Hierarchical wave functions revisited
International Nuclear Information System (INIS)
Li Dingping.
1997-11-01
We study the hierarchical wave functions on a sphere and on a torus. We simplify some wave functions on a sphere or a torus using the analytic properties of wave functions. The open question, the construction of the wave function for quasi electron excitation on a torus, is also solved in this paper. (author)
Bialynicki-Birula, Iwo
2005-01-01
Photon wave function is a controversial concept. Controversies stem from the fact that photon wave functions can not have all the properties of the Schroedinger wave functions of nonrelativistic wave mechanics. Insistence on those properties that, owing to peculiarities of photon dynamics, cannot be rendered, led some physicists to the extreme opinion that the photon wave function does not exist. I reject such a fundamentalist point of view in favor of a more pragmatic approach. In my view, t...
An exponential multireference wave-function Ansatz
International Nuclear Information System (INIS)
Hanrath, Michael
2005-01-01
An exponential multireference wave-function Ansatz is formulated. In accordance with the state universal coupled-cluster Ansatz of Jeziorski and Monkhorst [Phys. Rev. A 24, 1668 (1981)] the approach uses a reference specific cluster operator. In order to achieve state selectiveness the excitation- and reference-related amplitude indexing of the state universal Ansatz is replaced by an indexing which is based on excited determinants. There is no reference determinant playing a particular role. The approach is size consistent, coincides with traditional single-reference coupled cluster if applied to a single-reference, and converges to full configuration interaction with an increasing cluster operator excitation level. Initial applications on BeH 2 , CH 2 , Li 2 , and nH 2 are reported
Micrononcasual Euclidean wave functions
International Nuclear Information System (INIS)
Enatsu, H.; Takenaka, A.; Okazaki, M.
1978-01-01
A theory which describes the internal attributes of hadrons in terms of space-time wave functions is presented. In order to develop the theory on the basis of a rather realistic model, covariant wave equations are first derived for the deuteron, in which the co-ordinates of the centre of mass of two nucleons can be defined unambiguously. Then the micro-noncasual behaviour of virtual mesons mediating between the two nucleons is expressed by means of wave functions depending only on the relative Euclidean co-ordinates with respect to the centre of mass of the two nucleons; the wave functions are assumed to obey the 0 4 and SU 2 x SU 2 groups. The properties of the wave functions under space inversion, time reversal and particle-antiparticle conjugation are investigated. It is found that the internal attributes of the mesons, such as spin, isospin, strangeness, intrinsic parity, charge parity and G-parity are explained consistently. The theory is applicable also to the case of baryons
Semiclassical multicomponent wave function
Mostovoy, M.V.
A consistent method for obtaining the semiclassical multicomponent wave function for any value of adiabatic parameter is discussed and illustrated by examining the motion of a neutral particle in a nonuniform magnetic field. The method generalizes the Bohr-Sommerfeld quantization rule to
International Nuclear Information System (INIS)
Levine, R.D.
1988-01-01
Statistical considerations are applied to quantum mechanical amplitudes. The physical motivation is the progress in the spectroscopy of highly excited states. The corresponding wave functions are strongly mixed. In terms of a basis set of eigenfunctions of a zeroth-order Hamiltonian with good quantum numbers, such wave functions have contributions from many basis states. The vector x is considered whose components are the expansion coefficients in that basis. Any amplitude can be written as a dagger x x. It is argued that the components of x and hence other amplitudes can be regarded as random variables. The maximum entropy formalism is applied to determine the corresponding distribution function. Two amplitudes a dagger x x and b dagger x x are independently distributed if b dagger x a = 0. It is suggested that the theory of quantal measurements implies that, in general, one can one determine the distribution of amplitudes and not the amplitudes themselves
Expansions for Coulomb wave functions
Boersma, J.
1969-01-01
In this paper we derive a number of expansions for Whittaker functions, regular and irregular Coulomb wave functions. The main result consists of a new expansion for the irregular Coulomb wave functions of orders zero and one in terms of regular Coulomb wave functions. The latter expansions are
Properties of resonance wave functions.
More, R. M.; Gerjuoy, E.
1973-01-01
Construction and study of resonance wave functions corresponding to poles of the Green's function for several illustrative models of theoretical interest. Resonance wave functions obtained from the Siegert and Kapur-Peierls definitions of the resonance energies are compared. The comparison especially clarifies the meaning of the normalization constant of the resonance wave functions. It is shown that the wave functions may be considered renormalized in a sense analogous to that of quantum field theory. However, this renormalization is entirely automatic, and the theory has neither ad hoc procedures nor infinite quantities.
Can Single-Reference Coupled Cluster Theory Describe Static Correlation?
Bulik, Ireneusz W; Henderson, Thomas M; Scuseria, Gustavo E
2015-07-14
While restricted single-reference coupled cluster theory truncated to singles and doubles (CCSD) provides very accurate results for weakly correlated systems, it usually fails in the presence of static or strong correlation. This failure is generally attributed to the qualitative breakdown of the reference, and can accordingly be corrected by using a multideterminant reference, including higher-body cluster operators in the ansatz, or allowing symmetry breaking in the reference. None of these solutions are ideal; multireference coupled cluster is not black box, including higher-body cluster operators is computationally demanding, and allowing symmetry breaking leads to the loss of good quantum numbers. It has long been recognized that quasidegeneracies can instead be treated by modifying the coupled cluster ansatz. The recently introduced pair coupled cluster doubles (pCCD) approach is one such example which avoids catastrophic failures and accurately models strong correlations in a symmetry-adapted framework. Here, we generalize pCCD to a singlet-paired coupled cluster model (CCD0) intermediate between coupled cluster doubles and pCCD, yielding a method that possesses the invariances of the former and much of the stability of the latter. Moreover, CCD0 retains the full structure of coupled cluster theory, including a fermionic wave function, antisymmetric cluster amplitudes, and well-defined response equations and density matrices.
International Nuclear Information System (INIS)
Dahl, J. P.; Varro, S.; Wolf, A.; Schleich, W. P.
2007-01-01
We derive explicit expressions for the Wigner function of wave functions in D dimensions which depend on the hyperradius--that is, of s waves. They are based either on the position or the momentum representation of the s wave. The corresponding Wigner function depends on three variables: the absolute value of the D-dimensional position and momentum vectors and the angle between them. We illustrate these expressions by calculating and discussing the Wigner functions of an elementary s wave and the energy eigenfunction of a free particle
DEFF Research Database (Denmark)
Dahl, Jens Peder; Varro, S.; Wolf, A.
2007-01-01
We derive explicit expressions for the Wigner function of wave functions in D dimensions which depend on the hyperradius-that is, of s waves. They are based either on the position or the momentum representation of the s wave. The corresponding Wigner function depends on three variables......: the absolute value of the D-dimensional position and momentum vectors and the angle between them. We illustrate these expressions by calculating and discussing the Wigner functions of an elementary s wave and the energy eigenfunction of a free particle....
Photoelectron wave function in photoionization: plane wave or Coulomb wave?
Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I
2015-11-19
The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.
Wave-function functionals for the density
International Nuclear Information System (INIS)
Slamet, Marlina; Pan Xiaoyin; Sahni, Viraht
2011-01-01
We extend the idea of the constrained-search variational method for the construction of wave-function functionals ψ[χ] of functions χ. The search is constrained to those functions χ such that ψ[χ] reproduces the density ρ(r) while simultaneously leading to an upper bound to the energy. The functionals are thereby normalized and automatically satisfy the electron-nucleus coalescence condition. The functionals ψ[χ] are also constructed to satisfy the electron-electron coalescence condition. The method is applied to the ground state of the helium atom to construct functionals ψ[χ] that reproduce the density as given by the Kinoshita correlated wave function. The expectation of single-particle operators W=Σ i r i n , n=-2,-1,1,2, W=Σ i δ(r i ) are exact, as must be the case. The expectations of the kinetic energy operator W=-(1/2)Σ i ∇ i 2 , the two-particle operators W=Σ n u n , n=-2,-1,1,2, where u=|r i -r j |, and the energy are accurate. We note that the construction of such functionals ψ[χ] is an application of the Levy-Lieb constrained-search definition of density functional theory. It is thereby possible to rigorously determine which functional ψ[χ] is closer to the true wave function.
Relativistic bound state wave functions
International Nuclear Information System (INIS)
Micu, L.
2005-01-01
A particular method of writing the bound state wave functions in relativistic form is applied to the solutions of the Dirac equation with confining potentials in order to obtain a relativistic description of a quark antiquark bound system representing a given meson. Concerning the role of the effective constituent in the present approach we first observe that without this additional constituent we couldn't expand the bound state wave function in terms of products of free states. Indeed, we notice that if the wave function depends on the relative coordinates only, all the expansion coefficients would be infinite. Secondly we remark that the effective constituent enabled us to give a Lorentz covariant meaning to the potential energy of the bound system which is now seen as the 4th component of a 4-momentum. On the other side, by relating the effective constituent to the quantum fluctuations of the background field which generate the binding, we provided a justification for the existence of some spatial degrees of freedom accompanying the interaction potential. These ones, which are quite unusual in quantum mechanics, in our model are the natural consequence of the the independence of the quarks and can be seen as the effect of the imperfect cancellation of the vector momenta during the quantum fluctuations. Related with all these we remark that the adequate representation for the relativistic description of a bound system is the momentum representation, because of the transparent and easy way of writing the conservation laws and the transformation properties of the wave functions. The only condition to be fulfilled is to find a suitable way to take into account the potential energy of the bound system. A particular feature of the present approach is that the confining forces are due to a kind of glue where both quarks are embedded. This recalls other bound state models where the wave function is factorized in terms of constituent wave functions and the confinement is
Model wave functions for the deuteron
International Nuclear Information System (INIS)
Certov, A.; Mathelitsch, L.; Moravcsik, M.J.
1987-01-01
Model wave functions are constructed for the deuteron to facilitate the unambiguous exploration of dependencies on the percentage D state and on the small-, medium-, and large-distance parts of the deuteron wave function. The wave functions are constrained by those deuteron properties which are accurately known experimentally, and are in an analytic form which is easily integrable in expressions usually encountered in the use of such wave functions
Gravity induced wave function collapse
Gasbarri, G.; Toroš, M.; Donadi, S.; Bassi, A.
2017-11-01
Starting from an idea of S. L. Adler [in Quantum Nonlocality and Reality: 50 Years of Bell's Theorem, edited by M. Bell and S. Gao (Cambridge University Press, Cambridge, England 2016)], we develop a novel model of gravity induced spontaneous wave function collapse. The collapse is driven by complex stochastic fluctuations of the spacetime metric. After deriving the fundamental equations, we prove the collapse and amplification mechanism, the two most important features of a consistent collapse model. Under reasonable simplifying assumptions, we constrain the strength ξ of the complex metric fluctuations with available experimental data. We show that ξ ≥10-26 in order for the model to guarantee classicality of macro-objects, and at the same time ξ ≤10-20 in order not to contradict experimental evidence. As a comparison, in the recent discovery of gravitational waves in the frequency range 35 to 250 Hz, the (real) metric fluctuations reach a peak of ξ ˜10-21.
Microscopy of electronic wave function
International Nuclear Information System (INIS)
Harb, M.
2010-01-01
This work of thesis aims to visualize, on a position sensitive detector, the spatial oscillations of slow electrons (∼ meV) emitted by a threshold photoionization in the presence of an external electric field. The interference figure obtained represents the square magnitude of electronic wavefunction. This fundamental work allows us to have access to the electronic dynamics and thus to highlight several quantum mechanisms that occur at the atomic scale (field Coulomb, electron/electron interaction..). Despite the presence an electronic core in Li atom, we have succeeded, experimentally and for the first time, in visualizing the wave function associated with the quasi-discrete Stark states coupled to the ionization continuum. Besides, using simulations of wave packet propagation, based on the 'Split-operator' method, we have conducted a comprehensive study of the H, Li and Cs atoms while revealing the significant effects of the Stark resonances. A very good agreement, on and off resonances, was obtained between simulated and experimental results. In addition, we have developed a generalized analytical model to understand deeply the function of VMI (Velocity-Map Imaging) spectrometer. This model is based on the paraxial approximation; it is based on matrix optics calculation by making an analogy between the electronic trajectory and the light beam. An excellent agreement was obtained between the model predictions and the experimental results. (author)
Covariance Function for Nearshore Wave Assimilation Systems
2018-01-30
which is applicable for any spectral wave model. The four dimensional variational (4DVar) assimilation methods are based on the mathematical ...covariance can be modeled by a parameterized Gaussian function, for nearshore wave assimilation applications , the covariance function depends primarily on...SPECTRAL ACTION DENSITY, RESPECTIVELY. ............................ 5 FIGURE 2. TOP ROW: STATISTICAL ANALYSIS OF THE WAVE-FIELD PROPERTIES AT THE
Wind wave source functions in opposing seas
Langodan, Sabique
2015-08-26
The Red Sea is a challenge for wave modeling because of its unique two opposed wave systems, forced by opposite winds and converging at its center. We investigate the different physical aspects of wave evolution and propagation in the convergence zone. The two opposing wave systems have similar amplitude and frequency, each driven by the action of its own wind. Wave patterns at the centre of the Red Sea, as derived from extensive tests and intercomparison between model and measured data, suggest that the currently available wave model source functions may not properly represent the evolution of the local fields that appear to be characterized by a less effective wind input and an enhanced white-capping. We propose and test a possible simple solution to improve the wave-model simulation under opposing winds and waves condition. This article is protected by copyright. All rights reserved.
Faddeev wave function decomposition using bipolar harmonics
International Nuclear Information System (INIS)
Friar, J.L.; Tomusiak, E.L.; Gibson, B.F.; Payne, G.L.
1981-01-01
The standard partial wave (channel) representation for the Faddeev solution to the Schroedinger equation for the ground state of 3 nucleons is written in terms of functions which couple the interacting pair and spectator angular momenta to give S, P, and D waves. For each such coupling there are three terms, one for each of the three cyclic permutations of the nucleon coordinates. A series of spherical harmonic identities is developed which allows writing the Faddeev solution in terms of a basis set of 5 bipolar harmonics: 1 for S waves; 1 for P waves; and 3 for D waves. The choice of a D-wave basis is largely arbitrary, and specific choices correspond to the decomposition schemes of Derrick and Blatt, Sachs, Gibson and Schiff, and Bolsterli and Jezak. The bipolar harmonic form greatly simplifies applications which utilize the wave function, and we specifically discuss the isoscalar charge (or mass) density and the 3 He Coulomb energy
A simple and realistic triton wave function
International Nuclear Information System (INIS)
Lomnitz-Adler, J.; Pandharipande, V.R.
1980-01-01
We propose a simple triton wave function that consists of a product of three correlation operators operating on a three-body spin-isospin state. This wave function is formally similar to that used in the recent variational theories of nuclear matter, the main difference being in the long-range behavior of the correlation operators. Variational calculations are carried out with the Reid potential, using this wave function in the so-called 'symmetrized product' and 'independent pair' forms. The triton energy and density distributions obtained with the symmetrized product wave function agree with those obtained in Faddeev and other variational calculations using harmonic oscillator states. The proposed wave function and calculational methods can be easily generalized to treat the four-nucleon α-particle. (orig.)
Neutrino wave function and oscillation suppression
International Nuclear Information System (INIS)
Dolgov, A.D.; Lychkovskiy, O.V.; Mamonov, A.A.; Okun, L.B.; Schepkin, M.G.
2005-01-01
We consider a thought experiment, in which a neutrino is produced by an electron on a nucleus in a crystal. The wave function of the oscillating neutrino is calculated assuming that the electron is described by a wave packet. If the electron is relativistic and the spatial size of its wave packet is much larger than the size of the crystal cell, then the wave packet of the produced neutrino has essentially the same size as the wave packet of the electron. We investigate the suppression of neutrino oscillations at large distances caused by two mechanisms: (1) spatial separation of wave packets corresponding to different neutrino masses; (2) neutrino energy dispersion for given neutrino mass eigenstates. We resolve the contributions of these two mechanisms. (orig.)
Integral transform technique for meson wave functions
International Nuclear Information System (INIS)
Bakulev, A.P.; Mikhajlov, S.V.
1996-01-01
In a recent paper [1] we proposed a new approach for extracting the wave function of the π-meson φ π (x) and the masses and wave functions of its first resonances from the new QCD sum rules for nondiagonal correlators obtained in [2]. Here, we test our approach using an exactly solvable toy model as an illustrating example. We demonstrate the validity of the method and suggest a pure algebraic procedure for extracting the masses and wave functions relating to the case under investigation. We also explore the stability of the procedure under perturbations of the theoretical part of the sum rule. In application to the pion case, this results not only in the mass and wave function of the first resonance (π'), but also in the estimation of π''-mass. 17 refs., 11 figs
On single nucleon wave functions in nuclei
International Nuclear Information System (INIS)
Talmi, Igal
2011-01-01
The strong and singular interaction between nucleons, makes the nuclear many body theory very complicated. Still, nuclei exhibit simple and regular features which are simply described by the shell model. Wave functions of individual nucleons may be considered just as model wave functions which bear little resemblance to the real ones. There is, however, experimental evidence for the reality of single nucleon wave functions. There is a simple method of constructing such wave functions for valence nucleons. It is shown that this method can be improved by considering the polarization of the core by the valence nucleon. This gives rise to some rearrangement energy which affects the single valence nucleon energy within the nucleus.
Noncommuting limits of oscillator wave functions
International Nuclear Information System (INIS)
Daboul, J.; Pogosyan, G. S.; Wolf, K. B.
2007-01-01
Quantum harmonic oscillators with spring constants k > 0 plus constant forces f exhibit rescaled and displaced Hermite-Gaussian wave functions, and discrete, lower bound spectra. We examine their limits when (k, f) → (0, 0) along two different paths. When f → 0 and then k → 0, the contraction is standard: the system becomes free with a double continuous, positive spectrum, and the wave functions limit to plane waves of definite parity. On the other hand, when k → 0 first, the contraction path passes through the free-fall system, with a continuous, nondegenerate, unbounded spectrum and displaced Airy wave functions, while parity is lost. The subsequent f → 0 limit of the nonstandard path shows the dc hysteresis phenomenon of noncommuting contractions: the lost parity reappears as an infinitely oscillating superposition of the two limiting solutions that are related by the symmetry
The Wave Function and Quantum Reality
International Nuclear Information System (INIS)
Gao Shan
2011-01-01
We investigate the meaning of the wave function by analyzing the mass and charge density distributions of a quantum system. According to protective measurement, a charged quantum system has effective mass and charge density distributing in space, proportional to the square of the absolute value of its wave function. In a realistic interpretation, the wave function of a quantum system can be taken as a description of either a physical field or the ergodic motion of a particle. The essential difference between a field and the ergodic motion of a particle lies in the property of simultaneity; a field exists throughout space simultaneously, whereas the ergodic motion of a particle exists throughout space in a time-divided way. If the wave function is a physical field, then the mass and charge density will be distributed in space simultaneously for a charged quantum system, and thus there will exist gravitational and electrostatic self-interactions of its wave function. This not only violates the superposition principle of quantum mechanics but also contradicts experimental observations. Thus the wave function cannot be a description of a physical field but be a description of the ergodic motion of a particle. For the later there is only a localized particle with mass and charge at every instant, and thus there will not exist any self-interaction for the wave function. It is further argued that the classical ergodic models, which assume continuous motion of particles, cannot be consistent with quantum mechanics. Based on the negative result, we suggest that the wave function is a description of the quantum motion of particles, which is random and discontinuous in nature. On this interpretation, the square of the absolute value of the wave function not only gives the probability of the particle being found in certain locations, but also gives the probability of the particle being there. The suggested new interpretation of the wave function provides a natural realistic
Expansion of continuum functions on resonance wave functions and amplitudes
International Nuclear Information System (INIS)
Bang, J.; Gareev, F.A.; Gizzatkulov, M.H.; Goncharov, S.A.
1978-01-01
To overcome difficulties encountered with wave functions of continuum spectrum (for example, in a shell model with continuum) the pole expansion (by the Mittag-Leffler theorem) of wave functions, scattering amplitudes and the Green functions with positive energies are considered. It is shown that resonance functions (the Gamov functions) form a complete set over which the continuum functions could be expanded. The general view of these expansions for final potentials and for the Coulomb repulsion potential are obtained and discussed. It is shown that the application of the method to nuclear structure calculations leads to simple algebraic equations
Heuristic method for determining outgoing waves in many-body wave functions
International Nuclear Information System (INIS)
Redish, E.F.; Tandy, P.C.; L'Huillier, M.
1975-12-01
A new and simple method is proposed for determining the kinds of outgoing waves present in a given many-body wave function. Whether any particular wave function contains ''hidden'' rearrangement components can be determined. 1 figure
Relativistic deuteron wave function on light front
International Nuclear Information System (INIS)
Karmanov, V.A.
1980-01-01
In the framework of the one boson exchange model the approximate analytical expression for the deuteron wave function (WF) at relativistic relative momenta is obtained. WF depends on extra variable having the form of a unit vector and is determined by six functions instead of two ones (S-and D-waves) in the nonrelativistic case. At moderate momenta the WF is matched with WF in the Reid model. It is emphasized the importance of indication of the qualitative observed phenomena associated with change of parametrization and spin structure of relativistic deuteron WF
Wave function of free electron in a strong laser plasma
International Nuclear Information System (INIS)
Zhu Shitong; Shen Wenda; Guo Qizhi
1993-01-01
The wave function of free electron in a strong laser plasma is obtained by solving exactly the Dirac equation in a curved space-time with optical metric for the laser plasma. When the laser field is diminished to zero, the wave function is naturally reduced to relativistic wave function of free electron. The possible application of the wave function is discussed
Twist-2 Light-Cone Pion Wave Function
Belyaev, V. M.; Johnson, Mikkel B.
1997-01-01
We present an analysis of the existing constraints for the twist-2 light-cone pion wave function. We find that existing information on the pion wave function does not exclude the possibility that the pion wave function attains its asymptotic form. New bounds on the parameters of the pion wave function are presented.
Wigner functions for evanescent waves.
Petruccelli, Jonathan C; Tian, Lei; Oh, Se Baek; Barbastathis, George
2012-09-01
We propose phase space distributions, based on an extension of the Wigner distribution function, to describe fields of any state of coherence that contain evanescent components emitted into a half-space. The evanescent components of the field are described in an optical phase space of spatial position and complex-valued angle. Behavior of these distributions upon propagation is also considered, where the rapid decay of the evanescent components is associated with the exponential decay of the associated phase space distributions. To demonstrate the structure and behavior of these distributions, we consider the fields generated from total internal reflection of a Gaussian Schell-model beam at a planar interface.
Optimization of nonlinear wave function parameters
International Nuclear Information System (INIS)
Shepard, R.; Minkoff, M.; Chemistry
2006-01-01
An energy-based optimization method is presented for our recently developed nonlinear wave function expansion form for electronic wave functions. This expansion form is based on spin eigenfunctions, using the graphical unitary group approach (GUGA). The wave function is expanded in a basis of product functions, allowing application to closed-shell and open-shell systems and to ground and excited electronic states. Each product basis function is itself a multiconfigurational function that depends on a relatively small number of nonlinear parameters called arc factors. The energy-based optimization is formulated in terms of analytic arc factor gradients and orbital-level Hamiltonian matrices that correspond to a specific kind of uncontraction of each of the product basis functions. These orbital-level Hamiltonian matrices give an intuitive representation of the energy in terms of disjoint subsets of the arc factors, they provide for an efficient computation of gradients of the energy with respect to the arc factors, and they allow optimal arc factors to be determined in closed form for subspaces of the full variation problem. Timings for energy and arc factor gradient computations involving expansion spaces of > 10 24 configuration state functions are reported. Preliminary convergence studies and molecular dissociation curves are presented for some small molecules
Discrete expansions of continuum wave functions
International Nuclear Information System (INIS)
Bang, J.; Ershov, S.N.; Gareev, F.A.; Kazacha, G.S.
1980-01-01
Different methods of expanding continuum wave functions in terms of discrete basis sets are discussed. The convergence properties of these expansions are investigated, both from a mathematical and a numerical point of view, for the case of potentials of Woods-Saxon and square well type. (orig.)
The puzzling entanglement of Schroedinger's wave function
International Nuclear Information System (INIS)
Ghirardi, G.C.; Rimini, A.; Weber, T.
1987-05-01
A brief review of the conceptual difficulties met by the quantum formalism is presented. The main attempts to overcome these difficulties are considered and their limitations are pointed out. A recent proposal based on the assumption of the occurrence of a specific type of wave function collapse is discussed and its consequences for the above-mentioned problems are analyzed. (author). 28 refs
Wind wave source functions in opposing seas
Langodan, Sabique; Cavaleri, Luigi; Viswanadhapalli, Yesubabu; Hoteit, Ibrahim
2015-01-01
that the currently available wave model source functions may not properly represent the evolution of the local fields that appear to be characterized by a less effective wind input and an enhanced white-capping. We propose and test a possible simple solution
Semiclassical initial value treatment of wave functions
International Nuclear Information System (INIS)
Kay, Kenneth G.
2010-01-01
A semiclassical initial value approximation for time-independent wave functions, previously derived for integrable systems, is rederived in a form which allows it to be applied to more general systems. The wave function is expressed as an integral over a Lagrangian manifold that is constructed by propagating trajectories from an initial manifold formed on a Poincare surface. Even in the case of bound, integrable systems, it is unnecessary to identify action-angle variables or construct quantizing tori. The approximation is numerically tested for separable and highly chaotic two-dimensional quartic oscillator systems. For the separable (but highly anharmonic) system, the accuracy of the approximation is found to be excellent: overlaps of the semiclassical wave functions with the corresponding quantum wave functions exceed 0.999. For the chaotic system, semiclassical-quantum overlaps are found to range from 0.989 to 0.994, indicating accuracy that is still very good, despite the short classical trajectories used in the calculations.
A pair density functional theory utilizing the correlated wave function
International Nuclear Information System (INIS)
Higuchi, M; Higuchi, K
2009-01-01
We propose a practical scheme for calculating the ground-state pair density (PD) by utilizing the correlated wave function. As the correlated wave function, we adopt a linear combination of the single Slater determinants that are constructed from the solutions of the initial scheme [Higuchi M and Higuchi K 2007 Physica B 387, 117]. The single-particle equation is derived by performing the variational principle within the set of PDs that are constructed from such correlated wave functions. Since the search region of the PD is substantially extended as compared with the initial scheme, it is expected that the present scheme can cover more correlation effects. The single-particle equation is practical, and may be easily applied to actual calculations.
Antiferromagnetism and d-wave superconductivity in (doped) Mott insulators: A wave function approach
Weng, Z. Y.; Zhou, Y.; Muthukumar, V. N.
2003-01-01
We propose a class of wave functions that provide a unified description of antiferromagnetism and d-wave superconductivity in (doped) Mott insulators. The wave function has a Jastrow form and prohibits double occupancies. In the absence of holes, the wave function describes antiferromagnetism accurately. Off diagonal long range order develops at finite doping and the superconducting order parameter has d-wave symmetry. We also show how nodal quasiparticles and neutral spin excitations can be ...
Study of Ion Acoustic Wave Damping through Green's Functions
DEFF Research Database (Denmark)
Hsuan, H.C.S.; Jensen, Vagn Orla
1973-01-01
Green's function analyses of ion acoustic waves in streaming plasmas show that, in general, the waves damp algebraically rather than exponentially with distance from exciter.......Green's function analyses of ion acoustic waves in streaming plasmas show that, in general, the waves damp algebraically rather than exponentially with distance from exciter....
Relativistic amplitudes in terms of wave functions
International Nuclear Information System (INIS)
Karmanov, V.A.
1978-01-01
In the framework of the invariant diagram technique which arises at the formulation of the fueld theory on the light front the question about conditions at which the relativistic amplitudes may be expressed through the wave functions is investigated. The amplitudes obtained depend on four-vector ω, determining the light front surface. The way is shown to find such values of the four-vector ω, at which the contribution of diagrams not expressed through wave functions is minimal. The investigation carried out is equivalent to the study of the dependence of amplitudes of the old-fashioned perturbation theory in the in the infinite momentum frame on direction of the infinite momentum
Mini wave function for the Universe
International Nuclear Information System (INIS)
Maslanka, K.
1989-01-01
The Friedman radiation filled world model can formally be treated as an oscillator with frequency determined by the cosmological constant and with an external force connected with the space curvature. The wave function for such a universe is constructed. By using Feynman's sum-over-histories method, the initial fundamental indeterminacy in the state of the universe is propagated forward in time. 5 refs. (author)
Cranked cluster wave function for molecular states
International Nuclear Information System (INIS)
Horiuchi, Hisashi; Yabana, Kazuhiro; Wada, Takahiro.
1986-01-01
Construction of the cranked cluster wave function is discussed by focussing on three problems; the self-consistency between the potential and the density distribution, the properties of the rotational angular frequency which is strongly influenced by the inter-cluster Pauli principle and by the parity projection, and the spin alignment along the rotation axis with the resulting structure-change of the molecular state. (author)
Tur\\'an type inequalities for regular Coulomb wave functions
Baricz, Árpád
2015-01-01
Tur\\'an, Mitrinovi\\'c-Adamovi\\'c and Wilker type inequalities are deduced for regular Coulomb wave functions. The proofs are based on a Mittag-Leffler expansion for the regular Coulomb wave function, which may be of independent interest. Moreover, some complete monotonicity results concerning the Coulomb zeta functions and some interlacing properties of the zeros of Coulomb wave functions are given.
Meson wave functions in 2-dim QCD
International Nuclear Information System (INIS)
Hildebrandt, S.; Visnjic, V.
1977-07-01
We consider the eigenvalue problem of 't Hooft for the meson spectrum in 2-dim QCD by defining some alternative formulations whose equivalence we prove. Hence we are able to prove that the spectrum is discrete and of finite multiplicity and to derive bounds (upper and lower) for the eigenvalues (ground state, with state and n → infinitely state). We prove that the functions are analytic and use this to carry out explicit numerical calculations of the wave functions for various values of the quark masses and to recalculate the meson spectrum. (orig.) [de
Measurement of light-cone wave functions by diffractive dissociation
Energy Technology Data Exchange (ETDEWEB)
Asheri, D. [Tel Aviv Univ., School of Physics and Astronomy, Sackler Faculty of Exact Science (Israel)
2005-07-01
The measurement of the pion light-cone wave function is revisited and results for the Gegenbauer coefficients are presented. Measurements of the photon electromagnetic and hadronic wave functions are described and results are presented. (authors)
General Forms of Wave Functions for Dipositronium, Ps2
Schrader, D.M.
2007-01-01
The consequences of particle interchange symmetry for the structure of wave functions of the states of dipositronium was recently discussed by the author [I]. In the present work, the methodology is simply explained, and the wave functions are explicitly given.
Boundary conditions of the exact impulse wave function
International Nuclear Information System (INIS)
Gravielle, M.; Miraglia, J.E.
1997-01-01
The behavior of the exact impulse wave function is investigated at intermediate and high impact energies. Numerical details of the wave function and its perturbative potential are reported. We conclude that the impulse wave function does not tend to the proper Coulomb asymptotic limit. For electron capture, however, it is shown that the impulse wave function produces reliable probabilities even for intermediate velocities and symmetric collision systems. copyright 1997 The American Physical Society
Calculating scattering matrices by wave function matching
International Nuclear Information System (INIS)
Zwierzycki, M.; Khomyakov, P.A.; Starikov, A.A.; Talanana, M.; Xu, P.X.; Karpan, V.M.; Marushchenko, I.; Brocks, G.; Kelly, P.J.; Xia, K.; Turek, I.; Bauer, G.E.W.
2008-01-01
The conductance of nanoscale structures can be conveniently related to their scattering properties expressed in terms of transmission and reflection coefficients. Wave function matching (WFM) is a transparent technique for calculating transmission and reflection matrices for any Hamiltonian that can be represented in tight-binding form. A first-principles Kohn-Sham Hamiltonian represented on a localized orbital basis or on a real space grid has such a form. WFM is based upon direct matching of the scattering-region wave function to the Bloch modes of ideal leads used to probe the scattering region. The purpose of this paper is to give a pedagogical introduction to WFM and present some illustrative examples of its use in practice. We briefly discuss WFM for calculating the conductance of atomic wires, using a real space grid implementation. A tight-binding muffin-tin orbital implementation very suitable for studying spin-dependent transport in layered magnetic materials is illustrated by looking at spin-dependent transmission through ideal and disordered interfaces. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Comparative study on spreading function for directional wave spectra
Digital Repository Service at National Institute of Oceanography (India)
Bhat, S.S.; Anand, N.M.; Nayak, B.U.
-dimensional wave energy S(f) and the directional spreading function D(f, theta). This paper reviews various spreading functions proposed in the past for estimating the directional wave energy and presents their application to the Indian wave condition. It is found...
Improved Wave-vessel Transfer Functions by Uncertainty Modelling
DEFF Research Database (Denmark)
Nielsen, Ulrik Dam; Fønss Bach, Kasper; Iseki, Toshio
2016-01-01
This paper deals with uncertainty modelling of wave-vessel transfer functions used to calculate or predict wave-induced responses of a ship in a seaway. Although transfer functions, in theory, can be calculated to exactly reflect the behaviour of the ship when exposed to waves, uncertainty in inp...
Green function for three-wave coupling problems
International Nuclear Information System (INIS)
Molevich, N E
2001-01-01
The Green function is found for three-wave coupling problems. The function was used for analysis of parametric amplification in dissipative and active media. It is shown that the parametric increment in active media can become exponential. As an example, the nonstationary stimulated scattering of electromagnetic waves by sound and temperatures waves is considered. (nonlinear optical phenomena)
International Nuclear Information System (INIS)
Malrieu, Jean-Paul
2012-01-01
Lattices of antiferromagnetically coupled spins, ruled by Heisenberg Hamiltonians, are intrinsically highly degenerate systems. The present work tries to estimate the ground state energy of regular bipartite spin lattices of S = 1 sites from a single reference Coupled Cluster expansion starting from a Néel function, taken as reference. The simultaneous changes of spin momentum on adjacent sites play the role of the double excitations in molecular electronic problems. Propagation of the spin changes plays the same role as the triple excitations. The treatment takes care of the deviation of multiple excitation energies from additivity. Specific difficulties appear for 1D chains, which are not due to a near degeneracy between the reference and the vectors which directly interact with it but to the complexity of the processes which lead to the low energy configurations where a consistent reversed-Néel domain is created inside the Néel starting spin wave. Despite these difficulties a reasonable value of the cohesive energy is obtained.
Malrieu, Jean-Paul
2012-06-01
Lattices of antiferromagnetically coupled spins, ruled by Heisenberg Hamiltonians, are intrinsically highly degenerate systems. The present work tries to estimate the ground state energy of regular bipartite spin lattices of S = 1 sites from a single reference Coupled Cluster expansion starting from a Néel function, taken as reference. The simultaneous changes of spin momentum on adjacent sites play the role of the double excitations in molecular electronic problems. Propagation of the spin changes plays the same role as the triple excitations. The treatment takes care of the deviation of multiple excitation energies from additivity. Specific difficulties appear for 1D chains, which are not due to a near degeneracy between the reference and the vectors which directly interact with it but to the complexity of the processes which lead to the low energy configurations where a consistent reversed-Néel domain is created inside the Néel starting spin wave. Despite these difficulties a reasonable value of the cohesive energy is obtained.
Spin-Wave Wave Function for Quantum Spin Models : Condensed Matter and Statistical Physics
Franjo, FRANJIC; Sandro, SORELLA; Istituto Nazionale di Fisica della Materia International School for Advance Studies; Istituto Nazionale di Fisica della Materia International School for Advance Studies
1997-01-01
We present a new approach to determine an accurate variational wave function for general quantum spin models, completely defined by a consistency requirement with the simple and well-known linear spin-wave expansion. With this wave function, it is also possible to obtain the correct behavior of the long distance correlation functions for the 1D S=1/2 antiferromagnet. In 2D the proposed spin-wave wave function represents an excellent approximation to the exact ground state of the S=1.2 XY mode...
Deep inelastic scattering and light-cone wave functions
International Nuclear Information System (INIS)
Belyaev, V.M.; Johnson, M.B.
1996-01-01
In the framework of light-cone QCD rules, we study the valence quark distribution function q(x B ) of a pion for moderate x B . The sum rule with the leading twist-2 wave function gives q(x B ) = φ π (x B ). Twist-4 wave functions give about 30% for x B ∼0.5. It is shown that QCD sum rule predictions, with the asymptotic pion wave function, are in good agreement with experimental data. We found that a two-hump profile for the twist-2 wave function leads to a valence quark distribution function that contradicts experimental data
Intercellular Ca2+ Waves: Mechanisms and Function
Sanderson, Michael J.
2012-01-01
Intercellular calcium (Ca2+) waves (ICWs) represent the propagation of increases in intracellular Ca2+ through a syncytium of cells and appear to be a fundamental mechanism for coordinating multicellular responses. ICWs occur in a wide diversity of cells and have been extensively studied in vitro. More recent studies focus on ICWs in vivo. ICWs are triggered by a variety of stimuli and involve the release of Ca2+ from internal stores. The propagation of ICWs predominately involves cell communication with internal messengers moving via gap junctions or extracellular messengers mediating paracrine signaling. ICWs appear to be important in both normal physiology as well as pathophysiological processes in a variety of organs and tissues including brain, liver, retina, cochlea, and vascular tissue. We review here the mechanisms of initiation and propagation of ICWs, the key intra- and extracellular messengers (inositol 1,4,5-trisphosphate and ATP) mediating ICWs, and the proposed physiological functions of ICWs. PMID:22811430
String wave function across a Kasner singularity
International Nuclear Information System (INIS)
Copeland, Edmund J.; Niz, Gustavo; Turok, Neil
2010-01-01
A collision of orbifold planes in 11 dimensions has been proposed as an explanation of the hot big bang. When the two planes are close to each other, the winding membranes become the lightest modes of the theory, and can be effectively described in terms of fundamental strings in a ten-dimensional background. Near the brane collision, the 11-dimensional metric is a Euclidean space times a 1+1-dimensional Milne universe. However, one may expect small perturbations to lead into a more general Kasner background. In this paper we extend the previous classical analysis of winding membranes to Kasner backgrounds, and using the Hamiltonian equations, solve for the wave function of loops with circular symmetry. The evolution across the singularity is regular, and explained in terms of the excitement of higher oscillation modes. We also show there is finite particle production and unitarity is preserved.
Computer network defense through radial wave functions
Malloy, Ian J.
The purpose of this research is to synthesize basic and fundamental findings in quantum computing, as applied to the attack and defense of conventional computer networks. The concept focuses on uses of radio waves as a shield for, and attack against traditional computers. A logic bomb is analogous to a landmine in a computer network, and if one was to implement it as non-trivial mitigation, it will aid computer network defense. As has been seen in kinetic warfare, the use of landmines has been devastating to geopolitical regions in that they are severely difficult for a civilian to avoid triggering given the unknown position of a landmine. Thus, the importance of understanding a logic bomb is relevant and has corollaries to quantum mechanics as well. The research synthesizes quantum logic phase shifts in certain respects using the Dynamic Data Exchange protocol in software written for this work, as well as a C-NOT gate applied to a virtual quantum circuit environment by implementing a Quantum Fourier Transform. The research focus applies the principles of coherence and entanglement from quantum physics, the concept of expert systems in artificial intelligence, principles of prime number based cryptography with trapdoor functions, and modeling radio wave propagation against an event from unknown parameters. This comes as a program relying on the artificial intelligence concept of an expert system in conjunction with trigger events for a trapdoor function relying on infinite recursion, as well as system mechanics for elliptic curve cryptography along orbital angular momenta. Here trapdoor both denotes the form of cipher, as well as the implied relationship to logic bombs.
Approximate Stream Function wavemaker theory for highly non-linear waves in wave flumes
DEFF Research Database (Denmark)
Zhang, H.W.; Schäffer, Hemming Andreas
2007-01-01
An approximate Stream Function wavemaker theory for highly non-linear regular waves in flumes is presented. This theory is based on an ad hoe unified wave-generation method that combines linear fully dispersive wavemaker theory and wave generation for non-linear shallow water waves. This is done...... by applying a dispersion correction to the paddle position obtained for non-linear long waves. The method is validated by a number of wave flume experiments while comparing with results of linear wavemaker theory, second-order wavemaker theory and Cnoidal wavemaker theory within its range of application....
Dynamic equations for gauge-invariant wave functions
International Nuclear Information System (INIS)
Kapshaj, V.N.; Skachkov, N.B.; Solovtsov, I.L.
1984-01-01
The Bethe-Salpeter and quasipotential dynamic equations for wave functions of relative quark motion, have been derived. Wave functions are determined by the gauge invariant method. The V.A. Fock gauge condition is used in the construction. Despite the transl tional noninvariance of the gauge condition the standard separation of variables has been obtained and wave function doesn't contain gauge exponents
On the construction of translationally invariant deformed wave functions
International Nuclear Information System (INIS)
Guardiola, R.
1975-01-01
Translationally invariant nuclear wave functions are constructed from deformed harmonic oscillator shell-model wave functions, with an exact projection of angular momentum quantum numbers. It is shown that the computation of matrix elements with the translationally invariant wave functions is as simple as the standard calculation, and formulae are obtained for (i) the potential energy, (ii) the kinetic energy and rms radius, and (iii) the charge form factor. (Auth.)
Wave function of the Universe as a leaking system
International Nuclear Information System (INIS)
Suen, W.; Young, K.
1989-01-01
We propose a path-integral formulation for the wave function of the Universe which requires neither the Euclidean nor the conformal rotation. The boundary condition is taken to be that ''all possible boundaries are included.'' The resulting wave function in a simple model is shown to have the following properties: (i) the wave function tends to zero as the scale factor of the Universe tends to zero; (ii) in the semiclassical regime, it contains only the expanding component; (iii) it favors inflation
Light-front wave function of composite system with spin
International Nuclear Information System (INIS)
Karmanov, V.A.
1979-01-01
The method to construct the relativistic wave function with spin on the light front is developed. The spin structure of the deuteron wave function in relativistic range is found. The calculation methods are illustrated by the calculation of elastic pd-scattering cross section. The consideration carried out is equivalent to the solution of the problem of taking into account the spins and angular momenta in the parton wave functions in the infinite momentum frame
Mathieu functions describing particles evolving in electromagnetic waves
Mihu, Denisa-Andreea; Dariescu, Marina-Aura
2017-12-01
Solutions of Klein-Gordon equation for particles moving in a standing wave configuration bring into attention an intricate and complicated category of special functions, namely the Mathieu functions. The stability of the solutions governed by the intercorrelation between Mathieu equation' parameters is discussed. For specific intervals of the wave number, the instability regime installs, pointing out the tendency of exponential growth for the oscillatory wave functions, as a consequence of parametric resonance phenomenon. The expression of the wave function allows the computation of the four-dimensional conserved current density components.
Taylor-series method for four-nucleon wave functions
International Nuclear Information System (INIS)
Sandulescu, A.; Tarnoveanu, I.; Rizea, M.
1977-09-01
Taylor-series method for transforming the infinite or finite well two-nucleon wave functions from individual coordinates to relative and c.m. coordinates, by expanding the single particle shell model wave functions around c.m. of the system, is generalized to four-nucleon wave functions. Also the connections with the Talmi-Moshinsky method for two and four harmonic oscillator wave functions are deduced. For both methods Fortran IV programs for the expansion coefficients have been written and the equivalence of corresponding expressions numerically proved. (author)
Parametrization of the scattering wave functions of the Paris potential
International Nuclear Information System (INIS)
Loiseau, B.; Mathelitsch, L.
1996-10-01
The neutron-proton scattering wave functions of the Paris nucleon-nucleon potential are parametrized for partial waves of total angular momenta less than 5. The inner parts of the wave functions are approximated by polynomials with a continuous transition to the outer parts, which are given by the asymptotic regime and determined by the respective phase shifts. The scattering wave functions can then be calculated at any given energy below 400 MeV. Special attention is devoted to the zero-energy limit of the low partial waves. An easy-to-use FORTRAN program, which allows the user to calculate these parametrized wave functions, is available via electronic mail. (author)
Six Impossible Things: Fractional Charge From Laughlin's Wave Function
International Nuclear Information System (INIS)
Shrivastava, Keshav N.
2010-01-01
The Laughlin's wave function is found to be the zero-energy ground state of a δ-function Hamiltonian. The finite negative value of the ground state energy which is 91 per cent of Wigner value, can be obtained only when Coulomb correlations are introduced. The Laughlin's wave function is of short range and it overlaps with that of the exact wave functions of small (number of electrons 2 or 5) systems. (i) It is impossible to obtain fractional charge from Laughlin's wave function. (ii) It is impossible to prove that the Laughlin's wave function gives the ground state of the Coulomb Hamiltonian. (iii) It is impossible to have particle-hole symmetry in the Laughlin's wave function. (iv) It is impossible to derive the value of m in the Laughlin's wave function. The value of m in ψ m can not be proved to be 3 or 5. (v) It is impossible to prove that the Laughlin's state is incompressible because the compressible states are also likely. (vi) It is impossible for the Laughlin's wave function to have spin. This effort is directed to explain the experimental data of quantum Hall effect in GaAs/AlGaAs.
Wave-function reconstruction in a graded semiconductor superlattice
DEFF Research Database (Denmark)
Lyssenko, V. G.; Hvam, Jørn Märcher; Meinhold, D.
2004-01-01
We reconstruct a test wave function in a strongly coupled, graded well-width superlattice by resolving the spatial extension of the interband polarisation and deducing the wave function employing non-linear optical spectroscopy. The graded gap superlattice allows us to precisely control the dista...
A convenient analytical form for the triton wave function
International Nuclear Information System (INIS)
Hajduk, C.; Green, A.M.; Sainio, M.E.
1979-01-01
The triton wave function obtained by solving the Faddeev equations with the Reid soft core potential is parametrized in a symmetrized cluster form. As a test the 3 He charge form factor is calculated for the exact and the parametrized wave functions and reasonable agreement between the two is found. (author)
Collapse of the wave function models, ontology, origin, and implications
2018-01-01
This is the first single volume about the collapse theories of quantum mechanics, which is becoming a very active field of research in both physics and philosophy. In standard quantum mechanics, it is postulated that when the wave function of a quantum system is measured, it no longer follows the Schrödinger equation, but instantaneously and randomly collapses to one of the wave functions that correspond to definite measurement results. However, why and how a definite measurement result appears is unknown. A promising solution to this problem are collapse theories in which the collapse of the wave function is spontaneous and dynamical. Chapters written by distinguished physicists and philosophers of physics discuss the origin and implications of wave-function collapse, the controversies around collapse models and their ontologies, and new arguments for the reality of wave function collapse. This is an invaluable resource for students and researchers interested in the philosophy of physics and foundations of ...
Effect of Forcing Function on Nonlinear Acoustic Standing Waves
Finkheiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh; Daniels, Chris; Steinetz, Bruce
2003-01-01
Nonlinear acoustic standing waves of high amplitude have been demonstrated by utilizing the effects of resonator shape to prevent the pressure waves from entering saturation. Experimentally, nonlinear acoustic standing waves have been generated by shaking an entire resonating cavity. While this promotes more efficient energy transfer than a piston-driven resonator, it also introduces complicated structural dynamics into the system. Experiments have shown that these dynamics result in resonator forcing functions comprised of a sum of several Fourier modes. However, previous numerical studies of the acoustics generated within the resonator assumed simple sinusoidal waves as the driving force. Using a previously developed numerical code, this paper demonstrates the effects of using a forcing function constructed with a series of harmonic sinusoidal waves on resonating cavities. From these results, a method will be demonstrated which allows the direct numerical analysis of experimentally generated nonlinear acoustic waves in resonators driven by harmonic forcing functions.
Calculation of deuteron wave functions with relativistic interactions
International Nuclear Information System (INIS)
Buck, W.W. III.
1976-01-01
Deuteron wave functions with a repulsive core are obtained numerically from a fully relativistic wave equation introduced by Gross. The numerical technique enables analytic solutions for classes of interactions composed of the relativistic exchanges of a single pion and a single phenomenological meson, sigma. The pion is chosen to interact as a mixture of pseudoscalar and pseudovector. The amount of mixture is determined by a free mixing parameter, lambda, ranging between 1 (pure pseudoscalar) and (pure pseudovector). Each value of lambda corresponds, then, to a different interaction. Solutions are found for lambda = 1, .9, .8, .6, and 0. The wave functions for each interaction come in a group of four. Of the four wave functions, two are the usual S and D state wave functions, while the remaining two, arising out of the relativistic prescription, are identified as 3 P 1 and 1 P 1 wave functions (P state wave functions). For the interactions solved for, the D state probabilities ranged between 5.1 percent and 6.3 percent, while the total P state probabilities ranged between 0.7 percent and 2.7 percent. The method of obtaining solutions was to adjust the sigma meson parameters to give the correct binding energy and a good quadrupole moment. All wave functions obtained are applied to relativistic N-d scattering in the backward direction where the effect of the P states is quite measurable
Special software for computing the special functions of wave catastrophes
Directory of Open Access Journals (Sweden)
Andrey S. Kryukovsky
2015-01-01
Full Text Available The method of ordinary differential equations in the context of calculating the special functions of wave catastrophes is considered. Complementary numerical methods and algorithms are described. The paper shows approaches to accelerate such calculations using capabilities of modern computing systems. Methods for calculating the special functions of wave catastrophes are considered in the framework of parallel computing and distributed systems. The paper covers the development process of special software for calculating of special functions, questions of portability, extensibility and interoperability.
On quantum mechanical phase-space wave functions
DEFF Research Database (Denmark)
Wlodarz, Joachim J.
1994-01-01
An approach to quantum mechanics based on the notion of a phase-space wave function is proposed within the Weyl-Wigner-Moyal representation. It is shown that the Schrodinger equation for the phase-space wave function is equivalent to the quantum Liouville equation for the Wigner distribution...... function. The relationship to the recent results by Torres-Vega and Frederick [J. Chem. Phys. 98, 3103 (1993)] is also discussed....
Optimized Perturbation Theory for Wave Functions of Quantum Systems
International Nuclear Information System (INIS)
Hatsuda, T.; Tanaka, T.; Kunihiro, T.
1997-01-01
The notion of the optimized perturbation, which has been successfully applied to energy eigenvalues, is generalized to treat wave functions of quantum systems. The key ingredient is to construct an envelope of a set of perturbative wave functions. This leads to a condition similar to that obtained from the principle of minimal sensitivity. Applications of the method to the quantum anharmonic oscillator and the double well potential show that uniformly valid wave functions with correct asymptotic behavior are obtained in the first-order optimized perturbation even for strong couplings. copyright 1997 The American Physical Society
Improved wave functions for large-N expansions
International Nuclear Information System (INIS)
Imbo, T.; Sukhatme, U.
1985-01-01
Existing large-N expansions of radial wave functions phi/sub n/,l(r) are only accurate near the minimum of the effective potential. Within the framework of the shifted 1/N expansion, we use known analytic results to motivate a simple modification so that the improved wave functions are accurate over a wide range of r and any choice of quantum numbers n and l. It is shown that these wave functions yield simple and accurate analytic expressions for certain quantities of interest in quarkonium physics
Conformal invariance and pion wave functions of nonleading twist
International Nuclear Information System (INIS)
Braun, V.M.; Filyanov, I.E.
1989-01-01
The restrictions are studied for the general structure of pion wave functions of twist 3 and twist 4 imposed by the conformal symmetry and the equations of motion. A systematic expansion of wave functions in the conformal spin is built and the first order corrections to asymptotic formulae are calculated by the QCD sum rule method. In particular, we have found a multiplicatively renormalizable contribution into the two-particle wave function of twist 4 which cannot be expanded in a finite set of Gegenbauer polynomials. 19 refs.; 5 figs
Nonstandard jump functions for radically symmetric shock waves
International Nuclear Information System (INIS)
Baty, Roy S.; Tucker, Don H.; Stanescu, Dan
2008-01-01
Nonstandard analysis is applied to derive generalized jump functions for radially symmetric, one-dimensional, magnetogasdynamic shock waves. It is assumed that the shock wave jumps occur on infinitesimal intervals and the jump functions for the physical parameters occur smoothly across these intervals. Locally integrable predistributions of the Heaviside function are used to model the flow variables across a shock wave. The equations of motion expressed in nonconservative form are then applied to derive unambiguous relationships between the jump functions for the physical parameters for two families of self-similar flows. It is shown that the microstructures for these families of radially symmetric, magnetogasdynamic shock waves coincide in a nonstandard sense for a specified density jump function.
The Green-function transform and wave propagation
Directory of Open Access Journals (Sweden)
Colin eSheppard
2014-11-01
Full Text Available Fourier methods well known in signal processing are applied to three-dimensional wave propagation problems. The Fourier transform of the Green function, when written explicitly in terms of a real-valued spatial frequency, consists of homogeneous and inhomogeneous components. Both parts are necessary to result in a pure out-going wave that satisfies causality. The homogeneous component consists only of propagating waves, but the inhomogeneous component contains both evanescent and propagating terms. Thus we make a distinction between inhomogeneous waves and evanescent waves. The evanescent component is completely contained in the region of the inhomogeneous component outside the k-space sphere. Further, propagating waves in the Weyl expansion contain both homogeneous and inhomogeneous components. The connection between the Whittaker and Weyl expansions is discussed. A list of relevant spherically symmetric Fourier transforms is given.
Analytical evaluation of integrals over Coulomb wave functions
International Nuclear Information System (INIS)
Nesbet, R.K.
1988-01-01
Indefinite integrals of products of Coulomb wave functions over the interval (r, ∞) can be evaluated by conversion to continued fractions. Examples are given of normalization and dipole transition integrals required in photoionization calculations. (orig.)
Construction of Bethe Salpeter wave functions and applications in QCD
International Nuclear Information System (INIS)
Gromes, D.
1993-01-01
We suggest an ansatz for the Bethe Salpeter wave function which is strictly covariant, obeys the spectrum conditions, and has the correct non relativistic limit. As a first simple application we present a wave function for the pion. It contains two parameters, one of them being the quark mass. The decay constant and the form factor derived from this are in excellent agreement with the data. (orig.)
Wave function collapse implies divergence of average displacement
Marchewka, A.; Schuss, Z.
2005-01-01
We show that propagating a truncated discontinuous wave function by Schr\\"odinger's equation, as asserted by the collapse axiom, gives rise to non-existence of the average displacement of the particle on the line. It also implies that there is no Zeno effect. On the other hand, if the truncation is done so that the reduced wave function is continuous, the average coordinate is finite and there is a Zeno effect. Therefore the collapse axiom of measurement needs to be revised.
Horizon wave-function and the quantum cosmic censorship
Casadio, RobertoDipartimento di Fisica e Astronomia, Alma Mater Università di Bologna, via Irnerio 46, Bologna, 40126, Italy; Micu, Octavian(Institute of Space Science, Bucharest, P.O. Box MG-23, Bucharest-Magurele, RO-077125, Romania); Stojkovic, Dejan(HEPCOS, Department of Physics, SUNY at Buffalo, Buffalo, NY, 14260-1500, United States)
2015-01-01
We investigate the Cosmic Censorship Conjecture by means of the horizon wave-function (HWF) formalism. We consider a charged massive particle whose quantum mechanical state is represented by a spherically symmetric Gaussian wave-function, and restrict our attention to the superxtremal case (with charge-to-mass ratio $\\alpha>1$), which is the prototype of a naked singularity in the classical theory. We find that one can still obtain a normalisable HWF for $\\alpha^2 2$, and the uncertainty in t...
Charge symmetry of electron wave functions in a quantized electromagnetic wave field
Energy Technology Data Exchange (ETDEWEB)
Fedorov, M V [AN SSSR, Moscow. Fizicheskij Inst.
1975-01-01
An attempt to clear up the reasons of the electron charge symmetry violation in the quantum wave field was made in this article. For this purpose the connection between the Dirac equation and the electron wave functions in the external field with the exact equation of quantum electrodynamics is established. Attention is paid to the fact that a number of equations for single-electron wave functions can be used in the framework of the same assumptions. It permits the construction of the charge-symmetric solutions in particular.
Approximate scattering wave functions for few-particle continua
International Nuclear Information System (INIS)
Briggs, J.S.
1990-01-01
An operator identity which allows the wave operator for N particles interacting pairwise to be expanded as products of operators in which fewer than N particles interact is given. This identity is used to derive appproximate scattering wave functions for N-particle continua that avoid certain difficulties associated with Faddeev-type expansions. For example, a derivation is given of a scattering wave function used successfully recently to describe the three-particle continuum occurring in the electron impact ionization of the hydrogen atom
Consequences of wave function orthogonality for medium energy nuclear reactions
International Nuclear Information System (INIS)
Noble, J.V.
1978-01-01
In the usual models of high-energy bound-state to continuum transitions no account is taken of the orthogonality of the bound and continuum wave functions. This orthogonality induces considerable cancellations in the overlap integrals expressing the transition amplitudes for reactions such as (e,e'p), (γ,p), and (π,N), which are simply not included in the distorted-wave Born-approximation calculations which to date remain the only computationally feasible heirarchy of approximations. The object of this paper is to present a new formulation of the bound-state to continuum transition problem, based upon flux conservation, in which the orthogonality of wave functions is taken into account ab initio. The new formulation, while exact if exact wave functions are used, offers the possibility of using approximate wave functions for the continuum states without doing violence to the cancellations induced by orthogonality. The method is applied to single-particle states obeying the Schroedinger and Dirac equations, as well as to a coupled-channel model in which absorptive processes can be described in a fully consistent manner. Several types of absorption vertex are considered, and in the (π,N) case the equivalence of pseudoscalar and pseudovector πNN coupling is seen to follow directly from wave function orthogonality
Linear density response function in the projector augmented wave method
DEFF Research Database (Denmark)
Yan, Jun; Mortensen, Jens Jørgen; Jacobsen, Karsten Wedel
2011-01-01
We present an implementation of the linear density response function within the projector-augmented wave method with applications to the linear optical and dielectric properties of both solids, surfaces, and interfaces. The response function is represented in plane waves while the single...... functions of Si, C, SiC, AlP, and GaAs compare well with previous calculations. While optical properties of semiconductors, in particular excitonic effects, are generally not well described by ALDA, we obtain excellent agreement with experiments for the surface loss function of graphene and the Mg(0001...
The effect of meson wave function on heavy-quark fragmentation function
Energy Technology Data Exchange (ETDEWEB)
Moosavi Nejad, S.M. [Yazd University, Faculty of Physics (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of)
2016-05-15
We calculate the process-independent fragmentation functions (FFs) for a heavy quark to fragment into heavy mesons considering the effects of meson wave function. In all previous works, where the FFs of heavy mesons or heavy baryons were calculated, a delta function form was approximated for the wave function of hadrons. Here, for the first time, we consider a typical mesonic wave function which is different from the delta function and is the nonrelativistic limit of the solution of Bethe-Salpeter equation with the QCD kernel. We present our numerical results for the heavy FFs and show how the proposed wave function improves the previous results. As an example, we focus on the fragmentation function for c-quark to split into S-wave D{sup 0} -meson and compare our results with experimental data from BELLE and CLEO. (orig.)
Improved WKB radial wave functions in several bases
International Nuclear Information System (INIS)
Durand, B.; Durand, L.; Department of Physics, University of Wisconsin, Madison, Wisconsin 53706)
1986-01-01
We develop approximate WKB-like solutions to the radial Schroedinger equation for problems with an angular momentum barrier using Riccati-Bessel, Coulomb, and harmonic-oscillator functions as basis functions. The solutions treat the angular momentum singularity near the origin more accurately in leading approximation than the standard WKB solutions based on sine waves. The solutions based on Riccati-Bessel and free Coulomb wave functions continue smoothly through the inner turning point and are appropriate for scattering problems. The solutions based on oscillator and bound Coulomb wave functions incorporate both turning points smoothly and are particularly appropriate for bound-state problems; no matching of piecewise solutions using Airy functions is necessary
Rapidity resummation for B-meson wave functions
Directory of Open Access Journals (Sweden)
Shen Yue-Long
2014-01-01
Full Text Available Transverse-momentum dependent (TMD hadronic wave functions develop light-cone divergences under QCD corrections, which are commonly regularized by the rapidity ζ of gauge vector defining the non-light-like Wilson lines. The yielding rapidity logarithms from infrared enhancement need to be resummed for both hadronic wave functions and short-distance functions, to achieve scheme-independent calculations of physical quantities. We briefly review the recent progress on the rapidity resummation for B-meson wave functions which are the key ingredients of TMD factorization formulae for radiative-leptonic, semi-leptonic and non-leptonic B-meson decays. The crucial observation is that rapidity resummation induces a strong suppression of B-meson wave functions at small light-quark momentum, strengthening the applicability of TMD factorization in exclusive B-meson decays. The phenomenological consequence of rapidity-resummation improved B-meson wave functions is further discussed in the context of B → π transition form factors at large hadronic recoil.
Su, Ho-Ming; Tsai, Wei-Chung; Lin, Tsung-Hsien; Hsu, Po-Chao; Lee, Wen-Hsien; Lin, Ming-Yen; Chen, Szu-Chia; Lee, Chee-Siong; Voon, Wen-Chol; Lai, Wen-Ter; Sheu, Sheng-Hsiung
2012-01-01
The P wave parameters measured by 12-lead electrocardiogram (ECG) are commonly used as noninvasive tools to assess for left atrial enlargement. There are limited studies to evaluate whether P wave parameters are independently associated with decline in renal function. Accordingly, the aim of this study is to assess whether P wave parameters are independently associated with progression to renal end point of ≥25% decline in estimated glomerular filtration rate (eGFR). This longitudinal study included 166 patients. The renal end point was defined as ≥25% decline in eGFR. We measured two ECG P wave parameters corrected by heart rate, i.e. corrected P wave dispersion (PWdisperC) and corrected P wave maximum duration (PWdurMaxC). Heart function and structure were measured from echocardiography. Clinical data, P wave parameters, and echocardiographic measurements were compared and analyzed. Forty-three patients (25.9%) reached renal end point. Kaplan-Meier curves for renal end point-free survival showed PWdisperC > median (63.0 ms) (log-rank P = 0.004) and PWdurMaxC > median (117.9 ms) (log-rank Pfunction decline.
Delta function excitation of waves in the earth's ionosphere
Vidmar, R. J.; Crawford, F. W.; Harker, K. J.
1983-01-01
Excitation of the earth's ionosphere by delta function current sheets is considered, and the temporal and spatial evolution of wave packets is analyzed for a two-component collisional F2 layer. Approximations of an inverse Fourier-Laplace transform via saddle point methods provide plots of typical wave packets. These illustrate cold plasma wave theory and may be used as a diagnostic tool since it is possible to relate specific features, e.g., the frequency of a modulation envelope, to plasma parameters such as the electron cyclotron frequency. It is also possible to deduce the propagation path length and orientation of a remote radio beacon.
Discontinuous approximate molecular electronic wave-functions
International Nuclear Information System (INIS)
Stuebing, E.W.; Weare, J.H.; Parr, R.G.
1977-01-01
Following Kohn, Schlosser and Marcus and Weare and Parr an energy functional is defined for a molecular problem which is stationary in the neighborhood of the exact solution and permits the use of trial functions that are discontinuous. The functional differs from the functional of the standard Rayleigh--Ritz method in the replacement of the usual kinetic energy operators circumflex T(μ) with operators circumflex T'(μ) = circumflex T(μ) + circumflex I(μ) generates contributions from surfaces of nonsmooth behavior. If one uses the nabla PSI . nabla PSI way of writing the usual kinetic energy contributions, one must add surface integrals of the product of the average of nabla PSI and the change of PSI across surfaces of discontinuity. Various calculations are carried out for the hydrogen molecule-ion and the hydrogen molecule. It is shown that ab initio calculations on molecules can be carried out quite generally with a basis of atomic orbitals exactly obeying the zero-differential overlap (ZDO) condition, and a firm basis is thereby provided for theories of molecular electronic structure invoking the ZDO aoproximation. It is demonstrated that a valence bond theory employing orbitals exactly obeying ZDO can provide an adequate account of chemical bonding, and several suggestions are made regarding molecular orbital methods
On the interpretation of wave function overlaps in quantum dots
DEFF Research Database (Denmark)
Stobbe, Søren; Hvam, Jørn Märcher; Lodahl, Peter
2011-01-01
The spontaneous emission rate of excitons strongly confined in quantum dots (QDs) is proportional to the overlap integral of electron and hole envelope wave functions. A common and intuitive interpretation of this result is that the spontaneous emission rate is proportional to the probability...... that the electron and the hole are located at the same point or region in space, i.e., they must coincide spatially to recombine. Here, we show that this interpretation is not correct even loosely speaking. By general mathematical considerations we compare the envelope wave function overlap, the exchange overlap...... integral, and the probability of electrons and holes coinciding, and find that the frequency dependence of the envelope wave function overlap integral is very different from that expected from the common interpretation. We show that these theoretical considerations lead to predictions for measurements. We...
ESTIMA, Neutron Width Level Spacing, Neutron Strength Function of S- Wave, P-Wave Resonances
International Nuclear Information System (INIS)
Fort, E.
1982-01-01
1 - Description of problem or function: ESTIMA calculates level spacing and neutron strength function of a mixed sequence of s- and p-wave resonances given a set of neutron widths as input parameters. Three algorithms are used, two of which calculate s-wave average parameters and assume that the reduced widths obey a Porter-Thomas distribution truncated by a minimum detection threshold. The third performs a maximum likelihood fit to a truncated chi-squared distribution of any specified number of degrees of freedom, i.e. it can be used for calculating s-wave or p-wave average parameters. Resonances of undeclared angular orbital momentum are divided into groups of probable s-wave and probable p-wave by a simple application of Bayes' Theorem. 2 - Method of solution: Three algorithms are used: i) GAMN method, based on simple moments properties of a Porter-Thomas distribution. ii) Missing Level Estimator, a simplified version of the algorithm used by the program BAYESZ. iii) ESTIMA, a maximum likelihood fit. 3 - Restrictions on the complexity of the problem: A maximum of 400 resonances is allowed in the version available from NEADB, however this restriction can be relaxed by increasing array dimensions
Period functions for Maass wave forms and cohomology
Bruggeman, R; Zagier, D; Bruggeman, R W; Zagier, D
2015-01-01
The authors construct explicit isomorphisms between spaces of Maass wave forms and cohomology groups for discrete cofinite groups \\Gamma\\subset\\mathrm{PSL}_2({\\mathbb{R}}). In the case that \\Gamma is the modular group \\mathrm{PSL}_2({\\mathbb{Z}}) this gives a cohomological framework for the results in Period functions for Maass wave forms. I, of J. Lewis and D. Zagier in Ann. Math. 153 (2001), 191-258, where a bijection was given between cuspidal Maass forms and period functions. The authors introduce the concepts of mixed parabolic cohomology group and semi-analytic vectors in principal serie
Embedding beyond electrostatics-The role of wave function confinement.
Nåbo, Lina J; Olsen, Jógvan Magnus Haugaard; Holmgaard List, Nanna; Solanko, Lukasz M; Wüstner, Daniel; Kongsted, Jacob
2016-09-14
We study excited states of cholesterol in solution and show that, in this specific case, solute wave-function confinement is the main effect of the solvent. This is rationalized on the basis of the polarizable density embedding scheme, which in addition to polarizable embedding includes non-electrostatic repulsion that effectively confines the solute wave function to its cavity. We illustrate how the inclusion of non-electrostatic repulsion results in a successful identification of the intense π → π(∗) transition, which was not possible using an embedding method that only includes electrostatics. This underlines the importance of non-electrostatic repulsion in quantum-mechanical embedding-based methods.
WKB wave function for many-variable systems
International Nuclear Information System (INIS)
Sakita, B.; Tzani, R.
1986-01-01
The WKB method is a non-perturbative semi-classical method in quantum mechanics. The method for a system of one degree of freedom is well known and described in standard textbooks. The method for a system with many degrees of freedom especially for quantum fields is more involved. There exist two methods: Feynman path integral and Schrodinger wave function. The Feynman path integral WKB method is essentially a stationary phase approximation for Feynman path integrals. The WKB Schrodinger wave function method is on the other hand an extension of the standard WKB to many-variable systems
The deuteron bound state wave function with tensor forces
International Nuclear Information System (INIS)
Takemasa, Tadashi
1991-01-01
A FORTRAN program named DEUTERON is developed to calculate the binding energy and wave function of a deuteron, when the interaction between two nucleons is described in terms of central, tensor, spin-orbit, and quadratic LS potentials with or without a hard core. An important use of the program is to provide the deuteron wave function required in nuclear reaction calculations involving a deuteron. Also, this program may be employed in nuclear Hartree-Fock calculations using an effective nucleon-nucleon interaction with a tensor component. (author)
Evolution of wave function in a dissipative system
Yu, Li-Hua; Sun, Chang-Pu
1994-01-01
For a dissipative system with Ohmic friction, we obtain a simple and exact solution for the wave function of the system plus the bath. It is described by the direct product in two independent Hilbert space. One of them is described by an effective Hamiltonian, the other represents the effect of the bath, i.e., the Brownian motion, thus clarifying the structure of the wave function of the system whose energy is dissipated by its interaction with the bath. No path integral technology is needed in this treatment. The derivation of the Weisskopf-Wigner line width theory follows easily.
On the asymptotic evolution of finite energy Airy wave functions.
Chamorro-Posada, P; Sánchez-Curto, J; Aceves, A B; McDonald, G S
2015-06-15
In general, there is an inverse relation between the degree of localization of a wave function of a certain class and its transform representation dictated by the scaling property of the Fourier transform. We report that in the case of finite energy Airy wave packets a simultaneous increase in their localization in the direct and transform domains can be obtained as the apodization parameter is varied. One consequence of this is that the far-field diffraction rate of a finite energy Airy beam decreases as the beam localization at the launch plane increases. We analyze the asymptotic properties of finite energy Airy wave functions using the stationary phase method. We obtain one dominant contribution to the long-term evolution that admits a Gaussian-like approximation, which displays the expected reduction of its broadening rate as the input localization is increased.
Schmidt decomposition for non-collinear biphoton angular wave functions
International Nuclear Information System (INIS)
Fedorov, M V
2015-01-01
Schmidt modes of non-collinear biphoton angular wave functions are found analytically. The experimentally realizable procedure for their separation is described. Parameters of the Schmidt decomposition are used to evaluate the degree of the biphoton's angular entanglement. (paper)
Gravity induced corrections to quantum mechanical wave functions
International Nuclear Information System (INIS)
Singh, T.P.
1990-03-01
We perform a semiclassical expansion in the Wheeler-DeWitt equation, in powers of the gravitational constant. We then show that quantum gravitational fluctuations can provide a correction to the wave-functions which are solutions of the Schroedinger equation for matter. This also implies a correction to the expectation values of quantum mechanical observables. (author). 6 refs
The linear potential propagator via wave function expansion
International Nuclear Information System (INIS)
Nassar, Antonio B.; Cattani, Mauro S.D.
2002-01-01
We evaluate the quantum propagator for the motion of a particle in a linear potential via a recently developed formalism [A.B. Nassar et al., Phys. Rev. E56, 1230, (1997)]. In this formalism, the propagator comes about as a type of expansion of the wave function over the space of the initial velocities. (author)
Simulation of wind wave growth with reference source functions
Badulin, Sergei I.; Zakharov, Vladimir E.; Pushkarev, Andrei N.
2013-04-01
We present results of extensive simulations of wind wave growth with the so-called reference source function in the right-hand side of the Hasselmann equation written as follows First, we use Webb's algorithm [8] for calculating the exact nonlinear transfer function Snl. Second, we consider a family of wind input functions in accordance with recent consideration [9] ( )s S = ?(k)N , ?(k) = ? ? ?- f (?). in k 0 ?0 in (2) Function fin(?) describes dependence on angle ?. Parameters in (2) are tunable and determine magnitude (parameters ?0, ?0) and wave growth rate s [9]. Exponent s plays a key role in this study being responsible for reference scenarios of wave growth: s = 4-3 gives linear growth of wave momentum, s = 2 - linear growth of wave energy and s = 8-3 - constant rate of wave action growth. Note, the values are close to ones of conventional parameterizations of wave growth rates (e.g. s = 1 for [7] and s = 2 for [5]). Dissipation function Sdiss is chosen as one providing the Phillips spectrum E(?) ~ ?5 at high frequency range [3] (parameter ?diss fixes a dissipation scale of wind waves) Sdiss = Cdissμ4w?N (k)θ(? - ?diss) (3) Here frequency-dependent wave steepness μ2w = E(?,?)?5-g2 makes this function to be heavily nonlinear and provides a remarkable property of stationary solutions at high frequencies: the dissipation coefficient Cdiss should keep certain value to provide the observed power-law tails close to the Phillips spectrum E(?) ~ ?-5. Our recent estimates [3] give Cdiss ? 2.0. The Hasselmann equation (1) with the new functions Sin, Sdiss (2,3) has a family of self-similar solutions of the same form as previously studied models [1,3,9] and proposes a solid basis for further theoretical and numerical study of wave evolution under action of all the physical mechanisms: wind input, wave dissipation and nonlinear transfer. Simulations of duration- and fetch-limited wind wave growth have been carried out within the above model setup to check its
Multiquark masses and wave functions through modified Green's function Monte Carlo method
International Nuclear Information System (INIS)
Kerbikov, B.O.; Polikarpov, M.I.; Shevchenko, L.V.
1987-01-01
The Modified Green's function Monte Carlo method (MGFMC) is used to calculate the masses and ground-state wave functions of multiquark systems in the potential model. The previously developed MGFMC is generalized in order to treat systems containing quarks with inequal masses. The obtained results are presented with the Cornell potential for the masses and the wave functions of light and heavy flavoured baryons and multiquark states (N=6, 9, 12) made of light quarks
Classical representation of wave functions for integrable systems
International Nuclear Information System (INIS)
Kay, Kenneth G.
2004-01-01
Classical exact (CE) wave functions are certain integral representations of energy eigenfunctions that are parameterized in terms of the motion of the corresponding classical system in a semiclassically relevant way. When applied to systems for which they are not exact, such expressions serve as semiclassical approximations. Previous work identified CE wave functions for a number of specific systems and established their semiclassical usefulness. This paper explores the degree to which such representations can be found for more general systems. It is shown that CE wave functions exist, in principle, for bound states of an arbitrary integrable system that are confined to a single classically allowed region. Evidence is presented that CE representations also exist for more general states of such a system that are unbound, or that extend over more than one allowed region. The CE expressions are not unique: an innumerable variety exists for each such system. The existence proof provides a formal method for constructing CE expressions by Fourier transforming certain superpositions of energy eigenstates. The parameterization in terms of the classical motion is achieved by identifying certain quantities in these superpositions as classical action and angle variables. The semiclassical relevance of this identification is ensured by imposing some mild conditions on the coefficients in the superposition. This procedure for parameterizing exact wave functions in terms of classical variables indicates a basic relationship between the quantum and classical descriptions of states. The method of constructing CE wave functions introduced in the proof is shown to be consistent with a number of previously obtained CE formulas and is used to derive two new, closed-form, CE expressions. A simple numerical example is presented to illustrate the semiclassical application of one of these expressions and to further verify the physical significance of the classical parameterization
Calculation of the nucleon structure function from the nucleon wave function
Hussar, Paul E.
1993-01-01
Harmonic oscillator wave functions have played an historically important role in our understanding of the structure of the nucleon, most notably by providing insight into the mass spectra of the low-lying states. High energy scattering experiments are known to give us a picture of the nucleon wave function at high-momentum transfer and in a frame in which the nucleon is traveling fast. A simple model that crosses the twin bridges of momentum scale and Lorentz frame that separate the pictures of the nucleon wave function provided by the deep inelastic scattering data and by the oscillator model is presented.
Response functions of free mass gravitational wave antennas
Estabrook, F. B.
1985-01-01
The work of Gursel, Linsay, Spero, Saulson, Whitcomb and Weiss (1984) on the response of a free-mass interferometric antenna is extended. Starting from first principles, the earlier work derived the response of a 2-arm gravitational wave antenna to plane polarized gravitational waves. Equivalent formulas (generalized slightly to allow for arbitrary elliptical polarization) are obtained by a simple differencing of the '3-pulse' Doppler response functions of two 1-arm antennas. A '4-pulse' response function is found, with quite complicated angular dependences for arbitrary incident polarization. The differencing method can as readily be used to write exact response functions ('3n+1 pulse') for antennas having multiple passes or more arms.
Sum rules for baryonic vertex functions and the proton wave function in QCD
International Nuclear Information System (INIS)
Lavelle, M.J.
1985-01-01
We consider light-cone sum rules for vertex functions involving baryon-meson couplings. These sum rules relate the non-perturbative, and experimentally known, coupling constants to the moments of the wave function of the proton state. Our results for these moments are consistent with those obtained from QCD sum rules for two-point functions. (orig.)
Khavrutskii, Ilja V; Wallqvist, Anders
2010-11-09
This paper introduces an efficient single-topology variant of Thermodynamic Integration (TI) for computing relative transformation free energies in a series of molecules with respect to a single reference state. The presented TI variant that we refer to as Single-Reference TI (SR-TI) combines well-established molecular simulation methodologies into a practical computational tool. Augmented with Hamiltonian Replica Exchange (HREX), the SR-TI variant can deliver enhanced sampling in select degrees of freedom. The utility of the SR-TI variant is demonstrated in calculations of relative solvation free energies for a series of benzene derivatives with increasing complexity. Noteworthy, the SR-TI variant with the HREX option provides converged results in a challenging case of an amide molecule with a high (13-15 kcal/mol) barrier for internal cis/trans interconversion using simulation times of only 1 to 4 ns.
Configuration interaction wave functions: A seniority number approach
International Nuclear Information System (INIS)
Alcoba, Diego R.; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E.; Oña, Ofelia B.
2014-01-01
This work deals with the configuration interaction method when an N-electron Hamiltonian is projected on Slater determinants which are classified according to their seniority number values. We study the spin features of the wave functions and the size of the matrices required to formulate states of any spin symmetry within this treatment. Correlation energies associated with the wave functions arising from the seniority-based configuration interaction procedure are determined for three types of molecular orbital basis: canonical molecular orbitals, natural orbitals, and the orbitals resulting from minimizing the expectation value of the N-electron seniority number operator. The performance of these bases is analyzed by means of numerical results obtained from selected N-electron systems of several spin symmetries. The comparison of the results highlights the efficiency of the molecular orbital basis which minimizes the mean value of the seniority number for a state, yielding energy values closer to those provided by the full configuration interaction procedure
Expression of relativistic amplitudes in terms of wave functions
International Nuclear Information System (INIS)
Karmanov, V.A.
1978-01-01
The conditions under which relativistic amplitudes may be expressed in terms of the wave functions are analyzed within the framework of the invariant diagram technique which appears on formulation of field theory on the light front. The amplitudes depend on the 4-vector ω which defines the surface of the light front. A rule is formulated for the determination of those values of the 4-vector ω for which the diagram contribution, which cannot be expressed in terms of the wave functions, is minimum. The present investigation is equivalent to a study of the dependence of the amplitudes of the old fashioned perburbation theory in the infinite momentum depending on the direction of the infinite momentum
Angular momentum projection of cranked PNC wave function
International Nuclear Information System (INIS)
Han Yong
2000-01-01
In studying the properties of nuclear higher-spin states, not only the K-mixture needed to be taken into account, but also the Coriolis interaction (the cranking term) should be introduced. The cranking term breaks the time reversal symmetry, and the projection of the single-particle angular momentum on the intrinsic symmetric axis is no longer a good quantum number. This makes the theoretical calculation somewhat complicated. However, considering some intrinsic symmetry in a nucleus, it is not very difficult to apply the angular momentum projection technique to the PNC wave functions including the cranking components (the cranked PNC wave functions). The fundamental expressions for calculating the nuclear energy spectra and the electromagnetic properties are deduced and evaluated in theory, consequently the feasibility of actualizing the present scheme is made clear
Horizon wave-function and the quantum cosmic censorship
Directory of Open Access Journals (Sweden)
Roberto Casadio
2015-07-01
Full Text Available We investigate the Cosmic Censorship Conjecture by means of the horizon wave-function (HWF formalism. We consider a charged massive particle whose quantum mechanical state is represented by a spherically symmetric Gaussian wave-function, and restrict our attention to the superextremal case (with charge-to-mass ratio α>1, which is the prototype of a naked singularity in the classical theory. We find that one can still obtain a normalisable HWF for α22, and the uncertainty in the location of the horizon blows up at α2=2, signalling that such an object is no more well-defined. This perhaps implies that a quantum Cosmic Censorship might be conjectured by stating that no black holes with charge-to-mass ratio greater than a critical value (of the order of 2 can exist.
Configuration interaction wave functions: A seniority number approach
Energy Technology Data Exchange (ETDEWEB)
Alcoba, Diego R. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Física de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Torre, Alicia; Lain, Luis, E-mail: qfplapel@lg.ehu.es [Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao (Spain); Massaccesi, Gustavo E. [Departamento de Ciencias Exactas, Ciclo Básico Común, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Oña, Ofelia B. [Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Universidad Nacional de La Plata, CCT La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Diag. 113 y 64 (S/N), Sucursal 4, CC 16, 1900 La Plata (Argentina)
2014-06-21
This work deals with the configuration interaction method when an N-electron Hamiltonian is projected on Slater determinants which are classified according to their seniority number values. We study the spin features of the wave functions and the size of the matrices required to formulate states of any spin symmetry within this treatment. Correlation energies associated with the wave functions arising from the seniority-based configuration interaction procedure are determined for three types of molecular orbital basis: canonical molecular orbitals, natural orbitals, and the orbitals resulting from minimizing the expectation value of the N-electron seniority number operator. The performance of these bases is analyzed by means of numerical results obtained from selected N-electron systems of several spin symmetries. The comparison of the results highlights the efficiency of the molecular orbital basis which minimizes the mean value of the seniority number for a state, yielding energy values closer to those provided by the full configuration interaction procedure.
Fine structure and analytical quantum-defect wave functions
International Nuclear Information System (INIS)
Kostelecky, V.A.; Nieto, M.M.; Truax, D.R.
1988-01-01
We investigate the domain of validity of previously proposed analytical wave functions for atomic quantum-defect theory. This is done by considering the fine-structure splitting of alkali-metal and singly ionized alkaline-earth atoms. The Lande formula is found to be naturally incorporated. A supersymmetric-type integer is necessary for finite results. Calculated splittings correctly reproduce the principal features of experimental values for alkali-like atoms
Wave Functions for Time-Dependent Dirac Equation under GUP
Zhang, Meng-Yao; Long, Chao-Yun; Long, Zheng-Wen
2018-04-01
In this work, the time-dependent Dirac equation is investigated under generalized uncertainty principle (GUP) framework. It is possible to construct the exact solutions of Dirac equation when the time-dependent potentials satisfied the proper conditions. In (1+1) dimensions, the analytical wave functions of the Dirac equation under GUP have been obtained for the two kinds time-dependent potentials. Supported by the National Natural Science Foundation of China under Grant No. 11565009
Imaging electron wave functions inside open quantum rings.
Martins, F; Hackens, B; Pala, M G; Ouisse, T; Sellier, H; Wallart, X; Bollaert, S; Cappy, A; Chevrier, J; Bayot, V; Huant, S
2007-09-28
Combining scanning gate microscopy (SGM) experiments and simulations, we demonstrate low temperature imaging of the electron probability density |Psi|(2)(x,y) in embedded mesoscopic quantum rings. The tip-induced conductance modulations share the same temperature dependence as the Aharonov-Bohm effect, indicating that they originate from electron wave function interferences. Simulations of both |Psi|(2)(x,y) and SGM conductance maps reproduce the main experimental observations and link fringes in SGM images to |Psi|(2)(x,y).
Green function formalism for nonlinear acoustic waves in layered media
International Nuclear Information System (INIS)
Lobo, A.; Tsoy, E.; De Sterke, C.M.
2000-01-01
Full text: The applications of acoustic waves in identifying defects in adhesive bonds between metallic plates have received little attention at high intensities where the media respond nonlinearly. However, the effects of reduced bond strength are more distinct in the nonlinear response of the structure. Here we assume a weak nonlinearity acting as a small perturbation, thereby reducing the problem to a linear one. This enables us to develop a specialized Green function formalism for calculating acoustic fields in layered media
Search for a bosonic component in the neutrino wave function
International Nuclear Information System (INIS)
Tornow, W.
2010-01-01
Recently, Dolgov and Smirnov speculated that neutrinos may not obey the principle named after their inventor, the Pauli Principle. The neutrino wave function may contain a bosonic component. In principle, two-neutrino double-beta (2ν2β) decay data could be used to check on the conjecture that neutrinos violate the Pauli Principle. Recent 2ν2β data on 100 Mo to both the ground state and excited states in 100 Ru will be used to illustrate the procedure.
Huang, K.-N.
1977-01-01
A computational procedure for calculating correlated wave functions is proposed for three-particle systems interacting through Coulomb forces. Calculations are carried out for the muonic helium atom. Variational wave functions which explicitly contain interparticle coordinates are presented for the ground and excited states. General Hylleraas-type trial functions are used as the basis for the correlated wave functions. Excited-state energies of the muonic helium atom computed from 1- and 35-term wave functions are listed for four states.
Inverse Schroedinger equation and the exact wave function
International Nuclear Information System (INIS)
Nakatsuji, Hiroshi
2002-01-01
Using the inverse of the Hamiltonian, we introduce the inverse Schroedinger equation (ISE) that is equivalent to the ordinary Schroedinger equation (SE). The ISE has the variational principle and the H-square group of equations as the SE has. When we use a positive Hamiltonian, shifting the energy origin, the inverse energy becomes monotonic and we further have the inverse Ritz variational principle and cross-H-square equations. The concepts of the SE and the ISE are combined to generalize the theory for calculating the exact wave function that is a common eigenfunction of the SE and ISE. The Krylov sequence is extended to include the inverse Hamiltonian, and the complete Krylov sequence is introduced. The iterative configuration interaction (ICI) theory is generalized to cover both the SE and ISE concepts and four different computational methods of calculating the exact wave function are presented in both analytical and matrix representations. The exact wave-function theory based on the inverse Hamiltonian can be applied to systems that have singularities in the Hamiltonian. The generalized ICI theory is applied to the hydrogen atom, giving the exact solution without any singularity problem
QCD Phenomenology and Light-Front Wave Functions
International Nuclear Information System (INIS)
Brodsky, St.J.
2001-01-01
A natural calculus for describing the bound-state structure of relativistic composite systems in quantum field theory is the light-front Fock expansion which encodes the properties of a hadrons in terms of a set of frame-independent n-particle wave functions. Light-front quantization in the doubly-transverse light-cone gauge has a number of remarkable advantages, including explicit unitarity, a physical Fock expansion, the absence of ghost degrees of freedom, and the decoupling properties needed to prove factorization theorems in high momentum transfer inclusive and exclusive reactions. A number of applications are discussed in these lectures, including semileptonic B decays, two-photon exclusive reactions, diffractive dissociation into jets, and deeply virtual Compton scattering. The relation of the intrinsic sea to the light-front wave functions is discussed. Light-front quantization can also be used in the Hamiltonian form to construct an event generator for high energy physics reactions at the amplitude level. The light-cone partition function, summed over exponentially-weighted light-cone energies, has simple boost properties which may be useful for studies in heavy ion collisions. I also review recent work which shows that the structure functions measured in deep inelastic lepton scattering are affected by final-state rescattering, thus modifying their connection to light-front probability distributions. In particular, the shadowing of nuclear structure functions is due to destructive interference effects from leading-twist diffraction of the virtual photon, physics not included in the nuclear light-cone wave functions. (author)
Riemann zeta function from wave-packet dynamics
DEFF Research Database (Denmark)
Mack, R.; Dahl, Jens Peder; Moya-Cessa, H.
2010-01-01
We show that the time evolution of a thermal phase state of an anharmonic oscillator with logarithmic energy spectrum is intimately connected to the generalized Riemann zeta function zeta(s, a). Indeed, the autocorrelation function at a time t is determined by zeta (sigma + i tau, a), where sigma...... index of JWKB. We compare and contrast exact and approximate eigenvalues of purely logarithmic potentials. Moreover, we use a numerical method to find a potential which leads to exact logarithmic eigenvalues. We discuss possible realizations of Riemann zeta wave-packet dynamics using cold atoms...
International Nuclear Information System (INIS)
Shang Yadong
2008-01-01
The extended hyperbolic functions method for nonlinear wave equations is presented. Based on this method, we obtain a multiple exact explicit solutions for the nonlinear evolution equations which describe the resonance interaction between the long wave and the short wave. The solutions obtained in this paper include (a) the solitary wave solutions of bell-type for S and L, (b) the solitary wave solutions of kink-type for S and bell-type for L, (c) the solitary wave solutions of a compound of the bell-type and the kink-type for S and L, (d) the singular travelling wave solutions, (e) periodic travelling wave solutions of triangle function types, and solitary wave solutions of rational function types. The variety of structure to the exact solutions of the long-short wave equation is illustrated. The methods presented here can also be used to obtain exact solutions of nonlinear wave equations in n dimensions
Zhu, Hong-Ming; Chen, Jin-Wang; Pan, Xiao-Yin; Sahni, Viraht
2014-01-14
We derive via the interaction "representation" the many-body wave function for harmonically confined electrons in the presence of a magnetostatic field and perturbed by a spatially homogeneous time-dependent electric field-the Generalized Kohn Theorem (GKT) wave function. In the absence of the harmonic confinement - the uniform electron gas - the GKT wave function reduces to the Kohn Theorem wave function. Without the magnetostatic field, the GKT wave function is the Harmonic Potential Theorem wave function. We further prove the validity of the connection between the GKT wave function derived and the system in an accelerated frame of reference. Finally, we provide examples of the application of the GKT wave function.
BAYESZ, S-Wave, P-Wave Resonance Level Spacing and Strength Functions
International Nuclear Information System (INIS)
Moore, M.S.
1982-01-01
A - Description of problem or function: BAYESZ calculates average s- and p-wave level spacings, strength functions, and average radiation widths of a mixed sequence of s- and p-wave resonances whose parameters are supplied as input. The code is based on two physical assumptions: 1) The neutron reduced width distribution for each open channel is a chi-squared distribution with one degree of freedom, i.e. Porter-Thomas. 2) The spacing distribution follows the Gaussian Orthogonal Ensemble. This property is used, however, only to fix the s- to p-wave level density ratio as proportional to (2J+1) with a spin cut-off correction. B - Method of solution: The method used is an extension of that described by Moore et al. in reference (1), and is based on the method of moments of a truncated Porter-Thomas distribution. C - Restrictions on the complexity of the problem: Parameters for a maximum of 500 individual resonances can be specified. This restriction can be relaxed by increasing array dimensions
The potential-free approach to the construction of the NN-wave functions
International Nuclear Information System (INIS)
Troitsky, V.E.
1984-01-01
The traditional approaches to the nonrelativistic NN-interaction use local and nonlocal potentials of the kind defined by different dynamical speculations. The wave functions are obtained then from the Schroedinger equation with the chosen potential. Here the author obtains the wave functions (scattering wave function and bound state wave function) directly from the scattering phases in the frame of a dispersion approach without use of potential. (Auth.)
Antisymmetrized four-body wave function and coexistence of single particle and cluster structures
International Nuclear Information System (INIS)
Sasakawa, T.
1979-01-01
It is shown that each Yakubovski component of the totally antisymmetric four-body wave function satisfies the same equation as the unantisymmetric wave function. In the antisymmetric total wave function, the wave functions belonging to the same kind of partition are totally antisymmetric among themselves. This leads to the coexistence of cluster models, including the single particle model as a special case of the cluster model, as a sum
International Nuclear Information System (INIS)
Linkevich, A.D.; Savrin, V.I.; Sanadze, V.V.; Skachkov, N.B.
1984-01-01
Calculation of hadron structure function (SF) comprising point objects is carried out. The obtained hadron SF is expressed by means of simultaneous relativistic wave functions of a composite particle. Exact calculation of hadron SF momenta in simultaneous formulation of quantum field theory off-energy surface is conducted. The given calculation of hadron SF is shown to result in their dependence on momentum transferred square (or square of total vector of energy-momentum of Compton scattering on a quark) whih is determined by the set of simultaneous hadron wave functions as bound state of quark (partons) in the considered case of non-structural quarks
Description of the nucleon wave function as a sum of well-chosen Gaussian functions
International Nuclear Information System (INIS)
Roux, C.; Silvestre-Brac, B.
1995-01-01
We study in detail the possibility of describing the nucleon (three quark-system) wave function as a superposition of Gaussian functions. A Faddeev treatment including 8 amplitudes is performed and taken as reference for the exact values. Several approximations are proposed and compared carefully to the exact solutions. Three different potentials have been tested and several observables are considered. (author)
Irregular wave functions of a hydrogen atom in a uniform magnetic field
Wintgen, D.; Hoenig, A.
1989-01-01
The highly excited irregular wave functions of a hydrogen atom in a uniform magnetic field are investigated analytically, with wave function scarring by periodic orbits considered quantitatively. The results obtained confirm that the contributions of closed classical orbits to the spatial wave functions vanish in the semiclassical limit. Their disappearance, however, is slow. This discussion is illustrated by numerical examples.
Chameleon fields, wave function collapse and quantum gravity
International Nuclear Information System (INIS)
Zanzi, A
2015-01-01
Chameleon fields are quantum (usually scalar) fields, with a density-dependent mass. In a high-density environment, the mass of the chameleon is large. On the contrary, in a small-density environment (e.g. on cosmological distances), the chameleon is very light. A model where the collapse of the wave function is induced by chameleon fields is presented. During this analysis, a Chameleonic Equivalence Principle (CEP) will be formulated: in this model, quantum gravitation is equivalent to a conformal anomaly. Further research efforts are necessary to verify whether this proposal is compatible with phenomeno logical constraints. (paper)
Search for a bosonic component in the neutrino wave function
Energy Technology Data Exchange (ETDEWEB)
Tornow, W. [Triangle Universities Nuclear Laboratory (TUNL) and Duke University Department of Physics, P.O. Box 90308, Durham, NC 27708-0308 (United States)
2010-11-01
Recently, Dolgov and Smirnov speculated that neutrinos may not obey the principle named after their inventor, the Pauli Principle. The neutrino wave function may contain a bosonic component. In principle, two-neutrino double-beta (2{nu}2{beta}) decay data could be used to check on the conjecture that neutrinos violate the Pauli Principle. Recent 2{nu}2{beta} data on {sup 100}Mo to both the ground state and excited states in {sup 100}Ru will be used to illustrate the procedure.
Amplitude modulation of atomic wave functions. Final report
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-11-01
The major theoretical advance has been to show that one can modulate Rydberg wave functions using either of two methods: (1) the amplitude modulation technique which depends on autoionization to deplete part of the wave function, or (2) a phase modulation method, which uses a change in the core potential to create a localized phase shift in the wave function. Essentially, these two methods can both be seen as using the core potential to change the Rydberg wave function, using the imaginary part of the potential to do amplitude modulation, or using the real part of the potential to do phase modulation. This work will be published as the authors acquire experimental results which show the differences between the two methods. One of the results of this theoretical study is that the initial proposal to study Barium 6snd states had a significant flaw. Neither the autoionization time, nor the quantum defect shifts are very large in these cases. This means that the modulation is relatively small. This shows itself primarily in the difficulty of seeing significant population redistribution into different 6snd states. The authors intend to correct this in the next funding cycle either: (a) by using the more quickly decaying Ba 6pnf states to modulate 6snd states, or (b) by using Sr 5 snd states, as outlined in this report. Their first, low power experiments are complete. These experiments have used two pulses to do a temporal version of the Ramsey separated oscillatory fields excitation. The two pulses are generated by passing the single pulse through a Michelson-Morley interferometer, which is computer controlled to sweep one arm through 2.5 {micro}m in steps of 10 nm. The second pulse`s excitation interferes with that of the first pulse, and so the total excitation has a sinusoidal variation (with a time period equal to the optical period) on top of a constant background. The amplitude of the total variation should decay at half of the rate decay rate of the autoionizing
Simple functional-differential equations for the bound-state wave-function components
International Nuclear Information System (INIS)
Kamuntavicius, G.P.
1986-01-01
The author presents a new method of a direct derivation of differential equations for the wave-function components of identical-particles systems. The method generates in a simple manner all the possible variants of these equations. In some cases they are the differential equations of Faddeev or Yakubovskii. It is shown that the case of the bound states allows to formulate very simple equations for the components which are equivalent to the Schroedinger equation for the complete wave function. The components with a minimal antisymmetry are defined and the corresponding equations are derived. (Auth.)
Hadronic wave functions and high momentum transfer interactions in quantum chromodynamics
International Nuclear Information System (INIS)
Brodsky, S.J.; Huang, T.; Lepage, G.P.
1983-01-01
This chapter emphasizes the utility of a Fock state representation of the meson and baryon wave functions as a means not only to parametrize the effects of bound state dynamics in QCD phenomena, but also to interrelate exclusive, inclusive, and higher twist processes. Discusses hadronic wave functions in QCD, measures of hadronic wave functions (form factors of composite systems, form factors of mesons, the meson distribution amplitude); large momentum transfer exclusive processes (two-photon processes); deep inelastic lepton scattering; and the phenomenology of hadronic wave functions (measures of hadron wave functions, constraints on the pion and proton valence wave function, quark jet diffraction excitation, the ''unveiling'' of the hadronic wave function and intrinsic charm). Finds that the testing ground of perturbative QCD where rigorous, definitive tests of the theory can be made can now be extended throughout a large domain of large momentum transfer exclusive and inclusive lepton, photon, and hadron reactions
The wave function behavior of the open topological string partition function on the conifold
International Nuclear Information System (INIS)
Kashani-Poor, Amir-Kian
2007-01-01
We calculate the topological string partition function to all genus on the conifold, in the presence of branes. We demonstrate that the partition functions for different brane backgrounds (smoothly connected along a quantum corrected moduli space) can be interpreted as the same wave function in different polarizations. This behavior has a natural interpretation in the Chern-Simons target space description of the topological theory. Our detailed analysis however indicates that non-perturbatively, a modification of real Chern-Simons theory is required to capture the correct target space theory of the topological string. We perform our calculations in the framework of a free fermion representation of the open topological string, demonstrating that this framework extends beyond the simple C 3 geometry. The notion of a fermionic brane creation operator arises in this setting, and we study to what extent the wave function properties of the partition function can be extended to this operator
International Nuclear Information System (INIS)
Fukumasa, O.; Itatani, R.
1978-01-01
The change of the electron beam distribution function due to the wave excited by the beam density modulation is observed, in relation to the suppression of electron waves in a beam-plasma system. (Auth.)
Chai, Rui; Xu, Li-Sheng; Yao, Yang; Hao, Li-Ling; Qi, Lin
2017-01-01
This study analyzed ascending branch slope (A_slope), dicrotic notch height (Hn), diastolic area (Ad) and systolic area (As) diastolic blood pressure (DBP), systolic blood pressure (SBP), pulse pressure (PP), subendocardial viability ratio (SEVR), waveform parameter (k), stroke volume (SV), cardiac output (CO), and peripheral resistance (RS) of central pulse wave invasively and non-invasively measured. Invasively measured parameters were compared with parameters measured from brachial pulse waves by regression model and transfer function model. Accuracy of parameters estimated by regression and transfer function model, was compared too. Findings showed that k value, central pulse wave and brachial pulse wave parameters invasively measured, correlated positively. Regression model parameters including A_slope, DBP, SEVR, and transfer function model parameters had good consistency with parameters invasively measured. They had same effect of consistency. SBP, PP, SV, and CO could be calculated through the regression model, but their accuracies were worse than that of transfer function model.
Levshin, A. L.; Barmin, M. P.; Moschetti, M. P.; Mendoza, C.; Ritzwoller, M. H.
2011-12-01
We describe a novel method to locate regional seismic events based on exploiting Empirical Green's Functions (EGF) that are produced from ambient seismic noise. Elastic EGFs between pairs of seismic stations are determined by cross-correlating long time-series of ambient noise recorded at the two stations. The EGFs principally contain Rayleigh waves on the vertical-vertical cross-correlations and Love waves on the transverse-transverse cross-correlations. Earlier work (Barmin et al., "Epicentral location based on Rayleigh wave empirical Green's functions from ambient seismic noise", Geophys. J. Int., 2011) showed that group time delays observed on Rayleigh wave EGFs can be exploited to locate to within about 1 km moderate sized earthquakes using USArray Transportable Array (TA) stations. The principal advantage of the method is that the ambient noise EGFs are affected by lateral variations in structure similarly to the earthquake signals, so the location is largely unbiased by 3-D structure. However, locations based on Rayleigh waves alone may be biased by more than 1 km if the earthquake depth is unknown but lies between 2 km and 7 km. This presentation is motivated by the fact that group time delays for Love waves are much less affected by earthquake depth than Rayleigh waves; thus exploitation of Love wave EGFs may reduce location bias caused by uncertainty in event depth. The advantage of Love waves to locate seismic events, however, is mitigated by the fact that Love wave EGFs have a smaller SNR than Rayleigh waves. Here, we test the use of Love and Rayleigh wave EGFs between 5- and 15-sec period to locate seismic events based on the USArray TA in the western US. We focus on locating aftershocks of the 2008 M 6.0 Wells earthquake, mining blasts in Wyoming and Montana, and small earthquakes near Norman, OK and Dallas, TX, some of which may be triggered by hydrofracking or injection wells.
Overlap integrals of model wave functions of 4He and 3He,3H nuclei
International Nuclear Information System (INIS)
Voloshin, N.I.; Levshin, E.B.; Fursa, A.D.
1990-01-01
Overlap integrals of wave functions 4 He nucleus and 3 He and 3 H nuclei are calculated. Two types of model wave functions are used to describe the structure of nuclei. The wace function is taken as a product of the one-particle Gaussian functions of the Gaussian type in the second case
Pulse wave velocity and cognitive function in older adults.
Zhong, Wenjun; Cruickshanks, Karen J; Schubert, Carla R; Carlsson, Cynthia M; Chappell, Richard J; Klein, Barbara E K; Klein, Ronald; Acher, Charles W
2014-01-01
Arterial stiffness may be associated with cognitive function. In this study, pulse wave velocity (PWV) was measured from the carotid to femoral (CF-PWV) and from the carotid to radial (CR-PWV) with the Complior SP System. Cognitive function was measured by 6 tests of executive function, psychomotor speed, memory, and language fluency. A total of 1433 participants were included (mean age 75 y, 43% men). Adjusting for age, sex, education, pulse rate, hemoglobin A1C, high-density lipoprotein cholesterol, hypertension, cardiovascular disease history, smoking, drinking, and depression symptoms, a CF-PWV>12 m/s was associated with a lower Mini-Mental State Examination score (coefficient: -0.31, SE: 0.11, P=0.005), fewer words recalled on Auditory Verbal Learning Test (coefficient: -1.10, SE: 0.43, P=0.01), and lower score on the composite cognition score (coefficient: -0.10, SE: 0.05, P=0.04) and marginally significantly associated with longer time to complete Trail Making Test-part B (coefficient: 6.30, SE: 3.41, P=0.06), CF-PWV was not associated with Trail Making Test-part A, Digit Symbol Substation Test, or Verbal Fluency Test. No associations were found between CR-PWV and cognitive performance measures. Higher large artery stiffness was associated with worse cognitive function, and longitudinal studies are needed to confirm these associations.
Directory of Open Access Journals (Sweden)
Hua Yang
2015-07-01
Full Text Available Objective: To establish a rapid, accurate and reliable analytical method for the simultaneous determination of four major anthraquinones in Polygoni Multiflori Radix (PMR using single reference standard.
Probing spontaneous wave-function collapse with entangled levitating nanospheres
Zhang, Jing; Zhang, Tiancai; Li, Jie
2017-01-01
Wave-function collapse models are considered to be the modified theories of standard quantum mechanics at the macroscopic level. By introducing nonlinear stochastic terms in the Schrödinger equation, these models (different from standard quantum mechanics) predict that it is fundamentally impossible to prepare macroscopic systems in macroscopic superpositions. The validity of these models can only be examined by experiments, and hence efficient protocols for these kinds of experiments are greatly needed. Here we provide a protocol that is able to probe the postulated collapse effect by means of the entanglement of the center-of-mass motion of two nanospheres optically trapped in a Fabry-Pérot cavity. We show that the collapse noise results in a large reduction of the steady-state entanglement, and the entanglement, with and without the collapse effect, shows distinguishable scalings with certain system parameters, which can be used to determine unambiguously the effect of these models.
Electron Correlation from the Adiabatic Connection for Multireference Wave Functions
Pernal, Katarzyna
2018-01-01
An adiabatic connection (AC) formula for the electron correlation energy is derived for a broad class of multireference wave functions. The AC expression recovers dynamic correlation energy and assures a balanced treatment of the correlation energy. Coupling the AC formalism with the extended random phase approximation allows one to find the correlation energy only from reference one- and two-electron reduced density matrices. If the generalized valence bond perfect pairing model is employed a simple closed-form expression for the approximate AC formula is obtained. This results in the overall M5 scaling of the computation cost making the method one of the most efficient multireference approaches accounting for dynamic electron correlation also for the strongly correlated systems.
Approximate relativistic corrections to atomic radial wave functions
International Nuclear Information System (INIS)
Cowan, R.D.; Griffin, D.C.
1976-01-01
The mass-velocity and Darwin terms of the one-electron-atom Pauli equation have been added to the Hartree-Fock differential equations by using the HX formula to calculate a local central field potential for use in these terms. Introduction of the quantum number j is avoided by omitting the spin-orbit term of the Pauli equation. The major relativistic effects, both direct and indirect, are thereby incorporated into the wave functions, while allowing retention of the commonly used nonrelativistic formulation of energy level calculations. The improvement afforded in calculated total binding energies, excitation energies, spin-orbit parameters, and expectation values of r/sub m/ is comparable with that provided by fully relativistic Dirac-Hartree-Fock calculations
Human brain networks function in connectome-specific harmonic waves.
Atasoy, Selen; Donnelly, Isaac; Pearson, Joel
2016-01-21
A key characteristic of human brain activity is coherent, spatially distributed oscillations forming behaviour-dependent brain networks. However, a fundamental principle underlying these networks remains unknown. Here we report that functional networks of the human brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the anatomy of the human cerebral cortex, the human connectome. We introduce a new technique extending the Fourier basis to the human connectome. In this new frequency-specific representation of cortical activity, that we call 'connectome harmonics', oscillatory networks of the human brain at rest match harmonic wave patterns of certain frequencies. We demonstrate a neural mechanism behind the self-organization of connectome harmonics with a continuous neural field model of excitatory-inhibitory interactions on the connectome. Remarkably, the critical relation between the neural field patterns and the delicate excitation-inhibition balance fits the neurophysiological changes observed during the loss and recovery of consciousness.
Dominant partition method. [based on a wave function formalism
Dixon, R. M.; Redish, E. F.
1979-01-01
By use of the L'Huillier, Redish, and Tandy (LRT) wave function formalism, a partially connected method, the dominant partition method (DPM) is developed for obtaining few body reductions of the many body problem in the LRT and Bencze, Redish, and Sloan (BRS) formalisms. The DPM maps the many body problem to a fewer body one by using the criterion that the truncated formalism must be such that consistency with the full Schroedinger equation is preserved. The DPM is based on a class of new forms for the irreducible cluster potential, which is introduced in the LRT formalism. Connectivity is maintained with respect to all partitions containing a given partition, which is referred to as the dominant partition. Degrees of freedom corresponding to the breakup of one or more of the clusters of the dominant partition are treated in a disconnected manner. This approach for simplifying the complicated BRS equations is appropriate for physical problems where a few body reaction mechanism prevails.
Bohmian Conditional Wave Functions (and the status of the quantum state)
International Nuclear Information System (INIS)
Norsen, Travis
2016-01-01
The de Broglie - Bohm pilot-wave theory - uniquely among realistic candidate quantum theories - allows a straightforward and simple definition of the wave function of a subsystem of some larger system (such as the entire universe). Such sub-system wave functions are called “Conditional Wave Functions” (CWFs). Here we explain this concept and indicate the CWF's role in the Bohmian explanation of the usual quantum formalism, and then develop (and motivate) the more speculative idea that something like single-particle wave functions could replace the (ontologically problematical) universal wave function in some future, empirically adequate, pilot-wave-type theory. Throughout the presentation is pedagogical and points are illustrated with simple toy models. (paper)
Relation between equal-time and light-front wave functions
International Nuclear Information System (INIS)
Miller, Gerald A.; Tiburzi, Brian C.
2010-01-01
The relation between equal-time and light-front wave functions is studied using models for which the four-dimensional solution of the Bethe-Salpeter wave function can be obtained. The popular prescription of defining the longitudinal momentum fraction using the instant-form free kinetic energy and third component of momentum is found to be incorrect except in the nonrelativistic limit. One may obtain light-front wave functions from rest-frame, instant-form wave functions by boosting the latter wave functions to the infinite momentum frame. Despite this difficulty, we prove a relation between certain integrals of the equal-time and light-front wave functions.
Chai Rui; Li Si-Man; Xu Li-Sheng; Yao Yang; Hao Li-Ling
2017-07-01
This study mainly analyzed the parameters such as ascending branch slope (A_slope), dicrotic notch height (Hn), diastolic area (Ad) and systolic area (As) diastolic blood pressure (DBP), systolic blood pressure (SBP), pulse pressure (PP), subendocardial viability ratio (SEVR), waveform parameter (k), stroke volume (SV), cardiac output (CO) and peripheral resistance (RS) of central pulse wave invasively and non-invasively measured. These parameters extracted from the central pulse wave invasively measured were compared with the parameters measured from the brachial pulse waves by a regression model and a transfer function model. The accuracy of the parameters which were estimated by the regression model and the transfer function model was compared too. Our findings showed that in addition to the k value, the above parameters of the central pulse wave and the brachial pulse wave invasively measured had positive correlation. Both the regression model parameters including A_slope, DBP, SEVR and the transfer function model parameters had good consistency with the parameters invasively measured, and they had the same effect of consistency. The regression equations of the three parameters were expressed by Y'=a+bx. The SBP, PP, SV, CO of central pulse wave could be calculated through the regression model, but their accuracies were worse than that of transfer function model.
The Yang-Mills vacuum wave functional in Coulomb gauge
International Nuclear Information System (INIS)
Campagnari, Davide R.
2011-01-01
Yang-Mills theories are the building blocks of today's Standard Model of elementary particle physics. Besides methods based on a discretization of space-time (lattice gauge theory), also analytic methods are feasible, either in the Lagrangian or in the Hamiltonian formulation of the theory. This thesis focuses on the Hamiltonian approach to Yang-Mills theories in Coulomb gauge. The thesis is presented in cumulative form. After an introduction into the general formulation of Yang-Mills theories, the Hamilton operator in Coulomb gauge is derived. Chap. 1 deals with the heat-kernel expansion of the Faddeev-Popov determinant. In Chapters 2 and 3, the high-energy behaviour of the theory is investigated. To this purpose, perturbative methods are applied, and the results are compared with the ones stemming from functional methods in Coulomb and Landau gauge. Chap. 4 is devoted to the variational approach. Variational ansatzes going beyond the Gaussian form for the vacuum wave functional are considered and treated using Dyson-Schwinger techniques. Equations for the higher-order variational kernels are derived and their effects are estimated. Chap. 5 presents an application of the previously obtained propagators, namely the evaluation of the topological susceptibility, which is related to the mass of the η meson. Finally, a short overview of the perturbative treatment of dynamical fermion fields is presented.
Multidimensional Wave Field Signal Theory: Transfer Function Relationships
Directory of Open Access Journals (Sweden)
Natalie Baddour
2012-01-01
Full Text Available The transmission of information by propagating or diffusive waves is common to many fields of engineering and physics. Such physical phenomena are governed by a Helmholtz (real wavenumber or pseudo-Helmholtz (complex wavenumber equation. Since these equations are linear, it would be useful to be able to use tools from signal theory in solving related problems. The aim of this paper is to derive multidimensional input/output transfer function relationships in the spatial domain for these equations in order to permit such a signal theoretic approach to problem solving. This paper presents such transfer function relationships for the spatial (not Fourier domain within appropriate coordinate systems. It is shown that the relationships assume particularly simple and computationally useful forms once the appropriate curvilinear version of a multidimensional spatial Fourier transform is used. These results are shown for both real and complex wavenumbers. Fourier inversion of these formulas would have applications for tomographic problems in various modalities. In the case of real wavenumbers, these inversion formulas are presented in closed form, whereby an input can be calculated from a given or measured wavefield.
Energy Technology Data Exchange (ETDEWEB)
Ritboon, Atirach, E-mail: atirach.3.14@gmail.com [School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai 90112 (Thailand); Daengngam, Chalongrat, E-mail: chalongrat.d@psu.ac.th [Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai 90112 (Thailand); Pengpan, Teparksorn, E-mail: teparksorn.p@psu.ac.th [Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai 90112 (Thailand)
2016-08-15
Biakynicki-Birula introduced a photon wave function similar to the matter wave function that satisfies the Schrödinger equation. Its second quantization form can be applied to investigate nonlinear optics at nearly full quantum level. In this paper, we applied the photon wave function formalism to analyze both linear optical processes in the well-known Mach–Zehnder interferometer and nonlinear optical processes for sum-frequency generation in dispersive and lossless medium. Results by photon wave function formalism agree with the well-established Maxwell treatments and existing experimental verifications.
International Nuclear Information System (INIS)
Ritboon, Atirach; Daengngam, Chalongrat; Pengpan, Teparksorn
2016-01-01
Biakynicki-Birula introduced a photon wave function similar to the matter wave function that satisfies the Schrödinger equation. Its second quantization form can be applied to investigate nonlinear optics at nearly full quantum level. In this paper, we applied the photon wave function formalism to analyze both linear optical processes in the well-known Mach–Zehnder interferometer and nonlinear optical processes for sum-frequency generation in dispersive and lossless medium. Results by photon wave function formalism agree with the well-established Maxwell treatments and existing experimental verifications.
Wave function for time-dependent harmonically confined electrons in a time-dependent electric field.
Li, Yu-Qi; Pan, Xiao-Yin; Sahni, Viraht
2013-09-21
The many-body wave function of a system of interacting particles confined by a time-dependent harmonic potential and perturbed by a time-dependent spatially homogeneous electric field is derived via the Feynman path-integral method. The wave function is comprised of a phase factor times the solution to the unperturbed time-dependent Schrödinger equation with the latter being translated by a time-dependent value that satisfies the classical driven equation of motion. The wave function reduces to that of the Harmonic Potential Theorem wave function for the case of the time-independent harmonic confining potential.
International Nuclear Information System (INIS)
Oscarsson, T.E.; Roennmark, K.G.
1990-01-01
In this paper the authors present an investigation of low-frequency waves observed on auroral field lines below the acceleration region by the Swedish satellite Viking. The measured frequency spectra are peaked at half the local proton gyrofrequency, and the waves are observed in close connection with precipitating electrons. In order to obtain information about the distribution of wave energy in wave vector space, they reconstruct the wave distribution function (WDF) from observed spectral densities. They use a new scheme that allows them to reconstruct simultaneously the WDF over a broad frequency band. The method also makes it possible to take into account available particle observations as well as Doppler shifts caused by the relative motion between the plasma and the satellite. The distribution of energy in wave vector space suggested by the reconstructed WDF is found to be consistent with what is expected from a plasma instability driven by the observed precipitating electrons. Furthermore, by using UV images obtained on Viking, they demonstrate that the wave propagation directions indicated by the reconstructed WDFs are consistent with a simple model of the presumed wave source in the electron precipitation region
Determination of the S-wave scattering shape parameter P from the zero-energy wave function
International Nuclear Information System (INIS)
Kermode, M.W.; van Dijk, W.
1990-01-01
We show that for S-wave scattering at an energy k 2 by a local potential which supports no more than one bound state, the shape parameter P and coefficients of higher powers of k 2 in the effective range expansion function cotδ=-1/a+1/2 r 0 k 2 -Pr 0 3 k 3 +Qr 0 5 k 6 +..., where δ is the phase shift, may be obtained from the zero-energy wave function, u 0 (r). Thus δ itself may be determined from u 0 . We show that Pr 0 3 =∫ 0 R [β(r)u 0 2 (r)-bar β(r)bar u 0 2 (r)]dr, where r 0 is the effective range, β(r) is determined from an integral involving the wave function, and bar β(r) is a simple function of r which involves the scattering length and effective range
Third-order non-Coulomb correction to the S-wave quarkonium wave functions at the origin
International Nuclear Information System (INIS)
Beneke, M.; Kiyo, Y.; Schuller, K.
2008-01-01
We compute the third-order correction to the S-wave quarkonium wave functions |ψ n (0)| 2 at the origin from non-Coulomb potentials in the effective non-relativistic Lagrangian. Together with previous results on the Coulomb correction and the ultrasoft correction computed in a companion paper, this completes the third-order calculation up to a few unknown matching coefficients. Numerical estimates of the new correction for bottomonium and toponium are given
Green function iterative solution of ground state wave function for Yukawa potential
International Nuclear Information System (INIS)
Zhang Zhao
2003-01-01
The newly developed single trajectory quadrature method is applied to solve central potentials. First, based on the series expansion method an exact analytic solution of the ground state for Hulthen potential and an approximate solution for Yukawa potential are obtained respectively. Second, the newly developed iterative method based on Green function defined by quadratures along the single trajectory is applied to solve Yukawa potential using the Coulomb solution and Hulthen solution as the trial functions respectively. The results show that a more proper choice of the trial function will give a better convergence. To further improve the convergence the iterative method is combined with the variational method to solve the ground state wave function for Yukawa potential, using variational solutions of the Coulomb and Hulthen potentials as the trial functions. The results give much better convergence. Finally, the obtained critical screen coefficient is applied to discuss the dissociate temperature of J/ψ in high temperature QGP
Bischoff, Florian A; Harrison, Robert J; Valeev, Edward F
2012-09-14
We present an approach to compute accurate correlation energies for atoms and molecules using an adaptive discontinuous spectral-element multiresolution representation for the two-electron wave function. Because of the exponential storage complexity of the spectral-element representation with the number of dimensions, a brute-force computation of two-electron (six-dimensional) wave functions with high precision was not practical. To overcome the key storage bottlenecks we utilized (1) a low-rank tensor approximation (specifically, the singular value decomposition) to compress the wave function, and (2) explicitly correlated R12-type terms in the wave function to regularize the Coulomb electron-electron singularities of the Hamiltonian. All operations necessary to solve the Schrödinger equation were expressed so that the reconstruction of the full-rank form of the wave function is never necessary. Numerical performance of the method was highlighted by computing the first-order Møller-Plesset wave function of a helium atom. The computed second-order Møller-Plesset energy is precise to ~2 microhartrees, which is at the precision limit of the existing general atomic-orbital-based approaches. Our approach does not assume special geometric symmetries, hence application to molecules is straightforward.
N-representability of the Jastrow wave function pair density of the lowest-order.
Higuchi, Katsuhiko; Higuchi, Masahiko
2017-08-08
Conditions for the N-representability of the pair density (PD) are needed for the development of the PD functional theory. We derive sufficient conditions for the N-representability of the PD that is calculated from the Jastrow wave function within the lowest order. These conditions are used as the constraints on the correlation function of the Jastrow wave function. A concrete procedure to search the suitable correlation function is also presented.
Wapenaar, Kees
2017-06-01
A unified scalar wave equation is formulated, which covers three-dimensional (3D) acoustic waves, 2D horizontally-polarised shear waves, 2D transverse-electric EM waves, 2D transverse-magnetic EM waves, 3D quantum-mechanical waves and 2D flexural waves. The homogeneous Green's function of this wave equation is a combination of the causal Green's function and its time-reversal, such that their singularities at the source position cancel each other. A classical representation expresses this homogeneous Green's function as a closed boundary integral. This representation finds applications in holographic imaging, time-reversed wave propagation and Green's function retrieval by cross correlation. The main drawback of the classical representation in those applications is that it requires access to a closed boundary around the medium of interest, whereas in many practical situations the medium can be accessed from one side only. Therefore, a single-sided representation is derived for the homogeneous Green's function of the unified scalar wave equation. Like the classical representation, this single-sided representation fully accounts for multiple scattering. The single-sided representation has the same applications as the classical representation, but unlike the classical representation it is applicable in situations where the medium of interest is accessible from one side only.
Newton force from wave function collapse: speculation and test
International Nuclear Information System (INIS)
Diósi, Lajos
2014-01-01
The Diosi-Penrose model of quantum-classical boundary postulates gravity-related spontaneous wave function collapse of massive degrees of freedom. The decoherence effects of the collapses are in principle detectable if not masked by the overwhelming environmental decoherence. But the DP (or any other, like GRW, CSL) spontaneous collapses are not detectable themselves, they are merely the redundant formalism of spontaneous decoherence. To let DP collapses become testable physics, recently we extended the DP model and proposed that DP collapses are responsible for the emergence of the Newton gravitational force between massive objects. We identified the collapse rate, possibly of the order of 1/ms, with the rate of emergence of the Newton force. A simple heuristic emergence (delay) time was added to the Newton law of gravity. This non-relativistic delay is in peaceful coexistence with Einstein's relativistic theory of gravitation, at least no experimental evidence has so far surfaced against it. We derive new predictions of such a 'lazy' Newton law that will enable decisive laboratory tests with available technologies. The simple equation of 'lazy' Newton law deserves theoretical and experimental studies in itself, independently of the underlying quantum foundational considerations.
The universal wave function interpretation of string theory
International Nuclear Information System (INIS)
Gang, Dr. Sha Zhi; Xiu, Rulin
2016-01-01
In this work, we will show that a deeper understanding of space-time provided by both quantum physics and general relativity can lead to a new way to understand string theory. This new way of understanding and applying string theory, the universal wave function interpretation of string theory (UWFIST), may yield to a more powerful string theory and testable prediction. We will show how to derive UWFIST and what new result we can obtain from UWFIST. We will demonstrate that UWFIST indicates that the observed space-time and all phenomena are the projections from the world-sheet hologram. UWFIST provides the possible source for dark energy and dark matter and the explanation about why the dark energy and dark matter is beyond the detection of our current detector. We will show that UWFIST may also yield correct prediction of the cosmological constant to be of the order 10-121 in the unit of Planck scale. It may also help us understand and derive the energy source for inflation and the flatness of our observed 4-dimensional universe. UWFIST may also make other testable predictions that may be detected by interferometers. We conclude that UWFIST has the potential to make string theory a more powerful physics theory that can yield testable predictions. It is worth further investigation by more physicists
Relativistic form factors for clusters with nonrelativistic wave functions
International Nuclear Information System (INIS)
Mitra, A.N.; Kumari, I.
1977-01-01
Using a simple variant of an argument employed by Licht and Pagnamenta (LP) on the effect of Lorentz contraction on the elastic form factors of clusters with nonrelativistic wave functions, it is shown how their result can be generalized to inelastic form factors so as to produce (i) a symmetrical appearance of Lorentz contraction effects in the initial and final states, and (ii) asymptotic behavior in accord with dimensional scaling theories. A comparison of this result with a closely analogous parametric form obtained by Brodsky and Chertok from a propagator chain model leads, with plausible arguments, to the conclusion of an effective mass M for the cluster, with M 2 varying as the number n of the quark constituents, instead of as n 2 . A further generalization of the LP formula is obtained for an arbitrary duality-diagram vertex, again with asymptotic behavior in conformity with dimensional scaling. The practical usefulness of this approach is emphasized as a complementary tool to those of high-energy physics for phenomenological fits to data up to moderate values of q 2
Shock Wave Propagation in Functionally Graded Mineralized Tissue
Nelms, Matthew; Hodo, Wayne; Livi, Ken; Browning, Alyssa; Crawford, Bryan; Rajendran, A. M.
2017-06-01
In this investigation, the effects of shock wave propagation in bone-like biomineralized tissue was investigated. The Alligator gar (Atractosteus spatula) exoskeleton is comprised of many disparate scales that provide a biological analog for potential design of flexible protective material systems. The gar scale is identified as a two-phase, (1) hydroxyapatite mineral and (2) collagen protein, biological composite with two distinct layers where a stiff, ceramic-like ganoine overlays a soft, highly ductile ganoid bone. Previous experimentations has shown significant softening under compressive loading and an asymmetrical stress-strain response for analogous mineralized tissues. The structural features, porosity, and elastic modulus were determined from high-resolution scanning electron microscopy, 3D micro-tomography, and dynamic nanoindentation experiments to develop an idealized computational model for FE simulations. The numerical analysis employed Gurson's yield criterion to determine the influence of porosity and pressure on material strength. Functional gradation of elastic moduli and certain structural features, such as the sawtooth interface, are explicitly modeled to study the plate impact shock profile for a full 3-D analysis using ABAQUS finite element software.
National Research Council Canada - National Science Library
Julia, Jordi; Ammon, Charles J; Herrimann, Robert B
2006-01-01
.... Receiver functions are primarily sensitive to shear-wave velocity contrasts and vertical travel times and surface-wave dispersion measurements are sensitive to vertical shear-wave velocity averages...
National Research Council Canada - National Science Library
Herrmann, Robert B; Julia, Jordi; Ammon, Charles J
2007-01-01
.... Receiver functions are primarily sensitive to shear-wave velocity contrast and vertical travel times and surface-wave dispersion measurements are sensitive to vertical shear-wave velocity averages...
Ab initio calculation atomics ground state wave function for interactions Ion- Atom
International Nuclear Information System (INIS)
Shojaee, F.; Bolori zadeh, M. A.
2007-01-01
Ab initio calculation atomics ground state wave function for interactions Ion- Atom Atomic wave function expressed in a Slater - type basis obtained within Roothaan- Hartree - Fock for the ground state of the atoms He through B. The total energy is given for each atom.
Influence of wetting layer wave functions on carrier capture in quantum dots
DEFF Research Database (Denmark)
Markussen, Troels; Kristensen, Philip; Tromborg, Bjarne
2005-01-01
This work numerically solves the effective mass Schrodinger equation and shows that the capture times are strongly influenced by details of the continuum states not accounted for by the approximate wave functions. Results show that calculations of capture time for phonon mediated carrier capture...... from a wetting layer into a quantum dot depend critically on the approximations used for the wetting layer wave functions....
Exact density functional and wave function embedding schemes based on orbital localization
International Nuclear Information System (INIS)
Hégely, Bence; Nagy, Péter R.; Kállay, Mihály; Ferenczy, György G.
2016-01-01
Exact schemes for the embedding of density functional theory (DFT) and wave function theory (WFT) methods into lower-level DFT or WFT approaches are introduced utilizing orbital localization. First, a simple modification of the projector-based embedding scheme of Manby and co-workers [J. Chem. Phys. 140, 18A507 (2014)] is proposed. We also use localized orbitals to partition the system, but instead of augmenting the Fock operator with a somewhat arbitrary level-shift projector we solve the Huzinaga-equation, which strictly enforces the Pauli exclusion principle. Second, the embedding of WFT methods in local correlation approaches is studied. Since the latter methods split up the system into local domains, very simple embedding theories can be defined if the domains of the active subsystem and the environment are treated at a different level. The considered embedding schemes are benchmarked for reaction energies and compared to quantum mechanics (QM)/molecular mechanics (MM) and vacuum embedding. We conclude that for DFT-in-DFT embedding, the Huzinaga-equation-based scheme is more efficient than the other approaches, but QM/MM or even simple vacuum embedding is still competitive in particular cases. Concerning the embedding of wave function methods, the clear winner is the embedding of WFT into low-level local correlation approaches, and WFT-in-DFT embedding can only be more advantageous if a non-hybrid density functional is employed.
Exact density functional and wave function embedding schemes based on orbital localization
Hégely, Bence; Nagy, Péter R.; Ferenczy, György G.; Kállay, Mihály
2016-08-01
Exact schemes for the embedding of density functional theory (DFT) and wave function theory (WFT) methods into lower-level DFT or WFT approaches are introduced utilizing orbital localization. First, a simple modification of the projector-based embedding scheme of Manby and co-workers [J. Chem. Phys. 140, 18A507 (2014)] is proposed. We also use localized orbitals to partition the system, but instead of augmenting the Fock operator with a somewhat arbitrary level-shift projector we solve the Huzinaga-equation, which strictly enforces the Pauli exclusion principle. Second, the embedding of WFT methods in local correlation approaches is studied. Since the latter methods split up the system into local domains, very simple embedding theories can be defined if the domains of the active subsystem and the environment are treated at a different level. The considered embedding schemes are benchmarked for reaction energies and compared to quantum mechanics (QM)/molecular mechanics (MM) and vacuum embedding. We conclude that for DFT-in-DFT embedding, the Huzinaga-equation-based scheme is more efficient than the other approaches, but QM/MM or even simple vacuum embedding is still competitive in particular cases. Concerning the embedding of wave function methods, the clear winner is the embedding of WFT into low-level local correlation approaches, and WFT-in-DFT embedding can only be more advantageous if a non-hybrid density functional is employed.
Exact density functional and wave function embedding schemes based on orbital localization
Energy Technology Data Exchange (ETDEWEB)
Hégely, Bence; Nagy, Péter R.; Kállay, Mihály, E-mail: kallay@mail.bme.hu [MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest (Hungary); Ferenczy, György G. [Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest (Hungary); Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest (Hungary)
2016-08-14
Exact schemes for the embedding of density functional theory (DFT) and wave function theory (WFT) methods into lower-level DFT or WFT approaches are introduced utilizing orbital localization. First, a simple modification of the projector-based embedding scheme of Manby and co-workers [J. Chem. Phys. 140, 18A507 (2014)] is proposed. We also use localized orbitals to partition the system, but instead of augmenting the Fock operator with a somewhat arbitrary level-shift projector we solve the Huzinaga-equation, which strictly enforces the Pauli exclusion principle. Second, the embedding of WFT methods in local correlation approaches is studied. Since the latter methods split up the system into local domains, very simple embedding theories can be defined if the domains of the active subsystem and the environment are treated at a different level. The considered embedding schemes are benchmarked for reaction energies and compared to quantum mechanics (QM)/molecular mechanics (MM) and vacuum embedding. We conclude that for DFT-in-DFT embedding, the Huzinaga-equation-based scheme is more efficient than the other approaches, but QM/MM or even simple vacuum embedding is still competitive in particular cases. Concerning the embedding of wave function methods, the clear winner is the embedding of WFT into low-level local correlation approaches, and WFT-in-DFT embedding can only be more advantageous if a non-hybrid density functional is employed.
International Nuclear Information System (INIS)
Nascimento, M.A.C. do
1992-01-01
A Generalized Multi Structural (GMS) wave function is presented which combines the advantages of the SCF-MO and VB models, preserving the classical chemical structures but optimizing the orbitals in a self-consistent way. This wave function is particularly suitable to treat situations where the description of the molecular state requires localized wave functions. It also provides a very convenient way of treating the electron correlation problem, avoiding large CI expansions. The final wave functions are much more compact and easier to interpret than the ones obtained by the conventional methods, using orthogonal orbitals. Applications of the GMS wave function to the study of the photoelectron spectra of the trans-glyoxal molecule and to electron impact excitation processes in the nitrogen molecule are presented as an illustration of the method. (author)
Efficient and Flexible Computation of Many-Electron Wave Function Overlaps.
Plasser, Felix; Ruckenbauer, Matthias; Mai, Sebastian; Oppel, Markus; Marquetand, Philipp; González, Leticia
2016-03-08
A new algorithm for the computation of the overlap between many-electron wave functions is described. This algorithm allows for the extensive use of recurring intermediates and thus provides high computational efficiency. Because of the general formalism employed, overlaps can be computed for varying wave function types, molecular orbitals, basis sets, and molecular geometries. This paves the way for efficiently computing nonadiabatic interaction terms for dynamics simulations. In addition, other application areas can be envisaged, such as the comparison of wave functions constructed at different levels of theory. Aside from explaining the algorithm and evaluating the performance, a detailed analysis of the numerical stability of wave function overlaps is carried out, and strategies for overcoming potential severe pitfalls due to displaced atoms and truncated wave functions are presented.
Hadron-quark vertex function. Interconnection between 3D and 4D wave function
International Nuclear Information System (INIS)
Mitra, A.N.; Bhatnagar, S.
1990-01-01
Interconnection between 3D and 4D forms of Bethe-Salpeter equation (EBS) with a kernel depending on relative momenta is used to derive hadron-quark vertex function in Lorentz invariance form. The vertex function which is directly related to a 4D wave function satisfying a corresponding EBS determines the natural continuation outside mass surface for the entire momentum space and serves the basis for computing amplitudes of transitions through appropriate loop quark diagrams. Two applications (f p values for P→ll-bar and F π for n 0 +yy) are discussed briefly to illustrate this formalism. An attention is paid to the problem of complex amplitudes for quark loops with a larger number of external hadrons.A possible solution of the problem is proposed. 29 refs
Addendum to foundations of multidimensional wave field signal theory: Gaussian source function
Directory of Open Access Journals (Sweden)
Natalie Baddour
2018-02-01
Full Text Available Many important physical phenomena are described by wave or diffusion-wave type equations. Recent work has shown that a transform domain signal description from linear system theory can give meaningful insight to multi-dimensional wave fields. In N. Baddour [AIP Adv. 1, 022120 (2011], certain results were derived that are mathematically useful for the inversion of multi-dimensional Fourier transforms, but more importantly provide useful insight into how source functions are related to the resulting wave field. In this short addendum to that work, it is shown that these results can be applied with a Gaussian source function, which is often useful for modelling various physical phenomena.
Addendum to foundations of multidimensional wave field signal theory: Gaussian source function
Baddour, Natalie
2018-02-01
Many important physical phenomena are described by wave or diffusion-wave type equations. Recent work has shown that a transform domain signal description from linear system theory can give meaningful insight to multi-dimensional wave fields. In N. Baddour [AIP Adv. 1, 022120 (2011)], certain results were derived that are mathematically useful for the inversion of multi-dimensional Fourier transforms, but more importantly provide useful insight into how source functions are related to the resulting wave field. In this short addendum to that work, it is shown that these results can be applied with a Gaussian source function, which is often useful for modelling various physical phenomena.
Energy Technology Data Exchange (ETDEWEB)
Franz Gross, Alfred Stadler
2010-09-01
We present the effective range expansions for the 1S0 and 3S1 scattering phase shifts, and the relativistic deuteron wave functions that accompany our recent high precision fits (with \\chi^2/N{data} \\simeq 1) to the 2007 world np data below 350 MeV. The wave functions are expanded in a series of analytical functions (with the correct asymptotic behavior at both large and small arguments) that can be Fourier-transformed from momentum to coordinate space and are convenient to use in any application. A fortran subroutine to compute these wave functions can be obtained from the authors.
Symmetry analysis of many-body wave functions, with applications to the nuclear shell model
International Nuclear Information System (INIS)
Novoselsky, A.; Katriel, J.
1995-01-01
The weights of the different permutational symmetry components of a nonsymmetry-adapted many-particle wave function are evaluated in terms of the expectation values of the symmetric-group class sums. This facilitates the evaluation of the weights without the construction of a complete set of symmetry adapted functions. Subspace projection operators are introduced, to be used when prior knowledge about the symmetry-species composition of a wave function is available. The permutational weight analysis of a recursively angular-momentum coupled (shell model) wave function is presented as an illustration
Probability function of breaking-limited surface elevation. [wind generated waves of ocean
Tung, C. C.; Huang, N. E.; Yuan, Y.; Long, S. R.
1989-01-01
The effect of wave breaking on the probability function of surface elevation is examined. The surface elevation limited by wave breaking zeta sub b(t) is first related to the original wave elevation zeta(t) and its second derivative. An approximate, second-order, nonlinear, non-Gaussian model for zeta(t) of arbitrary but moderate bandwidth is presented, and an expression for the probability density function zeta sub b(t) is derived. The results show clearly that the effect of wave breaking on the probability density function of surface elevation is to introduce a secondary hump on the positive side of the probability density function, a phenomenon also observed in wind wave tank experiments.
Longitudinal wave function control in single quantum dots with an applied magnetic field
Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A.; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai
2015-01-01
Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots. PMID:25624018
Coherent molecular transistor: control through variation of the gate wave function.
Ernzerhof, Matthias
2014-03-21
In quantum interference transistors (QUITs), the current through the device is controlled by variation of the gate component of the wave function that interferes with the wave function component joining the source and the sink. Initially, mesoscopic QUITs have been studied and more recently, QUITs at the molecular scale have been proposed and implemented. Typically, in these devices the gate lead is subjected to externally adjustable physical parameters that permit interference control through modifications of the gate wave function. Here, we present an alternative model of a molecular QUIT in which the gate wave function is directly considered as a variable and the transistor operation is discussed in terms of this variable. This implies that we specify the gate current as well as the phase of the gate wave function component and calculate the resulting current through the source-sink channel. Thus, we extend on prior works that focus on the phase of the gate wave function component as a control parameter while having zero or certain discrete values of the current. We address a large class of systems, including finite graphene flakes, and obtain analytic solutions for how the gate wave function controls the transistor.
Coherent molecular transistor: Control through variation of the gate wave function
International Nuclear Information System (INIS)
Ernzerhof, Matthias
2014-01-01
In quantum interference transistors (QUITs), the current through the device is controlled by variation of the gate component of the wave function that interferes with the wave function component joining the source and the sink. Initially, mesoscopic QUITs have been studied and more recently, QUITs at the molecular scale have been proposed and implemented. Typically, in these devices the gate lead is subjected to externally adjustable physical parameters that permit interference control through modifications of the gate wave function. Here, we present an alternative model of a molecular QUIT in which the gate wave function is directly considered as a variable and the transistor operation is discussed in terms of this variable. This implies that we specify the gate current as well as the phase of the gate wave function component and calculate the resulting current through the source-sink channel. Thus, we extend on prior works that focus on the phase of the gate wave function component as a control parameter while having zero or certain discrete values of the current. We address a large class of systems, including finite graphene flakes, and obtain analytic solutions for how the gate wave function controls the transistor
Longitudinal wave function control in single quantum dots with an applied magnetic field.
Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai
2015-01-27
Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots.
Wave function of the Universe in the early stage of its evolution
International Nuclear Information System (INIS)
Maydanyuk, Sergei P.
2008-01-01
In quantum cosmological models, constructed in the framework of Friedmann-Robertson-Walker metrics, a nucleation of the Universe with its further expansion is described as a tunneling transition through an effective barrier between regions with small and large values of the scale factor a at non-zero (or zero) energy. The approach for describing this tunneling consists of constructing a wave function satisfying an appropriate boundary condition. There are various ways for defining the boundary condition that lead to different estimates of the barrier penetrability and the tunneling time. In order to describe the escape from the tunneling region as accurately as possible and to construct the total wave function on the basis of its two partial solutions unambiguously, we use the tunneling boundary condition that the total wave function must represent only the outgoing wave at the point of escape from the barrier, where the following definition for the wave is introduced: the wave is represented by the wave function whose modulus changes minimally under a variation of the scale factor a. We construct a new method for a direct non-semiclassical calculation of the total stationary wave function of the Universe, analyze the behavior of this wave function in the tunneling region, near the escape point and in the asymptotic region, and estimate the barrier penetrability. We observe oscillations of the modulus of the wave function in the external region starting from the turning point which decrease with increasing of a and which are not shown in semiclassical calculations. The period of such an oscillation decreases uniformly with increasing a and can be used as a fully quantum dynamical characteristic of the expansion of the Universe. (orig.)
Ocean wave-radar modulation transfer functions from the West Coast experiment
Wright, J. W.; Plant, W. J.; Keller, W. C.; Jones, W. L.
1980-01-01
Short gravity-capillary waves, the equilibrium, or the steady state excitations of the ocean surface are modulated by longer ocean waves. These short waves are the predominant microwave scatterers on the ocean surface under many viewing conditions so that the modulation is readily measured with CW Doppler radar used as a two-scale wave probe. Modulation transfer functions (the ratio of the cross spectrum of the line-of-sight orbital speed and backscattered microwave power to the autospectrum of the line-of-sight orbital speed) were measured at 9.375 and 1.5 GHz (Bragg wavelengths of 2.3 and 13 cm) for winds up to 10 m/s and ocean wave periods from 2-18 s. The measurements were compared with the relaxation-time model; the principal result is that a source of modulation other than straining by the horizontal component of orbital speed, possibly the wave-induced airflow, is responsible for most of the modulation by waves of typical ocean wave period (10 s). The modulations are large; for unit coherence, spectra of radar images of deep-water waves should be proportional to the quotient of the slope spectra of the ocean waves by the ocean wave frequency.
Energy Technology Data Exchange (ETDEWEB)
Higashi, Yoichi, E-mail: higashiyoichi@ms.osakafu-u.ac.jp [Department of Mathematical Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531 (Japan); Nagai, Yuki [CCSE, Japan Atomic Energy Agency, 178-4-4, Wakashiba, Kashiwa, Chiba 277-0871 (Japan); Yoshida, Tomohiro [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan); Kato, Masaru [Department of Mathematical Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531 (Japan); Yanase, Youichi [Department of Physics, Niigata University, Niigata 950-2181 (Japan)
2015-11-15
Highlights: • We focus on the pair-density wave state in bilayer Rashba superconductors. • The zero energy Bogoliubov wave functions are localized at the edge and vortex core. • We investigate the excitation spectra of edge and vortex bound states. - Abstract: We study the excitation spectra and the wave functions of quasiparticle bound states at a vortex and an edge in bilayer Rashba superconductors under a magnetic field. In particular, we focus on the quasiparticle states at the zero energy in the pair-density wave state in a topologically non-trivial phase. We numerically demonstrate that the quasiparticle wave functions with zero energy are localized at both the edge and the vortex core if the magnetic field exceeds the critical value.
Approximated calculation of the vacuum wave function and vacuum energy of the LGT with RPA method
International Nuclear Information System (INIS)
Hui Ping
2004-01-01
The coupled cluster method is improved with the random phase approximation (RPA) to calculate vacuum wave function and vacuum energy of 2 + 1 - D SU(2) lattice gauge theory. In this calculating, the trial wave function composes of single-hollow graphs. The calculated results of vacuum wave functions show very good scaling behaviors at weak coupling region l/g 2 >1.2 from the third order to the sixth order, and the vacuum energy obtained with RPA method is lower than the vacuum energy obtained without RPA method, which means that this method is a more efficient one
Analytic calculations of trial wave functions of the fractional quantum Hall effect on the sphere
Energy Technology Data Exchange (ETDEWEB)
Souza Batista, C.L. de [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Dingping Li [Perugia Univ. (Italy). Dipt. di Fisica
1996-07-01
We present a framework for the analytic calculations of the hierarchical wave functions and the composite fermion wave functions in the fractional quantum Hall effect on the sphere by using projective coordinates. Then we calculate the overlaps between these two wave functions at various fillings and small numbers of electrons. We find that the overlaps are most equal to one. This gives a further evidence that two theories of the fractional quantum Hall effect, the hierarchical theory, are physically equivalent. (author). 31 refs., 2 tabs.
Degenerate RS perturbation theory. [Rayleigh-Schroedinger energies and wave functions
Hirschfelder, J. O.; Certain, P. R.
1974-01-01
A concise, systematic procedure is given for determining the Rayleigh-Schroedinger energies and wave functions of degenerate states to arbitrarily high orders even when the degeneracies of the various states are resolved in arbitrary orders. The procedure is expressed in terms of an iterative cycle in which the energy through the (2n + 1)-th order is expressed in terms of the partially determined wave function through the n-th order. Both a direct and an operator derivation are given. The two approaches are equivalent and can be transcribed into each other. The direct approach deals with the wave functions (without the use of formal operators) and has the advantage that it resembles the usual treatment of nondegenerate perturbations and maintains close contact with the basic physics. In the operator approach, the wave functions are expressed in terms of infinite-order operators which are determined by the successive resolution of the space of the zeroth-order functions.
Dispersion relation for Bernstein waves using a new transformation for the modified Bessel function
International Nuclear Information System (INIS)
Sato, Masumi
1985-01-01
Aitken's or Shanks' transformation of the exponent-modified Bessel function produces better approximations. Dispersion relations for the hybrid and Bernstein waves using these provide better thermal and parallel wavenumber corrections. They also predict more closely the evolution and mode-conversion of these waves. (author)
Data synthesis and display programs for wave distribution function analysis
Storey, L. R. O.; Yeh, K. J.
1992-01-01
At the National Space Science Data Center (NSSDC) software was written to synthesize and display artificial data for use in developing the methodology of wave distribution analysis. The software comprises two separate interactive programs, one for data synthesis and the other for data display.
Sawa, Y.; Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch
2007-01-01
We study the Josephson effect in chiral p-wave superconductor/diffusive normal metal (DN)/chiral p-wave superconductor (CP/DN/CP) junctions using quasiclassical Green's function formalism with proper boundary conditions. The px+ipy-wave symmetry of superconducting order parameter is chosen which is
DEFF Research Database (Denmark)
Stroescu, Ionut Emanuel; Sørensen, Lasse; Frigaard, Peter Bak
2016-01-01
A non-linear stretching method was implemented for stream function theory to solve wave kinematics for physical conditions close to breaking waves in shallow waters, with wave heights limited by the water depth. The non-linear stretching method proves itself robust, efficient and fast, showing good...
Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections.
Meek, Garrett A; Levine, Benjamin G
2016-05-14
We demonstrate that though exact in principle, the expansion of the total molecular wave function as a sum over adiabatic Born-Oppenheimer (BO) vibronic states makes inclusion of the second-derivative nonadiabatic energy term near conical intersections practically problematic. In order to construct a well-behaved molecular wave function that has density at a conical intersection, the individual BO vibronic states in the summation must be discontinuous. When the second-derivative nonadiabatic terms are added to the Hamiltonian, singularities in the diagonal BO corrections (DBOCs) of the individual BO states arise from these discontinuities. In contrast to the well-known singularities in the first-derivative couplings at conical intersections, these singularities are non-integrable, resulting in undefined DBOC matrix elements. Though these singularities suggest that the exact molecular wave function may not have density at the conical intersection point, there is no physical basis for this constraint. Instead, the singularities are artifacts of the chosen basis of discontinuous functions. We also demonstrate that continuity of the total molecular wave function does not require continuity of the individual adiabatic nuclear wave functions. We classify nonadiabatic molecular dynamics methods according to the constraints placed on wave function continuity and analyze their formal properties. Based on our analysis, it is recommended that the DBOC be neglected when employing mixed quantum-classical methods and certain approximate quantum dynamical methods in the adiabatic representation.
International Nuclear Information System (INIS)
Chou, C-P; Lee, T K; Ho, C-M
2009-01-01
We examine the strong correlation effects of the d-wave superconducting state by including the Gutzwiller projection for no electron double occupancy at each lattice site. The spectral weights (SW's) for adding and removing an electron on the projected superconducting state, the ground state of the 2-dimensional t-t'-t - J model with moderate doped holes describing the high T c cuprates, are studied numerically on finite lattices and compared with the observation made by low-temperature tunneling (particle asymmetry of tunneling conductance) and angle-resolved photoemission (SW transfer from the projected Fermi liquid state) spectroscopies. The contrast with the d-wave case without projection is alo presented.
Theoretical calculation of shakeup intensities using Xa--SW wave functions
International Nuclear Information System (INIS)
Tse, J.S.; Loubriel, G.
1981-01-01
The ground and 1s core hole state molecular wave functions of CH 4 , NH 3 , H 2 O, and HF obtained from Xa--SW calculations using the touching spheres (TS) and overlapping spheres (OS) approximations are used to calculate the intensity of shakeup satellites observed in their ls core level photoelectron spectra. The sudden approximation was assumed in the calculation. In case of TS Xa--SW wave functions, the one electron overlap integral inside the intersphere was calculated via Green's theorem. For OS Xa--SW wave functions, the integration over the awkwardly shaped intersphere region was circumvented by distributing the intersphere charge into the atomic spheres according to the charge partition scheme suggested by Case and Karplus. Our results show that there are no significant differences between the shakeup energies calculated from the TS and OS approximations. However, shakeup intensities calculated from TS Xa--SW wave functions are more reliable and in better numerical agreement with experiment
ORBITALES. A program for the calculation of wave functions with an analytical central potential
International Nuclear Information System (INIS)
Yunta Carretero; Rodriguez Mayquez, E.
1974-01-01
In this paper is described the objective, basis, carrying out in FORTRAN language and use of the program ORBITALES. This program calculate atomic wave function in the case of ths analytical central potential (Author) 8 refs
Covariant two-particle wave functions for model quasipotentials admitting exact solutions
International Nuclear Information System (INIS)
Kapshaj, V.N.; Skachkov, N.B.
1983-01-01
Two formulations of quasipotential equations in the relativistic configurational representation are considered for the wave function of the internal motion of the bound system of two relativistic particles. Exact solutions of these equations are found for some model quasipotentials
Covariant two-particle wave functions for model quasipotential allowing exact solutions
International Nuclear Information System (INIS)
Kapshaj, V.N.; Skachkov, N.B.
1982-01-01
Two formulations of quasipotential equations in the relativistic configurational representation are considered for the wave function of relative motion of a bound state of two relativistic particles. Exact solutions of these equations are found for some model quasipotentials
Second-Order Perturbation Theory for Generalized Active Space Self-Consistent-Field Wave Functions.
Ma, Dongxia; Li Manni, Giovanni; Olsen, Jeppe; Gagliardi, Laura
2016-07-12
A multireference second-order perturbation theory approach based on the generalized active space self-consistent-field (GASSCF) wave function is presented. Compared with the complete active space (CAS) and restricted active space (RAS) wave functions, GAS wave functions are more flexible and can employ larger active spaces and/or different truncations of the configuration interaction expansion. With GASSCF, one can explore chemical systems that are not affordable with either CASSCF or RASSCF. Perturbation theory to second order on top of GAS wave functions (GASPT2) has been implemented to recover the remaining electron correlation. The method has been benchmarked by computing the chromium dimer ground-state potential energy curve. These calculations show that GASPT2 gives results similar to CASPT2 even with a configuration interaction expansion much smaller than the corresponding CAS expansion.
Order in large and chaos in small components of nuclear wave functions
International Nuclear Information System (INIS)
Soloviev, V.G.
1992-06-01
An investigation of the order and chaos of the nuclear excited states has shown that there is order in the large and chaos in the small quasiparticle or phonon components of the nuclear wave functions. The order-to-chaos transition is treated as a transition from the large to the small components of the nuclear wave function. The analysis has shown that relatively large many-quasiparticle components of the wave function at an excitation energy (4-8)MeV may exist. The large many-quasiparticle components of the wave functions of the neutron resonances are responsible for enhanced E1-, M1- and E2-transition probabilities from neutron resonance to levels lying (1-2)MeV below them. (author)
Short time propagation of a singular wave function: Some surprising results
Marchewka, A.; Granot, E.; Schuss, Z.
2007-08-01
The Schrödinger evolution of an initially singular wave function was investigated. First it was shown that a wide range of physical problems can be described by initially singular wave function. Then it was demonstrated that outside the support of the initial wave function the time evolution is governed to leading order by the values of the wave function and its derivatives at the singular points. Short-time universality appears where it depends only on a single parameter—the value at the singular point (not even on its derivatives). It was also demonstrated that the short-time evolution in the presence of an absorptive potential is different than in the presence of a nonabsorptive one. Therefore, this dynamics can be harnessed to the determination whether a potential is absorptive or not simply by measuring only the transmitted particles density.
Four-body correlation embedded in antisymmetrized geminal power wave function.
Kawasaki, Airi; Sugino, Osamu
2016-12-28
We extend the Coleman's antisymmetrized geminal power (AGP) to develop a wave function theory that can incorporate up to four-body correlation in a region of strong correlation. To facilitate the variational determination of the wave function, the total energy is rewritten in terms of the traces of geminals. This novel trace formula is applied to a simple model system consisting of one dimensional Hubbard ring with a site of strong correlation. Our scheme significantly improves the result obtained by the AGP-configuration interaction scheme of Uemura et al. and also achieves more efficient compression of the degrees of freedom of the wave function. We regard the result as a step toward a first-principles wave function theory for a strongly correlated point defect or adsorbate embedded in an AGP-based mean-field medium.
Continuity Conditions on Schrodinger Wave Functions at Discontinuities of the Potential.
Branson, David
1979-01-01
Several standard arguments which attempt to show that the wave function and its derivative must be continuous across jump discontinuities of the potential are reviewed and their defects discussed. (Author/HM)
Variation in Differential and Total Cross Sections Due to Different Radial Wave Functions
Williamson, W., Jr.; Greene, T.
1976-01-01
Three sets of analytical wave functions are used to calculate the Na (3s---3p) transition differential and total electron excitation cross sections by Born approximations. Results show expected large variations in values. (Author/CP)
The meaning of the wave function in search of the ontology of quantum mechanics
Gao, Shan
2017-01-01
At the heart of quantum mechanics lies the wave function, a powerful but mysterious mathematical object which has been a hot topic of debate from its earliest stages. Covering much of the recent debate and providing a comprehensive and critical review of competing approaches, this ambitious text provides new, decisive proof of the reality of the wave function. Aiming to make sense of the wave function in quantum mechanics and to find the ontological content of the theory, this book explores new ontological interpretations of the wave function in terms of random discontinuous motion of particles. Finally, the book investigates whether the suggested quantum ontology is complete in solving the measurement problem and if it should be revised in the relativistic domain. A timely addition to the literature on the foundations of quantum mechanics, this book is of value to students and researchers with an interest in the philosophy of physics. Presents a concise introduction to quantum mechanics, including the c...
International Nuclear Information System (INIS)
Zhang, Y. S.; Cai, F.; Xu, W. M.
2011-01-01
The ship motion equation with a cosine wave excitement force describes the slip moments in regular waves. A new kind of wave excitement force model, with the form as sums of cosine functions was proposed to describe ship rolling in irregular waves. Ship rolling time series were obtained by solving the ship motion equation with the fourth-order-Runger-Kutta method. These rolling time series were synthetically analyzed with methods of phase-space track, power spectrum, primary component analysis, and the largest Lyapunove exponent. Simulation results show that ship rolling presents some chaotic characteristic when the wave excitement force was applied by sums of cosine functions. The result well explains the course of ship rolling's chaotic mechanism and is useful for ship hydrodynamic study.
Wave drag as the objective function in transonic fighter wing optimization
Phillips, P. S.
1984-01-01
The original computational method for determining wave drag in a three dimensional transonic analysis method was replaced by a wave drag formula based on the loss in momentum across an isentropic shock. This formula was used as the objective function in a numerical optimization procedure to reduce the wave drag of a fighter wing at transonic maneuver conditions. The optimization procedure minimized wave drag through modifications to the wing section contours defined by a wing profile shape function. A significant reduction in wave drag was achieved while maintaining a high lift coefficient. Comparisons of the pressure distributions for the initial and optimized wing geometries showed significant reductions in the leading-edge peaks and shock strength across the span.
International Nuclear Information System (INIS)
Haftel, M.I.; Mandelzweig, V.B.
1990-01-01
The local convergence and accuracy of wave functions obtained by direct solution of the Schroedinger equation with the help of the correlation-function hyperspherical-harmonic method are analyzed for ground and excited states of the helium atom and for the ground state of the positronium negative ion. The inclusion of the cusp conditions into the correlation function is shown to be of crucial importance, not only near the coalescence points, but also away from them. The proper inclusion of all cusps yields for the ground state of the helium atom the local wave-function accuracy of about 10 -7 for different interparticle distances. The omission of one of the cusps in the excited helium atom reduces the wave-function precision to 10 -2 near the corresponding coalescence point and to 10 -4 --10 -5 away from it
Asymptotic form of three-body (dtμ)+ and (ddμ)+ wave functions
International Nuclear Information System (INIS)
Kino, Y.; Shimamura, I.; Armour, E.A.G.; Kamimura, M.
1996-01-01
In order to investigate a discrepancy between existing literature values for the normalization constant in the asymptotic form of three-body wave functions for (DTμ) + , we report the results of a new calculation of the normalization constants for this system as well as the related system (DDμ) + . These were obtained by fitting to accurate variational wave functions with special care being taken to describe the long-range behavior. (orig.)
Convergence of repeated quantum nondemolition measurements and wave-function collapse
International Nuclear Information System (INIS)
Bauer, Michel; Bernard, Denis
2011-01-01
Motivated by recent experiments on quantum trapped fields, we give a rigorous proof that repeated indirect quantum nondemolition (QND) measurements converge to the collapse of the wave function as predicted by the postulates of quantum mechanics for direct measurements. We also relate the rate of convergence toward the collapsed wave function to the relative entropy of each indirect measurement, a result which makes contact with information theory.
The technique of the modified hamiltonian for construction of the spin-projected wave function
International Nuclear Information System (INIS)
Tsaune, A.Ya.; Glushkov, V.N.
1991-01-01
A method is suggested to construct the wave function, which is an eigenfunction for operator S 2 . A combination of Lowdin's projection operators and the method of taking into account the orthogonality conditions in variational problems previously developed by the authors is used for determination of the spin-current wave functions component. It is shown that the suggested method gives better results for the energies that the traditional restricted Hartee-Fock scheme
Lee, Gibbeum; Cho, Yeunwoo
2018-01-01
A new semi-analytical approach is presented to solving the matrix eigenvalue problem or the integral equation in Karhunen-Loeve (K-L) representation of random data such as irregular ocean waves. Instead of direct numerical approach to this matrix eigenvalue problem, which may suffer from the computational inaccuracy for big data, a pair of integral and differential equations are considered, which are related to the so-called prolate spheroidal wave functions (PSWF). First, the PSWF is expressed as a summation of a small number of the analytical Legendre functions. After substituting them into the PSWF differential equation, a much smaller size matrix eigenvalue problem is obtained than the direct numerical K-L matrix eigenvalue problem. By solving this with a minimal numerical effort, the PSWF and the associated eigenvalue of the PSWF differential equation are obtained. Then, the eigenvalue of the PSWF integral equation is analytically expressed by the functional values of the PSWF and the eigenvalues obtained in the PSWF differential equation. Finally, the analytically expressed PSWFs and the eigenvalues in the PWSF integral equation are used to form the kernel matrix in the K-L integral equation for the representation of exemplary wave data such as ordinary irregular waves. It is found that, with the same accuracy, the required memory size of the present method is smaller than that of the direct numerical K-L representation and the computation time of the present method is shorter than that of the semi-analytical method based on the sinusoidal functions.
Modeling the Pulse Signal by Wave-Shape Function and Analyzing by Synchrosqueezing Transform.
Wu, Hau-Tieng; Wu, Han-Kuei; Wang, Chun-Li; Yang, Yueh-Lung; Wu, Wen-Hsiang; Tsai, Tung-Hu; Chang, Hen-Hong
2016-01-01
We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST) to model and analyze oscillatory physiological signals. To demonstrate how the model and algorithm work, we apply them to study the pulse wave signal. By extracting features called the spectral pulse signature, and based on functional regression, we characterize the hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer. Analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features.
Modeling the Pulse Signal by Wave-Shape Function and Analyzing by Synchrosqueezing Transform.
Directory of Open Access Journals (Sweden)
Hau-Tieng Wu
Full Text Available We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST to model and analyze oscillatory physiological signals. To demonstrate how the model and algorithm work, we apply them to study the pulse wave signal. By extracting features called the spectral pulse signature, and based on functional regression, we characterize the hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer. Analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features.
Double photoionization of helium: A new correlated double continuum wave function
Energy Technology Data Exchange (ETDEWEB)
Macri, P.A.; Kornberg, M.A.; Miraglia, J.E. [Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires (Argentina). Inst. de Astron. y Fisica del Espacio; Garibotti, C.R.; Gasaneo, G.; Colavecchia, F.D. [Centro Atomico Bariloche, Comision Nacional de Energia Atomica, 8400 S.C. de Bariloche, Rio Negro (Argentina)
1997-10-01
In this work we discuss the failures and goodness of using the product of two and three Coulomb waves to represent the double-continuum wave function of two electrons in the field of an ion. Furthermore, we present a new wave function for the double continuum, which takes into account the non-diagonal part of the kinetic energy. It satisfies the correct boundary conditions for large particle separations, and treats the electronic interaction in a more realistic way than the previously enunciated models. (orig.). 14 refs.
International Nuclear Information System (INIS)
Snieder, Roel
2004-01-01
The Green's function of waves that propagate between two receivers can be found by cross-correlating multiply scattered waves recorded at these receivers. This technique obviates the need for a source at one of these locations, and is therefore called ''passive imaging.'' This principle has been explained by assuming that the normal modes of the system are uncorrelated and that all carry the same amount of energy (equipartitioning). Here I present an alternative derivation of passive imaging of the ballistic wave that is not based on normal modes. The derivation is valid for scalar waves in three dimensions, and for elastic surface waves. Passive imaging of the ballistic wave is based on the destructive interference of waves radiated from scatterers away from the receiver line, and the constructive interference of waves radiated from secondary sources near the receiver line. The derivation presented here shows that the global requirement of the equipartitioning of normal modes can be relaxed to the local requirement that the scattered waves propagate on average isotropically near the receivers
Mohamed Yacin, S; Srinivasa Chakravarthy, V; Manivannan, M
2011-11-01
Extraction of extra-cardiac information from photoplethysmography (PPG) signal is a challenging research problem with significant clinical applications. In this study, radial basis function neural network (RBFNN) is used to reconstruct the gastric myoelectric activity (GMA) slow wave from finger PPG signal. Finger PPG and GMA (measured using Electrogastrogram, EGG) signals were acquired simultaneously at the sampling rate of 100 Hz from ten healthy subjects. Discrete wavelet transform (DWT) was used to extract slow wave (0-0.1953 Hz) component from the finger PPG signal; this slow wave PPG was used to reconstruct EGG. A RBFNN is trained on signals obtained from six subjects in both fasting and postprandial conditions. The trained network is tested on data obtained from the remaining four subjects. In the earlier study, we have shown the presence of GMA information in finger PPG signal using DWT and cross-correlation method. In this study, we explicitly reconstruct gastric slow wave from finger PPG signal by the proposed RBFNN-based method. It was found that the network-reconstructed slow wave provided significantly higher (P wave than the correlation obtained (≈0.7) between the PPG slow wave from DWT and the EEG slow wave. Our results showed that a simple finger PPG signal can be used to reconstruct gastric slow wave using RBFNN method.
Analytic perturbation theory for screened Coulomb potential: full continuum wave function
International Nuclear Information System (INIS)
Bechler, A.; Ennan, Mc J.; Pratt, R.H.
1979-01-01
An analytic perturbation theory developed previously is used to find a continuum screened-Coulomb wave function characterized by definite asymptotic momentum. This wave function satisfies an inhomogeneous partial differential equation which is solved in parabolic coordinates; the solution depends on both parabolic variables. We calculate partial wave projections of this solution and show that we can choose to add a solution of the homogeneous equation such that the partial wave projections become equal to the normalized continuum radial function found previously. However, finding the unique solution with given asymptotic linear momentum will require either using boundary conditions to determine the unique needed solution of the homogeneous equation or equivalently specifying the screened-Coulomb phase-shifts. (author)
Bayesian extraction of the parton distribution amplitude from the Bethe-Salpeter wave function
Gao, Fei; Chang, Lei; Liu, Yu-xin
2017-07-01
We propose a new numerical method to compute the parton distribution amplitude (PDA) from the Euclidean Bethe-Salpeter wave function. The essential step is to extract the weight function in the Nakanishi representation of the Bethe-Salpeter wave function in Euclidean space, which is an ill-posed inversion problem, via the maximum entropy method (MEM). The Nakanishi weight function as well as the corresponding light-front parton distribution amplitude (PDA) can be well determined. We confirm prior work on PDA computations, which was based on different methods.
Bayesian extraction of the parton distribution amplitude from the Bethe–Salpeter wave function
Directory of Open Access Journals (Sweden)
Fei Gao
2017-07-01
Full Text Available We propose a new numerical method to compute the parton distribution amplitude (PDA from the Euclidean Bethe–Salpeter wave function. The essential step is to extract the weight function in the Nakanishi representation of the Bethe–Salpeter wave function in Euclidean space, which is an ill-posed inversion problem, via the maximum entropy method (MEM. The Nakanishi weight function as well as the corresponding light-front parton distribution amplitude (PDA can be well determined. We confirm prior work on PDA computations, which was based on different methods.
Francisco, E.; Pendás, A. Martín; Blanco, M. A.
2008-04-01
Given an N-electron molecule and an exhaustive partition of the real space ( R) into m arbitrary regions Ω,Ω,…,Ω ( ⋃i=1mΩ=R), the edf program computes all the probabilities P(n,n,…,n) of having exactly n electrons in Ω, n electrons in Ω,…, and n electrons ( n+n+⋯+n=N) in Ω. Each Ω may correspond to a single basin (atomic domain) or several such basins (functional group). In the later case, each atomic domain must belong to a single Ω. The program can manage both single- and multi-determinant wave functions which are read in from an aimpac-like wave function description ( .wfn) file (T.A. Keith et al., The AIMPAC95 programs, http://www.chemistry.mcmaster.ca/aimpac, 1995). For multi-determinantal wave functions a generalization of the original .wfn file has been introduced. The new format is completely backwards compatible, adding to the previous structure a description of the configuration interaction (CI) coefficients and the determinants of correlated wave functions. Besides the .wfn file, edf only needs the overlap integrals over all the atomic domains between the molecular orbitals (MO). After the P(n,n,…,n) probabilities are computed, edf obtains from them several magnitudes relevant to chemical bonding theory, such as average electronic populations and localization/delocalization indices. Regarding spin, edf may be used in two ways: with or without a splitting of the P(n,n,…,n) probabilities into α and β spin components. Program summaryProgram title: edf Catalogue identifier: AEAJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAJ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5387 No. of bytes in distributed program, including test data, etc.: 52 381 Distribution format: tar.gz Programming language: Fortran 77 Computer
DEFF Research Database (Denmark)
Hedegård, Erik D.; Jensen, Hans Jørgen Aagaard; Knecht, Stefan
2013-01-01
-MC-srDFT) excitation energies calculated over a larger benchmark set of molecules with predominantly single reference character yield good agreement with their reference values, and are in general comparable to the CAM-B3LYP functional. The SOPPA-srDFT scheme is tested for a subset of molecules used for benchmarking...
Two-body Schrödinger wave functions in a plane-wave basis via separation of dimensions
Jerke, Jonathan; Poirier, Bill
2018-03-01
Using a combination of ideas, the ground and several excited electronic states of the helium atom and the hydrogen molecule are computed to chemical accuracy—i.e., to within 1-2 mhartree or better. The basic strategy is very different from the standard electronic structure approach in that the full two-electron six-dimensional (6D) problem is tackled directly, rather than starting from a single-electron Hartree-Fock approximation. Electron correlation is thus treated exactly, even though computational requirements remain modest. The method also allows for exact wave functions to be computed, as well as energy levels. From the full-dimensional 6D wave functions computed here, radial distribution functions and radial correlation functions are extracted—as well as a 2D probability density function exhibiting antisymmetry for a single Cartesian component. These calculations support a more recent interpretation of Hund's rule, which states that the lower energy of the higher spin-multiplicity states is actually due to reduced screening, rather than reduced electron-electron repulsion. Prospects for larger systems and/or electron dynamics applications appear promising.
Cheng, Jin; Yu, Kuang; Libisch, Florian; Dieterich, Johannes M; Carter, Emily A
2017-03-14
Quantum mechanical embedding theories partition a complex system into multiple spatial regions that can use different electronic structure methods within each, to optimize trade-offs between accuracy and cost. The present work incorporates accurate but expensive correlated wave function (CW) methods for a subsystem containing the phenomenon or feature of greatest interest, while self-consistently capturing quantum effects of the surroundings using fast but less accurate density functional theory (DFT) approximations. We recently proposed two embedding methods [for a review, see: Acc. Chem. Res. 2014 , 47 , 2768 ]: density functional embedding theory (DFET) and potential functional embedding theory (PFET). DFET provides a fast but non-self-consistent density-based embedding scheme, whereas PFET offers a more rigorous theoretical framework to perform fully self-consistent, variational CW/DFT calculations [as defined in part 1, CW/DFT means subsystem 1(2) is treated with CW(DFT) methods]. When originally presented, PFET was only tested at the DFT/DFT level of theory as a proof of principle within a planewave (PW) basis. Part 1 of this two-part series demonstrated that PFET can be made to work well with mixed Gaussian type orbital (GTO)/PW bases, as long as optimized GTO bases and consistent electron-ion potentials are employed throughout. Here in part 2 we conduct the first PFET calculations at the CW/DFT level and compare them to DFET and full CW benchmarks. We test the performance of PFET at the CW/DFT level for a variety of types of interactions (hydrogen bonding, metallic, and ionic). By introducing an intermediate CW/DFT embedding scheme denoted DFET/PFET, we show how PFET remedies different types of errors in DFET, serving as a more robust type of embedding theory.
Xie, J.; Schaff, D. P.; Chen, Y.; Schult, F.
2013-12-01
Reliably estimated source time functions (STFs) from high-frequency regional waveforms, such as Lg, Pn and Pg, provide important input for seismic source studies, explosion detection and discrimination, and minimization of parameter trade-off in attenuation studies. We have searched for candidate pairs of larger and small earthquakes in and around China that share the same focal mechanism but significantly differ in magnitudes, so that the empirical Green's function (EGF) method can be applied to study the STFs of the larger events. We conducted about a million deconvolutions using waveforms from 925 earthquakes, and screened the deconvolved traces to exclude those that are from event pairs that involved different mechanisms. Only 2,700 traces passed this screening and could be further analyzed using the EGF method. We have developed a series of codes for speeding up the final EGF analysis by implementing automations and user-graphic interface procedures. The codes have been fully tested with a subset of screened data and we are currently applying them to all the screened data. We will present a large number of deconvolved STFs retrieved using various phases (Lg, Pn, Sn and Pg and coda) with information on any directivities, any possible dependence of pulse durations on the wave types, on scaling relations for the pulse durations and event sizes, and on the estimated source static stress drops.
Wave equations on a de Sitter fiber bundle. [Semiclassical wave function, bundle space, L-S coupling
Energy Technology Data Exchange (ETDEWEB)
Drechsler, W [Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (F.R. Germany)
1975-01-01
A gauge theory of strong interaction is developed based on fields defined on a fiber bundle. The structural group of the bundle is taken to be the Lsub(4,1) de Sitter group. An internal variable xi, varying in the fiber over a space-time point x, is introduced as a means to describe - with the help of a semiclassical wave function psi(x,xi) defined on the bundle space - the internal structure of extended hadrons in a framework using differential geometric techniques. Three basic nonlinear wave equations for psi(x,xi) are established which are of integro-differential type. The nonlinear coupling terms in these de Sitter gauge invariant equations represent physically a generalized spin orbit coupling or a generalized spin coupling for the motion taking place in the fiber. The motivation for using a bigger space for the definition of hadronic matter wave functions as well as the implications of this geometric approach to strong interaction physics is discussed in detail, in particular with respect to the problem of hadronic constituents. The proposed fiber bundle formalism allows a dynamical description of extended structures for hadrons without implying the necessity of introducing any constituents.
DEFF Research Database (Denmark)
Ibsen, Lars Bo
2008-01-01
Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...... times smaller it remains very high. For example, whilst there is enough potential wave power off the UK to supply the electricity demands several times over, the economically recoverable resource for the UK is estimated at 25% of current demand; a lot less, but a very substantial amount nonetheless....
Cerebral functional connectivity and Mayer waves in mice: Phenomena and separability.
Bumstead, Jonathan R; Bauer, Adam Q; Wright, Patrick W; Culver, Joseph P
2017-02-01
Resting-state functional connectivity is a growing neuroimaging approach that analyses the spatiotemporal structure of spontaneous brain activity, often using low-frequency (Mayer waves. Despite how close in frequency these phenomena exist, there is little research on how vasomotion and Mayer waves are related to or affect resting-state functional connectivity. In this study, we analyze spontaneous hemodynamic fluctuations over the mouse cortex using optical intrinsic signal imaging. We found spontaneous occurrence of oscillatory hemodynamics ∼0.2 Hz consistent with the properties of Mayer waves reported in the literature. Across a group of mice (n = 19), there was a large variability in the magnitude of Mayer waves. However, regardless of the magnitude of Mayer waves, functional connectivity patterns could be recovered from hemodynamic signals when filtered to the lower frequency band, 0.01-0.08 Hz. Our results demonstrate that both Mayer waves and resting-state functional connectivity patterns can co-exist simultaneously, and that they can be separated by applying bandpass filters.
International Nuclear Information System (INIS)
Lerma H, S.
2010-01-01
The structure of the exact wave function of the isovectorial pairing Hamiltonian with nondegenerate single-particle levels is discussed. The way that the single-particle splittings break the quartet condensate solution found for N=Z nuclei in a single degenerate level is established. After a brief review of the exact solution, the structure of the wave function is analyzed and some particular cases are considered where a clear interpretation of the wave function emerges. An expression for the exact wave function in terms of the isospin triplet of pair creators is given. The ground-state wave function is analyzed as a function of pairing strength, for a system of four protons and four neutrons. For small and large values of the pairing strength a dominance of two-pair (quartets) scalar couplings is found, whereas for intermediate values enhancements of the nonscalar couplings are obtained. A correlation of these enhancements with the creation of Cooper-like pairs is observed.
Coordinate asymptotics of the (3→3) wave functions for a three charged particle system
International Nuclear Information System (INIS)
Merkur'ev, S.P.
1977-01-01
Coordinate asymptotics of the (3 → 3) wave functions for three particles system with Coulomb interaction in the scattering problem is plotted. (3 → 3) and (3 → 2) process cases are considered, when the particles are not connected at the initial state. For coordinate asymptotics plotting the basis functions are used which meet Schroedinger equation in the eikonal approximation. The wave functions coordinate asymptotics plotting method is described far from special directions. Wave function asymptotical form is studied in the range of special directions and (3 → 3) scattering amplitude singularities are described. All data are given in accordance with the system with 2 charged particles only. The model in question is of special interest because of the described ppn system the studying of which is of great importance in nuclear physics. Final formulae are discussed for the most general case of three charged particles. Boundary problems for Schroedinger equation are shown to give the only way of definition for the (3 → 3) wave functions. It is pointed out that in special directions wave function coordinate asymptotics is presented with accuracy that gives the possibility to set such a boundary problem
On propagation of axisymmetric waves in pressurized functionally graded elastomeric hollow cylinders
Wu, Bin; Su, Yipin; Liu, Dongying; Chen, Weiqiu; Zhang, Chuanzeng
2018-05-01
Soft materials can be designed with a functionally graded (FG) property for specific applications. Such material inhomogeneity can also be found in many soft biological tissues whose functionality is only partly understood to date. In this paper, we analyze the axisymmetric guided wave propagation in a pressurized FG elastomeric hollow cylinder. The cylinder is subjected to a combined action of axial pre-stretch and pressure difference applied to the inner and outer cylindrical surfaces. We consider both torsional waves and longitudinal waves propagating in the FG cylinder made of incompressible isotropic elastomer, which is characterized by the Mooney-Rivlin strain energy function but with the material parameters varying with the radial coordinate in an affine way. The pressure difference generates an inhomogeneous deformation field in the FG cylinder, which dramatically complicates the superimposed wave problem described by the small-on-large theory. A particularly efficient approach is hence employed which combines the state-space formalism for the incremental wave motion with the approximate laminate or multi-layer technique. Dispersion relations for the two types of axisymmetric guided waves are then derived analytically. The accuracy and convergence of the proposed approach is validated numerically. The effects of the pressure difference, material gradient, and axial pre-stretch on both the torsional and the longitudinal wave propagation characteristics are discussed in detail through numerical examples. It is found that the frequency of axisymmetric waves depends nonlinearly on the pressure difference and the material gradient, and an increase in the material gradient enhances the capability of the pressure difference to adjust the wave behavior in the FG cylinder. This work provides a theoretical guidance for characterizing FG soft materials by in-situ ultrasonic nondestructive evaluation and for designing tunable waveguides via material tailoring along
P-wave dispersion: relationship to left ventricular function in sickle cell anaemia.
Oguanobi, N I; Onwubere, B J; Ike, S O; Anisiuba, B C; Ejim, E C; Ibegbulam, O G
2011-01-01
The prognostic implications of P-wave dispersion in patients with a variety of cardiac disease conditions are increasingly being recognised. The relationship between P-wave dispersion and left ventricular function in sickle cell anaemia is unknown. This study was aimed at evaluating the relationship between P-wave dispersion and left ventricular function in adult Nigerian sickle cell anaemia patients. Between February and August 2007, a total of 62 sickle cell anaemia patients (aged 18-44 years; mean 28.27 ± 5.58) enrolled in the study. These were drawn from patients attending the adult sickle cell clinic of the University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu. An equal number of age- and gender-matched normal subjects served as controls. All the participants were evaluated with electrocardiography and echocardiography. P-wave dispersion was defined as the difference between the maximum and minimum P-wave duration measured in a 12-lead electrocardiogram. P-wave duration and P-wave dispersion were significantly higher in patients than in controls. Significant correlation was demonstrated between P-wave dispersion and age in the patients (r = 0.387; p = 0.031). A comparison of subsets of sickle cell anaemia patients and controls with comparable haematocrit values (30-35%) showed significantly higher P-wave duration and P-wave dispersion in the patients than in the controls. The P-wave duration in patients and controls, respectively, was 111.10 ± 14.53 ms and 89.14 ± 16.45 ms (t = 3.141; p = 0.006). P-wave dispersion was 64.44 ± 15.86 ms in the patients and 36.43 ± 10.35 ms in the controls (t = 2.752; p = 0.013). Significant negative correlation was found between P-wave dispersion and left ventricular transmitral E/A ratio (r = -0.289; p = 0.023). These findings suggest that P-wave dispersion could be useful in the evaluation of sickle cell patients with left ventricular diastolic dysfunction. Further prospective studies are recommended to evaluate
Photo double ionization of He: C3-like wave function for the two electron continuum
Energy Technology Data Exchange (ETDEWEB)
Otranto, S.; Garibotti, C.R. [Conicet and Centro Atomico Bariloche (Argentina); Otranto, S. [Universidad Nacional del Sur, Dept. de Fisica, Bahia Blanca (Argentina)
2002-12-01
We evaluate the triply differential cross-section (TDCS) for photo double ionization (PDI) of helium. A first approximation to the final state can be obtained by neglecting the e-e interaction and the non-orthogonal kinetic energy. This leads to the C2 model which proposes as solution a product of 2 independent Coulomb wave plane waves. A better approximation is the C3 model where the C3 wave describes the e-e motion as independent of the presence of the nucleus and represents it by a Coulomb continuum wave. The C3 wave function mainly consists in the product of 3 Coulomb waves, each one representing the interaction between a pair of particles. We use a C3 final continuum wave function with an inter-electronic effective coordinate to express the nuclear screening. Comparison with the standard C3 model shows that the TDCS is enhanced in the threshold region by effect of the reduced inter-electronic repulsion introduced by the present model. A more accurate description of the intermediate energy region is also obtained. Comparison with recent experimental data shows a good overall agreement of the angular distributions. The theoretical PDI total cross-section shows a relevant improvement in the intermediate energy region relative to the C3 model, which converges to data for photon energies larger than 1 keV.
Photo double ionization of He: C3-like wave function for the two electron continuum
International Nuclear Information System (INIS)
Otranto, S.; Garibotti, C.R.; Otranto, S.
2002-01-01
We evaluate the triply differential cross-section (TDCS) for photo double ionization (PDI) of helium. A first approximation to the final state can be obtained by neglecting the e-e interaction and the non-orthogonal kinetic energy. This leads to the C2 model which proposes as solution a product of 2 independent Coulomb wave plane waves. A better approximation is the C3 model where the C3 wave describes the e-e motion as independent of the presence of the nucleus and represents it by a Coulomb continuum wave. The C3 wave function mainly consists in the product of 3 Coulomb waves, each one representing the interaction between a pair of particles. We use a C3 final continuum wave function with an inter-electronic effective coordinate to express the nuclear screening. Comparison with the standard C3 model shows that the TDCS is enhanced in the threshold region by effect of the reduced inter-electronic repulsion introduced by the present model. A more accurate description of the intermediate energy region is also obtained. Comparison with recent experimental data shows a good overall agreement of the angular distributions. The theoretical PDI total cross-section shows a relevant improvement in the intermediate energy region relative to the C3 model, which converges to data for photon energies larger than 1 keV
Extracting a shape function for a signal with intra-wave frequency modulation.
Hou, Thomas Y; Shi, Zuoqiang
2016-04-13
In this paper, we develop an effective and robust adaptive time-frequency analysis method for signals with intra-wave frequency modulation. To handle this kind of signals effectively, we generalize our data-driven time-frequency analysis by using a shape function to describe the intra-wave frequency modulation. The idea of using a shape function in time-frequency analysis was first proposed by Wu (Wu 2013 Appl. Comput. Harmon. Anal. 35, 181-199. (doi:10.1016/j.acha.2012.08.008)). A shape function could be any smooth 2π-periodic function. Based on this model, we propose to solve an optimization problem to extract the shape function. By exploring the fact that the shape function is a periodic function with respect to its phase function, we can identify certain low-rank structure of the signal. This low-rank structure enables us to extract the shape function from the signal. Once the shape function is obtained, the instantaneous frequency with intra-wave modulation can be recovered from the shape function. We demonstrate the robustness and efficiency of our method by applying it to several synthetic and real signals. One important observation is that this approach is very stable to noise perturbation. By using the shape function approach, we can capture the intra-wave frequency modulation very well even for noise-polluted signals. In comparison, existing methods such as empirical mode decomposition/ensemble empirical mode decomposition seem to have difficulty in capturing the intra-wave modulation when the signal is polluted by noise. © 2016 The Author(s).
Traveling waves in a diffusive predator-prey model with holling type-III functional response
International Nuclear Information System (INIS)
Li Wantong; Wu Shiliang
2008-01-01
We establish the existence of traveling wave solutions and small amplitude traveling wave train solutions for a reaction-diffusion system based on a predator-prey model with Holling type-III functional response. The analysis is in the three-dimensional phase space of the nonlinear ordinary differential equation system given by the diffusive predator-prey system in the traveling wave variable. The methods used to prove the results are the shooting argument, invariant manifold theory and the Hopf bifurcation theorem
International Nuclear Information System (INIS)
Vainer, B.V.; Nasel'skii, P.D.
1983-01-01
Equations for the correlation functions of fluctuations in the spectra of relativistic collisionless particles are obtained from the combined system of Einstein's equations and the Vlasov equation. It is shown that the interaction of high-frequency gravitational waves with collisionless particles leads to diffusion of their spectrum in the momentum space. The distortions in the spectrum of the microwave background radiation in a cosmological model with high-frequency gravitational waves are discussed. Bounds are obtained on the spectral characteristics of background gravitational waves
Transfer function and near-field detection of evanescent waves
DEFF Research Database (Denmark)
Radko, Ylia P.; Bozhevolnyi, Sergey I.; Gregersen, Niels
2006-01-01
of collection and illumination modes. Making use of a collection near-field microscope with a similar fiber tip illuminated by an evanescent field, we measure the collected power as a function of the field spatial frequency in different polarization configurations. Considering a two-dimensional probe...... for the transfer function, which is derived by introducing an effective pointof (dipolelike) detection inside the probe tip. It is found to be possible to fit reasonably well both the experimental and the simulation data for evanescent field components, implying that the developed approximation of the near......-field transfer function can serve as a simple, rational, and sufficiently reliable means of fiber probe characterization....
Phase function of a spherical particle when scattering an inhomogeneous electromagnetic plane wave
DEFF Research Database (Denmark)
Frisvad, Jeppe Revall
2018-01-01
of the complex hypergeometric function 2F1 for every term of a series expansion. In this work, I develop a simpler solution based on associated Legendre functions with argument zero. It is similar to the solution for homogeneous plane waves but with new explicit expressions for the angular dependency of the far......In absorbing media, electromagnetic plane waves are most often inhomogeneous. Existing solutions for the scattering of an inhomogeneous plane wave by a spherical particle provide no explicit expressions for the scattering components. In addition, current analytical solutions require evaluation......-field scattering components, that is, the phase function. I include recurrence formulae for practical evaluation and provide numerical examples to evaluate how well the new expressions match previous work in some limiting cases. The predicted difference in the scattering phase function due to inhomogeneity...
Direct fragmentation of quarkonia including Fermi motion using light-cone wave function
Energy Technology Data Exchange (ETDEWEB)
Nobary, M.A. Gomshi [Razi University, Department of Physics, Faculty of Science, Kermanshah (Iran); A.E.O.I., Center for Theoretical Physics and Mathematics, Tehran (Iran); Javadi, B. [Razi University, Department of Physics, Faculty of Science, Kermanshah (Iran)
2005-07-01
We investigate the effect of Fermi motion on the direct fragmentation of the J/{psi} and {upsilon} states employing a light-cone wave function. Consistent with such a wave function we set up the kinematics of a heavy quark fragmenting into quarkonia such that the Fermi motion of the constituents splits into a longitudinal as well as a transverse direction and thus calculate the fragmentation functions for these states. In the framework of our investigation, we estimate that the fragmentation probabilities of J/{psi} and {upsilon} may increase at least up to 14 percent when including this degree of freedom. (orig.)
Four-body wave function of π3He-system at the threshold energy
International Nuclear Information System (INIS)
Pupyshev, V.V.; Rakityanskij, S.A.
1985-01-01
On the basis of approximate four-body equations the wave function of π 3 He-system is calculated at zero kinetic energy of the pion. In the case when distances between all four particles are comparable with the nucleus size a strong distortion of the wave function of (3N)-subsystem caused by the presence of the pion is found. The calculated four-body function is represented in a semianalytical form, which makes it possible to apply it in different calculations
Baumeister, K. J.
1983-01-01
A time-dependent finite difference formulation to the inhomogeneous wave equation is derived for plane wave propagation with harmonic noise sources. The difference equation and boundary conditions are developed along with the techniques to simulate the Dirac delta function associated with a concentrated noise source. Example calculations are presented for the Green's function and distributed noise sources. For the example considered, the desired Fourier transformed acoustic pressures are determined from the transient pressures by use of a ramping function and an integration technique, both of which eliminates the nonharmonic pressure associated with the initial transient.
Baumeiste, K. J.
1983-01-01
A time-dependent finite difference formulation to the inhomogeneous wave equation is derived for plane wave propagation with harmonic noise sources. The difference equation and boundary conditions are developed along with the techniques to simulate the Dirac delta function associated with a concentrated noise source. Example calculations are presented for the Green's function and distributed noise sources. For the example considered, the desired Fourier transformed acoustic pressures are determined from the transient pressures by use of a ramping function and an integration technique, both of which eliminates the nonharmonic pressure associated with the initial transient.
Coronary wave energy: a novel predictor of functional recovery after myocardial infarction.
De Silva, Kalpa; Foster, Paul; Guilcher, Antoine; Bandara, Asela; Jogiya, Roy; Lockie, Tim; Chowiencyzk, Phil; Nagel, Eike; Marber, Michael; Redwood, Simon; Plein, Sven; Perera, Divaka
2013-04-01
Revascularization after acute coronary syndromes provides prognostic benefit, provided that the subtended myocardium is viable. The microcirculation and contractility of the subtended myocardium affect propagation of coronary flow, which can be characterized by wave intensity analysis. The study objective was to determine in acute coronary syndromes whether early wave intensity analysis-derived microcirculatory (backward) expansion wave energy predicts late viability, defined by functional recovery. Thirty-one patients (58±11 years) were enrolled after non-ST elevation myocardial infarction. Regional left ventricular function and late-gadolinium enhancement were assessed by cardiac magnetic resonance imaging, before and 3 months after revascularization. The backward-traveling (microcirculatory) expansion wave was derived from wave intensity analysis of phasic coronary pressure and velocity in the infarct-related artery, whereas mean values were used to calculate hyperemic microvascular resistance. Twelve-hour troponin T, left ventricular ejection fraction, and percentage late-gadolinium enhancement mass were 1.35±1.21 µg/L, 56±11%, and 8.4±6.0%, respectively. The infarct-related artery backward-traveling (microcirculatory) expansion wave was inversely correlated with late-gadolinium enhancement infarct mass (r=-0.81; Pwave threshold of 2.8 W m(-2) s(-2)×10(5) predicted functional recovery with sensitivity and specificity of 0.91 and 0.82 (AUC 0.88). Hyperemic microvascular resistance correlated with late-gadolinium enhancement mass (r=0.48; P=0.03) but not left ventricular recovery (r=-0.34; P=0.07). The microcirculation-derived backward expansion wave is a new index that correlates with the magnitude and location of infarction, which may allow for the prediction of functional myocardial recovery. Coronary wave intensity analysis may facilitate myocardial viability assessment during cardiac catheterization.
Application of the Exp-function method to the equal-width wave equation
International Nuclear Information System (INIS)
Biazar, J; Ayati, Z
2008-01-01
In this paper, the Exp-function method is used to find an exact solution of the equal-width wave (EW) equation. The method is straightforward and concise, and its applications are promising. It is shown that the Exp-function method, with the help of symbolic computation, provides a very effective and powerful mathematical tool for solving the EW equation.
García de la Vega, J M; Omar, S; San Fabián, J
2017-04-01
Spin-spin coupling constants in water monomer and dimer have been calculated using several wave function and density functional-based methods. CCSD, MCSCF, and SOPPA wave functions methods yield similar results, specially when an additive approach is used with the MCSCF. Several functionals have been used to analyze their performance with the Jacob's ladder and a set of functionals with different HF exchange were tested. Functionals with large HF exchange appropriately predict 1 J O H , 2 J H H and 2h J O O couplings, while 1h J O H is better calculated with functionals that include a reduced fraction of HF exchange. Accurate functionals for 1 J O H and 2 J H H have been tested in a tetramer water model. The hydrogen bond effects on these intramolecular couplings are additive when they are calculated by SOPPA(CCSD) wave function and DFT methods. Graphical Abstract Evaluation of the additive effect of the hydrogen bond on spin-spin coupling constants of water using WF and DFT methods.
Wave resistance calculation method combining Green functions based on Rankine and Kelvin source
Directory of Open Access Journals (Sweden)
LI Jingyu
2017-12-01
Full Text Available [Ojectives] At present, the Boundary Element Method(BEM of wave-making resistance mostly uses a model in which the velocity distribution near the hull is solved first, and the pressure integral is then calculated using the Bernoulli equation. However,the process of this model of wave-making resistance is complex and has low accuracy.[Methods] To address this problem, the present paper deduces a compound method for the quick calculation of ship wave resistance using the Rankine source Green function to solve the hull surface's source density, and combining the Lagally theorem concerning source point force calculation based on the Kelvin source Green function so as to solve the wave resistance. A case for the Wigley model is given.[Results] The results show that in contrast to the thin ship method of the linear wave resistance theorem, this method has higher precision, and in contrast to the method which completely uses the Kelvin source Green function, this method has better computational efficiency.[Conclusions] In general, the algorithm in this paper provides a compromise between precision and efficiency in wave-making resistance calculation.
Asymptotic expansions of Mathieu functions in wave mechanics
International Nuclear Information System (INIS)
Hunter, G.; Kuriyan, M.
1976-01-01
Solutions of the radial Schroedinger equation containing a polarization potential r -4 are expanded in a form appropriate for large values of r. These expansions of the Mathieu functions are used in association with the numerical solution of the Schroedinger equation to impose the asymptotic boundary condition in the case of bound states, and to extract phase shifts in the case of scattering states
Photon distribution function for stocks wave for stimulated Raman scattering
International Nuclear Information System (INIS)
Man'ko, O.V.; Tcherniega, N.V.
1997-04-01
New time-dependent integrals of motion are found for stimulated Raman scattering. Explicit formula for the photon-number probability distribution as a function of the laser-field intensity and the medium parameters is obtained in terms of Hermite polynomials of two variables. (author). 29 refs
Wave functions and two-electron probability distributions of the Hooke's-law atom and helium
International Nuclear Information System (INIS)
O'Neill, Darragh P.; Gill, Peter M. W.
2003-01-01
The Hooke's-law atom (hookium) provides an exactly soluble model for a two-electron atom in which the nuclear-electron Coulombic attraction has been replaced by a harmonic one. Starting from the known exact position-space wave function for the ground state of hookium, we present the momentum-space wave function. We also look at the intracules, two-electron probability distributions, for hookium in position, momentum, and phase space. These are compared with the Hartree-Fock results and the Coulomb holes (the difference between the exact and Hartree-Fock intracules) in position, momentum, and phase space are examined. We then compare these results with analogous results for the ground state of helium using a simple, explicitly correlated wave function
Eikonal Approximation in AdS/CFT From Shock Waves to Four-Point Functions
Cornalba, L; Costa, Miguel S; Penedones, Joao; Cornalba, Lorenzo; Costa, M S; Penedones, J; Schiappa, Ricardo
2007-01-01
We initiate a program to generalize the standard eikonal approximation to compute amplitudes in Anti-de Sitter spacetimes. Inspired by the shock wave derivation of the eikonal amplitude in flat space, we study the two-point function E ~ _{shock} in the presence of a shock wave in Anti-de Sitter, where O_1 is a scalar primary operator in the dual conformal field theory. At tree level in the gravitational coupling, we relate the shock two-point function E to the discontinuity across a kinematical branch cut of the conformal field theory four-point function A ~ , where O_2 creates the shock geometry in Anti-de Sitter. Finally, we extend the above results by computing E in the presence of shock waves along the horizon of Schwarzschild BTZ black holes. This work gives new tools for the study of Planckian physics in Anti-de Sitter spacetimes.
Electronic structure and correlated wave functions of a few electron quantum dots
Energy Technology Data Exchange (ETDEWEB)
Sako, Tokuei [Laboratory of Physics, College of Science and Technology, Nihon University, 7-24-1 Narashinodai, Funabashi, Chiba 274-8501 (Japan); Ishida, Hiroshi [College of Humanities and Sciences, Nihon University, Tokyo 156-8550 (Japan); Fujikawa, Kazuo [Institute of Quantum Science, College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo 101-8308 (Japan)
2015-01-22
The energy spectra and wave functions of a few electrons confined by a quasi-one-dimensional harmonic and anharmonic potentials have been studied by using a full configuration interaction method employing a Cartesian anisotropic Gaussian basis set. The energy spectra are classified into three regimes of the strength of confinement, namely, large, medium and small. The polyad quantum number defined by a total number of nodes in the wave functions is shown to be a key ingredient to interpret the energy spectra for the whole range of the confinement strength. The nodal pattern of the wave functions exhibits normal modes for the harmonic confining potential, indicating collective motions of electrons. These normal modes are shown to undergo a transition to local modes for an anharmonic potential with large anharmonicity.
Trial wave functions for a composite Fermi liquid on a torus
Fremling, M.; Moran, N.; Slingerland, J. K.; Simon, S. H.
2018-01-01
We study the two-dimensional electron gas in a magnetic field at filling fraction ν =1/2 . At this filling the system is in a gapless state which can be interpreted as a Fermi liquid of composite fermions. We construct trial wave functions for the system on a torus, based on this idea, and numerically compare these to exact wave functions for small systems found by exact diagonalization. We find that the trial wave functions give an excellent description of the ground state of the system, as well as its charged excitations, in all momentum sectors. We analyze the dispersion of the composite fermions and the Berry phase associated with dragging a single fermion around the Fermi surface and comment on the implications of our results for the current debate on whether composite fermions are Dirac fermions.
Strong Measurements Give a Better Direct Measurement of the Quantum Wave Function.
Vallone, Giuseppe; Dequal, Daniele
2016-01-29
Weak measurements have thus far been considered instrumental in the so-called direct measurement of the quantum wave function [4J. S. Lundeen, Nature (London) 474, 188 (2011).]. Here we show that a direct measurement of the wave function can be obtained by using measurements of arbitrary strength. In particular, in the case of strong measurements, i.e., those in which the coupling between the system and the measuring apparatus is maximum, we compared the precision and the accuracy of the two methods, by showing that strong measurements outperform weak measurements in both for arbitrary quantum states in most cases. We also give the exact expression of the difference between the original and reconstructed wave function obtained by the weak measurement approach; this will allow one to define the range of applicability of such a method.
Wave Function and Emergent SU(2) Symmetry in the ν_{T}=1 Quantum Hall Bilayer.
Lian, Biao; Zhang, Shou-Cheng
2018-02-16
We propose a trial wave function for the quantum Hall bilayer system of total filling factor ν_{T}=1 at a layer distance d to magnetic length ℓ ratio d/ℓ=κ_{c1}≈1.1, where the lowest charged excitation is known to have a level crossing. The wave function has two-particle correlations, which fit well with those in previous numerical studies, and can be viewed as a Bose-Einstein condensate of free excitons formed by composite bosons and anticomposite bosons in different layers. We show the free nature of these excitons indicating an emergent SU(2) symmetry for the composite bosons at d/ℓ=κ_{c1}, which leads to the level crossing in low-lying charged excitations. We further show the overlap between the trial wave function, and the ground state of a small size exact diagonalization is peaked near d/ℓ=κ_{c1}, which supports our theory.
Czech Academy of Sciences Publication Activity Database
Riley, K. E.; Pitoňák, Michal; Jurečka, P.; Hobza, Pavel
2010-01-01
Roč. 110, č. 9 (2010), s. 5023-5063 ISSN 0009-2665 R&D Projects: GA MŠk LC512 Institutional research plan: CEZ:AV0Z40550506 Keywords : non covalent interactions * wave function theories * DFT Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 33.033, year: 2010
Wave functions constructed from an invariant sum over histories satisfy constraints
International Nuclear Information System (INIS)
Halliwell, J.J.; Hartle, J.B.
1991-01-01
Invariance of classical equations of motion under a group parametrized by functions of time implies constraints between canonical coordinates and momenta. In the Dirac formulation of quantum mechanics, invariance is normally imposed by demanding that physical wave functions are annihilated by the operator versions of these constraints. In the sum-over-histories quantum mechanics, however, wave functions are specified, directly, by appropriate functional integrals. It therefore becomes an interesting question whether the wave functions so specified obey the operator constraints of the Dirac theory. In this paper, we show for a wide class of theories, including gauge theories, general relativity, and first-quantized string theories, that wave functions constructed from a sum over histories are, in fact, annihilated by the constraints provided that the sum over histories is constructed in a manner which respects the invariance generated by the constraints. By this we mean a sum over histories defined with an invariant action, invariant measure, and an invariant class of paths summed over
A KINETIC ALFVEN WAVE AND THE PROTON DISTRIBUTION FUNCTION IN THE FAST SOLAR WIND
International Nuclear Information System (INIS)
Li Xing; Lu Quanming; Chen Yao; Li Bo; Xia Lidong
2010-01-01
Using one-dimensional test particle simulations, the effect of a kinetic Alfven wave on the velocity distribution function (VDF) of protons in the collisionless solar wind is investigated. We first use linear Vlasov theory to numerically obtain the property of a kinetic Alfven wave (the wave propagates in the direction almost perpendicular to the background magnetic field). We then numerically simulate how the wave will shape the proton VDF. It is found that Landau resonance may be able to generate two components in the initially Maxwellian proton VDF: a tenuous beam component along the direction of the background magnetic field and a core component. The streaming speed of the beam relative to the core proton component is about 1.2-1.3 Alfven speed.
Relativistic wave functions of two spin 1/2 quarks in a model with QCD interaction
International Nuclear Information System (INIS)
Skachkov, N.B.; Solovtsov, I.L.
1981-01-01
Within the hamiltonian formulation of quantum field theory an equation is obtained for the vertex and wave functions of a composite system of two spin 1/2 quarks. Exact solutions are found for the relativistic potential having in the momentum representation the ''asymptotically-free'' behaviour at large values of momentum transfer Q 2 . It is shown that within the given model the π-meson wave function has zero at a finite distance corresponding to the point of discontinuity of the effective potential [ru
Stochastic wave-function unravelling of the generalized Lindblad equation using correlated states
International Nuclear Information System (INIS)
Moodley, Mervlyn; Nsio Nzundu, T; Paul, S
2012-01-01
We perform a stochastic wave-function unravelling of the generalized Lindblad master equation using correlated states, a combination of the system state vectors and the environment population. The time-convolutionless projection operator method using correlated projection superoperators is applied to a two-state system, a qubit, that is coupled to an environment consisting of two energy bands which are both populated. These results are compared to the data obtained from Monte Carlo wave-function simulations based on the unravelling of the master equation. We also show a typical quantum trajectory and the average time evolution of the state vector on the Bloch sphere. (paper)
Second-Order Moller-Plesset Perturbation Theory for Molecular Dirac-Hartree-Fock Wave Functions
Dyall, Kenneth G.; Arnold, James O. (Technical Monitor)
1994-01-01
Moller-Plesset perturbation theory is developed to second order for a selection of Kramers restricted Dirac-Hartree-Fock closed and open-shell reference wave functions. The open-shell wave functions considered are limited to those with no more than two electrons in open shells, but include the case of a two-configuration SCF reference. Denominator shifts are included in the style of Davidson's OPT2 method. An implementation which uses unordered integrals with labels is presented, and results are given for a few test cases.
DEFF Research Database (Denmark)
Markussen, Troels; Kristensen, Philip Trøst; Tromborg, Bjarne
2006-01-01
Models of carrier dynamics in quantum dots rely strongly on adequate descriptions of the carrier wave functions. In this work we numerically solve the one-band effective mass Schrodinger equation to calculate the capture times of phonon-mediated carrier capture into self-assembled quantum dots. C....... Comparing with results obtained using approximate carrier wave functions, we demonstrate that the capture times are strongly influenced by properties of the wetting layer wave functions not accounted for by earlier theoretical analyses....
Bound and scattering wave functions for a velocity-dependent Kisslinger potential for l>0
International Nuclear Information System (INIS)
Jaghoub, M.I.
2002-01-01
Using formal scattering theory, the scattering wave functions are extrapolated to negative energies corresponding to bound-state poles. It is shown that the ratio of the normalized scattering and the corresponding bound-state wave functions, at a bound-state pole, is uniquely determined by the bound-state binding energy. This simple relation is proved analytically for an arbitrary angular momentum quantum number l>0, in the presence of a velocity-dependent Kisslinger potential. The extrapolation relation is tested analytically by solving the Schroedinger equation in the p-wave case exactly for the scattering and the corresponding bound-state wave functions when the Kisslinger potential has the form of a square well. A numerical resolution of the Schroedinger equation in the p-wave case and of a square-well Kisslinger potential is carried out to investigate the range of validity of the extrapolated connection. It is found that the derived relation is satisfied best at low energies and short distances. (orig.)
International Nuclear Information System (INIS)
Sergeev, Alexey; Herman, Michael F.
2006-01-01
The behavior of an initial value representation surface hopping wave function is examined. Since this method is an initial value representation for the semiclassical solution of the time independent Schroedinger equation for nonadiabatic problems, it has computational advantages over the primitive surface hopping wave function. The primitive wave function has been shown to provide transition probabilities that accurately compare with quantum results for model problems. The analysis presented in this work shows that the multistate initial value representation surface hopping wave function should approach the primitive result in asymptotic regions and provide transition probabilities with the same level of accuracy for scattering problems as the primitive method
International Nuclear Information System (INIS)
Zhao, D.; Suzuki, Y.; Komori, S.
2003-01-01
A new formula for gas transfer velocity as a function of the breaking-wave parameter is proposed based on correlating gas transfer with whitecap coverage. The new formula for gas transfer across an air-sea interface depends not only on wind speed but also on wind-wave state. At the same wind speed, a higher gas transfer velocity will be obtained for a more developed wind-sea, which is represented by a smaller spectral peak frequency of wind waves. We suggest that the large uncertainties in the traditional relationship of gas transfer velocity with wind speed be ascribed to the neglect of the effect of wind waves. The breaking-wave parameter can be regarded as a Reynolds number that characterizes the intensity of turbulence associated with wind waves in the downward-bursting boundary layer (DBBL). DBBL provides an effective way to exchange gas across the air-sea interface, which might be related to the surface renewal
Probing α-particle wave functions using (rvec d,α) reactions
International Nuclear Information System (INIS)
Crosson, E.R.; Lemieux, S.K.; Ludwig, E.J.; Thompson, W.J.; Bisenberger, M.; Hertenberger, R.; Hofer, D.; Kader, H.; Schiemenz, P.; Graw, G.; Eiro, A.M.; Santos, F.D.
1993-01-01
Wave functions of the α particle corresponding to different S- and D-state deuteron-deuteron overlaps, left-angle dd|α right-angle, were investigated using exact finite-range distorted-wave Born-approximation (DWBA) analyses of (rvec d,α) reactions. Cross sections, vector, and tensor-analyzing powers were measured for (rvec d,α) reactions populating the lowest J π =7 + state in 56 Co at bombarding energies E d of 16 and 22 MeV, the lowest 7 + state in 48 Sc at E d =16 MeV, and the lowest 7 + state in 46 Sc at E d =22 MeV. We find that DWBA analyses of tensor-analyzing powers produce satisfactory agreement with the data and that A xx is especially sensitive to the D-state component of α-particle wave functions generated by different realistic nucleon-nucleon interactions
Badkoubeh, Roya Sattarzadeh; Tavoosi, Anahita; Jabbari, Mostafa; Parsa, Amir Farhang Zand; Geraeli, Babak; Saadat, Mohammad; Larti, Farnoosh; Meysamie, Ali Pasha; Salehi, Mehrdad
2016-06-10
We performed comprehensive transmitral and pulmonary venous Doppler echocardiographic studies to devise a novel index of diastolic function. This is the first study to assess the utility of the acceleration rate (AR) of the E wave of mitral inflow as a primary diagnostic modality for assessing diastolic function. Study group consisted of 84 patients (53 + 11 years) with left ventricle (LV) diastolic dysfunction and 34 healthy people (35 ± 9 years) as control group, who were referred for clinically indicated two-dimensional transthoracic echocardiogram (TTE) during 2012 and 2013 to Imam Hospital. Normal controls were defined as patients without clinical evidence of cardiac disease and had normal TTE. LV diastolic function was determined according to standardized protocol of American Society of Echocardiography (ASE). As our new parameter, AR of E wave of mitral inflow was also measured in all patients. It was represented by the slope of the line between onset of E wave and peak of it. Correlation between AR of E wave and LV diastolic function grade was measured using the Spearman correlation coefficient. Receiver operating characteristic (ROC) curve was used to determine the sensitivity and specificity of AR of E wave in diagnosing LV diastolic dysfunction in randomly selected two-thirds of population then its derived cutoff was evaluated in rest of the population. The institutional review board of the hospital approved the study protocol. All participants gave written informed consent. This investigation was in accordance with the Declaration of Helsinki. The mean value of AR was 1010 ± 420 cm/s(2) in patients whereas the mean value for the normal controls was 701 ± 210 cm/s(2). There was a strong and graded relation between AR of E wave of mitral inflow and LV diastolic function grade (Spearman P ≤0.0001, rs =0.69). ROC curve analysis revealed that AR of E wave of mitral inflow =750 cm/s(2) predicted moderate or severe LV diastolic
International Nuclear Information System (INIS)
Nikolopoulos, L. A. A.; Kjeldsen, T. K.; Madsen, L. B.
2007-01-01
We present a method for spectral (bound and continuum) and partial-wave analysis of a three-dimensional time-dependent wave function, defined on a grid, without projecting onto the field-free eigenstates of the system. The method consists of propagating the time-dependent Schroedinger equation to obtain its autocorrelation function C(t)= after the end of the interaction, at time T, of the system with an external time-dependent field. The Fourier spectrum of this correlation function is directly related to the expansion coefficients of the wave function on the field-free bound and continuum energy eigenstates of the system. By expanding on a spherical harmonics basis we show how to calculate the contribution of the various partial waves to the total photoelectron energy spectrum
Double-continuum wave functions and double-photoionization cross sections of two-electron systems
International Nuclear Information System (INIS)
Tiwary, S.N.
1996-09-01
The present review briefly presents the growing experimental as well as theoretical interests in recent years in the double-continuum wave functions and double-photoionization cross sections of two-electron systems. The validity of existing double-continuum wave functions is analyzed and the importance of electronic correlations in both the initial as well as final states wave functions involved in the transition amplitude for double-photoionization process is demonstrated. At present, we do not have comprehensive and practical double-continuum wave functions which account the full correlation of two-electron in the continuum. Basic difficulties in making accurate theoretical calculations of double ionization by a single high energy photon especially in the vicinity of the threshold, where the correlation plays an important role, are discussed. Illuminating, illustrative and representative examples are presented in order to show the present status and the progress in this field. Future challenges and directions, in high-precision double-photoionization cross sections calculations, have been discussed and suggested. (author). 133 refs, 9 figs
Trinucleon wave functions from separable expansions of the N-N interaction
International Nuclear Information System (INIS)
Birrell, N.D.
1976-09-01
This work is intended to determine whether a separable expansion for the N-N interaction can be used to obtain trinucleon wave functions of high quality. The expansions used in the study are the Unitary Pole expansion of Harms, Afnan and Read, and the expansion of Adhikari and Sloan. We first compare the calculation of the RSC potential Triton binding energy with the two methods, and find that the results agree quite closely. However, while it is found necessary to use t-matrix perturbation theory to obtain the UPE result, such is not the case with the ASE, thus offering a considerable improvement on the previously used method. We then proceed to calculate the L-S coupling probabilities for the wave function, and in so doing, discover a source of inaccuracy in the work of other authors. We also find that the UPE and ASE give probabilities in good agreement with one another. The calculation of the He 3 charge form factor turns out to be the most critical judge of the accuracy of the wave function. Although both expansions give quite satisfactory results for the charge form factor, those obtained with the ASE are exceptionally pleasing. We finally apply both methods to the OBEP of Holinde and Machleidt, and find that the UPE is quite unsuitable for such application. The ASE, however, once again gives very good results, indicating the high quality of the trinucleon wave function obtained with it. (author)
Time-dependent density-functional theory in the projector augmented-wave method
DEFF Research Database (Denmark)
Walter, Michael; Häkkinen, Hannu; Lehtovaara, Lauri
2008-01-01
We present the implementation of the time-dependent density-functional theory both in linear-response and in time-propagation formalisms using the projector augmented-wave method in real-space grids. The two technically very different methods are compared in the linear-response regime where we...
Orbital and total atomic momentum expectation values with Roothaan-Hartree-Fock wave functions
International Nuclear Information System (INIS)
De La Vega, J.M.G.; Miguel, B.
1993-01-01
Orbital and total momentum expectation values are computed using the Roothaan-Hartree-Fock wave functions of Clementi and Roetti. These values are calculated analytically and may be used to study the quality of basis sets. Tabulations for ground and excited states of atoms from Z = 2 to Z = 54 are presented. 23 refs., 1 tab
On some recent suggestions of superluminal communication through the collapse of the wave function
International Nuclear Information System (INIS)
Ghirardi, G.C.; Weber, T.
1979-01-01
With reference to some recent suggestions of superluminal communication through the collapse of the wave function, it is proved that the suggested effects are derived using contradictory assumptions. Since the proof is based only on non-relativistic arguments, it is concluded that the difficulties connected with quantum measurement theory are only of conceptual nature. (author)
Probability density of wave function of excited photoelectron: understanding XANES features
Czech Academy of Sciences Publication Activity Database
Šipr, Ondřej
2001-01-01
Roč. 8, - (2001), s. 232-234 ISSN 0909-0495 R&D Projects: GA ČR GA202/99/0404 Institutional research plan: CEZ:A02/98:Z1-010-914 Keywords : XANES * PED - probability density of wave function Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.519, year: 2001
On the excited state wave functions of Dirac fermions in the random ...
Indian Academy of Sciences (India)
wave functions in FRGP can be written in terms of descendents of the Liouville vertex operator. In the ... that the localization length ξ scales with the energy E as ξ ∼ E−b2/(1+b2)2. , where b is .... Let us write the Hamiltonian of the. FRGP model ...
A search for the Δ- wave-function component in light nuclei
International Nuclear Information System (INIS)
Morris, C.L.; Zumbro, J.D.; Boudrie, R.L.
1996-01-01
We have studied the (π + , π ± p) reactions on 3 He, 4 He, 6 Li, and 7 Li at incident energy 500 MeV in quasi-free kinematics. A signature attributable to pre-existing Δ components of the ground state wave function is observed
Alternative Form of the Hydrogenic Wave Functions for an Extended, Uniformly Charged Nucleus.
Ley-Koo, E.; And Others
1980-01-01
Presented are forms of harmonic oscillator attraction and Coulomb wave functions which can be explicitly constructed and which lead to numerical results for the energy eigenvalues and eigenfunctions of the atomic system. The Schrodinger equation and its solution and specific cases of muonic atoms illustrating numerical calculations are included.…
The Fermionic Projector, Entanglement, and the Collapse of the Wave Function
Finster, Felix
2010-01-01
After a brief introduction to the fermionic projector approach, we review how entanglement and second quantized bosonic and fermionic fields can be described in this framework. The constructions are discussed with regard to decoherence phenomena and the measurement problem. We propose a mechanism leading to the collapse of the wave function in the quantum mechanical measurement process.
The Fermionic Projector, entanglement and the collapse of the wave function
Energy Technology Data Exchange (ETDEWEB)
Finster, Felix, E-mail: Felix.Finster@mathematik.uni-r.de [Fakultaet fuer Mathematik, Universituet Regensburg, 93040 Regensburg (Germany)
2011-07-08
After a brief introduction to the fermionic projector approach, we review how entanglement and second quantized bosonic and fermionic fields can be described in this framework. The constructions are discussed with regard to decoherence phenomena and the measurement problem. We propose a mechanism leading to the collapse of the wave function in the quantum mechanical measurement process.
The Fermionic Projector, entanglement and the collapse of the wave function
International Nuclear Information System (INIS)
Finster, Felix
2011-01-01
After a brief introduction to the fermionic projector approach, we review how entanglement and second quantized bosonic and fermionic fields can be described in this framework. The constructions are discussed with regard to decoherence phenomena and the measurement problem. We propose a mechanism leading to the collapse of the wave function in the quantum mechanical measurement process.
The Fermionic Projector, entanglement and the collapse of the wave function
Finster, Felix
2011-07-01
After a brief introduction to the fermionic projector approach, we review how entanglement and second quantized bosonic and fermionic fields can be described in this framework. The constructions are discussed with regard to decoherence phenomena and the measurement problem. We propose a mechanism leading to the collapse of the wave function in the quantum mechanical measurement process.
International Nuclear Information System (INIS)
Shabaev, V.M.
1984-01-01
Some exact relations are derived for radial integrals with Dirac wave functions. These relations are used for calculating radial integrals in the case of the Coulomb field. The threedimensional harmonic oscillator is also considered and exact formulae for the dipole transition probabilities are obtained using general relations between matrix elements
Three-Dimensional Visualization of Wave Functions for Rotating Molecule: Plot of Spherical Harmonics
Nagaoka, Shin-ichi; Teramae, Hiroyuki; Nagashima, Umpei
2013-01-01
At an early stage of learning quantum chemistry, undergraduate students usually encounter the concepts of the particle in a box, the harmonic oscillator, and then the particle on a sphere. Rotational levels of a diatomic molecule can be well approximated by the energy levels of the particle on a sphere. Wave functions for the particle in a…
Effects of wave function correlations on scaling violation in quasi-free electron scattering
International Nuclear Information System (INIS)
Tornow, V.; Drechsel, D.; Orlandini, G.; Traini, M.
1981-01-01
The scaling law in quasi-free electron scattering is broken due to the existence of exchange forces, leading to a finite mean value of the scaling variable anti y. This effect is considerably increased by wave function correlations, in particular by tensor correlations, similar to the case of the photonuclear enhancement factor k. (orig.)
Romanelli, N.; Mazelle, C.; Meziane, K.
2018-02-01
Seen from the solar wind (SW) reference frame, the presence of newborn planetary protons upstream from the Martian and Venusian bow shocks and SW protons reflected from each of them constitutes two sources of nonthermal proton populations. In both cases, the resulting proton velocity distribution function is highly unstable and capable of giving rise to ultralow frequency quasi-monochromatic electromagnetic plasma waves. When these instabilities take place, the resulting nonlinear waves are convected by the SW and interact with nonthermal protons located downstream from the wave generation region (upstream from the bow shock), playing a predominant role in their dynamics. To improve our understanding of these phenomena, we study the interaction between a charged particle and a large-amplitude monochromatic circularly polarized electromagnetic wave propagating parallel to a background magnetic field, from first principles. We determine the number of fix points in velocity space, their stability, and their dependence on different wave-particle parameters. Particularly, we determine the temporal evolution of a charged particle in the pitch angle-gyrophase velocity plane under nominal conditions expected for backstreaming protons in planetary foreshocks and for newborn planetary protons in the upstream regions of Venus and Mars. In addition, the inclusion of wave ellipticity effects provides an explanation for pitch angle distributions of suprathermal protons observed at the Earth's foreshock, reported in previous studies. These analyses constitute a mean to evaluate if nonthermal proton velocity distribution functions observed at these plasma environments present signatures that can be understood in terms of nonlinear wave-particle processes.
Joint Inversion of Surface Waves Dispersion and Receiver Function at Cuba Seismic Stations
International Nuclear Information System (INIS)
Gonzalez, O'Leary; Moreno, Bladimir; Romanelli, Fabio; Panza, Giuliano F.
2010-06-01
Joint inversion of Rayleigh wave group velocity dispersion and receiver functions have been used to estimate the crust and upper mantle structure at eight seismic stations in Cuba. Receiver functions have been computed from teleseismic recordings of earthquakes at epicentral (angular) distances between 30 o and 90 o and Rayleigh wave group velocity dispersion have been taken from a surface-wave tomography study of the Caribbean area. The thickest crust (around 27 km) is found at Cascorro (CCC), Soroa (SOR), Moa (MOA) and Maisi (MAS) stations while the thinnest crust (around 18 km) is found at stations Rio Carpintero (RCC) and Guantanamo Bay (GTBY), in the southeastern of Cuba; this result is in agreement with the southward gradual thinning of the crust revealed by previous studies. The inversion shows a crystalline crust with S-wave velocity between 2.9 km/s and 3.9 km/s and at the crust-mantle transition zone the shear wave velocity varies from 3.9 km/s and 4.3 km/s. The lithospheric thickness varies from 74 km, in the youngest lithosphere, to 200 km in the middle of the Cuban island. Evidences of a subducted slab possibly belonging to the Caribbean plate are present below the stations Las Mercedes (LMG), RCC and GTBY and a thicker slab is present below the SOR station. (author)
On Green's function for 3-D wave-body interaction in a channel
DEFF Research Database (Denmark)
Xia, Jinzhu
1997-01-01
series of images is evaluated accurately based on an asmptotic analysis. It is demonstrated that the Green's function has a square-root singular behaviour due to the side walls when the wave frequency approaches one of the resonant frequencies. The numerical results for the Green's function has a square......An analytical and numerical study is presented for efficient evaluation of the Green's function that satisfies the linear free surface condition and the non-penetration condition on the channel bottomand the side walls. the formulation is based on the open-sea green's function and the complete......-root singular behaviour due to the side walls when the wave frequency approaches one of the resonant frequencies. The numerical results for the Green's funciton presented in the present paper are believed to have an absolute accuracy of 10-5....
The quantum dual string wave functional in Yang-Mills theories
International Nuclear Information System (INIS)
Gervais, J.-L.; Neveu, A.
1979-01-01
From any solution of the classical Yang-Mills equations, a string wave functional based on the Wilson loop integral is defined. Its precise definition is given by replacing the string by a finite set of N points, and taking the limit N → infinity. It is shown that this functional satisfies the Schroedinger equation of the relativistic dual string to leading order in N. The relevance of this object to the quantum problem is speculated. (Auth.)
On a functional equation related to the intermediate long wave equation
International Nuclear Information System (INIS)
Hone, A N W; Novikov, V S
2004-01-01
We resolve an open problem stated by Ablowitz et al (1982 J. Phys. A: Math. Gen. 15 781) concerning the integral operator appearing in the intermediate long wave equation. We explain how this is resolved using the perturbative symmetry approach introduced by one of us with Mikhailov. By solving a certain functional equation, we prove that the intermediate long wave equation and the Benjamin-Ono equation are the unique integrable cases within a particular class of integro-differential equations. Furthermore, we explain how the perturbative symmetry approach is naturally extended to treat equations on a periodic domain. (letter to the editor)
Simanungkalit, R. H.; Anggono, T.; Syuhada; Amran, A.; Supriyanto
2018-03-01
Earthquake signal observations around the world allow seismologists to obtain the information of internal structure of the Earth especially the Earth’s crust. In this study, we used joint inversion of receiver functions and surface wave group velocities to investigate crustal structure beneath CBJI station in West Java, Indonesia. Receiver function were calculated from earthquakes with magnitude more than 5 and at distance 30°-90°. Surface wave group velocities were calculated using frequency time analysis from earthquakes at distance of 30°- 40°. We inverted shear wave velocity model beneath the station by conducting joint inversion from receiver functions and surface wave dispersions. We suggest that the crustal thickness beneath CBJI station, West Java, Indonesia is about 35 km.
Energy Technology Data Exchange (ETDEWEB)
Tang, Jau
1996-02-01
As an alternative to better physical explanations of the mechanisms of quantum interference and the origins of uncertainty broadening, a linear hopping model is proposed with ``color-varying`` dynamics to reflect fast exchange between time-reversed states. Intricate relations between this model, particle-wave dualism, and relativity are discussed. The wave function is shown to possess dual characteristics of a stable, localized ``soliton-like`` de Broglie wavelet and a delocalized, interfering Schroedinger carrier wave function.
Horizon wave function for single localized particles: GUP and quantum black-hole decay
International Nuclear Information System (INIS)
Casadio, Roberto; Scardigli, Fabio
2014-01-01
A localized particle in Quantum Mechanics is described by a wave packet in position space, regardless of its energy. However, from the point of view of General Relativity, if the particle's energy density exceeds a certain threshold, it should be a black hole. To combine these two pictures, we introduce a horizon wave function determined by the particle wave function in position space, which eventually yields the probability that the particle is a black hole. The existence of a minimum mass for black holes naturally follows, albeit not in the form of a sharp value around the Planck scale, but rather like a vanishing probability that a particle much lighter than the Planck mass may be a black hole. We also show that our construction entails an effective generalized uncertainty principle (GUP), simply obtained by adding the uncertainties coming from the two wave functions associated with a particle. Finally, the decay of microscopic (quantum) black holes is also described in agreement with what the GUP predicts. (orig.)
Russo, Cesare; Jin, Zhezhen; Palmieri, Vittorio; Homma, Shunichi; Rundek, Tatjana; Elkind, Mitchell S V; Sacco, Ralph L; Di Tullio, Marco R
2012-08-01
Increased arterial stiffness and wave reflection have been reported in heart failure with normal ejection fraction (HFNEF) and in asymptomatic left ventricular (LV) diastolic dysfunction, a precursor of HFNEF. It is unclear whether women, who have higher frequency of HFNEF, are more vulnerable than men to the deleterious effects of arterial stiffness on LV diastolic function. We investigated, in a large community-based cohort, whether sex differences exist in the relationship among arterial stiffness, wave reflection, and LV diastolic function. Arterial stiffness and wave reflection were assessed in 983 participants from the Cardiovascular Abnormalities and Brain Lesions study using applanation tonometry. The central pulse pressure/stroke volume index, total arterial compliance, pulse pressure amplification, and augmentation index were used as parameters of arterial stiffness and wave reflection. LV diastolic function was evaluated by 2-dimensional echocardiography and tissue-Doppler imaging. Arterial stiffness and wave reflection were greater in women compared with men, independent of body size and heart rate (all Pfunction in both sexes. Further adjustment for cardiovascular risk factors attenuated these relationships; however, a higher central pulse pressure/stroke volume index predicted LV diastolic dysfunction in women (odds ratio, 1.54; 95% confidence intervals, 1.03 to 2.30) and men (odds ratio, 2.09; 95% confidence interval, 1.30 to 3.39), independent of other risk factors. In conclusion, in our community-based cohort study, higher arterial stiffness was associated with worse LV diastolic function in men and women. Women's higher arterial stiffness, independent of body size, may contribute to their greater susceptibility to develop HFNEF.
Heavy quark fragmentation functions for D-wave quarkonium and charmed beauty mesons
International Nuclear Information System (INIS)
Cheung, K.; Yuan, T.C.
1995-09-01
At the large transverse momentum region, the production of heavy-heavy bound-states such as charmonium, bottomonium, and anti bc mesons in high energy e + e - and hadronic collisions is dominated by parton fragmentation. The authors calculate the heavy quark fragmentation functions into the D-wave quarkonium and anti bc mesons to leading order in the strong coupling constant and in the non-relativistic expansion. In the anti bc meson case, one set of its D-wave states is expected to lie below the open flavor threshold. The total fragmentation probability for a anti b antiquark to split into the D-wave anti bc mesons is about 2 x 10 -5 , which implies that only 2% of the total pseudo-scalar ground state B c comes from the cascades of these orbitally excited states
Trend Extraction in Functional Data of Amplitudes of R and T Waves in Exercise Electrocardiogram
Cammarota, Camillo; Curione, Mario
The amplitudes of R and T waves of the electrocardiogram (ECG) recorded during the exercise test show both large inter- and intra-individual variability in response to stress. We analyze a dataset of 65 normal subjects undergoing ambulatory test. We model the dataset of R and T series in the framework of functional data, assuming that the individual series are realizations of a non-stationary process, centered at the population trend. We test the time variability of this trend computing a simultaneous confidence band and the zero crossing of its derivative. The analysis shows that the amplitudes of the R and T waves have opposite responses to stress, consisting respectively in a bump and a dip at the early recovery stage. Our findings support the existence of a relationship between R and T wave amplitudes and respectively diastolic and systolic ventricular volumes.
Wave function of a microwave-driven Bose-Einstein magnon condensate
International Nuclear Information System (INIS)
Rezende, Sergio M.
2010-01-01
It has been observed experimentally that a magnon gas in a film of yttrium-iron garnet at room temperature driven by a microwave field exhibits Bose-Einstein condensation (BEC) when the driving power exceeds a critical value. In a previous paper we presented a model for the dynamics of the magnon system in wave-vector space that provides firm theoretical support for the formation of the BEC. Here we show that the wave function of the magnon condensate in configuration space satisfies a Gross-Pitaevskii equation similarly to other BEC systems. The theory is consistent with the previous model in wave-vector space, and its results are in qualitative agreement with recent measurements of the spatial distribution of the magnon condensate driven by a nonuniform microwave field.
A Proton-Cyclotron Wave Storm Generated by Unstable Proton Distribution Functions in the Solar Wind
Wicks, R. T.; Alexander, R. L.; Stevens, M.; Wilson, L. B., III; Moya, P. S.; Vinas, A.; Jian, L. K.; Roberts, D. A.; O’Modhrain, S.; Gilbert, J. A.;
2016-01-01
We use audification of 0.092 seconds cadence magnetometer data from the Wind spacecraft to identify waves with amplitudes greater than 0.1 nanoteslas near the ion gyrofrequency (approximately 0.1 hertz) with duration longer than 1 hour during 2008. We present one of the most common types of event for a case study and find it to be a proton-cyclotron wave storm, coinciding with highly radial magnetic field and a suprathermal proton beam close in density to the core distribution itself. Using linear Vlasov analysis, we conclude that the long-duration, large-amplitude waves are generated by the instability of the proton distribution function. The origin of the beam is unknown, but the radial field period is found in the trailing edge of a fast solar wind stream and resembles other events thought to be caused by magnetic field footpoint motion or interchange reconnection between coronal holes and closed field lines in the corona.
Non-dipolar gauge links for transverse-momentum-dependent pion wave functions
International Nuclear Information System (INIS)
Wang, Y.M.
2016-01-01
I discuss the factorization-compatible definitions of transverse-momentum-dependent (TMD) pion wave functions which are fundamental theory inputs entering QCD factorization formulae for many hard exclusive processes. I will first demonstrate that the soft subtraction factor introduced to remove both rapidity and pinch singularities can be greatly reduced by making the maximal use of the freedom to construct the Wilson-line paths when defining the TMD wave functions. I will then turn to show that the newly proposed TMD definition with non-dipolar Wilson lines is equivalent to the one with dipolar gauge links and with a complicated soft function, to all orders of the perturbative expansion in the strong coupling, as far as the infrared behavior is concerned. (author)
Analytic structure of the wave function for a hydrogen atom in an analytic potential
International Nuclear Information System (INIS)
Hill, R.N.
1984-01-01
The rate of convergence of an approximate method for solving Schroedinger's equation depends on the ability of the approximating sequence to mimic the analytic structure of the unknown exact wave function. Thus a knowledge of the analytic structure of the wave function can be of great value when approximation schemes are designed. Consider the Schroedinger equation [- 1/2 del 2 -r -1 +V(r)]Psi(r) = EPsi(r) for a hydrogen atom in a potential V(r). The general theory of elliptic partial differential equations implies that Psi is analytic at regular points, but no general theory is available at singular points. The present paper investigates the Coulomb singular point at r = 0 and shows that, if V(r) = V 1 (x, y, z)+rV 2 (x, y, z) where V 1 and V 2 are analytic functions of x, y, z at x = y = z = 0, then the wave function has the form Psi(r) = Psi 1 (x, y, z)+rPsi 2 (x, y, z) where Psi 1 and Psi 2 are analytic functions of x, y, z at x = y = z = 0
Frequency-domain Green's functions for radar waves in heterogeneous 2.5D media
Ellefsen, K.J.; Croize, D.; Mazzella, A.T.; McKenna, J.R.
2009-01-01
Green's functions for radar waves propagating in heterogeneous 2.5D media might be calculated in the frequency domain using a hybrid method. The model is defined in the Cartesian coordinate system, and its electromagnetic properties might vary in the x- and z-directions, but not in the y-direction. Wave propagation in the x- and z-directions is simulated with the finite-difference method, and wave propagation in the y-direction is simulated with an analytic function. The absorbing boundaries on the finite-difference grid are perfectly matched layers that have been modified to make them compatible with the hybrid method. The accuracy of these numerical Greens functions is assessed by comparing them with independently calculated Green's functions. For a homogeneous model, the magnitude errors range from -4.16% through 0.44%, and the phase errors range from -0.06% through 4.86%. For a layered model, the magnitude errors range from -2.60% through 2.06%, and the phase errors range from -0.49% through 2.73%. These numerical Green's functions might be used for forward modeling and full waveform inversion. ?? 2009 Society of Exploration Geophysicists. All rights reserved.
The distribution of waves in the inner magnetosphere as a function of solar wind parameters
Aryan, Homayon; Balikhin, Michael A.; Agapitov, Oleksiy; Krasnoselskikh, Vladimir; Yearby, Keith
Energetic electrons within the Earth’s radiation belts represent a serious hazard to geostationary satellites. The interactions of electrons with chorus waves play an important role in both the acceleration and loss of radiation belt electrons. Studies of the evolution of energetic electron fluxes rely heavily on numerical codes in order to model energy and pitch angle diffusion due to electron interaction with plasma waves in the frame of quasilinear approximation. Application of these codes requires knowledge of statistical wave models to present wave distributions in the magnetosphere. A number of such models are based on CRESS, Cluster, THEMIS and other mission data. These models present wave distributions as a function of L-shell, magnetic local time, magnetic latitude and geomagnetic activity expressed by geomagnetic indices (Kp or Ae). However, it has been shown by G. Reeves and co-authors that only 50% of geomagnetic storms increase flux of relativistic electrons at GEO while 20% cause a decrease. This emphasizes the importance of including solar wind parameters in addition to geomagnetic indices. The present study examines almost four years (01, January, 2004 to 29, September, 2007) of STAFF (Spatio-Temporal Analysis of Field Fluctuation) data from Double Star TC1 combined with geomagnetic indices and solar wind parameters from OMNI database in order to present a comprehensive model of chorus wave intensities as a function of L-shell, magnetic local time, magnetic latitude, geomagnetic indices and solar wind parameters. The results show that chorus emission is not only sub-storm dependent but also dependent upon solar wind parameters with solar wind velocity evidently the most influential solar wind parameter. The largest peak intensities are observed for lower band chorus during active conditions, high solar wind velocity, low density and high pressure.
Snyder, D
2002-01-01
A straightforward explanation of fundamental tenets of quantum mechanics concerning the wave function results in the thesis that the quantum mechanical wave function is a link between human cognition and the physical world. The reticence on the part of physicists to adopt this thesis is discussed. A comparison is made to the behaviorists' consideration of mind, and the historical roots of how the problem concerning the quantum mechanical wave function arose are discussed. The basis for an empirical demonstration that the wave function is a link between human cognition and the physical world is provided through developing an experiment using methodology from psychology and physics. Based on research in psychology and physics that relied on this methodology, it is likely that Einstein, Podolsky, and Rosen's theoretical result that mutually exclusive wave functions can simultaneously apply to the same concrete physical circumstances can be implemented on an empirical level.
Expansion of X-ray form factor for close shell using uncorrelated wave function
Energy Technology Data Exchange (ETDEWEB)
AL-Robayi, Enas M. [Babylon University , College of Science for Women, laser Physics Department, Hilla (Iraq)
2013-12-16
The atomic scattering factor has been studied for Be+ve, and B+2ve ions using the uncorrelated wave function (Hartree-Fock (HF)) for inter particle electronic shells. The physical importance of this factor appears in its relation to several important atomic properties as, the coherent scattering intensity, the total scattering intensity, the incoherent scattering function, the coherent scattering cross section, the total incoherent cross section, the nuclear magnetic shielding constant, the geometrical structure factor. Also there is one atomic properties the one particle radial density distribution function D(r)has been studied using the partitioning technique.
Fermionic spectral functions in backreacting p-wave superconductors at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Giordano, G.L.; Grandi, N.E.; Lugo, A.R. [Instituto de Física de La Plata - CONICET & Departamento de Física - UNLP,C.C. 67, 1900 La Plata (Argentina)
2017-04-14
We investigate the spectral function of fermions in a p-wave superconducting state, at finite both temperature and gravitational coupling, using the AdS/CFT correspondence and extending previous research. We found that, for any coupling below a critical value, the system behaves as its zero temperature limit. By increasing the coupling, the “peak-dip-hump” structure that characterizes the spectral function at fixed momenta disappears. In the region where the normal/superconductor phase transition is first order, the presence of a non-zero order parameter is reflected in the absence of rotational symmetry in the fermionic spectral function at the critical temperature.
Kinetic Alfven wave in the presence of kappa distribution function in plasma sheet boundary layer
Energy Technology Data Exchange (ETDEWEB)
Shrivastava, G., E-mail: geetphy9@gmail.com; Ahirwar, G. [School of Studies in Physics, Vikram University, Ujjain India (India); Shrivastava, J., E-mail: jayashrivastava2007@gmail.com [Dronacharya Group of Institutions, Greater Noida-India (India)
2015-07-31
The particle aspect approach is adopted to investigate the trajectories of charged particles in the electromagnetic field of kinetic Alfven wave. Expressions are found for the dispersion relation, damping/growth rate and associated currents in the presence of kappa distribution function. Kinetic effect of electrons and ions are included to study kinetic Alfven wave because both are important in the transition region. It is found that the ratio β of electron thermal energy density to magnetic field energy density and the ratio of ion to electron thermal temperature (T{sub i}/T{sub e}), and kappa distribution function affect the dispersion relation, damping/growth rate and associated currents in both cases(warm and cold electron limit).The treatment of kinetic Alfven wave instability is based on assumption that the plasma consist of resonant and non resonant particles. The resonant particles participate in an energy exchange process, whereas the non resonant particles support the oscillatory motion of the wave.
Stability analysis and reconstruction of wave distribution functions in warm plasmas
International Nuclear Information System (INIS)
Oscarsson, T.E.
1989-05-01
The purpose of this thesis is first to describe stability analysis and reconstruction of the wave distribution function (WDF) separately, and then to show how the two approaches can be combined in an investigation of satellite data. To demonstrate the type of stability investigation that is often used in space physics we study instabilities below the local proton gyrofrequency which are caused by anisotropic proton distributions. Arbitrary angles between the wavevector and the background magnetic field are considered, and effects of warm plasma on the wave propagation properties are included. We also comment briefly given on an often-used scheme for classifying instabilities. In our discussion on WDF analysis we develop a completely new and general method for reconstructing the WDF. Our scheme can be used to reconstruct the distribution function of waves in warm as well as cold plasma. Doppler effects introduced by satellite motion are included, and the reconstructions can be performed over a broad frequency range simultaneously. The applicability of our new WDF reconstruction method is studied in model problems and in an application to observations made by the Swedish satellite Viking. In the application to Viking data we combine stability and WDF analyses in a unique way that promises to become an important tool in future studies of wave-particle interactions in space plasmas. (author)
Bouwmeester, J Christopher; Park, Jiheum; Valdovinos, John; Bonde, Pramod
2018-05-29
Changing the speed of left ventricular assist devices (LVADs) cyclically may be useful to restore aortic pulsatility; however, the effects of this pulsation on right ventricular (RV) function are unknown. This study investigates the effects of direct ventricular interaction by quantifying the amount of wave energy created by RV contraction when axial and centrifugal LVADs are used to assist the left ventricle. In 4 anesthetized pigs, pressure and flow were measured in the main pulmonary artery and wave intensity analysis was used to identify and quantify the energy of waves created by the RV. The axial pump depressed the intensity of waves created by RV contraction compared with the centrifugal pump. In both pump designs, there were only minor and variable differences between the continuous and pulsed operation on RV function. The axial pump causes the RV to contract with less energy compared with a centrifugal design. Diminishing the ability of the RV to produce less energy translates to less pressure and flow produced, which may lead to LVAD-induced RV failure. The effects of pulsed LVAD operation on the RV appear to be minimal during acute observation of healthy hearts. Further study is necessary to uncover the effects of other modes of speed modulation with healthy and unhealthy hearts to determine if pulsed operation will benefit patients by reducing LVAD complications.
Coulomb singularities in scattering wave functions of spin-orbit-coupled states
International Nuclear Information System (INIS)
Bogdanski, P.; Ouerdane, H.
2011-01-01
We report on our analysis of the Coulomb singularity problem in the frame of the coupled channel scattering theory including spin-orbit interaction. We assume that the coupling between the partial wave components involves orbital angular momenta such that Δl= 0, ±2. In these conditions, the two radial functions, components of a partial wave associated to two values of the angular momentum l, satisfy a system of two second-order ordinary differential equations. We examine the difficulties arising in the analysis of the behavior of the regular solutions near the origin because of this coupling. First, we demonstrate that for a singularity of the first kind in the potential, one of the solutions is not amenable to a power series expansion. The use of the Lippmann-Schwinger equations confirms this fact: a logarithmic divergence arises at the second iteration. To overcome this difficulty, we introduce two auxilliary functions which, together with the two radial functions, satisfy a system of four first-order differential equations. The reduction of the order of the differential system enables us to use a matrix-based approach, which generalizes the standard Frobenius method. We illustrate our analysis with numerical calculations of coupled scattering wave functions in a solid-state system.
Measurement as absorption of Feynman trajectories: Collapse of the wave function can be avoided
International Nuclear Information System (INIS)
Marchewka, A.; Schuss, Z.
2002-01-01
We define a measuring device (detector) of the coordinate of quantum particle as an absorbing wall that cuts off the particle's wave function. The wave function in the presence of such a detector vanishes on the detector. The trace the absorbed particles leave on the detector is identified as the absorption current density on the detector. This density is calculated from the solution of Schroedinger's equation with a reflecting boundary at the detector. This current density is not the usual Schroedinger current density. We define the probability distribution of the time of arrival to a detector in terms of the absorption current density. We define coordinate measurement by an absorbing wall in terms of four postulates. In the resulting theory the quantum-mechanical collapse of the wave function is replaced with the usual collapse of the probability distribution after observation. Two measurement experiments are proposed to measure time of arrival and the probability density function of a freely propagating two-dimensional Gaussian packet from the measurement of the absorption current on two planes
Phase function of a spherical particle when scattering an inhomogeneous electromagnetic plane wave.
Frisvad, Jeppe Revall
2018-04-01
In absorbing media, electromagnetic plane waves are most often inhomogeneous. Existing solutions for the scattering of an inhomogeneous plane wave by a spherical particle provide no explicit expressions for the scattering components. In addition, current analytical solutions require evaluation of the complex hypergeometric function F 1 2 for every term of a series expansion. In this work, I develop a simpler solution based on associated Legendre functions with argument zero. It is similar to the solution for homogeneous plane waves but with new explicit expressions for the angular dependency of the far-field scattering components, that is, the phase function. I include recurrence formulas for practical evaluation and provide numerical examples to evaluate how well the new expressions match previous work in some limiting cases. The predicted difference in the scattering phase function due to inhomogeneity is not negligible for light entering an absorbing medium at an oblique angle. The presented theory could thus be useful for predicting scattering behavior in dye-based random lasing and in solar cell absorption enhancement.
Effect of logarithmic terms on the energy level and wave function of a dtμ system
International Nuclear Information System (INIS)
Zhen, Z.
1990-01-01
The effect of the logarithmic terms on the ground-state energy level and wave function of a dtμ system is investigated. No significant contribution of the logarithmic terms on either the energy level or wave function is found. At the same time, we find the lowest upper bound of the ground-state energy ever obtained by the variational method using the Hylleraas-type trial function and that the corresponding wave function satisfies the cusp condition as r dt →0 automatically to a reasonable accuracy for r<3 (muonic a.u.), where r is the distance between the fused dt nuclear compound and the muon
Quantum Ising model in transverse and longitudinal fields: chaotic wave functions
International Nuclear Information System (INIS)
Atas, Y Y; Bogomolny, E
2017-01-01
The construction of a statistical model for eigenfunctions of the Ising model in transverse and longitudinal fields is discussed in detail for the chaotic case. When the number of spins is large, each wave function coefficient has the Gaussian distribution with zero mean and variance calculated from the first two moments of the Hamiltonian. The main part of the paper is devoted to the discussion of various corrections to the asymptotic result. One type of correction is related to higher order moments of the Hamiltonian, and can be taken into account by Gibbs-like formulae. Other corrections are due to symmetry contributions, which manifest as different numbers of non-zero real and complex coefficients. The statistical model with these corrections included agrees well with numerical calculations of wave function moments. (paper)
Hadron wave functions as a probe of a two-color baryonic medium
Energy Technology Data Exchange (ETDEWEB)
Amato, Alessandro [Swansea University, Department of Physics, College of Science, Swansea (United Kingdom); University of Helsinki, Department of Physics and Helsinki Institute of Physics, P.O. Box 64, Helsinki (Finland); Giudice, Pietro [Universitaet Muenster, Institut fuer Theoretische Physik, Muenster (Germany); Hands, Simon [Swansea University, Department of Physics, College of Science, Swansea (United Kingdom)
2015-04-01
The properties of the ground state of two-color QCD at non-zero baryon chemical potential μ present an interesting problem in strongly interacting gauge theory; in particular the nature of the physically relevant degrees of freedom in the superfluid phase in the post-onset regime μ > m{sub π} /2 still needs clarification. In this study we present evidence for in-medium effects at high μ by studying the wave functions of mesonic and diquark states using orthodox lattice simulation techniques, made possible by the absence of a sign problem for the model with N{sub f} = 2. Our results show that beyond onset the spatial extent of hadrons decreases as μ grows, and that the wave function profiles are consistent with the existence of a dynamically gapped Fermi surface in this regime. (orig.)
Probing α-particle wave functions by (d,α) tensor analyzing powers
International Nuclear Information System (INIS)
Crosson, E.R.; Das, R.K.; Lemieux, S.K.; Ludwig, E.J.; Thompson, W.J.; Bisenberger, M.; Hertenberger, R.; Hofer, D.; Kader, H.; Schiemenz, P.; Graw, G.; Eiro, A.M.; Santos, F.D.
1992-01-01
Components of α-particle wave functions corresponding to d-d configurations are used to predict analyzing powers in the (d,α) reaction. Tensor analyzing powers, especially A xx , are shown to clearly distinguish between wave functions generated by different realistic nucleon-nucleon interactions. Data for the 58 Ni(d,α) 56 Co reaction to the 7 + stretched-nucleon-orbital state at 2.283-MeV excitation in 56 Co, measured with 22-MeV deuterons, are compared to predictions from the Argonne and Urbana interactions. Similar comparisons are made to data for the lowest J π =7 + state in 48 Sc populated by the 50 Ti(d,α) 48 Sc reaction at 16 MeV
Hartle-Hawking wave function and large-scale power suppression of CMB*
Directory of Open Access Journals (Sweden)
Yeom Dong-han
2018-01-01
Full Text Available In this presentation, we first describe the Hartle-Hawking wave function in the Euclidean path integral approach. After we introduce perturbations to the background instanton solution, following the formalism developed by Halliwell-Hawking and Laflamme, one can obtain the scale-invariant power spectrum for small-scales. We further emphasize that the Hartle-Hawking wave function can explain the large-scale power suppression by choosing suitable potential parameters, where this will be a possible window to confirm or falsify models of quantum cosmology. Finally, we further comment on possible future applications, e.g., Euclidean wormholes, which can result in distinct signatures to the power spectrum.
International Nuclear Information System (INIS)
Sarsa, A; Buendía, E; Gálvez, F J
2016-01-01
Explicitly correlated wave functions to study confined atoms under impenetrable spherical walls have been obtained. Configuration mixing and a correlation factor are included in the variational ansatz. The behaviors of the ground state and some low-lying excited states of He, Be, B and C atoms with the confinement size are analyzed. Level crossing with confinement is found for some cases. This effect is analyzed in terms of the single particle energy of the occupied orbitals. The multi-configuration parameterized optimized effective potential method is employed with a cut-off factor to account for Dirichlet boundary conditions. The variational Monte Carlo method is used to deal with explicitly correlated wave functions. (paper)
High energy QCD at NLO: from light-cone wave function to JIMWLK evolution
Energy Technology Data Exchange (ETDEWEB)
Lublinsky, Michael [Department of Physics, Ben-Gurion University of the Negev,Beer-Sheva 84105 (Israel); Physics Department, University of Connecticut,2152 Hillside Road, Storrs, CT 06269-3046 (United States); Mulian, Yair [Department of Physics, Ben-Gurion University of the Negev,Beer-Sheva 84105 (Israel)
2017-05-17
Soft components of the light cone wave-function of a fast moving projectile hadron is computed in perturbation theory to the third order in QCD coupling constant. At this order, the Fock space of the soft modes consists of one-gluon, two-gluon, and a quark-antiquark states. The hard component of the wave-function acts as a non-Abelian background field for the soft modes and is represented by a valence charge distribution that accounts for non-linear density effects in the projectile. When scattered off a dense target, the diagonal element of the S-matrix reveals the Hamiltonian of high energy evolution, the JIMWLK Hamiltonian. This way we provide a new direct derivation of the JIMWLK Hamiltonian at the Next-to-Leading Order.
Angular momentum projection on a mesh of cranked Hartree-Fock wave functions
International Nuclear Information System (INIS)
Baye, D.; Heenen, P.
1984-01-01
A method for projecting on angular momentum wave functions discretized on a three-dimensional Cartesian mesh is presented. The method is based on a matrix representation of the rotation operator. It is applied to cranked Hartree-Fock wave functions calculated for 24 Mg with a simple interaction. In this case, the accuracy of the projected matrix elements is estimated to be of the order of 0.1%. An extensive comparison of the projected and cranking energies is made. The validity of the cranking method as an approximation to a variation-after-projection calculation seems to be wider than usually expected. The study of the fission barrier of 24 Mg for the channel 4 He- 16 O- 4 He shows that the cranking predictions for these very deformed states are quite reliable
Weissman, D. E.; Johnson, J. W.
1986-01-01
The directional spectrum and the microwave modulation transfer function of ocean waves can be measured with the airborne two frequency scatterometer technique. Similar to tower based observations, the aircraft measurements of the Modulation Transfer Function (MTF) show that it is strongly affected by both wind speed and sea state. Also detected are small differences in the magnitudes of the MTF between downwind and upwind radar look directions, and variations with ocean wavenumber. The MTF inferred from the two frequency radar is larger than that measured using single frequency, wave orbital velocity techniques such as tower based radars or ROWS measurements from low altitude aircraft. Possible reasons for this are discussed. The ability to measure the ocean directional spectrum with the two frequency scatterometer, with supporting MTF data, is demonstrated.
Imaging the square of the correlated two-electron wave function of a hydrogen molecule.
Waitz, M; Bello, R Y; Metz, D; Lower, J; Trinter, F; Schober, C; Keiling, M; Lenz, U; Pitzer, M; Mertens, K; Martins, M; Viefhaus, J; Klumpp, S; Weber, T; Schmidt, L Ph H; Williams, J B; Schöffler, M S; Serov, V V; Kheifets, A S; Argenti, L; Palacios, A; Martín, F; Jahnke, T; Dörner, R
2017-12-22
The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H 2 two-electron wave function in which electron-electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.
Weissman, D. E.; Johnson, J. W.
1984-01-01
The directional spectrum and the microwave modulation transfer function of ocean waves can be measured with the airborne two frequency scatterometer technique. Similar to tower based observations, the aircraft measurements of the Modulation Transfer Function (MTF) show that it is strongly affected by both wind speed and sea state. Also detected are small differences in the magnitudes of the MTF between downwind and upwind radar look directions, and variations with ocean wavenumber. The MTF inferred from the two frequency radar is larger than that measured using single frequency, wave orbital velocity techniques such as tower based radars or ROWS measurements from low altitude aircraft. Possible reasons for this are discussed. The ability to measure the ocean directional spectrum with the two frequency scatterometer, with supporting MTF data, is demonstrated.
Some aspects of wave-functions in disordered and incommensurate models
International Nuclear Information System (INIS)
Roman, E.; Wiecko, C.
1984-09-01
We study the localization length and fractal dimensionality of wave functions in the random diagonal and off-diagonal Anderson model. This preliminary study is intended to establish how much connection between these two magnitudes exists and how they behave at the transition from the localized to extended regimes both in these random models as well as in the incommensurate models such as Aubry's. (author)
Entropy vs. Action in the (2+1)-Dimensional Hartle-Hawking Wave Function
Carlip, Steven
1992-01-01
In most attempts to compute the Hartle-Hawking ``wave function of the universe'' in Euclidean quantum gravity, two important approximations are made: the path integral is evaluated in a saddle point approximation, and only the leading (least action) extremum is taken into account. In (2+1)-dimensional gravity with a negative cosmological constant, the second assumption is shown to lead to incorrect results: although the leading extremum gives the most important single contribution to the path...
Application of numerical methods to the determination of molecular wave functions
International Nuclear Information System (INIS)
Douady, Jerome
1969-01-01
A simplified SCF Method is developed. The wave function of molecular systems and spin densities in the case of free radicals are computed from geometrical data. This method, including at the beginning a delocalization of electrons over all the molecular system, two methods which clear out bonding and anti-bonding interactions have been studied and programmed: a) overlap population analysis, b) localisation of molecular orbitals. These methods have been carried out in the case of organic compounds and free radicals. (author) [fr
Inelastic electron scattering as an indicator of clustering in wave functions
International Nuclear Information System (INIS)
1998-01-01
While the shell model is the most fundamental of nuclear structure models, states in light nuclei also have been described successfully in terms of clusters. Indeed, Wildemuth and Tang have shown a correspondence between the cluster and shell models, the clusters arising naturally as correlations out of the shell model Hamiltonian. For light nuclei, the cluster model reduces the many-body problem to a few-body one, with interactions occurring between the clusters. These interactions involve particle exchanges, since the nucleons may still be considered somewhat freely moving, with their motion not strictly confined to the clusters themselves. Such is the relation of the cluster model to the shell model. For a realistic shell model then, one may expect some evidence of clustering in the wave functions for those systems in which the cluster model is valid. The results obtained using the multi-ℎωshell model wave functions are closer in agreement with experiment than the results obtained using the 0ℎωwave functions. Yet in all cases, that level of agreement is not good, with the calculations underpredicting the measured values by at least a factor of two. This indicates that the shell model wave functions do not exhibit clustering behavior, which is expected to manifest itself at small momentum transfer. The exception is the transition to the 7 - /2 state in 7 Li, for which the value obtained from the γ-decay width is in agreement with the value obtained from the MK3W and (0 + 2 + 4)ℎωshell model calculations
Inelastic electron scattering as an indicator of clustering in wave functions
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-09-01
While the shell model is the most fundamental of nuclear structure models, states in light nuclei also have been described successfully in terms of clusters. Indeed, Wildemuth and Tang have shown a correspondence between the cluster and shell models, the clusters arising naturally as correlations out of the shell model Hamiltonian. For light nuclei, the cluster model reduces the many-body problem to a few-body one, with interactions occurring between the clusters. These interactions involve particle exchanges, since the nucleons may still be considered somewhat freely moving, with their motion not strictly confined to the clusters themselves. Such is the relation of the cluster model to the shell model. For a realistic shell model then, one may expect some evidence of clustering in the wave functions for those systems in which the cluster model is valid. The results obtained using the multi-{Dirac_h}{omega}shell model wave functions are closer in agreement with experiment than the results obtained using the 0{Dirac_h}{omega}wave functions. Yet in all cases, that level of agreement is not good, with the calculations underpredicting the measured values by at least a factor of two. This indicates that the shell model wave functions do not exhibit clustering behavior, which is expected to manifest itself at small momentum transfer. The exception is the transition to the 7{sup -}/2 state in {sup 7}Li, for which the value obtained from the {gamma}-decay width is in agreement with the value obtained from the MK3W and (0 + 2 + 4){Dirac_h}{omega}shell model calculations 17 refs., 1 tab., 2 figs.
Wave function, spectrum and effective mass of holes in 2 D quantum antiferromagnet
Su, Zhao-bin; Ll, Yan-min; Lai, Wu-yan; Yu, Lu
1989-12-01
A new quantum Bogoliubov-de Gennes (BdeG) formalism is developed to study the self-consistent motion of holes on an quantum antiferromagnetic (QAFM) background within the generalized t- J model. The local distortion of spin configurations and the renormalization of the hole motion due to virtual excitations of the distorted spin background are treated on an equal footing. The hole wave function and its spectrum, as well as the effective mass for a propagating hole are calculated explicitly.
Joint resummation for pion wave function and pion transition form factor
Energy Technology Data Exchange (ETDEWEB)
Li, Hsiang-nan [Institute of Physics, Academia Sinica,Academia Rd., Taipei, Taiwan 115 (China); Department of Physics, National Cheng-Kung University,University Rd., Tainan, Taiwan 701 (China); Department of Physics, National Tsing-Hua University,Kuang-Fu Rd., Hsinchu, Taiwan 300 (China); Shen, Yue-Long [College of Information Science and Engineering, Ocean University of China,Songling Rd, Qingdao, Shandong 266100 (China); Wang, Yu-Ming [Institut für Theoretische Teilchenphysik und Kosmologie RWTH Aachen,Physikzentrum Otto-Blumenthal-Straße, D-52056 Aachen (Germany); Physik Department T31, Technische Universität München,James-Franck-Straße, D-85748 Garching (Germany)
2014-01-03
We construct an evolution equation for the pion wave function in the k{sub T} factorization formalism, whose solution sums the mixed logarithm ln xln k{sub T} to all orders, with x (k{sub T}) being a parton momentum fraction (transverse momentum). This joint resummation induces strong suppression of the pion wave function in the small x and large b regions, b being the impact parameter conjugate to k{sub T}, and improves the applicability of perturbative QCD to hard exclusive processes. The above effect is similar to those from the conventional threshold resummation for the double logarithm ln{sup 2} x and the conventional k{sub T} resummation for ln{sup 2} k{sub T}. Combining the evolution equation for the hard kernel, we are able to organize all large logarithms in the γ{sup ∗}π{sup 0}→γ scattering, and to establish a scheme-independent k{sub T} factorization formula. It will be shown that the significance of next-to-leading-order contributions and saturation behaviors of this process at high energy differ from those under the conventional resummations. It implies that QCD logarithmic corrections to a process must be handled appropriately, before its data are used to extract a hadron wave function. Our predictions for the involved pion transition form factor, derived under the joint resummation and the input of a non-asymptotic pion wave function with the second Gegenbauer moment a{sub 2}=0.05, match reasonably well the CLEO, BaBar, and Belle data.
Renormalization-group decimation technique for spectra, wave-functions and density of states
International Nuclear Information System (INIS)
Wiecko, C.; Roman, E.
1983-09-01
The Renormalization Group decimation technique is very useful for problems described by 1-d nearest neighbour tight-binding model with or without translational invariance. We show how spectra, wave-functions and density of states can be calculated with little numerical work from the renormalized coefficients upon iteration. The results of this new procedure are verified using the model of Soukoulis and Economou. (author)
Studies on eletron scattering by hydrogen atoms through of a correlationed wave function
International Nuclear Information System (INIS)
Jacchieri, S.G.
1982-01-01
A correlationed wave function dependent of two adjustable parameters ( α e β), aiming describe a system formed by an electron and a hydrogen atom is studied. Some elastic differential cross-sections for several values of α and β parameters, scattering angle of 2 0 to 140 0 and energies of 50 eV and 680 eV are presented. (M.J.C.) [pt
p and d wave neutron strength functions for rare earth nuclei
International Nuclear Information System (INIS)
Kononov, V.N.; Yurlov, B.D.
1978-01-01
The authors obtained p and d wave neutron strength functions by analysis of average fast neutron radiative capture cross-sections for the isotopes sup(142, 144, 146, 148, 150)Nd, sup(144, 147, 148, 149, 150, 152, 154)Sm, sup(151, 153)Eu, sup(156, 158, 160)Gd and sup(166, 168, 170)Er. The data are compared with results obtained by other authors, with calculations based on the optical model and with computations based on the semi-microscopic approach. (author)
Comultiplication in ABCD algebra and scalar products of Bethe wave functions
International Nuclear Information System (INIS)
Mikhailov, A.
1995-01-01
The representation of scalar products of Bethe wave functions in terms of dual fields, plays an important role in the theory of completely integrable models. The proof is based on the explicit expression for the open-quotes seniorclose quotes coefficient, which was guessed in the Izergin paper and then proved to satisfy some recurrent relations, which determine it unambiguously. In this paper we present an alternative proof based on direct computation. It uses the operation of comultiplication in the ABCD-algebra
On wave functions of mesons involving the s-, c- and b-quarks
International Nuclear Information System (INIS)
Zhitnitskij, A.R.; Zhitnitskij, I.R.; Chernyak, V.L.
1983-01-01
The wave function components of pseudoscalar and vestor mesons which are antisymmertric with respect to permutation of the quark momenta are studied. The results are as follows: elt xsub(s)-xsub(u) > sub(K) approximately equal to 0.11 for the K meson, sub(K*) approximately equal to 0.15-C.20 for the K* meson, being a mean fraction of the longitudinal momentum transferred by the s(u) quark. The following estimates are obtained: / approximately equal to 0.20-0.25; / approximately equal to 0.8x10 -2 . The asymptotics of the K 0 -meson form factor and the etasub(c) → KK* decay width are found. Properties of the wave functions of mesons which contain a light and a heavy quark (D, B, ...) are considered. For the B 0 meson approximately equal to 0.10 is found. Arguments are given supporting nonenhancement of the amplitudes of the processes involving D mesons compared to similar K-meson amplitudes. A simple way is suggested to determine the asymptotic form of various wave functions
9Be scattering with microscopic wave functions and the continuum-discretized coupled-channel method
Descouvemont, P.; Itagaki, N.
2018-01-01
We use microscopic 9Be wave functions defined in a α +α +n multicluster model to compute 9Be+target scattering cross sections. The parameter sets describing 9Be are generated in the spirit of the stochastic variational method, and the optimal solution is obtained by superposing Slater determinants and by diagonalizing the Hamiltonian. The 9Be three-body continuum is approximated by square-integral wave functions. The 9Be microscopic wave functions are then used in a continuum-discretized coupled-channel (CDCC) calculation of 9Be+208Pb and of 9Be+27Al elastic scattering. Without any parameter fitting, we obtain a fair agreement with experiment. For a heavy target, the influence of 9Be breakup is important, while it is weaker for light targets. This result confirms previous nonmicroscopic CDCC calculations. One of the main advantages of the microscopic CDCC is that it is based on nucleon-target interactions only; there is no adjustable parameter. The present work represents a first step towards more ambitious calculations involving heavier Be isotopes.
Connection of relativistic and nonrelativistic wave functions in the calculation of leptonic widths
International Nuclear Information System (INIS)
Durand, B.; Durand, L.
1984-01-01
We generalize our previous JWKB relations between the relativistic qq-bar wave function at the origin and (a) the inverse density of states of the qq-bar system and (b) the nonrelativistic qq-bar wave function at the origin, to the case of potentials with a Coulomb singularity. We show that the square of the Bethe-Salpeter wave function at the the origin is given approximately for 1 - states by for M/sub n/>2m/sub q/, where F(v) = (4πα/sub s//3v)[1-exp(-4πα /sub s//3v)] -1 is the usual Coulomb factor and g(v)approx. =1 is associated with the lowest-order gluonic radiative corrections. We present numerical evidence for the remarkable accuracy of these relations, which have important implications for the use of nonrelativistic potential models to describe quarkonium systems. We also discuss some subtleties in the v and α/sub s/ dependence of corrections to leptonic widths
International Nuclear Information System (INIS)
Wyatt, Robert E.; Kouri, Donald J.; Hoffman, David K.
2000-01-01
The quantum trajectory method (QTM) was recently developed to solve the hydrodynamic equations of motion in the Lagrangian, moving-with-the-fluid, picture. In this approach, trajectories are integrated for N fluid elements (particles) moving under the influence of both the force from the potential surface and from the quantum potential. In this study, distributed approximating functionals (DAFs) are used on a uniform grid to compute the necessary derivatives in the equations of motion. Transformations between the physical grid where the particle coordinates are defined and the uniform grid are handled through a Jacobian, which is also computed using DAFs. A difficult problem associated with computing derivatives on finite grids is the edge problem. This is handled effectively by using DAFs within a least squares approach to extrapolate from the known function region into the neighboring regions. The QTM-DAF is then applied to wave packet transmission through a one-dimensional Eckart potential. Emphasis is placed upon computation of the transmitted density and wave function. A problem that develops when part of the wave packet reflects back into the reactant region is avoided in this study by introducing a potential ramp to sweep the reflected particles away from the barrier region. (c) 2000 American Institute of Physics
Diagonal Born-Oppenheimer correction for coupled-cluster wave-functions
Shamasundar, K. R.
2018-06-01
We examine how geometry-dependent normalisation freedom of electronic wave-functions affects extraction of a meaningful diagonal Born-Oppenheimer correction (DBOC) to the ground-state Born-Oppenheimer potential energy surface (PES). By viewing this freedom as a kind of gauge-freedom, it is shown that DBOC and the resulting associated mass-dependent adiabatic PES are gauge-invariant quantities. A sum-over-states (SOS) formula for DBOC which explicitly exhibits this invariance is derived. A biorthogonal formulation suitable for DBOC computations using standard unnormalised coupled-cluster (CC) wave-functions is presented. This is shown to lead to a biorthogonal version of SOS formula with similar properties. On this basis, different computational schemes for evaluating DBOC using approximate CC wave-functions are derived. One of this agrees with the formula used in the current literature. The connection to adiabatic-to-diabatic transformations in non-adiabatic dynamics is explored and complications arising from biorthogonal nature of CC theory are identified.
NN wave function at small distances and hard bremsstrahlung in the process pp→ppγ
International Nuclear Information System (INIS)
Neudatchin, V. G.; Khokhlov, N. A.; Shirokov, A. M.; Knyr, V. A.
1997-01-01
Various possibilities of studying the NN wave function at small distances--and in particular, quark degrees of freedom in the NN system--are discussed. It is shown that there is such a possibility at moderate energies--namely, hard bremsstrahlung in the process pp→ppγ at proton-beam energies in the range 350-450 MeV permits distinguishing between the pp wave function with nodes in S and P waves that corresponds to the Moscow potential of NN interaction from functions obtained with repulsive-core mesonic potentials. In the regions where photon energies in the c.m.s. are maximal (forward and backward photon emission angles in the laboratory frame), the pp→ppγ cross section calculated with the Moscow potential has maxima at which it is approximately five times larger than the analogous cross section calculated with repulsive-core mesonic potentials. The coordinate-representation formalism of the theory of bremsstrahlung is expounded
Stahlschmidt, Z R; French, S S; Ahn, A; Webb, A; Butler, M W
Animals will continue to encounter increasingly warm environments, including more frequent and intense heat waves. Yet the physiological consequences of heat waves remain equivocal, potentially because of variation in adaptive plasticity (reversible acclimation) and/or aspects of experimental design. Thus, we measured a suite of physiological variables in the corn snake (Pantherophis guttatus) after exposure to field-parameterized, fluctuating temperature regimes (moderate temperature and heat wave treatments) to address two hypotheses: (1) a heat wave causes physiological stress, and (2) thermal performance of immune function exhibits adaptive plasticity in response to a heat wave. We found little support for our first hypothesis because a simulated heat wave had a negative effect on body mass, but it also reduced oxidative damage and did not affect peak performance of three immune metrics. Likewise, we found only partial support for our second hypothesis. After exposure to a simulated heat wave, P. guttatus exhibited greater performance breadth and reduced temperature specialization (the standardized difference between peak performance and performance breadth) for only one of three immune metrics and did so in a sex-dependent manner. Further, a simulated heat wave did not elicit greater performance of any immune metric at higher temperatures. Yet a heat wave likely reduced innate immune function in P. guttatus because each metric of innate immune performance in this species (as in most vertebrates) was lower at elevated temperatures. Together with previous research, our study indicates that a heat wave may have complex, modest, and even positive physiological effects in some taxa.
Mitri, Farid
2014-11-01
The generalized theory of resonance scattering (GTRS) by an elastic spherical target in acoustics is extended to describe the arbitrary scattering of a finite beam using the addition theorem for the spherical wave functions of the first kind under a translation of the coordinate origin. The advantage of the proposed method over the standard discrete spherical harmonics transform previously used in the GTRS formalism is the computation of the off-axial beam-shape coefficients (BSCs) stemming from a closed-form partial-wave series expansion representing the axial BSCs in spherical coordinates. With this general method, the arbitrary acoustical scattering can be evaluated for any particle shape and size, whether the particle is partially or completely illuminated by the incident beam. Numerical examples for the axial and off-axial resonance scattering from an elastic sphere placed arbitrarily in the field of a finite circular piston transducer with uniform vibration are provided. Moreover, the 3-D resonance directivity patterns illustrate the theory and reveal some properties of the scattering. Numerous applications involving the scattering phenomenon in imaging, particle manipulation, and the characterization of multiphase flows can benefit from the present analysis because all physically realizable beams radiate acoustical waves from finite transducers as opposed to waves of infinite extent.
Symmetrized partial-wave method for density-functional cluster calculations
International Nuclear Information System (INIS)
Averill, F.W.; Painter, G.S.
1994-01-01
The computational advantage and accuracy of the Harris method is linked to the simplicity and adequacy of the reference-density model. In an earlier paper, we investigated one way the Harris functional could be extended to systems outside the limits of weakly interacting atoms by making the charge density of the interacting atoms self-consistent within the constraints of overlapping spherical atomic densities. In the present study, a method is presented for augmenting the interacting atom charge densities with symmetrized partial-wave expansions on each atomic site. The added variational freedom of the partial waves leads to a scheme capable of giving exact results within a given exchange-correlation approximation while maintaining many of the desirable convergence and stability properties of the original Harris method. Incorporation of the symmetry of the cluster in the partial-wave construction further reduces the level of computational effort. This partial-wave cluster method is illustrated by its application to the dimer C 2 , the hypothetical atomic cluster Fe 6 Al 8 , and the benzene molecule
Watt-Level Continuous-Wave Emission from a Bi-Functional Quantum Cascade Laser/Detector
2017-04-18
cally authorized by the U.S. Government may violate any copyrights that exist in this work. Watt-level continuous- wave emission from a bi- functional ... wave bi- functional devices, opens the perspective of on-chip dual comb spectroscopy. Also for discrete sens- ing setups, one can switch to lasers...seas.harvard.edu Abstract Bi- functional active regions, capable of light generation and detection at the same wavelength, allow a straightforward realization of
Hadronic wave functions at short distances and the operator product expansion
International Nuclear Information System (INIS)
Brodsky, S.J.; Lepage, G.P.
1980-01-01
The operator product expansion, of appropriate products of quark fields, is used to find the anamalous dimensions which control the short distance behavior of hadronic wave functions. This vehavior in turn controls the high-Q 2 limit of hadronic form factors. In particular, we relate each anamalous dimension of the nonsinglet structure functions to a corresponding logarithmic correction factor to the nominal αsub(s)(Q 2 )/Q 2 fall off of meson form factors. Unlike the case of deep inelastic lepton-hadron scattering, the operator product necessary here involves extra terms which do not contribute to forward matrix elements. (orig.)
Badawy, Ahmed; Hegazi, Mona; Gaber, Hanan; Korrat, Ibrahim
2018-01-01
In this study, we used a combined inversion of body wave receiver functions and surface wave dispersion measurements to provide constraints on the crustal structure of northern Egypt. The two techniques are complementary to each other: receiver functions (RFs) are sensitive to shear-wave velocity contrasts, while surface wave dispersion (SWD) measurements are sensitive to finite variations of shear-wave velocity with depth. A database of 122 teleseismic events digitally recorded by the Egyptian National Seismological Network (ENSN) stations has been used as well. To enhance the resulting RFs at each ENSN station, the H-k stacking method was applied. A joint inversion process between the resulting receiver functions and the surface wave dispersion curves was applied as well. We have produced three averaged velocity structure models for distinct geographic and tectonic provinces namely Sinai, eastern desert, and western desert from east to the west respectively. These models will deeply help in estimation the epicenter distance of earthquake, focal mechanism solutions, and earthquake hazard analysis in northern Egypt. An obvious image of the subsurface structure has been determined which shows that generally the crustal structure of northern Egypt consists of three layers covered with a sequence of sediments that differs in thickness from across the region except in the Sharm area where the sedimentary cover is absent. The obtained results indicate that crustal thickness differs from east to west and reaches its maximum value of about 36 km at Siwa station (SWA) in the western desert and its minimum value of about 28 km at Sharm station (SHR) of the southern tip of the Sinai Peninsula. The Vp/Vs ratio varies between 1.71 and 2.07 in northern Egypt. Generally, the high values (1.93) of (Vp/Vs) at SWA station may reflect the well-known rich aquifer with fully saturated sediments of the Swia Oasis in the Western Desert. Moreover, the highest value (2.07) of (Vp/Vs) at
Badawy, Ahmed; Hegazi, Mona; Gaber, Hanan; Korrat, Ibrahim
2018-05-01
In this study, we used a combined inversion of body wave receiver functions and surface wave dispersion measurements to provide constraints on the crustal structure of northern Egypt. The two techniques are complementary to each other: receiver functions (RFs) are sensitive to shear-wave velocity contrasts, while surface wave dispersion (SWD) measurements are sensitive to finite variations of shear-wave velocity with depth. A database of 122 teleseismic events digitally recorded by the Egyptian National Seismological Network (ENSN) stations has been used as well. To enhance the resulting RFs at each ENSN station, the H-k stacking method was applied. A joint inversion process between the resulting receiver functions and the surface wave dispersion curves was applied as well. We have produced three averaged velocity structure models for distinct geographic and tectonic provinces namely Sinai, eastern desert, and western desert from east to the west respectively. These models will deeply help in estimation the epicenter distance of earthquake, focal mechanism solutions, and earthquake hazard analysis in northern Egypt. An obvious image of the subsurface structure has been determined which shows that generally the crustal structure of northern Egypt consists of three layers covered with a sequence of sediments that differs in thickness from across the region except in the Sharm area where the sedimentary cover is absent. The obtained results indicate that crustal thickness differs from east to west and reaches its maximum value of about 36 km at Siwa station (SWA) in the western desert and its minimum value of about 28 km at Sharm station (SHR) of the southern tip of the Sinai Peninsula. The Vp/Vs ratio varies between 1.71 and 2.07 in northern Egypt. Generally, the high values (1.93) of (Vp/Vs) at SWA station may reflect the well-known rich aquifer with fully saturated sediments of the Swia Oasis in the Western Desert. Moreover, the highest value (2.07) of (Vp/Vs) at
Orms, Natalie; Rehn, Dirk R; Dreuw, Andreas; Krylov, Anna I
2018-02-13
Density-based wave function analysis enables unambiguous comparisons of the electronic structure computed by different methods and removes ambiguity of orbital choices. We use this tool to investigate the performance of different spin-flip methods for several prototypical diradicals and triradicals. In contrast to previous calibration studies that focused on energy gaps between high- and low spin-states, we focus on the properties of the underlying wave functions, such as the number of effectively unpaired electrons. Comparison of different density functional and wave function theory results provides insight into the performance of the different methods when applied to strongly correlated systems such as polyradicals. We show that canonical molecular orbitals for species like large copper-containing diradicals fail to correctly represent the underlying electronic structure due to highly non-Koopmans character, while density-based analysis of the same wave function delivers a clear picture of the bonding pattern.
Rayleigh wave behavior in functionally graded magneto-electro-elastic material
Ezzin, Hamdi; Mkaoir, Mohamed; Amor, Morched Ben
2017-12-01
Piezoelectric-piezomagnetic functionally graded materials, with a gradual change of the mechanical and electromagnetic properties have greatly applying promises. Based on the ordinary differential equation and stiffness matrix methods, a dynamic solution is presented for the propagation of the wave on a semi-infinite piezomagnetic substrate covered with a functionally graded piezoelectric material (FGPM) layer. The materials properties are assumed to vary in the direction of the thickness according to a known variation law. The phase and group velocity of the Rayleigh wave is numerically calculated for the magneto-electrically open and short cases, respectively. The effect of gradient coefficients on the phase velocity, group velocity, coupled magneto-electromechanical factor, on the stress fields, the magnetic potential and the mechanical displacement are discussed, respectively. Illustration is achieved on the hetero-structure PZT-5A/CoFe2O4; the obtained results are especially useful in the design of high-performance acoustic surface devices and accurately prediction of the Rayleigh wave propagation behavior.
Golman, Mikhail; Padovano, William; Shmuylovich, Leonid; Kovács, Sándor J
2018-03-01
Conventional echocardiographic diastolic function (DF) assessment approximates transmitral flow velocity contours (Doppler E-waves) as triangles, with peak (E peak ), acceleration time (AT), and deceleration time (DT) as indexes. These metrics have limited value because they are unable to characterize the underlying physiology. The parametrized diastolic filling (PDF) formalism provides a physiologic, kinematic mechanism based characterization of DF by extracting chamber stiffness (k), relaxation (c), and load (x o ) from E-wave contours. We derive the mathematical relationship between the PDF parameters and E peak , AT, DT and thereby introduce the geometric method (GM) that computes the PDF parameters using E peak , AT, and DT as input. Numerical experiments validated GM by analysis of 208 E-waves from 31 datasets spanning the full range of clinical diastolic function. GM yielded indistinguishable average parameter values per subject vs. the gold-standard PDF method (k: R 2 = 0.94, c: R 2 = 0.95, x o : R 2 = 0.95, p PDF method to quantify DF in terms of physiologic chamber properties.
[Factorial division of the visual N1 wave and functional significance].
Munoz-Ruata, J; Caro-Martinez, E
2011-05-16
It has been argued if the frontal, N1a, is the early part of the occipito-temporal, N1b, or there are two different waves. It is also not clear whether the N1 of distractor is equivalent to the target N1, neither to distinguish these four waves has some functional value. We performed a principal component analysis of latencies and amplitudes of N1 derived from an oddball visual paradigm in a sample of 82 persons with intellectual disability, and factor scores were correlated with measures of intellectual performance on the Wechsler Intelligence Scale for Children-Fourth Edition. There is not significant dependency between N1a and N1b waves. The N1 from the target stimulus is functionally different to the N1 from the distractor. The N1a 'target' is related to the perceptual reasoning while the N1a 'distractor' is related to the working memory. The correlation between latencies and amplitudes of the target stimuli in posterior locations suggests that, similar to as observed in auditory areas, there is a visual synchronization with the prefrontal cortex; its dysfunction may explain some of the perceptual problems of people with intellectual disabilities.
Application of Wave Distribution Function Method to the ERG/PWE Data
Ota, M.; Kasahara, Y.; Matsuda, S.; Kojima, H.; Matsuoka, A.; Hikishima, M.; Kasaba, Y.; Ozaki, M.; Yagitani, S.; Tsuchiya, F.; Kumamoto, A.
2017-12-01
The ERG (Arase) satellite was launched on 20 December 2016 to study acceleration and loss mechanisms of relativistic electrons in the Earth's magnetosphere. The Plasma Wave Experiment (PWE), which is one of the science instruments on board the ERG satellite, measures electric field and magnetic field. The PWE consists of three sub-systems; EFD (Electric Field Detector), OFA/WFC (Onboard Frequency Analyzer and Waveform Capture), and HFA (High Frequency Analyzer).The OFA/WFC measures electromagnetic field spectra and raw waveforms in the frequency range from few Hz to 20 kHz. The OFA produces three kind of data; OFA-SPEC (power spectrum), OFA-MATRIX (spectral matrix), and OFA-COMPLEX (complex spectrum). The OFA-MATRIX measures ensemble averaged complex cross-spectra of two electric field components, and of three magnetic field components. The OFA-COMPLEX measures instantaneous complex spectra of electric and magnetic fields. These data are produced every 8 seconds in the nominal mode, and it can be used for polarization analysis and wave propagation direction finding.In general, spectral matrix composed by cross-spectra of observed signals is used for direction finding, and many algorithms have been proposed. For example, Means method and SVD method can be applied on the assumption that the spectral matrix is consists of a single plane wave, while wave distribution function (WDF) method is applicable even to the data in which multiple numbers of plane waves are simultaneously included. In this presentation, we introduce the results when the WDF method is applied to the ERG/PWE data.
Shen, Xiaoqin; Ren, Dawei; Cao, Xiaoshan; Wang, Ji
2018-03-01
In this study, cut-off frequencies of the circumferential SH waves in functionally graded piezoelectric-piezomagnetic material (FGPPM) cylinder shells with traction free, electrical and magnetic open boundary conditions are investigated analytically. The Wentzel-Kramers-Brillouin (WKB) method is employed for solving differential equations with variable coefficients for general cases. For comparison, Bessel functions and Kummer functions are used for solving cut-off frequency problems in homogenous and ideal FGPPM cylinder shells. It is shown that the WKB solution for the cut-off frequencies has good precise. The set of cut-off frequencies is a series of approximate arithmetic progressions, for which the difference is a function of the density and the effective elastic parameter. The relationship between the difference and the gradient coefficient is described. These results provide theoretical guidance for the non-destructive evaluation of curved shells based on the cut-off frequencies. Copyright © 2017 Elsevier B.V. All rights reserved.
Surface Acoustic Wave (SAW-Enhanced Chemical Functionalization of Gold Films
Directory of Open Access Journals (Sweden)
Gina Greco
2017-10-01
Full Text Available Surface chemical and biochemical functionalization is a fundamental process that is widely applied in many fields to add new functions, features, or capabilities to a material’s surface. Here, we demonstrate that surface acoustic waves (SAWs can enhance the chemical functionalization of gold films. This is shown by using an integrated biochip composed by a microfluidic channel coupled to a surface plasmon resonance (SPR readout system and by monitoring the adhesion of biotin-thiol on the gold SPR areas in different conditions. In the case of SAW-induced streaming, the functionalization efficiency is improved ≈ 5 times with respect to the case without SAWs. The technology here proposed can be easily applied to a wide variety of biological systems (e.g., proteins, nucleic acids and devices (e.g., sensors, devices for cell cultures.
Functional estimation of kidneys after extracorporeal shock wave therapy (ESWL) by clearance
International Nuclear Information System (INIS)
Sydow, K.; Kirschner, P.; Brien, G.; Buchali, K.; Frenzel, R.
1991-01-01
35 patients were scintiscanned with 99m-Tc-DTPA to determine the effects of extracorporeal shock waves used to desintegrate renal concrements may have on the patients renal function. The therapy was conducted using a standard Lithostar unit (Siemens) (20 patients) and an additional overtable module (15 patients). Functional scintigraphy was performed using a gamma camera before lithotripsy, and on the first day after it. Further control investigations were performed one or two weeks later and two till six months later. In both groups most of the patients developed temporary restrictions in renal function, some of them irreversible restrictions. Functional losses were found to be less severe with the use of the overtable module than with the standard Lithostar unit. (orig.) [de
Reduced density matrix functional theory via a wave function based approach
Energy Technology Data Exchange (ETDEWEB)
Schade, Robert; Bloechl, Peter [Institute for Theoretical Physics, Clausthal University of Technology, Clausthal (Germany); Pruschke, Thomas [Institute for Theoretical Physics, University of Goettingen, Goettingen (Germany)
2016-07-01
We propose a new method for the calculation of the electronic and atomic structure of correlated electron systems based on reduced density matrix functional theory (rDMFT). The density-matrix functional is evaluated on the fly using Levy's constrained search formalism. The present implementation rests on a local approximation of the interaction reminiscent to that of dynamical mean field theory (DMFT). We focus here on additional approximations to the exact density-matrix functional in the local approximation and evaluate their performance.
Woods, D. Tod; Holzer, Thomas E.; Macgregor, Keith B.
1990-01-01
Lower transition region models with a balance between mechanical heating and radiative losses are expanded to include wave pressure effects. The models are used to study the simple damping length form of the heating function. The results are compared to the results obtained by Woods et al. (1990) for solutions in the lower transition region. The results suggest that a mixture of fast-mode and slow-mode waves may provide the appropriate heating mechanism in the lower transition region, with the decline in effective vertical wave speed caused by the refraction and eventual total reflection of the fast-mode wave resulting from the decreasing atmospheric density.
International Nuclear Information System (INIS)
Evers, Joerg; Qamar, Shahid; Zubairy, M. Suhail
2007-01-01
We discuss localization and center-of-mass wave-function measurement of a quantum particle using multiple simultaneous dispersive interactions of the particle with different standing-wave fields. In particular, we consider objects with an internal structure consisting of a single ground state and several excited states. The transitions between ground and the corresponding excited states are coupled to the light fields in the dispersive limit, thus giving rise to a phase shift of the light field during the interaction. We show that multiple simultaneous measurements allow both an increase in the measurement or localization precision in a single direction and the performance of multidimensional measurements or localization. Further, we show that multiple measurements may relax the experimental requirements for each individual measurement
International Nuclear Information System (INIS)
Caetano Neto, E.S.
1976-01-01
A stationary Green function is calculated for the Schroedinger Hamiltonian of the multidimensional isotropic harmonic oscillator and for physical systems, which may, somehow, have their Hamiltonian reduced to one in the form of a harmonic oscillator, for any dimension [pt
Lithospheric Structure across the Alaskan Cordillera from Surface Waves and Receiver Functions
Ward, K. M.; Lin, F. C.
2017-12-01
The long awaited Transportable Array (TA) deployment in Alaska and western Canada is nearing its final deployment stage. With only one more deployment season, most of the TA station locations have been occupied and begun providing data. These TA stations combined with upgraded existing locations have provided enough high-quality data to begin investigating the crustal and upper mantle structure across the entire Alaskan Cordillera. From a tectonic standpoint, many interesting questions remain unanswered. For example, how does the transition from oceanic-oceanic subduction to continental-oceanic normal subduction to continental-oceanic "flat-slab" subduction to strike-slip conservative plate motion affect the deformation/uplift of the overriding plate and mantle geodynamic characteristics? How does the long and completed terrene accretion process partition stress/strain in the crust? On more local scales, are there any significant mid-crustal magmatic systems as observed in other sections of the American Cordillera, and if so, what is there role in uplift and crustal deformation? Our approach to investigating these questions is though surface wave imaging from ambient noise and earthquake generated sources along with Rayleigh wave ellipticity paired with Ps receiver functions. Our preliminary tomography results agree with previous studies but expand the spatial coverage showing additional detail. Our ellipticity results show a heterogeneous but spatially consistent anisotropic shallow crust. Although the complete TA data set has not yet been collected, we have jointly inverted surface waves with receiver functions for a 3-D shear-wave velocity model across the entire Alaskan Cordillera. Key features of our velocity model include a high-velocity feature in the upper mantle associated with the subducting Pacific plate that extends north of the seismicity used to contour the geometry of the slab and mid-crustal low-velocity zones associated with the active volcanics in
Lithosphere structure in Madagascar as revealed from receiver functions and surface waves analysis.
Rindraharisaona, E. J.; Tilmann, F. J.; Yuan, X.; Dreiling, J.; Priestley, K. F.; Barruol, G.; Wysession, M. E.
2017-12-01
The geological history of Madagascar makes it an ideal place to study the lithospheric structure and its evolution. It comprises Archean to Proterozoic units on the central eastern part, which is surrounded by a Triassic to Jurassic basin formation in the west and Cretaceous volcanics along the coasts. Quaternary volcanic rocks have been embedded in crystalline and sedimentary rocks. The aim of the present work is to characterize the crustal structure and determine the imprint of the dominant geodynamic events that have affected Madagascar: the Pan-African orogeny, the breakup of Gondwanaland and Neogene tectonic activity. From 2011 to 2014 different temporary seismic arrays were deployed in Madagascar. We based the current study mostly on SELASOMA project, which is composed of 50 seismic stations that were installed traversing southern Madagascar from the west to the east, sampling the different geological units. To measured seismic dispersion curves, one a wide period ranges using ambient noise, Rayleigh and Love surface waves. To compute the average crustal Vp/Vs ratio internal crustal structure and discontinuities in the mantle, we use both P- and S-waves receiver functions. To better resolve of the crustal structure, we jointly inverted P-wave receiver functions and Rayleigh wave group velocity.The crustal extension during the Carboniferous to Cenozoic has thinned the igneous crust down to 15 km in the western Morondava basin by removing much of the lower crust, while the thickness of the upper crust is nearly identical in the sedimentary basin and under Proterozoic and Archaean rocks of the eastern two thirds of Southern Madagascar. In general, the Archean crust is thicker than the Proterozoic, because mafic component is missing in the Proterozoic domain while it forms the bottom of the Archean crust. The lithosphere thickness in the southern part of Madagascar is estimated to be between 90 and 125 km.
Love waves in functionally graded piezoelectric materials by stiffness matrix method.
Ben Salah, Issam; Wali, Yassine; Ben Ghozlen, Mohamed Hédi
2011-04-01
A numerical matrix method relative to the propagation of ultrasonic guided waves in functionally graded piezoelectric heterostructure is given in order to make a comparative study with the respective performances of analytical methods proposed in literature. The preliminary obtained results show a good agreement, however numerical approach has the advantage of conceptual simplicity and flexibility brought about by the stiffness matrix method. The propagation behaviour of Love waves in a functionally graded piezoelectric material (FGPM) is investigated in this article. It involves a thin FGPM layer bonded perfectly to an elastic substrate. The inhomogeneous FGPM heterostructure has been stratified along the depth direction, hence each state can be considered as homogeneous and the ordinary differential equation method is applied. The obtained solutions are used to study the effect of an exponential gradient applied to physical properties. Such numerical approach allows applying different gradient variation for mechanical and electrical properties. For this case, the obtained results reveal opposite effects. The dispersive curves and phase velocities of the Love wave propagation in the layered piezoelectric film are obtained for electrical open and short cases on the free surface, respectively. The effect of gradient coefficients on coupled electromechanical factor, on the stress fields, the electrical potential and the mechanical displacement are discussed, respectively. Illustration is achieved on the well known heterostructure PZT-5H/SiO(2), the obtained results are especially useful in the design of high-performance acoustic surface devices and accurately prediction of the Love wave propagation behaviour. Copyright Â© 2010 Elsevier B.V. All rights reserved.
Bound-state wave functions at rest in describing deep inelastic scattering
International Nuclear Information System (INIS)
Khvedelidze, A.M.; Kvinikhidze, A.N.
1991-01-01
The deep inelastic process of the lepton-hadron scattering is studied in the bound-state rest frame. A new version of expanding structure functions in interaction constant powers is proposed, each term in it having spectral properties. This expansion makes it possible to consider contributions of composites in the final state to the cross section. It is shown that, as compared with the system P z →∞, the impulse approximation is insufficient for describing correctly the elastic limit in the composite particle rest frame. The leading asymptotics of structure functions as χ Bj →1 can be obtained by taking into account the interaction of contituents in the final state. It is shown that in contrast to the 'light-cone' formalism the ratio F 2 en (χ)/F 2 ep (χ) as χ Bj →1 depends on the explicit form of the spatial part of the nucleon wave function and, in particular, assuming the relativistic character of internal motion, it may be lower than the well-known prediction (i.e. 3/7). This is due to the correct consideration of spin degrees of freedom of the wave function of the nucleon at rest. (orig.)
Directory of Open Access Journals (Sweden)
Joel Singer
Full Text Available OBJECTIVES: Pulse wave velocity (PWV is a measure of arterial stiffness and its increase with ageing has been associated with damage to cerebral microvessels and cognitive impairment. This study examined the relationship between carotid-femoral PWV and specific domains of cognitive function in a non-demented elderly sample. METHOD: Data were drawn from the Sydney Memory and Ageing Study, a cohort study of non-demented community-dwelling individuals aged 70-90 years, assessed in successive waves two years apart. In Wave 2, PWV and cognitive function were measured in 319 participants. Linear regression was used to analyse the cross-sectional relationship between arterial stiffness and cognitive function in the whole sample, and separately for men and women. Analysis of covariance was used to assess potential differences in cognition between subjects with PWV measurements in the top and bottom tertiles of the cohort. Covariates were age, education, body mass index, pulse rate, systolic blood pressure, cholesterol, depression, alcohol, smoking, hormone replacement therapy, apolipoprotein E ε4 genotype, use of anti-hypertensive medications, history of stroke, transient ischemic attack, myocardial infarction, angina, diabetes, and also sex for the whole sample analyses. RESULTS: There was no association between PWV and cognition after Bonferroni correction for multiple testing. When examining this association for males and females separately, an association was found in males, with higher PWV being associated with lower global cognition and memory, however, a significant difference between PWV and cognition between males and females was not found. CONCLUSION: A higher level of PWV was not associated with lower cognitive function in the whole sample.
Singer, Joel; Trollor, Julian N; Crawford, John; O'Rourke, Michael F; Baune, Bernhard T; Brodaty, Henry; Samaras, Katherine; Kochan, Nicole A; Campbell, Lesley; Sachdev, Perminder S; Smith, Evelyn
2013-01-01
Pulse wave velocity (PWV) is a measure of arterial stiffness and its increase with ageing has been associated with damage to cerebral microvessels and cognitive impairment. This study examined the relationship between carotid-femoral PWV and specific domains of cognitive function in a non-demented elderly sample. Data were drawn from the Sydney Memory and Ageing Study, a cohort study of non-demented community-dwelling individuals aged 70-90 years, assessed in successive waves two years apart. In Wave 2, PWV and cognitive function were measured in 319 participants. Linear regression was used to analyse the cross-sectional relationship between arterial stiffness and cognitive function in the whole sample, and separately for men and women. Analysis of covariance was used to assess potential differences in cognition between subjects with PWV measurements in the top and bottom tertiles of the cohort. Covariates were age, education, body mass index, pulse rate, systolic blood pressure, cholesterol, depression, alcohol, smoking, hormone replacement therapy, apolipoprotein E ε4 genotype, use of anti-hypertensive medications, history of stroke, transient ischemic attack, myocardial infarction, angina, diabetes, and also sex for the whole sample analyses. There was no association between PWV and cognition after Bonferroni correction for multiple testing. When examining this association for males and females separately, an association was found in males, with higher PWV being associated with lower global cognition and memory, however, a significant difference between PWV and cognition between males and females was not found. A higher level of PWV was not associated with lower cognitive function in the whole sample.
Zhu, Zengrong; Bhat, Krishna Moorthi
2011-01-01
In the nervous system, neurons form in different regions, then they migrate and occupy specific positions. We have previously shown that RP2/sib, a well-studied neuronal pair in the Drosophila ventral nerve cord (VNC), has a complex migration route. Here, we show that the Hem protein, via the WAVE complex, regulates migration of GMC-1 and its progeny RP2 neuron. In Hem or WAVE mutants, RP2 neuron either abnormally migrates, crossing the midline from one hemisegment to the contralateral hemisegment, or does not migrate at al and fail to send out its axon projection. We report that Hem regulates neuronal migration through stabilizing WAVE. Since Hem and WAVE normally form a complex, our data argues that in the absence of Hem, WAVE, which is presumably no longer in a complex, becomes susceptible to degradation. We also find that Abelson Tyrosine kinase affects RP2 migration in a similar manner as Hem and WAVE, and appears to operate via WAVE. However, while Abl negatively regulates the levels of WAVE, it regulates migration via regulating the activity of WAVE. Our results also show that during the degradation of WAVE, Hem function is opposite to that of and downstream of Abl. PMID:21726548
International Nuclear Information System (INIS)
Valor, A.; Heenen, P.-H.; Bonche, P.
2000-01-01
We present in this paper the general framework of a method which permits to restore the rotational and particle number symmetries of wave functions obtained in Skyrme HF + BCS calculations. This restoration is nothing but a projection of mean-field intrinsic wave functions onto good particle number and good angular momentum. The method allows us also to mix projected wave functions. Such a configuration mixing is discussed for sets of HF + BCS intrinsic states generated in constrained calculations with suitable collective variables. This procedure gives collective states which are eigenstates of the particle number and the angular momentum operators and between which transition probabilities are calculated. An application to 24 Mg is presented, with mean-field wave functions generated by axial quadrupole constraints. Theoretical spectra and transition probabilities are compared to the experiment
Asiri, Sharefa M.; Laleg-Kirati, Taous-Meriem
2017-01-01
In this paper, a method based on modulating functions is proposed to estimate the Cerebral Blood Flow (CBF). The problem is written in an input estimation problem for a damped wave equation which is used to model the spatiotemporal variations
Directory of Open Access Journals (Sweden)
Dong-Wook Lee
2010-10-01
Full Text Available Angle resolved photoemission spectroscopy (ARPES is a powerful tool to investigate electronic structures in solids and has been widely used in studying various materials. The electronic structure information by ARPES is obtained in the momentum space. However, in the case of one-dimensional system, we here show that we extract the real space information from ARPES data taken over multiple Brillouin zones (BZs. Intensities in the multiple BZs are proportional to the photoemission matrix element which contains information on the coefficient of the Bloch wave function. It is shown that the Bloch wave function coefficients can be extracted from ARPES data, which allows us to construct the real space wave function. As a test, we use ARPES data from proto-typical one-dimensional system SrCuO2 and construct the real space wave function.
Sensory function: insights from Wave 2 of the National Social Life, Health, and Aging Project.
Pinto, Jayant M; Kern, David W; Wroblewski, Kristen E; Chen, Rachel C; Schumm, L Philip; McClintock, Martha K
2014-11-01
Sensory function, a critical component of quality of life, generally declines with age and influences health, physical activity, and social function. Sensory measures collected in Wave 2 of the National Social Life, Health, and Aging Project (NSHAP) survey focused on the personal impact of sensory function in the home environment and included: subjective assessment of vision, hearing, and touch, information on relevant home conditions and social sequelae as well as an improved objective assessment of odor detection. Summary data were generated for each sensory category, stratified by age (62-90 years of age) and gender, with a focus on function in the home setting and the social consequences of sensory decrements in each modality. Among both men and women, older age was associated with self-reported impairment of vision, hearing, and pleasantness of light touch. Compared with women, men reported significantly worse hearing and found light touch less appealing. There were no gender differences for vision. Overall, hearing loss seemed to have a greater impact on social function than did visual impairment. Sensory function declines across age groups, with notable gender differences for hearing and light touch. Further analysis of sensory measures from NSHAP Wave 2 may provide important information on how sensory declines are related to health, social function, quality of life, morbidity, and mortality in this nationally representative sample of older adults. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
International Nuclear Information System (INIS)
Mishonov, T.M.
2015-01-01
The dispersion relation for capillary waves at the boundary of two different Bose condensates is investigated using a trial wave-function approach applied to the Gross-Pitaevskii (GP) equations. The surface tension is expressed by the parameters of the GP equations. In the long wave-length limit the usual dispersion relation is re-derived while for wavelengths comparable to the healing length we predict significant deviations from the ω ∝ k 3/2 law which can be experimentally observed. We approximate the wave variables by a frozen order parameter, i.e. the wave function is frozen in the superfluid analogous to the magnetic field in highly conductive space plasmas. PACS codes: 67.85.Jk
An EPR experiment testing the non-separability of the $K^{0} \\overline{K^{0}}$ wave function
Apostolakis, Alcibiades J; Backenstoss, Gerhard; Bargassa, P; Behnke, O; Benelli, A; Bertin, V; Blanc, F; Bloch, P; Carlson, P J; Carroll, M; Cawley, E; Chardin, G; Chertok, M B; Cody, A; Dejardin, M; Derré, J; Ealet, A; Eleftheriadis, C; Ferreira-Marques, R; Fetscher, W; Fidecaro, Maria; Filipcic, A; Francis, D; Fry, J; Gabathuler, Erwin; Gamet, R; Gerber, H J; Go, A; Guyot, C; Haselden, A; Hayman, P J; Henry-Coüannier, F; Hollander, R W; Hubert, E; Jon-And, K; Kettle, P R; Kochowski, Claude; Kokkas, P; Kreuger, R; Le Gac, R; Leimgruber, F; Mandic, I; Manthos, N; Marel, Gérard; Mikuz, M; Miller, J; Montanet, François; Müller, A; Nakada, Tatsuya; Pagels, B; Papadopoulos, I M; Pavlopoulos, P; Policarpo, Armando; Polivka, G; Rickenbach, R; Roberts, B L; Ruf, T; Schäfer, M; Schaller, L A; Schietinger, T; Schopper, A; Schune, P; Tauscher, Ludwig; Thibault, C; Touchard, F; Touramanis, C; van Eijk, C W E; Vlachos, S; Weber, P; Wigger, I; Wolter, M; Yéche, C; Zavrtanik, D
1998-01-01
The EPR-type strangeness correlation in the \\PKz \\PaKz ~system produced in the reaction $\\Pap \\Pp \\rightarrow \\PKz \\PaKz$ at rest has been tested using the CPLEAR detector. The strangeness was tagged via strong interaction with absorbers away from the creation point. The results are consistent with the QM non-separability of the wave function and exclude a spontaneous wave-function factorisation at creation (CL $> 99.99\\%$).
International Nuclear Information System (INIS)
Pavlus, M.
1997-01-01
The entire potential and the rest of wave functions are determined in parallelepiped domain if the entire discrete spectrum and the apriori information about the wave functions on one side of parallelepiped are given. Formulation for solving the Schroedinger discrete equation in two and higher dimensions is proposed and new formulas are derived for their solution. Two examples for a 2D case and one example for a 3D case are demonstrated
International Nuclear Information System (INIS)
Song Lina; Zhang Hongqing
2007-01-01
In this work, by means of a generalized method and symbolic computation, we extend the Jacobi elliptic function rational expansion method to uniformly construct a series of stochastic wave solutions for stochastic evolution equations. To illustrate the effectiveness of our method, we take the (2+1)-dimensional stochastic dispersive long wave system as an example. We not only have obtained some known solutions, but also have constructed some new rational formal stochastic Jacobi elliptic function solutions.
The wave function and minimum uncertainty function of the bound quadratic Hamiltonian system
Yeon, Kyu Hwang; Um, Chung IN; George, T. F.
1994-01-01
The bound quadratic Hamiltonian system is analyzed explicitly on the basis of quantum mechanics. We have derived the invariant quantity with an auxiliary equation as the classical equation of motion. With the use of this invariant it can be determined whether or not the system is bound. In bound system we have evaluated the exact eigenfunction and minimum uncertainty function through unitary transformation.
Estimates of azimuthal numbers associated with elementary elliptic cylinder wave functions
Kovalev, V. A.; Radaev, Yu. N.
2014-05-01
The paper deals with issues related to the construction of solutions, 2 π-periodic in the angular variable, of the Mathieu differential equation for the circular elliptic cylinder harmonics, the associated characteristic values, and the azimuthal numbers needed to form the elementary elliptic cylinder wave functions. A superposition of the latter is one possible form for representing the analytic solution of the thermoelastic wave propagation problem in long waveguides with elliptic cross-section contour. The classical Sturm-Liouville problem for the Mathieu equation is reduced to a spectral problem for a linear self-adjoint operator in the Hilbert space of infinite square summable two-sided sequences. An approach is proposed that permits one to derive rather simple algorithms for computing the characteristic values of the angular Mathieu equation with real parameters and the corresponding eigenfunctions. Priority is given to the application of the most symmetric forms and equations that have not yet been used in the theory of the Mathieu equation. These algorithms amount to constructing a matrix diagonalizing an infinite symmetric pentadiagonal matrix. The problem of generalizing the notion of azimuthal number of a wave propagating in a cylindrical waveguide to the case of elliptic geometry is considered. Two-sided mutually refining estimates are constructed for the spectral values of the Mathieu differential operator with periodic and half-periodic (antiperiodic) boundary conditions.
International Nuclear Information System (INIS)
Blau, R.; Rosenberg, L.; Spruch, L.
1977-01-01
A minimum principle for the calculation of the scattering length, applicable when the ground-state wave function of the target system is known precisely, has been available for some time. When, as is almost always the case, the target wave function is imprecisely known, a minimum principle is available but the simple minimum principle noted above is not applicable. Further, as recent calculations show, numerical instabilities usually arise which severely limit the utility of even an ordinary variational approach. The difficulty, which can be traced to the appearance of singularities in the variational construction, is here removed through the introduction of a minimum principle, not for the true scattering length, but for one associated with a closely connected problem. This guarantees that no instability difficulties can arise as the trial scattering wave function and the trial target wave function are improved. The calculations are little different from those required when the target ground-state wave function is known, and, in fact, the original version of the minimum principle is recovered as the trial target wave function becomes exact. A careful discussion is given of the types of problems to which the method can be applied. In particular, the effects of the Pauli principle, and the existence of a finite number of composite bound states, can be accounted for
Paul, Jonathan D.; Eakin, Caroline M.
2017-07-01
Crustal receiver functions have been calculated from 128 events for two three-component broadband seismomenters located on the south coast (FOMA) and in the central High Plateaux (ABPO) of Madagascar. For each station, crustal thickness and V p / V s ratio were estimated from H- κ plots. Self-consistent receiver functions from a smaller back-azimuthal range were then selected, stacked and inverted to determine shear wave velocity structure as a function of depth. These results were corroborated by guided forward modeling and by Monte Carlo error analysis. The crust is found to be thinner (39 ± 0.7 km) beneath the highland center of Madagascar compared to the coast (44 ± 1.6 km), which is the opposite of what would be expected for crustal isostasy, suggesting that present-day long wavelength topography is maintained, at least in part, dynamically. This inference of dynamic support is corroborated by shear wave splitting analyses at the same stations, which produce an overwhelming majority of null results (>96 %), as expected for vertical mantle flow or asthenospheric upwelling beneath the island. These findings suggest a sub-plate origin for dynamic support.
Effect of wave-function localization on the time delay in photoemission from surfaces
International Nuclear Information System (INIS)
Zhang, C.-H.; Thumm, U.
2011-01-01
We investigate streaking time delays in the photoemission from a solid model surface as a function of the degree of localization of the initial-state wave functions. We consider a one-dimensional slab with lattice constant a latt of attractive Gaussian-shaped core potentials of width σ. The parameter σ/a latt thus controls the overlap between adjacent core potentials and localization of the electronic eigenfunctions on the lattice points. Small values of σ/a latt latt > or approx 0.4. By numerically solving the time-dependent Schroedinger equation, we calculate photoemission spectra from which we deduce a characteristic bimodal shape of the band-averaged photoemission time delay: as the slab eigenfunctions become increasingly delocalized, the time delay quickly decreases near σ/a latt =0.3 from relatively large values below σ/a latt ∼0.2 to much smaller delays above σ/a latt ∼0.4. This change in wave-function localization facilitates the interpretation of a recently measured apparent relative time delay between the photoemission from core and conduction-band levels of a tungsten surface.
Gao, Jing; Zheng, Xiao; Zheng, Yuan-Yi; Zuo, Guo-Qing; Ran, Hai-Tao; Auh, Yong Ho; Waldron, Levi; Chan, Tiffany; Wang, Zhi-Gang
2016-05-01
To assess the feasibility of splenic shear wave elastography in monitoring transjugular intrahepatic portosystemic shunt (TIPS) function. We measured splenic shear wave velocity (SWV), main portal vein velocity (PVV), and splenic vein velocity (SVV) in 33 patients 1 day before and 3 days to 12 months after TIPS placement. We also measured PVV, SVV, and SWV in 10 of 33 patients with TIPS dysfunction 1 day before and 3 to 6 days after TIPS revision. Analyses included differences in portosystemic pressure gradient (PPG), PVV, SVV, and mean SWV before and after TIPS procedures; comparison of median SWV before and after TIPS procedures; differences in PVV, SVV, and SWV before and at different times up to 12 months after TIPS placement; accuracy of PVV, SVV, and SWV in determining TIPS dysfunction; and correlation between PPG and SWV. During 12 months of follow-up, 23 of 33 patients had functioning TIPS, and 10 had TIPS dysfunction. The median SWV was significantly different before and after primary TIPS placement (3.60 versus 3.05 m/s; P = .005), as well as before and after revision (3.73 versus 3.06 m/s; P = .003). The PPG, PVV, and SVV were also significantly different before and after TIPS placement and revision (P function and determining TIPS dysfunction. © 2016 by the American Institute of Ultrasound in Medicine.
Deep inelastic scattering in formalism with wave functions of rest compound system
International Nuclear Information System (INIS)
Sisakyan, A.N.; Kvinikhidze, A.N.; Khvedelidze, A.M.
1987-01-01
One of the most simple examples of interaction of compound systems: deep inelastic scattering of the point particle on hadron is considered. By choosing the compound particle (hadron) rest system the corresponding cross section is expressed in terms of more usual from the view point of nonrelativistic quantum mechanics wave functions of the rest bound state. A new variant of structure functions expansion into a series in terms of the coupling constant is suggested. Each therm of a series due to correct account of the energy conservation law in any order of the perturbation theory possess spectral property. Analysis in QCD shows that in the bound state rest system (P-vector=0) the pulse approximation though satisfies the requirements of scale invariance is insufficient for correct description of elastic limit x Bj →1 by contrast to P Z →∞ system. It means that parton model is equivalent to pulse approximation only in P Z →∞ system. To obtain the leading in asymptotic region x Bj →1 terms account of component interaction in the finite state is necessary. The simplicity and physical evidence of the wave functions are attained due to the seeming complication of calculations according to the perturbation theory
Backward elastic p3He-scattering and high momentum components of 3He wave function
International Nuclear Information System (INIS)
Uzikov, Yu.N.
1998-01-01
It is shown that owing to a dominance of np-pair transfer mechanism of backward elastic p 3 He-scattering for incident proton kinetic energies T p > 1 GeV the cross section of this process is defined mainly by the values of the Faddeev component of the wave function of 3 He nucleus, φ 23 (q 23 , p 1 ), at high relative momenta q 23 > 0.6 GeV/c of the NN-pair in the 1 S 0 -state and at low spectator momenta p 1 ∼ 0 - 0.2 GeV/c
Zero Field Splitting of the chalcogen diatomics using relativistic correlated wave-function methods
DEFF Research Database (Denmark)
Rota, Jean-Baptiste; Knecht, Stefan; Fleig, Timo
2011-01-01
The spectrum arising from the (π*)2 configuration of the chalcogen dimers, namely the X21, a2 and b0+ states, is calculated using Wave-Function Theory (WFT) based methods. Two-component (2c) and four-component (4c) MultiReference Configuration Interaction (MRCI) and Fock-Space Coupled Cluster (FSCC......) methods are used as well as two-step methods Spin-Orbit Complete Active Space Perturbation Theory at 2nd order (SO-CASPT2) and Spin-Orbit Difference Dedicated Configuration Interaction (SODDCI). The energy of the X21 state corresponds to the Zero-Field Splitting (ZFS) of the ground state spin triplet...
Topological Invariants and Ground-State Wave functions of Topological Insulators on a Torus
Directory of Open Access Journals (Sweden)
Zhong Wang
2014-01-01
Full Text Available We define topological invariants in terms of the ground-state wave functions on a torus. This approach leads to precisely defined formulas for the Hall conductance in four dimensions and the topological magnetoelectric θ term in three dimensions, and their generalizations in higher dimensions. They are valid in the presence of arbitrary many-body interactions and disorder. These topological invariants systematically generalize the two-dimensional Niu-Thouless-Wu formula and will be useful in numerical calculations of disordered topological insulators and strongly correlated topological insulators, especially fractional topological insulators.
ONETEP: linear-scaling density-functional theory with plane-waves
International Nuclear Information System (INIS)
Haynes, P D; Mostof, A A; Skylaris, C-K; Payne, M C
2006-01-01
This paper provides a general overview of the methodology implemented in onetep (Order-N Electronic Total Energy Package), a parallel density-functional theory code for largescale first-principles quantum-mechanical calculations. The distinctive features of onetep are linear-scaling in both computational effort and resources, obtained by making well-controlled approximations which enable simulations to be performed with plane-wave accuracy. Titanium dioxide clusters of increasing size designed to mimic surfaces are studied to demonstrate the accuracy and scaling of onetep
Seniority and K-structure of the cranked shell model wave function: Pt. 2
International Nuclear Information System (INIS)
Lin Xinwei; Liao Boqin; Tang Xianghong; Wu Chongshi; Zeng Jinyan
1988-01-01
The seniority v-structure and the K-structure of the CSM wave function for odd particlernumber system are analysed. For not too high ω (h-bar≤0.5MeV) configurations with v = 1, 3, 5 are dominant for the low-lying bands, while those with v≤7 are negligibly small. Also the K-structure of the low lying bands become very complicated. Calculation shows that the blocking effect is very important for the low-lying bands in low-ω region
Su, Junjing; Manisty, Charlotte; Simonsen, Ulf; Howard, Luke S; Parker, Kim H; Hughes, Alun D
2017-10-15
Wave travel plays an important role in cardiovascular physiology. However, many aspects of pulmonary arterial wave behaviour remain unclear. Wave intensity and reservoir-excess pressure analyses were applied in the pulmonary artery in subjects with and without pulmonary hypertension during spontaneous respiration and dynamic stress tests. Arterial wave energy decreased during expiration and Valsalva manoeuvre due to decreased ventricular preload. Wave energy also decreased during handgrip exercise due to increased heart rate. In pulmonary hypertension patients, the asymptotic pressure at which the microvascular flow ceases, the reservoir pressure related to arterial compliance and the excess pressure caused by waves increased. The reservoir and excess pressures decreased during Valsalva manoeuvre but remained unchanged during handgrip exercise. This study provides insights into the influence of pulmonary vascular disease, spontaneous respiration and dynamic stress tests on pulmonary artery wave propagation and reservoir function. Detailed haemodynamic analysis may provide novel insights into the pulmonary circulation. Therefore, wave intensity and reservoir-excess pressure analyses were applied in the pulmonary artery to characterize changes in wave propagation and reservoir function during spontaneous respiration and dynamic stress tests. Right heart catheterization was performed using a pressure and Doppler flow sensor tipped guidewire to obtain simultaneous pressure and flow velocity measurements in the pulmonary artery in control subjects and patients with pulmonary arterial hypertension (PAH) at rest. In controls, recordings were also obtained during Valsalva manoeuvre and handgrip exercise. The asymptotic pressure at which the flow through the microcirculation ceases, the reservoir pressure related to arterial compliance and the excess pressure caused by arterial waves increased in PAH patients compared to controls. The systolic and diastolic rate constants
Lee, Ji-Hyun; Lee, Sangyong; Choi, SeokJoo; Choi, Yoon-Hee; Lee, Kwansub
2017-03-01
[Purpose] The purpose of this study was to identify the effects of extracorporeal shock wave therapy on the pain and function of patients with degenerative knee arthritis. [Subjects and Methods] Twenty patients with degenerative knee arthritis were divided into a conservative physical therapy group (n=10) and an extracorporeal shock wave therapy group (n=10). Both groups received general conservative physical therapy, and the extracorporeal shock wave therapy was additionally treated with extracorporeal shock wave therapy after receiving conservative physical therapy. Both groups were treated three times a week over a four-week period. The visual analogue scale was used to evaluate pain in the knee joints of the subjects, and the Korean Western Ontario and McMaster Universities Osteoarthritis Index was used to evaluate the function of the subjects. [Results] The comparison of the visual analogue scale and Korean Western Ontario and McMaster Universities Osteoarthritis Index scores within each group before and after the treatment showed statistically significant declines in scores in both the conservative physical therapy group and extracorporeal shock wave therapy group. A group comparison after the treatment showed statistically significant differences in these scores in the extracorporeal shock wave therapy group and the conservative physical therapy group. [Conclusion] extracorporeal shock wave therapy may be a useful nonsurgical intervention for reducing the pain of patients with degenerative knee arthritis and improving these patients' function.
System and Method for Measuring the Transfer Function of a Guided Wave Device
Froggatt, Mark E. (Inventor); Erdogan, Turan (Inventor)
2002-01-01
A method/system are provided for measuring the NxN scalar transfer function elements for an N-port guided wave device. Optical energy of a selected wavelength is generated at a source and directed along N reference optical paths having N reference path lengths. Each reference optical path terminates in one of N detectors such that N reference signals are produced at the N detectors. The reference signals are indicative of amplitude, phase and frequency of the optical energy carried along the N reference optical paths. The optical energy from the source is also directed to the N-ports of the guided wave device and then on to each of the N detectors such that N measurement optical paths are defined between the source and each of the N detectors. A portion of the optical energy is modified in terms of at least one of the amplitude and phase to produce N modified signals at each of the N detectors. At each of the N detectors, each of the N modified signals is combined with a corresponding one of the N reference signals to produce corresponding N combined signals at each of the N detectors. A total of N(sup 2) measurement signals are generated by the N detectors. Each of the N(sup 2) measurement signals is sampled at a wave number increment (Delta)k so that N(sup 2) sampled signals are produced. The NxN transfer function elements are generated using the N(sup 2) sampled signals. Reference and measurement path length constraints are defined such that the N combined signals at each of the N detectors are spatially separated from one another in the time domain.
Relativistic form factors for hadrons with quark-model wave functions
International Nuclear Information System (INIS)
Stanley, D.P.; Robson, D.
1982-01-01
The relationship between relativistic form factors and quark-potential-model wave functions is examined using an improved version of an approach by Licht and Pagnamenta. Lorentz-contraction effects are expressed in terms of an effective hadron mass which varies as the square root of the number of quark constituents. The effective mass is calculated using the rest-frame wave functions from the mean-square momentum along the direction of the momentum transfer. Applications with the parameter-free approach are made to the elastic form factors of the pion, proton, and neutron using a Hamiltonian which simultaneously describes mesons and baryons. A comparison of the calculated radii for pions and kaons suggests that the measured kaon radius should be slightly smaller than the corresponding pion radius. The large negative squared charge radius for the neutron is partially explained via the quark model but a full description requires the inclusion of a small component of a pion ''cloud'' configuration. The problematic connection between the sizes of hadrons deduced from form factors and the ''measured'' values of average transverse momenta is reconciled in the present model
Modification of AMD wave functions and application to the breaking of the N=20 magic number
International Nuclear Information System (INIS)
Kimura, Masaaki; Horiuchi, Hisashi
2001-01-01
By using the deformed Gaussian instead of the spherical one, we have modified the AMD (Antisymmetrized Molecular Dynamics) wave functions. The calculation results with this modified AMD shows the drastic improvement of the deformation properties of Mg isotopes. This improvement means that this new version of AMD can treat the deformation of mean field properly than before and the deformation of mean field is important in Mg isotopes. With this new version of AMD, we have also calculated 32Mg in which the breaking of magic number N=20 is experimentally known. In this nucleus, β-energy surface is also drastically changed by the modification AMD wave function. Our results show that this nucleus is indeed deformed and neutron's 2p2h state is dominant in its ground state. This ground state reproduces the experimental data and shows the breaking of the magic number N=20 clearly. Additionally, near the ground state, there is also very interesting state which has neutron's 4p4h structure and shows parity violating density distribution and cluster-like nature. (author)
Modification of AMD wave functions and application to the breaking of the N=20 magic number
Energy Technology Data Exchange (ETDEWEB)
Kimura, Masaaki; Horiuchi, Hisashi [Kyoto Univ. (Japan). Dept. of Physics
2001-09-01
By using the deformed Gaussian instead of the spherical one, we have modified the AMD (Antisymmetrized Molecular Dynamics) wave functions. The calculation results with this modified AMD shows the drastic improvement of the deformation properties of Mg isotopes. This improvement means that this new version of AMD can treat the deformation of mean field properly than before and the deformation of mean field is important in Mg isotopes. With this new version of AMD, we have also calculated 32Mg in which the breaking of magic number N=20 is experimentally known. In this nucleus, {beta}-energy surface is also drastically changed by the modification AMD wave function. Our results show that this nucleus is indeed deformed and neutron's 2p2h state is dominant in its ground state. This ground state reproduces the experimental data and shows the breaking of the magic number N=20 clearly. Additionally, near the ground state, there is also very interesting state which has neutron's 4p4h structure and shows parity violating density distribution and cluster-like nature. (author)
The role of the wave function in the GRW matter density theory
Energy Technology Data Exchange (ETDEWEB)
Egg, Matthias [University of Lausanne (Switzerland)
2014-07-01
Every approach to quantum mechanics postulating some kind of primitive ontology (e.g., Bohmian particles, a mass density field or flash-like collapse events) faces the challenge of clarifying the ontological status of the wave function. More precisely, one needs to spell out in what sense the wave function ''governs'' the behaviour of the primitive ontology, such that the empirical predictions of standard quantum mechanics are recovered. For Bohmian mechanics, this challenge has been addressed in recent papers by Belot and Esfeld et al. In my talk, I do the same for the matter density version of the Ghirardi-Rimini-Weber theory (GRWm). Doing so will highlight relevant similarities and differences between Bohmian mechanics and GRWm. The differences are a crucial element in the evaluation of the relative strengths and weaknesses of the two approaches, while the similarities can shed light on general characteristics of the primitive ontology approach, as opposed to other interpretative approaches to quantum mechanics.
Wave Function Engineering in CdSe/PbS Core/Shell Quantum Dots.
Wieliczka, Brian M; Kaledin, Alexey L; Buhro, William E; Loomis, Richard A
2018-05-25
The synthesis of epitaxial CdSe/PbS core/shell quantum dots (QDs) is reported. The PbS shell grows in a rock salt structure on the zinc blende CdSe core, thereby creating a crystal structure mismatch through additive growth. Absorption and photoluminescence (PL) band edge features shift to lower energies with increasing shell thickness, but remain above the CdSe bulk band gap. Nevertheless, the profiles of the absorption spectra vary with shell growth, indicating that the overlap of the electron and hole wave functions is changing significantly. This leads to over an order of magnitude reduction of absorption near the band gap and a large, tunable energy shift, of up to 550 meV, between the onset of strong absorption and the band edge PL. While the bulk valence and conduction bands adopt an inverse type-I alignment, the observed spectroscopic behavior is consistent with a transition between quasi-type-I and quasi-type-II behavior depending on shell thickness. Three effective mass approximation models support this hypothesis and suggest that the large difference in effective masses between the core and shell results in hole localization in the CdSe core and a delocalization of the electron across the entire QD. These results show the tuning of wave functions and transition energies in CdSe/PbS nanoheterostructures with prospects for use in optoelectronic devices for luminescent solar concentration or multiexciton generation.
Oliveira, Micael J T; Mignolet, Benoit; Kus, Tomasz; Papadopoulos, Theodoros A; Remacle, F; Verstraete, Matthieu J
2015-05-12
Attosecond electron dynamics in small- and medium-sized molecules, induced by an ultrashort strong optical pulse, is studied computationally for a frozen nuclear geometry. The importance of exchange and correlation effects on the nonequilibrium electron dynamics induced by the interaction of the molecule with the strong optical pulse is analyzed by comparing the solution of the time-dependent Schrödinger equation based on the correlated field-free stationary electronic states computed with the equationof-motion coupled cluster singles and doubles and the complete active space multi-configurational self-consistent field methodologies on one hand, and various functionals in real-time time-dependent density functional theory (TDDFT) on the other. We aim to evaluate the performance of the latter approach, which is very widely used for nonlinear absorption processes and whose computational cost has a more favorable scaling with the system size. We focus on LiH as a toy model for a nontrivial molecule and show that our conclusions carry over to larger molecules, exemplified by ABCU (C10H19N). The molecules are probed with IR and UV pulses whose intensities are not strong enough to significantly ionize the system. By comparing the evolution of the time-dependent field-free electronic dipole moment, as well as its Fourier power spectrum, we show that TD-DFT performs qualitatively well in most cases. Contrary to previous studies, we find almost no changes in the TD-DFT excitation energies when excited states are populated. Transitions between states of different symmetries are induced using pulses polarized in different directions. We observe that the performance of TD-DFT does not depend on the symmetry of the states involved in the transition.
International Nuclear Information System (INIS)
Wang Qi; Chen Yong; Zhang Hongqing
2005-01-01
With the aid of computerized symbolic computation, a new elliptic function rational expansion method is presented by means of a new general ansatz, in which periodic solutions of nonlinear partial differential equations that can be expressed as a finite Laurent series of some of 12 Jacobi elliptic functions, is more powerful than exiting Jacobi elliptic function methods and is very powerful to uniformly construct more new exact periodic solutions in terms of rational formal Jacobi elliptic function solution of nonlinear partial differential equations. As an application of the method, we choose a (2+1)-dimensional dispersive long wave equation to illustrate the method. As a result, we can successfully obtain the solutions found by most existing Jacobi elliptic function methods and find other new and more general solutions at the same time. Of course, more shock wave solutions or solitary wave solutions can be gotten at their limit condition
Relativistic many-body perturbation-theory calculations based on Dirac-Fock-Breit wave functions
International Nuclear Information System (INIS)
Ishikawa, Y.; Quiney, H.M.
1993-01-01
A relativistic many-body perturbation theory based on the Dirac-Fock-Breit wave functions has been developed and implemented by employing analytic basis sets of Gaussian-type functions. The instantaneous Coulomb and low-frequency Breit interactions are treated using a unified formalism in both the construction of the Dirac-Fock-Breit self-consistent-field atomic potential and in the evaluation of many-body perturbation-theory diagrams. The relativistic many-body perturbation-theory calculations have been performed on the helium atom and ions of the helium isoelectronic sequence up to Z=50. The contribution of the low-frequency Breit interaction to the relativistic correlation energy is examined for the helium isoelectronic sequence
BCS wave function, matrix product states, and the Ising conformal field theory
Montes, Sebastián; Rodríguez-Laguna, Javier; Sierra, Germán
2017-11-01
We present a characterization of the many-body lattice wave functions obtained from the conformal blocks (CBs) of the Ising conformal field theory (CFT). The formalism is interpreted as a matrix product state using continuous ancillary degrees of freedom. We provide analytic and numerical evidence that the resulting states can be written as BCS states. We give a complete proof that the translationally invariant 1D configurations have a BCS form and we find suitable parent Hamiltonians. In particular, we prove that the ground state of the finite-size critical Ising transverse field (ITF) Hamiltonian can be obtained with this construction. Finally, we study 2D configurations using an operator product expansion (OPE) approximation. We associate these states to the weak pairing phase of the p +i p superconductor via the scaling of the pairing function and the entanglement spectrum.
International Nuclear Information System (INIS)
Boyd, D.A.; Skiff, F.; Gulick, S.
1997-01-01
A two-chord, four-beam suprathermal electron diagnostic has been installed on TdeV (B>1.5 T, R=0.86 m, a=0.25 m). Resonant absorption of extraordinary mode electron cyclotron waves is measured to deduce the chordal averaged suprathermal electron distribution function amplitude at the resonant momentum. Simultaneously counterpropagating beams permit good refractive loss cancellation. A nonlinear frequency sweep leads to a concentration of appropriately propagating power in a narrow range of time of flight, thus increasing the signal-to-noise ratio and facilitating the rejection of spurious reflections. Numerous measurements of electron distribution functions have been obtained during lower-hybrid current-drive experiments. copyright 1997 American Institute of Physics
Pei, Soo-Chang; Ding, Jian-Jiun
2005-03-01
Prolate spheroidal wave functions (PSWFs) are known to be useful for analyzing the properties of the finite-extension Fourier transform (fi-FT). We extend the theory of PSWFs for the finite-extension fractional Fourier transform, the finite-extension linear canonical transform, and the finite-extension offset linear canonical transform. These finite transforms are more flexible than the fi-FT and can model much more generalized optical systems. We also illustrate how to use the generalized prolate spheroidal functions we derive to analyze the energy-preservation ratio, the self-imaging phenomenon, and the resonance phenomenon of the finite-sized one-stage or multiple-stage optical systems.
Semi-analytical wave functions in relativistic average atom model for high-temperature plasmas
International Nuclear Information System (INIS)
Guo Yonghui; Duan Yaoyong; Kuai Bin
2007-01-01
The semi-analytical method is utilized for solving a relativistic average atom model for high-temperature plasmas. Semi-analytical wave function and the corresponding energy eigenvalue, containing only a numerical factor, are obtained by fitting the potential function in the average atom into hydrogen-like one. The full equations for the model are enumerated, and more attentions are paid upon the detailed procedures including the numerical techniques and computer code design. When the temperature of plasmas is comparatively high, the semi-analytical results agree quite well with those obtained by using a full numerical method for the same model and with those calculated by just a little different physical models, and the result's accuracy and computation efficiency are worthy of note. The drawbacks for this model are also analyzed. (authors)
DEFF Research Database (Denmark)
Su, Junjing; Manisty, Charlotte; Simonsen, Ulf
2017-01-01
Detailed haemodynamic analysis may provide novel insights into the pulmonary circulation. Therefore, wave intensity and reservoir-excess pressure analyses were applied in the pulmonary artery to characterize changes in wave propagation and reservoir function during spontaneous respiration......, recordings were also obtained during Valsalva manoeuvre and handgrip exercise. The asymptotic pressure at which the flow through the microcirculation ceases, the reservoir pressure related to arterial compliance and the excess pressure caused by arterial waves increased in PAH patients compared to controls....... The systolic and diastolic rate constants also increased, while the diastolic time constant decreased. The forward compression wave energy decreased by ∼8% in controls and ∼6% in PAH patients during expiration compared to inspiration, while the wave speed remained unchanged throughout the respiratory cycle...
Komninos, Yannis; Mercouris, Theodoros; Nicolaides, Cleanthes A.
2014-01-01
In continuation of our earlier works, we present results concerning the computation of matrix elements of the multipolar Hamiltonian (MPH) between extended wave functions that are obtained numerically. The choice of the MPH is discussed in connection with the broader issue of the form of radiation-atom (or -molecule) interaction that is appropriate for the systematic solution of various problems of matter-radiation interaction. We derive analytic formulas, in terms of the sine-integral function and spherical Bessel functions of various orders, for the cumulative radial integrals that were obtained and calculated by Komninos, Mercouris, and Nicolaides [Phys. Rev. A 71, 023410 (2005), 10.1103/PhysRevA.71.023410]. This development allows the much faster and more accurate computation of such matrix elements, a fact that enhances the efficiency with which the time-dependent Schrödinger equation is solved nonperturbatively, in the framework of the state-specific expansion approach. The formulas are applicable to the general case where a pair of orbitals with angular parts |ℓ1,m1> and |ℓ2,m2> are coupled radiatively. As a test case, we calculate the matrix elements of the electric field and of the paramagnetic operators for on- and off-resonance transitions, between hydrogenic circular states of high angular momentum, whose quantum numbers are chosen so as to satisfy electric dipole and electric quadrupole selection rules. Because of the nature of their wave function (they are nodeless and the large centrifugal barrier keeps their overwhelming part at large distances from the nucleus), the validity of the electric dipole approximation in various applications where the off-resonance couplings must be considered becomes precarious. For example, for the transition from the circular state with n = 20 to that with n = 21, for which ≈400 a.u., the dipole approximation starts to fail already at XUV wavelengths (λ <125nm).
Studing Regional Wave Source Time Functions Using A Massive Automated EGF Deconvolution Procedure
Xie, J. "; Schaff, D. P.
2010-12-01
Reliably estimated source time functions (STF) from high-frequency regional waveforms, such as Lg, Pn and Pg, provide important input for seismic source studies, explosion detection, and minimization of parameter trade-off in attenuation studies. The empirical Green’s function (EGF) method can be used for estimating STF, but it requires a strict recording condition. Waveforms from pairs of events that are similar in focal mechanism, but different in magnitude must be on-scale recorded on the same stations for the method to work. Searching for such waveforms can be very time consuming, particularly for regional waves that contain complex path effects and have reduced S/N ratios due to attenuation. We have developed a massive, automated procedure to conduct inter-event waveform deconvolution calculations from many candidate event pairs. The procedure automatically evaluates the “spikiness” of the deconvolutions by calculating their “sdc”, which is defined as the peak divided by the background value. The background value is calculated as the mean absolute value of the deconvolution, excluding 10 s around the source time function. When the sdc values are about 10 or higher, the deconvolutions are found to be sufficiently spiky (pulse-like), indicating similar path Green’s functions and good estimates of the STF. We have applied this automated procedure to Lg waves and full regional wavetrains from 989 M ≥ 5 events in and around China, calculating about a million deconvolutions. Of these we found about 2700 deconvolutions with sdc greater than 9, which, if having a sufficiently broad frequency band, can be used to estimate the STF of the larger events. We are currently refining our procedure, as well as the estimated STFs. We will infer the source scaling using the STFs. We will also explore the possibility that the deconvolution procedure could complement cross-correlation in a real time event-screening process.
STM contrast of a CO dimer on a Cu(1 1 1) surface: a wave-function analysis.
Gustafsson, Alexander; Paulsson, Magnus
2017-12-20
We present a method used to intuitively interpret the scanning tunneling microscopy (STM) contrast by investigating individual wave functions originating from the substrate and tip side. We use localized basis orbital density functional theory, and propagate the wave functions into the vacuum region at a real-space grid, including averaging over the lateral reciprocal space. Optimization by means of the method of Lagrange multipliers is implemented to perform a unitary transformation of the wave functions in the middle of the vacuum region. The method enables (i) reduction of the number of contributing tip-substrate wave function combinations used in the corresponding transmission matrix, and (ii) to bundle up wave functions with similar symmetry in the lateral plane, so that (iii) an intuitive understanding of the STM contrast can be achieved. The theory is applied to a CO dimer adsorbed on a Cu(1 1 1) surface scanned by a single-atom Cu tip, whose STM image is discussed in detail by the outlined method.
STM contrast of a CO dimer on a Cu(1 1 1) surface: a wave-function analysis
Gustafsson, Alexander; Paulsson, Magnus
2017-12-01
We present a method used to intuitively interpret the scanning tunneling microscopy (STM) contrast by investigating individual wave functions originating from the substrate and tip side. We use localized basis orbital density functional theory, and propagate the wave functions into the vacuum region at a real-space grid, including averaging over the lateral reciprocal space. Optimization by means of the method of Lagrange multipliers is implemented to perform a unitary transformation of the wave functions in the middle of the vacuum region. The method enables (i) reduction of the number of contributing tip-substrate wave function combinations used in the corresponding transmission matrix, and (ii) to bundle up wave functions with similar symmetry in the lateral plane, so that (iii) an intuitive understanding of the STM contrast can be achieved. The theory is applied to a CO dimer adsorbed on a Cu(1 1 1) surface scanned by a single-atom Cu tip, whose STM image is discussed in detail by the outlined method.
Energy Technology Data Exchange (ETDEWEB)
Khan, Shehryar, E-mail: sherkhan@fysik.su.se; Odelius, Michael, E-mail: odelius@fysik.su.se [Department of Physics, Stockholm University, AlbaNova University Center, S-106 91 Stockholm (Sweden); Kubica-Misztal, Aleksandra [Institute of Physics, Jagiellonian University, ul. Reymonta 4, PL-30-059 Krakow (Poland); Kruk, Danuta [Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, Sloneczna 54, Olsztyn PL-10710 (Poland); Kowalewski, Jozef [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm (Sweden)
2015-01-21
The zero-field splitting (ZFS) of the electronic ground state in paramagnetic ions is a sensitive probe of the variations in the electronic and molecular structure with an impact on fields ranging from fundamental physical chemistry to medical applications. A detailed analysis of the ZFS in a series of symmetric Gd(III) complexes is presented in order to establish the applicability and accuracy of computational methods using multiconfigurational complete-active-space self-consistent field wave functions and of density functional theory calculations. The various computational schemes are then applied to larger complexes Gd(III)DOTA(H{sub 2}O){sup −}, Gd(III)DTPA(H{sub 2}O){sup 2−}, and Gd(III)(H{sub 2}O){sub 8}{sup 3+} in order to analyze how the theoretical results compare to experimentally derived parameters. In contrast to approximations based on density functional theory, the multiconfigurational methods produce results for the ZFS of Gd(III) complexes on the correct order of magnitude.
Association of pulse wave velocity and pulse pressure with decline in kidney function.
Kim, Chang Seong; Kim, Ha Yeon; Kang, Yong Un; Choi, Joon Seok; Bae, Eun Hui; Ma, Seong Kwon; Kim, Soo Wan
2014-05-01
The association between arterial stiffness and decline in kidney function in patients with mild to moderate chronic kidney disease (CKD) is not well established. This study investigated whether pulse wave velocity (PWV) and pulse pressure (PP) are independently associated with glomerular filtration rate (GFR) and rapid decline in kidney function in early CKD. Carotid femoral PWV (cfPWV), brachial-ankle PWV (baPWV), and PP were measured in a cohort of 913 patients (mean age, 63±10 years; baseline estimated GFR, 84±18 mL/min/1.73 m(2) ). Estimated GFR was measured at baseline and at follow-up. The renal outcome examined was rapid decline in kidney function (estimated GFR loss, >3 mL/min/1.73 m(2) per year). The median follow-up duration was 3.2 years. Multivariable adjusted linear regression model indicated that arterial PWV (both cfPWV and baPWV) and PP increased as estimated GFR declined, but neither was associated with kidney function after adjustment for various covariates. Multivariable logistic regression analysis found that cfPWV and baPWV were not associated with rapid decline in kidney function (odds ratio [OR], 1.39, 95% confidence interval [CI], 0.41-4.65; OR, 2.51, 95% CI, 0.66-9.46, respectively), but PP was (OR, 1.22, 95% CI, 1.01-1.48; P=.045). Arterial stiffness assessed using cfPWV and baPWV was not correlated with lower estimated GFR and rapid decline in kidney function after adjustment for various confounders. Thus, PP is an independent risk factor for rapid decline in kidney function in populations with relatively preserved kidney function (estimated GFR ≥30 mL/min/1.73 m(2) ). ©2014 Wiley Periodicals, Inc.
Giesbertz, Klaas J H; van Leeuwen, Robert
2014-05-14
Electron correlations in molecules can be divided in short range dynamical correlations, long range Van der Waals type interactions, and near degeneracy static correlations. In this work, we analyze for a one-dimensional model of a two-electron system how these three types of correlations can be incorporated in a simple wave function of restricted functional form consisting of an orbital product multiplied by a single correlation function f (r12) depending on the interelectronic distance r12. Since the three types of correlations mentioned lead to different signatures in terms of the natural orbital (NO) amplitudes in two-electron systems, we make an analysis of the wave function in terms of the NO amplitudes for a model system of a diatomic molecule. In our numerical implementation, we fully optimize the orbitals and the correlation function on a spatial grid without restrictions on their functional form. Due to this particular form of the wave function, we can prove that none of the amplitudes vanishes and moreover that it displays a distinct sign pattern and a series of avoided crossings as a function of the bond distance in agreement with the exact solution. This shows that the wave function ansatz correctly incorporates the long range Van der Waals interactions. We further show that the approximate wave function gives an excellent binding curve and is able to describe static correlations. We show that in order to do this the correlation function f (r12) needs to diverge for large r12 at large internuclear distances while for shorter bond distances it increases as a function of r12 to a maximum value after which it decays exponentially. We further give a physical interpretation of this behavior.
ABINIT: Plane-Wave-Based Density-Functional Theory on High Performance Computers
Torrent, Marc
2014-03-01
For several years, a continuous effort has been produced to adapt electronic structure codes based on Density-Functional Theory to the future computing architectures. Among these codes, ABINIT is based on a plane-wave description of the wave functions which allows to treat systems of any kind. Porting such a code on petascale architectures pose difficulties related to the many-body nature of the DFT equations. To improve the performances of ABINIT - especially for what concerns standard LDA/GGA ground-state and response-function calculations - several strategies have been followed: A full multi-level parallelisation MPI scheme has been implemented, exploiting all possible levels and distributing both computation and memory. It allows to increase the number of distributed processes and could not be achieved without a strong restructuring of the code. The core algorithm used to solve the eigen problem (``Locally Optimal Blocked Congugate Gradient''), a Blocked-Davidson-like algorithm, is based on a distribution of processes combining plane-waves and bands. In addition to the distributed memory parallelization, a full hybrid scheme has been implemented, using standard shared-memory directives (openMP/openACC) or porting some comsuming code sections to Graphics Processing Units (GPU). As no simple performance model exists, the complexity of use has been increased; the code efficiency strongly depends on the distribution of processes among the numerous levels. ABINIT is able to predict the performances of several process distributions and automatically choose the most favourable one. On the other hand, a big effort has been carried out to analyse the performances of the code on petascale architectures, showing which sections of codes have to be improved; they all are related to Matrix Algebra (diagonalisation, orthogonalisation). The different strategies employed to improve the code scalability will be described. They are based on an exploration of new diagonalization
Moho map of South America from receiver functions and surface waves
Lloyd, Simon; van der Lee, Suzan; FrançA, George Sand; AssumpçãO, Marcelo; Feng, Mei
2010-11-01
We estimate crustal structure and thickness of South America north of roughly 40°S. To this end, we analyzed receiver functions from 20 relatively new temporary broadband seismic stations deployed across eastern Brazil. In the analysis we include teleseismic and some regional events, particularly for stations that recorded few suitable earthquakes. We first estimate crustal thickness and average Poisson's ratio using two different stacking methods. We then combine the new crustal constraints with results from previous receiver function studies. To interpolate the crustal thickness between the station locations, we jointly invert these Moho point constraints, Rayleigh wave group velocities, and regional S and Rayleigh waveforms for a continuous map of Moho depth. The new tomographic Moho map suggests that Moho depth and Moho relief vary slightly with age within the Precambrian crust. Whether or not a positive correlation between crustal thickness and geologic age is derived from the pre-interpolation point constraints depends strongly on the selected subset of receiver functions. This implies that using only pre-interpolation point constraints (receiver functions) inadequately samples the spatial variation in geologic age. The new Moho map also reveals an anomalously deep Moho beneath the oldest core of the Amazonian Craton.
Wave functions, evolution equations and evolution kernels form light-ray operators of QCD
International Nuclear Information System (INIS)
Mueller, D.; Robaschik, D.; Geyer, B.; Dittes, F.M.; Horejsi, J.
1994-01-01
The widely used nonperturbative wave functions and distribution functions of QCD are determined as matrix elements of light-ray operators. These operators appear as large momentum limit of non-local hardron operators or as summed up local operators in light-cone expansions. Nonforward one-particle matrix elements of such operators lead to new distribution amplitudes describing both hadrons simultaneously. These distribution functions depend besides other variables on two scaling variables. They are applied for the description of exclusive virtual Compton scattering in the Bjorken region near forward direction and the two meson production process. The evolution equations for these distribution amplitudes are derived on the basis of the renormalization group equation of the considered operators. This includes that also the evolution kernels follow from the anomalous dimensions of these operators. Relations between different evolution kernels (especially the Altarelli-Parisi and the Brodsky-Lepage kernels) are derived and explicitly checked for the existing two-loop calculations of QCD. Technical basis of these resluts are support and analytically properties of the anomalous dimensions of light-ray operators obtained with the help of the α-representation of Green's functions. (orig.)
Kumar Singh, Abhishek; Kumar, Santan; Kumari, Richa
2018-03-01
The propagation behavior of Love-type wave in a corrugated functionally graded piezoelectric material layered structure has been taken into account. Concretely, the layered structure incorporates a corrugated functionally graded piezoelectric material layer imperfectly bonded to a functionally graded piezoelectric material half-space. An analytical treatment has been employed to determine the dispersion relation for both cases of electrically open condition and electrically short condition. The phase velocity of the Love-type wave has been computed numerically and its dependence on the wave number has been depicted graphically for a specific type of corrugated boundary surfaces for both said conditions. The crux of the study lies in the fact that the imperfect bonding of the interface, the corrugated boundaries present in the layer, and the material properties of the layer and the half-space strongly influence the phase velocity of the Love-type wave. It can be remarkably noted that the imperfect bonding of the interface reduces the phase velocity of the Love-type wave significantly. As a special case of the problem, it is noticed that the procured dispersion relation for both cases of electrically open and electrically short conditions is in accordance with the classical Love wave equation.
Juno, J.; Hakim, A.; TenBarge, J.; Dorland, W.
2015-12-01
We present for the first time results for the turbulence dissipation challenge, with specific focus on the linear wave portion of the challenge, using a variety of continuum kinetic models: hybrid Vlasov-Maxwell, gyrokinetic, and full Vlasov-Maxwell. As one of the goals of the wave problem as it is outlined is to identify how well various models capture linear physics, we compare our results to linear Vlasov and gyrokinetic theory. Preliminary gyrokinetic results match linear theory extremely well due to the geometry of the problem, which eliminates the dominant nonlinearity. With the non-reduced models, we explore how the subdominant nonlinearities manifest and affect the evolution of the turbulence and the energy budget. We also take advantage of employing continuum methods to study the dynamics of the distribution function, with particular emphasis on the full Vlasov results where a basic collision operator has been implemented. As the community prepares for the next stage of the turbulence dissipation challenge, where we hope to do large 3D simulations to inform the next generation of observational missions such as THOR (Turbulence Heating ObserveR), we argue for the consideration of hybrid Vlasov and full Vlasov as candidate models for these critical simulations. With the use of modern numerical algorithms, we demonstrate the competitiveness of our code with traditional particle-in-cell algorithms, with a clear plan for continued improvements and optimizations to further strengthen the code's viability as an option for the next stage of the challenge.
Experimental study on p-wave neutron strength functions for light nuclei
International Nuclear Information System (INIS)
Koester, L.; Waschkowski, W.; Meier, J.; Rau, G.; Salehi, M.
1988-01-01
Broad energy distributions in fast neutron beams have been achieved by appropriate filtering of the 236 U fission radiation provided from the RENT converter facility at the FRM research reactor. Transmission measurements in such beams result in average cross sections to which resonance reactions and shape elastic scattering contribute. We used a silicon (124.5 cm) filtered beam with a median energy of 143 keV (width 20 keV) and beams with 1.3 MeV (0.55 to 3 MeV) and 2.1 MeV (1 to 5.5 MeV) obtained through different filter combinations of lead and polyethylene. The relative high energies and the broad spectra made it possible to determine experimentally the contributions of s- and p-wave resonance reactions to the average cross section even for light nuclei. Using the three different beams we determined the average cross sections for the elements in the mass region A = 9 to 65. Analysing the measured cross sections by means of the R matrix formalism provided a complete set of p-wave strength functions and distant level parameters. Moreover, single particle shell effects in the cross sections were observed. In conclusion we obtained information on the 2P and the 3S size resonances and about the validity of the optical model for neutron reactions with light nuclei. (orig.)
Capillary wave Hamiltonian for the Landau–Ginzburg–Wilson density functional
International Nuclear Information System (INIS)
Chacón, Enrique; Tarazona, Pedro
2016-01-01
We study the link between the density functional (DF) formalism and the capillary wave theory (CWT) for liquid surfaces, focused on the Landau–Ginzburg–Wilson (LGW) model, or square gradient DF expansion, with a symmetric double parabola free energy, which has been extensively used in theoretical studies of this problem. We show the equivalence between the non-local DF results of Parry and coworkers and the direct evaluation of the mean square fluctuations of the intrinsic surface, as is done in the intrinsic sampling method for computer simulations. The definition of effective wave-vector dependent surface tensions is reviewed and we obtain new proposals for the LGW model. The surface weight proposed by Blokhuis and the surface mode analysis proposed by Stecki provide consistent and optimal effective definitions for the extended CWT Hamiltonian associated to the DF model. A non-local, or coarse-grained, definition of the intrinsic surface provides the missing element to get the mesoscopic surface Hamiltonian from the molecular DF description, as had been proposed a long time ago by Dietrich and coworkers. (paper)
Convery, P. D.; Schriver, D.; Ashour-Abdalla, M.; Richard, R. L.
2002-01-01
Nongyrotropic plasma distribution functions can be formed in regions of space where guiding center motion breaks down as a result of strongly curved and weak ambient magnetic fields. Such are the conditions near the current sheet in the Earth's middle and distant magnetotail, where observations of nongyrotropic ion distributions have been made. Here a systematic parameter study of nongyrotropic proton distributions using electromagnetic hybrid simulations is made. We model the observed nongyrotropic distributions by removing a number of arc length segments from a cold ring distribution and find significant differences with the results of simulations that initially have a gyrotropic ring distribution. Model nongyrotropic distributions with initially small perpendicular thermalization produce growing fluctuations that diffuse the ions into a stable Maxwellian-like distribution within a few proton gyro periods. The growing waves produced by nongyrotropic distributions are similar to the electromagnetic proton cyclotron waves produced by a gyrotropic proton ring distribution in that they propagate parallel to the background magnetic field and occur at frequencies on the order of the proton gyrofrequency, The maximum energy of the fluctuating magnetic field increases as the initial proton distribution is made more nongyrotropic, that is, more highly bunched in perpendicular velocity space. This increase can be as much as twice the energy produced in the gyrotropic case.
Forming method of a functional layer-built film by micro-wave plasma CVD
Energy Technology Data Exchange (ETDEWEB)
Saito, Keishi
1988-11-18
In forming an amorphous semi-conductor material film, the micro-wave plasma CVD cannot be generally used because of such demerits as film-separation, low yield, columnar structure in the film, and problems in the optical and electrical properties. In this invention, a specific substrate is placed in a layer-built film forming unit which is capable of maintaining vacuum; raw material gas for the film formation is introduced; plasma is generated by a micro-wave energy to decompose the raw material gas, thus forming the layer-built film on the substarte. Then a film is made by adding a specific amount of calcoganide-containing gas to the raw material gas. By this, the utilization efficiency of the raw material gas gets roughly 100% and both the adhesion to the substrate and the structural flexibility of the layer-built film increase, enhancing the yield of forming various functional elements (sensor, solar cell, thin transistor film, etc.), and thus greatly reducing the production cost. 6 figs., 7 tabs.
Casanova, David
2012-08-28
The restricted active space spin-flip CI (RASCI-SF) performance is tested in the electronic structure computation of the ground and the lowest electronically excited states in the presence of near-degeneracies. The feasibility of the method is demonstrated by analyzing the avoided crossing between the ionic and neutral singlet states of LiF along the molecular dissociation. The two potential energy surfaces (PESs) are explored by means of the energies of computed adiabatic and approximated diabatic states, dipole moments, and natural orbital electronic occupancies of both states. The RASCI-SF methodology is also used to study the ground and first excited singlet surface crossing involved in the double bond isomerization of ethylene, as a model case. The two-dimensional PESs of the ground (S(0)) and excited (S(1)) states are calculated for the complete configuration space of torsion and pyramidalization molecular distortions. The parameters that define the state energetics in the vicinity of the S(0)/S(1) conical intersection region are compared to complete active space self-consistent field (CASSCF) results. These examples show that it is possible to describe strongly correlated electronic states using a single reference methodology without the need to expand the wavefunction to high levels of collective excitations. Finally, RASCI is also examined in the electronic structure characterization of the ground and 2(1)A(g)(-), 1(1)B(u)(+), 1(1)B(u)(-), and 1(3)B(u)(-) states of all-trans polyenes with two to seven double bonds and beyond. Transition energies are compared to configuration interaction singles, time-dependent density functional theory (TDDFT), CASSCF, and its second-order perturbation correction calculations, and to experimental data. The capability of RASCI-SF to describe the nature and properties of each electronic state is discussed in detail. This example is also used to expose the properties of different truncations of the RASCI wavefunction and to
Directory of Open Access Journals (Sweden)
Y. Kamiya
2014-01-01
Full Text Available Gravity is the most familiar force at our natural length scale. However, it is still exotic from the view point of particle physics. The first experimental study of quantum effects under gravity was performed using a cold neutron beam in 1975. Following this, an investigation of gravitationally bound quantum states using ultracold neutrons was started in 2002. This quantum bound system is now well understood, and one can use it as a tunable tool to probe gravity. In this paper, we review a recent measurement of position-space wave functions of such gravitationally bound states and discuss issues related to this analysis, such as neutron loss models in a thin neutron guide, the formulation of phase space quantum mechanics, and UCN position sensitive detectors. The quantum modulation of neutron bound states measured in this experiment shows good agreement with the prediction from quantum mechanics.
International Nuclear Information System (INIS)
Thompson, K.; Martinez, T.J.
1999-01-01
We present a new approach to first-principles molecular dynamics that combines a general and flexible interpolation method with ab initio evaluation of the potential energy surface. This hybrid approach extends significantly the domain of applicability of ab initio molecular dynamics. Use of interpolation significantly reduces the computational effort associated with the dynamics over most of the time scale of interest, while regions where potential energy surfaces are difficult to interpolate, for example near conical intersections, are treated by direct solution of the electronic Schroedinger equation during the dynamics. We demonstrate the concept through application to the nonadiabatic dynamics of collisional electronic quenching of Li(2p). Full configuration interaction is used to describe the wave functions of the ground and excited electronic states. The hybrid approach agrees well with full ab initio multiple spawning dynamics, while being more than an order of magnitude faster. copyright 1999 American Institute of Physics
Flavor hierarchy in SO(10) grand unified theories via 5-dimensional wave-function localization
Kitano, Ryuichiro; Li, Tianjun
2003-06-01
A mechanism to generate fermion-mass hierarchy in SO(10) grand unified theories is considered. We find that the lopsided family structure, which is suitable to the large angle Mikheyev-Smirnov-Wolfenstein solution to solar neutrino oscillation, is realized without introducing extra matter fields if the hierarchy originates from the wave-function profile in an extra dimension. Unlike the Froggatt-Nielsen mechanism, the SO(10) breaking effect may directly contribute to the source of the hierarchy, i.e., the bulk mass terms. It naturally explains the difference of the hierarchical patterns between the quark and the lepton sectors. We also find the possibility of horizontal unification, in which three generations of matter fields are unified to a 3-dimensional representation of an SU(2) gauge group.
Fast plane wave density functional theory molecular dynamics calculations on multi-GPU machines
International Nuclear Information System (INIS)
Jia, Weile; Fu, Jiyun; Cao, Zongyan; Wang, Long; Chi, Xuebin; Gao, Weiguo; Wang, Lin-Wang
2013-01-01
Plane wave pseudopotential (PWP) density functional theory (DFT) calculation is the most widely used method for material simulations, but its absolute speed stagnated due to the inability to use large scale CPU based computers. By a drastic redesign of the algorithm, and moving all the major computation parts into GPU, we have reached a speed of 12 s per molecular dynamics (MD) step for a 512 atom system using 256 GPU cards. This is about 20 times faster than the CPU version of the code regardless of the number of CPU cores used. Our tests and analysis on different GPU platforms and configurations shed lights on the optimal GPU deployments for PWP-DFT calculations. An 1800 step MD simulation is used to study the liquid phase properties of GaInP
International Nuclear Information System (INIS)
Censor, Dan
2010-01-01
Identifying invariance properties helps in simplifying calculations and consolidating concepts. Presently the Special Relativistic invariance of dispersion relations and their associated scalar wave operators is investigated for general dispersive homogeneous linear media. Invariance properties of the four-dimensional Fourier-transform integrals is demonstrated, from which the invariance of the scalar Green-function is inferred. Dispersion relations and the associated group velocities feature in Hamiltonian ray tracing theory. The derivation of group velocities for moving media from the dispersion relation for these media at rest is discussed. It is verified that the group velocity concept satisfies the relativistic velocity-addition formula. In this respect it is considered to be 'real', i.e., substantial, physically measurable, and not merely a mathematical artifact. Conversely, if we assume the group velocity to be substantial, it follows that the dispersion relation must be a relativistic invariant. (orig.)
Optimal spatial filtering and transfer function for SAR ocean wave spectra
Beal, R. C.; Tilley, D. G.
1981-01-01
The impulse response of the SAR system is not a delta function and the spectra represent the product of the underlying image spectrum with the transform of the impulse response which must be removed. A digitally computed spectrum of SEASAT imagery of the Atlantic Ocean east of Cape Hatteras was smoothed with a 5 x 5 convolution filter and the trend was sampled in a direction normal to the predominant wave direction. This yielded a transform of a noise-like process. The smoothed value of this trend is the transform of the impulse response. This trend is fit with either a second- or fourth-order polynomial which is then used to correct the entire spectrum. A 16 x 16 smoothing of the spectrum shows the presence of two distinct swells. Correction of the effects of speckle is effected by the subtraction of a bias from the spectrum.
Conformal field theory construction for non-Abelian hierarchy wave functions
Tournois, Yoran; Hermanns, Maria
2017-12-01
The fractional quantum Hall effect is the paradigmatic example of topologically ordered phases. One of its most fascinating aspects is the large variety of different topological orders that may be realized, in particular non-Abelian ones. Here we analyze a class of non-Abelian fractional quantum Hall model states which are generalizations of the Abelian Haldane-Halperin hierarchy. We derive their topological properties and show that the quasiparticles obey non-Abelian fusion rules of type su (q)k . For a subset of these states we are able to derive the conformal field theory description that makes the topological properties—in particular braiding—of the state manifest. The model states we study provide explicit wave functions for a large variety of interesting topological orders, which may be relevant for certain fractional quantum Hall states observed in the first excited Landau level.
Flavor hierarchy in SO(10) grand unified theories via 5-dimensional wave-function localization
International Nuclear Information System (INIS)
Kitano, Ryuichiro; Li Tianjun
2003-01-01
A mechanism to generate fermion-mass hierarchy in SO(10) grand unified theories is considered. We find that the lopsided family structure, which is suitable to the large angle Mikheyev-Smirnov-Wolfenstein solution to solar neutrino oscillation, is realized without introducing extra matter fields if the hierarchy originates from the wave-function profile in an extra dimension. Unlike the Froggatt-Nielsen mechanism, the SO(10) breaking effect may directly contribute to the source of the hierarchy, i.e., the bulk mass terms. It naturally explains the difference of the hierarchical patterns between the quark and the lepton sectors. We also find the possibility of horizontal unification, in which three generations of matter fields are unified to a 3-dimensional representation of an SU(2) gauge group
2.5D S-wave velocity model of the TESZ area in northern Poland from receiver function analysis
Wilde-Piorko, Monika; Polkowski, Marcin; Grad, Marek
2016-04-01
Receiver function (RF) locally provides the signature of sharp seismic discontinuities and information about the shear wave (S-wave) velocity distribution beneath the seismic station. The data recorded by "13 BB Star" broadband seismic stations (Grad et al., 2015) and by few PASSEQ broadband seismic stations (Wilde-Piórko et al., 2008) are analysed to investigate the crustal and upper mantle structure in the Trans-European Suture Zone (TESZ) in northern Poland. The TESZ is one of the most prominent suture zones in Europe separating the young Palaeozoic platform from the much older Precambrian East European craton. Compilation of over thirty deep seismic refraction and wide angle reflection profiles, vertical seismic profiling in over one hundred thousand boreholes and magnetic, gravity, magnetotelluric and thermal methods allowed for creation a high-resolution 3D P-wave velocity model down to 60 km depth in the area of Poland (Grad et al. 2016). On the other hand the receiver function methods give an opportunity for creation the S-wave velocity model. Modified ray-tracing method (Langston, 1977) are used to calculate the response of the structure with dipping interfaces to the incoming plane wave with fixed slowness and back-azimuth. 3D P-wave velocity model are interpolated to 2.5D P-wave velocity model beneath each seismic station and synthetic back-azimuthal sections of receiver function are calculated for different Vp/Vs ratio. Densities are calculated with combined formulas of Berteussen (1977) and Gardner et al. (1974). Next, the synthetic back-azimuthal sections of RF are compared with observed back-azimuthal sections of RF for "13 BB Star" and PASSEQ seismic stations to find the best 2.5D S-wave models down to 60 km depth. National Science Centre Poland provided financial support for this work by NCN grant DEC-2011/02/A/ST10/00284.
Experimental tests of the properties of the quantum mechanical wave function
International Nuclear Information System (INIS)
Tarozzi, G.
1985-01-01
A new experimental proposal on the wave-particle dualism is discussed, unifying the two different classes of experiments recently advanced to detect the physical properties of quantum waves of producing interference or stimulated emission
A TOCA/CDC-42/PAR/WAVE functional module required for retrograde endocytic recycling
Bai, Zhiyong; Grant, Barth D.
2015-01-01
Endosome-to-Golgi transport is required for the function of many key membrane proteins and lipids, including signaling receptors, small-molecule transporters, and adhesion proteins. The retromer complex is well-known for its role in cargo sorting and vesicle budding from early endosomes, in most cases leading to cargo fusion with the trans-Golgi network (TGN). Transport from recycling endosomes to the TGN has also been reported, but much less is understood about the molecules that mediate this transport step. Here we provide evidence that the F-BAR domain proteins TOCA-1 and TOCA-2 (Transducer of Cdc42 dependent actin assembly), the small GTPase CDC-42 (Cell division control protein 42), associated polarity proteins PAR-6 (Partitioning defective 6) and PKC-3/atypical protein kinase C, and the WAVE actin nucleation complex mediate the transport of MIG-14/Wls and TGN-38/TGN38 cargo proteins from the recycling endosome to the TGN in Caenorhabditis elegans. Our results indicate that CDC-42, the TOCA proteins, and the WAVE component WVE-1 are enriched on RME-1–positive recycling endosomes in the intestine, unlike retromer components that act on early endosomes. Furthermore, we find that retrograde cargo TGN-38 is trapped in early endosomes after depletion of SNX-3 (a retromer component) but is mainly trapped in recycling endosomes after depletion of CDC-42, indicating that the CDC-42–associated complex functions after retromer in a distinct organelle. Thus, we identify a group of interacting proteins that mediate retrograde recycling, and link these proteins to a poorly understood trafficking step, recycling endosome-to-Golgi transport. We also provide evidence for the physiological importance of this pathway in WNT signaling. PMID:25775511
Dorband, J. E.
2017-12-01
The D-Wave 2X has successfully been used for regression analysis to derive carbon flux data from OCO-2 CO2 concentration using neural networks. The samples returned from the D-Wave should represent the minimum of an objective function presented to it. An accurate as possible minimum function value is needed for this analysis. Samples from the D-Wave are near minimum, but seldom are the global minimum of the function due to quantum noise. Two methods for improving the accuracy of minimized values represented by the samples returned from the D-Wave are presented. The first method finds a new sample with a minimum value near each returned D-Wave sample. The second method uses all the returned samples to find a more global minimum sample. We present three use-cases performed using the former method. In the first use case, it is demonstrated that an objective function with random qubits and coupler coefficients had an improved minimum. In the second use case, the samples corrected by the first method can improve the training of a Boltzmann machine neural network. The third use case demonstrated that using the first method can improve virtual qubit accuracy.The later method was also performed on the first use case.
International Nuclear Information System (INIS)
Oda, Ryuichi; Ishida, Shin; Wada, Hiroaki; Yamada, Kenji; Sekiguchi, Motoo
1999-01-01
We examine mass spectra and wave functions of the nn-bar, cc-bar and bb-bar meson systems within the framework of the covariant oscillator quark model with the boosted LS-coupling scheme. We solve nonperturbatively an eigenvalue problem for the squared-mass operator, which incorporates the four-dimensional color-Coulomb-type interaction, by taking a set of covariant oscillator wave functions as an expansion basis. We obtain mass spectra of these meson systems, which reproduce quite well their experimental behavior. The resultant manifestly covariant wave functions, which are applicable to analyses of various reaction phenomena, are given. Our results seem to suggest that the present model may be considered effectively as a covariant version of the nonrelativistic linear-plus-Coulomb potential quark model. (author)
Waitz, M; Bello, R Y; Metz, D; Lower, J; Trinter, F; Schober, C; Keiling, M; Lenz, U; Pitzer, M; Mertens, K; Martins, M; Viefhaus, J; Klumpp, S; Weber, T; Schmidt, L Ph H; Williams, J B; Schöffler, M S; Serov, V V; Kheifets, A S; Argenti, L; Palacios, A; Martín, F; Jahnke, T; Dörner, R
2018-06-05
The original version of this Article contained an error in the fifth sentence of the first paragraph of the 'Application on H 2 ' section of the Results, which incorrectly read 'The role of electron correlation is quite apparent in this presentation: Fig. 1a is empty for the uncorrelated Hartree-Fock wave function, since projection of the latter wave function onto the 2pσ u orbital is exactly zero, while this is not the case for the fully correlated wave function (Fig. 1d); also, Fig. 1b, c for the uncorrelated description are identical, while Fig. 1e, f for the correlated case are significantly different.' The correct version replaces 'Fig. 1e, f' with 'Fig. 2e and f'.
Bonitati, Joey; Slimmer, Ben; Li, Weichuan; Potel, Gregory; Nunes, Filomena
2017-09-01
The calculable form of the R-matrix method has been previously shown to be a useful tool in approximately solving the Schrodinger equation in nuclear scattering problems. We use this technique combined with the Gauss quadrature for the Lagrange-mesh method to efficiently solve for the wave functions of projectile nuclei in low energy collisions (1-100 MeV) involving an arbitrary number of channels. We include the local Woods-Saxon potential, the non-local potential of Perey and Buck, a Coulomb potential, and a coupling potential to computationally solve for the wave function of two nuclei at short distances. Object oriented programming is used to increase modularity, and parallel programming techniques are introduced to reduce computation time. We conclude that the R-matrix method is an effective method to predict the wave functions of nuclei in scattering problems involving both multiple channels and non-local potentials. Michigan State University iCER ACRES REU.
Wave function of the Universe, preferred reference frame effects and metric signature transition
International Nuclear Information System (INIS)
Ghaffarnejad, Hossein
2015-01-01
Gravitational model of non-minimally coupled Brans Dicke (BD) scalar field 0 with dynamical unit time-like four vector field is used to study flat Robertson Walker (RW) cosmology in the presence of variable cosmological parameter V (ϕ) = Λϕ. Aim of the paper is to seek cosmological models which exhibit metric signature transition. The problem is studied in both classical and quantum cosmological approach with large values of BD parameter ω >> 1. Scale factor of RW metric is obtained as which describes nonsingular inflationary universe in Lorentzian signature sector. Euclidean signature sector of our solution describes a re-collapsing universe and is obtained from analytic continuation of the Lorentzian sector by exchanging . Dynamical vector field together with the BD scalar field are treated as fluid with time dependent barotropic index. They have regular (dark) matter dominance in the Euclidean (Lorentzian) sector. We solved Wheeler De Witt (WD) quantum wave equation of the cosmological system. Assuming a discrete non-zero ADM mass we obtained solutions of the WD equation as simple harmonic quantum Oscillator eigen functionals described by Hermite polynomials. Absolute values of these eigen functionals have nonzero values on the hypersurface in which metric field has signature degeneracy. Our eigen functionals describe nonzero probability of the space time with Lorentzian (Euclidean) signature for . Maximal probability corresponds to the ground state j = 0. (paper)
Shear wave elastography results correlate with liver fibrosis histology and liver function reserve.
Feng, Yan-Hong; Hu, Xiang-Dong; Zhai, Lin; Liu, Ji-Bin; Qiu, Lan-Yan; Zu, Yuan; Liang, Si; Gui, Yu; Qian, Lin-Xue
2016-05-07
To evaluate the correlation of shear wave elastography (SWE) results with liver fibrosis histology and quantitative function reserve. Weekly subcutaneous injection of 60% carbon tetrachloride (1.5 mL/kg) was given to 12 canines for 24 wk to induce experimental liver fibrosis, with olive oil given to 2 control canines. At 24 wk, liver condition was evaluated using clinical biochemistry assays, SWE imaging, lidocaine metabolite monoethylglycine-xylidide (MEGX) test, and histologic fibrosis grading. Clinical biochemistry assays were performed at the institutional central laboratory for routine liver function evaluation. Liver stiffness was measured in triplicate from three different intercostal spaces and expressed as mean liver stiffness modulus (LSM). Plasma concentrations of lidocaine and its metabolite MEGX were determined using high-performance liquid chromatography repeated in duplicate. Liver biopsy samples were fixed in 10% formaldehyde, and liver fibrosis was graded using the modified histological activity index Knodell score (F0-F4). Correlations among histologic grading, LSM, and MEGX measures were analyzed with the Pearson linear correlation coefficient. At 24 wk liver fibrosis histologic grading was as follows: F0, n = 2 (control); F1, n = 0; F2, n = 3; F3, n = 7; and F4, n = 2. SWE LSM was positively correlated with histologic grading (r = 0.835, P function reserve in experimental severe fibrosis and cirrhosis.
TUNING IN TO FISH SWIMMING WAVES - BODY FORM, SWIMMING MODE AND MUSCLE FUNCTION
WARDLE, CS; VIDELER, JJ; ALTRINGHAM, JD
Most fish species swim with lateral body undulations running from head to tail, These waves run more slowly than the waves of muscle activation causing them, reflecting the effect of the interaction between the fish's body and the reactive forces from the water, The coupling between both waves
Jia, Shouqing; La, Dongsheng; Ma, Xuelian
2018-04-01
The finite difference time domain (FDTD) algorithm and Green function algorithm are implemented into the numerical simulation of electromagnetic waves in Schwarzschild space-time. FDTD method in curved space-time is developed by filling the flat space-time with an equivalent medium. Green function in curved space-time is obtained by solving transport equations. Simulation results validate both the FDTD code and Green function code. The methods developed in this paper offer a tool to solve electromagnetic scattering problems.
Czech Academy of Sciences Publication Activity Database
Kubař, Tomáš; Jurečka, Petr; Černý, Jiří; Řezáč, Jan; Otyepka, M.; Valdes, Haydee; Hobza, Pavel
2007-01-01
Roč. 111, č. 26 (2007), s. 5642-5647 ISSN 1089-5639 R&D Projects: GA MŠk LC512; GA AV ČR IAA400550510; GA ČR(CZ) GD203/05/H001; GA ČR GA203/05/0009 Institutional research plan: CEZ:AV0Z40550506 Keywords : density functional theory * empirical dispersion-energy term * non-covalent interactions Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.918, year: 2007
Magnetic form factor of NpAs2: a crystal field wave function for 5f electrons
International Nuclear Information System (INIS)
Amoretti, G.; Blaise, A.; Bonnet, M.; Boucherle, J.X.; Delapalme, A.; Fournier, J.M.; Vigneron, F.
1982-10-01
Neptunium magnetic form factor measurements in the ferromagnetic phase of NpAs 2 (T = 4.2 K, H = 4.6 T) are analysed under different assumptions: Np 3 + , Np 4 + or Np 5 + , with a free ion wave-function (Russel-Saunders and intermediate coupling scheme) or with a Crystal Field Wave function for 5f electrons: sub(m)sup(μ)asub(m)asub(m)/J,m>. The experimental results are compatible with either a 3+ or 4+ state
QCD non-perturbative study in radiative and pure-leptonic decays of Bc by wave function
International Nuclear Information System (INIS)
Guo Peng; Hou Zhaoyu; Zhi Haisu
2012-01-01
The radiative and pure-leptonic decays of B c mesons are of hadrons uncertainty in theoretical calculations. Using three types of the B c meson wave functions which describe the characteristics of the QCD non-perturbative and by controlling the parameters in them, the uncertainties of B c meson decay caused by the hadron decay model are studied in detail. The theoretical results show the branching ratios are (1.81981∼3.18961) × 10 -5 , which are sensitive to the type of wave functions. (authors)
International Nuclear Information System (INIS)
Holzwarth, N.A.; Matthews, G.E.; Dunning, R.B.; Tackett, A.R.; Zeng, Y.
1997-01-01
The projector augmented-wave (PAW) method was developed by Bloechl as a method to accurately and efficiently calculate the electronic structure of materials within the framework of density-functional theory. It contains the numerical advantages of pseudopotential calculations while retaining the physics of all-electron calculations, including the correct nodal behavior of the valence-electron wave functions and the ability to include upper core states in addition to valence states in the self-consistent iterations. It uses many of the same ideas developed by Vanderbilt in his open-quotes soft pseudopotentialclose quotes formalism and in earlier work by Bloechl in his open-quotes generalized separable potentials,close quotes and has been successfully demonstrated for several interesting materials. We have developed a version of the PAW formalism for general use in structural and dynamical studies of materials. In the present paper, we investigate the accuracy of this implementation in comparison with corresponding results obtained using pseudopotential and linearized augmented-plane-wave (LAPW) codes. We present results of calculations for the cohesive energy, equilibrium lattice constant, and bulk modulus for several representative covalent, ionic, and metallic materials including diamond, silicon, SiC, CaF 2 , fcc Ca, and bcc V. With the exception of CaF 2 , for which core-electron polarization effects are important, the structural properties of these materials are represented equally well by the PAW, LAPW, and pseudopotential formalisms. copyright 1997 The American Physical Society
International Nuclear Information System (INIS)
Nieto, M.M.
1978-01-01
When considering an elementary particle matrix element, of necessity one must make an assumption, which often goes unnoticed, as to what formalism should be used for the wave functions. A current or interaction Lagrangian-density matrix-element is of the form V = anti psi/sub out/GAMMA psi/sub in/, where psi/sub in/ and anti psi/sub out/ represent the physical ingoing and outgoing particles, and GAMMA represents the vertex function. A current must have the dimensions of (length) -3 = (mass) 3 in units of h = c = 1. psi/sub in/ and anti psi/sub out/ must be described in terms of the physical on-shell masses or else one has no phase space. It is only the vertex function which can be symmetric in the internal symmetry under consideration. The decision as to how much of the matrix element will be taken to be symmetric and how much of the matrix element will be taken to be associated with on-mass-shell wave functions is a fundamental assumption. Depending on how the assumption is made, different results will be predicted. Normally first-order Dirac wave functions, with dimensions (length) -3 / 2 and second-order Klein--Gordon wave functions with dimensions (length) -1 are considered for spin- 1 / 2 fermions and spin-O bosons, respectively. The types of new results which are obtained if, on the contrary, one chooses to consider bosons in the first-order Duffin--Kemmer--Petiau formalism are discussed. It is argued that the DKP formalism represents a complementary viewpoint to the spectrum generating approach. Both challenge the standard phenomenology: DKP by changing the wave function, spectrum generating by changing the vertex function
International Nuclear Information System (INIS)
Dong Jianping; Xu Mingyu
2008-01-01
The space fractional Schroedinger equation with a finite square potential, periodic potential, and delta-function potential is studied in this paper. We find that the continuity or discontinuity condition of a fractional derivative of the wave functions should be considered to solve the fractional Schroedinger equation in fractional quantum mechanics. More parity states than those given by standard quantum mechanics for the finite square potential well are obtained. The corresponding energy equations are derived and then solved by graphical methods. We show the validity of Bloch's theorem and reveal the energy band structure for the periodic potential. The jump (discontinuity) condition for the fractional derivative of the wave function of the delta-function potential is given. With the help of the jump condition, we study some delta-function potential fields. For the delta-function potential well, an alternate expression of the wave function (the H function form of it was given by Dong and Xu [J. Math. Phys. 48, 072105 (2007)]) is obtained. The problems of a particle penetrating through a delta-function potential barrier and the fractional probability current density of the particle are also discussed. We study the Dirac comb and show the energy band structure at the end of the paper
On the normalization of total wave function of the system of an atom and a colliding electron
International Nuclear Information System (INIS)
Nashlenas, Eh.P.; Trinkunas, G.P.
1976-01-01
The scattering of an electron by an atom is considered which causes an excitation of fine structure levels. For this purpose the wave function of a system consisting of an atom and an uncoupled electron is constructed. Boundary conditions formulated in the form of an asymptotic expression are taken into account for such a function by means of scattering amplitudes. To determine scattering amplitudes it is suggested to make use of the condition of wave function normalization into the Dirac delta function. After certain mathematical transformations the unknown relations between the scattering amplitudes are obtained. The special cases of the relations obtained are discussed. When quantum numbers of the wave functions coincide, the resulting relations express the equality of fluxes of converging and diverging waves for a certain value of the total angular momentum. In the limiting case when there are no electrons in an atom (it corresponds to elastic scattering of an electron on a potential) the relations obtained express the unitarity conditions of the scattering matrix
Short-distance behavior of the Bethe--Salpeter wave function in the ladder approximation
International Nuclear Information System (INIS)
Guth, A.H.; Soper, D.E.
1975-01-01
We investigate the short-distance behavior of the (Wick-rotated) Bethe--Salpeter wave function for the two spin-1/2 quarks bound by the exchange of a massive vector meson. We use the ladder-model kernel, which has the same p -4 scaling behavior as the true kernel in a theory with a fixed point of the renormalization group at g not equal to 0. For a bound state with the quantum numbers of the pion, the leading asymptotic behavior is chi (q/sup μ/) approx. cq/sup -4 + epsilon(g)/γ 5 , where epsilon (g) =1- (1-g 2 /π 2 ) 1 / 2 . Our method also provides the full asymptotic series, although it should be noted that the nonleading terms will depend on the nonleading behavior of the ladder-model kernel. A general term has the form cq - /sup a/(lnq)/sup n/phi (q/sup μ/), where c is an unknown constant, a may be integral or nonintegral, n is an integer, and phi (q/sup μ/) is a representation function of the rotation group in four dimensions
Precise response function for the magnetic component of gravitational waves in scalar-tensor gravity
International Nuclear Information System (INIS)
Corda, Christian
2011-01-01
The important issue of the magnetic component of gravitational waves (GWs) has been considered in various papers in the literature. From such analyses, it has been found that such a magnetic component becomes particularly important in the high-frequency portion of the frequency range of ground based interferometers for GWs which arises from standard general theory of relativity (GTR). Recently, such a magnetic component has been extended to GWs arising from scalar-tensor gravity (STG) too. After a review of some important issues on GWs in STG, in this paper we reanalyze the magnetic component in the framework of STG from a different point of view, by correcting an error in a previous paper and by releasing a more precise response function. In this way, we also show that if one neglects the magnetic contribution considering only the low-frequency approximation of the electric contribution, an important part of the signal could be, in principle, lost. The determination of a more precise response function for the magnetic contribution is important also in the framework of the possibility of distinguishing other gravitational theories from GTR. At the conclusion of this paper, an expansion of the main results is also shown in order to recall the presence of the magnetic component in GTR too.
Biffi, C. A.; Tuissi, A.
2017-03-01
Thermal processing can affect the properties of smart materials, and the correct selection of the best manufacturing technology is fundamental for producing high tech smart devices, containing embedded functional properties. In this work cutting of thin superelastic Nitinol plates using a femtosecond (fs) and continuous wave (CW) laser was studied. Diamond shaped elements were cut to characterize the kerf qualitative features; microstructural analysis of the cross sections allowed identification of thermal damage characteristics introduced into the material during the laser processes. A thermally undamaged microstructure was observed for fs laser cutting, while CW was seen to be characterized by a large heat-affected zone. Functional properties were investigated by differential scanning calorimetry and tensile testing of laser cut microelements and of the reference material. It was seen that the martensitic transformation behavior of Nitinol is not affected by fs regime, while cw cutting provokes an effect equivalent to a high temperature thermal treatment in the material surrounding the cutting kerf, degradating the material properties. Finally, tensile testing indicated that superelastic performances were guaranteed by fs regime, while strong reduction of the recoverable strain was detected in the CW processed sample.
Maouche, Naima; Ktari, Nadia; Bakas, Idriss; Fourati, Najla; Zerrouki, Chouki; Seydou, Mahamadou; Maurel, François; Chehimi, Mohammed Mehdi
2015-11-01
A surface acoustic wave sensor operating at 104 MHz and functionalized with a polypyrrole molecularly imprinted polymer has been designed for selective detection of dopamine (DA). Optimization of pyrrole/DA ratio, polymerization and immersion times permitted to obtain a highly selective sensor, which has a sensitivity of 0.55°/mM (≈ 550 Hz/mM) and a detection limit of ≈ 10 nM. Morphology and related roughness parameters of molecularly imprinted polymer surfaces, before and after extraction of DA, as well as that of the non imprinted polymer were characterized by atomic force microscopy. The developed chemosensor selectively recognized dopamine over the structurally similar compound 4-hydroxyphenethylamine (referred as tyramine), or ascorbic acid,which co-exists with DA in body fluids at a much higher concentration. Selectivity tests were also carried out with dihydroxybenzene, for which an unexpected phase variation of order of 75% of the DA one was observed. Quantum chemical calculations, based on the density functional theory, were carried out to determine the nature of interactions between each analyte and the PPy matrix and the DA imprinted PPy polypyrrole sensing layer in order to account for the important phase variation observed during dihydroxybenzene injection. Copyright © 2015 John Wiley & Sons, Ltd.
Multi-functional surface acoustic wave sensor for monitoring enviromental and structural condition
Furuya, Y.; Kon, T.; Okazaki, T.; Saigusa, Y.; Nomura, T.
2006-03-01
As a first step to develop a health monitoring system with active and embedded nondestructive evaluation devices for the machineries and structures, multi-functional SAW (surface acoustic wave) device was developed. A piezoelectric LiNbO3(x-y cut) materials were used as a SAW substrate on which IDT(20μm pitch) was produced by lithography. On the surface of a path of SAW between IDTs, environmentally active material films of shape memory Ti50Ni41Cu(at%) with non-linear hysteresis and superelastic Ti48Ni43Cu(at%) with linear deformation behavior were formed by magnetron-sputtering technique. In this study, these two kinds of shape memory alloys SMA) system were used to measure 1) loading level, 2) phase transformation and 3)stress-strain hysteresis under cyclic loading by utilizing their linearity and non-linearity deformation behaviors. Temperature and stress dependencies of SAW signal were also investigated in the non-sputtered film state. Signal amplitude and phase change of SAW were chosen to measure as the sensing parameters. As a result, temperature, stress level, phase transformation in SMA depending on temperature and mechanical damage accumulation could be measured by the proposed multi-functional SAW sensor. Moreover, the wireless SAW sensing system which has a unique feature of no supplying electric battery was constructed, and the same characteristic evaluation is confirmed in comparison with wired case.
Renal morphology and function immediately after extracorporeal shock-wave lithotripsy
Energy Technology Data Exchange (ETDEWEB)
Kaude, J.V.; Williams, C.M.; Millner, M.R.; Scott, K.N.; Finlayson, B.
1985-08-01
The acute effects of extracorporeal shock-wave lithotripsy (ESWL) on morphology and function of the kidney were evaluated by excretory urography, quantitative radionuclide renography (QRR), and magnetic resonance imaging (MRI) in 33 consecutive patients. Excretory urograms demonstrated an enlarged kidney in seven (18%) of 41 treatments and partial or complete obstruction of the ureter by stone fragments after 15 (37%) of 41 treatments. Total effective renal plasma flow (ERPF) was not changed after ESWL, but the percentage ERPF of the treated kidney was decreased by more than 5% in 10 (30%) of 33 cases. QRR images showed partial parenchymal obstruction in 10 (25%) of 41 teated kidneys and total parenchymal obstruction in 9 (22%). MRI disclosed one or more abnormalities in 24 (63%) of 38 treated kidneys. Treated kidneys were normal by all three imaging methods in 26% and abnormal by one or more tests in 74% of cases. The morphologic and functional changes are attributed to renal contusion resulting in edema and extravasation of urine and blood into the interstitial, subcapsular, and perirenal spaces.
Cioni, Jean-Michel; Wong, Hovy Ho-Wai; Bressan, Dario; Kodama, Lay; Harris, William A; Holt, Christine E
2018-03-07
The axons of retinal ganglion cells (RGCs) are topographically sorted before they arrive at the optic tectum. This pre-target sorting, typical of axon tracts throughout the brain, is poorly understood. Here, we show that cytoplasmic FMR1-interacting proteins (CYFIPs) fulfill non-redundant functions in RGCs, with CYFIP1 mediating axon growth and CYFIP2 specifically involved in axon sorting. We find that CYFIP2 mediates homotypic and heterotypic contact-triggered fasciculation and repulsion responses between dorsal and ventral axons. CYFIP2 associates with transporting ribonucleoprotein particles in axons and regulates translation. Axon-axon contact stimulates CYFIP2 to move into growth cones where it joins the actin nucleating WAVE regulatory complex (WRC) in the periphery and regulates actin remodeling and filopodial dynamics. CYFIP2's function in axon sorting is mediated by its binding to the WRC but not its translational regulation. Together, these findings uncover CYFIP2 as a key regulatory link between axon-axon interactions, filopodial dynamics, and optic tract sorting. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Effects of Simulated Heat Waves on Cardiovascular Functions in Senile Mice
Directory of Open Access Journals (Sweden)
Xiakun Zhang
2014-08-01
Full Text Available The mechanism of the effects of simulated heat waves on cardiovascular disease in senile mice was investigated. Heat waves were simulated in a TEM1880 meteorological environment simulation chamber, according to a heat wave that occurred in July 2001 in Nanjing, China. Eighteen senile mice were divided into control, heat wave, and heat wave BH4 groups, respectively. Mice in the heat wave and heat wave BH4 groups were exposed to simulated heat waves in the simulation chamber. The levels of ET-1, NO, HSP60, SOD, TNF, sICAM-1, and HIF-1α in each group of mice were measured after heat wave simulation. Results show that heat waves decreased SOD activity in the myocardial tissue of senile mice, increased NO, HSP60, TNF, sICAM-1, and HIF-1α levels, and slightly decreased ET-1 levels, BH4 can relieve the effects of heat waves on various biological indicators. After a comprehensive analysis of the experiments above, we draw the followings conclusions regarding the influence of heat waves on senile mice: excess HSP60 activated immune cells, and induced endothelial cells and macrophages to secrete large amounts of ICAM-1, TNF-α, and other inflammatory cytokines, it also activated the inflammation response in the body and damaged the coronary endothelial cell structure, which increased the permeability of blood vessel intima and decreased SOD activity in cardiac tissues. The oxidation of lipoproteins in the blood increased, and large amounts of cholesterol were generated. Cholesterol penetrated the intima and deposited on the blood vessel wall, forming atherosclerosis and leading to the occurrence of cardiovascular disease in senile mice. These results maybe are useful for studying the effects of heat waves on elderly humans, which we discussed in the discussion chapter.
Directory of Open Access Journals (Sweden)
Rahmatullah
2018-03-01
Full Text Available We have computed new exact traveling wave solutions, including complex solutions of fractional order Boussinesq-Like equations, occurring in physical sciences and engineering, by applying Exp-function method. The method is blended with fractional complex transformation and modified Riemann-Liouville fractional order operator. Our obtained solutions are verified by substituting back into their corresponding equations. To the best of our knowledge, no other technique has been reported to cope with the said fractional order nonlinear problems combined with variety of exact solutions. Graphically, fractional order solution curves are shown to be strongly related to each other and most importantly, tend to fixate on their integer order solution curve. Our solutions comprise high frequencies and very small amplitude of the wave responses. Keywords: Exp-function method, New exact traveling wave solutions, Modified Riemann-Liouville derivative, Fractional complex transformation, Fractional order Boussinesq-like equations, Symbolic computation
Energy Technology Data Exchange (ETDEWEB)
Julia, J; Nyblade, A; Hansen, S; Rodgers, A; Matzel, E
2009-07-06
In this project, we are developing models of lithospheric structure for a wide variety of tectonic regions throughout Eurasia and the Middle East by regionalizing 1D velocity models obtained by jointly inverting P-wave and S-wave receiver functions with Rayleigh wave group and phase velocities. We expect the regionalized velocity models will improve our ability to predict travel-times for local and regional phases, such as Pg, Pn, Sn and Lg, as well as travel-times for body-waves at upper mantle triplication distances in both seismic and aseismic regions of Eurasia and the Middle East. We anticipate the models will help inform and strengthen ongoing and future efforts within the NNSA labs to develop 3D velocity models for Eurasia and the Middle East, and will assist in obtaining model-based predictions where no empirical data are available and for improving locations from sparse networks using kriging. The codes needed to conduct the joint inversion of P-wave receiver functions (PRFs), S-wave receiver functions (SRFs), and dispersion velocities have already been assembled as part of ongoing research on lithospheric structure in Africa. The methodology has been tested with synthetic 'data' and case studies have been investigated with data collected at an open broadband stations in South Africa. PRFs constrain the size and S-P travel-time of seismic discontinuities in the crust and uppermost mantle, SRFs constrain the size and P-S travel-time of the lithosphere-asthenosphere boundary, and dispersion velocities constrain average S-wave velocity within frequency-dependent depth-ranges. Preliminary results show that the combination yields integrated 1D velocity models local to the recording station, where the discontinuities constrained by the receiver functions are superimposed to a background velocity model constrained by the dispersion velocities. In our first year of this project we will (i) generate 1D velocity models for open broadband seismic stations
Study of real space wave functions with electron energy loss spectrometry
Energy Technology Data Exchange (ETDEWEB)
Löffler, S.
2013-07-01
In this work, new methods to study the real space wave functions of electrons in a solid using transmission electron microscopy (TEM) and electron energy loss spectrometry (EELS) are presented. To this end, the theory of both elastic and inelastic electron scattering is treated in a density-matrix formalism. In the process, the central quantities of inelastic electron scattering - the mixed dynamic form factor (MDFF) and the double differential scattering cross section (DDSCS) - are introduced. In addition to the formal theory, several approximations and simplifications, as well as their respective validities, are discussed. Furthermore, a method for diagonalizing the mixed dynamic form factor is described, which allows calculating high resolution energy filtered TEM images with unprecedented accuracy. Subsequently, several applications of the aforementioned theory to real-world examples are presented. On the one hand, the example of Silicon serves to demonstrate how the radial wave functions in the bulk can be measured; the agreement with the theoretical predictions proves to be very good. On the other hand, the determination of the wave functions' azimuthal dependence is derived. It turns out that the symmetry of the system under investigation is crucial to the success of this endeavor. With the new techniques presented here, it will be possible to measure electronic properties with atomic resolution, which can be of great importance, particularly in material science. (author) [German] In der vorliegenden Arbeit werden neue Methoden vorgestellt, mit deren Hilfe Elektronenwellenfunktionen in Festkörpern mittels Transmissionselektronenmikroskopie (TEM) und Elektronenenergieverlustspektrometrie (EELS) direkt im Realraum vermessen werden können. Zu diesem Zweck wird sowohl die Theorie der elastischen Elektronenbeugung als auch die der inelastischen Elektronenstreuung im Dichtematrixformalismus dargestellt. Dabei werden die zentralen Größen der inelastischen
Surface Hopping Dynamics with Correlated Single-Reference Methods: 9H-Adenine as a Case Study
Czech Academy of Sciences Publication Activity Database
Plasser, F.; Crespo-Otero, R.; Pederzoli, Marek; Pittner, Jiří; Lischka, H.; Barbatti, M.
2014-01-01
Roč. 10, č. 4 (2014), s. 1395-1405 ISSN 1549-9618 R&D Projects: GA ČR(CZ) GAP208/12/0559 Institutional support: RVO:61388955 Keywords : density-functional theory * resolved photoelectron spectroscopy * nonadiabatic molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.498, year: 2014
International Nuclear Information System (INIS)
Ghirardi, G.C.; Rimini, A.; Weber, T.
1987-06-01
It is shown that the assumption of a stochastic localization process for the quantum wave function is essentially different from the suppression of coherence over macroscopic distances arising from the interaction with the environment and allows for a conceptually complete derivation of the classical behaviour of macroscopic bodies. (author). 4 refs
Fracchia, F.; Filippi, Claudia; Amovilli, C.
2014-01-01
We present here several novel features of our recently proposed Jastrow linear generalized valence bond (J-LGVB) wave functions, which allow a consistently accurate description of complex potential energy surfaces (PES) of medium-large systems within quantum Monte Carlo (QMC). In particular, we
International Nuclear Information System (INIS)
Oudih, M.R.; Benhamouda, N.; Fellah, M.; Allal, N.H.
2000-01-01
A method of simultaneous particle-number and angular-momentum projection of the BCS wave-function is presented. The particle number projection method is of FBCS type. In the frame work of the adiabatic approximation, the rotational energies of the axially symmetric even-even nuclei are established and numerically calculated for the rare-earth region. (author)
Evolution of ground-state wave function in CeCoIn5 upon Cd or Sn doping
Chen, K.; Strigari, F.; Sundermann, M.; Hu, Z.; Fisk, Z.; Bauer, E. D.; Rosa, P. F. S.; Sarrao, J. L.; Thompson, J. D.; Herrero-Martin, J.; Pellegrin, E.; Betto, D.; Kummer, K.; Tanaka, A.; Wirth, S.; Severing, A.
2018-01-01
We present linear polarization-dependent soft-x-ray absorption spectroscopy data at the Ce M4 ,5 edges of Cd- and Sn-doped CeCoIn5. The 4 f ground-state wave functions have been determined for their superconducting, antiferromagnetic, and paramagnetic ground states. The absence of changes in the wave functions in CeCo (In1-xCdx) 5 suggests that the 4 f -conduction-electron (c f ) hybridization is not affected by global Cd doping, thus supporting the interpretation of magnetic droplets nucleating long-range magnetic order. This is contrasted by changes in the wave function due to Sn substitution. Increasing Sn in CeCo (In1-ySny) 5 compresses the 4 f orbitals into the tetragonal plane of these materials, suggesting enhanced c f hybridization with the in-plane In(1) atoms and a homogeneous altering of the electronic structure. As these experiments show, the 4 f wave functions are a very sensitive probe of small changes in the hybridization of 4 f and conduction electrons, even conveying information about direction dependencies.
Haghighi Mood, Kaveh; Lüchow, Arne
2017-08-17
Diffusion quantum Monte Carlo calculations with partial and full optimization of the guide function are carried out for the dissociation of the FeS molecule. For the first time, quantum Monte Carlo orbital optimization for transition metal compounds is performed. It is demonstrated that energy optimization of the orbitals of a complete active space wave function in the presence of a Jastrow correlation function is required to obtain agreement with the experimental dissociation energy. Furthermore, it is shown that orbital optimization leads to a 5 Δ ground state, in agreement with experiments but in disagreement with other high-level ab initio wave function calculations which all predict a 5 Σ + ground state. The role of the Jastrow factor in DMC calculations with pseudopotentials is investigated. The results suggest that a large Jastrow factor may improve the DMC accuracy substantially at small additional cost.
Wave function analysis of type-II self-assembled quantum dot structures using magneto-optics
International Nuclear Information System (INIS)
Godoy, Marcio Peron Franco de; Nakaema, Marcelo K.K.; Gomes, Paulo F.; Iikawa, Fernando; Brasil, Maria Jose S.P.; Bortoleto, Jose Roberto R.; Cotta, Monica A.; Ribeiro, Evaldo; Medeiros-Ribeiro, Gilberto; Marques, Gilmar E.; Bittencourt, A.C.R.
2004-01-01
Full text: Recently, self-assembled quantum dots have attracted considerable attention for their potential for device applications. Type II interface, in particular, present interesting properties due to the space separation of the carriers. One of the carriers is confined at the lower band gap layer and the other remains at the barrier layers and is only localized by the Coulomb attraction. An essential information for using type II quantum wells and quantum dots on technological applications is the localization of the carrier wave function, which is an experimentally difficult parameter to be measured. Some techniques have been proposed to map the wave functions in quantum dots such as magneto-tunneling spectroscopy and near- field scanning optical microscopy. These techniques involve however a very complex experimental apparatus and sample processing. The magneto-exciton transition can be used as an alternative tool to investigate the exciton wave function distribution, since this distribution has a strong influence on the diamagnetic shift and Zeeman splitting. In this work, we present magneto-optical studies of In P/GaAs type II self-assembled quantum dots, where the electron is strongly confined at the In P, while the hole is weakly localized at the GaAs barrier due to the Coulombic attraction from the electrons. This scenery is very distinct from type I systems. The weaker hole confinement should alter the valence band mixing resulting in a different valence band contribution on the Zeeman splitting as compared to type I systems. Based on the results of the magneto-exciton emission from the wetting layer and from the individual dots, we obtained interesting results concerning the wave function distribution in our system. We discuss the localization of the hole wave function along the growth direction based on the measured Zeeman splitting and the in-plane wave function distribution, based on the observed diamagnetic shift. A remarkable result is that the
Directory of Open Access Journals (Sweden)
Hasibun Naher
2012-01-01
Full Text Available We construct new analytical solutions of the (3+1-dimensional modified KdV-Zakharov-Kuznetsev equation by the Exp-function method. Plentiful exact traveling wave solutions with arbitrary parameters are effectively obtained by the method. The obtained results show that the Exp-function method is effective and straightforward mathematical tool for searching analytical solutions with arbitrary parameters of higher-dimensional nonlinear partial differential equation.
International Nuclear Information System (INIS)
Colle, R.; Simonucci, S.
1996-01-01
The theoretical framework of a method that utilizes a projected potential operator to construct scattering wave functions is presented. Theorems and spectral properties of a Hamiltonian with the potential energy operator represented in terms of L'2(R'3)-functions are derived. The computational advantages offered by the method for calculating spectroscopic quantities, like resonance energies, decay probabilities and photoionization cross-sections, are discussed
Tight-binding analysis of Si and GaAs ultrathin bodies with subatomic wave-function resolution
Tan, Yaohua P.; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy B.; Klimeck, Gerhard
2015-08-01
Empirical tight-binding (ETB) methods are widely used in atomistic device simulations. Traditional ways of generating the ETB parameters rely on direct fitting to bulk experiments or theoretical electronic bands. However, ETB calculations based on existing parameters lead to unphysical results in ultrasmall structures like the As-terminated GaAs ultrathin bodies (UTBs). In this work, it is shown that more transferable ETB parameters with a short interaction range can be obtained by a process of mapping ab initio bands and wave functions to ETB models. This process enables the calibration of not only the ETB energy bands but also the ETB wave functions with corresponding ab initio calculations. Based on the mapping process, ETB models of Si and GaAs are parameterized with respect to hybrid functional calculations. Highly localized ETB basis functions are obtained. Both the ETB energy bands and wave functions with subatomic resolution of UTBs show good agreement with the corresponding hybrid functional calculations. The ETB methods can then be used to explain realistically extended devices in nonequilibrium that cannot be tackled with ab initio methods.
Inflation including collapse of the wave function: the quasi-de Sitter case
Energy Technology Data Exchange (ETDEWEB)
Leon, Gabriel [Universidad de Buenos Aires, Ciudad Universitaria-PabI, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Landau, Susana J. [Universidad de Buenos Aires y IFIBA, CONICET, Ciudad Universitaria-PabI, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Piccirilli, Maria Pia [Universidad Nacional de La Plata, Grupo de Astrofisica, Relatividad y Cosmologia, Facultad de Ciencias Astronomicas y Geofisicas, Pcia de Buenos Aires (Argentina)
2015-08-15
The precise physical mechanism describing the emergence of the seeds of cosmic structure from a perfect isotropic and homogeneous universe has not been fully explained by the standard version of inflationary models. To handle this shortcoming, D. Sudarsky and collaborators have developed a proposal: the self-induced collapse hypothesis. In this scheme, the objective collapse of the inflaton wave function is responsible for the emergence of inhomogeneity and anisotropy at all scales. In previous papers, the proposal was developed with an almost exact de Sitter space-time approximation for the background that led to a perfect scale-invariant power spectrum. In the present article, we consider a full quasi-de Sitter expansion and calculate the primordial power spectrum for three different choices of the self-induced collapse. The consideration of a quasi-de Sitter background allows us to distinguish departures from an exact scale-invariant power spectrum that are due to the inclusion of the collapse hypothesis. These deviations are also different from the prediction of standard inflationary models with a running spectral index. A comparison with the primordial power spectrum and the CMB temperature fluctuation spectrum preferred by the latest observational data is also discussed. From the analysis performed in this work, it follows that most of the collapse schemes analyzed in this paper are viable candidates to explain the present observations of the CMB fluctuation spectrum. (orig.)
Inflation including collapse of the wave function: the quasi-de Sitter case
International Nuclear Information System (INIS)
Leon, Gabriel; Landau, Susana J.; Piccirilli, Maria Pia
2015-01-01
The precise physical mechanism describing the emergence of the seeds of cosmic structure from a perfect isotropic and homogeneous universe has not been fully explained by the standard version of inflationary models. To handle this shortcoming, D. Sudarsky and collaborators have developed a proposal: the self-induced collapse hypothesis. In this scheme, the objective collapse of the inflaton wave function is responsible for the emergence of inhomogeneity and anisotropy at all scales. In previous papers, the proposal was developed with an almost exact de Sitter space-time approximation for the background that led to a perfect scale-invariant power spectrum. In the present article, we consider a full quasi-de Sitter expansion and calculate the primordial power spectrum for three different choices of the self-induced collapse. The consideration of a quasi-de Sitter background allows us to distinguish departures from an exact scale-invariant power spectrum that are due to the inclusion of the collapse hypothesis. These deviations are also different from the prediction of standard inflationary models with a running spectral index. A comparison with the primordial power spectrum and the CMB temperature fluctuation spectrum preferred by the latest observational data is also discussed. From the analysis performed in this work, it follows that most of the collapse schemes analyzed in this paper are viable candidates to explain the present observations of the CMB fluctuation spectrum. (orig.)
Method for constructing bound state wave functions of two interacting particles on nullplanes
International Nuclear Information System (INIS)
Leidigh, T.J.
1980-01-01
Nullplane position and momentum coordinates are defined in terms of the generators of the Poincare group. A transformation to center-of-mass and relative coordinates for a two-particle system is made. Then, another transformation from the original relative coordinates to a new set is made. In terms of the new relative coordinates the formal analogy with nonrelativistic quantum mechanics, already familiar in the nullplane formalism, is greatly enhanced. These coordinates do not appear to have been used previously. The most general form for a two-particle interaction is then partially determined and two methods for solving the remaining constraints are shown to be equivalent. The similarity to nonrelativistic quantum mechanics is used to solve a bound state problem with an interaction resembling a harmonic oscillator. The wave function is then used to model an unstable particle, which has zero spin in the limit in which the particle becomes stable. In the presence of the decay-producing interaction it is shown that the spin spectrum of the parent particle does not remain sharply zero. This is the first relativistic model to unequivocally display this result. The result is interpreted as indicating that real, relativistic, unstable particles may not possess a sharp spin spectrum
Two-body Dirac equation and its wave function at the origin
International Nuclear Information System (INIS)
Ito, Hitoshi
1998-01-01
We propose a relativistic bound state equation for the Dirac particles interacting through an Abelian gauge field. It reduces to the (one body) Dirac equation in the infinite limit of one of the masses and is invariant under the PCT transformation. This invariance is a consequence of a modification of the Stueckelberg-Feynman boundary condition for propagation of the negative-energy two-body states, by which the some effect of the crossed diagram is taken in the lowest ladder equation. We can correct back the modification in perturbative calculations of the weak-coupling theory by adding a counter correction term in the interaction kernel. The equation can be used for the phenomenology of the heavy flavored mesons. We get good behavior of the wave function at the origin (WFO), with which the annihilation amplitude of the pseudoscalar meson becomes finite. Some comments are mentioned for the application in the heavy quark effective theory. The talk was based on a preprint
A 1D pulse wave propagation model of the hemodynamics of calf muscle pump function.
Keijsers, J M T; Leguy, C A D; Huberts, W; Narracott, A J; Rittweger, J; van de Vosse, F N
2015-07-01
The calf muscle pump is a mechanism which increases venous return and thereby compensates for the fluid shift towards the lower body during standing. During a muscle contraction, the embedded deep veins collapse and venous return increases. In the subsequent relaxation phase, muscle perfusion increases due to increased perfusion pressure, as the proximal venous valves temporarily reduce the distal venous pressure (shielding). The superficial and deep veins are connected via perforators, which contain valves allowing flow in the superficial-to-deep direction. The aim of this study is to investigate and quantify the physiological mechanisms of the calf muscle pump, including the effect of venous valves, hydrostatic pressure, and the superficial venous system. Using a one-dimensional pulse wave propagation model, a muscle contraction is simulated by increasing the extravascular pressure in the deep venous segments. The hemodynamics are studied in three different configurations: a single artery-vein configuration with and without valves and a more detailed configuration including a superficial vein. Proximal venous valves increase effective venous return by 53% by preventing reflux. Furthermore, the proximal valves shielding function increases perfusion following contraction. Finally, the superficial system aids in maintaining the perfusion during the contraction phase and reduces the refilling time by 37%. © 2015 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd.
Sugisaki, Kenji; Yamamoto, Satoru; Nakazawa, Shigeaki; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Takui, Takeji
2016-08-18
Quantum computers are capable to efficiently perform full configuration interaction (FCI) calculations of atoms and molecules by using the quantum phase estimation (QPE) algorithm. Because the success probability of the QPE depends on the overlap between approximate and exact wave functions, efficient methods to prepare accurate initial guess wave functions enough to have sufficiently large overlap with the exact ones are highly desired. Here, we propose a quantum algorithm to construct the wave function consisting of one configuration state function, which is suitable for the initial guess wave function in QPE-based FCI calculations of open-shell molecules, based on the addition theorem of angular momentum. The proposed quantum algorithm enables us to prepare the wave function consisting of an exponential number of Slater determinants only by a polynomial number of quantum operations.
Pulse wave velocity and cardiac autonomic function in type 2 diabetes mellitus.
Chorepsima, Stamatina; Eleftheriadou, Ioanna; Tentolouris, Anastasios; Moyssakis, Ioannis; Protogerou, Athanasios; Kokkinos, Alexandros; Sfikakis, Petros P; Tentolouris, Nikolaos
2017-05-19
Increased carotid-femoral pulse wave velocity (PWV) has been associated with incident cardiovascular disease, independently of traditional risk factors. Cardiac autonomic dysfunction is a common complication of diabetes and has been associated with reduced aortic distensibility. However, the association of cardiac autonomic dysfunction with PWV is not known. In this study we examined the association between cardiac autonomic function and PWV in subjects with type 2 diabetes mellitus. A total of 290 patients with type 2 diabetes were examined. PWV was measured at the carotid-femoral segment with applanation tonometry. Central mean arterial blood pressure (MBP) was determined by the same apparatus. Participants were classified as having normal (n = 193) or abnormal (n = 97) PWV values using age-corrected values. Cardiac autonomic nervous system activity was determined by measurement of parameters of heart rate variability (HRV). Subjects with abnormal PWV were older, had higher arterial blood pressure and higher heart rate than those with normal PWV. Most of the values of HRV were significantly lower in subjects with abnormal than in those with normal PWV. Multivariate analysis, after controlling for various confounding factors, demonstrated that abnormal PWV was associated independently only with peripheral MBP [odds ratio (OR) 1.049, 95% confidence intervals (CI) 1.015-1.085, P = 0.005], central MBP (OR 1.052, 95% CI 1.016-1.088, P = 0.004), log total power (OR 0.490, 95% CI 0.258-0.932, P = 0.030) and log high frequency power (OR 0.546, 95% CI 0.301-0.991, P = 0.047). In subjects with type 2 diabetes, arterial blood pressure and impaired cardiac autonomic function is associated independently with abnormal PWV.
Ryan, Thomas D; Parent, John J; Gao, Zhiqian; Khoury, Philip R; Dupont, Elizabeth; Smith, Jennifer N; Wong, Brenda; Urbina, Elaine M; Jefferies, John L
2017-08-01
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutation of dystrophin. Cardiovascular involvement includes dilated cardiomyopathy. Non-invasive assessment of vascular function has not been evaluated in DMD. We hypothesize arterial wave reflection is abnormal in patients with DMD. Pulse wave analysis was performed on DMD patients with a SphygmoCor SCOR-PVx System to determine central blood pressure and augmentation index (AIx) as an assessment of arterial wave reflection. Results were compared to a control group. A total of 43 patients with DMD were enrolled, and compared to 43 normal controls. Central systolic blood pressure was lower, while both AIx-75 (7.8 ± 9.6% vs. 2.1 ± 10.4%, p 0.01, DMD vs. normal) and AIx-not corrected (16.8 ± 10.1% vs. -3.6 ± 10.9, p wave reflection when compared to normal controls, which may represent increased arterial stiffness. Overall there appears to be no effect on ventricular systolic function, however the long-term consequence in this group is unknown. Further study is required to determine the mechanism of these differences, which may be related to the effects of systemic steroids or the role of dystrophin in vascular function.
International Nuclear Information System (INIS)
Sudarshan, E.C.G.; Mukunda, N.
1978-03-01
A systematic structure analysis of the correlation functions of statistical quantum optics is carried out. From a suitably defined auxiliary two-point function identification of the excited modes in the wave field is found. The relative simplicity of the higher order correlation functions emerges as a by-product and the conditions under which these are made pure are derived. These results depend in a crucial manner on the notion of coherence indices aand of unimodular coherence indices. A new class of approximate expressions for the density operator of a statistical wave field is worked out based on discrete characteristic sets. These are even more economical than the diagonal coherent state representations. An appreciation of the subtleties of quantum theory obtains. Certain implications for the physics of light beams are cited. 28 references
Xu, Enhua; Li, Shuhua
2015-03-07
An externally corrected CCSDt (coupled cluster with singles, doubles, and active triples) approach employing four- and five-body clusters from the complete active space self-consistent field (CASSCF) wave function (denoted as ecCCSDt-CASSCF) is presented. The quadruple and quintuple excitation amplitudes within the active space are extracted from the CASSCF wave function and then fed into the CCSDt-like equations, which can be solved in an iterative way as the standard CCSDt equations. With a size-extensive CASSCF reference function, the ecCCSDt-CASSCF method is size-extensive. When the CASSCF wave function is readily available, the computational cost of the ecCCSDt-CASSCF method scales as the popular CCSD method (if the number of active orbitals is small compared to the total number of orbitals). The ecCCSDt-CASSCF approach has been applied to investigate the potential energy surface for the simultaneous dissociation of two O-H bonds in H2O, the equilibrium distances and spectroscopic constants of 4 diatomic molecules (F2(+), O2(+), Be2, and NiC), and the reaction barriers for the automerization reaction of cyclobutadiene and the Cl + O3 → ClO + O2 reaction. In most cases, the ecCCSDt-CASSCF approach can provide better results than the CASPT2 (second order perturbation theory with a CASSCF reference function) and CCSDT methods.
Evans functions and bifurcations of nonlinear waves of some nonlinear reaction diffusion equations
Zhang, Linghai
2017-10-01
The main purposes of this paper are to accomplish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear system of reaction diffusion equations ut =uxx + α [ βH (u - θ) - u ] - w, wt = ε (u - γw) and to establish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ], under different conditions on the model constants. To establish the bifurcation for the system, we will study the existence and instability of a standing pulse solution if 0 1; the existence and instability of two standing wave fronts if 2 (1 + αγ) θ = αβγ and 0 traveling wave front as well as the existence and instability of a standing pulse solution if 0 traveling wave front as well as the existence and instability of an upside down standing pulse solution if 0 traveling wave back of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ] -w0, where w0 = α (β - 2 θ) > 0 is a positive constant, if 0 motivation to study the existence, stability, instability and bifurcations of the nonlinear waves is to study the existence and stability/instability of infinitely many fast/slow multiple traveling pulse solutions of the nonlinear system of reaction diffusion equations. The existence and stability of infinitely many fast multiple traveling pulse solutions are of great interests in mathematical neuroscience.
Holfeld, Johannes; Zimpfer, Daniel; Albrecht-Schgoer, Karin; Stojadinovic, Alexander; Paulus, Patrick; Dumfarth, Julia; Thomas, Anita; Lobenwein, Daniela; Tepeköylü, Can; Rosenhek, Raphael; Schaden, Wolfgang; Kirchmair, Rudolf; Aharinejad, Seyedhossein; Grimm, Michael
2016-12-01
Previously we have shown that epicardial shock-wave therapy improves left ventricular ejection fraction (LVEF) in a rat model of myocardial infarction. In the present experiments we aimed to address the safety and efficacy of epicardial shock-wave therapy in a preclinical large animal model and to further evaluate mechanisms of action of this novel therapy. Four weeks after left anterior descending (LAD) artery ligation in pigs, the animals underwent re-thoracotomy with (shock-wave group, n = 6) or without (control group, n = 5) epicardial shock waves (300 impulses at 0.38 mJ/mm 2 ) applied to the infarcted anterior wall. Efficacy endpoints were improvement of LVEF and induction of angiogenesis 6 weeks after shock-wave therapy. Safety endpoints were haemodynamic stability during treatment and myocardial damage. Four weeks after LAD ligation, LVEF decreased in both the shock-wave (43 ± 3%, p wave animals 6 weeks after treatment (62 ± 9%, p = 0.006); no improvement was observed in controls (41 ± 4%, p = 0.36), yielding a significant difference. Quantitative histology revealed significant angiogenesis 6 weeks after treatment (controls 2 ± 0.4 arterioles/high-power field vs treatment group 9 ± 3; p = 0.004). No acute or chronic adverse effects were observed. As a potential mechanism of action in vitro experiments showed stimulation of VEGF receptors after shock-wave treatment in human coronary artery endothelial cells. Epicardial shock-wave treatment in a large animal model of ischaemic heart failure exerted a positive effect on LVEF improvement and did not show any adverse effects. Angiogenesis was induced by stimulation of VEGF receptors. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.
Gutzwiller variational wave function for a two-orbital Hubbard model on a square lattice
Energy Technology Data Exchange (ETDEWEB)
Muenster, Kevin Torben zu
2015-07-01
In this work, we formulated and applied the Gutzwiller variational many-body approach to multi-band Hubbard models. In chapter 1, we gave a short introduction to the problem and an outline of the scope of the work. In the chapter 2, we developed a complete, concise diagrammatic formalism for a perturbative evaluation of expectation values for Gutzwiller-correlated wave functions on finite lattices. The derivation of the diagrammatic expansion consists of three steps. In a first step, we introduced a one-to-one mapping between a sequence of fermion operators and their Hartree-Fock counterparts in order to eliminate all local contractions. We explicitly showed the consistency of the mapping. In a second step, we derived and applied the linked-cluster theorem. To this end, we expanded numerator and denominator in the Gutzwiller expectation value of one-site and two-site operators in terms of a perturbation series, and used Wick's theorem to express the coefficients in terms of diagrams. The introduction of the Hartree-Fock operators excludes all local contractions so that lines between identical lattice sites are zero by definition. The normal ordering of the operators and the sum over distinctive lattice sites permitted the introduction of Grassmann variables. For multi-band Gutzwiller wave functions, we had to introduce a formal representation of local operators in terms of an exponential series which led to a re-definition of the values of external and internal vertices. Then, the linked-cluster theorem applied, both for infinite and finite lattices, i.e., the unconnected diagrams in the numerator are canceled by the denominator. In this way, the nth-order in perturbation theory corresponds to summing all connected diagrams with n internal nodes. As a third and last step, we eliminated all internal nodes with two lines by fixing a subset of our variational parameters. We showed that, for our applications, this gauge fixing does not restrict the variational
International Nuclear Information System (INIS)
Li, Peng; Jin, Feng; Cao, Xiao-Shan
2013-01-01
The effect of functional graded piezoelectric materials on the propagation of thickness-twist waves is investigated through equations of the linear theory of piezoelectricity. The elastic and piezoelectric coefficients, dielectric permittivity, and mass density are assumed to change in a linear form but with different graded parameters along the wave propagation direction. We employ the power-series technique to solve the governing differential equations with variable coefficients attributed to the different graded parameters and prove the correction and convergence of this method. As a special case, the functional graded middle layer resulting from piezoelectric damage and material bonding is investigated. Piezoelectric damaged material can facilitate energy trapping, which is impossible in perfect materials. The increase in the damaged length and the reduction in the piezoelectric coefficient decrease the resonance frequency but increase the number of modes. Higher modes of thickness-twist waves appear periodically along the damaged length. Moreover, the displacement of the center of the damaged portion is neither symmetric nor anti-symmetric, unlike the non-graded plate. The conclusions are theoretically and practically significant for wave devices. (paper)
Baryon scattering at high energies. Wave function, impact factor, and gluon radiation
International Nuclear Information System (INIS)
Bartels, J.; Motyka, L.; Jagellonian Univ., Krakow
2007-11-01
The scattering of a baryon consisting of three massive quarks is investigated in the high energy limit of perturbative QCD. A model of a relativistic proton-like wave function, dependent on valence quark longitudinal and transverse momenta and on quark helicities, is proposed, and we derive the baryon impact factors for two, three and four t-channel gluons. We find that the baryonic impact factor can be written as a sum of three pieces: in the first one a subsystem consisting of two of the three quarks behaves very much like the quark-antiquark pair in γ * scattering, whereas the third quark acts as a spectator. The second term belongs to the odderon, whereas in the third (C-even) piece all three quarks participate in the scattering. This term is new and has no analogue in γ * scattering. We also study the small x evolution of gluon radiation for each of these three terms. The first term follows the same pattern of gluon radiation as the γ * -initiated quark-antiquark dipole, and, in particular, it contains the BFKL evolution followed by the 2→4 transition vertex (triple Pomeron vertex). The odderon-term is described by the standard BKP evolution, and the baryon couples to both known odderon solutions, the Janik-Wosiek solution and the BLV solution. Finally, the t-channel evolution of the third term starts with a three reggeized gluon state which then, via a new 3→4 transition vertex, couples to the four gluon (two-Pomeron) state. We briefly discuss a few consequences of these findings, in particular the pattern of unitarization of high energy baryon scattering amplitudes. (orig.)
Exchange splitting of the interaction energy and the multipole expansion of the wave function
Energy Technology Data Exchange (ETDEWEB)
Gniewek, Piotr, E-mail: pgniewek@tiger.chem.uw.edu.pl; Jeziorski, Bogumił, E-mail: jeziorsk@chem.uw.edu.pl [Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland)
2015-10-21
The exchange splitting J of the interaction energy of the hydrogen atom with a proton is calculated using the conventional surface-integral formula J{sub surf}[Φ], the volume-integral formula of the symmetry-adapted perturbation theory J{sub SAPT}[Φ], and a variational volume-integral formula J{sub var}[Φ]. The calculations are based on the multipole expansion of the wave function Φ, which is divergent for any internuclear distance R. Nevertheless, the resulting approximations to the leading coefficient j{sub 0} in the large-R asymptotic series J(R) = 2e{sup −R−1}R(j{sub 0} + j{sub 1}R{sup −1} + j{sub 2}R{sup −2} + ⋯) converge with the rate corresponding to the convergence radii equal to 4, 2, and 1 when the J{sub var}[Φ], J{sub surf}[Φ], and J{sub SAPT}[Φ] formulas are used, respectively. Additionally, we observe that also the higher j{sub k} coefficients are predicted correctly when the multipole expansion is used in the J{sub var}[Φ] and J{sub surf}[Φ] formulas. The symmetry adapted perturbation theory formula J{sub SAPT}[Φ] predicts correctly only the first two coefficients, j{sub 0} and j{sub 1}, gives a wrong value of j{sub 2}, and diverges for higher j{sub n}. Since the variational volume-integral formula can be easily generalized to many-electron systems and evaluated with standard basis-set techniques of quantum chemistry, it provides an alternative for the determination of the exchange splitting and the exchange contribution of the interaction potential in general.
Calculation of the two-electron Darwin term using explicitly correlated wave functions
International Nuclear Information System (INIS)
Middendorf, Nils; Höfener, Sebastian; Klopper, Wim; Helgaker, Trygve
2012-01-01
Graphical abstract: The two-electron Darwin term is computed analytically at the MP2-F12 level of theory using density fitted integrals. Highlights: ► Two-electron Darwin term computed analytically at the MP2-F12 level. ► Darwin two-electron integrals computed using density fitting techniques. ► Two-electron Darwin term dominated by singlet pair contributions. ► Much improved basis set convergence is achieved with F12 methods. ► Interference correction works well for the two-electron Darwin term. - Abstract: This article is concerned with the calculation of the two-electron Darwin term (D2). At the level of explicitly correlated second-order perturbation theory (MP2-F12), the D2 term is obtained as an analytic energy derivative; at the level of explicitly correlated coupled-cluster theory, it is obtained from finite differences. To avoid the calculation of four-center integrals, a density-fitting approximation is applied to the D2 two-electron integrals without loss of accuracy, even though the absolute value of the D2 term is typically about 0.1 mE h . Explicitly correlated methods provide a qualitatively correct description of the short-range region around the Coulomb hole, even for small orbital basis sets. Therefore, explicitly correlated wave functions remedy the otherwise extremely slow convergence of the D2 contribution with respect to the basis-set size, yielding more accurate results than those obtained by two-point basis-set extrapolation. Moreover, we show that the interference correction of Petersson’s complete-basis-set model chemistry can be used to compute a D2 basis-set correction at the MP2-F12 level to improve standard coupled-cluster singles-and-doubles results.
Baryon scattering at high energies. Wave function, impact factor, and gluon radiation
Energy Technology Data Exchange (ETDEWEB)
Bartels, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Motyka, L. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik]|[Jagellonian Univ., Krakow (Poland). Inst. of Physics
2007-11-15
The scattering of a baryon consisting of three massive quarks is investigated in the high energy limit of perturbative QCD. A model of a relativistic proton-like wave function, dependent on valence quark longitudinal and transverse momenta and on quark helicities, is proposed, and we derive the baryon impact factors for two, three and four t-channel gluons. We find that the baryonic impact factor can be written as a sum of three pieces: in the first one a subsystem consisting of two of the three quarks behaves very much like the quark-antiquark pair in {gamma}{sup *} scattering, whereas the third quark acts as a spectator. The second term belongs to the odderon, whereas in the third (C-even) piece all three quarks participate in the scattering. This term is new and has no analogue in {gamma}{sup *} scattering. We also study the small x evolution of gluon radiation for each of these three terms. The first term follows the same pattern of gluon radiation as the {gamma}{sup *}-initiated quark-antiquark dipole, and, in particular, it contains the BFKL evolution followed by the 2{yields}4 transition vertex (triple Pomeron vertex). The odderon-term is described by the standard BKP evolution, and the baryon couples to both known odderon solutions, the Janik-Wosiek solution and the BLV solution. Finally, the t-channel evolution of the third term starts with a three reggeized gluon state which then, via a new 3{yields}4 transition vertex, couples to the four gluon (two-Pomeron) state. We briefly discuss a few consequences of these findings, in particular the pattern of unitarization of high energy baryon scattering amplitudes. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Kato, Tsuyoshi; Ide, Yoshihiro; Yamanouchi, Kaoru [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo Bunkyo-ku, Tokyo, 113-0033 (Japan)
2015-12-31
We first calculate the ground-state molecular wave function of 1D model H{sub 2} molecule by solving the coupled equations of motion formulated in the extended multi-configuration time-dependent Hartree-Fock (MCTDHF) method by the imaginary time propagation. From the comparisons with the results obtained by the Born-Huang (BH) expansion method as well as with the exact wave function, we observe that the memory size required in the extended MCTDHF method is about two orders of magnitude smaller than in the BH expansion method to achieve the same accuracy for the total energy. Second, in order to provide a theoretical means to understand dynamical behavior of the wave function, we propose to define effective adiabatic potential functions and compare them with the conventional adiabatic electronic potentials, although the notion of the adiabatic potentials is not used in the extended MCTDHF approach. From the comparison, we conclude that by calculating the effective potentials we may be able to predict the energy differences among electronic states even for a time-dependent system, e.g., time-dependent excitation energies, which would be difficult to be estimated within the BH expansion approach.
Teunis, Meghan B; Nagaraju, Mulpuri; Dutta, Poulami; Pu, Jingzhi; Muhoberac, Barry B; Sardar, Rajesh; Agarwal, Mangilal
2017-09-28
This article describes the mechanisms underlying electronic interactions between surface passivating ligands and (CdSe) 34 semiconductor cluster molecules (SCMs) that facilitate band-gap engineering through the delocalization of hole wave functions without altering their inorganic core. We show here both experimentally and through density functional theory calculations that the expansion of the hole wave function beyond the SCM boundary into the ligand monolayer depends not only on the pre-binding energetic alignment of interfacial orbitals between the SCM and surface passivating ligands but is also strongly influenced by definable ligand structural parameters such as the extent of their π-conjugation [π-delocalization energy; pyrene (Py), anthracene (Anth), naphthalene (Naph), and phenyl (Ph)], binding mode [dithiocarbamate (DTC, -NH-CS 2 - ), carboxylate (-COO - ), and amine (-NH 2 )], and binding head group [-SH, -SeH, and -TeH]. We observe an unprecedentedly large ∼650 meV red-shift in the lowest energy optical absorption band of (CdSe) 34 SCMs upon passivating their surface with Py-DTC ligands and the trend is found to be Ph- wave function delocalization rather than carrier trapping and/or phonon-mediated relaxation. Taken together, knowledge of how ligands electronically interact with the SCM surface is crucial to semiconductor nanomaterial research in general because it allows the tuning of electronic properties of nanomaterials for better charge separation and enhanced charge transfer, which in turn will increase optoelectronic device and photocatalytic efficiencies.
Plasser, Felix; Mewes, Stefanie A; Dreuw, Andreas; González, Leticia
2017-11-14
High-level multireference computations on electronically excited and charged states of tetracene are performed, and the results are analyzed using an extensive wave function analysis toolbox that has been newly implemented in the Molcas program package. Aside from verifying the strong effect of dynamic correlation, this study reveals an unexpected critical influence of the atomic orbital basis set. It is shown that different polarized double-ζ basis sets produce significantly different results for energies, densities, and overall wave functions, with the best performance obtained for the atomic natural orbital (ANO) basis set by Pierloot et al. Strikingly, the ANO basis set not only reproduces the energies but also performs exceptionally well in terms of describing the diffuseness of the different states and of their attachment/detachment densities. This study, thus, not only underlines the fact that diffuse basis functions are needed for an accurate description of the electronic wave functions but also shows that, at least for the present example, it is enough to include them implicitly in the contraction scheme.
Devries, P. L.; George, T. F.
1982-01-01
A time-dependent, wave-packet description of atomic collisions in the presence of laser radiation is extracted from the more conventional time-independent, stationary-state description. This approach resolves certain difficulties of interpretation in the time-independent approach which arise in the case of asymptotic near resonance. In the two-state model investigated, the approach predicts the existence of three spherically scattered waves in this asymptotically near-resonant case.
Variability In Long-Wave Runup as a Function of Nearshore Bathymetric Features
Energy Technology Data Exchange (ETDEWEB)
Dunkin, Lauren McNeill [Texas A & M Univ., College Station, TX (United States)
2010-05-01
Beaches and barrier islands are vulnerable to extreme storm events, such as hurricanes, that can cause severe erosion and overwash to the system. Having dunes and a wide beach in front of coastal infrastructure can provide protection during a storm, but the influence that nearshore bathymetric features have in protecting the beach and barrier island system is not completely understood. The spatial variation in nearshore features, such as sand bars and beach cusps, can alter nearshore hydrodynamics, including wave setup and runup. The influence of bathymetric features on long-wave runup can be used in evaluating the vulnerability of coastal regions to erosion and dune overtopping, evaluating the changing morphology, and implementing plans to protect infrastructure. In this thesis, long-wave runup variation due to changing bathymetric features as determined with the numerical model XBeach is quantified (eXtreme Beach behavior model). Wave heights are analyzed to determine the energy through the surfzone. XBeach assumes that coastal erosion at the land-sea interface is dominated by bound long-wave processes. Several hydrodynamic conditions are used to force the numerical model. The XBeach simulation results suggest that bathymetric irregularity induces significant changes in the extreme long-wave runup at the beach and the energy indicator through the surfzone.
Voluntary muscle activation and evoked volitional-wave responses as a function of torque.
Hight, Robert E; Quarshie, Alwyn T; Black, Christopher D
2018-08-01
This study employed a unique stimulation paradigm which allowed for the simultaneous assessment of voluntary activation levels (VA) via twitch-interpolation, and the evoked V-wave responses of the plantar flexors during submaximal and maximal contractions. Test-retest reliability was also examined. Fourteen participants repeated a stimulation protocol over four visits to assess VA and evoked V-wave amplitude across torque levels ranging from 20% to 100% MVC. MVC torque and EMG amplitude were also measured. VA increased nonlinearly with torque production and plateaued by 80% MVC. V-wave amplitude increased linearly from 20% to 100% MVC. There were no differences in any dependent variable across visits (p > 0.05). VA demonstrated moderate to substantial reliability across all torque levels (ICC = 0.76-0.91) while V-wave amplitude exhibited fair to moderate reliability from 40% to 100% (ICC = 0.48-0.74). We were able to reliably collect VA and the V-wave simultaneously in the plantar flexors. Collection of VA and V-wave during the same contraction provides distinct information regarding the contribution of motor-unit recruitment and descending cortico-spinal drive/excitability to force production. Copyright © 2018 Elsevier Ltd. All rights reserved.
González, O'Leary; Clouard, Valerie; Tait, Stephen; Panza, Giuliano F.
2018-06-01
We present an overview of S-wave velocities (Vs) within the crust and upper mantle of the Lesser Antilles as determined with 19 seismic broadband stations. Receiver functions (RF) have been computed from teleseismic recordings of earthquakes, and Rayleigh wave group velocity dispersion relations have been taken from earlier surface wave tomographic studies in the Caribbean area. Local smoothness optimization (LSO) procedure has been applied, combined with an H-K stacking method, the spatial distribution of hypocenters of local earthquakes and of the energy they released, in order to identify an optimum 1D model of Vs below each station. Several features of the Caribbean plate and its interaction with the Atlantic subducting slab are visible in the resulting models: (a) relatively thick oceanic crust below these stations ranges from 21 km to 33 km, being slight thinner in the middle of the island arc; (b) crustal low velocity zones are present below stations SABA, SEUS, SKI, SMRT, CBE, DSD, GCMP and TDBA; (c) lithospheric thickness range from 40 km to 105 km but lithosphere-asthenosphere boundary was not straightforward to correlate between stations; (d) the aseismic mantle wedge between the Caribbean seismic lithosphere and the subducted slab varies in thickness as well as Vs values which are, in general, lower below the West of Martinique than below the West of Guadeloupe; (e) the depth of the subducted slab beneath the volcanic arc, appears to be greater to the North, and relatively shallower below some stations (e.g. DLPL, SAM, BIM and FDF) than was estimated in previous studies based on the depth-distribution of seismicity; f) the WBZ is >10-15 km deeper than the top of the slab below the Central Lesser Antilles (Martinique and Dominica) where the presence of partial melt in the mantle wedge seems also to be more evident.
International Nuclear Information System (INIS)
West, Aaron C.; Schmidt, Michael W.; Gordon, Mark S.; Ruedenberg, Klaus
2013-01-01
Through a basis-set-independent web of localizing orbital-transformations, the electronic wave function of a molecule is expressed in terms of a set of orbitals that reveal the atomic structure and the bonding pattern of a molecule. The analysis is based on resolving the valence orbital space in terms of an internal space, which has minimal basis set dimensions, and an external space. In the internal space, oriented quasi-atomic orbitals and split-localized molecular orbitals are determined by new, fast localization methods. The density matrix between the oriented quasi-atomic orbitals as well as the locations of the split-localized orbitals exhibit atomic populations and inter-atomic bonding patterns. A correlation-adapted quasi-atomic basis is determined in the external orbital space. The general formulations are specified in detail for Hartree-Fock wave functions. Applications to specific molecules exemplify the general scheme
International Nuclear Information System (INIS)
Lo, C.F.
2009-01-01
By applying the standard analytical techniques of solving partial differential equations, we have obtained the exact solution in terms of the Fourier sine series to the time-dependent Schroedinger equation describing a quantum one-dimensional harmonic oscillator of time-dependent frequency confined in an infinite square well with the two walls moving along some parametric trajectories. Based upon the orthonormal basis of quasi-stationary wave functions, the exact propagator of the system has also been analytically derived. Special cases like (i) a confined free particle, (ii) a confined time-independent harmonic oscillator, and (iii) an aging oscillator are examined, and the corresponding time-dependent wave functions are explicitly determined. Besides, the approach has been extended to solve the case of a confined generalized time-dependent harmonic oscillator for some parametric moving boundaries as well. (general)
International Nuclear Information System (INIS)
Bhattacharyya, Somnath; Koch, Christoph T.; Ruehle, Manfred
2006-01-01
An iterative method for reconstructing the exit face wave function from a through focal series of transmission electron microscopy image line profiles across an interface is presented. Apart from high-resolution images recorded with small changes in defocus, this method works also well for a large defocus range as used for Fresnel imaging. Using the phase-object approximation the projected electrostatic as well as the absorptive potential profiles across an interface are determined from this exit face wave function. A new experimental image alignment procedure was developed in order to align images with large relative defocus shift. The performance of this procedure is shown to be superior to other image alignment procedures existing in the literature. The reconstruction method is applied to both simulated and experimental images
International Nuclear Information System (INIS)
Bhatnagar, S.; Li, Shiyuan; Mahecha, J.
2011-01-01
We have employed the framework of Bethe–Salpeter equation under covariant instantaneous ansatz to calculate leptonic decay constants of unequal mass pseudoscalar mesons like π ± , K, D, D S and B, and radiative decay constants of neutral pseudoscalar mesons like π 0 and η c into two photons. In the Dirac structure of hadronic Bethe–Salpeter wave function, the covariants are incorporated from their complete set in accordance with a recently proposed power counting rule. The contribution of both leading order and next-to-leading order Dirac covariants to decay constants are studied. The results are found to improve and hence validating the power counting rule which provides a practical means of incorporating Dirac covariants in the Bethe–Salpeter wave function for a hadron. (author)