WorldWideScience

Sample records for single-pollutant models pm10

  1. Network modeling of PM10 concentration in Malaysia

    Science.gov (United States)

    Supian, Muhammad Nazirul Aiman Abu; Bakar, Sakhinah Abu; Razak, Fatimah Abdul

    2017-08-01

    Air pollution is not a new phenomenon in Malaysia. The Department of Environment (DOE) monitors the country's ambient air quality through a network of 51 stations. The air quality is measured using the Air Pollution Index (API) which is mainly recorded based on the concentration of particulate matter, PM10 readings. The Continuous Air Quality Monitoring (CAQM) stations are located in various places across the country. In this study, a network model of air quality based on PM10 concen tration for selected CAQM stations in Malaysia has been developed. The model is built using a graph formulation, G = (V, E) where vertex, V is a set of CAQM stations and edges, E is a set of correlation values for each pair of vertices. The network measurements such as degree distributions, closeness centrality, and betweenness centrality are computed to analyse the behaviour of the network. As a result, a rank of CAQM stations has been produced based on their centrality characteristics.

  2. Improvement of PM10 prediction in East Asia using inverse modeling

    Science.gov (United States)

    Koo, Youn-Seo; Choi, Dae-Ryun; Kwon, Hi-Yong; Jang, Young-Kee; Han, Jin-Seok

    2015-04-01

    Aerosols from anthropogenic emissions in industrialized region in China as well as dust emissions from southern Mongolia and northern China that transport along prevailing northwestern wind have a large influence on the air quality in Korea. The emission inventory in the East Asia region is an important factor in chemical transport modeling (CTM) for PM10 (particulate matters less than 10 ㎛ in aerodynamic diameter) forecasts and air quality management in Korea. Most previous studies showed that predictions of PM10 mass concentration by the CTM were underestimated when comparing with observational data. In order to fill the gap in discrepancies between observations and CTM predictions, the inverse Bayesian approach with Comprehensive Air-quality Model with extension (CAMx) forward model was applied to obtain optimized a posteriori PM10 emissions in East Asia. The predicted PM10 concentrations with a priori emission were first compared with observations at monitoring sites in China and Korea for January and August 2008. The comparison showed that PM10 concentrations with a priori PM10 emissions for anthropogenic and dust sources were generally under-predicted. The result from the inverse modeling indicated that anthropogenic PM10 emissions in the industrialized and urbanized areas in China were underestimated while dust emissions from desert and barren soil in southern Mongolia and northern China were overestimated. A priori PM10 emissions from northeastern China regions including Shenyang, Changchun, and Harbin were underestimated by about 300% (i.e., the ratio of a posteriori to a priori PM10 emission was a factor of about 3). The predictions of PM10 concentrations with a posteriori emission showed better agreement with the observations, implying that the inverse modeling minimized the discrepancies in the model predictions by improving PM10 emissions in East Asia.

  3. Modelling the long-range transport of secondary PM 10 to the UK

    Science.gov (United States)

    Malcolm, A. L.; Derwent, R. G.; Maryon, R. H.

    The fine fraction of airborne particulate matter (PM 10) is known to be harmful to human health. In order to establish how current air quality standards can best be met now and in the future, it is necessary to understand the cause of PM 10 episodes. The UK Met Office's dispersion model, NAME, has been used to model hourly concentrations of sulphate aerosol for 1996 at a number of UK locations. The model output has been compared with measured values of PM 10 or sulphate aerosol at these sites and used to provide attribution information. In particular two large PM 10 episodes in March and July 1996 have been studied. The March episode has been shown to be the result of imported pollution from outside the UK, whereas the July case was dominated by UK emissions. This work highlights the need to consider trans-boundary pollution when setting air quality standards and when making policy decisions on emissions.

  4. Simulation And Forecasting of Daily Pm10 Concentrations Using Autoregressive Models In Kagithane Creek Valley, Istanbul

    Science.gov (United States)

    Ağaç, Kübra; Koçak, Kasım; Deniz, Ali

    2015-04-01

    A time series approach using autoregressive model (AR), moving average model (MA) and seasonal autoregressive integrated moving average model (SARIMA) were used in this study to simulate and forecast daily PM10 concentrations in Kagithane Creek Valley, Istanbul. Hourly PM10 concentrations have been measured in Kagithane Creek Valley between 2010 and 2014 periods. Bosphorus divides the city in two parts as European and Asian parts. The historical part of the city takes place in Golden Horn. Our study area Kagithane Creek Valley is connected with this historical part. The study area is highly polluted because of its topographical structure and industrial activities. Also population density is extremely high in this site. The dispersion conditions are highly poor in this creek valley so it is necessary to calculate PM10 levels for air quality and human health. For given period there were some missing PM10 concentration values so to make an accurate calculations and to obtain exact results gap filling method was applied by Singular Spectrum Analysis (SSA). SSA is a new and efficient method for gap filling and it is an state-of-art modeling. SSA-MTM Toolkit was used for our study. SSA is considered as a noise reduction algorithm because it decomposes an original time series to trend (if exists), oscillatory and noise components by way of a singular value decomposition. The basic SSA algorithm has stages of decomposition and reconstruction. For given period daily and monthly PM10 concentrations were calculated and episodic periods are determined. Long term and short term PM10 concentrations were analyzed according to European Union (EU) standards. For simulation and forecasting of high level PM10 concentrations, meteorological data (wind speed, pressure and temperature) were used to see the relationship between daily PM10 concentrations. Fast Fourier Transformation (FFT) was also applied to the data to see the periodicity and according to these periods models were built

  5. Random forest meteorological normalisation models for Swiss PM10 trend analysis

    Science.gov (United States)

    Grange, Stuart K.; Carslaw, David C.; Lewis, Alastair C.; Boleti, Eirini; Hueglin, Christoph

    2018-05-01

    Meteorological normalisation is a technique which accounts for changes in meteorology over time in an air quality time series. Controlling for such changes helps support robust trend analysis because there is more certainty that the observed trends are due to changes in emissions or chemistry, not changes in meteorology. Predictive random forest models (RF; a decision tree machine learning technique) were grown for 31 air quality monitoring sites in Switzerland using surface meteorological, synoptic scale, boundary layer height, and time variables to explain daily PM10 concentrations. The RF models were used to calculate meteorologically normalised trends which were formally tested and evaluated using the Theil-Sen estimator. Between 1997 and 2016, significantly decreasing normalised PM10 trends ranged between -0.09 and -1.16 µg m-3 yr-1 with urban traffic sites experiencing the greatest mean decrease in PM10 concentrations at -0.77 µg m-3 yr-1. Similar magnitudes have been reported for normalised PM10 trends for earlier time periods in Switzerland which indicates PM10 concentrations are continuing to decrease at similar rates as in the past. The ability for RF models to be interpreted was leveraged using partial dependence plots to explain the observed trends and relevant physical and chemical processes influencing PM10 concentrations. Notably, two regimes were suggested by the models which cause elevated PM10 concentrations in Switzerland: one related to poor dispersion conditions and a second resulting from high rates of secondary PM generation in deep, photochemically active boundary layers. The RF meteorological normalisation process was found to be robust, user friendly and simple to implement, and readily interpretable which suggests the technique could be useful in many air quality exploratory data analysis situations.

  6. Regression trees modeling and forecasting of PM10 air pollution in urban areas

    Science.gov (United States)

    Stoimenova, M.; Voynikova, D.; Ivanov, A.; Gocheva-Ilieva, S.; Iliev, I.

    2017-10-01

    Fine particulate matter (PM10) air pollution is a serious problem affecting the health of the population in many Bulgarian cities. As an example, the object of this study is the pollution with PM10 of the town of Pleven, Northern Bulgaria. The measured concentrations of this air pollutant for this city consistently exceeded the permissible limits set by European and national legislation. Based on data for the last 6 years (2011-2016), the analysis shows that this applies both to the daily limit of 50 micrograms per cubic meter and the allowable number of daily concentration exceedances to 35 per year. Also, the average annual concentration of PM10 exceeded the prescribed norm of no more than 40 micrograms per cubic meter. The aim of this work is to build high performance mathematical models for effective prediction and forecasting the level of PM10 pollution. The study was conducted with the powerful flexible data mining technique Classification and Regression Trees (CART). The values of PM10 were fitted with respect to meteorological data such as maximum and minimum air temperature, relative humidity, wind speed and direction and others, as well as with time and autoregressive variables. As a result the obtained CART models demonstrate high predictive ability and fit the actual data with up to 80%. The best models were applied for forecasting the level pollution for 3 to 7 days ahead. An interpretation of the modeling results is presented.

  7. Displaced calibration of PM10 measurements using spatio-temporal models

    Directory of Open Access Journals (Sweden)

    Daniela Cocchi

    2007-12-01

    Full Text Available PM10 monitoring networks are equipped with heterogeneous samplers. Some of these samplers are known to underestimate true levels of concentrations (non-reference samplers. In this paper we propose a hierarchical spatio-temporal Bayesian model for the calibration of measurements recorded using non-reference samplers, by borrowing strength from non co-located reference sampler measurements.

  8. Modelling street level PM10 concentrations across Europe: source apportionment and possible futures

    Directory of Open Access Journals (Sweden)

    G. Kiesewetter

    2015-02-01

    Full Text Available Despite increasing emission controls, particulate matter (PM has remained a critical issue for European air quality in recent years. The various sources of PM, both from primary particulate emissions as well as secondary formation from precursor gases, make this a complex problem to tackle. In order to allow for credible predictions of future concentrations under policy assumptions, a modelling approach is needed that considers all chemical processes and spatial dimensions involved, from long-range transport of pollution to local emissions in street canyons. Here we describe a modelling scheme which has been implemented in the GAINS integrated assessment model to assess compliance with PM10 (PM with aerodynamic diameter 10 across Europe. Furthermore, we analyse the predicted evolution of PM10 concentrations in the European Union until 2030 under different policy scenarios. Significant improvements in ambient PM10 concentrations are expected assuming successful implementation of already agreed legislation; however, these will not be large enough to ensure attainment of PM10 limit values in hot spot locations such as Southern Poland and major European cities. Remaining issues are largely eliminated in a scenario applying the best available emission control technologies to the maximal technically feasible extent.

  9. Modelling street level PM10 concentrations across Europe: source apportionment and possible futures

    Science.gov (United States)

    Kiesewetter, G.; Borken-Kleefeld, J.; Schöpp, W.; Heyes, C.; Thunis, P.; Bessagnet, B.; Terrenoire, E.; Fagerli, H.; Nyiri, A.; Amann, M.

    2015-02-01

    Despite increasing emission controls, particulate matter (PM) has remained a critical issue for European air quality in recent years. The various sources of PM, both from primary particulate emissions as well as secondary formation from precursor gases, make this a complex problem to tackle. In order to allow for credible predictions of future concentrations under policy assumptions, a modelling approach is needed that considers all chemical processes and spatial dimensions involved, from long-range transport of pollution to local emissions in street canyons. Here we describe a modelling scheme which has been implemented in the GAINS integrated assessment model to assess compliance with PM10 (PM with aerodynamic diameter dispersion calculations, and a traffic increment calculation wherever applicable. At each monitoring station fulfilling a few data coverage criteria, measured concentrations in the base year 2009 are explained to the extent possible and then modelled for the past and future. More than 1850 monitoring stations are covered, including more than 300 traffic stations and 80% of the stations which exceeded the EU air quality limit values in 2009. As a validation, we compare modelled trends in the period 2000-2008 to observations, which are well reproduced. The modelling scheme is applied here to quantify explicitly source contributions to ambient concentrations at several critical monitoring stations, displaying the differences in spatial origin and chemical composition of urban roadside PM10 across Europe. Furthermore, we analyse the predicted evolution of PM10 concentrations in the European Union until 2030 under different policy scenarios. Significant improvements in ambient PM10 concentrations are expected assuming successful implementation of already agreed legislation; however, these will not be large enough to ensure attainment of PM10 limit values in hot spot locations such as Southern Poland and major European cities. Remaining issues are

  10. Multiple linear regression and regression with time series error models in forecasting PM10 concentrations in Peninsular Malaysia.

    Science.gov (United States)

    Ng, Kar Yong; Awang, Norhashidah

    2018-01-06

    Frequent haze occurrences in Malaysia have made the management of PM 10 (particulate matter with aerodynamic less than 10 μm) pollution a critical task. This requires knowledge on factors associating with PM 10 variation and good forecast of PM 10 concentrations. Hence, this paper demonstrates the prediction of 1-day-ahead daily average PM 10 concentrations based on predictor variables including meteorological parameters and gaseous pollutants. Three different models were built. They were multiple linear regression (MLR) model with lagged predictor variables (MLR1), MLR model with lagged predictor variables and PM 10 concentrations (MLR2) and regression with time series error (RTSE) model. The findings revealed that humidity, temperature, wind speed, wind direction, carbon monoxide and ozone were the main factors explaining the PM 10 variation in Peninsular Malaysia. Comparison among the three models showed that MLR2 model was on a same level with RTSE model in terms of forecasting accuracy, while MLR1 model was the worst.

  11. Modeling extreme PM10 concentration in Malaysia using generalized extreme value distribution

    Science.gov (United States)

    Hasan, Husna; Mansor, Nadiah; Salleh, Nur Hanim Mohd

    2015-05-01

    Extreme PM10 concentration from the Air Pollutant Index (API) at thirteen monitoring stations in Malaysia is modeled using the Generalized Extreme Value (GEV) distribution. The data is blocked into monthly selection period. The Mann-Kendall (MK) test suggests a non-stationary model so two models are considered for the stations with trend. The likelihood ratio test is used to determine the best fitted model and the result shows that only two stations favor the non-stationary model (Model 2) while the other eleven stations favor stationary model (Model 1). The return level of PM10 concentration that is expected to exceed the maximum once within a selected period is obtained.

  12. Receptor modeling studies for the characterization of PM10 pollution sources in Belgrade

    Directory of Open Access Journals (Sweden)

    Mijić Zoran

    2012-01-01

    Full Text Available The objective of this study is to determine the major sources and potential source regions of PM10 over Belgrade, Serbia. The PM10 samples were collected from July 2003 to December 2006 in very urban area of Belgrade and concentrations of Al, V, Cr, Mn, Fe, Ni, Cu, Zn, Cd and Pb were analyzed by atomic absorption spectrometry. The analysis of seasonal variations of PM10 mass and some element concentrations reported relatively higher concentrations in winter, what underlined the importance of local emission sources. The Unmix model was used for source apportionment purpose and the four main source profiles (fossil fuel combustion; traffic exhaust/regional transport from industrial centers; traffic related particles/site specific sources and mineral/crustal matter were identified. Among the resolved factors the fossil fuel combustion was the highest contributor (34% followed by traffic/regional industry (26%. Conditional probability function (CPF results identified possible directions of local sources. The potential source contribution function (PSCF and concentration weighted trajectory (CWT receptor models were used to identify spatial source distribution and contribution of regional-scale transported aerosols. [Projekat Ministarstva nauke Republike Srbije, br. III43007 i br. III41011

  13. Modelling of PM10 concentration for industrialized area in Malaysia: A case study in Shah Alam

    Science.gov (United States)

    N, Norazian Mohamed; Abdullah, M. M. A.; Tan, Cheng-yau; Ramli, N. A.; Yahaya, A. S.; Fitri, N. F. M. Y.

    In Malaysia, the predominant air pollutants are suspended particulate matter (SPM) and nitrogen dioxide (NO2). This research is on PM10 as they may trigger harm to human health as well as environment. Six distributions, namely Weibull, log-normal, gamma, Rayleigh, Gumbel and Frechet were chosen to model the PM10 observations at the chosen industrial area i.e. Shah Alam. One-year period hourly average data for 2006 and 2007 were used for this research. For parameters estimation, method of maximum likelihood estimation (MLE) was selected. Four performance indicators that are mean absolute error (MAE), root mean squared error (RMSE), coefficient of determination (R2) and prediction accuracy (PA), were applied to determine the goodness-of-fit criteria of the distributions. The best distribution that fits with the PM10 observations in Shah Alamwas found to be log-normal distribution. The probabilities of the exceedences concentration were calculated and the return period for the coming year was predicted from the cumulative density function (cdf) obtained from the best-fit distributions. For the 2006 data, Shah Alam was predicted to exceed 150 μg/m3 for 5.9 days in 2007 with a return period of one occurrence per 62 days. For 2007, the studied area does not exceed the MAAQG of 150 μg/m3

  14. Developing a Hierarchical Model for the Spatial Analysis of PM10 Pollution Extremes in the Mexico City Metropolitan Area

    Directory of Open Access Journals (Sweden)

    Alejandro Ivan Aguirre-Salado

    2017-07-01

    Full Text Available We implemented a spatial model for analysing PM 10 maxima across the Mexico City metropolitan area during the period 1995–2016. We assumed that these maxima follow a non-identical generalized extreme value (GEV distribution and modeled the trend by introducing multivariate smoothing spline functions into the probability GEV distribution. A flexible, three-stage hierarchical Bayesian approach was developed to analyse the distribution of the PM 10 maxima in space and time. We evaluated the statistical model’s performance by using a simulation study. The results showed strong evidence of a positive correlation between the PM 10 maxima and the longitude and latitude. The relationship between time and the PM 10 maxima was negative, indicating a decreasing trend over time. Finally, a high risk of PM 10 maxima presenting levels above 1000 μ g/m 3 (return period: 25 yr was observed in the northwestern region of the study area.

  15. Modelling PM 10 concentrations and carrying capacity associated with woodheater emissions in Launceston, Tasmania

    Science.gov (United States)

    Luhar, Ashok K.; Galbally, Ian E.; Keywood, Melita

    Launceston is one of the Australian cities most affected by particle pollution due to the use of woodheaters in the winter months, with frequent exceedences of the national standard, the National Environment Protection Measure for Ambient Air Quality (or Air NEPM in short), of 50 micrograms per cubic metre for daily PM 10 (particulate matter with an aerodynamic diameter of 10 μm or less). The main objective of the present study was to determine the woodheater carrying capacity for Launceston—the number of woodheaters that can operate in the city without exceeding the Air NEPM. For this purpose, a prognostic meteorological and air pollution model called TAPM is used, coupled to a gridded woodheater PM 10 emissions inventory. The latter was derived using information on dwelling density, the percentage of dwellings with woodheaters, woodheater emission rates and their diurnal and seasonal variations, and the proportions of compliant/non-compliant woodheaters and open fireplaces. The model simulations are performed for the year 1998, and the concentrations are scaled for previous and subsequent years using trends in woodheater numbers and types. The modelled number of exceedences of the Air NEPM for the period 1997-2004 is in good agreement with the observations. The modelling indicates that the PM 10 Air NEPM would be met in Launceston when the total number of woodheaters is 20% of the total number of dwellings, of which 76%, 18%, 6% would be compliant woodheaters, non-compliant woodheaters and open fireplaces, respectively. With the present trends in the regional woodheater profile, this should occur in the year 2007.

  16. PM10 modeling in the Oviedo urban area (Northern Spain) by using multivariate adaptive regression splines

    Science.gov (United States)

    Nieto, Paulino José García; Antón, Juan Carlos Álvarez; Vilán, José Antonio Vilán; García-Gonzalo, Esperanza

    2014-10-01

    The aim of this research work is to build a regression model of the particulate matter up to 10 micrometers in size (PM10) by using the multivariate adaptive regression splines (MARS) technique in the Oviedo urban area (Northern Spain) at local scale. This research work explores the use of a nonparametric regression algorithm known as multivariate adaptive regression splines (MARS) which has the ability to approximate the relationship between the inputs and outputs, and express the relationship mathematically. In this sense, hazardous air pollutants or toxic air contaminants refer to any substance that may cause or contribute to an increase in mortality or serious illness, or that may pose a present or potential hazard to human health. To accomplish the objective of this study, the experimental dataset of nitrogen oxides (NOx), carbon monoxide (CO), sulfur dioxide (SO2), ozone (O3) and dust (PM10) were collected over 3 years (2006-2008) and they are used to create a highly nonlinear model of the PM10 in the Oviedo urban nucleus (Northern Spain) based on the MARS technique. One main objective of this model is to obtain a preliminary estimate of the dependence between PM10 pollutant in the Oviedo urban area at local scale. A second aim is to determine the factors with the greatest bearing on air quality with a view to proposing health and lifestyle improvements. The United States National Ambient Air Quality Standards (NAAQS) establishes the limit values of the main pollutants in the atmosphere in order to ensure the health of healthy people. Firstly, this MARS regression model captures the main perception of statistical learning theory in order to obtain a good prediction of the dependence among the main pollutants in the Oviedo urban area. Secondly, the main advantages of MARS are its capacity to produce simple, easy-to-interpret models, its ability to estimate the contributions of the input variables, and its computational efficiency. Finally, on the basis of

  17. Modeling PM10 in Ho Chi Minh City, Vietnam and evaluation of its impact on human health

    Directory of Open Access Journals (Sweden)

    Bang Quoc Ho

    2017-03-01

    Full Text Available According to World Health Organization (WHO and Global Burden of Disease, ambient air pollution is estimated to be responsible for 3.7 million premature deaths in 2012 [1]. Therefore, it is urgent to estimate the impact of air pollution on public health and economic damage. The objectives of this research are: study the distribution of PM10 concentration over Ho Chi Minh city (HCMC and relationship to public health and for proposing solutions of diseases prevention in HCM, Vietnam. EMIssion SENSitivity model was applied to conduct air emission inventory for transportation sector. Then, Finite Volume Model and Transport and Photochemistry Mesoscale Model were used to simulate the meteorology and the spatial distribution of PM10 in HCMC. Together with disease data obtained, the US Environmental Benefits Mapping and Analysis Model was applied for calculating the number of deaths and estimating economic losses due to PM10 pollution. Finally, solutions to reduce PM10 pollution and protect public health are proposed. The results showed that the highest 1-h average concentration of PM10 is 240 μg m−3 in North Eastern of HCMC. The concentration of PM10 for annual average in District 5 ranged from 17 to 49 μg m−3. There are 12 wards of District 5 with PM10 concentration exceeding the WHO guidelines (20 μg m−3 for annual average of PM10 and 50 μg m−3 for 24-h average. The high concentration of PM10 causes 5 deaths yr−1 in District 5 and 204 deaths yr−1 in HCMC, and it causes economic losses of 1.84 billion of USD.

  18. Non-chemistry coupled PM10 modeling in Chiang Mai City, Northern Thailand: A fast operational approach for aerosol forecasts

    Science.gov (United States)

    Macatangay, Ronald; Bagtasa, Gerry; Sonkaew, Thiranan

    2017-09-01

    The Weather Research and Forecasting (WRF v. 3.7) model was applied to model PM10 data in Chiang Mai city for 10-days during a high haze event utilizing updated land use categories from the Moderate Resolution Imaging Spectroradiometer (MODIS). A higher resolution meteorological lateral boundary condition (from 1 degree to 0.25 degree) was also used from the NCEP GDAS/FNL Global Tropospheric Analyses and Forecast Grid system. A 3-category urban canopy model was also added and the Thompson aerosol-aware microphysics parameterization scheme was used to model the aerosol number concentrations that were later converted to PM10 concentrations. Aerosol number concentration monthly climatology was firstly used as initial and lateral boundary conditions to model PM10 concentrations. These were compared to surface data obtained from two stations of the Pollution Control Department (PCD) of Thailand. The results from the modeled PM10 concentrations could not capture the variability (r = 0.29; 0.27 for each site) and underestimated a high PM10 spike during the period studied. The authors then added satellite data to the aerosol climatology that improved the comparison with observations (r = 0.45; 43). However, both model runs still were not able to capture the high PM10 concentration event. This requires further investigation.

  19. Evaluation for Long Term PM10 Concentration Forecasting using Multi Linear Regression (MLR and Principal Component Regression (PCR Models

    Directory of Open Access Journals (Sweden)

    Samsuri Abdullah

    2016-07-01

    Full Text Available Air pollution in Peninsular Malaysia is dominated by particulate matter which is demonstrated by having the highest Air Pollution Index (API value compared to the other pollutants at most part of the country. Particulate Matter (PM10 forecasting models development is crucial because it allows the authority and citizens of a community to take necessary actions to limit their exposure to harmful levels of particulates pollution and implement protection measures to significantly improve air quality on designated locations. This study aims in improving the ability of MLR using PCs inputs for PM10 concentrations forecasting. Daily observations for PM10 in Kuala Terengganu, Malaysia from January 2003 till December 2011 were utilized to forecast PM10 concentration levels. MLR and PCR (using PCs input models were developed and the performance was evaluated using RMSE, NAE and IA. Results revealed that PCR performed better than MLR due to the implementation of PCA which reduce intricacy and eliminate data multi-collinearity.

  20. MLP based models to predict PM10, O3 concentrations, in Sines industrial area

    Science.gov (United States)

    Durao, R.; Pereira, M. J.

    2012-04-01

    Sines is an important Portuguese industrial area located southwest cost of Portugal with important nearby protected natural areas. The main economical activities are related with this industrial area, the deep-water port, petrochemical and thermo-electric industry. Nevertheless, tourism is also an important economic activity especially in summer time with potential to grow. The aim of this study is to develop prediction models of pollutant concentration categories (e.g. low concentration and high concentration) in order to provide early warnings to the competent authorities who are responsible for the air quality management. The knowledge in advanced of pollutant high concentrations occurrence will allow the implementation of mitigation actions and the release of precautionary alerts to population. The regional air quality monitoring network consists in three monitoring stations where a set of pollutants' concentrations are registered on a continuous basis. From this set stands out the tropospheric ozone (O3) and particulate matter (PM10) due to the high concentrations occurring in the region and their adverse effects on human health. Moreover, the major industrial plants of the region monitor SO2, NO2 and particles emitted flows at the principal chimneys (point sources), also on a continuous basis,. Therefore Artificial neuronal networks (ANN) were the applied methodology to predict next day pollutant concentrations; due to the ANNs structure they have the ability to capture the non-linear relationships between predictor variables. Hence the first step of this study was to apply multivariate exploratory techniques to select the best predictor variables. The classification trees methodology (CART) was revealed to be the most appropriate in this case.. Results shown that pollutants atmospheric concentrations are mainly dependent on industrial emissions and a complex combination of meteorological factors and the time of the year. In the second step, the Multi

  1. Modelling of particulate matter pollution (PM10) over the Etang de Berre area Determination of areas of homogeneous pollution

    International Nuclear Information System (INIS)

    Brocheton, F.; Poulet, D.; Mesbah, B.; Hourdin, G.

    2010-01-01

    AIRFOBEP is the association in charge of the air quality monitoring in the Etang de Berre area. AIRFOBEP is managing a network of ten sensors to monitor the PMI (particulate matter index) particulate pollution. This network is updated once a year according to the Air Quality Monitoring Plan (PSQA). Optimizing this network needs to know how the particulate pollution is distributed in the area. In other words, to determine the limits of homogeneous zones of PM 10 pollution. The aim of the project presented in this article is to produce a map of homogeneous zones of PM 10 pollution in the Etang de Berre area. The project was carried out in two steps: - PM 10 atmospheric dispersion modeling, using a ADMS-URBAN software, - Statistic classification, based on the well known Hierarchical Ascending Classification (HAC) technique. Results of the atmospheric dispersion modeling was namely adjusted using an original technique for the 'background PM 10 pollution' computation. Good performances have been obtained when comparing modeling and measurements data. Finally, a set of five homogeneous zones was found to well describe the PM 10 pollution level distribution in the Etang de Berre area. (author)

  2. PM(10) episodes in Greece: Local sources versus long-range transport-observations and model simulations.

    Science.gov (United States)

    Matthaios, Vasileios N; Triantafyllou, Athanasios G; Koutrakis, Petros

    2017-01-01

    Periods of abnormally high concentrations of atmospheric pollutants, defined as air pollution episodes, can cause adverse health effects. Southern European countries experience high particulate matter (PM) levels originating from local and distant sources. In this study, we investigated the occurrence and nature of extreme PM 10 (PM with an aerodynamic diameter ≤10 μm) pollution episodes in Greece. We examined PM 10 concentration data from 18 monitoring stations located at five sites across the country: (1) an industrial area in northwestern Greece (Western Macedonia Lignite Area, WMLA), which includes sources such as lignite mining operations and lignite power plants that generate a high percentage of the energy in Greece; (2) the greater Athens area, the most populated area of the country; and (3) Thessaloniki, (4) Patra, and (5) Volos, three large cities in Greece. We defined extreme PM 10 pollution episodes (EEs) as days during which PM 10 concentrations at all five sites exceeded the European Union (EU) 24-hr PM 10 standards. For each EE, we identified the corresponding prevailing synoptic and local meteorological conditions, including wind surface data, for the period from January 2009 through December 2011. We also analyzed data from remote sensing and model simulations. We recorded 14 EEs that occurred over 49 days and could be grouped into two categories: (1) Local Source Impact (LSI; 26 days, 53%) and (2) African Dust Impact (ADI; 23 days, 47%). Our analysis suggested that the contribution of local sources to ADI EEs was relatively small. LSI EEs were observed only in the cold season, whereas ADI EEs occurred throughout the year, with a higher frequency during the cold season. The EEs with the highest intensity were recorded during African dust intrusions. ADI episodes were found to contribute more than local sources in Greece, with ADI and LSI fraction contribution ranging from 1.1 to 3.10. The EE contribution during ADI fluctuated from 41 to 83

  3. Metallurgical source-contribution analysis of PM10 annual average concentration: A dispersion modeling approach in moravian-silesian region

    Directory of Open Access Journals (Sweden)

    P. Jančík

    2013-10-01

    Full Text Available The goal of the article is to present analysis of metallurgical industry contribution to annual average PM10 concentrations in Moravian-Silesian based on means of the air pollution modelling in accord with the Czech reference methodology SYMOS´97.

  4. A Comparison on Function of Kriging and Inverse Distance Weighting Models in PM10 Zoning in Urban Area

    Directory of Open Access Journals (Sweden)

    Mohammad Hassan Ehrampoush

    2017-12-01

    Conclusion: According to higher concentration of PM10 compared to WHO standard values particularly in spring, necessary actions and solutions should be taken for the pollution reduction. This study indicated that Kriging model has a better efficiency for spatial analysis of suspended particles, compared to IDW method.

  5. A system dynamics model of China's electric power structure adjustment with constraints of PM10 emission reduction.

    Science.gov (United States)

    Guo, Xiaopeng; Ren, Dongfang; Guo, Xiaodan

    2018-06-01

    Recently, Chinese state environmental protection administration has brought out several PM10 reduction policies to control the coal consumption strictly and promote the adjustment of power structure. Under this new policy environment, a suitable analysis method is required to simulate the upcoming major shift of China's electric power structure. Firstly, a complete system dynamics model is built to simulate China's evolution path of power structure with constraints of PM10 reduction considering both technical and economical factors. Secondly, scenario analyses are conducted under different clean-power capacity growth rates to seek applicable policy guidance for PM10 reduction. The results suggest the following conclusions. (1) The proportion of thermal power installed capacity will decrease to 67% in 2018 with a dropping speed, and there will be an accelerated decline in 2023-2032. (2) The system dynamics model can effectively simulate the implementation of the policy, for example, the proportion of coal consumption in the forecast model is 63.3% (the accuracy rate is 95.2%), below policy target 65% in 2017. (3) China should promote clean power generation such as nuclear power to meet PM10 reduction target.

  6. Chemical characterization and receptor modeling of PM10 in the surroundings of the opencast lignite mines of Western Macedonia, Greece.

    Science.gov (United States)

    Samara, Constantini; Argyropoulos, George; Grigoratos, Theodoros; Kouras, Αthanasios; Manoli, Εvangelia; Andreadou, Symela; Pavloudakis, Fragkiskos; Sahanidis, Chariton

    2018-05-01

    The Western Macedonian Lignite Center (WMLC) in northwestern Greece is the major lignite center in the Balkans feeding four major power plants of total power exceeding 4 GW. Concentrations of PM 10 (i.e., particulate matters with diameters ≤10 μm) are the main concern in the region, and the high levels observed are often attributed to the activities related to power generation. In this study, the contribution of fugitive dust emissions from the opencast lignite mines to the ambient levels of PM 10 in the surroundings was estimated by performing chemical mass balance (CMB) receptor modeling. For this purpose, PM 10 samples were concurrently collected at four receptor sites located in the periphery of the mine area during the cold and the warm periods of the year (November-December 2011 and August-September 2012), and analyzed for a total of 26 macro- and trace elements and ionic species (sulfate, nitrate, chloride). The robotic chemical mass balance (RCMB) model was employed for source identification/apportionment of PM 10 at each receptor site using as inputs the ambient concentrations and the chemical profiles of various sources including the major mine operations, the fly ash escaping the electrostatic filters of the power plants, and other primary and secondary sources. Mean measured PM 10 concentrations at the different sites ranged from 38 to 72 μg m -3 . The estimated total contribution of mines ranged between 9 and 22% in the cold period increasing to 36-42% in the dry warm period. Other significant sources were vehicular traffic, biomass burning, and secondary sulfate and nitrate aerosol. These results imply that more efficient measures to prevent and suppress fugitive dust emissions from the mines are needed.

  7. Neural network model for the prediction of PM10 daily concentrations in two sites in the Western Mediterranean.

    Science.gov (United States)

    de Gennaro, Gianluigi; Trizio, Livia; Di Gilio, Alessia; Pey, Jorge; Pérez, Noemi; Cusack, Michael; Alastuey, Andrés; Querol, Xavier

    2013-10-01

    An artificial neural network (ANN) was developed and tested to forecast PM10 daily concentration in two contrasted environments in NE Spain, a regional background site (Montseny), and an urban background site (Barcelona-CSIC), which was highly influenced by vehicular emissions. In order to predict 24-h average PM10 concentrations, the artificial neural network previously developed by Caselli et al. (2009) was improved by using hourly PM concentrations and deterministic factors such as a Saharan dust alert. In particular, the model input data for prediction were the hourly PM10 concentrations 1-day in advance, local meteorological data and information about air masses origin. The forecasted performance indexes for both sites were calculated and they showed better results for the regional background site in Montseny (R(2)=0.86, SI=0.75) than for urban site in Barcelona (R(2)=0.73, SI=0.58), influenced by local and sometimes unexpected sources. Moreover, a sensitivity analysis conducted to understand the importance of the different variables included among the input data, showed that local meteorology and air masses origin are key factors in the model forecasts. This result explains the reason for the improvement of ANN's forecasting performance at the Montseny site with respect to the Barcelona site. Moreover, the artificial neural network developed in this work could prove useful to predict PM10 concentrations, especially, at regional background sites such as those on the Mediterranean Basin which are primarily affected by long-range transports. Hence, the artificial neural network presented here could be a powerful tool for obtaining real time information on air quality status and could aid stakeholders in their development of cost-effective control strategies. © 2013 Elsevier B.V. All rights reserved.

  8. PM 10 Nonattainment Areas

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data layer identifies areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for PM 10 and have been...

  9. Asthma and PM10

    Directory of Open Access Journals (Sweden)

    Gilmour M Ian

    2000-07-01

    Full Text Available Abstract PM10 (the mass of particles present in the air having a 50% cutoff for particles with an aerodynamic diameter of 10 μm is the standard measure of particulate air pollution used worldwide. Epidemiological studies suggest that asthma symptoms can be worsened by increases in the levels of PM10. Epidemiological evidence at present indicates that PM10 increases do not raise the chances of initial sensitisation and induction of disease, although further research is warranted. PM10 is a complex mixture of particle types and has many components and there is no general agreement regarding which component(s could lead to exacerbations of asthma. However pro-inflammatory effects of transition metals, hydrocarbons, ultrafine particles and endotoxin, all present to varying degrees in PM10, could be important. An understanding of the role of the different components of PM10 in exacerbating asthma is essential before proper risk assessment can be undertaken leading to advice on risk management for the many asthmatics who are exposed to air pollution particles.

  10. Identification and elucidation of anthropogenic source contribution in PM10 pollutant: Insight gain from dispersion and receptor models.

    Science.gov (United States)

    Roy, Debananda; Singh, Gurdeep; Yadav, Pankaj

    2016-10-01

    Source apportionment study of PM 10 (Particulate Matter) in a critically polluted area of Jharia coalfield, India has been carried out using Dispersion model, Principle Component Analysis (PCA) and Chemical Mass Balance (CMB) techniques. Dispersion model Atmospheric Dispersion Model (AERMOD) was introduced to simplify the complexity of sources in Jharia coalfield. PCA and CMB analysis indicates that monitoring stations near the mining area were mainly affected by the emission from open coal mining and its associated activities such as coal transportation, loading and unloading of coal. Mine fire emission also contributed a considerable amount of particulate matters in monitoring stations. Locations in the city area were mostly affected by vehicular, Liquid Petroleum Gas (LPG) & Diesel Generator (DG) set emissions, residential, and commercial activities. The experimental data sampling and their analysis could aid understanding how dispersion based model technique along with receptor model based concept can be strategically used for quantitative analysis of Natural and Anthropogenic sources of PM 10 . Copyright © 2016. Published by Elsevier B.V.

  11. Source apportionment of the carcinogenic potential of polycyclic aromatic hydrocarbons (PAH) associated to airborne PM10 by a PMF model.

    Science.gov (United States)

    Callén, M S; Iturmendi, A; López, J M; Mastral, A M

    2014-02-01

    In order to perform a study of the carcinogenic potential of polycyclic aromatic hydrocarbons (PAH), benzo(a)pyrene equivalent (BaP-eq) concentration was calculated and modelled by a receptor model based on positive matrix factorization (PMF). Nineteen PAH associated to airborne PM10 of Zaragoza, Spain, were quantified during the sampling period 2001-2009 and used as potential variables by the PMF model. Afterwards, multiple linear regression analysis was used to quantify the potential sources of BaP-eq. Five sources were obtained as the optimal solution and vehicular emission was identified as the main carcinogenic source (35 %) followed by heavy-duty vehicles (28 %), light-oil combustion (18 %), natural gas (10 %) and coal combustion (9 %). Two of the most prevailing directions contributing to this carcinogenic character were the NE and N directions associated with a highway, industrial parks and a paper factory. The lifetime lung cancer risk exceeded the unit risk of 8.7 x 10(-5) per ng/m(3) BaP in both winter and autumn seasons and the most contributing source was the vehicular emission factor becoming an important issue in control strategies.

  12. A Computational Fluid Dynamic (CFD) Simulation of PM10 Dispersion Caused by Rail Transit Construction Activity: A Real Urban Street Canyon Model

    Science.gov (United States)

    Wang, Yang; Zhou, Ying; Zuo, Jian

    2018-01-01

    Particle emissions derived from construction activities have a significant impact on the local air quality, while the canyon effect with reduced natural ventilation contributes to the highest particulate pollution in urban environments. This study attempted to examine the effect of PM10 emissions derived from the construction of a rail transit system in an urban street canyon. Using a 3D computational fluid dynamic (CFD) model based on a real street canyon with different height ratios, this study formulates the impact of height ratio and wind directions on the dispersion and concentration of PM10. The results indicate that parallel flow would cause the concentration of PM10 at the end of the street canyons in all height ratios, and the trends in horizontal, vertical and lateral planes in all street canyons are similar. While in the condition of perpendicular flow, double-eddy circulations occur and lead to the concentration of PM10 in the middle part of the street canyon and leeward of backwind buildings in all height ratios. Furthermore, perpendicular flow will cause the concentration of PM10 to increase if the upwind buildings are higher than the backwind ones. This study also shows that the dispersion of PM10 is strongly associated with wind direction in and the height ratios of the street canyons. Certain measures could, therefore, be taken to prevent the impact on people in terms of the PM10 concentration and the heights of street canyons identified in this research. Potential mitigation strategies are suggested, include measurements below 4 m according to governmental regulations, dust shields, and atomized water. PMID:29522495

  13. A Computational Fluid Dynamic (CFD Simulation of PM10 Dispersion Caused by Rail Transit Construction Activity: A Real Urban Street Canyon Model

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2018-03-01

    Full Text Available Particle emissions derived from construction activities have a significant impact on the local air quality, while the canyon effect with reduced natural ventilation contributes to the highest particulate pollution in urban environments. This study attempted to examine the effect of PM10 emissions derived from the construction of a rail transit system in an urban street canyon. Using a 3D computational fluid dynamic (CFD model based on a real street canyon with different height ratios, this study formulates the impact of height ratio and wind directions on the dispersion and concentration of PM10. The results indicate that parallel flow would cause the concentration of PM10 at the end of the street canyons in all height ratios, and the trends in horizontal, vertical and lateral planes in all street canyons are similar. While in the condition of perpendicular flow, double-eddy circulations occur and lead to the concentration of PM10 in the middle part of the street canyon and leeward of backwind buildings in all height ratios. Furthermore, perpendicular flow will cause the concentration of PM10 to increase if the upwind buildings are higher than the backwind ones. This study also shows that the dispersion of PM10 is strongly associated with wind direction in and the height ratios of the street canyons. Certain measures could, therefore, be taken to prevent the impact on people in terms of the PM10 concentration and the heights of street canyons identified in this research. Potential mitigation strategies are suggested, include measurements below 4 m according to governmental regulations, dust shields, and atomized water.

  14. A Computational Fluid Dynamic (CFD) Simulation of PM10 Dispersion Caused by Rail Transit Construction Activity: A Real Urban Street Canyon Model.

    Science.gov (United States)

    Wang, Yang; Zhou, Ying; Zuo, Jian; Rameezdeen, Raufdeen

    2018-03-09

    Particle emissions derived from construction activities have a significant impact on the local air quality, while the canyon effect with reduced natural ventilation contributes to the highest particulate pollution in urban environments. This study attempted to examine the effect of PM 10 emissions derived from the construction of a rail transit system in an urban street canyon. Using a 3D computational fluid dynamic (CFD) model based on a real street canyon with different height ratios, this study formulates the impact of height ratio and wind directions on the dispersion and concentration of PM 10 . The results indicate that parallel flow would cause the concentration of PM 10 at the end of the street canyons in all height ratios, and the trends in horizontal, vertical and lateral planes in all street canyons are similar. While in the condition of perpendicular flow, double-eddy circulations occur and lead to the concentration of PM 10 in the middle part of the street canyon and leeward of backwind buildings in all height ratios. Furthermore, perpendicular flow will cause the concentration of PM 10 to increase if the upwind buildings are higher than the backwind ones. This study also shows that the dispersion of PM 10 is strongly associated with wind direction in and the height ratios of the street canyons. Certain measures could, therefore, be taken to prevent the impact on people in terms of the PM 10 concentration and the heights of street canyons identified in this research. Potential mitigation strategies are suggested, include measurements below 4 m according to governmental regulations, dust shields, and atomized water.

  15. Modeling PM10 gravimetric data from the Qalabotjha low-smoke fuels macro-scale experiment in South Africa

    International Nuclear Information System (INIS)

    Engelbrecht, J.P.; Swanepoel, L.; Zunckel, M.; Chow, J.C.

    1998-01-01

    D-grade domestic coal is being widely used for household cooking and heating purposes by the poorer urban communities in South Africa. The smoke from the combustion of coal has had a severe impact on the health of communities living in the rural townships and cities. To alleviate this escalating problem, the Department of Minerals and Energy of South Africa evaluated low-smoke fuels as an alternative source of energy. The technical and social implications of such fuels were investigated in the course of the Qalabotjha Low-Smoke Fuels Macro-Scale Experiment. Three low-smoke fuels (Chartech, African Fine Carbon (AFC) and Flame Africa) were tested in Qalabotjha over a 10 to 20 day period. This paper presents results from a PM10 TEOM continuous monitor at the Clinic site in Qalabotjha over the mentioned monitoring period. Both the fuel-type and the wind were found to have an effect on the air particulate concentrations. An exponential model which incorporates both these variables is proposed. This model allows for all measured particulate concentrations to be re-calculated to zero wind values. From the analysis of variance (ANOVA) calculations on the zero wind concentrations, it is concluded that the combustion of low-smoke fuels did make a significant improvement to the air quality in Qalabotjha over the period when these were used

  16. Simulating the meteorology and PM10 concentrations in Arizona dust storms using the Weather Research and Forecasting model with Chemistry (Wrf-Chem).

    Science.gov (United States)

    Hyde, Peter; Mahalov, Alex; Li, Jialun

    2018-03-01

    Nine dust storms in south-central Arizona were simulated with the Weather Research and Forecasting with Chemistry model (WRF-Chem) at 2 km resolution. The windblown dust emission algorithm was the Air Force Weather Agency model. In comparison with ground-based PM 10 observations, the model unevenly reproduces the dust-storm events. The model adequately estimates the location and timing of the events, but it is unable to precisely replicate the magnitude and timing of the elevated hourly concentrations of particles 10 µm and smaller ([PM 10 ]).Furthermore, the model underestimated [PM 10 ] in highly agricultural Pinal County because it underestimated surface wind speeds and because the model's erodible fractions of the land surface data were too coarse to effectively resolve the active and abandoned agricultural lands. In contrast, the model overestimated [PM 10 ] in western Arizona along the Colorado River because it generated daytime sea breezes (from the nearby Gulf of California) for which the surface-layer speeds were too strong. In Phoenix, AZ, the model's performance depended on the event, with both under- and overestimations partly due to incorrect representation of urban features. Sensitivity tests indicate that [PM 10 ] highly relies on meteorological forcing. Increasing the fraction of erodible surfaces in the Pinal County agricultural areas improved the simulation of [PM 10 ] in that region. Both 24-hr and 1-hr measured [PM 10 ] were, for the most part, and especially in Pinal County, extremely elevated, with the former exceeding the health standard by as much as 10-fold and the latter exceeding health-based guidelines by as much as 70-fold. Monsoonal thunderstorms not only produce elevated [PM 10 ], but also cause urban flash floods and disrupt water resource deliveries. Given the severity and frequency of these dust storms, and conceding that the modeling system applied in this work did not produce the desired agreement between simulations and

  17. Indoor air quality modeling for PM 10, PM 2.5, and PM 1.0 in naturally ventilated classrooms of an urban Indian school building.

    Science.gov (United States)

    Goyal, Radha; Khare, Mukesh

    2011-05-01

    Assessment of indoor air quality (IAQ) in classrooms of school buildings is of prime concern due to its potential effects on student's health and performance as they spend a substantial amount of their time (6-7 h per day) in schools. A number of airborne contaminants may be present in urban school environment. However, respirable suspended particulate matter (RSPM) is of great significance as they may significantly affect occupants' health. The objectives of the present study are twofold, one, to measure the concentrations of PM(10) (building located near a heavy-traffic roadway (9,755 and 4,296 vehicles/hour during weekdays and weekends, respectively); and second, to develop single compartment mass balance-based IAQ models for PM(10) (NVIAQM(pm10)), PM(2.5) (NVIAQM(pm2.5)), and PM(1.0) (NVIAQM(pm1.0)) for predicting their indoor concentrations. Outdoor RSPM levels and classroom characteristics, such as size, occupancy level, temperature, relative humidity, and CO(2) concentrations have also been monitored during school hours. Predicted indoor PM(10) concentrations show poor correlations with observed indoor PM(10) concentrations (R (2) = 0.028 for weekdays, and 0.47 for weekends). However, a fair degree of agreement (d) has been found between observed and predicted concentrations, i.e., 0.42 for weekdays and 0.59 for weekends. Furthermore, NVIAQM(pm2.5) and NVIAQM(pm1.0) results show good correlations with observed concentrations of PM(2.5) (R(2) = 0.87 for weekdays and 0.9 for weekends) and PM(1.0) (R(2) = 0.86 for weekdays and 0.87 for weekends). NVIAQM(pm10) shows the tendency to underpredict indoor PM(10) concentrations during weekdays as it does not take into account the occupant's activities and its effects on the indoor concentrations during the class hours. Intense occupant's activities cause resuspension or delayed deposition of PM(10). The model results further suggests conductance of experimental and physical simulation studies on dispersion of

  18. To what extent can aerosol water explain the discrepancy between model calculated and gravimetric PM10 and PM2.5?

    Directory of Open Access Journals (Sweden)

    S. G. Tsyro

    2005-01-01

    Full Text Available Inter-comparisons of European air quality models show that regional transport models, including the EMEP (Co-operative Programme for monitoring and evaluation of the long-range transmission of air pollutants in Europe aerosol model, tend to underestimate the observed concentrations of PM10 and PM2.5. Obviously, an accurate representation of the individual aerosol constituents is a prerequisite for adequate calculation of PM concentrations. On the other hand, available measurements on the chemical characterization of ambient particles reveal that full chemical PM mass closure is rarely achieved. The fraction unaccounted for by chemical analysis can comprise as much as 30-40% of gravimetric PM10 or PM2.5 mass. The unaccounted PM mass can partly be due to non-C atoms in organic aerosols and/or due to sampling and measurement artefacts. Moreover, a part of the unaccounted PM mass is likely to consist of water associated with particles. Thus, the gravimetrically measured particle mass does not necessarily represent dry PM10 and PM2.5 mass. This is thought to be one of the reasons for models under-prediction of observed PM, if calculated dry PM10 and PM2.5 concentrations are compared with measurements. The EMEP aerosol model has been used to study to what extent particle-bound water can explain the chemically unidentified PM mass in filter-based particle samples. Water content of PM2.5 and PM10 has been estimated with the model for temperature 20°C and relative humidity 50%, which are conditions required for equilibration of dust-loaded filters according to the Reference method recommended by the European Committee for Standardization (CEN. Model calculations for Europe show that, depending on particle composition, particle-bound water constitutes 20-35% of the annual mean PM10 and PM2.5 concentrations, which is consistent with existing experimental estimates. At two Austrian sites, in Vienna and Streithofen, where daily measurements of PM2.5 mass

  19. Comparison of lidar-derived PM10 with regional modeling and ground-based observations in the frame of MEGAPOLI experiment

    Directory of Open Access Journals (Sweden)

    J.-C. Raut

    2011-10-01

    Full Text Available An innovative approach using mobile lidar measurements was implemented to test the performances of chemistry-transport models in simulating mass concentrations (PM10 predicted by chemistry-transport models. A ground-based mobile lidar (GBML was deployed around Paris onboard a van during the MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation summer experiment in July 2009. The measurements performed with this Rayleigh-Mie lidar are converted into PM10 profiles using optical-to-mass relationships previously established from in situ measurements performed around Paris for urban and peri-urban aerosols. The method is described here and applied to the 10 measurements days (MD. MD of 1, 15, 16 and 26 July 2009, corresponding to different levels of pollution and atmospheric conditions, are analyzed here in more details. Lidar-derived PM10 are compared with results of simulations from POLYPHEMUS and CHIMERE chemistry-transport models (CTM and with ground-based observations from the AIRPARIF network. GBML-derived and AIRPARIF in situ measurements have been found to be in good agreement with a mean Root Mean Square Error RMSE (and a Mean Absolute Percentage Error MAPE of 7.2 μg m−3 (26.0% and 8.8 μg m−3 (25.2% with relationships assuming peri-urban and urban-type particles, respectively. The comparisons between CTMs and lidar at ~200 m height have shown that CTMs tend to underestimate wet PM10 concentrations as revealed by the mean wet PM10 observed during the 10 MD of 22.4, 20.0 and 17.5 μg m−3 for lidar with peri-urban relationship, and POLYPHEMUS and CHIMERE models, respectively. This leads to a RMSE (and a MAPE of 6.4 μg m−3 (29.6% and 6.4 μg m−3 (27.6% when considering POLYPHEMUS and CHIMERE CTMs, respectively. Wet integrated PM10 computed (between the ground and 1 km above the ground level from lidar, POLYPHEMUS and CHIMERE results

  20. Receptor modeling of PM2.5, PM10 and TSP in different seasons and long-range transport analysis at a coastal site of Tianjin, China.

    Science.gov (United States)

    Kong, Shaofei; Han, Bin; Bai, Zhipeng; Chen, Li; Shi, Jianwu; Xu, Zhun

    2010-09-15

    Atmospheric particulate matter (PM(2.5), PM(10) and TSP) were sampled synchronously during three monitoring campaigns from June 2007 to February 2008 at a coastal site in TEDA of Tianjin, China. Chemical compositions including 19 elements, 6 water-solubility ions, organic and elemental carbon were determined. principle components analysis (PCA) and chemical mass balance modeling (CMB) were applied to determine the PM sources and their contributions with the assistance of NSS SO(4)(2)(-), the mass ratios of NO(3)(-) to SO(4)(2)(-) and OC to EC. Air mass backward trajectory model was compared with source apportionment results to evaluate the origin of PM. Results showed that NSS SO(4)(2)(-) values for PM(2.5) were 2147.38, 1701.26 and 239.80 ng/m(3) in summer, autumn and winter, reflecting the influence of sources from local emissions. Most of it was below zero in summer for PM(10) indicating the influence of sea salt. The ratios of NO(3)(-) to SO(4)(2)(-) was 0.19 for PM(2.5), 0.18 for PM(10) and 0.19 for TSP in winter indicating high amounts of coal consumed for heating purpose. Higher OC/EC values (mostly larger than 2.5) demonstrated that secondary organic aerosol was abundant at this site. The major sources were construction activities, road dust, vehicle emissions, marine aerosol, metal manufacturing, secondary sulfate aerosols, soil dust, biomass burning, some pharmaceutics industries and fuel-oil combustion according to PCA. Coal combustion, marine aerosol, vehicular emission and soil dust explained 5-31%, 1-13%, 13-44% and 3-46% for PM(2.5), PM(10) and TSP, respectively. Backward trajectory analysis showed air parcels originating from sea accounted for 39% in summer, while in autumn and winter the air parcels were mainly related to continental origin. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Studying the effect of meteorological factors on the SO2 and PM10 pollution levels with refined versions of the SARIMA model

    Energy Technology Data Exchange (ETDEWEB)

    Voynikova, D. S., E-mail: desi-sl2000@yahoo.com; Gocheva-Ilieva, S. G., E-mail: snegocheva@yahoo.com; Ivanov, A. V., E-mail: aivanov-99@yahoo.com [Department of Applied Mathematics and Modeling, Faculty of Mathematics and Informatics, Paisii Hilendarski University of Plovdiv, 24 Tzar Assen str., 4000 Plovdiv (Bulgaria); Iliev, I. P., E-mail: iliev55@abv.bg [Department of Physics, Technical University – Plovdiv, 25 Tzanko Djusstabanov str., 4000 Plovdiv (Bulgaria)

    2015-10-28

    Numerous time series methods are used in environmental sciences allowing the detailed investigation of air pollution processes. The goal of this study is to present the empirical analysis of various aspects of stochastic modeling and in particular the ARIMA/SARIMA methods. The subject of investigation is air pollution in the town of Kardzhali, Bulgaria with 2 problematic pollutants – sulfur dioxide (SO2) and particulate matter (PM10). Various SARIMA Transfer Function models are built taking into account meteorological factors, data transformations and the use of different horizons selected to predict future levels of concentrations of the pollutants.

  2. Seasonal variation of benzo(a)pyrene in the Spanish airborne PM10. Multivariate linear regression model applied to estimate BaP concentrations.

    Science.gov (United States)

    Callén, M S; López, J M; Mastral, A M

    2010-08-15

    The estimation of benzo(a)pyrene (BaP) concentrations in ambient air is very important from an environmental point of view especially with the introduction of the Directive 2004/107/EC and due to the carcinogenic character of this pollutant. A sampling campaign of particulate matter less or equal than 10 microns (PM10) carried out during 2008-2009 in four locations of Spain was collected to determine experimentally BaP concentrations by gas chromatography mass-spectrometry mass-spectrometry (GC-MS-MS). Multivariate linear regression models (MLRM) were used to predict BaP air concentrations in two sampling places, taking PM10 and meteorological variables as possible predictors. The model obtained with data from two sampling sites (all sites model) (R(2)=0.817, PRESS/SSY=0.183) included the significant variables like PM10, temperature, solar radiation and wind speed and was internally and externally validated. The first validation was performed by cross validation and the last one by BaP concentrations from previous campaigns carried out in Zaragoza from 2001-2004. The proposed model constitutes a first approximation to estimate BaP concentrations in urban atmospheres with very good internal prediction (Q(CV)(2)=0.813, PRESS/SSY=0.187) and with the maximal external prediction for the 2001-2002 campaign (Q(ext)(2)=0.679 and PRESS/SSY=0.321) versus the 2001-2004 campaign (Q(ext)(2)=0.551, PRESS/SSY=0.449). Copyright 2010 Elsevier B.V. All rights reserved.

  3. Seasonal variation of benzo(a)pyrene in the Spanish airborne PM10. Multivariate linear regression model applied to estimate BaP concentrations

    International Nuclear Information System (INIS)

    Callen, M.S.; Lopez, J.M.; Mastral, A.M.

    2010-01-01

    The estimation of benzo(a)pyrene (BaP) concentrations in ambient air is very important from an environmental point of view especially with the introduction of the Directive 2004/107/EC and due to the carcinogenic character of this pollutant. A sampling campaign of particulate matter less or equal than 10 microns (PM10) carried out during 2008-2009 in four locations of Spain was collected to determine experimentally BaP concentrations by gas chromatography mass-spectrometry mass-spectrometry (GC-MS-MS). Multivariate linear regression models (MLRM) were used to predict BaP air concentrations in two sampling places, taking PM10 and meteorological variables as possible predictors. The model obtained with data from two sampling sites (all sites model) (R 2 = 0.817, PRESS/SSY = 0.183) included the significant variables like PM10, temperature, solar radiation and wind speed and was internally and externally validated. The first validation was performed by cross validation and the last one by BaP concentrations from previous campaigns carried out in Zaragoza from 2001-2004. The proposed model constitutes a first approximation to estimate BaP concentrations in urban atmospheres with very good internal prediction (Q CV 2 =0.813, PRESS/SSY = 0.187) and with the maximal external prediction for the 2001-2002 campaign (Q ext 2 =0.679 and PRESS/SSY = 0.321) versus the 2001-2004 campaign (Q ext 2 =0.551, PRESS/SSY = 0.449).

  4. The role of perceived air pollution and health risk perception in health symptoms and disease: a population-based study combined with modelled levels of PM10.

    Science.gov (United States)

    Orru, Kati; Nordin, Steven; Harzia, Hedi; Orru, Hans

    2018-03-31

    Adverse health impact of air pollution on health may not only be associated with the level of exposure, but rather mediated by perception of the pollution and by top-down processing (e.g. beliefs of the exposure being hazardous), especially in areas with relatively low levels of pollutants. The aim of this study was to test a model that describes interrelations between air pollution (particles pollution, health risk perception, health symptoms and diseases. A population-based questionnaire study was conducted among 1000 Estonian residents (sample was stratified by age, sex, and geographical location) about health risk perception and coping. The PM 10 levels were modelled in 1 × 1 km grids using a Eulerian air quality dispersion model. Respondents were ascribed their annual mean PM 10 exposure according to their home address. Path analysis was performed to test the validity of the model. The data refute the model proposing that exposure level significantly influences symptoms and disease. Instead, the perceived exposure influences symptoms and the effect of perceived exposure on disease is mediated by health risk perception. This relationship is more pronounced in large cities compared to smaller towns or rural areas. Perceived pollution and health risk perception, in particular in large cities, play important roles in understanding and predicting environmentally induced symptoms and diseases at relatively low levels of air pollution.

  5. Complex time series analysis of PM10 and PM2.5 for a coastal site using artificial neural network modelling and k-means clustering

    Science.gov (United States)

    Elangasinghe, M. A.; Singhal, N.; Dirks, K. N.; Salmond, J. A.; Samarasinghe, S.

    2014-09-01

    This paper uses artificial neural networks (ANN), combined with k-means clustering, to understand the complex time series of PM10 and PM2.5 concentrations at a coastal location of New Zealand based on data from a single site. Out of available meteorological parameters from the network (wind speed, wind direction, solar radiation, temperature, relative humidity), key factors governing the pattern of the time series concentrations were identified through input sensitivity analysis performed on the trained neural network model. The transport pathways of particulate matter under these key meteorological parameters were further analysed through bivariate concentration polar plots and k-means clustering techniques. The analysis shows that the external sources such as marine aerosols and local sources such as traffic and biomass burning contribute equally to the particulate matter concentrations at the study site. These results are in agreement with the results of receptor modelling by the Auckland Council based on Positive Matrix Factorization (PMF). Our findings also show that contrasting concentration-wind speed relationships exist between marine aerosols and local traffic sources resulting in very noisy and seemingly large random PM10 concentrations. The inclusion of cluster rankings as an input parameter to the ANN model showed a statistically significant (p advanced air dispersion models.

  6. Modelos lineares aplicados à estimativa da concentração do material particulado (PM10 na cidade do Rio de Janeiro, RJ Linear models applied to the assessment of daily concentration of particulate matter (PM10 in Rio de Janeiro city, RJ, Brazil

    Directory of Open Access Journals (Sweden)

    Gustavo Bastos Lyra

    2011-09-01

    Full Text Available Regressão linear múltipla foi aplicada para ajustar dois modelos à concentração média de 24 h do material particulado com diâmetro inferior a 10 µm (PM10. As variáveis explanatórias no primeiro modelo (M1 foram os elementos meteorológicos (temperatura e umidade do ar, precipitação pluvial, velocidade do vento e pressão atmosférica e o índice de direção do vento (IDV. No segundo (M2, além dos elementos meteorológicos e do IDV, foi incluído como variável explanatória, a concentração de PM10 do dia anterior (PM10,i-1. Para a seleção das variáveis explanatórias a serem incluídas no modelo, utilizou-se a técnica stepwise. Medidas da concentração de PM10 e dos elementos meteorológicos foram realizadas entre 01/05/02 e 31/08/03 em São Cristóvão (22º 53´ S; 43º 13´ W e 24 m na cidade do Rio de Janeiro. O coeficiente de determinação (r² para o ajuste dos modelos foi razoável, sendo que o modelo M2 (r² = 0,557 mostrou ajuste superior ao modelo M1 (r² = 0,334. Os elementos meteorológicos tiveram correlação negativa com PM10, com exceção do índice de direção do vento, que da mesma forma de PM10,i-1, apresentou correlação positiva. A umidade relativa do ar e a precipitação pluvial mostraram-se os elementos meteorológicos mais significativos nos modelos. Contudo, quando PM10,i-1 é considerada, esta variável se mostrou a mais significativa no modelo. Independente do modelo, a inclusão da temperatura do ar não foi significativa (p > 0,05. O modelo M2 teve concordância entre os valores estimados e observados e precisão superior ao modelo M1. Em termos de previsão da qualidade do ar, os modelos mostraram resultados satisfatórios, sobressaindo-se o modelo M2.Multiple linear regression was used to fit two models to the daily average concentration of particulate matter with diameter lower than 10 µm (PM10. The explanatory variables in the first model (M1 were the weather variables (air temperature

  7. Preliminary comparative assessment of PM10 hourly measurement results from new monitoring stations type using stochastic and exploratory methodology and models

    Science.gov (United States)

    Czechowski, Piotr Oskar; Owczarek, Tomasz; Badyda, Artur; Majewski, Grzegorz; Rogulski, Mariusz; Ogrodnik, Paweł

    2018-01-01

    The paper presents selected preliminary stage key issues proposed extended equivalence measurement results assessment for new portable devices - the comparability PM10 concentration results hourly series with reference station measurement results with statistical methods. In article presented new portable meters technical aspects. The emphasis was placed on the comparability the results using the stochastic and exploratory methods methodology concept. The concept is based on notice that results series simple comparability in the time domain is insufficient. The comparison of regularity should be done in three complementary fields of statistical modeling: time, frequency and space. The proposal is based on model's results of five annual series measurement results new mobile devices and WIOS (Provincial Environmental Protection Inspectorate) reference station located in Nowy Sacz city. The obtained results indicate both the comparison methodology completeness and the high correspondence obtained new measurements results devices with reference.

  8. Mapping the annual exceedance frequencies of the PM10 air quality standard - Comparing kriging to a generalized linear spatial model

    CSIR Research Space (South Africa)

    Khuluse, S

    2013-11-01

    Full Text Available . Monestiez P., Dubroca L., Bonnin E., Durbec J.-P., Guinet C. (2004). Comparison of model based geostatistical methods in ecology: Application to fin whale distribution in northwestern Mediterranean sea. In proceedings of Geostatistics Banff, Leuangthong...

  9. Impact of Highly Reflective Materials on Meteorology, PM10 and Ozone in Urban Areas: A Modeling Study with WRF-CHIMERE at High Resolution over Milan (Italy

    Directory of Open Access Journals (Sweden)

    Serena Falasca

    2018-02-01

    Full Text Available The Urban Heat Island (UHI is a well-known phenomenon concerning an increasing percentage of the world’s population due to the growth rates of metropolitan areas. Given the health and economic implications of UHIs, several mitigation techniques are being evaluated and tested. In this study, we consider the use of highly reflective materials for urban surfaces, and we carried out numerical experiments using the Weather Research and Forecasting model coupled with the CHIMERE model in order to investigate the effects of these materials on the meteorology and air quality in the urban area of Milan (Italy. Results show that an increase in albedo from 0.2 to 0.7 for urban roofs, walls and streets leads to a decrease in UHI intensity by up to 2–3 °C and of the planetary boundary layer (PBL height of about 500 m. However, the difference of PM10 and ozone between urban and surrounding areas increases by a factor of about 2, attributable to the reduction of PBL height and wind speed and to the increased reflected solar radiation that may enhance photochemical production during the daytime. Therefore, if anthropogenic emissions are held at the same levels, the potential benefit to the UHI in terms of thermal discomfort may have negative repercussions on air quality.

  10. Source apportionment of PM10 and PM2.5 in major urban Greek agglomerations using a hybrid source-receptor modeling process.

    Science.gov (United States)

    Argyropoulos, G; Samara, C; Diapouli, E; Eleftheriadis, K; Papaoikonomou, K; Kungolos, A

    2017-12-01

    A hybrid source-receptor modeling process was assembled, to apportion and infer source locations of PM 10 and PM 2.5 in three heavily-impacted urban areas of Greece, during the warm period of 2011, and the cold period of 2012. The assembled process involved application of an advanced computational procedure, the so-called Robotic Chemical Mass Balance (RCMB) model. Source locations were inferred using two well-established probability functions: (a) the Conditional Probability Function (CPF), to correlate the output of RCMB with local wind directional data, and (b) the Potential Source Contribution Function (PSCF), to correlate the output of RCMB with 72h air-mass back-trajectories, arriving at the receptor sites, during sampling. Regarding CPF, a higher-level conditional probability function was defined as well, from the common locus of CPF sectors derived for neighboring receptor sites. With respect to PSCF, a non-parametric bootstrapping method was applied to discriminate the statistically significant values. RCMB modeling showed that resuspended dust is actually one of the main barriers for attaining the European Union (EU) limit values in Mediterranean urban agglomerations, where the drier climate favors build-up. The shift in the energy mix of Greece (caused by the economic recession) was also evidenced, since biomass burning was found to contribute more significantly to the sampling sites belonging to the coldest climatic zone, particularly during the cold period. The CPF analysis showed that short-range transport of anthropogenic emissions from urban traffic to urban background sites was very likely to have occurred, within all the examined urban agglomerations. The PSCF analysis confirmed that long-range transport of primary and/or secondary aerosols may indeed be possible, even from distances over 1000km away from study areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Estimation of health effects (morbidity and mortality attributed to PM10 and PM2.5 exposure using an Air Quality model in Bukan city, from 2015-2016 exposure using air quality model

    Directory of Open Access Journals (Sweden)

    Bahram Kamarehie

    2017-08-01

    Full Text Available Background: Air Quality software is a useful tool for assessing the health risks associated with air pollutants. Quantifying the effects of exposure to air pollutants in terms of public health has become a critical component of policy discussion. The present study purposed to quantify the health effects of particulate matters on mortality and morbidity in a Bukan city hospital from 2015-2016. Methods: Information regarding coordinates, exposed population, number of stations used in profiling, mean and maximum concentrations (annual, winter, and summer, annual 98th percentile, baseline incidence (BI per 100 000 per year, and relative risk was needed for use with the software. Results: The average particulate matter concentration was higher in summer than in winter. The concentrations of PM10 in summer and winter were 84.37 and 74.86 μg m-3, respectively. The Air Quality model predicted that total mortality rates related to PM10 and PM2.5 were 33.3 and 49.8 deaths, respectively. As a result, 3.79% of the total mortality was due to PM10. In Bukan city, 2.004% of total deaths were due to cardiovascular mortality. The Air Quality model predicted that the deaths of 92.2 people were related to hospital admissions for respiratory disease. Conclusion: The continual evaluation of air quality data is necessary for investigating the effect of pollutants on human health.

  12. Development of a source oriented version of the WRF/Chem model and its application to the California regional PM10 / PM2.5 air quality study

    Directory of Open Access Journals (Sweden)

    H. Zhang

    2014-01-01

    Full Text Available A source-oriented version of the Weather Research and Forecasting model with chemistry (SOWC, hereinafter was developed. SOWC separately tracks primary particles with different hygroscopic properties rather than instantaneously combining them into an internal mixture. This approach avoids artificially mixing light absorbing black + brown carbon particles with materials such as sulfate that would encourage the formation of additional coatings. Source-oriented particles undergo coagulation and gas-particle conversion, but these processes are considered in a dynamic framework that realistically "ages" primary particles over hours and days in the atmosphere. SOWC more realistically predicts radiative feedbacks from anthropogenic aerosols compared to models that make internal mixing or other artificial mixing assumptions. A three-week stagnation episode (15 December 2000 to 6 January 2001 in the San Joaquin Valley (SJV during the California Regional PM10 / PM2.5 Air Quality Study (CRPAQS was chosen for the initial application of the new modeling system. Primary particles emitted from diesel engines, wood smoke, high-sulfur fuel combustion, food cooking, and other anthropogenic sources were tracked separately throughout the simulation as they aged in the atmosphere. Differences were identified between predictions from the source oriented vs. the internally mixed representation of particles with meteorological feedbacks in WRF/Chem for a number of meteorological parameters: aerosol extinction coefficients, downward shortwave flux, planetary boundary layer depth, and primary and secondary particulate matter concentrations. Comparisons with observations show that SOWC predicts particle scattering coefficients more accurately than the internally mixed model. Downward shortwave radiation predicted by SOWC is enhanced by ~1% at ground level chiefly because diesel engine particles in the source-oriented mixture are not artificially coated with material that

  13. Seasonal variation of benzo(a) pyrene in the Spanish airborne PM10. Multivariate linear regression model applied to estimate BaP concentrations

    OpenAIRE

    Callén Romero, Mª Soledad; López Sebastián, José Manuel; Mastral Lamarca, Ana María

    2010-01-01

    The estimation of benzo(a)pyrene (BaP) concentrations in ambient air is very important from an environmental point of view especially with the introduction of the Directive 2004/107/EC and due to the carcinogenic character of this pollutant. A sampling campaign of particulate matter less or equal than 10 microns (PM10) carried out during 2008-2009 in four locations of Spain was collected to determine experimentally BaP concentrations by gas chromatography-mass spectrometry-mass spectrometry (...

  14. Monetary Valuation of PM10-Related Health Risks in Beijing China: The Necessity for PM10 Pollution Indemnity.

    Science.gov (United States)

    Yin, Hao; Xu, Linyu; Cai, Yanpeng

    2015-08-21

    Severe health risks caused by PM10 (particulate matter with an aerodynamic diameter ≤10 μm) pollution have induced inevitable economic losses and have rendered pressure on the sustainable development of society as a whole. In China, with the "Polluters Pay Principle", polluters should pay for the pollution they have caused, but how much they should pay remains an intractable problem for policy makers. This paper integrated an epidemiological exposure-response model with economics methods, including the Amended Human Capital (AHC) approach and the Cost of Illness (COI) method, to value the economic loss of PM10-related health risks in 16 districts and also 4 functional zones in Beijing from 2008 to 2012. The results show that from 2008 to 2012 the estimated annual deaths caused by PM10 in Beijing are around 56,000, 58,000, 63,000, 61,000 and 59,000, respectively, while the economic losses related to health damage increased from around 23 to 31 billion dollars that PM10 polluters should pay for pollution victims between 2008 and 2012. It is illustrated that not only PM10 concentration but also many other social economic factors influence PM10-related health economic losses, which makes health economic losses show a time lag discrepancy compared with the decline of PM10 concentration. In conclusion, health economic loss evaluation is imperative in the pollution indemnity system establishment and should be considered for the urban planning and policy making to control the burgeoning PM10 health economic loss.

  15. Modelación de episodios críticos de contaminación por material particulado (PM10 en Santiago de Chile: Comparación de la eficiencia predictiva de los modelos paramétricos y no paramétricos Modeling critical episodes of air pollution by PM10 in Santiago, Chile: Comparison of the predictive efficiency of parametric and non-parametric statistical models

    Directory of Open Access Journals (Sweden)

    Sergio A. Alvarado

    2010-12-01

    Full Text Available Objetivo: Evaluar la eficiencia predictiva de modelos estadísticos paramétricos y no paramétricos para predecir episodios críticos de contaminación por material particulado PM10 del día siguiente, que superen en Santiago de Chile la norma de calidad diaria. Una predicción adecuada de tales episodios permite a la autoridad decretar medidas restrictivas que aminoren la gravedad del episodio, y consecuentemente proteger la salud de la comunidad. Método: Se trabajó con las concentraciones de material particulado PM10 registradas en una estación asociada a la red de monitorización de la calidad del aire MACAM-2, considerando 152 observaciones diarias de 14 variables, y con información meteorológica registrada durante los años 2001 a 2004. Se ajustaron modelos estadísticos paramétricos Gamma usando el paquete estadístico STATA v11, y no paramétricos usando una demo del software estadístico MARS v 2.0 distribuida por Salford-Systems. Resultados: Ambos métodos de modelación presentan una alta correlación entre los valores observados y los predichos. Los modelos Gamma presentan mejores aciertos que MARS para las concentraciones de PM10 con valores Objective: To evaluate the predictive efficiency of two statistical models (one parametric and the other non-parametric to predict critical episodes of air pollution exceeding daily air quality standards in Santiago, Chile by using the next day PM10 maximum 24h value. Accurate prediction of such episodes would allow restrictive measures to be applied by health authorities to reduce their seriousness and protect the community´s health. Methods: We used the PM10 concentrations registered by a station of the Air Quality Monitoring Network (152 daily observations of 14 variables and meteorological information gathered from 2001 to 2004. To construct predictive models, we fitted a parametric Gamma model using STATA v11 software and a non-parametric MARS model by using a demo version of Salford

  16. Predictability Analysis of PM10 Concentrations in Budapest

    Science.gov (United States)

    Ferenczi, Zita

    2013-04-01

    Climate, weather and air quality may have harmful effects on human health and environment. Over the past few hundred years we had to face the changes in climate in parallel with the changes in air quality. These observed changes in climate, weather and air quality continuously interact with each other: pollutants are changing the climate, thus changing the weather, but climate also has impacts on air quality. The increasing number of extreme weather situations may be a result of climate change, which could create favourable conditions for rising of pollutant concentrations. Air quality in Budapest is determined by domestic and traffic emissions combined with the meteorological conditions. In some cases, the effect of long-range transport could also be essential. While the time variability of the industrial and traffic emissions is not significant, the domestic emissions increase in winter season. In recent years, PM10 episodes have caused the most critical air quality problems in Budapest, especially in winter. In Budapest, an air quality network of 11 stations detects the concentration values of different pollutants hourly. The Hungarian Meteorological Service has developed an air quality prediction model system for the area of Budapest. The system forecasts the concentration of air pollutants (PM10, NO2, SO2 and O3) for two days in advance. In this work we used meteorological parameters and PM10 data detected by the stations of the air quality network, as well as the forecasted PM10 values of the air quality prediction model system. In this work we present the evaluation of PM10 predictions in the last two years and the most important meteorological parameters affecting PM10 concentration. The results of this analysis determine the effect of the meteorological parameters and the emission of aerosol particles on the PM10 concentration values as well as the limits of this prediction system.

  17. Meteorological factors for PM10 concentration levels in Northern Spain

    Science.gov (United States)

    Santurtún, Ana; Mínguez, Roberto; Villar-Fernández, Alejandro; González Hidalgo, Juan Carlos; Zarrabeitia, María Teresa

    2013-04-01

    models, iii) fitting of a times series model (Autoregressive moving average, ARMA) to the transformed historical values in order to eliminate the temporal autocorrelation structure of each stochastic process, obtaining a white noise for each variable, and finally, iv) the calculation of cross correlations between white noises at different time lags. These cross correlations allow characterization of the true correlation between signals, avoiding the problems induced by data scaling or autocorrelations inherent to each signal. Results provide the relationship and possible contribution to PM10 concentration levels associated with each meteorological variable. This information can be used to improve PM10 concentration levels forecasting using existing meteorological forecasts.

  18. Evaluation and intercomparison of Ozone and PM10 simulations by several chemistry transport models over four European cities within the CityDelta project

    NARCIS (Netherlands)

    Vautard, R.; Builtjes, P.H.J.; Thunis, P.; Cuvelier, C.; Bedogni, M.; Bessagnet, B.; Honoré, C.; Moussiopoulos, N.; Pirovano, G.; Schaap, M.; Stern, R.; Tarrason, L.; Wind, P.

    2007-01-01

    The CityDelta project Cuvelier et al. [2006. CityDelta: a model intercomparison study to explore the impact of emission reductions in European cities in 2010. Atmospheric Environment] is designed to evaluate the air quality response of several emission abatement scenarios for 2010 at the scale of

  19. Identification of the sources of PM10 in a subway tunnel using positive matrix factorization.

    Science.gov (United States)

    Park, Duckshin; Lee, Taejeong; Hwang, Doyeon; Jung, Wonseok; Lee, Yongil; Cho, KiChul; Kim, Dongsool; Lees, Kiyoung

    2014-12-01

    The level of particulate matter of less than 10 μm diameter (PM10) at subway platforms can be significantly reduced by installing a platform screen-door system. However, both workers and passengers might be exposed to higher PM10 levels while the cars are within the tunnel because it is a more confined environment. This study determined the PM10 levels in a subway tunnel, and identified the sources of PM10 using elemental analysis and receptor modeling. Forty-four PM10 samples were collected in the tunnel between the Gireum and Mia stations on Line 4 in metropolitan Seoul and analyzed using inductively coupled plasma-atomic emission spectrometry and ion chromatography. The major PM10 sources were identified using positive matrix factorization (PMF). The average PM10 concentration in the tunnels was 200.8 ± 22.0 μg/m3. Elemental analysis indicated that the PM10 consisted of 40.4% inorganic species, 9.1% anions, 4.9% cations, and 45.6% other materials. Iron was the most abundant element, with an average concentration of 72.5 ± 10.4 μg/m3. The PM10 sources characterized by PMF included rail, wheel, and brake wear (59.6%), soil combustion (17.0%), secondary aerosols (10.0%), electric cable wear (8.1%), and soil and road dust (5.4%). Internal sources comprising rail, wheel, brake, and electric cable wear made the greatest contribution to the PM10 (67.7%) in tunnel air. Implications: With installation of a platform screen door, PM10 levels in subway tunnels were higher than those on platforms. Tunnel PM10 levels exceeded 150 µg/m3 of the Korean standard for subway platform. Elemental analysis of PM10 in a tunnel showed that Fe was the most abundant element. Five PM10 sources in tunnel were identified by positive matrix factorization. Railroad-related sources contributed 68% of PM10 in the subway tunnel.

  20. Modelos lineares aplicados à estimativa da concentração do material particulado (PM10) na cidade do Rio de Janeiro, RJ Linear models applied to the assessment of daily concentration of particulate matter (PM10) in Rio de Janeiro city, RJ, Brazil

    OpenAIRE

    Gustavo Bastos Lyra; Melissa Oda-Souza; Denise Nunes Viola

    2011-01-01

    Regressão linear múltipla foi aplicada para ajustar dois modelos à concentração média de 24 h do material particulado com diâmetro inferior a 10 µm (PM10). As variáveis explanatórias no primeiro modelo (M1) foram os elementos meteorológicos (temperatura e umidade do ar, precipitação pluvial, velocidade do vento e pressão atmosférica) e o índice de direção do vento (IDV). No segundo (M2), além dos elementos meteorológicos e do IDV, foi incluído como variável explanatória, a concentração de PM1...

  1. Characterization of PM10 sources in the central Mediterranean

    Science.gov (United States)

    Calzolai, G.; Nava, S.; Lucarelli, F.; Chiari, M.; Giannoni, M.; Becagli, S.; Traversi, R.; Marconi, M.; Frosini, D.; Severi, M.; Udisti, R.; di Sarra, A.; Pace, G.; Meloni, D.; Bommarito, C.; Monteleone, F.; Anello, F.; Sferlazzo, D. M.

    2015-12-01

    The Mediterranean Basin atmosphere is influenced by both strong natural and anthropogenic aerosol emissions and is also subject to important climatic forcings. Several programs have addressed the study of the Mediterranean basin; nevertheless important pieces of information are still missing. In this framework, PM10 samples were collected on a daily basis on the island of Lampedusa (35.5° N, 12.6° E; 45 m a.s.l.), which is far from continental pollution sources (the nearest coast, in Tunisia, is more than 100 km away). After mass gravimetric measurements, different portions of the samples were analyzed to determine the ionic content by ion chromatography (IC), the soluble metals by inductively coupled plasma atomic emission spectrometry (ICP-AES), and the total (soluble + insoluble) elemental composition by particle-induced x-ray emission (PIXE). Data from 2007 and 2008 are used in this study. The Positive Matrix Factorization (PMF) model was applied to the 2-year long data set of PM10 mass concentration and chemical composition to assess the aerosol sources affecting the central Mediterranean basin. Seven sources were resolved: sea salt, mineral dust, biogenic emissions, primary particulate ship emissions, secondary sulfate, secondary nitrate, and combustion emissions. Source contributions to the total PM10 mass were estimated to be about 40 % for sea salt, around 25 % for mineral dust, 10 % each for secondary nitrate and secondary sulfate, and 5 % each for primary particulate ship emissions, biogenic emissions, and combustion emissions. Large variations in absolute and relative contributions are found and appear to depend on the season and on transport episodes. In addition, the secondary sulfate due to ship emissions was estimated and found to contribute by about one-third to the total sulfate mass. Results for the sea-salt and mineral dust sources were compared with estimates of the same contributions obtained from independent approaches, leading to an

  2. Seasonal variation, risk assessment and source estimation of PM 10 and PM10-bound PAHs in the ambient air of Chiang Mai and Lamphun, Thailand.

    Science.gov (United States)

    Pengchai, Petch; Chantara, Somporn; Sopajaree, Khajornsak; Wangkarn, Sunanta; Tengcharoenkul, Urai; Rayanakorn, Mongkon

    2009-07-01

    /APCS) model and multiple regression analysis were applied to the PM10 and its constituents data. The results pointed to the vegetative burning as the largest PM10 contributor in Chiang Mai and Lamphun ambient air. Vegetative burning, natural gas burning & coke ovens, and secondary particle accounted for 46-82%, 12-49%, and 3-19% of the PM10 concentrations, respectively. However, natural gas burning & coke ovens as well as vehicle exhaust also deserved careful attention due to their large contributions to PAHs concentration. In the wet season and transition periods, 42-60% of the total PAHs concentrations originated from vehicle exhaust while 16-37% and 14-38% of them were apportioned to natural gas burning & coke ovens and vegetative burning, respectively. In the dry period, natural gas burning & coke ovens, vehicle exhaust, and vegetative burning accounted for 47-59%, 20-25%, and 19-28% of total PAHs concentrations. The close agreement between the measured and predicted concentrations data (R(2) > 0.8) assured enough capability of PCA/APCS receptor model to be used for the PM10 and PAHs source apportionment.

  3. Bivariate extreme value with application to PM10 concentration analysis

    Science.gov (United States)

    Amin, Nor Azrita Mohd; Adam, Mohd Bakri; Ibrahim, Noor Akma; Aris, Ahmad Zaharin

    2015-05-01

    This study is focus on a bivariate extreme of renormalized componentwise maxima with generalized extreme value distribution as a marginal function. The limiting joint distribution of several parametric models are presented. Maximum likelihood estimation is employed for parameter estimations and the best model is selected based on the Akaike Information Criterion. The weekly and monthly componentwise maxima series are extracted from the original observations of daily maxima PM10 data for two air quality monitoring stations located in Pasir Gudang and Johor Bahru. The 10 years data are considered for both stations from year 2001 to 2010. The asymmetric negative logistic model is found as the best fit bivariate extreme model for both weekly and monthly maxima componentwise series. However the dependence parameters show that the variables for weekly maxima series is more dependence to each other compared to the monthly maxima.

  4. The Interaction between Ambient PM10 and NO₂ on Mortality in Guangzhou, China.

    Science.gov (United States)

    Gu, Yuzhou; Lin, Hualiang; Liu, Tao; Xiao, Jianpeng; Zeng, Weilin; Li, Zhihao; Lv, Xiaojuan; Ma, Wenjun

    2017-11-13

    Air pollution is now a significant environmental issue in China. To better understand the health impacts of ambient air pollution, this study investigated the potential interaction between PM 10 and NO₂ on mortality in Guangzhou, China. Time series data of daily non-accidental mortality and concentrations of PM 10 and NO₂ from 2006 to 2010 were collected. Based on generalized additive model, we developed two models (bivariate model and stratified model) to explore the interaction both qualitatively and quantitatively. At lag of 0-2 days, greater interactive effects between PM 10 and NO₂ were presented in the graphs. Positive modified effects were also found between the two pollutants on total non-accidental death and cardiovascular death. When the NO₂ concentration was at a high level (>76.14 μg/m³), PM 10 showed the greatest excess relative risk percentage (ERR%) for total non-accidental mortality (0.46, 95% CI: 0.13-0.79) and cardiovascular disease mortality (0.61, 95% CI: 0.06-1.16) for each 10 μg/m³ increase. During the period of high PM 10 concentration (>89.82 μg/m³), NO₂ demonstrated its strongest effect for total non-accidental mortality (ERR%: 0.92, 95% CI: 0.42-1.42) and cardiovascular disease mortality (ERR%: 1.20, 95% CI: 0.38-2.03). Our results suggest a positive interaction between PM 10 and NO₂ on non-accidental mortality in Guangzhou.

  5. Evolution de la surveillance des PM10 en France : épisodes de pollution par les particules au printemps 2007

    OpenAIRE

    Aymoz , Gilles; Bessagnet , Bertrand; Rouil , Laurence; Le Bihan , Olivier

    2008-01-01

    National audience; Since the 1st January 2007, PM10 monitoring network in France has evolved, in order to account for volatile fraction of PM10. This evolution permitted the observation of high peaks of PM10 during spring 2007. Concentrations during these peaks would have been largely underestimated with measuring techniques used before 2007. A study, coupling chemical and modelling approach of the phenomenon has been launched by LCSQA (Laboratoire Central de Surveillance de la Qualité de l'A...

  6. 2005-2014 trends of PM10 source contributions in an industrialized area of southern Spain.

    Science.gov (United States)

    Li, Jiwei; Chen, Bing; de la Campa, Ana M Sánchez; Alastuey, Andrés; Querol, Xavier; de la Rosa, Jesus D

    2018-05-01

    Particulate matter with a diameter of 10 μm or less (PM10) using receptor modelling was determined at an urban (La Linea, LL) and an industrial area (Puente Mayorga, PMY) in Southern Spain with samples collected during 2005-2014. The concentrations of PM10 had been decreasing at both sites in three distinctive periods: 1) the initial PM10 levels approached or exceeded the Spain and EU PM10 annual guidelines of 40 μg/m 3 during 2005-2007 at LL and 2005-2009 at PMY; 2) then PM10 dropped by 25%-∼30 μg/m 3 during 2008-2011 at LL and during 2010-2011 at PMY; 3) since 2012, the PM10 concentrations gradually decreased to major elements. These PM components generally showed a decrease trend, in accord with the trend of PM10 reduction. A PMF model identified seven sources to PM10 contributions. Secondary sulfate, soil/urban/construction dust, and secondary nitrate showed significantly decreasing trends with reduction of 40-60% comparing to the initial levels. The road traffic contribution decreased by 14% from the first to third period. However, sea salt, oil combustion, and industrial metallurgical process had relative stable contributions. These source contribution changes are reasonably governed by the PM emission abatement actions implemented during the past decade, as well as the financial crisis, that accounted for a significant decrease of PM pollution in Southern Spain. We identified that the mitigation efforts on industry, fossil fuel combustion, and urban transportation during the past decade were successful for air quality improvement in a highly industrialized area in Southern Spain. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Performance characteristics of a low-volume PM10 sampler

    Science.gov (United States)

    Four identical PM10 pre-separators, along with four identical low-volume (1m3 hr-1) total suspended particulate (TSP) samplers were tested side-by-side in a controlled laboratory particulate matter (PM) chamber. The four PM10 and four TSP samplers were also tested in an oil pipe-cleaning field to ev...

  8. 40 CFR 52.378 - Control strategy: PM10

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control strategy: PM10 52.378 Section 52.378 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Connecticut § 52.378 Control strategy: PM10 (a) Approval...

  9. Investigation of Air Quality Index and PM10 and PM2.5 in Arak

    Directory of Open Access Journals (Sweden)

    Fatemeh Fazelinia

    2013-12-01

    Full Text Available Background and purpose: In this study, the air quality index and concentration of particles such as PM10 and PM2.5 were investigated in Arak. Materials and Methods: To determine the concentration of PM10 and PM2.5, 60 samples were collected by laser TSI model 8520 in summer and winter 2012. The collection site was around Arak city center. Results: during the sampling period, as a matter of PM10, the cleanest and the most polluted month were December and June with the average of 34.33 µg m-3 and 100.1 µg m-3, respectively. The concentration of PM2.5 was 12.93 and 53.17 µg m-3 for December and June, respectively. Meanwhile, in terms of air quality index (AQI, in 98.3% and 70% of cases, the concentrations of PM10 and PM2.5, respectively were less than normal (AQI100. Conclusion: The concentration of PM10 in the study period was less than Environmental Protection Agency (EPA 2006 guideline. Meanwhile, the concentrations of PM2.5 in 30% of air samples were greater than EPA guideline. The average PM2.5/PM10 ratio during the sampling period was 0.41 compared to range 0.15 to 0.25 reported by EPA.

  10. Vertical characteristics and source identification of PM10 in Tianjin

    Institute of Scientific and Technical Information of China (English)

    Zhimei Xiao; Jianhui Wu; Suqin Han; Yufen Zhang; Hong Xu; Xiaoyong Zhang; Guoliang Shi; Yinchang Feng

    2012-01-01

    Ambient PM10 (particulate matter with a diameter less than 10 μm) concentrations were measured on a 255 meter tower in Tianjin,China.The samples were collected at four vertical levels (10,40,120 and 220 m).Vertical characteristics for PM10 samples were studied.The results showed that the concentrations of PM10 and constituent species had a negative correlation with the sampling height.The highest concentrations of PM10 and species were obtained at the 10 m level,and the lowest concentrations were measured at the 220 m level.For the fractions of species to total mass,SO42- and NO3- had higher values (fraction) at greater height; while Ca had a higher fraction at lower height.Possible source categories for the PM10 ambient dataset were identified by the principal component analysis method.The possible source categories included crustal dust,vehicles,cement dust,and incineration as well as secondary sulfate and nitrate sources.Analysis of meteorological factors on PM10 concentrations indicated that wind speed and inversion may be the main factors contributing to different concentrations of PM10 at different heights.

  11. Characterisation and quantification of the sources of PM10 during air pollution episodes in the UK

    International Nuclear Information System (INIS)

    Muir, David; Longhurst, J.W.S.; Tubb, A.

    2006-01-01

    Data for concentrations of PM 10 and gaseous pollutants from sites in the UK Automatic Urban and Rural Network have been examined during periods of elevated concentrations of PM 10 . The ratios of concentrations of PM 10 to those of the other pollutants were used to determine the most probable source of the additional particles. The hypothesis is that because the concentrations of PM 10 were divided by those of the other pollutants, the ratio should decrease when PM 10 and the other pollutants have a common source. Conversely, the ratio should increase when the sources are different. During episodes where road traffic was the most probable source of the additional particles, the ratios of concentrations of PM 10 to carbon monoxide and oxides of nitrogen did decrease, but the comparable ratios for sulphur dioxide and ozone increased. In contrast, during episodes known to have been caused by construction activity, all these ratios increased. This is taken to show that the basic hypothesis is valid. For prolonged episodes, it was possible to use data averaged over the total duration of the episode for the purposes of source identification. For sporadic construction, or other short-duration episodes, it was necessary to use time series data. The data have also been used to calculate the differences between hourly average concentrations of pollutants measured during episodes and long-term hourly average concentrations. These have been used to model the additional PM 10 during air pollution episodes associated with construction activities and road traffic emissions. This confirms the lack of relationship between PM 10 and other pollutants during construction works. During episodes arising from road traffic emissions, there was good agreement between measured and modelled additional concentrations of PM 10 when an appropriate factor, F, related to the contribution of road traffic emissions to PM 10 at different site types was applied. The values used were 0.2 (Suburban

  12. Enhanced PM10 bounded PAHs from shipping emissions

    Science.gov (United States)

    Pongpiachan, S.; Hattayanone, M.; Choochuay, C.; Mekmok, R.; Wuttijak, N.; Ketratanakul, A.

    2015-05-01

    Earlier studies have highlighted the importance of maritime transport as a main contributor of air pollutants in port area. The authors intended to investigate the effects of shipping emissions on the enhancement of PM10 bounded polycyclic aromatic hydrocarbons (PAHs) and mutagenic substances in an industrial area of Rayong province, Thailand. Daily PM10 speciation data across two air quality observatory sites in Thailand during 2010-2013 were collected. Diagnostic binary ratios of PAH congeners, analysis of variances (ANOVA), and principal component analysis (PCA) were employed to evaluate the enhanced genotoxicity of PM10 during the docking period. Significant increase of PAHs and mutagenic index (MI) of PM10 were observed during the docking period in both sampling sites. Although stationary sources like coal combustions from power plants and vehicular exhausts from motorway can play a great role in enhancing PAH concentrations, regulating shipping emissions from diesel engine in the port area like Rayong is predominantly crucial.

  13. Chemical profiling of PM10 from urban road dust.

    Science.gov (United States)

    Alves, C A; Evtyugina, M; Vicente, A M P; Vicente, E D; Nunes, T V; Silva, P M A; Duarte, M A C; Pio, C A; Amato, F; Querol, X

    2018-09-01

    Road dust resuspension is one of the main sources of particulate matter with impacts on air quality, health and climate. With the aim of characterising the thoracic fraction, a portable resuspension chamber was used to collect road dust from five main roads in Oporto and an urban tunnel in Braga, north of Portugal. The PM 10 samples were analysed for: i) carbonates by acidification and quantification of the evolved CO 2 , ii) carbonaceous content (OC and EC) by a thermo-optical technique, iii) elemental composition by ICP-MS and ICP-AES after acid digestion, and iv) organic speciation by GC-MS. Dust loadings of 0.48±0.39mgPM 10 m -2 were obtained for asphalt paved roads. A much higher mean value was achieved in a cobbled pavement (50mgPM 10 m -2 ). In general, carbonates were not detected in PM 10 . OC and EC accounted for PM 10 mass fractions up to 11% and 5%, respectively. Metal oxides accounted for 29±7.5% of the PM 10 mass from the asphalt paved roads and 73% in samples from the cobbled street. Crustal and anthropogenic elements, associated with tyre and brake wear, dominated the inorganic fraction. PM 10 comprised hundreds of organic constituents, including hopanoids, n-alkanes and other aliphatics, polycyclic aromatic hydrocarbons (PAH), alcohols, sterols, various types of acids, glycerol derivatives, lactones, sugars and derivatives, phenolic compounds and plasticizers. In samples from the cobbled street, these organic classes represented only 439μgg -1 PM 10 , while for other pavements mass fractions up to 65mgg -1 PM 10 were obtained. Except for the cobbled street, on average, about 40% of the analysed organic fraction was composed of plasticizers. Although the risk via inhalation of PAH was found to be insignificant, the PM 10 from some roads can contribute to an estimated excess of 332 to 2183 per million new cancer cases in adults exposed via ingestion and dermal contact. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Assessment of PM10 enhancement by yellow sand on the air quality of Taipei, Taiwan in 2001.

    Science.gov (United States)

    Chang, Shuenn-Chin; Lee, Chung-Te

    2007-09-01

    The impact of long-range transport of yellow sand from Asian Continent to the Taipei Metropolitan Area (Taipei) not only deteriorates air quality but also poses health risks to all, especially the children and the elderly. As such, it is important to assess the enhancement of PM(10) during yellow sand periods. In order to estimate PM(10) enhancement, we adopted factor analysis to distinguish the yellow-sand (YS) periods from non-yellow-sand (NYS) periods based on air quality monitoring records. Eight YS events were identified using factor analysis coupling with an independent validation procedure by checking background site values, examining meteorological conditions, and modeling air mass trajectory from January 2001 to May 2001. The duration of each event varied from 11 to 132 h, which was identified from the time when the PM(10) level was high, and the CO and NOx levels were low. Subsequently, we used the artificial neural network (ANN) to simulate local PM(10) levels from related parameters including local gas pollutants and meteorological factors during the NYS periods. The PM(10) enhancement during the YS periods is then calculated by subtracting the simulated PM(10) from the observed PM(10) levels. Based on our calculations, the PM(10) enhancement in the maximum hour of each event ranged from 51 to 82%. Moreover, in the eight events identified in 2001, it was estimated that a total amount of 7,210 tons of PM(10) were transported by yellow sand to Taipei. Thus, in this study, we demonstrate that an integration of factor analysis with ANN model could provide a very useful method in identifying YS periods and in determining PM(10) enhancement caused by yellow sand.

  15. Identification of PM10 air pollution origins at a rural background site

    Science.gov (United States)

    Reizer, Magdalena; Orza, José A. G.

    2018-01-01

    Trajectory cluster analysis and concentration weighted trajectory (CWT) approach have been applied to investigate the origins of PM10 air pollution recorded at a rural background site in North-eastern Poland (Diabla Góra). Air mass back-trajectories used in this study have been computed with the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model for a 10-year period of 2006-2015. A cluster analysis grouped back-trajectories into 7 clusters. Most of the trajectories correspond to fast and moderately moving westerly and northerly flows (45% and 25% of the cases, respectively). However, significantly higher PM10 concentrations were observed for slow moving easterly (11%) and southerly (20%) air masses. The CWT analysis shows that high PM10 levels are observed at Diabla Góra site when air masses are originated and passed over the heavily industrialized areas in Central-Eastern Europe located to the south and south-east of the site.

  16. PM10 Pollution: Its Prediction and Meteorological Influence in PasirGudang, Johor

    International Nuclear Information System (INIS)

    Afzali, A; Ramli, M; Rashid, M; Sabariah, B

    2014-01-01

    Ambient PM 10 (i.e particulate diameter less than 10 um in size) pollution has negative impacts on human health and it is influenced by meteorological conditions. Although the correlation between meteorological parameters and PM 10 concentrations is significant in most cases, the linear relationship between them implies that the fraction of the variance, R2 rarely exceeds 25%. However, considering the previous day's concentration of pollutants to the multi-linear regression enhances the model performance and increases the value of R2. Alternatively, artificial neural networks (ANN) are used to capture the complex relationships among many factors considered which present a better prediction. Thus, this study presents the results of predicting ambient PM 10 concentration and the influence of meteorological parameters based on the data sampled from 2008 – 2010 in an industrial area of PasirGudang, Johor

  17. Research and application of a novel hybrid decomposition-ensemble learning paradigm with error correction for daily PM10 forecasting

    Science.gov (United States)

    Luo, Hongyuan; Wang, Deyun; Yue, Chenqiang; Liu, Yanling; Guo, Haixiang

    2018-03-01

    In this paper, a hybrid decomposition-ensemble learning paradigm combining error correction is proposed for improving the forecast accuracy of daily PM10 concentration. The proposed learning paradigm is consisted of the following two sub-models: (1) PM10 concentration forecasting model; (2) error correction model. In the proposed model, fast ensemble empirical mode decomposition (FEEMD) and variational mode decomposition (VMD) are applied to disassemble original PM10 concentration series and error sequence, respectively. The extreme learning machine (ELM) model optimized by cuckoo search (CS) algorithm is utilized to forecast the components generated by FEEMD and VMD. In order to prove the effectiveness and accuracy of the proposed model, two real-world PM10 concentration series respectively collected from Beijing and Harbin located in China are adopted to conduct the empirical study. The results show that the proposed model performs remarkably better than all other considered models without error correction, which indicates the superior performance of the proposed model.

  18. Spatio-temporal characteristics of PM10 concentration across Malaysia

    Science.gov (United States)

    Juneng, Liew; Latif, Mohd Talib; Tangang, Fredolin T.; Mansor, Haslina

    The recurrence of forest fires in Southeast Asia and associated biomass burning, has contributed markedly to the problem of trans-boundary haze and the long-range movement of pollutants in the region. Air pollutants, specifically particulate matter in the atmosphere, have received extensive attention, mainly because of their adverse effect on people's health. In this study, the spatial and temporal variability of the PM10 concentration across Malaysia was analyzed by means of the rotated principal component analysis. The results suggest that the variability of the PM10 concentration can be decomposed into four dominant modes, each characterizing different spatial and temporal variations. The first mode characterizes the southwest coastal region of the Malaysian Peninsular with the PM10 showing a peak concentration during the summer monsoon i.e. when the winds are predominantly southerlies or southwesterlies, and a minimal concentration during the winter monsoon. The second mode features the region of western Borneo with the PM10 exhibiting a concentration surge in August-September, which is likely to be the result of the northward shift of the Inter Tropical Convergence Zone (ITCZ) and the subsequent rapid arrival of the rainy season. The third mode delineates the northern region of the Malaysian Peninsular with strong bimodality in the PM10 concentration. Seasonally, this component exhibits two concentration maxima during the late winter and summer monsoons, as well as two minima during the inter-monsoon periods. The fourth dominant mode characterizes the northern Borneo region which exhibits weaker seasonality of the PM10 concentration. Generally, the seasonal fluctuation of the PM10 concentration is largely associated with the seasonal variation of rainfall in the country. However, in addition to this, the PM10 concentration also fluctuates markedly in two timescale bands i.e. 10-20 days quasi-biweekly (QBW) and 30-60 days lower frequency (LF) band of the intra

  19. Reduction of PM emissions from specific sources reflected on key components concentrations of ambient PM10

    Science.gov (United States)

    Minguillon, M. C.; Querol, X.; Monfort, E.; Alastuey, A.; Escrig, A.; Celades, I.; Miro, J. V.

    2009-04-01

    The relationship between specific particulate emission control and ambient levels of some PM10 components (Zn, As, Pb, Cs, Tl) was evaluated. To this end, the industrial area of Castellón (Eastern Spain) was selected, where around 40% of the EU glazed ceramic tiles and a high proportion of EU ceramic frits (middle product for the manufacture of ceramic glaze) are produced. The PM10 emissions from the ceramic processes were calculated over the period 2000 to 2007 taking into account the degree of implementation of corrective measures throughout the study period. Abatement systems (mainly bag filters) were implemented in the majority of the fusion kilns for frit manufacture in the area as a result of the application of the Directive 1996/61/CE, leading to a marked decrease in PM10 emissions. On the other hand, ambient PM10 sampling was carried out from April 2002 to July 2008 at three urban sites and one suburban site of the area and a complete chemical analysis was made for about 35 % of the collected samples, by means of different techniques (ICP-AES, ICP-MS, Ion Chromatography, selective electrode and elemental analyser). The series of chemical composition of PM10 allowed us to apply a source contribution model (Principal Component Analysis), followed by a multilinear regression analysis, so that PM10 sources were identified and their contribution to bulk ambient PM10 was quantified on a daily basis, as well as the contribution to bulk ambient concentrations of the identified key components (Zn, As, Pb, Cs, Tl). The contribution of the sources identified as the manufacture and use of ceramic glaze components, including the manufacture of ceramic frits, accounted for more than 65, 75, 58, 53, and 53% of ambient Zn, As, Pb, Cs and Tl levels, respectively (with the exception of Tl contribution at one of the sites). The important emission reductions of these sources during the study period had an impact on ambient key components levels, such that there was a high

  20. Particulate Matter Dispersion (PM10, with interrelation of topographic and meteorological factors

    Directory of Open Access Journals (Sweden)

    Alvaro Javier Arrieta-Fuentes

    2016-07-01

    Full Text Available Mining-industrial processes carried out by anthropic action, bring the generation of impacts to the environment. Between the impacts associated with mining is the involvement of the air quality produced by the release of atmospheric pollutants, being subject to study the behavior of the respirable fraction of particulate matter less than 10 microns (PM10 with respect to meteorological and topographical factors. The analyzed scenarios in the study involved daily and annual exposure times of PM10, in wich modeling with AERMOD View Software was made. The model was carried out in two topographic zones, a complex area, located in the municipality of Socha and a simple area located in the municipality of Sogamoso. It was used meteorological data type satellite, in format .SAM for modeled areas. Three types of emission sources were identified in the areas; considering that the disperse fixed emission sources predominate, followed by the mobile sources and point sources were found in low proportion. PM10 dispersion models made for the zones of simple and complex topography, gave as result that direction and the wind speed is conditioned by the type of zone. It allowed a free flow in the predominant direction in wind rose to the area of simple topography and a turbulent flow in the complex area. It was determined that the sources of emission of PM10 in both cases are local scale; They presented a critical radius of drag and deposition of particles of 200 m approximately.

  1. Determination of benzo(apyrene content in PM10 using regression methods

    Directory of Open Access Journals (Sweden)

    Jacek Gębicki

    2015-12-01

    Full Text Available The paper presents an attempt of application of multidimensional linear regression to estimation of an empirical model describing the factors influencing on B(aP content in suspended dust PM10 in Olsztyn and Elbląg city regions between 2010 and 2013. During this period annual average concentration of B(aP in PM10 exceeded the admissible level 1.5-3 times. Conducted investigations confirm that the reasons of B(aP concentration increase are low-efficiency individual home heat stations or low-temperature heat sources, which are responsible for so-called low emission during heating period. Dependences between the following quantities were analysed: concentration of PM10 dust in air, air temperature, wind velocity, air humidity. A measure of model fitting to actual B(aP concentration in PM10 was the coefficient of determination of the model. Application of multidimensional linear regression yielded the equations characterized by high values of the coefficient of determination of the model, especially during heating season. This parameter ranged from 0.54 to 0.80 during the analyzed period.

  2. Ensemble classification for identifying neighbourhood sources of fugitive dust and associations with observed PM10

    CSIR Research Space (South Africa)

    Khuluse-Makhanya, Sibusisiwe A

    2017-10-01

    Full Text Available accuracy of 78%. Next, cluster analysis and a varying intercepts regression model are used to assess the statistical association between land cover, a fugitive dust emissions proxy and observed PM10. We found that land cover patterns in the neighbourhood...

  3. Source Apportionment and Elemental Composition of PM2.5 and PM10 in Jeddah City, Saudi Arabia.

    Science.gov (United States)

    Khodeir, Mamdouh; Shamy, Magdy; Alghamdi, Mansour; Zhong, Mianhua; Sun, Hong; Costa, Max; Chen, Lung-Chi; Maciejczyk, Polina

    2012-07-01

    This paper presents the first comprehensive investigation of PM2.5 and PM10 composition and sources in Saudi Arabia. We conducted a multi-week multiple sites sampling campaign in Jeddah between June and September, 2011, and analyzed samples by XRF. The overall mean mass concentration was 28.4 ± 25.4 μg/m 3 for PM2.5 and 87.3 ± 47.3 μg/m 3 for PM10, with significant temporal and spatial variability. The average ratio of PM2.5/PM10 was 0.33. Chemical composition data were modeled using factor analysis with varimax orthogonal rotation to determine five and four particle source categories contributing significant amount of for PM2.5 and PM10 mass, respectively. In both PM2.5 and PM10 sources were (1) heavy oil combustion characterized by high Ni and V; (2) resuspended soil characterized by high concentrations of Ca, Fe, Al, and Si; and (3) marine aerosol. The two other sources in PM2.5 were (4) Cu/Zn source; (5) traffic source identified by presence of Pb, Br, and Se; while in PM10 it was a mixed industrial source. To estimate the mass contributions of each individual source category, the CAPs mass concentration was regressed against the factor scores. Cumulatively, resuspended soil and oil combustion contributed 77 and 82% mass of PM2.5 and PM10, respectively.

  4. The construction of control chart for PM10 functional data

    Science.gov (United States)

    Shaadan, Norshahida; Jemain, Abdul Aziz; Deni, Sayang Mohd

    2014-06-01

    In this paper, a statistical procedure to construct a control chart for monitoring air quality (PM10) using functional data is proposed. A set of daily indices that represent the daily PM10 curves were obtained using Functional Principal Component Analysis (FPCA). By means of an iterative charting procedure, a reference data set that represented a stable PM10 process was obtained. The data were then used as a reference for monitoring future data. The application of the procedure was conducted using seven-year (2004-2010) period of recorded data from the Klang air quality monitoring station located in the Klang Valley region of Peninsular Malaysia. The study showed that the control chart provided a useful visualization tool for monitoring air quality and was capable in detecting abnormality in the process system. As in the case of Klang station, the results showed that with reference to 2004-2008, the air quality (PM10) in 2010 was better than that in 2009.

  5. PM10 source apportionment study in Pleasant Valley, Nevada

    International Nuclear Information System (INIS)

    Egami, R.T.; Chow, J.C.; Watson, J.G.; DeLong, T.

    1990-01-01

    A source apportionment study was conducted between March 18 and April 4, 1988, at Pleasant Valley, Nevada, to evaluate air pollutant concentrations to which community residents were exposed and the source contributions to those pollutants. Daily PM 10 samples were taken for chemical speciation of 40 trace elements, ions, and organic and elemental carbon. This paper reports that the objectives of this case study are: to determine the emissions source composition of the potential upwind source, a geothermal plant; to measure the ambient particulate concentration and its chemical characteristics in Pleasant Valley; and to estimate the contributions of different emissions sources to PM 10 . The study found that: particulate emissions from the geothermal cooling-tower plume consisted primarily of sulfate, ammonia, chloride, and trace elements; no significant quantities of toxic inorganic species were found in the ambient air; ambient PM 10 concentrations in Pleasant Valley were within Federal standards; and source contribution to PM 10 were approximately 60% geological material; 20% motor vehicle exhaust; and 10% cooling-tower plume

  6. Health benefits of PM10 reduction in Iran

    Science.gov (United States)

    Marzouni, Mohammad Bagherian; Moradi, Mahsa; Zarasvandi, Alireza; Akbaripoor, Shayan; Hassanvand, Mohammad Sadegh; Neisi, Abdolkazem; Goudarzi, Gholamreza; Mohammadi, Mohammad Javad; Sheikhi, Reza; Kermani, Majid; Shirmardi, Mohammad; Naimabadi, Abolfazl; Gholami, Moeen; Mozhdehi, Saeed Pourkarim; Esmaeili, Mehdi; Barari, Kian

    2017-08-01

    Air pollution contains a complex mixture of poisonous compounds including particulate matter (PM) which has wide spectrum of adverse health effects. The main purpose of this study was to estimate the potential health impacts or benefits due to any changes in annual PM10 level in four major megacities of Iran. The required data of PM10 for AirQ software was collected from air quality monitoring stations in four megacities of Iran. The preprocessing was carried out using macro coding in excel environment. The relationship between different presumptive scenarios and health impacts was determined. We also assessed the health benefits of reducing PM10 to WHO Air Quality Guidelines (WHO-AQGs) and National Ambient Air Quality Standards (NAAQSs) levels with regard to the rate of mortality and morbidity in studied cities. We found that the 10 μg/m3 increase in annual PM10 concentration is responsible for seven (95% CI 6-8) cases increase in total number of deaths per 2 × 105 person. We also found that 10.7, 7.2, 5.7, and 5.3% of total death is attributable to short-term exposure to air pollution for Ahvaz, Isfahan, Shiraz, and Tehran, respectively. We found that by attaining the WHO's proposed value for PM10, the potential health benefits of 89, 84, 79, and 78% were obtained in Ahvaz, Isfahan, Shiraz, and Tehran, respectively. The results also indicated that 27, 10, 3, and 1% of health impacts were attributed to dust storm days for Ahvaz, Isfahan, Shiraz, and Tehran, respectively.

  7. Secondary organic carbon quantification and source apportionment of PM10 in Kaifeng, China

    Institute of Scientific and Technical Information of China (English)

    WU Lin; FENG Yinchang; WU Jianhui; ZHU Tan; BI Xiaohui; HAN Bo; YANG Weihong; YANG Zhiqiang

    2009-01-01

    During 2005, the filter samples of ambient PM10 from five sites and the source samples of particulate matter were collected in Kaifeng, Henan province of China. Nineteen elements, water-soluble ions, total carbon (TC) and organic carbon (OC) contained in samples were analyzed. Seven contributive source types were identified and their contributions to ambient PM10 were estimated by chemical mass balance (CMB) receptor model. Weak associations between the concentrations of organic carbon and element carbon (EC) were observed during the sampling periods, indicating that there was secondary organic aerosol pollution in the urban atmosphere. An indirect method of "OC/EC minimum ratio" was applied to estimate the concentration of secondary organic carbon (SOC). The results showed that SOC contributed 26.2%, 32.4% and 18.0% of TC in spring, summer-fall and winter respectively, and the annual average SOC concentration was 7.07 μg/m3, accounting for 5.73% of the total mass in ambient PM10. The carbon species concentrations in ambient PM10 were recalculated by subtracting the SOC concentrations from measured concentrations of TC and OC to increase the compatibility of source and receptor measurements for CMB model.

  8. Source contributions to PM10 and arsenic concentrations in Central Chile using positive matrix factorization

    Science.gov (United States)

    Hedberg, Emma; Gidhagen, Lars; Johansson, Christer

    Sampling of particles (PM10) was conducted during a one-year period at two rural sites in Central Chile, Quillota and Linares. The samples were analyzed for elemental composition. The data sets have undergone source-receptor analyses in order to estimate the sources and their abundance's in the PM10 size fraction, by using the factor analytical method positive matrix factorization (PMF). The analysis showed that PM10 was dominated by soil resuspension at both sites during the summer months, while during winter traffic dominated the particle mass at Quillota and local wood burning dominated the particle mass at Linares. Two copper smelters impacted the Quillota station, and contributed to 10% and 16% of PM10 as an average during summer and winter, respectively. One smelter impacted Linares by 8% and 19% of PM10 in the summer and winter, respectively. For arsenic the two smelters accounted for 87% of the monitored arsenic levels at Quillota and at Linares one smelter contributed with 72% of the measured mass. In comparison with PMF, the use of a dispersion model tended to overestimate the smelter contribution to arsenic levels at both sites. The robustness of the PMF model was tested by using randomly reduced data sets, where 85%, 70%, 50% and 33% of the samples were included. In this way the ability of the model to reconstruct the sources initially found by the original data set could be tested. On average for all sources the relative standard deviation increased from 7% to 25% for the variables identifying the sources, when decreasing the data set from 85% to 33% of the samples, indicating that the solution initially found was very stable to begin with. But it was also noted that sources due to industrial or combustion processes were more sensitive for the size of the data set, compared to the natural sources as local soil and sea spray sources.

  9. The Effects of Bus Ridership on Airborne Particulate Matter (PM10 Concentrations

    Directory of Open Access Journals (Sweden)

    Jaeseok Her

    2016-07-01

    Full Text Available Air pollution caused by rapid urbanization and the increased use of private vehicles seriously affects citizens’ health. In order to alleviate air pollution, many cities have replaced diesel buses with compressed natural gas (CNG buses that emit less exhaust gas. Urban planning strategies such as transit-oriented development (TOD posit that reducing private vehicle use and increasing public transportation use would reduce air pollution levels. The present study examined the effects of bus ridership on airborne particulate matter (PM10 concentrations in the capital region of Korea. We interpolated the levels of PM10 from 128 air pollution monitoring stations, utilizing the Kriging method. Spatial regression models were used to estimate the impact of bus ridership on PM10 levels, controlling for physical environment attributes and socio-economic factors. The analysis identified that PM10 concentration levels tend to be lower in areas with greater bus ridership. This result implies that urban and transportation policies designed to promote public transportation may be effective strategies for reducing air pollution.

  10. Characterization of the GENT PM10 sampler. Appendix 18

    International Nuclear Information System (INIS)

    Hopke, Philip K.; Xie Ying; Raunemaa, Taisto; Biegalski, Steven; Landsberger, Sheldon

    1995-01-01

    An integral part of the Co-ordinated Research Programme: Applied Research on Air Pollution using Nuclear-Related Analytical Techniques is the PM 10 sampler that was designed by Dr. W. Maenhaut of the University of Gent. Each participant was provided with such a sampler so that comparable samples will be obtained by each of the participating groups. Thus, in order to understand the characteristics of this sampler, we have undertaken several characterization studies in which we have examine the aerodynamic collection characteristics of the impactor inlet and the reproducibility of the sample mass collection. The sampler does provide a collection efficiency that follows the guidelines for a PM 10 sampler. Comparing one of the original samplers built at the University of Gent with a unit built from the same plans at Clarkson University showed good reproducibility in mass collection. (author)

  11. [The effect of ambient PM(10) on sperm quality in Wuhan].

    Science.gov (United States)

    Wang, X C; Tian, X J; Ye, B; Ma, L; Zhang, Y; Yang, J

    2018-01-06

    Objective: To investigate the effect of exposure to particulate matter ≤10 μm in aerodynamic diameter (PM(10)) on sperm quality in different stages of sperm development. Methods: This cross-sectional study included 1 827 patients attending the reproductive medicine center in Renmin Hospital of Wuhan University during April 2013 to January 2015. Air pollution data from January 2013 to January 2015 was obtained from the database of Wuhan Municipal Environmental Protection Bureau. The generalized linear model was employed to assess the association between each exposure variables and sperm parameters for several exposure windows (0-9, 10-14, 15-69, 70-90, 0-90 days before sampling) . Results: The average levels of PM(10) was (116.2±71.6) μg/m(3) during the research period. Sperm volume was (75.4±49.1) ×10(6)/ml in sample population, (29.4±16.2) % in progressive motility and (51.8±21.6) % in total motility. Exposure to PM(10) was inversely associated with sperm concentration (β:-0.319; 95% CI: -0.529,-0.046) during 70-90 lag days. PM(10) exposure during the 0-90 lag days was significantly associated with progressive motility (β:-0.312; 95% CI: -0.527,-0.097) and total motility (β:-0.347; 95% CI: -0.636,-0.059) after adjusted for age, education level, BMI, smoking, abstinence time, temperature, humidity and season. Conclusion: Exposure to PM(10) was associated with statistically significant decrements in sperm concentration and motility, and the adverse impact on sperm concentration was significantly in early phases of spermatogenesis.

  12. Effect of the Apulia air quality plan on PM10 and benzo(apyrene exceedances

    Directory of Open Access Journals (Sweden)

    L. Trizio

    2016-03-01

    Full Text Available During the last years, several exceedances of PM10 and benzo(apyrene limit values exceedances were recorded in Taranto, a city in southern Italy included in so-called areas at high risk of environmental crisis because of the presence of a heavy industrial district including the largest steel factory in Europe. A study of these critical pollution events showed a close correlation with the wind coming from the industrial site to the adjacent urban area. During 2011, at monitoring sites closes to the industrial area, at least the 65% of PM10 exceedances were related to wind day conditions (characterized by at least 3 consecutive hours of wind coming from 270-360±2deg with an associated speed higher than 7 m/s. For this reason, in 2012 an integrated environmental permit and a regional air quality plan were enacted to reduce pollutant emissions from industrial plants. A study of PM10 levels registered during windy days was performed during critical episodes of pollution highlighting that the difference between windy days and no windy days’ concentrations reduces from 2012 to 2014 in industrial site. False negative events (verified ex-post by observed meteorological data not identified by the forecast model - did not show a significant influence on PM concentration: PM10 values were comparable and sometimes lower than windy days levels. It is reasonable that the new scenario with a relevant reduction emissions form Ilva plant reduced the pollutants contribution from industrial area, contributing to PM10 levels decrease, also in false negative events.

  13. KANDUNGAN TSP DAN PM-10 DI UDARA JAKARTA DAN SEKITARNYA

    Directory of Open Access Journals (Sweden)

    Hendro Martono

    2016-09-01

    Full Text Available Abstract. A survey was performed to assess the quality of ambient air in Jakarta, Bogor,Depok,  Tangerang  and Bekasi.  Ambient air samples were collected from 33 sampling points at a distance of 0meter and 120 meters from each main roads respectively. The highest average content of TSP in ambientair at 0 meter was found in West Jakarta (652.02 p.g/cu.m and that of 120 meters from the main road was in Bekasi (445.46µg/cu.m . The highest difference of the TSP content between the two sampling pointswas in Kebon  Jeruk, West Jakarta (96.62 %,  and the lowest one was inCikarang, Bekasi (1.63 %.  Furthermore, the highest difference of the PM-10 content between the two sampling points was inJalan  Raya Bogor, Depok  (96.86 %,  and the lowest one was in Cikarang,  Bekasi (17.26%. In the whole areasof study, the average content of TSP  was 522.44.tg/cu.m  (0 meter, and178.09µg/cu.m (120 meters,  so the difference of the pollutant content between the two sampling points was 65.91%. Meanwhile, theaverage content of PM-10 was 326.25µg/cu.m  (0 meter, and97.09µg/cu.m (120 meters, so the difference of the pollutant content between the two sampling points was 70.24 %. The difference of the means ofboth TSP  and PM-10 content levels between the two sampling sites were significant. The percentages ofsampling points complying withTSP level standard were 9.52 %  (0 meter and 75.76% (120 meters from the road sides. While that of PM-10 were 18.18%  (road side sampling and 78.79% (120 meters from theroad sides.Crusial  measure for controlling theTSP  and PM-10 pollution should also be addressed tomobile sources, such as reducing diesel motorized-vehicles and providing proper mass transportation.

  14. Climatology of atmospheric PM10 concentration in the Po Valley

    Science.gov (United States)

    Bigi, A.; Ghermandi, G.

    2014-01-01

    The limits to atmospheric pollutant concentration set by the European Commission provide a challenging target for the municipalities in the Po Valley, because of the characteristic climatic conditions and high population density of this region. In order to assess climatology and trends in the concentration of atmospheric particles in the Po Valley, a dataset of PM10 data from 41 sites across the Po Valley have been analysed, including both traffic and background sites (either urban, suburban or rural). Of these 41 sites, 18 with 10 yr or longer record have been analysed for long term trend in de-seasonalized monthly means, in annual quantiles and in monthly frequency distribution. A widespread significant decreasing trend has been observed at most sites, up to few percent per year, by Generalised Least Square and Theil-Sen method. All 41 sites have been tested for significant weekly periodicity by Kruskal-Wallis test for mean anomalies and by Wilcoxon test for weekend effect magnitude. A significant weekly periodicity has been observed for most PM10 series, particularly in summer and ascribed mainly to anthropic particulate emissions. A cluster analysis has been applied in order to highlight stations sharing similar pollution conditions over the reference period. Five clusters have been found, two gathering the metropolitan areas of Torino and Milano and their respective nearby sites and the other three clusters gathering north-east, north-west and central Po Valley sites respectively. Finally the observed trends in atmospheric PM10 have been compared to trends in provincial emissions of particulates and PM precursors, and analysed along with data on vehicular fleet age, composition and fuel sales. Significant basin-wide drop in emissions occurred for gaseous pollutants, contrarily to emissions of PM10 and PM2.5, whose drop resulted low and restricted to few provinces. It is not clear whether the decrease for only gaseous emissions is sufficient to explain the

  15. Burden of mortality and years of life lost due to ambient PM10 pollution in Wuhan, China.

    Science.gov (United States)

    Zhang, Yunquan; Peng, Minjin; Yu, Chuanhua; Zhang, Lan

    2017-11-01

    Ambient particulate matter (PM) has been mainly linked with mortality and morbidity when assessing PM-associated health effects. Up-to-date epidemiologic evidence is very sparse regarding the relation between PM and years of life lost (YLL). The present study aimed to estimate the burden of YLL and mortality due to ambient PM pollution. Individual records of all registered deaths and daily data on PM 10 and meteorology during 2009-2012 were obtained in Wuhan, central China. Using a time-series study design, we applied generalized additive model to assess the short-term association of 10-μg/m 3 increase in PM 10 with daily YLL and mortality, adjusting for long-term trend and seasonality, mean temperature, relative humidity, public holiday, and day of the week. A linear-no-threshold dose-response association was observed between daily ambient PM 10 and mortality outcomes. PM 10 pollution along lag 0-1 days was found to be mostly strongly associated with mortality and YLL. The effects of PM 10 on cause-specific mortality and YLL showed generally similar seasonal patterns, with stronger associations consistently occurring in winter and/or autumn. Compared with males and younger persons, females and the elderly suffered more significantly from both increased YLL and mortality due to ambient PM 10 pollution. Stratified analyses by education level (0-6 and 7 + years) demonstrated great mortality impact on both subgroups, whereas only low-educated persons were strongly affected by PM 10 -associated burden of YLL. Our study confirmed that short-term PM 10 exposure was linearly associated with significant increases in both mortality incidence and years of life lost. Given the non-threshold adverse effects on mortality burden, the on-going efforts to reduce particulate air pollution would substantially benefit public health in China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Effect of Exposure to PM10 on Cardiovascular Diseases Hospitalizations in Ahvaz, Khorramabad and Ilam, Iran During 2014

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Daryanoosh

    2016-01-01

    Full Text Available Particulate matter with an aerodynamic diameter less than or equal to 10μm (PM10 has the great adverse endpoints on human health. The aim of this study was to assess the hospital admissions (HA due to cardiovascular diseases (CVD attributed to PM10 among people living in the cities of Ahvaz, Khorramabad and Ilam, during 2014. In this study, Air Quality Health Impact Assessment (AirQ2.2.3 software proposed by the World Health Organization (WHO to assess of health impacts of atmospheric pollutants was used. To evaluate human exposure and health outcome of PM10, 24-hour data was taken from the Departments of Environment of Ahvaz, Khorramabad and Ilam. We acquired an input file for the software from raw data and quantified PM10 by the AirQ2.2.3 model. The annual averages in three study areas illustrated that PM10 concentration in Ahvaz and Ilam with values of 534.77 and 60.45μg/m3, were the highest and lowest in 2014, respectively. The number of excess cases for HA due to CVD in Ahvaz, Khorramabad, and Ilam was estimated 508, 144 and 66 persons, respectively. The most percentage of person-days was attributable to the concentration interval of 130-139µg/m3 of PM10, whereas this was for Khorramabad and Ilam 60-69 and 40-49µg/m3, respectively. The comparison of PM10 concentrations with NAAQS standard was revealed the annual average of particulate matter concentrations in Ahvaz was higher than standard. Therefore, the efforts should be conducted in the governmental scale to prevent pollution and reduce PM10 emission from various sources, such as transport and industries and also control dust entering the country by spreading mulch and development of green space.

  17. Re-entrained road dust PM10 emission from selected streets of Krakow and its impact on air quality

    Directory of Open Access Journals (Sweden)

    Bogacki Marek

    2018-01-01

    Full Text Available Scientific research studies conducted in various parts of the world confirm that PM10 concentrations in urban air depend to a great extent on the resuspension processes of the dust deposited on the road surface. The paper presents the results of the study related to the determination of the re-entrained PM10 emissions from four selected streets of Krakow (Southern Poland together with the assessment of its impact on air quality. Examined streets are characterised by different traffic intensity (from 500 to over 20 000 vehicles per day and individual vehicle structure. Dust material sampling and estimation of the PM10 emission were conducted according to the U.S. EPA methodology (AP 42 Fifth Edition. Two variants of sample collection were applied: from the road surface including the area at the curb (4 streets and from the road surface alone (1 street. The estimates of resuspended road dust emission as well as the reference values derived from the U.S. EPA guidelines were used to assess the impact of this emission on the PM10 levels in the air at the location of one of the analysed streets. This assessment was conducted using the CALINE4 mathematical model. The study showed that the PM10 emissions from the re-entrained road dust can be responsible for up to 25 % in the winter and 50 % in the summer of the total PM10 concentrations in the air near the roads.

  18. Assessment of health risk due to PM 10 using fuzzy linear membership kriging with particle swarm optimization

    International Nuclear Information System (INIS)

    Singh, Jeetendra B.; Reddy, Vijay S.; Jana, Soumya; De, Swades

    2013-01-01

    Air quality is an important determinant of individual as well as broader well-being. Major pollutants include gasses as well as assorted suspended particulate matter (PM). In this paper, we focus on PM10, which are a collection of particles with median aerodynamic diameter less than 10 μm that remains suspended in the air for long periods. PM10, usually consist of smoke, dirt and dust particles, as well as spores and pollen, could easily be inhaled deep into lung. As a result, high outdoor PM10 concentration poses significant health hazard, and accurate modeling and prediction of health risk due to PM10 assume importance in pollution and public health management. In this backdrop, we propose an improved health risk assessment technique, and demonstrate its efficacy using widely used California PM10 database. At the heart of the proposed method lies indicator kriging, a well-known risk estimation technique. However, improved assessment of subjective health risk is achieved by posing the problem in a fuzzy setting, and optimizing the associated membership functions. In particular, we employ particle swarm optimization (PSO) algorithm, which has been motivated by natural behavior of organisms such as fish-schooling and bird flocking, and proven effective in various optimization contexts. We apply the fuzzy PSO membership grade kriging technique to predict the PM10 spatial distribution over the entire California state. (orig.)

  19. Re-entrained road dust PM10 emission from selected streets of Krakow and its impact on air quality

    Science.gov (United States)

    Bogacki, Marek; Mazur, Marian; Oleniacz, Robert; Rzeszutek, Mateusz; Szulecka, Adriana

    2018-01-01

    Scientific research studies conducted in various parts of the world confirm that PM10 concentrations in urban air depend to a great extent on the resuspension processes of the dust deposited on the road surface. The paper presents the results of the study related to the determination of the re-entrained PM10 emissions from four selected streets of Krakow (Southern Poland) together with the assessment of its impact on air quality. Examined streets are characterised by different traffic intensity (from 500 to over 20 000 vehicles per day) and individual vehicle structure. Dust material sampling and estimation of the PM10 emission were conducted according to the U.S. EPA methodology (AP 42 Fifth Edition). Two variants of sample collection were applied: from the road surface including the area at the curb (4 streets) and from the road surface alone (1 street). The estimates of resuspended road dust emission as well as the reference values derived from the U.S. EPA guidelines were used to assess the impact of this emission on the PM10 levels in the air at the location of one of the analysed streets. This assessment was conducted using the CALINE4 mathematical model. The study showed that the PM10 emissions from the re-entrained road dust can be responsible for up to 25 % in the winter and 50 % in the summer of the total PM10 concentrations in the air near the roads.

  20. Assessment of health risk due to PM 10 using fuzzy linear membership kriging with particle swarm optimization

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jeetendra B.; Reddy, Vijay S.; Jana, Soumya [Indian Institute of Technology, Hyderabad (India). Dept. of Electrical Engineering; De, Swades [Indian Institute of Technology, Delhi (India). Dept. of Electrical Engineering

    2013-07-01

    Air quality is an important determinant of individual as well as broader well-being. Major pollutants include gasses as well as assorted suspended particulate matter (PM). In this paper, we focus on PM10, which are a collection of particles with median aerodynamic diameter less than 10 {mu}m that remains suspended in the air for long periods. PM10, usually consist of smoke, dirt and dust particles, as well as spores and pollen, could easily be inhaled deep into lung. As a result, high outdoor PM10 concentration poses significant health hazard, and accurate modeling and prediction of health risk due to PM10 assume importance in pollution and public health management. In this backdrop, we propose an improved health risk assessment technique, and demonstrate its efficacy using widely used California PM10 database. At the heart of the proposed method lies indicator kriging, a well-known risk estimation technique. However, improved assessment of subjective health risk is achieved by posing the problem in a fuzzy setting, and optimizing the associated membership functions. In particular, we employ particle swarm optimization (PSO) algorithm, which has been motivated by natural behavior of organisms such as fish-schooling and bird flocking, and proven effective in various optimization contexts. We apply the fuzzy PSO membership grade kriging technique to predict the PM10 spatial distribution over the entire California state. (orig.)

  1. Strong signatures of high-latitude blocks and subtropical ridges in winter PM10 over Europe

    Science.gov (United States)

    Ordonez, C.; Garrido-Perez, J. M.; Garcia-Herrera, R.

    2017-12-01

    Atmospheric blocking is associated with persistent, slow-moving high pressure systems that interrupt the eastward progress of extratropical storm systems at middle and high latitudes. Subtropical ridges are low latitude structures manifested as bands of positive geopotential height anomalies extending from sub-tropical latitudes towards extra-tropical regions. We have quantified the impact of blocks and ridges on daily PM10 (particulate matter ≤ 10 µm) observations obtained from the European Environment Agency's air quality database (AirBase) for the winter period of 2000-2010. For this purpose, the response of the PM10 concentrations to the location of blocks and ridges with centres in two main longitudinal sectors (Atlantic, ATL, 30˚-0˚ W; European, EUR, 0˚-30˚ E) is examined. EUR blocking is associated with a collapse of the boundary layer as well as reduced wind speeds and precipitation occurrence, yielding large positive anomalies which average 12 µg m-3 over the whole continent. Conversely, the enhanced zonal flow around 50˚-60˚ N and the increased occurrence of precipitation over northern-central Europe on days with ATL ridges favour the ventilation of the boundary layer and the impact of washout processes, reducing PM10 concentrations on average by around 8 µg m-3. The presence of EUR blocks is also concurrent with an increased probability of exceeding the European air quality target (50 µg m-3 for 24-h averaged PM10) and the local 90th percentiles for this pollutant at many sites, while the opposite effect is found for ridges. In addition, the effect of synoptic persistence on the PM10 concentrations is particularly strong for EUR blocks. Finally, we have found that the effect of both synoptic patterns can partly control the interannual variability of winter mean PM10 at many sites of north-western and central Europe, with coefficients of determination (R2) exceeding 0.80 for southern Germany. These results indicate that the response of the

  2. Short Term Prediction of PM10 Concentrations Using Seasonal Time Series Analysis

    Directory of Open Access Journals (Sweden)

    Hamid Hazrul Abdul

    2016-01-01

    Full Text Available Air pollution modelling is one of an important tool that usually used to make short term and long term prediction. Since air pollution gives a big impact especially to human health, prediction of air pollutants concentration is needed to help the local authorities to give an early warning to people who are in risk of acute and chronic health effects from air pollution. Finding the best time series model would allow prediction to be made accurately. This research was carried out to find the best time series model to predict the PM10 concentrations in Nilai, Negeri Sembilan, Malaysia. By considering two seasons which is wet season (north east monsoon and dry season (south west monsoon, seasonal autoregressive integrated moving average model were used to find the most suitable model to predict the PM10 concentrations in Nilai, Negeri Sembilan by using three error measures. Based on AIC statistics, results show that ARIMA (1, 1, 1 × (1, 0, 012 is the most suitable model to predict PM10 concentrations in Nilai, Negeri Sembilan.

  3. Using support vector regression to predict PM10 and PM2.5

    International Nuclear Information System (INIS)

    Weizhen, Hou; Zhengqiang, Li; Yuhuan, Zhang; Hua, Xu; Ying, Zhang; Kaitao, Li; Donghui, Li; Peng, Wei; Yan, Ma

    2014-01-01

    Support vector machine (SVM), as a novel and powerful machine learning tool, can be used for the prediction of PM 10 and PM 2.5 (particulate matter less or equal than 10 and 2.5 micrometer) in the atmosphere. This paper describes the development of a successive over relaxation support vector regress (SOR-SVR) model for the PM 10 and PM 2.5 prediction, based on the daily average aerosol optical depth (AOD) and meteorological parameters (atmospheric pressure, relative humidity, air temperature, wind speed), which were all measured in Beijing during the year of 2010–2012. The Gaussian kernel function, as well as the k-fold crosses validation and grid search method, are used in SVR model to obtain the optimal parameters to get a better generalization capability. The result shows that predicted values by the SOR-SVR model agree well with the actual data and have a good generalization ability to predict PM 10 and PM 2.5 . In addition, AOD plays an important role in predicting particulate matter with SVR model, which should be included in the prediction model. If only considering the meteorological parameters and eliminating AOD from the SVR model, the prediction results of predict particulate matter will be not satisfying

  4. PM10 Analysis for Three Industrialized Areas using Extreme Value

    International Nuclear Information System (INIS)

    Hasfazilah Ahmat; Ahmad Shukri Yahaya; Nor Azam Ramli; Hasfazilah Ahmat

    2015-01-01

    One of the concerns of the air pollution studies is to compute the concentrations of one or more pollutants' species in space and time in relation to the independent variables, for instance emissions into the atmosphere, meteorological factors and parameters. One of the most significant statistical disciplines developed for the applied sciences and many other disciplines for the last few decades is the extreme value theory (EVT). This study assesses the use of extreme value distributions of the two-parameter Gumbel, two and three-parameter Weibull, Generalized Extreme Value (GEV) and two and three-parameter Generalized Pareto Distribution (GPD) on the maximum concentration of daily PM10 data recorded in the year 2010 - 2012 in Pasir Gudang, Johor; Bukit Rambai, Melaka; and Nilai, Negeri Sembilan. Parameters for all distributions are estimated using the Method of Moments (MOM) and Maximum Likelihood Estimator (MLE). Six performance indicators namely; the accuracy measures which include predictive accuracy (PA), Coefficient of Determination (R2), Index of Agreement (IA) and error measures that consist of Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Normalized Absolute Error (NAE) are used to find the goodness-of-fit of the distribution. The best distribution is selected based on the highest accuracy measures and the smallest error measures. The results showed that the GEV is the best fit for daily maximum concentration for PM10 for all monitoring stations. The analysis also demonstrates that the estimated numbers of days in which the concentration of PM10 exceeded the Malaysian Ambient Air Quality Guidelines (MAAQG) of 150 mg/ m"3 are between 1/2 and 11/2 days. (author)

  5. Estimating the influence of different urban canopy cover types on atmospheric particulate matter (PM10) pollution abatement in London UK.

    Science.gov (United States)

    Tallis, Matthew; Freer-Smith, Peter; Sinnett, Danielle; Aylott, Matthew; Taylor, Gail

    2010-05-01

    In the urban environment atmospheric pollution by PM10 (particulate matter with a diameter less than 10 x 10-6 m) is a problem that can have adverse effects on human health, particularly increasing rates of respiratory disease. The main contributors to atmospheric PM10 in the urban environment are road traffic, industry and power production. The urban tree canopy is a receptor for removing PM10s from the atmosphere due to the large surface areas generated by leaves and air turbulence created by the structure of the urban forest. In this context urban greening has long been known as a mechanism to contribute towards PM10 removal from the air, furthermore, tree canopy cover has a role in contributing towards a more sustainable urban environment. The work reported here has been carried out within the BRIDGE project (SustainaBle uRban plannIng Decision support accountinG for urban mEtabolism). The aim of this project is to assess the fluxes of energy, water, carbon dioxide and particulates within the urban environment and develope a DSS (Decision Support System) to aid urban planners in sustainable development. A combination of published urban canopy cover data from ground, airborne and satellite based surveys was used. For each of the 33 London boroughs the urban canopy was classified to three groups, urban woodland, street trees and garden trees and each group quantified in terms of ground cover. The total [PM10] for each borough was taken from the LAEI (London Atmospheric Emissions Inventory 2006) and the contribution to reducing [PM10] was assessed for each canopy type. Deposition to the urban canopy was assessed using the UFORE (Urban Forest Effects Model) approach. Deposition to the canopy, boundary layer height and percentage reduction of the [PM10] in the atmosphere was assessed using both hourly meterological data and [PM10] and seasonal data derived from annual models. Results from hourly and annual data were compared with measured values. The model was then

  6. Spatial Correlation Analysis between Particulate Matter 10 (PM10) Hazard and Respiratory Diseases in Chiang Mai Province, Thailand

    Science.gov (United States)

    Trang, N. Ha; Tripathi, N. K.

    2014-11-01

    Every year, during dry season, Chiang Mai and other northern provinces of Thailand face the problem of haze which is mainly generated by the burning of agricultural waste and forest fire, contained high percentage of particulate matter. Particulate matter 10 (PM10), being very small in size, can be inhaled easily to the deepest parts of the human lung and throat respiratory functions. Due to this, it increases the risk of respiratory diseases mainly in the case of continuous exposure to this seasonal smog. MODIS aerosol images (MOD04) have been used for four weeks in March 2007 for generating the hazard map by linking to in-situ values of PM10. Simple linear regression model between PM10 and AOD got fair correlation with R2 = 0.7 and was applied to transform PM10 pattern. The hazard maps showed the dominance of PM10 in northern part of Chiang Mai, especially in second week of March when PM10 level was three to four times higher than standard. The respiratory disease records and public health station of each village were collected from Provincial Public Health Department in Chiang Mai province. There are about 300 public health stations out of 2070 villages; hence thiessen polygon was created to determine the representative area of each public health station. Within each thiessen polygon, respiratory disease incident rate (RDIR) was calculated based on the number of patients and population. Global Moran's I was computed for RDIR to explore spatial pattern of diseases through four weeks of March. Moran's I index depicted a cluster pattern of respiratory diseases in 2nd week than other weeks. That made sense for a relationship between PM10 and respiratory diseases infections. In order to examine how PM10 affect the human respiratory system, geographically weighted regression model was used to observe local correlation coefficient between RDIR and PM10 across study area. The result captured a high correlation between respiratory diseases and high level of PM10 in

  7. Spatiotemporal analysis of the PM10 concentration over the Taranto area.

    Science.gov (United States)

    Pollice, Alessio; Jona Lasinio, Giovanna

    2010-03-01

    In this paper, an analysis of air quality data is provided for the municipal area of Taranto (southern Italy) characterized by high environmental risks as formally decreed by the Italian government in the 1990s with two administrative measures. This is due to the massive presence of industrial sites with elevated environmental impact activities along the NW boundary of the city conurbation. The aforementioned activities have effects on the environment and on public health, as a number of epidemiological researches concerning this area reconfirm. The present study is focused on particulate matter as measured by PM10 concentrations at 13 monitoring stations, equipped with analogous instruments based on the Beta absorption technology, either reporting hourly, two-hourly, or daily measurements. Daily estimates of the PM10 concentration surfaces are obtained in order to identify areas of higher concentration (hot spots), possibly related to specific anthropic activities. Preliminary analysis involved addressing several data problems: (1) due to the use of two different validation techniques, a calibration procedure was devised to allow for data comparability; (2) imputation techniques were considered to cope with the large number of missing data, due to both different working periods and occasional malfunctions of PM10 sensors; and (3) reliable weather covariates (wind speed and direction, pressure, temperature, etc.) were obtained and considered within the analysis. Spatiotemporal modelling was addressed by a Bayesian kriging-based model proposed by Le and Zidek (2006) characterized by the use of time varying covariates and a semiparametric covariance structure. Advantages and disadvantages of the model are highlighted and assessed in terms of fit and performance. Estimated daily PM10 concentration surfaces are suitable for the interpretation of time trends and for identifying concentration peaks within the urban area.

  8. PM10 concentration levels at an urban and background site in Cyprus: the impact of urban sources and dust storms.

    Science.gov (United States)

    Achilleos, Souzana; Evans, John S; Yiallouros, Panayiotis K; Kleanthous, Savvas; Schwartz, Joel; Koutrakis, Petros

    2014-12-01

    Air quality in Cyprus is influenced by both local and transported pollution, including desert dust storms. We examined PM10 concentration data collected in Nicosia (urban representative) from April 1, 1993, through December 11, 2008, and in Ayia Marina (rural background representative) from January 1, 1999, through December 31, 2008. Measurements were conducted using a Tapered Element Oscillating Micro-balance (TEOM). PM10 concentrations, meteorological records, and satellite data were used to identify dust storm days. We investigated long-term trends using a Generalized Additive Model (GAM) after controlling for day of week, month, temperature, wind speed, and relative humidity. In Nicosia, annual PM10 concentrations ranged from 50.4 to 63.8 μg/m3 and exceeded the EU annual standard limit enacted in 2005 of 40 μg/m3 every year A large, statistically significant impact of urban sources (defined as the difference between urban and background levels) was seen in Nicosia over the period 2000-2008, and was highest during traffic hours, weekdays, cold months, and low wind conditions. Our estimate of the mean (standard error) contribution of urban sources to the daily ambient PM10 was 24.0 (0.4) μg/m3. The study of yearly trends showed that PM10 levels in Nicosia decreased from 59.4 μg/m3 in 1993 to 49.0 μg/m3 in 2008, probably in part as a result of traffic emission control policies in Cyprus. In Ayia Marina, annual concentrations ranged from 27.3 to 35.6 μg/m3, and no obvious time trends were observed. The levels measured at the Cyprus background site are comparable to background concentrations reported in other Eastern Mediterranean countries. Average daily PM10 concentrations during desert dust storms were around 100 μg/m3 since 2000 and much higher in earlier years. Despite the large impact ofdust storms and their increasing frequency over time, dust storms were responsible for a small fraction of the exceedances of the daily PM10 limit. Implications: This

  9. Assessment of PM10 in Aurangabad City of Central India

    Directory of Open Access Journals (Sweden)

    Geetanjali Kaushik

    2016-05-01

    Full Text Available Almost 670 million people comprising 54.5% of our population reside in regions that do not meet the Indian NAAQS for fine particulate matter. Numerous studies have revealed a consistent correlation for particulate matter concentration with health than any other air pollutant. Aurangabad city a rapidly growing city with population of 1.5 million is home to five major industrial areas, the city is also known for its historical monuments which might also be adversely affected from air pollution. Therefore, this research aims at estimating PM10 concentrations at several locations across Aurangabad. The concentration of PM10 was highest at the Railway Station followed by Waluj (an industrial zone and City chowk is the centre of the city which has high population, tall buildings, few open spaces which causes high congestion and does not allow the particulates to disperse. Other locations with high concentrations of PM are Mill corner, Harsul T-point, Kranti Chowk, Seven Hill, TV centre and Beed Bye pass. All these locations have narrow roads, high traffic density, poor road condition with pot holes and few crossing points which cause congestion and vehicle idling which are responsible for high pollution. Therefore, it is evident that air pollution is a serious issue in the city which may be further aggravated if it is not brought under control. Hence, strategies have to be adopted for combating the menace of air pollution.INTERNATIONAL JOURNAL OF ENVIRONMENTVolume-5, Issue-2, March-May 2016, Page :61-74

  10. Source Apportionment of PM10 by Positive Matrix Factorization in Urban Area of Mumbai, India

    Directory of Open Access Journals (Sweden)

    Indrani Gupta

    2012-01-01

    Full Text Available Particulate Matter (PM10 has been one of the main air pollutants exceeding the ambient standards in most of the major cities in India. During last few years, receptor models such as Chemical Mass Balance, Positive Matrix Factorization (PMF, PCA–APCS and UNMIX have been used to provide solutions to the source identification and contributions which are accepted for developing effective and efficient air quality management plans. Each site poses different complexities while resolving PM10 contributions. This paper reports the variability of four sites within Mumbai city using PMF. Industrial area of Mahul showed sources such as residual oil combustion and paved road dust (27%, traffic (20%, coal fired boiler (17%, nitrate (15%. Residential area of Khar showed sources such as residual oil combustion and construction (25%, motor vehicles (23%, marine aerosol and nitrate (19%, paved road dust (18% compared to construction and natural dust (27%, motor vehicles and smelting work (25%, nitrate (16% and biomass burning and paved road dust (15% in Dharavi, a low income slum residential area. The major contributors of PM10 at Colaba were marine aerosol, wood burning and ammonium sulphate (24%, motor vehicles and smelting work (22%, Natural soil (19%, nitrate and oil burning (18%.

  11. Association between PM10 concentrations and school absences in proximity of a cement plant in northern Italy.

    Science.gov (United States)

    Marcon, Alessandro; Pesce, Giancarlo; Girardi, Paolo; Marchetti, Pierpaolo; Blengio, Gianstefano; de Zolt Sappadina, Simona; Falcone, Salvatore; Frapporti, Guglielmo; Predicatori, Francesca; de Marco, Roberto

    2014-03-01

    Dusts are one of the main air pollutants emitted during cement manufacturing. A substantial part of these are breathable particles that are less than 10 μm in diameter (PM10), which represent a potential threat for the health of the exposed population. This study aimed at evaluating the short-term effects of PM10 concentrations on the health of children, aged 6-14 years, who attended the schools in Fumane (Italy), in proximity (1.2 km) to a large cement plant. School absenteeism was used as a proxy indicator of child morbidity. Time series of daily school absences and PM10 concentrations were collected for 3 school-years from 2007 to 2010 (541 school-days, 462 children on average). The associations between PM10 concentrations and school absence rates in the same day (lag0) and in the following 4 days (lag1 to lag4) were evaluated using generalised additive models, smoothed for medium/long term trends and adjusted for day of the week, influenza outbreaks, daily temperature and rain precipitations. The average concentration of PM10 in the period was 34 (range: 4-183) μg/m(3). An average 10 μg/m(3) increase of PM10 concentration in the previous days (lag0-4) was associated with a statistically significant 2.5% (95%CI: 1.1-4.0%) increase in the rate of school absences. The highest increase in the absence rates (2.4%; 95%CI: 1.2-3.5%) was found 2 days after exposure (lag2). These findings provide epidemiological evidence of the acute health effects of PM10 in areas with annual concentrations that are lower than the legal European Union limit of 40 μg/m(3), and support the need to establish more restrictive legislative standards. Copyright © 2013 Elsevier GmbH. All rights reserved.

  12. 40 CFR Table C-4 to Subpart C of... - Test Specifications for PM10, PM2.5 and PM10-2.5 Candidate Equivalent Methods

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Test Specifications for PM10, PM2.5 and PM10-2.5 Candidate Equivalent Methods C Table C-4 to Subpart C of Part 53 Protection of Environment... Pt. 53, Subpt. C, Table C-4 Table C-4 to Subpart C of Part 53—Test Specifications for PM10, PM2.5 and...

  13. Repeated intratracheal instillation of PM10 induces lipid reshaping in lung parenchyma and in extra-pulmonary tissues.

    Directory of Open Access Journals (Sweden)

    Angela Maria Rizzo

    Full Text Available Adverse health effects of air pollution attributed mainly to airborne particulate matter have been well documented in the last couple of decades. Short term exposure, referring to a few hours exposure, to high ambient PM10 concentration is linked to increased hospitalization rates for cardiovascular events, typically 24 h after air pollution peaks. Particulate matter exposure is related to pulmonary and cardiovascular diseases, with increased oxidative stress and inflammatory status. Previously, we have demonstrated that repeated intratracheal instillation of PM10sum in BALB/c mice leads to respiratory tract inflammation, creating in lung a condition which could potentially evolve in a systemic toxic reaction. Additionally, plasma membrane and tissue lipids are easily affected by oxidative stress and directly correlated with inflammatory products. With this aim, in the present investigation using the same model, we analyzed the toxic potential of PM10sum exposure on lipid plasma membrane composition, lipid peroxidation and the mechanisms of cells protection in multiple organs such as lung, heart, liver and brain. Obtained results indicated that PM10 exposure led to lung lipid reshaping, in particular phospholipid and cholesterol content increases; concomitantly, the generation of oxidative stress caused lipid peroxidation. In liver we found significant changes in lipid content, mainly due to an increase of phosphatidylcholine, and in total fatty acid composition with a more pronounced level of docosahexaenoic acid; these changes were statistically correlated to lung molecular markers. Heart and brain were similarly affected; heart was significantly enriched in triglycerides in half of the PM10sum treated mice. These results demonstrated a direct involvement of PM10sum in affecting lipid metabolism and oxidative stress in peripheral tissues that might be related to the serious systemic air-pollution effects on human health.

  14. The effect of mineral dust transport on PM10 concentrations and physical properties in Istanbul during 2007-2014

    Science.gov (United States)

    Flores, Rosa M.; Kaya, Nefel; Eşer, Övgü; Saltan, Şehnaz

    2017-11-01

    Mineral dust is the most significant source of natural particulate matter. In urban regions, where > 50% of the world population is currently living, local emissions of particulate matter are further aggravated by mineral dust loadings from deserts. The megacity of Istanbul is located in an area sensitive to local pollution due to transportation (i.e., private cars, public transportation, aircrafts, ships, heavy diesel trucks, etc.), industrial emissions, residential heating, and long-range transport from Europe, Asia, and deserts. In this work, the effect of desert dust transport on PM10 concentrations and physical properties was investigated for the period of 2007-2014 in the touristic area of Aksaray, Istanbul. The Dust Regional Atmospheric Model (DREAM8b) was used to predict dust loading in Istanbul during dust transport events. Variations on surface PM10 concentrations were investigated according to seasons and during dust transport events. Cluster analysis of air mass backward trajectories was useful to understand frequency analysis and air mass trajectory dependence of PM10 concentrations on dust loadings. The effect of desert dust transport on aerosol optical depths was also investigated. It was observed that PM10 concentrations exceeded the air quality standard of 50 μg m- 3 50% of the time during the study period. The largest number of exceedances in air quality standard occurred during the spring and winter seasons. Approximately 40-60% of the dust loading occurs during the spring. Desert dust and non-desert dust sources contribute to 22-72% and 48-81% of the ground-level PM10 concentrations in Aksaray, Istanbul during the study period. Averaged AOD observed during dust transport events in spring and summer ranged 0.35-0.55. Cluster analysis resolved over 82% the variability of individual air mass backward trajectories into 5 clusters. Overall, air masses arriving to Istanbul at 500 m are equally distributed into northern (52%) and southern (48

  15. Chemical mass balance source apportionment of fine and PM10 in the Desert Southwest, USA

    Directory of Open Access Journals (Sweden)

    Andrea L. Clements

    2016-03-01

    Full Text Available The Desert Southwest Coarse Particulate Matter Study was undertaken in Pinal County, Arizona, to better understand the origin and impact of sources of fine and coarse particulate matter (PM in rural, arid regions of the U.S. southwestern desert. The desert southwest experiences some of the highest PM10 mass concentrations in the country. To augment previously reported results, 6-week aggregated organic speciation data that included ambient concentrations of n-alkanes, polycyclic aromatic hydrocarbons, organic acids, and saccharides were used in chemical mass balance modeling (CMB. A set of re-suspended soil samples were analyzed for specific marker species to provide locally-appropriate source profiles for the CMB analysis. These profiles, as well as previously collected plant and fungal spore profiles from the region, were combined with published source profiles for other relevant sources and used in the CMB analysis. The six new region-specific source profiles included both organic and inorganic species for four crustal material sources, one plant detritus source, and one fungal spore source.Results indicate that up to half of the ambient PM2.5 was apportioned to motor vehicles with the highest regional contribution observed in the small urban center of Casa Grande. Daily levels of apportioned crustal material accounted for up to 50% of PM2.5 mass with the highest contributions observed at the sites closest to active agricultural areas. Apportioned secondary PM, biomass burning, and road dust typically contributed less than 35% as a group to the apportioned PM2.5 mass. Crustal material was the primary source apportioned to PM10 and accounted for between 50–90% of the apportioned mass. Of the other sources apportioned to PM10, motor vehicles and road dust were the largest contributors at the urban and one of the rural sites, whereas road dust and meat cooking operations were the largest contributors at the other rural site.

  16. Chemical composition and source apportionment of PM10 at an urban background site in a high-altitude Latin American megacity (Bogota, Colombia).

    Science.gov (United States)

    Ramírez, Omar; Sánchez de la Campa, A M; Amato, Fulvio; Catacolí, Ruth A; Rojas, Néstor Y; de la Rosa, Jesús

    2018-02-01

    Bogota registers frequent episodes of poor air quality from high PM 10 concentrations. It is one of the main Latin American megacities, located at 2600 m in the tropical Andes, but there is insufficient data on PM 10 source contribution. A characterization of the chemical composition and the source apportionment of PM 10 at an urban background site in Bogota was carried out in this study. Daily samples were collected from June 2015 to May 2016 (a total of 311 samples). Organic carbon (OC), elemental carbon (EC), water soluble compounds (SO 4 2- , Cl - , NO 3 - , NH 4 + ), major elements (Al, Fe, Mg, Ca, Na, K, P) and trace metals (V, Cd, Pb, Sr, Ba, among others) were analyzed. The results were interpreted in terms of their variability during the rainy season (RS) and the dry season (DS). The data obtained revealed that the carbonaceous fraction (∼51%) and mineral dust (23%) were the main PM 10 components, followed by others (15%), Secondary Inorganic Compounds (SIC) (11%) and sea salt (0.4%). The average concentrations of soil, SIC and OC were higher during RS than DS. However, peak values were observed during the DS due to photochemical activity and forest fires. Although trace metals represented <1% of PM 10 , high concentrations of toxic elements such as Pb and Sb on RS, and Cu on DS, were obtained. By using a PMF model, six factors were identified (∼96% PM 10 ) including fugitive dust, road dust, metal processing, secondary PM, vehicles exhaust and industrial emissions. Traffic (exhaust emissions + road dust) was the major PM 10 source, accounting for ∼50% of the PM 10 . The results provided novel data about PM 10 chemical composition, its sources and its seasonal variability during the year, which can help the local government to define control strategies for the main emission sources during the most critical periods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Potential impact of particulate matter less than 10 micron (PM10) to ambient air quality of Jakarta and Palembang

    Science.gov (United States)

    Agustine, I.; Yulinawati, H.; Gunawan, D.; Suswantoro, E.

    2018-01-01

    Particulate is a main urban air pollutant affects the environment and human wellbeing. The purpose of this study is to analyze the impact of particulate matter less than 10 micron (PM10) to ambient air quality of Jakarta and Palembang. The analysis is done with calendarPlot Function of openair model, which is based on the calculation of Pollutant Standards Index (PSI) or better known as Air Quality Index (AQI). The AQI category of “moderate” dominates Jakarta’s calendar from 2015 to 2016, which indicates the impact of PM10 is the visibility reduction. There was one day with category “unhealthy” that indicates the impact of dust exposure everywhere in Jakarta during 2015. Similar to Jakarta, the AQI category “moderate” also dominates Palembang’s calendar during 2015. However, the AQI category “hazardous” happened for few days in September and October 2015 during forest fires, which indicates the more harmful impacts of PM10, such as reduced visibility, dust exposure everywhere, increased sensitivity in patients with asthma and bronchitis to respiratory illness in all exposed populations. During 2016, AQI category of Jakarta mostly “moderate”, while in Palembang was “good”. Dominant AQI category from 2015 to 2016 shows higher PM10 concentration occurred in Jakarta compared to Palembang.

  18. PM10 source apportionment applying PMF and chemical tracer analysis to ship-borne measurements in the Western Mediterranean

    Science.gov (United States)

    Bove, M. C.; Brotto, P.; Calzolai, G.; Cassola, F.; Cavalli, F.; Fermo, P.; Hjorth, J.; Massabò, D.; Nava, S.; Piazzalunga, A.; Schembari, C.; Prati, P.

    2016-01-01

    A PM10 sampling campaign was carried out on board the cruise ship Costa Concordia during three weeks in summer 2011. The ship route was Civitavecchia-Savona-Barcelona-Palma de Mallorca-Malta (Valletta)-Palermo-Civitavecchia. The PM10 composition was measured and utilized to identify and characterize the main PM10 sources along the ship route through receptor modelling, making use of the Positive Matrix Factorization (PMF) algorithm. A particular attention was given to the emissions related to heavy fuel oil combustion by ships, which is known to be also an important source of secondary sulphate aerosol. Five aerosol sources were resolved by the PMF analysis. The primary contribution of ship emissions to PM10 turned out to be (12 ± 4)%, while secondary ammonium sulphate contributed by (35 ± 5)%. Approximately, 60% of the total sulphate was identified as secondary aerosol while about 20% was attributed to heavy oil combustion in ship engines. The measured concentrations of methanesulphonic acid (MSA) indicated a relevant contribution to the observed sulphate loading by biogenic sulphate, formed by the atmospheric oxidation of dimethyl sulphide (DMS) emitted by marine phytoplankton.

  19. Comparison on the Analysis on PM10 Data based on Average and Extreme Series

    Directory of Open Access Journals (Sweden)

    Mohd Amin Nor Azrita

    2018-01-01

    Full Text Available The main concern in environmental issue is on extreme phenomena (catastrophic instead of common events. However, most statistical approaches are concerned primarily with the centre of a distribution or on the average value rather than the tail of the distribution which contains the extreme observations. The concept of extreme value theory affords attention to the tails of distribution where standard models are proved unreliable to analyse extreme series. High level of particulate matter (PM10 is a common environmental problem which causes various impacts to human health and material damages. If the main concern is on extreme events, then extreme value analysis provides the best result with significant evidence. The monthly average and monthly maxima PM10 data for Perlis from 2003 to 2014 were analysed. Forecasting for average data is made by Holt-Winters method while return level determine the predicted value of extreme events that occur on average once in a certain period. The forecasting from January 2015 to December 2016 for average data found that the highest forecasted value is 58.18 (standard deviation 18.45 on February 2016 while return level achieved 253.76 units for 24 months (2015-2016 return periods.

  20. Effects of PM10 on human health in the western half of Iran (Ahwaz, Bushehr and Kermanshah Cities

    Directory of Open Access Journals (Sweden)

    Sahar Geravandi

    2015-10-01

    Full Text Available Background & Aims of the Study: Particulate matter pollutants have harmful effects on human health and can intensify mortality and disease. The aim of this study is evaluate to adverse health effects caused by exposure to PM 10 in Ahwaz, Bushehr and Kermanshah Cities during 2011. Materials & Methods: In this study, the Air Q2.2.3 model was used for estimated adverse health effects of exposure to PM 10 . Air Q model provided by the WHO European Centre for Environment and Health (ECEH. Air Q software proved to be a valid and reliable tool to estimate the potential short term effects of air pollution. Daily concentrations of PM 10 were taken from Department of Environment (ADoE. Then processing data’s and finally the cardiovascular and respiratory disease attributable to this pollutant were calculated.   Results: Results show that the non hospitalized patients suffer from the cardiovascular and respiratory diseases attributable to Pm 10 . The patients from Ahwaz allocate the highest rate of hospital admittance to themselves with 19% respiratory and 20% cardiovascular charts those from Bushehr refer to hospitals 14% for respiratory illness and 15% for cardiac disease and the subjects from Kermanshah go to the hospitals 12% for respiratory complications and 14% for cardiac failures. Conclusions: The results indicate a direct relationship between the concentration of PM 10 and health effects resulting from exposure to them. The highest rate belongs to Ahwaz becomes it has greater concentration of dusty air. Therefore, the higher relative risk value can depict mismanagement in urban air quality.

  1. Temporal multiscaling characteristics of particulate matter PM 10 and ground-level ozone O3 concentrations in Caribbean region

    Science.gov (United States)

    Plocoste, Thomas; Calif, Rudy; Jacoby-Koaly, Sandra

    2017-11-01

    A good knowledge of the intermittency of atmospheric pollutants is crucial for air pollution management. We consider here particulate matter PM 10 and ground-level ozone O3 time series in Guadeloupe archipelago which experiments a tropical and humid climate in the Caribbean zone. The aim of this paper is to study their scaling statistics in the framework of fully developed turbulence and Kolmogorov's theory. Firstly, we estimate their Fourier power spectra and consider their scaling properties in the physical space. The power spectra computed follows a power law behavior for both considered pollutants. Thereafter we study the scaling behavior of PM 10 and O3 time series. Contrary to numerous studies where the multifractal detrended fluctuation analysis is frequently applied, here, the classical structure function analysis is used to extract the scaling exponent or multifractal spectrum ζ(q) ; this function provides a full characterization of a process at all intensities and all scales. The obtained results show that PM 10 and O3 possess intermittent and multifractal properties. The singularity spectrum MS(α) also confirms both pollutants multifractal features. The originality of this work comes from a statistical modeling performed on ζ(q) and MS(α) by a lognormal model to compute the intermittency parameter μ. By contrast with PM 10 which mainly depends on puffs of Saharan dust (synoptic-scale), O3 is more intermittent due to variability of its local precursors. The results presented in this paper can help to better understand the mechanisms governing the dynamics of PM 10 and O3 in Caribbean islands context.

  2. Sources of the PM10 aerosol in Flanders, Belgium, and re-assessment of the contribution from wood burning

    Energy Technology Data Exchange (ETDEWEB)

    Maenhaut, Willy, E-mail: willy.maenhaut@ugent.be [Ghent University (UGent), Department of Analytical Chemistry, Krijgslaan 281, S12, B-9000 Gent (Belgium); University of Antwerp - UA, Department of Pharmaceutical Sciences, Universiteitsplein 1, B-2610, Antwerpen (Belgium); Vermeylen, Reinhilde; Claeys, Magda [University of Antwerp - UA, Department of Pharmaceutical Sciences, Universiteitsplein 1, B-2610, Antwerpen (Belgium); Vercauteren, Jordy; Roekens, Edward [Flemish Environment Agency (VMM), Kronenburgstraat 45, B-2000, Antwerpen (Belgium)

    2016-08-15

    From 30 June 2011 to 2 July 2012 PM10 aerosol samples were simultaneously taken every 4th day at four urban background sites in Flanders, Belgium. The sites were in Antwerpen, Gent, Brugge, and Oostende. The PM10 mass concentration was determined by weighing; organic and elemental carbon (OC and EC) were measured by thermal-optical analysis, the wood burning tracers levoglucosan, mannosan and galactosan were determined by gas chromatography/mass spectrometry, 8 water-soluble ions were measured by ion chromatography, and 15 elements were determined by a combination of inductively coupled plasma atomic emission spectrometry and mass spectrometry. The multi-species dataset was subjected to receptor modeling by PMF. The 10 retained factors (with their overall average percentage contributions to the experimental PM10 mass) were wood burning (9.5%), secondary nitrate (24%), secondary sulfate (12.6%), sea salt (10.0%), aged sea salt (19.2%), crustal matter (9.7%), non-ferrous metals (1.81%), traffic (10.3%), non-exhaust traffic (0.52%), and heavy oil burning (3.0%). The average contributions of wood smoke for the four sites were quite substantial in winter and ranged from 12.5 to 20% for the PM10 mass and from 47 to 64% for PM10 OC. Wood burning appeared to be also a notable source of As, Cd, and Pb. The contribution from wood burning to the PM10 mass and OC was also assessed by making use of levoglucosan as single marker compound and the conversion factors of Schmidl et al. (2008), as done in our previous study on wood burning in Flanders (Maenhaut et al., 2012). However, the apportionments were much lower than those deduced from PMF. It seems that the conversion factors of Schmidl et al. (2008) may not be applicable to wood burning in Flanders. From scatter plots of the PMF-derived wood smoke OC and PM versus levoglucosan, we arrived at conversion factors of 9.7 and 22.6, respectively. - Highlights: • A one-year study with 4 urban background sites and a total of 372

  3. Sources of the PM10 aerosol in Flanders, Belgium, and re-assessment of the contribution from wood burning

    International Nuclear Information System (INIS)

    Maenhaut, Willy; Vermeylen, Reinhilde; Claeys, Magda; Vercauteren, Jordy; Roekens, Edward

    2016-01-01

    From 30 June 2011 to 2 July 2012 PM10 aerosol samples were simultaneously taken every 4th day at four urban background sites in Flanders, Belgium. The sites were in Antwerpen, Gent, Brugge, and Oostende. The PM10 mass concentration was determined by weighing; organic and elemental carbon (OC and EC) were measured by thermal-optical analysis, the wood burning tracers levoglucosan, mannosan and galactosan were determined by gas chromatography/mass spectrometry, 8 water-soluble ions were measured by ion chromatography, and 15 elements were determined by a combination of inductively coupled plasma atomic emission spectrometry and mass spectrometry. The multi-species dataset was subjected to receptor modeling by PMF. The 10 retained factors (with their overall average percentage contributions to the experimental PM10 mass) were wood burning (9.5%), secondary nitrate (24%), secondary sulfate (12.6%), sea salt (10.0%), aged sea salt (19.2%), crustal matter (9.7%), non-ferrous metals (1.81%), traffic (10.3%), non-exhaust traffic (0.52%), and heavy oil burning (3.0%). The average contributions of wood smoke for the four sites were quite substantial in winter and ranged from 12.5 to 20% for the PM10 mass and from 47 to 64% for PM10 OC. Wood burning appeared to be also a notable source of As, Cd, and Pb. The contribution from wood burning to the PM10 mass and OC was also assessed by making use of levoglucosan as single marker compound and the conversion factors of Schmidl et al. (2008), as done in our previous study on wood burning in Flanders (Maenhaut et al., 2012). However, the apportionments were much lower than those deduced from PMF. It seems that the conversion factors of Schmidl et al. (2008) may not be applicable to wood burning in Flanders. From scatter plots of the PMF-derived wood smoke OC and PM versus levoglucosan, we arrived at conversion factors of 9.7 and 22.6, respectively. - Highlights: • A one-year study with 4 urban background sites and a total of 372

  4. Characterization and source apportionment of health risks from ambient PM10 in Hong Kong over 2000-2011

    Science.gov (United States)

    Li, Zhiyuan; Yuan, Zibing; Li, Ying; Lau, Alexis K. H.; Louie, Peter K. K.

    2015-12-01

    Atmospheric particulate matter (PM) pollution is a major public health concern in Hong Kong. In this study, the spatiotemporal variations of health risks from ambient PM10 from seven air quality monitoring stations between 2000 and 2011 were analyzed. Positive matrix factorization (PMF) was adopted to identify major source categories of ambient PM10 and quantify their contributions. Afterwards, a point-estimated risk model was used to identify the inhalation cancer and non-cancer risks of PM10 sources. The long-term trends of the health risks from classified local and non-local sources were explored. Furthermore, the reason for the increase of health risks during high PM10 days was discussed. Results show that vehicle exhaust source was the dominant inhalation cancer risk (ICR) contributor (72%), whereas trace metals and vehicle exhaust sources contributed approximately 27% and 21% of PM10 inhalation non-cancer risk (INCR), respectively. The identified local sources accounted for approximately 80% of the ICR in Hong Kong, while contribution percentages of the non-local and local sources for INCR are comparable. The clear increase of ICR at high PM days was mainly attributed to the increase of contributions from coal combustion/biomass burning and secondary sulfate, while the increase of INCR at high PM days was attributed to the increase of contributions from the sources coal combustion/biomass burning, secondary nitrate, and trace metals. This study highlights the importance of health risk-based source apportionment in air quality management with protecting human health as the ultimate target.

  5. Influence of pavement macrotexture on PM10 emissions from paved roads: A controlled study

    Science.gov (United States)

    China, Swarup; James, David E.

    2012-12-01

    This paper investigates influence of pavement macrotexture on paved road PM10 emissions. This study was conducted on different paved roadway types (local, collector and minor arterial) in the Las Vegas Valley, Nevada. Pavement macrotexture was measured using the ASTM E 965 sand patch method and the Digital Surface Roughness Meter™ (DSRM™). A controlled constant soil loading with known PM10 fraction was applied to cleaned road surfaces. The Desert Research Institute's (DRI) Mini-PI-SWERL™ (Portable In-Situ Wind ERosion Lab) was used to estimate PM10 mass emissions and cumulative mass emitted from pavement surfaces. PM10 mass emissions using controlled applied soil loadings generally declined with increasing pavement macrotexture at all applied shear levels. The relationships were statistically significant, and indicate that pavement macrotexture may need to be included in future development of revised paved road PM10 emissions factors. A change in the slope of emitted PM10 mass and pavement macrotexture occurred between 0.8 and 0.9 mm mean texture depth (MTD). Anomalies in PM10 mass emissions were observed at MTDs exceeding 1.2 mm. Two-way frequency distributions of pavement surface features obtained from DSRM measurements were analyzed to explain the observed anomalies. Results showed that pavement surface feature size distributions may influence on PM10 emissions from paved roads at similar MTDs. PM10 mass emissions were found to linearly depend on adjusted mode size of the pavement surface aggregate. A sharp decrease in friction velocities, computed from wind erosion theory, at MTDs above 0.9 mm matched an observed sharp decrease in PM10 emissions rates at MTDs above 0.9 mm, indicating that classical wind erosion theory could be adapted for non-erodible pavement surfaces and linearly relate PM10 emissions rates to applied shear stress at an aerodynamic roughness height of 0.075 mm.

  6. Geographic variation in Chinese children' forced vital capacity and its association with long-term exposure to local PM10: a national cross-sectional study.

    Science.gov (United States)

    Wang, Hai-Jun; Li, Qin; Guo, Yuming; Song, Jie-Yun; Wang, Zhiqiang; Ma, Jun

    2017-10-01

    The purpose of this study was to estimate the association between Chinese children's forced vital capacity (FVC) and particulate matter with aerodynamic diameter ≤10 μm (PM 10 ). The FVC data of 71,763 children aged 7 to 18 was collected from 2010 Chinese National Survey on Students' Construction and Health (CNSSCH). The local annual average concentration of PM 10 , relative humidity, ambient temperature, and other air pollutant data of 30 cities was collected from China Meteorological Administration and Ministry of Environment Protection of China. Then, we used generalized additive model (GAM) to estimate the association between children's FVC and PM 10 . The obvious geographic variation in FVC was found in children of 30 Chinese cities ranging from 1647 ml in Xining to 2571 ml in Beijing. The annual average concentration of PM 10 was also different, ranging from 40 μg/m 3 in Haikou to 155 μg/m 3 in Lanzhou. After adjusted individual characteristics, socioeconomic conditions, ambient temperature, relative humidity, and other air pollutants (e.g., NO 2 and SO 2 ) in the generalized additive model, we found that the increase of PM 10 was associated with decrease of FVC in Chinese children. A 10-μg/m 3 increase of PM 10 was associated with 1.33-ml decrease in FVC (95% confidence interval: -2.18 to -0.47). We also found a larger effect estimate of PM 10 on FVC in boys than that in girls. Consistent associations were found in both physically inactive and active children. The increase of PM 10 was associated with decrease of children's FVC. We should develop proper public health policy to protect children's respiratory health during growth and development in polluted areas.

  7. Update on the development of cotton gin PM10 emission factors for EPA's AP-42

    Science.gov (United States)

    A cotton ginning industry-supported project was initiated in 2008 to update the U.S. Environmental Protection Agency’s (EPA) Compilation of Air Pollution Emission Factors (AP-42) to include PM10 emission factors. This study develops emission factors from the PM10 emission factor data collected from ...

  8. Tillage and straw management affect PM10 emission potential in subarctic Alaska

    Science.gov (United States)

    Emission of PM10 (particulates =10 um in diameter regulated by many nations as an air pollutant) from agricultural soils can impact regional air quality. Little information exists that describes the potential for PM10 and airborne dust emissions from subarctic soils or agricultural soils subject to ...

  9. Spatial & temporal variations of PM10 and particle number concentrations in urban air.

    Science.gov (United States)

    Johansson, Christer; Norman, Michael; Gidhagen, Lars

    2007-04-01

    The size of particles in urban air varies over four orders of magnitude (from 0.001 microm to 10 microm in diameter). In many cities only particle mass concentrations (PM10, i.e. particles tires and traction sand on streets during winter; up to 90% of the locally emitted PM10 may be due to road abrasion. PM10 emissions and concentrations, but not PNC, at kerbside are controlled by road moisture. Annual mean urban background PM10 levels are relatively uniformly distributed over the city, due to the importance of long range transport. For PNC local sources often dominate the concentrations resulting in large temporal and spatial gradients in the concentrations. Despite these differences in the origin of PM10 and PNC, the spatial gradients of annual mean concentrations due to local sources are of equal magnitude due to the common source, namely traffic. Thus, people in different areas experiencing a factor of 2 different annual PM10 exposure due to local sources will also experience a factor of 2 different exposure in terms of PNC. This implies that health impact studies based solely on spatial differences in annual exposure to PM10 may not separate differences in health effects due to ultrafine and coarse particles. On the other hand, health effect assessments based on time series exposure analysis of PM10 and PNC, should be able to observe differences in health effects of ultrafine particles versus coarse particles.

  10. PM 10 emission inventory of industrial and road transport vehicles in ...

    African Journals Online (AJOL)

    Rapid development in industrial and road transportation sector in developing countries has contributing the environmental issue. Determining the estimated PM10 emission in Klang Valley, Malaysia is based on the best available resources. Emission of PM10 from both sources was estimated particularly from numbers of ...

  11. 77 FR 58962 - Approval and Promulgation of Implementation Plans; Arizona; Nogales PM10

    Science.gov (United States)

    2012-09-25

    ... and proposed action on this plan. Then, we provided a brief description of the location and geography... moderate PM 10 nonattainment areas as applied to the Nogales NA, given the area's air quality is influenced... contingency measures, among other requirements, continue to apply to PM 10 nonattainment areas even if the...

  12. Indoor pollution: PM2.5 and PM10 from cigarette smoke

    International Nuclear Information System (INIS)

    Chianese, E.; Barone, G.; Castaldo, R.M.; Riccio, A.

    2009-01-01

    This work is aimed to establishing the temporal and spatial dispersion of PM 10 and PM 2.5 particulate matter fractions generated by cigarettes smoking in an indoor ambient. To this purpose, PM 10 and PM 2.5 concentrations were collected with a mobile instrument positioned in a room accommodating a smoking machine. [it

  13. Short-Term Health Impact Assessment of Urban PM10 in Bejaia City (Algeria

    Directory of Open Access Journals (Sweden)

    Fatima Benaissa

    2016-01-01

    Full Text Available We used Health Impact Assessment (HIA to analyze the impact on a given population’s health outcomes in terms of all-causes mortality and respiratory and cardiovascular hospitalizations attributable to short-term exposure to particulate matter less than 10 μm diameter (PM10 in Bejaia city, for which health effects of air pollution have never been investigated. Two scenarios of PM10 reduction were considered: first, a scenario where the PM10 annual mean is decreased by 5 µg/m3, and then a scenario where this PM10 mean is decreased to 20 µg/m3 (World Health Organization annual air quality guideline (WHO-AQG. Annual mean level of PM10 (81.7 µg/m3 was calculated from objective measurements assessed in situ. Each year, about 4 and 55 deaths could be postponed with the first and the second scenarios successfully. Furthermore, decreasing PM10 annual mean by 5 µg/m3 would avoid 5 and 3 respiratory and cardiac hospitalizations, respectively, and not exceeding the PM10 WHO-AQG (20 µg/m3 would result in a potential gain of 36 and 23 per 100000 respiratory and cardiac hospitalizations, respectively. Lowering in current levels of PM10 has a nonnegligible impact in terms of public health that it is expected to be higher in the case of long-term effects.

  14. Relationship between physico-chemical characteristics and potential toxicity of PM10.

    Science.gov (United States)

    Megido, Laura; Suárez-Peña, Beatriz; Negral, Luis; Castrillón, Leonor; Suárez, Susana; Fernández-Nava, Yolanda; Marañón, Elena

    2016-11-01

    PM10 was sampled at a suburban location affected by traffic and industry in the north of Spain. The samples were analysed to determine the chemical components of PM10 (organic and elemental carbon, soluble chemical species and metals). The aim of this study was to assess the toxicity of PM10 in terms of the bulk analysis and the physico-chemical properties of the particles. Total carbon, sulphates, ammonium, chlorides and nitrates were found to be the major constituents of PM10. The contribution of the last of these was found to increase significantly with PM10 concentration (Pearson coefficient correlation of 0.7, p-value major risk to human health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Saharan dust contributions to PM10 and TSP levels in Southern and Eastern Spain

    Science.gov (United States)

    Rodríguez, S.; Querol, X.; Alastuey, A.; Kallos, G.; Kakaliagou, O.

    The analysis of PM10 and TSP levels recorded in rural areas from Southern and Eastern Spain (1996-1999) shows that most of the PM10 and TSP peak events are simultaneously recorded at monitoring stations up to 1000 km apart. The study of the atmospheric dynamics by back-trajectory analysis and simulations with the SKIRON Forecast System show that these high PM10 and TSP events occur when high-dust Saharan air masses are transported over the Iberian Peninsula. In the January-June period, this dust transport is mainly caused by cyclonic activity over the West or South of Portugal, whereas in the summer period this is induced by anticyclonic activity over the East or Southeast Iberian Peninsula. Most of the Saharan intrusions which exert a major influence on the particulate levels occur from May to September (63%) and in January and October. In rural areas in Northeast Spain, where the PM10 annual mean is around 18 μg PM10 m -3, the Saharan dust accounts for 4-7 annual daily exceedances of the forthcoming PM10-EU limit value (50 μg PM10 m -3 daily mean). Higher PM10 background levels are recorded in Southern Spain (30 μg PM10 m -3 as annual mean for rural areas) and very similar values are recorded in industrial and urban areas. In rural areas in Southern Spain, the Saharan dust events accounts for 10-23 annual daily exceedances of the PM10 limit value, a high number when compared with the forthcoming EU standard, which states that the limit value cannot be exceeded more than 7 days per year. The proportion of Sahara-induced exceedances with respect to the total annual exceedances is discussed for rural, urban and industrial sites in Southern Spain.

  16. The classification of PM10 concentrations in Johor Based on Seasonal Monsoons

    Science.gov (United States)

    Hamid, Hazrul Abdul; Hanafi Rahmat, Muhamad; Aisyah Sapani, Siti

    2018-04-01

    Air is the most important living resource in life. Contaminated air could adversely affect human health and the environment, especially during the monsoon season. Contamination occurs as a result of human action and haze. There are several pollutants present in the air where one of them is PM10. Secondary data was obtained from the Department of Environment from 2010 until 2014 and was analyzed using the hourly average of PM10 concentrations. This paper examined the relation between PM10 concentrations and the monsoon seasons (Northeast Monsoon and Southwest Monsoon) in Larkin and Pasir Gudang. It was expected that the concentration of PM10 would be higher during the Southwest Monsoon as it is a dry season. The data revealed that the highest PM10 concentrations were recorded between 2010 to 2014 during this particular monsoon season. The characteristics of PM10 concentration were compared using descriptive statistics based on the monsoon seasons and classified using the hierarchical cluster analysis (Ward Methods). The annual average of PM10 concentration during the Southwest Monsoon had exceeded the standard set by the Malaysia Ambient Air Quality Guidelines (50 μg/m3) while the PM10 concentration during the Northeast Monsoon was below the acceptable level for both stations. The dendrogram displayed showed two clusters for each monsoon season for both stations excepted for the PM10 concentration during the Northeast Monsoon in Larkin which was classified into three clusters due to the haze in 2010. Overall, the concentration of PM10 in 2013 was higher based on the clustering shown for every monsoon season at both stations according to the characteristics in the descriptive statistics.

  17. The behaviour of PM10 and ozone in Malaysia through non-linear dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Sapini, Muhamad Luqman [Pusat Pengajian Matematik, Fakulti Sains Komputer & Matematik Universiti Teknologi MARA Kampus Seremban, 70300 Negeri Sembilan (Malaysia); Rahim, Nurul Zahirah binti Abd [Pengajian Matematik, Fakulti Sains Komputer & Matematik Universiti Teknologi MARA Kampus Jasin, 77000 Melaka (Malaysia); Noorani, Mohd Salmi Md. [Pusat Pengajian Sains Matematik, Fakulti Sains & Teknologi Universiti Kebangsaan Malaysia, 43650 Selangor (Malaysia)

    2015-10-22

    Prediction of ozone (O3) and PM10 is very important as both these air pollutants affect human health, human activities and more. Short-term forecasting of air quality is needed as preventive measures and effective action can be taken. Therefore, if it is detected that the ozone data is of a chaotic dynamical systems, a model using the nonlinear dynamic from chaos theory data can be made and thus forecasts for the short term would be more accurate. This study uses two methods, namely the 0-1 Test and Lyapunov Exponent. In addition, the effect of noise reduction on the analysis of time series data will be seen by using two smoothing methods: Rectangular methods and Triangle methods. At the end of the study, recommendations were made to get better results in the future.

  18. The Effect of PM 10 on Ischemia- Reperfusion Induced Arrhythmias in Rats

    Directory of Open Access Journals (Sweden)

    Esmat Radmanesh

    Full Text Available ABSTRACT Epidemiological studies show that particulate matter (PM is the principal instigator of some adverse clinical symptoms involving cardiovascular diseases. PM exposure can increase experimental infarct size and potentiate myocardial ischemia and arrhythmias in experimental MI models such as ischemia-reperfusion (I/R injury.The present study was aimed to evaluate the effects of particulate matter (PM10 on ischemia- reperfusion induced arrhythmias with emphasis on the protective role of VA as an antioxidant on them. Male Wistar rats were divided into 8 groups (n=10: Control, VAc, Sham, VA, PM1 (0.5 mg/kg, PM2 (2.5 mg/kg, PM3 group (5 mg/kg, PM3 + VA group. Within 48 hours, PM10 was instilled into trachea in two stages. Then the hearts were isolated, transferred to a Langendorff apparatus, and subjected to global ischemia (30 minutes followed by reperfusion (60 minutes. The ischemia- reperfusion induced ventricular arrhythmias were assessed according to the Lambeth conventions.In the present study,the number, incidence and duration of arrhythmiasduring30 minutes ischemia were demonstrated to be more than those in the reperfusion stage. PM exposure increased significantly the number, incidence and duration of arrhythmias in the ischemia and reperfusion duration. Vanillic acid reduced significantly the number, incidence and duration of arrhythmias during the ischemia and reperfusion period.In summary, the results of this study demonstrated that the protective and dysrhythmic effects of VA in the PM exposure rats in I/R model are probably related to its antioxidant properties.

  19. The local contribution of wood burning to PM10 and PM2.5; De lokale bijdrage van houtverbranding aan PM10 en PM2,5

    Energy Technology Data Exchange (ETDEWEB)

    Kos, G.; Weijers, E. [ECN Biomassa, Kolen en Milieuonderzoek, Petten (Netherlands)

    2011-04-15

    In January 2009, the concentrations of wood smoke in Schoorl, the Netherlands, were established by means of levoglucosan measurements (a hydrocarbon compound that is characteristic for wood smoke). Local wood smoke contributes significantly to the concentration of particulate matter: between 9% and 27% for PM10 and between 30% and 29% for PM2.5. [Dutch] In februari 2009 zijn in Schoorl in Noord-Holland concentraties houtrook bepaald door levoglucosanmetingen (een voor houtrook kenmerkende koolwaterstofverbinding). Lokale houtrook draagt daar significant bij aan de concentratie fijn stof: tussen 9% en 27% voor PM10 en tussen 30% en 39% voor PM2,5.

  20. Sources of the PM10 aerosol in Flanders, Belgium, and re-assessment of the contribution from wood burning.

    Science.gov (United States)

    Maenhaut, Willy; Vermeylen, Reinhilde; Claeys, Magda; Vercauteren, Jordy; Roekens, Edward

    2016-08-15

    From 30 June 2011 to 2 July 2012 PM10 aerosol samples were simultaneously taken every 4th day at four urban background sites in Flanders, Belgium. The sites were in Antwerpen, Gent, Brugge, and Oostende. The PM10 mass concentration was determined by weighing; organic and elemental carbon (OC and EC) were measured by thermal-optical analysis, the wood burning tracers levoglucosan, mannosan and galactosan were determined by gas chromatography/mass spectrometry, 8 water-soluble ions were measured by ion chromatography, and 15 elements were determined by a combination of inductively coupled plasma atomic emission spectrometry and mass spectrometry. The multi-species dataset was subjected to receptor modeling by PMF. The 10 retained factors (with their overall average percentage contributions to the experimental PM10 mass) were wood burning (9.5%), secondary nitrate (24%), secondary sulfate (12.6%), sea salt (10.0%), aged sea salt (19.2%), crustal matter (9.7%), non-ferrous metals (1.81%), traffic (10.3%), non-exhaust traffic (0.52%), and heavy oil burning (3.0%). The average contributions of wood smoke for the four sites were quite substantial in winter and ranged from 12.5 to 20% for the PM10 mass and from 47 to 64% for PM10 OC. Wood burning appeared to be also a notable source of As, Cd, and Pb. The contribution from wood burning to the PM10 mass and OC was also assessed by making use of levoglucosan as single marker compound and the conversion factors of Schmidl et al. (2008), as done in our previous study on wood burning in Flanders (Maenhaut et al., 2012). However, the apportionments were much lower than those deduced from PMF. It seems that the conversion factors of Schmidl et al. (2008) may not be applicable to wood burning in Flanders. From scatter plots of the PMF-derived wood smoke OC and PM versus levoglucosan, we arrived at conversion factors of 9.7 and 22.6, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. The Effect of PM10 on Allergy Symptoms in Allergic Rhinitis Patients During Spring Season

    Directory of Open Access Journals (Sweden)

    Il Gyu Kang

    2015-01-01

    Full Text Available Background: Asian sand dust (ASD that originates in the Mongolian Desert in the spring induces serious respiratory health problems throughout East Asia (China, Korea, Japan. PM10 (particulate matter with an aerodynamic diameter <10 μm is a major air pollutant component in ASD. We studied the effects of PM10 on allergy symptoms in patients with allergic rhinitis during the spring season, when ASD frequently develops. Methods: We investigated the changes in allergic symptoms in 108 allergic patients and 47 healthy subjects by comparing their 120-day symptom scores from February to May 2012. At the same time, the contributions of pollen count and PM10 concentration were also assessed. We also compared symptom scores before and 2 days after the daily PM10 concentration was >100 μg/m3. Results: The PM10 concentration during the 120 days was <150 μg/m3. No significant correlations were observed between changes in the PM10 concentration and allergic symptom scores (p > 0.05. However, allergic symptoms were significantly correlated with outdoor activity time (p < 0.001. Conclusions: These results demonstrate that a PM10 concentration <150 μg/m3 did not influence allergy symptoms in patients with allergic rhinitis during the 2012 ASD season.

  2. Twelve-Year Trends of PM10 and Visibility in the Hefei Metropolitan Area of China

    Directory of Open Access Journals (Sweden)

    Lin Huang

    2016-01-01

    Full Text Available China has been experiencing severe air pollution and previous studies have mostly focused on megacities and a few hot spot regions. Hefei, the provincial capital city of Anhui province, has a population of near 5 million in its metropolitan area, but its air quality has not been reported in literature. In this study, daily PM10 and visibility data in 2001–2012 were analyzed to investigate the air quality status as well as the twelve-year pollution trends in Hefei. The results reveal that Hefei has been suffering high PM10 pollution and low visibility during the study period. The annual average PM10 concentrations are 2~3 times of the Chinese Ambient Air Quality Standard. PM10 shows fluctuating variation in 2001–2007 and has a slightly decreasing trend after 2008. The annual average visibility range is generally lower than 7 km and shows a worsening trend from 2001 to 2006 followed by an improving trend from 2007 to 2012. Wind speed, precipitation, and relative humidity have negative effects on PM10 concentrations in Hefei, while temperature could positively or negatively affect PM10. The results provide a general understanding of the status and long-term trends of PM10 pollution and visibility in a typical second-tier city in China.

  3. Temporal Variation of Ambient PM10 Concentration within an Urban-Industrial Environment

    Science.gov (United States)

    Wong, Yoon-Keaw; Noor, Norazian Mohamed; Izzah Mohamad Hashim, Nur

    2018-03-01

    PM10 concentration in the ambient air has been reported to be the main pollutant affecting human health, particularly in the urban areas. This research is conducted to study the variation of PM10 concentration at the three urban-industrial areas in Malaysia, namely Shah Alam, Kuala Terengganu and Melaka. In addition, the association and correlation between PM10 concentration and other air pollutants will be distinguished. Five years interval dataset (2008-2012) consisting of PM10, SOX, NOX and O3 concentrations and other weather parameters such as wind speed, humidity and temperature were obtained from Department of Environment, Malaysia. Shah Alam shows the highest average of PM10 concentration with the value of 62.76 μg/m3 in June, whereas for Kuala Terengganu was 59.29 μg/m3 in February and 46.61 μg/m3 in August for Melaka. Two peaks were observed from the time series plot using the averaged monthly PM10 concentration. First peak occurs when PM10 concentration rises from January to February and the second peak is reached in June and remain high for the next two consecutive months for Shah Alam and Kuala Terengganu. Meanwhile the second peak for Melaka is only achieved in August as a result of the transboundary of smoke from forest fires in the Sumatra region during dry season from May to September. Both of the pollutants can be sourced from rapid industrial activities at Shah Alam. PM10 concentration is strongly correlated with carbon monoxide concentration in Kuala Terengganu and Melaka with value of r2 = 0.1725 and 0.2744 respectively. High carbon monoxide and PM10 concentration are associated with burning of fossil fuel from increased number of vehicles at these areas.

  4. Spatiotemporal variations of ambient PM10 source contributions in Beijing in 2004 using positive matrix factorization

    Directory of Open Access Journals (Sweden)

    T. Chen

    2008-05-01

    Full Text Available Source contributions to ambient PM10 (particles with an aerodynamic diameter of 10 μm or less in Beijing, China were determined with positive matrix factorization (PMF based on ambient PM10 composition data including concentrations of organic carbon (OC, elemental carbon (EC, ions and metal elements, which were simultaneously obtained at six sites through January, April, July and October in 2004. Results from PMF indicated that seven major sources of ambient PM10 were urban fugitive dust, crustal soil, coal combustion, secondary sulfate, secondary nitrate, biomass burning with municipal incineration, and vehicle emission, respectively. In paticular, urban fugitive dust and crustal soil as two types of dust sources with similar chemical characteristics were differentiated by PMF. Urban fugitive dust contributed the most, accounting for 34.4% of total PM10 mass on an annual basis, with relatively high contributions in all four months, and even covered 50% in April. It also showed higher contributions in southwestern and southeastern areas than in central urban areas. Coal combustion was found to be the primary contributor in January, showing higher contributions in urban areas than in suburban areas with seasonal variation peaking in winter, which accounted for 15.5% of the annual average PM10 concentration. Secondary sulfate and secondary nitrate combined as the largest contributor to PM10 in July and October, with strong seasonal variation peaking in summer, accounting for 38.8% and 31.5% of the total PM10 mass in July and October, respectively. Biomass burning with municipal incineration contributions were found in all four months and accounted for 9.8% of the annual average PM10 mass concentration, with obviously higher contribution in October than in other months. Incineration sources were probably located in southwestern Beijing. Contribution from vehicle emission accounted for 5.0% and exhibited no significant seasonal variation. In sum

  5. Forecasting PM10 in metropolitan areas: Efficacy of neural networks

    International Nuclear Information System (INIS)

    Fernando, H.J.S.; Mammarella, M.C.; Grandoni, G.; Fedele, P.; Di Marco, R.; Dimitrova, R.; Hyde, P.

    2012-01-01

    Deterministic photochemical air quality models are commonly used for regulatory management and planning of urban airsheds. These models are complex, computer intensive, and hence are prohibitively expensive for routine air quality predictions. Stochastic methods are becoming increasingly popular as an alternative, which relegate decision making to artificial intelligence based on Neural Networks that are made of artificial neurons or ‘nodes’ capable of ‘learning through training’ via historic data. A Neural Network was used to predict particulate matter concentration at a regulatory monitoring site in Phoenix, Arizona; its development, efficacy as a predictive tool and performance vis-à-vis a commonly used regulatory photochemical model are described in this paper. It is concluded that Neural Networks are much easier, quicker and economical to implement without compromising the accuracy of predictions. Neural Networks can be used to develop rapid air quality warning systems based on a network of automated monitoring stations.Highlights: ► Neural Network is an alternative technique to photochemical modelling. ► Neutral Networks can be as effective as traditional air photochemical modelling. ► Neural Networks are much easier and quicker to implement in health warning system. - Neutral networks are as effective as photochemical modelling for air quality predictions, but are much easier, quicker and economical to implement in air pollution (or health) warning systems.

  6. Efecto del tiempo de exposición a PM10 en las urgencias por bronquitis aguda Effect of exposure time to PM10 on emergency admissions for acute bronchitis

    Directory of Open Access Journals (Sweden)

    Franz Muñoz

    2009-03-01

    Full Text Available Este trabajo analiza el efecto de las horas de exposición a PM10 en las urgencias diarias por bronquitis aguda, controlando por temperatura y humedad. El estudio fue realizado en seis sectores de la ciudad de Santiago, Chile, durante el período de invierno de los años 2002 al 2004, para lactantes ( 65 años. Analizamos el retraso de la respuesta mediante una función polinomial distributiva (pdl, incluida en un modelo lineal generalizado (GLM-pdl, y la estructura del efecto de la exposición, mediante modelos aditivos generalizados (GAM, utilizando regresión spline como técnica de estimación. Los resultados mostraron que al cuarto día de retardo, el efecto de la exposición fue mayor, especialmente en lactantes, y varió en la medida que incrementó la concentración atmosférica de PM10. El efecto de las horas de exposición a PM10 mostró una variación significativa, según el sector geográfico. Al estimar linealmente este efecto en el sector Oeste, notamos que el incremento de consultas diarias en lactantes fue de 3% por cada hora de exposición sobre os 150µg/m³.To study the health effect of air pollution, measured as particulate matter greater than 10mm in diameter (PM10, we analyzed the effect of daily hours of exposure on the number of urgency admissions for acute bronchitis, adjusting for temperature and humidity on the same day. The study was conducted in six regions of Santiago, Chile, during the winter of years 2002 to 2004, for infants and elders. The delay between pollution time series and disease was modeled using a polynomial distributed lag (PDL function included in a generalized linear model. The linearity assumption was evaluated using a smooth-spline model approach. The highest effect for exposure to PM10 was detected with 4 days of delay. For both groups, the effect of temperature was linear, but that of humidity was not. Air pollution effect varied according to level of exposure and geographic region, increasing

  7. Human health risk due to variations in PM10-PM2.5 and associated PAHs levels

    Science.gov (United States)

    Sosa, Beatriz S.; Porta, Andrés; Colman Lerner, Jorge Esteban; Banda Noriega, Roxana; Massolo, Laura

    2017-07-01

    WHO (2012) reports that chronic exposure to air pollutants, including particulate matter (PM), causes the death of 7 million people, constituting the most important environmental risk for health in the world. IARC classifies contaminated outdoor air as carcinogenic, Group 1 category. However, in our countries there are few studies regarding air pollution levels and possible associated effects on public health. The current study determined PM and associated polycyclic aromatic hydrocarbons (PAHs) levels in outdoor air, identified their possible emission sources and analysed health risks in the city of Tandil (Argentina). PM10 and PM2.5 samples were collected using a low volume sampler (MiniVol TAS) in three areas: city centre, industrial and residential. Concentrations were determined by gravimetric methods and the content of the US EPA 16 priority PAHs was found by high performance liquid chromatography (HPLC). Description of the main emission sources and selection of monitoring sites resulted from spatial analysis and the IVE (International Vehicle Emissions) model was used in the characterisation of the traffic flow. Median values of 35.7 μgm-3 and 9.6 μgm-3 in PM10 and PM2.5 respectively and characteristic profiles were found for each area. Local values PAHs associated to PM10 and PM2.5, in general, were lower than 10ngm-3. The estimated Unit Risk for the three areas exceeds US EPA standards (9 × 10-5). The number of deaths attributable to short term exposure to outdoor PM10 was 4 cases in children under 5 years of age, and 21 cases in total population, for a relative risk of 1.037.

  8. Analysis of source regions and meteorological factors for the variability of spring PM10 concentrations in Seoul, Korea

    Science.gov (United States)

    Lee, Jangho; Kim, Kwang-Yul

    2018-02-01

    CSEOF analysis is applied for the springtime (March, April, May) daily PM10 concentrations measured at 23 Ministry of Environment stations in Seoul, Korea for the period of 2003-2012. Six meteorological variables at 12 pressure levels are also acquired from the ERA Interim reanalysis datasets. CSEOF analysis is conducted for each meteorological variable over East Asia. Regression analysis is conducted in CSEOF space between the PM10 concentrations and individual meteorological variables to identify associated atmospheric conditions for each CSEOF mode. By adding the regressed loading vectors with the mean meteorological fields, the daily atmospheric conditions are obtained for the first five CSEOF modes. Then, HYSPLIT model is run with the atmospheric conditions for each CSEOF mode in order to back trace the air parcels and dust reaching Seoul. The K-means clustering algorithm is applied to identify major source regions for each CSEOF mode of the PM10 concentrations in Seoul. Three main source regions identified based on the mean fields are: (1) northern Taklamakan Desert (NTD), (2) Gobi Desert and (GD), and (3) East China industrial area (ECI). The main source regions for the mean meteorological fields are consistent with those of previous study; 41% of the source locations are located in GD followed by ECI (37%) and NTD (21%). Back trajectory calculations based on CSEOF analysis of meteorological variables identify distinct source characteristics associated with each CSEOF mode and greatly facilitate the interpretation of the PM10 variability in Seoul in terms of transportation route and meteorological conditions including the source area.

  9. Procedures for identifying reasonably available control technology for stationary sources of PM-10. Final report

    International Nuclear Information System (INIS)

    Fitzpatrick, M.J.; Ellefson, R.

    1992-09-01

    The guidance document sets forth procedures and identifies sources of information that will assist State and local air pollution control agencies in determining Reasonably Available Control Technology (RACT) for PM-10 (particulate matter having a nominal aerometric diameter of 10 microns or less) emission from existing stationary sources on a case-by-case basis. It provides an annotated bibliography of documents to aid in identifying the activities that cause PM-10 emissions as well as applicable air pollution control measures and their effectiveness in reducing emissions. The most stringent state total particulate matter (PM) emission limits are identified for several categories of PM-10 sources and compared to available emission test data. Finally, guidance is provided on procedures for estimating total capital investment and total annual cost of the control measures which are generally used to control PM-10 emissions

  10. US EPA Nonattainment Areas and Designations-PM10 (1987 NAAQS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web service contains the following layer: PM10 Nonattainment Areas (1987 NAAQS). Full FGDC metadata records for each layer may be found by clicking the layer...

  11. [Preliminary study of source apportionment of PM10 and PM2.5 in three cities of China during spring].

    Science.gov (United States)

    Gao, Shen; Pan, Xiao-chuan; Madaniyazi, Li-na; Xie, Juan; He, Ya-hui

    2013-09-01

    To study source apportionment of atmospheric PM10 (particle matter ≤ 10 µm in aerodynamic diameter) and PM2.5 (particle matter ≤ 2.5 µm in aerodynamic diameter) in Beijing,Urumqi and Qingdao, China. The atmospheric particle samples of PM10 and PM2.5 collected from Beijing between May 17th and June 18th, 2005, from Urumqi between April 20th and June 1st, 2006 and from Qingdao between April 4th and May 15th, 2005, were detected to trace the source apportionment by factor analysis and enrichment factor methods. In Beijing, the source apportionment results derived from factor analysis model for PM10 were construction dust and soil sand dust (contributing rate of variance at 45.35%), industry dust, coal-combusted smoke and vehicle emissions (contributing rate at 31.83%), and biomass burning dust (13.57%). The main pollution element was Pb, while the content (median (minimum value-maximum value)was 0.216 (0.040-0.795) µg/m(3)) . As for PM2.5, the sources were construction dust and soil sand dust (38.86%), industry dust, coal-combusted smoke and vehicle emissions (25.73%), biomass burning dust (13.10%) and burning oil dust (11.92%). The main pollution element was Zn (0.365(0.126-0.808) µg/m(3)).In Urumqi, source apportionment results for PM10 were soil sand dust and coal-combusted dust(49.75%), industry dust, vehicle emissions and secondary particles dust (30.65%). The main characteristic pollution element was Cd (0.463(0.033-1.351) ng/m(3)). As for PM2.5, the sources were soil sand dust and coal-combusted dust (43.26%), secondary particles dust (22.29%), industry dust and vehicle emissions (20.50%). The main characteristic pollution element was As (14.599 (1.696-36.741) µg/m(3)).In Qingdao, source apportionment results for PM10 were construction dust (30.91%), vehicle emissions and industry dust (29.65%) and secondary particles dust (28.99%). The main characteristic pollution element was Pb (64.071 (5.846-346.831) µg/m(3)). As for PM2.5, the sources were

  12. (dust, PM10 , and BC) using CHIMERE chemistry tra

    Indian Academy of Sciences (India)

    The objective of this study is to evaluate the ability of a European chemistry transport model,. 'CHIMERE' driven by ..... tive days in May 2008 (12–16 May) to simulate the dust storm ...... Regional Office for Europe, Copenhagen. Zender C, Bian ...

  13. Using gravimetric measurement for determination of the mass fraction PM10

    Directory of Open Access Journals (Sweden)

    Nicolae Chirilă

    2011-12-01

    Full Text Available In this paper, we tried to determinate the air pollution level with mass fraction PM10 from Targu Mures area. For this purpose, determinations were made in University Petru Maior’s laboratory, using ADR 1200 S device and in Targu Mures Environmental Department’s laboratory. The results that we obtained show a low level of air pollution with mass fraction PM10 in Targu Mures area.

  14. Suspended Particulates Concentration (PM10 under Unstable Atmospheric Conditions over Subtropical Urban Area (Qena, Egypt

    Directory of Open Access Journals (Sweden)

    M. El-Nouby Adam

    2013-01-01

    Full Text Available The main purpose of this study is to evaluate the suspended particulates (PM10 in the atmosphere under unstable atmospheric conditions. The variation of PM10 was investigated and primary statistics were employed. The results show that, the PM10 concentrations values ranged from 6.00 to 646.74 μg m−3. The average value of PM10 is equal to 114.32 μg m−3. The high values were recorded in April and May (155.17 μg m−3 and 171.82 μg m−3, respectively and the low values were noted in February and December (73.86 μg m−3 and 74.05 μg m−3, respectively. The average value of PM10 of the hot season (125.35 × 10−6 g m−3 was higher than its value for the cold season (89.27 μg m−3. In addition, the effect of weather elements (air temperature, humidity and wind on the concentration of PM10 was determined. The multiple R between PM10 and these elements ranged from 0.05 to 0.47 and its value increased to reach 0.73 for the monthly average of the database used. Finally, the PM10 concentrations were grouped depending on their associated atmospheric stability class. These average values were equal to 122.80 ± 9 μg m−3 (highly unstable or convective, 109.37 ± 12 μg m−3 (moderately unstable and 104.42 ± 15 μg m−3 (slightly unstable.

  15. Ecklonia cava Extract and Dieckol Attenuate Cellular Lipid Peroxidation in Keratinocytes Exposed to PM10.

    Science.gov (United States)

    Lee, Jeong-Won; Seok, Jin Kyung; Boo, Yong Chool

    2018-01-01

    Airborne particulate matter can cause oxidative stress, inflammation, and premature skin aging. Marine plants such as Ecklonia cava Kjellman contain high amounts of polyphenolic antioxidants. The purpose of this study was to examine the antioxidative effects of E. cava extract in cultured keratinocytes exposed to airborne particulate matter with a diameter of <10  μ m (PM10). After the exposure of cultured HaCaT keratinocytes to PM10 in the absence and presence of E. cava extract and its constituents, cell viability and cellular lipid peroxidation were assessed. The effects of eckol and dieckol on cellular lipid peroxidation and cytokine expression were examined in human epidermal keratinocytes exposed to PM10. The total phenolic content of E. cava extract was the highest among the 50 marine plant extracts examined. The exposure of HaCaT cells to PM10 decreased cell viability and increased lipid peroxidation. The PM10-induced cellular lipid peroxidation was attenuated by E. cava extract and its ethyl acetate fraction. Dieckol more effectively attenuated cellular lipid peroxidation than eckol in both HaCaT cells and human epidermal keratinocytes. Dieckol and eckol attenuated the expression of inflammatory cytokines such as tumor necrosis factor- (TNF-) α , interleukin- (IL-) 1 β , IL-6, and IL-8 in human epidermal keratinocytes stimulated with PM10. This study suggested that the polyphenolic constituents of E. cava , such as dieckol, attenuated the oxidative and inflammatory reactions in skin cells exposed to airborne particulate matter.

  16. Analysis of Particulate matter (PM 10 and PM 2.5 concentration in Khorramabad city

    Directory of Open Access Journals (Sweden)

    Seyed Hamed Mirhosseini

    2013-01-01

    Full Text Available Aims: In this study, the concentration of PM10 and PM2.5 in eight station of Khorramabad city was analyzed. Materials and Methods: For this study, the data were taken from April 2010 to March 2011. The eight sampling point were chosen in account to Khorramabad maps. During this period, 240 daily PM samples including coarse particle (PM 10 and fine particle (PM 2.5 were collected. A two-part sampler was used to collect samples of PM. According to one-way ANOVA, multiple comparisons Scheffe, the obtained data were analyzed and then compared with the Environment protection organization standard rates. Khorramabad Results: The results revealed that during measuring the maximum concentration of PM 10 and PM 2.5 was respectively 120.9 and 101.09 μ/m 3 at Shamshirabad station. There was a significant difference between the mean values of PM 10 concentration (μg/m 3 in the seasons of summer. In addition, the mean concentrations of PM 10 in warmer months exceeded to the maximum permissible concentration. Conclusions: Year comparison of PM 10 and PM 2.5 concentration with standard were revealed particle matter concentration in summer season was higher than standard. Although total mean of particle matter was less than standard concentration.

  17. Particle Reduction Strategies - PAREST. PM10-cause analysis based on hypothetical emissions scenarios. Sub-report; Strategien zur Verminderung der Feinstaubbelastung - PAREST. PM10-Ursachenanalyse auf der Basis hypothetischer Emissionsszenarien. Teilbericht

    Energy Technology Data Exchange (ETDEWEB)

    Stern, Rainer [Freie Univ. Berlin (Germany). Inst. fuer Meteorologie, Troposphaerische Umweltforschung

    2013-06-15

    In this report, a PM10 cause analysis is presented, which provides an estimation of the extent to which the emitted substances from ten different source sectors are responsible for the calculated PM10 concentrations in Germany (PM = particulate matter). [German] In diesem Bericht wird eine PM10-Ursachenanalyse vorgestellt, die eine Abschaetzung liefert, in welchem Umfang die in Deutschland von den verschiedenen Verursachergruppen emittierten Stoffe fuer die in Deutschland berechneten PM10-Konzentrationen verantwortlich sind.

  18. PM10 standards and nontraditional particulate source controls: Research perspective

    International Nuclear Information System (INIS)

    Watson, J.G.

    1992-01-01

    Knowledge of how to measure suspended particles, what their concentrations are, what they are composed of, and where they come from has increased substantially since 1975. At that time, much of the pioneering work in these areas was just being conducted and published. Size-classified measurements, low-level elemental analysis, inorganic ion analysis, and carbon determinations for aerosol samples were novel research developments. Receptor modeling was not considered to be a scientific discipline, let alone a useful tool for source apportionment. Presentations at earlier conferences went to great lengths to document and justify methodologies which are taken for granted at this conference. This paper goes on to discuss research findings in control of wood smoke, fugitive dusts, motor vehicle exhausts, and secondary aerosols. Research results in source apportionment are also discussed

  19. Does maternal exposure to benzene and PM10 during pregnancy increase the risk of congenital anomalies? A population-based case-control study

    Science.gov (United States)

    Vinceti, Marco; Malagoli, Carlotta; Malavolti, Marcella; Cherubini, Andrea; Maffeis, Giuseppe; Rodolfi, Rossella; Heck, Julia E.; Astolfi, Gianni; Calzolari, Elisa; Nicolini, Fausto

    2015-01-01

    A few studies have suggested an association between maternal exposure to ambient air pollution from vehicular traffic and risk of congenital anomalies in the offspring, but epidemiologic evidence is neither strong nor entirely consistent. In a population-based case-control study in a Northern Italy community encompassing 228 cases of birth defects and 228 referent newborns, we investigated if maternal exposure to PM10 and benzene from vehicular traffic during early pregnancy, as estimated through a dispersion model, was associated with excess teratogenic risk. In conditional logistic regression analysis, and with adjustment for the other pollutant, we found that higher exposure to PM10 but not benzene was associated with increased risk of birth defects overall. Anomaly categories showing the strongest dose-response relation with PM10 exposure were musculoskeletal and chromosomal abnormalities but not cardiovascular defects, with Down syndrome being among the specific abnormalities showing the strongest association, though risk estimates particularly for the less frequent defects were statistically very unstable. Further adjustment in the regression model for potential confounders did not considerably alter the results. All the associations were stronger for average levels of PM10 than for their maximal level. Findings of this study give some support for an excess teratogenic risk following maternal exposure during pregnancy to PM10, but not benzene. Such association appears to be limited to some birth defect categories. PMID:26410719

  20. Desert Dust Outbreaks in Southern Europe: Contribution to Daily PM10 Concentrations and Short-Term Associations with Mortality and Hospital Admissions

    Science.gov (United States)

    Stafoggia, Massimo; Zauli-Sajani, Stefano; Pey, Jorge; Samoli, Evangelia; Alessandrini, Ester; Basagaña, Xavier; Cernigliaro, Achille; Chiusolo, Monica; Demaria, Moreno; Díaz, Julio; Faustini, Annunziata; Katsouyanni, Klea; Kelessis, Apostolos G.; Linares, Cristina; Marchesi, Stefano; Medina, Sylvia; Pandolfi, Paolo; Pérez, Noemí; Querol, Xavier; Randi, Giorgia; Ranzi, Andrea; Tobias, Aurelio; Forastiere, Francesco

    2015-01-01

    Background: Evidence on the association between short-term exposure to desert dust and health outcomes is controversial. Objectives: We aimed to estimate the short-term effects of particulate matter ≤ 10 μm (PM10) on mortality and hospital admissions in 13 Southern European cities, distinguishing between PM10 originating from the desert and from other sources. Methods: We identified desert dust advection days in multiple Mediterranean areas for 2001–2010 by combining modeling tools, back-trajectories, and satellite data. For each advection day, we estimated PM10 concentrations originating from desert, and computed PM10 from other sources by difference. We fitted city-specific Poisson regression models to estimate the association between PM from different sources (desert and non-desert) and daily mortality and emergency hospitalizations. Finally, we pooled city-specific results in a random-effects meta-analysis. Results: On average, 15% of days were affected by desert dust at ground level (desert PM10 > 0 μg/m3). Most episodes occurred in spring–summer, with increasing gradient of both frequency and intensity north–south and west–east of the Mediterranean basin. We found significant associations of both PM10 concentrations with mortality. Increases of 10 μg/m3 in non-desert and desert PM10 (lag 0–1 days) were associated with increases in natural mortality of 0.55% (95% CI: 0.24, 0.87%) and 0.65% (95% CI: 0.24, 1.06%), respectively. Similar associations were estimated for cardio-respiratory mortality and hospital admissions. Conclusions: PM10 originating from the desert was positively associated with mortality and hospitalizations in Southern Europe. Policy measures should aim at reducing population exposure to anthropogenic airborne particles even in areas with large contribution from desert dust advections. Citation: Stafoggia M, Zauli-Sajani S, Pey J, Samoli E, Alessandrini E, Basagaña X, Cernigliaro A, Chiusolo M, Demaria M, Díaz J, Faustini A

  1. Source apportionment of PM10 and PM2.5 in a desert region in northern Chile

    International Nuclear Information System (INIS)

    Jorquera, Héctor; Barraza, Francisco

    2013-01-01

    Estimating contributions of anthropogenic sources to ambient particulate matter (PM) in desert regions is a challenging issue because wind erosion contributions are ubiquitous, significant and difficult to quantify by using source-oriented, dispersion models. A receptor modeling analysis has been applied to ambient PM 10 and PM 2.5 measured in an industrial zone ∼ 20 km SE of Antofagasta (23.63°S, 70.39°W), a midsize coastal city in northern Chile; the monitoring site is within a desert region that extends from northern Chile to southern Perú. Integrated 24-hour ambient samples of PM 10 and PM 2.5 were taken with Harvard Impactors; samples were analyzed by X Ray Fluorescence, ionic chromatography (NO 3 − and SO 4 = ), atomic absorption (Na + , K + ) and thermal optical transmission for elemental and organic carbon determination. Receptor modeling was carried out using Positive Matrix Factorization (US EPA Version 3.0); sources were identified by looking at specific tracers, tracer ratios, local winds and wind trajectories computed from NOAA's HYSPLIT model. For the PM 2.5 fraction, six contributions were found — cement plant, 33.7 ± 1.3%; soil dust, 22.4 ± 1.6%; sulfates, 17.8 ± 1.7%; mineral stockpiles and brine plant, 12.4 ± 1.2%; Antofagasta, 8.5 ± 1.3% and copper smelter, 5.3 ± 0.8%. For the PM 10 fraction five sources were identified — cement plant, 38.2 ± 1.5%; soil dust, 31.2 ± 2.3%; mineral stockpiles and brine plant, 12.7 ± 1.7%; copper smelter, 11.5 ± 1.6% and marine aerosol, 6.5 ± 2.4%. Therefore local sources contribute to ambient PM concentrations more than distant sources (Antofagasta, marine aerosol) do. Soil dust is enriched with deposition of marine aerosol and calcium, sulfates and heavy metals from surrounding industrial activities. The mean contribution of suspended soil dust to PM 10 is 50 μg/m 3 and the peak daily value is 104 μg/m 3 . For the PM 2.5 fraction, suspended soil dust contributes with an average of 9.3

  2. Toxicity of Urban PM10 and Relation with Tracers of Biomass Burning.

    Science.gov (United States)

    Van Den Heuvel, Rosette; Staelens, Jeroen; Koppen, Gudrun; Schoeters, Greet

    2018-02-12

    The chemical composition of particles varies with space and time and depends on emission sources, atmospheric chemistry and weather conditions. Evidence suggesting that particles differ in toxicity depending on their chemical composition is growing. This in vitro study investigated the biological effects of PM 10 in relation to PM-associated chemicals. PM 10 was sampled in ambient air at an urban traffic site (Borgerhout) and a rural background location (Houtem) in Flanders (Belgium). To characterize the toxic potential of PM 10 , airway epithelial cells (Beas-2B cells) were exposed to particles in vitro. Different endpoints were studied including cell damage and death (cell viability) and the induction of interleukin-8 (IL-8). The mutagenic capacity was assessed using the Ames II Mutagenicity Test. The endotoxin levels in the collected samples were analyzed and the oxidative potential (OP) of PM 10 particles was evaluated by electron paramagnetic resonance (EPR) spectroscopy. Chemical characteristics of PM 10 included tracers for biomass burning (levoglucosan, mannosan and galactosan), elemental and organic carbon (EC/OC) and polycyclic aromatic hydrocarbons (PAHs). Most samples displayed dose-dependent cytotoxicity and IL-8 induction. Spatial and temporal differences in PM 10 toxicity were seen. PM 10 collected at the urban site was characterized by increased pro-inflammatory and mutagenic activity as well as higher OP and elevated endotoxin levels compared to the background area. Reduced cell viability (-0.46 biomass burning, levoglucosan, mannosan and galactosan. Furthermore, direct and indirect mutagenicity were associated with tracers for biomass burning, OC, EC and PAHs. Multiple regression analyses showed levoglucosan to explain 16% and 28% of the variance in direct and indirect mutagenicity, respectively. Markers for biomass burning were associated with altered cellular responses and increased mutagenic activity. These findings may indicate a role of

  3. Monitoring of 7Be in surface air of varying PM10 concentrations

    International Nuclear Information System (INIS)

    Chao, J.H.; Liu, C.C.; Cho, I.C.; Niu, H.

    2014-01-01

    In this study, beryllium-7 ( 7 Be) concentrations of surface air were monitored throughout a span of 23 years (1992–2012) in the Taiwanese cities Yilan, Taipei, Taichung, and Kaohsiung. During this period, particulate matter (PM) concentrations, in terms of PM 10 , were collected monthly from the nearest air-quality pollutant monitoring stations and compared against 7 Be concentrations. Seasonal monsoons influenced 7 Be concentrations in all cities, resulting in high winter and low summer concentrations. In addition, the meteorological conditions caused seasonal PM 10 variations, yielding distinct patterns among the cities. There was no correlation between 7 Be and PM 10 in the case cities. The average annual 7 Be concentrations varied little among the cities, ranging from 2.9 to 3.5 mBq/m 3 , while the PM 10 concentrations varied significantly from 38 μg/m 3 in Yilan to 92 μg/m 3 in Kaohsiung depending on the degree of air pollution and meteorological conditions. The correlation between the 7 Be concentration and gross-beta activities (A β ) in air implied that the 7 Be was mainly attached to crustal PM and its concentration varied little among the cities, regardless of the increase in anthropogenic PM in air-polluted areas. - Highlights: • Both 7 Be and PM 10 concentrations were monitored in four Taiwanese cities from 1992 to 2012. • Seasonal variations of 7 Be and PM 10 were explained based on on meteorological and pollution conditions. • The annual concentrations of 7 Be varied little among the four cities even in high PM environment. • 7 Be is believed to mainly attach to natural PM in the cities that exhibited varying PM 10 concentrations

  4. 75 FR 60680 - Designation of Areas for Air Quality Planning Purposes; State of Arizona; Pinal County; PM10

    Science.gov (United States)

    2010-10-01

    ... the Apache Junction area within Pinal County; and the Hayden/Miami planning area, which includes the... the Hayden/ Miami PM 10 nonattainment area into two separate PM 10 nonattainment areas. See 72 FR... Apache Reservation lies in the existing Hayden PM 10 nonattainment area. The rest of the Pinal County...

  5. AJUSTE DE CURVAS MEDIANTE MÉTODOS NO PARAMÉTRICOS PARA ESTUDIAR EL COMPORTAMIENTO DE CONTAMINACIÓN DEL AIRE POR MATERIAL PARTICULADO PM10 AJUSTE DE CURVAS MEDIANTE MÉTODOS NÃO PARAMÉTRICOS PARA ESTUDAR O COMPORTAMENTO DE CONTAMINAÇÃO DO AR POR MATERIAL PARTICULADO PM10 CURVE FITTING NONPARAMETRIC METHODS FOR STUDYING BEHAVIOR FROM AIR POLLUTION PM10

    Directory of Open Access Journals (Sweden)

    Jhovana Reina

    2012-12-01

    comportamento do PM10 usando suavizadores kernel e spline. O processamento executa-se com o software estatístico de livre distribuição R. As curvas estimadas permitem observar um comportamento unimodal do PM10 durante as horas da manhã, diferenciado por dias da semana e por dias com chuva e sem chuva. Os modelos permitem caracterizar de maneira robusta o comportamento diário do PM10, tendo em conta observações heterocedásticas baixo um cenário de múltiplas respostas por ponto de desenho.One of the main air pollutants is the particulate matter whose aerodynamic diameter is less than 10 micrometers, usually referred as PM10. It is a fact that the PM10 behavior in the air varies in an irregular way, and also in a temporal way in the atmosphere, mainly due to human activities, to unstable atmospheric conditions, and to meteorological phenomena. Our main purpose is to characterize through a nonparametric smooth model the PM10 daily behavior, taking into account the day of the week, and the precipitation levels. We illustrate the model using records on PM10 contamination, as well as on data on rain precipitation in the north side of Cali, Colombia. We estimate daily typical curves of the PM10 behavior using kernel and spline estimators. We processed these data using the free distribution statistical software R. The estimated curves allow us to observe a PM10 unimodal behavior during the morning hours, which varies from one day to another and from rainy to non-rainy days. The fitted models allow a robust characterization of the PM10 daily behavior, considering heteroscedastic observations on a multiple response per design point scenario.

  6. Assessment of PM10 and heavy metals concentration in a Ceramic Cluster (NE Spain)

    Science.gov (United States)

    Belen Vicente, Ana; Pardo, Francisco; Sanfeliu, Teofilo; Bech, Joan

    2013-04-01

    Environmental pollution control is one of the most important goals in pollution risk assessment today. The aim of this study is conducting a retrospective view of the evolution of particulate matter (PM10) and heavy metals (As, Cd, Ni and Pb) at different localities in the Spanish cluster ceramic in the period between January 2007 and December 2011. The study area is in the province of Castellón. This province is a strategical area in the framework of European Union Pollution control. Approximately 80% of European ceramic tiles and ceramic frits manufacturers are concentrated in two areas, forming the so-called "Ceramics Clusters"; one is in Modena (Italy) and the other in Castellón (Spain). In this kind of areas, there are a lot of pollutants from this industry that represent an important contribution to soil contamination so it is necessary to control the air quality in them. These atmospheric particles are deposited in the ground through both dry and wet deposition. Soil is a major sink for heavy metals released into the environment. The level of pollution of soils by heavy metals depends on the retention capacity of the soil, especially on physical-chemical properties (mineralogy, grain size, organic matter) affecting soil particle surfaces and also on the chemical properties of the metal. The most direct consequences on the ground of air pollutants are acidification, salinization and the pollutions that can cause heavy metals as components of suspended particulate matter. For this purpose the levels of PM10 in ambient air and the corresponding annual and weekly trend were calculated. The results of the study show that the PM10 and heavy metals concentrations are below the limit values recommended by European Union Legislation for the protection of human health and ecosystems in the study period. There is an important reduction of them from 2009 in all control stations due to the economic crisis. References Moral, R., Gilkes, R.J., Jordán, M.M., 2005

  7. Sources of atmospheric aerosols controlling PM10 levels in Heraklion, Crete during winter time

    Science.gov (United States)

    Kalivitis, Nikolaos; Kouvarakis, Giorgos; Stavroulas, Iasonas; Kandilogiannaki, Maria; Vavadaki, Katerina; Mihalopoulos, Nikolaos

    2016-04-01

    High concentrations of Particulate Matter (PM) in the atmosphere have negative impact to human health. Thresholds for ambient concentrations that are defined by the directive 2008/50/EC are frequently exceeded even at background conditions in the Mediterranean region as shown in earlier studies. The sources of atmospheric particles in the urban environment of a medium size city of eastern Mediterranean are studied in the present work in order to better understand the causes and characteristics of exceedances of the daily mean PM10limit value of 50 μg m-3. Measurements were performed at the atmospheric quality measurement station of the Region of Crete, at the Heraklion city center on Crete island, during the winter/spring period of 2014-2015 and 2015-2016. Special emphasis was given to the study of the contribution of Black Carbon (BC) to the levels of PM10. Continuous measurements were performed using a beta-attenuation PM10monitor and a 7-wavelength Aethalometer with a time resolution of 30 and 5 minutes respectively. For direct comparison to background regional conditions, concurrent routine measurements at the atmospheric research station of University of Crete at Finokalia were used as background reference. Analysis of exceedances in the daily PM10 mass concentration showed that the total of the exceedances was related to long range transport of Saharan dust rather than local sources. However, compared to the Finokalia station it was found that there were 20% more exceedances in Heraklion, the addition of transported dust on the local pollution was the reason for the additional exceedance days. Excluding dust events, it was found that the PM10variability was dependent on the BC abundance, traffic during rush hours in the morning and biomass burning for domestic heating in the evening contributed significantly to PM10levels in Heraklion.

  8. Variations of PM2.5, PM10 mass concentration and health assessment in Islamabad, Pakistan

    Science.gov (United States)

    Memhood, Tariq; Tianle, Z.; Ahmad, I.; Li, X.; Shen, F.; Akram, W.; Dong, L.

    2018-04-01

    Sparse information appears in lack of awareness among the people regarding the linkage between particulate matter (PM) and mortality in Pakistan. The current study is aimed to investigate the seasonal mass concentration level of PM2.5 and PM10 in ambient air of Islamabad to assess the health risk of PM pollution. The sampling was carried out with two parallel medium volume air samplers on Whatman 47 mm quartz filter at a flow rate of 100L/min. Mass concentration was obtained by gravimetric analysis. A noticeable seasonal change in PM10 and PM2.5 mass concentration was observed. In case of PM2.5, the winter was a most polluted and spring was the cleanest season of 2017 in Islamabad with 69.97 and 40.44 μgm‑3 mean concentration. Contrary, highest (152.42 μgm‑3) and lowest (74.90 μgm‑3) PM10 mass concentration was observed in autumn and summer respectively. Air Quality index level for PM2.5 and PM10 was remained moderated to unhealthy and good to sensitive respectively. Regarding health risk assessment, using national data for mortality rates, the excess mortality due to PM2.5 and PM10 exposure has been calculated and amounts to over 198 and 98 deaths annually for Islamabad. Comparatively estimated lifetime risk for PM2.5 (1.16×10-6) was observed higher than PM10 (7.32×10-8).

  9. ESTUDIO SOBRE LA DINÁMICA TEMPORAL DE MATERIAL PARTICULADO PM 10 EMITIDO EN COCHABAMBA, BOLIVIA

    OpenAIRE

    Salini Calderón, Giovanni Angelo; Medina Mitma, Evelin Jhovana

    2017-01-01

    RESUMEN En este documento se presenta un estudio de series temporales de PM10 que muestran la mala calidad del aire en Cochabamba, mediante parámetros estadísticos usados en estudios sobre dinámica no lineal. El promedio diario de PM10 sigue patrones similares al de grandes ciudades que poseen altos índices de contaminación ambiental. Uno de los parámetros resultó del mismo orden y característica que los presentados en trabajos similares sobre el estudio de caoticidad en variables de contamin...

  10. Ambient air pollutant PM10 and risk of pregnancy-induced hypertension in urban China

    International Nuclear Information System (INIS)

    Huang, Xin; Qiu, Jie; Qiu, Weitao; He, Xiaochun; Wang, Yixuan; Sun, Qingmei; Cui, Hongmei; Liu, Sufen; Tang, Zhongfeng; Chen, Ya; Yue, Li; Da, Zhenqiang; Lv, Ling; Lin, Xiaojuan; Zhang, Chong; Zhang, Honghong; Xu, Ruifeng; Zhu, Daling; Zhang, Yaqun; Zhao, Nan

    2015-01-01

    Background: The relationship between air borne particulate matter ≤10 μm (PM 10 ) exposure and pregnancy-induced hypertension (PIH) is inconclusive. Few studies have been conducted, and fewer were conducted in areas with high levels of PM 10 . Methods: To examine the association between PM 10 and PIH by different exposure time windows during pregnancy, we analyzed data from a birth cohort study conducted in Lanzhou, China including 8 745 pregnant women with available information on air pollution during pregnancy. A total of 333 PIH cases (127 gestational hypertension (GH) and 206 preeclampsia (PE)) were identified. PM 10 daily average concentrations of each subject were calculated according to the distance between home/work addresses and monitor stations using an inverse-distance weighting approach. Results: Average PM 10 concentration over the duration of entire pregnancy was significantly associated with PIH (OR = 1.12, 95%CI: 1.02, 1.23 per 10 μg m −3 increase), PE (OR = 1.16, 95%CI: 1.03, 1.30 per 10 μg m −3 increase), late onset PE (OR = 1.17, 95% CI: 1.03, 1.32 per10 μg m −3 increase), and severe PE (OR = 1.25, 95% CI: 1.06, 1.48 per 10 μg m −3 increase). Average PM 10 during the first 12 gestational weeks was associated with the risk of GH (OR = 1.10, 95% CI: 1.00, 1.21 per 10 μg m −3 increase), and PM 10 exposure before 20 gestational weeks was associated with the risk of severe PE (OR = 1.14, 95% CI: 1.01, 1.30 per 10 μg m −3 increase). Conclusions: We found that high level exposure to ambient PM 10 during pregnancy was associated with an increased risk of PIH, GH and PE and that the strength of the association varied by timing of exposure during pregnancy. (letter)

  11. Milano summer particulate matter (PM10 triggers lung inflammation and extra pulmonary adverse events in mice.

    Directory of Open Access Journals (Sweden)

    Francesca Farina

    Full Text Available Recent studies have suggested a link between particulate matter (PM exposure and increased mortality and morbidity associated with pulmonary and cardiovascular diseases; accumulating evidences point to a new role for air pollution in CNS diseases. The purpose of our study is to investigate PM10sum effects on lungs and extra pulmonary tissues. Milano PM10sum has been intratracheally instilled into BALB/c mice. Broncho Alveolar Lavage fluid, lung parenchyma, heart and brain were screened for markers of inflammation (cell counts, cytokines, ET-1, HO-1, MPO, iNOS, cytotoxicity (LDH, ALP, Hsp70, Caspase8-p18, Caspase3-p17 for a putative pro-carcinogenic marker (Cyp1B1 and for TLR4 pathway activation. Brain was also investigated for CD68, TNF-α, GFAP. In blood, cell counts were performed while plasma was screened for endothelial activation (sP-selectin, ET-1 and for inflammation markers (TNF-α, MIP-2, IL-1β, MPO. Genes up-regulation (HMOX1, Cyp1B1, IL-1β, MIP-2, MPO and miR-21 have been investigated in lungs and blood. Inflammation in the respiratory tract of PM10sum-treated mice has been confirmed in BALf and lung parenchyma by increased PMNs percentage, increased ET-1, MPO and cytokines levels. A systemic spreading of lung inflammation in PM10sum-treated mice has been related to the increased blood total cell count and neutrophils percentage, as well as to increased blood MPO. The blood-endothelium interface activation has been confirmed by significant increases of plasma ET-1 and sP-selectin. Furthermore PM10sum induced heart endothelial activation and PAHs metabolism, proved by increased ET-1 and Cyp1B1 levels. Moreover, PM10sum causes an increase in brain HO-1 and ET-1. These results state the translocation of inflammation mediators, ultrafine particles, LPS, metals associated to PM10sum, from lungs to bloodstream, thus triggering a systemic reaction, mainly involving heart and brain. Our results provided additional insight into the toxicity

  12. Spatiotemporal estimation of historical PM2.5 concentrations using PM10, meteorological variables, and spatial effect

    Science.gov (United States)

    Li, Lianfa; Wu, Anna H.; Cheng, Iona; Chen, Jiu-Chiuan; Wu, Jun

    2017-10-01

    Monitoring of fine particulate matter with diameter health outcomes such as cancer. In this study, we aimed to design a flexible approach to reliably estimate historical PM2.5 concentrations by incorporating spatial effect and the measurements of existing co-pollutants such as particulate matter with diameter additive non-linear model. The spatiotemporal model was evaluated, using leaving-one-site-month-out cross validation. Our final daily model had an R2 of 0.81, with PM10, meteorological variables, and spatial autocorrelation, explaining 55%, 10%, and 10% of the variance in PM2.5 concentrations, respectively. The model had a cross-validation R2 of 0.83 for monthly PM2.5 concentrations (N = 8170) and 0.79 for daily PM2.5 concentrations (N = 51,421) with few extreme values in prediction. Further, the incorporation of spatial effects reduced bias in predictions. Our approach achieved a cross validation R2 of 0.61 for the daily model when PM10 was replaced by total suspended particulate. Our model can robustly estimate historical PM2.5 concentrations in California when PM2.5 measurements were not available.

  13. Local contribution of wood combustion to PM10 and PM2.5; Lokale bijdrage van houtverbranding aan PM10 en PM2,5

    Energy Technology Data Exchange (ETDEWEB)

    Kos, G.; Weijers, E. [ECN Biomassa, Kolen en Milieuonderzoek, Petten (Netherlands)

    2011-04-15

    In February 2009 the concentration of wood smoke in a residential area in Schoorl (Noord-Holland, Netherlands) was investigated over a period of three weeks. The aim was to assess the effect of local particulate matter (PM) emissions - caused by heating with wood stoves in this area - on local PM concentration. [Dutch] In februari 2009 zijn in Schoorl in Noord-Holland concentraties houtrook bepaald door levoglucosanmetingen (een voor houtrook kenmerkende koolwaterstofverbinding). Lokale houtrook draagt daar significant bij aan de concentratie fijn stof: tussen 9% en 27% voor PM10 en tussen 30% en 39% voor PM2,5.

  14. Isolated and synergistic effects of PM10 and average temperature on cardiovascular and respiratory mortality.

    Science.gov (United States)

    Pinheiro, Samya de Lara Lins de Araujo; Saldiva, Paulo Hilário Nascimento; Schwartz, Joel; Zanobetti, Antonella

    2014-12-01

    OBJECTIVE To analyze the effect of air pollution and temperature on mortality due to cardiovascular and respiratory diseases. METHODS We evaluated the isolated and synergistic effects of temperature and particulate matter with aerodynamic diameter mortality of individuals > 40 years old due to cardiovascular disease and that of individuals > 60 years old due to respiratory diseases in Sao Paulo, SP, Southeastern Brazil, between 1998 and 2008. Three methodologies were used to evaluate the isolated association: time-series analysis using Poisson regression model, bidirectional case-crossover analysis matched by period, and case-crossover analysis matched by the confounding factor, i.e., average temperature or pollutant concentration. The graphical representation of the response surface, generated by the interaction term between these factors added to the Poisson regression model, was interpreted to evaluate the synergistic effect of the risk factors. RESULTS No differences were observed between the results of the case-crossover and time-series analyses. The percentage change in the relative risk of cardiovascular and respiratory mortality was 0.85% (0.45;1.25) and 1.60% (0.74;2.46), respectively, due to an increase of 10 μg/m3 in the PM10 concentration. The pattern of correlation of the temperature with cardiovascular mortality was U-shaped and that with respiratory mortality was J-shaped, indicating an increased relative risk at high temperatures. The values for the interaction term indicated a higher relative risk for cardiovascular and respiratory mortalities at low temperatures and high temperatures, respectively, when the pollution levels reached approximately 60 μg/m3. CONCLUSIONS The positive association standardized in the Poisson regression model for pollutant concentration is not confounded by temperature, and the effect of temperature is not confounded by the pollutant levels in the time-series analysis. The simultaneous exposure to different levels of

  15. Isolated and synergistic effects of PM10 and average temperature on cardiovascular and respiratory mortality

    Directory of Open Access Journals (Sweden)

    Samya de Lara Lins de Araujo Pinheiro

    2014-12-01

    Full Text Available OBJECTIVE To analyze the effect of air pollution and temperature on mortality due to cardiovascular and respiratory diseases. METHODS We evaluated the isolated and synergistic effects of temperature and particulate matter with aerodynamic diameter 40 years old due to cardiovascular disease and that of individuals > 60 years old due to respiratory diseases in Sao Paulo, SP, Southeastern Brazil, between 1998 and 2008. Three methodologies were used to evaluate the isolated association: time-series analysis using Poisson regression model, bidirectional case-crossover analysis matched by period, and case-crossover analysis matched by the confounding factor, i.e., average temperature or pollutant concentration. The graphical representation of the response surface, generated by the interaction term between these factors added to the Poisson regression model, was interpreted to evaluate the synergistic effect of the risk factors. RESULTS No differences were observed between the results of the case-crossover and time-series analyses. The percentage change in the relative risk of cardiovascular and respiratory mortality was 0.85% (0.45;1.25 and 1.60% (0.74;2.46, respectively, due to an increase of 10 μg/m3 in the PM10 concentration. The pattern of correlation of the temperature with cardiovascular mortality was U-shaped and that with respiratory mortality was J-shaped, indicating an increased relative risk at high temperatures. The values for the interaction term indicated a higher relative risk for cardiovascular and respiratory mortalities at low temperatures and high temperatures, respectively, when the pollution levels reached approximately 60 μg/m3. CONCLUSIONS The positive association standardized in the Poisson regression model for pollutant concentration is not confounded by temperature, and the effect of temperature is not confounded by the pollutant levels in the time-series analysis. The simultaneous exposure to different levels of

  16. Development of cotton gin PM10 emission factors for EPA’s AP-42

    Science.gov (United States)

    The Compilation of Air Pollution Emission Factors (AP-42) emission factors are assigned ratings, from A (Excellent) to E (Poor), based on the quality of data used to develop them. All current PM10 cotton gin emission factors received quality ratings of D or lower. In an effort to improve these ratin...

  17. PM2.5 and PM10 Emission from agricultural soils by wind erosion

    Science.gov (United States)

    Soil tillage and wind erosion are a major source of particulate matter less than 2.5 and 10 µm (PM2.5 and PM10) emission from cultivated soil. Fifteen cultivated soils collected from 5 states were tested as crushed (<2.0 mm) and uncrushed (natural aggregation) at 8, 10, and 13 m s-1 wind velocity in...

  18. [Emission characteristics of PM10 from coal-fired industrial boiler].

    Science.gov (United States)

    Li, Chao; Li, Xing-Hua; Duan, Lei; Zhao, Meng; Duan, Jing-Chun; Hao, Ji-Ming

    2009-03-15

    Through ELPI (electrical low-pressure impactor) based dilution sampling system, the emission characteristics of PM10 and PM2.5 was studied experimentally at the inlet and outlet of dust catchers at eight different coal-fired industrial boilers. Results showed that a peak existed at around 0.12-0.20 microm of particle size for both number size distribution and mass size distribution of PM10 emitted from most of the boilers. Chemical composition analysis indicated that PM2.5 was largely composed of organic carbon, elementary carbon, and sulfate, with mass fraction of 3.7%-21.4%, 4.2%-24.6%, and 1.5%-55.2% respectively. Emission factors of PM10 and PM2.5 measured were 0.13-0.65 kg x t(-1) and 0.08-0.49 kg x t(-1) respectively for grate boiler using raw coal, and 0.24 kg x t(-1) and 0.22 kg x t(-1) for chain-grate boiler using briquette. In comparison, the PM2.5 emission factor of fluidized bed boiler is 1.14 kg x t(-1), much her than that of grate boiler. Due to high coal consumption and low efficiency of dust separator, coal-fired industrial boiler may become the most important source of PM10, and should be preferentially controlled in China.

  19. An integrated approach to identify the origin of PM10 exceedances.

    Science.gov (United States)

    Amodio, M; Andriani, E; de Gennaro, G; Demarinis Loiotile, A; Di Gilio, A; Placentino, M C

    2012-09-01

    This study was aimed to the development of an integrated approach for the characterization of particulate matter (PM) pollution events in the South of Italy. PM(10) and PM(2.5) daily samples were collected from June to November 2008 at an urban background site located in Bari (Puglia Region, South of Italy). Meteorological data, particle size distributions and atmospheric dispersion conditions were also monitored in order to provide information concerning the different features of PM sources. The collected data allowed suggesting four indicators to characterize different PM(10) exceedances. PM(2.5)/PM(10) ratio, natural radioactivity, aerosol maps and back-trajectory analysis and particle distributions were considered in order to evaluate the contribution of local anthropogenic sources and to determine the different origins of intrusive air mass coming from long-range transport, such as African dust outbreaks and aerosol particles from Central and Eastern Europe. The obtained results were confirmed by applying principal component analysis to the number particle concentration dataset and by the chemical characterization of the samples (PM(10) and PM(2.5)). The integrated approach for PM study suggested in this paper can be useful to support the air quality managers for the development of cost-effective control strategies and the application of more suitable risk management approaches.

  20. Development and testing of technical measures for the abatement of PM10 emissions from poultry housings

    Energy Technology Data Exchange (ETDEWEB)

    Ogink, N.W.M.; Aarnink, A.J.A.; Mosquera, J.; Winkel, A. [Wageningen UR Livestock Research, Wageningen (Netherlands)

    2010-07-01

    In order to comply with the European Union's ambient air quality standards, the Netherlands must reduce emissions of PM10. As a contributor to PM10, the poultry industry must implement mitigation measures before 2012. An extensive research and development program was launched in 2008 to provide abatement technology for broiler and layer houses. This paper presented results from studies carried out in 2008 and 2009 by Wageningen UR Livestock Research. The supply industry and poultry farmers participated in the study in which different methods and approaches were examined, including bedding material, light schedules, oil spraying systems, ionization systems, water scrubbers, combined scrubbers, electrostatic filters, and dry filters. Most methods were first tested and optimized in small units at an experimental poultry facility Lelystad. Several methods were validated in a next step on poultry farms, where PM10 emissions were measured to establish official emission factors. The oil spraying system and ionization system were tested in broiler houses and are nearing implementation. Reductions in PM10 emissions by different methods ranged from no effect to levels of 60 per cent. An outlook on adequate dust abatement measures for poultry housings was also provided.

  1. Carbonaceous material in fine particulate matter (PM10) of urban areas

    International Nuclear Information System (INIS)

    Brocco, Domenico; Leonardi, Vittorio; Maso; Marco; Prignani, Patrizia

    2006-01-01

    Total carbon (TC), elemental carbon (EC) and organic carbon (OC) in the fine particulate matter (PM10) were measured in the urban areas of Rome and Marino (Castelli Romani) by means a thermal method with a non-dispersive infrared detector (NDIR). The results showed that carbonaceous material constitutes 30-40% of the total aerosols in Rome and about 20% in Marino [it

  2. 76 FR 10817 - Approval and Promulgation of Implementation Plans; State of Nevada; PM-10; Determinations...

    Science.gov (United States)

    2011-02-28

    ... square miles and is surrounded by mountain ranges, which can lead to persistent wintertime temperature... Clean Data Policy in the context of the PM-10 standard. Latino Issues Forum v. EPA, Nos. 06-75831 and 08...), Latino Issues Forum, supra. It has been EPA's longstanding interpretation that the general provisions of...

  3. 76 FR 72404 - Adequacy Status of Motor Vehicle Emissions Budgets in Submitted PM10

    Science.gov (United States)

    2011-11-23

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9495-4] Adequacy Status of Motor Vehicle Emissions Budgets in Submitted PM 10 Maintenance Plan for Sacramento County; CA AGENCY: Environmental Protection Agency (EPA... found that the motor vehicle emissions budgets (MVEBs) for particulate matter with an aerodynamic...

  4. 78 FR 34095 - Adequacy Status of the Idaho, Northern Ada County PM10

    Science.gov (United States)

    2013-06-06

    ..., Northern Ada County PM 10 State Implementation Plan for Transportation Conformity Purposes AGENCY...), and volatile organic compounds (VOC) for the years 2008, 2015 and 2023 in the Northern Ada County PM... Northern Ada County. The EPA's finding was made pursuant to the adequacy review process for implementation...

  5. Metals and metalloids in PM10 in Nandan County, Guangxi, China, and the health risks posed.

    Science.gov (United States)

    Guo, Guanghui; Song, Bo; Xia, Deshang; Yang, Zijie; Wang, Fopeng

    2018-03-16

    Intense mining, smelting, and tailing activities of polymetallic ore deposits have affected the environment in Nandan County, Guangxi, China. Samples of particulates with aerodynamic diameters low or equal 10 μm (PM 10 ) were collected in Nandan County to investigate the concentrations of and health risks posed by 17 metals and metalloids in the PM 10 . The metal and metalloid concentrations were lower than those found in other industrial cities. The mean Cr concentration was 7.48 ng/m 3 . Significant higher metal and metalloid concentrations were found in PM 10 from mining areas (Dachang and Chehe) than from the control area (Liuzhai) (p metalloids in PM 10 at all the sites were low, but the non-carcinogenic risks posed to children by all the metals and metalloids together exceeded the safe level (i.e., risk value > 1). The carcinogenic risks posed by Cd, Ni, and Pb were negligible at all sites, while As, Co, and Cr posed potential carcinogenic risks to the residents.

  6. Toxicity of Urban PM10 and Relation with Tracers of Biomass Burning

    Directory of Open Access Journals (Sweden)

    Rosette Van Den Heuvel

    2018-02-01

    Full Text Available The chemical composition of particles varies with space and time and depends on emission sources, atmospheric chemistry and weather conditions. Evidence suggesting that particles differ in toxicity depending on their chemical composition is growing. This in vitro study investigated the biological effects of PM10 in relation to PM-associated chemicals. PM10 was sampled in ambient air at an urban traffic site (Borgerhout and a rural background location (Houtem in Flanders (Belgium. To characterize the toxic potential of PM10, airway epithelial cells (Beas-2B cells were exposed to particles in vitro. Different endpoints were studied including cell damage and death (cell viability and the induction of interleukin-8 (IL-8. The mutagenic capacity was assessed using the Ames II Mutagenicity Test. The endotoxin levels in the collected samples were analyzed and the oxidative potential (OP of PM10 particles was evaluated by electron paramagnetic resonance (EPR spectroscopy. Chemical characteristics of PM10 included tracers for biomass burning (levoglucosan, mannosan and galactosan, elemental and organic carbon (EC/OC and polycyclic aromatic hydrocarbons (PAHs. Most samples displayed dose-dependent cytotoxicity and IL-8 induction. Spatial and temporal differences in PM10 toxicity were seen. PM10 collected at the urban site was characterized by increased pro-inflammatory and mutagenic activity as well as higher OP and elevated endotoxin levels compared to the background area. Reduced cell viability (−0.46 < rs < −0.35, p < 0.01 and IL-8 induction (−0.62 < rs < −0.67, p < 0.01 were associated with all markers for biomass burning, levoglucosan, mannosan and galactosan. Furthermore, direct and indirect mutagenicity were associated with tracers for biomass burning, OC, EC and PAHs. Multiple regression analyses showed levoglucosan to explain 16% and 28% of the variance in direct and indirect mutagenicity, respectively. Markers for biomass burning were

  7. Level, potential sources of polycyclic aromatic hydrocarbons (PAHs) in particulate matter (PM10) in Naples

    Science.gov (United States)

    Di Vaio, Paola; Cocozziello, Beatrice; Corvino, Angela; Fiorino, Ferdinando; Frecentese, Francesco; Magli, Elisa; Onorati, Giuseppe; Saccone, Irene; Santagada, Vincenzo; Settimo, Gaetano; Severino, Beatrice; Perissutti, Elisa

    2016-03-01

    In Naples, particulate matter PM10 associated with polycyclic aromatic hydrocarbons (PAHs) in ambient air were determined in urban background (NA01) and urban traffic (NA02) sites. The principal objective of the study was to determine the concentration and distribution of PAHs in PM10 for identification of their possible sources (through diagnostic ratio - DR and principal component analysis - PCA) and an estimation of the human health risk (from exposure to airborne TEQ). Airborne PM10 samples were collected on quartz filters using a Low Volume Sampler (LVS) for 24 h with seasonal samples (autumn, winter, spring and summer) of about 15 days each between October 2012 and July 2013. The PM10 mass was gravimetrically determined. The PM10 levels, in all seasons, were significantly higher (P gas chromatography-mass spectrometer (GC-MS) analysis. The concentration of Benzo[a]Pyrene, BaP (EU and National limit value: 1 ng m-3 in PM10), varied from 0.065 ng m-3 during autumn time to 0.872 ng m-3 in spring time (NA01) and from 0.120 ng m-3 during autumn time to 1.48 ng m-3 of winter time (NA02) with four overshoots. In NA02 the trend of Σ12 PAHs was comparable to NA01 but were observed higher values than NA01. In fact, the mean concentration of Σ12 PAHs, in urban-traffic site was generally 2 times greater than in urban-background site in all the campaigns. PAHs with 5 and 6 ring, many of which are suspected carcinogens or genotoxic agents, (i.e Benzo[a]Pyrene, Indeno[1,2,3-cd]Pyrene, Benzo[b]Fluoranthene, Benzo[k]Fluoranthene and Benzo[g,h,i]Perylene), had a large contribution (∼50-55%) of total PAHs concentration in PM10 in two sites and in each of the campaigns. Diagnostic ratio analysis and PCA suggested a substantial contributions from traffic emission with minimal influence from coal combustion and natural gas emissions. In particular diesel vehicular emissions were the major source of PAHs at the studied sites. The use of Toxicity Equivalence Quantity (TEQ

  8. Contribution of Fugitive Emissions for PM10 Concentrations in an Industrial Area of Portugal

    Science.gov (United States)

    Marta Almeida, Susana; Viana Silva, Alexandra; Garcia, Silvia; Miranda, Ana Isabel

    2013-04-01

    Significant atmospheric dust arises from the mechanical disturbance of granular material exposed to the air. Dust generated from these open sources is termed "fugitive" because it is not discharged to the atmosphere in a confined flow stream. Common sources of fugitive dust include unpaved roads, agricultural tilling operations, aggregate storage piles, heavy construction and harbor operations. The objective of this work was to identify the likeliness and extend of the PM10 limit value exceedences due to fugitive emissions in a particularly zone where PM fugitive emissions are a core of environmental concerns - Mitrena, Portugal. Mitrena, is an industrial area that coexists with a high-density urban region (Setúbal) and areas with an important environmental concern (Sado Estuary and Arrábida which belongs to the protected area Natura 2000 Network). Due to the typology of industry sited in Mitrena (e.g. power plant, paper mill, cement, pesticides and fertilized productions), there are a large uncontrolled PM fugitive emissions, providing from heavy traffic and handling and storage of raw material on uncover stockyards in the harbor and industries. Dispersion modeling was performed with the software TAPM (The Air Pollution Model) and results were mapped over the study area, using GIS (Geographic Information Systems). Results showed that managing local particles concentrations can be a frustrating affair because the weight of fugitive sources is very high comparing with the local anthropogenic stationary sources. In order to ensure that the industry can continue to meet its commitments in protecting air quality, it is essential to warrant that the characteristics of releases from all fugitive sources are fully understood in order to target future investments in those areas where maximum benefit will be achieved.

  9. Estimation of daily PM10 concentrations in Italy (2006-2012) using finely resolved satellite data, land use variables and meteorology.

    Science.gov (United States)

    Stafoggia, Massimo; Schwartz, Joel; Badaloni, Chiara; Bellander, Tom; Alessandrini, Ester; Cattani, Giorgio; De' Donato, Francesca; Gaeta, Alessandra; Leone, Gianluca; Lyapustin, Alexei; Sorek-Hamer, Meytar; de Hoogh, Kees; Di, Qian; Forastiere, Francesco; Kloog, Itai

    2017-02-01

    Health effects of air pollution, especially particulate matter (PM), have been widely investigated. However, most of the studies rely on few monitors located in urban areas for short-term assessments, or land use/dispersion modelling for long-term evaluations, again mostly in cities. Recently, the availability of finely resolved satellite data provides an opportunity to estimate daily concentrations of air pollutants over wide spatio-temporal domains. Italy lacks a robust and validated high resolution spatio-temporally resolved model of particulate matter. The complex topography and the air mixture from both natural and anthropogenic sources are great challenges difficult to be addressed. We combined finely resolved data on Aerosol Optical Depth (AOD) from the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm, ground-level PM 10 measurements, land-use variables and meteorological parameters into a four-stage mixed model framework to derive estimates of daily PM 10 concentrations at 1-km2 grid over Italy, for the years 2006-2012. We checked performance of our models by applying 10-fold cross-validation (CV) for each year. Our models displayed good fitting, with mean CV-R2=0.65 and little bias (average slope of predicted VS observed PM 10 =0.99). Out-of-sample predictions were more accurate in Northern Italy (Po valley) and large conurbations (e.g. Rome), for background monitoring stations, and in the winter season. Resulting concentration maps showed highest average PM 10 levels in specific areas (Po river valley, main industrial and metropolitan areas) with decreasing trends over time. Our daily predictions of PM 10 concentrations across the whole Italy will allow, for the first time, estimation of long-term and short-term effects of air pollution nationwide, even in areas lacking monitoring data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Development of a continuous monitoring system for PM10 and components of PM2.5.

    Science.gov (United States)

    Lippmann, M; Xiong, J Q; Li, W

    2000-01-01

    While particulate matter with aerodynamic diameters below 10 and 2.5 microns (PM10 and PM2.5) correlate with excess mortality and morbidity, there is evidence for still closer epidemiological associations with sulfate ion, and experimental exposure-response studies suggest that the hydrogen ion and ultrafine (PM0.15) concentrations may be important risk factors. Also, there are measurement artifacts in current methods used to measure ambient PM10 and PM2.5, including negative artifacts because of losses of sampled semivolatile components (ammonium nitrate and some organics) and positive artifacts due to particle-bound water. To study such issues, we are developing a semi-continuous monitoring system for PM10, PM2.5, semivolatiles (organic compounds and NH4NO3), particle-bound water, and other PM2.5 constituents that may be causal factors. PM10 is aerodynamically sorted into three size-fractions: (1) coarse (PM10-PM2.5); (2) accumulation mode (PM2.5-PM0.15); and (3) ultrafine (PM0.15). The mass concentration of each fraction is measured in terms of the linear relation between accumulated mass and pressure drop on polycarbonate pore filters. The PM0.15 mass, being highly correlated with the ultrafine number concentration, provides a good index of the total number concentration in ambient air. For the accumulation mode (PM2.5-PM0.15), which contains nearly all of the semivolatiles and particle-bound water by mass, aliquots of the aerosol stream flow into system components that continuously monitor sulfur (by flame photometry), ammonium and nitrate (by chemiluminescence following catalytic transformations to NO), organics (by thermal-optical analysis) and particle-bound water (by electrolytic hygrometer after vacuum evaporation of sampled particles). The concentration of H+ can be calculated (by ion balance using the monitoring data on NO3-, NH4+, and SO4=).

  11. Análisis comparativo de las mediciones de material particulado PM10

    Directory of Open Access Journals (Sweden)

    Roberto Rojano Alvarado

    2011-01-01

    Full Text Available En este estudio se determinaron las concentraciones de PM10 en la zona urbana del municipio de Riohacha, Colombia y se compararon dos métodos de muestreo de manera simultánea. Los instrumentos utilizados para la comparación fueron los equipos: muestreador de alto volumen PM10, Graseby Andersen y un nefelómetro DataRam 4 (Thermo Electron corporation. Los datos fueron obtenidos durante tres meses en dos sitios (Desalud y Bienestar de la zona urbana de Riohacha. Los resultados mostraron que el promedio de la concentración de PM10 fue de 23,64 ¿g/m3 y 36,86 ¿g/m3 en las dos estaciones utilizando el DataRam 4 y de 25,09 ¿g/m3 y 36,64 ¿g/m3 utilizando el muestreador de alto volumen PM10. El Análisis de correlación muestra una consistencia positiva para todas los pares en los dos métodos: R2 = 0,5377 para la estación Desalud y R2 = 0,7276 para la estación Bienestar. El coefi ciente aumentó cuando se correlacionaron los resultados para los días con Humedad Relativa menor del 70%, R2 = 0,89 estación Desalud y R2 = 0,69 estación Bienestar. Los resultados mostraron que el método fotométrico (DataRam 4, puede ser utilizado para determinar concentraciones de material partículado PM10, en las condiciones ambientales de Riohacha.

  12. Temporal and spatial PM10 concentration distribution using an inverse distance weighted method in Klang Valley, Malaysia

    Science.gov (United States)

    Tarmizi, S. N. M.; Asmat, A.; Sumari, S. M.

    2014-02-01

    PM10 is one of the air contaminants that can be harmful to human health. Meteorological factors and changes of monsoon season may affect the distribution of these particles. The objective of this study is to determine the temporal and spatial particulate matter (PM10) concentration distribution in Klang Valley, Malaysia by using the Inverse Distance Weighted (IDW) method at different monsoon season and meteorological conditions. PM10 and meteorological data were obtained from the Malaysian Department of Environment (DOE). Particles distribution data were added to the geographic database on a seasonal basis. Temporal and spatial patterns of PM10 concentration distribution were determined by using ArcGIS 9.3. The higher PM10 concentrations are observed during Southwest monsoon season. The values are lower during the Northeast monsoon season. Different monsoon seasons show different meteorological conditions that effect PM10 distribution.

  13. Temporal and spatial PM10 concentration distribution using an inverse distance weighted method in Klang Valley, Malaysia

    International Nuclear Information System (INIS)

    Tarmizi, S N M; Asmat, A; Sumari, S M

    2014-01-01

    PM 10 is one of the air contaminants that can be harmful to human health. Meteorological factors and changes of monsoon season may affect the distribution of these particles. The objective of this study is to determine the temporal and spatial particulate matter (PM 10 ) concentration distribution in Klang Valley, Malaysia by using the Inverse Distance Weighted (IDW) method at different monsoon season and meteorological conditions. PM 10 and meteorological data were obtained from the Malaysian Department of Environment (DOE). Particles distribution data were added to the geographic database on a seasonal basis. Temporal and spatial patterns of PM 10 concentration distribution were determined by using ArcGIS 9.3. The higher PM 10 concentrations are observed during Southwest monsoon season. The values are lower during the Northeast monsoon season. Different monsoon seasons show different meteorological conditions that effect PM 10 distribution

  14. Geochemistry and carbon isotopic ratio for assessment of PM10 composition, source and seasonal trends in urban environment.

    Science.gov (United States)

    Di Palma, A; Capozzi, F; Agrelli, D; Amalfitano, C; Giordano, S; Spagnuolo, V; Adamo, P

    2018-08-01

    Investigating the nature of PM 10 is crucial to differentiate sources and their relative contributions. In this study we compared the levels, and the chemical and mineralogical properties of PM 10 particles sampled in different seasons at monitoring stations representative of urban background, urban traffic and suburban traffic areas of Naples city. The aims were to relate the PM 10 load and characteristics to the location of the monitoring stations, to investigate the different sources contributing to PM 10 and to highlight PM 10 seasonal variability. Bulk analyses of chemical species in the PM 10 fraction included total carbon and nitrogen, δ 13 C and other 20 elements. Both natural and anthropogenic sources were found to contribute to the exceedances of the EU PM 10 limit values. The natural contribution was mainly related to marine aerosols and soil dust, as highlighted by X-ray diffractometry and SEM-EDS microscopy. The percentage of total carbon suggested a higher contribution of biogenic components to PM 10 in spring. However, this result was not supported by the δ 13 C values which were seasonally homogeneous and not sufficient to extract single emission sources. No significant differences, in terms of PM 10 load and chemistry, were observed between monitoring stations with different locations, suggesting a homogeneous distribution of PM 10 on the studied area in all seasons. The anthropogenic contribution to PM 10 seemed to dominate in all sites and seasons with vehicular traffic acting as a main source mostly by generation of non-exhaust emissions Our findings reinforce the need to focus more on the analysis of PM 10 in terms of quality than of load, to reconsider the criteria for the classification and the spatial distribution of the monitoring stations within urban and suburban areas, with a special attention to the background location, and to emphasize all the policies promoting sustainable mobility and reduction of both exhaust and not

  15. Comparison of PM10 concentrations and metal content in three different sites of the Venice Lagoon: an analysis of possible aerosol sources.

    Science.gov (United States)

    Contini, Daniele; Belosi, Franco; Gambaro, Andrea; Cesari, Daniela; Stortini, Angela Maria; Bove, Maria Chiara

    2012-01-01

    The Venice Lagoon is exposed to atmospheric pollutants from industrial activities, thermoelectric power plants, petrochemical plants, incinerator, domestic heating, ship traffic, glass factories and vehicular emissions on the mainland. In 2005, construction began on the mobile dams (MOSE), one dam for each channel connecting the lagoon to the Adriatic Sea as a barrier against high tide. These construction works could represent an additional source of pollutants. PM10 samples were taken on random days between 2007 and 2010 at three different sites: Punta Sabbioni, Chioggia and Malamocco, located near the respective dam construction worksites. Chemical analyses of V, Cr, Fe, Co, Ni, Cu, Zn, As, Mo, Cd, Sb, Tl and Pb in PM10 samples were performed by Inductively coupled plasma-quadrupole mass spectrometry (ICP-QMS) and results were used to identify the main aerosol sources. The correlation of measured data with meteorology, and source apportionment, failed to highlight a contribution specifically associated to the emissions of the MOSE construction works. The comparison of the measurements at the three sites showed a substantial homogeneity of metal concentrations in the area. Source apportionment with principal component analysis (PCA) and positive matrix factorization (PMF) showed that a four principal factors model could describe the sources of metals in PM10. Three of them were assigned to specific sources in the area and one was characterised as a source of mixed origin (anthropogenic and crustal). A specific anthropogenic source of PM10 rich in Ni and Cr, active at the Chioggia site, was also identified.

  16. Characteristics of PM10 and CO2 concentrations on 100 underground subway station platforms in 2014 and 2015

    Science.gov (United States)

    Hwang, Sung Ho; Park, Wha Me; Park, Jae Bum; Nam, Taegyun

    2017-10-01

    In this study, the concentrations of particulate matter 10 μm or less in diameter (PM10) and carbon dioxide (CO2) were measured in 100 underground subway stations, and the potential health risks of PM10, and environmental factors affecting these concentrations were analyzed. The concentrations were measured from May 2014 to September 2015 in stations along Seoul Metro lines 1-4. There were significantly different PM10 concentrations among the underground subway stations along lines 1, 2, 3, and 4. The PM10 concentrations were associated with the CO2 concentrations, construction years, station depths, and numbers of passengers. The underground PM10 concentrations were significantly higher than the outdoor PM10 concentrations. In addition, the PM10 concentrations were higher in the stations that were constructed in the 1970s than in those constructed after the 1970s. The PM10 and CO2 concentrations varied significantly, depending on the construction year and number of passengers. The hazard quotient is higher than the acceptable level of 1.0 μg kg-1 day for children, indicating that they are at risk of exposure to unsafe PM10 levels when travelling by the metro. Therefore, stricter management may be necessary for the stations constructed in the 1970s as well as those with higher numbers of passengers.

  17. Hospital indoor PM10/PM2.5 and associated trace elements in Guangzhou, China

    International Nuclear Information System (INIS)

    Wang Xinhua; Bi Xinhui; Sheng Guoying; Fu Jiamo

    2006-01-01

    PM10 and PM2.5 samples were collected in the indoor environments of four hospitals and their adjacent outdoor environments in Guangzhou, China during the summertime. The concentrations of 18 target elements in particles were also quantified. The results showed that indoor PM2.5 levels with an average of 99 μg m -3 were significantly higher than outdoor PM2.5 standard of 65 μg m -3 recommended by USEPA [United States Environmental Protection Agency. Office of Air and Radiation, Office of Air Quality Planning and Standards, Fact Sheet. EPA's Revised Particulate Matter Standards, 17, July 1997] and PM2.5 constituted a large fraction of indoor respirable particles (PM10) by an average of 78% in four hospitals. High correlation between PM2.5 and PM10 (R 2 of 0.87 for indoors and 0.90 for outdoors) suggested that PM2.5 and PM10 came from similar particulate emission sources. The indoor particulate levels were correlated with the corresponding outdoors (R 2 of 0.78 for PM2.5 and 0.67 for PM10), demonstrating that outdoor infiltration could lead to direct transportation into indoors. In addition to outdoor infiltration, human activities and ventilation types could also influence indoor particulate levels in four hospitals. Total target elements accounted for 3.18-5.56% of PM2.5 and 4.38-9.20% of PM10 by mass, respectively. Na, Al, Ca, Fe, Mg, Mn and Ti were found in the coarse particles, while K, V, Cr, Ni, Cu, Zn, Cd, Sn, Pb, As and Se existed more in the fine particles. The average indoor concentrations of total elements were lower than those measured outdoors, suggesting that indoor elements originated mainly from outdoor emission sources. Enrichment factors (EF) for trace element were calculated to show that elements of anthropogenic origins (Zn, Pb, As, Se, V, Ni, Cu and Cd) were highly enriched with respect to crustal composition (Al, Fe, Ca, Ti and Mn). Factor analysis was used to identify possible pollution source-types, namely street dust, road traffic and

  18. Hospital indoor PM10/PM2.5 and associated trace elements in Guangzhou, China.

    Science.gov (United States)

    Wang, Xinhua; Bi, Xinhui; Sheng, Guoying; Fu, Jiamo

    2006-07-31

    PM10 and PM2.5 samples were collected in the indoor environments of four hospitals and their adjacent outdoor environments in Guangzhou, China during the summertime. The concentrations of 18 target elements in particles were also quantified. The results showed that indoor PM2.5 levels with an average of 99 microg m(-3) were significantly higher than outdoor PM2.5 standard of 65 microg m(-3) recommended by USEPA [United States Environmental Protection Agency. Office of Air and Radiation, Office of Air Quality Planning and Standards, Fact Sheet. EPA's Revised Particulate Matter Standards, 17, July 1997] and PM2.5 constituted a large fraction of indoor respirable particles (PM10) by an average of 78% in four hospitals. High correlation between PM2.5 and PM10 (R(2) of 0.87 for indoors and 0.90 for outdoors) suggested that PM2.5 and PM10 came from similar particulate emission sources. The indoor particulate levels were correlated with the corresponding outdoors (R(2) of 0.78 for PM2.5 and 0.67 for PM10), demonstrating that outdoor infiltration could lead to direct transportation into indoors. In addition to outdoor infiltration, human activities and ventilation types could also influence indoor particulate levels in four hospitals. Total target elements accounted for 3.18-5.56% of PM2.5 and 4.38-9.20% of PM10 by mass, respectively. Na, Al, Ca, Fe, Mg, Mn and Ti were found in the coarse particles, while K, V, Cr, Ni, Cu, Zn, Cd, Sn, Pb, As and Se existed more in the fine particles. The average indoor concentrations of total elements were lower than those measured outdoors, suggesting that indoor elements originated mainly from outdoor emission sources. Enrichment factors (EF) for trace element were calculated to show that elements of anthropogenic origins (Zn, Pb, As, Se, V, Ni, Cu and Cd) were highly enriched with respect to crustal composition (Al, Fe, Ca, Ti and Mn). Factor analysis was used to identify possible pollution source-types, namely street dust, road traffic

  19. Basic statistics of PM2.5 and PM10 in the atmosphere of Mexico City.

    Science.gov (United States)

    Vega, E; Reyes, E; Sánchez, G; Ortiz, E; Ruiz, M; Chow, J; Watson, J; Edgerton, S

    2002-03-27

    The high levels of fine particulate matter in Mexico City are of concern since they may induce severe public health effects as well as the attenuation of visible light. Sequential filter samplers were used at six different sites from 23 February to 22 March 1997. The sampling campaign was carried out as part of the project 'Investigación sobre Materia Particulada y Deterioro Atmosferico-Aerosol and Visibility Evaluation Research'. This research was a cooperative project sponsored by PEMEX and by the US Department of Energy. Sampling sites represent the different land uses along the city, the northwest station, Tlalnepantla, is located in a mixed medium income residential and industrial area. The northeast station, Xalostoc, is located in a highly industrialized area, Netzahualcoyotl is located in a mixed land use area, mainly commercial and residential. Station La Merced is located in the commercial and administrative district downtown. The southwest station is located in the Pedregal de San Angel, in a high-income neighborhood, and the southeast station located in Cerro de la Estrella is a mixed medium income residential and commercial area. Samples were collected four times a day in Cerro de la Estrella (CES), La Merced (MER) and Xalostoc (XAL) with sampling periods of 6 h. In Pedregal (PED), Tlalnepantla (TLA) and Netzahualcoyot1 (NEZ) sampling periods were every 24 h. In this paper the basic statistics of PM2.5 and PM10 mass concentrations are presented. The average results showed that 49, 61, 46, 57, 51 and 44% of the PM10 consisted of PM2.5 for CES, MER, XAL, PED, TLA and NEZ, respectively. The 24-h average highest concentrations of PM25 and PM10 were registered at NEZ (184 and 267 microg/m3) and the lowest at PED (22 and 39 microg/m3). The highest PM10 correlations were between XAL-CES (0.79), PED-TLA (0.80). In contrast, the highest PM2.5 correlations were between CES-PED (0.74), MER-CES (0.73) and TLA-PED (0.72), showing a lower correlation than the PM10

  20. PM10 composition during an intense Saharan dust transport event over Athens (Greece)

    International Nuclear Information System (INIS)

    Remoundaki, E.; Bourliva, A.; Kokkalis, P.; Mamouri, R.E.; Papayannis, A.; Grigoratos, T.; Samara, C.; Tsezos, M.

    2011-01-01

    The influence of Saharan dust on the air quality of Southern European big cities became a priority during the last decade. The present study reports results on PM 10 monitored at an urban site at 14 m above ground level during an intense Saharan dust transport event. The elemental composition was determined by Energy Dispersive X-ray Fluorescence Spectrometry (EDXRF) for 12 elements: Si, Al, Fe, K, Ca, Mg, Ti, S, Ni, Cu, Zn and Mn. PM 10 concentrations exceeded the EU limit (50 μg/m 3 ) several times during the sampling period. Simultaneous maxima have been observed for the elements of crustal origin. The concentrations of all the elements presented a common maximum, corresponding to the date where the atmosphere was heavily charged with particulate matter permanently for an interval of about 10 h. Sulfur and heavy metal concentrations were also associated to local emissions. Mineral dust represented the largest fraction of PM 10 reaching 79%. Seven days back trajectories have shown that the air masses arriving over Athens, originated from Western Sahara. Scanning Electron Microscopy coupled with Energy Dispersive X-ray analysis (SEM-EDX) revealed that particle agglomerates were abundant, most of them having sizes < 2 μm. Aluminosilicates were predominant in dust particles also rich in calcium which was distributed between calcite, dolomite, gypsum and Ca-Si particles. These results were consistent with the origin of the dust particles and the elemental composition results. Sulfur and heavy metals were associated to very fine particles < 1 μm. - Highlights: → The paper focuses on the contribution of Saharan dust in PM10 levels at an urban site. → High Ca and Fe, calcite, illite and smectites and poor quartz contents are related to source-regions. → The data sets presented are in very good agreement and are also strongly confirmed by literature. → Dust contribution in PM10 can be of comparable importance for both an urban and a remote location.

  1. Associations of daily levels of PM10 and NO₂ with emergency hospital admissions and mortality in Switzerland: Trends and missed prevention potential over the last decade.

    Science.gov (United States)

    Perez, Laura; Grize, Leticia; Infanger, Denis; Künzli, Nino; Sommer, Hansjörg; Alt, Gian-Marco; Schindler, Christian

    2015-07-01

    In most regions of the world, levels and constituents of the air pollution mixture have substantially changed over the last decades. To evaluate if the effects of PM10 and NO2 on daily emergency hospital admissions and mortality have changed during a ~10 year period in Switzerland; to retrospectively estimate prevention potential of different policy choices. Thirteen Poisson-regression models across Switzerland were developed using daily PM10 and NO2 levels from central monitors and accounting for several temporal and seasonal confounders. Time trends of effects were evaluated with an interaction variable. Distributed lag models with 28 days exposure window were used to retrospectively predict missed prevention potential for each region. Overall, emergency hospitalizations and mortality from any medical cause increased by 0.2% (95% Confidence Interval [95% CI]: 0.01, 0.33) and 0.2% (95% CI: -0.1, 0.6) for a 10 µg/m(3) increment of PM10, and 0.7% (95% CI: 0.1, 1.3) for NO2 and mortality. Over the study period, the association between respiratory emergencies and PM10 changed by a factor of 1.017 (95% CI: 1.001, 1.034) and by a factor of 0.977 [95% CI: 0.956, 0.998]) for respiratory mortality among the elderly for NO2. During the study period, abatement strategies targeting a 20% lower overall mean would have prevented four times more cases than abating days exceeding daily standards. During the last decade, the short term effects of PM10 and NO2 on hospitalizations and mortality in Switzerland have almost not changed. More ambitious strategies of air pollutant reduction in Switzerland would have had non negligible public health benefits. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Intervention assessments in the control of PM10 emissions from an urban waste transfer station.

    Science.gov (United States)

    Barratt, B M; Fuller, G W

    2014-05-01

    While vehicle emissions present the most widespread cause of breaches of EU air quality standards in urban areas of the UK, the greatest PM10 concentrations are often recorded close to small industrial sites with significant and long-term public exposure within close proximity. This is particularly the case in London, where monitoring in densely populated locations, adjacent to waste transfer stations (WTS), routinely report the highest PM10 concentrations in the city. This study aims to assess the impact of dust abatement measures taken at a WTS in west London and, in so doing, develop analysis techniques transferrable to other similar industrial situations. The study was performed in a 'blinded fashion', i.e., no details of operating times, activities or remediation measures were provided prior to the analysis. The study established that PM10 concentrations were strongly related to the industrial area's working hours and atmospheric humidity. The primary source of local particulate matter during working hours was found to be from the industrial area itself, not from the adjacent road serving the site. CUSUM analysis revealed a strong, sustained change point coinciding with a number of modifications at the WTS. Analysis suggested that introducing a vehicle washer bay, leading to a less dry and dusty yard, and ceasing stock piling and waste handling activities outside of the open shed had the greatest effect on PM10 concentrations. The techniques developed in this study should empower licensing authorities to more effectively characterise and mitigate particulate matter generated by urban industrial activities, thereby improving the health and quality of life of the local population.

  3. Spatio-temporal variation in chemical characteristics of PM10 over Indo Gangetic Plain of India.

    Science.gov (United States)

    Sharma, S K; Mandal, T K; Srivastava, M K; Chatterjee, A; Jain, Srishti; Saxena, M; Singh, B P; Saraswati; Sharma, A; Adak, A; K Ghosh, S

    2016-09-01

    The paper presents the spatio-temporal variation of chemical compositions (organic carbon (OC), elemental carbon (EC), and water-soluble inorganic ionic components (WSIC)) of particulate matter (PM10) over three locations (Delhi, Varanasi, and Kolkata) of Indo Gangetic Plain (IGP) of India for the year 2011. The observational sites are chosen to represent the characteristics of upper (Delhi), middle (Varanasi), and lower (Kolkata) IGP regions as converse to earlier single-station observation. Average mass concentration of PM10 was observed higher in the middle IGP (Varanasi 206.2 ± 77.4 μg m(-3)) as compared to upper IGP (Delhi 202.3 ± 74.3 μg m(-3)) and lower IGP (Kolkata 171.5 ± 38.5 μg m(-3)). Large variation in OC values from 23.57 μg m(-3) (Delhi) to 12.74 μg m(-3) (Kolkata) indicating role of formation of secondary aerosols, whereas EC have not shown much variation with maximum concentration over Delhi (10.07 μg m(-3)) and minimum over Varanasi (7.72 μg m(-3)). As expected, a strong seasonal variation was observed in the mass concentration of PM10 as well as in its chemical composition over the three locations. Principal component analysis (PCA) identifies the contribution of secondary aerosol, biomass burning, fossil fuel combustion, vehicular emission, and sea salt to PM10 mass concentration at the observational sites of IGP, India. Backward trajectory analysis indicated the influence of continental type aerosols being transported from the Bay of Bengal, Pakistan, Afghanistan, Rajasthan, Gujarat, and surrounding areas to IGP region.

  4. Prior selection for Gumbel distribution parameters using multiple-try metropolis algorithm for monthly maxima PM10 data

    Science.gov (United States)

    Amin, Nor Azrita Mohd; Adam, Mohd Bakri; Ibrahim, Noor Akma

    2014-09-01

    The Multiple-try Metropolis (MTM) algorithm is the new alternatives in the field of Bayesian extremes for summarizing the posterior distribution. MTM produce efficient estimation scheme for modelling extreme data in term of the convergence and small burn-in periods. The main objective is to explore the accuracy of the parameter estimation to the change of priors and compare the results with a classical likelihood-based analysis. Focus is on modelling the extreme data based on block maxima approach using Gumbel distribution. The comparative study between MTM and MLE is shown by the numerical problems. Several goodness of fit tests are compute for selecting the best model. The application is on the monthly maxima PM10 data for Johor state.

  5. Environmental pollution: quantitative analysis of particulate matter (PM10) by SR-TXRF

    International Nuclear Information System (INIS)

    Moreira, Silvana; Melo Junior, Ariston da Silva; Zucchi, Orgheda Luiza Araujo Domingues; Vives, Ana Elisa Sirito de

    2007-01-01

    The atmospheric pollution is a concern in the great urban centers, due its association with man pathologies. The Campinas region is one of the most urbanized of the Sao Paulo State and an important industrial center. Thus, due to its location and importance were installed three samplers for particulate material (PM 10 ). One sampler was located in downtown of Campinas city, in an avenue with high vehicular flow. Another sampler was installed in the UNICAMP campus and the third one in Paulinia city, near to REPLAN. For downtown of Campinas city PM 10 concentrations higher than regular air quality established by CETESB (150 μg.m -3 ) was observed. The PM 10 values for Paulinia and downtown of Campinas were higher than Barao Geraldo location. Employing SR-TXRF was possible identify and quantify 19 elements in the particulate material samples. All the measurements were performed at Synchrotron Light Source Laboratory, Campinas, SP. After statistics analysis by principal components and cluster analysis was possible to assemble the elements according emission sources. The dusty soil for coarse fraction contributed with 62%, 51% and 46% for Barao Geraldo, Paulinia and downtown of Campinas, respectively. The vehicular emission was responsible for 16% at downtown Campinas city as expected due to high vehicular flow at sampling place. The vehicular and industrial emissions contributed with 20% and 25%, respectively at Paulinia sampling site. The industrial emissions observed for Barao Geraldo and downtown of Campinas city were 27% and 33%, respectively. (author)

  6. Evaluation of PM-10 commercial inlets for new surveillance air sampler

    International Nuclear Information System (INIS)

    Langer, G.

    1986-01-01

    The inlet for the present Rock Flats Plant surveillance sampler does not meet the new but still tentative PM-10 (<10-μm particle mass) criterion for sampling the hazardous fraction of airborne dust. Since this criterion relates mainly to non-radioactive emissions, DOE and EPA are presently in the process of promulgating emission guidelines specifically for non-reactor DOE nuclear facilities. The authors present approach is to select a commercial inlet and modify its, if necessary, to meet the PM-10 criterion, keeping in mind that they may have to recover the dust collected in the inlet. There is no EPA-approved PM-10 inlet design; instead, EPA issued a performance specification. As a nuclear operation, Rocky Flats has to sample continuously to ensure no period remains unmonitored, instead of every sixth day, as set forth by EPA for non-nuclear installations. During this study period, the authors developed an inlet evaluation methodology to meet the above, anticipated EPA requirements. Also, they started testing two potential inlets. 6 references, 2 figures, 1 table

  7. Pulmonary Function and Incidence of Selected Respiratory Diseases Depending on the Exposure to Ambient PM10

    Directory of Open Access Journals (Sweden)

    Artur Badyda

    2016-11-01

    Full Text Available It is essential in pulmonary disease research to take into account traffic-related air pollutant exposure among urban inhabitants. In our study, 4985 people were examined for spirometric parameters in the presented research which was conducted in the years 2008–2012. The research group was divided into urban and rural residents. Traffic density, traffic structure and velocity, as well as concentrations of selected air pollutants (CO, NO2 and PM10 were measured at selected areas. Among people who live in the city, lower percentages of predicted values of spirometric parameters were noticed in comparison to residents of rural areas. Taking into account that the difference in the five-year mean concentration of PM10 in the considered city and rural areas was over 17 μg/m3, each increase of PM10 by 10 μg/m3 is associated with the decline in FEV1 (forced expiratory volume during the first second of expiration by 1.68%. These findings demonstrate that traffic-related air pollutants may have a significant influence on the decline of pulmonary function and the growing rate of respiratory diseases.

  8. Assessment of PM10 concentrations from domestic biomass fuel combustion in two rural Bolivian highland villages

    International Nuclear Information System (INIS)

    Albalak, R.; Haber, M.

    1999-01-01

    PM 10 concentrations were measured in two contrasting rural Bolivian villages that cook with biomass fuels. In one of the villages, cooking was done exclusively indoors, and in the other, it was done primarily outdoors. Concentrations in all potential microenvironments of exposure (i.e., home, kitchen, and outdoors) were measured for a total of 621 samples. Geometric mean kitchen PM 10 concentrations were 1830 and 280 microg/m 3 and geometric mean home concentrations were 280 and 440 microg/m 3 for the indoor and outdoor cooking villages, respectively. An analysis of pollutant concentrations using generalized estimating equation techniques showed significant effects of village location, and interaction of village and location on log-transformed PM 10 concentrations. Pollutant concentrations and activity pattern data were used to estimate total exposure using the indirect method of exposure assessment. Daily exposure for women during the nonwork season was 15 120 and 6240 microg h -1 m -3 for the indoor and outdoor cooking villages, respectively. Differences in exposure to pollution between the villages were not as great as might be expected based on kitchen concentration alone. This study underscores the importance of measuring pollutant concentrations in all microenvironments where people spend time and of shifting the focus of air pollution studies to include rural populations in developing countries

  9. Assessment of vertically-resolved PM10 from mobile lidar observations

    Directory of Open Access Journals (Sweden)

    J.-C. Raut

    2009-11-01

    Full Text Available We investigate in this study the vertical PM10 distributions from mobile measurements carried out from locations along the Paris Peripherique (highly trafficked beltway around Paris, examine distinctions in terms of aerosol concentrations between the outlying regions of Paris and the inner city and eventually discuss the influence of aerosol sources, meteorology, and dynamics on the retrieved PM10 distributions. To achieve these purposes, we combine in situ surface measurements with active remote sensing observations obtained from a great number of research programs in Paris area since 1999. Two approaches, devoted to the conversion of vertical profiles of lidar-derived extinction coefficients into PM10, have been set up. A very good agreement is found between the theoretical and empirical methods with a discrepancy of 3%. Hence, specific extinction cross-sections at 355 nm are provided with a reasonable relative uncertainty lower than 12% for urban (4.5 m2 g−1 and periurban (5.9 m2 g−1 aersols, lower than 26% for rural (7.1 m2 g−1 aerosols, biomass burning (2.6 m2 g−1 and dust (1.1 m2 g−1 aerosols The high spatial and temporal resolutions of the mobile lidar (respectively 1.5 m and 1 min enable to follow the spatiotemporal variability of various layers trapping aerosols in the troposphere. Appropriate specific extinction cross-sections are applied in each layer detected in the vertical heterogeneities from the lidar profiles. The standard deviation (rms between lidar-derived PM10 at 200 m above ground and surface network stations measurements was ~14μg m−3. This difference is particularly ascribed to a decorrelation of mass concentrations in the first meters of the boundary layer, as highlighted through multiangular lidar observations. Lidar signals can be used to follow mass concentrations with an uncertainty lower than 25% above urban areas and provide useful information on PM10 peak forecasting that affect air quality.

  10. Long-term trend and variability of atmospheric PM10 concentration in the Po Valley

    Science.gov (United States)

    Bigi, A.; Ghermandi, G.

    2014-05-01

    The limits to atmospheric pollutant concentration set by the European Commission provide a challenging target for the municipalities in the Po Valley, because of the characteristic climatic conditions and high population density of this region. In order to assess climatology and trends in the concentration of atmospheric particles in the Po Valley, a data set of PM10 data from 41 sites across the Po Valley have been analysed, including both traffic and background sites (either urban, suburban or rural). Of these 41 sites, 18 with 10 yr or longer record have been analysed for long-term trend in deseasonalized monthly means, in annual quantiles and in monthly frequency distribution. A widespread significant decreasing trend has been observed at most sites, up to a few percent per year, by a generalized least squares and Theil-Sen method. All 41 sites have been tested for significant weekly periodicity by Kruskal-Wallis test for mean anomalies and by Wilcoxon test for weekend effect magnitude. A significant weekly periodicity has been observed for most PM10 series, particularly in summer and ascribed mainly to anthropic particulate emissions. A cluster analysis has been applied in order to highlight stations sharing similar pollution conditions over the reference period. Five clusters have been found, two encompassing the metropolitan areas of Turin and Milan and their respective nearby sites and the other three clusters gathering northeast, northwest and central Po Valley sites respectively. Finally, the observed trends in atmospheric PM10 have been compared to trends in provincial emissions of particulates and PM precursors, and analysed along with data on vehicular fleet age, composition and fuel sales. A significant basin-wide drop in emissions occurred for gaseous pollutants, contrarily to emissions of PM10 and PM2.5, whose drop was low and restricted to a few provinces. It is not clear whether the decrease for only gaseous emissions is sufficient to explain the

  11. Source contributions to PM2.5 and PM10 at an urban background and a street location

    NARCIS (Netherlands)

    Keuken, M. P.; Moerman, M.; Voogt, M.; Blom, M.; Weijers, E. P.; Rockmann, T.; Dusek, U.

    The contribution of regional, urban and traffic sources to PM2.5 and PM10 in an urban area was investigated in this study. The chemical composition of PM2.5 and PM10 was measured over a year at a street location and up- and down-wind of the city of Rotterdam, the Netherlands. The C-14 content in EC

  12. Source contributions to PM2.5 and PM10 at an urban background and a street location

    NARCIS (Netherlands)

    Keuken, M.P.; Moerman, M.M.; Voogt, M.H.

    2013-01-01

    The contribution of regional, urban and traffic sources to PM2.5 and PM10 in an urban area was investigated in this study. The chemical composition of PM2.5 and PM10 was measured over a year at a street location and up- and down-wind of the city of Rotterdam, the Netherlands. The 14C content in EC

  13. Anti-Inflammatory Effects of Pomegranate Peel Extract in THP-1 Cells Exposed to Particulate Matter PM10

    Directory of Open Access Journals (Sweden)

    Soojin Park

    2016-01-01

    Full Text Available Epidemiological and experimental evidence support health risks associated with the exposure to airborne particulate matter with a diameter of <10 μM (PM10. PM10 stimulates the production of reactive oxygen species (ROS and inflammatory mediators. Thus, we assumed that natural antioxidants might provide health benefits attenuating hazardous effects of PM10. In the present study, we examined the effects of pomegranate peel extract (PPE on THP-1 monocytic cells exposed to PM10. PM10 induced cytotoxicity and the production of ROS. It also increased the expression and secretion of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, and monocyte chemoattractant protein-1 (MCP-1, and cell adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1. PPE at 10–100 μg mL−1 attenuated the production of ROS and the expression of TNF-α, IL-1β, MCP-1, and ICAM-1, but not VCAM-1, in THP-1 cells stimulated by PM10 (100 μg mL−1. PPE also attenuated the adhesion of PM10-stimulated THP-1 cells to EA.hy926 endothelial cells. PPE constituents, punicalagin and ellagic acid, attenuated PM10-induced monocyte adhesion to endothelial cells, and punicalagin was less cytotoxic compared to ellagic acid. The present study suggests that PPE and punicalagin may be useful in alleviating inflammatory reactions due to particulate matter.

  14. Vertical and horizontal variability of PM10 source contributions in Barcelona during SAPUSS

    Directory of Open Access Journals (Sweden)

    M. Brines

    2016-06-01

    Full Text Available During the SAPUSS campaign (Solving Aerosol Problems by Using Synergistic Strategies PM10 samples at 12-hour resolution were simultaneously collected at four monitoring sites located in the urban agglomerate of Barcelona (Spain. A total of 221 samples were collected from 20 September to 20 October 2010. The Road Site (RS site and the Urban Background (UB site were located at street level, whereas the Torre Mapfre (TM and the Torre Collserola (TC sites were located at 150 m a.s.l. by the sea side within the urban area and at 415 m a.s.l. 8 km inland, respectively. For the first time, we are able to report simultaneous PM10 aerosol measurements, allowing us to study aerosol gradients at both horizontal and vertical levels. The complete chemical composition of PM10 was determined on the 221 samples, and factor analysis (positive matrix factorisation, PMF was applied. This resulted in eight factors which were attributed to eight main aerosol sources affecting PM10 concentrations in the studied urban environment: (1 vehicle exhaust and wear (2–9 µg m−3, 10–27 % of PM10 mass on average, (2 road dust (2–4 µg m−3, 8–12 %, (3 mineral dust (5 µg m−3, 13–26 %, (4 aged marine (3–5 µg m−3, 13–20 %, (5 heavy oil (0.4–0.6 µg m−3, 2 %, (6 industrial (1 µg m−3, 3–5 %, (7 sulfate (3–4 µg m−3, 11–17 % and (8 nitrate (4–6 µg m−3, 17–21 %. Three aerosol sources were found to be enhanced at the ground levels (confined within the urban ground levels of the city relative to the upper levels: (1 vehicle exhaust and wear (2.8 higher, (2 road dust (1.8 higher and (3 local urban industries/crafts workshops (1.6 higher. Surprisingly, the other aerosol sources were relatively homogeneous at both horizontal and vertical levels. However, air mass origin and meteorological parameters also played a key role in influencing the variability of the factor

  15. Vertical and horizontal variability of PM10 source contributions in Barcelona during SAPUSS

    Science.gov (United States)

    Brines, Mariola; Dall'Osto, Manuel; Amato, Fulvio; Cruz Minguillón, María; Karanasiou, Angeliki; Alastuey, Andrés; Querol, Xavier

    2016-06-01

    During the SAPUSS campaign (Solving Aerosol Problems by Using Synergistic Strategies) PM10 samples at 12-hour resolution were simultaneously collected at four monitoring sites located in the urban agglomerate of Barcelona (Spain). A total of 221 samples were collected from 20 September to 20 October 2010. The Road Site (RS) site and the Urban Background (UB) site were located at street level, whereas the Torre Mapfre (TM) and the Torre Collserola (TC) sites were located at 150 m a.s.l. by the sea side within the urban area and at 415 m a.s.l. 8 km inland, respectively. For the first time, we are able to report simultaneous PM10 aerosol measurements, allowing us to study aerosol gradients at both horizontal and vertical levels. The complete chemical composition of PM10 was determined on the 221 samples, and factor analysis (positive matrix factorisation, PMF) was applied. This resulted in eight factors which were attributed to eight main aerosol sources affecting PM10 concentrations in the studied urban environment: (1) vehicle exhaust and wear (2-9 µg m-3, 10-27 % of PM10 mass on average), (2) road dust (2-4 µg m-3, 8-12 %), (3) mineral dust (5 µg m-3, 13-26 %), (4) aged marine (3-5 µg m-3, 13-20 %), (5) heavy oil (0.4-0.6 µg m-3, 2 %), (6) industrial (1 µg m-3, 3-5 %), (7) sulfate (3-4 µg m-3, 11-17 %) and (8) nitrate (4-6 µg m-3, 17-21 %). Three aerosol sources were found to be enhanced at the ground levels (confined within the urban ground levels of the city) relative to the upper levels: (1) vehicle exhaust and wear (2.8 higher), (2) road dust (1.8 higher) and (3) local urban industries/crafts workshops (1.6 higher). Surprisingly, the other aerosol sources were relatively homogeneous at both horizontal and vertical levels. However, air mass origin and meteorological parameters also played a key role in influencing the variability of the factor concentrations. The mineral dust and aged marine factors were found to be a mixture of natural and

  16. Assesment of PM10 pollution episodes in a ceramic cluster (NE Spain): proposal of a new quality index for PM10, As, Cd, Ni and Pb.

    Science.gov (United States)

    Vicente, A B; Sanfeliu, T; Jordan, M M

    2012-10-15

    Environmental pollution control is one of the most important goals in pollution risk assessment today. In this sense, modern and precise tools that allow scientists to evaluate, quantify and predict air pollution are of particular interest. Monitoring atmospheric particulate matter is a challenge faced by the European Union. Specific rules on this subject are being developed (Directive 2004/107/EC, Directive 2008/50/EC) in order to reduce the potential adverse effects on human health caused by air pollution. Air pollution has two sources: natural and anthropogenic. Contributions from natural sources can be assessed but cannot be controlled, while emissions from anthropogenic sources can be controlled; monitoring to reduce this latter type of pollution should therefore be carried out. In this paper, we describe an air quality evaluation in terms of levels of atmospheric particles (PM10), as outlined by European Union legislation, carried out in an industrialised Spanish coastal area over a five-year period with the purpose of comparing these values with those of other areas in the Mediterranean Basin with different weather conditions from North of Europe. The study area is in the province of Castellón. This province is a strategic area in the frame work of European Union (EU) pollution control. Approximately 80% of European ceramic tiles and ceramic frit manufacturers are concentrated in two areas, forming the so-called "ceramics clusters"; ones in Modena (Italy) and the other in Castellón. In this kind of areas, there are a lot of air pollutants from this industry then it is difficult to fulfill de European limits of PM10 so it is necessary to control the air quality in them. The seasonal differences in the number of days in which pollutant level limits were exceeded were evaluated and the sources of contamination were identified. Air quality indexes for each pollutant have been established to determine easily and clearly the quality of air breathed. Furthermore

  17. Bayesian model averaging method for evaluating associations between air pollution and respiratory mortality: a time-series study.

    Science.gov (United States)

    Fang, Xin; Li, Runkui; Kan, Haidong; Bottai, Matteo; Fang, Fang; Cao, Yang

    2016-08-16

    To demonstrate an application of Bayesian model averaging (BMA) with generalised additive mixed models (GAMM) and provide a novel modelling technique to assess the association between inhalable coarse particles (PM10) and respiratory mortality in time-series studies. A time-series study using regional death registry between 2009 and 2010. 8 districts in a large metropolitan area in Northern China. 9559 permanent residents of the 8 districts who died of respiratory diseases between 2009 and 2010. Per cent increase in daily respiratory mortality rate (MR) per interquartile range (IQR) increase of PM10 concentration and corresponding 95% confidence interval (CI) in single-pollutant and multipollutant (including NOx, CO) models. The Bayesian model averaged GAMM (GAMM+BMA) and the optimal GAMM of PM10, multipollutants and principal components (PCs) of multipollutants showed comparable results for the effect of PM10 on daily respiratory MR, that is, one IQR increase in PM10 concentration corresponded to 1.38% vs 1.39%, 1.81% vs 1.83% and 0.87% vs 0.88% increase, respectively, in daily respiratory MR. However, GAMM+BMA gave slightly but noticeable wider CIs for the single-pollutant model (-1.09 to 4.28 vs -1.08 to 3.93) and the PCs-based model (-2.23 to 4.07 vs -2.03 vs 3.88). The CIs of the multiple-pollutant model from two methods are similar, that is, -1.12 to 4.85 versus -1.11 versus 4.83. The BMA method may represent a useful tool for modelling uncertainty in time-series studies when evaluating the effect of air pollution on fatal health outcomes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  18. The effect of refurbishing a UK steel plant on PM10 metal composition and ability to induce inflammation

    Directory of Open Access Journals (Sweden)

    Maynard Robert L

    2005-05-01

    Full Text Available Abstract Background In the year 2000 Corus closed its steel plant operations in Redcar, NE of England temporarily for refurbishment of its blast furnace. This study investigates the impact of the closure on the chemical composition and biological activity of PM10 collected in the vicinity of the steel plant. Methods The metal content of PM10 samples collected before during and after the closure was measured by ICP-MS in order to ascertain whether there was any significant alteration in PM10 composition during the steel plant closure. Biological activity was assessed by instillation of 24 hr PM10 samples into male Wistar rats for 18 hr (n = 6. Inflammation was identified by the cellular and biochemical profile of the bronchoalveolar lavage fluid. Metal chelation of PM10 samples was conducted using Chelex beads prior to treatment of macrophage cell line, J774, in vitro and assessment of pro-inflammatory cytokine expression. Results The total metal content of PM10 collected before and during the closure period were similar, but on reopening of the steel plant there was a significant 3-fold increase (p 10 collected during the reopened period, as well as significant increases in albumin (p 10 from the pre-closure and closure periods did not induce any significant alterations in inflammation or lung damage. The soluble and insoluble extractable PM10 components washed from the reopened period both induced a significant increase in neutrophil cell number (p 10 from the re-opened period stimulated J774 macrophages to generate TNF-α protein and this was significantly prevented by chelating the metal content of the PM10 prior to addition to the cells. Conclusion PM10-induced inflammation in the rat lung was related to the concentration of metals in the PM10 samples tested, and activity was found in both the soluble and insoluble fractions of the particulate pollutant.

  19. Chemical characterization and mass closure of PM10 and PM2.5 at an urban site in Karachi - Pakistan

    Science.gov (United States)

    Shahid, Imran; Kistler, Magdalena; Mukhtar, Azam; Ghauri, Badar M.; Ramirez-Santa Cruz, Carlos; Bauer, Heidi; Puxbaum, Hans

    2016-03-01

    A mass balance method is applied to assess main source contributions to PM2.5 and PM10 levels in Karachi. Carbonaceous species (elemental carbon, organic carbon, carbonate carbon), soluble ions (Ca++, Mg++, Na+, K+, NH4+, Cl-, NO3-, SO4-), saccharides (levoglucosan, galactosan, mannosan, sucrose, fructose, glucose, arabitol and mannitol) were determined in atmospheric fine (PM2.5) and coarse (PM10) aerosol samples collected under pre-monsoon conditions (March-April 2009) at an urban site in Karachi (Pakistan). The concentrations of PM2.5 and PM10 were found to be 75 μg/m3 and 437 μg/m3 respectively. The large difference between PM10 and PM2.5 originated predominantly from mineral dust. "Calcareous dust" and "siliceous dust" were the over all dominating material in PM, with 46% contribution to PM2.5 and 78% to PM10-2.5. Combustion particles and secondary organics (EC + OM) comprised 23% of PM2.5 and 6% of PM10-2.5. EC, as well as OC ambient levels were higher (59% and 56%) in PM10-2.5 than in PM2.5. Biomass burning contributed about 3% to PM2.5, and had a share of about 13% of ;EC + OM; in PM2.5. The impact of bioaerosol (fungal spores) was minor and had a share of 1 and 2% of the OC in the PM2.5 and PM10-2.5 size fractions. In case of secondary inorganic aerosols, ammonium sulphate (NH4)2SO4 contributes 4.4% to PM2.5 and no detectable quantity were found in fraction PM10-2.5. The sea salt contribution is about 2% both to PM2.5 and PM10-2.5.

  20. An integrated tool to assess the role of new planting in PM10 capture and the human health benefits: A case study in London

    International Nuclear Information System (INIS)

    Tiwary, Abhishek; Sinnett, Danielle; Peachey, Christopher; Chalabi, Zaid; Vardoulakis, Sotiris; Fletcher, Tony; Leonardi, Giovanni; Grundy, Chris; Azapagic, Adisa; Hutchings, Tony R.

    2009-01-01

    The role of vegetation in mitigating the effects of PM 10 pollution has been highlighted as one potential benefit of urban greenspace. An integrated modelling approach is presented which utilises air dispersion (ADMS-Urban) and particulate interception (UFORE) to predict the PM 10 concentrations both before and after greenspace establishment, using a 10 x 10 km area of East London Green Grid (ELGG) as a case study. The corresponding health benefits, in terms of premature mortality and respiratory hospital admissions, as a result of the reduced exposure of the local population are also modelled. PM 10 capture from the scenario comprising 75% grassland, 20% sycamore maple (Acer pseudoplatanus L.) and 5% Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) was estimated to be 90.41 t yr -1 , equating to 0.009 t ha -1 yr -1 over the whole study area. The human health modelling estimated that 2 deaths and 2 hospital admissions would be averted per year. - A combination of models can be used to estimate particulate matter concentrations before and after greenspace establishment and the resulting benefits to human health.

  1. Reconciling PM10 analyses by different sampling methods for Iron King Mine tailings dust.

    Science.gov (United States)

    Li, Xu; Félix, Omar I; Gonzales, Patricia; Sáez, Avelino Eduardo; Ela, Wendell P

    2016-03-01

    The overall project objective at the Iron King Mine Superfund site is to determine the level and potential risk associated with heavy metal exposure of the proximate population emanating from the site's tailings pile. To provide sufficient size-fractioned dust for multi-discipline research studies, a dust generator was built and is now being used to generate size-fractioned dust samples for toxicity investigations using in vitro cell culture and animal exposure experiments as well as studies on geochemical characterization and bioassay solubilization with simulated lung and gastric fluid extractants. The objective of this study is to provide a robust method for source identification by comparing the tailing sample produced by dust generator and that collected by MOUDI sampler. As and Pb concentrations of the PM10 fraction in the MOUDI sample were much lower than in tailing samples produced by the dust generator, indicating a dilution of Iron King tailing dust by dust from other sources. For source apportionment purposes, single element concentration method was used based on the assumption that the PM10 fraction comes from a background source plus the Iron King tailing source. The method's conclusion that nearly all arsenic and lead in the PM10 dust fraction originated from the tailings substantiates our previous Pb and Sr isotope study conclusion. As and Pb showed a similar mass fraction from Iron King for all sites suggesting that As and Pb have the same major emission source. Further validation of this simple source apportionment method is needed based on other elements and sites.

  2. PM10 emissions and PAHs: The importance of biomass type and combustion conditions.

    Science.gov (United States)

    Zosima, Angela T; Tzimou-Tsitouridou, Roxani D; Nikolaki, Spyridoula; Zikopoulos, Dimitrios; Ochsenkühn-Petropoulou, Maria Th

    2016-01-01

    The aim of the present work was to investigate the impact of biomass combustion with respect to conditions and fuel types on particle emissions (PM10) and their PAHs content. Special concern was on sampling, quantification and characterization of PM using different appliances, fuels and operating procedures. For this purpose different lab-scale burning conditions, two pellets stoves (8.5 and 10 kW) and one open fireplace were tested by using eight fuel types of biomass. An analytical method is described for the quantitative determination of 16 PAHs using liquid-liquid extraction and subsequent measurement by gas chromatography coupled to a mass spectrometer (GC-MS). Average PM10 emissions ranged from about 65 to 170 mg/m(3) at lab-scale combustions with flow oxygen at 13% in the exhaust gas, 85-220 mg/m(3) at 20% O2, 47-83 mg/m(3) at pellet stove of 10 kW, 34-69 mg/m(3) at pellet stove of 8.5 kW and 106-194 mg/m(3) at the open fireplace. The maximum permitted particle emission limit is 150 mg/m(3). Pellets originated from olive trees and from nonmixture trees were found to emit the lowest particulate matter in relation to the others, so they are considered healthiest and suitable for domestic heating reasons. In general, the results show that biomass open burning is an important PM10 and PAHs emission source.

  3. Feasibility of including fugitive PM-10 emissions estimates in the EPA emissions trends report

    International Nuclear Information System (INIS)

    Barnard, W.; Carlson, P.

    1990-09-01

    The report describes the results of Part 2 of a two part study. Part 2 was to evaluate the feasibility of developing regional emission trends for PM-10. Part 1 was to evaluate the feasibility of developing VOC emission trends, on a regional and temporal basis. These studies are part of the effort underway to improve the national emission trends. Part 1 is presented in a separate report. The categories evaluated for the feasibility of developing regional emissions estimates were: unpaved roads, paved roads, wind erosion, agricultural tilling, construction activities, feedlots, burning, landfills, mining and quarrying unpaved parking lots, unpaved airstrips and storage piles

  4. Validation of Satellite AOD Data with the Ground PM10 Data over Islamabad Pakistan

    Science.gov (United States)

    Bulbul, Gufran; Shahid, Imran

    2016-07-01

    Introduction The issue of air pollution affects the entire globe, but the countries having huge urban growth and industries are specially confronted with high amounts of suspended particles in atmosphere. According to WHO, for the areas where air pollution is monitored in Pakistan, the air pollution is deteriorating the air quality as time is passing. Pakistan, during the last decade, has seen an extensive rise in population growth, urbanization, and industrialization, together with a great increase in motorization and energy use. As a result, rise has taken place in the emission of various air pollutants. However, due to the lack of air quality management, the country is suffering from deterioration of air quality. From the air quality point of view, spatial and temporal distribution of aerosols and its variations are very important. The variations in the atmospheric aerosol, land surface properties, greenhouse gases, solar radiations and climatic changes alter the energy balance of the earth's atmospheric system. The addition of aerosol particles to the atmosphere is not only dependent upon the anthropogenic sources but these are also formed by physical and chemical atmospheric processes. Aerosols are a mixture of particles and these are characterized by their shape, their size (from nanometers (nm) to micrometers (µm) in radius) and their chemical composition. PM10 is the designation for particulate matter in the atmosphere that has an aerodynamic diameter of 10µm or less. The sources of PM10 may be natural (volcanoes, dust, storms, forest and grassland fires, living vegetation, or anthropogenic (burning of fossil fuels in vehicles, power plants and industrialization). The current interest in atmospheric particulate matter (PM10) is mainly due to its effect on human health and its role in climate change. Therefore, the particulate matter must be monitored continuously to understand their likely impact on the atmosphere, environment and particularly human

  5. Air quality in terms of particulate matter (PM10) and element components in Antananarivo city

    International Nuclear Information System (INIS)

    Raoelina Andriambololona; Rakotondramanana, H.T.; Rasoazanany, E.O.; Randriamanivo, L.V.; Rasolofonirina, M.; Razafy Andrianarivo, R.

    2001-01-01

    The main objective of this research was to study the size distribution of toxic elements, undesirables ones and PM10 in the aerosols of Antananarivo urban areas using Total reflection X-ray Fluorescence. This work was carried out in the framework of Co-ordinated Research Program organised by the IAEA in 1998. The air sampler DICHOTOMOUS was used for sampling, with which two types of aerosols could be obtained: respirable aerosols or fine particles (aerodynamic diameter below 2.5 μm PM-2 ,5 ) and inhalable or coarse particles (aerodynamic diameter from 2.5 μm to 10μm PM 10 ). Samples were taken from six sampling sites, namely Ambohidahy tunnel, Ambanidia tunnel, Andravoahangy, Soarano, Mahamasina and Ankorondrano. Then, they were digested with acid digestion bomb. The results showed the presence of elements such as sulfur (S), chlorine (Cl), kalium (K), calcium (Ca), titanium (Ti), lead (Pb) in the aerosols. Their concentrations are higher in respirable particles. For classical air pollutant components, particularly lead and PM10, the 1.8 μg.m -3 mean concentration value of lead is largely higher than 0.5μg. m -3 , which is the WHO (World Health organization) adopted value, and above the USEPA (United States Environmental Protection Agency) maximum admissible one (1.5 μg.m -3 ) as well. Regarding the size distribution of lead, the results showed that the small particles were mainly enriched in lead. The same observation can also be stated for PM10 with a 240 μg.m -3 mean concentration value , higher than 150 μg.m - 3 , adopted by the two above-mentioned organizations. Therefore, the Antananarivo urban area is classified as saturated zone for both parameters (lead and particulate matter). In addition, the results of Mason enrichment factors showed that the elements such as sulfur (S), chromium (Cr), copper (Cu), zinc (Zn), bromine (Br), and lead (Pb) are from both natural and anthropogenic sources. The elements such as kalium (K), chlorine (Cl), calcium (Ca

  6. Residential Solar PV Planning in Santiago, Chile: Incorporating the PM10 Parameter

    Directory of Open Access Journals (Sweden)

    Gustavo Cáceres

    2014-12-01

    Full Text Available This paper addresses an economic study of the installation of photovoltaic (PV solar panels for residential power generation in Santiago, Chile, based on the different parameters of a PV system, such as efficiency. As a performance indicator, the Levelized Cost of Energy (LCOE was used, which indicates the benefit of the facility vs. the current cost of electrical energy. In addition, due to a high level of airborne dusts typically associated with PM10, the effect of the dust deposition on PV panels’ surfaces and the effect on panel performance are examined. Two different scenarios are analyzed: on-grid PV plants and off-grid PV plants.

  7. MODELADO DE PARTÍCULAS PM10 Y PM2.5 MEDIANTE REDES NEURONALES ARTIFICIALES SOBRE CLIMA TROPICAL DE SAN FRANCISCO DE CAMPECHE, MÉXICO

    Directory of Open Access Journals (Sweden)

    Alberto Antonio Espinosa Guzmán

    Full Text Available In this paper, a computational methodology based on Artificial Neural Networks (ANN was developed to estimate the index of PM10 and PM2.5 concentration in air of San Francisco de Campeche city. A three layer ANN architecture was trained using an experimental database composed by days of the week, time of day, ambient temperature, atmospheric pressure, wind speed, wind direction, relative humidity, and solar radiation. The best ANN architecture, composed by 30 neurons in hidden layer, was obtained using the Levenberg-Marquardt (LM optimization algorithm, logarithmic sigmoid and linear transfer functions. Model results generate predictions with a determination coefficient of 93.01% and 90.10% for PM2.5 and PM10, respectively. The proposed methodology can be implemented in several studies as public health, environmental studies, urban development, and degradation of historical monuments.

  8. Influence of meteorology and source variation on airborne PM 10 levels in a high relief tropical Andean city

    OpenAIRE

    Carlos Mario González-Duque; Johana Cortés-Araujo; Beatriz Helena Aristizábal-Zuluaga

    2015-01-01

    El análisis de niveles de (PM 10 ) y su asociación con la meteorología, altura de capa de mezcla y fuentes de contaminación, se realizó en la ciudad tropical andina de Manizales durante un periodo de dos años (enero 2010 a diciembre 2012). Los mayores niveles de PM 10 se observaron en zonas con alta influencia vehicular, con valores de PM 10 en un intervalo de 18 - 69 μg m -3 . Las concentraciones de material particulado fueron influenciadas por factores meteorológicos, mostrando una ...

  9. Evaluation of sampling inhalable PM10 particulate matter (≤ 10 μm) using co-located high volume samplers

    International Nuclear Information System (INIS)

    Rajoy, R R S; Dias, J W C; Rego, E C P; Netto, A D Pereira

    2015-01-01

    This paper presents the results of the determination of the concentrations of atmospheric particulate matter ≤ 10 μm (PM10), collected simultaneously by six PM10 high volume samplers from two different manufacturers installed in the same location. Fifteen samples of 24 h were obtained with each equipment at a selected urban area of Rio de Janeiro city. The concentration of PM10 ranged between 10.73 and 54.04 μg m −3 . The samplers were considered comparable to each other, as the adopted methodology presented good repeatability

  10. Preliminary PM2.5 and PM10 fractions source apportionment complemented by statistical accuracy determination

    Directory of Open Access Journals (Sweden)

    Samek Lucyna

    2016-03-01

    Full Text Available Samples of PM10 and PM2.5 fractions were collected between the years 2010 and 2013 at the urban area of Krakow, Poland. Numerous types of air pollution sources are present at the site; these include steel and cement industries, traffic, municipal emission sources and biomass burning. Energy dispersive X-ray fluorescence was used to determine the concentrations of the following elements: Cl, K, Ca, Ti, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, As and Pb within the collected samples. Defining the elements as indicators, airborne particulate matter (APM source profiles were prepared by applying principal component analysis (PCA, factor analysis (FA and multiple linear regression (MLR. Four different factors identifying possible air pollution sources for both PM10 and PM2.5 fractions were attributed to municipal emissions, biomass burning, steel industry, traffic, cement and metal industry, Zn and Pb industry and secondary aerosols. The uncertainty associated with each loading was determined by a statistical simulation method that took into account the individual elemental concentrations and their corresponding uncertainties. It will be possible to identify two or more sources of air particulate matter pollution for a single factor in case it is extremely difficult to separate the sources.

  11. Environmental Pollution by Benzene and PM10 and Clinical Manifestations of Systemic Sclerosis: A Correlation Study.

    Science.gov (United States)

    Borghini, Alice; Poscia, Andrea; Bosello, Silvia; Teleman, Adele Anna; Bocci, Mario; Iodice, Lanfranco; Ferraccioli, Gianfranco; La Milìa, Daniele Ignazio; Moscato, Umberto

    2017-10-26

    Atmospheric air pollution has been associated with a range of adverse health effects. The environment plays a causative role in the development of Systemic Sclerosis (SSc). The aim of the present study is to explore the association between particulate (PM 10 ) and benzene (B) exposure in Italian patients with systemic sclerosis and their clinical characteristics of the disease. A correlation study was conducted by enrolling 88 patients who suffer from SSc at the Fondazione Policlinico "A. Gemelli" in Rome (Italy) in the period from January 2013 to January 2014. The average mean concentrations of B (in 11 monitoring sites) and PM 10 (in 14 sites) were calculated using data from the Regional Environmental Protection Agency's monitoring stations located throughout the Lazio region (Italy) and then correlated with the clinical characteristics of the SSc patients. Of the study sample, 92.5% were female. The mean age was 55 ± 12.9 years old and the mean disease duration from the onset of Raynaud's phenomenon was 13.0 ± 9.4 years. The Spearman's correlation showed that concentrations of B correlate directly with the skin score (R = 0.3; p ≤ 0.05) and inversely with Diffusing Lung Carbon Monoxide (DLCO) results (R = -0.36; p = 0.04). This study suggests a possible role of B in the development of diffuse skin disease and in a worse progression of the lung manifestations of SSc.

  12. Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources

    Science.gov (United States)

    Querol, Xavier; Alastuey, Andrés; Rodriguez, Sergio; Plana, Felicià; Mantilla, Enrique; Ruiz, Carmen R.

    Investigations on the monitoring of ambient air levels of atmospheric particulates were developed around a large source of primary anthropogenic particulate emissions: the industrial ceramic area in the province of Castelló (Eastern Spain). Although these primary particulate emissions have a coarse grain-size distribution, the atmospheric transport dominated by the breeze circulation accounts for a grain-size segregation, which results in ambient air particles occurring mainly in the 2.5-10 μm range. The chemical composition of the ceramic particulate emissions is very similar to the crustal end-member but the use of high Al, Ti and Fe as tracer elements as well as a peculiar grain-size distribution in the insoluble major phases allow us to identify the ceramic input in the bulk particulate matter. PM2.5 instead of PM10 monitoring may avoid the interference of crustal particles without a major reduction in the secondary anthropogenic load, with the exception of nitrate. However, a methodology based in PM2.5 measurement alone is not adequate for monitoring the impact of primary particulate emissions (such as ceramic emissions) on air quality, since the major ambient air particles derived from these emissions are mainly in the range of 2.5-10 μm. Consequently, in areas characterised by major secondary particulate emissions, PM2.5 monitoring should detect anthropogenic particulate pollutants without crustal particulate interference, whereas PM10 measurements should be used in areas with major primary anthropogenic particulate emissions.

  13. Secondary Sulfur and Nitrogen Species in PM10 from the Rijeka Bay Area (Croatia).

    Science.gov (United States)

    Alebic-Juretic, Ana; Mifka, Boris

    2017-01-01

    Samples of PM 10 were collected over a 12 month period at two sites approximately 5 km apart. Site 1 was an urban site in the center of the city of Rijeka, Croatia, and Site 2 was an industrial site in the proximity of a shipyard, located in the southeastwards direction from the city. No significant differences in airborne concentrations of PM 10 or secondary inorganic ions were found between the two sites. Therefore, the sampling continued only at Site 1. The dominant airborne compound was ammonium sulfate, being approximately six times more abundant in the summer (S) months than ammonium nitrate. This ratio was lower in the winter (W) months, being approximately 1.5 at both sites. Seasonal distribution of secondary inorganic aerosols (SIA), particularly SO 4 2- is emphasized in 2008-2009 with W/S <1, most likely caused by local emissions, meteorology and long-range transport. In spite of closing down the petroleum refinery facilities in mid-2008, no significant decline in airborne concentrations of sulfates, nitrates or ammonium were observed during the period from 2007 to 2009 at the site nearest to the refinery (Site 1).

  14. Elemental composition of PM 10 and PM 2.5 in urban environment in South Brazil

    Science.gov (United States)

    Braga, C. F.; Teixeira, E. C.; Meira, L.; Wiegand, F.; Yoneama, M. L.; Dias, J. F.

    The purpose of the present study is to analyze the elemental composition and the concentrations of PM 10 and PM 2.5 in the Guaíba Hydrographic Basin with HV PM 10 and dichotomous samplers. Three sampling sites were selected: 8° Distrito, CEASA and Charqueadas. The sampling was conducted from October 2001 to December 2002. The mass concentrations of the samplers were evaluated, while the elemental concentrations of Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu and Zn were determined using the Particle-Induced X-ray Emission (PIXE) technique. Factor Analysis and Canonical Correlation Analysis were applied to the chemical and meteorological variables in order to identify the sources of particulate matter. Industrial activities such as steel plants, coal-fired power plants, hospital waste burning, vehicular emissions and soil were identified as the sources of the particulate matter. Concentration levels higher than the daily and the annual average air quality standards (150 and 50 μg m -3, respectively) set by the Brazilian legislation were not observed.

  15. Particulate matter (PM 10 ) in Istanbul: Origin, source areas and potential impact on surrounding regions

    Science.gov (United States)

    Koçak, M.; Theodosi, C.; Zarmpas, P.; Im, U.; Bougiatioti, A.; Yenigun, O.; Mihalopoulos, N.

    2011-12-01

    Water-soluble ions (Cl -, NO3-, SO42-, CO4-, Na +, NH4+, K +, Mg 2+,Ca 2+), water soluble organic carbon (WSOC), organic and elemental carbon (OC, EC) and trace metals (Al, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Cd and Pb) were measured in aerosol PM 10 samples above the megacity of Istanbul between November 2007 and June 2009. Source apportionment analysis using Positive Matrix Factorization (PMF) indicates that approximately 80% of the PM 10 is anthropogenic in origin (secondary, refuse incineration, fuel oil and solid fuel combustion and traffic). Crustal and sea salt account for 10.2 and 7.5% of the observed mass, respectively. In general, anthropogenic (except secondary) aerosol shows higher concentrations and contributions in winter. Mean concentration and contribution of crustal source is found to be more important during the transitional period due to mineral dust transport from North Africa. During the sampling period, 42 events exceeding the limit value of 50 μg m -3 are identified. A significant percentage (91%; n = 38) of these exceedances is attributed to anthropogenic sources. Potential Source Contribution Function analysis highlights that Istanbul is affected from distant sources from Balkans and Western Europe during winter and from Eastern Europe during summer. On the other hand, Istanbul sources influence western Black Sea and Eastern Europe during winter and Aegean and Levantine Sea during summer.

  16. Correlation Analysis of PM10 and the Incidence of Lung Cancer in Nanchang, China

    Science.gov (United States)

    Zhou, Yi; Li, Lianshui; Hu, Lei

    2017-01-01

    Air pollution and lung cancer are closely related. In 2013, the World Health Organization listed outdoor air pollution as carcinogenic and regarded it as the most widespread carcinogen that humans are currently exposed to. Here, grey correlation and data envelopment analysis methods are used to determine the pollution factors causing lung cancer among residents in Nanchang, China, and identify population segments which are more susceptible to air pollution. This study shows that particulate matter with particle sizes below 10 micron (PM10) is most closely related to the incidence of lung cancer among air pollution factors including annual mean concentrations of SO2, NO2, PM10, annual haze days, and annual mean Air Pollution Index/Air Quality Index (API/AQI). Air pollution has a greater impact on urban inhabitants as compared to rural inhabitants. When gender differences are considered, women are more likely to develop lung cancer due to air pollution. Smokers are more likely to suffer from lung cancer. These results provide a reference for the government to formulate policies to reduce air pollutant emissions and strengthen anti-smoking measures. PMID:29048397

  17. Correlation Analysis of PM10 and the Incidence of Lung Cancer in Nanchang, China

    Directory of Open Access Journals (Sweden)

    Yi Zhou

    2017-10-01

    Full Text Available Air pollution and lung cancer are closely related. In 2013, the World Health Organization listed outdoor air pollution as carcinogenic and regarded it as the most widespread carcinogen that humans are currently exposed to. Here, grey correlation and data envelopment analysis methods are used to determine the pollution factors causing lung cancer among residents in Nanchang, China, and identify population segments which are more susceptible to air pollution. This study shows that particulate matter with particle sizes below 10 micron (PM10 is most closely related to the incidence of lung cancer among air pollution factors including annual mean concentrations of SO2, NO2, PM10, annual haze days, and annual mean Air Pollution Index/Air Quality Index (API/AQI. Air pollution has a greater impact on urban inhabitants as compared to rural inhabitants. When gender differences are considered, women are more likely to develop lung cancer due to air pollution. Smokers are more likely to suffer from lung cancer. These results provide a reference for the government to formulate policies to reduce air pollutant emissions and strengthen anti-smoking measures.

  18. Correlation Analysis of PM10 and the Incidence of Lung Cancer in Nanchang, China.

    Science.gov (United States)

    Zhou, Yi; Li, Lianshui; Hu, Lei

    2017-10-19

    Air pollution and lung cancer are closely related. In 2013, the World Health Organization listed outdoor air pollution as carcinogenic and regarded it as the most widespread carcinogen that humans are currently exposed to. Here, grey correlation and data envelopment analysis methods are used to determine the pollution factors causing lung cancer among residents in Nanchang, China, and identify population segments which are more susceptible to air pollution. This study shows that particulate matter with particle sizes below 10 micron (PM 10 ) is most closely related to the incidence of lung cancer among air pollution factors including annual mean concentrations of SO₂, NO₂, PM 10 , annual haze days, and annual mean Air Pollution Index/Air Quality Index (API/AQI). Air pollution has a greater impact on urban inhabitants as compared to rural inhabitants. When gender differences are considered, women are more likely to develop lung cancer due to air pollution. Smokers are more likely to suffer from lung cancer. These results provide a reference for the government to formulate policies to reduce air pollutant emissions and strengthen anti-smoking measures.

  19. PM 10 and ozone control strategy to improve visibility in the los angeles basin

    Science.gov (United States)

    Farber, Robert J.; Welsing, Peter R.; Rozzi, Carlo

    The greater Los Angeles metropolitan area is in violation of the United States Environmental Protection Agency (USEPA) ambient standards for both ozone and PM 10. Accompanying these violations are hazy summer conditions, with current annual median visibility in the inland portions of Los Angeles running about 13 km, and visibilities decreasing to about 3 km on the 90th percentile days (worst days). The USEPA has given the local air pollution control agency until 2010 to bring the area into compliance with these standards. Because of continued population growth, accompanying light industry, dependence on private motor vehicles, and adverse natural meteorological conditions, emission reductions costing billions of dollars will be needed between now and 2010. The combination of emission reductions which will result in the fastest ozone and PM 10 cleanup at the lowest cost are presented. Substantial emission reductions in NO x, reactive hydrocarbons, SO x, ammonia, soot and fugitive dust will result in visibility improvements in the Los Angeles area. However, enactment of this comprehensive control strategy will only improve the annual median visibility to about 20 km and the 90th percentile days to 6.5 km. Significant changes in fine mass will result in relatively small changes in perceived visibility since the human eye is unable to differentiate visual range changes even as large as 40% in an urban landscape typical of Los Angeles.

  20. Assessment of microbial communities in PM1 and PM10 of Urumqi during winter

    International Nuclear Information System (INIS)

    Gou, Huange; Lu, Jianjiang; Li, Shanman; Tong, Yanbin; Xie, Chunbin; Zheng, Xiaowu

    2016-01-01

    Recently, inhalable particulate matter has been reported to carry microorganisms responsible for human allergy and respiratory disease. The unique geographical environment and adverse weather conditions of Urumqi cause double pollution of dust and smog, but research on the microbial content of the atmosphere has not been commenced. In this study, 16S and 18S rRNA gene sequencing were conducted to investigate the microbial composition of Urumqi's PM 1 and PM 10 pollutants in winter. Results showed that the bacterial community is mainly composed of Proteobacteria, Firmicutes and Actinobacteria, Proteobacteria accounted for the most proportion which was significant difference in some aforementioned studies. Ascomycota and Basidiomycota constitute the main part of the fungal microbial community. The difference of bacterial relative abundance in sample point is greater than in particle sizes. The sequences of several pathogenic bacteria and opportunistic pathogens were also detected, such as Acinetobacter, Delftia, Serratia, Chryseobacterium, which may impact on immunocompromised populations (elderly, children and postoperative convalescence patients), and some fungal genera may cause several plant diseases. Our findings may serve an important reference value in the global air microbial propagation and air microbial research in desert. - Highlights: • Using 16 s rDNA double variable region (V3 + V4) sequencing to elucidate the bacterial communities. • Several potential microbial allergens and pathogens present in PM 1 and PM 10 were found. • Providing a great supplement to environmental science and human health assessment.

  1. Source and chemical species characterization of PM10 and human health risk assessment of semi-urban, urban and industrial areas of West Bengal, India.

    Science.gov (United States)

    Ghosh, Suraj; Rabha, Rumi; Chowdhury, Mallika; Padhy, Pratap Kumar

    2018-09-01

    Levels of particulate matter of size ten micron (PM 10 ) in outdoor air, potential PM 10 -bound seven metals - manganese, zinc, cadmium, lead, copper, nickel and cobalt - and twelve water-soluble organic and inorganic ionic components - fluoride, acetate, chloride, nitrite, bromide, nitrate, phosphate, sulfate, oxalate, sodium, potassium and calcium - were investigated during two different season. Atmospheric PM 10 samples were collected concurrently from three different sites, i.e., Durgapur (Industrial), Berhampore (Urban) and Bolpur (Semi-urban), West Bengal, India, during summer (April-June 2014) and winter (December 2014-February 2015). Average PM 10 levels were found to be in the range of 189.58-219.96 μg/m 3 at the semi-urban site, 293.41-324.27 μg/m 3 at the urban site and 316.93-344.69 μg/m 3 at the industrial site during summer and winter season respectively. Data on metals and water soluble ions were analyzed statistically (Principal Component Analysis and Factor Analysis) for their source identification and apportionment in the study areas. Principle component analysis models, from three different sites, identified four different factors which share common sources, viz., soil & road re-suspension, motor vehicle and traffic, waste dumping, biomass aerosols, and construction. The pollution load and health risk assessments of selected metals were undertaken in three different sites, within children and adults of the study areas, and were found to be within the safe range. Furthermore, an attempt has also been made to provide basic information on pollution, their sources and exposure pathways for humans in the vicinity of semi-urban, urban and industrial regions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Winter mass concentrations of carbon species in PM10, PM 2.5 and PM1 in Zagreb air, Croatia.

    Science.gov (United States)

    Godec, Ranka; Čačković, Mirjana; Šega, Krešimir; Bešlić, Ivan

    2012-11-01

    The purpose of our investigation was to examine the mass concentrations of EC, OC and TC (EC + OC) in PM(10), PM(2.5) and PM(1) particle fractions. Daily PM(10), PM(2.5) and PM(1) samples were collected at an urban background monitoring site in Zagreb during winter 2009. Average OC and EC mass concentrations were 11.9 and 1.8 μg m(-3) in PM(10), 9.0 and 1.4 μg m(-3) in PM(2.5), and 5.5 and 1.1 μg m(-3) in PM(1). Average OC/EC ratios in PM(10), PM(2.5), and PM(1) were 7.4, 6.9 and 5.4, respectively.

  3. Genotoxicidad sobre linfocitos humanos expuestos a PM10 de tres sitios del Valle de Aburrá (Antioquia)

    OpenAIRE

    Mendoza-Zapata, Lady C.; Orozco-Jiménez, Luz Y.; Zapata-Restrepo, Lina M.; Palacio-Baena, Jaime A.

    2013-01-01

    Objetivo Evaluar la calidad del aire en tres sitios del Valle de Aburrá (Antioquia) a través de la determinación de la genotoxicidad del PM10 en linfocitos humanos. Métodos A partir del valor de referencia de PM10 para Colombia (50 μg/m3/año) se eligieron tres sitios del Valle de Aburrá con diferente promedio de PM10, Barbosa con 25 μg/m3, Corantioquia con 44 μg/m3y Facultad de Minas con 91 μg/m3. Los filtros de PM10 expuestos por 24 horas, se analizaron en la épocas de lluvia, transición y s...

  4. Genotoxicidad sobre linfocitos humanos expuestos a pm10 de tres sitios del valle de aburrá (antioquia)

    OpenAIRE

    Mendoza, Lady Carolina; Orozco Jimenez, luz Yaneth; Zapata Restrepo, Lina Maria; Palacio Baena, Jaime Alberto

    2013-01-01

    Objetivo Evaluar la calidad del aire en tres sitios del Valle de Aburrá (Antioquia) a través de la determinación de la genotoxicidad del PM10 en linfocitos humanos.Métodos A partir del valor de referencia de PM10 para Colombia (50 μg/m3/año) se eligieron tres sitios del Valle de Aburrá con diferente promedio de PM10, Barbosa con 25 μg/m3, Corantioquia con 44 μg/m3y Facultad de Minas con 91 μg/m3. Los filtros de PM10 expuestos por 24 horas, se analizaron en la épocas de lluvia, transición y se...

  5. 78 FR 47259 - Approval and Promulgation of Implementation Plans; Washington: Thurston County Second 10-Year PM10

    Science.gov (United States)

    2013-08-05

    ..., road dust, and vehicle exhaust and tire wear. Since the Thurston County area is primarily residential... that in the critical winter season the majority of PM 10 is PM 2.5 . The statistical relationship...

  6. Measurement of Ambient Air Particle (TSP, PM10, PM2,5) Around Candidate Location of PLTN Semenanjung Lemahabang

    International Nuclear Information System (INIS)

    AgusGindo S; Budi Hari H

    2008-01-01

    Measurement analysis of ambient air particle (TSP, PM 10 , PM 2,5 ) around location candidate of PLTN (Power Station of Nuclear Energy) Semenanjung Lemahabang has been carried out. The measurement was conducted in May 2007 with a purpose to providing information about concentration of ambient air particle (TSP, PM 10 , PM 2,5 ) and diameter distribution of its air particle. The measurement was conducted in three locations i.e. 1). Balong village 2). Bayuran 3). Bondo. Concentration of TSP, PM 10 , and PM 2,5 per 24 hours in all measured locations in area candidate of PLTN exceed quality standard of national ambient air is specified by government. All measurement locations for the TSP, PM 10 , and PM 2,5 was include category of ISPU (Standard Index of Air Pollution) moderate. (author)

  7. Effect of particulate matter less than 10μm (PM10 on mortality in Bogota, Colombia: a time-series analysis, 1998-2006

    Directory of Open Access Journals (Sweden)

    Luis Camilo Blanco-Becerra

    2014-07-01

    Full Text Available Objective. To analyze the association between daily mortality from different causes and acute exposure to particulate matter less than 10 microns in aerodynamic diameter (PM10, in Bogota, Colombia. Materials and methods. A time-series ecological study was conducted from 1998 to 2006. The association between mortality (due to different causes and exposure was analyzed using single and distributed lag models and adjusting for potential confounders. Results. For all ages, the cumulative effect of acute mortality from all causes and respiratory causes increased 0.71% (95%CI 0.46-0.96 and 1.43% (95%CI 0.85-2.00, respectively, per 10μg/m3 increment in daily average PM10 with a lag of three days before death. Cumulative effect of mortality from cardiovascular causes was -0.03% (95%CI -0.49-0.44% with the same lag. Conclusions. The results suggest an association between an increase in PM10 concentrations and acute mortality from all causes and respiratory causes.

  8. Chemical mass balance source apportionment of PM10 and TSP in residential and industrial sites of an urban region of Kolkata, India.

    Science.gov (United States)

    Gupta, A K; Karar, Kakoli; Srivastava, Anjali

    2007-04-02

    Daily average PM(10) (particulate matter which passes through a size selective impactor inlet with a 50% efficiency cut-off at 10 microm aerodynamic diameter), TSP (total suspended particulate matter) and their chemical species mass concentrations were measured at residential and industrial sites of an urban region of Kolkata during November 2003-November 2004. Source apportionment using chemical mass balance model revealed that the most dominant source throughout the study period at residential site was coal combustion (42%), while vehicular emission (47%) dominates at industrial site to PM(10). Paved road, field burning and wood combustion contributed 21%, 7% and 1% at residential site, while coal combustion, metal industry and soil dust contributed 34%, 1% and 1% at industrial site, respectively, to PM(10) during the study period. The contributors to TSP included coal combustion (37%), soil dust (19%), road dust (17%) and diesel combustion (15%) at residential site, while soil dust (36%), coal combustion (17%), solid waste (17%), road dust (16%) and tyre wear (7%) at industrial site. Significant seasonal variations of the particulate matters have been observed during the study period. In the monitoring sites total carbon, organic carbon and iron were found to be the marker species of road dust, while organic carbon, total carbon, chloride and sulfate have been observed as the marker species of soil dust in TSP.

  9. Sources of the PM10 aerosol in Flanders, Belgium, and re-assessment of the contribution from wood burning

    OpenAIRE

    Maenhaut, Willy; Vermeylen, Reinhilde; Claeys, Magda; Vercauteren, Jordy; Roekens, Edward

    2016-01-01

    Abstract: From 30 June 2011 to 2 July 2012 PM10 aerosol samples were simultaneously taken every 4th day at four urban background sites in Flanders, Belgium. The sites were in Antwerpen, Gent, Brugge, and Oostende. The PM10 mass concentration was determined by weighing; organic and elemental carbon (OC and EC) were measured by thermal-optical analysis, the wood burning tracers levoglucosan, mannosan and galactosan were determined by gas chromatography/mass spectrometry, 8 water-soluble ions we...

  10. Holi colours contain PM10 and can induce pro-inflammatory responses.

    Science.gov (United States)

    Bossmann, Katrin; Bach, Sabine; Höflich, Conny; Valtanen, Kerttu; Heinze, Rita; Neumann, Anett; Straff, Wolfgang; Süring, Katrin

    2016-01-01

    At Holi festivals, originally celebrated in India but more recently all over the world, people throw coloured powder (Holi powder, Holi colour, Gulal powder) at each other. Adverse health effects, i.e. skin and ocular irritations as well as respiratory problems may be the consequences. The aim of this study was to uncover some of the underlying mechanisms. We analysed four different Holi colours regarding particle size using an Electric field cell counting system. In addition, we incubated native human cells with different Holi colours and determined their potential to induce a pro-inflammatory response by quantifying the resulting cytokine production by means of ELISA (Enzyme Linked Immunosorbent Assay) and the resulting leukocyte oxidative burst by flow cytometric analysis. Moreover, we performed the XTT (2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) and Propidium iodide cytotoxicity tests and we measured the endotoxin content of the Holi colour samples by means of the Limulus Amebocyte Lysate test (LAL test). We show here that all tested Holi colours consist to more than 40 % of particles with an aerodynamic diameter smaller than 10 μm, so called PM10 particles (PM, particulate matter). Two of the analysed Holi powders contained even more than 75 % of PM10 particles. Furthermore we demonstrate in cell culture experiments that Holi colours can induce the production of the pro-inflammatory cytokines TNF-α (Tumor necrosis factor-α), IL-6 (Interleukine-6) and IL-1β (Interleukine-1β). Three out of the four analysed colours induced a significantly higher cytokine response in human PBMCs (Peripheral Blood Mononuclear Cells) and whole blood than corn starch, which is often used as carrier substance for Holi colours. Moreover we show that corn starch and two Holi colours contain endotoxin and that certain Holi colours display concentration dependent cytotoxic effects in higher concentration. Furthermore we reveal that in principle Holi

  11. Source apportionment and health risk assessment of PM10 in a naturally ventilated school in a tropical environment.

    Science.gov (United States)

    Mohamad, Noorlin; Latif, Mohd Talib; Khan, Md Firoz

    2016-02-01

    This study aimed to investigate the chemical composition and potential sources of PM10 as well as assess the potential health hazards it posed to school children. PM10 samples were taken from classrooms at a school in Kuala Lumpur's city centre (S1) and one in the suburban city of Putrajaya (S2) over a period of eight hours using a low volume sampler (LVS). The composition of the major ions and trace metals in PM10 were then analysed using ion chromatography (IC) and inductively coupled plasma-mass spectrometry (ICP-MS), respectively. The results showed that the average PM10 concentration inside the classroom at the city centre school (82µg/m(3)) was higher than that from the suburban school (77µg/m(3)). Principal component analysis-absolute principal component scores (PCA-APCS) revealed that road dust was the major source of indoor PM10 at both school in the city centre (36%) and the suburban location (55%). The total hazard quotient (HQ) calculated, based on the formula suggested by the United States Environmental Protection Agency (USEPA), was found to be slightly higher than the acceptable level of 1, indicating that inhalation exposure to particle-bound non-carcinogenic metals of PM10, particularly Cr exposure by children and adults occupying the school environment, was far from negligible. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Linking Endotoxins, African Dust PM10 and Asthma in an Urban and Rural Environment of Puerto Rico

    Directory of Open Access Journals (Sweden)

    Mario G. Ortiz-Martínez

    2015-01-01

    Full Text Available African Dust Events (ADE are a seasonal phenomenon that has been suggested to exacerbate respiratory and proinflammatory diseases in Puerto Rico (PR. Increases in PM10 concentration and the effects of biological endotoxins (ENX are critical factors to consider during these storms. ENX promote proinflammatory responses in lungs of susceptible individuals through activation of the Toll-like receptors (TLR2/4 signaling pathways. The objective of the study was to evaluate the toxicological and proinflammatory responses stimulated by ADE PM10 ENX reaching PR using human bronchial epithelial cells. PM10 organic extracts from a rural and urban site in PR (March 2004 were obtained from ADE and non-ADE and compared. A retrospective data analysis (PM10 concentration, aerosol images, and pediatric asthma claims was performed from 2000 to 2012 with particular emphasis in 2004 to classify PM samples. Urban extracts were highly toxic, proinflammatory (IL-6/IL-8 secretion, and induced higher TLR4 expression and NF-κB activation compared to rural extracts. ENX were found to contribute to cytotoxicity and inflammatory responses provoked by urban ADE PM10 exposure suggesting a synergistic potency of local and natural ENX incoming from ADE. The contribution of ADE PM10 ENX is valuable in order to understand interactions and action mechanisms of airborne pollutants as asthma triggers in PR.

  13. Chemical characterization of individual particles (PM10) from ambient air in Guiyang City, China

    International Nuclear Information System (INIS)

    Xie, R.K.; Seip, H.M.; Leinum, J.R.; Winje, T.; Xiao, J.S.

    2005-01-01

    PM 10 samples were collected during 5 days in Guiyang, China in July 2003. A total of about 2300 particles was analyzed by an automated Scanning Electron Microscope with Energy-Dispersive Spectrometer (SEM-EDS). Hierarchical cluster analysis (HCA) was used to identify different particle types that occurred in the aerosol. Seventeen particle types were identified and presented in the order of decreasing number abundance as: silicomanganese slag, soil and fly ash, coal burning, silicomanganese, quartz, syngenite, S-bearing iron, calcium rich, gypsum, sphalerite, dolomite, iron, alloy, lead sulfate, zinc rich, sulfur-rich particles and aluminum manufacturing dust. The majority of the particles in the studied size range are of anthropogenic origin, especially from metallurgical industry. The study illustrates the complexity of particle pollution in air of an industrial Chinese city and the results should be useful in planning mitigation measures

  14. Risk estimation by exposure to PM10 particles in the Toluca Valley

    International Nuclear Information System (INIS)

    Flores R, J.H.; Pena G, P.; Balcazar, M.; Lopez M, A.; Morelos M, J.

    2007-01-01

    Full text: Risk estimation to PM10 in the Toluca valley and surrounding areas was estimated, for several return periods, evaluating the occurrence probability to several interval times (1, 5, 10, 12.5, 15, 17.5 and 20 years) using the extreme values of the Gumbel-1 distribution; those intervals were employed to predict and analyze the behaviour of maximum contaminant concentrations in the study region. A high degree of risk to health due to the mean concentration of these particles is obtained from statistical considerations. The evaluation took into consideration the eight monitoring years from the Automatic Atmospheric Monitoring Network (RAMAT) and its output predicts, if present conditions maintain, this statistical relation remain invariant between the next 20 years. Such particles affect the human respiratory system, besides, present a carcinogenic potential due to the volume of hydrocarbons combustion to the atmosphere. (Author)

  15. Data preparation for functional data analysis of PM10 in Peninsular Malaysia

    Science.gov (United States)

    Shaadan, Norshahida; Jemain, Abdul Aziz; Deni, Sayang Mohd

    2014-07-01

    The use of curves or functional data in the study analysis is increasingly gaining momentum in the various fields of research. The statistical method to analyze such data is known as functional data analysis (FDA). The first step in FDA is to convert the observed data points which are repeatedly recorded over a period of time or space into either a rough (raw) or smooth curve. In the case of the smooth curve, basis functions expansion is one of the methods used for the data conversion. The data can be converted into a smooth curve either by using the regression smoothing or roughness penalty smoothing approach. By using the regression smoothing approach, the degree of curve's smoothness is very dependent on k number of basis functions; meanwhile for the roughness penalty approach, the smoothness is dependent on a roughness coefficient given by parameter λ Based on previous studies, researchers often used the rather time-consuming trial and error or cross validation method to estimate the appropriate number of basis functions. Thus, this paper proposes a statistical procedure to construct functional data or curves for the hourly and daily recorded data. The Bayesian Information Criteria is used to determine the number of basis functions while the Generalized Cross Validation criteria is used to identify the parameter λ The proposed procedure is then applied on a ten year (2001-2010) period of PM10 data from 30 air quality monitoring stations that are located in Peninsular Malaysia. It was found that the number of basis functions required for the construction of the PM10 daily curve in Peninsular Malaysia was in the interval of between 14 and 20 with an average value of 17; the first percentile is 15 and the third percentile is 19. Meanwhile the initial value of the roughness coefficient was in the interval of between 10-5 and 10-7 and the mode was 10-6. An example of the functional descriptive analysis is also shown.

  16. Characterisation of PM 10 emissions from woodstove combustion of common woods grown in Portugal

    Science.gov (United States)

    Gonçalves, Cátia; Alves, Célia; Evtyugina, Margarita; Mirante, Fátima; Pio, Casimiro; Caseiro, Alexandre; Schmidl, Christoph; Bauer, Heidi; Carvalho, Fernando

    2010-11-01

    A series of source tests was performed to evaluate the chemical composition of particle emissions from the woodstove combustion of four prevalent Portuguese species of woods: Pinus pinaster (maritime pine), Eucalyptus globulus (eucalyptus), Quercus suber (cork oak) and Acacia longifolia (golden wattle). Analyses included water-soluble ions, metals, radionuclides, organic and elemental carbon (OC and EC), humic-like substances (HULIS), cellulose and approximately l80 organic compounds. Particle (PM 10) emission factors from eucalyptus and oak were higher than those from pine and acacia. The carbonaceous matter represented 44-63% of the particulate mass emitted during the combustion process, regardless of species burned. The major organic components of smoke particles, for all the wood species studied, with the exception of the golden wattle (0.07-1.9% w/w), were anhydrosugars (0.2-17% w/w). Conflicting with what was expected, only small amounts of cellulose were found in wood smoke. As for HULIS, average particle mass concentrations ranged from 1.5% to 3.0%. The golden wattle wood smoke presented much higher concentrations of ions and metal species than the emissions from the other wood types. The results of the analysis of radionuclides revealed that the 226Ra was the naturally occurring radionuclide more enriched in PM 10. The chromatographically resolved organics included n-alkanes, n-alkenes, PAH, oxygenated PAH, n-alkanals, ketones, n-alkanols, terpenoids, triterpenoids, phenolic compounds, phytosterols, alcohols, n-alkanoic acids, n-di-acids, unsaturated acids and alkyl ester acids.

  17. Extractable organic matter in PM10 from LiWan district of Guangzhou City, PR China.

    Science.gov (United States)

    Bi, Xinhui; Sheng, Guoying; Peng, Peng an; Zhang, Zhiqiang; Fu, Jiamo

    2002-12-02

    PM10 (particulate matter with aerodynamic diameter gas chromatography/mass spectrometry analysis. The sigma(n)-alkane and sigmaPAHs ranged from 26.4 to 719.2 ng/m3 and 7.4 to 159.4 ng/m3, respectively. A seasonal fluctuation was clearly evident with higher concentrations occurring during the colder months (April). In addition, some compositional differences are observed for the organic compounds in samples collected from different heights above ground level. Higher sites had a significant contribution from vascular plant wax. The presence of petroleum products with no carbon number preference, pristane, phytane and a significant unresolved complex mixture (UCM) with unresolved to resolved components ratio (U/R) of 6.2-13.2 confirm the petroleum component. The relative distribution of n-alkanes and the values of molecular diagnostic ratio, such as carbon preference index (CPI) values ranging from 1.0 to 1.4 (for the whole range of n-alkanes), indicated the importance of petroleum and diesel residues and gasoline emissions, as well as the minor contribution of n-alkanes emitted directly from epicuticular waxes. Indeed, the percent contribution of leaf 'wax' n-alkanes (5.2-19.4%) indicated a low contribution of biogenic sources. The fossil fuel biomarkers, hopanes and steranes were observed in the PM10 samples, which indicate a petroleum origin. The distribution pattern of PAHs was characteristic of anthropogenic emissions. Coupling carbon number maximum (Cmax), CPI, U/R values, molecular marker and molecular diagnostic ratios for alkanes and PAHs revealed a classification of natural biogenic and anthropogenic components of atmospheric aerosols. These analyses support the conclusion that vehicular emission was the major source of organic compounds during the study period, while the contribution of epicuticular waxes emitted by terrestrial plants was minor.

  18. Statins attenuate the development of atherosclerosis and endothelial dysfunction induced by exposure to urban particulate matter (PM10)

    International Nuclear Information System (INIS)

    Miyata, Ryohei; Hiraiwa, Kunihiko; Cheng, Jui Chih; Bai, Ni; Vincent, Renaud; Francis, Gordon A.; Sin, Don D.; Van Eeden, Stephan F.

    2013-01-01

    Exposure to ambient air particulate matter (particles less than 10 μm or PM 10 ) has been shown to be an independent risk factor for the development and progression of atherosclerosis. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have well-established anti-inflammatory properties. The aim of this study was to determine the impact of statins on the adverse functional and morphological changes in blood vessels induced by PM 10 . New Zealand White rabbits fed with a high fat diet were subjected to balloon injury to their abdominal aorta followed by PM 10 /saline exposure for 4 weeks ± lovastatin (5 mg/kg/day) treatment. PM 10 exposure accelerated balloon catheter induced plaque formation and increased intimal macrophages and lipid accumulation while lovastatin attenuated these changes and promoted smooth muscle cell recruitment into plaques. PM 10 impaired vascular acetylcholine (Ach) responses and increased vasoconstriction induced by phenylephrine as assessed by wire myograph. Supplementation of nitric oxide improved the impaired Ach responses. PM 10 increased the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in blood vessels and increased the plasma levels of endothelin-1 (ET-1). Incubation with specific inhibitors for iNOS, COX-2 or ET-1 in the myograph chambers significantly improved the impaired vascular function. Lovastatin decreased the expression of these mediators in atherosclerotic lesions and improved endothelial dysfunction. However, lovastatin was unable to reduce blood lipid levels to the baseline level in rabbits exposed to PM 10 . Taken together, statins protect against PM 10 -induced cardiovascular disease by reducing atherosclerosis and improving endothelial function via their anti-inflammatory properties. - Highlights: • Coarse particulate matter (PM 10 ) accelerated balloon injury-induced plaque formation. • Lovastatin decreased intimal macrophages, lipid accumulation, and

  19. CV-Dust: Atmospheric aerosol in the Cape Verde region: carbon and soluble fractions of PM10

    Science.gov (United States)

    Pio, C.; Nunes, T.; Cardoso, J.; Caseiro, A.; Custódio, D.; Cerqueira, M.; Patoilo, D.; Almeida, S. M.; Freitas, M. C.

    2012-04-01

    than 100 PM10 samples, addressing mainly their mass concentrations and the chemical composition of water soluble ions and carbon species (carbonates and organic and elemental carbon). Different PM10 samplers worked simultaneously in order to collect enough mass to make the aerosol characterization through the different methodologies and to collect aerosols in different filter matrixes, which have to be appropriated to the chemical and mineralogical analysis. The sampling site was located at Santiago Island, in the surroundings of Praia City (14° 55' N e 23° 29' W, 98 m at sea level). High concentrations, up to more than 400 μg m-3, are connected to north-east and north-northeast winds, and it was identified several dust events characteristic of "bruma seca", whose duration is on average of two to four days. Backward trajectories analysis confirms that the high concentrations in Cape Verde are associated with air masses passing over the Sahara. During dust events the percentage of inorganic water soluble ions for the total PM10 mass concentration decreased significantly to values lower than 10% in comparison with remainder data that range around 45±10%. Acknowledgement: This work was funded by the Portuguese Science Foundation (FCT) through the project PTDD/AAC-CLI/100331/2008 and FCOMP-01-0124-FEDER-008646 (CV-Dust). J. Cardoso acknowledges the PhD grant SFRH-BD-6105-2009 from FCT.

  20. First Results of the “Carbonaceous Aerosol in Rome and Environs (CARE” Experiment: Beyond Current Standards for PM10

    Directory of Open Access Journals (Sweden)

    Francesca Costabile

    2017-12-01

    Full Text Available In February 2017 the “Carbonaceous Aerosol in Rome and Environs (CARE” experiment was carried out in downtown Rome to address the following specific questions: what is the color, size, composition, and toxicity of the carbonaceous aerosol in the Mediterranean urban background area of Rome? The motivation of this experiment is the lack of understanding of what aerosol types are responsible for the severe risks to human health posed by particulate matter (PM pollution, and how carbonaceous aerosols influence radiative balance. Physicochemical properties of the carbonaceous aerosol were characterised, and relevant toxicological variables assessed. The aerosol characterisation includes: (i measurements with high time resolution (min to 1–2 h at a fixed location of black carbon (eBC, elemental carbon (EC, organic carbon (OC, particle number size distribution (0.008–10 μ m, major non refractory PM1 components, elemental composition, wavelength-dependent optical properties, and atmospheric turbulence; (ii 24-h measurements of PM10 and PM2.5 mass concentration, water soluble OC and brown carbon (BrC, and levoglucosan; (iii mobile measurements of eBC and size distribution around the study area, with computational fluid dynamics modeling; (iv characterisation of road dust emissions and their EC and OC content. The toxicological assessment includes: (i preliminary evaluation of the potential impact of ultrafine particles on lung epithelia cells (cultured at the air liquid interface and directly exposed to particles; (ii assessment of the oxidative stress induced by carbonaceous aerosols; (iii assessment of particle size dependent number doses deposited in different regions of the human body; (iv PAHs biomonitoring (from the participants into the mobile measurements. The first experimental results of the CARE experiment are presented in this paper. The objective here is to provide baseline levels of carbonaceous aerosols for Rome, and to address

  1. Urban aerosol in Oporto, Portugal: Chemical characterization of PM10 and PM2.5

    Science.gov (United States)

    Custódio, Danilo; Ferreira, Catarina; Alves, Célia; Duarte, Mácio; Nunes, Teresa; Cerqueira, Mário; Pio, Casimiro; Frosini, Daniele; Colombi, Cristina; Gianelle, Vorne; Karanasiou, Angeliki; Querol, Xavier

    2014-05-01

    Several urban and industrial areas in Southern Europe are not capable of meeting the implemented EU standards for particulate matter. Efficient air quality management is required in order to ensure that the legal limits are not exceeded and that the consequences of poor air quality are controlled and minimized. Many aspects of the direct and indirect effects of suspended particulate matter on climate and public health are not well understood. The temporal variation of the chemical composition is still demanded, since it enables to adopt off-set strategies and to better estimate the magnitude of anthropogenic forcing on climate. This study aims to provide detailed information on concentrations and chemical composition of aerosol from Oporto city, an urban center in Southern Europe. This city is located near the coast line in the North of Portugal, being the country's second largest urban area. Moreover, Oporto city economic prospects depend heavily on a diversified industrial park, which contribute to air quality degradation. Another strong source of air pollution is traffic. The main objectives of this study are: 1) to characterize the chemical composition of PM10 and PM2.5 by setting up an orchestra of aerosol sampling devices in a strategic place in Oporto; 2) to identify the sources of particles exploring parameters such as organic and inorganic markers (e.g. sugars as tracers for biomass burning; metals and elemental carbon for industrial and vehicular emissions); 3) to evaluate long range transport of pollutants using back trajectory analysis. Here we present data obtained between January 2013 and January 2014 in a heavy traffic roadside sampling site located in the city center. Different PM10 and PM2.5 samplers were operated simultaneously in order to collect enough mass on different filter matrixes and to fulfill the requirements of analytical methodologies. More than 100 aerosol samples were collected and then analysed for their mass concentration and

  2. Mapping and Assessment of PM10 and O3 Removal by Woody Vegetation at Urban and Regional Level

    Directory of Open Access Journals (Sweden)

    Lina Fusaro

    2017-08-01

    Full Text Available This study is the follow up of the URBAN-MAES pilot implemented in the framework of the EnRoute project. The study aims at mapping and assessing the process of particulate matter (PM10 and tropospheric ozone (O3 removal by various forest and shrub ecosystems. Different policy levels and environmental contexts were considered, namely the Metropolitan city of Rome and, at a wider level, the Latium region. The approach involves characterization of the main land cover and ecosystems using Sentinel-2 images, enabling a detailed assessment of Ecosystem Service (ES, and monetary valuation based on externality values. The results showed spatial variations in the pattern of PM10 and O3 removal inside the Municipality and in the more rural Latium hinterland, reflecting the spatial dynamics of the two pollutants. Evergreen species displayed higher PM10 removal efficiency, whereas deciduous species showed higher O3 absorption in both rural and urban areas. The overall pollution removal accounted for 5123 and 19,074 Mg of PM10 and O3, respectively, with a relative monetary benefit of 161 and 149 Million Euro for PM10 and O3, respectively. Our results provide spatially explicit evidence that may assist policymakers in land-oriented decisions towards improving Green Infrastructure and maximizing ES provision at different governance levels.

  3. Exposure to hazardous volatile organic compounds, PM 10 and CO while walking along streets in urban Guangzhou, China

    Science.gov (United States)

    Zhao, Lirong; Wang, Xinming; He, Qiusheng; Wang, Hao; Sheng, Guoying; Chan, L. Y.; Fu, Jiamo; Blake, D. R.

    Toxic air pollutants in street canyons are important issues concerning public health especially in some large Asian cities like Guangzhou. In 1998 Guangzhou citizens used public transportation modes, with a majority commuting on foot (42%) or by bicycle (22%). Of the pedestrians, 57% were either senior citizens or students. In the present study, we measured toxic air pollutants while walking along urban streets in Guangzhou to evaluate pedestrian exposure. Volatile organic compounds (VOCs) were collected with sorbent tubes, and PM 10 and CO were measured simultaneously with portable analyzers. Our results showed that pedestrian exposure to PM 10 (with an average of 303 μg m -3 for all samples) and some toxic VOCs (for example, benzene) was relatively high. Monocyclic aromatic hydrocarbons were found to be the most abundant VOCs, and 71% of the samples had benzene levels higher than 30 μg m -3. Benzene, PM 10 and CO in walk-only streets were significantly lower ( ptransportation modes (bus and subway). The good correlations between BTEX, PM 10 and CO in the streets indicated that automotive emission might be their major source. Our study also showed that the risk to pedestrians due to air pollution was misinterpreted by the reported air quality index based on measurement of SO 2, NO x and PM 10 in the government monitoring stations. An urban roadside monitoring station might be needed by air quality monitoring networks in large Asian cities like Guangzhou, in order to survey exposure to air toxics in urban roadside microenvironments.

  4. Spatial distribution of particulate matter (PM10 and PM2.5) in Seoul Metropolitan Subway stations.

    Science.gov (United States)

    Kim, Ki Youn; Kim, Yoon Shin; Roh, Young Man; Lee, Cheol Min; Kim, Chi Nyon

    2008-06-15

    The aims of this study are to examine the concentrations of PM10 and PM2.5 in areas within the Seoul Metropolitan Subway network and to provide fundamental data in order to protect respiratory health of subway workers and passengers from air pollutants. A total of 22 subway stations located on lines 1-4 were selected based on subway official's guidance. At these stations both subway worker areas (station offices, rest areas, ticket offices and driver compartments) and passengers areas (station precincts, subway carriages and platforms) were the sites used for measuring the levels of PM. The mean concentrations of PM10 and PM2.5 were relatively higher on platforms, inside subway carriages and in driver compartments than in the other areas monitored. The levels of PM10 and PM2.5 for station precincts and platforms exceeded the 24-h acceptable threshold limits of 150 microg/m3 for PM10 and 35 microg/m3 for PM2.5, which are regulated by the U.S. Environmental Protection Agency (EPA). However, levels measured in station and ticket offices fell below the respective threshold. The mean PM10 and PM2.5 concentrations on platforms located underground were significantly higher than those at ground level (p<0.05).

  5. PM10 standards and nontraditional particulate source controls: A summary of the A ampersand WMA/EPA international specialty conference

    International Nuclear Information System (INIS)

    Chow, J.C.; Watson, J.G.; Ono, D.M.; Mathai, C.V.

    1993-01-01

    An international specialty conference, jointly sponsored by the Air ampersand Waste Management Association (A ampersand WMA) and the US Environmental Protection Agency (EPA), entitled open-quotes PM 10 Standards and Nontraditional Particulate Source Controls,close quotes was held in Scottsdale, Arizona, January 12-15, 1992. The conference included 92 presentations in 17 technical sessions. Eight-one peer-reviewed technical papers, two keynote addresses and one panel session summary describing novel applications, measurement processes, modeling techniques and control measures for nontraditional pollution sources are assembled in the Transactions. The technical issues addressed during the conference included: (1) measurement methods and data bases; (2) emissions source characterization; (3) source apportionment of nontraditional sources; (4) fugitive dust characterization and control technologies; (5) vegetative burning characterization and control technologies; (6) sources and controls of secondary aerosol and motor vehicle precursors; and (7) regulatory policies and State Implementation Plan (SIP) development. This paper gives an overview of the technical program. 105 refs., 1 tab

  6. Background Atmospheric Levels of Aldehydes, BTEX and PM10 Pollutants in a Medium-Sized City of Southern Italy

    International Nuclear Information System (INIS)

    Iovino, P.; Salvestrini, S.; Capasso, S.

    2007-01-01

    Background atmospheric levels of aldehydes, BTEX and PM10 pollutants were measured in the suburb of Caserta (Italy), 75 thousands inhabitants, 41 0 04' N, on rainless weekdays and weekends during 2005. On weekdays the average daily concentrations (μg m -3 ) were 41.6 PM10, 8.6 benzene, 25.2 toluene, 6.3 ethylbenzene, 14.0 (m+p)-xylene, 11.7 o-xylene, 6.5 formaldehyde, 3.3 acetaldehyde. All the pollutant concentrations were strictly correlated (mean correlation coefficients = 0.90). At weekends the concentrations were lower by about 1.6 times. Both on weekdays and at weekends the PM10 and benzene levels exceeded the limits set by the EU Directive 30/1999 and 69/2000, respectively

  7. O papel da vegetação urbana no controlo das concentrações de PM10

    OpenAIRE

    Feliciano, Manuel; Maia, Filipe; Rodrigues, Filipe; Ribeiro, A.C.; Gonçalves, Artur; Nunes, Luís

    2009-01-01

    O aumento dos níveis de PM10 em atmosferas urbanas constitui um grave problema de saúde pública. A utilização de vegetação pode ser uma forma sustentável de mitigar este problema. Neste contexto, foi desenvolvido um estudo, na cidade de Bragança, com vista a avaliar o papel da vegetação no controlo das concentrações de PM10. Este estudo assentou em dois tipos de experiências. Uma que consistiu na medição de PM10 em dois transectos com características contrastantes, em termos de co...

  8. Mutagenic and recombinagenic activity of airborne particulates, PM10 and TSP, organic extracts in the Drosophila wing-spot test

    International Nuclear Information System (INIS)

    Rodrigues Dihl, Rafael; Grazielli Azevedo da Silva, Carla; Souza do Amaral, Viviane; Reguly, Maria Luiza; Rodrigues de Andrade, Heloisa Helena

    2008-01-01

    The genotoxicity associated with air pollution in the city of Canoas, Rio Grande do Sul (Brazil), was assessed in November (spring) and January (summer). We applied the somatic mutation and recombination test (SMART) in Drosophila melanogaster in its standard version with normal bioactivation (ST) and in its variant with increased cytochrome P450-dependent biotransformation capacity (HB). The data indicated the genotoxicity of TSP and PM10 collected in November, in both ST and HB crosses. The genotoxic activity of the PM10 material in the spring sample was exclusively associated with the induction of mitotic recombination, whereas the TSP genetic toxicity was due to both recombinational as well as point and/or chromosomal mutation events. Considering PM10 collected in January, a positive response-100% (17.10 m 3 /ml) concentration-was observed in the HB cross, which was not detected in the ST cross. - Drosophila Wing-Spot Test can be used for detection of airborne particulates mutagenesis

  9. PM-10 emissions and power of a Diesel engine fueled with crude and refined Biodiesel from salmon oil

    Energy Technology Data Exchange (ETDEWEB)

    J.F. Reyes; M.A. Sepulveda [University of Concepcion (Chile). Department of Mechanization and Energy, Faculty of Agricultural Engineering

    2006-09-15

    Power response and level of particulate emissions were assessed for blends of Diesel-crude Biodiesel and Diesel-refined Biodiesel. Crude Biodiesel and refined Biodiesel or methyl ester, were made from salmon oil with high content of free fatty acids, throughout a process of acid esterification followed by alkaline transesterification. Blends of Diesel-crude Biodiesel and Diesel-refined Biodiesel were tested in a diesel engine to measure simultaneously the dynamometric response and the particulate material (PM-10) emission performance. The results indicate a maximum power loss of about 3.5% and also near 50% of PM-10 reduction with respect to diesel when a 100% of refined Biodiesel is used. For blends with less content of either crude Biodiesel or refined Biodiesel, the observed power losses are lower but at the same time lower reduction in PM-10 emissions are attained. 21 refs., 4 figs., 2 tabs.

  10. Assessment of microbial communities in PM1 and PM10 of Urumqi during winter.

    Science.gov (United States)

    Gou, Huange; Lu, Jianjiang; Li, Shanman; Tong, Yanbin; Xie, Chunbin; Zheng, Xiaowu

    2016-07-01

    Recently, inhalable particulate matter has been reported to carry microorganisms responsible for human allergy and respiratory disease. The unique geographical environment and adverse weather conditions of Urumqi cause double pollution of dust and smog, but research on the microbial content of the atmosphere has not been commenced. In this study, 16S and 18S rRNA gene sequencing were conducted to investigate the microbial composition of Urumqi's PM1 and PM10 pollutants in winter. Results showed that the bacterial community is mainly composed of Proteobacteria, Firmicutes and Actinobacteria, Proteobacteria accounted for the most proportion which was significant difference in some aforementioned studies. Ascomycota and Basidiomycota constitute the main part of the fungal microbial community. The difference of bacterial relative abundance in sample point is greater than in particle sizes. The sequences of several pathogenic bacteria and opportunistic pathogens were also detected, such as Acinetobacter, Delftia, Serratia, Chryseobacterium, which may impact on immunocompromised populations (elderly, children and postoperative convalescence patients), and some fungal genera may cause several plant diseases. Our findings may serve an important reference value in the global air microbial propagation and air microbial research in desert. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Emission characteristics and chemical composition of PM10 from two coal fired power plants in China

    Energy Technology Data Exchange (ETDEWEB)

    Sui, J.C.; Xu, M.H.; Du, Y.G.; Liu, Y.; Yu, D.X.; Yi, G.Z. [CPI Yuanda Environmental Protection Engineering Co. Ltd, Chongqing (China)

    2007-12-15

    By using low pressure impactor, fly ash was sampled in the entrance and exit of the dust cleaning equipments, such as ESP and venturi scrubber, in a 50 and 100 MW utility boiler. The composition, mass size distribution and microstructure of fly ash were measured. A similar bimodal distribution of PM10 was obtained in the studied boilers. The small and large modes are formed at 0.1 and 4.0 {mu}m respectively. Based on the comparison of concentrations of Si and Al in the size segregated ash, it is concluded that the ash with size smaller than 0.377 {mu}m is formed by the nucleation of vaporised mineral components and growth via coagulation and heterogeneous condensation. The results by microstructure measurements showed that the typical microstructure of submicron and coarse PM is spherical, except for a few irregular particles in shape. The collection efficiency of the dust cleaning equipments had a minimum in particle size range of 0.01-1 {mu}m.

  12. Exposure assessment of a cyclist to PM10 and ultrafine particles.

    Science.gov (United States)

    Berghmans, P; Bleux, N; Int Panis, L; Mishra, V K; Torfs, R; Van Poppel, M

    2009-02-01

    Estimating personal exposure to air pollution is a crucial component in identifying high-risk populations and situations. It will enable policy makers to determine efficient control strategies. Cycling is again becoming a favorite mode of transport both in developing and in developed countries due to increasing traffic congestion and environmental concerns. In Europe, it is also seen as a healthy sports activity. However, due to high levels of hazardous pollutants in the present day road microenvironment the cyclist might be at a higher health risk due to higher breathing rate and proximity to the vehicular exhaust. In this paper we present estimates of the exposure of a cyclist to particles of various size fractions including ultrafine particles (UFP) in the town of Mol (Flanders, Belgium). The results indicate relatively higher UFP concentration exposure during morning office hours and moderate UFP levels during afternoon. The major sources of UFP and PM(10) were identified, which are vehicular emission and construction activities, respectively. We also present a dust mapping technique which can be a useful tool for town planners and local policy makers.

  13. Determination of chemical content of PM10 and TSP using SEM-EDAX

    International Nuclear Information System (INIS)

    Masitah Alias; Zaini Hamzah

    2007-01-01

    The growing concern over the workers safety and health has lead many factories and organizations do the air monitoring to ensure the airborne at their workplace is safe for the worker's health and complying the Occupational Safety and Health Act 1994 (Act 514). In this study, the monitoring covers an indoor air quality and chemical exposure to the workers in one of the power plant repair shop. A few workers from different sections namely blasting, welding, grinding, fitting and maintenance area were chosen to assist in the personal monitoring for 8 hours measurement. PM10 were measured at a few sampling points to collect dusts for 24 hours duration. The samples were brought back to the laboratory for gravimetric and SEM-EDAX analysis. The results were certainly exceed the limit for air quality, and many elements were detected such as Fe, Ni, Al, Si, Ca, K, Ba, S, Cr, Zn and Cl. The present of these elements shows that exposure to these particulate matters is quite risky and some measure needs to be taken for remedial action. (Author)

  14. Preliminary analysis of levels of arsenic and other metalic elements in PM10 sampled near Copper Smelter Bor (Serbia

    Directory of Open Access Journals (Sweden)

    Renata Kovačević

    2010-09-01

    Full Text Available In this paper, the levels of twenty one elements (Ag, Al, As, B, Ba, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, S, Se, Sr and Zn in PM10 are presented, as well as SO2 concentration, measured at the sampling site in an urban area of the town of Bor (40,000 inhabitants in eastern Serbia. The sampling site was located in a densely populated city center about 0.65 km away from one of the largest copper mines and copper smelters in Europe. For the first time PM10 was collected using the European standard sampler, during a preliminary campaign in duration of 7 days in early spring 2009. PM10 were sampled on PTFE membrane filters and element concentrations were quantified by GF AAS and ICP AES. Concentration levels and correlations within trace elements, PM10 and SO2 indicated that industrial activities underpinned with meteorological conditions of low wind speed (calm are the main factors that influence air pollution in a densely populated area. It was evident that both PM10 mass concentration and SO2 concentration once exceeded the daily limit values during a measuring period of seven days. Strong relationship was found between PM10 and Mn, Mg, Ca and B daily average concentrations. On the other hand, SO2 correlated strongly with As, Pb, Cd, Cu and S daily average concentrations. These results confirm the relationship between emissions of SO2 from the Copper Smelter Bor and calm meteorological conditions (wind speed less than 0.5 m/sec with the concentration levels of carcinogenic substances of arsenic, lead and cadmium in ambient air.

  15. Ultrastructural alterations in the mouse lung caused by real-life ambient PM10 at urban traffic sites

    International Nuclear Information System (INIS)

    Samara, Constantini; Kouras, Athanasios; Kaidoglou, Katerina; Emmanouil-Nikoloussi, Elpida-Niki; Simou, Chrysanthi; Bousnaki, Maria; Kelessis, Apostolos

    2015-01-01

    Current levels of ambient air particulate matter (PM) are associated with mortality and morbidity in urban populations worldwide. Nevertheless, current knowledge does not allow precise quantification or definitive ranking of the health effects of individual PM components and indeed, associations may be the result of multiple components acting on different physiological mechanisms. In this paper, healthy Balb/c mice were exposed to ambient PM 10 at a traffic site of a large city (Thessaloniki, northern Greece), in parallel to control mice that were exposed to filtered air. Structural damages were examined in ultrafine sections of lung tissues by Transmission Electronic Microscopy (TEM). Ambient PM 10 samples were also collected during the exposure experiment and characterized with respect to chemical composition and oxidative potential. Severe ultrastructural alterations in the lung tissue after a 10-week exposure of mice at PM 10 levels often exceeding the daily limit of Directive 2008/50/EC were revealed mainly implying PM-induced oxidative stress. The DTT-based redox activity of PM 10 was found within the range of values reported for traffic sites being correlated with traffic-related constituents. Although linkage of the observed lung damage with specific chemical components or sources need further elucidation, the magnitude of biological responses highlight the necessity for national and local strategies for mitigation of particle emissions from combustion sources. - Highlights: • Animal exposure to PM10 was conducted at a traffic site of a large city. • Chemical and toxicological characterization of PM10 was carried out. • Severe degenerative alterations in alveolar cells were revealed. • PM induced oxidative stress from carbonaceous species was suggested

  16. Particle reduction strategies - PAREST. Evaluation of emission reduction scenarios using chemical transport calculations. PM10- and PM2.5-reduction potentials by package of measures for further immission reduction in Germany. Sub-report

    International Nuclear Information System (INIS)

    Stern, Rainer

    2013-01-01

    This report documents the effects of additional emission control measures the PM10 and PM2.5 air quality in Germany (PM = particulate matter). The immission effects of the planned measures were calculated with the Chemistry-Aerosol-Transport Model REM CALGRID (RCG). [de

  17. Source profiles and contributions of biofuel combustion for PM2.5, PM10 and their compositions, in a city influenced by biofuel stoves.

    Science.gov (United States)

    Tian, Ying-Ze; Chen, Jia-Bao; Zhang, Lin-Lin; Du, Xin; Wei, Jin-Jin; Fan, Hui; Xu, Jiao; Wang, Hai-Ting; Guan, Liao; Shi, Guo-Liang; Feng, Yin-Chang

    2017-12-01

    Source and ambient samples were collected in a city in China that uses considerable biofuel, to assess influence of biofuel combustion and other sources on particulate matter (PM). Profiles and size distribution of biofuel combustion were investigated. Higher levels in source profiles, a significant increase in heavy-biomass ambient and stronger correlations of K + , Cl - , OC and EC suggest that they can be tracers of biofuel combustion. And char-EC/soot-EC (8.5 for PM 2.5 and 15.8 for PM 10 of source samples) can also be used to distinguish it. In source samples, water-soluble organic carbon (WSOC) were approximately 28.0%-68.8% (PM 2.5 ) and 27.2%-43.8% (PM 10 ) of OC. For size distribution, biofuel combustion mainly produces smaller particles. OC1, OC2, EC1 and EC2 abundances showed two peaks with one below 1 μm and one above 2 μm. An advanced three-way factory analysis model was applied to quantify source contributions to ambient PM 2.5 and PM 10 . Higher contributions of coal combustion, vehicular emission, nitrate and biofuel combustion occurred during the heavy-biomass period, and higher contributions of sulfate and crustal dust were observed during the light-biomass period. Mass and percentage contributions of biofuel combustion were significantly higher in heavy-biomass period. The biofuel combustion attributed above 45% of K + and Cl - , above 30% of EC and about 20% of OC. In addition, through analysis of source profiles and contributions, they were consistently evident that biofuel combustion and crustal dust contributed more to cation than to anion, while sulfate & SOC and nitrate showed stronger influence on anion than on cation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Experimental determination of drift and PM10 cooling tower emissions: Influence of components and operating conditions.

    Science.gov (United States)

    Ruiz, J; Kaiser, A S; Lucas, M

    2017-11-01

    Cooling tower emissions have become an increasingly common hazard to the environment (air polluting, ice formation and salts deposition) and to the health (Legionella disease) in the last decades. Several environmental policies have emerged in recent years limiting cooling tower emissions but they have not prevented an increasing intensity of outbreaks. Since the level of emissions depends mainly on cooling tower component design and the operating conditions, this paper deals with an experimental investigation of the amount of emissions, drift and PM 10 , emitted by a cooling tower with different configurations (drift eliminators and distribution systems) and working under several operating conditions. This objective is met by the measurement of cooling tower source emission parameters by means of the sensitive paper technique. Secondary objectives were to contextualize the observed emission rates according to international regulations. Our measurements showed that the drift rates included in the relevant international standards are significantly higher than the obtained results (an average of 100 times higher) and hence, the environmental problems may occur. Therefore, a revision of the standards is recommended with the aim of reducing the environmental and human health impact. By changing the operating conditions and the distribution system, emissions can be reduced by 52.03% and 82% on average. In the case of drift eliminators, the difference ranges from 18.18% to 98.43% on average. As the emissions level is clearly influenced by operating conditions and components, regulation tests should be referred to default conditions. Finally, guidelines to perform emission tests and a selection criterion of components and conditions for the tested cooling tower are proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Concentrations and source apportionment of PM10 and associated elemental and ionic species in a lignite-burning power generation area of southern Greece.

    Science.gov (United States)

    Argyropoulos, G; Grigoratos, Th; Voutsinas, M; Samara, C

    2013-10-01

    Ambient concentrations of PM10 and associated elemental and ionic species were measured over the cold and the warm months of 2010 at an urban and two rural sites located in the lignite-fired power generation area of Megalopolis in Peloponnese, southern Greece. The PM10 concentrations at the urban site (44.2 ± 33.6 μg m(-3)) were significantly higher than those at the rural sites (23.7 ± 20.4 and 22.7 ± 26.9 μg m(-3)). Source apportionment of PM10 and associated components was accomplished by an advanced computational procedure, the robotic chemical mass balance model (RCMB), using chemical profiles for a variety of local fugitive dust sources (power plant fly ash, flue gas desulfurization wet ash, feeding lignite, infertile material from the opencast mines, paved and unpaved road dusts, soil), which were resuspended and sampled through a PM10 inlet onto filters and then chemically analyzed, as well as of other common sources such as vehicular traffic, residential oil combustion, biomass burning, uncontrolled waste burning, marine aerosol, and secondary aerosol formation. Geological dusts (road/soil dust) were found to be major PM10 contributors in both the cold and warm periods of the year, with average annual contribution of 32.6 % at the urban site vs. 22.0 and 29.0 % at the rural sites. Secondary aerosol also appeared to be a significant source, contributing 22.1 % at the urban site in comparison to 30.6 and 28.7 % at the rural sites. At all sites, the contribution of biomass burning was most significant in winter (28.2 % at the urban site vs. 14.6 and 24.6 % at the rural sites), whereas vehicular exhaust contribution appeared to be important mostly in the summer (21.9 % at the urban site vs. 11.5 and 10.5 % at the rural sites). The highest contribution of fly ash (33.2 %) was found at the rural site located to the north of the power plants during wintertime, when winds are favorable. In the warm period, the highest contribution of fly ash was found at the

  20. Development of cotton gin PM10 emission factors for EPA’s AP-42-DUPLICATE DO NOT USE

    Science.gov (United States)

    The Compilation of Air Pollution Emission Factors (AP-42) emission factors are assigned ratings, from A (Excellent) to E (Poor), based on the quality of data used to develop them. All current PM10 cotton gin emission factors received quality ratings of D or lower. In an effort to improve these ratin...

  1. TSP, PM10, and PM2.5 emissions from a beef cattle feedlot using the flux-gradient technique

    Science.gov (United States)

    Emissions data on air pollutants from large open-lot beef cattle feedlots are limited. This research was conducted to determine emissions of total suspended particulates (TSP) and particulate matter (PM10 and PM2.5) from a commercial beef cattle feedlot in Kansas (USA). Vertical particulate concentr...

  2. Source contributions to PM2.5 and PM10 at an urban background and a street location

    Science.gov (United States)

    Keuken, M. P.; Moerman, M.; Voogt, M.; Blom, M.; Weijers, E. P.; Röckmann, T.; Dusek, U.

    2013-06-01

    The contribution of regional, urban and traffic sources to PM2.5 and PM10 in an urban area was investigated in this study. The chemical composition of PM2.5 and PM10 was measured over a year at a street location and up- and down-wind of the city of Rotterdam, the Netherlands. The 14C content in EC and OC concentrations was also determined, to distinguish the contribution from "modern" carbon (e.g., biogenic emissions, biomass burning and wildfires) and fossil fuel combustion. It was concluded that the urban background of PM2.5 and PM10 is dominated by the regional background, and that primary and secondary PM emission by urban sources contribute less than 15%. The 14C analysis revealed that 70% of OC originates from modern carbon and 30% from fossil fuel combustion. The corresponding percentages for EC are, respectively 17% and 83%. It is concluded that in particular the urban population living in street canyons with intense road traffic has potential health risks. This is due to exposure to elevated concentrations of a factor two for EC from exhaust emissions in PM2.5 and a factor 2-3 for heavy metals from brake and tyre wear, and re-suspended road dust in PM10. It follows that local air quality management may focus on local measures to street canyons with intense road traffic.

  3. Removal of particulate matter (PM10) by air scrubbers at livestock facilities: results of an on-farm monitoring program.

    NARCIS (Netherlands)

    Melse, R.W.; Hofschreuder, P.; Ogink, N.W.M.

    2012-01-01

    Air scrubbers are commonly used for removal of ammonia and odor from exhaust air of animal houses in the Netherlands. In addition, air scrubbers remove a part of the particulate matter. In this article, the results of an on-farm monitoring are presented in which PM10 removal was monitored at 24

  4. Indoor/outdoor of PM10 relationships and its water-soluble ions composition in selected primary schools in Malaysia

    Science.gov (United States)

    Mohamad, Noorlin; Latif, Mohd Talib

    2013-11-01

    Measurements of PM10 and water-soluble ions were carried out on indoor and outdoor PM10 (particles > 10 μm in aerodynamic diameter) aerosols sampled at selected primary schools of Kuala Lumpur (S1) and Putrajaya (S2), respectively. Samples were collected using a low volume sampler on Teflon filters. The water-soluble ions chloride (Cl-), nitrate (NO3-), sulfate (SO42-), calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+) and ammonium (NH4+) was analyzed using ion chromatography. The results showed that the indoor PM10 mass concentrations in S1 and S2 were 96.6 and 69.5 μg/m3, while the outdoor PM10 mass concentrations were 80.1 and 85.2 μg/m3, respectively. This indicated that NO3- were the most dominant ions, followed by SO42-, Ca2+, K+ and Na+, while Cl-, Mg2+ and Na+ were present at low concentrations. Pearson's correlation test applied to all the data showed high correlation between SO42- and NO3-, indicating a common anthropogenic origin. In addition, the correlations between Na+ and Ca2+ indicated crustal origins that significantly contributed to human exposure.

  5. 78 FR 21547 - Approval and Promulgation of Air Quality Implementation Plans; Oregon: Eugene-Springfield PM10

    Science.gov (United States)

    2013-04-11

    ... winter day emissions from point sources, residential wood combustion, road dust, and motor vehicle exhaust, brake and tire wear. The emissions inventory includes an inventory of point sources of PM 10... State's submittal. Emissions estimates for road dust and motor vehicle exhaust, brake wear, and tire...

  6. Contribution of incense burning to indoor PM10 and particle-bound polycyclic aromatic hydrocarbons under two ventilation conditions.

    Science.gov (United States)

    Lung, S-C C; Kao, M-C; Hu, S-C

    2003-06-01

    Burning incense to worship Gods and ancestors is a traditional practice prevalent in Asian societies. This work investigated indoor PM10 concentrations resulting from incense burning in household environments under two conditions: closed and ventilated. The exposure concentrations of particle-bound polycyclic aromatic hydrocarbons (PAHs) were estimated. The factors of potential exposure were also evaluated. Under both conditions, samples were taken at three locations: 0.3, 3.5 and 7 m away from the altar during three periods: incense burning, the first 3 h, and the 4-6 h after cessation of combustion. PAH concentrations of incense smoke were assessed in the laboratory. Personal environment monitors were used as sampling instruments. The results showed a significant contribution of incense burning to indoor PM10 and particulate PAH concentrations. PM10 concentrations near the altar during incense burning were 723 and 178 microg/m3, more than nine and 1.6 times background levels, under closed and ventilated conditions, respectively. Exposure concentrations of particle-bound PAHs were 0.088-0.45 microg/m3 during incense burning. On average, PM10 and associated PAH concentrations were about 371 and 0.23 microg/m3 lower, respectively, in ventilated environments compared with closed conditions. Concentrations were elevated for at least 6 h under closed conditions.

  7. Roadside air particulate monitoring in the PM10 range at the Poveda Learning Center, EDSA, Metro Manila

    International Nuclear Information System (INIS)

    Santos, Flora L.; Pabroa, Preciosa Corazon B.; Esguerra, Luz V.; Racho, Joseph Michael; Almoneda, Rosalina V.; Sucgang, Raymond

    2006-01-01

    The Philippine Nuclear Research Institute undertakes air particulate matter monitoring in the PM10 range using a Gent-type dichotomous sampler. Samples are collected in 2 fractions; fine, having a mean aerodynamic diameter below 2.2 microns and coarse, with mean aerodynamic diameter of 2.2-10 microns. The PNRI station at Poveda Learning Center, Mandaluyong, Metro Manila was identified for sample collection under this project. The sampler is located about 100 m. away from the major highway, Epifanio delos Santos Avenue (EDSA), on the roof-deck of a three-story building. Mean annual and 24-hour PM10 levels were found to be below the national standards: 60 ug/cu m annual mean and 150 ug/cu m 24-hour value. Using the Gent sampler, the weight of the fine fraction underestimates PM2.5 by 15%. The sum of the coarse and fine fractions is equal to PM10. The 24-hour value for PM2.2 is generally below the US EPA standard of 65 ug./cu m while the annual mean is generally in exceedance of the long-term standard of 15 ug/cu m. This indicates the need to study current standards and its efficacy in protecting the general population from adverse health effects due to fine particulate pollution. Correlation plots of coarse and fine fractions with PM10 show greater contribution of the coarse fraction to PM10. Contribution of the fine fraction is found to decrease from 36% in 2002, to 29% in 2003 and 20% in 2004. Fine fraction contribution to PM10 at another station, the Ateneo de Manila is 40% for both years. The station at the Ateneo is farther from the road and is exposed to a lower volume of vehicular traffic. High coarse particle contribution to PM10 at the Poveda station could be due to particles resuspended from the road by the vehicles. An increase in the concentration of coarse particles is observed in 2003 which remains at the same level in 2004. Fine particle concentration also increases in 2003 but decreases in 2004, possibly reflecting the impact of government drive

  8. Influence of meteorology and source variation on airborne PM 10 levels in a high relief tropical Andean city

    Directory of Open Access Journals (Sweden)

    Carlos Mario González-Duque

    2015-01-01

    Full Text Available El análisis de niveles de (PM 10 y su asociación con la meteorología, altura de capa de mezcla y fuentes de contaminación, se realizó en la ciudad tropical andina de Manizales durante un periodo de dos años (enero 2010 a diciembre 2012. Los mayores niveles de PM 10 se observaron en zonas con alta influencia vehicular, con valores de PM 10 en un intervalo de 18 - 69 μg m -3 . Las concentraciones de material particulado fueron influenciadas por factores meteorológicos, mostrando una asociación positiva con la temperatura (r = 0.40, y negativa con la humedad relativa (r = -0.47 y la precipitación (r = -0.38. Los efectos del fenómeno de scavenging por la precipitación fueron observados a través del análisis de concentraciones de PM 10 para periodos secos y húmedos. Los altos niveles de sulfatos observados en el PM 10 en comparación con los demás iones predominantes, fueron consistentes con la influencia de emisiones derivadas del transporte público y automóviles, los cuales utilizan diesel y gasolina como sus principales combustibles. Incrementos en la altura de capa de mezcla en la zona del centro histórico de la ciudad (de 900 m a 1600 m, explican la dilución efectiva de las emisiones provenientes del tráfico vehicular, tal como se observó mediante el monitoreo de PM 10 cada 30 segundos por periodos de 24 horas. Este análisis preliminar sugiere factores de importancia para implementar a futuro técnicas de modelización del PM 10 en ecosistemas tropicales de montaña caracterizados por su alta precipitación y alta densidad poblacional.

  9. Retrospective Geospatial Modeling of PM10 Exposures from Open Burning at Joint Base Balad, Iraq

    Science.gov (United States)

    2011-03-01

    Gullett & Linak, 2007), and complex munitions (Wilcox, Entezam, Molenaar , & Shreeve, 1996). Documentation on emissions from the open burning of typical...of a Petrochemical Refinery: a Cross- sectional Study. Environmental Health , 8 (45). 194 Wilcox, J., Entezam, B., Molenaar , B., & Shreeve, T

  10. MUTAGENIC AND CYTOTOXIC FACTORS IN PM10 AND PM2.5 FRACTIONS IN ATMOSPHERE IN SOSNOWIEC

    Directory of Open Access Journals (Sweden)

    Agnieszka Kozłowska

    2011-12-01

    Full Text Available Air dust pollution enters human body via respiratory system. Its cytotoxic effect is surveyed using cell lines of mononuclear or pulmonary epithelial cell origins. Mutagenic properties are assessed using short-term assay on Salmonella typhimurium bacterial strains. Mutagenic and cytotoxic properties of air dust pollution – fractions PM10 and PM2.5, which were collected in autumn and in winter, were assessed using Ames test with Salmonella typhimurium strains and MTT cytoxicity assay on mononuclear cell line RAW 264.7, respectively. Samples of dust were collected on glass fiber filters by (Harvard impactor with air flow ca. 9 l/min, splitting samples to the fraction PM10 and PM2.5. Extraction of pollution was carried out using dichlorometane. Extracted samples were dissolved in dimethylsulfoxide (DMSO before analyses. The highest value of mutagenicity ratio (MR was observed in YG1041 strain with metabolic activation by S9 extract in the PM10 sample of dust collected in winter. The lowest one was observed in TA98 strain without activation in the PM2.5 sample of dust collected in autumn. Winter dust samples, both the fractions PM10 and PM2,5, were toxic for TA98 strain in both test conditions (5S9. MTT cytotoxicity assay using mononuclear cell line RAW 264.7 showed that fractions PM10 and PM2.5 collected in winter were of highest toxic properties. The viability of cells, which were treated with samples of 0,312 m3 air, were 1,7% and 1,6%, respectively, while for autumn samples for PM2,5 the viability was 63%.

  11. PM10 emission efficiency for agricultural soils: Comparing a wind tunnel, a dust generator, and the open-air plot

    Science.gov (United States)

    Avecilla, Fernando; Panebianco, Juan E.; Mendez, Mariano J.; Buschiazzo, Daniel E.

    2018-06-01

    The PM10 emission efficiency of soils has been determined through different methods. Although these methods imply important physical differences, their outputs have never been compared. In the present study the PM10 emission efficiency was determined for soils through a wide range of textures, using three typical methodologies: a rotary-chamber dust generator (EDG), a laboratory wind tunnel on a prepared soil bed, and field measurements on an experimental plot. Statistically significant linear correlation was found (p < 0.05) between the PM10 emission efficiency obtained from the EDG and wind tunnel experiments. A significant linear correlation (p < 0.05) was also found between the PM10 emission efficiency determined both with the wind tunnel and the EDG, and a soil texture index (%sand + %silt)/(%clay + %organic matter) that reflects the effect of texture on the cohesion of the aggregates. Soils with higher sand content showed proportionally less emission efficiency than fine-textured, aggregated soils. This indicated that both methodologies were able to detect similar trends regarding the correlation between the soil texture and the PM10 emission. The trends attributed to soil texture were also verified for two contrasting soils under field conditions. However, differing conditions during the laboratory-scale and the field-scale experiments produced significant differences in the magnitude of the emission efficiency values. The causes of these differences are discussed within the paper. Despite these differences, the results suggest that standardized laboratory and wind tunnel procedures are promissory methods, which could be calibrated in the future to obtain results comparable to field values, essentially through adjusting the simulation time. However, more studies are needed to extrapolate correctly these values to field-scale conditions.

  12. Relationships of relative humidity with PM2.5 and PM10 in the Yangtze River Delta, China.

    Science.gov (United States)

    Lou, Cairong; Liu, Hongyu; Li, Yufeng; Peng, Yan; Wang, Juan; Dai, Lingjun

    2017-10-23

    Severe particulate matter (PM, including PM 2.5 and PM 10 ) pollution frequently impacts many cities in the Yangtze River Delta (YRD) in China, which has aroused growing concern. In this study, we examined the associations between relative humidity (RH) and PM pollution using the equal step-size statistical method. Our results revealed that RH had an inverted U-shaped relationship with PM 2.5 concentrations (peaking at RH = 45-70%), and an inverted V-shaped relationship (peaking at RH = 40 ± 5%) with PM 10 , SO 2 , and NO 2 . The trends of polluted-day number significantly changed at RH = 70%. The very-dry (RH humidity (RH = 60-70%) conditions positively affected PM 2.5 and exerted an accumulation effect, while the mid-humidity (RH = 70-80%), high-humidity (RH = 80-90%), and extreme-humidity (RH = 90-100%) conditions played a significant role in reducing particle concentrations. For PM 10 , the accumulation and reduction effects of RH were split at RH = 45%. Moreover, an upward slope in the PM 2.5 /PM 10 ratio indicated that the accumulation effects from increasing RH were more intense on PM 2.5 than on PM 10 , while the opposite was noticed for the reduction effects. Secondary transformations from SO 2 and NO 2 to sulfate and nitrate were mainly responsible for PM 2.5 pollution, and thus, controlling these precursors is effective in mitigating the PM pollution in the YRD, especially during winter. The conclusions in this study will be helpful for regional air-quality management.

  13. Trends in arsenic levels in PM10 and PM 2.5 aerosol fractions in an industrialized area.

    Science.gov (United States)

    García-Aleix, J R; Delgado-Saborit, J M; Verdú-Martín, G; Amigó-Descarrega, J M; Esteve-Cano, V

    2014-01-01

    Arsenic is a toxic element that affects human health and is widely distributed in the environment. In the area of study, the main Spanish and second largest European industrial ceramic cluster, the main source of arsenic aerosol is related to the impurities in some boracic minerals used in the ceramic process. Epidemiological studies on cancer occurrence in Spain points out the study region as one with the greater risk of cancer. Concentrations of particulate matter and arsenic content in PM10 and PM2.5 were measured and characterized by ICP-MS in the area of study during the years 2005-2010. Concentrations of PM10 and its arsenic content range from 27 to 46 μg/m(3) and from 0.7 to 6 ng/m(3) in the industrial area, respectively, and from 25 to 40 μg/m(3) and from 0.7 to 2.8 ng/m(3) in the urban area, respectively. Concentrations of PM2.5 and its arsenic content range from 12 to 14 μg/m(3) and from 0.5 to 1.4 ng/m(3) in the urban background area, respectively. Most of the arsenic content is present in the fine fraction, with ratios of PM2.5/PM10 in the range of 0.65-0.87. PM10, PM2.5, and its arsenic content show a sharp decrease in recent years associated with the economic downturn, which severely hit the production of ceramic materials in the area under study. The sharp production decrease due to the economic crisis combined with several technological improvements in recent years such as substitution of boron, which contains As impurities as raw material, have reduced the concentrations of PM10, PM2.5, and As in air to an extent that currently meets the existing European regulations.

  14. The oxidative potential and biological effects induced by PM10 obtained in Mexico City and at a receptor site during the MILAGRO Campaign

    International Nuclear Information System (INIS)

    Quintana, Raul; Serrano, Jesus; Gomez, Virginia; Foy, Benjamin de; Miranda, Javier; Garcia-Cuellar, Claudia; Vega, Elizabeth; Vazquez-Lopez, Ines; Molina, Luisa T.; Manzano-Leon, Natalia; Rosas, Irma; Osornio-Vargas, Alvaro R.

    2011-01-01

    As part of a field campaign that studied the impact of Mexico City pollution plume at the local, sub-regional and regional levels, we studied transport-related changes in PM 10 composition, oxidative potential and in vitro toxicological patterns (hemolysis, DNA degradation). We collected PM 10 in Mexico City (T 0 ) and at a suburban-receptor site (T 1 ), pooled according to two observed ventilation patterns (T 0 → T 1 influence and non-influence). T 0 samples contained more Cu, Zn, and carbon whereas; T 1 samples contained more of Al, Si, P, S, and K (p 4 -2 increased in T 1 during the influence periods. Oxidative potential correlated with Cu/Zn content (r = 0.74; p 1 PM 10 induced greater hemolysis and T 0 PM 10 induced greater DNA degradation. Influence/non-influence did not affect oxidative potential nor biological effects. Results indicate that ventilation patterns had little effect on intrinsic PM 10 composition and toxicological potential, which suggests a significant involvement of local sources. - Highlights: → Transport-related changes in PM 10 composition, oxidative potential and in vitro toxicity were studied. → Cu, Zn, and carbon levels were predominant in urban PM 10 ; receptor site PM 10 was rich in soil elements. → SO 4 -2 was the only component increased in PM 10 from the receptor during the influence periods. → PM 10 oxidative potential correlates with Cu/Zn content but not with studied biological effects. → Ventilation patterns had little effect on PM 10 composition and toxicity. - Mexico City ventilation patterns had little effect on the intrinsic PM 10 composition and toxicological potential, which suggests a significant involvement of local sources as opposed to downwind transport.

  15. 40 CFR 93.116 - Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots).

    Science.gov (United States)

    2010-07-01

    ..., PM10, and PM2.5 violations (hot-spots). 93.116 Section 93.116 Protection of Environment ENVIRONMENTAL....116 Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots). (a) This paragraph... hot-spot analysis in PM10 and PM2.5 nonattainment and maintenance areas for FHWA/FTA projects that are...

  16. Assessment of the Possible Association of Air Pollutants PM10, O3, NO2 With an Increase in Cardiovascular, Respiratory, and Diabetes Mortality in Panama City: A 2003 to 2013 Data Analysis.

    Science.gov (United States)

    Zúñiga, Julio; Tarajia, Musharaf; Herrera, Víctor; Urriola, Wilfredo; Gómez, Beatriz; Motta, Jorge

    2016-01-01

    In recent years, Panama has experienced a marked economic growth, and this, in turn, has been associated with rapid urban development and degradation of air quality. This study is the first evaluation done in Panama on the association between air pollution and mortality. Our objective was to assess the possible association between monthly levels of PM10, O3, and NO2, and cardiovascular, respiratory, and diabetes mortality, as well as the seasonal variation of mortality in Panama City, Panama.The study was conducted in Panama City, using air pollution data from January 2003 to December 2013. We utilized a Poisson regression model based on generalized linear models, to evaluate the association between PM10, NO2, and O3 exposure and mortality from diabetes, cardiovascular, and respiratory diseases. The sample size for PM10, NO2, and O2 was 132, 132, and 108 monthly averages, respectively.We found that levels of PM10, O3, and NO2 were associated with increases in cardiovascular, respiratory, and diabetes mortality. For PM10 levels ≥ 40 μg/m3, we found an increase in cardiovascular mortality of 9.7% (CI 5.8-13.6%), and an increase of 12.6% (CI 0.2-24.2%) in respiratory mortality. For O3 levels ≥ 20 μg/m3 we found an increase of 32.4% (IC 14.6-52.9) in respiratory mortality, after a 2-month lag period following exposure in the 65 to respiratory mortality of 11.2% (IC 1.9-21.3), after a 2-month lag period following exposure among those aged between 65 and pollution in Panama City and an increase in cardiovascular, respiratory, and diabetes mortality. This study confirms the urgent need to improve the measurement frequency of air pollutants in Panama.

  17. Study variation of PM-10 air pollution at Lang Meteorological Station, Hanoi Coded: CS/02/04-06

    International Nuclear Information System (INIS)

    Vuong Thu Bac; Dinh Thien Lam; Ngyen Thi Hong Thinh; Dang Duc Nhan; Nguyen Hao Quang; Pham Duy Hien

    2003-01-01

    577 air dust samples have been collected with two kinds of air samplers (2-SFU, 1-ASP) on every Wednesday and Sunday for 24 hours at both of monitoring stations (Lang - Hanoi and Lucnam - Bacgiang). PM(2.5), PM(2.5-10), PM(10) and BC concentrations in 452 air dust samples have been determined. 9032 data have been analyzed with many of different multi-elements analytical techniques (IC: 264 samples x 9 ions, PIXE: 388 samples x 15 elements, XRF: 48 samples x 8 elements, LR: 452 samples x 1 element). Over 6000 of meteorological parameters (T, Rain, WS, WD, RH...) have been collected and processed.Variations and levels of air dust concentrations and BC in Hanoi from 1998 to 2002 have been studied. PM(2.5), PM(2.5-10), PM(10) and BC concentrations and BC obviously periodically vary. They reach maximum in the winter season, especially in December and January, sometimes they reached 300-400 μg.m -3 , They reach minimum in the summer season, sometimes they went down 10 μg.m -3 on rainy days. These variations were affected by meteorological parameters. PM(2.5), PM(10) daily average concentrations in Hanoi are greater than the American air standards (PM(2.5): 65 μg.m -3 , PM(10): 150 μg.m -3 ) in many days and their yearly average concentrations are also far exceeded. Air dust pollution levels in Hanoi are higher than in developed countries and even countries in the region. BC (5.9 μg.m -3 ) concentration and Pb (0.11 μg.m -3 ) are also higher than in many countries. (VTB)

  18. Study on sandstorm PM10 exposure assessment in the large-scale region: a case study in Inner Mongolia.

    Science.gov (United States)

    Wang, Hongmei; Lv, Shihai; Diao, Zhaoyan; Wang, Baolu; Zhang, Han; Yu, Caihong

    2018-04-12

    The current exposure-effect curves describing sandstorm PM 10 exposure and the health effects are drawn roughly by the outdoor concentration (OC), which ignored the exposure levels of people's practical activity sites. The main objective of this work is to develop a novel approach to quantify human PM 10 exposure by their socio-categorized micro-environment activities-time weighed (SCMEATW) in strong sandstorm period, which can be used to assess the exposure profiles in the large-scale region. Types of people's SCMEATW were obtained by questionnaire investigation. Different types of representatives were trackly recorded during the big sandstorm. The average exposure levels were estimated by SCMEATW. Furthermore, the geographic information system (GIS) technique was taken not only to simulate the outdoor concentration spatially but also to create human exposure outlines in a visualized map simultaneously, which could help to understand the risk to different types of people. Additionally, exposure-response curves describing the acute outpatient rate odds by sandstorm were formed by SCMEATW, and the differences between SCMEATW and OC were compared. Results indicated that acute outpatient rate odds had relationships with PM 10 exposure from SCMEATW, with a level less than that of OC. Some types of people, such as herdsmen and those people walking outdoors during a strong sandstorm, have more risk than office men. Our findings provide more understanding of human practical activities on their exposure levels; they especially provide a tool to understand sandstorm PM 10 exposure in large scale spatially, which might help to perform the different categories population's risk assessment regionally.

  19. Ambient endotoxin in PM10 and association with inflammatory activity, air pollutants, and meteorology, in Chitwan, Nepal.

    Science.gov (United States)

    Mahapatra, Parth Sarathi; Jain, Sumeet; Shrestha, Sujan; Senapati, Shantibhusan; Puppala, Siva Praveen

    2018-03-15

    Endotoxin associated with ambient PM (particulate matter) has been linked to adverse respiratory symptoms, but there have been few studies of ambient endotoxin and its association with co-pollutants and inflammation. Our aim was to measure endotoxin associated with ambient PM 10 (particulate matter with aerodynamic diametermeteorology, co-pollutants, and inflammatory activity. PM 10 concentrations were recorded and filter paper samples were collected using E-samplers; PM 1, PM 2.5 , black carbon (BC), methane (CH 4 ), and carbon monoxide (CO) were also measured. The Limulus amebocyte lysate (LAL) assay was used for endotoxin quantification and the nuclear factor kappa B (NFκB) activation assay to assess inflammatory activity. The mean concentration of PM 10 at the different locations ranged from 136 to 189μg/m 3 , and of endotoxin from 0.29 to 0.53EU/m 3 . Pollutant presence was positively correlated with endotoxin. Apart from relative humidity, meteorological variations had no significant impact on endotoxin concentration. NF-κB activity was negatively correlated with endotoxin concentration. To the best of our knowledge, this study provides the first measurements of ambient endotoxin associated with PM 10 in Nepal. Endotoxin and co-pollutants were positively associated indicating a similar source. Endotoxin was negatively correlated with inflammatory activity as a result of a time-limited forest fire event during the sampling period. Studies of co-pollutants suggested that the higher levels of endotoxin related to biomass burning were accompanied by increased levels of anti-inflammatory agents, which suppressed the endotoxin inflammatory effect. Copyright © 2017. Published by Elsevier B.V.

  20. Magnetic fraction in atmospheric PM10 at sites with different environmental settings: Seasonal variations and effect of climatic conditions

    Czech Academy of Sciences Publication Activity Database

    Petrovský, Eduard; Kapička, Aleš; Fialová, Hana; Kotlík, B.; Zbořil, R.; Novák, J.

    2008-01-01

    Roč. 38, Special issue (2008), s. 92-93 ISSN 1335-2806. [Paleo, Rock and Environmental Magnetism. Castle Meeting /11./. 22.06.2008-28.06.2008, Bojnice] R&D Projects: GA AV ČR IAA300120606 Institutional research plan: CEZ:AV0Z30120515 Keywords : magnetic particles * PM10 concentration * pollution Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  1. Exposure of bakery and pastry apprentices to airborne flour dust using PM2.5 and PM10 personal samplers.

    Science.gov (United States)

    Mounier-Geyssant, Estelle; Barthélemy, Jean-François; Mouchot, Lory; Paris, Christophe; Zmirou-Navier, Denis

    2007-11-01

    This study describes exposure levels of bakery and pastry apprentices to flour dust, a known risk factor of occupational asthma. Questionnaires on work activity were completed by 286 students. Among them, 34 performed a series of two personal exposure measurements using a PM2.5 and PM10 personal sampler during a complete work shift, one during a cold ("winter") period, and the other during a hot ("summer") period. Bakery apprentices experience greater average PM2.5 and PM10 exposures than pastry apprentices (p < 0.006). Exposure values for both particulate fractions are greater in winter (average PM10 values among bakers = 1.10 mg.m-3 [standard deviation: 0.83]) than in summer (0.63 mg.m-3 [0.36]). While complying with current European occupational limit values, these exposures exceed the ACGIH recommendations set to prevent sensitization to flour dust (0.5 mg.m-3). Over half the facilities had no ventilation system. Young bakery apprentices incur substantial exposure to known airways allergens, a situation that might elicit early induction of airways inflammation.

  2. Characteristics of atmospheric non-methane hydrocarbons during high PM 10 episodes and normal days in Foshan, China

    Science.gov (United States)

    Guo, Songjun; Tan, Jihua; Ma, Yongliang; Yang, Fumo; Yu, Yongchan; Wang, Jiewen

    2011-08-01

    Atmospheric non-methane hydrocarbons (NMHCs) were firstly studied during high PM 10 episodes and normal days in December 2008 in Foshan, China. Ethyne, ethene, i-pentane, toluene, ethane and propane are six abundant hydrocarbons, accounting for round 80% of total NMHCs. Both diurnal variations and concentration ratios of morning (evening)/afternoon implied vehicular emission for most hydrocarbons. Correlation coefficients (R 2) of ethene, propene, i-butene, benzene, toluene and i-/n-butanes with ethyne were 0.60-0.88 (they were 0.64-0.88 during high PM 10 episode and 0.60-0.85 in normal days) except for ethene and i-butene in normal days, indicating these hydrocarbons are mainly related to vehicular emission. It suggests liquefied petroleum gas (LPG) and natural gas (NG) leakages are responsible for propane and ethane, respectively. The measured mean benzene/toluene (B/T) ratio (wt/wt) was 0.45 ± 0.29 during total sampling periods together with R 2 analysis, again indicating vehicular emission is main contributor to ambient hydrocarbons. And the lower B/T ratio (0.29 ± 0.11) during high PM 10 episodes than that (0.75 ± 0.29) in normal days is likely caused by air transport containing low B/T value (0.23) from Guangzhou as well as solvent application containing toluene in Foshan.

  3. Detection of latex allergens by immunoelectron microscopy in ambient air (PM10) in Oslo, Norway (1997-2003).

    Science.gov (United States)

    Namork, Ellen; Kurup, Viswanath P; Aasvang, Gunn Marit; Johansen, Bjørn V

    2004-11-01

    The authors collected ambient air along two highways in Oslo to investigate the annual variations in particulate matter (PM10) and the presence of latex as an outdoor allergen. PMI, was monitored for a period of five years, during which time the use of studded winter tires was reduced. The presence of latex and of common aeroallergens was examined directly on the collection filters with immunoelectron microscopy visualized in a scanning electron microscope. The annual variation in PM10 was similar over the five years of sampling, with increased mass concentrations in winter. Statistical analysis indicated no major effect from the change to nonstudded tires. The most important factors influencing the PM10 concentration were meteorological parameters like wind and rain. Immnunolabeling of the filters showed latex as an outdoor allergen that adhered to carbon aggregates from vehicle emission. The results also indicated cross-reactive epitopes among the common allergens investigated, which for sensitized subjects may add to the risk of developing latex allergy.

  4. The direct influence of ship traffic on atmospheric PM2.5, PM10 and PAH in Venice.

    Science.gov (United States)

    Contini, D; Gambaro, A; Belosi, F; De Pieri, S; Cairns, W R L; Donateo, A; Zanotto, E; Citron, M

    2011-09-01

    The direct influence of ship traffic on atmospheric levels of coarse and fine particulate matter (PM(2.5), PM(10)) and fifteen polycyclic aromatic hydrocarbons (PAHs) has been estimated in the urban area of Venice. Data analysis has been performed on results collected at three sites over the summer, when ship traffic is at a maximum. Results indicate that monitoring of the PM daily concentrations is not sufficiently detailed for the evaluation of this contribution, even though it could be useful for specific markers such as PAHs. Therefore a new methodology, based on high temporal resolution measurements coupled with wind direction information and the database of ship passages of the Harbour Authority of Venice has been developed. The sampling sites were monitored with optical detectors (DustTrack(®) and Mie pDR-1200) operating at a high temporal resolution (20s and 1s respectively) for PM(2.5) and PM(10). PAH in the particulate and gas phases were recovered from quartz fibre filters and polyurethane foam plugs using pressurised solvent extraction, the extracts were then analysed by gas chromatography- high-resolution mass spectrometry. Our results shows that the direct contribution of ships traffic to PAHs in the gas phase is 10% while the contribution to PM(2.5) and to PM(10) is from 1% up to 8%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. PM10 sampler deposited air particulates: Ascertaining uniformity of sample on filter through rotated exposure to radiation

    International Nuclear Information System (INIS)

    Owoade, Oyediran K.; Olise, Felix S.; Obioh, Imoh B.; Olaniyi, Hezekiah B.; Bolzacchini, Ezio; Ferrero, Luca; Perrone, Grazia

    2006-01-01

    For reproducibility of analytical results of samples deposited on filters using PM 10 sampler, homogeneity of the sample on the filter is very important especially when the size of the X-ray beam for the analysis is less than the size of filter. It is against this background that the air particulate samples collected on using PM 10 samplers are analysed to determine the elemental concentrations. Each sample was divided into four quadrants and each was analysed under same conditions to determine if the particles were deposited uniformly over the filter. Each analysis was done using EDXRF technique. The spectrometer consists of four secondary targets, which are automatically switched to in sequence in analysing each sample. The concentration of various elements detected was determined using TURBOQUANT (a brand name for a SPECTRO method which is used for screening analysis). Sixteen elements were detected in every sample. Results show that there was less than 10% deviation in the concentrations in different quadrants. There were a few elements like Ba, Cs, etc., which have deviation greater than 20%. The concentrations of these latter elements were close to detection limits of the spectrometer. We conclude that the analytical result of particulate samples deposited on filters by the PM 10 sampler can be reliable in terms of the homogeneity of the deposition. For such analytes with low concentrations, it would be important that the sampling time be increased to allow for higher mass deposition on the filter

  6. Mutagenic and recombinagenic activity of airborne particulates, PM10 and TSP, organic extracts in the Drosophila wing-spot test

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues Dihl, Rafael [Programa de Pos Graduacao em Genetica e Biologia Molecular (PPGBM), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Grazielli Azevedo da Silva, Carla [Instituto de Quimica, Departamento de Quimica Organica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Souza do Amaral, Viviane; Reguly, Maria Luiza [Laboratorio de Diagnostico da Toxicidade Genetica (TOXIGEN), Programa de Pos Graduacao em Genetica e Toxicologia Aplicada (PPGGTA), Universidade Luterana do Brasil - ULBRA, Avenida Farroupilha 8001, 92420280 Canoas, RS (Brazil); Rodrigues de Andrade, Heloisa Helena [Laboratorio de Diagnostico da Toxicidade Genetica (TOXIGEN), Programa de Pos Graduacao em Genetica e Toxicologia Aplicada (PPGGTA), Universidade Luterana do Brasil -ULBRA, Avenida Farroupilha 8001, 92420280 Canoas, RS (Brazil)], E-mail: heloisa@ulbra.br

    2008-01-15

    The genotoxicity associated with air pollution in the city of Canoas, Rio Grande do Sul (Brazil), was assessed in November (spring) and January (summer). We applied the somatic mutation and recombination test (SMART) in Drosophila melanogaster in its standard version with normal bioactivation (ST) and in its variant with increased cytochrome P450-dependent biotransformation capacity (HB). The data indicated the genotoxicity of TSP and PM10 collected in November, in both ST and HB crosses. The genotoxic activity of the PM10 material in the spring sample was exclusively associated with the induction of mitotic recombination, whereas the TSP genetic toxicity was due to both recombinational as well as point and/or chromosomal mutation events. Considering PM10 collected in January, a positive response-100% (17.10 m{sup 3}/ml) concentration-was observed in the HB cross, which was not detected in the ST cross. - Drosophila Wing-Spot Test can be used for detection of airborne particulates mutagenesis.

  7. Comparison of the chemical composition of PM10 and PM2.5 particles collected in urban environments and volcanic areas of metropolitan Costa Rica

    Directory of Open Access Journals (Sweden)

    Jorge Herrera

    2014-12-01

    Full Text Available PM10 and PM2,5 were sampled simultaneously in urban and volcanic environments in the Metropolitan Area of Costa Rica from October to November 2012. Higher mass concentrations (42-29 μgm-3 of PM10 and PM2,5 were found at industrial and commercial areas with high traffic flow (La Uruca, Heredia and Belen compared with those found in the volcanic areas. The daily concentrations of PM10 and PM2,5 obtained in the Poas Volcano ranged from 3 -14 μgm-3 and 2-11 μgm-3, respectively. However the acidity of the collected particles in the Poas volcano was higher than those sampled in urban environments probably due to a lower occurrence rate of neutralization. The contribution of secondary ions was more important to the volcanic PM10 composition (around 40%, unlike the PM10 collected in urban areas.

  8. Health benefits of a reduction of PM10 and NO2 exposure after implementing a clean air plan in the Agglomeration Lausanne-Morges.

    Science.gov (United States)

    Castro, Alberto; Künzli, Nino; Götschi, Thomas

    2017-07-01

    Exposure to urban air pollution has been associated with adverse effects on cardio-vascular and respiratory health, both short and long term. Consequently, governments have applied policies to reduce air pollution. Quantitative health impact assessments of hypothetic changes in air pollution have been conducted at national and global level, but assessments of observed air pollution changes associated with specific clean air policies at a local or regional scale remain scarce. This study estimates health impacts attributable to a decrease in PM 10 and NO 2 exposure in the Agglomeration of Lausanne-Morges (ALM), Switzerland, between 2005 and 2015, corresponding to the implementation period of a supra-municipal plan of measures to reduce air pollution in different sectors such as transport, energy, and industry (called Plan OPair 05). The health impact assessment compares health effects attributed to air pollution exposure levels in 2015 (reference case) with those in 2005 (counterfactual scenario), using 2015 as baseline for all other input data. In the ALM, the modeled PM 10 exposure reduction of 3.3μg/m 3 from 2005 to 2015 prevents 26 premature deaths (equivalent to around 290 years of life lost), 215 hospitalization days due to cardio-vascular and respiratory diseases as well as approximately 47,000 restricted activity days annually. Monetized health impacts of the reduction of PM 10 exposure are valued at approximately CHF 36 million annually. Immaterial costs, mainly related to the economic valuation of years of life lost, dominate the monetized health impacts (90% of total value), while savings at the workplace (net loss in production and reoccupation costs) amount to about CHF 1.9 million, and savings in health care costs to about CHF 0.5 million. The assessment is sensitive to the value assigned to immaterial costs and to uncertainties in the relative risk estimates, whereas variations in the baseline year (i.e. using 2005 data instead of 2015 data) affect

  9. Source identification and long-term monitoring of airborne particulate matter (PM2.5/PM10) in an urban region of Korea

    International Nuclear Information System (INIS)

    Yong-Sam Chung; Sun-Ha Kim; Jong-Hwa Moon; Young-Jin Kim; Jong-Myoung Lim; Jin-Hong Lee

    2006-01-01

    For the identification of air pollution sources, about 500 airborne particulate matter (PM 2.5 and PM 10 ) samples were collected by using a Gent air sampler and a polycarbonate filter in an urban region in the middle of Korea from 2000 to 2003. The concentrations of 25 elements in the samples were measured by using instrumental neutron activation analysis (INAA). Receptor modeling was performed on the air monitoring data by using the positive matrix factorization (PMF2) method. According to this analysis, the existence of 6 to 10 PMF factors, such as metal-alloy, oil combustion, diesel exhaust, coal combustion, gasoline exhaust, incinerator, Cu-smelter, biomass burning, sea-salt, and soil dust were identified. (author)

  10. Comparisons of urban and rural PM10−2.5 and PM2.5 mass concentrations and semi-volatile fractions in northeastern Colorado

    Directory of Open Access Journals (Sweden)

    N. Clements

    2016-06-01

    Full Text Available Coarse (PM10−2.5 and fine (PM2.5 particulate matter in the atmosphere adversely affect human health and influence climate. While PM2.5 is relatively well studied, less is known about the sources and fate of PM10−2.5. The Colorado Coarse Rural-Urban Sources and Health (CCRUSH study measured PM10−2.5 and PM2.5 mass concentrations, as well as the fraction of semi-volatile material (SVM in each size regime (SVM2.5, SVM10−2.5, from 2009 to early 2012 in Denver and comparatively rural Greeley, Colorado. Agricultural operations east of Greeley appear to have contributed to the peak PM10−2.5 concentrations there, but concentrations were generally lower in Greeley than in Denver. Traffic-influenced sites in Denver had PM10−2.5 concentrations that averaged from 14.6 to 19.7 µg m−3 and mean PM10−2.5 ∕ PM10 ratios of 0.56 to 0.70, higher than at residential sites in Denver or Greeley. PM10−2.5 concentrations were more temporally variable than PM2.5 concentrations. Concentrations of the two pollutants were not correlated. Spatial correlations of daily averaged PM10−2.5 concentrations ranged from 0.59 to 0.62 for pairs of sites in Denver and from 0.47 to 0.70 between Denver and Greeley. Compared to PM10−2.5, concentrations of PM2.5 were more correlated across sites within Denver and less correlated between Denver and Greeley. PM10−2.5 concentrations were highest during the summer and early fall, while PM2.5 and SVM2.5 concentrations peaked in winter during periodic multi-day inversions. SVM10−2.5 concentrations were low at all sites. Diurnal peaks in PM10−2.5 and PM2.5 concentrations corresponded to morning and afternoon peaks of traffic activity, and were enhanced by boundary layer dynamics. SVM2.5 concentrations peaked around noon on both weekdays and weekends. PM10−2.5 concentrations at sites located near highways generally increased with wind speeds above about 3 m s−1. Little wind speed dependence was

  11. Indoor and outdoor PM10 levels at schools located near mine dumps in Gauteng and North West Provinces, South Africa

    Directory of Open Access Journals (Sweden)

    Vusumuzi Nkosi

    2017-01-01

    Full Text Available Abstract Background Few studies in South Africa have investigated the exposure of asthmatic learners to indoor and outdoor air pollution at schools. This study compared outdoor PM10 and SO2 exposure levels in exposed (1–2 km from gold mine dumps and unexposed schools (5 km or more from gold mine dumps. It also examined exposure of asthmatic children to indoor respirable dust at exposed and unexposed schools. Methods The study was conducted between 1 and 31 October 2012 in five schools from exposed and five from unexposed communities. Outdoor PM10 and SO2 levels were measured for 8-h at each school. Ten asthmatic learners were randomly selected from each school for 8-h personal respirable dust sampling during school hours. Results The level of outdoor PM10 for exposed was 16.42 vs. 11.47 mg.m−3 for the unexposed communities (p < 0.001. The outdoor SO2 for exposed was 0.02 ppb vs. 0.01 ppb for unexposed communities (p < 0.001. Indoor respirable dust in the classroom differed significantly between exposed (0.17 mg.m−3 vs. unexposed (0.01 mg.m−3 children with asthma at each school (p < 0.001. Conclusion The significant differences between exposed and unexposed schools could reveal a serious potential health hazard for school children, although they were within the South African Air Quality Standards’ set by the Department of Environmental Affairs. The indoor respirable dust levels in exposed schools could have an impact on children with asthma, as they were significantly higher than the unexposed schools, although there are no published standards for environmental exposure for children with asthma.

  12. Chemical characterisation of PM10 emissions from combustion in a closed stove of common woods grown in Portugal

    Science.gov (United States)

    Gonçalves, C.; Alves, C.; Pio, C.; Rzaca, M.; Schmidl, C.; Puxbaum, H.

    2009-04-01

    A series of source tests were conducted to determine the wood elemental composition, combustion gases and the chemical constitution of PM10 emissions from the closed stove combustion of four species of woods grown in Portugal: Eucalyptus globulos, Pinus pinaster, Quercus suber and Acacia longifolia. The burning tests were made in a closed stove with a dilution source sampler. To ascertain the combustion phase and conditions, continuous emission monitors measured O2, CO2, CO, NO, hydrocarbons, temperature and pressure, during each burning cycle. Woodsmoke samples have been collected and analysed to estimate the contribution of plant debris and biomass smoke to atmospheric aerosols. At this stage of work, cellulose, anhydrosugars and humic-like substances (HULIS) have been measured. Cellulose was determined photometrically after its conversion to D-Glucose. The determination of levoglucosan and other anhydrosugars, including mannosan and galactosan, was carried out by high performance liquid chromatography with electrochemical detection. HULIS determination was made with a total organic carbon analyser and an infrared non dispersive detector, after the isolation of substances. Cellulose was present in PM10 at mass fractions (w/w) of 0.13%, 0.13%, 0.05% and 0.08% for Eucalyptus globulos, Pinus pinaster, Quercus suber and Acacia longifolia, respectively. Levoglucosan was the major anhydrosugar present in the samples, representing mass fractions of 14.71%, 3.80%, 6.78% and 1.91%, concerning the above mentioned wood species, respectively. The levoglucosan-to-mannosan ratio, usually used to evaluate the proportion of hardwood or softwood smoke in PM10, gave average values of 34.9 (Eucalyptus globulos), 3.40 (Pinus pinaster), 24.8 (Quercus suber) and 10.4 (Acacia longifolia). HULIS were present at mass fractions of 2.35%, 2.99%, 1.52% and 1.72% for the four wood species listed in the same order as before.

  13. Main components of PM10 in an area influenced by a cement plant in Catalonia, Spain: Seasonal and daily variations.

    Science.gov (United States)

    Rovira, Joaquim; Sierra, Jordi; Nadal, Martí; Schuhmacher, Marta; Domingo, José L

    2018-05-01

    Particulate matter (PM) composition has a key role in a wide range of health outcomes, such as asthma, chronic obstructive pulmonary disease, lung cancer, cardiovascular disease, and death, among others. Montcada i Reixac, a municipality located in the Barcelona metropolitan area (Catalonia, Spain), for its location and orography, is an interesting case- study to investigate air pollution. The area is also characterized by the presence of different industrial emission sources, including a cement factory and a large waste management plant, as well as an intense traffic. In this study, PM 10 levels, trace elements, ions, and carbonaceous particles were determined for a long time period (2013-2016) in this highly polluted area. PM 10 samples were collected during six consecutive days in two campaigns (cold and warm) per year. A number of elements (As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Hg, Ho, K, La, Li, Hg, Mg, Mn, Mo, Nb, Nd, Ni, Pb, Pr, Rb, Sb, Sc, Se, Sm, Sn, Sr, Tb, Th, Ti, Tl, U, V, W, Y, Yb, and Zr), ions (Cl - , SO 4 2- , NO 3 - , and NH 4 + ), and carbonaceous content (total carbon, organic plus elemental carbon, and CO 3 2- ), were analysed. These data were used to identify the PM 10 main components: mineral matter, sea spray, secondary inorganic aerosols, organic matter plus elemental carbon, trace elements or indeterminate fraction. Although a clear seasonality (cold vs. warm periods) was found, there were no differences between working days and weekends. Obviously, the cement plant influences the surrounding environment. However, no differences in trace elements related with the cement plant activity (Al, Ca, Ni and V) between weekdays and weekends were noted. However, some traffic-related elements (i.e., Co, Cr, Mn, and Sb) showed significantly higher concentrations in weekdays. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Estudio de genotoxicidad del material particulado (PM10) de la zona urbana del cantón Cuenca

    OpenAIRE

    Astudillo Alemán, Ana Lucía

    2014-01-01

    Las partículas aerodinámicas en suspensión (PM) están constituidas de una variedad de substancias genotóxicas, capaces de poner en peligro la salud humana.El objetivo de la presente investigación fue determinar las características químicas de la solución acuosa de Material particulado PM10, recolectado en tres sitios de monitoreo de la ciudad de Cuenca, y evaluar su genotoxicidad daño al DNA, mediante el ensayo de electroforesis unicelular en células epiteliales alveolares A549, las concentra...

  15. Concentration and chemical composition of PM10 particles in the metropolitan area of ​Costa Rica in 2012

    OpenAIRE

    Jorge Herrera; José F. Rojas; Víctor H. Beita; Agustín Rodríguez; David Solórzano; Hazel Argüello

    2014-01-01

    During 2012 the PM10 concentrations were measured in 13 sampling sites distributed in the metropolitan area of Costa Rica. The samples were collected using high volume samplers and subsequently analyzed for: ions (F-, Cl-, NO2-, NO3-, PO43-, SO42-), trace metals (V, Cr, Cu, Mn, Fe, Al, Pb, Ni), organic and elemental carbon content. Sampling sites located in high traffic commercial and industrial zones exhibited significative increased concentrations (42 – 29 µg/m3) compared to low traffic com...

  16. Health risk assessment on human exposed to heavy metals in the ambient air PM10 in Ahvaz, southwest Iran

    Science.gov (United States)

    Goudarzi, Gholamreza; Alavi, Nadali; Geravandi, Sahar; Idani, Esmaeil; Behrooz, Hamid Reza Adeli; Babaei, Ali Akbar; Alamdari, Farzaneh Aslanpour; Dobaradaran, Sina; Farhadi, Majid; Mohammadi, Mohammad Javad

    2018-02-01

    Heavy metals (HM) are one of the main components of urban air pollution. Today, megacities and industrial regions in southwest of Iran are frequently suffering from severe haze episodes, which essentially caused by PM10-bound heavy metals. The purpose of this study was to evaluate the health risk assessment on human exposed to heavy metals (Cr, Ni, Pb, and Zn) in the ambient air PM10 in Ahvaz, southwest Iran. In this study, we estimated healthy people from the following scenarios: (S3) residential site; (S2) high-traffic site; (S1) industrial site in Ahvaz metropolitan during autumn and winter. In the current study, high-volume air samplers equipped with quartz fiber filters were used to sampling and measurements of heavy metal concentration. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was utilized for detection of heavy metal concentration (ng m-3). Also, an estimate of the amount of health risk assessment (hazard index) of Cr, Ni, Pb, and Zn of heavy metal exposure to participants was used. Result of this study showed that the residential and industrial areas had the lowest and the highest level of heavy metal. Based on the result of this study, average levels of heavy metal in industrial, high-traffic, and residential areas in autumn and winter were 31.48, 30.89, and 23.21 μg m-3 and 42.60, 37.70, and 40.07 μg m-3, respectively. Based on the result of this study, the highest and the lowest concentration of heavy metal had in the industrial and residential areas. Zn and Pb were the most abundant elements among the studied PM10-bound heavy metals, followed by Cr and Ni. The carcinogenic risks of Cr, Pb, and the integral HQ of metals in PM10 for children and adults via inhalation and dermal exposures exceeded 1 × 10-4 in three areas. Also, based on the result of this study, the values of hazard index (HI) of HM exposure in different areas were significantly higher than standard. The health risks attributed to HM should be further

  17. EVALUATION OF AIR POLLUTION FROM ROVINARI (GORJ WITH SUBSTANCES IN SOSPENSION (PM10 AS A RESULT OF AUTO TRAFFIC

    Directory of Open Access Journals (Sweden)

    Emil Cătălin ŞCHIOPU

    2016-12-01

    Full Text Available The paper presents a short introduction of the impact that auto transportation has on air quality and on the main pollutants resulting from fuel burning in the engines with internal combustion. Also here are presented the results obtained as a result of monitoring substances in suspension, fraction PM10, realized in the proximity of the most important auto traffic roads of Rovinari. The comparison of the results obtained was realized according to Law 104/2011 on the protection of ambient air quality

  18. Health risk assessment on human exposed to heavy metals in the ambient air PM10 in Ahvaz, southwest Iran.

    Science.gov (United States)

    Goudarzi, Gholamreza; Alavi, Nadali; Geravandi, Sahar; Idani, Esmaeil; Behrooz, Hamid Reza Adeli; Babaei, Ali Akbar; Alamdari, Farzaneh Aslanpour; Dobaradaran, Sina; Farhadi, Majid; Mohammadi, Mohammad Javad

    2018-06-01

    Heavy metals (HM) are one of the main components of urban air pollution. Today, megacities and industrial regions in southwest of Iran are frequently suffering from severe haze episodes, which essentially caused by PM 10 -bound heavy metals. The purpose of this study was to evaluate the health risk assessment on human exposed to heavy metals (Cr, Ni, Pb, and Zn) in the ambient air PM 10 in Ahvaz, southwest Iran. In this study, we estimated healthy people from the following scenarios: (S3) residential site; (S2) high-traffic site; (S1) industrial site in Ahvaz metropolitan during autumn and winter. In the current study, high-volume air samplers equipped with quartz fiber filters were used to sampling and measurements of heavy metal concentration. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was utilized for detection of heavy metal concentration (ng m -3 ). Also, an estimate of the amount of health risk assessment (hazard index) of Cr, Ni, Pb, and Zn of heavy metal exposure to participants was used. Result of this study showed that the residential and industrial areas had the lowest and the highest level of heavy metal. Based on the result of this study, average levels of heavy metal in industrial, high-traffic, and residential areas in autumn and winter were 31.48, 30.89, and 23.21 μg m -3 and 42.60, 37.70, and 40.07 μg m -3 , respectively. Based on the result of this study, the highest and the lowest concentration of heavy metal had in the industrial and residential areas. Zn and Pb were the most abundant elements among the studied PM 10 -bound heavy metals, followed by Cr and Ni. The carcinogenic risks of Cr, Pb, and the integral HQ of metals in PM 10 for children and adults via inhalation and dermal exposures exceeded 1 × 10 -4 in three areas. Also, based on the result of this study, the values of hazard index (HI) of HM exposure in different areas were significantly higher than standard. The health risks attributed to HM should

  19. An observational study of PM10 and hospital admissions for acute exacerbations of chronic respiratory disease in Tasmania, Australia 1992-2002.

    Science.gov (United States)

    Mészáros, D; Markos, J; FitzGerald, D G; Walters, E H; Wood-Baker, R

    2015-01-01

    Particulate matter with a diameter below 10 µ (PM10) has been a major concern in the Tamar Valley, Launceston, where wood heaters are extensively used. We examined the relationship between PM10 levels, meteorological variables, respiratory medications and hospital admissions for respiratory disease over the decade 1992-2002. PM10 levels were provided by the Department of Primary Industry Water, Parks and Environment, and meteorological variables from the Bureau of Meteorology. We obtained hospital discharge codes for the Launceston General Hospital. Poisson regression was used for statistical analyses. Mean daily PM10 levels declined from 50.7 to 16.5 μg/m(3). Hospitalisations for asthma decreased from 29 to 21 per month, whereas chronic obstructive pulmonary disease (COPD) increased and bronchitis/bronchiolitis remained unchanged. We found a 10 μg/m(3) increase in PM10 to be associated with a 4% increase in admissions for acute bronchitis/bronchiolitis (p0.05), but no association with asthma or COPD was found. All respiratory diseases showed seasonal patterns of hospitalisation. This is the first long-term study in Australia to demonstrate an association between PM10 levels and respiratory diseases. Reducing exposure to PM10 may decrease hospital admissions for respiratory diseases. Better preventive measures, including sustained public health initiatives to combat air pollution, are required to reduce respiratory morbidity.

  20. Statistical relationship between surface PM10 concentration and aerosol optical depth over the Sahel as a function of weather type, using neural network methodology

    Science.gov (United States)

    Yahi, H.; Marticorena, B.; Thiria, S.; Chatenet, B.; Schmechtig, C.; Rajot, J. L.; Crepon, M.

    2013-12-01

    work aims at assessing the capability of passive remote-sensed measurements such as aerosol optical depth (AOD) to monitor the surface dust concentration during the dry season in the Sahel region (West Africa). We processed continuous measurements of AODs and surface concentrations for the period (2006-2010) in Banizoumbou (Niger) and Cinzana (Mali). In order to account for the influence of meteorological condition on the relationship between PM10 surface concentration and AOD, we decomposed the mesoscale meteorological fields surrounding the stations into five weather types having similar 3-dimensional atmospheric characteristics. This classification was obtained by a clustering method based on nonlinear artificial neural networks, the so-called self-organizing map. The weather types were identified by processing tridimensional fields of meridional and zonal winds and air temperature obtained from European Centre for Medium-Range Weather Forecasts (ECMWF) model output centered on each measurement station. Five similar weather types have been identified at the two stations. Three of them are associated with the Harmattan flux; the other two correspond to northward inflow of the monsoon flow at the beginning or the end of the dry season. An improved relationship has been found between the surface PM10 concentrations and the AOD by using a dedicated statistical relationship for each weather type. The performances of the statistical inversion computed on the test data sets show satisfactory skills for most of the classes, much better than a linear regression. This should permit the inversion of the mineral dust concentration from AODs derived from satellite observations over the Sahel.

  1. Comprehensive urban air quality studies of Islamabad: elemental characterization of PM10 and PM2.5, source apportionment and transboundary pollutant migration (abstract)

    International Nuclear Information System (INIS)

    Waheed, S.; Siddique, N.; Daud, M.

    2011-01-01

    Long term urban air quality of Islamabad, the capital city of Pakistan, has been investigated as a part of the joint UNDP/IAEA/RCA/RAS/7/015 project, entitled C haracterization and source identification of particulate air pollution in the Asian region (RCA) . Around 380 pairs of fine (PM2.5) and coarse (PM10-2.5) polycarbonate filters from the Nilore area were collected using GENT sampler. The average PM2.5 and PM2.5-10 masses at this site were found to be 15.02 and 37.01 g/m/sup 3/ respectively that are far below to the Pakistani limit for PM10 of 100 g/m/sup 3/. The average Black Carbon (BC) was found to be 2.58 and 1.22 g/m/sup 3/ corresponding to 20.7% and 4.54% of the fine and coarse mass respectively. The non destructive Ion Beam Analysis method, Proton induced X-ray emission (PIXE) and Proton induced gamma ray emission (PIGE) were employed to quantify more than 40 elements in both fine and coarse fractions. The acquired elemental data has been statistically treated and subjected to mass closure studies, principal component and factor analysis to calculate correlation matrices. The reconstructed mass (RCM) was calculated for both particle modes using soil, sulphate, smoke, sea salt and BC as pseudo sources. Data analysis performed using EPA-PMF3 shows that the fine and coarse data for the suburban site identifies 4 sources; biomass/ combustion, road dust, soil and automobile. Long range transport of pollutants was studied using HYSPLIT4 model. It was observed that high fine soil contributions in this area were mainly from dust storms arriving from west and North West of the country. (author)

  2. Inflammation response and cytotoxic effects in human THP-1 cells of size-fractionated PM10 extracts in a polluted urban site.

    Science.gov (United States)

    Schilirò, T; Alessandria, L; Bonetta, S; Carraro, E; Gilli, G

    2016-02-01

    To contribute to a greater characterization of the airborne particulate matter's toxicity, size-fractionated PM10 was sampled during different seasons in a polluted urban site in Torino, a northern Italian city. Three main size fractions (PM10 - 3 μm; PM3 - 0.95 μm; PM THP-1 cells to evaluate their effects on cell proliferation, LDH activity, TNFα, IL-8 and CYP1A1 expression. The mean PM10 concentrations were statistically different in summer and in winter and the finest fraction PMtest) that could be used in the context of the different monitoring programs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Particulate pollution of PM10 and PM2.5 due to strong anthropopressure in Sosnowiec city

    Directory of Open Access Journals (Sweden)

    Jolanta Cembrzyńska

    2012-12-01

    Full Text Available Introduction: Air contamination with particulate matter causes a serious problem in large cities and urban-industrial agglomerations both in Poland and Europe. Anthropogenic sources of air pollution in urban areas are emissions from municipal, industrial and transportation sector. Many epidemiological studies have revealed that exposure to air pollution, especially the fine particles with aerodynamic diameter less than 2,5 micrometer, can pose a threat to human health exposed to exceedingly high concentrations of particulate matter. Aim of the study: The aim of this study was to evaluate PM10 and PM2,5 mass concentrations in autumn and winter season in the city of Sosnowiec, in relation to ambient air quality standards in Poland and the European Union. Results: The average concentrations of PM10 and PM2,5 in autumn-winter seasons in Sosnowiec city 2010–2011 were 2,1 to 2,7 times higher than limit values, specified in the legislation acts.

  4. Exposure of bakery and pastry apprentices to airborne flour dust using PM2.5 and PM10 personal samplers

    Directory of Open Access Journals (Sweden)

    Paris Christophe

    2007-11-01

    Full Text Available Abstract Background This study describes exposure levels of bakery and pastry apprentices to flour dust, a known risk factor of occupational asthma. Methods Questionnaires on work activity were completed by 286 students. Among them, 34 performed a series of two personal exposure measurements using a PM2.5 and PM10 personal sampler during a complete work shift, one during a cold ("winter" period, and the other during a hot ("summer" period. Results Bakery apprentices experience greater average PM2.5 and PM10 exposures than pastry apprentices (p 10 values among bakers = 1.10 mg.m-3 [standard deviation: 0.83] than in summer (0.63 mg.m-3 [0.36]. While complying with current European occupational limit values, these exposures exceed the ACGIH recommendations set to prevent sensitization to flour dust (0.5 mg.m-3. Over half the facilities had no ventilation system. Conclusion Young bakery apprentices incur substantial exposure to known airways allergens, a situation that might elicit early induction of airways inflammation.

  5. Local PM10 and PM2.5 emission inventories from agricultural tillage and harvest in northeastern China.

    Science.gov (United States)

    Chen, Weiwei; Tong, Daniel Q; Zhang, Shichun; Zhang, Xuelei; Zhao, Hongmei

    2017-07-01

    Mineral particles or particulate matters (PMs) emitted during agricultural activities are major recurring sources of atmospheric aerosol loading. However, precise PM inventory from agricultural tillage and harvest in agricultural regions is challenged by infrequent local emission factor (EF) measurements. To understand PM emissions from these practices in northeastern China, we measured EFs of PM 10 and PM 2.5 from three field operations (i.e., tilling, planting and harvesting) in major crop production (i.e., corn and soybean), using portable real-time PM analyzers and weather station data. County-level PM 10 and PM 2.5 emissions from agricultural tillage and harvest were estimated, based on local EFs, crop areas and crop calendars. The EFs averaged (107±27), (17±5) and 26mg/m 2 for field tilling, planting and harvesting under relatively dry conditions (i.e., soil moisture agricultural dust emissions to regional air quality in northeastern China. Copyright © 2016. Published by Elsevier B.V.

  6. Fugitive emission rates assessment of PM2.5 and PM10 from open storage piles in China

    Science.gov (United States)

    Cao, Yiqi; Liu, Tao; He, Jiao

    2018-03-01

    An assessment of the fugitive emission rates of PM2.5 and PM10 from an open static coal and mine storage piles. The experiment was conducted at a large union steel enterprises in the East China region to effectively control the fugitive particulate emissions pollution on daily work and extreme weather conditions. Wind tunnel experiments conducted on the surface of static storage piles, and it generated specific fugitive emission rates (SERs) at ground level of between ca.10-1 and ca.102 (mg/m2·s) for PM2.5 and between ca.101 and ca.103 (mg/m2·s) for PM10 under the u*(wind velocity) between ca.3.0 (m/s) and 10.0 (m/s). Research results show that SERs of different materials differ a lot. Material particulate that has lower surface moisture content generate higher SER and coal material generate higher SER than mine material. For material storage piles with good water infiltrating properties, aspersion is a very effective measure for control fugitive particulate emission.

  7. PIXE characterization of PM10 and PM2.5 particulate matter collected during the winter season in Shanghai city

    International Nuclear Information System (INIS)

    Zhang Yuanxun; Wang Yingsong; Li Delu; Li Aiguo; Li Yan; Zhang Guilin

    2006-01-01

    The samples of PM2.5 and PM10 inhalable particulate matter had been collected during the period of December 2002-January 2003 at nineteen representative sites of Shanghai urban and suburb area in order to investigate the chemical characterization of aerosol particle in winter. The samples were analyzed to determine the average concentrations for up to twenty elements by means of particle induced X-ray emission (PIXE). It was found that the average elemental concentrations in the urban center are higher than those in the suburb, except for Ti and P. The particulate mass data demonstrate that the ratio range of PM2.5/PM10 is from 0.32 to 0.85 and its average ratio is 0.6. The result of the enrichment factor shows that the inhalable particles may be divided into two categories, i.e., soil elements from the earth crust and anthropogenic pollution elements. It is noticed that toxic or harmful elements such as S, As, Pb, Ni, Mn and Se are enriched mainly in fine particles with diameter less than 2.5 μm. The fingerprints of major pollution sources such as coal (or oil) burning, vehicle exhaust emission and industry are also presented and discussed. (author)

  8. Concentration and chemical composition of PM10 particles in the metropolitan area of ​Costa Rica in 2012

    Directory of Open Access Journals (Sweden)

    Jorge Herrera

    2014-12-01

    Full Text Available During 2012 the PM10 concentrations were measured in 13 sampling sites distributed in the metropolitan area of Costa Rica. The samples were collected using high volume samplers and subsequently analyzed for: ions (F-, Cl-, NO2-, NO3-, PO43-, SO42-, trace metals (V, Cr, Cu, Mn, Fe, Al, Pb, Ni, organic and elemental carbon content. Sampling sites located in high traffic commercial and industrial zones exhibited significative increased concentrations (42 – 29 µg/m3 compared to low traffic commercial and residential zones (23 – 15 µg/m3. As for speciation, crustal contribution increases from 13-14 % found in high traffic industrial zones to 28 % in residential zones. While marine aerosol contribution ranges from 2,5 to 5% for all sampling sites without a distinctive pattern. The OC and EC fraction was the most important contribution to the PM10 composition, mainly in HE-01 and BE-01 sampling sites accounting for around 53 and 56 % of the total mass. This reflects the importance of combustion sources to the fine particulate matter composition. In the case of the trace metals fraction it was the lowest one found for all the sampling sites.

  9. Levels and composition of atmospheric particulates (PM10) in a mining-industrial site in the city of Lavrion, Greece.

    Science.gov (United States)

    Protonotarios, V; Petsas, N; Moutsatsou, A

    2002-11-01

    The present work focuses on the characterization of air quality and the identification of pollutant origin at a former mining site in the city of Lavrion, Greece. A historical metallurgy complex is reused for establishing the Lavrion Technology and Cultural Park (LTCP). A serious problem with this is the severe soil contamination that resulted from intensive mining and metallurgical activities that has taken place in the greater area for the past 3,000 years. Among other consequences, surface-polluted depositions, rich in heavy and toxic metals, are loose and easily wind-eroded, resulting in transportation of particulate matter (PM) in the surrounding atmosphere. On the other hand, there are a number of industries relatively close to the site that are potential sources of PM air pollution. The current study deals with the collection and analysis of PM10 samples with respect to their concentration in heavy metals, such as Pb, Cd, Cu, Fe, Zn, Mn, Cr, and Ni. Though not a heavy metal, As also is included. Furthermore, the source of these elements is verified using statistical correlation and by calculating enrichment factors (EFs), considering that some substances are certainly of contaminated soil origin. Results show that PM10 and element concentrations are relatively low during winter but significantly increase during summer. Fe, Pb, Zn, Mn, and Cu may be considered of contaminated soil origin, while As, Ni, Cd, and Cr are very much enriched with respect to contaminated soil, indicating another possible source attributed to the adjacent industrial plants.

  10. Particle reduction strategies - PAREST. Evaluation of emission reduction scenarios using chemical transport calculations. PM10- and PM2.5-reduction potentials by package of measures for further immission reduction in Germany. Sub-report.; Strategien zur Verminderung der Feinstaubbelastung - PAREST. Bewertung von Emissionsminderungsszenarien mit Hilfe chemischer Transportberechnungen. PM10- und PM2,5-Minderungspotenziale von Massnahmenpaketen zur weiteren Reduzierung der Immissionen in Deutschland. Teilbericht

    Energy Technology Data Exchange (ETDEWEB)

    Stern, Rainer [Freie Univ. Berlin (Germany). Inst. fuer Meteorologie, Troposphaerische Umweltforschung

    2013-06-15

    This report documents the effects of additional emission control measures the PM10 and PM2.5 air quality in Germany (PM = particulate matter). The immission effects of the planned measures were calculated with the Chemistry-Aerosol-Transport Model REM CALGRID (RCG). [German] Dieser Bericht dokumentiert die Auswirkungen zusaetzlicher emissionsmindernder Massnahmen auf die PM10 und PM2.5-Luftqualitaet in Deutschland. Die immissionsseitigen Auswirkungen der geplanten Massnahmen wurden auf der Basis von Berechnungen mit dem Chemie-Aerosol-Transportmodell REM-CALGRID (RCG) bestimmt. Grundlage der Szenarienrechnungen sind die im Rahmen des F and E-Vorhabens entwickelten Emissionsabschaetzungen, die die Aenderung der Emissionen aufgrund von technischen oder nicht-technischen Massnahmen beschreiben. Die den Berechnungen zugrunde liegende horizontale Aufloesung betraegt 0.125 Laenge und 0.0625 Breite oder circa 7 km x 8 km. Das meteorologische Referenzjahr ist 2005.

  11. Nonmalignant respiratory mortality and long-term exposure to PM10 and SO2: A 12-year cohort study in northern China

    International Nuclear Information System (INIS)

    Chen, Xi; Wang, Xue; Huang, Jia-ju; Zhang, Li-wen; Song, Feng-ju; Mao, Hong-jun; Chen, Ke-xin; Chen, Jie; Liu, Ya-min; Jiang, Guo-hong; Dong, Guang-hui; Bai, Zhi-peng

    2017-01-01

    Highlights: • The relationship between air pollution and respiratory disease is proposed. • Nonmalignant respiratory disease mortality was associated with PM 10 and SO 2 . • Passive smokers are susceptible to the harmful effects of air pollution.

  12. Mobile air quality studies (MAQS in inner cities: particulate matter PM10 levels related to different vehicle driving modes and integration of data into a geographical information program

    Directory of Open Access Journals (Sweden)

    Uibel Stefanie

    2012-10-01

    Full Text Available Abstract Background Particulate matter (PM is assumed to exert a major burden on public health. Most studies that address levels of PM use stationary measure systems. By contrast, only few studies measure PM concentrations under mobile conditions to analyze individual exposure situations. Methods By combining spatial-temporal analysis with a novel vehicle-mounted sensor system, the present Mobile Air Quality Study (MAQS aimed to analyse effects of different driving conditions in a convertible vehicle. PM10 was continuously monitored in a convertible car, driven with roof open, roof closed, but windows open, or windows closed. Results PM10 values inside the car were nearly always higher with open roof than with roof and windows closed, whereas no difference was seen with open or closed windows. During the day PM10 values varied with high values before noon, and occasional high median values or standard deviation values due to individual factors. Vehicle speed in itself did not influence the mean value of PM10; however, at traffic speed (10 – 50 km/h the standard deviation was large. No systematic difference was seen between PM10 values in stationary and mobile cars, nor was any PM10 difference observed between driving within or outside an environmental (low emission zone. Conclusions The present study has shown the feasibility of mobile PM analysis in vehicles. Individual exposure of the occupants varies depending on factors like time of day as well as ventilation of the car; other specific factors are clearly identifiably and may relate to specific PM10 sources. This system may be used to monitor individual exposure ranges and provide recommendations for preventive measurements. Although differences in PM10 levels were found under certain ventilation conditions, these differences are likely not of concern for the safety and health of passengers.

  13. Predicting PM10 concentration in Seoul metropolitan subway stations using artificial neural network (ANN).

    Science.gov (United States)

    Park, Sechan; Kim, Minjeong; Kim, Minhae; Namgung, Hyeong-Gyu; Kim, Ki-Tae; Cho, Kyung Hwa; Kwon, Soon-Bark

    2018-01-05

    The indoor air quality of subway systems can significantly affect the health of passengers since these systems are widely used for short-distance transit in metropolitan urban areas in many countries. The particles generated by abrasion during subway operations and the vehicle-emitted pollutants flowing in from the street in particular affect the air quality in underground subway stations. Thus the continuous monitoring of particulate matter (PM) in underground station is important to evaluate the exposure level of PM to passengers. However, it is difficult to obtain indoor PM data because the measurement systems are expensive and difficult to install and operate for significant periods of time in spaces crowded with people. In this study, we predicted the indoor PM concentration using the information of outdoor PM, the number of subway trains running, and information on ventilation operation by the artificial neural network (ANN) model. As well, we investigated the relationship between ANN's performance and the depth of underground subway station. ANN model showed a high correlation between the predicted and actual measured values and it was able to predict 67∼80% of PM at 6 subway station. In addition, we found that platform shape and depth influenced the model performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Wintertime indoor air levels of PM10, PM2.5 and PM1 at public places and their contributions to TSP.

    Science.gov (United States)

    Liu, Yangsheng; Chen, Rui; Shen, Xingxing; Mao, Xiaoling

    2004-04-01

    From 26 October 2002 to 8 March 2003, particulate matter (PM) concentrations (total suspended particles [TSP], PM10, PM2.5 and PM1) were measured at 49 public places representing different environments in the urban area of Beijing. The objectives of this study were (1) to characterize the indoor PM concentrations in public places, (2) to evaluate the potential indoor sources and (3) to investigate the contribution of PM10 to TSP and the contributions of PM2.5 and PM1 to PM10. Additionally, The indoor and outdoor particle concentrations in the same type of indoor environment were employed to investigate the I/O level, and comparison was made between I/O levels in different types of indoor environment. Construction activities and traffic condition were the major outdoor sources to influence the indoor particle levels. The contribution of PM10 to TSP was even up to 68.8%, while the contributions of PM2.5 and PM1 to PM10 were not as much as that of PM10 to TSP.

  15. Punicalagin and (-)-Epigallocatechin-3-Gallate Rescue Cell Viability and Attenuate Inflammatory Responses of Human Epidermal Keratinocytes Exposed to Airborne Particulate Matter PM10.

    Science.gov (United States)

    Seok, Jin Kyung; Lee, Jeong-Won; Kim, Young Mi; Boo, Yong Chool

    2018-01-01

    Airborne particulate matter with a diameter of < 10 µm (PM10) causes oxidative damage, inflammation, and premature skin aging. In this study, we evaluated whether polyphenolic antioxidants attenuate the inflammatory responses of PM10-exposed keratinocytes. Primary human epidermal keratinocytes were exposed in vitro to PM10 in the absence or presence of punicalagin and (-)-epigallocatechin-3-gallate (EGCG), which are the major polyphenolic antioxidants found in pomegranate and green tea, respectively. Assays were performed to determine cell viability, production of reactive oxygen species (ROS), and expression of NADPH oxidases (NOX), proinflammatory cytokines, and matrix metalloproteinase (MMP)-1. PM10 decreased cell viability and increased ROS production in a dose-dependent manner. It also increased the expression levels of NOX-1, NOX-2, tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, IL-8, and MMP-1. Punicalagin was not cytotoxic up to 300 μM, and (-)-EGCG was cytotoxic above 30 μM, respectively. Further, punicalagin (3-30 μM) and EGCG (3-10 μM) rescued the viability of PM10-exposed cells. They also attenuated ROS production and the expression of NOX-1, NOX-2, TNF-α, IL-1β, IL-6, IL-8, and MMP-1 stimulated by PM10. This study demonstrates that polyphenolic antioxidants, such as punicalagin and (-)-EGCG, rescue keratinocyte viability and attenuate the inflammatory responses of these cells due to airborne particles. © 2018 S. Karger AG, Basel.

  16. Removal of PM10 by Forests as a Nature-Based Solution for Air Quality Improvement in the Metropolitan City of Rome

    Directory of Open Access Journals (Sweden)

    Federica Marando

    2016-07-01

    Full Text Available Nature-based solutions have been identified by the European Union as being critical for the enhancement of environmental qualities in cities, where urban and peri-urban forests play a key role in air quality amelioration through pollutant removal. A remote sensing and geographic information system (GIS approach was applied to the Metropolitan City (MC of Rome to assess the seasonal particulate matter (PM10 removal capacity of evergreen (broadleaves and conifers and deciduous species. Moreover, a monetary evaluation of PM10 removal was performed on the basis of pollution externalities calculated for Europe. Deciduous broadleaves represent the most abundant tree functional group and also yielded the highest total annual PM10 deposition values (1769 Mg. By contrast, PM10 removal efficiency (Mg·ha−1 was 15%–22% higher in evergreen than in deciduous species. To assess the different removal capacity of the three functional groups in an area with homogeneous environmental conditions, a study case was performed in a peri-urban forest protected natural reserve (Castelporziano Presidential Estate. This study case highlighted the importance of deciduous species in summer and of evergreen communities as regards the annual PM10 removal balance. The monetary evaluation indicated that the overall PM10 removal value of the MC of Rome amounted to 161.78 million Euros. Our study lends further support to the crucial role played by nature-based solutions for human well-being in urban areas.

  17. Partitioning of magnetic particles in PM10, PM2.5 and PM1 aerosols in the urban atmosphere of Barcelona (Spain)

    International Nuclear Information System (INIS)

    Revuelta, María Aránzazu; McIntosh, Gregg; Pey, Jorge; Pérez, Noemi; Querol, Xavier; Alastuey, Andrés

    2014-01-01

    A combined magnetic-chemical study of 15 daily, simultaneous PM 10 –PM 2.5 –PM 1 urban background aerosol samples has been carried out. The magnetic properties are dominated by non-stoichiometric magnetite, with highest concentrations seen in PM 10 . Low temperature magnetic analyses showed that the superparamagnetic fraction is more abundant when coarse, multidomain particles are present, confirming that they may occur as an oxidized outer shell around coarser grains. A strong association of the magnetic parameters with a vehicular PM 10 source has been identified. Strong correlations found with Cu and Sb suggests that this association is related to brake abrasion emissions rather than exhaust emissions. For PM 1 the magnetic remanence parameters are more strongly associated with crustal sources. Two crustal sources are identified in PM 1 , one of which is of North African origin. The magnetic particles are related to this source and so may be used to distinguish North African dust from other sources in PM 1 . - Highlights: • Magnetic properties of PM 10 , PM 2.5 and PM 1 defined for a Mediterranean urban site. • Vehicular source of magnetic particles dominates in PM 10 . • Crustal source of magnetic particles dominates in PM 1 . • Magnetic remanence may distinguish between North African and regional dust in PM 1 . - Capsule abstract two sources of magnetic atmospheric particles have been identified in Barcelona, a vehicular source which dominates in PM 10 and a crustal source that dominates in PM 1

  18. Chemical composition of PM10 and its in vitro toxicological impacts on lung cells during the Middle Eastern Dust (MED) storms in Ahvaz, Iran.

    Science.gov (United States)

    Naimabadi, Abolfazl; Ghadiri, Ata; Idani, Esmaeil; Babaei, Ali Akbar; Alavi, Nadali; Shirmardi, Mohammad; Khodadadi, Ali; Marzouni, Mohammad Bagherian; Ankali, Kambiz Ahmadi; Rouhizadeh, Ahmad; Goudarzi, Gholamreza

    2016-04-01

    Reports on the effects of PM10 from dust storm on lung cells are limited. The main purpose of this study was to investigate the chemical composition and in vitro toxicological impacts of PM10 suspensions, its water-soluble fraction, and the solvent-extractable organics extracted from Middle Eastern Dust storms on the human lung epithelial cell (A549). Samples of dust storms and normal days (PM10 0.05). These results led to the conclusions that dust storm PM10 as well as normal day PM10 could lead to cytotoxicity, and the organic compounds (PAHs) and the insoluble particle-core might be the main contributors to cytotoxicity. Our results showed that cytotoxicity and the risk of PM10 to human lung may be more severe during dust storm than normal days due to inhalation of a higher mass concentration of airborne particles. Further research on PM dangerous fractions and the most responsible components to make cytotoxicity in exposed cells is recommended. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Retrieval of aerosol mass load (PM10 from MERIS/Envisat top of atmosphere spectral reflectance measurements over Germany

    Directory of Open Access Journals (Sweden)

    M. Vountas

    2011-03-01

    Full Text Available Results of a new methodology for retrievals of surface particulate matter concentration (PM10 from satellite reflectance measurements over Germany are presented in this paper. The retrieval derives effective radii from Ångström-α exponents and benefits from the fitting of a smooth spectral slope from seven MERIS spectrometer channels. Comparisons with ground measurements from the air quality surveillance show standard deviations of 33.9% with −18.9% bias over Hamburg. Over rural sites a standard deviation of 17.9% (bias 12.9% is reached. We discuss critically limitations and potential applications of the retrieval. Additionally, we talk about the aspects at comparing of retrieved particulate matter with ground station measurements.

  20. The future of prescribed fire in the West considering PM10 standards and other air quality programs

    International Nuclear Information System (INIS)

    Lahm, P.W.; Haddow, D.V.; Lamb, D.V.

    1992-01-01

    The potential conflict between the public's desire for clean air and good visibility versus the ecological need for using prescribed fire as a land management tool presents a continuing challenge for land management agencies. In many western states, prescribed fire is a large, intermittent source of particulates that can have a significant short-term impact on fine particulate concentrations and visibility. In general, the ecological need for the use of prescribed fire in the West is increasing as fuel loadings increase, unnatural successional changes continue, and research clarifies the role of fire in natural ecosystems. This paper discusses the future use of prescribed fire as a land management tool given the development of new air quality standards designed to control PM 10 and air toxics and new programs designed to protect and enhance visibility

  1. Hazard Quotients, Hazard Indexes, and Cancer Risks of Toxic Metals in PM10 during Firework Displays

    Directory of Open Access Journals (Sweden)

    Siwatt Pongpiachan

    2018-04-01

    Full Text Available Bonfire night is a worldwide phenomenon given to numerous annual celebrations characterised by bonfires and fireworks. Since Thailand has no national ambient air quality standards for metal particulates, it is important to investigate the impacts of particulate injections on elevations of air pollutants and the ecological health impacts resulting from firework displays. In this investigation, Pb and Ba were considered potential firework tracers because their concentrations were significantly higher during the episode, and lower than/comparable with minimum detection limits during other periods, indicating that their elevated concentrations were principally due to pyrotechnic displays. Pb/Ca, Pb/Al, Pb/Mg, and Pb/Cu can be used to pin-point emissions from firework displays. Air mass backward trajectories (72 h from the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT model indicated that areas east and north-east of the study site were the main sources of the airborne particles. Although the combined risk associated with levels of Pb, Cr, Co., Ni, Zn, As, Cd, V, and Mn was far below the standards mentioned in international guidelines, the lifetime cancer risks associated with As and Cr levels exceeded US-EPA guidelines, and may expose inhabitants of surrounding areas of Bangkok to an elevated cancer risk.

  2. Polycyclic aromatic hydrocarbons and their nitrated derivatives associated with PM10 from Kraków city during heating season

    Directory of Open Access Journals (Sweden)

    Styszko Katarzyna

    2016-01-01

    Full Text Available Polycyclic Aromatic Hydrocarbons (PAHs, their nitro-derivatives (NPAHs and hundreds of other organic compounds are present in ambient air in gas and particulate form. PAHs and NPAHs originate from diesel and gasoline exhaust emission and other combustion sources. NPAHs are also formed through the nitration of parent PAHs in the atmosphere. Concentrations of PAHs and NPAHs in the particulate matter fraction PM10 collected in the centre of Kraków (27.01.2014 – 17.02.2014 were investigated. The thirteen PAHs and four NPAHs: fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]anthracene, benzo[a]pyrene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, indeno[1,2,3-c,d]pyrene, benzo[g,h,i]perylene, dibenz[a,h]anthracene, 2-nitrofluorene, 9-nitroanthracene, 3-nitrofluoranthene and 1-nitropyrene were extracted from particulate matter and analysed applying the GC/MS technique. Depending on the compounds the relative recoveries ranged from 72 to 94%. The concentrations of PM10 in the study period ranged between 23.5 and 153.8 μg·m-3. The average concentrations of PAHs and NPAHs ranged from 26.6 to 276.4 ng·m-3 and from 0.6 to 9.1 ng·m-3, respectively. The highest concentrations were observed for benzo[a]pyrene, benzo[a]anthracene, pyrene and fluoranthene. The average concentration of benzo[a]pyrene (BaP, which is a marker for the particle-bound atmospheric PAHs, was 9.5 ng·m-3. The concentrations of 3-nitrofluoranthene and 1-nitropyrene were below the quantification limits of the method (< MQL.

  3. Characterization of biomass burning from olive grove areas: A major source of organic aerosol in PM10 of Southwest Europe

    Science.gov (United States)

    Sánchez de la Campa, Ana M.; Salvador, Pedro; Fernández-Camacho, Rocío; Artiñano, Begoña; Coz, Esther; Márquez, Gonzalo; Sánchez-Rodas, Daniel; de la Rosa, Jesús

    2018-01-01

    The inorganic and organic geochemistry of aerosol particulate matter (APM) was studied in a major olive grove area from Southwest Europe (Baena, Spain). The biomass consists of olive tree branches and the solid waste resulting of the olive oil production. Moreover, high PM10 levels were obtained (31.5 μg m- 3), with two days of exceedance of the daily limit of 50 μg m- 3 (2008/50/CE; EU, 2008) during the experimental period. A high mean levoglucosan concentration was obtained representing up 95% of the total mass of the isomers analysed (280 ng m- 3), while galactosan and mannosan mean concentrations were lower (8.64 ng m- 3 and 7.86 ng m- 3, respectively). The contribution of wood smoke in Baena was estimated, representing 19% of OC and 17% of OM total mass. Positive matrix factor (PMF) was applied to the organic and inorganic aerosols data, which has permitted the identification of five source categories: biomass burning, traffic, mineral dust, marine aerosol and SIC (secondary inorganic compounds). The biomass burning category reached the highest mean contribution to the PM10 mass (41%, 17.6 μg m- 3). In light of these results, the use of biomass resulting from the olive oil production for residential heating and industry must be considered the most important aerosol source during the winter months. The results of this paper can be extrapolated to other olive oil producing areas in the Mediterranean basin. Therefore, a fuller understanding of this type of biomass combustion is required in order to be able to establish appropriate polices and reduce the environmental impact on the population.

  4. Characteristics of PM10 Chemical Source Profiles for Geological Dust from the South-West Region of China

    Directory of Open Access Journals (Sweden)

    Yayong Liu

    2016-11-01

    Full Text Available Ninety-six particulate matter (PM10 chemical source profiles for geological sources in typical cities of southwest China were acquired from Source Profile Shared Service in China. Twenty-six elements (Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Sr, Cd, Sn, Sb, Ba, Be, Tl and Pb, nine ions (F−, Cl−, SO42−, NO3−, Na+, NH4+, K+, Mg2+ and Ca2+, and carbon-containing species (organic carbon and elemental carbon were determined to construct these profiles. Individual source profiles were averaged and compared to quantify similarities and differences in chemical abundances using the profile-compositing method. Overall, the major components of PM10 in geological sources were crustal minerals and undefined fraction. Different chemical species could be used as tracers for various types of geological dust in the region that resulted from different anthropogenic influence. For example, elemental carbon, V and Zn could be used as tracers for urban paved road dust; Al, Si, K+ and NH4+ for agricultural soil; Al and Si for natural soil; and SO42− for urban resuspended dust. The enrichment factor analysis showed that Cu, Se, Sr and Ba were highly enriched by human activities in geological dust samples from south-west China. Elemental ratios were taken to highlight the features of geological dust from south-west China by comparing with northern urban fugitive dust, loess and desert samples. Low Si/Al and Fe/Al ratios can be used as markers to trace geological sources from southwestern China. High Pb/Al and Zn/Al ratios observed in urban areas demonstrated that urban geological dust was influenced seriously by non-crustal sources.

  5. Pulmonary toxicity study in rats with PM 10 and PM 2.5: Differential responses related to scale and composition

    Science.gov (United States)

    Zhang, Wei; Lei, Tian; Lin, Zhi-Qing; Zhang, Hua-Shan; Yang, Dan-Feng; Xi, Zhu-Ge; Chen, Jian-Hua; Wang, Wei

    2011-02-01

    ObjectionTo study the pollution of atmospheric particles at winter in Beijing and compare the lung toxicity which induced by particle samples from different sampling sites. MethodWe collected samples from two sampling points during the winter for toxicity testing and chemical analysis. Wistar rats were administered with particles by intratracheal instillation. After exposure, biochemically index, esimmunity indexes, histopathology and DNA damage were detected in rat pulmonary cells. ResultThe elements with enrichment factors (EF) larger than 10 were As, Cd, Cu, Zn, S and Pb in the four experiment groups. The priority control of the total concentration of polycyclic aromatic hydrocarbons (PAHs) in PM 10 and PM 2.5 of Near-traffic source was much higher than that of Far-traffic source, it demonstrated that near the traffic source of PAHs pollution was heavier than that of Far-traffic source, as it was close to main roads Beiyuan Road, motor vehicle emissions were much higher. The pathology of lung showed that the degree of inflammation was increased with the particle diameter minished, it was the same as the detection of biochemical parameters such as lactate dehydrogenase (LDH), Total antioxidant status(T-AOC) and total protein (TP) in BALF and inflammation cytokine(interleukin-1, interleukin-6 and tumor necrosis factor-alpha) in lung homogenate. The indexes of DNA damage including the content of DNA and Olive empennage of PM 2.5 were significant higher than that of PM 10 at the same surveillance point ( P < 0.05), near-traffic particles were higher than the far-traffic particles at the same diameter, ( P < 0.05). ConclusionNear-traffic area particles had certain pollution at winter in Beijing. Meanwhile, atmospheric particulate matters on lung toxicity were related to the particles size and distance related sites which were exposed: smaller size, more toxicity; nearer from traffic, more toxicity.

  6. Source apportionment of PM10 mass and particulate carbon in the Kathmandu Valley, Nepal

    Science.gov (United States)

    Kim, Bong Mann; Park, Jin-Soo; Kim, Sang-Woo; Kim, Hyunjae; Jeon, Haeun; Cho, Chaeyoon; Kim, Ji-Hyoung; Hong, Seungkyu; Rupakheti, Maheswar; Panday, Arnico K.; Park, Rokjin J.; Hong, Jihyung; Yoon, Soon-Chang

    2015-12-01

    The Kathmandu Valley in Nepal is a bowl-shaped urban basin in the Himalayan foothills with a serious problem of fine particulate air pollution that impacts local health and impairs visibility. Particulate carbon concentrations have reached severe levels that threaten the health of 3.5 million local residents. Moreover, snow and ice on the Himalayan mountains are melting as a result of additional warming due to particulate carbon, especially high black carbon concentrations. To date, the sources of the Valley's particulate carbon and the impacts of different sources on particulate carbon concentrations are not well understood. Thus, before an effective control strategy can be developed, these particulate carbon sources must be identified and quantified. Our study has found that the four primary sources of particulate carbon in the Kathmandu Valley during winter are brick kilns, motor vehicles, fugitive soil dust, and biomass/garbage burning. Their source contributions are quantified using a recently developed new multivariate receptor model SMP. In contrast to other highly polluted areas such as China, secondary contribution is almost negligible in Kathmandu Valley. Brick kilns (40%), motor vehicles (37%) and biomass/garbage burning (22%) have been identified as the major sources of elemental carbon (black carbon) in the Kathmandu Valley during winter, while motor vehicles (47%), biomass/garbage burning (32%), and soil dust (13%) have been identified as the most important sources of organic carbon. Our research indicates that controlling emissions from motor vehicles, brick kilns, biomass/garbage burning, and soil dust is essential for the mitigation of the particulate carbon that threatens public health, impairs visibility, and influences climate warming within and downwind from the Kathmandu Valley. In addition, this paper suggests several useful particulate carbon mitigation methods that can be applied to Kathmandu Valley and other areas in South Asia with

  7. Magnetic properties of atmospheric particulate matter from automatic air sampler stations in Latium (Italy): Toward a definition of magnetic fingerprints for natural and anthropogenic PM10 sources

    Science.gov (United States)

    Sagnotti, Leonardo; Macrı, Patrizia; Egli, Ramon; Mondino, Manlio

    2006-12-01

    Environmental problems linked to the concentration of atmospheric particulate matter with dimensions less than 10 μm (PM10) in urban settings have stimulated a variety of scientific researches. This study reports a systematic analysis of the magnetic properties of PM10 samples collected by six automatic stations installed for air quality monitoring through the Latium Region (Italy). We measured the low-field magnetic susceptibility of daily air filters collected during the period July 2004 to July 2005. For each station, we derived an empirical linear correlation linking magnetic susceptibility to the concentration of PM10 produced by local sources (i.e., in absence of significant inputs of exogenous dust). An experimental approach is suggested for estimating the percentage of nonmagnetic PM10 transported from natural far-sided sources (i.e., dust from North Africa and marine aerosols). Moreover, we carried out a variety of additional magnetic measurements to investigate the magnetic mineralogy of selected air filters spanning representative periods. The results indicate that the magnetic fraction of PM10 is composed by a mixture of low-coercivity, magnetite-like, ferrimagnetic particles with a wide spectrum of grain sizes, related to a variety of natural and anthropogenic sources. The natural component of PM10 has a characteristic magnetic signature that is indistinguishable from that of eolian dust. The anthropogenic PM10 fraction is mostly originated from circulating vehicles and is a mixture of prevailing fine superparamagnetic particles and subordinate large multidomain grains; the former are more directly related to exhaust, whereas the latter may be associated to abrasion of metallic parts.

  8. Health Risk Impacts of Exposure to Airborne Metals and Benzo(a)Pyrene during Episodes of High PM10 Concentrations in Poland.

    Science.gov (United States)

    Widziewicz, Kamila; Rogula-Kozlowska, Wioletta; Loska, Krzysztof; Kociszewska, Karolina; Majewski, Grzegorz

    2018-01-01

    To check whether health risk impacts of exposure to airborne metals and Benzo(a) Pyrene during episodes of high PM10 concentrations lead to an increased number of lung cancer cases in Poland. In this work, we gathered data from 2002 to 2014 concerning the ambient concentrations of PM10 and PM10-bound carcinogenic Benzo(a)pyrene [B(a)P] and As, Cd, Pb, and Ni. With the use of the criterion of the exceedance in the daily PM10 mass concentration on at least 50% of all the analyzed stations, the PM10 maxima's were selected. Lung cancer occurrences in periods with and without the episodes were further compared. During a 12-year period, 348 large-scale smog episodes occurred in Poland. A total of 307 of these episodes occurred in the winter season, which is characterized by increased emissions from residential heating. The occurrence of episodes significantly (P < 0.05) increased the concentrations of PM10-bound carcinogenic As, Cd, Pb, Ni, and B(a)P. During these events, a significant increase in the overall health risk from those PM10-related compounds was also observed. The highest probability of lung cancer occurrences was found in cities, and the smallest probability was found in the remaining areas outside the cities and agglomerations. The link between PM pollution and cancer risk in Poland is a serious public health threat that needs further investigation. Copyright © 2018 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  9. Validation of an analytical method for the determination of polycyclic aromatic hydrocarbons by high efficiency liquid chromatography in PM10 and PM2,5 particles

    International Nuclear Information System (INIS)

    Herrera Murillo, Jorge; Chaves Villalobos, Maria del Carmen

    2012-01-01

    An analytical method was validated for polycyclic aromatic hydrocarbons in PM10 and PM2,5 particles collected from air by high performance liquid chromatography (HPLC) was validated. The PAHs analyzed in the methodology include: Naphthalene, Acenaphthylene, Fluorene, Acenaphthene, Phenanthrene, Anthracene, fluoranthene, pyrene, Benzo (a)anthracene, Chrysene, Benzo (b)fluoranthene, Benzo (k)fluoranthene, Benzo (a)pyrene, Dibenzo (a, h)anthracene, Benzo (g, h, i)perylene and Indeno (1,2,3-CD)pyrene. For these compounds, the detection limit and quantification limit have been between 0,02 and 0,1 mg/l. An equipment DIONEX, ICS 3000 model is used, that has two in series detectors: one ultraviolet model VWD-1, and fluorescence detector, model RF-2000, separating the different absorption and emission signals for proper identification of individual compounds. For all the compounds analyzed, the recovery factor has found not significantly different from each other and the repeatability and reproducibility has been to be suitable for an analytical method, especially for the lighter PAHs. (author) [es

  10. Study and evaluation of atmospheric pollution in Spain: necessary measures arising from the EC Directive on PM10 and PM2.5 particles in the Ceramic industry

    Directory of Open Access Journals (Sweden)

    Rodríguez, S.

    2000-02-01

    Full Text Available The European Commission Directive, 1999/30/EC, approved on the 22nd of April 1999, on atmospheric particles establishes a standard that is more stringent than the current one. This Directive proposes the monitoring of particles lower than 10 μm (PM10, thoracic particles based on health impact criteria. The proposed EC limits are 40 μgPM10.m-3 and 20 μgPM10.m-3 as annual means in 2005 and 2010, respectively. In accordance with the European Commission (EC, the future PM10 limits will be revised in 2003 if the European States can demonstrate that the exceedances of the new limits are attributed to natural inputs. The exceedances due to natural inputs are more frequent in Mediterranean countries due to the re-suspension of natural soil particles and to the higher frequency of Saharan air mass intrusions. This study summarises the preliminary results obtained from two research projects in Spain focused on: 1 establishing the criteria for the discrimination of natural/anthropogenic inputs of PM10; 2 identifying the events when the proposed limits are exceeded by natural inputs and 3 determining the most suitable monitoring parameter, PM10 or PM2.5, in order to avoid natural interference. Given the importance of the ceramic industry in Castelló, special attention will be placed on the preliminary results obtained this area.La Directiva de la comisión Europea, 1999/30/CE, aprobada el 22 de Abril de 1999, referida a partículas atmosféricas en suspensión, establece una normativa más estricta que la vigente. Esta normativa propone el control de las partículas inferiores a 10 μm (PM10, partículas torácicas basándose en criterios de impacto en la salud. Según esta directiva no se podrán superar medias diarias anuales de 40 μgPM10.m-3 en el 2005 y de 20 μgPM10.m-3 en el 2010. La directiva contempla la revisión de los límites normativos y de los parámetros de control en el 2003, pudiendo variar estos en el caso de que los Estados miembros

  11. Investigation of air pollution of Shanghai subway stations in ventilation seasons in terms of PM2.5 and PM10.

    Science.gov (United States)

    Guo, Erbao; Shen, Henggen; He, Lei; Zhang, Jiawen

    2017-07-01

    In November 2015, the PM 2.5 and PM 10 particulate matter (PM) levels in platforms, station halls, and rail areas of the Shangcheng and Jiashan Road Station were monitored to investigate air pollution in the Shanghai subway system. The results revealed that in subway stations, PM 2.5 and PM 10 concentrations were significantly higher than those in outdoor environments. In addition, particle concentrations in the platforms exceeded maximum levels that domestic safety standards allowed. Particularly on clear days, PM 2.5 and PM 10 concentrations in platforms were significantly higher than maximum standards levels. Owing to the piston effect, consistent time-varying trends were exhibited by PM 2.5 concentrations in platforms, station halls, and rail areas. Platform particle concentrations were higher than the amount in station halls, and they were higher on clear days than on rainy days. The time-varying trends of PM 10 and PM 2.5 concentrations in platforms and station halls were similar to each other. Activities within the station led to most of the inhalable particles within the station area. The mass concentration ratios of PM 2.5 and PM 10 in platforms were within 0.65-0.93, and fine particles were the dominant components.

  12. To Investigate the Effects of Air Pollution (PM10 and SO2) on the Respiratory Diseases Asthma and Chronic Obstructive Pulmonary Disease.

    Science.gov (United States)

    Saygın, Mustafa; Gonca, Taner; Öztürk, Önder; Has, Mehmet; Çalışkan, Sadettin; Has, Zehra Güliz; Akkaya, Ahmet

    2017-04-01

    Effects of air pollution parameters of sulfur dioxide (SO2) and particulate matter (PM10) values on the respiratory system were investigated. Data of SO 2 and PM10 were obtained daily for air pollution and classified into two groups: Group I (2006-2007), coal burning years and Group II (2008-2009), natural gas+ coal burning. Groups I and II were divided into two subgroups according to the months of combustion as combustible (November-April) and noncombustible (May-October). The number of patients with asthma and chronic obstructive pulmonary disorder (COPD) was recorded between 2006 and 2009. There was no statistically significant difference between Groups I and II for PM10 and SO 2 (p>0.05). Within the years, the values of SO 2 and PM10 were statistically different between the groups defined by month (p0.05). A correlation was found between SO 2 and COPD (p0.05). The number of visits for COPD and asthma was statistically different between combustible and noncombustible subgroups (X2:58.61, p=0.000; X2:34.55, p=0.000, respectively). The r2 values for SO 2 and PM10 for COPD patients were 17% and 24%, respectively, in contrast to 8% and 5%, respectivley for asthma patients. Air pollution is known to increase respiratory disease occurrences. With decrease in the usage of solid fuel, air pollution could be reduced and may be effective in preventing respiratory diseases.

  13. Characteristics and Source Analysis of Water-Soluble Inorganic Ions in PM10 in a Typical Mining City, Central China

    Directory of Open Access Journals (Sweden)

    Hongxia Liu

    2017-04-01

    Full Text Available A total of 61 PM10 samples in Huangshi (HS, Central China, were collected every sixth day from April 2012 to March 2013 and were analyzed for water-soluble inorganic ions (WSIIs by ion chromatography. The sum of three major ions (SO42−, NO3−, and NH4+ accounted for 75.8% of the total WSIIs on average. The results of a non-parametric test (Kruskal-Wallis show that, except for Na+ (p > 0.05, the other ions present a distinctly seasonal variation with a statistically significant difference (p < 0.05. The minimum concentrations of all ions were found in summer, while the maximum values presented in autumn (for Ca2+ and winter (for Cl−, NO3−, SO42−, K+, NH4+, Mg2+. Based on the highest ratio of Cl−/Na+ (3.02 and the highest concentration of K (4.37 μg·m−3, Ba (0.37 μg·m−3, and Sr (0.07 μg·m−3 in February 2013, it can be concluded that firework powders have aggravated the haze weather during the Spring Festival of 2013. The micro-equivalent concentrations of cations and anions were calculated and the comparisons between the calculated and measured NH4+ concentrations were conducted. The results illustrate that aerosol particles in HS are acidic and there may exist some other cationic ions not detected in this study. An obvious positive correlation and good linear regression among WSIIs suggest that the chemical forms in HS aerosols show a great variety of combinations, such as NH4NO3, NH4HSO4, (NH42SO4, NH4Cl, KCl, KNO3, NaCl, NaNO3, Ca(NO32, CaSO4, MgCl2, Mg(NO32, and MgSO4. The WSIIs have large positive correlation and linear regression with the elements, suggesting that WSIIs in mining cities are strongly influenced by element constituents. Principal component analysis implies that WSIIs in PM10 are probably from three sources. NH4+, Mg2+, NO3−, K and K+, Cl− and Cl, SO42−, and S accounted for 46.9% of the total variances, suggesting likely anthropogenic sources, especially coal combustion, vehicular exhaust, and

  14. Characteristics of PM1.0, PM2.5, and PM10, and Their Relation to Black Carbon in Wuhan, Central China

    Directory of Open Access Journals (Sweden)

    Wei Gong

    2015-09-01

    Full Text Available Hourly average monitoring data for mass concentrations of PM1, PM2.5, PM10, and black carbon (BC were measured in Wuhan from December 2013 to December 2014, which has a flourishing steel industry, to analyze the characteristics of PM and their relation to BC, using statistical methods. The results indicate that variations in the monthly average mass concentrations of PM have similar concave parabolic shapes, with the highest values occurring in January and the lowest values appearing in August or September. The correlation coefficient of the linear regression model between PM1 and PM2.5 is quite high, reaching 0.99. Furthermore, the proportion of PM1 contained within PM2.5 is roughly 90%, directly proving that ultrafine particles whose diameter less than 1 μm may be a primary component of PM2.5 in Wuhan. Additionally, better seasonal correlation between PM and BC occurs only in summer and autumn, due to multiple factors such as topography, temperature, and the atmosphere in winter and spring. Finally, analysis of the diurnal variation of PM and BC demonstrates that the traffic emissions during rush hour, exogenous pollutants, and the shallow PBLH with stagnant atmosphere, all contribute to the severe pollution of Wuhan in winter.

  15. ANALISIS TEMPORAL Y ESPACIAL DE LA CALIDAD DEL AIRE DETERMINADO POR MATERIAL PARTICULADO PM10 Y PM2,5 EN LIMA METROPOLITANA

    OpenAIRE

    Pacsi Valdivia, Sergio A.; Universidad Nacional Agraria La Molina (Perú).

    2016-01-01

    En el presente estudio se realizó un análisis de la variación temporal y espacial de la concentración del PM2,5 y PM10 en Lima y el Callao. Se utilizaron datos de concentración de PM2,5 y PM10 medidos y analizados por la DIGESA y el SENAMHI, a través de la red de monitoreo de calidad del aire de Lima Metropolitana, durante el periodo 2001 y 2014. Los resultados muestran que los promedios diarios de PM10 no sobrepasan los Estándares de Calidad del aire (ENCA) del Perú, sin embargo los promedio...

  16. Inhalable microorganisms in Beijing's PM2.5 and PM10 pollutants during a severe smog event.

    Science.gov (United States)

    Cao, Chen; Jiang, Wenjun; Wang, Buying; Fang, Jianhuo; Lang, Jidong; Tian, Geng; Jiang, Jingkun; Zhu, Ting F

    2014-01-01

    Particulate matter (PM) air pollution poses a formidable public health threat to the city of Beijing. Among the various hazards of PM pollutants, microorganisms in PM2.5 and PM10 are thought to be responsible for various allergies and for the spread of respiratory diseases. While the physical and chemical properties of PM pollutants have been extensively studied, much less is known about the inhalable microorganisms. Most existing data on airborne microbial communities using 16S or 18S rRNA gene sequencing to categorize bacteria or fungi into the family or genus levels do not provide information on their allergenic and pathogenic potentials. Here we employed metagenomic methods to analyze the microbial composition of Beijing's PM pollutants during a severe January smog event. We show that with sufficient sequencing depth, airborne microbes including bacteria, archaea, fungi, and dsDNA viruses can be identified at the species level. Our results suggested that the majority of the inhalable microorganisms were soil-associated and nonpathogenic to human. Nevertheless, the sequences of several respiratory microbial allergens and pathogens were identified and their relative abundance appeared to have increased with increased concentrations of PM pollution. Our findings may serve as an important reference for environmental scientists, health workers, and city planners.

  17. Characterization of As and trace metals embedded in PM10 particles in Puebla City, México.

    Science.gov (United States)

    Morales-García, S S; Rodríguez-Espinosa, P F; Jonathan, M P; Navarrete-López, M; Herrera-García, M A; Muñoz-Sevilla, N P

    2014-01-01

    Forty-eight air-filter samples (PM10) were analysed to identify the concentration level of partially leached metals (PLMs; As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and V) from Puebla City, México. Samples were collected during 2008 from four monitoring sites: (1) Tecnológico (TEC), (2) Ninfas (NIN), (3) Hermanos Serdán (HS) and (4) Agua Santa (AS). The results indicate that in TEC, As (avg. 424 ng m(-3)), V (avg. 19.2 ng m(-3)), Fe (avg. 1,202 ng m(-3)), Cu (avg. 86.6 ng m(-3)), Cr (41.9 ng m(-3)) and Ni (18.6 ng m(-3)) are on the higher side than other populated regions around the world. The enrichment of PLMs is due to the industrial complexes generating huge dust particles involving various operations. The results are supported by the correlation of metals (Mn, Cd and Co) with Fe indicating its anthropogenic origin and likewise, As with Cd, Co, Fe, Mn, Pb and V. The separate cluster of As, Fe and Mn clearly signifies that it is due to continuous eruption of fumaroles from the active volcano Popocatépetl in the region.

  18. [On-line analysis and mass concentration characters of the alkali metal ions of PM10 in Beijing].

    Science.gov (United States)

    Zhang, Kai; Wang, Yue-Si; Wen, Tian-Xue; Liu, Guang-Ren; Hu, Bo; Zhao, Ya-Nan

    2008-01-01

    The mass concentration characters and the sources of water-soluble alkali metal ions in PM10 in 2004 and 2005 in Beijing were analyzed by using the system of rapid collection of particles. The result showed that the average concentration of Na+, K+, Mg2+ and Ca2+ was 0.5-1.4, 0.5-2.5, 0.1-0.5 and 0.6-5.8 microg/m3, respectively. The highest and lowest concentration appeared in different seasons for the alkali metal ions, which was related to the quality and source. The concentration of alkali metal ions was no difference between the heating period and no heating period, which meant the heating was not the main source. Sea salt and soil were the important sources of Na+. The source of K+ came from biomass burning and vegetation. Soil was the large source of Mg2+ and Ca2+. The alkali metal ions appeared different daily variation in different seasons. Precipitation could decrease the concentration of Na+, K+, Mg2+ and Ca2+, which was 10%-70%, 20%-80%, 10%-77%, 5%-80% respectively.

  19. Inhalable Microorganisms in Beijing’s PM2.5 and PM10 Pollutants during a Severe Smog Event

    Science.gov (United States)

    2014-01-01

    Particulate matter (PM) air pollution poses a formidable public health threat to the city of Beijing. Among the various hazards of PM pollutants, microorganisms in PM2.5 and PM10 are thought to be responsible for various allergies and for the spread of respiratory diseases. While the physical and chemical properties of PM pollutants have been extensively studied, much less is known about the inhalable microorganisms. Most existing data on airborne microbial communities using 16S or 18S rRNA gene sequencing to categorize bacteria or fungi into the family or genus levels do not provide information on their allergenic and pathogenic potentials. Here we employed metagenomic methods to analyze the microbial composition of Beijing’s PM pollutants during a severe January smog event. We show that with sufficient sequencing depth, airborne microbes including bacteria, archaea, fungi, and dsDNA viruses can be identified at the species level. Our results suggested that the majority of the inhalable microorganisms were soil-associated and nonpathogenic to human. Nevertheless, the sequences of several respiratory microbial allergens and pathogens were identified and their relative abundance appeared to have increased with increased concentrations of PM pollution. Our findings may serve as an important reference for environmental scientists, health workers, and city planners. PMID:24456276

  20. Automated method for simultaneous lead and strontium isotopic analysis applied to rainwater samples and airborne particulate filters (PM10).

    Science.gov (United States)

    Beltrán, Blanca; Avivar, Jessica; Mola, Montserrat; Ferrer, Laura; Cerdà, Víctor; Leal, Luz O

    2013-09-03

    A new automated, sensitive, and fast system for the simultaneous online isolation and preconcentration of lead and strontium by sorption on a microcolumn packed with Sr-resin using an inductively coupled plasma mass spectrometry (ICP-MS) detector was developed, hyphenating lab-on-valve (LOV) and multisyringe flow injection analysis (MSFIA). Pb and Sr are directly retained on the sorbent column and eluted with a solution of 0.05 mol L(-1) ammonium oxalate. The detection limits achieved were 0.04 ng for lead and 0.03 ng for strontium. Mass calibration curves were used since the proposed system allows the use of different sample volumes for preconcentration. Mass linear working ranges were between 0.13 and 50 ng and 0.1 and 50 ng for lead and strontium, respectively. The repeatability of the method, expressed as RSD, was 2.1% and 2.7% for Pb and Sr, respectively. Environmental samples such as rainwater and airborne particulate (PM10) filters as well as a certified reference material SLRS-4 (river water) were satisfactorily analyzed obtaining recoveries between 90 and 110% for both elements. The main features of the LOV-MSFIA-ICP-MS system proposed are the capability to renew solid phase extraction at will in a fully automated way, the remarkable stability of the column which can be reused up to 160 times, and the potential to perform isotopic analysis.

  1. Particle reduction strategies - PAREST. Evaluation of emission reduction scenarios using chemical transport calculations. PM10- and NO{sub 2}-immission contributions in Germany. Wood combustion in small combustion systems; installations of the 13th and 17th BImSchV (Federal Immission Control Act). Sub-report.; Strategien zur Verminderung der Feinstaubbelastung - PAREST. Bewertung von Emissionsminderungsszenarien mit Hilfe chemischer Transportberechnungen. PM10- und NO{sub 2}-Immissionsbeitraege in Deutschland. Holzverbrennung in Kleinfeuerungsanlagen, Anlagen der 13. und 17. BImSchV. Teilbericht

    Energy Technology Data Exchange (ETDEWEB)

    Stern, Rainer [Freie Univ. Berlin (Germany). Inst. fuer Meteorologie, Troposphaerische Umweltforschung

    2013-06-15

    This report was prepared within the research project ''Particle reduction strategies - PAREST.'' In this paper with the chemical transport model REM CALGRID following questions were investigated: 1 What is the contribution of the wood-fired small combustion plants in Germany to the PM10- and NO {sub 2}-concentrations? 2 What is the contribution of the 13th and 17th BlmSchV covered installations to the PM10 and NO{sub 2} concentrations in Germany? [German] Der vorliegende Bericht wurde im Rahmen des Forschungs- und Entwicklungsvorhabens ''Strategien zur Verminderung der Feinstaubbelastung'' erstellt. In dem Beitrag werden mit dem chemischen Transportmodell REM-CALGRID folgende Fragestellungen untersucht: 1. Wie hoch ist der Beitrag der mit Holz beheizten Kleinfeuerungsanlagen in Deutschland zu den PM10- und den NO{sub 2}-Konzentrationen? 2. Wie hoch ist der Beitrag der von der 13. und 17. BImSchV erfassten Anlagen zu den PM10-und NO-2-Konzentrationen in Deutschland?.

  2. The effect of long-range air mass transport pathways on PM10 and NO2 concentrations at urban and rural background sites in Ireland: Quantification using clustering techniques.

    Science.gov (United States)

    Donnelly, Aoife A; Broderick, Brian M; Misstear, Bruce D

    2015-01-01

    The specific aims of this paper are to: (i) quantify the effects of various long range transport pathways nitrogen dioxide (NO2) and particulate matter with diameter less than 10μm (PM10) concentrations in Ireland and identify air mass movement corridors which may lead to incidences poor air quality for application in forecasting; (ii) compare the effects of such pathways at various sites; (iii) assess pathways associated with a period of decreased air quality in Ireland. The origin of and the regions traversed by an air mass 96h prior to reaching a receptor is modelled and k-means clustering is applied to create air-mass groups. Significant differences in air pollution levels were found between air mass cluster types at urban and rural sites. It was found that easterly or recirculated air masses lead to higher NO2 and PM10 levels with average NO2 levels varying between 124% and 239% of the seasonal mean and average PM10 levels varying between 103% and 199% of the seasonal mean at urban and rural sites. Easterly air masses are more frequent during winter months leading to higher overall concentrations. The span in relative concentrations between air mass clusters is highest at the rural site indicating that regional factors are controlling concentration levels. The methods used in this paper could be applied to assist in modelling and forecasting air quality based on long range transport pathways and forecast meteorology without the requirement for detailed emissions data over a large regional domain or the use of computationally demanding modelling techniques.

  3. PENGARUH FAKTOR METEOROLOGIS DAN KONSENTRASI PARTIKULAT (PM10 TERHADAP KEJADIAN INFEKSI SALURAN PERNAPASAN AKUT (ISPA (Studi Kasus Kecamatan Banjarbaru Selatan, Kota Banjarbaru Tahun 2014-2015

    Directory of Open Access Journals (Sweden)

    Wiji Cahyadi

    2016-12-01

    Full Text Available The purpose of this study was to analyze the influence of meteorological factors directly or indirectly through the concentration of particulate (PM10 on the incidence of Acute Respiratory Infections (ARI in the District of South Banjarbaru, Banjarbaru. The method used in this research is cross-sectional study, where data meteorological factors, the concentration of particulate matter (PM10 and the incidence of ARI are collected simultaneously. Data meteorological factors and the concentration of particulate matter (PM10 derived from Banjarbaru Climatological Station, while data came from health ARI Banjarbaru and Sei Besar which is located in the district of South Banjarbaru. While the analysis used in this study were Path Analysis (path analysis was an analysis of the relationship between the independent variables, intermediate variables, and the dependent variable was presented in the form of a diagram. The results showed the meteorological factors that had a direct impact on the incidence of ARI was the largest factor relative air humidity of by 18.7%, followed by a factor of 7.1% of air temperature, wind speed factor and its influence on the intensity of rainfall was below 1%. While the indirect influence of meteorological factors on the concentration of particulate matter (PM10 on the incidence of ARI in the District of South Banjarbaru effect was below 1%. It can be concluded that the direct effect of meteorological factors and the concentration of particulate matter (PM10 on the incidence of ARI in the District of South Banjarbaru significant factor was the relative air humidity and air temperature. While the indirect influence of meteorological factors against ARI through PM10, the effect was not significant.

  4. Assessment of life quality in patients with bronchial asthma residing in Krakow in the areas of varying concentrations of particulate matter (PM10

    Directory of Open Access Journals (Sweden)

    Monika Ścibor

    2015-03-01

    Full Text Available Introduction. Asthma is a chronic disease, from which more and more people in the world suffer. It is connected with many bothersome symptoms and limitations, which result in decreased quality of life for the patient. Environmental and individual aspects do not necessarily affect individuals in the same way, so it is necessary to determine which factors have predominantly impacted on an individual, in order to minimize their impact and to take better control over treatment of asthma. The aim of this research was to compare the quality of life among patients with bronchial asthma living in Krakow in the areas where they get exposed to varying concentrations of particulate matter (PM10. Material and methods. The study included 98 adults diagnosed with bronchial asthma. The research was conducted using the AQLQ poll. PM10 concentration was measured in several Malopolska Air Pollution Monitoring Stations located throughout the city. Results. Analyzing the quality of life in the view of symptoms, activity limitations and emotional well being, there was a substantial statistical difference observed in people occupying the areas with different PM10 concentrations. No significant statistical difference was observed in the frequency of asthma symptoms caused by the environmental stimuli between the 2 discussed groups. One group of patients who came to the allergy clinic for control of asthma symptoms and the second group who live in the vicinity of the monitoring stations measuring PM10 concentrations. Conclusions. For many of the cases, the quality of life was not worse for patients with asthma living in an area with slightly elevated concentrations of PM10, and sometimes paradoxically the quality of life was improved. These results show that PM10 concentrations do not correlate with quality of life of asthma patients.

  5. Characterization of carbonaceous materials in PM2.5 and PM10 size fractions in Morogoro, Tanzania, during 2006 wet season campaign

    International Nuclear Information System (INIS)

    Mkoma, Stelyus L.; Chi Xuguang; Maenhaut, Willy

    2010-01-01

    Atmospheric aerosol samples in PM10 and PM2.5 size fractions were collected in parallel at a rural site in Morogoro during wet season in March and April 2006. All samples were analysed for the particulate matter mass, for organic, elemental, and total carbon (OC, EC, and TC), and for water-soluble OC (WSOC). The average PM10 and PM2.5 mass concentrations and associated standard deviations were 14 ± 13 μg/m 3 and 7.3 ± 4 μg/m 3 respectively. On average, TC accounted for 33% of the PM10 mass and 44% of the PM2.5 mass for the campaign. The average OC/PM percentage ratios were 27% and 33% in PM10 and PM2.5 size fractions respectively and a larger fraction of the OC was water-soluble. The observed low EC/TC mean percentage ratios of 10-14% respectively for PM10 and PM2.5 fractions indicate that the carbonaceous aerosol originates mainly from biogenic aerosols and/or biomass burning. A simple source apportionment approach was used to apportion the OC to biofuel and charcoal burning. On average, 93% of the PM10 OC was attributed to biofuel and 7% to charcoal burning in the 2006 wet season campaign. However, it is suggested that a contribution to the OC at Morogoro could also come from other natural biogenic matter, and/or biomass burning aerosols. The results for the sources of OC at Morogoro should therefore be considered with great caution.

  6. Multi-criteria Analysis of Air Pollution with SO(2) and PM(10) in Urban Area Around the Copper Smelter in Bor, Serbia.

    Science.gov (United States)

    Nikolić, Djordje; Milošević, Novica; Mihajlović, Ivan; Zivković, Zivan; Tasić, Viša; Kovačević, Renata; Petrović, Nevenka

    2010-02-01

    This work presents the results of 4 years long monitoring of concentrations of SO(2) gas and PM(10) in the urban area around the copper smelter in Bor. The contents of heavy metals Pb, Cd, Cu, Ni, and As in PM(10) were determined and obtained values were compared to the limit values provided in EU Directives. Manifold excess concentrations of all the components in the atmosphere of the urban area of the townsite Bor were registered. Through application of a multi-criteria analysis by using PROMETHEE/GAIA method, the zones were ranked according to the level of pollution.

  7. Caracterización química de material particulado PM10 en la atmósfera de La Guajira, Colombia

    OpenAIRE

    Argumedo, Carlos Doria; Castillo, Juan Fagundo

    2016-01-01

    Durante el año 2013, se realizó un estudio en La Guajira, Colombia, con el fin de determinar la fracción respirable y la fracción acuosa del material particulado PM10, producto de las actividades mineras de carbón a cielo abierto que ocupan casi 30% del territorio; también se evaluó su asociación a fuentes naturales y antropogénicas. La recolección de filtros se realizó por medio de un sistema de monitoreo conformado por catorce estaciones mediante equipos muestreadores de alto volumen PM10 (...

  8. Temporal variations and spatial distribution of ambient PM2.2 and PM10 concentrations in Dhaka, Bangladesh.

    Science.gov (United States)

    Begum, Bilkis A; Biswas, Swapan K; Hopke, Philip K

    2006-04-01

    Concentrations and characteristics of airborne particulate matter (PM(10), PM(2.2) and BC) on air quality have been studied at two air quality-monitoring stations in Dhaka, the capital of Bangladesh. One site is at the Farm Gate area, a hot spot with very high pollutant concentrations because of its proximity to major roadways. The other site is at a semi-residential area located at the Atomic Energy Centre, Dhaka Campus, (AECD) with relatively less traffic. The samples were collected using a 'Gent' stacked filter unit in two fractions of 0-2.2 mum and 2.2-10 mum sizes. Samples of fine (PM(2.2)) and coarse (PM(2.2-10)) airborne particulate matter fractions collected from 2000 to 2003 were studied. It has been observed that fine particulate matter has a decreasing trend, from prior year measurements, because of Government policy interventions like phase-wise plans to take two-stroke three-wheelers off the roads in Dhaka and finally banned from January 1, 2003. Other policy interventions were banning of old buses and trucks to ply on Dhaka city promotion of the using compressed natural gas (CNG), introducing air pollution control devices in vehicles, etc. It was found that both local (mostly from vehicular emissions) and possibly some regional emission sources are responsible for high PM(2.2) and BC concentrations in Dhaka. PM(2.2), PM(2.2-10) and black carbon concentration levels depend on the season, wind direction and wind speed. Transport related emissions are the major source of BC and long-range transportation from fossil fuel related sources and biomass burning could be another substantial source of BC.

  9. Application of particle size distributions to total particulate stack samples to estimate PM2.5 and PM10 emission factors for agricultural sources

    Science.gov (United States)

    Particle size distributions (PSD) have long been used to more accurately estimate the PM10 fraction of total particulate matter (PM) stack samples taken from agricultural sources. These PSD analyses were typically conducted using a Coulter Counter with 50 micrometer aperture tube. With recent increa...

  10. Comparison of WindTrax and flux-gradient technique in determining PM10 emission rates from a beef cattle feedlot

    Science.gov (United States)

    Several emission estimation methods can be used to determine emission fluxes from ground-level area sources, including open-lot beef cattle feedlots. This research determined PM10 emission fluxes from a commercial cattle feedlot in Kansas using WindTrax, a backward Lagrangian stochastic-based atmosp...

  11. 40 CFR 93.123 - Procedures for determining localized CO, PM10, and PM2.5 concentrations (hot-spot analysis).

    Science.gov (United States)

    2010-07-01

    ... CO, PM10, and PM2.5 concentrations (hot-spot analysis). 93.123 Section 93.123 Protection of... concentrations (hot-spot analysis). (a) CO hot-spot analysis. (1) The demonstrations required by § 93.116... make a categorical hot-spot finding that (93.116(a) is met without further hot-spot analysis for any...

  12. Comparison of Ground-Based PM2.5 and PM10 Concentrations in China, India, and the U.S.

    Directory of Open Access Journals (Sweden)

    Xingchuan Yang

    2018-07-01

    Full Text Available Urbanization and industrialization have spurred air pollution, making it a global problem. An understanding of the spatiotemporal characteristics of PM2.5 and PM10 concentrations (particulate matter with an aerodynamic diameter of less than 2.5 μm and 10 μm, respectively is necessary to mitigate air pollution. We compared the characteristics of PM2.5 and PM10 concentrations and their trends of China, India, and the U.S. from 2014 to 2017. Particulate matter levels were lowest in the U.S., while China showed higher concentrations, and India showed the highest. Interestingly, significant declines in PM2.5 and PM10 concentrations were found in some of the most polluted regions in China as well as the U.S. No comparable decline was observed in India. A strong seasonal trend was observed in China and India, with the highest values occurring in winter and the lowest in summer. The opposite trend was noted for the U.S. PM2.5 was highly correlated with PM10 for both China and India, but the correlation was poor for the U.S. With regard to reducing particulate matter pollutant concentrations, developing countries can learn from the experiences of developed nations and benefit by establishing and implementing joint regional air pollution control programs.

  13. Assessment of social losses of pollution's health caused by man-made pollution of atmospheric air with emissions of particulate matters (PM10

    Directory of Open Access Journals (Sweden)

    Turos Ye.I.

    2017-04-01

    Full Text Available According to available estimates, about 3% of lethal outcomes from cardiac-pulmonary pathology and 5% from lung cancer are related to the impact of patriculate matters (PM. In the course of the study there were assessed social losses of population’s health (additional death cases caused by risk conditions of atmospheric air pollution with PM of various air-dynamic diameter (PM10, proper to emissions of various industrial enterprises. It was established that 90% of population of cities under study live under high exposures (≥50 µg/m3 health and risks for population (IRM=10-3÷10-4, caused by PM10 emissions. Results showed that metallurgical industry is responsible for 7,2 to 2193 additional mortality cases. The impact of machine building enterprises – from 0.06 to 21 cases; coke and chemical – from 1.5 to 36 cases; mining – from 1.1 to 14,6 cases. The findings revealed 0.6 % increase in lifetime mortality for each 10 µg/m3 in 24-hour average PM10 concentration. Based on research outcomes, a set of instruments was developed for implementation of air pollution risk management programs aimed at mitigation of health risks from (PM10 in highly exposed groups.

  14. Relative roles of emissions and meteorology in the diurnal pattern of urban PM10: analysis of the daylight saving time effect.

    Science.gov (United States)

    Muñoz, Ricardo C

    2012-06-01

    Daylight saving time (DST) is a common practice in many countries, in which Official Time (OT) is abruptly shifted 1 hour with respect to solar time on two occasions every year (in fall and spring). All anthropogenic emitting processes tied to OT like job and school commuting traffic, abruptly change in this moment their timing with respect to solar time, inducing a sudden shift between emissions and the meteorological factors that control the dispersion and transport of air pollutants. Analyzing 13 years of hourly particulate matter (PM10) concentrations measured in Santiago, Chile, we demonstrate that the DST practice has observable non-trivial effects in the PM10 diurnal cycle. The clearest impact is in the morning peak of PM10 during the fall DST change, which occurs later and has on average a significant smaller magnitude in the days after the DST change as compared to the days before it. This decrease in magnitude is most remarkable because it occurs in a period of the year when overall PM10 concentrations increase due to generally worsening of the dispersion conditions. Results are shown for seven monitoring stations around the city, and for the fall and spring DST changes. They show clearly the interplay of emissions and meteorology in conditioning urban air pollution problems, highlighting the role of the morning and evening transitions of the atmospheric boundary layer in shaping the diurnal pattern of urban air pollutant concentrations.

  15. Assessment of the long-term impacts of PM10 and PM2.5 particles from construction works on surrounding areas.

    Science.gov (United States)

    Azarmi, Farhad; Kumar, Prashant; Marsh, Daniel; Fuller, Gary

    2016-02-01

    Construction activities are common across cities; however, the studies assessing their contribution to airborne PM10 (≤10 μm) and PM2.5 (≤2.5 μm) particles on the surrounding air quality are limited. Herein, we assessed the impact of PM10 and PM2.5 arising from construction works in and around London. Measurements were carried out at 17 different monitoring stations around three construction sites between January 2002 and December 2013. Tapered element oscillating microbalance (TEOM 1400) and OSIRIS (2315) particle monitors were used to measure the PM10 and PM2.5 fractions in the 0.1-10 μm size range along with the ambient meteorological data. The data was analysed using bivariate concentration polar plots and k-means clustering techniques. Daily mean concentrations of PM10 were found to exceed the European Union target limit value of 50 μg m(-3) at 11 monitoring stations but remained within the allowable 35 exceedences per year, except at two monitoring stations. In general, construction works were found to influence the downwind concentrations of PM10 relatively more than PM2.5. Splitting of the data between working (0800-1800 h; local time) and non-working (1800-0800 h) periods showed about 2.2-fold higher concentrations of PM10 during working hours when compared with non-working hours. However, these observations did not allow to conclude that this increase was from the construction site emissions. Together, the polar concentration plots and the k-means cluster analysis applied to a pair of monitoring stations across the construction sites (i.e. one in upwind and the other in downwind) confirmed the contribution of construction sources on the measured concentrations. Furthermore, pairing the monitoring stations downwind of the construction sites showed a logarithmic decrease (with R(2) about 0.9) in the PM10 and PM2.5 concentration with distance. Our findings clearly indicate an impact of construction activities on the nearby downwind areas and a need

  16. Levels of PM2.5/PM10 and associated metal(loid)s in rural households of Henan Province, China.

    Science.gov (United States)

    Wu, Fuyong; Wang, Wei; Man, Yu Bon; Chan, Chuen Yu; Liu, Wenxin; Tao, Shu; Wong, Ming Hung

    2015-04-15

    Although a majority of China's rural residents use solid fuels (biomass and coal) for household cooking and heating, clean energy such as electricity and liquid petroleum gas is becoming more popular in the rural area. Unfortunately, both solid fuels and clean energy could result in indoor air pollution. Daily respirable particulate matter (PM≤10 μm) and inhalable particulate matter (PM≤2.5 μm) were investigated in kitchens, sitting rooms and outdoor area in rural Henan during autumn (Sep to Oct 2012) and winter (Jan 2013). The results showed that PM (PM2.5 and PM10) and associated metal(loid)s varied among the two seasons and the four types of domestic energy used. Mean concentrations of PM2.5 and PM10 in kitchens during winter were 59.2-140.4% and 30.5-145.1% higher than those during autumn, respectively. Similar with the trends of PM2.5 and PM10, concentrations of As, Pb, Zn, Cd, Cu, Ni and Mn in household PM2.5 and PM10 were apparently higher in winter than those in autumn. The highest mean concentrations of PM2.5 and PM10 (368.5 and 588.7 μg m(-3)) were recorded in sitting rooms in Baofeng during winter, which were 5.7 and 3.9 times of corresponding health based guidelines for PM2.5 and PM10, respectively. Using coal can result in severe indoor air pollutants including PM and associated metal(loid)s compared with using crop residues, electricity and gas in rural Henan Province. Rural residents' exposure to PM2.5 and PM10 would be roughly reduced by 13.5-22.2% and 8.9-37.7% via replacing coal or crop residues with electricity. The present study suggested that increased use of electricity as domestic energy would effectively improve indoor air quality in rural China. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. PM10-bound polycyclic aromatic hydrocarbons in Chiang Mai (Thailand): Seasonal variations, source identification, health risk assessment and their relationship to air-mass movement

    Science.gov (United States)

    Wiriya, Wan; Prapamontol, Tippawan; Chantara, Somporn

    2013-04-01

    This study aims to analyze the seasonal variations of PM10-bound polycyclic aromatic hydrocarbons (PAHs) for an estimation of the human health risk and identification of their possible sources. Ninety four PM10 samples were collected during the dry and wet seasons of 2010 and the dry season of 2011 in Chiang Mai, Thailand, and analyzed for 16 PAHs by gas chromatography-mass spectrometry. The average PM10 concentrations were 104.91 ± 32.70, 13.28 ± 11.34 and 36.24 ± 19.16 μg/m3 in dry season of 2010, wet season of 2010 and dry season of 2011, respectively, while the average 16-PAHs concentrations were 25.87 ± 10.13, 3.12 ± 2.18 and 4.58 ± 2.18 ng/m3, respectively. Correlations of PM10 and total PAHs concentrations were relatively high during all seasons (r > 0.796). In addition, PM10 concentrations were highly correlated with carcinogenic PAHs (r = 0.927) during the dry season of 2010, indicating that carcinogenic compounds were dominant in the particulate PAHs and could be generated from open burning, usually conducted in the dry season. The average PM10 concentration in the dry season of 2011 was much lower than that in 2010 and lower than the annual average of the past 12 years (48.17 μg/m3) because of the unusually high amount of rain precipitation and low open burning activity in this year. According to the accumulated number of hot spots occurring in northern part of Thailand, approximately 19,000 spots were found in the dry season of 2010, while only 6,600 spots were found in the dry season of 2011. It can be seen that larger scale open burning activities were performed in the dry season of 2010 than in the dry season of 2011. The value of toxicity equivalent concentration from PAHs in the dry season of 2010 was higher than that of the wet season of 2010 and the dry season of 2011. This is obviously related to concentrations of PM10 and PAHs. Diagnostic ratio and principal component analysis were used to find out the sources of PM10-bound PAHs. It was

  18. Indoor PM1, PM2.5, PM10 and outdoor PM2.5 concentrations in primary schools in Sari, Iran.

    Science.gov (United States)

    Mohammadyan, Mahmoud; Shabankhani, Bijan

    2013-09-01

    This study was carried out to determine the distribution of particles in classrooms in primary schools located in the centre of the city of Sari, Iran and identify the relationship between indoor classroom particle levels and outdoor PM2.5 concentrations. Outdoor PM2.5 and indoor PM1, PM2.5, and PM10 were monitored using a real-time Micro Dust Pro monitor and a GRIMM monitor, respectively. Both monitors were calibrated by gravimetric method using filters. The Kolmogorov-Smirnov test showed that all indoor and outdoor data fitted normal distribution. Mean indoor PM1, PM2.5, PM10 and outdoor PM2.5 concentrations for all of the classrooms were 17.6 μg m(-3), 46.6 μg m(-3), 400.9 μg m(-3), and 36.9 μg m(-3), respectively. The highest levels of indoor and outdoor PM2.5 concentrations were measured at the Shahed Boys School (69.1 μg m(-3) and 115.8 μg m(-3), respectively). The Kazemi school had the lowest levels of indoor and outdoor PM2.5 (29.1 μg m(-3) and 15.5 μg m(-3), respectively). In schools located near both main and small roads, the association between indoor fine particle (PM2.5 and PM1) and outdoor PM2.5 levels was stronger than that between indoor PM10 and outdoor PM2.5 levels. Mean indoor PM2.5 and PM10 and outdoor PM2.5 were higher than the standards for PM2.5 and PM10, and there was a good correlation between indoor and outdoor fine particle concentrations.

  19. Vehicle-based road dust emission measurement (III):. effect of speed, traffic volume, location, and season on PM 10 road dust emissions in the Treasure Valley, ID

    Science.gov (United States)

    Etyemezian, V.; Kuhns, H.; Gillies, J.; Chow, J.; Hendrickson, K.; McGown, M.; Pitchford, M.

    compared. PM 10 paved road dust emission inventories calculated with the TRAKER method were 61% higher in winter and 180% higher in summer than inventories calculated from on-site silt loading measurements. Emissions calculated from silt loading measurements conducted on-site indicated that the AP-42 default values are too low for the Treasure Valley by a factor of 1.5 for summer conditions and by a factor of 3.8 for winter. Both silt loading and TRAKER are techniques that were calibrated against the horizontal flux of dust, which was estimated by the difference in PM 10 concentration between instruments located upwind and downwind of an unpaved road. The upwind/downwind method, and therefore both silt loading and TRAKER, gives a measure of the dust emitted near the source, and not the dust that can be transported on a regional or air shed scale. Correcting the measured dust emissions for deposition and removal near the source is outside the scope of this work, but is a continuing area of research among dispersion modelers.

  20. Temporal and Spatial variations in Organic and Elemental carbon concentrations in PM10/PM2.5 in the Metropolitan Area of Costa Rica, Central America

    Science.gov (United States)

    Campos-Ramos, A.; Herrera Murillo, J.; Rodriguez-Roman, S.; Cardenas, B.; Blanco-Jimenez, S.

    2011-12-01

    During 2010-2011, as part of a Binational Cooperation Project between Mexico and Costa Rica, samples collected weekly in 15 and 5 sites for PM10 and PM2,5 respectively, in the Metropolitan area of Costa Rica, a region of 2.5 million habitants. Based on the high PM2.5 mass concentrations found (17-38 μg/m3), samples were analyzed to determinate the organic and elemental carbon concentrations using DRI Model 2001 Thermal/Optical Carbon Analyzer (Atmoslytic Inc., Calabasas, CA, USA). Organic (OC) and Elemental (EC) carbon concentrations exhibited a clear seasonal pattern with higher concentrations in the rainy period than in the dry period, due to cooperative effects of changes in emission rates and seasonal meteorology. Spatial variations in carbonaceous species concentrations were observed mostly influenced by the local sources at the different sampling sites in the following magnitude of contribution: vehicle emissions > industrial > agricultural burning. Total carbonaceous aerosol accounted for 42.7% and 26.8% of PM2.5 mass in rainy and dry period, respectively. Good correlation (R = 0.87-0.93) between OC and EC indicated that they had common dominant sources of combustion such as heavy fuels used in industries and traffic emissions. The estimated secondary organic carbon (SOC) accounted for 46.9% and 35.3% of the total OC in the rainy and dry period, respectively, indicating that SOC may be an important contributor to fine organic aerosol in the Metropolitan Area of Costa Rica. These results will be used to improve the National Emissions Inventory, particularly for PM2.5.

  1. Variability of levels and composition of PM10 and PM2.5 in the Barcelona metro system

    Directory of Open Access Journals (Sweden)

    E. de Miguel

    2012-06-01

    Full Text Available From an environmental perspective, the underground metro system is one of the cleanest forms of public transportation in urban agglomerations. Current studies report contradicting results regarding air quality in the metro systems: whereas some reveal poor air quality, others report PM levels which are lower or of the same order of magnitude than those measured in traffic sites above ground level. The present work assesses summer and winter indoor air quality and passenger exposure in the Barcelona metro, focusing on PM levels and their metal contents. In addition, the impact on indoor air quality of platform screen door systems (automated systems consisting of closed rail track and platforms is evaluated, to determine whether these systems reduce passenger exposure to PM when compared with conventional systems (open tracks and platforms. In the Barcelona metro PM levels inside the trains in summer are amongst the lowest reported for worldwide metro systems (11–32 μg m−3 PM2.5. This is most likely due to the air conditioning system working in all carriages of the Barcelona metro during the whole year. Levels were considerably higher on the platforms, reaching mean levels of 46 and 125 μg m3 in the new (L9 and old (L3 lines, respectively. PM10 data are also reported in the present study, but comparison with other metro systems is difficult due to the scarcity of data compared with PM2.5. Results showed distinct PM daily cycles, with a drastic increase from 06:00 to 07:00 a.m., a diurnal maximum from 07:00 to 10:00 p.m., and marked decrease between 10:00 p.m. and 05:00 a.m. The elements with the highest enrichment were those associated with wheel or brake abrasion products (Ba, Fe, Cu, Mn, Cr, Sb, As, Mo, Co, Sr, among others. Laminar hematite (Fe2O3 was the dominant particle type, being mainly originated by mechanical abrasion of the rail track and wheels. Regarding passenger exposure to PM, the contribution of commuting by metro was

  2. Modelling PM10 aerosol data from the Qalabotjha low-smoke fuels macro-scale experiment in South Africa

    CSIR Research Space (South Africa)

    Engelbrecht, JP

    2000-03-30

    Full Text Available for combustion in cooking and heating appliances are being con- sidered to mitigate human exposure to D-grade coal combustion emissions. In 1997, South Africa's Department of Minerals and Energy conducted a macro-scale experiment to test three brands of low...

  3. Isotopic signatures suggest important contributions from recycled gasoline, road dust and non-exhaust traffic sources for copper, zinc and lead in PM10 in London, United Kingdom

    Science.gov (United States)

    Dong, Shuofei; Ochoa Gonzalez, Raquel; Harrison, Roy M.; Green, David; North, Robin; Fowler, Geoff; Weiss, Dominik

    2017-09-01

    The aim of this study was to improve our understanding of what controls the isotope composition of Cu, Zn and Pb in particulate matter (PM) in the urban environment and to develop these isotope systems as possible source tracers. To this end, isotope ratios (Cu, Zn and Pb) and trace element concentrations (Fe, Al, Cu, Zn, Sb, Ba, Pb, Cr, Ni and V) were determined in PM10 collected at two road sites with contrasting traffic densities in central London, UK, during two weeks in summer 2010, and in potential sources, including non-combustion traffic emissions (tires and brakes), road furniture (road paint, manhole cover and road tarmac surface) and road dust. Iron, Ba and Sb were used as proxies for emissions derived from brake pads, and Ni, and V for emissions derived from fossil fuel oil. The isotopic composition of Pb (expressed using 206Pb/207Pb) ranged between 1.1137 and 1.1364. The isotope ratios of Cu and Zn expressed as δ65CuNIST976 and δ66ZnLyon ranged between -0.01‰ and +0.51‰ and between -0.21‰ and +0.33‰, respectively. We did not find significant differences in the isotope signatures in PM10 over the two weeks sampling period and between the two sites, suggesting similar sources for each metal at both sites despite their different traffic densities. The stable isotope composition of Pb suggests significant contribution from road dust resuspension and from recycled leaded gasoline. The Cu and Zn isotope signatures of tires, brakes and road dust overlap with those of PM10. The correlation between the enrichments of Sb, Cu, Ba and Fe in PM10 support the previously established hypothesis that Cu isotope ratios are controlled by non-exhaust traffic emission sources in urban environments (Ochoa Gonzalez et al., 2016). Analysis of the Zn isotope signatures in PM10 and possible sources at the two sites suggests significant contribution from tire wear. However, temporary additional sources, likely high temperature industrial emissions, need to be invoked

  4. The Concentrations and Reduction of Airborne Particulate Matter (PM10, PM2.5, PM1 at Shelterbelt Site in Beijing

    Directory of Open Access Journals (Sweden)

    Jungang Chen

    2015-05-01

    Full Text Available Particulate matter is a serious source of air pollution in urban areas, where it exerts adverse effects on human health. This article focuses on the study of subduction of shelterbelts for atmospheric particulates. The results suggest that (1 the PM mass concentration is higher in the morning or both morning and noon inside the shelterbelts and lower mass concentrations at other times; (2 the particle mass concentration inside shelterbelt is higher than outside; (3 the particle interception efficiency of the two forest belts over the three months in descending order was PM10 > PM1 > PM2.5; and (4 the two shelterbelts captured air pollutants at rates of 1496.285 and 909.075 kg/month and the major atmospheric pollutant in Beijing city is PM10. Future research directions are to study PM mass concentration variation of shelterbelt with different tree species and different configuration.

  5. Application of the Data Mining Methods to Assess the Impact of Meteorological Conditions on the Episodes of High Concentrations of PM10 along the Polish - Czech Border

    Science.gov (United States)

    Ośródka, Leszek; Krajny, Ewa; Wojtylak, Marek

    2018-01-01

    The paper presents an attempt to use selected data mining methods to determine the influence of a complex of meteorological conditions on the concentrations of PM10 (PM2.5) proffering the example of the regions of Silesia and Northern Moravia. The collection of standard meteorological data has been supplemented by increments and derivatives of measurable weather elements such as vertical pseudo-gradient of air temperature. The main objective was to develop a universal methodology for the assessment of these impacts, i.e. one that would be independent of the analysed pollution. The probability of occurrence (at a given location) of the assumed concentration level as exceeding the value of the specified distributional quintile was adopted as the discriminant of the incidence. As a result of the analyses conducted, incidences of elevated concentrations of air pollution particulate matter PM10 have been identified and the types of weather responsible for the emergence of such situations have also been determined.

  6. AJUSTE DE CURVAS MEDIANTE MÉTODOS NO PARAMÉTRICOS PARA ESTUDIAR EL COMPORTAMIENTO DE CONTAMINACIÓN DEL AIRE POR MATERIAL PARTICULADO PM10

    OpenAIRE

    Reina, Jhovana; Olaya, Javier

    2012-01-01

    Uno de los principales agentes contaminantes del aire es el material particulado de diámetro aerodinámico inferior a 10 micrómetros, comúnmente conocido como PM10. Su comportamiento varía de forma irregular y temporal en la atmósfera, debido a las actividades humanas, condiciones atmosféricas inestables y fenómenos meteorológicos. El propósito de este estudio es caracterizar con un modelo de suavización no paramétrica el comportamiento del PM10 en el aire a lo largo de un día, teniendo en cue...

  7. Study of the potential use of isotopic compositions of Hg, Cd and Zn to constrain their origins in PM10. Final report

    International Nuclear Information System (INIS)

    2009-01-01

    As air pollution by dust remains an important issue because of its impact on human health and ecosystems, and as dusts having a diameter smaller than 10 micrometers (PM10) have an actual impact on human health, this study aims at using mercury, zinc and cadmium isotopes in order to constrain their respective origins in the particle phase, in Paris atmosphere. Thus, the authors aim at developing a new isotopic tracing tool. After some generalities on the concerned isotopes, a description of analytical methods, a presentation of the different sampling sources, the authors discuss the obtained results for samples coming from particle sources (engines, buses, incinerators, power plants, collective boiler rooms) or from the ambient air (PM10 concentration in the Parisian air, Cd, Hg and Zn concentrations, Cd, Hg and Zn isotopes

  8. Characterization of PAHs and metals in indoor/outdoor PM10/PM2.5/PM1 in a retirement home and a school dormitory.

    Science.gov (United States)

    Hassanvand, Mohammad Sadegh; Naddafi, Kazem; Faridi, Sasan; Nabizadeh, Ramin; Sowlat, Mohammad Hossein; Momeniha, Fatemeh; Gholampour, Akbar; Arhami, Mohammad; Kashani, Homa; Zare, Ahad; Niazi, Sadegh; Rastkari, Noushin; Nazmara, Shahrokh; Ghani, Maryam; Yunesian, Masud

    2015-09-15

    In the present work, we investigated the characteristics of polycyclic aromatic hydrocarbons (PAHs) and metal(loid)s in indoor/outdoor PM10, PM2.5, and PM1 in a retirement home and a school dormitory in Tehran from May 2012 to May 2013. The results indicated that the annual levels of indoor and outdoor PM10 and PM2.5 were much higher than the guidelines issued by the World Health Organization (WHO). The most abundant detected metal(loid)s in PM were Si, Fe, Zn, Al, and Pb. We found higher percentages of metal(loid)s in smaller size fractions of PM. Additionally, the results showed that the total PAHs (ƩPAHs) bound to PM were predominantly (83-88%) found in PM2.5, which can penetrate deep into the alveolar regions of the lungs. In general, carcinogenic PAHs accounted for 40-47% of the total PAHs concentrations; furthermore, the smaller the particle size, the higher the percentage of carcinogenic PAHs. The percentages of trace metal(loid)s and carcinogenic PAHs in PM2.5 mass were almost twice as high as those in PM10. This can most likely be responsible for the fact that PM2.5 can cause more adverse health effects than PM10 can. The average BaP-equivalent carcinogenic (BaP-TEQ) levels both indoors and outdoors considerably exceeded the maximum permissible risk level of 1 ng/m(3) of BaP. The enrichment factors and diagnostic ratios indicated that combustion-related anthropogenic sources, such as gasoline- and diesel-fueled vehicles as well as natural gas combustion, were the major sources of PAHs and trace metal(loid)s bound to PM. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Spatial and temporal variation of phthalic acid esters (PAEs) in atmospheric PM10 and PM2.5 and the influence of ambient temperature in Tianjin, China

    Science.gov (United States)

    Kong, Shaofei; Ji, Yaqin; Liu, Lingling; Chen, Li; Zhao, Xueyan; Wang, Jiajun; Bai, Zhipeng; Sun, Zengrong

    2013-08-01

    Phthalic acid esters (PAEs) are produced in large amounts throughout the world and are excessively used in various industries, which have posed a serious threat to human health and the environment. An investigation of six major PAEs congeners in atmospheric PM10 and PM2.5 was synchronously conducted at seven sites belonging to different functional zones in spring, summer and winter in Tianjin, China in 2010. Results showed that the average concentrations of DMP, DEP, DBP, BBP, DEHP and DOP in PM10 were 0.88, 0.73, 12.90, 0.15, 98.29 and 0.83 ng m-3, respectively, and in PM2.5, they were 0.54, 0.30, 8.72, 0.08, 75.68 and 0.33 ng m-3, respectively. DEHP and DBP were the predominant species. The industrial site exhibited highest PAEs values as 135.9 ± 202.8 ng m-3. In winter, the detected percentages for DOP were low. The other five PAEs concentrations were higher in winter than those in spring and summer, which may be related to the influence of emission sources, meteorological parameters and the chemical-physical characteristic of themselves. Except for DOP, other PAEs were negatively correlated with ambient temperature and the relationships were the best fitted as exponential forms. Significant positive correlations were found for PAEs in PM2.5 and PM10, indicating common sources. The PM2.5/PM10 ratios (0.53-0.70) for the six PAEs concentrations suggested that they were preferentially concentrated in finer particles. Principal component analysis indicated the emission from cosmetics and personal care products, plasticizers and sewage and industrial wastewater may be important sources for PAEs in atmospheric particulate matter in Tianjin.

  10. Spatiotemporal Characteristics of Air Pollutants (PM10, PM2.5, SO2, NO2, O3, and CO in the Inland Basin City of Chengdu, Southwest China

    Directory of Open Access Journals (Sweden)

    Kuang Xiao

    2018-02-01

    Full Text Available Most cities in China are experiencing severe air pollution due to rapid economic development and accelerated urbanization. Long-term air pollution data with high temporal and spatial resolutions are needed to support research into physical and chemical processes that affect air quality, and the corresponding health risks. For the first time, data on PM10, PM2.5, SO2, NO2, O3 and CO concentrations in 23 ambient air quality automatic monitoring stations and routine meteorological were collected between January 2014 and December 2016 to determine the spatial and temporal variation in these pollutants and influencing factors in Chengdu. The annual mean concentrations of PM2.5 and PM10 exceeded the standard of Chinese Ambient Air Quality and World Health Organization guidelines standards at all of the stations. The concentrations of PM10, PM2.5, SO2 and CO decreased from 2014 to 2016, and the NO2 level was stable, whereas the O3 level increased markedly during this period. The air pollution characteristics in Chengdu showed simultaneously high PM concentrations and O3. High PM concentrations were mainly observed in the middle region of Chengdu and may have been due to the joint effects of industrial and vehicle emissions. Ozone pollution was mainly due to vehicle emissions in the downtown area, and industry had a more important effect on O3 in the northern area with fewer vehicles. The concentrations of PM10, PM2.5, NO2 and CO were highest in winter and lowest in summer; the highest SO2 concentration was also observed in winter and was lowest in autumn, whereas the O3 concentration peaked in summer. Haze pollution can easily form under the weather conditions of static wind, low temperature and relative humidity, and high surface pressure inside Chengdu. In contrast, severe ozone pollution is often associated with high temperature.

  11. Preliminary analysis of variability in concentration of fine particulate matter - PM1.0, PM2.5 and PM10 in area of Poznań city

    Directory of Open Access Journals (Sweden)

    Sówka Izabela

    2018-01-01

    Full Text Available It is commonly known, that suspended particulate matter pose a threat to human life and health, negatively influence the flora, climate and also materials. Especially dangerous is the presence of high concentration of particulate matter in the area of cities, where density of population is high. The research aimed at determining the variability of suspended particulate matter concentration (PM1.0, PM2.5 and PM10 in two different thermal seasons, in the area of Poznań city. As a part of carried out work we analyzed the variability of concentrations and also performed a preliminary analysis of their correlation. Measured concentrations of particulate matter were contained within following ranges: PM10 – 8.7-69.6 μg/m3, PM2.5 – 2.2-88.5 μg/m3, PM1.0 – 2.5-22.9 μg/m3 in the winter season and 1.0-42.8 μg/m3 (PM10, 1.2-40.3 μg/m3 (PM2.5 and 2.7-10.4 (PM1.0 in the summer season. Preliminary correlative analysis indicated interdependence between the temperature of air, the speed of wind and concentration of particulate matter in selected measurement points. The values of correlation coefficients between the air temperature, speed of wind and concentrations of particulate matter were respectively equal to: for PM10: -0.59 and -0.55 (Jana Pawła II Street, -0.53 and -0.53 (Szymanowskiego Street, for PM2.5: -0.60 and -0.53 (Jana Pawła II Street and for PM1.0 -0.40 and -0.59 (Jana Pawła II Street.

  12. Ecotoxicity of water-soluble PM1, PM2.5 and PM10 aerosols at Gosan Climate Observatory (GCO) in Jeju, Korea

    Science.gov (United States)

    Kim, J. A.; Lee, M.; Yoon, H. O.; Bae, M. S.

    2017-12-01

    The water-soluble components of aerosols are rapidly permeated to various biosurfaces through the deposition process due to their high solubility and have profound effects on ecosystem functioning as well as human health. In this context, the ecotoxicity of atmospheric aerosol was assessed, particularly for water-soluble components. For measurements of ecotoxicity of water soluble components, ambient aerosols of PM1, PM2.5, and PM10 were collected on filters at Gosan Climate Observatory (GCO), Jeju, Korea in May, August, October 2010, March and July 2011. The ecotoxicity was estimated using Vibrio fischeri based on bioluminescence inhibition bioassay. In this study, EC10 (10% effective concentration) value was used as an ecotoxicity indicator. The EC10 value was generally in good relation with major water-soluble constituents such as SO42-, NH4+, and water-soluble organic carbon (WSOC). The characteristics of ecotoxicity was different in PM1, PM2.5, and PM10 aerosols. The EC10 of PM10 was correlated well with SO42- (r=-0.53) and Mg2+(r=-0.52). The ecotoxicity was relatively high in smaller particles with either high NO3-/SO42- ratio or WSOC concentration. The high ecotoxicity was found in outflows mostly from nearby lands especially under stagnant condition.

  13. A multivariate study for characterizing particulate matter (PM(10), PM(2.5), and PM(1)) in Seoul metropolitan subway stations, Korea.

    Science.gov (United States)

    Kwon, Soon-Bark; Jeong, Wootae; Park, Duckshin; Kim, Ki-Tae; Cho, Kyung Hwa

    2015-10-30

    Given that around eight million commuters use the Seoul Metropolitan Subway (SMS) each day, the indoor air quality (IAQ) of its stations has attracted much public attention. We have monitored the concentration of particulate matters (PMx) (i.e., PM10, PM2.5, and PM1) in six major transfer stations per minute for three weeks during the summer, autumn, and winter in 2014 and 2015. The data were analyzed to investigate the relationship between PMx concentration and multivariate environmental factors using statistical methods. The average PM concentration observed was approximately two or three times higher than outdoor PM10 concentration, showing similar temporal patterns at concourses and platforms. This implies that outdoor PM10 is the most significant factor in controlling indoor PM concentration. In addition, the station depth and number of trains passing through stations were found to be additional influences on PMx. Principal component analysis (PCA) and self-organizing map (SOM) were employed, through which we found that the number of trains influences PM concentration in the vicinity of platforms only, and PMx hotspots were determined. This study identifies the external and internal factors affecting PMx characteristics in six SMS stations, which can assist in the development of effective IAQ management plans to improve public health. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Partitioning of magnetic particles in PM10, PM2.5 and PM1 aerosols in the urban atmosphere of Barcelona (Spain).

    Science.gov (United States)

    Revuelta, María Aránzazu; McIntosh, Gregg; Pey, Jorge; Pérez, Noemi; Querol, Xavier; Alastuey, Andrés

    2014-05-01

    A combined magnetic-chemical study of 15 daily, simultaneous PM10-PM2.5-PM1 urban background aerosol samples has been carried out. The magnetic properties are dominated by non-stoichiometric magnetite, with highest concentrations seen in PM10. Low temperature magnetic analyses showed that the superparamagnetic fraction is more abundant when coarse, multidomain particles are present, confirming that they may occur as an oxidized outer shell around coarser grains. A strong association of the magnetic parameters with a vehicular PM10 source has been identified. Strong correlations found with Cu and Sb suggests that this association is related to brake abrasion emissions rather than exhaust emissions. For PM1 the magnetic remanence parameters are more strongly associated with crustal sources. Two crustal sources are identified in PM1, one of which is of North African origin. The magnetic particles are related to this source and so may be used to distinguish North African dust from other sources in PM1. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Temporal and spatial analyses of particulate matter (PM10 and PM2.5) and its relationship with meteorological parameters over an urban city in northeast China

    Science.gov (United States)

    Li, Xiaolan; Ma, Yanjun; Wang, Yangfeng; Liu, Ningwei; Hong, Ye

    2017-12-01

    Temporal and spatial characteristics of atmospheric particulate matter (PM10 and PM2.5) and its relationship with meteorology over Shenyang, a city in northeast China, were statistically analyzed using hourly and daily averaged PM mass concentrations measured at 11 locations and surface meteorological parameters, from January 2014 to May 2016. Using averaged data from 11 stations in Shenyang, it was found that the monthly mean PM2.5 mass concentrations were higher in winter (97.2 ± 11.2 μg m- 3) and autumn (85.5 ± 42.9 μg m- 3), and lower in spring (62.0 ± 14.0 μg m- 3) and summer (42.5 ± 8.4 μg m- 3), similar to the seasonal variation in PM10 concentrations. The monthly ratios of PM2.5/PM10 ranged from 0.41 to 0.87, and were larger in autumn and winter but lowest in spring due to dust activities. PM pollution was concentrated mainly in the central, northern, and western areas of Shenyang in most seasons mainly due to anthropogenic activities such as traffic and residential emission and construction activity as well as natural dust emission. PM concentrations observed over different areas in all seasons generally exhibited two peaks, at 08:00-10:00 local time (LT) and 21:00-23:00 LT, with the exception of PM2.5 in summer, which showed only one peak during the daytime. In addition, PM10 concentrations peaked around 14:00 LT during spring in the western area of Shenyang because of strong thermal and dynamic turbulence, resulting in elevated dust emissions from adjacent dust sources. The relationship between daily PM concentrations and meteorological parameters showed both seasonal and annual variation. Overall, both PM2.5 and PM10 concentrations were negatively correlated with atmospheric visibility, with correlation coefficients (R) of 0.71 and 0.56, respectively. In most seasons, PM concentrations also exhibited negative correlations with wind speed, but showed positive correlations with air pressure, air temperature, and relative humidity. Strong wind

  16. Air Pollution Quality Index (AQI and Density of PM1, PM2.5 and PM10 in the Air of Qom

    Directory of Open Access Journals (Sweden)

    Safdari M

    2011-06-01

    Full Text Available Background and Objectives: Air pollution has broad social, economical, political and technical aspects. one of the major issues in this regard is taking measures to prevent its increase. Since suspended particles are among the standard pollutants, the present study was carried out with the aim of measuring the amounts of these particles.Methods: In the present study, the suspended particles ( PM1, PM2.5 and PM10 were measured at two sites in Qom city. For each of them, 60 samples were selected with the Enviro Check during five consecutive months during summer (2 months and fall.Results: During sampling, PM10 in the period between October 22'th to November 22nd 2007 had the maximum amount with the mean of 117µg/m3 and in the period between September 22'th to October 22nd 2007 it had the minimum amount with the mean of 83µg/m3. PM2.5 in the period between November 22nd to December 22nd 2007 with the mean of 33µg/m3 had the maximum amount and in the period between July 22nd to October 22nd 2007 it had the minimum amount with the mean of 8µg/m3. Conclusion: Based on the findings of this study, the densities of suspended particles PM1, PM2.5 and PM10 were below the standard levels on most occasions. The amounts of AQI for them were normal and acceptable.

  17. Water soluble organic carbon in aerosols (PM1, PM2.5, PM10) and various precipitation forms (rain, snow, mixed) over the southern Baltic Sea station.

    Science.gov (United States)

    Witkowska, Agnieszka; Lewandowska, Anita U

    2016-12-15

    In the urbanized coastal zone of the Southern Baltic, complex measurements of water soluble organic carbon (WSOC) were conducted between 2012 and 2015, involving atmospheric precipitation in its various forms (rain, snow, mixed) and PM1, PM2.5 and PM10 aerosols. WSOC constituted about 60% of the organic carbon mass in aerosols of various sizes. The average concentration of WSOC was equal to 2.6μg∙m -3 in PM1, 3.6μg∙m -3 in PM2.5 and 4.4μg∙m -3 in PM10. The lowest concentration of WSOC was noted in summer as a result of effective removal of this compound with rainfall. The highest WSOC concentrations in PM2.5 and PM10 aerosols were measured in spring, which should be associated with developing vegetation on land and in the sea. On the other hand, the highest WSOC concentrations in PM1 occurred in winter at low air temperatures and greatest atmospheric stability, when there were increased carbon emissions from fuel combustion in the communal-utility sector and from transportation. WSOC concentrations in precipitation were determined by its form. Mixed precipitation turned out to be the richest in soluble organic carbon (5.1mg·dm -3 ), while snow contained the least WSOC (1.7mg·dm -3 ). Snow and rain cleaned carbon compounds from the atmosphere more effectively when precipitation lasted longer than 24h, while in the case of mixed precipitation WSOC was removed most effectively within the first 24h. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Mass concentration and elemental composition of indoor PM 2.5 and PM 10 in University rooms in Thessaloniki, northern Greece

    Science.gov (United States)

    Gemenetzis, Panagiotis; Moussas, Panagiotis; Arditsoglou, Anastasia; Samara, Constantini

    The mass concentration and the elemental composition of PM 2.5 and PM 10 were measured in 40 rooms (mainly offices or mixed office-lab rooms, and photocopying places) of the Aristotle University of Thessaloniki, northern Greece. A total of 27 major, minor and trace elements were determined by ED-XRF analysis. The PM 2.5/PM 10 concentration ratios averaged 0.8±0.2, while the corresponding elemental ratios ranged between 0.4±0.2 and 0.9±0.2. The concentrations of PM 2.5 and PM 10 were significantly higher (by 70% and 50%, respectively) in the smokers' rooms compared to the non-smokers' places. The total elemental concentrations were also higher in the smokers' rooms (11.5 vs 8.2 μg m -3 for PM 2.5, and 10.3 vs 7.6 μg m -3 for PM 2.5-10). Fine particle concentrations (PM 2.5) were found to be quite proportional to smoking strength. On the contrary, the two environments exhibited similar coarse (PM 2.5-10) particle fractions not related to the number of cigarettes smoked. A slight decrease of particle concentrations with increasing the floor level was also observed, particularly for PM 2.5, suggesting that high-level floors are less impacted by near ground-level sources like traffic emissions. Finally, the removal efficiency of air purification systems was evaluated.

  19. The cardioprotective effect of vanillic acid on hemodynamic parameters, malondialdehyde, and infarct size in ischemia-reperfusion isolated rat heart exposed to PM10

    Directory of Open Access Journals (Sweden)

    Esmat Radmanesh

    2017-07-01

    Full Text Available Objective(s: Particulate matter (PM exposure can promote cardiac ischemia and myocardial damage. The effects of PM10 on hemodynamic parameters, lipid peroxidation, and infarct size induced by ischemia-reperfusion injury and the protective effects of vanillic acid (VA in isolated rat heart were investigated. Materials and Methods: Eighty male Wistar rats (250–300 g were divided into 8 groups (n=10: Control, Sham, VAc, VA, PMa (0.5 mg/kg PM, intratracheal instillation, PMb (2.5 mg/kg PM, intratracheal instillation, PMc (5 mg/kg PM, intratracheal instillation, and PMc + VA (5 mg/kg PM, intratracheal instillation; and 10 mg/kg vanillic acid, gavage for 10 days. PM10 was instilled into the trachea in two stages, within 48 hr. After isolating the hearts and transfer to a Langendorff apparatus, hearts were subjected to 30 min ischemia and 60 min reperfusion. Hemodynamic parameters (±dp/dt, LVSP, LVDP, and RPP, production of lipid peroxidation (MDA, and infarct size were assessed. Results: A significant decrease in ±dp/dt, LVSP, LVDP and RPP occurred in PM groups. A significant increase in MDA and myocardial infarct size occurred in PM groups. A significant increase in LVDP, LVSP, ±dp/dt, RPP and decrease in infarct size, MDA, and myocardial dysfunction was observed in groups that received vanillic acid after ischemia–reperfusion. Conclusion: It was demonstrated that PM10 increases MDA, as well as the percentage of cardiac infarct size, and has negative effects on hemodynamic parameters. This study suggests that vanillic acid may serve as an adjunctive treatment in delaying the progression of ischemic heart disease.

  20. CARACTERIZACIÓN QUÍMICA DE MATERIAL PARTICULADO PM10 EN LA ATMÓSFERA DE RIOHACHA-LA GUAJIRA COLOMBIA

    Directory of Open Access Journals (Sweden)

    Calos Julio Doria Argumedo

    2017-01-01

    Full Text Available Teniendo en cuenta la importancia desde el punto de vista de la contaminación ambiental, que tienen las partículas inhalables PM 10 en ambientes urbanos, y que los efectos que se puedan generar en la salud dependen de la composición química del material formado por partículas, se realizó este estudio con el objetivo de revelar la composición química de las partículas atmosféricas a través de técnicas de Espectrofotometría UV-VIS y Espectrometría de Masas con fuente de Plasma de Acoplamiento, generados principalmente por fuentes naturales y antrópicas en la ciudad de Riohacha al norte de Colombia; para ello se recolectaron 30 muestras de partículas atmosféricas por medio de filtros de cuarzo con una frecuencia mensual, durante el período de marzo a diciembre de 2014. Las PM 10 presentan una concentración promedio de 52,9 µg/m 3 y los iones solubles de mayor concentración corresponden a Na + , Cl - , Ca +2 y Mg +2 . Las diferencias entre los sitios de muestreo no fueron significativas (p> 0,6. El 70% del Ca +2 es de origen no marino, atribuyéndose al suelo y al tráfico vehicular y peatonal. Conocer la composición química del material particulado, PM 10 tiene relevancia no sólo desde el punto de vista de la química de la atmósfera, sino también sobre la calidad del aire que se respira en las ciudades

  1. Caracterización química de material particulado PM10 en la atmósfera de La Guajira Colombia

    Directory of Open Access Journals (Sweden)

    Carlos Julio Doria Argumedo

    2016-11-01

    Full Text Available Durante el año 2013, se realizó un estudio en La Guajira, Colombia, con el fin de determinar  la composición química del  material particulado PM10, producto de las actividades mineras de carbón a cielo abierto que ocupan casi 30% del territorio; también se evaluó su asociación a fuentes naturales y antropogénicas. La recolección de filtros se realizó por medio de un sistema de monitoreo conformado por catorce estaciones mediante equipos muestreadores de alto volumen PM10 (Thermo Scientific VFC-PM10 High Volume Air Sampler. Para el análisis, los filtros de cuarzo fueron sometidos a extracción acuosa en caliente y se determinaron los iones por espectrofotometría UV-VIS e ICP-MS. Las concentraciones más altas corresponden a la especies SO42- (0,25 µg/m3, Cl- (0,19 µg/m3, NH4+ (0,032 µg/m3, Na+ (1,98µg/m3, Ca2+ (0,40 µg/m3 y Mg2+ (0,31 µg/m3. Los resultados indican que las principales fuentes responsables del material particulado corresponden al aerosol marino impulsado por las corrientes (Cl- y Na+ de origen natural, y las actividades agrícolas, pecuarias (NH4+ y mineras (SO42-, Ca2+ y Mg2+ de origen antropogénico.

  2. Geochemistry of PM10 over Europe during the EMEP intensive measurement periods in summer 2012 and winter 2013

    Directory of Open Access Journals (Sweden)

    A. Alastuey

    2016-05-01

    Full Text Available The third intensive measurement period (IMP organised by the European Monitoring and Evaluation Programme (EMEP under the UNECE CLTRAP took place in summer 2012 and winter 2013, with PM10 filter samples concurrently collected at 20 (16 EMEP regional background sites across Europe for subsequent analysis of their mineral dust content. All samples were analysed by the same or a comparable methodology. Higher PM10 mineral dust loadings were observed at most sites in summer (0.5–10 µg m−3 compared to winter (0.2–2 µg m−3, with the most elevated concentrations in the southern- and easternmost countries, accounting for 20–40 % of PM10. Saharan dust outbreaks were responsible for the high summer dust loadings at western and central European sites, whereas regional or local sources explained the elevated concentrations observed at eastern sites. The eastern Mediterranean sites experienced elevated levels due to African dust outbreaks during both summer and winter. The mineral dust composition varied more in winter than in summer, with a higher relative contribution of anthropogenic dust during the former period. A relatively high contribution of K from non-mineral and non-sea-salt sources, such as biomass burning, was evident in winter at some of the central and eastern European sites. The spatial distribution of some components and metals reveals the influence of specific anthropogenic sources on a regional scale: shipping emissions (V, Ni, and SO42− in the Mediterranean region, metallurgy (Cr, Ni, and Mn in central and eastern Europe, high temperature processes (As, Pb, and SO42− in eastern countries, and traffic (Cu at sites affected by emissions from nearby cities.

  3. Caracterización Quimica de material particulado fraciión respirable pm 10 en la atmósfera de Rioacha la Guajira Colombia

    Directory of Open Access Journals (Sweden)

    Calos Julio Doria Argumedo

    2017-01-01

    Full Text Available Teniendo en cuenta la importancia desde el punto de vista de la contaminación ambiental, que tienen las partículas inhalables PM 10 en ambientes urbanos, y que los efectos que se puedan generar en la salud dependen de la composición química del material formado por partículas, se realizó este estudio con el objetivo de revelar la composición química de las partículas atmosféricas a través de técnicas de Espectrofotometría UV-VIS y Espectrometría de Masas con fuente de Plasma de Acoplamiento, generados principalmente por fuentes naturales y antrópicas en la ciudad de Riohacha al norte de Colombia; para ello se recolectaron 30 muestras de partículas atmosféricas por medio de filtros de cuarzo con una frecuencia mensual, durante el período de marzo a diciembre de 2014. Las PM 10 presentan una concentración promedio de 52,9 µg/m 3 y los iones solubles de mayor concentración corresponden a Na + , Cl - , Ca +2 y Mg +2 . Las diferencias entre los sitios de muestreo no fueron significativas (p> 0,6. El 70% del Ca +2 es de origen no marino, atribuyéndose al suelo y al tráfico vehicular y peatonal. Conocer la composición química del material particulado, PM 10 tiene relevancia no sólo desde el punto de vista de la química de la atmósfera, sino también sobre la calidad del aire que se respira en las ciudades.

  4. Caracterización metálica de material particulado PM10 en la atmósfera de Fonseca, La Guajira, Colombia

    OpenAIRE

    Carlos Doria Argumedo

    2017-01-01

    Teniendo en cuenta  la importancia del efecto sobre la salud de las partículas inhalables PM10 y los metales asociados a ellas, se evaluaron los niveles de  metales: Al, Cr, V, As, Se, Na, K, Mg, Ca, Bi, Fe, Hg y Pb, generados por fuentes naturales como el aerosol marino y la re-suspensión del suelo; y de fuentes antropogénicas como las actividades mineras de carbón y la circulación vehicular, en Fonseca, La Guajira, Colombia, Las muestras fueron colectadas en dos sitios cercanos al complejo ...

  5. Concentration and source identification of polycyclic aromatic hydrocarbons (PAHs) in PM10 of urban, industrial and semi-urban areas in Malaysia

    Science.gov (United States)

    Jamhari, Anas Ahmad; Sahani, Mazrura; Latif, Mohd Talib; Chan, Kok Meng; Tan, Hock Seng; Khan, Md Firoz; Mohd Tahir, Norhayati

    2014-04-01

    Particulate matter (PM10) associated with polycyclic aromatic hydrocarbons (PAHs) in ambient air were determined at two sites within the Klang Valley, Kuala Lumpur (urban, KL) and Petaling Jaya (industrial, PJ), and one site outside the Klang Valley, Bangi (semi-urban, BG). This study aimed to determine the concentration and distribution of PAHs in PM10 and the source of origin through principal component analysis (PCA) and diagnostic ratio analysis. This study also assessed the health risk from exposure to airborne BaPeq. PM10 samples were collected on glass fiber filter paper using a High Volume Sampler (HVS) for 24 h between September 2010 and April 2011. The filter papers with PM10 were extracted using dichloromethane-methanol (3:1), and analysis of 16 USEPA priority PAHs was determined using gas chromatography with mass spectra (GC-MS). Health risk assessment was estimated using toxic equivalency factors (TEFs) and incremental lifetime cancer risk (ILCR) which quantitatively estimate the exposure risk for age specific group. The results showed that the total PAHs concentrations throughout seasonal monsoons for KL, PJ and BG ranged from 1.33 ng m-3 to 2.97 ng m-3, 2.24 ng m-3 to 4.84 ng m-3 and 1.64 ng m-3 to 3.45 ng m-3 respectively. More than 80% of total PAHs consisted of 5-ring and 6-ring PAHs such as benzo[a]pyrene (BaP), indeno[1,2,3-cd]pyrene (IcP), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF) and benzo[g,h,i]perylene (BgP). The presence of benzo[g,h,i]perylene (BgP) with high concentration at all locations suggested a source indicator for traffic emission. PCA and diagnostic ratio analysis also suggested substantial contributions from traffic emission with minimal influence from coal combustion and natural gas emissions. The use of total BaPeq concentration provide a better estimation of carcinogenicity activities, where they contributed to more than 50% of the potential health risk. Health risk assessment showed that the estimated incremental

  6. Assessment of annual air pollution levels with PM1, PM2.5, PM10 and associated heavy metals in Algiers, Algeria.

    Science.gov (United States)

    Talbi, Abdelhamid; Kerchich, Yacine; Kerbachi, Rabah; Boughedaoui, Ménouèr

    2018-01-01

    Concentrations of particulate matter less than 1  μm, 2.5  μm, 10 μm and their contents of heavy metals were investigated in two different stations, urban and roadside at Algiers (Algeria). Sampling was conducted during two years by a high volume samplers (HVS) equipped with a cascade impactor at four levels stage, for one year sampling. The characterization of the heavy metals associated to the particulate matter (PM) was carried out by X-Ray Fluorescence analysis (XRF). The annual average concentration of PM 1 , PM 2.5 and PM 10 in both stations were 18.24, 32.23 and 60.01 μg m -3 respectively. The PM 1 , PM 2.5 and PM 10 concentrations in roadside varied from 13.46 to 25.59 μg m -3 , 20.82-49.85 μg m -3 and 45.90-77.23 μg m -3 respectively. However in the urban station, the PM 1 , PM 2.5 and PM 10 concentrations varied from 10.45 to 26.24 μg m -3 , 18.53-47.58 μg m -3 and 43.8-91.62 μg m -3 . The heavy metals associated to the PM were confirmed by Scanning Electron Microscopy-Energy Dispersive X-Ray analyses (SEM-EDX). The different spots of PM 2.5 analysis by SEM-EDX shows the presence of nineteen elements with anthropogenic and natural origins, within the heavy metal detected, the lead was found with maximum of 5% (weight percent). In order to determine the source contributions of PM levels at the two sampling sites sampling, principal compound analysis (PCA) was applied to the collected data. Statistical analysis confirmed anthropogenic source with traffic being a significant source and high contribution of natural emissions. At both sites, the PM 2.5 /PM 10 ratio is lower than that usually recorded in developed countries. The study of the back-trajectories of the air masses starting from Sahara shows that desert dust influences the concentration and the composition of the PM measured in Algiers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. ANALYSIS OF THE RESULTS OF MEASUREMENT OF CONCENTRATIONS OF AIR POLLUTION WITH PM10 AND PM2.5 MEASURING STATION SQUARE OF POZNAN IN BYDGOSZCZ

    Directory of Open Access Journals (Sweden)

    Rafał Pasela

    2017-02-01

    Full Text Available The phenomenon of suspended particulate pollution PM10 and PM2.5 occurs in large urban areas where the main source of their presence is communication, which is primarily related to the combustion of liquid fuels. PM2.5 dust pollution is a major risk factor for diseases of the respiratory, cardiovascular, and allergy. Act regulating the standards and target dates for reducing concentrations of particulate matter in urban areas and in all the cities of over 100 thousand. residents of the Directive of the European Parliament and Council Directive 2008/50/EC of 21 May 2008. on ambient air quality and cleaner air for Europe (CAFE. The acceptable level of average daily concentration of PM10 is 50 μg/m3 and may be exceeded by not more than 35 times a year, while the level of allowable annual average concentration of 40 μg/m3. The aim of this study was to assess the state of air pollution of dust PM10 and PM2.5 for the selected area of the city of Bydgoszcz. The analysis was conducted using data from air monitoring stations located at Poznanska street. The station is owned by the Provincial Inspectorate for Environmental Protection (VIEP in Bydgoszcz. The studies have shown that the annual average concentration of particulate matter analyzed station in Bydgoszcz in the years 2013-2015 amounted to PM10 41 μg/m3 PM2.5 and 23 μg/m3. The results are on the borderline of acceptable levels of concentration resulting from the Regulation of the Minister of the Environment of 2 August 2012. The concentrations of particulate matter in ambient air are strongly associated with meteorological conditions. The definitely higher concentrations observed in the autumn-winter season. The decrease in temperature causes the combustion in the boiler house of fuels with a high emissions. The highest average daily concentration of suspended particulate matter was observed on Thursday and Friday in the winter months, and while the lowest concentration was recorded in the

  8. Genotoxic effects and oxidative stress induced by organic extracts of particulate matter(PM 10)collected from a subway tunnel in Seoul, Korea.

    Science.gov (United States)

    Jung, Mi Hyun; Kim, Ha Ryong; Park, Yong Joo; Park, Duck Shin; Chung, Kyu Hyuck; Oh, Seung Min

    2012-12-12

    Particulate matter (PM) has become an important health risk factor in our society. PM can easily deposit in the bronchi and lungs, causing diverse diseases such as respiratory infections, lung cancers and cardiovascular diseases. In recent days, more and more toxicological studies have been dealing with air particles in distinctive areas including industrial areas, transportation sites, or indoors. Studies on subway PM in particular, have been recognizing PM as an important health risk factor because many people use subways as a major mode of public transportation (4 million people a day in Korea). The main aim of the present study was to evaluate the genotoxic effects of organic extract (OE) of subway PM10 and potential attribution of PAHs to these effects. Particles were collected in the subway tunnel at Kil-eum station(Line 4) for one month and then extracted with Dichloromethane (DCM). Chinese Hamster Ovary cells(CHO-K1) and human normal bronchial cells (BEAS-2B) were exposed to OE, and MN and Comet assays were conducted to analyze the genotoxicity. The results showed that OE increased DNA or chromosome damages in both cell lines. In the modified Comet assay and MN assay with free radical scavengers, we confirmed that the genotoxic effect of OE was partially due to the oxidative damage on DNA. DCFHD Aassay also indicated that OE induced ROS generation in BEAS-2B cells. PAHs [benzo(a)anthracene,benzo(k)fluoranthrene, etc.], the most well-known carcinogens in polluted air, were detected in Kil-eum PM10. In conclusion, our findings confirmed that OE of subway PM10 has genotoxic effects on normal human lung cells, and oxidative stress could be one of the major mechanisms of these genotoxic effects.In addition, some genotoxic and carcinogenic PAHs were detected in OE by GC/MS/MS, even though PAHs level was not enough to increase CYP1A1 gene. Therefore, we suggest that additive or synergistic effects by unidentified chemicals as well as PAHs contained in OE of subway

  9. Ambient levels and temporal variations of PM2.5 and PM10 at a residential site in the mega-city, Nanjing, in the western Yangtze River Delta, China.

    Science.gov (United States)

    Shen, Guo F; Yuan, Si Y; Xie, Yu N; Xia, Si J; Li, Li; Yao, Yu K; Qiao, Yue Z; Zhang, Jie; Zhao, Qiu Y; Ding, Ai J; Li, Bin; Wu, Hai S

    2014-01-01

    The deteriorating air quality in eastern China including the Yangtze River Delta is attracting growing public concern. In this study, we measured the ambient PM10 and fine PM2.5 in the mega-city, Nanjing at four different times. The 24-h average PM2.5 and PM10 mass concentrations were 0.033-0.234 and 0.042-0.328 mg/m(3), respectively. The daily PM10 and PM2.5 concentrations were 2.9 (2.7-3.2, at 95% confidence interval) and 4.2 (3.8-4.6) times the WHO air quality guidelines of 0.025 mg/m(3) for PM2.5 and 0.050 mg/m(3) for PM10, respectively, which indicated serious air pollution in the city. There was no obvious weekend effect. The highest PM10 pollution occurred in the wintertime, with higher PM2.5 loadings in the winter and summer. PM2.5 was correlated significantly with PM10 and the average mass fraction of PM2.5 in PM10 was about 72.5%. This fraction varied during different sampling periods, with the lowest PM2.5 fraction in the spring but minor differences among the other three seasons.

  10. Relación entre las partículas finas (PM 2.5 y respirables PM 10 en la ciudad de Medellín Relation between fine particles (PM 2.5 and breathable particles (PM 10 in Medellin city

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Echeverri Londoño

    2008-01-01

    Full Text Available En este trabajo se presenta parte de los resultados del proyecto 'Patologías respiratorias en niños preescolares y su relación con la contaminación atmosférica de Medellín', realizado por la Universidad de Medellín y la Universidad CES para la Secretaria de Salud de Medellín dentro del contrato 4700026668 de 2006. Se realizaron mediciones simultáneas de partículas finas (PM2.5 y respirables (PM10 durante el período de febrero a octubre de 2007 en varios sitios de la ciudad de Medellín, capital del departamento de Antioquia, habitada aproximadamente por 2’250.000 personas. Los resultados del análisis muestran, en la mayoría de los casos, una correlación positiva y lineal entre los dos parámetros. La relación (PM2.5/PM10 promedio para los sitios o zonas bajo consideración en este estudio fue de aproximadamente 0.67, valor bastante considerable que hace pensar que probablemente se puede cumplir con la norma anual para PM10, pero no para PM2.5. Los resultados obtenidos identifican las partículas finas como uno de los principales problemas de contaminación en la ciudad de Medellín.This article shows part of the results from the project called: 'Respiratory pathologies in pre-school children and their relation to atmospheric contamination in Medellin,' carried out by Universidad de Medellin and Universidad CES for Medellin Health Secretariat according to contract No. 4700026668, year 2006. Simultaneous measurements of fine particles (PM2.5 and breathable particles (PM10 were made from February to October, 2007 in several sites of Medellin, the capital city of Antioquia State, where about 2,250,000 inhabitants live. In almost all cases, analysis results show a positive and linear correlation between both parameters. Average ratio (PM2.5/PM10 for sites and zones tested in this study was 0.67 approximately, which is a very meaningful value, what makes us think that annual norm for PM10 can probably be accomplished, but not the one

  11. Characteristic and Source of Atmospheric PM10- and PM2.5-bound PAHs in a Typical Metallurgic City Near Yangtze River in China.

    Science.gov (United States)

    Zhang, Hong; Wang, Ruwei; Xue, Huaqin; Hu, Ruoyu; Liu, Guijian

    2018-02-01

    The characteristics of atmospheric PM 10 - and PM 2.5 -bound polycyclic aromatic hydrocarbons (PAHs) were investigated in Tongling city, China. Results showed that the total concentrations of PM 10 - and PM 2.5 -bound PAHs exhibited distinct seasonal and spatial variability. The metallurgic sites showed the highest PAH concentrations, which is mainly attributed to the metallurgic activities (mainly copper ore smelting) and coal combustion as the smelting fuel. The rural area showed the lowest concentrations, but exhibited significant increase from summer to autumn. This seasonal fluctuation is mainly caused by the biomass burning at the sites in the harvest season. The diagnostic ratio indicated that the main PAHs sources were vehicle exhausts, coal combustion and biomass burning. The total BaP equivalent concentration (BAP-TEQ) was found to be maximum at DGS site in winter, whereas it was minimum at BGC site in summer. Risk assessment indicates that residential exposure to PAHs in the industrial area, especially in the winter season, may pose a greater inhalation cancer risk than people living in living area and rural area.

  12. Heavy coal combustion as the dominant source of particulate pollution in Taiyuan, China, corroborated by high concentrations of arsenic and selenium in PM10

    International Nuclear Information System (INIS)

    Xie, RuiKai; Seip, Hans Martin; Wibetoe, Grethe; Nori, Showan; McLeod, Cameron William

    2006-01-01

    Coal burning generates toxic elements, some of which are characteristic of coal combustion such as arsenic and selenium, besides conventional coal combustion products. Airborne particulate samples with aerodynamic diameter less than 10 μm (PM 10 ) were collected in Taiyuan, China, and multi-element analyses were performed by inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). Concentrations of arsenic and selenium from ambient air in Taiyuan (average 43 and 58 ng m -3 , respectively) were relatively high compared to what is reported elsewhere. Arsenic and selenium were found to be highly correlated (r=0.997), indicating an overwhelmingly dominant source. Correlation between these two chalcophile elements and the lithophile element Al is high (r is 0.75 and 0.72 for As and Se, respectively). This prompted the hypothesis that the particles were from coal combustion. The enrichment of the trace elements could be explained by the volatilization-condensation mechanism during coal combustion process. Even higher correlations of arsenic and selenium with PM 10 (r=0.90 and 0.88) give further support that airborne particulate pollution in Taiyuan is mainly a direct result of heavy coal consumption. This conclusion agrees with the results from our previous study of individual airborne particles in Taiyuan. (author)

  13. Determination of the levels of particles PM10 and nitrogen dioxide at the city of Heredia, Costa Rica: 2005-2006

    International Nuclear Information System (INIS)

    Herrera-Murillo, Jorge; Rodriguez-Roman, Susana; Solis-Torres, Ligia Dina

    2009-01-01

    The levels of particulate matter PM 10 were determined at two sites of Heredia City (Rectory of the Universidad Nacional and Plazoleta del Fortin) of March to August 2006, obtaining as annual average 48 ± 8 and 31 ± 8 μg/m 3 , respectively. Also, the levels of sulfates, nitrates and chlorides were measured for both sites. The annual averages have resulted not to be significantly different for both sites, with a level of significance of 5%. In one of the ten sites of measurement of the concentration of nitrogen dioxide in the city, has presented higher values to the recommendation of the World Health Organization, monitoring for one month. The principal component analysis that were applied to the data of this gas, has showed that the variations in the levels are due to large-scale phenomena (meteorological). However, the concentration of sulfate present in the particulate matter has reached higher values to those recorded in cities like Rio de Janeiro and Mexico D.F., product probably of the high sulfur content present in the fuels that are used by the vehicle fleet at Costa Rica. The principal component analysis indicates that has existed a a strong correlation between the concentrations of sulfate and nitrate present in the particles PM 10 , pointing the contribution of anthropogenic sources. In the case of chloride, has highlighted the strong existing relationship with the meteorological parameters that were registered during the sampling period. (author) [es

  14. Day-night variability of water-soluble ions in PM10 samples collected at a traffic site in southeastern Spain.

    Science.gov (United States)

    Galindo, Nuria; Yubero, Eduardo

    2017-01-01

    The present work reports diurnal and nocturnal concentrations of water-soluble ions associated to PM 10 samples collected during the warm and cold seasons in the urban center of Elche (Southeastern Spain). Statistical differences between daytime and nighttime levels of PM 10 were only observed during winter. The lower concentrations during the night were most likely the result of a reduction in traffic-induced road dust resuspension, since nocturnal concentrations of calcium also exhibited a significant decrease compared to daytime levels. During the warm season, nitrate was the only component that showed a statistically significant increase from day to night. The lower nocturnal temperatures that prevent the thermal decomposition of ammonium nitrate and the formation of nitric acid favored by the higher relative humidity at night are the most probable reasons for this variation. The close relationship between nitrate formation and relative humidity during nighttime was supported by the results of the correlation analysis. The reaction of sulfuric and nitric acids with CaCO 3 occurred to a greater extent during daytime in summer.

  15. The Distribution of PM10 and PM2.5 Dust Particles Diameter in Airborne at the Cement Factory Neighboring Area, Citeureup - Bogor

    International Nuclear Information System (INIS)

    Gatot Suhariyono; Muji Wiyono

    2003-01-01

    The distribution analysis in PM 10 and PM 2.5 dust particle diameter has been carried out at residence area around the cement factory, Citeureup - Bogor to estimate deposition of dust particles that is accepted by public. The dust particles were sampled at the dwellings by using a cascade impactor on four wind directions and 500, 1000, 1500, 2000, 2500, and 3000 m radius from the Plant one as the center of the cement factory at Citeureup - Bogor. Measurements at the north direction were the Gunung Putri, Kranggan, Bojong Nangka villages, and Gunung Putri dwellings. The south directions were Tarikolot and Pasir Mukti villages. The west directions were guest house, Puspanegara, Puspasari, and Citatah villages. The northwest directions were Puspanegara, Gunung Putri, Puspasari, and Kranggan villages. The analysis result showed that the diameter distribution of PM 10 dust particles at outdoor is ranging from 0.4 to 4.7 μm, and has the weight percentage is high in average approximate 17.91 % of total dust weight on 500, 1000, 1500, 2000, 2500, and 3000 m radius. The distributions of indoor PM 2.5 dust particles diameter show a stable 12.27 % weight percentage of total dust weight from 0.4 to 2.1 μm. (author)

  16. Diagnosis of Dust- and Pollution- Impacted PM10, PM2.5, and PM1 Aerosols Observed at Gosan Climate Observatory

    Science.gov (United States)

    Shang, X.; Lee, M.; LIM, S.; Gustafsson, O.; Lee, G.; Chang, L.

    2017-12-01

    In East Asia, dust is prevalent and used to be mixed with various pollutants during transportation, causing a large uncertainty in estimating the climate forcing of aerosol and difficulty in making environmental policy. In order to diagnose the influence of dust particles on aerosol, we conducted a long-term measurement of PM10, PM2.5 and PM1 for mass, water-soluble ions, and carbonaceous compounds at Gosan Climate Observatory, South Korea from August 2007 to February 2012. The result of principle component analysis reveals that anthropogenic, typical soil dust, and saline dust impact explain 46 %, 16 %, and 9 % of the total variance for all samples, respectively. The mode analysis of mass distributions provides the criteria to distinguish these principle factors. The anthropogenic impact was most pronounced in PM1 and diagnosed by the PM1 mass higher than mean+σ. If PM10 mass was greater than mean+σ, it was highly likely to be affected by typical soil dust. This criterion is also applicable for PM2.5 mass, which was enhanced by both haze and dust particles, though. In the present study, saline dust was recognized by relatively high concentrations of Na and Cl ions in PM1.0. However, their existence was not manifested by increased mass in any of three PM types.

  17. Evaluation of the levels of particles PM10 and nitrogen dioxide at the city of San Jose, Costa Rica: 2005-2006

    International Nuclear Information System (INIS)

    Herrera-Murillo, Jorge; Rodriguez Roman, Susana

    2009-01-01

    The levels of particulate matter PM 10 were determined at two sites of San Jose City (Catedral Metropolitana and Junta de Educacion), during a year (September 2005-September 2006), obtaining as annual average 36 ± 8 μg/m 3 and 25 ± 7 μg/m 3 , respectively. Also, the levels of sulfates, nitrates and chlorides were measured for both sites. The annual averages have resulted not to be significantly different for both sites, with a level of significance of 5%. Three of the fourteen sites of measurement of the concentration of nitrogen dioxide in the city, have presented higher values to the recommendation of the World Health Organization, monitoring for one month. The principal component analysis that were applied to the data of this gas, has showed that the variations in the levels are due to large-scale phenomena (meteorological). However, the concentration of sulfate present in the particulate matter has reached higher values to those recorded in cities like Rio de Janeiro and Mexico D.F., product probably of the high sulfur content present in the fuels that are used by the vehicle fleet at Costa Rica. The principal component analysis indicates that has existed a strong correlation between the concentrations of sulfate and nitrate present in the particles PM 10 , pointing the contribution of anthropogenic sources. In the case of chloride, has highlighted the strong existing relationship with the meteorological parameters that were registered during the sampling period. (author) [es

  18. Polycyclic aromatic hydrocarbons and trace elements bounded to airborne PM10 in the harbor of Volos, Greece: Implications for the impact of harbor activities

    Science.gov (United States)

    Manoli, E.; Chelioti-Chatzidimitriou, A.; Karageorgou, K.; Kouras, A.; Voutsa, D.; Samara, C.; Kampanos, I.

    2017-10-01

    Harbors are often characterized by high levels of air pollutants that are emitted from ship traffic and other harbor activities. In the present study, the concentrations of Polycyclic Aromatic Hydrocarbons (PAHs) and trace elements (As, Cd, Ni, Pb, Cr, Mn, Zn, and Fe) bounded to the inhalable particulate matter PM10 were studied in the harbor of Volos, central Greece, during a 2-year period (2014-2015). Seasonal and daily variations were investigated. Moreover, total carcinogenic and mutagenic activities of PAHs were calculated. The effect of major wind sectors (sea, city, industrial, harbor) was estimated to assess the potential contribution of ship traffic and harbor activities, such as scrap metal handling operations. Results showed that the harbor sector (calm winds ≤ 0.5 m s-1) was associated with the highest concentrations of PM10. The harbor sector was also associated with relatively increased levels of trace elements (As, Fe, Cr, Mn, Ni), however the effect of this sector was lower than the corresponding effect of the industrial wind sector. The sea sector showed only a slight increase in B[a]Py and Σ12PAHs, whereas the highest increasing effect for PAHs and traffic-related elements, such as Pb and Zn, was evidenced for the city sector.

  19. The use of total susceptibility in the analysis of long term PM10 (PM2.5) collected at Hungarian air quality monitoring stations

    Science.gov (United States)

    Márton, Emö; Domján, Ádám; Lautner, Péter; Szentmarjay, Tibor; Uram, János

    2013-04-01

    Air monitoring stations in Hungary are operated by Environmental, Nature Conservancy and Water Pollution Inspectorates, according to the CEN/TC 264 European Union standards. PM10 samples are collected on a 24-hour basis, for two weeks in February, in May, in August and in November. About 720m3 air is pumped through quartz filters daily. Mass measurements and toxic metal analysis (As, Pb, Cd, Ni) are made on each filter (Whatmann DHA-80 PAH, 150 mm diameter) by the inspectorates. We have carried out low field magnetic susceptibility measurements using a KLY-2 instrument on all PM10 samples collected at 9 stations from 2009 on (a total of more than 2000 filters). One station, located far from direct sources, monitors background pollution. Here PM2.5 was also collected in two-week runs, seven times during the period of 2009-2012 and made available for the non-destructive magnetic susceptibility measurements. Due to the rather weak magnetic signal, the susceptibility of each PM-10 sample was computed from 10, that of each PM2.5 sample from 20 measurements. Corrections were made for the susceptibility of the sample holder, for the unpolluted filter (provided with each of the two-week runs), and for the plastic bag containing the samples. The susceptibilities of the PM10 samples were analyzed from different aspects, like the degree of magnetic pollution at different stations, daily and seasonal variations of the total and mass susceptibilities compared to the mass of the pollutants and in relation to the concentrations of the toxic elements. As expected, the lowest total and mass susceptibilities characterize the background station (pollution arrives mostly from distant sources, Vienna, Bratislava or even the Sudeten), while the highest values were measured for an industrial town with heavy traffic. At the background station the mass of the PM10 and PM2.5, respectively for the same period are quite similar, while the magnetic susceptibilities are usually higher in the

  20. Evaluation of the RWEQ and SWEEP in simulating soil and PM10 loss from a portable wind tunnel

    Science.gov (United States)

    Wind erosion threatens sustainable agriculture and environmental quality in the Columbia Plateau region of the US Pacific Northwest. Wind erosion models such as Wind Erosion Prediction System (WEPS) and the Revised Wind Erosion Equation (RWEQ) have been developed as tools for identifying practices t...

  1. A simulated approach to estimating PM10 and PM2.5 concentrations downwind from cotton gins

    Science.gov (United States)

    Cotton gins are required to obtain operating permits from state air pollution regulatory agencies (SAPRA), which regulate the amount of particulate matter that can be emitted. Industrial Source Complex Short Term version 3 (ISCST3) is the Gaussian dispersion model currently used by some SAPRAs to pr...

  2. 40 CFR Table E-1 to Subpart E of... - Summary of Test Requirements for Reference and Class I Equivalent Methods for PM2.5 and PM10-2.5

    Science.gov (United States)

    2010-07-01

    ... Reference and Class I Equivalent Methods for PM2.5 and PM10-2.5 E Table E-1 to Subpart E of Part 53..., Subpt. E, Table E-1 Table E-1 to Subpart E of Part 53—Summary of Test Requirements for Reference and Class I Equivalent Methods for PM2.5 and PM10-2.5 Subpart E procedure Performance test Performance...

  3. Source apportionment of visual impairment during the California regional PM 10/PM 2.5 air quality study

    Science.gov (United States)

    Chen, Jianjun; Ying, Qi; Kleeman, Michael J.

    2009-12-01

    Gases and particulate matter predictions from the UCD/CIT air quality model were used in a visibility model to predict source contributions to visual impairment in the San Joaquin Valley (SJV), the southern portion of California's Central Valley, during December 2000 and January 2001. Within the SJV, daytime (0800-1700 PST) light extinction was dominated by scattering associated with airborne particles. Measured daytime particle scattering coefficients were compared to predicted values at approximately 40 locations across the SJV after correction for the increased temperature and decreased relative humidity produced by "smart heaters" placed upstream of nephelometers. Mean fractional bias and mean fractional error were -0.22 and 0.65, respectively, indicating reasonable agreement between model predictions and measurements. Particulate water, nitrate, organic matter, and ammonium were the major particulate species contributing to light scattering in the SJV. Daytime light extinction in the SJV averaged between December 25, 2000 and January 7, 2001 was mainly associated with animal ammonia sources (28%), diesel engines (18%), catalyst gasoline engines (9%), other anthropogenic sources (9%), and wood smoke (7%) with initial and boundary conditions accounting for 13%. The source apportionment results from this study apply to wintertime conditions when airborne particulate matter concentrations are typically at their annual maximum. Further study would be required to quantify source contributions to light extinction in other seasons.

  4. Elemental characterization of New Year's Day PM10 and PM2.2 particulates matter at several sites in Metro Manila

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Flora L; Pabroa, Preciosa Corazon B; Morco, Ryan P; Racho, Joseph Michael D [Analytical Measurements Research Group, Philippine Nuclear Research Institute, Commonwealth Ave., Diliman, Quezon City (Philippines)

    2007-07-01

    In the Philippines, it has been a yearly tradition to welcome the coming of the New Year with the loudest noise as can be achieved. Firecrackers and fireworks have been a necessity for Filipinos during this time despite bans on the use of most of these and despite the Department of Health (DOH) campaign to use alternative safe practices to welcome the New Year. Data for PM 10 samples (fractionated as PM 10-2.2 or the course fraction and PM2.2 or the fine fraction) collected in four PNRI sampling sites in Metro Manila show the air pollution impacts of fireworks on New Year's Eve. Samples were collected from 1998 to 2006 using a Gent dichotomous sampler in connection with the PNRI project {sup P}articulate Matter Source Apportionment Using Nuclear and Related Analytical Techniques{sup .} Particulate mass was determined by gravimetry. Elemental analysis of the air filters was done using X-ray Fluorescence Spectrometry (X RF) or Particle induced X-ray Emission (PIXE), multielemental non-destructive nuclear analytical techniques. Black carbon was analyzed using reflectometry. PM 10 values increased by two to four times the usual averages (36.4 to 55.4 ug/cum) and in 2002 even exceeded the PNAAQ short-term guideline value of 150 ug/cum at the ADMU sampling station. PM2.2 values increased by two to six times the usual averages (15 to 28 ug/cum), even many times exceeding US EPA short-term guideline value of 65 ug/cum. The increase in the particulate mass of New Year's Day samples can be attributed more to an increase in the metal pollutants rather than the black carbon, with higher contribution to the fine fraction. Increase in the elemental concentrations of Al, S, Cl, K, Ba, Sr, Ti, V, Mn, Cu and Pb were observed with the highest contribution from K. Results show that the usual practices of burning firecrackers and fireworks during New Year's day celebration is a very strong source of air pollution which contributes significantly high amount of metal pollutants in the

  5. Elemental characterization of New Year's Day PM10 and PM2.2 particulates matter at several sites in Metro Manila

    International Nuclear Information System (INIS)

    Santos, Flora L.; Pabroa, Preciosa Corazon B.; Morco, Ryan P.; Racho, Joseph Michael D.

    2007-01-01

    In the Philippines, it has been a yearly tradition to welcome the coming of the New Year with the loudest noise as can be achieved. Firecrackers and fireworks have been a necessity for Filipinos during this time despite bans on the use of most of these and despite the Department of Health (DOH) campaign to use alternative safe practices to welcome the New Year. Data for PM 10 samples (fractionated as PM 10-2.2 or the course fraction and PM2.2 or the fine fraction) collected in four PNRI sampling sites in Metro Manila show the air pollution impacts of fireworks on New Year's Eve. Samples were collected from 1998 to 2006 using a Gent dichotomous sampler in connection with the PNRI project P articulate Matter Source Apportionment Using Nuclear and Related Analytical Techniques . Particulate mass was determined by gravimetry. Elemental analysis of the air filters was done using X-ray Fluorescence Spectrometry (X RF) or Particle induced X-ray Emission (PIXE), multielemental non-destructive nuclear analytical techniques. Black carbon was analyzed using reflectometry. PM 10 values increased by two to four times the usual averages (36.4 to 55.4 ug/cum) and in 2002 even exceeded the PNAAQ short-term guideline value of 150 ug/cum at the ADMU sampling station. PM2.2 values increased by two to six times the usual averages (15 to 28 ug/cum), even many times exceeding US EPA short-term guideline value of 65 ug/cum. The increase in the particulate mass of New Year's Day samples can be attributed more to an increase in the metal pollutants rather than the black carbon, with higher contribution to the fine fraction. Increase in the elemental concentrations of Al, S, Cl, K, Ba, Sr, Ti, V, Mn, Cu and Pb were observed with the highest contribution from K. Results show that the usual practices of burning firecrackers and fireworks during New Year's day celebration is a very strong source of air pollution which contributes significantly high amount of metal pollutants in the air

  6. Characterization of PM10 and PM2.5 and associated heavy metals at the crossroads and urban background site in Zabrze, Upper Silesia, Poland, during the smog episodes.

    Science.gov (United States)

    Pastuszka, Jozef S; Rogula-Kozłowska, Wioletta; Zajusz-Zubek, Elwira

    2010-09-01

    The concentrations of seven heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, and Pb) associated with PM10 and PM2.5 at the crossroads and the background sites have been studied in Zabrze, Poland, during smog episodes. Although the background level was unusually elevated due to both high particulate emission from the industrial and municipal sources and smog favorable meteorological conditions, significant increase of the concentration of PM2.5 and PM10 as well as associated heavy metals in the roadside air compared to the urban background has been documented. The average daily difference between the roadside and corresponding urban background aerosol concentration was equal to 39.5 microg m(-3) for PM10 and 41.2 microg m(-3) for PM2.5. The highest levels of the studied metals in Zabrze appeared for iron carried by PM10 particles: 1,706 (background) and 28,557 ng m(-3) (crossroads). The lowest concentration level (in PM10) has been found for cadmium: 7 and 77 ng m(-3) in the background and crossroads site, respectively. Also the concentrations of heavy metals carried by the fine particles (PM2.5) were very high in Zabrze during the smog episodes. Concentrations of all studied metals associated with PM10 increased at the roadside compared to the background about ten times (one order) while metals contained in PM2.5 showed two to three times elevated concentrations (except Fe-five times and Cr-no increase).

  7. Modelos lineares aplicados à estimativa da concentração do material particulado (PM10) na cidade do Rio de Janeiro, RJ

    OpenAIRE

    Lyra, Gustavo Bastos; Oda-Souza, Melissa; Viola, Denise Nunes

    2011-01-01

    Regressão linear múltipla foi aplicada para ajustar dois modelos à concentração média de 24 h do material particulado com diâmetro inferior a 10 µm (PM10). As variáveis explanatórias no primeiro modelo (M1) foram os elementos meteorológicos (temperatura e umidade do ar, precipitação pluvial, velocidade do vento e pressão atmosférica) e o índice de direção do vento (IDV). No segundo (M2), além dos elementos meteorológicos e do IDV, foi incluído como variável explanatória, a concentração de PM1...

  8. Caracterización espacial de PM10 en la ciudad de Medellín mediante modelos geoestadísticos

    Directory of Open Access Journals (Sweden)

    Libardo Antonio Londoño Ciro

    2015-12-01

    Full Text Available En este artículo se presenta un modelo geoestadístico para caracterizar espacialmente el comportamiento del contaminante PM10 en la ciudad de Medellín Colombia. Los datos se han tomado de nueve sitios de monitoreo en valor promedio mensual (µg/m3 durante el periodo enero 2003 a diciembre 2007. Se evaluaron diferentes modelos mediante pruebas de validación cruzada. El mejor modelo es el j-bessel. Se calculan los parámetros del modelo mediante pruebas ANOVA para agrupaciones trimestrales. Con Kriging ordinario y sistemas de información geográfica, se obtienen mapas de caracterización espacial del contaminante.

  9. On the origin and variability of suspended particulate matter (PM1, PM2.5 and PM10) concentrations in Cyprus.

    Science.gov (United States)

    Pikridas, Michael; Vrekoussis, Mihalis; Mihalopoulos, Nikolaos; Kizas, Christos; Savvides, Chrysanthos; Sciare, Jean

    2017-04-01

    The Eastern Mediterranean (EM) lies at the crossroad of three different continents (Europe, Asia, and Africa). EM is a densely populated region including several cities with 3M inhabitants or more (e.g. Athens, Istanbul, Izmir, and Cairo). It has been identified as the most polluted area in Europe with respect to particulate matter (PM) mainly due to the combination of high photochemical activity, which causes pollutants to oxidize and partitioning in the particle phase, with the elevated pollutants emissions from neighboring regions. In addition, the proximity to Africa and the Middle East allows frequent transport of dust particles. At the center of the Eastern Mediterranean lies the island of Cyprus, which has received very little attention regarding its PM levels despite being the location in Europe most frequently impacted by air masses from the Middle East. Herewith, we present a historical PM archive that spans 2 decades. It involves ongoing monitoring on a daily basis of particulate matter with diameters smaller than 10 μm (PM10), 2.5 μm (PM2.5), and 1 μm (PM1) conducted in at least one, of the 12 currently existing air quality stations in Cyprus since 1997, 2005, and 2009, respectively. The most extended PM datasets correspond a) to the Agia Marina Xyliatou (AMX) monitoring station established at a remote area at the foothills of mount Troodos and b) that of the inland capital, Nicosia. Based on this long-term dataset, the diurnal, temporal and annual variability is assessed. Prior to 2010, PM10 concentration at all sites remained relatively constant, but at different levels, violating the annual EU legislated PM10 limit of 40 μg m-3. Since 2010, coarse mode levels have decreased at all sites. The reported decrease was equal to 30% at AMX. As a result, since 2010 the observed levels comply with the EU legislation threshold. Satellite observations of Aerosol Optical Thickness (AOT) Moderate Resolution Imaging Spectroradiometer (MODIS) onboard NASA

  10. Ionic and carbonaceous compositions of PM10, PM2.5 and PM1.0 at Gosan ABC Superstation and their ratios as source signature

    Directory of Open Access Journals (Sweden)

    S. Kim

    2012-02-01

    Full Text Available PM1.0, PM2.5, and PM10 were sampled at Gosan ABC Superstation on Jeju Island from August 2007 to September 2008. The carbonaceous aerosols were quantified with the thermal/optical reflectance (TOR method, which produced five organic carbon (OC fractions, OC1, OC2, OC3, OC4, and pyrolyzed organic carbon (OP, and three elemental carbon (EC fractions, EC1, EC2, and EC3. The mean mass concentrations of PM1.0, PM2.5, and PM10 were 13.7 μg m−3, 17.2 μg m−3, and 28.4 μg m−3, respectively. The averaged mass fractions of OC and EC were 23.0% and 10.4% for PM1.0, 22.9% and 9.8% for PM2.5, and 16.4% and 6.0% for PM10. Among the OC and EC sub-components, OC2 and EC2+3 were enriched in the fine mode, but OC3 and OC4 in the coarse mode. The filter-based PM1.0 EC agreed well with black carbon (BC measured by an Aethalometer, and PM10 EC was higher than BC, implying less light absorption by larger particles. EC was well correlated with sulfate, resulting in good relationships of sulfate with both aerosol scattering coefficient measured by Nephelometer and BC concentration. Our measurements of EC confirmed the definition of EC1 as char-EC emitted from smoldering combustion and EC2+3 as soot-EC generated from higher-temperature combustion such as motor vehicle exhaust and coal combustion (Han et al., 2010. In particular, EC1 was strongly correlated with potassium, a traditional biomass burning indicator, except during the summer, when the ratio of EC1 to EC2+3 was the lowest. We also found the ratios of major chemical species to be a useful tool to constrain the main sources of aerosols, by which the five air masses were well distinguished: Siberia, Beijing, Shanghai, Yellow Sea, and East Sea types. Except Siberian air, the continental background of the study region, Beijing plumes showed the highest EC1 (and OP to sulfate ratio, which implies that this air mass had the highest net warming by aerosols of the four air masses. Shanghai-type air, which was

  11. CARACTERIZACIÓN QUÍMICA DE MATERIAL PARTICULADO PM10 EN LA ATMÓSFERA DE RIOHACHA-LA GUAJIRA COLOMBIA

    OpenAIRE

    Calos Julio Doria Argumedo; Juan Reynerio Fagundo Castillo

    2017-01-01

    Teniendo en cuenta la importancia desde el punto de vista de la contaminación ambiental, que tienen las partículas inhalables PM 10 en ambientes urbanos, y que los efectos que se puedan generar en la salud dependen de la composición química del material formado por partículas, se realizó este estudio con el objetivo de revelar la composición química de las partículas atmosféricas a través de técnicas de Espectrofotometría UV-VIS y Espectrometría de Masas con fuente de Plasma de Acoplamiento, ...

  12. Caracterización Quimica de material particulado fraciión respirable pm 10 en la atmósfera de Rioacha la Guajira Colombia

    OpenAIRE

    Calos Julio Doria Argumedo; Juan Reynerio Fagundo Castillo

    2017-01-01

    Teniendo en cuenta la importancia desde el punto de vista de la contaminación ambiental, que tienen las partículas inhalables PM 10 en ambientes urbanos, y que los efectos que se puedan generar en la salud dependen de la composición química del material formado por partículas, se realizó este estudio con el objetivo de revelar la composición química de las partículas atmosféricas a través de técnicas de Espectrofotometría UV-VIS y Espectrometría de Masas con fuente de Plasma de Acoplamiento, ...

  13. Aerosol Characterization at the WMO-GAW Station of Mt. Cimone (2165 m a.s.l.) by 7Be, 210Pb and PM10

    International Nuclear Information System (INIS)

    Tositti, Laura; Brattich, Erika; Cinelli, Giorgia; Cristofanelli, Paolo; Bonasoni, Paolo

    2011-01-01

    The importance of environmental radionuclides in the study of atmosphere and climate dynamics has long been recognized in the course of the last decades. The radiotracer method provides a powerful tool for the basic characterization of transfer and transformation mechanisms occurring both at local and large scale. For this reason several radionuclides, namely 7 Be, 210 Pb, 222 Rn and others are included among the key atmospheric components that are routinely monitored within the WMO-GAW network. In this work we will describe the long term monitoring activity of 7 Be, 210 Pb in the PM 10 fraction at Mt. Cimone station, a global WMO-GAW station in the Northern Italian Apennines hosting a complex activity of atmospheric research. Investigations in progress is aimed at characterizing the phenomenologies of ozone as well as of mineral dust incursions, two parameters of outstanding climatological relevance by means of several statistical methods including: time series analysis, multivariate analysis and source apportionment techniques

  14. DETERMINACIÓN DE LA PRESENCIA DE PARTÍCULAS (PM 10 ) EN PERÚ PRODUCIDAS POR QUEMA DE BIOMASA CON AYUDA DE MODELOS NUMÉRICOS

    OpenAIRE

    Moya Álvarez, Aldo Saturnino; Arredondo, René Estevan; Yuli Posadas, Ricardo Ángel

    2017-01-01

    Resumen Con el objetivo de implementar una red de monitoreo de partículas (PM10) en Perú, se realiza una investigación con ayuda del modelo de pronóstico e investigaciones sobre el tiempo, acoplado con el modelo de química atmosférica (WRF-CHEM, por sus siglas en inglés) para determinar el transporte y dispersión de dichas partículas, producidas por la quema de biomasa, ya sea en Perú o en regiones aledañas. Se tomaron los datos de emisiones del inventario de incendios del Centro Nacional de ...

  15. Chemical characteristics and influence of continental outflow on PM1.0, PM2.5 and PM10 measured at Tuoji island in the Bohai Sea.

    Science.gov (United States)

    Zhang, Junmei; Yang, Lingxiao; Mellouki, Abdelwahid; Wen, Liang; Yang, Yumeng; Gao, Ying; Jiang, Pan; Li, Yanyan; Wang, Wenxing

    2016-12-15

    To investigate the chemical characteristics and sources of size-segregated particles in the background region, PM 1.0 , PM 2.5 and PM 10 samples were collected in Tuoji Island (TI) during the winter of 2014. Water-soluble inorganic ions (WSIIs) including Na + , NH 4 + , K + , Mg 2+ , Ca 2+ , Cl - , NO 3 - and SO 4 2- , organic carbon (OC) and elemental carbon (EC) and water-soluble organic carbon (WSOC) were analysed. The average mass concentrations of PM 1.0 , PM 2.5 and PM 10 were 44.5μg/m 3 , 62.0μg/m 3 and 94.4μg/m 3 , respectively, and particles were importantly enriched in PM 1.0 . Secondary WSIIs (NH 4 + , NO 3 - and SO 4 2- ) were the most abundant species, and their contribution was highest in PM 1.0 . The average values of NOR and SOR were more than 0.1 in PM 1.0 , suggesting that secondary formation of SO 4 2- and NO 3 - from the gas precursors SO 2 and NO 2 occurred in PM 1.0 . Secondary organic carbon accounted for 62.3% in PM 1.0 , 61.9% in PM 1.0-2.5 and 48.9% in PM 2.5-10 of OC, formed mainly in the fine mode. The particles concentrations were mainly affected by air mass from the North China Plain, especially the air mass from the southwest of Shandong province, which had low speed and altitude. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Characteristics of lead isotope ratios and elemental concentrations in PM 10 fraction of airborne particulate matter in Shanghai after the phase-out of leaded gasoline

    Science.gov (United States)

    Zheng, Jian; Tan, Mingguang; Shibata, Yasuyuki; Tanaka, Atsushi; Li, Yan; Zhang, Guilin; Zhang, Yuanmao; Shan, Zuci

    The stable lead (Pb) isotope ratios and the concentrations of 23 elements, including heavy metals and toxic elements, were measured in the PM 10 airborne particle samples collected at seven monitoring sites in Shanghai, China, to evaluate the current elemental compositions and local airborne Pb isotope ratio characteristics. Some source-related samples, such as cement, coal and oil combustion dust, metallurgic dust, vehicle exhaust particles derived from leaded gasoline and unleaded gasoline, and polluted soils were analyzed for their Pb content and isotope ratio and compared to those observed in PM 10 samples. Airborne Pb concentration ranged from 167 to 854 ng/m 3 in the seven monitored sites with an average of 515 ng/m 3 in Shanghai, indicating that a high concentration of Pb remains in the air after the phasing out of leaded gasoline. Lead isotopic compositions in airborne particles ( 207Pb/ 206Pb, 0.8608±0.0018; 208Pb/ 206Pb, 2.105±0.005) are clearly distinct from the vehicle exhaust particles ( 207Pb/ 206Pb, 0.8854±0.0075; 208Pb/ 206Pb, 2.145±0.006), suggesting that the automotive lead is not currently the major component of Pb in the air. By using a binary mixing equation, a source apportionment based on 207Pb/ 206Pb ratios, indicates that the contribution from automotive emission to the airborne Pb is around 20%. The Pb isotope ratios obtained in the source-related samples confirmed that the major emission sources are metallurgic dust, coal combustion, and cement.

  17. Variabilidad temporal del PM10 en Bahía Blanca (Argentina y su relación con variables climáticas

    Directory of Open Access Journals (Sweden)

    Alicia M. Campo

    2017-01-01

    Full Text Available La contaminación atmosférica afecta a ciudades y países de todo el planeta. Uno de los conta- minantes atmosféricos más comunes es el material particulado atmosférico, que tiene directa incidencia sobre la salud de la población (OMS, 2006. Las condiciones meteorológicas definen en gran medida su concentración a nivel troposférico. Por consiguiente, el objetivo del presente trabajo es analizar la variabilidad temporal del PM10 de la ciudad de Bahía Blanca (Argentina, estableciendo posibles relaciones entre dicho comportamiento y variables físicas y antropogéni- cas que pueden incidir en su dinámica. Se observó que la concentración del material particulado en Bahía Blanca se relaciona con factores naturales y antropogénicos. El flujo vehicular y las actividades portuarias, principalmente el transporte y almacenamiento de granos, favorecen la producción del contaminante. Esto se manifiesta en una distribución diferencial a lo largo del día y entre días laborables y no laborables. La alta concentración de PM10 se ve afectada por la presencia de vientos de componente Norte y de altas velocidades, que suelen estar acompañados de nubes de polvo y humo. También fenómenos naturales, como la erupción del Complejo Vol- cánico Puyehue-Cordón Caulle, inciden en los valores hallados.

  18. [PM10 exposure-related respiratory symptoms and disease in children living in and near five coal-mining areas in the Cesar department of Colombia].

    Science.gov (United States)

    Quiroz-Arcentales, Leonardo; Hernández-Flórez, Luis J; Agudelo Calderón, Carlos A; Medina, Katalina; Robledo-Martínez, Rocío; Osorio-García, Samuel D

    2013-01-01

    Establishing the prevalence of respiratory symptoms and disease in children aged less than 12 years-old living within the Cesar department's coal-mining area and possible associated factors. This was a cross-sectional study of 1,627 children aged less than 10 years-old living in and near coal-mining areas in the Cesar department who were exposed to different levels of PM10 from 2008-2010; their PM10 exposure-related symptoms and respiratory diseases were measured, seeking an association with living in areas exposed to particulate material. Children living in areas close to coal-mining activity which also had high traffic volume had a higher rate of probable cases of asthma; those living in areas with traffic (not no coal-mining) were absent from school for more days due to acute respiratory disease. Respiratory symptoms were most commonly found in children experiencing living conditions which exposed them to cigarette or firewood smoke indoors, living in houses made with wattle and daub or adobe walls, living where animals were kept, living in damp housing and diesel-powered dump trucks operating within 100 m or less of their housing. Living in areas having high traffic volume increased the risk of respiratory symptoms, acute respiratory disease and being absent from school. All the effects studied were associated with intramural conditions, individual factors or those associated with the immediate surroundings thereby coinciding with results found in similar studies regarding air pollution and health. It is thus suggested that regional strategies and policy be created for controlling and monitoring the air quality and health of people living in the Cesar department.

  19. Short-term exposure to PM 10, PM 2.5, ultrafine particles and CO 2 for passengers at an intercity bus terminal

    Science.gov (United States)

    Cheng, Yu-Hsiang; Chang, Hsiao-Peng; Hsieh, Cheng-Ju

    2011-04-01

    The Taipei Bus Station is the main transportation hub for over 50 bus routes to eastern, central, and southern Taiwan. Daily traffic volume at this station is about 2500 vehicles, serving over 45,000 passengers daily. The station is a massive 24-story building housing a bus terminal, a business hotel, a shopping mall, several cinemas, offices, private residential suites, and over 900 parking spaces. However, air quality inside this bus terminal is a concern as over 2500 buses are scheduled to run daily. This study investigates the PM 10, PM 2.5, UFP and CO 2 levels inside and outside the bus terminal. All measurements were taken between February and April 2010. Measurement results show that coarse PM inside the bus terminal was resuspended by the movement of large numbers of passengers. The fine and ultrafine PM in the station concourse were from outside vehicles. Moreover, fine and ultrafine PM at waiting areas were exhausted directly from buses in the building. The CO 2 levels at waiting areas were likely elevated by bus exhaust and passengers exhaling. The PM 10, PM 2.5 and CO 2 levels at the bus terminal were lower than Taiwan's EPA suggested standards for indoor air quality. However, UFP levels at the bus terminal were significantly higher than those in the urban background by about 10 times. Therefore, the effects of UFPs on the health of passengers and workers must be addressed at this bus terminal since the levels of UFPs are higher than >1.0 × 10 5 particles cm -3.

  20. Cytogenetic instability in populations with residential proximity to open-pit coal mine in Northern Colombia in relation to PM10 and PM2.5 levels.

    Science.gov (United States)

    Espitia-Pérez, Lyda; da Silva, Juliana; Espitia-Pérez, Pedro; Brango, Hugo; Salcedo-Arteaga, Shirley; Hoyos-Giraldo, Luz Stella; de Souza, Claudia T; Dias, Johnny F; Agudelo-Castañeda, Dayana; Valdés Toscano, Ana; Gómez-Pérez, Miguel; Henriques, João A P

    2018-02-01

    Epidemiological studies indicate that living in proximity to coal mines is correlated with numerous diseases including cancer, and that exposure to PM 10 and PM 2.5 components could be associated with this phenomenon. However, the understanding