Society

  11. Determination of coal ash content by the combined x-ray fluorescence and scattering spectrum

    Science.gov (United States)

    Mikhailov, I. F.; Baturin, A. A.; Mikhailov, A. I.; Borisova, S. S.; Fomina, L. P.

    2018-02-01

    An alternative method is proposed for the determination of the inorganic constituent mass fraction (ash) in solid fuel by the ratio of Compton and Rayleigh X-ray scattering peaks IC/IR subject to the iron fluorescence intensity. An original X-ray optical scheme with a Ti/Mo (or Sc/Cu) double-layer secondary radiator allows registration of the combined fluorescence-and-scattering spectrum at the specified scattering angle. An algorithm for linear calibration of the Compton-to-Rayleigh IC/IR ratio is proposed which uses standard samples with two certified characteristics: mass fractions of ash (Ad) and iron oxide (WFe2O3). Ash mass fractions have been determined for coals of different deposits in the wide range of Ad from 9.4% to 52.7% mass and WFe2O3 from 0.3% to 4.95% mass. Due to the high penetrability of the probing radiation with energy E > 17 keV, the sample preparation procedure is rather simplified in comparison with the traditional method of Ad determination by the sum of fluorescence intensities of all constituent elements.

  12. Cross plane scattering correction

    International Nuclear Information System (INIS)

    Shao, L.; Karp, J.S.

    1990-01-01

    Most previous scattering correction techniques for PET are based on assumptions made for a single transaxial plane and are independent of axial variations. These techniques will incorrectly estimate the scattering fraction for volumetric PET imaging systems since they do not take the cross-plane scattering into account. In this paper, the authors propose a new point source scattering deconvolution method (2-D). The cross-plane scattering is incorporated into the algorithm by modeling a scattering point source function. In the model, the scattering dependence both on axial and transaxial directions is reflected in the exponential fitting parameters and these parameters are directly estimated from a limited number of measured point response functions. The authors' results comparing the standard in-plane point source deconvolution to the authors' cross-plane source deconvolution show that for a small source, the former technique overestimates the scatter fraction in the plane of the source and underestimate the scatter fraction in adjacent planes. In addition, the authors also propose a simple approximation technique for deconvolution

  13. Numerical simulation of Rayleigh-Taylor instability in ablation driven systems

    International Nuclear Information System (INIS)

    Verdon, C.P.

    1984-01-01

    Two-dimensional numerical simulations of ablatively accelerated thin shells subject to Rayleigh-Taylor instability are presented. Results for both single wavelength and multiwavelength perturbations show that the nonlinear effects of the instability are evident mainly in the bubble rather than the spike. Approximate roles for predicting the dominant nonlinear mode-mode interactions, which limit shell performance, are also discussed. The work concludes with a discussion of recommendations for future work in this area

  14. Ion mobilities in diatomic gases: measurement versus prediction with non-specular scattering models.

    Science.gov (United States)

    Larriba, Carlos; Hogan, Christopher J

    2013-05-16

    compact to highly linear, and singly charged tetraalkylammonium cations. It was found that both non-specular, inelastic scattering rules lead to excellent agreement between predictions and experimental mobility measurements (within 5% of each other) and that polarization potentials must be considered to make correct predictions for high-mobility particles/ions. Conversely, traditional specular, elastic scattering models were found to substantially overestimate the mobilities of both types of ions.

  15. Cloudy bag model calculation of P11 πN scattering

    International Nuclear Information System (INIS)

    Rinat, A.S.

    1981-05-01

    πN, πΔ scattering in the cloudy bag model (CBM) is considered using an elementary π field and bare bag states for N, Δ, Nsup(*)(1470). The resulting 2-channel problem is solved neglecting intermediate states with anti-baryons and states with more than a single pion. It is shown that delta 11 may be reproduced for parameters close to their theoretical values. The fit thus provides a test for the CBM. (author)

  16. Rayleigh-Taylor instability in a visco-plastic fluid

    International Nuclear Information System (INIS)

    Demianov, A Yu; Doludenko, A N; Son, E E; Inogamov, N A

    2010-01-01

    The Rayleigh-Taylor and Richtmyer-Meshkov instabilities of a visco-plastic fluid are discussed. The Bingham model is used as an effective rheological model which takes into account plastic effects. For the purposes of numerical simulation a one-mode disturbance of the contact surface between two fluids is considered. The main goal of this work is to construct numerical 2D and 3D models and to obtain the relationship between yield stress and the development of instability.

  17. Rayleigh-Taylor instability in a visco-plastic fluid

    Science.gov (United States)

    Demianov, A. Yu; Doludenko, A. N.; Inogamov, N. A.; Son, E. E.

    2010-12-01

    The Rayleigh-Taylor and Richtmyer-Meshkov instabilities of a visco-plastic fluid are discussed. The Bingham model is used as an effective rheological model which takes into account plastic effects. For the purposes of numerical simulation a one-mode disturbance of the contact surface between two fluids is considered. The main goal of this work is to construct numerical 2D and 3D models and to obtain the relationship between yield stress and the development of instability.

  18. On exact solutions of scattering problems

    International Nuclear Information System (INIS)

    Nikishov, P.Yu.; Plekhanov, E.B.; Zakhariev, B.N.

    1982-01-01

    Examples illustrating the quality of the reconstruction of potentials from single-channel scattering data by using exactly solvable models are given. Simple exact solutions for multi-channel systems with non-degenerated resonance singularities of the scattering matrix are derived

  19. Single-mode, Rayleigh-Taylor growth-rate measurements on the OMEGA laser system

    International Nuclear Information System (INIS)

    Knauer, J. P.; Betti, R.; Bradley, D. K.; Boehly, T. R.; Collins, T. J. B.; Goncharov, V. N.; McKenty, P. W.; Meyerhofer, D. D.; Smalyuk, V. A.; Verdon, C. P.

    2000-01-01

    The results from a series of single-mode, Rayleigh-Taylor (RT) instability growth experiments performed on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five or six 351 nm laser beams overlapped with total intensities up to 2.5x10 14 W/cm 2 . Experiments were performed with both 3 ns ramp and 3 ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4%-7% over a 600 μm diam region defined by the 90% intensity contour. The temporal growth of the modulation in optical depth was measured using throughfoil radiography and was detected with an x-ray framing camera for CH targets. Two-dimensional (2-D) hydrodynamic simulations (ORCHID) [R. L. McCrory and C. P. Verdon, in Inertial Confinement Fusion (Editrice Compositori, Bologna, 1989), pp. 83-124] of the growth of 20, 31, and 60 μm wavelength perturbations were in good agreement with the experimental data when the experimental details, including noise, were included. The amplitude of the simulation optical depth is in good agreement with the experimental optical depth; therefore, great care must be taken when the growth rates are compared to dispersion formulas. Since the foil's initial condition just before it is accelerated is not that of a uniformly compressed foil, the optical density measurement does not accurately reflect the amplitude of the ablation surface but is affected by the initial nonuniform density profile. (c) 2000 American Institute of Physics

  20. Single-mode, Rayleigh-Taylor growth-rate measurements on the OMEGA laser system

    Energy Technology Data Exchange (ETDEWEB)

    Knauer, J. P. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Betti, R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Bradley, D. K. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Boehly, T. R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Collins, T. J. B. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Goncharov, V. N. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); McKenty, P. W. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Meyerhofer, D. D. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Smalyuk, V. A. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Verdon, C. P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] (and others)

    2000-01-01

    The results from a series of single-mode, Rayleigh-Taylor (RT) instability growth experiments performed on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five or six 351 nm laser beams overlapped with total intensities up to 2.5x10{sup 14} W/cm{sup 2}. Experiments were performed with both 3 ns ramp and 3 ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4%-7% over a 600 {mu}m diam region defined by the 90% intensity contour. The temporal growth of the modulation in optical depth was measured using throughfoil radiography and was detected with an x-ray framing camera for CH targets. Two-dimensional (2-D) hydrodynamic simulations (ORCHID) [R. L. McCrory and C. P. Verdon, in Inertial Confinement Fusion (Editrice Compositori, Bologna, 1989), pp. 83-124] of the growth of 20, 31, and 60 {mu}m wavelength perturbations were in good agreement with the experimental data when the experimental details, including noise, were included. The amplitude of the simulation optical depth is in good agreement with the experimental optical depth; therefore, great care must be taken when the growth rates are compared to dispersion formulas. Since the foil's initial condition just before it is accelerated is not that of a uniformly compressed foil, the optical density measurement does not accurately reflect the amplitude of the ablation surface but is affected by the initial nonuniform density profile. (c) 2000 American Institute of Physics.

  1. Recent advances and open questions in neutrino-induced quasi-elastic scattering and single photon production

    Energy Technology Data Exchange (ETDEWEB)

    Garvey, G.T., E-mail: garvey@lanl.gov [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Harris, D.A., E-mail: dharris@fnal.gov [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL, 60510-5011 (United States); Tanaka, H.A., E-mail: tanaka@phas.ubc.ca [Institute of Particle Physics and Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Tayloe, R., E-mail: rtayloe@indiana.edu [Department of Physics, Indiana University, 727 E. Third St., Bloomington, IN 47405-7105 (United States); Zeller, G.P., E-mail: gzeller@fnal.gov [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL, 60510-5011 (United States)

    2015-06-15

    The study of neutrino–nucleus interactions has recently seen rapid development with a new generation of accelerator-based neutrino experiments employing medium and heavy nuclear targets for the study of neutrino oscillations. A few unexpected results in the study of quasi-elastic scattering and single photon production have spurred a revisiting of the underlying nuclear physics and connections to electron–nucleus scattering. A thorough understanding and resolution of these issues is essential for future progress in the study of neutrino oscillations. A recent workshop hosted by the Institute of Nuclear Theory at the University of Washington (INT-13-54W) examined experimental and theoretical developments in neutrino–nucleus interactions and related measurements from electron and pion scattering. We summarize the discussions at the workshop pertaining to the aforementioned issues in quasi-elastic scattering and single photon production, particularly where there was consensus on the highest priority issues to be resolved and the path towards resolving them.

  2. Extending the Rayleigh equation to allow competing isotope fractionating pathways to improve quantification of biodegradation

    NARCIS (Netherlands)

    van Breukelen, B.M.

    2007-01-01

    The Rayleigh equation relates the change in isotope ratio of an element in a substrate to the extent of substrate consumption via a single kinetic isotopic fractionation factor (α). Substrate consumption is, however, commonly distributed over several metabolic pathways each potentially having a

  3. Thermal neutron scattering kernels for sapphire and silicon single crystals

    International Nuclear Information System (INIS)

    Cantargi, F.; Granada, J.R.; Mayer, R.E.

    2015-01-01

    Highlights: • Thermal cross section libraries for sapphire and silicon single crystals were generated. • Debye model was used to represent the vibrational frequency spectra to feed the NJOY code. • Sapphire total cross section was measured at Centro Atómico Bariloche. • Cross section libraries were validated with experimental data available. - Abstract: Sapphire and silicon are materials usually employed as filters in facilities with thermal neutron beams. Due to the lack of the corresponding thermal cross section libraries for those materials, necessary in calculations performed in order to optimize beams for specific applications, here we present the generation of new thermal neutron scattering kernels for those materials. The Debye model was used in both cases to represent the vibrational frequency spectra required to feed the NJOY nuclear data processing system in order to produce the corresponding libraries in ENDF and ACE format. These libraries were validated with available experimental data, some from the literature and others obtained at the pulsed neutron source at Centro Atómico Bariloche

  4. Polarized Raman scattering study of PSN single crystals and epitaxial thin films

    Directory of Open Access Journals (Sweden)

    J. Pokorný

    2015-06-01

    Full Text Available This paper describes a detailed analysis of the dependence of Raman scattering intensity on the polarization of the incident and inelastically scattered light in PbSc0.5Nb0.5O3 (PSN single crystals and epitaxially compressed thin films grown on (100-oriented MgO substrates. It is found that there are significant differences between the properties of the crystals and films, and that these differences can be attributed to the anticipated structural differences between these two forms of the same material. In particular, the scattering characteristics of the oxygen octahedra breathing mode near 810 cm-1 indicate a ferroelectric state for the crystals and a relaxor state for the films, which is consistent with the dielectric behaviors of these materials.

  5. Predictability of Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Viecelli, J.A.

    1986-01-01

    Numerical experiments modeling the Rayleigh Taylor instability are carried out using a two-dimensional incompressible Eulerian hydrodynamic code VFTS. The method of integrating the Navier-Stokes equations including the viscous terms is similar to that described in Kim and Moin, except that Lagrange particles have been added and provision for body forces is given. The Eulerian method is 2nd order accurate in both space and time, and the Poisson equation for the effective pressure field is solved exactly at each time step using a cyclic reduction method. 3 refs., 3 figs

  6. Thin layer model for nonlinear evolution of the Rayleigh-Taylor instability

    Science.gov (United States)

    Zhao, K. G.; Wang, L. F.; Xue, C.; Ye, W. H.; Wu, J. F.; Ding, Y. K.; Zhang, W. Y.

    2018-03-01

    On the basis of the thin layer approximation [Ott, Phys. Rev. Lett. 29, 1429 (1972)], a revised thin layer model for incompressible Rayleigh-Taylor instability has been developed to describe the deformation and nonlinear evolution of the perturbed interface. The differential equations for motion are obtained by analyzing the forces (the gravity and pressure difference) of fluid elements (i.e., Newton's second law). The positions of the perturbed interface are obtained from the numerical solution of the motion equations. For the case of vacuum on both sides of the layer, the positions of the upper and lower interfaces obtained from the revised thin layer approximation agree with that from the weakly nonlinear (WN) model of a finite-thickness fluid layer [Wang et al., Phys. Plasmas 21, 122710 (2014)]. For the case considering the fluids on both sides of the layer, the bubble-spike amplitude from the revised thin layer model agrees with that from the WN model [Wang et al., Phys. Plasmas 17, 052305 (2010)] and the expanded Layzer's theory [Goncharov, Phys. Rev. Lett. 88, 134502 (2002)] in the early nonlinear growth regime. Note that the revised thin layer model can be applied to investigate the perturbation growth at arbitrary Atwood numbers. In addition, the large deformation (the large perturbed amplitude and the arbitrary perturbed distributions) in the initial stage can also be described by the present model.

  7. Simultaneous Laser Raman-rayleigh-lif Measurements and Numerical Modeling Results of a Lifted Turbulent H2/N2 Jet Flame in a Vitiated Coflow

    Science.gov (United States)

    Cabra, R.; Chen, J. Y.; Dibble, R. W.; Myhrvold, T.; Karpetis, A. N.; Barlow, R. S.

    2002-01-01

    An experiment and numerical investigation is presented of a lifted turbulent H2/N2 jet flame in a coflow of hot, vitiated gases. The vitiated coflow burner emulates the coupling of turbulent mixing and chemical kinetics exemplary of the reacting flow in the recirculation region of advanced combustors. It also simplifies numerical investigation of this coupled problem by removing the complexity of recirculating flow. Scalar measurements are reported for a lifted turbulent jet flame of H2/N2 (Re = 23,600, H/d = 10) in a coflow of hot combustion products from a lean H2/Air flame ((empty set) = 0.25, T = 1,045 K). The combination of Rayleigh scattering, Raman scattering, and laser-induced fluorescence is used to obtain simultaneous measurements of temperature and concentrations of the major species, OH, and NO. The data attest to the success of the experimental design in providing a uniform vitiated coflow throughout the entire test region. Two combustion models (PDF: joint scalar Probability Density Function and EDC: Eddy Dissipation Concept) are used in conjunction with various turbulence models to predict the lift-off height (H(sub PDF)/d = 7,H(sub EDC)/d = 8.5). Kalghatgi's classic phenomenological theory, which is based on scaling arguments, yields a reasonably accurate prediction (H(sub K)/d = 11.4) of the lift-off height for the present flame. The vitiated coflow admits the possibility of auto-ignition of mixed fluid, and the success of the present parabolic implementation of the PDF model in predicting a stable lifted flame is attributable to such ignition. The measurements indicate a thickened turbulent reaction zone at the flame base. Experimental results and numerical investigations support the plausibility of turbulent premixed flame propagation by small scale (on the order of the flame thickness) recirculation and mixing of hot products into reactants and subsequent rapid ignition of the mixture.

  8. Time-domain full-waveform inversion of Rayleigh and Love waves in presence of free-surface topography

    Science.gov (United States)

    Pan, Yudi; Gao, Lingli; Bohlen, Thomas

    2018-05-01

    Correct estimation of near-surface seismic-wave velocity when encountering lateral heterogeneity and free surface topography is one of the challenges to current shallow seismic. We propose to use time-domain full-waveform inversion (FWI) of surface waves, including both Rayleigh and Love waves, to solve this problem. We adopt a 2D time-domain finite-difference method with an improved vacuum formulation (IVF) to simulate shallow-seismic Rayleigh wave in presence of free-surface topography. We modify the IVF for SH-wave equation for the simulation of Love wave in presence of topographic free surface and prove its accuracy by benchmark tests. Checkboard model tests are performed in both cases when free-surface topography is included or neglected in FWI. Synthetic model containing a dipping planar free surface and lateral heterogeneity was then tested, in both cases of considering and neglecting free-surface topography. Both checkerboard and synthetic models show that Rayleigh- and Love-wave FWI have similar ability of reconstructing near-surface structures when free-surface topography is considered, while Love-wave FWI could reconstruct near-surface structures better than Rayleigh-wave when free-surface topography is neglected.

  9. Study on Rayleigh Wave Inversion for Estimating Shear-wave Velocity Profile

    Directory of Open Access Journals (Sweden)

    T.A. Sanny

    2003-05-01

    Full Text Available Rayleigh wave or ground roll is a noise in seismic body waves. However, how to use this noise for soil characterization is very interesting since Rayleigh wave phase velocity is a function of compression-wave velocity, shear-wave velocity, density and layer thickness. In layered-medium Rayleigh wave velocity also depends on wavelength or frequency, and this phenomenon is called dispersion. Inversion procedure to get shear-wave velocity profile needs a priori information about the solution of the problem to limit the unknown parameters. The Lagrange multiplier method was used to solve the constrained optimization problems or well known as a smoothing parameter in inversion problems. The advantage of our inversion procedure is that it can guarantee the convergence of solution even though the field data is incomplete, insufficient, and inconsistent. The addition of smoothing parameter can reduce the time to converge. Beside numerical stability, the statistical stability is also involved in inversion procedure. In field experiment we extracted ground roll data from seismic refraction record. The dispersion curves had been constructed by applying f-k analysis and f-k dip filtering. The dispersion curves show the dependence of Rayleigh wave phase velocities in layered media to frequency. The synthetic models also demonstrate the stability and the speed of inversion procedure.

  10. Potential flow model for the hydromagnetic Rayleigh--Taylor instability in cylindrical plasmas

    International Nuclear Information System (INIS)

    Hwang, C.S.; Roderick, N.F.

    1987-01-01

    A potential flow model has been developed to study the linear behavior of the hydromagnetic equivalent of the Rayleigh--Taylor instability in imploding cylindrical plasmas. Ordinary differential equations are obtained for both (r,z) and (r,θ) disturbances. The model allows the study of the dynamic effects of the moving plasma on the development of the instability. The perturbation equations separate into a geometric part associated with the motion of the interface and a nongeometric part associated with the stability of the interface. In both planes the geometric part shows growth of perturbations for imploding plasmas. The surface is also unstable in both planes for plasmas being imploded by magnetic fields. Analytic solutions are obtained for constant acceleration. These show that the short wavelength perturbations that are most damaging in the (r,z) plane are not affected by the motion of the interface. In the (r,θ) plane the growth of longer wavelength disturbances is affected by the interface motion

  11. Fano-like resonance and scattering in dielectric(core)–metal(shell) composites embedded in active host matrices

    CSIR Research Space (South Africa)

    Jule, L

    2015-07-01

    Full Text Available We investigate light scattering by core–shell consisting of metal/dielectric composites considering spherical and cylindrical nanoinclusions, within the framework of the conventional Rayleigh approximation. By writing the electric potential...

  12. Elastic scattering dynamics of cavity polaritons: Evidence for time-energy uncertainty and polariton localization

    DEFF Research Database (Denmark)

    Langbein, Wolfgang Werner; Hvam, Jørn Märcher

    2002-01-01

    The directional dynamics of the resonant Rayleigh scattering from a semiconductor microcavity is investigated. When optically exciting the lower polariton branch, the strong dispersion results in a directional emission on a ring. The coherent emission ring shows a reduction of its angular width...... for increasing time after excitation, giving direct evidence for the time-energy uncertainty in the dynamics of the scattering by disorder. The ring width converges with time to a finite value, a direct measure of an intrinsic momentum broadening of the polariton states localized by multiple disorder scattering....

  13. Analysis of weakly nonlinear three-dimensional Rayleigh--Taylor instability growth

    International Nuclear Information System (INIS)

    Dunning, M.J.; Haan, S.W.

    1995-01-01

    Understanding the Rayleigh--Taylor instability, which develops at an interface where a low density fluid pushes and accelerates a higher density fluid, is important to the design, analysis, and ultimate performance of inertial confinement fusion targets. Existing experimental results measuring the growth of two-dimensional (2-D) perturbations (perturbations translationally invariant in one transverse direction) are adequately modeled using the 2-D hydrodynamic code LASNEX [G. B. Zimmerman and W. L. Kruer, Comments Plasma Phys. Controlled Fusion 11, 51 (1975)]. However, of ultimate interest is the growth of three-dimensional (3-D) perturbations such as those initiated by surface imperfections or illumination nonuniformities. Direct simulation of such 3-D experiments with all the significant physical processes included and with sufficient resolution is very difficult. This paper addresses how such experiments might be modeled. A model is considered that couples 2-D linear regime hydrodynamic code results with an analytic model to allow modeling of 3-D Rayleigh--Taylor growth through the linear regime and into the weakly nonlinear regime. The model is evaluated in 2-D by comparison with LASNEX results. Finally the model is applied to estimate the dynamics of a hypothetical 3-D foil

  14. A reversed-phase high performance liquid chromatography coupled with resonance Rayleigh scattering detection for the determination of four tetracycline antibiotics

    International Nuclear Information System (INIS)

    Wang Lifeng; Peng Jingdong; Liu Limin

    2008-01-01

    A new reversed-phase high performance liquid chromatography with resonance Rayleigh scattering detection (HPLC-RRS) was developed for simultaneous separation and determination of four tetracycline antibiotics (TCs). A good chromatographic separation among the compounds was achieved using a Synergi Fusion-RP column (150 mm x 4.6 mm; 4 μm) and a mobile phase consisting of methanol-acetonitrile-oxalic acid (5 mM) at the flow rate of 0.8 mL min -1 . Column temperature was 30 deg. C. The RRS signal was detected at λ ex = λ em = 370 nm. The recoveries of sample added standard ranged from 95.3% to 103.5%, and the relative standard deviation was below 2.79%. A detection limit of 2.12-5.12 μg mL -1 was reached and a linear range was found between peak height and concentration in the range of 10.36-518.0 μg mL -1 for oxytetracycline (OTC), 12.11-605.5 μg mL -1 for tetracycline (TC), 11.79-589.5 μg mL -1 for chlortetracycline (CTC) and 10.32-516.0 μg mL -1 for doxycycline (DC). The linear regression coefficients were all above 0.999. The method has been applied successfully to the determination of OTC, TC, CTC, DC in pharmaceutical formulations and in honey. The method was simple, rapid and showed a better linear relation and high repeatability

  15. A reversed-phase high performance liquid chromatography coupled with resonance Rayleigh scattering detection for the determination of four tetracycline antibiotics

    Energy Technology Data Exchange (ETDEWEB)

    Lifeng, Wang [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Peng Jingdong [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)], E-mail: hxpengjd@swu.edu.cn; Limin, Liu [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2008-12-07

    A new reversed-phase high performance liquid chromatography with resonance Rayleigh scattering detection (HPLC-RRS) was developed for simultaneous separation and determination of four tetracycline antibiotics (TCs). A good chromatographic separation among the compounds was achieved using a Synergi Fusion-RP column (150 mm x 4.6 mm; 4 {mu}m) and a mobile phase consisting of methanol-acetonitrile-oxalic acid (5 mM) at the flow rate of 0.8 mL min{sup -1}. Column temperature was 30 deg. C. The RRS signal was detected at {lambda}{sub ex} = {lambda}{sub em} = 370 nm. The recoveries of sample added standard ranged from 95.3% to 103.5%, and the relative standard deviation was below 2.79%. A detection limit of 2.12-5.12 {mu}g mL{sup -1} was reached and a linear range was found between peak height and concentration in the range of 10.36-518.0 {mu}g mL{sup -1} for oxytetracycline (OTC), 12.11-605.5 {mu}g mL{sup -1} for tetracycline (TC), 11.79-589.5 {mu}g mL{sup -1} for chlortetracycline (CTC) and 10.32-516.0 {mu}g mL{sup -1} for doxycycline (DC). The linear regression coefficients were all above 0.999. The method has been applied successfully to the determination of OTC, TC, CTC, DC in pharmaceutical formulations and in honey. The method was simple, rapid and showed a better linear relation and high repeatability.

  16. Time-domain single-source integral equations for analyzing scattering from homogeneous penetrable objects

    KAUST Repository

    Valdé s, Felipe; Andriulli, Francesco P.; Bagci, Hakan; Michielssen, Eric

    2013-01-01

    Single-source time-domain electric-and magnetic-field integral equations for analyzing scattering from homogeneous penetrable objects are presented. Their temporal discretization is effected by using shifted piecewise polynomial temporal basis

  17. Light Scatter in Optical Materials: Advanced Haze Modeling

    Science.gov (United States)

    2017-03-31

    contrast sensitivity with glare. This study measured angular scatter in the test articles , and showed that the cumulative (total) scatter beyond...Sample under laser illumination for angular scatter measurements ................................4  Figure 3: Scatter measurement system at a small...scatter effects image quality , visual performance and user acceptance. The purpose of the present effort was to develop a computational model that

  18. Room temperature single-crystal diffuse scattering and ab initio lattice dynamics in CaTiSiO5.

    Science.gov (United States)

    Gutmann, M J; Refson, K; Zimmermann, M V; Swainson, I P; Dabkowski, A; Dabkowska, H

    2013-08-07

    Single-crystal diffuse scattering data have been collected at room temperature on synthetic titanite using both neutrons and high-energy x-rays. A simple ball-and-springs model reproduces the observed diffuse scattering well, confirming its origin to be primarily due to thermal motion of the atoms. Ab initio phonons are calculated using density-functional perturbation theory and are shown to reproduce the experimental diffuse scattering. The observed diffuse x-ray and neutron scattering patterns are consistent with a summation of mode frequencies and displacement eigenvectors associated with the entire phonon spectrum, rather than with a simple, short-range static displacement. A band gap is observed between 600 and 700 cm(-1) with only two modes crossing this region, both associated with antiferroelectric Ti-O motion along a. One of these modes (of Bu symmetry), displays a large LO-TO mode-splitting (562-701.4 cm(-1)) and has a dominant component coming from Ti-O bond-stretching and, thus, the mode-splitting is related to the polarizability of the Ti-O bonds along the chain direction. Similar mode-splitting is observed in piezo- and ferroelectric materials. The calculated phonon dispersion model may be of use to others in future to understand the phase transition at higher temperatures, as well as in the interpretation of measured phonon dispersion curves.

  19. Modeling and simulations of radiative blast wave driven Rayleigh-Taylor instability experiments

    Science.gov (United States)

    Shimony, Assaf; Huntington, Channing M.; Trantham, Matthew; Malamud, Guy; Elbaz, Yonatan; Kuranz, Carolyn C.; Drake, R. Paul; Shvarts, Dov

    2017-10-01

    Recent experiments at the National Ignition Facility measured the growth of Rayleigh-Taylor RT instabilities driven by radiative blast waves, relevant to astrophysics and other HEDP systems. We constructed a new Buoyancy-Drag (BD) model, which accounts for the ablation effect on both bubble and spike. This ablation effect is accounted for by using the potential flow model ]Oron et al PoP 1998], adding another term to the classical BD formalism: βDuA / u , where β the Takabe constant, D the drag term, uA the ablation velocity and uthe instability growth velocity. The model results are compared with the results of experiments and 2D simulations using the CRASH code, with nominal radiation or reduced foam opacity (by a factor of 1000). The ablation constant of the model, βb / s, for the bubble and for the spike fronts, are calibrated using the results of the radiative shock experiments. This work is funded by the Lawrence Livermore National Laboratory under subcontract B614207, and was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  20. Looking for Multiple Scattering Effects in Backscattered Ultrasonic Grain Noise from Jet-Engine Nickel Alloys

    International Nuclear Information System (INIS)

    Margetan, F.J.; Haldipur, Pranaam; Yu Linxiao; Thompson, R.B.

    2005-01-01

    For pulse/echo inspections of metals, models which predict backscattered noise characteristics often make a 'single-scattering' assumption, i.e., multiple-scattering events in which sound is scattered from one grain to another before returning to the transducer are ignored. Models based on the single-scattering assumption have proven to be very useful in simulating inspections of engine-alloy billets and forgings. However, this assumption may not be accurate if grain scattering is too 'strong' (e.g., if the mean grain diameter and/or the inspection frequency is too large). In this work, backscattered grain noise measurements and analyses were undertaken to search for evidence of significant multiple scattering in pulse/echo inspections of jet-engine Nickel alloys. At or above about 7 MHz frequency and 50 micron grain diameter, problems were seen with single-scattering noise models that are likely due to the neglect of multiple scattering by the models. The modeling errors were less severe for focused-probe measurements in the focal zone than for planar probe inspections. Single-scattering noise models are likely adequate for simulating current billet inspections which are carried out using 5-MHz focused transducers. However, multiple scattering effects should be taken into account in some fashion when simulating higher-frequency inspections of Nickel-alloy billets having large mean grain diameters (> 40 microns)

  1. Comparison of scattering experiments using synchrotron radiation with Monte Carlo simulations using Geant4

    International Nuclear Information System (INIS)

    Gerlach, M.; Krumrey, M.; Cibik, L.; Mueller, P.; Ulm, G.

    2009-01-01

    Monte Carlo techniques are powerful tools to simulate the interaction of electromagnetic radiation with matter. One of the most widespread simulation program packages is Geant4. Almost all physical interaction processes can be included. However, it is not evident what accuracy can be obtained by a simulation. In this work, results of scattering experiments using monochromatized synchrotron radiation in the X-ray regime are quantitatively compared to the results of simulations using Geant4. Experiments were performed for various scattering foils made of different materials such as copper and gold. For energy-dispersive measurements of the scattered radiation, a cadmium telluride detector was used. The detector was fully characterized and calibrated with calculable undispersed as well as monochromatized synchrotron radiation. The obtained quantum efficiency and the response functions are in very good agreement with the corresponding Geant4 simulations. At the electron storage ring BESSY II the number of incident photons in the scattering experiments was measured with a photodiode that had been calibrated against a cryogenic radiometer, so that a direct comparison of scattering experiments with Monte Carlo simulations using Geant4 was possible. It was shown that Geant4 describes the photoeffect, including fluorescence as well as the Compton and Rayleigh scattering, with high accuracy, resulting in a deviation of typically less than 20%. Even polarization effects are widely covered by Geant4, and for Doppler broadening of Compton-scattered radiation the extension G4LECS can be included, but the fact that both features cannot be combined is a limitation. For most polarization-dependent simulations, good agreement with the experimental results was found, except for some orientations where Rayleigh scattering was overestimated in the simulation.

  2. Comparison of scattering experiments using synchrotron radiation with Monte Carlo simulations using Geant4

    Science.gov (United States)

    Gerlach, M.; Krumrey, M.; Cibik, L.; Müller, P.; Ulm, G.

    2009-09-01

    Monte Carlo techniques are powerful tools to simulate the interaction of electromagnetic radiation with matter. One of the most widespread simulation program packages is Geant4. Almost all physical interaction processes can be included. However, it is not evident what accuracy can be obtained by a simulation. In this work, results of scattering experiments using monochromatized synchrotron radiation in the X-ray regime are quantitatively compared to the results of simulations using Geant4. Experiments were performed for various scattering foils made of different materials such as copper and gold. For energy-dispersive measurements of the scattered radiation, a cadmium telluride detector was used. The detector was fully characterized and calibrated with calculable undispersed as well as monochromatized synchrotron radiation. The obtained quantum efficiency and the response functions are in very good agreement with the corresponding Geant4 simulations. At the electron storage ring BESSY II the number of incident photons in the scattering experiments was measured with a photodiode that had been calibrated against a cryogenic radiometer, so that a direct comparison of scattering experiments with Monte Carlo simulations using Geant4 was possible. It was shown that Geant4 describes the photoeffect, including fluorescence as well as the Compton and Rayleigh scattering, with high accuracy, resulting in a deviation of typically less than 20%. Even polarization effects are widely covered by Geant4, and for Doppler broadening of Compton-scattered radiation the extension G4LECS can be included, but the fact that both features cannot be combined is a limitation. For most polarization-dependent simulations, good agreement with the experimental results was found, except for some orientations where Rayleigh scattering was overestimated in the simulation.

  3. Comparison of scattering experiments using synchrotron radiation with Monte Carlo simulations using Geant4

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, M. [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Krumrey, M. [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany)], E-mail: Michael.Krumrey@ptb.de; Cibik, L.; Mueller, P.; Ulm, G. [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany)

    2009-09-11

    Monte Carlo techniques are powerful tools to simulate the interaction of electromagnetic radiation with matter. One of the most widespread simulation program packages is Geant4. Almost all physical interaction processes can be included. However, it is not evident what accuracy can be obtained by a simulation. In this work, results of scattering experiments using monochromatized synchrotron radiation in the X-ray regime are quantitatively compared to the results of simulations using Geant4. Experiments were performed for various scattering foils made of different materials such as copper and gold. For energy-dispersive measurements of the scattered radiation, a cadmium telluride detector was used. The detector was fully characterized and calibrated with calculable undispersed as well as monochromatized synchrotron radiation. The obtained quantum efficiency and the response functions are in very good agreement with the corresponding Geant4 simulations. At the electron storage ring BESSY II the number of incident photons in the scattering experiments was measured with a photodiode that had been calibrated against a cryogenic radiometer, so that a direct comparison of scattering experiments with Monte Carlo simulations using Geant4 was possible. It was shown that Geant4 describes the photoeffect, including fluorescence as well as the Compton and Rayleigh scattering, with high accuracy, resulting in a deviation of typically less than 20%. Even polarization effects are widely covered by Geant4, and for Doppler broadening of Compton-scattered radiation the extension G4LECS can be included, but the fact that both features cannot be combined is a limitation. For most polarization-dependent simulations, good agreement with the experimental results was found, except for some orientations where Rayleigh scattering was overestimated in the simulation.

  4. On the interplay between phonon-boundary scattering and phonon-point-defect scattering in SiGe thin films

    Science.gov (United States)

    Iskandar, A.; Abou-Khalil, A.; Kazan, M.; Kassem, W.; Volz, S.

    2015-03-01

    This paper provides theoretical understanding of the interplay between the scattering of phonons by the boundaries and point-defects in SiGe thin films. It also provides a tool for the design of SiGe-based high-efficiency thermoelectric devices. The contributions of the alloy composition, grain size, and film thickness to the phonon scattering rate are described by a model for the thermal conductivity based on the single-mode relaxation time approximation. The exact Boltzmann equation including spatial dependence of phonon distribution function is solved to yield an expression for the rate at which phonons scatter by the thin film boundaries in the presence of the other phonon scattering mechanisms. The rates at which phonons scatter via normal and resistive three-phonon processes are calculated by using perturbation theories with taking into account dispersion of confined acoustic phonons in a two dimensional structure. The vibrational parameters of the model are deduced from the dispersion of confined acoustic phonons as functions of temperature and crystallographic direction. The accuracy of the model is demonstrated with reference to recent experimental investigations regarding the thermal conductivity of single-crystal and polycrystalline SiGe films. The paper describes the strength of each of the phonon scattering mechanisms in the full temperature range. Furthermore, it predicts the alloy composition and film thickness that lead to minimum thermal conductivity in a single-crystal SiGe film, and the alloy composition and grain size that lead to minimum thermal conductivity in a polycrystalline SiGe film.

  5. Development of general X-ray scattering model

    International Nuclear Information System (INIS)

    Gray, Joe; Wendt, Scott

    2015-01-01

    X-ray scattering is a complex process made difficult to describe due to the effects of a complex energy spectrum interacting with a wide range of material types in complex geometry. The scattering is further complicated by the volume of material illuminated and the experimental configuration of the data acquisition. The importance of accounting for the key physics in scattering modeling is critical to the viability of the model. For example, scattering in the detector and the speed of the detector, as measured by the absorbed dose needed to produce a signal, are important in capturing undercut effects. Another example is the noise properties of the detectors are dependent on photon energy. We report on a semi-empirical treatment of x-ray scattering that includes a full energy treatment for a wide range of material types. We also include complex geometry effects that the part shape introduces. The treatment is based on experimental measurements using an energy dispersive germanium detector over energies from treatment is showing good results with experimental measurements of the scattering component agreeing with the model results to the 10% level over the range of x-ray energies and materials typical in industrial applications. Computation times for this model are in the 20 keV to 320 keV. Detector stripping routines for detector artifacts were developed. The computation time is in the range of a few minutes on a typical PC

  6. Study of Rayleigh-Love coupling from Spatial Gradient Observation

    Science.gov (United States)

    Lin, C. J.; Hosseini, K.; Donner, S.; Vernon, F.; Wassermann, J. M.; Igel, H.

    2017-12-01

    We present a new method to study Rayleigh-Love coupling. Instead of using seismograms solely, where ground motion is recorded as function of time, we incorporate with rotation and strain, also called spatial gradient where ground is represented as function of distance. Seismic rotation and strain are intrinsic different observable wavefield so are helpful to indentify wave type and wave propagation. A Mw 7.5 earthquake on 29 March 2015 occurred in Kokopo, Papua New Guinea recorded by a dense seismic array at PFO, California are used to obtaint seismic spatial gradient. We firstly estimate time series of azimuthal direction and phase velocity of SH wave and Rayleigh wave by analyzing collocated seismograms and rotations. This result also compares with frequency wavenumber methods using a nearby ANZA seismic array. We find the direction of Rayleigh wave fits well with great-circle back azimuth during wave propagation, while the direction of Love wave deviates from that, especially when main energy of Rayleigh wave arrives. From the analysis of cross-correlation between areal strain and vertical rotation, it reveals that high coherence, either positive or negative, happens at the same time when Love wave deparate from great-circle path. We also find the observed azimuth of Love wave and polarized particle motion of Rayleigh wave fits well with the fast direction of Rayleigh wave, for the period of 50 secs. We conclude the cause of deviated azimuth of Love wave is due to Rayleigh-Love coupling, as surface wave propagates through the area with anisotropic structure.

  7. Effects of pump recycling technique on stimulated Brillouin scattering threshold: a theoretical model.

    Science.gov (United States)

    Al-Asadi, H A; Al-Mansoori, M H; Ajiya, M; Hitam, S; Saripan, M I; Mahdi, M A

    2010-10-11

    We develop a theoretical model that can be used to predict stimulated Brillouin scattering (SBS) threshold in optical fibers that arises through the effect of Brillouin pump recycling technique. Obtained simulation results from our model are in close agreement with our experimental results. The developed model utilizes single mode optical fiber of different lengths as the Brillouin gain media. For 5-km long single mode fiber, the calculated threshold power for SBS is about 16 mW for conventional technique. This value is reduced to about 8 mW when the residual Brillouin pump is recycled at the end of the fiber. The decrement of SBS threshold is due to longer interaction lengths between Brillouin pump and Stokes wave.

  8. The mitigation effect of sheared axial flow on the rayleigh-taylor instability in Z-pinch plasma

    International Nuclear Information System (INIS)

    Zhang Yang

    2005-01-01

    A magnetohydrodynamic formulation is derived to investigate the mitigation effects of the sheared axial flow on the Rayleigh-Taylor (RT) instability in Z-pinch plasma. The dispersion relation of the compressible model is given. The mitigation effects of sheared axial flow on the Rayleigh-Taylor instability of Z-pinch plasma in the compressible and incompressible models are compared respectively, and the effect of compressible on the instability of system with sheared axial flow is discussed. It is found that, compressibility effects can stabilize the Rayleigh-Taylor/Kelvin-Helmholtz (RT/KH) instability, and this allows the sheared axial flow mitigate the RT instability far more effectively. The authors also find that, at the early stage of the implosion, if the temperature of the plasma is not very high, the compressible model is much more suitable to describing the state of system than the incompressible one. (author)

  9. Effects of shock waves on Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Zhang Yongtao; Shu Chiwang; Zhou Ye

    2006-01-01

    A numerical simulation of two-dimensional compressible Navier-Stokes equations using a high-order weighted essentially nonoscillatory finite difference shock capturing scheme is carried out in this paper, to study the effect of shock waves on the development of Rayleigh-Taylor instability. Shocks with different Mach numbers are introduced ahead or behind the Rayleigh-Taylor interface, and their effect on the transition to instability is demonstrated and compared. It is observed that shock waves can speed up the transition to instability for the Rayleigh-Taylor interface significantly. Stronger shocks are more effective in this speed-up process

  10. Absolute determination of zero-energy phase shifts for multiparticle single-channel scattering: Generalized Levinson theorem

    International Nuclear Information System (INIS)

    Rosenberg, L.; Spruch, L.

    1996-01-01

    Levinson close-quote s theorem relates the zero-energy phase shift δ for potential scattering in a given partial wave l, by a spherically symmetric potential that falls off sufficiently rapidly, to the number of bound states of that l supported by the potential. An extension of this theorem is presented that applies to single-channel scattering by a compound system initially in its ground state. As suggested by Swan [Proc. R. Soc. London Ser. A 228, 10 (1955)], the extended theorem differs from that derived for potential scattering; even in the absence of composite bound states δ may differ from zero as a consequence of the Pauli principle. The derivation given here is based on the introduction of a continuous auxiliary open-quote open-quote length phase close-quote close-quote η, defined modulo π for l=0 by expressing the scattering length as A=acotη, where a is a characteristic length of the target. Application of the minimum principle for the scattering length determines the branch of the cotangent curve on which η lies and, by relating η to δ, an absolute determination of δ is made. The theorem is applicable, in principle, to single-channel scattering in any partial wave for e ± -atom and nucleon-nucleus systems. In addition to a knowledge of the number of composite bound states, information (which can be rather incomplete) concerning the structure of the target ground-state wave function is required for an explicit, absolute, determination of the phase shift δ. As for Levinson close-quote s original theorem for potential scattering, no additional information concerning the scattering wave function or scattering dynamics is required. copyright 1996 The American Physical Society

  11. Method of generalized coordinates and an application to Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Dienes, J.K.

    1978-01-01

    The method of generalized coordinates is extended to the analysis of continuous bodies for which the degrees of freedom are independent velocity distributions in the spatial coordinates. The corresponding Lagrange equations contain generalized convective terms as well as the usual generalized forces and masses. Since the existence of a potential is not assumed, the equations of motion can be applied to media with arbitrary (possible dissipative) constitutive laws. Material deformation is characterized by the rate of strain, which is taken as the symmetric part of the velocity gradient, making the approach valid for arbitrarily large deformations. As an example, infinitesimal Rayleigh-Taylor instability is considered by analytic methods. Then, large amplitude Rayleigh-Taylor instability is represented with a single-degree-of-freedom analysis that shows the development (by numerical integration) of the known spike-and-bubble configuration of the unstable interface. The infinitesimal stability of a plastically deforming solid and the growth of the instability to large amplitudes are also considered

  12. Application of the weighted total field-scattering field technique to 3D-PSTD light scattering model

    Science.gov (United States)

    Hu, Shuai; Gao, Taichang; Liu, Lei; Li, Hao; Chen, Ming; Yang, Bo

    2018-04-01

    PSTD (Pseudo Spectral Time Domain) is an excellent model for the light scattering simulation of nonspherical aerosol particles. However, due to the particularity of its discretization form of the Maxwell's equations, the traditional Total Field/Scattering Field (TF/SF) technique for FDTD (Finite Differential Time Domain) is not applicable to PSTD, and the time-consuming pure scattering field technique is mainly applied to introduce the incident wave. To this end, the weighted TF/SF technique proposed by X. Gao is generalized and applied to the 3D-PSTD scattering model. Using this technique, the incident light can be effectively introduced by modifying the electromagnetic components in an inserted connecting region between the total field and the scattering field region with incident terms, where the incident terms are obtained by weighting the incident field by a window function. To optimally determine the thickness of connection region and the window function type for PSTD calculations, their influence on the modeling accuracy is firstly analyzed. To further verify the effectiveness and advantages of the weighted TF/SF technique, the improved PSTD model is validated against the PSTD model equipped with pure scattering field technique in both calculation accuracy and efficiency. The results show that, the performance of PSTD seems to be not sensitive to variation of window functions. The number of the connection layer required decreases with the increasing of spatial resolution, where for spatial resolution of 24 grids per wavelength, a 6-layer region is thick enough. The scattering phase matrices and integral scattering parameters obtained by the improved PSTD show an excellent consistency with those well-tested models for spherical and nonspherical particles, illustrating that the weighted TF/SF technique can introduce the incident precisely. The weighted TF/SF technique shows higher computational efficiency than pure scattering technique.

  13. Spontaneous Rayleigh-Brillouin scattering of ultraviolet light in nitrogen, dry air and moist air,

    NARCIS (Netherlands)

    Witschas, B.; Vieitez, M.O.; Duijn, van E.-J.; Reitebuch, O.; Water, van de W.; Ubachs, W.

    2010-01-01

    Atmospheric lidar techniques for the measurement of wind, temperature, and optical properties of aerosols rely on the exact knowledge of the spectral line shape of the scattered laser light on molecules. We report on spontaneous Rayleigh–Brillouin scattering measurements in the ultraviolet at a

  14. Measurement of Rayleigh wave Z/H ratio and joint inversion for a high-resolution S wave velocity model beneath the Gulf of Mexico passive margin

    Science.gov (United States)

    Miao, W.; Li, G.; Niu, F.

    2016-12-01

    Knowledge on the 3D sediment structure beneath the Gulf of Mexico passive margin is not only important to explore the oil and gas resources in the area, but also essential to decipher the deep crust and mantle structure beneath the margin with teleseismic data. In this study, we conduct a joint inversion of Rayleigh wave ellipticity and phase velocity at 6-40 s to construct a 3-D S wave velocity model in a rectangular area of 100°-87° west and 28°-37° north. We use ambient noise data from a total of 215 stations of the Transportable Array deployed under the Earthscope project. Rayleigh wave ellipticity, or Rayleigh wave Z/H (vertical to horizontal) amplitude ratio is mostly sensitive to shallow sediment structure, while the dispersion data are expected to have reasonably good resolution to uppermost mantle depths. The Z/H ratios measured from stations inside the Gulf Coastal Plain are distinctly lower in comparison with those measured from the inland stations. We also measured the phase velocity dispersion from the same ambient noise dataset. Our preliminary 3-D model is featured by strong low-velocity anomalies at shallow depth, which are spatially well correlated with Gulf Cost, East Texas, and the Lower Mississippi basins. We will discuss other features of the 3-D models once the model is finalized.

  15. Mode coupling in nonlinear Rayleigh--Taylor instability

    International Nuclear Information System (INIS)

    Ofer, D.; Shvarts, D.; Zinamon, Z.; Orszag, S.A.

    1992-01-01

    This paper studies the interaction of a small number of modes in the two-fluid Rayleigh--Taylor instability at relatively late stages of development, i.e., the nonlinear regime, using a two-dimensional hydrodynamic code incorporating a front-tracking scheme. It is found that the interaction of modes can greatly affect the amount of mixing and may even reduce the width of the mixing region. This interaction is both relatively long range in wave-number space and also acts in both directions, i.e., short wavelengths affect long wavelengths and vice versa. Three distinct stages of interaction have been identified, including substantial interaction among modes some of which may still be in their classical (single mode) ''linear'' phase

  16. Identification and mitigation of stray laser light in the Thomson scattering system on the Madison Symmetric Torus (MST)

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, C. M., E-mail: cjacobson@wisc.edu; Borchardt, M. T.; Den Hartog, D. J.; Falkowski, A. F.; Morton, L. A.; Thomas, M. A. [Department of Physics, University of Wisconsin–Madison, 1150 University Avenue, Madison, Wisconsin 53706 (United States)

    2016-11-15

    The Thomson scattering diagnostic on the Madison Symmetric Torus (MST) records excessive levels of stray Nd:YAG laser light. Stray light saturates the 1064 nm spectral channel in all polychromators, which prevents absolute electron density measurements via Rayleigh scattering calibration. Furthermore, stray light contaminates adjacent spectral channels for r/a ≥ 0.75, which renders the diagnostic unable to make electron temperature measurements at these radii. In situ measurements of stray light levels during a vacuum vessel vent are used to identify stray light sources and strategies for reduction of stray light levels. Numerical modeling using Zemax OpticStudio supports these measurements. The model of the vacuum vessel and diagnostic includes synthetic collection optics to enable direct comparison of measured and simulated stray light levels. Modeling produces qualitatively similar stray light distributions to MST measurements, and quantifies the mitigation effects of stray light mitigation strategies prior to implementation.

  17. Identification and mitigation of stray laser light in the Thomson scattering system on the Madison Symmetric Torus (MST)

    International Nuclear Information System (INIS)

    Jacobson, C. M.; Borchardt, M. T.; Den Hartog, D. J.; Falkowski, A. F.; Morton, L. A.; Thomas, M. A.

    2016-01-01

    The Thomson scattering diagnostic on the Madison Symmetric Torus (MST) records excessive levels of stray Nd:YAG laser light. Stray light saturates the 1064 nm spectral channel in all polychromators, which prevents absolute electron density measurements via Rayleigh scattering calibration. Furthermore, stray light contaminates adjacent spectral channels for r/a ≥ 0.75, which renders the diagnostic unable to make electron temperature measurements at these radii. In situ measurements of stray light levels during a vacuum vessel vent are used to identify stray light sources and strategies for reduction of stray light levels. Numerical modeling using Zemax OpticStudio supports these measurements. The model of the vacuum vessel and diagnostic includes synthetic collection optics to enable direct comparison of measured and simulated stray light levels. Modeling produces qualitatively similar stray light distributions to MST measurements, and quantifies the mitigation effects of stray light mitigation strategies prior to implementation.

  18. Localization of a small change in a multiple scattering environment without modeling of the actual medium.

    Science.gov (United States)

    Rakotonarivo, S T; Walker, S C; Kuperman, W A; Roux, P

    2011-12-01

    A method to actively localize a small perturbation in a multiple scattering medium using a collection of remote acoustic sensors is presented. The approach requires only minimal modeling and no knowledge of the scatterer distribution and properties of the scattering medium and the perturbation. The medium is ensonified before and after a perturbation is introduced. The coherent difference between the measured signals then reveals all field components that have interacted with the perturbation. A simple single scatter filter (that ignores the presence of the medium scatterers) is matched to the earliest change of the coherent difference to localize the perturbation. Using a multi-source/receiver laboratory setup in air, the technique has been successfully tested with experimental data at frequencies varying from 30 to 60 kHz (wavelength ranging from 0.5 to 1 cm) for cm-scale scatterers in a scattering medium with a size two to five times bigger than its transport mean free path. © 2011 Acoustical Society of America

  19. Improved quantitative 90 Y bremsstrahlung SPECT/CT reconstruction with Monte Carlo scatter modeling.

    Science.gov (United States)

    Dewaraja, Yuni K; Chun, Se Young; Srinivasa, Ravi N; Kaza, Ravi K; Cuneo, Kyle C; Majdalany, Bill S; Novelli, Paula M; Ljungberg, Michael; Fessler, Jeffrey A

    2017-12-01

    In 90 Y microsphere radioembolization (RE), accurate post-therapy imaging-based dosimetry is important for establishing absorbed dose versus outcome relationships for developing future treatment planning strategies. Additionally, accurately assessing microsphere distributions is important because of concerns for unexpected activity deposition outside the liver. Quantitative 90 Y imaging by either SPECT or PET is challenging. In 90 Y SPECT model based methods are necessary for scatter correction because energy window-based methods are not feasible with the continuous bremsstrahlung energy spectrum. The objective of this work was to implement and evaluate a scatter estimation method for accurate 90 Y bremsstrahlung SPECT/CT imaging. Since a fully Monte Carlo (MC) approach to 90 Y SPECT reconstruction is computationally very demanding, in the present study the scatter estimate generated by a MC simulator was combined with an analytical projector in the 3D OS-EM reconstruction model. A single window (105 to 195-keV) was used for both the acquisition and the projector modeling. A liver/lung torso phantom with intrahepatic lesions and low-uptake extrahepatic objects was imaged to evaluate SPECT/CT reconstruction without and with scatter correction. Clinical application was demonstrated by applying the reconstruction approach to five patients treated with RE to determine lesion and normal liver activity concentrations using a (liver) relative calibration. There was convergence of the scatter estimate after just two updates, greatly reducing computational requirements. In the phantom study, compared with reconstruction without scatter correction, with MC scatter modeling there was substantial improvement in activity recovery in intrahepatic lesions (from > 55% to > 86%), normal liver (from 113% to 104%), and lungs (from 227% to 104%) with only a small degradation in noise (13% vs. 17%). Similarly, with scatter modeling contrast improved substantially both visually and in

  20. Neutron scattering and models: Silver

    International Nuclear Information System (INIS)

    Smith, A.B.

    1996-07-01

    Differential neutron elastic-scattering cross sections of elemental silver were measured from 1.5 → 10 MeV at ∼ 100 keV intervals up to 3 MeV, at ∼ 200 keV intervals from 3 → 4 MeV, and at ∼ 500 keV intervals above 4 MeV. At ≤ 4 MeV the angular range of the measurements was ∼ 20 0 → 160 0 with 10 measured values below 3 MeV and 20 from 3 → 4 MeV at each incident energy. Above 4 MeV ≥ 40 scattering angles were used distributed between ∼ 17 0 and 16 0 All of the measured elastic distributions included some contributions due to inelastic scattering. Below 4 MeV the measurements determined cross sections for ten inelastically-scattered neutron groups corresponding to observed excitations of 328 ± 13, 419 ± 50, 748 ± 25, 908 ± 26, 115 ± 38, 1286 ± 25, 1507 ± 20, 1632 ± 30, 1835 ± 20 and 1944 ± 26 keV. All of these inelastic groups probably were composites of contributions from the two isotopes 107 Ag and 109 Ag. The experimental results were interpreted in terms of the spherical optical model and of rotational and vibrational coupled-channels models, and physical implications are discussed. In particular, the neutron-scattering results are consistent with a ground-state rotational band with a quadrupole deformation Β 2 = 0.20 ± ∼ 10% for both of the naturally-occurring silver isotopes

  1. Evaluation of scatter correction using a single isotope for simultaneous emission and transmission data

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.; Kuikka, J.T.; Vanninen, E.; Laensimies, E. [Kuopio Univ. Hospital (Finland). Dept. of Clinical Physiology and Nuclear Medicine; Kauppinen, T.; Patomaeki, L. [Kuopio Univ. (Finland). Dept. of Applied Physics

    1999-05-01

    Photon scatter is one of the most important factors degrading the quantitative accuracy of SPECT images. Many scatter correction methods have been proposed. The single isotope method was proposed by us. Aim: We evaluate the scatter correction method of improving the quality of images by acquiring emission and transmission data simultaneously with single isotope scan. Method: To evaluate the proposed scatter correction method, a contrast and linearity phantom was studied. Four female patients with fibromyalgia (FM) syndrome and four with chronic back pain (BP) were imaged. Grey-to-cerebellum (G/C) and grey-to-white matter (G/W) ratios were determined by one skilled operator for 12 regions of interest (ROIs) in each subject. Results: The linearity of activity response was improved after the scatter correction (r=0.999). The y-intercept value of the regression line was 0.036 (p<0.0001) after scatter correction and the slope was 0.954. Pairwise correlation indicated the agreement between nonscatter corrected and scatter corrected images. Reconstructed slices before and after scatter correction demonstrate a good correlation in the quantitative accuracy of radionuclide concentration. G/C values have significant correlation coefficients between original and corrected data. Conclusion: The transaxial images of human brain studies show that the scatter correction using single isotope in simultaneous transmission and emission tomography provides a good scatter compensation. The contrasts were increased on all 12 ROIs. The scatter compensation enhanced details of physiological lesions. (orig.) [Deutsch] Die Photonenstreuung gehoert zu den wichtigsten Faktoren, die die quantitative Genauigkeit von SPECT-Bildern vermindern. Es wurde eine ganze Reihe von Methoden zur Streuungskorrektur vorgeschlagen. Von uns wurde die Einzelisotopen-Methode empfohlen. Ziel: Wir untersuchten die Streuungskorrektur-Methode zur Verbesserung der Bildqualitaet durch simultane Gewinnung von Emissions

  2. Transmit selection for imperfect threshold-based receive MRC in Rayleigh fading channels

    KAUST Repository

    Radaydeh, Redha Mahmoud Mesleh

    2010-01-01

    The performance of multiple-antenna diversity systems in which the receiver combines signal replicas per thresholdbased maximal ratio combining (MRC) and the transmitter uses only a single antenna according to receive combined signal strength is studied. The impact of imperfect channel estimation is considered when the received signal replicas undergo independent and flat multipath fading. The analysis is applicable for arbitrary transmit antenna selection when the multiple-antenna channels experience identically distributed and non-identically distributed Rayleigh fading conditions. New closed-form expressions for the combined SNR statistics and some performance measures are presented. The system models adopted herein and the presented analytical results can be used to study the performance of different system architectures under various channel conditions when the implementation complexity is of interest. © 2009 IEEE.

  3. Rayleigh-Taylor mixing with time-dependent acceleration

    Science.gov (United States)

    Abarzhi, Snezhana

    2016-10-01

    We extend the momentum model to describe Rayleigh-Taylor (RT) mixing driven by a time-dependent acceleration. The acceleration is a power-law function of time, similarly to astrophysical and plasma fusion applications. In RT flow the dynamics of a fluid parcel is driven by a balance per unit mass of the rates of momentum gain and loss. We find analytical solutions in the cases of balanced and imbalanced gains and losses, and identify their dependence on the acceleration exponent. The existence is shown of two typical regimes of self-similar RT mixing-acceleration-driven Rayleigh-Taylor-type and dissipation-driven Richtymer-Meshkov-type with the latter being in general non-universal. Possible scenarios are proposed for transitions from the balanced dynamics to the imbalanced self-similar dynamics. Scaling and correlations properties of RT mixing are studied on the basis of dimensional analysis. Departures are outlined of RT dynamics with time-dependent acceleration from canonical cases of homogeneous turbulence as well as blast waves with first and second kind self-similarity. The work is supported by the US National Science Foundation.

  4. SFERXS, Photoabsorption, Coherent, Incoherent Scattering Cross-Sections Function for Shielding

    International Nuclear Information System (INIS)

    Legarda, F.; Mtz de la Fuente, O.; Herranz, M.

    2002-01-01

    Description of program or function: The use of electromagnetic radiation cross-sections in radiation shielding calculations and more generally in transport theory applications actually requires an interpolation between values which are tabulated for certain values of the energy. In order to facilitate this process and to reduce the computer memory requirements, we have developed, by a least squares method, a set of functions which represents the cross-sections for the photoelectric absorption, the coherent (Rayleigh) and the incoherent (Compton) scattering (1). For this purpose we have accepted as true values the ones tabulated by Storm and Israel (2) for the photoeffect, by Hubbell et Al. (3) for the incoherent scattering and by Hubbell and Overbo (4) for the coherent scattering

  5. Optical scattering lengths in large liquid-scintillator neutrino detectors

    Energy Technology Data Exchange (ETDEWEB)

    Wurm, M.; Feilitzsch, F. von; Goeger-Neff, M.; Hofmann, M.; Lewke, T.; Meindl, Q.; Moellenberg, R.; Oberauer, L.; Potzel, W.; Tippmann, M.; Todor, S.; Winter, J. [Physik-Department E15, Technische Universitaet Muenchen, James-Franck-Str., D-85748 Garching (Germany); Lachenmaier, T.; Traunsteiner, C. [Excellence Cluster Universe, Technische Universitaet Muenchen, Boltzmannstr. 2, D-85748 Garching (Germany); Undagoitia, T. Marrodan [Physik-Department E15, Technische Universitaet Muenchen, James-Franck-Str., D-85748 Garching (Germany); Physik-Institut, Universitaet Zuerich, Winterthurstr. 189, CH-8057 Zuerich (Switzerland)

    2010-05-15

    For liquid-scintillator neutrino detectors of kiloton scale, the transparency of the organic solvent is of central importance. The present paper reports on laboratory measurements of the optical scattering lengths of the organic solvents phenylxylylethane, linear alkylbenzene (LAB), and dodecane, which are under discussion for next-generation experiments such as SNO+ (Sudbury Neutrino Observatory), HanoHano, or LENA (Low Energy Neutrino Astronomy). Results comprise the wavelength range of 415-440 nm. The contributions from Rayleigh and Mie scattering as well as from absorption/re-emission processes are discussed. Based on the present results, LAB seems to be the preferred solvent for a large-volume detector.

  6. Optical scattering lengths in large liquid-scintillator neutrino detectors.

    Science.gov (United States)

    Wurm, M; von Feilitzsch, F; Göger-Neff, M; Hofmann, M; Lachenmaier, T; Lewke, T; Marrodán Undagoitia, T; Meindl, Q; Möllenberg, R; Oberauer, L; Potzel, W; Tippmann, M; Todor, S; Traunsteiner, C; Winter, J

    2010-05-01

    For liquid-scintillator neutrino detectors of kiloton scale, the transparency of the organic solvent is of central importance. The present paper reports on laboratory measurements of the optical scattering lengths of the organic solvents phenylxylylethane, linear alkylbenzene (LAB), and dodecane, which are under discussion for next-generation experiments such as SNO+ (Sudbury Neutrino Observatory), HanoHano, or LENA (Low Energy Neutrino Astronomy). Results comprise the wavelength range of 415-440 nm. The contributions from Rayleigh and Mie scattering as well as from absorption/re-emission processes are discussed. Based on the present results, LAB seems to be the preferred solvent for a large-volume detector.

  7. Deterministic simulation of first-order scattering in virtual X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Freud, N. E-mail: nicolas.freud@insa-lyon.fr; Duvauchelle, P.; Pistrui-Maximean, S.A.; Letang, J.-M.; Babot, D

    2004-07-01

    A deterministic algorithm is proposed to compute the contribution of first-order Compton- and Rayleigh-scattered radiation in X-ray imaging. This algorithm has been implemented in a simulation code named virtual X-ray imaging. The physical models chosen to account for photon scattering are the well-known form factor and incoherent scattering function approximations, which are recalled in this paper and whose limits of validity are briefly discussed. The proposed algorithm, based on a voxel discretization of the inspected object, is presented in detail, as well as its results in simple configurations, which are shown to converge when the sampling steps are chosen sufficiently small. Simple criteria for choosing correct sampling steps (voxel and pixel size) are established. The order of magnitude of the computation time necessary to simulate first-order scattering images amounts to hours with a PC architecture and can even be decreased down to minutes, if only a profile is computed (along a linear detector). Finally, the results obtained with the proposed algorithm are compared to the ones given by the Monte Carlo code Geant4 and found to be in excellent accordance, which constitutes a validation of our algorithm. The advantages and drawbacks of the proposed deterministic method versus the Monte Carlo method are briefly discussed.

  8. On Lamb and Rayleigh wave convergence in viscoelastic tissues

    Energy Technology Data Exchange (ETDEWEB)

    Nenadic, Ivan Z; Urban, Matthew W; Aristizabal, Sara; Mitchell, Scott A; Humphrey, Tye C; Greenleaf, James F, E-mail: Nenadic.Ivan@mayo.edu [Department of Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, 55905 (United States)

    2011-10-21

    Characterization of the viscoelastic material properties of soft tissue has become an important area of research over the last two decades. Our group has been investigating the feasibility of using a shear wave dispersion ultrasound vibrometry (SDUV) method to excite Lamb waves in organs with plate-like geometry to estimate the viscoelasticity of the medium of interest. The use of Lamb wave dispersion ultrasound vibrometry to quantify the mechanical properties of viscoelastic solids has previously been reported. Two organs, the heart wall and the spleen, can be readily modeled using plate-like geometries. The elasticity of these two organs is important because they change in pathological conditions. Diastolic dysfunction is the inability of the left ventricle (LV) of the heart to supply sufficient stroke volumes into the systemic circulation and is accompanied by the loss of compliance and stiffening of the LV myocardium. It has been shown that there is a correlation between high splenic stiffness in patients with chronic liver disease and strong correlation between spleen and liver stiffness. Here, we investigate the use of the SDUV method to quantify the viscoelasticity of the LV free-wall myocardium and spleen by exciting Rayleigh waves on the organ's surface and measuring the wave dispersion (change of wave velocity as a function of frequency) in the frequency range 40-500 Hz. An equation for Rayleigh wave dispersion due to cylindrical excitation was derived by modeling the excised myocardium and spleen with a homogenous Voigt material plate immersed in a nonviscous fluid. Boundary conditions and wave potential functions were solved for the surface wave velocity. Analytical and experimental convergence between the Lamb and Rayleigh waves is reported in a finite element model of a plate in a fluid of similar density, gelatin plate and excised porcine spleen and left-ventricular free-wall myocardium.

  9. Rayleigh scattering from single-site polysylane adsorbed on silicon: Theory

    NARCIS (Netherlands)

    Wijers, Christianus M.J.

    1986-01-01

    An ordered set of dipoles with mutual interaction in the close vicinity of a dielectric surface is studied. The solution of that particular theoretical problem is given rigorously both for the static and dynamic case. It can serve as a description of the polysylane molecules formed at the surface of

  10. Acoustical tweezers using single spherically focused piston, X-cut, and Gaussian beams.

    Science.gov (United States)

    Mitri, Farid G

    2015-10-01

    Partial-wave series expansions (PWSEs) satisfying the Helmholtz equation in spherical coordinates are derived for circular spherically focused piston (i.e., apodized by a uniform velocity amplitude normal to its surface), X-cut (i.e., apodized by a velocity amplitude parallel to the axis of wave propagation), and Gaussian (i.e., apodized by a Gaussian distribution of the velocity amplitude) beams. The Rayleigh-Sommerfeld diffraction integral and the addition theorems for the Legendre and spherical wave functions are used to obtain the PWSEs assuming weakly focused beams (with focusing angle α ⩽ 20°) in the Fresnel-Kirchhoff (parabolic) approximation. In contrast with previous analytical models, the derived expressions allow computing the scattering and acoustic radiation force from a sphere of radius a without restriction to either the Rayleigh (a ≪ λ, where λ is the wavelength of the incident radiation) or the ray acoustics (a ≫λ) regimes. The analytical formulations are valid for wavelengths largely exceeding the radius of the focused acoustic radiator, when the viscosity of the surrounding fluid can be neglected, and when the sphere is translated along the axis of wave propagation. Computational results illustrate the analysis with particular emphasis on the sphere's elastic properties and the axial distance to the center of the concave surface, with close connection of the emergence of negative trapping forces. Potential applications are in single-beam acoustical tweezers, acoustic levitation, and particle manipulation.

  11. Accurate single-scattering simulation of ice cloud using the invariant-imbedding T-matrix method and the physical-geometric optics method

    Science.gov (United States)

    Sun, B.; Yang, P.; Kattawar, G. W.; Zhang, X.

    2017-12-01

    The ice cloud single-scattering properties can be accurately simulated using the invariant-imbedding T-matrix method (IITM) and the physical-geometric optics method (PGOM). The IITM has been parallelized using the Message Passing Interface (MPI) method to remove the memory limitation so that the IITM can be used to obtain the single-scattering properties of ice clouds for sizes in the geometric optics regime. Furthermore, the results associated with random orientations can be analytically achieved once the T-matrix is given. The PGOM is also parallelized in conjunction with random orientations. The single-scattering properties of a hexagonal prism with height 400 (in units of lambda/2*pi, where lambda is the incident wavelength) and an aspect ratio of 1 (defined as the height over two times of bottom side length) are given by using the parallelized IITM and compared to the counterparts using the parallelized PGOM. The two results are in close agreement. Furthermore, the integrated single-scattering properties, including the asymmetry factor, the extinction cross-section, and the scattering cross-section, are given in a completed size range. The present results show a smooth transition from the exact IITM solution to the approximate PGOM result. Because the calculation of the IITM method has reached the geometric regime, the IITM and the PGOM can be efficiently employed to accurately compute the single-scattering properties of ice cloud in a wide spectral range.

  12. A numerical study of three-dimensional bubble merger in the Rayleigh endash Taylor instability

    International Nuclear Information System (INIS)

    Li, X.L.

    1996-01-01

    The Rayleigh endash Taylor instability arises when a heavy fluid adjacent to a light fluid is accelerated in a direction against the density gradient. Under this unstable configuration, a perturbation mode of small amplitude grows into bubbles of the light fluid and spikes of the heavy fluid. Taylor discovered the steady state motion with constant velocity for a single bubble or periodic bubbles in the Rayleigh endash Taylor instability. Read and Youngs studied the motion of a randomly perturbed fluid interface in the Rayleigh endash Taylor instability. They reported constant acceleration for the overall bubble envelope. Bubble merger is believed to cause the transition from constant velocity to constant acceleration. In this paper, we present a numerical study of this important physical phenomenon. It analyzes the physical process of bubble merger and the relationship between the horizontal bubble expansion and the vertical interface acceleration. A dynamic bubble velocity, beyond Taylor close-quote s steady state value, is observed during the merger process. It is believed that this velocity is due to the superposition of the bubble velocity with a secondary subharmonic unstable mode. The numerical results are compared with experiments. copyright 1996 American Institute of Physics

  13. The fluorescence and resonance Rayleigh scattering spectra study on the interactions of palladium (II)-Nootropic chelate with Congo red and their analytical applications

    Science.gov (United States)

    Chen, Fang; Peng, Jingdong; Liu, Shaopu; Peng, Huanjun; Pan, Ziyu; Bu, Lingli; Xiao, Huan; Zhang, Ruiwen

    2017-04-01

    A highly sensitive detection approach of resonance Rayleigh scattering spectra (RRS) is firstly applied to analyzing nootropic drugs including piracetam (PIR) and oxiracetam (OXI). In HCl-NaAc buffer solution (pH = 3.0), the OXI chelated with palladium (II) to form the chelate cation [Pd2·OXI]2 +, and then reacted with Congo red (CGR) by virtue of electrostatic attraction and hydrophobic force to form binary complex [Pd2·OXI]. CGR2, which could result in the great enhancement of RRS. The resonance Rayleigh scattering signal was recorded at λex = λem = 375 nm. This mixture complex not only has higher RRS, but also makes contribution to significant increase of fluorescence, and the same phenomena also were discovered in PIR. The enhanced RRS intensity is in proportion to the PIR and OXI concentration in the range of 0.03-3.0 μg mL- 1, and the detection limit (DL) of RRS method for PIR and OXI is 2.3 ng mL- 1 and 9.7 ng mL- 1. In addition, the DL of fluorescence method for PIR and OXI is 8.4 μg mL- 1 and 19.5 μg mL- 1. Obviously, the RRS is the highly sensitive method, and the recoveries of the two kinds of nootropic drugs were range from 100.4% to 101.8.0% with RSD (n = 5) from 1.1% to 3.1% by RRS method. This paper not only investigated the optimum conditions for detecting nootropics with using RRS method, but also focused on the reasons for enhancing RRS intensity and the reaction mechanism, which in order to firm and contract the resultant. Finally, The RRS method has been applied to detect nootropic drugs in human urine samples with satisfactory results. Fig. S2. The effect of ionic strength: Pd (II)-CGR system (curve a); Pd (II)-OXI-CGR system (curve b); Pd (II)-PIR- CGR system (curve c). Pd (II): 2.0 × 10- 4 mol L- 1; CGR: 1.0 × 10- 5 mol L- 1; OXI: 1.5 μg mL- 1; PIR: 2 μg mL- 1; NaCl: 1 mol L- 1. Fig. S3. The effect of time: Pd (II)-OXI-CGR system (curve a); Pd (II)-PIR-CGR system (curve b). Pd (II): 2.0 × 10- 4 mol L- 1; CGR: 1.0 × 10- 5 mol L- 1

  14. Rayleigh-Taylor instability in an equal mass plasma

    Energy Technology Data Exchange (ETDEWEB)

    Adak, Ashish, E-mail: ashish-adak@yahoo.com [Department of Instrumentation Science, Jadavpur University, Kolkata 700 032 (India); Ghosh, Samiran, E-mail: sran-g@yahoo.com [Department of Applied Mathematics, University of Calcutta 92, Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India)

    2014-09-15

    The Rayleigh-Taylor (RT) instability in an inhomogeneous pair-ion plasma has been analyzed. Considering two fluid model for two species of ions (positive and negative), we obtain the possibility of the existence of RT instability. The growth rate of the RT instability as usual depends on gravity and density gradient scale length. The results are discussed in context of pair-ion plasma experiments.

  15. Light scattering by cubical particle in the WKB approximation

    Directory of Open Access Journals (Sweden)

    redouane lamsoudi

    2017-11-01

    Full Text Available In this work, we determined the analytical expressions of the form factor of a cubical particle in the WKB approximation. We adapted some variables (size parameter, refractive index, the scattering angle and found the form factor in the approximation of Rayleigh-Gans-Debye (RGD, Anomalous Diffraction (AD, and determined the efficiency factor of the extinction. Finally, to illustrate our formalism, we analyzed some numerical examples

  16. Spanwise homogeneous buoyancy-drag model for Rayleigh-Taylor mixing and experimental evaluation

    International Nuclear Information System (INIS)

    Dimonte, Guy

    2000-01-01

    A buoyancy-drag model for Rayleigh-Taylor (RT) mixing is developed on the premise that the bubble and spike regions behave as distinct and spanwise homogeneous fluids. Then, mass conservation is applied accross the mixing zone to obtain their average mixture densities dynamically. These are used to explicitly calculate the inertia and buoyancy terms in the evolutionary equation. The only unknown parameter in the model is the Newtonian drag constant C∼2.5±0.6, which is determined from turbulent RT experiments over various Atwood numbers A and acceleration histories g(t). The bubble (i=2) and spike (i=1) amplitudes are found to obey the familiar h i =α i Agt 2 for a constant g and h i ∼t θ i for an impulsive g. For bubbles, both α 2 and θ 2 are insensitive to A. For the spikes, both α 1 and θ 1 increase as a power law with the density ratio. However, θ 1 is not universal because it depends on the initial value of h 1 /h 2 . (c) 2000 American Institute of Physics

  17. The effect of scattering on single photon transmission of optical angular momentum

    International Nuclear Information System (INIS)

    Andrews, D L

    2011-01-01

    Schemes for the communication and registration of optical angular momentum depend on the fidelity of transmission between optical system components. It is known that electron spin can be faithfully relayed between exciton states in quantum dots; it has also been shown by several theoretical and experimental studies that the use of beams conveying orbital angular momentum can significantly extend the density and efficiency of such information transfer. However, it remains unclear to what extent the operation of such a concept at the single photon level is practicable—especially where this involves optical propagation through a material system, in which forward scattering events can intervene. The possibility of transmitting and decoding angular momentum over nanoscale distances itself raises other important issues associated with near-field interrogation. This paper provides a framework to address these and related issues. A quantum electrodynamical representation is constructed and used to pursue the consequences of individual photons, from a Laguerre–Gaussian beam, undergoing single and multiple scattering events in the course of propagation. In this context, issues concerning orbital angular momentum conservation, and its possible compromise, are tackled by identifying the relevant components of the electromagnetic scattering and coupling tensors, using an irreducible Cartesian basis. The physical interpretation broadly supports the fidelity of quantum information transmission, but it also identifies potential limitations of principle

  18. The effect of scattering on single photon transmission of optical angular momentum

    Science.gov (United States)

    Andrews, D. L.

    2011-06-01

    Schemes for the communication and registration of optical angular momentum depend on the fidelity of transmission between optical system components. It is known that electron spin can be faithfully relayed between exciton states in quantum dots; it has also been shown by several theoretical and experimental studies that the use of beams conveying orbital angular momentum can significantly extend the density and efficiency of such information transfer. However, it remains unclear to what extent the operation of such a concept at the single photon level is practicable—especially where this involves optical propagation through a material system, in which forward scattering events can intervene. The possibility of transmitting and decoding angular momentum over nanoscale distances itself raises other important issues associated with near-field interrogation. This paper provides a framework to address these and related issues. A quantum electrodynamical representation is constructed and used to pursue the consequences of individual photons, from a Laguerre-Gaussian beam, undergoing single and multiple scattering events in the course of propagation. In this context, issues concerning orbital angular momentum conservation, and its possible compromise, are tackled by identifying the relevant components of the electromagnetic scattering and coupling tensors, using an irreducible Cartesian basis. The physical interpretation broadly supports the fidelity of quantum information transmission, but it also identifies potential limitations of principle.

  19. Transmit selection for imperfect threshold-based receive MRC in Rayleigh fading channels

    KAUST Repository

    Radaydeh, Redha Mahmoud Mesleh; Alouini, Mohamed-Slim

    2010-01-01

    experience identically distributed and non-identically distributed Rayleigh fading conditions. New closed-form expressions for the combined SNR statistics and some performance measures are presented. The system models adopted herein and the presented

  20. Study of multiple scattering effects in heavy ion RBS

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Z.; O`Connor, D.J. [Newcastle Univ., NSW (Australia). Dept. of Physics

    1996-12-31

    Multiple scattering effect is normally neglected in conventional Rutherford Backscattering (RBS) analysis. The backscattered particle yield normally agrees well with the theory based on the single scattering model. However, when heavy incident ions are used such as in heavy ion Rutherford backscattering (HIRBS), or the incident ion energy is reduced, multiple scattering effect starts to play a role in the analysis. In this paper, the experimental data of 6MeV C ions backscattered from a Au target are presented. In measured time of flight spectrum a small step in front of the Au high energy edge is observed. The high energy edge of the step is about 3.4 ns ahead of the Au signal which corresponds to an energy {approx} 300 keV higher than the 135 degree single scattering energy. This value coincides with the double scattering energy of C ion undergoes two consecutive 67.5 degree scattering. Efforts made to investigate the origin of the high energy step observed lead to an Monte Carlo simulation aimed to reproduce the experimental spectrum on computer. As a large angle scattering event is a rare event, two consecutive large angle scattering is extremely hard to reproduce in a random simulation process. Thus, the simulation has not found a particle scattering into 130-140 deg with an energy higher than the single scattering energy. Obviously faster algorithms and a better physical model are necessary for a successful simulation. 16 refs., 3 figs.

  1. Study of multiple scattering effects in heavy ion RBS

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Z; O` Connor, D J [Newcastle Univ., NSW (Australia). Dept. of Physics

    1997-12-31

    Multiple scattering effect is normally neglected in conventional Rutherford Backscattering (RBS) analysis. The backscattered particle yield normally agrees well with the theory based on the single scattering model. However, when heavy incident ions are used such as in heavy ion Rutherford backscattering (HIRBS), or the incident ion energy is reduced, multiple scattering effect starts to play a role in the analysis. In this paper, the experimental data of 6MeV C ions backscattered from a Au target are presented. In measured time of flight spectrum a small step in front of the Au high energy edge is observed. The high energy edge of the step is about 3.4 ns ahead of the Au signal which corresponds to an energy {approx} 300 keV higher than the 135 degree single scattering energy. This value coincides with the double scattering energy of C ion undergoes two consecutive 67.5 degree scattering. Efforts made to investigate the origin of the high energy step observed lead to an Monte Carlo simulation aimed to reproduce the experimental spectrum on computer. As a large angle scattering event is a rare event, two consecutive large angle scattering is extremely hard to reproduce in a random simulation process. Thus, the simulation has not found a particle scattering into 130-140 deg with an energy higher than the single scattering energy. Obviously faster algorithms and a better physical model are necessary for a successful simulation. 16 refs., 3 figs.

  2. Retrieving Single Scattering Albedos and Temperatures from CRISM Hyperspectral Data Using Neural Networks

    Science.gov (United States)

    He, L.; Arvidson, R. E.; O'Sullivan, J. A.

    2018-04-01

    We use a neural network (NN) approach to simultaneously retrieve surface single scattering albedos and temperature maps for CRISM data from 1.40 to 3.85 µm. It approximates the inverse of DISORT which simulates solar and emission radiative streams.

  3. Resonant stimulation of Raman scattering from single-crystal thiophene/phenylene co-oligomers

    International Nuclear Information System (INIS)

    Yanagi, Hisao; Marutani, Yusuke; Matsuoka, Naoki; Hiramatsu, Toru; Ishizumi, Atsushi; Sasaki, Fumio; Hotta, Shu

    2013-01-01

    Amplified Raman scattering was observed from single crystals of thiophene/phenylene co-oligomers (TPCOs). Under ns-pulsed excitation, the TPCO crystals exhibited amplified spontaneous emission (ASE) at resonant absorption wavelengths. With increasing excitation wavelength to the 0-0 absorption edge, the stimulated resonant Raman peaks appeared both in the 0-1 and 0-2 ASE band regions. When the excitation wavelength coincided with the 0-1 ASE band energy, the Raman peaks selectively appeared in the 0-2 ASE band. Such unusual enhancement of the 0-2 Raman scattering was ascribed to resonant stimulation via vibronic coupling with electronic transitions in the uniaxially oriented TPCO molecules

  4. Third-harmonic generation and scattering in combustion flames using a femtosecond laser filament.

    Science.gov (United States)

    Zang, Hong-Wei; Li, He-Long; Su, Yue; Fu, Yao; Hou, Meng-Yao; Baltuška, Andrius; Yamanouchi, Kaoru; Xu, Huailiang

    2018-02-01

    Coherent radiation in the ultraviolent (UV) range has high potential applicability to the diagnosis of the formation processes of soot in combustion because of the high scattering efficiency in the UV wavelength region, even though the UV light is lost largely by the absorption within the combustion flames. We show that the third harmonic (TH) of a Ti:sapphire 800 nm femtosecond laser is generated in a laser-induced filament in a combustion flame and that the conversion efficiency of the TH varies sensitively by the ellipticity of the driver laser pulse but does not vary so much by the choice of alkanol species introduced as fuel for the combustion flames. We also find that the TH recorded from the side direction of the filament is the Rayleigh scattering of the TH by soot nanoparticles within the flame and that the intensity of the TH varies depending on the fuel species as well as on the position of the laser filament within the flame. Our results show that a remote and in situ measurement of distributions of soot nanoparticles in a combustion flame can be achieved by Rayleigh scattering spectroscopy of the TH generated by a femtosecond-laser-induced filament in the combustion flame.

  5. Power Laws and Similarity of Rayleigh-Taylor and Richtmyer-Meshkov Mixing Fronts at All Density Ratios

    International Nuclear Information System (INIS)

    Alon, U.; Hecht, J.; Ofer, D.; Shvarts, D.

    1995-01-01

    The nonlinear evolution of large structure in Rayleigh-Taylor and Richtmyer-Meshkov bubble and spike fronts is studied numerically and explained theoretically on the basis of single-mode and two-bubble interaction physics at Atwood numbers (A). Multimode Rayleigh-Taylor bubble (spike) fronts are found as h B =α B Agt 2 [h s =α s (A)gt 2 ] with α B =0.05, while Richtmyer-Meshkov bubble (spike) fronts are found as h B =a B t θ B (h s =a s t θ s (A) ) with θ B =0.4 at all A's. The dependence of these scaling laws and parameters on A and on initial conditions is explained

  6. Studying coherent scattering in the CP stars atmospheres

    Science.gov (United States)

    Fišák, J.; Kubát, J.; Krtička, J.

    2018-01-01

    Chemically peculiar stars form a very interesting class of stars which frequently show variability. The variability is probably caused by the uneven surface distribution of chemical elements. Some elements are overabundant and some elements are underabundant compared to the solar chemical composition. In the case of chemically overabundant composition some of the rare photon-atom processes can be more important than in the atmospheres of stars with solar chemical composition. We study the importance of Rayleigh scattering by helium.

  7. Evolution of the transfer function characterization of surface scatter phenomena

    Science.gov (United States)

    Harvey, James E.; Pfisterer, Richard N.

    2016-09-01

    Based upon the empirical observation that BRDF measurements of smooth optical surfaces exhibited shift-invariant behavior when plotted versus    o , the original Harvey-Shack (OHS) surface scatter theory was developed as a scalar linear systems formulation in which scattered light behavior was characterized by a surface transfer function (STF) reminiscent of the optical transfer function (OTF) of modern image formation theory (1976). This shift-invariant behavior combined with the inverse power law behavior when plotting log BRDF versus log   o was quickly incorporated into several optical analysis software packages. Although there was no explicit smooth-surface approximation in the OHS theory, there was a limitation on both the incident and scattering angles. In 1988 the modified Harvey-Shack (MHS) theory removed the limitation on the angle of incidence; however, a moderate-angle scattering limitation remained. Clearly for large incident angles the BRDF was no longer shift-invariant as a different STF was now required for each incident angle. In 2011 the generalized Harvey-Shack (GHS) surface scatter theory, characterized by a two-parameter family of STFs, evolved into a practical modeling tool to calculate BRDFs from optical surface metrology data for situations that violate the smooth surface approximation inherent in the Rayleigh-Rice theory and/or the moderate-angle limitation of the Beckmann-Kirchhoff theory. And finally, the STF can be multiplied by the classical OTF to provide a complete linear systems formulation of image quality as degraded by diffraction, geometrical aberrations and surface scatter effects from residual optical fabrication errors.

  8. Polarized Raman scattering of single ZnO nanorod

    International Nuclear Information System (INIS)

    Yu, J. L.; Lai, Y. F.; Wang, Y. Z.; Cheng, S. Y.; Chen, Y. H.

    2014-01-01

    Polarized Raman scattering measurement on single wurtzite c-plane (001) ZnO nanorod grown by hydrothermal method has been performed at room temperature. The polarization dependence of the intensity of the Raman scattering for the phonon modes A 1 (TO), E 1 (TO), and E 2 high in the ZnO nanorod are obtained. The deviations of polarization-dependent Raman spectroscopy from the prediction of Raman selection rules are observed, which can be attributed to the structure defects in the ZnO nanorod as confirmed by the comparison of the transmission electron microscopy, photoluminescence spectra as well as the polarization dependent Raman signal of the annealed and unannealed ZnO nanorod. The Raman tensor elements of A 1 (TO) and E 1 (TO) phonon modes normalized to that of the E 2 high phonon mode are |a/d|=0.32±0.01, |b/d|=0.49±0.02, and |c/d|=0.23±0.01 for the unannealed ZnO nanorod, and |a/d|=0.33±0.01, |b/d|=0.45±0.01, and |c/d|=0.20±0.01 for the annealed ZnO nanorod, which shows strong anisotropy compared to that of bulk ZnO epilayer

  9. Atomic form factors, incoherent scattering functions, and photon scattering cross sections

    International Nuclear Information System (INIS)

    Hubbell, J.H.; Veigele, W.J.; Briggs, E.A.; Brown, R.T.; Cromer, D.T.; Howerton, R.J.

    1975-01-01

    Tabulations are presented of the atomic form factor, F (α,Z), and the incoherent scattering function, S (x,Z), for values of x (=sin theta/2)/lambda) from 0.005 A -1 to 10 9 A -1 , for all elements A=1 to 100. These tables are constructed from available state-of-the-art theoretical data, including the Pirenne formulas for Z=1, configuration-into action results by Brown using Brown-Fontana and Weiss correlated wavefunctions for Z=2 to 6 non-relativistic Hartree-Fock results by Cromer for Z=7 to 100 and a relativistic K-shell analytic expression for F (x,Z) by Bethe Levinger for x>10 A -1 for all elements Z=2 to 100. These tabulated values are graphically compared with available photon scattering angular distribution measurements. Tables of coherent (Rayleigh) and incoherent (Compton) total scattering cross sections obtained by nummerical integration over combinations of F 2 (x,Z) with the Thomson formula and S (x,Z) with the Klum-Nishina Formual, respectively, are presented for all elements Z=1 to 100, for photon energies 100 eV (lambda=124 A) to 100 MeV (0.000124 A). The incoherent scattering cross sections also include the radiative and double-Compton corrections as given by Mork. Similar tables are presented for the special cases of terminally-bonded hydrogen and for the H 2 molecule, interpolated and extrapolated from values calculated by Stewart et al., and by Bentley and Stewart using Kolos-Roothaan wavefunctions

  10. Comparison of scatter doses from a multislice and a single slice CT scanner

    International Nuclear Information System (INIS)

    Burrage, J. W.; Causer, D. A.

    2006-01-01

    During shielding calculations for a new multislice CT (MSCT) scanner it was found that the manufacturer's data indicated significantly higher external scatter doses than would be generated for a single slice CT (SSCT). Even allowing for increased beam width, the manufacturer's data indicated that the scatter dose per scan was higher by a factor of about 3 to 4. The magnitude of the discrepancy was contrary to expectations and also contrary to a statement by the UK ImPACT group, which indicated that when beam width is taken into account, the scatter doses should be similar. The matter was investigated by comparing scatter doses from an SSCT and an MSCT. Scatter measurements were performed at three points using a standard perspex CTDI phantom, and CT dose indices were also measured to compare scanner output. MSCT measurements were performed with a 40 mm wide beam, SSCT measurements with a 10 mm wide beam. A film badge survey was also performed after the installation of the MSCT scanner to assess the adequacy of lead shielding in the room. It was found that the scatter doses from the MSCT were lower than indicated by the manufacturer's data. MSCT scatter doses were approximately 4 times higher than those from the SSCT, consistent with expectations due to beam width differences. The CT dose indices were similar, and the film badge survey indicated that the existing shielding, which had been adequate for the SSCT, was also adequate for the MSCT

  11. Experimental investigation of turbulent mixing by Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Youngs, D.L.

    1992-01-01

    A key feature of compressible turbulent mixing is the generation of vorticity via the ∇px ∇(1/ρ) term. This source of vorticity is also present in incompressible flows involving the mixing of fluids of different density, for example Rayleigh-Taylor unstable flows. This paper gives a summary of an experimental investigation of turbulent mixing at a plane boundary between two fluids, of densities ρ 1 , and ρ 2 . (ρ 1 > ρ 2 ) due to Rayleigh-Taylor instability. The two fluids are near incompressible and mixing occurs when an approximately constant acceleration, g, is applied normal to the interface with direction from fluid 2 to fluid 1. Full details of the experimental programme are given in a set of three reports. Some of the earlier experiments are also described by Read. Previous experimental work and much of the theoretical research has concentrated on studying the growth of the instability from a single wavelength perturbation rather than turbulent mixing. Notable exceptions are published in the Russian literature. A related process, turbulent mixing induced by the passage of shock waves though an interface between fluids of different density is described by Andronov et al. The major purpose of the experiments described here was to study the evolution of the instability from small random perturbations where it is found that large and larger structures appear as time proceeds. A novel technique was used to provide the desired acceleration. The two fluids were enclosed in a rectangular tank, the lighter fluid 2 initially resting on top of the denser fluid 1. One or more rocket motors were then used to drive the tank vertically downwards. The aim of the experimental programme is to provide data for the calibration of a turbulence model used to predict mixing in real situations

  12. A multi-layer discrete-ordinate method for vector radiative transfer in a vertically-inhomogeneous, emitting and scattering atmosphere. I - Theory. II - Application

    Science.gov (United States)

    Weng, Fuzhong

    1992-01-01

    A theory is developed for discretizing the vector integro-differential radiative transfer equation including both solar and thermal radiation. A complete solution and boundary equations are obtained using the discrete-ordinate method. An efficient numerical procedure is presented for calculating the phase matrix and achieving computational stability. With natural light used as a beam source, the Stokes parameters from the model proposed here are compared with the analytical solutions of Chandrasekhar (1960) for a Rayleigh scattering atmosphere. The model is then applied to microwave frequencies with a thermal source, and the brightness temperatures are compared with those from Stamnes'(1988) radiative transfer model.

  13. Una versión de la distribución Rayleigh generalizada transmutada

    Directory of Open Access Journals (Sweden)

    Yuri A. Iriarte

    2015-06-01

    Full Text Available La calidad de los procedimientos utilizados en un análisis estadístico depende en gran medida del modelo o las distribuciones de probabilidad que se emplean. Debido a esto, diversos autores han realizado un esfuerzo considerable en generalizar o extender distribuciones de probabilidad presentes en la literatura estadística. En este contexto, Vodă en [13] introduce la distribución de probabilidad Rayleigh generalizada; esta distribución es bastante utilizada en el análisis estadístico de confiabilidad. En este artículo extendemos la distribución Rayleigh generalizada usando el mapa de transmutación de rango cuadrático estudiado por Shaw y Buckley en [12]. Estudiamos las principales propiedades del nuevo modelo, realizamos inferencia estadística y mostramos una aplicación con datos reales. Finalmente, se presentan las principales conclusiones del artículo. Abstract. Statistical analysis procedures’s quality depends on the proper use of the probability distributions. For that reason, many probability distributions have been generalized. For example, Vodă in [13] introduced the generalized Rayleigh distribution, a model widely used in reliability analysis. In this article, we introduce an extension of the generalized Rayleigh distribution using the quadratic rank transmutation map studied by Shaw and Buckley in [12]. We study t

  14. Intraocular light scatter, reflections, fluorescence and absorption: what we see in the slit lamp.

    Science.gov (United States)

    van den Berg, Thomas J T P

    2018-01-01

    Much knowledge has been collected over the past 20 years about light scattering in the eye- in particular in the eye lens- and its visual effect, called straylight. It is the purpose of this review to discuss how these insights can be applied to understanding the slit lamp image. The slit lamp image mainly results from back scattering, whereas the effects on vision result mainly from forward scatter. Forward scatter originates from particles of about wavelength size distributed throughout the lens. Most of the slit lamp image originates from small particle scatter (Rayleigh scatter). For a population of middle aged lenses it will be shown that both these scatter components remove around 10% of the light from the direct beam. For slit lamp observation close to the reflection angles, zones of discontinuity (Wasserspalten) at anterior and posterior parts of the lens show up as rough surface reflections. All these light scatter effects increase with age, but the correlations with age, and also between the different components, are weak. For retro-illumination imaging it will be argued that the density or opacity seen in areas of cortical or posterior subcapsular cataract show up because of light scattering, not because of light loss. NOTES: (1) Light scatter must not be confused with aberrations. Light penetrating the eye is divided into two parts: a relatively small part is scattered, and removed from the direct beam. Most of the light is not scattered, but continues as the direct beam. This non-scattered part is the basis for functional imaging, but its quality is under the control of aberrations. Aberrations deflect light mainly over small angles (light scatter is important because of the straylight effects over large angles (>1°), causing problems like glare and hazy vision. (2) The slit lamp image in older lenses and nuclear cataract is strongly influenced by absorption. However, this effect is greatly exaggerated by the light path lengths concerned. This

  15. Annular spherically focused ring transducers for improved single-beam acoustical tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F. G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology—ETC, Santa Fe, New Mexico 87508 (United States)

    2016-02-14

    The use of ultrasonic transducers with a central hollow is suggested for improved single-beam acoustical tweezers applications. Within the framework of the Fresnel-Kirchhoff parabolic approximation, a closed-form partial-wave series expansion (PWSE) for the incident velocity potential (or pressure) field is derived for an annular spherically focused ring (asfr) with uniform vibration across its surface in spherical coordinates. The Rayleigh-Sommerfeld diffraction integral and the addition theorems for the Legendre and spherical wave functions are used to obtain the PWSE assuming a weakly focused beam (with a focusing angle α ≤ 20°). The PWSE allows evaluating the incident field from the finite asfr in 3D. Moreover, the obtained solution allows computing efficiently the acoustic scattering and radiation force on a sphere centered on the beam's axis of wave propagation. The analytical solution is valid for wavelengths largely exceeding the radius of the asfr and when the viscosity of the surrounding fluid can be neglected. Numerical predictions for the beam-forming, scattering, and axial time-averaged radiation force are performed with particular emphasis on the asfr thickness, the axial distance separating the sphere from the center of the transducer, the (non-dimensional) size of the transducer, as well as the sphere's elastic properties without restriction to the long- (i.e., Rayleigh) or the short-wavelength (i.e., ray acoustics) regimes. Potential applications of the present solution are in beam-forming design, particle tweezing, and manipulation due to negative forces using ultrasonic asfr transducers.

  16. DISCUS, Neutron Single to Double Scattering Ratio in Inelastic Scattering Experiment by Monte-Carlo

    International Nuclear Information System (INIS)

    Johnson, M.W.

    1993-01-01

    1 - Description of problem or function: DISCUS calculates the ratio of once-scattered to twice-scattered neutrons detected in an inelastic neutron scattering experiment. DISCUS also calculates the flux of once-scattered neutrons that would have been observed if there were no absorption in the sample and if, once scattered, the neutron would emerge without further re-scattering or absorption. Three types of sample geometry are used: an infinite flat plate, a finite flat plate or a finite length cylinder. (The infinite flat plate is included for comparison with other multiple scattering programs.) The program may be used for any sample for which the scattering law is of the form S(/Q/, omega). 2 - Method of solution: Monte Carlo with importance sampling is used. Neutrons are 'forced' both into useful angular trajectories, and useful energy bins. Biasing of the collision point according to the point of entry of the neutron into the sample is also utilised. The first and second order scattered neutron fluxes are calculated in independent histories. For twice-scattered neutron histories a square distribution in Q-omega space is used to sample the neutron coming from the first scattering event, whilst biasing is used for the second scattering event. (A square distribution is used so as to obtain reasonable inelastic-inelastic statistics.) 3 - Restrictions on the complexity of the problem: Unlimited number of detectors. Max. size of (Q, omega) matrix is 39*149. Max. number of points in momentum space for the scattering cross section is 199

  17. Modeling small angle scattering data using FISH

    International Nuclear Information System (INIS)

    Elliott, T.; Buckely, C.E.

    2002-01-01

    Full text: Small angle neutron scattering (SANS) and small angle x-ray scattering (SAXS) are important techniques for the characterisation of samples on the nanometer scale. From the scattered intensity pattern information about the sample such as particle size distribution, concentration and particle interaction can be determined. Since the experimental data is in reciprocal space and information is needed about real space, modeling of the scattering data to obtain parameters is extremely important and several paradigms are available. The use of computer programs to analyze the data is imperative for a robust description of the sample to be obtained. This presentation gives an overview of the SAS process and describes the data-modeling program FISH, written by R. Heenan 1983-2000. The results of using FISH to obtain the particle size distribution of bubbles in the aluminum hydrogen system and other systems of interest are described. Copyright (2002) Australian X-ray Analytical Association Inc

  18. Combined Natural Convection and Radiation Heat Transfer of Various Absorbing-Emitting-Scattering Media in a Square Cavity

    Directory of Open Access Journals (Sweden)

    Xianglong Liu

    2014-01-01

    Full Text Available A numerical model is developed to simulate combined natural convection and radiation heat transfer of various anisotropic absorbing-emitting-scattering media in a 2D square cavity based on the discrete ordinate (DO method and Boussinesq assumption. The effects of Rayleigh number, optical thickness, scattering ratio, scattering phase function, and aspect ratio of square cavity on the behaviors of heat transfer are studied. The results show that the heat transfer of absorbing-emitting-scattering media is the combined results of radiation and natural convection, which depends on the physical properties and the aspect ratio of the cavity. When the natural convection becomes significant, the convection heat transfer is enhanced, and the distributions of NuR and Nuc along the walls are obviously distorted. As the optical thickness increases, NuR along the hot wall decreases. As the scattering ratio decreases, the NuR along the walls decreases. At the higher aspect ratio, the more intensive thermal radiation and natural convection are formed, which increase the radiation and convection heat fluxes. This paper provides the theoretical research for the optimal thermal design and practical operation of the high temperature industrial equipments.

  19. Rayleigh-Taylor mixing with space-dependent acceleration

    Science.gov (United States)

    Abarzhi, Snezhana

    2016-11-01

    We extend the momentum model to describe Rayleigh-Taylor (RT) mixing driven by a space-dependent acceleration. The acceleration is a power-law function of space coordinate, similarly to astrophysical and plasma fusion applications. In RT flow the dynamics of a fluid parcel is driven by a balance per unit mass of the rates of momentum gain and loss. We find analytical solutions in the cases of balanced and imbalanced gains and losses, and identify their dependence on the acceleration exponent. The existence is shown of two typical sub-regimes of self-similar RT mixing - the acceleration-driven Rayleigh-Taylor-type mixing and dissipation-driven Richtymer-Meshkov-type mixing with the latter being in general non-universal. Possible scenarios are proposed for transitions from the balanced dynamics to the imbalanced self-similar dynamics. Scaling and correlations properties of RT mixing are studied on the basis of dimensional analysis. Departures are outlined of RT dynamics with space-dependent acceleration from canonical cases of homogeneous turbulence as well as blast waves with first and second kind self-similarity. The work is supported by the US National Science Foundation.

  20. Single-electron capture for 2-8 keV incident energy and direct scattering at 6 keV in He2+-He collisions

    International Nuclear Information System (INIS)

    Bordenave-Montesquieu, D.; Dagnac, R.

    1992-01-01

    We studied the single-electron capture as well as the direct processes occurring when a He 2+ ion is scattered by a He target. Doubly differential cross sections were measured for single-electron capture with a collision energy ranging from 2 to 8 keV and a scattering angle varying from 10' to 3 o 30' (laboratory frame). Single-electron capture into excited states of He + was found to be the dominant process, confirming a previous experimental study. Elastic scattering and ionization differential cross sections were measured for E = 6 keV. (Author)

  1. A database of microwave and sub-millimetre ice particle single scattering properties

    Science.gov (United States)

    Ekelund, Robin; Eriksson, Patrick

    2016-04-01

    Ice crystal particles are today a large contributing factor as to why cold-type clouds such as cirrus remain a large uncertainty in global climate models and measurements. The reason for this is the complex and varied morphology in which ice particles appear, as compared to liquid droplets with an in general spheroidal shape, thus making the description of electromagnetic properties of ice particles more complicated. Single scattering properties of frozen hydrometers have traditionally been approximated by representing the particles as spheres using Mie theory. While such practices may work well in radio applications, where the size parameter of the particles is generally low, comparisons with measurements and simulations show that this assumption is insufficient when observing tropospheric cloud ice in the microwave or sub-millimetre regions. In order to assist the radiative transfer and remote sensing communities, a database of single scattering properties of semi-realistic particles is being produced. The data is being produced using DDA (Discrete Dipole Approximation) code which can treat arbitrarily shaped particles, and Tmatrix code for simpler shapes when found sufficiently accurate. The aim has been to mainly cover frequencies used by the upcoming ICI (Ice Cloud Imager) mission with launch in 2022. Examples of particles to be included are columns, plates, bullet rosettes, sector snowflakes and aggregates. The idea is to treat particles with good average optical properties with respect to the multitude of particles and aggregate types appearing in nature. The database will initially only cover macroscopically isotropic orientation, but will eventually also include horizontally aligned particles. Databases of DDA particles do already exist with varying accessibility. The goal of this database is to complement existing data. Regarding the distribution of the data, the plan is that the database shall be available in conjunction with the ARTS (Atmospheric

  2. Phase dispersion of Raman and Rayleigh-enhanced four-wave mixings in femtosecond polarization beats

    International Nuclear Information System (INIS)

    Yan, Zhao; Zhi-Qiang, Nie; Chang-Biao, Li; Yan-Peng, Zhang; Chen-Li, Gan; Huai-Bin, Zheng; Yuan-Yuan, Li; Ke-Qing, Lu

    2009-01-01

    Based on color-locking noisy field correlation in three Markovian stochastic models, phase dispersions of the Raman- and Rayleigh-enhanced four-wave mixing (FWM) have been investigated. The phase dispersions are modified by both linewidth and time delay for negative time delay, but only by linewidth for positive time delay. Moreover, the results under narrowband condition are close to the nonmodified nonlinear dispersion and absorption of the material. Homodyne and heterodyne detections of the Raman, the Rayleigh and the mixing femtosecond difference-frequency polarization beats have also been investigated, separately

  3. Kirchhoff approximation and closed-form expressions for atom-surface scattering

    International Nuclear Information System (INIS)

    Marvin, A.M.

    1980-01-01

    In this paper an approximate solution for atom-surface scattering is presented beyond the physical optics approximation. The potential is well represented by a hard corrugated surface but includes an attractive tail in front. The calculation is carried out analytically by two different methods, and the limit of validity of our formulas is well established in the text. In contrast with other workers, I find those expressions to be exact in both limits of small (Rayleigh region) and large momenta (classical region), with the correct behavior at the threshold. The result is attained through a particular use of the extinction theorem in writing the scattered amplitudes, hitherto not employed, and not for particular boundary values of the field. An explicit evaluation of the field on the surface shows in fact the present formulas to be simply related to the well known Kirchhoff approximation (KA) or more generally to an ''extended'' KA fit to the potential model above. A possible application of the theory to treat strong resonance-overlapping effects is suggested in the last part of the work

  4. A new model for elastic deuteron-deuteron scattering

    International Nuclear Information System (INIS)

    Etim, E.; Satta, L.

    1988-01-01

    Straightforward application of the Glauber multiple scattering theory is drammatically challenged by data on elastic deuteron-deuteron scattering. The challenge has been argued to be met by an improved representation of the ground state wave function of the deuteron as an admixture of S-and D-waves. In the light of the failure of the Glauber and geometrical picture models in general, to explain proton-proton and proton-antiproton scattering data up to and including collider energies and for all momentum transfers, this argument becomes less and less compelling and more and more unconvincing. A model inspired by unitarity and which produces substantial elastic scattering through a unitarity sum over a specific class of intermediate states is presented. The model fits not only deuteron-deuteron, but also proton-proton, proton-antiproton and αN -> αN (N =α, d, He 3 ) data for all energies and momentum transfers. No detailed knowledge of ground state wave functions is required

  5. Interstitial integrals in the multiple-scattering model

    International Nuclear Information System (INIS)

    Swanson, J.R.; Dill, D.

    1982-01-01

    We present an efficient method for the evaluation of integrals involving multiple-scattering wave functions over the interstitial region. Transformation of the multicenter interstitial wave functions to a single center representation followed by a geometric projection reduces the integrals to products of analytic angular integrals and numerical radial integrals. The projection function, which has the value 1 in the interstitial region and 0 elsewhere, has a closed-form partial-wave expansion. The method is tested by comparing its results with exact normalization and dipole integrals; the differences are 2% at worst and typically less than 1%. By providing an efficient means of calculating Coulomb integrals, the method allows treatment of electron correlations using a multiple scattering basis set

  6. Direct simulation of turbulent Rayleigh-Benard convection in liquid sodium

    International Nuclear Information System (INIS)

    Woerner, M.

    1994-11-01

    The numerical results are analysed to investigate both the structures and mechanisms of convection and the statistical features of turbulence in natural convection of liquid metals. The simulations are performed with the finite volume code TURBIT which is extended by a semi-implicit time integration scheme for the energy equation. Due to the implicit treatment of thermal diffusion the computational time for simulation of natural convection in liquid metals is reduced by about one order of magnitude, as compared to the original fully explicit code version. Results for Rayleigh-Benard convection in liquid sodium with Prandtl number Pr=0.006 are given for four different Rayleigh numbers: Ra=3 000, Ra=6 000, Ra=12 000, and Ra=24 000. At the Rayleigh number Ra=3 000 the inertial convection is identified. It is characterized by large two-dimensional vortices, which rotate like a solid body. These vortices are also observed in the simulations for Ra=6 000, Ra=12 000 and Ra=24 000, but, they only exist in certain regions and for short time intervals. The appearance of these two-dimensional structures in three-dimensional, time-dependent and turbulent convection is explained by the relative importance of the non-linear terms in the momentum and energy equation, which is totally different in both equations, and by the coupling of these equations by the buoyancy and the convective term. In order to improve and validate statistical turbulence model for application to natural convection in liquid metals, budgets of turbulence kinetic energy, turbulent heat flux and temperature variance are calculated from the numerical results. For several unknown correlations closure assumptions used in standard turbulence models are analyzed and model coefficients are determined. (orig./HP) [de

  7. Simulation of Rayleigh--Taylor flows using vortex blobs

    International Nuclear Information System (INIS)

    Kerr, R.M.

    1988-01-01

    An inviscid boundary-integral method is modified in order to study the single-scale Rayleigh--Taylor instability for arbitrary Atwood number. The primary modification uses vortex blobs to smooth the Green's function and suppress a finite time singularity in the curvature. Additional modifications to earlier codes such as using second-order central differences along the interface to accommodate spikes in the vorticity and spreading the nodes evenly along the interface to suppress clustering of nodes are designed to maintain resolution and accuracy. To achieve second-order accuracy in time when the nodes are spread, an extra predictor step is needed that shifts the nodes before the variables are advanced. The method successfully follows the development of a single mode to states with asymptotic velocities for the bubble and spike that depend on the Atwood number and are independent of the blob size. Incipient droplet formation is observed. copyright 1988 Academic Press, Inc

  8. Upgrade of the MAGIC telescopes single wavelength micro power LIDAR system

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Dominik [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: MAGIC-Collaboration

    2016-07-01

    Since 2011 a single wavelength LIDAR system is operated alongside the observations of the MAGIC telescopes. It is used for real-time monitoring of the atmospheric transmission and for detecting cloud layers within the field of view of MAGIC. The system uses a pulsed Nd:YAG laser with 532 nm wavelength and a pulse energy of 5 μJ as transmitter. The receiver is mounted to a 60 cm spherical single mirror telescope with a F/D ratio of 2.5. To compensate for the low light intensities a sensitive detector with the capability of single photon detection as well as charge integration is needed. For this purpose, a hybrid photo diode with a peak quantum efficiency of 55% an a pulse width of 2.5ns is used in a custom designed detector. The analog signal is recorded by a computer mounted 8-bit FADC with 200 MS/s. A signal analysis algorithm converts the LIDAR return signal into a number of single photoelectron counts per range bin. The atmospheric transmission is calculated by fitting a Rayleigh back-scattering model with a sliding window. The resulting transmission profile is used to correct the MAGIC gamma ray data for adverse weather conditions. After five years of data taking the MAGIC LIDAR system is upgraded with a stronger laser and a new detector unit in order to extend the measurement range and to optimize the operation.

  9. Efficient scattering-angle enrichment for a nonlinear inversion of the background and perturbations components of a velocity model

    KAUST Repository

    Wu, Zedong; Alkhalifah, Tariq Ali

    2017-01-01

    Reflection-waveform inversion (RWI) can help us reduce the nonlinearity of the standard full-waveform inversion (FWI) by inverting for the background velocity model using the wave-path of a single scattered wavefield to an image. However, current

  10. Rayleigh-type parametric chemical oscillation

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Shyamolina; Ray, Deb Shankar, E-mail: pcdsr@iacs.res.in [Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2015-09-28

    We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.

  11. Rayleigh-type parametric chemical oscillation.

    Science.gov (United States)

    Ghosh, Shyamolina; Ray, Deb Shankar

    2015-09-28

    We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.

  12. Ambient Noise Tomography at Regional and Local Scales in Southern California using Rayleigh Wave Phase Dispersion and Ellipticity

    Science.gov (United States)

    Berg, E.; Lin, F. C.; Qiu, H.; Wang, Y.; Allam, A. A.; Clayton, R. W.; Ben-Zion, Y.

    2017-12-01

    Rayleigh waves extracted from cross-correlations of ambient seismic noise have proven useful in imaging the shallow subsurface velocity structure. In contrast to phase velocities, which are sensitive to slightly deeper structure, Rayleigh wave ellipticity (H/V ratios) constrains the uppermost crust. We conduct Rayleigh wave ellipticity and phase dispersion measurements in Southern California between 6 and 18 second periods, computed from multi-component ambient noise cross-correlations using 315 stations across the region in 2015. Because of the complimentary sensitivity of phase velocity and H/V, this method enables simple and accurate resolution of near-surface geological features from the surface to 20km depth. We compare the observed H/V ratios and phase velocities to predictions generated from the current regional models (SCEC UCVM), finding strong correspondence where the near-surface structure is well-resolved by the models. This includes high H/V ratios in the LA Basin, Santa Barbara Basin and Salton Trough; and low ratios in the San Gabriel, San Jacinto and southern Sierra Nevada mountains. Disagreements in regions such as the Western Transverse Ranges, Salton Trough, San Jacinto and Elsinore fault zones motivate further work to improve the community models. A new updated 3D isotropic model of the area is derived via a joint inversion of Rayleigh phase dispersions and H/V ratios. Additionally, we examine azimuthal dependence of the H/V ratio to ascertain anisotropy patterns for each station. Clear 180º periodicity is observed for many stations suggesting strong shallow anisotropy across the region including up to 20% along the San Andreas fault, 15% along the San Jacinto Fault and 25% in the LA Basin. To better resolve basin structures, we apply similar techniques to three dense linear geophone arrays in the San Gabriel and San Bernardino basins. The three arrays are composed by 50-125 three-component 5Hz geophones deployed for one month each with 15-25km

  13. Rayleigh Waves in a Rotating Orthotropic Micropolar Elastic Solid Half-Space

    Directory of Open Access Journals (Sweden)

    Baljeet Singh

    2013-01-01

    Full Text Available A problem on Rayleigh wave in a rotating half-space of an orthotropic micropolar material is considered. The governing equations are solved for surface wave solutions in the half space of the material. These solutions satisfy the boundary conditions at free surface of the half-space to obtain the frequency equation of the Rayleigh wave. For numerical purpose, the frequency equation is approximated. The nondimensional speed of Rayleigh wave is computed and shown graphically versus nondimensional frequency and rotation-frequency ratio for both orthotropic micropolar elastic and isotropic micropolar elastic cases. The numerical results show the effects of rotation, orthotropy, and nondimensional frequency on the nondimensional speed of the Rayleigh wave.

  14. Collisionless coupling of a high- β expansion to an ambient, magnetized plasma. I. Rayleigh model and scaling

    Science.gov (United States)

    Bonde, Jeffrey

    2018-04-01

    The dynamics of a magnetized, expanding plasma with a high ratio of kinetic energy density to ambient magnetic field energy density, or β, are examined by adapting a model of gaseous bubbles expanding in liquids as developed by Lord Rayleigh. New features include scale magnitudes and evolution of the electric fields in the system. The collisionless coupling between the expanding and ambient plasma due to these fields is described as well as the relevant scaling relations. Several different responses of the ambient plasma to the expansion are identified in this model, and for most laboratory experiments, ambient ions should be pulled inward, against the expansion due to the dominance of the electrostatic field.

  15. Robust organelle size extractions from elastic scattering measurements of single cells (Conference Presentation)

    Science.gov (United States)

    Cannaday, Ashley E.; Draham, Robert; Berger, Andrew J.

    2016-04-01

    The goal of this project is to estimate non-nuclear organelle size distributions in single cells by measuring angular scattering patterns and fitting them with Mie theory. Simulations have indicated that the large relative size distribution of organelles (mean:width≈2) leads to unstable Mie fits unless scattering is collected at polar angles less than 20 degrees. Our optical system has therefore been modified to collect angles down to 10 degrees. Initial validations will be performed on polystyrene bead populations whose size distributions resemble those of cell organelles. Unlike with the narrow bead distributions that are often used for calibration, we expect to see an order-of-magnitude improvement in the stability of the size estimates as the minimum angle decreases from 20 to 10 degrees. Scattering patterns will then be acquired and analyzed from single cells (EMT6 mouse cancer cells), both fixed and live, at multiple time points. Fixed cells, with no changes in organelle sizes over time, will be measured to determine the fluctuation level in estimated size distribution due to measurement imperfections alone. Subsequent measurements on live cells will determine whether there is a higher level of fluctuation that could be attributed to dynamic changes in organelle size. Studies on unperturbed cells are precursors to ones in which the effects of exogenous agents are monitored over time.

  16. Surface-Enhanced Raman Scattering Nanoparticles as Optical Labels for Imaging Cell Surface Proteins

    Science.gov (United States)

    MacLaughlin, Christina M.

    Assaying the expression of cell surface proteins has widespread application for characterizing cell type, developmental stage, and monitoring disease transformation. Immunophenotyping is conducted by treating cells with labelled targeting moieties that have high affinity for relevant surface protein(s). The sensitivity and specificity of immunophenotyping is defined by the choice of contrast agent and therefore, the number of resolvable signals that can be used to simultaneously label cells. Narrow band width surface-enhanced Raman scattering (SERS) nanoparticles are proposed as optical labels for multiplexed immunophenotying. Two types of surface coatings were investigated to passivate the gold nanoparticles, incorporate SERS functionality, and to facilitate attachment of targeting antibodies. Thiolated poly(ethylene glycol) forms dative bonds with the gold surface and is compatible with multiple physisorbed Raman-active reporter molecules. Ternary lipid bilayers are used to encapsulate the gold nanoparticles particles, and incorporate three different classes of Raman reporters. TEM, UV-Visible absorbance spectroscopy, DLS, and electrophoretic light scattering were used characterize the particle coating. Colourimetric protein assay, and secondary antibody labelling were used to quantify the antibody conjugation. Three different in vitromodels were used to investigate the binding efficacy and specificity of SERS labels for their biomarker targets. Primary human CLL cells, LY10 B lymphoma, and A549 adenocarcinoma lines were targeted. Dark field imaging was used to visualize the colocalization of SERS labels with cells, and evidence of receptor clustering was obtained based on colour shifts of the particles' Rayleigh scattering. Widefield, and spatially-resolved Raman spectra were used to detect labels singly, and in combination from labelled cells. Fluorescence flow cytometry was used to test the particles' binding specificity, and SERS from labelled cells was also

  17. Algorithms for solving atomic structures of nanodimensional clusters in single crystals based on X-ray and neutron diffuse scattering data

    International Nuclear Information System (INIS)

    Andrushevskii, N.M.; Shchedrin, B.M.; Simonov, V.I.

    2004-01-01

    New algorithms for solving the atomic structure of equivalent nanodimensional clusters of the same orientations randomly distributed over the initial single crystal (crystal matrix) have been suggested. A cluster is a compact group of substitutional, interstitial or other atoms displaced from their positions in the crystal matrix. The structure is solved based on X-ray or neutron diffuse scattering data obtained from such objects. The use of the mathematical apparatus of Fourier transformations of finite functions showed that the appropriate sampling of the intensities of continuous diffuse scattering allows one to synthesize multiperiodic difference Patterson functions that reveal the systems of the interatomic vectors of an individual cluster. The suggested algorithms are tested on a model one-dimensional structure

  18. Multimode rayleigh wave inversion for heterogeneity and azimuthal anisotropy of the Australian upper mantle

    NARCIS (Netherlands)

    Simons, J.-P.; Hilst, R.D. van der; Montagner, F.J.,; Zielhuis, A.

    2002-01-01

    We present an azimuthally anisotropic 3-D shear-wave speed model of the Australian upper mantle obtained from the dispersion of fundamental and higher modes of Rayleigh waves.We compare two tomographic techniques to map path-average earth models into a 3-D model for heterogeneity and azimuthal

  19. Attractors of the periodically forced Rayleigh system

    Directory of Open Access Journals (Sweden)

    Petre Bazavan

    2011-07-01

    Full Text Available The autonomous second order nonlinear ordinary differential equation(ODE introduced in 1883 by Lord Rayleigh, is the equation whichappears to be the closest to the ODE of the harmonic oscillator withdumping.In this paper we present a numerical study of the periodic andchaotic attractors in the dynamical system associated with the generalized Rayleigh equation. Transition between periodic and quasiperiodic motion is also studied. Numerical results describe the system dynamics changes (in particular bifurcations, when the forcing frequency is varied and thus, periodic, quasiperiodic or chaotic behaviour regions are predicted.

  20. Scattering of light by nonspherical particles

    International Nuclear Information System (INIS)

    Coulson, K.L.

    1985-12-01

    Methods of computing scattering by non-spherical particles are reviewed for the Mie theory, the Rayleigh-Gans approximation, the geometric optics method, the extended boundary condition method, the anamalous diffraction, the suppression of resonances, the statistical approach, the expansion of vector wave equations in spheroidal coordinates, and the semi-emperical theory of Pollack and Cuzzi. The results of computations for nonspherical particles are compared for prolate and oblate spheroids, homogeneous sphere with holes, rough particles made of stacked cylinders, irregular particles of various shapes, and particles of carbonaceous smokes. Conclusions are presented in the context of nuclear winter