WorldWideScience

Sample records for single-point ir detector

  1. Combined contactless conductometric, photometric, and fluorimetric single point detector for capillary separation methods.

    Science.gov (United States)

    Ryvolová, Markéta; Preisler, Jan; Foret, Frantisek; Hauser, Peter C; Krásenský, Pavel; Paull, Brett; Macka, Mirek

    2010-01-01

    This work for the first time combines three on-capillary detection methods, namely, capacitively coupled contactless conductometric (C(4)D), photometric (PD), and fluorimetric (FD), in a single (identical) point of detection cell, allowing concurrent measurements at a single point of detection for use in capillary electrophoresis, capillary electrochromatography, and capillary/nanoliquid chromatography. The novel design is based on a standard 6.3 mm i.d. fiber-optic SMA adapter with a drilled opening for the separation capillary to go through, to which two concentrically positioned C(4)D detection electrodes with a detection gap of 7 mm were added on each side acting simultaneously as capillary guides. The optical fibers in the SMA adapter were used for the photometric signal (absorbance), and another optical fiber at a 45 degrees angle to the capillary was applied to collect the emitted light for FD. Light emitting diodes (255 and 470 nm) were used as light sources for the PD and FD detection modes. LOD values were determined under flow-injection conditions to exclude any stacking effects: For the 470 nm LED limits of detection (LODs) for FD and PD were for fluorescein (1 x 10(-8) mol/L) and tartrazine (6 x 10(-6) mol/L), respectively, and the LOD for the C(4)D was for magnesium chloride (5 x 10(-7) mol/L). The advantage of the three different detection signals in a single point is demonstrated in capillary electrophoresis using model mixtures and samples including a mixture of fluorescent and nonfluorescent dyes and common ions, underivatized amino acids, and a fluorescently labeled digest of bovine serum albumin.

  2. Encapsulated thermopile detector array for IR microspectrometer

    NARCIS (Netherlands)

    Wu, H.; Emadi, A.; De Graaf, G.; Wolffenbuttel, R.F.

    2010-01-01

    The miniaturized IR spectrometer discussed in this paper is comprised of: slit, planar imaging diffraction grating and Thermo-Electric (TE) detector array, which is fabricated using CMOS compatible MEMS technology. The resolving power is maximized by spacing the TE elements at an as narrow as

  3. SAPhIR: a fission-fragment detector

    International Nuclear Information System (INIS)

    Theisen, Ch.; Gautherin, C.; Houry, M.; Korten, W.; Le Coz, Y.; Lucas, R.; Barreau, G.; Doan, T. P.; Belier, G.; Meot, V.; Ethvignot, Th.; Cahan, B.; Le Coguie, A.; Coppolani, X.; Delaitre, B.; Le Bourlout, P.; Legou, Ph.; Maillard, O.; Durand, G.; Bouillac, A.

    1998-01-01

    SAPhIR is the acronym for S a clay A q uitaine P ho tovoltaic cells for I s omer R e search. It consists of solar cells, used for fission-fragment detection. It is a collaboration between 3 laboratories: CEA Saclay, CENBG Bordeaux and CEA Bruyeres le Chatel. The coupling of a highly efficient fission-fragment detector like SAPhIR with EUROBALL will provide new insights in the study of very deformed nuclear matter and in the spectroscopy of neutron-rich nuclei

  4. Fast rise time IR detectors for lepton colliders

    International Nuclear Information System (INIS)

    Drago, A.; Bini, S.; Guidi, M. Cestelli; Marcelli, A.; Pace, E.

    2016-01-01

    Diagnostics is a fundamental issue for accelerators whose demands are continuously increasing. In particular bunch-by-bunch diagnostics is a key challenge for the latest generation of lepton colliders and storage rings. The Frascati Φ-factory, DAΦNE, colliding at 1.02 GeV in the centre of mass, hosts in the main rings few synchrotron radiation beamlines and two of them collect the synchrotron radiation infrared emission: SINBAD from the electron ring and 3+L from the positron ring. At DAΦNE each bucket is 2.7 ns long and particles are gathered in bunches emitting pulsed IR radiation, whose intensity in the long wavelength regime is directly proportional to the accumulated particles. Compact uncooled photoconductive HgCdTe detectors have been tested in both beamlines using dedicated optical layouts. Actually, the fast rise time of HgCdTe semiconductors give us the chance to test bunch-by-bunch devices for both longitudinal and transverse diagnostics. For the longitudinal case, single pixel detectors have been used, while for the transverse diagnostics, multi-pixel array detectors, with special custom design, are under test. This contribution will briefly describe the status of the research on fast IR detectors at DAΦNE, the results obtained and possible foreseen developments.

  5. Persistence in the WFC3 IR Detector: Intrinsic Variability

    Science.gov (United States)

    Long, Knox S.; Baggett, Sylvia M.

    2018-03-01

    When the WFC3 IR detector is exposed to a bright source or sources, the sources can appear as afterimages in subsequent exposures, a phenomenon known as persistence. This can affect the science obtained with the IR channel. We have been involved in an effort to predict the brightness of the afterimages so that users can (at a minimum) flag the affected pixels and remove them from their analysis or (even better) subtract the afterimages from their science images to salvage the data. The ability of any model to remove afterimages depends on the degree to which persistence is the same for identical sets of exposures. We investigate possible time variability of persistence in the WFC3 detector using sets of (almost) identical visits comprised of single exposures of Omega Cen followed by a series of darks in which persistence is measured. We analyze 8 data sets, each consisting of two or three identical visits, with stimulus exposures between 49 and 1199 s, and find clear evidence of variability in several of the datasets in darks taken within 1000 s of the stimulus exposure. In most of the datasets, the difference in persistence for saturated pixels in the stimulus exposure is a power law decay; the visit with higher persistence has a higher power law amplitude. There was nothing unusual about the observing conditions preceding and during each of these visits that can explain the discrepancy in persistence levels. Variation in persistence implies that: (1) Unless and until the source of the variability is understood, any persistence model for the WFC3 array will be limited in its ability to predict persistence in a single observation, and, (2) as a consequence, users should always carefully inspect the results of any attempt to subtract persistence from WFC3 IR data based on a model prediction.

  6. Advantages of using 192Ir γ-ray flaw detector for some products

    International Nuclear Information System (INIS)

    Qin Xiqi

    1989-01-01

    This paper describes the advantages of 192 Ir γ-ray flaw detector made in China in welding seam testings. The authors made a comparison between 192 Ir γ-ray and X-ray machine. 192 Ir γ-ray machine showed many advantages, such as shorter working hours and less labour intensity

  7. Development of Strained-Layer Superlattice (SLS) IR Detector Camera

    Data.gov (United States)

    National Aeronautics and Space Administration — Strained Layer Superlattice (SLS) detectors are a new class of detectors which may be the next generation of band-gap engineered, large format infrared detector...

  8. Thin film encapsulated 1D thermoelectric detector in an IR microspectrometer

    NARCIS (Netherlands)

    Wu, H.; Emadi, A.; De Graaf, G.; Wolffenbuttel, R.F.

    2010-01-01

    A thermopile-based detector array for use in a miniaturized Infrared (IR) spectrometer has been designed and fabricated using CMOS compatible MEMS technology. The emphasis is on the optimal of the detector array at the system level, while considering the thermal design, the dimensional constraints

  9. Ultra-Low-Noise Sub-mm/Far-IR Detectors for Space-Based Telescopes

    Science.gov (United States)

    Rostem, Karwan

    The sub-mm and Far-IR spectrum is rich with information from a wide range of astrophysical sources, including exoplanet atmospheres and galaxies at the peak star formation. In the 10-400 μm range, the spectral lines of important chemical species such H2O, HD, and [OI] can be used to map the formation and evolution of planetary systems. Dust emission in this spectral range is also an important tool for characterizing the morphology of debris disks and interstellar magnetic fields. At larger scales, accessing the formation and distribution of luminous Far-IR and sub-mm galaxies is essential to understanding star formation triggers, as well as the last stages of reionization at z 6. Detector technology is essential to realizing the full science potential of a next-generation Far-IR space telescope (Far-IR Surveyor). The technology gap in large-format, low-noise and ultra-low-noise Far-IR direct detectors is specifically highlighted by NASA's Cosmic Origins Program, and prioritized for development now to enable a flagship mission such as the Far-IR Surveyor that will address the key Cosmic Origins science questions of the next two decades. The detector requirements for a mid-resolution spectrometer are as follows: (1) Highly sensitive detectors with performance approaching 10^-19 - 10^-20 WHz 1/2 for background- limited operation in telescopes with cold optics. (2) Detector time constant in the sub- millisecond range. (3) Scalable architecture to a kilo pixel array with uniform detector characteristics. (4) Compatibility with space operation in the presence of particle radiation. We propose phononic crystals to meet the requirements of ultra-low-noise thermal detectors. By design, a phononic crystal exhibits phonon bandgaps where heat transport is forbidden. The size and location of the bandgaps depend on the elastic properties of the dielectric and the geometry of the phononic unit cell. A wide-bandwidth low-pass thermal filter with a cut-off frequency of 1.5 GHz and

  10. IV-VI mid-IR tunable lasers and detectors with external resonant cavities

    Science.gov (United States)

    Zogg, H.; Rahim, M.; Khiar, A.; Fill, M.; Felder, F.; Quack, N.; Blunier, S.; Dual, J.

    2009-08-01

    Wavelength tunable emitters and detectors in the mid-IR wavelength region allow applications including thermal imaging and spectroscopy. Such devices may be realized using a resonant cavity. By mechanically changing the cavity length with MEMS mirror techniques, the wavelengths may be tuned over a considerable range. Vertical external cavity surface emitting lasers (VECSEL) may be applied for gas spectroscopy. Resonant cavity enhanced detectors (RCED) are sensitive at the cavity resonance only. They may be applied for low resolution spectroscopy, and, when arrays of such detectors are realized, as multicolor IR-FPA or IR-AFPA (IR-adaptive focal plane arrays). We review mid-infrared RCEDs and VECSELs using narrow gap IV-VI (lead chalcogenide) materials like PbTe and PbSe as the active medium. IV-VIs are fault tolerant and allow easy wavelength tuning. The VECSELs operate up to above room temperature and emit in the 4 - 5 μm range with a PbSe active layer. RCEDs with PbTe absorbing layers above 200 K operating temperature have higher sensitivities than the theoretical limit for a similar broad-band detector coupled with a passive tunable band-filter.

  11. New Type Far IR and THz Schottky Barrier Detectors for Scientific and Civil Application

    Directory of Open Access Journals (Sweden)

    V. G. Ivanov

    2011-01-01

    Full Text Available The results of an experimental investigation into a new type of VLWIR detector based on hot electron gas emission and architecture of the detector are presented and discussed. The detectors (further referred to as HEGED take advantage of the thermionic emission current change effect in a semiconductor diode with a Schottky barrier (SB as a result of the direct transfer of the absorbed radiation energy to the system of electronic gas in the quasimetallic layer of the barrier. The possibility of detecting radiation having the energy of quantums less than the height of the Schottky diode potential barrier and of obtaining a substantial improvement of a cutoff wavelength to VLWIR of the PtSi/Si detector has been demonstrated. The complementary contribution of two physical mechanisms of emanation detection—“quantum” and hot electrons gas emission—has allowed the creation of a superwideband IR detector using standard silicon technology.

  12. Persistence in the WFC3 IR Detector: An Area Dependent Model

    Science.gov (United States)

    Long, Knox S.; Baggett, Sylvia M.

    2018-05-01

    When the IR detector on WFC3 is exposed to a bright source or sources, the sources not only appear in the original exposure, but can appear as afterimages in later exposures, a phenomenon known as persistence. The magnitude and duration of persistence for a fixed stimulus varies somewhat across the face of the detector. Our previous attempts to characterize this variation were limited to a correction that captures only the variation in the magnitude. Here we describe a simple model which allows for variations both in the magnitude and the duration of the persistence, and then evaluate quantitatively how much improvement this model provides. We conclude that while this was a useful experiment, it does not result in a marked improvement in our ability to predict persistence in the WFC3/IR array. We discuss why this was the case, and possible paths forward.

  13. Theory of Single Point Incremental Forming

    DEFF Research Database (Denmark)

    Martins, P.A.F.; Bay, Niels; Skjødt, Martin

    2008-01-01

    This paper presents a closed-form theoretical analysis modelling the fundamentals of single point incremental forming and explaining the experimental and numerical results available in the literature for the past couple of years. The model is based on membrane analysis with bi-directional in-plan......-plane contact friction and is focused on the extreme modes of deformation that are likely to be found in single point incremental forming processes. The overall investigation is supported by experimental work performed by the authors and data retrieved from the literature.......This paper presents a closed-form theoretical analysis modelling the fundamentals of single point incremental forming and explaining the experimental and numerical results available in the literature for the past couple of years. The model is based on membrane analysis with bi-directional in...

  14. Dosimetric measurements of an 192Ir HDR source with a diamond detector

    International Nuclear Information System (INIS)

    Rustgi, Surendra N.

    1996-01-01

    Purpose: To study the feasibility of using a diamond detector for the dosimetry of a high dose rate (HDR) 192 Ir source and to compare the measurement results with published data and calculations from a commercial treatment planning system. Materials and methods: The sensitive volume of the diamond detector consists of a disk of 0.26 mm thickness and 3 mm diameter. The detector was applied an external bias of +100 V and was preirradiated to a dose of 500 cGy to stabilize its response. The 192 Ir source from the Nucletron microSelectron unit has an active diameter of 0.6 mm and a length of 3.5 mm. Photon fluence anisotropy factors in air were measured at distances of 5 and 10 cm from two sources and compared with TLD measurements. Dose profiles and isodose distributions were measured at several distances from the source and compared with calculations from a Nucletron treatment planning system. These dose calculations in water use a point source approximation with the anisotropy factors independent of the radial distance from the source. Results: The photon fluence around the 192 Ir HDR source, measured with a diamond detector at distances of 5 and 10 cm from the source, is very anisotropic. Compared to the source transverse direction, the photon fluence intensity along the source axis reduces to approximately 60%. Measurements performed on two sources indicate that the photon anisotropy does not change with distance in air. Within experimental uncertainty, similar results were obtained with TLD rods and are in excellent agreement with published anisotropy factors 1 . Dose profiles, measured with the diamond detector in a water phantom, at distances of 1,2,3 and 5 cm from the source, are found to be in excellent agreement with the Nucletron planning system calculations. Similar excellent agreement is observed between the measured and calculated isodose curves in planes parallel to the source plane. Conclusion: The diamond detector has been demonstrated to be suitable

  15. A car-borne highly sensitive near-IR diode-laser methane detector

    International Nuclear Information System (INIS)

    Berezin, A G; Ershov, Oleg V; Shapovalov, Yu P

    2003-01-01

    A highly sensitive automated car-borne detector for measuring methane concentration in real time is designed, developed and tested under laboratory and field conditions. Measurements were made with the help of an uncooled tunable near-IR 1.65-μm laser diode. The detector consists of a multipass optical cell with a 45-m long optical path and a base length of 0.5 m. The car-borne detector is intended for monitoring the methane concentration in air from the moving car to reveal the leakage of domestic gas. The sensitivity limit (standard deviation) under field conditions is 1 ppm (20 ppb under laboratory conditions) for a measuring time of 0.4 s. The measuring technique based on the detection of a single methane line ensured a high selectivity of methane detector relative to other gases. The methane detector can be easily modified for measuring other simple-molecule gases (e.g., CO, CO 2 , HF, NO 2 , H 2 O) by replacing the diode laser and varying the parameters of the control program. (special issue devoted to the memory of academician a m prokhorov)

  16. Study on the mechanism of using IR illumination to improve the carrier transport performance of CdZnTe detector

    Science.gov (United States)

    Mao, Yifei; Zhang, Jijun; Lin, Liwen; Lai, Jianming; Min, Jiahua; Liang, Xiaoyan; Huang, Jian; Tang, Ke; Wang, Linjun

    2018-04-01

    Different wavelength IR light (770-1150 nm) was used to evaluate the effect of IR light on the carrier transport performance of CdZnTe detector. The effective mobility-lifetime product (μτ*) of CdZnTe achieved 10-2 cm2 V-1 when the IR wavelength was in the range of 820-920 nm, but decreased to 1 × 10-4 cm2 V-1 when the wavelength was longer than 920 nm. The mechanism about how IR light affecting the carrier transport property of CdZnTe detector was analyzed with Shockley-Read-Hall model. The defect of doubly ionized Cd vacancy ([VCd]2-) was found to be the main factor that assist IR light affecting the μτ of CdZnTe detector. The photoconductive experiment under 770-1150 nm IR illumination was carried out, and three kinds of photocurrent curve were detected and analyzed by solving the Hecht equation. The experiments demonstrated the effect of [VCd]2- defect on the carrier transport property of CdZnTe detector under IR illumination.

  17. Finding a single point of truth

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, S.; Thijssen, H. [Autodesk Inc, Toronto, ON (Canada); Laslo, D.; Martin, J. [Autodesk Inc., San Rafael, CA (United States)

    2010-07-01

    Electric utilities collect large volumes of data at every level of their business, including SCADA, Smart Metering and Smart Grid initiatives, LIDAR and other 3D imagery surveys. Different types of database systems are used to store the information, rendering data flow within the utility business process extremely complicated. The industry trend has been to endure redundancy of data input and maintenance of multiple copies of the same data across different solution data sets. Efforts have been made to improve the situation with point to point interfaces, but with the tools and solutions available today, a single point of truth can be achieved. Consolidated and validated data can be published into a data warehouse at the right point in the process, making the information available to all other enterprise systems and solutions. This paper explained how the single point of truth spatial data warehouse and process automation services can be configured to streamline the flow of data within the utility business process using the initiate-plan-execute-close (IPEC) utility workflow model. The paper first discussed geospatial challenges faced by utilities and then presented the approach and technology aspects. It was concluded that adoption of systems and solutions that can function with and be controlled by the IPEC workflow can provide significant improvement for utility operations, particularly if those systems are coupled with the spatial data warehouse that reflects a single point of truth. 6 refs., 3 figs.

  18. Large-format platinum silicide microwave kinetic inductance detectors for optical to near-IR astronomy.

    Science.gov (United States)

    Szypryt, P; Meeker, S R; Coiffard, G; Fruitwala, N; Bumble, B; Ulbricht, G; Walter, A B; Daal, M; Bockstiegel, C; Collura, G; Zobrist, N; Lipartito, I; Mazin, B A

    2017-10-16

    We have fabricated and characterized 10,000 and 20,440 pixel Microwave Kinetic Inductance Detector (MKID) arrays for the Dark-speckle Near-IR Energy-resolved Superconducting Spectrophotometer (DARKNESS) and the MKID Exoplanet Camera (MEC). These instruments are designed to sit behind adaptive optics systems with the goal of directly imaging exoplanets in a 800-1400 nm band. Previous large optical and near-IR MKID arrays were fabricated using substoichiometric titanium nitride (TiN) on a silicon substrate. These arrays, however, suffered from severe non-uniformities in the TiN critical temperature, causing resonances to shift away from their designed values and lowering usable detector yield. We have begun fabricating DARKNESS and MEC arrays using platinum silicide (PtSi) on sapphire instead of TiN. Not only do these arrays have much higher uniformity than the TiN arrays, resulting in higher pixel yields, they have demonstrated better spectral resolution than TiN MKIDs of similar design. PtSi MKIDs also do not display the hot pixel effects seen when illuminating TiN on silicon MKIDs with photons with wavelengths shorter than 1 µm.

  19. Graphene oxide/carbon nanoparticle thin film based IR detector: Surface properties and device characterization

    Directory of Open Access Journals (Sweden)

    Farzana Aktar Chowdhury

    2015-10-01

    Full Text Available This work deals with the synthesis, characterization, and application of carbon nanoparticles (CNP adorned graphene oxide (GO nanocomposite materials. Here we mainly focus on an emerging topic in modern research field presenting GO-CNP nanocomposite as a infrared (IR radiation detector device. GO-CNP thin film devices were fabricated from liquid phase at ambient condition where no modifying treatments were necessary. It works with no cooling treatment and also for stationary objects. A sharp response of human body IR radiation was detected with time constants of 3 and 36 sec and radiation responsivity was 3 mAW−1. The current also rises for quite a long time before saturation. This work discusses state-of-the-art material developing technique based on near-infrared photon absorption and their use in field deployable instrument for real-world applications. GO-CNP-based thin solid composite films also offer its potentiality to be utilized as p-type absorber material in thin film solar cell, as well.

  20. Graphene oxide/carbon nanoparticle thin film based IR detector: Surface properties and device characterization

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Farzana Aktar [Experimental Physics Division, Atomic Energy Centre, 4, Kazi Nazrul Islam Avenue, Dhaka-1000 (Bangladesh); Hossain, Mohammad Abul [Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka-1000 (Bangladesh); Uchida, Koji; Tamura, Takahiro; Sugawa, Kosuke; Mochida, Tomoaki; Otsuki, Joe [College of Science and Technology, Nihon University, 1-8-14 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Mohiuddin, Tariq [Department of Physics, College of Science, Sultan Qaboos University, Muscat (Oman); Boby, Monny Akter [Department of Physics, Faculty of Science, University of Dhaka, Dhaka-1000 (Bangladesh); Alam, Mohammad Sahabul, E-mail: msalam@ksu.edu.sa [Department of Physics, Faculty of Science, University of Dhaka, Dhaka-1000 (Bangladesh); Department of Chemical Engineering, College of Engineering & King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)

    2015-10-15

    This work deals with the synthesis, characterization, and application of carbon nanoparticles (CNP) adorned graphene oxide (GO) nanocomposite materials. Here we mainly focus on an emerging topic in modern research field presenting GO-CNP nanocomposite as a infrared (IR) radiation detector device. GO-CNP thin film devices were fabricated from liquid phase at ambient condition where no modifying treatments were necessary. It works with no cooling treatment and also for stationary objects. A sharp response of human body IR radiation was detected with time constants of 3 and 36 sec and radiation responsivity was 3 mAW{sup −1}. The current also rises for quite a long time before saturation. This work discusses state-of-the-art material developing technique based on near-infrared photon absorption and their use in field deployable instrument for real-world applications. GO-CNP-based thin solid composite films also offer its potentiality to be utilized as p-type absorber material in thin film solar cell, as well.

  1. Low-noise mid-IR upconversion detector for improved IR-degenerate four-wave mixing gas sensing

    DEFF Research Database (Denmark)

    Høgstedt, Lasse; Dam, Jeppe Seidelin; Sahlberg, Anna-Lena

    2014-01-01

    -to-noise ratio. The two detectors are compared for the detection of a coherent degenerate four-wave mixing (DFWM) signal in the mid-infrared, and applied to measure trace-level acetylene in a gas flow at atmospheric pressure, probing its fundamental rovibrational transitions. In addition to lower noise...

  2. HST/WFC3: new capabilities, improved IR detector calibrations, and long-term performance stability

    Science.gov (United States)

    MacKenty, John W.; Baggett, Sylvia M.; Brammer, Gabriel; Hilbert, Bryan; Long, Knox S.; McCullough, Peter; Riess, Adam G.

    2014-08-01

    Wide Field Camera 3 (WFC3) is the most used instrument on board the Hubble Space Telescope. Providing a broad range of high quality imaging capabilities from 200 to 1700mn using Silicon CCD and HgCdTe IR detectors, WFC3 is fulfilling both our expectations and its formal requirements. With the re-establishment of the observatory level "spatial scan" capability, we have extended the scientific potential ofWFC3 in multiple directions. These controlled scans, often in combination with low resolution slit-less spectroscopy, enable extremely high precision differential photometric measurements of transiting exo-planets and direct measurement of sources considerably brighter than originally anticipated. In addition, long scans permit the measurement of the separation of star images to accuracies approaching 25 micro-arc seconds (a factor of 10 better than prior FGS or imaging measurements) enables direct parallax observations out to 4 kilo-parsecs. In addition, we have employed this spatial scan capability to both assess and improve the mid­ spatial frequency flat field calibrations. WFC3 uses a Teledyne HgCdTe 1014xl014 pixel Hawaii-lR infrared detector array developed for this mission. One aspect of this detector with implications for many types of science observations is the localized trapping of charge. This manifests itself as both image persistence lasting several hours and as an apparent response variation with photon arrival rate over a large dynamic range. Beyond a generally adopted observing strategy of obtaining multiple observations with small spatial offsets, we have developed a multi-parameter model that accounts for source flux, accumulated signal level, and decay time to predict image persistence at the pixel level. Using a running window through the entirety of the acquired data, we now provide observers with predictions for each individual exposure within several days of its acquisition. Ongoing characterization of the sources on infrared background and

  3. Development of Strained-Layer Superlattice (SLS) IR Detector Camera Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Strained Layer Superlattice (SLS) detectors are a new class of detectors which may be the next generation of band-gap engineered, large format infrared detector...

  4. A characterization of persistence at short times in the WFC3/IR detector

    Science.gov (United States)

    Gennaro, M.; Bajaj, V.; Long, K.

    2018-05-01

    Persistence in the WFC3/IR detector appears to decay as a power law as a function of time elapsed since the end of a stimulus. In this report we study departures from the power law at times shorter than a few hundreds seconds after the stimulus. In order to have better short-time cadence, we use the Multiaccum (.ima) files, which trace the accumulated charge in the pixels as function of time, rather than the final pipeline products (.flt files), which instead report the electron rate estimated via a linear fit to the accumulated charge vs. time relation. We note that at short times after the stimulus, the absolute change in persistence is the strongest, thus a linear fit to the accumulated signal (the .flt values) can be a poor representation of the strongly varying persistence signal. The already observed power-law decay of the persistence signal, still holds at shorter times, with typical values of the power law index, gamma in [-0.8,-1] for stimuli that saturate the WFC3 pixels. To a good degree of approximation, a single power law is a good fit to the persistence signal decay from 100 to 5000 seconds. We also detect a tapering-off in the power-law decay at increasingly shorter times. This change in behavior is of the order of Delta Gamma 0.02 - 0.05 when comparing power-law fits performed to the persistence signal from 0 up to 250 seconds and from 0 up to 4000 seconds after the stimulus, indicating that persistence decays slightly more rapidly as time progresses. Our results may suggest that for even shorter times, not probed by our study, the WFC3 persistence signal might deviate from a single power-law model.

  5. Detector Sampling of Optical/IR Spectra: How Many Pixels per FWHM?

    Science.gov (United States)

    Robertson, J. Gordon

    2017-08-01

    Most optical and IR spectra are now acquired using detectors with finite-width pixels in a square array. Each pixel records the received intensity integrated over its own area, and pixels are separated by the array pitch. This paper examines the effects of such pixellation, using computed simulations to illustrate the effects which most concern the astronomer end-user. It is shown that coarse sampling increases the random noise errors in wavelength by typically 10-20 % at 2 pixels per Full Width at Half Maximum, but with wide variation depending on the functional form of the instrumental Line Spread Function (i.e. the instrumental response to a monochromatic input) and on the pixel phase. If line widths are determined, they are even more strongly affected at low sampling frequencies. However, the noise in fitted peak amplitudes is minimally affected by pixellation, with increases less than about 5%. Pixellation has a substantial but complex effect on the ability to see a relative minimum between two closely spaced peaks (or relative maximum between two absorption lines). The consistent scale of resolving power presented by Robertson to overcome the inadequacy of the Full Width at Half Maximum as a resolution measure is here extended to cover pixellated spectra. The systematic bias errors in wavelength introduced by pixellation, independent of signal/noise ratio, are examined. While they may be negligible for smooth well-sampled symmetric Line Spread Functions, they are very sensitive to asymmetry and high spatial frequency sub-structure. The Modulation Transfer Function for sampled data is shown to give a useful indication of the extent of improperly sampled signal in an Line Spread Function. The common maxim that 2 pixels per Full Width at Half Maximum is the Nyquist limit is incorrect and most Line Spread Functions will exhibit some aliasing at this sample frequency. While 2 pixels per Full Width at Half Maximum is nevertheless often an acceptable minimum for

  6. Program computes single-point failures in critical system designs

    Science.gov (United States)

    Brown, W. R.

    1967-01-01

    Computer program analyzes the designs of critical systems that will either prove the design is free of single-point failures or detect each member of the population of single-point failures inherent in a system design. This program should find application in the checkout of redundant circuits and digital systems.

  7. Creating Helical Tool Paths for Single Point Incremental Forming

    DEFF Research Database (Denmark)

    Skjødt, Martin; Hancock, Michael H.; Bay, Niels

    2007-01-01

    Single point incremental forming (SPIF) is a relatively new sheet forming process. A sheet is clamped in a rig and formed incrementally using a rotating single point tool in the form of a rod with a spherical end. The process is often performed on a CNC milling machine and the tool movement...

  8. Development of optics and microwave multiplexers for far-IR and millimeter detector arrays

    Data.gov (United States)

    National Aeronautics and Space Administration — The future of experimental cosmology and astrophysics is intimately tied to the progress of remote sensing technology of millimeter and far-IR instruments. I will...

  9. Y-Ba-Cu-O thin films as high speed IR detectors

    International Nuclear Information System (INIS)

    Kwok, H.S.; Zheng, J.P.; Ying, Q.Y.

    1990-01-01

    Y-Ba-Cu-O thin film infrared detectors were fabricated and studied with various lasers. Operation of the detector in both the bolometric and nonbolometric modes was investigated at 10 microns with a CO2 laser. In the bolometric mode, the detectivity of the detector at 90 K was 2.1 x 10 to the 8th cm sq rt Hz/W with a response time of 15 microsec, corresponding to a bandwidth of 70 KHz. The speed of the detector in the nonbolometric mode was much faster and was beyond the instrument resolution. With a picosecond N2 laser, the output showed an instrument limited duration of 2 ns. The detectivity could not be determined in the nonbolometric mode due to the extremely low noise. The superconducting film quality is critical to the performance of these detectors. 27 refs

  10. Innovative monolithic detector for tri-spectral (THz, IR, Vis) imaging

    Science.gov (United States)

    Pocas, S.; Perenzoni, M.; Massari, N.; Simoens, F.; Meilhan, J.; Rabaud, W.; Martin, S.; Delplanque, B.; Imperinetti, P.; Goudon, V.; Vialle, C.; Arnaud, A.

    2012-10-01

    Fusion of multispectral images has been explored for many years for security and used in a number of commercial products. CEA-Leti and FBK have developed an innovative sensor technology that gathers monolithically on a unique focal plane arrays, pixels sensitive to radiation in three spectral ranges that are terahertz (THz), infrared (IR) and visible. This technology benefits of many assets for volume market: compactness, full CMOS compatibility on 200mm wafers, advanced functions of the CMOS read-out integrated circuit (ROIC), and operation at room temperature. The ROIC houses visible APS diodes while IR and THz detections are carried out by microbolometers collectively processed above the CMOS substrate. Standard IR bolometric microbridges (160x160 pixels) are surrounding antenna-coupled bolometers (32X32 pixels) built on a resonant cavity customized to THz sensing. This paper presents the different technological challenges achieved in this development and first electrical and sensitivity experimental tests.

  11. HVCMOS 35v1 Detector Characterization Using an IR eTCT Setup

    CERN Document Server

    Laroche, Stewart

    2015-01-01

    Silicon detectors are exposed to very high fluences (in excess of 1E16 particles*cm-2) in experiments like ATLAS and CMS, so it is paramount that their behavior is understood even after irradiation. To that end, irradiated prototype HVCMOS detectors were characterized using eTCT and IV curves. It was found that acceptor removal via irradiation increased the size of the charge collection region. At sufficient fluences, trap introduction became the dominant effect, and the charge collection region shrinks again.

  12. Single-point incremental forming and formability-failure diagrams

    DEFF Research Database (Denmark)

    Silva, M.B.; Skjødt, Martin; Atkins, A.G.

    2008-01-01

    In a recent work [1], the authors constructed a closed-form analytical model that is capable of dealing with the fundamentals of single point incremental forming and explaining the experimental and numerical results published in the literature over the past couple of years. The model is based...... of deformation that are commonly found in general single point incremental forming processes; and (ii) to investigate the formability limits of SPIF in terms of ductile damage mechanics and the question of whether necking does, or does not, precede fracture. Experimentation by the authors together with data...

  13. A calibration method for the measurement of IR detector spectral responses using a FTIR spectrometer equipped with a DTGS reference cell

    Science.gov (United States)

    Gravrand, Olivier; Wlassow, J.; Bonnefond, L.

    2014-07-01

    Various high performance IR detectors are today available on the market from QWIPs to narrow gap semiconductor photodiodes, which exhibit various spectral features. In the astrophysics community, the knowledge of the detector spectral shape is of first importance. This quantity (spectral QE or response) is usually measured by means of a monochromator followed by an integrating sphere and compared to a calibrated reference detector. This approach is usually very efficient in the visible range, where all optical elements are very well known, particularly the reference detector. This setup is also widely used in the near IR (up to 3μm) but as the wavelength increases, it becomes less efficient. For instance, the internal emittance of integrating spheres in the IR, and the bad knowledge of reference detectors for longer wavelengths tend to degrade the measurement reliability. Another approach may therefore be considered, using a Fourier transform IR spectrometer (FTIR). In this case, as opposed to the monochromator, the tested detector is not in low flux condition, the incident light containing a mix of different wavelengths. Therefore, the reference detector has to be to be sensitive (and known) in the whole spectral band of interest, because it will sense all those wavelengths at the same time. A popular detector used in this case is a Deuterated Triglycine Sulfate thermal detector (DTGS). Being a pyro detetector, the spectral response of such a detector is very flat, mainly limited by its window. However, the response of such a detector is very slow, highly depending on the temporal frequency of the input signal. Moreover, being a differential detector, it doesn't work in DC. In commercial FTIR spectrometers, the source luminance is usually continuously modulated by the moving interferometer, and the result is that the interferogram mixes optical spectral information (optical path difference) and temporal variations (temporal frequency) so that the temporal

  14. Doped Josephson tunneling junction for use in a sensitive IR detector

    International Nuclear Information System (INIS)

    Fletcher, J.C.; Saffren, M.M.

    1975-01-01

    A superconductive tunneling device having a modified tunnel barrier capable of supporting Josephson tunneling current is provided. The tunnel barrier located between a pair of electrodes includes a molecular species which is capable of coupling incident radiation of a spectrum characteristic of the molecular species into the tunnel barrier. The coupled radiation modulates the known Josephson characteristics of the superconducting device. As a result of the present invention, a superconductive tunneling device can be tuned or made sensitive to a particular radiation associated with the dopant molecular species. The present invention is particularly useful in providing an improved infrared detector. The tunnel barrier region can be, for example, an oxide of an electrode or frozen gas. The molecular species can be intermixed with the barrier region such as the frozen gas or deposited as one or more layers of molecules on the barrier region. The deposited molecules of the molecular species are unbonded and capable of responding to a radiation characteristic of the molecules. Semi-conductor material can be utilized as the molecular species to provide an increased selective bandwidth response. Finally, appropriate detector equipment can be utilized to measure the modulation of any of the Josephson characteristics such as critical current, voltage steps, Lambe-Jaklevic peaks and plasma frequency. (auth)

  15. Revisiting the fundamentals of single point incremental forming by

    DEFF Research Database (Denmark)

    Silva, Beatriz; Skjødt, Martin; Martins, Paulo A.F.

    2008-01-01

    Knowledge of the physics behind the fracture of material at the transition between the inclined wall and the corner radius of the sheet is of great importance for understanding the fundamentals of single point incremental forming (SPIF). How the material fractures, what is the state of strain...

  16. Detector de IR de lámina ferroeléctrica de (Pb,CaTiO3

    Directory of Open Access Journals (Sweden)

    González, A.

    2002-02-01

    Full Text Available A sol-gel (Pb0.76Ca0.24TiO3 solution was deposited onto Pt/MgO(100 substrates. Previous thermal treatment of the substrate and the high rate of crystallization heating promote an important preferred orientation along the polar axis, and therefore selfpolarization , very convenient for the use of IR pyroelectric detectors. By depositing circular electrodes, 7.10-3 cm2 of area, an array of small capacitors are developed which are characterized as detectors in standard conditions: radiation from a black-body at 500 K, modulated between 1-20 Hz, a lock-in amplifier and an electronic circuit to sense and treat the electrical response. Three main factors affecting the detector performances are analyzed: a Figures of merit of the pyroelectric material; b assembly of the whole parts of detector (substrate, electrodes, leads, frame, etc and c electronic circuitry to sense and amplify signals. Thermal isolation is concluding as the most important fact to improve responsivity.Se han obtenido depósitos multicapa de titanato de plomo modificado con calcio, (Pb0.76Ca0.24TiO3, mediante un método de sol-gel, sobre substratos de Pt/MgO(100. El tratamiento térmico del substrato y la cristalización de las multicapas mediante tasas de calentamiento rápidas causan el desarrollo de una importante orientación preferente según el eje polar, perpendicular al mismo, lo que supone una autopolarización muy rentable para su empleo en detectores piroeléctricos de radiación infrarroja. Mediante una configuración de electrodos discretos se fabrican minicondensadores de 7.10-3 cm2 de área con los que se caracteriza ópticamente el detector para condiciones estándar: cuerpo negro a 500 K, modulación mecánica de la radiación entre 1-20 Hz, una electrónica de acondicionamiento de la señal de respuesta y un amplificador sintonizado para medir la respuesta en voltaje. Se analiza el efecto de los tres factores que intervienen en la fabricación del detector: a

  17. IR detectors for the Infrared Atmospheric Sounding Interferometer (IASI) instrument payload for the METOP-1 ESA polar platform

    Science.gov (United States)

    Royer, Michel; Lorans, Dominique; Bischoff, Isabelle; Giotta, Dominique; Wolny, Michel

    1994-12-01

    IASI is an Infrared Atmospheric Sounding Interferometer devoted to the operational meteorology and to atmospheric studies and is to be installed on board the second ESA Polar Platform called METOP-1, planned to be launched in the year 2000. The main purpose of this high performance instrument is to record temperature and humidity profiles. The required lifetime is 4 years. This paper presents the characteristics of the LW IR detection arrays for the IASI spectrometer which consist of HgCdTe de- tectors. SAT has to develop the Engineering Model, Qualification Model and Fight Models of detectors, each having 4 pixels and AR-coated microlenses in a dedicated space housing equipped with a flexible line and a connector. An array is composed of HgCdTe photoconductive detectors. For this long wavelength the array is sensitive from 8.26 micrometers to 15.5 micrometers . The detectors, with sensitive areas of 900 x 900 micrometers 2, are 100 K operating with passive cooling. High quality HgCdTe material is a key feature for the manufacturing of high performance photoconductive detectors. Therefore epitaxial HgCdTe layers are used in this project. These epilayers are grown at CEA/LETI on lattice matched CdZnTe substrates, by Te-rich liquid phase epitaxy, based on a slider technique. The Cd content in the layer is carefully adjusted to meet the required cut off wavelength on the devices. After growth of the epilayers, the samples are annealed under Hg pressure in order to convert them into N type mate- rials. The electrical transport properties of the liquid phase epitaxied wafers are, at 100 K, mobility (mu) over 150,000 cm2/V.s and electrical concentration N of 1.5 1015 cm-3, the residual doping level being 1014 cm-3 at low temperature. On these materials the feasibility study of long wavelength HgCdTe photoconductors has been achieved with the following results: the responsivity is 330 V/W. The bias voltage is Vp=300 mV for a 4 mW limitation of power for each element. The

  18. The sandwich InGaAs/GaAs quantum dot structure for IR photoelectric detectors

    International Nuclear Information System (INIS)

    Moldavskaya, L. D.; Vostokov, N. V.; Gaponova, D. M.; Danil'tsev, V. M.; Drozdov, M. N.; Drozdov, Yu. N.; Shashkin, V. I.

    2008-01-01

    A new possibility for growing InAs/GaAs quantum dot heterostructures for infrared photoelectric detectors by metal-organic vapor-phase epitaxy is discussed. The specific features of the technological process are the prolonged time of growth of quantum dots and the alternation of the low-and high-temperature modes of overgrowing the quantum dots with GaAs barrier layers. During overgrowth, large-sized quantum dots are partially dissolved, and the secondary InGaAs quantum well is formed of the material of the dissolved large islands. In this case, a sandwich structure is formed. In this structure, quantum dots are arranged between two thin layers with an increased content of indium, namely, between the wetting InAs layer and the secondary InGaAs layer. The height of the quantum dots depends on the thickness of the GaAs layer grown at a comparatively low temperature. The structures exhibit intraband photoconductivity at a wavelength around 4.5 μm at temperatures up to 200 K. At 90 K, the photosensitivity is 0.5 A/W, and the detectivity is 3 x 10 9 cm Hz 1/2 W -1

  19. Laser-induced single point nanowelding of silver nanowires

    International Nuclear Information System (INIS)

    Dai, Shuowei; Li, Qiang; Liu, Guoping; Yang, Hangbo; Yang, Yuanqing; Zhao, Ding; Wang, Wei; Qiu, Min

    2016-01-01

    Nanowelding of nanomaterials opens up an emerging set of applications in transparent conductors, thin-film solar cells, nanocatalysis, cancer therapy, and nanoscale patterning. Single point nanowelding (SPNW) is highly demanded for building complex nanostructures. In this letter, the precise control of SPNW of silver nanowires is explored in depth, where the nanowelding is laser-induced through the plasmonic resonance enhanced photothermal effect. It is shown that the illumination position is a critical factor for the nanowelding process. As an example of performance enhancement, output at wire end can be increased by 65% after welding for a plasmonic nanocoupler. Thus, single point nanowelding technique shows great potentials for high-performance electronic and photonic devices based on nanowires, such as nanoelectronic circuits and plasmonic nanodevices.

  20. Laser-induced single point nanowelding of silver nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Shuowei; Li, Qiang, E-mail: qiangli@zju.edu.cn; Liu, Guoping; Yang, Hangbo; Yang, Yuanqing; Zhao, Ding; Wang, Wei; Qiu, Min, E-mail: minqiu@zju.edu.cn [State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2016-03-21

    Nanowelding of nanomaterials opens up an emerging set of applications in transparent conductors, thin-film solar cells, nanocatalysis, cancer therapy, and nanoscale patterning. Single point nanowelding (SPNW) is highly demanded for building complex nanostructures. In this letter, the precise control of SPNW of silver nanowires is explored in depth, where the nanowelding is laser-induced through the plasmonic resonance enhanced photothermal effect. It is shown that the illumination position is a critical factor for the nanowelding process. As an example of performance enhancement, output at wire end can be increased by 65% after welding for a plasmonic nanocoupler. Thus, single point nanowelding technique shows great potentials for high-performance electronic and photonic devices based on nanowires, such as nanoelectronic circuits and plasmonic nanodevices.

  1. Experience of using MOSFET detectors for dose verification measurements in an end-to-end 192Ir brachytherapy quality assurance system.

    Science.gov (United States)

    Persson, Maria; Nilsson, Josef; Carlsson Tedgren, Åsa

    Establishment of an end-to-end system for the brachytherapy (BT) dosimetric chain could be valuable in clinical quality assurance. Here, the development of such a system using MOSFET (metal oxide semiconductor field effect transistor) detectors and experience gained during 2 years of use are reported with focus on the performance of the MOSFET detectors. A bolus phantom was constructed with two implants, mimicking prostate and head & neck treatments, using steel needles and plastic catheters to guide the 192 Ir source and house the MOSFET detectors. The phantom was taken through the BT treatment chain from image acquisition to dose evaluation. During the 2-year evaluation-period, delivered doses were verified a total of 56 times using MOSFET detectors which had been calibrated in an external 60 Co beam. An initial experimental investigation on beam quality differences between 192 Ir and 60 Co is reported. The standard deviation in repeated MOSFET measurements was below 3% in the six measurement points with dose levels above 2 Gy. MOSFET measurements overestimated treatment planning system doses by 2-7%. Distance-dependent experimental beam quality correction factors derived in a phantom of similar size as that used for end-to-end tests applied on a time-resolved measurement improved the agreement. MOSFET detectors provide values stable over time and function well for use as detectors for end-to-end quality assurance purposes in 192 Ir BT. Beam quality correction factors should address not only distance from source but also phantom dimensions. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  2. Analysis on Single Point Vulnerabilities of Plant Control System

    International Nuclear Information System (INIS)

    Chi, Moon Goo; Lee, Eun Chan; Bae, Yeon Kyoung

    2011-01-01

    The Plant Control System (PCS) is a system that controls pumps, valves, dampers, etc. in nuclear power plants with an OPR-1000 design. When there is a failure or spurious actuation of the critical components in the PCS, it can result in unexpected plant trips or transients. From this viewpoint, single point vulnerabilities are evaluated in detail using failure mode effect analyses (FMEA) and fault tree analyses (FTA). This evaluation demonstrates that the PCS has many vulnerable components and the analysis results are provided for OPR-1000 plants for reliability improvements that can reduce their vulnerabilities

  3. Analysis on Single Point Vulnerabilities of Plant Control System

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Moon Goo; Lee, Eun Chan; Bae, Yeon Kyoung [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2011-08-15

    The Plant Control System (PCS) is a system that controls pumps, valves, dampers, etc. in nuclear power plants with an OPR-1000 design. When there is a failure or spurious actuation of the critical components in the PCS, it can result in unexpected plant trips or transients. From this viewpoint, single point vulnerabilities are evaluated in detail using failure mode effect analyses (FMEA) and fault tree analyses (FTA). This evaluation demonstrates that the PCS has many vulnerable components and the analysis results are provided for OPR-1000 plants for reliability improvements that can reduce their vulnerabilities.

  4. Failure mechanisms in single-point incremental forming of metals

    DEFF Research Database (Denmark)

    Silva, Maria B.; Nielsen, Peter Søe; Bay, Niels

    2011-01-01

    The last years saw the development of two different views on how failure develops in single-point incremental forming (SPIF). Today, researchers are split between those claiming that fracture is always preceded by necking and those considering that fracture occurs with suppression of necking. Each...... on formability limits and development of fracture. The unified view conciliates the aforementioned different explanations on the role of necking in fracture and is consistent with the experimental observations that have been reported in the past years. The work is performed on aluminium AA1050-H111 sheets...

  5. Single Point Incremental Forming using a Dummy Sheet

    DEFF Research Database (Denmark)

    Skjødt, Martin; Silva, Beatriz; Bay, Niels

    2007-01-01

    A new version of single point incremental forming (SPIF) is presented. This version includes a dummy sheet on top of the work piece, thus forming two sheets instead of one. The dummy sheet, which is in contact with the rotating tool pin, is discarded after forming. The new set-up influences....... The possible influence of friction between the two sheets is furthermore investigated. The results show that the use of a dummy sheet reduces wear of the work piece to almost zero, but also causes a decrease in formability. Bulging of the planar sides of the pyramid is reduced and surface roughness...

  6. Securing Single Points of Compromise (SPoC)

    Energy Technology Data Exchange (ETDEWEB)

    Belangia, David Warren [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-06-25

    Securing the Single Points of Compromise that provide central services to the institution’s environment is paramount to success when trying to protect the business. (Fisk, 2014) Time Based Security mandates protection (erecting and ensuring effective controls) that last longer than the time to detect and react to a compromise. When enterprise protections fail, providing additional layered controls for these central services provides more time to detect and react. While guidance is readily available for securing the individual critical asset, protecting these assets as a group is not often discussed. Using best business practices to protect these resources as individual assets while leveraging holistic defenses for the group increases the opportunity to maximize protection time, allowing detection and reaction time for the SPoCs that is commensurate with the inherent risk of these centralized services.

  7. Single point incremental forming: Formability of PC sheets

    Science.gov (United States)

    Formisano, A.; Boccarusso, L.; Carrino, L.; Lambiase, F.; Minutolo, F. Memola Capece

    2018-05-01

    Recent research on Single Point Incremental Forming of polymers has slightly covered the possibility of expanding the materials capability window of this flexible forming process beyond metals, by demonstrating the workability of thermoplastic polymers at room temperature. Given the different behaviour of polymers compared to metals, different aspects need to be deepened to better understand the behaviour of these materials when incrementally formed. Thus, the aim of the work is to investigate the formability of incrementally formed polycarbonate thin sheets. To this end, an experimental investigation at room temperature was conducted involving formability tests; varying wall angle cone and pyramid frusta were manufactured by processing polycarbonate sheets with different thicknesses and using tools with different diameters, in order to draw conclusions on the formability of polymer sheets through the evaluation of the forming angles and the observation of the failure mechanisms.

  8. Single Point Vulnerability Analysis of Automatic Seismic Trip System

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seo Bin; Chung, Soon Il; Lee, Yong Suk [FNC Technology Co., Yongin (Korea, Republic of); Choi, Byung Pil [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    Single Point Vulnerability (SPV) analysis is a process used to identify individual equipment whose failure alone will result in a reactor trip, turbine generator failure, or power reduction of more than 50%. Automatic Seismic Trip System (ASTS) is a newly installed system to ensure the safety of plant when earthquake occurs. Since this system directly shuts down the reactor, the failure or malfunction of its system component can cause a reactor trip more frequently than other systems. Therefore, an SPV analysis of ASTS is necessary to maintain its essential performance. To analyze SPV for ASTS, failure mode and effect analysis (FMEA) and fault tree analysis (FTA) was performed. In this study, FMEA and FTA methods were performed to select SPV equipment of ASTS. D/O, D/I, A/I card, seismic sensor, and trip relay had an effect on the reactor trip but their single failure will not cause reactor trip. In conclusion, ASTS is excluded as SPV. These results can be utilized as the basis data for ways to enhance facility reliability such as design modification and improvement of preventive maintenance procedure.

  9. Single Point Vulnerability Analysis of Automatic Seismic Trip System

    International Nuclear Information System (INIS)

    Oh, Seo Bin; Chung, Soon Il; Lee, Yong Suk; Choi, Byung Pil

    2016-01-01

    Single Point Vulnerability (SPV) analysis is a process used to identify individual equipment whose failure alone will result in a reactor trip, turbine generator failure, or power reduction of more than 50%. Automatic Seismic Trip System (ASTS) is a newly installed system to ensure the safety of plant when earthquake occurs. Since this system directly shuts down the reactor, the failure or malfunction of its system component can cause a reactor trip more frequently than other systems. Therefore, an SPV analysis of ASTS is necessary to maintain its essential performance. To analyze SPV for ASTS, failure mode and effect analysis (FMEA) and fault tree analysis (FTA) was performed. In this study, FMEA and FTA methods were performed to select SPV equipment of ASTS. D/O, D/I, A/I card, seismic sensor, and trip relay had an effect on the reactor trip but their single failure will not cause reactor trip. In conclusion, ASTS is excluded as SPV. These results can be utilized as the basis data for ways to enhance facility reliability such as design modification and improvement of preventive maintenance procedure

  10. Test and evaluation of IR detectors and arrays II; Proceedings of the Meeting, Orlando, FL, Apr. 22, 23, 1992

    Science.gov (United States)

    Hoke, Forney M.

    The present conference discusses a radiometric calibration system for IR cameras, a methodology for testing IR focal-plane arrays in simulated nuclear radiation environments, process optimization for Si:As In-bumped focal-plane arrays, precise MTF measurements for focal-plane arrays, and IR focal-plane array crosstalk measurement. Also discussed are an imaging metric for IR focal-plane arrays, optical stimuli for high-volume automated testing of 2D HgCdTe focal-plane arrays, the evaluation of a solid-state photomultiplier focal-plane array for SDI, spectral effects on bulk photoconductors operated at cryogenic temperatures, and a novel technique for measuring the ionizing radiation effects in MOS transistors.

  11. Infrared detectors

    CERN Document Server

    Rogalski, Antonio

    2010-01-01

    This second edition is fully revised and reorganized, with new chapters concerning third generation and quantum dot detectors, THz detectors, cantilever and antenna coupled detectors, and information on radiometry and IR optics materials. Part IV concerning focal plane arrays is significantly expanded. This book, resembling an encyclopedia of IR detectors, is well illustrated and contains many original references … a really comprehensive book.-F. Sizov, Institute of Semiconductor Physics, National Academy of Sciences, Kiev, Ukraine

  12. Optically Immersed Bolometer IR Detectors Based on V2O5 Thin Films with Polyimide Thermal Impedance Control Layer for Space Applications

    Science.gov (United States)

    Sumesh, M. A.; Thomas, Beno; Vijesh, T. V.; Mohan Rao, G.; Viswanathan, M.; Karanth, S. P.

    2018-01-01

    Optically immersed bolometer IR detectors were fabricated using electron beam evaporated vanadium oxide as the sensing material. Spin-coated polyimide was used as medium to optically immerse the sensing element to the flat surface of a hemispherical germanium lens. This optical immersion layer also serves as the thermal impedance control layer and decides the performance of the devices in terms of responsivity and noise parameters. The devices were packaged in suitable electro-optical packages and the detector parameters were studied in detail. Thermal time constant varies from 0.57 to 6.0 ms and responsivity from 75 to 757 V W-1 corresponding to polyimide thickness in the range 2 to 70 μm for a detector bias of 9 V in the wavelength region of 14-16 μm. Highest D* obtained was 1.2×108 cmHz1/2 W-1. Noise equivalent temperature difference (NETD) of 20 mK was achieved for devices with polyimide thickness more than 32 μm. The figure of merit, NETD × τ product which describes trade-off between thermal time constant and sensitivity is also extensively studied for devices having different thickness of thermal impedance layers.

  13. Combined contactless conductometric, photometric, and fluorimetric single point detector for capillary separation methods

    Czech Academy of Sciences Publication Activity Database

    Ryvolová, M.; Preisler, J.; Foret, František; Hauser, P.C.; Krásenský, P.; Paull, B.; Macka, M.

    2010-01-01

    Roč. 82, č. 1 (2010), s. 129-135 ISSN 0003-2700 R&D Projects: GA MŠk LC06023 Institutional research plan: CEZ:AV0Z40310501 Keywords : induced flourescence detection * light-emitting -diode * conductivity detection Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 5.874, year: 2010

  14. WE-DE-201-10: Pitfalls When Using Ruby as An Inorganic Scintillator Detector for Ir-192 Brachytherapy Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kertzscher, G; Beddar, S [The University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: To study the promising potential of inorganic scintillator detectors (ISDs) and investigate various unwanted luminescence properties which may compromise their accuracy. Methods: The ISDs were comprised of a ruby crystal coupled to a polymethyl methacrylate (PMMA) fiber-optic cable and a charged coupled device camera. A new type of ISD was manufactured and included a long-pass filter that was sandwiched between the crystal and the fiber-optic cable. The purpose of the filter was to suppress the Cerenkov and fluorescence background light induced in the PMMA (the stem signal) from striking the ruby crystal, generating unwanted ruby excitation. A variety of experiments were performed to characterize the ruby based ISDs. The relative contribution of the induced ruby signal and the stem signal were quantified while exposing the detector and a bare fiber-optic cable to a high dose rate (HDR) brachytherapy (BT) source, respectively. The unwanted ruby excitation was quantified while irradiating the fiber-optic cable with the detector volume shielded. Other experiments addressed time-dependent luminescence properties and a comparison to other commonly used organic scintillator detectors (BCF-12, BCF-60). Results: When the BT source dwelled 0.5 cm away from the fiber-optic cable, the unwanted ruby excitation amounted to >5% of the total signal if the source-distance from the scintillator was >7 cm. However, the unwanted excitation was suppressed to <1% if the ISD incorporated an optic filter. The stem signal was suppressed with a 20 nm band-pass filter and was <3% as long as the source-distance was <7 cm. The ruby based ISDs generated signal up to 20(40) times that of BCF-12(BCF-60). Conclusion: The study presents solutions to unwanted luminescence properties of ruby based ISDs for HDR BT. An optic filter should be sandwiched between the scintillator volume and the fiber-optic cable to prevent the stem signal to excite the ruby crystal.

  15. Mechanism of DNA–binding loss upon single-point mutation in p53

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    loss in protein−DNA binding affinity and specificity upon single point ..... we computed the root–mean–square–deviations (RMSDs) of each residue's ...... Petsko G and Ringe D 1984 Fluctuations in protein structure from. X-ray diffraction; Annu.

  16. Single Point Adjustments: A New Definition with Examples. Acquisition Review Quarterly, Fall 2001

    National Research Council Canada - National Science Library

    Bachman, David

    2002-01-01

    .... A single point adjustment (SPA) is made when a contract's existing cost and/or schedule variances are set to zero and all the remaining work is replanned with the goal of completing the project on schedule and on budget...

  17. Comparison of Single-Point and Continuous Sampling Methods for Estimating Residential Indoor Temperature and Humidity.

    Science.gov (United States)

    Johnston, James D; Magnusson, Brianna M; Eggett, Dennis; Collingwood, Scott C; Bernhardt, Scott A

    2015-01-01

    Residential temperature and humidity are associated with multiple health effects. Studies commonly use single-point measures to estimate indoor temperature and humidity exposures, but there is little evidence to support this sampling strategy. This study evaluated the relationship between single-point and continuous monitoring of air temperature, apparent temperature, relative humidity, and absolute humidity over four exposure intervals (5-min, 30-min, 24-hr, and 12-days) in 9 northern Utah homes, from March-June 2012. Three homes were sampled twice, for a total of 12 observation periods. Continuous data-logged sampling was conducted in homes for 2-3 wks, and simultaneous single-point measures (n = 114) were collected using handheld thermo-hygrometers. Time-centered single-point measures were moderately correlated with short-term (30-min) data logger mean air temperature (r = 0.76, β = 0.74), apparent temperature (r = 0.79, β = 0.79), relative humidity (r = 0.70, β = 0.63), and absolute humidity (r = 0.80, β = 0.80). Data logger 12-day means were also moderately correlated with single-point air temperature (r = 0.64, β = 0.43) and apparent temperature (r = 0.64, β = 0.44), but were weakly correlated with single-point relative humidity (r = 0.53, β = 0.35) and absolute humidity (r = 0.52, β = 0.39). Of the single-point RH measures, 59 (51.8%) deviated more than ±5%, 21 (18.4%) deviated more than ±10%, and 6 (5.3%) deviated more than ±15% from data logger 12-day means. Where continuous indoor monitoring is not feasible, single-point sampling strategies should include multiple measures collected at prescribed time points based on local conditions.

  18. Performance evaluation of a direct-conversion flat-panel detector system in imaging and quality assurance for a high-dose-rate 192Ir source

    Science.gov (United States)

    Miyahara, Yoshinori; Hara, Yuki; Nakashima, Hiroto; Nishimura, Tomonori; Itakura, Kanae; Inomata, Taisuke; Kitagaki, Hajime

    2018-03-01

    In high-dose-rate (HDR) brachytherapy, a direct-conversion flat-panel detector (d-FPD) clearly depicts a 192Ir source without image halation, even under the emission of high-energy gamma rays. However, it was unknown why iridium is visible when using a d-FPD. The purpose of this study was to clarify the reasons for visibility of the source core based on physical imaging characteristics, including the modulation transfer functions (MTF), noise power spectral (NPS), contrast transfer functions, and linearity of d-FPD to high-energy gamma rays. The acquired data included: x-rays, [X]; gamma rays, [γ] dual rays (X  +  γ), [D], and subtracted data for depicting the source ([D]  -  [γ]). In the quality assurance (QA) test for the positional accuracy of a source core, the coordinates of each dwelling point were compared between the planned and actual source core positions using a CT/MR-compatible ovoid applicator and a Fletcher-Williamson applicator. The profile curves of [X] and ([D]  -  [γ]) matched well on MTF and NPS. The contrast resolutions of [D] and [X] were equivalent. A strongly positive linear correlation was found between the output data of [γ] and source strength (r 2  >  0.99). With regard to the accuracy of the source core position, the largest coordinate difference (3D distance) was noted at the maximum curvature of the CT/MR-compatible ovoid and Fletcher-Williamson applicators, showing 1.74  ±  0.02 mm and 1.01  ±  0.01 mm, respectively. A d-FPD system provides high-quality images of a source, even when high-energy gamma rays are emitted to the detector, and positional accuracy tests with clinical applicators are useful in identifying source positions (source movements) within the applicator for QA.

  19. The mean photon energy anti E{sub F} at the point of measurement determines the detector-specific radiation quality correction factor k{sub Q,M} in {sup 192}Ir brachytherapy dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Chofor, Ndimofor; Harder, Dietrich; Selbach, Hans-Joachim; Poppe, Bjoern [University of Oldenburg and Pius-Hospital Oldenburg (Germany). Medical Radiation Physics Group

    2016-11-01

    The application of various radiation detectors for brachytherapy dosimetry has motivated this study of the energy dependence of radiation quality correction factor k{sub Q,M}, the quotient of the detector responses under calibration conditions at a {sup 60}Co unit and under the given non-reference conditions at the point of measurement, M, occurring in photon brachytherapy. The investigated detectors comprise TLD, radiochromic film, ESR, Si diode, plastic scintillator and diamond crystal detectors as well as ionization chambers of various sizes, whose measured response-energy relationships, taken from the literature, served as input data. Brachytherapy photon fields were Monte-Carlo simulated for an ideal isotropic {sup 192}Ir point source, a model spherical {sup 192}Ir source with steel encapsulation and a commercial HDR GammaMed Plus source. The radial source distance was varied within cylindrical water phantoms with outer radii ranging from 10 to 30 cm and heights from 20 to 60 cm. By application of this semiempirical method - originally developed for teletherapy dosimetry - it has been shown that factor k{sub Q,M} is closely correlated with a single variable, the fluence-weighted mean photon energy anti E{sub F} at the point of measurement. The radial profiles of anti E{sub F} obtained with either the commercial {sup 192}Ir source or the two simplified source variants show little variation. The observed correlations between parameters k{sub Q,M} and anti E{sub F} are represented by fitting formulae for all investigated detectors, and further variation of the detector type is foreseen. The herewith established close correlation of radiation quality correction factor k{sub Q,M} with local mean photon energy anti E{sub F} can be regarded as a simple regularity, facilitating the practical application of correction factor k{sub Q,M} for in-phantom dosimetry around {sup 192}Ir brachytherapy sources. anti E{sub F} values can be assessed by Monte Carlo simulation or

  20. A numerical analysis on forming limits during spiral and concentric single point incremental forming

    Science.gov (United States)

    Gipiela, M. L.; Amauri, V.; Nikhare, C.; Marcondes, P. V. P.

    2017-01-01

    Sheet metal forming is one of the major manufacturing industries, which are building numerous parts for aerospace, automotive and medical industry. Due to the high demand in vehicle industry and environmental regulations on less fuel consumption on other hand, researchers are innovating new methods to build these parts with energy efficient sheet metal forming process instead of conventionally used punch and die to form the parts to achieve the lightweight parts. One of the most recognized manufacturing process in this category is Single Point Incremental Forming (SPIF). SPIF is the die-less sheet metal forming process in which the single point tool incrementally forces any single point of sheet metal at any process time to plastic deformation zone. In the present work, finite element method (FEM) is applied to analyze the forming limits of high strength low alloy steel formed by single point incremental forming (SPIF) by spiral and concentric tool path. SPIF numerical simulations were model with 24 and 29 mm cup depth, and the results were compare with Nakajima results obtained by experiments and FEM. It was found that the cup formed with Nakajima tool failed at 24 mm while cups formed by SPIF surpassed the limit for both depths with both profiles. It was also notice that the strain achieved in concentric profile are lower than that in spiral profile.

  1. Substructuring in the implicit simulation of single point incremental sheet forming

    NARCIS (Netherlands)

    Hadoush, A.; van den Boogaard, Antonius H.

    2009-01-01

    This paper presents a direct substructuring method to reduce the computing time of implicit simulations of single point incremental forming (SPIF). Substructuring is used to divide the finite element (FE) mesh into several non-overlapping parts. Based on the hypothesis that plastic deformation is

  2. Single point incremental forming of tailored blanks produced by friction stir welding

    DEFF Research Database (Denmark)

    Silva, M.B.; Skjødt, Martin; Vilaca, P.

    2009-01-01

    fromthe rotating single point-forming tool. Formability of the tailor welded blanks (TWB) is evaluated by means of benchmark tests carried out on truncated conical and pyramidal shapes and results are compared with similar tests performed on conventional reference blanks of the same material. Results show......This paper is focused on the single point incremental forming (SPIF) of tailored welded blanks produced by friction stirwelding (FSW). Special emphasis is placed on the know-how for producing the tailored blanks and on the utilization of innovative forming strategies to protect thewelding joint...... that the combination of SPIF with tailored welded blanks produced by FSW seems promising in the manufacture of complex sheet metal parts with high depths....

  3. New organophilic kaolin clays based on single-point grafted 3-aminopropyl dimethylethoxysilane.

    Science.gov (United States)

    Zaharia, A; Perrin, F-X; Teodorescu, M; Radu, A-L; Iordache, T-V; Florea, A-M; Donescu, D; Sarbu, A

    2015-10-14

    In this study, the organophilization procedure of kaolin rocks with a monofunctional ethoxysilane- 3 aminopropyl dimethyl ethoxysilane (APMS) is depicted for the first time. The two-step organophilization procedure, including dimethyl sulfoxide intercalation and APMS grafting onto the inner hydroxyl surface of kaolinite (the mineral) layers was tested for three sources of kaolin rocks (KR, KC and KD) with various morphologies and kaolinite compositions. The load of APMS in the kaolinite interlayer space was higher than that of 3-aminopropyl triethoxysilane (APTS) due to the single-point grafting nature of the organophilization reaction. A higher long-distance order of kaolinite layers with low staking was obtained for the APMS, due to a more controllable organiphilization reaction. Last but not least, the solid state (29)Si-NMR tests confirmed the single-point grafting mechanism of APMS, corroborating monodentate fixation on the kaolinite hydroxyl facets, with no contribution to the bidentate or tridentate fixation as observed for APTS.

  4. Controllable resonant tunnelling through single-point potentials: A point triode

    International Nuclear Information System (INIS)

    Zolotaryuk, A.V.; Zolotaryuk, Yaroslav

    2015-01-01

    A zero-thickness limit of three-layer heterostructures under two bias voltages applied externally, where one of which is supposed to be a gate parameter, is studied. As a result, an effect of controllable resonant tunnelling of electrons through single-point potentials is shown to exist. Therefore the limiting structure may be termed a “point triode” and considered in the theory of point interactions as a new object. The simple limiting analytical expressions adequately describe the resonant behaviour in the transistor with realistic parameter values and thus one can conclude that the zero-range limit of multi-layer structures may be used in fabricating nanodevices. The difference between the resonant tunnelling across single-point potentials and the Fabry–Pérot interference effect is also emphasized. - Highlights: • The zero-thickness limit of three-layer heterostructures is described in terms of point interactions. • The effect of resonant tunnelling through these single-point potentials is established. • The resonant tunnelling is shown to be controlled by a gate voltage

  5. SU-F-T-32: Evaluation of the Performance of a Multiple-Array-Diode Detector for Quality Assurance Tests in High-Dose-Rate Brachytherapy with Ir-192 Source

    Energy Technology Data Exchange (ETDEWEB)

    Harpool, K; De La Fuente Herman, T; Ahmad, S; Ali, I [University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States)

    2016-06-15

    Purpose: To evaluate the performance of a two-dimensional (2D) array-diode- detector for geometric and dosimetric quality assurance (QA) tests of high-dose-rate (HDR) brachytherapy with an Ir-192-source. Methods: A phantom setup was designed that encapsulated a two-dimensional (2D) array-diode-detector (MapCheck2) and a catheter for the HDR brachytherapy Ir-192 source. This setup was used to perform both geometric and dosimetric quality assurance for the HDR-Ir192 source. The geometric tests included: (a) measurement of the position of the source and (b) spacing between different dwell positions. The dosimteric tests include: (a) linearity of output with time, (b) end effect and (c) relative dose verification. The 2D-dose distribution measured with MapCheck2 was used to perform the previous tests. The results of MapCheck2 were compared with the corresponding quality assurance testes performed with Gafchromic-film and well-ionization-chamber. Results: The position of the source and the spacing between different dwell-positions were reproducible within 1 mm accuracy by measuring the position of maximal dose using MapCheck2 in contrast to the film which showed a blurred image of the dwell positions due to limited film sensitivity to irradiation. The linearity of the dose with dwell times measured from MapCheck2 was superior to the linearity measured with ionization chamber due to higher signal-to-noise ratio of the diode readings. MapCheck2 provided more accurate measurement of the end effect with uncertainty < 1.5% in comparison with the ionization chamber uncertainty of 3%. Although MapCheck2 did not provide absolute calibration dosimeter for the activity of the source, it provided accurate tool for relative dose verification in HDR-brachytherapy. Conclusion: The 2D-array-diode-detector provides a practical, compact and accurate tool to perform quality assurance for HDR-brachytherapy with an Ir-192 source. The diodes in MapCheck2 have high radiation sensitivity and

  6. An ultra-precision tool nanoindentation instrument for replication of single point diamond tool cutting edges

    Science.gov (United States)

    Cai, Yindi; Chen, Yuan-Liu; Xu, Malu; Shimizu, Yuki; Ito, So; Matsukuma, Hiraku; Gao, Wei

    2018-05-01

    Precision replication of the diamond tool cutting edge is required for non-destructive tool metrology. This paper presents an ultra-precision tool nanoindentation instrument designed and constructed for replication of the cutting edge of a single point diamond tool onto a selected soft metal workpiece by precisely indenting the tool cutting edge into the workpiece surface. The instrument has the ability to control the indentation depth with a nanometric resolution, enabling the replication of tool cutting edges with high precision. The motion of the diamond tool along the indentation direction is controlled by the piezoelectric actuator of a fast tool servo (FTS). An integrated capacitive sensor of the FTS is employed to detect the displacement of the diamond tool. The soft metal workpiece is attached to an aluminum cantilever whose deflection is monitored by another capacitive sensor, referred to as an outside capacitive sensor. The indentation force and depth can be accurately evaluated from the diamond tool displacement, the cantilever deflection and the cantilever spring constant. Experiments were carried out by replicating the cutting edge of a single point diamond tool with a nose radius of 2.0 mm on a copper workpiece surface. The profile of the replicated tool cutting edge was measured using an atomic force microscope (AFM). The effectiveness of the instrument in precision replication of diamond tool cutting edges is well-verified by the experimental results.

  7. FUNDAMENTAL ASPECTS OF EPISODIC ACCRETION CHEMISTRY EXPLORED WITH SINGLE-POINT MODELS

    International Nuclear Information System (INIS)

    Visser, Ruud; Bergin, Edwin A.

    2012-01-01

    We explore a set of single-point chemical models to study the fundamental chemical aspects of episodic accretion in low-mass embedded protostars. Our goal is twofold: (1) to understand how the repeated heating and cooling of the envelope affects the abundances of CO and related species; and (2) to identify chemical tracers that can be used as a novel probe of the timescales and other physical aspects of episodic accretion. We develop a set of single-point models that serve as a general prescription for how the chemical composition of a protostellar envelope is altered by episodic accretion. The main effect of each accretion burst is to drive CO ice off the grains in part of the envelope. The duration of the subsequent quiescent stage (before the next burst hits) is similar to or shorter than the freeze-out timescale of CO, allowing the chemical effects of a burst to linger long after the burst has ended. We predict that the resulting excess of gas-phase CO can be observed with single-dish or interferometer facilities as evidence of an accretion burst in the past 10 3 -10 4 yr.

  8. The validity of multiphase DNS initialized on the basis of single--point statistics

    Science.gov (United States)

    Subramaniam, Shankar

    1999-11-01

    A study of the point--process statistical representation of a spray reveals that single--point statistical information contained in the droplet distribution function (ddf) is related to a sequence of single surrogate--droplet pdf's, which are in general different from the physical single--droplet pdf's. The results of this study have important consequences for the initialization and evolution of direct numerical simulations (DNS) of multiphase flows, which are usually initialized on the basis of single--point statistics such as the average number density in physical space. If multiphase DNS are initialized in this way, this implies that even the initial representation contains certain implicit assumptions concerning the complete ensemble of realizations, which are invalid for general multiphase flows. Also the evolution of a DNS initialized in this manner is shown to be valid only if an as yet unproven commutation hypothesis holds true. Therefore, it is questionable to what extent DNS that are initialized in this manner constitute a direct simulation of the physical droplets.

  9. Design of an omnidirectional single-point photodetector for large-scale spatial coordinate measurement

    Science.gov (United States)

    Xie, Hongbo; Mao, Chensheng; Ren, Yongjie; Zhu, Jigui; Wang, Chao; Yang, Lei

    2017-10-01

    In high precision and large-scale coordinate measurement, one commonly used approach to determine the coordinate of a target point is utilizing the spatial trigonometric relationships between multiple laser transmitter stations and the target point. A light receiving device at the target point is the key element in large-scale coordinate measurement systems. To ensure high-resolution and highly sensitive spatial coordinate measurement, a high-performance and miniaturized omnidirectional single-point photodetector (OSPD) is greatly desired. We report one design of OSPD using an aspheric lens, which achieves an enhanced reception angle of -5 deg to 45 deg in vertical and 360 deg in horizontal. As the heart of our OSPD, the aspheric lens is designed in a geometric model and optimized by LightTools Software, which enables the reflection of a wide-angle incident light beam into the single-point photodiode. The performance of home-made OSPD is characterized with working distances from 1 to 13 m and further analyzed utilizing developed a geometric model. The experimental and analytic results verify that our device is highly suitable for large-scale coordinate metrology. The developed device also holds great potential in various applications such as omnidirectional vision sensor, indoor global positioning system, and optical wireless communication systems.

  10. Analysis of residual stress state in sheet metal parts processed by single point incremental forming

    Science.gov (United States)

    Maaß, F.; Gies, S.; Dobecki, M.; Brömmelhoff, K.; Tekkaya, A. E.; Reimers, W.

    2018-05-01

    The mechanical properties of formed metal components are highly affected by the prevailing residual stress state. A selective induction of residual compressive stresses in the component, can improve the product properties such as the fatigue strength. By means of single point incremental forming (SPIF), the residual stress state can be influenced by adjusting the process parameters during the manufacturing process. To achieve a fundamental understanding of the residual stress formation caused by the SPIF process, a valid numerical process model is essential. Within the scope of this paper the significance of kinematic hardening effects on the determined residual stress state is presented based on numerical simulations. The effect of the unclamping step after the manufacturing process is also analyzed. An average deviation of the residual stress amplitudes in the clamped and unclamped condition of 18 % reveals, that the unclamping step needs to be considered to reach a high numerical prediction quality.

  11. Optimization of Single Point Incremental Forming of Al5052-O Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Il; Xiao, Xiao; Do, Van Cuong; Kim, Young Suk [Kyungpook Nat’l Univ., Daegu (Korea, Republic of)

    2017-03-15

    Single point incremental forming (SPIF) is a sheet-forming technique. It is a die-less sheet metal manufacturing process for rapid prototyping and small batch production. The Critical parameters in the forming process include tool diameter, step depth, feed rate, spindle speed, etc. In this study, these parameters and the die shape corresponding to the Varying Wall Angle Conical Frustum(VWACF) model were used for forming 0.8mm in thick Al5052-O sheets. The Taguchi method of Experiments of Design (DOE) and Grey relational optimization were used to determine the optimum parameters in SPIF. A response study was performed on formability, spring back, and thickness reduction. The research shows that the optimum combination of these parameters that yield best performance of SPIF is as follows: tool diameter, 6mm; spin speed, 60rpm; step depth, 0.3mm; and feed rate, 500mm/min.

  12. Strategies and limits in multi-stage single-point incremental forming

    DEFF Research Database (Denmark)

    Skjødt, Martin; Silva, M.B.; Martins, P. A. F.

    2010-01-01

    paths. The results also reveal that the sequence of multi-stage forming has a large effect on the location of strain points in the principal strain space. Strain paths are linear in the first stage and highly non-linear in the subsequent forming stages. The overall results show that the experimentally......Multi-stage single-point incremental forming (SPIF) is a state-of-the-art manufacturing process that allows small-quantity production of complex sheet metal parts with vertical walls. This paper is focused on the application of multi-stage SPIF with the objective of producing cylindrical cups......-limit curves and fracture forming-limit curves (FFLCs), numerical simulation, and experimentation, namely the evaluation of strain paths and fracture strains in actual multi-stage parts. Assessment of numerical simulation with experimentation shows good agreement between computed and measured strain and strain...

  13. Analysis of payload bay magnetic fields due to dc power multipoint and single point ground configurations

    Science.gov (United States)

    Lawton, R. M.

    1976-01-01

    An analysis of magnetic fields in the Orbiter Payload Bay resulting from the present grounding configuration (structure return) was presented and the amount of improvement that would result from installing wire returns for the three dc power buses was determined. Ac and dc magnetic fields at five points in a cross-section of the bay are calculated for both grounding configurations. Y and Z components of the field at each point are derived in terms of a constant coefficient and the current amplitude of each bus. The dc loads assumed are 100 Amperes for each bus. The ac noise current used is a spectrum 6 db higher than the Orbiter equipment limit for narrowband conducted emissions. It was concluded that installing return wiring to provide a single point ground for the dc Buses in the Payload Bay would reduce the ac and dc magnetic field intensity by approximately 30 db.

  14. Optimization of the single point incremental forming process for titanium sheets by using response surface

    Directory of Open Access Journals (Sweden)

    Saidi Badreddine

    2016-01-01

    Full Text Available The single point incremental forming process is well-known to be perfectly suited for prototyping and small series. One of its fields of applicability is the medicine area for the forming of titanium prostheses or titanium medical implants. However this process is not yet very industrialized, mainly due its geometrical inaccuracy, its not homogeneous thickness distribution& Moreover considerable forces can occur. They must be controlled in order to preserve the tooling. In this paper, a numerical approach is proposed in order to minimize the maximum force achieved during the incremental forming of titanium sheets and to maximize the minimal thickness. A surface response methodology is used to find the optimal values of two input parameters of the process, the punch diameter and the vertical step size of the tool path.

  15. Hysteresis compensation for piezoelectric actuators in single-point diamond turning

    Science.gov (United States)

    Wang, Haifeng; Hu, Dejin; Wan, Daping; Liu, Hongbin

    2006-02-01

    In recent years, interests have been growing for fast tool servo (FTS) systems to increase the capability of existing single-point diamond turning machines. Although piezoelectric actuator is the most universal base of FTS system due to its high stiffness, accuracy and bandwidth, nonlinearity in piezoceramics limits both the static and dynamic performance of piezoelectric-actuated control systems evidently. To compensate the nonlinear hysteresis behavior of piezoelectric actuators, a hybrid model coupled with Preisach model and feedforward neural network (FNN) has been described. Since the training of FNN does not require a special calibration sequence, it is possible for on-line identification and real-time implementation with general operating data of a specific piezoelectric actuator. To describe the rate dependent behavior of piezoelectric actuators, a hybrid dynamic model was developed to predict the response of piezoelectric actuators in a wider range of input frequency. Experimental results show that a maximal error of less than 3% was accomplished by this dynamic model.

  16. A rapid and robust gradient measurement technique using dynamic single-point imaging.

    Science.gov (United States)

    Jang, Hyungseok; McMillan, Alan B

    2017-09-01

    We propose a new gradient measurement technique based on dynamic single-point imaging (SPI), which allows simple, rapid, and robust measurement of k-space trajectory. To enable gradient measurement, we utilize the variable field-of-view (FOV) property of dynamic SPI, which is dependent on gradient shape. First, one-dimensional (1D) dynamic SPI data are acquired from a targeted gradient axis, and then relative FOV scaling factors between 1D images or k-spaces at varying encoding times are found. These relative scaling factors are the relative k-space position that can be used for image reconstruction. The gradient measurement technique also can be used to estimate the gradient impulse response function for reproducible gradient estimation as a linear time invariant system. The proposed measurement technique was used to improve reconstructed image quality in 3D ultrashort echo, 2D spiral, and multi-echo bipolar gradient-echo imaging. In multi-echo bipolar gradient-echo imaging, measurement of the k-space trajectory allowed the use of a ramp-sampled trajectory for improved acquisition speed (approximately 30%) and more accurate quantitative fat and water separation in a phantom. The proposed dynamic SPI-based method allows fast k-space trajectory measurement with a simple implementation and no additional hardware for improved image quality. Magn Reson Med 78:950-962, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  17. Prediction and control of pillow defect in single point incremental forming using numerical simulations

    International Nuclear Information System (INIS)

    Isidore, B. B. Lemopi; Hussain, G.; Khan, Wasim A.; Shamachi, S. Pourhassan

    2016-01-01

    Pillows formed at the center of sheets in Single point incremental forming (SPIF) are fabrication defects which adversely affect the geometrical accuracy and formability of manufactured parts. This study is focused on using FEA as a tool to predict and control pillowing in SPIF by varying tool size and shape. 3D Finite element analysis (FEA) and experiments are carried out using annealed Aluminum 1050. From FEA, it is found out that the stress/strain state in the immediate vicinity of the forming tool in the transverse direction plays a determinant role on sheet pillowing. Furthermore, pillow height increases as compression in the sheet-plane increases. The nature of in-plane stresses in the transverse direction varies from compressive to tensile as the tool-end geometry is changed from spherical to flat. Additionally, the magnitude of corresponding in-plane stresses decreases as the tool radius increases. According to measurements from the FEA model, flat end tools and large radii both retard pillow formation. However, the influence of changing tool end shape from hemispherical to flat is observed to be more important than the effect of varying tool radius, because the deformation zone remains in tension in the transverse direction while forming with flat end tools. These findings are verified by conducting a set of experiments. A fair agreement between the FEM and empirical results show that FEM can be employed as a tool to predict and control the pillow defect in SPIF.

  18. Improving access in gastroenterology: The single point of entry model for referrals

    Science.gov (United States)

    Novak, Kerri L; Van Zanten, Sander Veldhuyzen; Pendharkar, Sachin R

    2013-01-01

    In 2005, a group of academic gastroenterologists in Calgary (Alberta) adopted a centralized referral intake system known as central triage. This system provided a single point of entry model (SEM) for referrals rather than the traditional system of individual practitioners managing their own referrals and queues. The goal of central triage was to improve wait times and referral management. In 2008, a similar system was developed in Edmonton at the University of Alberta Hospital (Edmonton, Alberta). SEMs have subsequently been adopted by numerous subspecialties throughout Alberta. There are many benefits of SEMs including improved access and reduced wait times. Understanding and measuring complex patient flow systems is key to improving access, and centralized intake systems provide an opportunity to better understand total demand and system bottlenecks. This knowledge is particularly important for specialties such as gastroenterology (GI), in which demand exceeds supply. While it is anticipated that SEMs will reduce wait times for GI care in Canada, the lack of sufficient resources to meet the demand for GI care necessitates additional strategies. PMID:24040629

  19. The use of single point incremental forming for customized implants of unicondylar knee arthroplasty: a review

    Directory of Open Access Journals (Sweden)

    Pankaj Kailasrao Bhoyar

    Full Text Available Abstract Introduction The implantable devices are having enormous market. These products are basically made by traditional manufacturing process, but for the custom-made implants Incremental Sheet Forming is a paramount alternative. Single Point Incremental Forming (SPIF is a manufacturing process to form intricate, asymmetrical components. It forms the component using stretching and bending by maintaining materials crystal structure. SPIF process can be performed using conventional Computer Numerical Control (CNC milling machine. Review This review paper elaborates the various manufacturing processes carried on various biocompatible metallic and nonmetallic customised implantable devices. Conclusion Ti-6Al-4V alloy is broadly used for biomedical implants, but in this alloy, Vanadium is toxic so this alloy is not compatible for implants. The attention of researchers is towards the non toxic and suitable biocompatible materials. For this reason, a novel approach was developed in order to enhance the mechanical properties of this material. . The development of incremental forming technique can improve the formability of existing alloys and may meet the current strict requirements for performance of dies and punches.

  20. Prediction and control of pillow defect in single point incremental forming using numerical simulations

    Energy Technology Data Exchange (ETDEWEB)

    Isidore, B. B. Lemopi [Eastern Mediterranean University, Gazimagusa (Turkmenistan); Hussain, G.; Khan, Wasim A. [GIK Institute of Engineering, Swabi (Pakistan); Shamachi, S. Pourhassan [University of Minho, Guimaraes (Portugal)

    2016-05-15

    Pillows formed at the center of sheets in Single point incremental forming (SPIF) are fabrication defects which adversely affect the geometrical accuracy and formability of manufactured parts. This study is focused on using FEA as a tool to predict and control pillowing in SPIF by varying tool size and shape. 3D Finite element analysis (FEA) and experiments are carried out using annealed Aluminum 1050. From FEA, it is found out that the stress/strain state in the immediate vicinity of the forming tool in the transverse direction plays a determinant role on sheet pillowing. Furthermore, pillow height increases as compression in the sheet-plane increases. The nature of in-plane stresses in the transverse direction varies from compressive to tensile as the tool-end geometry is changed from spherical to flat. Additionally, the magnitude of corresponding in-plane stresses decreases as the tool radius increases. According to measurements from the FEA model, flat end tools and large radii both retard pillow formation. However, the influence of changing tool end shape from hemispherical to flat is observed to be more important than the effect of varying tool radius, because the deformation zone remains in tension in the transverse direction while forming with flat end tools. These findings are verified by conducting a set of experiments. A fair agreement between the FEM and empirical results show that FEM can be employed as a tool to predict and control the pillow defect in SPIF.

  1. Structure Based Thermostability Prediction Models for Protein Single Point Mutations with Machine Learning Tools.

    Directory of Open Access Journals (Sweden)

    Lei Jia

    Full Text Available Thermostability issue of protein point mutations is a common occurrence in protein engineering. An application which predicts the thermostability of mutants can be helpful for guiding decision making process in protein design via mutagenesis. An in silico point mutation scanning method is frequently used to find "hot spots" in proteins for focused mutagenesis. ProTherm (http://gibk26.bio.kyutech.ac.jp/jouhou/Protherm/protherm.html is a public database that consists of thousands of protein mutants' experimentally measured thermostability. Two data sets based on two differently measured thermostability properties of protein single point mutations, namely the unfolding free energy change (ddG and melting temperature change (dTm were obtained from this database. Folding free energy change calculation from Rosetta, structural information of the point mutations as well as amino acid physical properties were obtained for building thermostability prediction models with informatics modeling tools. Five supervised machine learning methods (support vector machine, random forests, artificial neural network, naïve Bayes classifier, K nearest neighbor and partial least squares regression are used for building the prediction models. Binary and ternary classifications as well as regression models were built and evaluated. Data set redundancy and balancing, the reverse mutations technique, feature selection, and comparison to other published methods were discussed. Rosetta calculated folding free energy change ranked as the most influential features in all prediction models. Other descriptors also made significant contributions to increasing the accuracy of the prediction models.

  2. Criteria for evaluating protection from single points of failure for partially expanded fault trees

    International Nuclear Information System (INIS)

    Aswani, D.; Badreddine, B.; Malone, M.; Gauthier, G.; Proietty, J.

    2008-01-01

    Fault tree analysis (FTA) is a technique that describes the combinations of events in a system which result in an undesirable outcome. FTA is used as a tool to quantitatively assess a system's probability for an undesirable outcome. Time constraints from concept to production in modern engineering often limit the opportunity for a thorough statistical analysis of a system. Furthermore, when undesirable outcomes are considered such as hazard to human(s), it becomes difficult to identify strict statistical targets for what is acceptable. Consequently, when hazard to human(s) is concerned a common design target is to protect the system from single points of failure (SPOF) which means that no failure mode caused by a single event, concern, or error has a critical consequence on the system. Such a design target is common with 'by-wire' systems. FTA can be used to verify if a system is protected from SPOF. In this paper, sufficient criteria for evaluating protection from SPOF for partially expanded fault trees are proposed along with proof. The proposed criteria consider potential interactions between the lowest drawn events of a partial fault tree expansion which otherwise easily leads to an overly optimistic analysis of protection from SPOF. The analysis is limited to fault trees that are coherent and static

  3. An application of eddy current damping effect on single point diamond turning of titanium alloys

    Science.gov (United States)

    Yip, W. S.; To, S.

    2017-11-01

    Titanium alloys Ti6Al4V (TC4) have been popularly applied in many industries. They have superior material properties including an excellent strength-to-weight ratio and corrosion resistance. However, they are regarded as difficult to cut materials; serious tool wear, a high level of cutting vibration and low surface integrity are always involved in machining processes especially in ultra-precision machining (UPM). In this paper, a novel hybrid machining technology using an eddy current damping effect is firstly introduced in UPM to suppress machining vibration and improve the machining performance of titanium alloys. A magnetic field was superimposed on samples during single point diamond turning (SPDT) by exposing the samples in between two permanent magnets. When the titanium alloys were rotated within a magnetic field in the SPDT, an eddy current was generated through a stationary magnetic field inside the titanium alloys. An eddy current generated its own magnetic field with the opposite direction of the external magnetic field leading a repulsive force, compensating for the machining vibration induced by the turning process. The experimental results showed a remarkable improvement in cutting force variation, a significant reduction in adhesive tool wear and an extreme long chip formation in comparison to normal SPDT of titanium alloys, suggesting the enhancement of the machinability of titanium alloys using an eddy current damping effect. An eddy current damping effect was firstly introduced in the area of UPM to deliver the results of outstanding machining performance.

  4. An application of eddy current damping effect on single point diamond turning of titanium alloys

    International Nuclear Information System (INIS)

    Yip, W S; To, S

    2017-01-01

    Titanium alloys Ti6Al4V (TC4) have been popularly applied in many industries. They have superior material properties including an excellent strength-to-weight ratio and corrosion resistance. However, they are regarded as difficult to cut materials; serious tool wear, a high level of cutting vibration and low surface integrity are always involved in machining processes especially in ultra-precision machining (UPM). In this paper, a novel hybrid machining technology using an eddy current damping effect is firstly introduced in UPM to suppress machining vibration and improve the machining performance of titanium alloys. A magnetic field was superimposed on samples during single point diamond turning (SPDT) by exposing the samples in between two permanent magnets. When the titanium alloys were rotated within a magnetic field in the SPDT, an eddy current was generated through a stationary magnetic field inside the titanium alloys. An eddy current generated its own magnetic field with the opposite direction of the external magnetic field leading a repulsive force, compensating for the machining vibration induced by the turning process. The experimental results showed a remarkable improvement in cutting force variation, a significant reduction in adhesive tool wear and an extreme long chip formation in comparison to normal SPDT of titanium alloys, suggesting the enhancement of the machinability of titanium alloys using an eddy current damping effect. An eddy current damping effect was firstly introduced in the area of UPM to deliver the results of outstanding machining performance. (paper)

  5. Improving Access in Gastroenterology: The Single Point of Entry Model for Referrals

    Directory of Open Access Journals (Sweden)

    Kerri L Novak

    2013-01-01

    Full Text Available In 2005, a group of academic gastroenterologists in Calgary (Alberta adopted a centralized referral intake system known as central triage. This system provided a single point of entry model (SEM for referrals rather than the traditional system of individual practitioners managing their own referrals and queues. The goal of central triage was to improve wait times and referral management. In 2008, a similar system was developed in Edmonton at the University of Alberta Hospital (Edmonton, Alberta. SEMs have subsequently been adopted by numerous subspecialties throughout Alberta. There are many benefits of SEMs including improved access and reduced wait times. Understanding and measuring complex patient flow systems is key to improving access, and centralized intake systems provide an opportunity to better understand total demand and system bottlenecks. This knowledge is particularly important for specialties such as gastroenterology (GI, in which demand exceeds supply. While it is anticipated that SEMs will reduce wait times for GI care in Canada, the lack of sufficient resources to meet the demand for GI care necessitates additional strategies.

  6. Improving access in gastroenterology: the single point of entry model for referrals.

    Science.gov (United States)

    Novak, Kerri; Veldhuyzen Van Zanten, Sander; Pendharkar, Sachin R

    2013-11-01

    In 2005, a group of academic gastroenterologists in Calgary (Alberta) adopted a centralized referral intake system known as central triage. This system provided a single point of entry model (SEM) for referrals rather than the traditional system of individual practitioners managing their own referrals and queues. The goal of central triage was to improve wait times and referral management. In 2008, a similar system was developed in Edmonton at the University of Alberta Hospital (Edmonton, Alberta). SEMs have subsequently been adopted by numerous subspecialties throughout Alberta. There are many benefits of SEMs including improved access and reduced wait times. Understanding and measuring complex patient flow systems is key to improving access, and centralized intake systems provide an opportunity to better understand total demand and system bottlenecks. This knowledge is particularly important for specialties such as gastroenterology (GI), in which demand exceeds supply. While it is anticipated that SEMs will reduce wait times for GI care in Canada, the lack of sufficient resources to meet the demand for GI care necessitates additional strategies.

  7. Space nuclear reactor concepts for avoidance of a single point failure

    International Nuclear Information System (INIS)

    El-Genk, M. S.

    2007-01-01

    This paper presents three space nuclear reactor concepts for future exploration missions requiring electrical power of 10's to 100's kW, for 7-10 years. These concepts avoid a single point failure in reactor cooling; and they could be used with a host of energy conversion technologies. The first is lithium or sodium heat pipes cooled reactor. The heat pipes operate at a fraction of their prevailing capillary or sonic limit. Thus, when a number of heat pipes fail, those in the adjacent modules remove their heat load, maintaining reactor core adequately cooled. The second is a reactor with a circulating liquid metal coolant. The reactor core is divided into six identical sectors, each with a separate energy conversion loop. The sectors in the reactor core are neurotically coupled, but hydraulically decoupled. Thus, when a sector experiences a loss of coolant, the fission power generated in it will be removed by the circulating coolant in the adjacent sectors. In this case, however, the reactor fission power would have to decrease to avoid exceeding the design temperature limits in the sector with a failed loop. These two reactor concepts are used with energy conversion technologies, such as advanced Thermoelectric (TE), Free Piston Stirling Engines (FPSE), and Alkali Metal Thermal-to- Electric Conversion (AMTEC). Gas cooled reactors are a better choice to use with Closed Brayton Cycle engines, such as the third reactor concept to be presented in the paper. It has a sectored core that is cooled with a binary mixture of He-Xe (40 gm/mole). Each of the three sectors in the reactor has its own CBC and neutronically, but not hydraulically, coupled to the other sectors

  8. Control of anisotropic shape deviation in single point incremental forming of paperboard

    Science.gov (United States)

    Stein, Philipp; Franke, Wilken; Hoppe, Florian; Hesse, Daniel; Mill, Katharina; Groche, Peter

    2017-10-01

    The increasing social demand for sustainable material use leads to new process strategies as well as to the use of new materials in nearly all industries. In light of this demand, paperboard shows potential to substitute polymer-based components while also exhibiting improved ecological properties. However, in contrast to polymer-based products, the forming limits of paperboard are relatively low. Therefore, three dimensional forming of paperboard is subject of current research. One area of research focuses on the control of the fiber orientation dependent anisotropic material behavior of industrial paperboard in forming processes. For an examined industrial paperboard, an average elongation at break of 1.2% in the so called machine direction (fiber preferential direction, MD) has been determined at standard climate conditions. In contrast, in cross-direction (orthogonal to the machine direction, CD) a value of 2.6% was observed. With increased moisture content of the specimens the difference between the mechanical properties in MD and CD even increases. As a result of the various fiber-orientation dependent mechanical properties, forming with symmetric tools leads to asymmetrically shaped final parts. Within this article, an approach to reduce the asymmetric shape of three-dimensional formed paperboard by using single point incremental forming technology is presented. For a free spatial processing strategy the 3D Servo Press Technology, which enables circular as well as free processing strategies, is used. Based on reference tests with a circular processing strategy, it is shown that by using an adapted, elliptical tool path, an almost symmetric shaped part can be formed.

  9. Obtaining Global Picture From Single Point Observations by Combining Data Assimilation and Machine Learning Tools

    Science.gov (United States)

    Shprits, Y.; Zhelavskaya, I. S.; Kellerman, A. C.; Spasojevic, M.; Kondrashov, D. A.; Ghil, M.; Aseev, N.; Castillo Tibocha, A. M.; Cervantes Villa, J. S.; Kletzing, C.; Kurth, W. S.

    2017-12-01

    Increasing volume of satellite measurements requires deployment of new tools that can utilize such vast amount of data. Satellite measurements are usually limited to a single location in space, which complicates the data analysis geared towards reproducing the global state of the space environment. In this study we show how measurements can be combined by means of data assimilation and how machine learning can help analyze large amounts of data and can help develop global models that are trained on single point measurement. Data Assimilation: Manual analysis of the satellite measurements is a challenging task, while automated analysis is complicated by the fact that measurements are given at various locations in space, have different instrumental errors, and often vary by orders of magnitude. We show results of the long term reanalysis of radiation belt measurements along with fully operational real-time predictions using data assimilative VERB code. Machine Learning: We present application of the machine learning tools for the analysis of NASA Van Allen Probes upper-hybrid frequency measurements. Using the obtained data set we train a new global predictive neural network. The results for the Van Allen Probes based neural network are compared with historical IMAGE satellite observations. We also show examples of predictions of geomagnetic indices using neural networks. Combination of machine learning and data assimilation: We discuss how data assimilation tools and machine learning tools can be combine so that physics-based insight into the dynamics of the particular system can be combined with empirical knowledge of it's non-linear behavior.

  10. A Physical Model-based Correction for Charge Traps in the Hubble Space Telescope ’s Wide Field Camera 3 Near-IR Detector and Its Applications to Transiting Exoplanets and Brown Dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yifan; Apai, Dániel; Schneider, Glenn [Department of Astronomy/Steward Observatory, The University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Lew, Ben W. P., E-mail: yzhou@as.arizona.edu [Department of Planetary Science/Lunar and Planetary Laboratory, The University of Arizona, 1640 E. University Boulevard, Tucson, AZ 85718 (United States)

    2017-06-01

    The Hubble Space Telescope Wide Field Camera 3 (WFC3) near-IR channel is extensively used in time-resolved observations, especially for transiting exoplanet spectroscopy as well as brown dwarf and directly imaged exoplanet rotational phase mapping. The ramp effect is the dominant source of systematics in the WFC3 for time-resolved observations, which limits its photometric precision. Current mitigation strategies are based on empirical fits and require additional orbits to help the telescope reach a thermal equilibrium . We show that the ramp-effect profiles can be explained and corrected with high fidelity using charge trapping theories. We also present a model for this process that can be used to predict and to correct charge trap systematics. Our model is based on a very small number of parameters that are intrinsic to the detector. We find that these parameters are very stable between the different data sets, and we provide best-fit values. Our model is tested with more than 120 orbits (∼40 visits) of WFC3 observations and is proved to be able to provide near photon noise limited corrections for observations made with both staring and scanning modes of transiting exoplanets as well as for starting-mode observations of brown dwarfs. After our model correction, the light curve of the first orbit in each visit has the same photometric precision as subsequent orbits, so data from the first orbit no longer need to be discarded. Near-IR arrays with the same physical characteristics (e.g., JWST/NIRCam ) may also benefit from the extension of this model if similar systematic profiles are observed.

  11. Estimating envelope thermal characteristics from single point in time thermal images

    Science.gov (United States)

    Alshatshati, Salahaldin Faraj

    Energy efficiency programs implemented nationally in the U.S. by utilities have rendered savings which have cost on average 0.03/kWh. This cost is still well below generation costs. However, as the lowest cost energy efficiency measures are adopted, this the cost effectiveness of further investment declines. Thus there is a need to more effectively find the most opportunities for savings regionally and nationally, so that the greatest cost effectiveness in implementing energy efficiency can be achieved. Integral to this process. are at scale energy audits. However, on-site building energy audits process are expensive, in the range of US1.29/m2-$5.37/m2 and there are an insufficient number of professionals to perform the audits. Energy audits that can be conducted at-scale and at low cost are needed. Research is presented that addresses at community-wide scales characterization of building envelope thermal characteristics via drive-by and fly-over GPS linked thermal imaging. A central question drives this research: Can single point-in-time thermal images be used to infer U-values and thermal capacitances of walls and roofs? Previous efforts to use thermal images to estimate U-values have been limited to rare steady exterior weather conditions. The approaches posed here are based upon the development two models first is a dynamic model of a building envelope component with unknown U-value and thermal capacitance. The weather conditions prior to the thermal image are used as inputs to the model. The model is solved to determine the exterior surface temperature, ultimately predicted the temperature at the thermal measurement time. The model U-value and thermal capacitance are tuned in order to force the error between the predicted surface temperature and the measured surface temperature from thermal imaging to be near zero. This model is developed simply to show that such a model cannot be relied upon to accurately estimate the U-value. The second is a data

  12. Single Point Incremental Forming to increase material knowledge and production flexibility

    International Nuclear Information System (INIS)

    Habraken, A.M.

    2016-01-01

    Nowadays, manufactured pieces can be divided into two groups: mass production and production of low volume number of parts. Within the second group (prototyping or small batch production), an emerging solution relies on Incremental Sheet Forming or ISF. ISF refers to processes where the plastic deformation occurs by repeated contact with a relatively small tool. More specifically, many publications over the past decade investigate Single Point Incremental Forming (SPIF) where the final shape is determined only by the tool movement. This manufacturing process is characterized by the forming of sheets by means of a CNC controlled generic tool stylus, with the sheets clamped by means of a non-workpiece-specific clamping system and in absence of a partial or a full die. The advantage is no tooling requirements and often enhanced formability, however it poses a challenge in term of process control and accuracy assurance. Note that the most commonly used materials in incremental forming are aluminum and steel alloys however other alloys are also used especially for medical industry applications, such as cobalt and chromium alloys, stainless steel and titanium alloys. Some scientists have applied incremental forming on PVC plates and other on sandwich panels composed of propylene with mild steel and aluminum metallic foams with aluminum sheet metal. Micro incremental forming of thin foils has also been developed. Starting from the scattering of the results of Finite Element (FE) simulations, when one tries to predict the tool force (see SPIF benchmark of 2014 Numisheet conference), we will see how SPIF and even micro SPIF (process applied on thin metallic sheet with a few grains within the thickness) allow investigating the material behavior. This lecture will focus on the identification of constitutive laws, on the SPIF forming mechanisms and formability as well as the failure mechanism. Different hypotheses have been proposed to explain SPIF formability, they will be

  13. Single Point Incremental Forming to increase material knowledge and production flexibility

    Science.gov (United States)

    Habraken, A. M.

    2016-08-01

    Nowadays, manufactured pieces can be divided into two groups: mass production and production of low volume number of parts. Within the second group (prototyping or small batch production), an emerging solution relies on Incremental Sheet Forming or ISF. ISF refers to processes where the plastic deformation occurs by repeated contact with a relatively small tool. More specifically, many publications over the past decade investigate Single Point Incremental Forming (SPIF) where the final shape is determined only by the tool movement. This manufacturing process is characterized by the forming of sheets by means of a CNC controlled generic tool stylus, with the sheets clamped by means of a non-workpiece-specific clamping system and in absence of a partial or a full die. The advantage is no tooling requirements and often enhanced formability, however it poses a challenge in term of process control and accuracy assurance. Note that the most commonly used materials in incremental forming are aluminum and steel alloys however other alloys are also used especially for medical industry applications, such as cobalt and chromium alloys, stainless steel and titanium alloys. Some scientists have applied incremental forming on PVC plates and other on sandwich panels composed of propylene with mild steel and aluminum metallic foams with aluminum sheet metal. Micro incremental forming of thin foils has also been developed. Starting from the scattering of the results of Finite Element (FE) simulations, when one tries to predict the tool force (see SPIF benchmark of 2014 Numisheet conference), we will see how SPIF and even micro SPIF (process applied on thin metallic sheet with a few grains within the thickness) allow investigating the material behavior. This lecture will focus on the identification of constitutive laws, on the SPIF forming mechanisms and formability as well as the failure mechanism. Different hypotheses have been proposed to explain SPIF formability, they will be

  14. History of infrared detectors

    Science.gov (United States)

    Rogalski, A.

    2012-09-01

    This paper overviews the history of infrared detector materials starting with Herschel's experiment with thermometer on February 11th, 1800. Infrared detectors are in general used to detect, image, and measure patterns of the thermal heat radiation which all objects emit. At the beginning, their development was connected with thermal detectors, such as thermocouples and bolometers, which are still used today and which are generally sensitive to all infrared wavelengths and operate at room temperature. The second kind of detectors, called the photon detectors, was mainly developed during the 20th Century to improve sensitivity and response time. These detectors have been extensively developed since the 1940's. Lead sulphide (PbS) was the first practical IR detector with sensitivity to infrared wavelengths up to ˜3 μm. After World War II infrared detector technology development was and continues to be primarily driven by military applications. Discovery of variable band gap HgCdTe ternary alloy by Lawson and co-workers in 1959 opened a new area in IR detector technology and has provided an unprecedented degree of freedom in infrared detector design. Many of these advances were transferred to IR astronomy from Departments of Defence research. Later on civilian applications of infrared technology are frequently called "dual-use technology applications." One should point out the growing utilisation of IR technologies in the civilian sphere based on the use of new materials and technologies, as well as the noticeable price decrease in these high cost technologies. In the last four decades different types of detectors are combined with electronic readouts to make detector focal plane arrays (FPAs). Development in FPA technology has revolutionized infrared imaging. Progress in integrated circuit design and fabrication techniques has resulted in continued rapid growth in the size and performance of these solid state arrays.

  15. Highly macroscopically degenerated single-point ground states as source of specific heat capacity anomalies in magnetic frustrated systems

    Science.gov (United States)

    Jurčišinová, E.; Jurčišin, M.

    2018-04-01

    Anomalies of the specific heat capacity are investigated in the framework of the exactly solvable antiferromagnetic spin- 1 / 2 Ising model in the external magnetic field on the geometrically frustrated tetrahedron recursive lattice. It is shown that the Schottky-type anomaly in the behavior of the specific heat capacity is related to the existence of unique highly macroscopically degenerated single-point ground states which are formed on the borders between neighboring plateau-like ground states. It is also shown that the very existence of these single-point ground states with large residual entropies predicts the appearance of another anomaly in the behavior of the specific heat capacity for low temperatures, namely, the field-induced double-peak structure, which exists, and should be observed experimentally, along with the Schottky-type anomaly in various frustrated magnetic system.

  16. Expanding the Operational Limits of the Single-Point Impedance Diagnostic for Internal Temperature Monitoring of Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Spinner, Neil S.; Love, Corey T.; Rose-Pehrsson, Susan L.; Tuttle, Steven G.

    2015-01-01

    Highlights: • Single-point impedance diagnostic technique demonstrated for lithium-ion batteries • Correlation between imaginary impedance and internal temperature determined • Instantaneous monitoring of commercial lithium-ion battery internal temperature • Expanded temperature range from −10°C up to 95°C • Non-invasive method useful for practical temperature monitoring of commercial cells - Abstract: Instantaneous internal temperature monitoring of a commercial 18650 LiCoO 2 lithium-ion battery was performed using a single-point EIS measurement. A correlation between the imaginary impedance, –Z imag , and internal temperature at 300 Hz was developed that was independent of the battery’s state of charge. An Arrhenius-type dependence was applied, and the activation energy for SEI ionic conductivity was found to be 0.13 eV. Two separate temperature-time experiments were conducted with different sequences of temperature, and single-point impedance tests at 300 Hz were performed to validate the correlation. Limitations were observed with the upper temperature range (68°C < T < 95°C), and consequently a secondary, empirical fit was applied for this upper range to improve accuracy. Average differences between actual and fit temperatures decreased around 3-7°C for the upper range with the secondary correlation. The impedance response at this frequency corresponded to the anode/SEI layer, and the SEI is reported to be thermally stable up to around 100°C, at which point decomposition may occur leading to battery deactivation and/or total failure. It is therefore of great importance to be able to track internal battery temperatures up to this critical point of 100°C, and this work demonstrates an expansion of the single-point EIS diagnostic to these elevated temperatures

  17. Influence of Fiber Orientation on Single-Point Cutting Fracture Behavior of Carbon-Fiber/Epoxy Prepreg Sheets

    OpenAIRE

    Wei, Yingying; An, Qinglong; Cai, Xiaojiang; Chen, Ming; Ming, Weiwei

    2015-01-01

    The purpose of this article is to investigate the influences of carbon fibers on the fracture mechanism of carbon fibers both in macroscopic view and microscopic view by using single-point flying cutting method. Cutting tools with three different materials were used in this research, namely, PCD (polycrystalline diamond) tool, CVD (chemical vapor deposition) diamond thin film coated carbide tool and uncoated carbide tool. The influence of fiber orientation on the cutting force and fracture to...

  18. Detector Plans for LS1

    Energy Technology Data Exchange (ETDEWEB)

    Nessi, M [European Organization for Nuclear Research, Geneva (Switzerland)

    2012-07-01

    All experiments plan an effective usage of the LS1 shutdown period. After three years of running they will go through a consolidation phase, mostly to fix problems that have emerged over time, like single points of failure in the infrastructure, failures of low voltage power supplies and optical links. Upgrades of some detector components will start, mainly related to the beam pipe, the innermost tracker elements and the trigger system. Detector components, which had to be staged for cost reasons in 2003, will then enter into the detector setup. The goal is to be fully ready for the new energy regime at nominal luminosity.

  19. Dark Current Reduction of IR Detectors

    Science.gov (United States)

    2017-10-19

    hands-on experience in the lab fabricating semiconductor devices for an important application. We would also like to thank the members of AFRL...InP/InGaAs 1 Surface preparation / particle removal (repeated before every step) 2 Etch InGaAs contact mesas, used for ohmic contact and alignment 3...and dopant film in with HF dip 9 PECVD oxide #3 ~75nm (passivation) 10 Pattern oxide for metal- semiconductor contacts 11 Final metallization using e

  20. Improved linear pyroelectric IR detector arrays

    International Nuclear Information System (INIS)

    Twiney, R.C.; Robinson, M.K.; Porter, S.G.

    1987-01-01

    Good agreement has been found between theoretical models and measured performance for a range of array geometries. A 64-element 80 x 140-micron element array with integral MOSFET IC buffer preamplifiers shows improved source voltage uniformity, a J-FET buffered array, and low-frequency specific detectivity (SD) of 1.7 x 10 to the 8th cm sq rt Hz/W at 40 Hz. The MOSFET array shows reduced degradation of SD at high temperatures, retaining an SD of not less than 1 x 10 to the 8th cm sq rt Hz/W at +70 C across much of the band. A 64-element array has been designed using onboard multiplexers, thus greatly reducing the connections needed to run the array

  1. Apollo: giving application developers a single point of access to public health models using structured vocabularies and Web services.

    Science.gov (United States)

    Wagner, Michael M; Levander, John D; Brown, Shawn; Hogan, William R; Millett, Nicholas; Hanna, Josh

    2013-01-01

    This paper describes the Apollo Web Services and Apollo-SV, its related ontology. The Apollo Web Services give an end-user application a single point of access to multiple epidemic simulators. An end user can specify an analytic problem-which we define as a configuration and a query of results-exactly once and submit it to multiple epidemic simulators. The end user represents the analytic problem using a standard syntax and vocabulary, not the native languages of the simulators. We have demonstrated the feasibility of this design by implementing a set of Apollo services that provide access to two epidemic simulators and two visualizer services.

  2. Shape measurement system for single point incremental forming (SPIF) manufacts by using trinocular vision and random pattern

    International Nuclear Information System (INIS)

    Setti, Francesco; Bini, Ruggero; Lunardelli, Massimo; Bosetti, Paolo; Bruschi, Stefania; De Cecco, Mariolino

    2012-01-01

    Many contemporary works show the interest of the scientific community in measuring the shape of artefacts made by single point incremental forming. In this paper, we will present an algorithm able to detect feature points with a random pattern, check the compatibility of associations exploiting multi-stereo constraints and reject outliers and perform a 3D reconstruction by dense random patterns. The algorithm is suitable for a real-time application, in fact it needs just three images and a synchronous relatively fast processing. The proposed method has been tested on a simple geometry and results have been compared with a coordinate measurement machine acquisition. (paper)

  3. The influence of shrinkage-cracking on the drying behaviour of White Portland cement using Single-Point Imaging (SPI).

    Science.gov (United States)

    Beyea, S D; Balcom, B J; Bremner, T W; Prado, P J; Cross, A R; Armstrong, R L; Grattan-Bellew, P E

    1998-11-01

    The removal of water from pores in hardened cement paste smaller than 50 nm results in cracking of the cement matrix due to the tensile stresses induced by drying shrinkage. Cracks in the matrix fundamentally alter the permeability of the material, and therefore directly affect the drying behaviour. Using Single-Point Imaging (SPI), we obtain one-dimensional moisture profiles of hydrated White Portland cement cylinders as a function of drying time. The drying behaviour of White Portland cement, is distinctly different from the drying behaviour of related concrete materials containing aggregates.

  4. Single-point reactive power control method on voltage rise mitigation in residential networks with high PV penetration

    DEFF Research Database (Denmark)

    Hasheminamin, Maryam; Agelidis, Vassilios; Ahmadi, Abdollah

    2018-01-01

    Voltage rise (VR) due to reverse power flow is an important obstacle for high integration of Photovoltaic (PV) into residential networks. This paper introduces and elaborates a novel methodology of an index-based single-point-reactive power-control (SPRPC) methodology to mitigate voltage rise by ...... system with high r/x ratio. Efficacy, effectiveness and cost study of SPRPC is compared to droop control to evaluate its advantages.......Voltage rise (VR) due to reverse power flow is an important obstacle for high integration of Photovoltaic (PV) into residential networks. This paper introduces and elaborates a novel methodology of an index-based single-point-reactive power-control (SPRPC) methodology to mitigate voltage rise...... by absorbing adequate reactive power from one selected point. The proposed index utilizes short circuit analysis to select the best point to apply this Volt/Var control method. SPRPC is supported technically and financially by distribution network operator that makes it cost effective, simple and efficient...

  5. Mitigation of Critical Single Point Failure (SPF) Material - Laminac 4116 Binder Replacement Program for Parachute and Cluster Stars Illuminant Compositions for Hand Held Signals

    National Research Council Canada - National Science Library

    Lakshminarayanan, G. R; Chen, Gary; Ames, Richard; Lee, Wai T; Wejsa, James L

    2006-01-01

    Laminac 4116 binder has been identified as a single point failure (SPF) material since it is being produced by only one company and there is a possibility that the company may discontinue production due to low product demand...

  6. Upconversion imager measures single mid-IR photons

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2013-01-01

    the performance of today's state of the art IR detectors for the visible/near-IR region shows a striking contrast, as the latter can have dark currents in the range of 0.001 electrons per second. Demonstrated performance of waveguide upconversion techniques still show considerable dark noise, even when working...

  7. Radiation detectors

    International Nuclear Information System (INIS)

    2013-01-01

    This sixth chapter presents the operational principles of the radiation detectors; detection using photographic emulsions; thermoluminescent detectors; gas detectors; scintillation detectors; liquid scintillation detectors; detectors using semiconductor materials; calibration of detectors; Bragg-Gray theory; measurement chain and uncertainties associated to measurements

  8. Influence of Fiber Orientation on Single-Point Cutting Fracture Behavior of Carbon-Fiber/Epoxy Prepreg Sheets

    Directory of Open Access Journals (Sweden)

    Yingying Wei

    2015-10-01

    Full Text Available The purpose of this article is to investigate the influences of carbon fibers on the fracture mechanism of carbon fibers both in macroscopic view and microscopic view by using single-point flying cutting method. Cutting tools with three different materials were used in this research, namely, PCD (polycrystalline diamond tool, CVD (chemical vapor deposition diamond thin film coated carbide tool and uncoated carbide tool. The influence of fiber orientation on the cutting force and fracture topography were analyzed and conclusions were drawn that cutting forces are not affected by cutting speeds but significantly influenced by the fiber orientation. Cutting forces presented smaller values in the fiber orientation of 0/180° and 15/165° but the highest one in 30/150°. The fracture mechanism of carbon fibers was studied in different cutting conditions such as 0° orientation angle, 90° orientation angle, orientation angles along fiber direction, and orientation angles inverse to the fiber direction. In addition, a prediction model on the cutting defects of carbon fiber reinforced plastic was established based on acoustic emission (AE signals.

  9. Locating single-point sources from arrival times containing large picking errors (LPEs): the virtual field optimization method (VFOM)

    Science.gov (United States)

    Li, Xi-Bing; Wang, Ze-Wei; Dong, Long-Jun

    2016-01-01

    Microseismic monitoring systems using local location techniques tend to be timely, automatic and stable. One basic requirement of these systems is the automatic picking of arrival times. However, arrival times generated by automated techniques always contain large picking errors (LPEs), which may make the location solution unreliable and cause the integrated system to be unstable. To overcome the LPE issue, we propose the virtual field optimization method (VFOM) for locating single-point sources. In contrast to existing approaches, the VFOM optimizes a continuous and virtually established objective function to search the space for the common intersection of the hyperboloids, which is determined by sensor pairs other than the least residual between the model-calculated and measured arrivals. The results of numerical examples and in-site blasts show that the VFOM can obtain more precise and stable solutions than traditional methods when the input data contain LPEs. Furthermore, we discuss the impact of LPEs on objective functions to determine the LPE-tolerant mechanism, velocity sensitivity and stopping criteria of the VFOM. The proposed method is also capable of locating acoustic sources using passive techniques such as passive sonar detection and acoustic emission.

  10. Single-Point Incremental Forming of Two Biocompatible Polymers: An Insight into Their Thermal and Structural Properties

    Directory of Open Access Journals (Sweden)

    Luis Marcelo Lozano-Sánchez

    2018-04-01

    Full Text Available Sheets of polycaprolactone (PCL and ultra-high molecular weight polyethylene (UHMWPE were fabricated and shaped by the Single-Point Incremental Forming process (SPIF. The performance of these biocompatible polymers in SPIF was assessed through the variation of four main parameters: the diameter of the forming tool, the spindle speed, the feed rate, and the step size based on a Box–Behnken design of experiments of four variables and three levels. The design of experiments allowed us to identify the parameters that most affect the forming of PCL and UHMWPE. The study was completed by means of a deep characterization of the thermal and structural properties of both polymers. These properties were correlated to the performance of the polymers observed in SPIF, and it was found that the polymer chains are oriented as a consequence of the SPIF processing. Moreover, by X-ray diffraction it was proved that polymer chains behave differently on each surface of the fabricated parts, since the chains on the surface in contact with the forming tool are oriented horizontally, while on the opposite surface they are oriented in the vertical direction. The unit cell of UHMWPE is distorted, passing from an orthorhombic cell to a monoclinic due to the slippage between crystallites. This slippage between crystallites was observed in both PCL and UHMWPE, and was identified as an alpha star thermal transition located in the rubbery region between the glass transition and the melting point of each polymer.

  11. Evaluation of mixing downstream of tees in duct systems with respect to single point representative air sampling.

    Science.gov (United States)

    Kim, Taehong; O'Neal, Dennis L; Ortiz, Carlos

    2006-09-01

    Air duct systems in nuclear facilities must be monitored with continuous sampling in case of an accidental release of airborne radionuclides. The purpose of this work is to identify the air sampling locations where the velocity and contaminant concentrations fall below the 20% coefficient of variation required by the American National Standards Institute/Health Physics Society N13.1-1999. Experiments of velocity and tracer gas concentration were conducted on a generic "T" mixing system which included combinations of three sub ducts, one main duct, and air velocities from 0.5 to 2 m s (100 to 400 fpm). The experimental results suggest that turbulent mixing provides the accepted velocity coefficients of variation after 6 hydraulic diameters downstream of the T-junction. About 95% of the cases achieved coefficients of variation below 10% by 6 hydraulic diameters. However, above a velocity ratio (velocity in the sub duct/velocity in the main duct) of 2, velocity profiles were uniform in a shorter distance downstream of the T-junction as the velocity ratio went up. For the tracer gas concentration, the distance needed for the coefficients of variation to drop 20% decreased with increasing velocity ratio due to the sub duct airflow momentum. The results may apply to other duct systems with similar geometries and, ultimately, be a basis for selecting a proper sampling location under the requirements of single point representative sampling.

  12. Comparison of plastic strains on AA5052 by single point incremental forming process using digital image processing

    Energy Technology Data Exchange (ETDEWEB)

    Mugendiran, V.; Gnanavelbabu, A. [Anna University, Chennai, Tamilnadu (India)

    2017-06-15

    In this study, a surface based strain measurement was used to determine the formability of the sheet metal. A strain measurement may employ manual calculation of plastic strains based on the reference circle and the deformed circle. The manual calculation method has a greater margin of error in the practical applications. In this paper, an attempt has been made to compare the formability by implementing three different theoretical approaches: Namely conventional method, least square method and digital based strain measurements. As the sheet metal was formed by a single point incremental process the etched circles get deformed into elliptical shapes approximately, image acquisition has been done before and after forming. The plastic strains of the deformed circle grids are calculated based on the non- deformed reference. The coordinates of the deformed circles are measured by various image processing steps. Finally the strains obtained from the deformed circle are used to plot the forming limit diagram. To evaluate the accuracy of the system, the conventional, least square and digital based method of prediction of the forming limit diagram was compared. Conventional method and least square method have marginal error when compared with digital based processing method. Measurement of strain based on image processing agrees well and can be used to improve the accuracy and to reduce the measurement error in prediction of forming limit diagram.

  13. Role of single-point mutations and deletions on transition temperatures in ideal proteinogenic heteropolymer chains in the gas phase.

    Science.gov (United States)

    Olivares-Quiroz, L

    2016-07-01

    A coarse-grained statistical mechanics-based model for ideal heteropolymer proteinogenic chains of non-interacting residues is presented in terms of the size K of the chain and the set of helical propensities [Formula: see text] associated with each residue j along the chain. For this model, we provide an algorithm to compute the degeneracy tensor [Formula: see text] associated with energy level [Formula: see text] where [Formula: see text] is the number of residues with a native contact in a given conformation. From these results, we calculate the equilibrium partition function [Formula: see text] and characteristic temperature [Formula: see text] at which a transition from a low to a high entropy states is observed. The formalism is applied to analyze the effect on characteristic temperatures [Formula: see text] of single-point mutations and deletions of specific amino acids [Formula: see text] along the chain. Two probe systems are considered. First, we address the case of a random heteropolymer of size K and given helical propensities [Formula: see text] on a conformational phase space. Second, we focus our attention to a particular set of neuropentapeptides, [Met-5] and [Leu-5] enkephalins whose thermodynamic stability is a key feature on their coupling to [Formula: see text] and [Formula: see text] receptors and the triggering of biochemical responses.

  14. Comparison of plastic strains on AA5052 by single point incremental forming process using digital image processing

    International Nuclear Information System (INIS)

    Mugendiran, V.; Gnanavelbabu, A.

    2017-01-01

    In this study, a surface based strain measurement was used to determine the formability of the sheet metal. A strain measurement may employ manual calculation of plastic strains based on the reference circle and the deformed circle. The manual calculation method has a greater margin of error in the practical applications. In this paper, an attempt has been made to compare the formability by implementing three different theoretical approaches: Namely conventional method, least square method and digital based strain measurements. As the sheet metal was formed by a single point incremental process the etched circles get deformed into elliptical shapes approximately, image acquisition has been done before and after forming. The plastic strains of the deformed circle grids are calculated based on the non- deformed reference. The coordinates of the deformed circles are measured by various image processing steps. Finally the strains obtained from the deformed circle are used to plot the forming limit diagram. To evaluate the accuracy of the system, the conventional, least square and digital based method of prediction of the forming limit diagram was compared. Conventional method and least square method have marginal error when compared with digital based processing method. Measurement of strain based on image processing agrees well and can be used to improve the accuracy and to reduce the measurement error in prediction of forming limit diagram.

  15. Noncontact on-machine measurement system based on capacitive displacement sensors for single-point diamond turning

    Science.gov (United States)

    Li, Xingchang; Zhang, Zhiyu; Hu, Haifei; Li, Yingjie; Xiong, Ling; Zhang, Xuejun; Yan, Jiwang

    2018-04-01

    On-machine measurements can improve the form accuracy of optical surfaces in single-point diamond turning applications; however, commercially available linear variable differential transformer sensors are inaccurate and can potentially scratch the surface. We present an on-machine measurement system based on capacitive displacement sensors for high-precision optical surfaces. In the proposed system, a position-trigger method of measurement was developed to ensure strict correspondence between the measurement points and the measurement data with no intervening time-delay. In addition, a double-sensor measurement was proposed to reduce the electric signal noise during spindle rotation. Using the proposed system, the repeatability of 80-nm peak-to-valley (PV) and 8-nm root-mean-square (RMS) was achieved through analyzing four successive measurement results. The accuracy of 109-nm PV and 14-nm RMS was obtained by comparing with the interferometer measurement result. An aluminum spherical mirror with a diameter of 300 mm was fabricated, and the resulting measured form error after one compensation cut was decreased to 254 nm in PV and 52 nm in RMS. These results confirm that the measurements of the surface form errors were successfully used to modify the cutting tool path during the compensation cut, thereby ensuring that the diamond turning process was more deterministic. In addition, the results show that the noise level was significantly reduced with the reference sensor even under a high rotational speed.

  16. Influence of Fiber Orientation on Single-Point Cutting Fracture Behavior of Carbon-Fiber/Epoxy Prepreg Sheets.

    Science.gov (United States)

    Wei, Yingying; An, Qinglong; Cai, Xiaojiang; Chen, Ming; Ming, Weiwei

    2015-10-02

    The purpose of this article is to investigate the influences of carbon fibers on the fracture mechanism of carbon fibers both in macroscopic view and microscopic view by using single-point flying cutting method. Cutting tools with three different materials were used in this research, namely, PCD (polycrystalline diamond) tool, CVD (chemical vapor deposition) diamond thin film coated carbide tool and uncoated carbide tool. The influence of fiber orientation on the cutting force and fracture topography were analyzed and conclusions were drawn that cutting forces are not affected by cutting speeds but significantly influenced by the fiber orientation. Cutting forces presented smaller values in the fiber orientation of 0/180° and 15/165° but the highest one in 30/150°. The fracture mechanism of carbon fibers was studied in different cutting conditions such as 0° orientation angle, 90° orientation angle, orientation angles along fiber direction, and orientation angles inverse to the fiber direction. In addition, a prediction model on the cutting defects of carbon fiber reinforced plastic was established based on acoustic emission (AE) signals.

  17. A Modified Harris Corner Detection for Breast IR Image

    Directory of Open Access Journals (Sweden)

    Chia-Yen Lee

    2014-01-01

    Full Text Available Harris corner detectors, which depend on strong invariance and a local autocorrelation function, display poor detection performance for infrared (IR images with low contrast and nonobvious edges. In addition, feature points detected by Harris corner detectors are clustered due to the numerous nonlocal maxima. This paper proposes a modified Harris corner detector that includes two unique steps for processing IR images in order to overcome the aforementioned problems. Image contrast enhancement based on a generalized form of histogram equalization (HE combined with adjusting the intensity resolution causes false contours on IR images to acquire obvious edges. Adaptive nonmaximal suppression based on eliminating neighboring pixels avoids the clustered features. Preliminary results show that the proposed method can solve the clustering problem and successfully identify the representative feature points of IR breast images.

  18. Intracavity upconversion for IR absorption lidar: Comparison of linear and ring cavity designs

    DEFF Research Database (Denmark)

    Meng, Lichun; Høgstedt, Lasse; Tidemand-Lichtenberg, Peter

    2017-01-01

    Upconversion detection is a promising technology for measurement of IR signals in the 1.5 μm–2 μm region used for lidar remote sensing [1-2]. In comparison to conventional InGaAs detector, the upconversion detector can achieve IR detection with better signal-to-noise ratio (SNR), not only due...

  19. Improvenments in environmental trace analysis by GC-IR and LC-IR.

    NARCIS (Netherlands)

    Visser, T.; Vredenbregt, M.J.; Jong, A.P.J.M.; Somsen, G.W.; Hankemeier, T.; Velthorst, N.H.; Gooijer, C.; Brinkman, U.A.T.

    1997-01-01

    Research has been carried out to enlarge the potential of infrared (IR) spectrometry as a detector in gas and liquid chromatography (GC and LC). The study has been directed to applications in environmental analysis. Examples of recently obtained results are presented. The analyte detectability of

  20. Integrating single-point vibrometer and full-field electronic speckle pattern interferometer to evaluate a micro-speaker

    Science.gov (United States)

    Chang, Wen-Chi; Chen, Yu-Chi; Chien, Chih-Jen; Wang, An-Bang; Lee, Chih-Kung

    2011-04-01

    A testing system contains an advanced vibrometer/interferometer device (AVID) and a high-speed electronic speckle pattern interferometer (ESPI) was developed. AVID is a laser Doppler vibrometer that can be used to detect single-point linear and angular velocity with DC to 20 MHz bandwidth and with nanometer resolution. In swept frequency mode, frequency response from mHz to MHz of the structure of interest can be measured. The ESPI experimental setup can be used to measure full-field out-of-plane displacement. A 5-1 phase shifting method and a correlation algorithm were used to analyze the phase difference between the reference signal and the speckle signal scattered from the sample surface. In order to show the efficiency and effectiveness of AVID and ESPI, we designed a micro-speaker composed of a plate with fixed boundaries and two piezo-actuators attached to the sides of the plate. The AVID was used to measure the vibration of one of the piezo-actuators and the ESPI was adopted to measure the two-dimensional out-of-plane displacement of the plate. A microphone was used to measure the acoustic response created by the micro-speaker. Driving signal includes random signal, sinusoidal signal, amplitude modulated high-frequency carrier signal, etc. Angular response induced by amplitude modulated high-frequency carrier signal was found to be significantly narrower than the frequency responses created by other types of driving signals. The validity of our newly developed NDE system are detailed by comparing the relationship between the vibration signal of the micro-speaker and the acoustic field generated.

  1. A single point acupuncture treatment at large intestine meridian: a randomized controlled trial in acute tonsillitis and pharyngitis.

    Science.gov (United States)

    Fleckenstein, Johannes; Lill, Christian; Lüdtke, Rainer; Gleditsch, Jochen; Rasp, Gerd; Irnich, Dominik

    2009-09-01

    One out of 4 patients visiting a general practitioner reports of a sore throat associated with pain on swallowing. This study was established to examine the immediate pain alleviating effect of a single point acupuncture treatment applied to the large intestine meridian of patients with sore throat. Sixty patients with acute tonsillitis and pharyngitis were enrolled in this randomized placebo-controlled trial. They either received acupuncture, or sham laser acupuncture, directed to the large intestine meridian section between acupuncture points LI 8 and LI 10. The main outcome measure was the change of pain intensity on swallowing a sip of water evaluated by a visual analog scale 15 minutes after treatment. A credibility assessment regarding the respective treatment was performed. The pain intensity for the acupuncture group before and immediately after therapy was 5.6+/-2.8 and 3.0+/-3.0, and for the sham group 5.6+/-2.5 and 3.8+/-2.5, respectively. Despite the articulation of a more pronounced improvement among the acupuncture group, there was no significant difference between groups (Delta=0.9, confidence interval: -0.2-2.0; P=0.12; analysis of covariance). Patients' satisfaction was high in both treatment groups. The study was prematurely terminated due to a subsequent lack of suitable patients. A single acupuncture treatment applied to a selected area of the large intestine meridian was no more effective in the alleviation of pain associated with clinical sore throat than sham laser acupuncture applied to the same area. Hence, clinically relevant improvement could be achieved. Pain alleviation might partly be due to the intense palpation of the large intestine meridian. The benefit of a comprehensive acupuncture treatment protocol in this condition should be subject to further trials.

  2. Van Allen Probes Science Gateway: Single-Point Access to Long-Term Radiation Belt Measurements and Space Weather Nowcasting

    Science.gov (United States)

    Romeo, G.; Barnes, R. J.; Ukhorskiy, A. Y.; Sotirelis, T.; Stephens, G.

    2017-12-01

    The Science Gateway gives single-point access to over 4.5 years of comprehensive wave and particle measurements from the Van Allen Probes NASA twin-spacecraft mission. The Gateway provides a set of visualization and data analysis tools including: HTML5-based interactive visualization of high-level data products from all instrument teams in the form of: line plots, orbital content plots, dynamical energy spectra, L-shell context plots (including two-spacecraft plotting), FFT spectra of wave data, solar wind and geomagnetic indices data, etc.; download custom multi-instrument CDF data files of selected data products; publication quality plots of digital data; combined orbit predicts for mission planning and coordination including: Van Allen Probes, MMS, THEMIS, Arase (ERG), Cluster, GOES, Geotail, FIREBIRD; magnetic footpoint calculator for coordination with LEO and ground-based assets; real-time computation and processing of empirical magnetic field models - computation of magnetic ephemeris, computation of adiabatic invariants. Van Allen Probes is the first spacecraft mission to provide a nowcast of the radiation environment in the heart of the radiation belts, where the radiation levels are the highest and most dangerous for spacecraft operations. For this purpose, all instruments continuously broadcast a subset of their science data in real time. Van Allen Probes partners with four foreign institutions who operate ground stations that receive the broadcast: Korea (KASI), the Czech republic (CAS), Argentina (CONAE), and Brazil (INPE). The SpWx broadcast is then collected at APL and delivered to the community via the Science Gateway.

  3. The Borexino Detector

    Science.gov (United States)

    Montanari, David

    2010-04-01

    The Borexino detector is a large volume liquid scintillator detector for low energy neutrino spetroscopy currently running underground at the Laboratori Nazionali del Gran Sasso, Italy. Main goal of the experiment is the real-time measurement of sub-MeV solar neutrinos, and particularly of the mono-energetic (862KeV) 7Be electron capture neutrinos, via neutrino-electron scattering in ultra-pure liquid scintillator. We report the description of the detector itself from its construction to the final current configuration. The initial requirements are first presented, then the strategy developed to achieve them: choice of materials and components, purification of the scintillator, cleaning, leak tightness, fluid handling. Every single point is analyzed, particularly the purification plants, that allowed reaching an ultra high pure scintillator and the fluid handling system, a large modular system connecting fluid receiving, purification and fluid delivery processes for every fluid involved. The different phases of the filling follow: from air to water to the final liquid scintillator, mainly focusing on the scintillator filling. The performances of the detector and the results are then presented.

  4. Lithium-Ion Cell Fault Detection by Single-Point Impedance Diagnostic and Degradation Mechanism Validation for Series-Wired Batteries Cycled at 0 °C

    Directory of Open Access Journals (Sweden)

    Corey T. Love

    2018-04-01

    Full Text Available The utility of a single-point impedance-based technique to monitor the state-of-health of a pack of four 18650 lithium-ion cells wired in series (4S was demonstrated in a previous publication. This work broadens the applicability of the single-point monitoring technique to identify temperature induced faults within 4S packs at 0 °C by two distinct discharge cut-off thresholds: individual cell cut-off and pack voltage cut-off. The results show how the single-point technique applied to a 4S pack can identify cell faults induced by low temperature degradation when plotted on a unique state-of-health map. Cell degradation is validated through an extensive incremental capacity technique to quantify capacity loss due to low temperature cycling and investigate the underpinnings of cell failure.

  5. Pixelated coatings and advanced IR coatings

    Science.gov (United States)

    Pradal, Fabien; Portier, Benjamin; Oussalah, Meihdi; Leplan, Hervé

    2017-09-01

    Reosc developed pixelated infrared coatings on detector. Reosc manufactured thick pixelated multilayer stacks on IR-focal plane arrays for bi-spectral imaging systems, demonstrating high filter performance, low crosstalk, and no deterioration of the device sensitivities. More recently, a 5-pixel filter matrix was designed and fabricated. Recent developments in pixelated coatings, shows that high performance infrared filters can be coated directly on detector for multispectral imaging. Next generation space instrument can benefit from this technology to reduce their weight and consumptions.

  6. IOT Overview: IR Instruments

    Science.gov (United States)

    Mason, E.

    In this instrument review chapter the calibration plans of ESO IR instruments are presented and briefly reviewed focusing, in particular, on the case of ISAAC, which has been the first IR instrument at VLT and whose calibration plan served as prototype for the coming instruments.

  7. Detectors plans for LS1

    International Nuclear Information System (INIS)

    Nessi, M.

    2012-01-01

    All experiments plan an effective usage of the LS1 shutdown period. After three years of running they will go through a consolidation phase, mostly to fix problems that have emerged over time, like single points of failure in the infrastructure, failures of low-voltage power supplies and optical links. Upgrades of some detector components will start, mainly related to the beam pipe, the innermost tracker elements and the trigger system. Detector components, which had to be staged for cost reasons in 2003, will then enter into the detector setup. The goal is to be fully ready for the new energy regime at nominal luminosity. This article reviews the planned maintenance and modification works for ATLAS, CMS, LHCb and ALICE experiments. (author)

  8. Future development of IR thermovision weather satellite equipment

    Science.gov (United States)

    Listratov, A. V.

    1974-01-01

    The self radiation of the surface being viewed is used for image synthesis in IR thermovision equipment. The installation of such equipment aboard weather satellites makes it possible to obtain cloud cover pictures of the earth's surface in a complete orbit, regardless of the illumination conditions, and also provides quantitative information on the underlying surface temperature and cloud top height. Such equipment is used successfully aboard the Soviet satellites of the Meteor system, and experimentally on the American satellites of the Nimbus series. With regard to surface resolution, the present-day IR weather satellite equipment is inferior to the television equipment. This is due primarily to the comparatively low detectivity of the IR detectors used. While IR equipment has several fundamental advantages in comparison with the conventional television equipment, the problem arises of determining the possibility for future development of weather satellite IR thermovision equipment. Criteria are examined for evaluating the quality of IR.

  9. MRI of hip prostheses using single-point methods : in vitro studies towards the artifact-free imaging of individuals with metal implants

    NARCIS (Netherlands)

    Ramos Cabrer, P.; Duynhoven, van J.P.M.; Toorn, van der A.; Nicolaij, K.

    2004-01-01

    Use of magnetic resonance imaging (MRI) in individuals with orthopedic implants is limited because of the large distortions caused by metallic components. As a possible solution for this problem, we suggest the use of single-point imaging (SPI) methods, which are immune to the susceptibility

  10. Ionization detector

    International Nuclear Information System (INIS)

    Steele, D.S.

    1987-01-01

    An ionization detector having an array of detectors has, for example, grounding pads positioned in the spaces between some detectors (data detectors) and other detectors (reference detectors). The grounding pads are kept at zero electric potential, i.e. grounded. The grounding serves to drain away electrons and thereby prevent an unwanted accumulation of charge in the spaces, and cause the electric field lines to be more perpendicular to the detectors in regions near the grounding pads. Alternatively, no empty space is provided there being additional, grounded, detectors provided between the data and reference detectors. (author)

  11. Silicon detectors

    International Nuclear Information System (INIS)

    Klanner, R.

    1984-08-01

    The status and recent progress of silicon detectors for high energy physics is reviewed. Emphasis is put on detectors with high spatial resolution and the use of silicon detectors in calorimeters. (orig.)

  12. Recent developments in materials and detectors for the infrared; Proceedings of the Meeting, Cannes, France, November 25, 26, 1985

    Science.gov (United States)

    Morten, F. D. (Editor); Seeley, John S. (Editor)

    1986-01-01

    The present conference on advancements in IR-sensitive materials and detector technologies employing them gives attention to thermal detectors, focal plane array processing detectors, novel detector designs, general properties of IR optics materials, and preparation methods for such materials. Specific topics encompass the fabrication of InSb MIS structures prepared by photochemical vapor deposition, IR heterodyne detectors employing cadmium mercury telluride, low microphony pyroelectric arrays, IR detection based on minority carrier extrusion, longwave reststrahl in IR crystals, and molecular beam techniques for optical thin film fabrication.

  13. Temperature Profile of IR Blocking Windows Used in Cryogenic X-Ray Spectrometers

    International Nuclear Information System (INIS)

    Friedrich, S.; Funk, T.; Drury, O.; Labov, S.E.

    2000-01-01

    Cryogenic high-resolution X-ray spectrometers are typically operated with thin IR blocking windows to reduce radiative heating of the detector while allowing good x-ray transmission. We have estimated the temperature profile of these IR blocking windows under typical operating conditions. We show that the temperature in the center of the window is raised due to radiation from the higher temperature stages. This can increase the infrared photon flux onto the detector, thereby increasing the IR noise and decreasing the cryostat hold time. The increased window temperature constrains the maximum window size and the number of windows required. We discuss the consequences for IR blocking window design

  14. Proposed method of producing large optical mirrors Single-point diamond crushing followed by polishing with a small-area tool

    Science.gov (United States)

    Wright, G.; Bryan, J. B.

    1986-01-01

    Faster production of large optical mirrors may result from combining single-point diamond crushing of the glass with polishing using a small area tool to smooth the surface and remove the damaged layer. Diamond crushing allows a surface contour accurate to 0.5 microns to be generated, and the small area computer-controlled polishing tool allows the surface roughness to be removed without destroying the initial contour. Final contours with an accuracy of 0.04 microns have been achieved.

  15. Fabrication of an infrared Shack-Hartmann sensor by combining high-speed single-point diamond milling and precision compression molding processes.

    Science.gov (United States)

    Zhang, Lin; Zhou, Wenchen; Naples, Neil J; Yi, Allen Y

    2018-05-01

    A novel fabrication method by combining high-speed single-point diamond milling and precision compression molding processes for fabrication of discontinuous freeform microlens arrays was proposed. Compared with slow tool servo diamond broaching, high-speed single-point diamond milling was selected for its flexibility in the fabrication of true 3D optical surfaces with discontinuous features. The advantage of single-point diamond milling is that the surface features can be constructed sequentially by spacing the axes of a virtual spindle at arbitrary positions based on the combination of rotational and translational motions of both the high-speed spindle and linear slides. By employing this method, each micro-lenslet was regarded as a microstructure cell by passing the axis of the virtual spindle through the vertex of each cell. An optimization arithmetic based on minimum-area fabrication was introduced to the machining process to further increase the machining efficiency. After the mold insert was machined, it was employed to replicate the microlens array onto chalcogenide glass. In the ensuing optical measurement, the self-built Shack-Hartmann wavefront sensor was proven to be accurate in detecting an infrared wavefront by both experiments and numerical simulation. The combined results showed that precision compression molding of chalcogenide glasses could be an economic and precision optical fabrication technology for high-volume production of infrared optics.

  16. Modification and Validation of the Triglyceride-to-HDL Cholesterol Ratio as a Surrogate of Insulin Sensitivity in White Juveniles and Adults without Diabetes Mellitus: The Single Point Insulin Sensitivity Estimator (SPISE).

    Science.gov (United States)

    Paulmichl, Katharina; Hatunic, Mensud; Højlund, Kurt; Jotic, Aleksandra; Krebs, Michael; Mitrakou, Asimina; Porcellati, Francesca; Tura, Andrea; Bergsten, Peter; Forslund, Anders; Manell, Hannes; Widhalm, Kurt; Weghuber, Daniel; Anderwald, Christian-Heinz

    2016-09-01

    The triglyceride-to-HDL cholesterol (TG/HDL-C) ratio was introduced as a tool to estimate insulin resistance, because circulating lipid measurements are available in routine settings. Insulin, C-peptide, and free fatty acids are components of other insulin-sensitivity indices but their measurement is expensive. Easier and more affordable tools are of interest for both pediatric and adult patients. Study participants from the Relationship Between Insulin Sensitivity and Cardiovascular Disease [43.9 (8.3) years, n = 1260] as well as the Beta-Cell Function in Juvenile Diabetes and Obesity study cohorts [15 (1.9) years, n = 29] underwent oral-glucose-tolerance tests and euglycemic clamp tests for estimation of whole-body insulin sensitivity and calculation of insulin sensitivity indices. To refine the TG/HDL ratio, mathematical modeling was applied including body mass index (BMI), fasting TG, and HDL cholesterol and compared to the clamp-derived M-value as an estimate of insulin sensitivity. Each modeling result was scored by identifying insulin resistance and correlation coefficient. The Single Point Insulin Sensitivity Estimator (SPISE) was compared to traditional insulin sensitivity indices using area under the ROC curve (aROC) analysis and χ(2) test. The novel formula for SPISE was computed as follows: SPISE = 600 × HDL-C(0.185)/(TG(0.2) × BMI(1.338)), with fasting HDL-C (mg/dL), fasting TG concentrations (mg/dL), and BMI (kg/m(2)). A cutoff value of 6.61 corresponds to an M-value smaller than 4.7 mg · kg(-1) · min(-1) (aROC, M:0.797). SPISE showed a significantly better aROC than the TG/HDL-C ratio. SPISE aROC was comparable to the Matsuda ISI (insulin sensitivity index) and equal to the QUICKI (quantitative insulin sensitivity check index) and HOMA-IR (homeostasis model assessment-insulin resistance) when calculated with M-values. The SPISE seems well suited to surrogate whole-body insulin sensitivity from inexpensive fasting single-point blood draw and BMI

  17. Development of Ir/Au-TES microcalorimeter

    International Nuclear Information System (INIS)

    Kunieda, Yuichi; Fukuda, Daiji; Ohno, Masashi; Nakazawa, Masaharu; Takahashi, Hiroyuki; Ataka, Manabu; Ohkubo, Masataka; Hirayama, Fuminori

    2004-01-01

    We are developing X-ray microcalorimeters using transition edge sensors (TES) for high resolution x-ray spectroscopy. Microcalorimeters are thermal detectors which measure the energy of an incident x-ray photon using a TES thermometer operated at a sharp transition edge between normal and superconducting states. TES microcalorimeters can achieve faster response than conventional microcalorimeters by keeping the operating point of TES in the transition region through the use of strong negative electrothermal feedback (ETF). We developed a bilayer TES where a normal metal Au was deposited on a superconductor Ir in order to improve the thermal conductivity of the Ir-TES. We investigated resistance-temperature characteristics. As a result, it showed a very sharp transition within 1 mK at the temperature of 110 mK. The energy resolution of 9.4 eV (FWHM) was achieved for a 5899 eV Mn K al line. (author)

  18. Transmutation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Viererbl, L., E-mail: vie@ujv.c [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Lahodova, Z. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Klupak, V. [Nuclear Research Institute Rez plc (Czech Republic); Sus, F. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Kucera, J. [Research Centre Rez Ltd. (Czech Republic); Nuclear Physics Institute, Academy of Sciences of the Czech Republic (Czech Republic); Kus, P.; Marek, M. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic)

    2011-03-11

    We have designed a new type of detectors, called transmutation detectors, which can be used primarily for neutron fluence measurement. The transmutation detector method differs from the commonly used activation detector method in evaluation of detector response after irradiation. Instead of radionuclide activity measurement using radiometric methods, the concentration of stable non-gaseous nuclides generated by transmutation in the detector is measured using analytical methods like mass spectrometry. Prospective elements and nuclear reactions for transmutation detectors are listed and initial experimental results are given. The transmutation detector method could be used primarily for long-term measurement of neutron fluence in fission nuclear reactors, but in principle it could be used for any type of radiation that can cause transmutation of nuclides in detectors. This method could also be used for measurement in accelerators or fusion reactors.

  19. Transmutation detectors

    International Nuclear Information System (INIS)

    Viererbl, L.; Lahodova, Z.; Klupak, V.; Sus, F.; Kucera, J.; Kus, P.; Marek, M.

    2011-01-01

    We have designed a new type of detectors, called transmutation detectors, which can be used primarily for neutron fluence measurement. The transmutation detector method differs from the commonly used activation detector method in evaluation of detector response after irradiation. Instead of radionuclide activity measurement using radiometric methods, the concentration of stable non-gaseous nuclides generated by transmutation in the detector is measured using analytical methods like mass spectrometry. Prospective elements and nuclear reactions for transmutation detectors are listed and initial experimental results are given. The transmutation detector method could be used primarily for long-term measurement of neutron fluence in fission nuclear reactors, but in principle it could be used for any type of radiation that can cause transmutation of nuclides in detectors. This method could also be used for measurement in accelerators or fusion reactors.

  20. Infrared Illuminated CdZnTe detectors with improved performance

    International Nuclear Information System (INIS)

    Ivanov, V.; Loutchanski, A.; Dorogov, P.; Khinoverov, S.

    2013-06-01

    It was found that IR illumination of a properly chosen wavelength and intensity can significantly improve spectrometric characteristics of CdZnTe quasi-hemispherical detectors [1]. Improving of the spectrometric characteristics is due to improvement of uniformity of charge collection by the detector volume. For operation at room temperature the optimal wavelength of IR illumination is about 940 nm, but for operation at lower temperature of -20 deg. C the optimal wavelengths of IR illumination is about 1050 nm. Infrared illumination can be performed using conventional low-power IR LEDs. Application of SMD LEDs allows produce miniature detection probes with IR illuminated CdZnTe detectors. We have fabricated and tested a variety of detection probes with CdZnTe quasi-hemispherical detectors from the smallest with volumes of 1-5 mm 3 to larger with volumes of 1.5 cm 3 and 4.0 cm 3 . The use of IR illumination significantly improves spectrometric characteristics of the probes operating at room temperature, especially probes with detectors of large volumes. The probe with the detector of 4 cm 3 without IR illumination had energy resolution of 24.2 keV at 662 keV and of 12.5 keV with IR illumination. (authors)

  1. Detector Unit

    CERN Multimedia

    1960-01-01

    Original detector unit of the Instituut voor Kernfysisch Onderzoek (IKO) BOL project. This detector unit shows that silicon detectors for nuclear physics particle detection were already developed and in use in the 1960's in Amsterdam. Also the idea of putting 'strips' onto the silicon for high spatial resolution of a particle's impact on the detector were implemented in the BOL project which used 64 of these detector units. The IKO BOL project with its silicon particle detectors was designed, built and operated from 1965 to roughly 1977. Detector Unit of the BOL project: These detectors, notably the ‘checkerboard detector’, were developed during the years 1964-1968 in Amsterdam, The Netherlands, by the Natuurkundig Laboratorium of the N.V. Philips Gloeilampen Fabrieken. This was done in close collaboration with the Instituut voor Kernfysisch Onderzoek (IKO) where the read-out electronics for their use in the BOL Project was developed and produced.

  2. Detector trends

    International Nuclear Information System (INIS)

    Charpak, G.

    1986-01-01

    The author describes briefly the development of detectors for high energy physics experiments. Especially considered are semiconductor microstrip detectors, drift tubes, holographic bubble chambers, scintillating fiber optics, and calorimeters. (HSI).

  3. Analysis of effect of cable degradation on SPND IR calculation

    International Nuclear Information System (INIS)

    Tamboli, P.K.; Sharma, A.; Prasad, A.D.; Singh, Nita; Antony, J.; Kelkar, M.G.; Kaurav, Reetesh; Pramanik, M.

    2013-01-01

    Neutron flux is the most vital parameter in the nuclear reactor safety against Neutronic over power. The modern days Indian PHWRs with large core size are loosely coupled reactors and hence In-core Self Power Neutron Detectors (SPNDs) are most suitable for monitoring local neutron power for generating Regional Overpower Trip. However the SPNDs and its Mineral Insulation Cable are prone to IR loss due to use of ceramic insulation which are highly hygroscopic. The present paper covers the online analysis of IR f degraded cable as per the surveillance requirement of monitoring the IR to assess the healthiness of SPNDs which are part of SSC/SSE for Reactor Protection Systems. The paper also proposes an alternative method for monitoring IR for startup//low power range when SPND signals are yet to pick up and Reactor Control and Protection are based on out of core Ionization Chambers. (author)

  4. IR and the Earth

    DEFF Research Database (Denmark)

    Corry, Olaf; Stevenson, Hayley

    2017-01-01

    , in the end, one finite interconnected space. Together these two starting points make for the basic conundrum of Inter- national Relations and the Earth: how does a divided world live on a single globe? This introduction first provides an overview of the recent rise of ‘the environment’ in international......, ‘what has the environment ever done for IR?’, before the plan for the rest of the book sketches the content and direction of the ensuing chapters that explore the problematique of International Relations and the Earth....

  5. Detailed IR aperture measurements

    CERN Document Server

    Bruce, Roderik; Garcia Morales, Hector; Giovannozzi, Massimo; Hermes, Pascal Dominik; Mirarchi, Daniele; Quaranta, Elena; Redaelli, Stefano; Rossi, Carlo; Skowronski, Piotr Krzysztof; Wretborn, Sven Joel; CERN. Geneva. ATS Department

    2016-01-01

    MD 1673 was carried out on October 5 2016, in order to investigate in more detail the available aperture in the LHC high-luminosity insertions at 6.5 TeV and β∗=40 cm. Previous aperture measurements in 2016 during commissioning had shown that the available aperture is at the edge of protection, and that the aperture bottleneck at β∗=40 cm in certain cases is found in the separation plane instead of in the crossing plane. Furthermore, the bottlenecks were consistently found in close to the upstream end of Q3 on the side of the incoming beam, and not in Q2 on the outgoing beam as expected from calculations. Therefore, this MD aimed at measuring IR1 and IR5 separately (at 6.5 TeV and β∗=40 cm, for 185 µrad half crossing angle), to further localize the bottlenecks longitudinally using newly installed BLMs, investigate the difference in aperture between Q2 and Q3, and to see if any aperture can be gained using special orbit bumps.

  6. Calibrate the aerial surveying instrument by the limited surface source and the single point source that replace the unlimited surface source

    CERN Document Server

    Lu Cun Heng

    1999-01-01

    It is described that the calculating formula and surveying result is found on the basis of the stacking principle of gamma ray and the feature of hexagonal surface source when the limited surface source replaces the unlimited surface source to calibrate the aerial survey instrument on the ground, and that it is found in the light of the exchanged principle of the gamma ray when the single point source replaces the unlimited surface source to calibrate aerial surveying instrument in the air. Meanwhile through the theoretical analysis, the receiving rate of the crystal bottom and side surfaces is calculated when aerial surveying instrument receives gamma ray. The mathematical expression of the gamma ray decaying following height according to the Jinge function regularity is got. According to this regularity, the absorbing coefficient that air absorbs the gamma ray and the detective efficiency coefficient of the crystal is calculated based on the ground and air measuring value of the bottom surface receiving cou...

  7. CAN MARKETING SUPPORT THE IMPLEMENTATION OF EFFECTIVE EGOVERNMENT? ANALYSIS OF THE SINGLE POINT OF ACCESS PORTAL FOR ROMANIAN ELECTRONIC PUBLIC SERVICES

    Directory of Open Access Journals (Sweden)

    Velicu Bogdan Calin

    2011-12-01

    Full Text Available The advances in technology hold great potential for helping Romanian government respond to its challenges namely, better service delivery, better procurement, efficient working and better communication with citizens and businesses. While the European Commission develops the main strategies on eGovernment, every member state has the freedom to identify its own necessities and decide according to specific social, administrative and economic context. Designing, cost setting, choosing the best supply channels or communicating with involved actors, are all marketing instruments which, if used accordingly, can ensure modern and efficient public services. This paper presents an analysis of the degree of development of public services available at the www.e-guvernare.ro portal, the single point of access for specific Romanian electronic public services.

  8. A national assessment of underground natural gas storage: identifying wells with designs likely vulnerable to a single-point-of-failure

    Science.gov (United States)

    Michanowicz, Drew R.; Buonocore, Jonathan J.; Rowland, Sebastian T.; Konschnik, Katherine E.; Goho, Shaun A.; Bernstein, Aaron S.

    2017-05-01

    The leak of processed natural gas (PNG) from October 2015 to February 2016 from the Aliso Canyon storage facility, near Los Angeles, California, was the largest single accidental release of greenhouse gases in US history. The Interagency Task Force on Natural Gas Storage Safety and California regulators recently recommended operators phase out single-point-of-failure (SPF) well designs. Here, we develop a national dataset of UGS well activity in the continental US to assess regulatory data availability and uncertainty, and to assess the prevalence of certain well design deficiencies including single-point-of-failure designs. We identified 14 138 active UGS wells associated with 317 active UGS facilities in 29 states using regulatory and company data. State-level wellbore datasets contained numerous reporting inconsistencies that limited data concatenation. We identified 2715 active UGS wells across 160 facilities that, like the failed well at Aliso Canyon, predated the storage facility, and therefore were not originally designed for gas storage. The majority (88%) of these repurposed wells are located in OH, MI, PA, NY, and WV. Repurposed wells have a median age of 74 years, and the 2694 repurposed wells constructed prior to 1979 are particularly likely to exhibit design-related deficiencies. An estimated 210 active repurposed wells were constructed before 1917—before cement zonal isolation methods were utilized. These wells are located in OH, PA, NY, and WV and represent the highest priority related to potential design deficiencies that could lead to containment loss. This national baseline assessment identifies regulatory data uncertainties, highlights a potentially widespread vulnerability of the natural gas supply chain, and can aid in prioritization and oversight for high-risk wells and facilities.

  9. Improved Correction of IR Loss in Diffuse Shortwave Measurements: An ARM Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Younkin, K; Long, CN

    2003-11-01

    Simple single black detector pyranometers, such as the Eppley Precision Spectral Pyranometer (PSP) used by the Atmospheric Radiation Measurement (ARM) Program, are known to lose energy via infrared (IR) emission to the sky. This is especially a problem when making clear-sky diffuse shortwave (SW) measurements, which are inherently of low magnitude and suffer the greatest IR loss. Dutton et al. (2001) proposed a technique using information from collocated pyrgeometers to help compensate for this IR loss. The technique uses an empirically derived relationship between the pyrgeometer detector data (and alternatively the detector data plus the difference between the pyrgeometer case and dome temperatures) and the nighttime pyranometer IR loss data. This relationship is then used to apply a correction to the diffuse SW data during daylight hours. We developed an ARM value-added product (VAP) called the SW DIFF CORR 1DUTT VAP to apply the Dutton et al. correction technique to ARM PSP diffuse SW measurements.

  10. Mid-IR Imaging: Upconversion imager improves IR gas sensing

    DEFF Research Database (Denmark)

    Sahlberg, Anna-Lena; Li, Zhongshan; Høgstedt, Lasse

    2014-01-01

    A nonlinear upconversion detector shows near-shot-noise-limited performance and compares favorably—while adding additional imaging information—to conventional cryogenic detectors in the measurement of trace-level gases at atmospheric pressure....

  11. Monolayer Graphene Bolometer as a Sensitive Far-IR Detector

    Science.gov (United States)

    Karasik, Boris S.; McKitterick, Christopher B.; Prober, Daniel E.

    2014-01-01

    In this paper we give a detailed analysis of the expected sensitivity and operating conditions in the power detection mode of a hot-electron bolometer (HEB) made from a few micro m(sup 2) of monolayer graphene (MLG) flake which can be embedded into either a planar antenna or waveguide circuit via NbN (or NbTiN) superconducting contacts with critical temperature approx. 14 K. Recent data on the strength of the electron-phonon coupling are used in the present analysis and the contribution of the readout noise to the Noise Equivalent Power (NEP) is explicitly computed. The readout scheme utilizes Johnson Noise Thermometry (JNT) allowing for Frequency-Domain Multiplexing (FDM) using narrowband filter coupling of the HEBs. In general, the filter bandwidth and the summing amplifier noise have a significant effect on the overall system sensitivity.

  12. The IRS-1 signaling system.

    Science.gov (United States)

    Myers, M G; Sun, X J; White, M F

    1994-07-01

    Insulin-receptor substrate 1 (IRS-1) is a principal substrate of the receptor tyrosine kinase for insulin and insulin-like growth factor 1, and a substrate for a tyrosine kinase activated by interleukin 4. IRS-1 undergoes multisite tyrosine phosphorylation and mediates downstream signals by 'docking' various proteins that contain Src homology 2 domains. IRS-1 appears to be a unique molecule; however, 4PS, a protein found mainly in hemopoietic cells, may represent another member of this family.

  13. Cryogenic detectors

    International Nuclear Information System (INIS)

    Zehnder, A.

    1987-01-01

    Presently the development of new large scale detector systems, used in very high energy physics experiments, is very active. In the low energy range, the introduction of charge coupled devices allows improved spacial and energy resolution. In the keV region, high resolution can only be achieved via the well established diffraction spectrometers with the well-known disadvantage of a small throughput. There exist no efficient detectors for non-ionizing radiation such as coherent nuclear scattering of weakly interacting particles. The development of high resolution solid state detectors in the keV-region with the possibility of nuclear recoil detection is therefore highly desired. Such detectors applied in astro and particle physics would thus allow one to obtain new information not achievable otherwise. Three types of cryogenic detectors exist: Calorimeters/Bolometers. This type is sensitive to the produced excess phonons and measures the deposited energy by detecting the heat pulses. Excess charge carriers should be used to produce phonons. Tunneling junctions. This type is sensitive to excess charge produced by the Cooper pair breakup. Excess phonons should be used to break up Cooper pairs. Superheated superconducting granules (SSG). An SSG detector consists of granules, the metastability of which is disturbed by radiation. The Meissner effect then causes a change in the field distribution of the applied external field, which can be detected. The present paper discusses the basic principle of calorimetric and tunneling junction detectors and some of their applications. 26 refs., 7 figs., 1 tab

  14. Detectors - Electronics

    International Nuclear Information System (INIS)

    Bregeault, J.; Gabriel, J.L.; Hierle, G.; Lebotlan, P.; Leconte, A.; Lelandais, J.; Mosrin, P.; Munsch, P.; Saur, H.; Tillier, J.

    1998-01-01

    The reports presents the main results obtained in the fields of radiation detectors and associated electronics. In the domain of X-ray gas detectors for the keV range efforts were undertaken to rise the detector efficiency. Multiple gap parallel plate chambers of different types as well as different types of X → e - converters were tested to improve the efficiency (values of 2.4% at 60 KeV were reached). In the field of scintillators a study of new crystals has been carried out (among which Lutetium orthosilicate). CdTe diode strips for obtaining X-ray imaging were studied. The complete study of a linear array of 8 CdTe pixels has been performed and certified. The results are encouraging and point to this method as a satisfying solution. Also, a large dimension programmable chamber was used to study the influence of temperature on the inorganic scintillators in an interval from -40 deg. C to +150 deg. C. Temperature effects on other detectors and electronic circuits were also investigated. In the report mentioned is also the work carried out for the realization of the DEMON neutron multidetector. For neutron halo experiments different large area Si detectors associated with solid and gas position detectors were realized. In the frame of a contract with COGEMA a systematic study of Li doped glasses was undertaken aiming at replacing with a neutron probe the 3 He counters presently utilized in pollution monitoring. An industrial prototype has been realised. Other studies were related to integrated analog chains, materials for Cherenkov detectors, scintillation probes for experiments on fundamental processes, gas position sensitive detectors, etc. In the field of associated electronics there are mentioned the works related to the multidetector INDRA, data acquisition, software gamma spectrometry, automatic gas pressure regulation in detectors, etc

  15. Hydrogen detector

    International Nuclear Information System (INIS)

    Kumagaya, Hiromichi; Yoshida, Kazuo; Sanada, Kazuo; Chigira, Sadao.

    1994-01-01

    The present invention concerns a hydrogen detector for detecting water-sodium reaction. The hydrogen detector comprises a sensor portion having coiled optical fibers and detects hydrogen on the basis of the increase of light transmission loss upon hydrogen absorption. In the hydrogen detector, optical fibers are wound around and welded to the outer circumference of a quartz rod, as well as the thickness of the clad layer of the optical fiber is reduced by etching. With such procedures, size of the hydrogen detecting sensor portion can be decreased easily. Further, since it can be used at high temperature, diffusion rate is improved to shorten the detection time. (N.H.)

  16. Multichannel Dynamic Fourier-Transform IR Spectrometer

    Science.gov (United States)

    Balashov, A. A.; Vaguine, V. A.; Golyak, Il. S.; Morozov, A. N.; Khorokhorin, A. I.

    2017-09-01

    A design of a multichannel continuous scan Fourier-transform IR spectrometer for simultaneous recording and analysis of the spectral characteristics of several objects is proposed. For implementing the design, a multi-probe fiber is used, constructed from several optical fibers connected into a single optical connector and attached at the output of the interferometer. The Fourier-transform spectrometer is used as a signal modulator. Each fiber is individually mated with an investigated sample and a dedicated radiation detector. For the developed system, the radiation intensity of the spectrometer is calculated from the condition of the minimum spectral resolution and parameters of the optical fibers. Using the proposed design, emission spectra of a gas-discharge neon lamp have been recorded using a single fiber 1 mm in diameter with a numerical aperture NA = 0.22.

  17. Sequence polymorphism in an insect RNA virus field population: A snapshot from a single point in space and time reveals stochastic differences among and within individual hosts

    Energy Technology Data Exchange (ETDEWEB)

    Stenger, Drake C., E-mail: drake.stenger@ars.usda.gov [USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave., Parlier, CA 93648-9757 (United States); Krugner, Rodrigo [USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave., Parlier, CA 93648-9757 (United States); Nouri, Shahideh; Ferriol, Inmaculada; Falk, Bryce W. [Department of Plant Pathology, University of California, Davis, CA 95616 (United States); Sisterson, Mark S. [USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave., Parlier, CA 93648-9757 (United States)

    2016-11-15

    Population structure of Homalodisca coagulata Virus-1 (HoCV-1) among and within field-collected insects sampled from a single point in space and time was examined. Polymorphism in complete consensus sequences among single-insect isolates was dominated by synonymous substitutions. The mutant spectrum of the C2 helicase region within each single-insect isolate was unique and dominated by nonsynonymous singletons. Bootstrapping was used to correct the within-isolate nonsynonymous:synonymous arithmetic ratio (N:S) for RT-PCR error, yielding an N:S value ~one log-unit greater than that of consensus sequences. Probability of all possible single-base substitutions for the C2 region predicted N:S values within 95% confidence limits of the corrected within-isolate N:S when the only constraint imposed was viral polymerase error bias for transitions over transversions. These results indicate that bottlenecks coupled with strong negative/purifying selection drive consensus sequences toward neutral sequence space, and that most polymorphism within single-insect isolates is composed of newly-minted mutations sampled prior to selection. -- Highlights: •Sampling protocol minimized differential selection/history among isolates. •Polymorphism among consensus sequences dominated by negative/purifying selection. •Within-isolate N:S ratio corrected for RT-PCR error by bootstrapping. •Within-isolate mutant spectrum dominated by new mutations yet to undergo selection.

  18. Calibrate the aerial surveying instrument by the limited surface source and the single point source that replace the unlimited surface source

    International Nuclear Information System (INIS)

    Lu Cunheng

    1999-01-01

    It is described that the calculating formula and surveying result is found on the basis of the stacking principle of gamma ray and the feature of hexagonal surface source when the limited surface source replaces the unlimited surface source to calibrate the aerial survey instrument on the ground, and that it is found in the light of the exchanged principle of the gamma ray when the single point source replaces the unlimited surface source to calibrate aerial surveying instrument in the air. Meanwhile through the theoretical analysis, the receiving rate of the crystal bottom and side surfaces is calculated when aerial surveying instrument receives gamma ray. The mathematical expression of the gamma ray decaying following height according to the Jinge function regularity is got. According to this regularity, the absorbing coefficient that air absorbs the gamma ray and the detective efficiency coefficient of the crystal is calculated based on the ground and air measuring value of the bottom surface receiving count rate (derived from total receiving count rate of the bottom and side surface). Finally, according to the measuring value, it is proved that imitating the change of total receiving gamma ray exposure rate of the bottom and side surfaces with this regularity in a certain high area is feasible

  19. DUMAND detector

    CERN Multimedia

    This object is one of the 256 other detectors of the DUMAND (Deep Underwater Muon And Neutrino Detection) experiment. The goal of the experiment was the construction of the first deep ocean high energy neutrino detector, to be placed at 4800 m depth in the Pacific Ocean off Keahole Point on the Big Island of Hawaii. A few years ago, a European conference with Cosmic experiments was organized at CERN as they were projects like DUMAND in Hawaii. Along with the conference, a temporary exhibition was organised as well. It was a collaboration of institutions from Germany, Japan, Switzerland and the U.S.A. CERN had borrowed equipment and objects from different institutes around the world, including this detector of the DUMAND experiment. Most of the equipment were sent back to the institutes, however this detector sphere was offered to a CERN member of the personnel.

  20. Detector applications

    International Nuclear Information System (INIS)

    Pehl, R.H.

    1977-10-01

    Semiconductor detectors are now applied to a very wide range of problems. The combination of relatively low cost, excellent energy resolution, and simultaneous broad energy-spectrum analysis is uniquely suited to many applications in both basic and applied physics. Alternative techniques, such as magnetic spectrometers for charged-particle spectroscopy, while offering better energy resolution, are bulky, expensive, and usually far more difficult to use. Furthermore, they do not directly provide the broad energy-spectrum measurements easily accomplished using semiconductor detectors. Scintillation detectors, which are approximately equivalent to semiconductor detectors in convenience and cost, exhibit 10 to 100 times worse energy resolution. However, their high efficiency and large potential size recommend their use in some measurements

  1. Smoke detectors

    International Nuclear Information System (INIS)

    Bryant, J.; Howes, J.H.; Smout, D.W.S.

    1979-01-01

    A smoke detector is described which provides a smoke sensing detector and an indicating device and in which a radioactive substance is used in conjunction with two ionisation chambers. The system includes an outer electrode, a collector electrode and an inner electrode which is made of or supports the radioactive substance which, in this case, is 241 Am. The invention takes advantage of the fact that smoke particles can be allowed to enter freely the inner ionisation chamber. (U.K.)

  2. Radiation detector

    International Nuclear Information System (INIS)

    Gillies, W.

    1980-01-01

    The radiation detector for measuring e.g. a neutron flux consists of a central emitter, an insulating shell arranged around it, and a tube-shaped collector enclosing both. The emitter itself is composed of a great number of stranded, spiral wires of small diameter giving a defined flexibility to the detector. For emitter material Pt, Rh, V, Co, Ce, Os or Ta may be used. (DG) [de

  3. Split detector

    International Nuclear Information System (INIS)

    Cederstrand, C.N.; Chism, H.R.

    1982-01-01

    A gas analyzer is disclosed which provides a dual channel capability for the simultaneous determination of the presence and concentration of two gases in a stream of sample gas and which has a single infrared source, a single sample cell, two infrared bandpass filters, and two infrared detectors. A separator between the filters and detectors prevents interchange of radiation between the filters. The separator is positioned by fitting it in a slot

  4. Latent tracks in polymeric etched track detectors

    International Nuclear Information System (INIS)

    Yamauchi, Tomoya

    2013-01-01

    Track registration properties in polymeric track detectors, including Poly(allyl diglycol carbonate), Bispenol A polycarbonate, Poly(ethylen terephtarate), and Polyimide, have been investigated by means of Fourie transform Infararede FT-IR spectrometry. Chemical criterion on the track formation threshold has been proposes, in stead of the conventional physical track registration models. (author)

  5. Infrared (IR) photon-sensitive spectromicroscopy in a cryogenic environment

    Science.gov (United States)

    Pereverzev, Sergey

    2016-06-14

    A system designed to suppress thermal radiation background and to allow IR single-photon sensitive spectromicroscopy of small samples by using both absorption, reflection, and emission/luminescence measurements. The system in one embodiment includes: a light source; a plurality of cold mirrors configured to direct light along a beam path; a cold or warm sample holder in the beam path; windows of sample holder (or whole sample holder) are transparent in a spectral region of interest, so they do not emit thermal radiation in the same spectral region of interest; a cold monochromator or other cold spectral device configured to direct a selected fraction of light onto a cold detector; a system of cold apertures and shields positioned along the beam path to prevent unwanted thermal radiation from arriving at the cold monochromator and/or the detector; a plurality of optical, IR and microwave filters positioned along the beam path and configured to adjust a spectral composition of light incident upon the sample under investigation and/or on the detector; a refrigerator configured to maintain the detector at a temperature below 1.0K; and an enclosure configured to: thermally insulate the light source, the plurality of mirrors, the sample holder, the cold monochromator and the refrigerator.

  6. Silicon Technologies for the CLIC Vertex Detector

    CERN Document Server

    Spannagel, Simon

    2017-01-01

    CLIC is a proposed linear e$^+$e$^−$ collider designed to provide particle collisions at center-of-mass energies of up to 3 TeV. Precise measurements of the properties of the top quark and the Higgs boson, as well as searches for Beyond the Standard Model physics require a highly performant CLIC detector. In particular the vertex detector must provide a single point resolution of only a few micrometers while not exceeding the envisaged material budget of around 0.2%$~X_0$ per layer. Beam-beam interactions and beamstrahlung processes impose an additional requirement on the timestamping capabilities of the vertex detector of about 10 ns. These goals can only be met by using novel techniques in the sensor and ASIC design as well as in the detector construction. The R&D program for the CLIC vertex detector explores various technologies in order to meet these demands. The feasibility of planar sensors with a thickness of 50–150$~\\mu$m, including different active edge designs, are evaluated using Timepix3 A...

  7. DEEP WIDEBAND SINGLE POINTINGS AND MOSAICS IN RADIO INTERFEROMETRY: HOW ACCURATELY DO WE RECONSTRUCT INTENSITIES AND SPECTRAL INDICES OF FAINT SOURCES?

    Energy Technology Data Exchange (ETDEWEB)

    Rau, U.; Bhatnagar, S.; Owen, F. N., E-mail: rurvashi@nrao.edu [National Radio Astronomy Observatory, Socorro, NM-87801 (United States)

    2016-11-01

    Many deep wideband wide-field radio interferometric surveys are being designed to accurately measure intensities, spectral indices, and polarization properties of faint source populations. In this paper, we compare various wideband imaging methods to evaluate the accuracy to which intensities and spectral indices of sources close to the confusion limit can be reconstructed. We simulated a wideband single-pointing (C-array, L-Band (1–2 GHz)) and 46-pointing mosaic (D-array, C-Band (4–8 GHz)) JVLA observation using a realistic brightness distribution ranging from 1 μ Jy to 100 mJy and time-, frequency-, polarization-, and direction-dependent instrumental effects. The main results from these comparisons are (a) errors in the reconstructed intensities and spectral indices are larger for weaker sources even in the absence of simulated noise, (b) errors are systematically lower for joint reconstruction methods (such as Multi-Term Multi-Frequency-Synthesis (MT-MFS)) along with A-Projection for accurate primary beam correction, and (c) use of MT-MFS for image reconstruction eliminates Clean-bias (which is present otherwise). Auxiliary tests include solutions for deficiencies of data partitioning methods (e.g., the use of masks to remove clean bias and hybrid methods to remove sidelobes from sources left un-deconvolved), the effect of sources not at pixel centers, and the consequences of various other numerical approximations within software implementations. This paper also demonstrates the level of detail at which such simulations must be done in order to reflect reality, enable one to systematically identify specific reasons for every trend that is observed, and to estimate scientifically defensible imaging performance metrics and the associated computational complexity of the algorithms/analysis procedures.

  8. Long-Term and Short-Term Effects of Hemodialysis on Liver Function Evaluated Using the Galactose Single-Point Test

    Directory of Open Access Journals (Sweden)

    Yi-Chou Hou

    2014-01-01

    Full Text Available Aim. The galactose single-point (GSP test assesses functioning liver mass by measuring the galactose concentration in the blood 1 hour after its administration. The purpose of this study was to investigate the impact of hemodialysis (HD on short-term and long-term liver function by use of GSP test. Methods. Seventy-four patients on maintenance HD (46 males and 28 females, 60.38 ± 11.86 years with a mean time on HD of 60.77 ± 48.31 months were studied. The GSP values were compared in two groups: (1 before and after single session HD, and (2 after one year of maintenance HD. Results. Among the 74 HD patient, only the post-HD Cr levels and years on dialysis were significantly correlated with GSP values (r=0.280, P<0.05 and r=-0.240, P<0.05, resp.. 14 of 74 patients were selected for GSP evaluation before and after a single HD session, and the hepatic clearance of galactose was similar (pre-HD 410 ± 254 g/mL, post-HD 439 ± 298 g/mL, P=0.49. GSP values decreased from 420.20 ± 175.26 g/mL to 383.40 ± 153.97 g/mL after 1 year maintenance HD in other 15 patients (mean difference: 19.00 ± 37.66 g/mL, P<0.05. Conclusions. Patients on maintenance HD for several years may experience improvement of their liver function. However, a single HD session does not affect liver function significantly as assessed by the GSP test. Since the metabolism of galactose is dependent on liver blood flow and hepatic functional mass, further studies are needed.

  9. Shaped detector

    International Nuclear Information System (INIS)

    Carlson, R.W.

    1981-01-01

    A radiation detector or detector array which has a non-constant spatial response, is disclosed individually and in combination with a tomographic scanner. The detector has a first dimension which is oriented parallel to the plane of the scan circle in the scanner. Along the first dimension, the detector is most responsive to radiation received along a centered segment of the dimension and less responsive to radiation received along edge segments. This non-constant spatial response can be achieved in a detector comprised of a scintillation crystal and a photoelectric transducer. The scintillation crystal in one embodiment is composed of three crystals arranged in layers, with the center crystal having the greatest light conversion efficiency. In another embodiment, the crystal is covered with a reflective substance around the center segment and a less reflective substance around the remainder. In another embodiment, an optical coupling which transmits light from adjacent the center segment with the greatest intensity couples the scintillation crystal and the photoelectric transducer. In yet another embodiment, the photoelectric transducer comprises three photodiodes, one receiving light produced adjacent the central segment and the other two receiving light produced adjacent the edge segments. The outputs of the three photodiodes are combined with a differential amplifier

  10. Silicon technologies for the CLIC vertex detector

    Science.gov (United States)

    Spannagel, S.

    2017-06-01

    CLIC is a proposed linear e+e- collider designed to provide particle collisions at center-of-mass energies of up to 3 TeV. Precise measurements of the properties of the top quark and the Higgs boson, as well as searches for Beyond the Standard Model physics require a highly performant CLIC detector. In particular the vertex detector must provide a single point resolution of only a few micrometers while not exceeding the envisaged material budget of around 0.2% X0 per layer. Beam-beam interactions and beamstrahlung processes impose an additional requirement on the timestamping capabilities of the vertex detector of about 10 ns. These goals can only be met by using novel techniques in the sensor and ASIC design as well as in the detector construction. The R&D program for the CLIC vertex detector explores various technologies in order to meet these demands. The feasibility of planar sensors with a thickness of 50-150 μm, including different active edge designs, are evaluated using Timepix3 ASICs. First prototypes of the CLICpix readout ASIC, implemented in 65 nm CMOS technology and with a pixel size of 25×25μm 2, have been produced and tested in particle beams. An updated version of the ASIC with a larger pixel matrix and improved precision of the time-over-threshold and time-of-arrival measurements has been submitted. Different hybridization concepts have been developed for the interconnection between the sensor and readout ASIC, ranging from small-pitch bump bonding of planar sensors to capacitive coupling of active HV-CMOS sensors. Detector simulations based on Geant 4 and TCAD are compared with experimental results to assess and optimize the performance of the various designs. This contribution gives an overview of the R&D program undertaken for the CLIC vertex detector and presents performance measurements of the prototype detectors currently under investigation.

  11. CCD and IR array controllers

    Science.gov (United States)

    Leach, Robert W.; Low, Frank J.

    2000-08-01

    A family of controllers has bene developed that is powerful and flexible enough to operate a wide range of CCD and IR focal plane arrays in a variety of ground-based applications. These include fast readout of small CCD and IR arrays for adaptive optics applications, slow readout of large CCD and IR mosaics, and single CCD and IR array operation at low background/low noise regimes as well as high background/high speed regimes. The CCD and IR controllers have a common digital core based on user- programmable digital signal processors that are used to generate the array clocking and signal processing signals customized for each application. A fiber optic link passes image data and commands to VME or PCI interface boards resident in a host computer to the controller. CCD signal processing is done with a dual slope integrator operating at speeds of up to one Megapixel per second per channel. Signal processing of IR arrays is done either with a dual channel video processor or a four channel video processor that has built-in image memory and a coadder to 32-bit precision for operating high background arrays. Recent developments underway include the implementation of a fast fiber optic data link operating at a speed of 12.5 Megapixels per second for fast image transfer from the controller to the host computer, and supporting image acquisition software and device drivers for the PCI interface board for the Sun Solaris, Linux and Windows 2000 operating systems.

  12. BES detector

    International Nuclear Information System (INIS)

    Bai, J.Z.; Bian, Q.; Chen, G.M.; Chen, L.J.; Chen, S.N.; Chen, Y.Q.; Chen, Z.Q.; Chi, Y.K.; Cui, H.C.; Cui, X.Z.; Deng, S.S.; Deng, Y.W.; Ding, H.L.; Dong, B.Z.; Dong, X.S.; Du, X.; Du, Z.Z.; Feng, C.; Feng, Z.; Fu, Z.S.; Gao, C.S.; Gao, M.L.; Gao, S.Q.; Gao, W.X.; Gao, Y.N.; Gu, S.D.; Gu, W.X.; Guan, Y.Z.; Guo, H.F.; Guo, Y.N.; Guo, Y.Y.; Han, S.W.; Han, Y.; Hao, W.; He, J.; He, K.R.; He, M.J.; Hou, X.J.; Hu, G.Y.; Hu, J.S.; Hu, J.W.; Huang, D.Q.; Huang, Y.Z.; Jia, Q.P.; Jiang, C.H.; Ju, Q.; Lai, Y.F.; Lang, P.F.; Li, D.S.; Li, F.; Li, H.; Li Jia; Li, J.T.; Li Jin; Li, L.L.; Li, P.Q.; Li, Q.M.; Li, R.B.; Li, S.Q.; Li, W.; Li, W.G.; Li, Z.X.; Liang, G.N.; Lin, F.C.; Lin, S.Z.; Lin, W.; Liu, Q.; Liu, R.G.; Liu, W.; Liu, X.; Liu, Z.A.; Liu, Z.Y.; Lu, C.G.; Lu, W.D.; Lu, Z.Y.; Lu, J.G.; Ma, D.H.; Ma, E.C.; Ma, J.M.; Mao, H.S.; Mao, Z.P.; Meng, X.C.; Ni, H.L.; Nie, J.; Nie, Z.D.; Niu, W.P.; Pan, L.J.; Qi, N.D.; Qian, J.J.; Qu, Y.H.; Que, Y.K.; Rong, G.; Ruan, T.Z.; Shao, Y.Y.; Shen, B.W.; Shen, D.L.; Shen, J.; Sheng, H.Y.; Sheng, J.P.; Shi, H.Z.; Song, X.F.; Sun, H.S.; Tang, F.K.; Tang, S.Q.; Tian, W.H.; Wang, F.; Wang, G.Y.; Wang, J.G.; Wang, J.Y.; Wang, L.S.; Wang, L.Z.; Wang, M.; Wang, P.; Wang, P.L.; Wang, S.M.; Wang, S.Q.; Wang, T.J.; Wang, X.W.; Wang, Y.Y.; Wang, Z.H.; Wang, Z.J.; Wei, C.L.; Wei, Z.Z.; Wu, J.W.; Wu, S.H.; Wu, S.Q.; Wu, W.M.; Wu, X.D.; Wu, Z.D.; Xi, D.M.; Xia, X.M.; Xiao, J.; Xie, P.P.; Xie, X.X.; Xu, J.G.; Xu, R.S.; Xu, Z.Q.; Xuan, B.C.; Xue, S.T.; Yan, J.; Yan, S.P.; Yan, W.G.; Yang, C.Z.; Yang, C.M.; Yang, C.Y.; Yang, X.F.; Yang, X.R.; Ye, M.H.; Yu, C.H.; Yu, C.S.; Yu, Z.Q.; Zhang, B.Y.; Zhang, C.D.; Zhang, C.C.; Zhang, C.Y.; Zhang, D.H.; Zhang, G.; Zhang, H.Y.; Zhang, H.L.; Zhang, J.W.; Zhang, L.S.; Zhang, S.Q.; Zhang, Y.P.; Zhang, Y.; Zhang, Y.M.; Zhao, D.X.; Zhao, J.W.; Zhao, M.; Zhao, P.D.; Zhao, P.P.; Zhao, W.R.; Zhao, Z.G.; Zhao, Z.Q.; Zheng, J.P.; Zheng, L.S.; Zheng, M.; Zheng, W.S.; Zheng, Z.P.; Zhong, G.P.; Zhou, G.P.; Zhou, H.S.; Zhou, J.; Zhou Li; Zhou Lin; Zhou, M.; Zhou, Y.S.; Zhou, Y.H.; Zhu, G.S.; Zhu, Q.M.; Zhu, S.G.; Zhu, Y.C.; Zhu, Y.S.; Zhuang, B.A.

    1994-01-01

    The Beijing Spectrometer (BES) is a general purpose solenoidal detector at the Beijing Electron Positron Collider (BEPC). It is designed to study exclusive final states in e + e - annihilations at the center of mass energy from 3.0 to 5.6 GeV. This requires large solid angle coverage combined with good charged particle momentum resolution, good particle identification and high photon detection efficiency at low energies. In this paper we describe the construction and the performance of BES detector. (orig.)

  13. Enhancing the Responsivity of Uncooled Infrared Detectors Using Plasmonics for High-Performance Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Amr Shebl Ahmed

    2017-04-01

    Full Text Available A lead zirconate titanate (PZT;Pb(Zr0.52Ti0.48O3 layer embedded infrared (IR detector decorated with wavelength-selective plasmonic crystals has been investigated for high-performance non-dispersive infrared (NDIR spectroscopy. A plasmonic IR detector with an enhanced IR absorption band has been designed based on numerical simulations, fabricated by conventional microfabrication techniques, and characterized with a broadly tunable quantum cascade laser. The enhanced responsivity of the plasmonic IR detector at specific wavelength band has improved the performance of NDIR spectroscopy and pushed the limit of detection (LOD by an order of magnitude. In this paper, a 13-fold enhancement in the LOD of a methane gas sensing using NDIR spectroscopy is demonstrated with the plasmonic IR detector.

  14. General review of multispectral cooled IR development at CEA-Leti, France

    Science.gov (United States)

    Boulard, F.; Marmonier, F.; Grangier, C.; Adelmini, L.; Gravrand, O.; Ballet, P.; Baudry, X.; Baylet, J.; Badano, G.; Espiau de Lamaestre, R.; Bisotto, S.

    2017-02-01

    Multicolor detection capabilities, which bring information on the thermal and chemical composition of the scene, are desirable for advanced infrared (IR) imaging systems. This communication reviews intra and multiband solutions developed at CEA-Leti, from dual-band molecular beam epitaxy grown Mercury Cadmium Telluride (MCT) photodiodes to plasmon-enhanced multicolor IR detectors and backside pixelated filters. Spectral responses, quantum efficiency and detector noise performances, pros and cons regarding global system are discussed in regards to technology maturity, pixel pitch reduction, and affordability. From MWIR-LWIR large band to intra MWIR or LWIR bands peaked detection, results underline the full possibility developed at CEA-Leti.

  15. Feasibility of in vivo three-dimensional T 2* mapping using dicarboxy-PROXYL and CW-EPR-based single-point imaging.

    Science.gov (United States)

    Kubota, Harue; Komarov, Denis A; Yasui, Hironobu; Matsumoto, Shingo; Inanami, Osamu; Kirilyuk, Igor A; Khramtsov, Valery V; Hirata, Hiroshi

    2017-06-01

    The aim of this study was to demonstrate the feasibility of in vivo three-dimensional (3D) relaxation time T 2 * mapping of a dicarboxy-PROXYL radical using continuous-wave electron paramagnetic resonance (CW-EPR) imaging. Isotopically substituted dicarboxy-PROXYL radicals, 3,4-dicarboxy-2,2,5,5-tetra( 2 H 3 )methylpyrrolidin-(3,4- 2 H 2 )-(1- 15 N)-1-oxyl ( 2 H, 15 N-DCP) and 3,4-dicarboxy-2,2,5,5-tetra( 2 H 3 )methylpyrrolidin-(3,4- 2 H 2 )-1-oxyl ( 2 H-DCP), were used in the study. A clonogenic cell survival assay was performed with the 2 H-DCP radical using squamous cell carcinoma (SCC VII) cells. The time course of EPR signal intensities of intravenously injected 2 H, 15 N-DCP and 2 H-DCP radicals were determined in tumor-bearing hind legs of mice (C3H/HeJ, male, n = 5). CW-EPR-based single-point imaging (SPI) was performed for 3D T 2 * mapping. 2 H-DCP radical did not exhibit cytotoxicity at concentrations below 10 mM. The in vivo half-life of 2 H, 15 N-DCP in tumor tissues was 24.7 ± 2.9 min (mean ± standard deviation [SD], n = 5). The in vivo time course of the EPR signal intensity of the 2 H, 15 N-DCP radical showed a plateau of 10.2 ± 1.2 min (mean ± SD) where the EPR signal intensity remained at more than 90% of the maximum intensity. During the plateau, in vivo 3D T 2 * maps with 2 H, 15 N-DCP were obtained from tumor-bearing hind legs, with a total acquisition time of 7.5 min. EPR signals of 2 H, 15 N-DCP persisted long enough after bolus intravenous injection to conduct in vivo 3D T 2 * mapping with CW-EPR-based SPI.

  16. Cardiac EASE (Ensuring Access and Speedy Evaluation) – the impact of a single-point-of-entry multidisciplinary outpatient cardiology consultation program on wait times in Canada

    Science.gov (United States)

    Bungard, Tammy J; Smigorowsky, Marcie J; Lalonde, Lucille D; Hogan, Terry; Doliszny, Katharine M; Gebreyesus, Ghirmay; Garg, Sipi; Archer, Stephen L

    2009-01-01

    BACKGROUND: Universal access to health care is valued in Canada but increasing wait times for services (eg, cardiology consultation) raise safety questions. Observations suggest that deficiencies in the process of care contribute to wait times. Consequently, an outpatient clinic was designed for Ensuring Access and Speedy Evaluation (Cardiac EASE) in a university group practice, providing cardiac consultative services for northern Alberta. Cardiac EASE has two components: a single-point-of-entry intake service (prospective testing using physician-approved algorithms and previsit triage) and a multidisciplinary clinic (staffed by cardiologists, nurse practitioners and doctoral-trained pharmacists). OBJECTIVES: It was hypothesized that Cardiac EASE would reduce the time to initial consultation and a definitive diagnosis, and also increase the referral capacity. METHODS: The primary and secondary outcomes were time from referral to initial consultation, and time to achieve a definitive diagnosis and management plan, respectively. A conventionally managed historical control group (three-month pre-EASE period in 2003) was compared with the EASE group (2004 to 2006). The conventional referral mechanism continued concurrently with EASE. RESULTS: A comparison between pre-EASE (n=311) and EASE (n=3096) revealed no difference in the mean (± SD) age (60±16 years), sex (55% and 52% men, respectively) or reason for referral, including chest pain (31% and 40%, respectively) and arrhythmia (27% and 29%, respectively). Cardiac EASE reduced the time to initial cardiac consultation (from 71±45 days to 33±19 days) and time to a definitive diagnosis (from 120±86 days to 51±58 days) (P<0.0001). The annual number of new referrals increased from 1512 in 2002 to 2574 in 2006 due to growth in the Cardiac EASE clinic. The number of patients seen through the conventional referral mechanism and their wait times remained constant during the study period. CONCLUSIONS: Cardiac EASE reduced

  17. Vertex detectors

    International Nuclear Information System (INIS)

    Lueth, V.

    1992-07-01

    The purpose of a vertex detector is to measure position and angles of charged particle tracks to sufficient precision so as to be able to separate tracks originating from decay vertices from those produced at the interaction vertex. Such measurements are interesting because they permit the detection of weakly decaying particles with lifetimes down to 10 -13 s, among them the τ lepton and charm and beauty hadrons. These two lectures are intended to introduce the reader to the different techniques for the detection of secondary vertices that have been developed over the past decades. The first lecture includes a brief introduction to the methods used to detect secondary vertices and to estimate particle lifetimes. It describes the traditional technologies, based on photographic recording in emulsions and on film of bubble chambers, and introduces fast electronic registration of signals derived from scintillating fibers, drift chambers and gaseous micro-strip chambers. The second lecture is devoted to solid state detectors. It begins with a brief introduction into semiconductor devices, and then describes the application of large arrays of strip and pixel diodes for charged particle tracking. These lectures can only serve as an introduction the topic of vertex detectors. Time and space do not allow for an in-depth coverage of many of the interesting aspects of vertex detector design and operation

  18. Smoke detectors

    International Nuclear Information System (INIS)

    Macdonald, E.

    1976-01-01

    A smoke detector is described consisting of a ventilated ionisation chamber having a number of electrodes and containing a radioactive source in the form of a foil supported on the surface of the electrodes. This electrode consists of a plastic material treated with graphite to render it electrically conductive. (U.K.)

  19. Semiconductor Detectors

    International Nuclear Information System (INIS)

    Cortina, E.

    2007-01-01

    Particle detectors based on semiconductor materials are among the few devices used for particle detection that are available to the public at large. In fact we are surrounded by them in our daily lives: they are used in photoelectric cells for opening doors, in digital photographic and video camera, and in bar code readers at supermarket cash registers. (Author)

  20. Capillary detectors

    International Nuclear Information System (INIS)

    Konijn, J.; Winter, K.; Vilain, P.; Wilquet, G.; Fabre, J.P.; Kozarenko, E.; Kreslo, I.; Goldberg, J.; Hoepfner, K.; Bay, A.; Currat, C.; Koppenburg, P.; Frekers, D.; Wolff, T.; Buontempo, S.; Ereditato, A.; Frenkel, A.; Liberti, B.; Martellotti, G.; Penso, G.; Ekimov, A.; Golovkin, S.; Govorun, V.; Medvedkov, A.; Vasil'chenko, V.

    1998-01-01

    The option for a microvertex detector using glass capillary arrays filled with liquid scintillator is presented. The status of capillary layers development and possible read-out techniques for high rate environment are reported. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  1. Impaired Insulin Signaling is Associated with Hepatic Mitochondrial Dysfunction in IR+/−-IRS-1+/− Double Heterozygous (IR-IRS1dh Mice

    Directory of Open Access Journals (Sweden)

    Andras Franko

    2017-05-01

    Full Text Available Mitochondria play a pivotal role in energy metabolism, but whether insulin signaling per se could regulate mitochondrial function has not been identified yet. To investigate whether mitochondrial function is regulated by insulin signaling, we analyzed muscle and liver of insulin receptor (IR+/−-insulin receptor substrate-1 (IRS-1+/− double heterozygous (IR-IRS1dh mice, a well described model for insulin resistance. IR-IRS1dh mice were studied at the age of 6 and 12 months and glucose metabolism was determined by glucose and insulin tolerance tests. Mitochondrial enzyme activities, oxygen consumption, and membrane potential were assessed using spectrophotometric, respirometric, and proton motive force analysis, respectively. IR-IRS1dh mice showed elevated serum insulin levels. Hepatic mitochondrial oxygen consumption was reduced in IR-IRS1dh animals at 12 months of age. Furthermore, 6-month-old IR-IRS1dh mice demonstrated enhanced mitochondrial respiration in skeletal muscle, but a tendency of impaired glucose tolerance. On the other hand, 12-month-old IR-IRS1dh mice showed improved glucose tolerance, but normal muscle mitochondrial function. Our data revealed that deficiency in IR/IRS-1 resulted in normal or even elevated skeletal muscle, but impaired hepatic mitochondrial function, suggesting a direct cross-talk between insulin signaling and mitochondria in the liver.

  2. Temperature effects on radiation damage in plastic detectors

    International Nuclear Information System (INIS)

    Mendoza A, D.

    1996-01-01

    The objective of present work was to study the temperature effect on radiation damage registration in the structure of a Solid State Nuclear Track Detector of the type CR-39. In order to study the radiation damage as a function of irradiation temperature, sheets of CR-39 detectors were irradiated with electron beams, simulating the interaction of positive ions. CR-39 detectors were maintained at a constant temperature from room temperature up to 373 K during irradiation. Two techniques were used from analyzing changes in the detector structure: Electronic Paramagnetic Resonance (EPR) and Infrared Spectroscopy (IR). It was found by EPR analysis that the amount of free radicals decrease as irradiation temperature increases. The IR spectrums show yield of new functional group identified as an hydroxyl group (OH). A proposed model of interaction of radiation with CR-39 detectors is discussed. (Author)

  3. Infrared detectors and focal plane arrays II; Proceedings of the Meeting, Orlando, FL, Apr. 23, 24, 1992

    Science.gov (United States)

    Dereniak, Eustace L.; Sampson, Robert E.

    The present conference discusses Schottky-barrier IR image sensors, SWIR and MWIR Schottky-barrier imagers, a 640 x 640 PtSi, models of nonlinearities in focal plane arrays, retinal function relative to IRT focal plane arrays, a solid-state pyroelectric imager, and electrolyte electroreflectance spectroscopies for the ion-implanted HgCdTe with thermal annealing. Also discussed are HgCdTe hybrid focal plane arrays for thermoelectrically cooled applications, a novel IR detector plasma-edge detector, and IR detector circuits using monolithic CMOS amps with InSb detectors. (No individual items are abstracted in this volume)

  4. Neutron detector

    Science.gov (United States)

    Stephan, Andrew C [Knoxville, TN; Jardret,; Vincent, D [Powell, TN

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  5. Ionization detector

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, E E

    1976-02-27

    This invention concerns a fire detection system making use of a beta source. The ionisation detector includes a first and second chamber respectively comprising a first and second electrode, preferably a plate, with a common electrode separating the first and second chamber. Communication is provided between these chambers through a set of orifices and each chamber also has a set of orifices for communication with the ambient atmosphere. One or both chambers can comprise a particle source, preferably beta. The detector also has an adjustable electrode housed in one of the chambers to regulate the voltage between the fixed electrode of this chamber and the common electrode located between the chambers. The electrodes of the structure are connected to a detection circuit that spots a change in the ionisation current when a fire alarm condition arises. The detection circuit of a new type includes a relaxation oscillator with a programmable unijunction transistor and a light emitting diode.

  6. MUST detector

    International Nuclear Information System (INIS)

    Blumenfeld, Y.; Auger, F.; Sauvestre, J.E.

    1999-01-01

    The IPN-Orsay, in collaboration with the SPhN-Saclay and the DPTA Bruyeres, has built an array of 8 telescopes based on Si-strip technology for the study of direct reactions induced by radioactive beams. The detectors are described, along with the compact high density VXI electronics and the stand-alone data acquisition system developed in the laboratory. One telescope was tested using an 40 Ar beam and the measured performances are discussed. (authors)

  7. Radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Ohata, Shuichi; Takeuchi, Yoji

    1968-10-30

    Herein disclosed is an ionization chamber the airtightness of which can be readily tested. The ionization chamber is characterized in that a small amount of helium gas is filled in the chamber in combination with other ionization gases such as argon gas, xenon gas and the like. Helium leakage from the chamber is measured by a known helium gas sensor in a vacuum vessel. Hence the long term drift of the radiation detector sensitivity may be determined.

  8. Detector calibration measurements in CRESST

    Energy Technology Data Exchange (ETDEWEB)

    Westphal, W. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany)]. E-mail: westphal@ph.tum.de; Coppi, C. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); Feilitzsch, F. von [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); Isaila, C. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); Jagemann, T. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut I, Auf der Morgenstelle 14, D-72076 Tuebingen (Germany); Jochum, J. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut I, Auf der Morgenstelle 14, D-72076 Tuebingen (Germany); Koenig, J. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); Lachenmaier, T. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); Lanfranchi, J.-C. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); Potzel, W. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); Rau, W. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); Stark, M. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); Wernicke, D. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); VeriCold Technologies GmbH, Bahnhofstrasse 21, D-85737 Ismaning (Germany)

    2006-04-15

    The CRESST dark matter experiment uses the simultaneous measurement of the scintillation light and the heat signal of a CaWO{sub 4} crystal to discriminate between background electron recoil and nuclear recoil events. At the Technical University of Munich calibration measurements have been performed to characterize the detectors. These measurements include the determination of the light output and scintillation time constants of CaWO{sub 4} at temperatures below 50 mK. The setup used in these measurements consist of a CaWO{sub 4} crystal, which is mounted in a reflective housing together with a silicon light detector carrying an Ir/Au transition edge sensor (TES) evaporated directly onto it.

  9. Broadly tunable picosecond ir source

    International Nuclear Information System (INIS)

    Campillo, A.J.; Hyer, R.C.; Shapiro, S.L.

    1979-01-01

    A completely grating tuned (1.9 to 2.4 μm) picosecond traveling wave IR generator capable of controlled spectral bandwidth operation down to the Fourier Transform limit is reported. Subsequent down conversion in CdSe extends tuning to 10 to 20 μm

  10. Alkoholio ir tabako pasiūlos ir paklausos teisinio reguliavimo raida Lietuvos Respublikoje: problemos ir sprendimai

    OpenAIRE

    Mockevičius, Arminas

    2014-01-01

    Viešosios teisės magistro studijų programos studento Armino Mockevičiaus buvo parašytas magistro baigiamasis darbas „Alkoholio ir tabako pasiūlos ir paklausos teisinio reguliavimo raida Lietuvos Respublikoje: problemos ir sprendimai“. Šis darbas parašytas Vilniuje, 2014 metais, Mykolo Romerio universiteto Teisės fakulteto Konstitucinės ir administracinės teisės institute, vadovaujant dr. Gintautui Vilkeliui, apimtis 98 p. Darbo tikslas yra atskleisti alkoholio ir tabako pasiūlos ir paklau...

  11. Influence of infrared stimulation on spectroscopy characteristics of co-planar grid CdZnTe detectors

    International Nuclear Information System (INIS)

    Fjodorov, V.; Ivanov, V.; Loutchanski, A.

    2015-01-01

    It was previously found that illumination with monochromatic infrared (IR) light with wavelengths close to the absorption edge of the CdZnTe exert significant positive influence on the spectrometric characteristics of quasi-hemispherical CdZnTe detectors at room temperature. In this paper, preliminary results of IR stimulation on the spectrometric characteristics of coplanar-grid CdZnTe detectors as well as results of further studies of planar and quasi-hemispherical detectors are presented. Coplanar-grid detectors of 10 mm x 10 mm x 10 mm from Redlen Technologies and commercial available IR LEDs with different wavelengths of 800-1000 nm were used in the experiments. Influence of intensity and direction of IR illumination on the detector's characteristics was studied. Analysis of signals shapes from the preamplifiers outputs at registration of alpha particles showed that IR illumination leads to a change in the shapes of these signals. This may indicate changes in electric fields distributions. An improvement in energy resolution at gamma-energy of 662 keV was observed with quasi-hemispherical and co-planar detectors at the certain levels of IR illumination intensity. The most noticeable effect of IR stimulation was observed with quasi-hemispherical detectors. It is due with optimization of charge collection conditions in the quasi-hemispherical detectors under IT stimulation. (authors)

  12. Smoke detectors

    International Nuclear Information System (INIS)

    Fung, C.K.

    1981-01-01

    This describes a smoke detector comprising a self-luminous light source and a photosensitive device which is so arranged that the light source is changed by the presence of smoke in a detecting region. A gaseous tritium light source is used. This consists of a borosilicate glass bulb with an internal phosphor coating, filled with tritium gas. The tritium emits low energy beta particles which cause the phosphor to glow. This is a reliable light source which needs no external power source. The photosensitive device may be a phototransistor and may drive a warning device through a directly coupled transistor amplifier. (U.K.)

  13. Non-Linear Optical Studies of IR Materials with Infrared Femtosecond Laser

    Science.gov (United States)

    2016-12-15

    chemical/bio weapon signatures in real time. • IR sources and detectors have a wide ranging applications in public sector from night vision cameras on cars...Jeffrey D. Bude, Andy J. Bayramian, Christopher D. Marshall, Thomas M. Spinka, Constantin L. Haefner, Test station development for laser-induced

  14. Near diffraction limited mid-IR spectromicroscopy using frequency upconversion

    DEFF Research Database (Denmark)

    Sanders, Nicolai Højer; Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter

    2014-01-01

    morphological and spectral imaging. Recent developments in nonlinear frequency upconversion, have demonstrated the potential to perform both imaging and spectroscopy in the mid-IR range at unparalleled low levels of illumination, the low upconversion detector noise being orders of magnitude below competing...... technologies. With these applications in mind, we have incorporated microscopy optics into an image upconversion system, achieving near diffraction limited spatial resolution in the 3 μm range. Spectroscopic information is further acquired by appropriate control of the phase match condition of the upconversion...

  15. Characterization of DECam focal plane detectors

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, H.Thomas; Angstadt, Robert; Campa, Julia; Cease, Herman; Derylo, Greg; Emes, John H.; Estrada, Juan; Kibik, Donna; Flaugher, Brenna L.; Holland, Steve E.; Jonas, Michelle; /Fermilab /Madrid, CIEMAT /LBL, Berkeley /Argonne /Pennsylvania U.

    2008-06-01

    DECam is a 520 Mpix, 3 square-deg FOV imager being built for the Blanco 4m Telescope at CTIO. This facility instrument will be used for the 'Dark Energy Survey' of the southern galactic cap. DECam has chosen 250 ?m thick CCDs, developed at LBNL, with good QE in the near IR for the focal plane. In this work we present the characterization of these detectors done by the DES team, and compare it to the DECam technical requirements. The results demonstrate that the detectors satisfy the needs for instrument.

  16. Oferta ir akceptas vartojimo sutartyse

    OpenAIRE

    Ežerskytė, Ramunė

    2011-01-01

    Sutarčiai sudaryti paprastai reikia, kad viena šalis pasiūlytų sudaryti sutartį (oferta), o kita šalis sutiktų su pasiūlymu (akceptas). Sutarčių įvairovėje išskiriamos vartojimo sutartys, kurios dėl silpnesnės šalies apsaugos principo įgyvendinimo pasižymi tam tikrais ypatumais. Vartojimo sutarčių sudarymas pateikiant ofertą ir akceptą yra šio magistro baigiamojo darbo objektas. Magistro baigiamąjį darbą sudaro trys dalys. Pirmojoje darbo dalyje analizuojama vartojimo sutarties sąvoka ir spec...

  17. An SVM-Based Classifier for Estimating the State of Various Rotating Components in Agro-Industrial Machinery with a Vibration Signal Acquired from a Single Point on the Machine Chassis

    Directory of Open Access Journals (Sweden)

    Ruben Ruiz-Gonzalez

    2014-11-01

    Full Text Available The goal of this article is to assess the feasibility of estimating the state of various rotating components in agro-industrial machinery by employing just one vibration signal acquired from a single point on the machine chassis. To do so, a Support Vector Machine (SVM-based system is employed. Experimental tests evaluated this system by acquiring vibration data from a single point of an agricultural harvester, while varying several of its working conditions. The whole process included two major steps. Initially, the vibration data were preprocessed through twelve feature extraction algorithms, after which the Exhaustive Search method selected the most suitable features. Secondly, the SVM-based system accuracy was evaluated by using Leave-One-Out cross-validation, with the selected features as the input data. The results of this study provide evidence that (i accurate estimation of the status of various rotating components in agro-industrial machinery is possible by processing the vibration signal acquired from a single point on the machine structure; (ii the vibration signal can be acquired with a uniaxial accelerometer, the orientation of which does not significantly affect the classification accuracy; and, (iii when using an SVM classifier, an 85% mean cross-validation accuracy can be reached, which only requires a maximum of seven features as its input, and no significant improvements are noted between the use of either nonlinear or linear kernels.

  18. Climate Prediction Center IR 4km Dataset

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CPC IR 4km dataset was created from all available individual geostationary satellite data which have been merged to form nearly seamless global (60N-60S) IR...

  19. Heterojunction Structures for Photon Detector Applications

    Science.gov (United States)

    2014-07-21

    IR: Fourier-transform infrared FTO: Fluorine doped tin oxide G-R: generation-recombination HEIWIP: heterojunction interfacial workfunction internal...SECURITY CLASSIFICATION OF: The work presented here report findings in (1) infrared detectors based on p-GaAs/AlGaAs heterojunctions , (2) J and H...aggregate sensitized heterojunctions for solar cell and photon detection applications, (3) heterojunctions sensitized with quantum dots as low cost

  20. New developments on silicon drift detectors

    International Nuclear Information System (INIS)

    Rashevsky, A.

    1996-01-01

    In the frame of the project to develop large-area linear drift detectors few prototypes have been designed and produced. the function of these prototypes is to allow the evaluation of the solutions chosen for the geometry of the on-board electrodes and the production process. On these prototypes it is studied the static characteristics and measured time of-flight and charge collection injecting charges with an IR laser source. It is report the results from one of the prototypes

  1. Radiation detector

    International Nuclear Information System (INIS)

    Conrad, B.; Finkenzeller, J.; Kiiehn, G.; Lichtenberg, W.

    1984-01-01

    In an exemplary embodiment, a flat radiation beam is detected having a common electrode disposed parallel to the beam plane at one side and a common support with a series of individual conductors providing electrodes opposite successive portions of the common electrode and lying in a plane also parallel to the beam plane. The beam may be fan-shaped and the individual electrodes may be aligned with respective ray paths separated by uniform angular increments in the beam plane. The individual conductors and the connection thereof to the exterior of the detector housing may be formed on an insulator which can be folded into a T-shape for leading the supply conductors for alternate individual conductors toward terminals at opposite sides of the chamber

  2. Particle detectors

    CERN Document Server

    Hilke, Hans Jürgen; Joram, Christian; CERN. Geneva

    1991-01-01

    Lecture 5: Detector characteristics: ALEPH Experiment cut through the devices and events - Discuss the principles of the main techniques applied to particle detection ( including front-end electronics), the construction and performance of some of the devices presently in operartion and a few ideas on the future performance. Lecture 4-pt. b Following the Scintillators. Lecture 4-pt. a : Scintillators - Used for: -Timing (TOF, Trigger) - Energy Measurement (Calorimeters) - Tracking (Fibres) Basic scintillation processes- Inorganic Scintillators - Organic Scintil - Discuss the principles of the main techniques applied to particle detection ( including front-end electronics), the construction and performance of some of the devices presently in operation and a fiew ideas on future developpement session 3 - part. b Following Calorimeters lecture 3-pt. a Calorimeters - determine energy E by total absorption of charged or neutral particles - fraction of E is transformed into measurable quantities - try to acheive sig...

  3. Smoke detectors

    International Nuclear Information System (INIS)

    Bryant, J.

    1979-01-01

    An ionization smoke detector consisting of two electrodes defining an ionization chamber permitting entry of smoke, a radioactive source to ionize gas in the chamber and a potential difference applied across the first and second electrodes to cause an ion current to flow is described. The current is affected by entry of smoke. An auxiliary electrode is positioned in the ionization chamber between the first and second electrodes, and it is arranged to maintain or create a potential difference between the first electrode and the auxiliary electrode. The auxiliary electrode may be used for testing or for adjustment of sensitivity. A collector electrode divides the chamber into two regions with the auxiliary electrode in the outer sensing region. (U.K.)

  4. Ionization detector

    International Nuclear Information System (INIS)

    Solomon, E.E.

    1980-01-01

    A safe and reliable apparatus for detecting products of combustion and aerosols in the atmosphere was developed which uses a beta source. It is easy to adjust for optimum performance. The ionization detector comprises a double chamber; one of the chambers is the basic sensing chamber. The sensing chamber is ported to both the secondary chambers to account for slow ambient changes in the atmosphere outside of the chamber. The voltages from the ionization chamber are adjusted with electrodes in each chamber. The ionization chamber contains baffles to direct the air to be sensed as well as an electrostatic screen. A unique electronic circuit provides an inexpensive and reliable means for detecting the signal change which occurs in the ionization chamber. The decision level of the alarm circuit can be adjusted to allow for any desired sensitivity. (D.N.)

  5. Test and evaluation of infrared detectors and arrays; Proceedings of the Meeting, Orlando, FL, Mar. 27-29, 1989

    Science.gov (United States)

    Hoke, Forney M.

    Papers on the testing and evaluation of IR detectors and arrays are presented, covering topics such as a short wavelength IR test system, pulse height analysis, the use of an expert system for IR detector testing, low-background IR focal plane testing, electron beam testing, high performance silicide Schottky photodiodes, the SDI organization focal plane test program, the absorption cross section of arsenic in silicon, and long wavelength IR hybrids. Other topics include low background radiometric detector measurements, an ultralow background dewar for IR detector characterization studies, a computer assisted mosaic array test station, a configurable detector array test station, automated detector material characterization capabilities, and a test system for mercury cadmium telluride photoconductor arrays. Additional topics include ionization dosimetry measurements inside a dewar for linac electron and californium-252 neutron environments, a radiation test facility using a variable-flux electron beam source, automated visual inspection of IR focal plane arrays, a titanium cryostat for low temperature radiation effects studies, a low dose rate gamma test facility, and the test and evaluation of stability in IR staring focal plane arrays after nonuniformity correction.

  6. Radioluminescence dating: the IR emission of feldspar

    International Nuclear Information System (INIS)

    Schilles, Thomas.; Habermann, Jan

    2000-01-01

    A new luminescence reader for radioluminescence (RL) measurements is presented. The system allows detection of RL emissions in the near infrared region (IR). Basic bleaching properties of the IR-RL emission of feldspars are investigated. Sunlight-bleaching experiments as a test for sensitivity changes are presented. IR-bleaching experiments were carried out to obtain information about the underlying physical processes of the IR-RL emission

  7. Isolated Gramicidin Peptides Probed by IR Spectroscopy

    NARCIS (Netherlands)

    Rijs, A. M.; Kabelac, M.; Abo-Riziq, A.; Hobza, P.; de Vries, M. S.

    2011-01-01

    We report double-resonant IR/UV ion-dip spectroscopy of neutral gramicidin peptides in the gas phase. The IR spectra of gramicidin A and C, recorded in both the 1000 cm(-1) to 1800 cm(-1) and the 2700 to 3750 cm(-1) region, allow structural analysis. By studying this broad IR range, various local

  8. Numerical investigation of steady-state thermal behavior of an infrared detector cryo chamber

    Directory of Open Access Journals (Sweden)

    Singhal Mayank

    2017-01-01

    Full Text Available An infrared (IR detector is simply a transducer of radiant energy, converting radiant energy into a measurable form. Since radiation does not rely on visible light, it offers the possibility of seeing in the dark or through obscured conditions, by detecting the IR energy emitted by objects. One of the prime applications of IR detector systems for military use is in target acquisition and tracking of projectile systems. The IR detectors also have great potential in commercial market. Typically, IR detectors perform best when cooled to cryogenic temperatures in the range of nearly 120 K. However, the necessity to operate in such cryogenic regimes makes the application of IR detectors extremely complex. Further, prior to proceeding on to a full blown transient thermal analysis it is worthwhile to perform a steady-state numerical analysis for ascertaining the effect of variation in viz., material, gas conduction coefficient, h, emissivity, ε, on the temperature profile along the cryo chamber length. This would enable understanding the interaction between the cryo chamber and its environment. Hence, the present work focuses on the development of steady-state numerical models for thermal analysis of IR cryo chamber using MATLAB. The numerical results show that gas conduction coefficient has marked influence on the temperature profile of the cryo chamber whereas the emissivity has a weak effect. The experimental validation of numerical results has also been presented.

  9. The BRAN luminosity detectors for the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Matis, H.S.; Placidi, M.; Ratti, A.; Turner, W.C. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Bravin, E. [CERN, 1211 Geneva 23 (Switzerland); Miyamoto, R. [European Spallation Source, ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden)

    2017-03-11

    This paper describes the several phases which led, from the conceptual design, prototyping, construction and tests with beam, to the installation and operation of the BRAN (Beam RAte of Neutrals) relative luminosity monitors for the LHC. The detectors have been operating since 2009 to contribute, optimize and maintain the accelerator performance in the two high luminosity interaction regions (IR), the IR1 (ATLAS) and the IR5 (CMS). The devices are gas ionization chambers installed inside a neutral particle absorber 140 m away from the Interaction Points in IR1 and IR5 and monitor the energy deposited by electromagnetic showers produced by high-energy neutral particles from the collisions. The detectors have the capability to resolve the bunch-by-bunch luminosity at the 40 MHz bunch rate, as well as to survive the extreme level of radiation during the nominal LHC operation. The devices have operated since the early commissioning phase of the accelerator over a broad range of luminosities reaching 1.4×10{sup 34} cm{sup −2} s{sup −1} with a peak pileup of 45 events per bunch crossing. Even though the nominal design luminosity of the LHC has been exceeded, the BRAN is operating well. After describing how the BRAN can be used to monitor the luminosity of the collider, we discuss the technical choices that led to its construction and the different tests performed prior to the installation in two IRs of the LHC. Performance simulations are presented together with operational results obtained during p-p operations, including runs at 40 MHz bunch rate, Pb-Pb operations and p-Pb operations.

  10. Silicon radiation detectors

    International Nuclear Information System (INIS)

    Lutz, G.

    1995-01-01

    An introduction to and an overview of function principles and properties of semiconductor radiation detectors is attempted. The paper is addressed to people interested in detector development but not already experts in the field of semiconductor detectors. (orig.)

  11. Calibration of detector efficiency of neutron detector

    International Nuclear Information System (INIS)

    Guo Hongsheng; He Xijun; Xu Rongkun; Peng Taiping

    2001-01-01

    BF 3 neutron detector has been set up. Detector efficiency is calibrated by associated particle technique. It is about 3.17 x 10 -4 (1 +- 18%). Neutron yield of neutron generator per pulse (10 7 /pulse) is measured by using the detector

  12. WFC3 UVIS Detector Performance

    Science.gov (United States)

    Gunning, Heather C.; Baggett, Sylvia M.; Gosmeyer, Catherine; Bourque, Matthew; MacKenty, John W.; Anderson, Jay; WFC3 Team

    2015-01-01

    The Wide Field Camera 3 (WFC3) is a fourth-generation imaging instrument installed on the Hubble Space Telescope (HST) during Servicing Mission 4 (SM4) in May 2000. WFC3 has two observational channels, UV/visible (UVIS) and infrared (IR); both have been performing well on-orbit. Since installation, the WFC3 team has been diligent in monitoring the performance of both detectors. The UVIS channel consists of two e2v, backside illuminated, 2Kx4K CCDs arranged in a 2x1 mosaic. We present results from some of the monitoring programs used to check various aspects of the UVIS detector. We discuss the growth trend of hot pixels and the efficacy of regular anneals in controlling the hot pixel population. We detail a pixel population with lowered-sensitivity that evolves during the time between anneals, and is largely reset by each anneal procedure. We discuss the stability of the post-flash LED lamp, used and recommended for CTE mitigation in observations with less than 12 e-/pixel backgrounds. Finally, we summarize long-term photometric trends of the UVIS detector, as well as the absolute gain measurement, used as a proxy for the on-orbit evolution of the UVIS channel.

  13. The design and application of a multi-band IR imager

    Science.gov (United States)

    Li, Lijuan

    2018-02-01

    Multi-band IR imaging system has many applications in security, national defense, petroleum and gas industry, etc. So the relevant technologies are getting more and more attention in rent years. As we know, when used in missile warning and missile seeker systems, multi-band IR imaging technology has the advantage of high target recognition capability and low false alarm rate if suitable spectral bands are selected. Compared with traditional single band IR imager, multi-band IR imager can make use of spectral features in addition to space and time domain features to discriminate target from background clutters and decoys. So, one of the key work is to select the right spectral bands in which the feature difference between target and false target is evident and is well utilized. Multi-band IR imager is a useful instrument to collect multi-band IR images of target, backgrounds and decoys for spectral band selection study at low cost and with adjustable parameters and property compared with commercial imaging spectrometer. In this paper, a multi-band IR imaging system is developed which is suitable to collect 4 spectral band images of various scenes at every turn and can be expanded to other short-wave and mid-wave IR spectral bands combination by changing filter groups. The multi-band IR imaging system consists of a broad band optical system, a cryogenic InSb large array detector, a spinning filter wheel and electronic processing system. The multi-band IR imaging system's performance is tested in real data collection experiments.

  14. Position detector

    International Nuclear Information System (INIS)

    Hayakawa, Toshifumi.

    1985-01-01

    Purpose: To enable to detect the position of an moving object in a control rod position detector, stably in a digital manner at a high accuracy and free from the undesired effects of circumstantial conditions such as the reactor temperature. Constitution: Coils connected in parallel with each other are disposed along the passage of a moving object and variable resistors and relays are connected in series with each of the coils respectively. Light emitting diodes is connected in series with the contacts of the respective relays. The resistance value of the variable resistors are adjusted depending on the changes in the circumstantial conditions and temperature distribution upon carrying out the positional detection. When the object is inserted into a coils, the relevant relay is deenergized, by which the relay contacts are closed to light up the diode. In the same manner, as the object is successively inserted into the coils, the diodes are lighted-up successively thereby enabling highly accurate and stable positional detection in a digital manner, free from the undesired effects of the circumstantial conditions. (Horiuchi, T.)

  15. MUON DETECTOR

    CERN Multimedia

    F. Gasparini

    DT As announced in the previous Bulletin MU DT completed the installation of the vertical chambers of barrel wheels 0, +1 and +2. 242 DT and RPC stations are now installed in the negative barrel wheels. The missing 8 (4 in YB-1 and 4 in YB-2) chambers can be installed only after the lowering of the two wheels into the UX cavern, which is planned for the last quarter of the year. Cabling on the surface of the negative wheels was finished in May after some difficulties with RPC cables. The next step was to begin the final commissioning of the wheels with the final trigger and readout electronics. Priority was giv¬en to YB0 in order to check everything before the chambers were covered by cables and services of the inner detectors. Commissioning is not easy since it requires both activity on the central and positive wheels underground, as well as on the negative wheels still on the surface. The DT community is requested to commission the negative wheels on surface to cope with a possible lack of time a...

  16. Mobile CARS - IRS Instrument for Simultaneous Spectroscopic Measurement of Multiple Properties in Gaseous Flows

    Science.gov (United States)

    Bivolaru, Daniel; Lee, Joseph W.; Jones, Stephen B.; Tedder, Sarah A.; Danehy, Paul M.; Weikl, M. C.; Magnotti, G.; Cutler, Andrew D.

    2007-01-01

    This paper describes a measurement system based on the dual-pump coherent anti-Stokes Raman spectroscopy (CARS) and interferometric Rayleigh scattering (IRS) methods. The IRS measurement is performed simultaneously with the CARS measurement using a common green laser beam as a narrow-band light source. The mobile CARS-IRS instrument is designed for the use both in laboratories as well as in ground-based combustion test facilities. Furthermore, it is designed to be easily transported between laboratory and test facility. It performs single-point spatially and temporally resolved simultaneous measurements of temperature, species mole fraction of N2, O2, and H2, and two-components of velocity. A mobile laser system can be placed inside or outside the test facility, while a beam receiving and monitoring system is placed near the measurement location. Measurements in a laboratory small-scale Mach 1.6 H2-air combustion-heated supersonic jet were performed to test the capability of the system. Final setup and pretests of a larger scale reacting jet are ongoing at NASA Langley Research Center s Direct Connect Supersonic Combustor Test Facility (DCSCTF).

  17. Detector simulation needs for detector designers

    International Nuclear Information System (INIS)

    Hanson, G.G.

    1987-11-01

    Computer simulation of the components of SSC detectors and of the complete detectors will be very important for the designs of the detectors. The ratio of events from interesting physics to events from background processes is very low, so detailed understanding of detector response to the backgrounds is needed. Any large detector for the SSC will be very complex and expensive and every effort must be made to design detectors which will have excellent performance and will not have to undergo major rebuilding. Some areas in which computer simulation is particularly needed are pattern recognition in tracking detectors and development of shower simulation code which can be trusted as an aid in the design and optimization of calorimeters, including their electron identification performance. Existing codes require too much computer time to be practical and need to be compared with test beam data at energies of several hundred GeV. Computer simulation of the processing of the data, including electronics response to the signals from the detector components, processing of the data by microprocessors on the detector, the trigger, and data acquisition will be required. In this report we discuss the detector simulation needs for detector designers

  18. Simulation of Thermal Processes in Metamaterial MM-to-IR Converter for MM-wave Imager

    International Nuclear Information System (INIS)

    Zagubisalo, Peter S; Paulish, Andrey G; Kuznetsov, Sergey A

    2014-01-01

    The main characteristics of MM-wave image detector were simulated by means of accurate numerical modelling of thermophysical processes in a metamaterial MM-to-IR converter. The converter represents a multilayer structure consisting of an ultra thin resonant metamaterial absorber and a perfect emissive layer. The absorber consists of a dielectric self-supporting film that is metallized from both sides. A micro-pattern is fabricated from one side. Resonant absorption of the MM waves induces the converter heating that yields enhancement of IR emission from the emissive layer. IR emission is detected by IR camera. In this contribution an accurate numerical model for simulation of the thermal processes in the converter structure was created by using COMSOL Multiphysics software. The simulation results are in a good agreement with experimental results that validates the model. The simulation shows that the real time operation is provided for the converter thickness less than 3 micrometers and time response can be improved by decreasing of the converter thickness. The energy conversion efficiency of MM waves into IR radiation is over 80%. The converter temperature increase is a linear function of a MM-wave radiation power within three orders of the dynamic range. The blooming effect and ways of its reducing are also discussed. The model allows us to choose the ways of converter structure optimization and improvement of image detector parameters

  19. The GRANDE detector

    International Nuclear Information System (INIS)

    Adams, A.; Bond, R.; Coleman, L.; Rollefson, A.; Wold, D.; Bratton, C.B.; Gurr, H.; Kropp, W.; Nelson, M.; Price, L.R.; Reines, F.; Schultz, J.; Sobel, H.; Svoboda, R.; Yodh, G.; Burnett, T.; Chaloupka, V.; Wilkes, R.J.; Cherry, M.; Ellison, S.B.; Guzik, T.G.; Wefel, J.; Gaidos, J.; Loeffler, F.; Sembroski, G.; Wilson, C.; Goodman, J.; Haines, T.J.; Kielczewska, D.; Lane, C.; Steinberg, R.; Lieber, M.; Nagle, D.; Potter, M.; Tripp, R.

    1990-01-01

    In this paper we present a detector facility which meets the requirements outlined above for a next-generation instrument. GRANDE (Gamma Ray and Neutrino DEtector) is an imaging, water Cerenkov detector, which combines in one facility an extensive air shower array and a high-energy neutrino detector. (orig.)

  20. Spiral silicon drift detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.; Longoni, A.; Sampietro, M.; Holl, P.; Lutz, G.; Kemmer, J.; Prechtel, U.; Ziemann, T.

    1988-01-01

    An advanced large area silicon photodiode (and x-ray detector), called Spiral Drift Detector, was designed, produced and tested. The Spiral Detector belongs to the family of silicon drift detectors and is an improvement of the well known Cylindrical Drift Detector. In both detectors, signal electrons created in silicon by fast charged particles or photons are drifting toward a practically point-like collection anode. The capacitance of the anode is therefore kept at the minimum (0.1pF). The concentric rings of the cylindrical detector are replaced by a continuous spiral in the new detector. The spiral geometry detector design leads to a decrease of the detector leakage current. In the spiral detector all electrons generated at the silicon-silicon oxide interface are collected on a guard sink rather than contributing to the detector leakage current. The decrease of the leakage current reduces the parallel noise of the detector. This decrease of the leakage current and the very small capacities of the detector anode with a capacitively matched preamplifier may improve the energy resolution of Spiral Drift Detectors operating at room temperature down to about 50 electrons rms. This resolution is in the range attainable at present only by cooled semiconductor detectors. 5 refs., 10 figs

  1. MTF measurement of IR optics in different temperature ranges

    Science.gov (United States)

    Bai, Alexander; Duncker, Hannes; Dumitrescu, Eugen

    2017-10-01

    Infrared (IR) optical systems are at the core of many military, civilian and manufacturing applications and perform mission critical functions. To reliably fulfill the demanding requirements imposed on today's high performance IR optics, highly accurate, reproducible and fast lens testing is of crucial importance. Testing the optical performance within different temperature ranges becomes key in many military applications. Due to highly complex IR-Applications in the fields of aerospace, military and automotive industries, MTF Measurement under realistic environmental conditions become more and more relevant. A Modulation Transfer Function (MTF) test bench with an integrated thermal chamber allows measuring several sample sizes in a temperature range from -40 °C to +120°C. To reach reliable measurement results under these difficult conditions, a specially developed temperature stable design including an insulating vacuum are used. The main function of this instrument is the measurement of the MTF both on- and off-axis at up to +/-70° field angle, as well as measurement of effective focal length, flange focal length and distortion. The vertical configuration of the system guarantees a small overall footprint. By integrating a high-resolution IR camera with focal plane array (FPA) in the detection unit, time consuming measurement procedures such as scanning slit with liquid nitrogen cooled detectors can be avoided. The specified absolute accuracy of +/- 3% MTF is validated using internationally traceable reference optics. Together with a complete and intuitive software solution, this makes the instrument a turn-key device for today's state-of- the-art optical testing.

  2. Completely automated open-path FT-IR spectrometry.

    Science.gov (United States)

    Griffiths, Peter R; Shao, Limin; Leytem, April B

    2009-01-01

    Atmospheric analysis by open-path Fourier-transform infrared (OP/FT-IR) spectrometry has been possible for over two decades but has not been widely used because of the limitations of the software of commercial instruments. In this paper, we describe the current state-of-the-art of the hardware and software that constitutes a contemporary OP/FT-IR spectrometer. We then describe advances that have been made in our laboratory that have enabled many of the limitations of this type of instrument to be overcome. These include not having to acquire a single-beam background spectrum that compensates for absorption features in the spectra of atmospheric water vapor and carbon dioxide. Instead, an easily measured "short path-length" background spectrum is used for calculation of each absorbance spectrum that is measured over a long path-length. To accomplish this goal, the algorithm used to calculate the concentrations of trace atmospheric molecules was changed from classical least-squares regression (CLS) to partial least-squares regression (PLS). For calibration, OP/FT-IR spectra are measured in pristine air over a wide variety of path-lengths, temperatures, and humidities, ratioed against a short-path background, and converted to absorbance; the reference spectrum of each analyte is then multiplied by randomly selected coefficients and added to these background spectra. Automatic baseline correction for small molecules with resolved rotational fine structure, such as ammonia and methane, is effected using wavelet transforms. A novel method of correcting for the effect of the nonlinear response of mercury cadmium telluride detectors is also incorporated. Finally, target factor analysis may be used to detect the onset of a given pollutant when its concentration exceeds a certain threshold. In this way, the concentration of atmospheric species has been obtained from OP/FT-IR spectra measured at intervals of 1 min over a period of many hours with no operator intervention.

  3. Improved designs of Si-based quantum wells and Schottky diodes for IR detection

    Energy Technology Data Exchange (ETDEWEB)

    Moeen, M., E-mail: moeen@kth.se [School of Information and Communication Technology, KTH Royal Institute of Technology, Stockholm, 16640, Kista (Sweden); Kolahdouz, M. [School of Electrical and Computer Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Salemi, A.; Abedin, A.; Östling, M. [School of Information and Communication Technology, KTH Royal Institute of Technology, Stockholm, 16640, Kista (Sweden); Radamson, H.H., E-mail: rad@kth.se [School of Information and Communication Technology, KTH Royal Institute of Technology, Stockholm, 16640, Kista (Sweden)

    2016-08-31

    Novel structures of intrinsic or carbon-doped multi quantum wells (MQWs) and intrinsic or carbon-doped Si Schottky diodes (SD), individually or in combination, have been manufactured to detect the infrared (IR) radiation. The carbon concentration in the structures was 5 × 10{sup 20} cm{sup −3} and the MQWs are located in the active part of the IR detector. A Schottky diode was designed and formed as one of the contacts (based on NiSi(C)/TiW) to MQWs where on the other side the structure had an Ohmic contact. The thermal response of the detectors is expressed in terms of temperature coefficient of resistance (TCR) and the quality of the electrical signal is quantified by the signal-to-noise ratio. The noise measurements provide the K{sub 1/f} parameter which is obtained from the power spectrum density. An excellent value of TCR = − 6%/K and K{sub 1/f} = 4.7 × 10{sup −14} was measured for the detectors which consist of the MQWs in series with the SD. These outstanding electrical results indicate a good opportunity to manufacture low cost Si-based IR detectors in the near future. - Highlights: • SiGe (C)/Si(C) multi quantum wells (MQWs) are evaluated to detect IR radiation. • Schottky diodes (SDs), individually or in series with MQWs are also fabricated. • Detectors consisted of MQWs in series with SD show excellent thermal sensing. • The noise values are also extremely low for MQWs in series with SD.

  4. Improved designs of Si-based quantum wells and Schottky diodes for IR detection

    International Nuclear Information System (INIS)

    Moeen, M.; Kolahdouz, M.; Salemi, A.; Abedin, A.; Östling, M.; Radamson, H.H.

    2016-01-01

    Novel structures of intrinsic or carbon-doped multi quantum wells (MQWs) and intrinsic or carbon-doped Si Schottky diodes (SD), individually or in combination, have been manufactured to detect the infrared (IR) radiation. The carbon concentration in the structures was 5 × 10 20 cm −3 and the MQWs are located in the active part of the IR detector. A Schottky diode was designed and formed as one of the contacts (based on NiSi(C)/TiW) to MQWs where on the other side the structure had an Ohmic contact. The thermal response of the detectors is expressed in terms of temperature coefficient of resistance (TCR) and the quality of the electrical signal is quantified by the signal-to-noise ratio. The noise measurements provide the K 1/f parameter which is obtained from the power spectrum density. An excellent value of TCR = − 6%/K and K 1/f = 4.7 × 10 −14 was measured for the detectors which consist of the MQWs in series with the SD. These outstanding electrical results indicate a good opportunity to manufacture low cost Si-based IR detectors in the near future. - Highlights: • SiGe (C)/Si(C) multi quantum wells (MQWs) are evaluated to detect IR radiation. • Schottky diodes (SDs), individually or in series with MQWs are also fabricated. • Detectors consisted of MQWs in series with SD show excellent thermal sensing. • The noise values are also extremely low for MQWs in series with SD.

  5. Portable compact multifunction IR calibrator

    International Nuclear Information System (INIS)

    Wyatt, C.L.; Jacobsen, L.; Steed, A.

    1988-01-01

    A compact portable multifunction calibrator designed for future sensor systems is described which enables a linearity calibration for all detectors simultaneously using a near small-area source, a high-resolution mapping of the focal plane with 10 microrad setability and with a blur of less than 100 microrad, system spectral response calibration (radiometer) using a Michelson interferometer source, relative spectral response (spectrometer) using high-temperature external commercial blackbody simulators, and an absolute calibration using an internal low-temperature extended-area source. 5 references

  6. HOM [higher order mode] losses at the IR [interaction region] of the B-factory

    International Nuclear Information System (INIS)

    Heifets, S.

    1990-08-01

    Masking at the interaction region (IR) will presumably reduce the synchrotron radiation background in the detector. One possible layout of the IR for B-factory shows a rather complicated system of masks. A bunch passing each mask will generate RF waves. These waves (called usually higher order modes, HOM-s) will be absorbed in the beam pipe wall producing additional heating and, interacting with the beam, kicking particles in the radial and azimuthal directions. This may change the bunch motion and its emittance. These effects are estimated in the present note

  7. Innovations in IR projector arrays

    Science.gov (United States)

    Cole, Barry E.; Higashi, B.; Ridley, Jeff A.; Holmen, J.; Newstrom, K.; Zins, C.; Nguyen, K.; Weeres, Steven R.; Johnson, Burgess R.; Stockbridge, Robert G.; Murrer, Robert Lee; Olson, Eric M.; Bergin, Thomas P.; Kircher, James R.; Flynn, David S.

    2000-07-01

    In the past year, Honeywell has developed a 512 X 512 snapshot scene projector containing pixels with very high radiance efficiency. The array can operate in both snapshot and raster mode. The array pixels have near black body characteristics, high radiance outputs, broad band performance, and high speed. IR measurements and performance of these pixels will be described. In addition, a vacuum probe station that makes it possible to select the best die for packaging and delivery based on wafer level radiance screening, has been developed and is in operation. This system, as well as other improvements, will be described. Finally, a review of the status of the present projectors and plans for future arrays is included.

  8. Solid state detector design

    International Nuclear Information System (INIS)

    Gunarwan Prayitno; Ahmad Rifai

    2010-01-01

    Much has been charged particle detector radiation detector made by the industry, especially those engaged in the development of detection equipment and components. The development and further research will be made solid state detector with silicon material. To be able to detect charged particles (radiation), required the processing of silicon material into the detector material. The method used to make silicon detector material is a lithium evaporations. Having formed an intrinsic region contactor installation process, and with testing. (author)

  9. STATYBINIŲ MEDŽIAGŲ KONKURENCINGUMAS IR TENDENCIJOS

    OpenAIRE

    Kontrimas, Robertas

    2010-01-01

    Darbe analizuojamas statybinių medžiagų konkurencingumas, nustatyti statybinių medžiagų konkurencingumą įtakojantys veiksniai ir pateikti pasiūlymai rinkos gerinimui. Pasitvirtino hipotezė, kad statybinių medžiagų paklausą ir kainas įtakoja klientų poreikiai ir jų finansinės galimybės, tačiau pasaulinės krizės įtaka yra labai ženkli,. Atlikta darbuotojų ir pirkėjų apklausa padėjo nustatyti, kokios statybinės medžiagos dažniausiai yra perkamos, kaip klientai ir darbuotojai vertina įmonę ir jos...

  10. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection

    Directory of Open Access Journals (Sweden)

    Sungho Kim

    2016-07-01

    Full Text Available Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR images or infrared (IR images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter and an asymmetric morphological closing filter (AMCF, post-filter into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic

  11. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection

    Science.gov (United States)

    Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun

    2016-01-01

    Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated

  12. Mid infrared resonant cavity detectors and lasers with epitaxial lead-chalcogenides

    Science.gov (United States)

    Zogg, H.; Rahim, M.; Khiar, A.; Fill, M.; Felder, F.; Quack, N.

    2010-09-01

    Wavelength tunable emitters and detectors in the mid-IR wavelength region allow applications including thermal imaging and gas spectroscopy. One way to realize such tunable devices is by using a resonant cavity. By mechanically changing the cavity length with MEMS mirror techniques, the wavelengths may be tuned over a considerable range. Resonant cavity enhanced detectors (RCED) are sensitive at the cavity resonance only. They may be applied for low resolution spectroscopy, and, when arrays of such detectors are realized, as multicolour IR-FPA or "IR-AFPA", adaptive focal plane arrays. We report the first room temperature mid-IR VECSEL (vertical external cavity surface emitting laser) with a wavelength above 3 μm. The active region is just 850 nm PbSe, followed by a 2.5 pair Bragg mirror. Output power is > 10 mW at RT.

  13. 3D silicon strip detectors

    International Nuclear Information System (INIS)

    Parzefall, Ulrich; Bates, Richard; Boscardin, Maurizio; Dalla Betta, Gian-Franco; Eckert, Simon; Eklund, Lars; Fleta, Celeste; Jakobs, Karl; Kuehn, Susanne; Lozano, Manuel; Pahn, Gregor; Parkes, Chris; Pellegrini, Giulio; Pennicard, David; Piemonte, Claudio; Ronchin, Sabina; Szumlak, Tomasz; Zoboli, Andrea; Zorzi, Nicola

    2009-01-01

    While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10 15 N eq /cm 2 , which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10 15 N eq /cm 2 . The tests were performed with three systems: a highly focused IR-laser with 5μm spot size to make position-resolved scans of the charge collection efficiency, an Sr 90 β-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of the results obtained with 3D-STC-modules.

  14. 3D silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Parzefall, Ulrich [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany)], E-mail: ulrich.parzefall@physik.uni-freiburg.de; Bates, Richard [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Boscardin, Maurizio [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Dalla Betta, Gian-Franco [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Eckert, Simon [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Eklund, Lars; Fleta, Celeste [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Jakobs, Karl; Kuehn, Susanne [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Lozano, Manuel [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pahn, Gregor [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Parkes, Chris [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Pellegrini, Giulio [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pennicard, David [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Piemonte, Claudio; Ronchin, Sabina [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Szumlak, Tomasz [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Zoboli, Andrea [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Zorzi, Nicola [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy)

    2009-06-01

    While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10{sup 15}N{sub eq}/cm{sup 2}, which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10{sup 15}N{sub eq}/cm{sup 2}. The tests were performed with three systems: a highly focused IR-laser with 5{mu}m spot size to make position-resolved scans of the charge collection efficiency, an Sr{sup 90}{beta}-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of

  15. Hermann agreement updates IRS guidelines for incentives.

    Science.gov (United States)

    Broccolo, B M; Peregrine, M W

    1995-01-01

    The October 1994 agreement between the Internal Revenue Service (IRS) and Hermann Hospital of Houston, Texas, elucidates current IRS policy on physician recruitment incentives. The IRS distinguishes between the recruiting and the retention of physicians and perimts incentives beyond reasonable compensation in the former but not the latter circumstance. This new agreement, while not legally precedential, nevertheless provides guidance for healthcare organizations seeking safe harbor protection.

  16. Investigación de la unión soldada entre el vástago y las placas de las cuchillas calzadas // Investigation of the welded joint between plates and tipped single-point lathe tools

    Directory of Open Access Journals (Sweden)

    M. Jacas Cabrera

    2000-01-01

    Full Text Available El presente trabajo está dirigido al incremento de los niveles de producción y calidad, específicamente en la línea defabricación de cuchillas calzadas para torno en el centro fabril “Miguel Saavedra” HERRAMIX.En este caso se realizó un análisis para la sustitución de las pastillas de soldar, fabricadas por CIME por nuevastrimetálicas.En el mismo se determinaron los tiempos de calentamiento necesarios para realizar la soldadura, en las máquinas deinducción (TBCHE, así como los valores de resistencia al cizallamiento de los calzos una vez soldados.Palabras claves: Cuchillas de punta, calzos metalo-ceramicos, placas trimetálicas_____________________________________________________________________Abstract:The present work is directed to increase the production and quality levels of tipped single-point lathe tools at “MiguelSaavedra” plant HERRAMIX.This work deals with a study about the substitution of brazing-pads made by CIME for tri-metallic new ones.The induction brazing heating time’s necessaries at induction machines (TBCHE as well as shear-stress values at the tips afterwelding are determined.Key words: tip single point lathe tool, metal ceramic plate, trimetallic pads.

  17. Silicon Based Mid Infrared SiGeSn Heterostructure Emitters and Detectors

    Science.gov (United States)

    2016-05-16

    AFRL-AFOSR-JP-TR-2016-0054 Silicon based mid infrared SiGeSn heterostrcture emitters and detectors Greg Sun UNIVERSITY OF MASSACHUSETTS Final Report... Silicon Based Mid Infrared SiGeSn Heterostructure Emitters and Detectors ” February 10, 2016 Principal Investigator: Greg Sun Engineering...diodes are incompatible with the CMOS process and therefore cannot be easily integrated with Si electronics . The GeSn mid IR detectors developed in

  18. Compound Semiconductor Radiation Detector

    International Nuclear Information System (INIS)

    Kim, Y. K.; Park, S. H.; Lee, W. G.; Ha, J. H.

    2005-01-01

    In 1945, Van Heerden measured α, β and γ radiations with the cooled AgCl crystal. It was the first radiation measurement using the compound semiconductor detector. Since then the compound semiconductor has been extensively studied as radiation detector. Generally the radiation detector can be divided into the gas detector, the scintillator and the semiconductor detector. The semiconductor detector has good points comparing to other radiation detectors. Since the density of the semiconductor detector is higher than that of the gas detector, the semiconductor detector can be made with the compact size to measure the high energy radiation. In the scintillator, the radiation is measured with the two-step process. That is, the radiation is converted into the photons, which are changed into electrons by a photo-detector, inside the scintillator. However in the semiconductor radiation detector, the radiation is measured only with the one-step process. The electron-hole pairs are generated from the radiation interaction inside the semiconductor detector, and these electrons and charged ions are directly collected to get the signal. The energy resolution of the semiconductor detector is generally better than that of the scintillator. At present, the commonly used semiconductors as the radiation detector are Si and Ge. However, these semiconductor detectors have weak points. That is, one needs thick material to measure the high energy radiation because of the relatively low atomic number of the composite material. In Ge case, the dark current of the detector is large at room temperature because of the small band-gap energy. Recently the compound semiconductor detectors have been extensively studied to overcome these problems. In this paper, we will briefly summarize the recent research topics about the compound semiconductor detector. We will introduce the research activities of our group, too

  19. OH/IR stars in the Galaxy

    International Nuclear Information System (INIS)

    Baud, B.

    1978-01-01

    Radio astronomical observations leading to the discovery of 71 OH/IR sources are described in this thesis. These OH/IR sources are characterized by their double peaked OH emission profile at a wavelength of 18 cm and by their strong IR infrared emission. An analysis of the distribution and radial velocities of a number of previously known and new OH/IR sources was performed. The parameter ΔV (the velocity separation between two emission peaks of the 18 cm line profile) was found to be a good criterion for a population classification with respect to stellar age

  20. Overview of DRS uncooled VOx infrared detector development

    Science.gov (United States)

    Li, Chuan; Han, C. J.; Skidmore, George

    2011-06-01

    Significant progress has been made over the past decade on uncooled focal plane array technologies and production capabilities. The detector pixel dimensions have continually decreased with an increase in pixel performance making large format, high-density array products affordable. In turn, this has resulted in the proliferation of uncooled IR detectors in commercial and military markets. Presently, uncooled detectors are widely used in firefighting, surveillance, industrial process monitoring, machine vision, and medical applications. Within the military arena, uncooled detectors are ubiquitous in Army soldier systems such as weapon sights, driver's viewers, and helmet-mounted sights. Uncooled detectors are also employed in airborne and ground surveillance sensors including unmanned aerial vehicles and robot vehicles.

  1. Atmospheric Entry Experiments at IRS

    Science.gov (United States)

    Auweter-Kurtz, M.; Endlich, P.; Herdrich, G.; Kurtz, H.; Laux, T.; Löhle, S.; Nazina, N.; Pidan, S.

    2002-01-01

    Entering the atmosphere of celestial bodies, spacecrafts encounter gases at velocities of several km/s, thereby being subjected to great heat loads. The thermal protection systems and the environment (plasma) have to be investigated by means of computational and ground facility based simulations. For more than a decade, plasma wind tunnels at IRS have been used for the investigation of TPS materials. Nevertheless, ground tests and computer simulations cannot re- place space flights completely. Particularly, entry mission phases encounter challenging problems, such as hypersonic aerothermodynamics. Concerning the TPS, radiation-cooled materials used for reuseable spacecrafts and ablator tech- nologies are of importance. Besides the mentioned technologies, there is the goal to manage guidance navigation, con- trol, landing technology and inflatable technologies such as ballutes that aim to keep vehicles in the atmosphere without landing. The requirement to save mass and energy for planned interplanetary missions such as Mars Society Balloon Mission, Mars Sample Return Mission, Mars Express or Venus Sample Return mission led to the need for manoeuvres like aerocapture, aero-breaking and hyperbolic entries. All three are characterized by very high kinetic vehicle energies to be dissipated by the manoeuvre. In this field flight data are rare. The importance of these manoeuvres and the need to increase the knowledge of required TPS designs and behavior during such mission phases point out the need of flight experiments. As result of the experience within the plasma diagnostic tool development and the plasma wind tunnel data base, flight experiments like the PYrometric RE-entry EXperiment PYREX were developed, fully qualified and successfully flown. Flight experiments such as the entry spectrometer RESPECT and PYREX on HOPE-X are in the conceptual phase. To increase knowledge in the scope of atmospheric manoeuvres and entries, data bases have to be created combining both

  2. Teaching IR to Medical Students: A Call to Action.

    Science.gov (United States)

    Lee, Aoife M; Lee, Michael J

    2018-02-01

    Interventional radiology (IR) has grown rapidly over the last 20 years and is now an essential component of modern medicine. Despite IR's increasing penetration and reputation in healthcare systems, IR is poorly taught, if taught at all, in most medical schools. Medical students are the referrers of tomorrow and potential IR recruits and deserve to be taught IR by expert IRs. The lack of formal IR teaching curricula in many medical schools needs to be addressed urgently for the continued development and dissemination of, particularly acute, IR services throughout Europe. We call on IRs to take up the baton to teach IR to the next generation of doctors.

  3. Transition-edge sensor arrays for UV-optical-IR astrophysics

    International Nuclear Information System (INIS)

    Burney, J.; Bay, T.J.; Barral, J.; Brink, P.L.; Cabrera, B.; Castle, J.P.; Miller, A.J.; Nam, S.; Rosenberg, D.; Romani, R.W.; Tomada, A.

    2006-01-01

    Our research group has developed and characterized transition-edge sensor (TES) arrays for near IR-optical-near UV astrophysical observations. These detectors have a time-stamp accuracy of 0.3μs and an energy resolution of 0.16eV for 2.33eV photons at very high rates (30kHz). We have installed a 6x6 array of these TESs in an adiabatic demagnetization refrigerator equipped with windows for direct imaging. We discuss new instrumentation progress and current data in all aspects related to successful operation of this camera system, including: detector and array performance, position dependence and cross-talk, low-temperature and readout electronics, quantum and system efficiency, IR filtering, and focus and imaging

  4. Premier's imaging IR limb sounder

    Science.gov (United States)

    Kraft, Stefan; Bézy, Jean-Loup; Meynart, Roland; Langen, Jörg; Carnicero Dominguez, Bernardo; Bensi, Paolo; Silvestrin, Pierluigi

    2017-11-01

    The Imaging IR Limb Sounder (IRLS) is one of the two instruments planned on board of the candidate Earth Explorer Core Mission PREMIER. PREMIER stands for PRocess Exploration through Measurements of Infrared and Millimetre-wave Emitted Radiation. PREMIER went recently through the process of a feasibility study (Phase A) within the Earth Observation Envelope Program. Emerging from recent advanced instrument technologies IRLS shall, next to a millimetre-wave limb sounder (called STEAMR), explore the benefits of three-dimensional limb sounding with embedded cloud imaging capability. Such 3D imaging technology is expected to open a new era of limb sounding that will allow detailed studies of the link between atmospheric composition and climate, since it will map simultaneously fields of temperature and many trace gases in the mid/upper troposphere and stratosphere across a large vertical and horizontal field of view and with high vertical and horizontal resolution. PREMIER shall fly in a tandem formation looking backwards to METOP's swath and thereby improve meteorological and environmental analyses.

  5. Intermittent single point machining of brittle materials

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, E

    1999-12-07

    A series of tests were undertaken to explore diamond tool wear in the intermittent cutting of brittle materials, specifically silicon. The tests were carried out on a plain way No. 3 Moore machine base equipped as a flycutter with a motorized Professional Instruments 4R air bearing spindle. The diamond tools were made by Edge Technologies with known crystal orientation and composition and sharpened with either an abrasive or chemical process, depending on the individual test. The flycutting machine configuration allowed precise control over the angle at which the tool engages the anisotropic silicon workpiece. In contrast, the crystallographic orientation of the silicon workpiece changes continuously during on-axis turning. As a result, it is possible to flycut a workpiece in cutting directions that are known to be easy or hard. All cuts were run in the 100 plane of the silicon, with a slight angle deliberately introduced to ensure that the 100 plane is engaged in ''up-cutting'' which lengthens the tool life. A Kistler 9256 dynamometer was used to measure the cutting forces in order to gain insight into the material removal process and tool wear during testing. The dynamometer provides high bandwidth force measurement with milli-Newton resolution and good thermal stability. After many successive passes over the workpiece, it was observed that the cutting forces grow at a rate that is roughly proportional to the degradation of the workpiece surface finish. The exact relationship between cutting force growth and surface finish degradation was not quantified because of the problems associated with measuring surface finish in situ. However, a series of witness marks were made during testing in an aluminum sample that clearly show the development of wear flats on the tool nose profile as the forces grow and the surface finish worsens. The test results show that workpieces requiring on the order of two miles of track length can be made with low tool wear and excellent surface finish. With longer track lengths, the tool forces (and presumably tool wear) begin a roughly linear increase as surface finish steadily worsens. No catastrophic tool failures were observed, only slow changes as the track length increases. Interestingly, the specific cutting energy did not remain constant with depth of cut, suggesting that there are significant friction forces in the cutting of silicon. This finding supports published results emphasizing the importance of a large clearance angle on the tool and hints that fairly aggressive cuts may be the most efficient way to remove material. That is, tool life may turn out to scale with track length, not volume indicating that machining parameters for silicon should be chosen to minimize track length by taking heavier cuts.

  6. Atom condensation on an atomically smooth surface: Ir, Re, W, and Pd on Ir(111)

    International Nuclear Information System (INIS)

    Wang, S.C.; Ehrlich, G.

    1991-01-01

    The distribution of condensing metal atoms over the two types of sites present on an atomically smooth Ir(111) has been measured in a field ion microscope. For Ir, Re, W, and Pd from a thermal source, condensing on Ir(111) at ∼20 K, the atoms are randomly distributed, as expected if they condense at the first site struck

  7. Biochemical applications of FT-IR spectroscopy

    NARCIS (Netherlands)

    Pistorius, A.M.A.

    1996-01-01

    This thesis describes the use of (FT-)IR spectroscopy in general biochemical research. In chapter 3, IR spectroscopy is used in the quantitation of residual detergent after reconstitution of an integral membrane protein in a pre-defined lipid matrix. This chapter discusses the choice of the

  8. How to remedy Eurocentrism in IR?

    DEFF Research Database (Denmark)

    Bilgin, Pinar

    2016-01-01

    While IR's Eurocentric limits are usually acknowledged, what those limits mean for theorizing about the international is seldom clarified. In The Global Transformation, Buzan and Lawson offer a 'composite approach' that goes some way towards addressing IR's Eurocentrism, challenging existing myth...

  9. Quantitative gas analysis with FT-IR

    DEFF Research Database (Denmark)

    Bak, J.; Larsen, A.

    1995-01-01

    Calibration spectra of CO in the 2.38-5100 ppm concentration range (22 spectra) have been measured with a spectral resolution of 4 cm(-1), in the mid-IR (2186-2001 cm(-1)) region, with a Fourier transform infrared (FT-IR) instrument. The multivariate calibration method partial least-squares (PLS1...

  10. Benzene adsorption and oxidation on Ir(111)

    NARCIS (Netherlands)

    Weststrate, C.J.; Bakker, J.W.; Gluhoi, A.C.; Ludwig, W.; Nieuwenhuys, B.E.

    2007-01-01

    Adsorption, decompn. and oxidn. of benzene on Ir(1 1 1) was studied by high resoln. (synchrotron) XPS, temp. programmed desorption and LEED. Mol. adsorption of benzene on Ir(1 1 1) is obsd. between 170 K and 350 K. Above this temp. both desorption and decompn. of benzene take place. An ordered

  11. Drift Chambers detectors; Detectores de deriva

    Energy Technology Data Exchange (ETDEWEB)

    Duran, I; Martinez laso, L

    1989-07-01

    We present here a review of High Energy Physics detectors based on drift chambers. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysed, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author) 115 refs.

  12. Smulkaus ir vidutinio verslo konkurencingumas Lietuvoje

    OpenAIRE

    Vijeikis, Juozas; Makštutis, Antanas

    2009-01-01

    Straipsnio mokslinė problema, naujumas ir aktualumas. Konkurencingumas kaip įmonių efektyvios veiklos reiškinys yra aktualus šalies verslo gyvenime vykdant darnios ekonominės plėtros politiką. Ši politika kaip problema smulkaus ir vidutinio verslo (SVV) plėtrai ir konkurencingumui didinti nėra sistemiškai ištirta ir aprašyta Lietuvos sąlygomis mokslinėje ir praktinėje literatūroje. Vienas svarbiausių veiksnių, siekiant spartaus ekonominio augimo, yra darnios verslininkystės plėtra Lietuvoje n...

  13. Mica fission detectors

    International Nuclear Information System (INIS)

    Wong, C.; Anderson, J.D.; Hansen, L.; Lehn, A.V.; Williamson, M.A.

    1977-01-01

    The present development status of the mica fission detectors is summarized. It is concluded that the techniques have been refined and developed to a state such that the mica fission counters are a reliable and reproducible detector for fission events

  14. Barrier Infrared Detector (BIRD)

    Data.gov (United States)

    National Aeronautics and Space Administration — A recent breakthrough in MWIR detector design, has resulted in a high operating temperature (HOT) barrier infrared detector (BIRD) that is capable of spectral...

  15. Simulating detectors dead time

    International Nuclear Information System (INIS)

    Rustom, Ibrahim Farog Ibrahim

    2015-06-01

    Nuclear detectors are used in all aspects of nuclear measurements. All nuclear detectors are characterized by their dead time i.e. the time needed by a detector to recover from a previous incident. A detector dead time influences measurements taken by a detector and specially when measuring high decay rate (>) where is the detector dead time. Two models are usually used to correct for the dead time effect: the paralayzable and the non-paralayzable models. In the current work we use Monte Carlo simulation techniques to simulate radioactivity and the effect of dead time and the count rate of a detector with a dead time =5x10 - 5s assuming the non-paralayzable model. The simulation indicates that assuming a non -paralayzable model could be used to correct for decay rate measured by a detector. The reliability of the non-paralayzable model to correct the measured decay rate could be gauged using the Monte Carlo simulation. (Author)

  16. Forward tracking detectors

    Indian Academy of Sciences (India)

    Abstract. Forward tracking is an essential part of a detector at the international linear collider (ILC). The requirements for forward tracking are explained and the proposed solutions in the detector concepts are shown.

  17. Recent progress in infrared detector technologies

    Science.gov (United States)

    Rogalski, A.

    2011-05-01

    In the paper, fundamental and technological issues associated with the development and exploitation of the most advanced infrared detector technologies are discussed. In this class of detectors both photon and thermal detectors are considered. Special attention is directed to HgCdTe ternary alloys on silicon, type-II superlattices, uncooled thermal bolometers, and novel uncooled micromechanical cantilever detectors. Despite serious competition from alternative technologies and slower progress than expected, HgCdTe is unlikely to be seriously challenged for high-performance applications, applications requiring multispectral capability and fast response. However, the nonuniformity is a serious problem in the case of LWIR and VLWIR HgCdTe detectors. In this context, it is predicted that type-II superlattice system seems to be an alternative to HgCdTe in long wavelength spectral region. In well established uncooled imaging, microbolometer arrays are clearly the most used technology. Present state-of-the-art microbolometers are based on polycrystalline or amorphous materials, typically vanadium oxide (VO x) or amorphous silicon (α-Si), with only modest temperature sensitivity and noise properties. Basic efforts today are mainly focused on pixel reduction and performance enhancement. Attractive alternatives consist of low-resistance α-SiGe monocrystalline SiGe quantum wells or quantum dots. In spite of successful commercialization of uncooled microbolometers, the infrared community is still searching for a platform for thermal imagers that combine affordability, convenience of operation, and excellent performance. Recent advances in MEMS systems have lead to the development of uncooled IR detectors operating as micromechanical thermal detectors. Between them the most important are biomaterial microcantilevers.

  18. HIBP primary beam detector

    International Nuclear Information System (INIS)

    Schmidt, T.W.

    1979-01-01

    A position measuring detector was fabricated for the Heavy Ion Beam Probe. The 11 cm by 50 cm detector was a combination of 15 detector wires in one direction and 63 copper bars - .635 cm by 10 cm to measure along an orthogonal axis by means of a current divider circuit. High transmission tungsten meshes provide entrance windows and suppress secondary electrons. The detector dimensions were chosen to resolve the beam position to within one beam diameter

  19. The OSMOND detector

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, J.E. [Technology Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Dalgliesh, R. [ISIS Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Duxbury, D.M., E-mail: dom.duxbury@stfc.ac.uk [Technology Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Helsby, W.I. [Science and Technology Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom); Holt, S.A.; Kinane, C.J. [ISIS Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Marsh, A.S. [Diamond Light Source LTD, Harwell Science and Innovation Campus, Diamond House, Chilton, Didcot, Oxfordshire, OX11 0DE (United Kingdom); Rhodes, N.J.; Schooneveld, E.M. [ISIS Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Spill, E.J.; Stephenson, R. [Technology Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom)

    2013-01-11

    The development and testing of the Off Specular MicrOstrip Neutron Detector (OSMOND) is described. Based on a microstrip gas chamber the aim of the project was to produce a high counting rate detector capable of replacing the existing rate limited scintillator detectors currently in use on the CRISP reflectometer for off specular reflectometry experiments. The detector system is described together with results of neutron beam tests carried out at the ISIS spallation neutron source.

  20. Tarptautinio turizmo raida ir vystymo prognozės Lietuvoje ir Lenkijoje

    OpenAIRE

    Veličkaitė, Dalia

    2009-01-01

    Išanalizuota ir įvertinta Lietuvos ir Lenkijos atvykstamojo turizmo raida 2000- 2007m., užsienio turistų srautai, apgyvendinimo paslaugų paklausa, turistų tikslai ir kelionių transporto pasirinkimas, turistų išlaidos ir šalių turizmo pajamos, iškeltos atvykstamojo turizmo problemos bei pateikti jų sprendimo siūlymai.paskutinėje darbo dalyje buvo atliktos 2008- 2015metų Lietuvos ir Lenkijos turizmo raidos prognozės. In the final master work Lithuanian and Poland arriving tourism development...

  1. Analysis of the development of missile-borne IR imaging detecting technologies

    Science.gov (United States)

    Fan, Jinxiang; Wang, Feng

    2017-10-01

    Today's infrared imaging guiding missiles are facing many challenges. With the development of targets' stealth, new-style IR countermeasures and penetrating technologies as well as the complexity of the operational environments, infrared imaging guiding missiles must meet the higher requirements of efficient target detection, capability of anti-interference and anti-jamming and the operational adaptability in complex, dynamic operating environments. Missileborne infrared imaging detecting systems are constrained by practical considerations like cost, size, weight and power (SWaP), and lifecycle requirements. Future-generation infrared imaging guiding missiles need to be resilient to changing operating environments and capable of doing more with fewer resources. Advanced IR imaging detecting and information exploring technologies are the key technologies that affect the future direction of IR imaging guidance missiles. Infrared imaging detecting and information exploring technologies research will support the development of more robust and efficient missile-borne infrared imaging detecting systems. Novelty IR imaging technologies, such as Infrared adaptive spectral imaging, are the key to effectively detect, recognize and track target under the complicated operating and countermeasures environments. Innovative information exploring techniques for the information of target, background and countermeasures provided by the detection system is the base for missile to recognize target and counter interference, jamming and countermeasure. Modular hardware and software development is the enabler for implementing multi-purpose, multi-function solutions. Uncooled IRFPA detectors and High-operating temperature IRFPA detectors as well as commercial-off-the-shelf (COTS) technology will support the implementing of low-cost infrared imaging guiding missiles. In this paper, the current status and features of missile-borne IR imaging detecting technologies are summarized. The key

  2. WORKSHOP: Scintillating fibre detectors

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Scintillating fibre detector development and technology for the proposed US Superconducting Supercollider, SSC, was the subject of a recent workshop at Fermilab, with participation from the high energy physics community and from industry. Sessions covered the current status of fibre technology and fibre detectors, new detector applications, fluorescent materials and scintillation compositions, radiation damage effects, amplification and imaging structures, and scintillation fibre fabrication techniques

  3. Shielded regenerative neutron detector

    International Nuclear Information System (INIS)

    Terhune, J.H.; Neissel, J.P.

    1978-01-01

    An ion chamber type neutron detector is disclosed which has a greatly extended lifespan. The detector includes a fission chamber containing a mixture of active and breeding material and a neutron shielding material. The breeding and shielding materials are selected to have similar or substantially matching neutron capture cross-sections so that their individual effects on increased detector life are mutually enhanced

  4. The CAPRICE RICH detector

    Energy Technology Data Exchange (ETDEWEB)

    Basini, G. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Codino, A.; Grimani, C. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); De Pascale, M.P. [Rome Univ. `Tor Vergata` (Italy). Dip. di Fisica]|[INFN, Sezione Univ. `Tor Vergata` Rome (Italy); Cafagna, F. [Bari Univ. (Italy)]|[INFN, Bari (Italy); Golden, R.L. [New Mexico State Univ., Las Cruces, NM (United States). Particle Astrophysics Lab.; Brancaccio, F.; Bocciolini, M. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Barbiellini, G.; Boezio, M. [Trieste Univ. (Italy)]|[INFN, Trieste (Italy)

    1995-09-01

    A compact RICH detector has been developed and used for particle identification in a balloon borne spectrometer to measure the flux of antimatter in the cosmic radiation. This is the first RICH detector ever used in space experiments that is capable of detecting unit charged particles, such as antiprotons. The RICH and all other detectors performed well during the 27 hours long flight.

  5. Self powered neutron detectors

    International Nuclear Information System (INIS)

    Gopalan, C.S.; Ramachandra Rao, M.N.; Ingale, A.D.

    1976-01-01

    Two types of self powered neutron detectors used for in-core flux measurements are described. The characteristics of the various detectors, with emitters Rh, V, Co, Py are presented. Details about the fabrication of these detectors are given. (A.K.)

  6. The JADE muon detector

    International Nuclear Information System (INIS)

    Allison, J.; Armitage, J.C.M.; Baines, J.T.M.; Ball, A.H.; Bamford, G.; Barlow, R.J.; Bowdery, C.K.; Chrin, J.T.M.; Duerdoth, I.P.; Glendinning, I.; Greenshaw, T.; Hassard, J.F.; Hill, P.; King, B.T.; Loebinger, F.K.; Macbeth, A.A.; McCann, H.; Mercer, D.; Mills, H.E.; Murphy, P.G.; Prosper, H.B.; Rowe, P.; Stephens, K.

    1985-01-01

    The JADE muon detector consists of 618 planar drift chambers interspersed between layers of hadron absorber. This paper gives a detailed description of the construction and operation of the detector as a whole and discusses the properties of the drift chambers. The muon detector has been operating successfully at PETRA for five years. (orig.)

  7. Economical stabilized scintillation detector

    International Nuclear Information System (INIS)

    Anshakov, O.M.; Chudakov, V.A.; Gurinovich, V.I.

    1983-01-01

    An economical scintillation detector with the stabilization system of an integral type is described. Power consumed by the photomultiplier high-voltage power source is 40 mW, energy resolution is not worse than 9%. The given detector is used in a reference detector of a digital radioisotope densimeter for light media which is successfully operating for several years

  8. Gas filled detectors

    International Nuclear Information System (INIS)

    Stephan, C.

    1993-01-01

    The main types of gas filled nuclear detectors: ionization chambers, proportional counters, parallel-plate avalanche counters (PPAC) and microstrip detectors are described. New devices are shown. A description of the processes involved in such detectors is also given. (K.A.) 123 refs.; 25 figs.; 3 tabs

  9. HP Ge planar detectors

    International Nuclear Information System (INIS)

    Gornov, M.G.; Gurov, Yu.B.; Soldatov, A.M.; Osipenko, B.P.; Yurkowski, J.; Podkopaev, O.I.

    1989-01-01

    Parameters of planar detectors manufactured of HP Ge are presented. The possibilities to use multilayer spectrometers on the base of such semiconductor detectors for nuclear physics experiments are discussed. It is shown that the obtained detectors including high square ones have spectrometrical characteristics close to limiting possible values. 9 refs.; 3 figs.; 1 tab

  10. Monitoring combat wound healing by IR hyperspectral imaging

    Science.gov (United States)

    Howle, Chris R.; Spear, Abigail M.; Gazi, Ehsan; Crane, Nicole J.

    2016-03-01

    In recent conflicts, battlefield injuries consist largely of extensive soft injuries from blasts and high energy projectiles, including gunshot wounds. Repair of these large, traumatic wounds requires aggressive surgical treatment, including multiple surgical debridements to remove devitalised tissue and to reduce bacterial load. Identifying those patients with wound complications, such as infection and impaired healing, could greatly assist health care teams in providing the most appropriate and personalised care for combat casualties. Candidate technologies to enable this benefit include the fusion of imaging and optical spectroscopy to enable rapid identification of key markers. Hence, a novel system based on IR negative contrast imaging (NCI) is presented that employs an optical parametric oscillator (OPO) source comprising a periodically-poled LiNbO3 (PPLN) crystal. The crystal operates in the shortwave and midwave IR spectral regions (ca. 1.5 - 1.9 μm and 2.4 - 3.8 μm, respectively). Wavelength tuning is achieved by translating the crystal within the pump beam. System size and complexity are minimised by the use of single element detectors and the intracavity OPO design. Images are composed by raster scanning the monochromatic beam over the scene of interest; the reflection and/or absorption of the incident radiation by target materials and their surrounding environment provide a method for spatial location. Initial results using the NCI system to characterise wound biopsies are presented here.

  11. Visualizing Infrared (IR) Spectroscopy with Computer Animation

    Science.gov (United States)

    Abrams, Charles B.; Fine, Leonard W.

    1996-01-01

    IR Tutor, an interactive, animated infrared (IR) spectroscopy tutorial has been developed for Macintosh and IBM-compatible computers. Using unique color animation, complicated vibrational modes can be introduced to beginning students. Rules governing the appearance of IR absorption bands become obvious because the vibrational modes can be visualized. Each peak in the IR spectrum is highlighted, and the animation of the corresponding normal mode can be shown. Students can study each spectrum stepwise, or click on any individual peak to see its assignment. Important regions of each spectrum can be expanded and spectra can be overlaid for comparison. An introduction to the theory of IR spectroscopy is included, making the program a complete instructional package. Our own success in using this software for teaching and research in both academic and industrial environments will be described. IR Tutor consists of three sections: (1) The 'Introduction' is a review of basic principles of spectroscopy. (2) 'Theory' begins with the classical model of a simple diatomic molecule and is expanded to include larger molecules by introducing normal modes and group frequencies. (3) 'Interpretation' is the heart of the tutorial. Thirteen IR spectra are analyzed in detail, covering the most important functional groups. This section features color animation of each normal mode, full interactivity, overlay of related spectra, and expansion of important regions. This section can also be used as a reference.

  12. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1997-01-01

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  13. The ATLAS Pixel Detector

    CERN Document Server

    Huegging, Fabian

    2006-06-26

    The contruction of the ATLAS Pixel Detector which is the innermost layer of the ATLAS tracking system is prgressing well. Because the pixel detector will contribute significantly to the ATLAS track and vertex reconstruction. The detector consists of identical sensor-chip-hybrid modules, arranged in three barrels in the centre and three disks on either side for the forward region. The position of the detector near the interaction point requires excellent radiation hardness, mechanical and thermal robustness, good long-term stability for all parts, combined with a low material budget. The final detector layout, new results from production modules and the status of assembly are presented.

  14. Vartotojų lojalumas : formavimas ir valdymas

    OpenAIRE

    Zikienė, Kristina

    2010-01-01

    Vienas iš esminių daugelio organizacijų tikslų, garantuojančių tolesnį sėkmingą konkuravimą nuolat besikeičiančiame verslo pasaulyje, yra vartotojų lojalumo įgijimas ir išlaikymas. Įvairios lojalumo formavimo ir valdymo problemos plačiai ir detaliai analizuojamos šioje mokomojoje knygoje. Knyga pradedama vartotojų lojalumo analize marketingo mokslo raidos kontekste. Tolesnis dėmesys skiriamas vartotojų lojalumo vadybinio aspekto analizei, atskleidžiant vartotojų lojalumo koncepcijos teorines ...

  15. The TApIR experiment. IR absorption spectra of liquid hydrogen isotopologues; Das TApIR Experiment IR-Absorptionsspektren fluessiger Wasserstoffisotopologe

    Energy Technology Data Exchange (ETDEWEB)

    Groessle, Robin

    2015-11-27

    The scope of the thesis is the infrared absorption spectroscopy of liquid hydrogen isotopologues with the tritium absorption infrared spectroscopy (TApIR) experiment at the tritium laboratory Karlsruhe (TLK). The calibration process from the sample preparation to the reference measurements are described. A further issue is the classical evaluation of FTIR absorption spectra and the extension using the rolling circle filter (RCF) including the effects on statistical and systematical errors. The impact of thermal and nuclear spin temperature on the IR absorption spectra is discussed. An empirical based modeling for the IR absorption spectra of liquid hydrogen isotopologues is performed.

  16. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1996-01-01

    The National Institute for Nuclear Research has established a Radiation detector laboratory that has the possibility of providing to the consultants on the handling and applications of the nuclear radiation detectors. It has special equipment to repair the radiation detectors used in spectroscopy as the hyper pure Germanium for gamma radiation and the Lithium-silica for X-rays. There are different facilities in the laboratory that can become useful for other institutions that use radiation detectors. This laboratory was created to satisfy consultant services, training and repairing of the radiation detectors both in national and regional levels for Latin America. The laboratory has the following sections: Nuclear Electronic Instrumentation; where there are all kind of instruments for the measurement and characterization of detectors like multichannel analyzers of pulse height, personal computers, amplifiers and nuclear pulse preamplifiers, nuclear pulses generator, aleatories, computer programs for radiation spectra analysis, etc. High vacuum; there is a vacuum escape measurer, two high vacuum pumps to restore the vacuum of detectors, so the corresponding measurers and the necessary tools. Detectors cleaning; there is an anaerobic chamber for the detectors handling at inert atmosphere, a smoke extraction bell for cleaning with the detector solvents. Cryogenic; there are vessels and tools for handling liquid nitrogen which is used for cooling the detectors when they required it. (Author)

  17. High-energy detector

    Science.gov (United States)

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  18. High resolution imaging detectors and applications

    CERN Document Server

    Saha, Swapan K

    2015-01-01

    Interferometric observations need snapshots of very high time resolution of the order of (i) frame integration of about 100 Hz or (ii) photon-recording rates of several megahertz (MHz). Detectors play a key role in astronomical observations, and since the explanation of the photoelectric effect by Albert Einstein, the technology has evolved rather fast. The present-day technology has made it possible to develop large-format complementary metal oxide–semiconductor (CMOS) and charge-coupled device (CCD) array mosaics, orthogonal transfer CCDs, electron-multiplication CCDs, electron-avalanche photodiode arrays, and quantum-well infrared (IR) photon detectors. The requirements to develop artifact-free photon shot noise-limited images are higher sensitivity and quantum efficiency, reduced noise that includes dark current, read-out and amplifier noise, smaller point-spread functions, and higher spectral bandwidth. This book aims to address such systems, technologies and design, evaluation and calibration, control...

  19. PKCδ-mediated IRS-1 Ser24 phosphorylation negatively regulates IRS-1 function

    International Nuclear Information System (INIS)

    Greene, Michael W.; Ruhoff, Mary S.; Roth, Richard A.; Kim, Jeong-a; Quon, Michael J.; Krause, Jean A.

    2006-01-01

    The IRS-1 PH and PTB domains are essential for insulin-stimulated IRS-1 Tyr phosphorylation and insulin signaling, while Ser/Thr phosphorylation of IRS-1 disrupts these signaling events. To investigate consensus PKC phosphorylation sites in the PH-PTB domains of human IRS-1, we changed Ser24, Ser58, and Thr191 to Ala (3A) or Glu (3E), to block or mimic phosphorylation, respectively. The 3A mutant abrogated the inhibitory effect of PKCδ on insulin-stimulated IRS-1 Tyr phosphorylation, while reductions in insulin-stimulated IRS-1 Tyr phosphorylation, cellular proliferation, and Akt activation were observed with the 3E mutant. When single Glu mutants were tested, the Ser24 to Glu mutant had the greatest inhibitory effect on insulin-stimulated IRS-1 Tyr phosphorylation. PKCδ-mediated IRS-1 Ser24 phosphorylation was confirmed in cells with PKCδ catalytic domain mutants and by an RNAi method. Mechanistic studies revealed that IRS-1 with Ala and Glu point mutations at Ser24 impaired phosphatidylinositol-4,5-bisphosphate binding. In summary, our data are consistent with the hypothesis that Ser24 is a negative regulatory phosphorylation site in IRS-1

  20. Activity uniformity of Ir-192 seeds

    International Nuclear Information System (INIS)

    Ling, C.C.; Gromadzki, Z.C.

    1981-01-01

    A simple device that uses materials and apparatus commonly available in a radiotherapy department has been designed, fabricated and used in routine quality control relative to the activity uniformity of clinical Ir-192 seeds in ribbons. Detailed evaluation indicated that this system is easy to use and can yield relative activity measurements of individual Ir-192 seeds accurate to within 2%. With this device, activity uniformity of commercial Ir-192 seeds from two manufacturers has been assessed. For the seven shipments of Ir-192 seeds studied, the root mean square variations of individual seed strength from the average of each shipment ranged from 3.4 to 7.1%. Variation in seed activity by more than +- 10% from the average is not uncommon

  1. Implementing GPS into Pave-IR.

    Science.gov (United States)

    2009-03-01

    To further enhance the capabilities of the Pave-IR thermal segregation detection system developed at the Texas Transportation Institute, researchers incorporated global positioning system (GPS) data collection into the thermal profiles. This GPS capa...

  2. Joint IAEA/NEA IRS guidelines

    International Nuclear Information System (INIS)

    1997-01-01

    The Incident Reporting System (IRS) is an international system jointly operated by the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency of the Organization for Economic Cooperation and Development (OECD/NEA). The fundamental objective of the IRS is to contribute to improving the safety of commercial nuclear power plants (NPPs) which are operated worldwide. This objective can be achieved by providing timely and detailed information on both technical and human factors related to events of safety significance which occur at these plants. The purpose of these guidelines, which supersede the previous IAEA Safety Series No. 93 (Part II) and the NEA IRS guidelines, is to describe the system and to give users the necessary background and guidance to enable them to produce IRS reports meeting a high standard of quality while retaining the high efficiency of the system expected by all Member States operating nuclear power plants

  3. Nuclear radiation detectors

    International Nuclear Information System (INIS)

    Kapoor, S.S.; Ramamurthy, V.S.

    1986-01-01

    The present monograph is intended to treat the commonly used detectors in the field of nuclear physics covering important developments of the recent years. After a general introduction, a brief account of interaction of radiation with matter relevant to the processes in radiation detection is given in Chapter II. In addition to the ionization chamber, proportional counters and Geiger Mueller counters, several gas-filled detectors of advanced design such as those recently developed for heavy ion physics and other types of studies have been covered in Chapter III. Semiconductor detectors are dealt with in Chapter IV. The scintillation detectors which function by sensing the photons emitted by the luminescence process during the interaction of the impinging radiation with the scintillation detector medium are described in Chapter V. The topic of neutron detectors is covered in Chapter VI, as in this case the emphasis is more on the method of neutron detection rather than on detector type. Electronic instrumentation related to signal pulse processing dealt with in Chapter VII. The track etch detectors based on the visualization of the track of the impinging charge particle have also been briefly covered in the last chapter. The scope of this monograph is confined to detectors commonly used in low and medium energy nuclear physics research and applications of nuclear techniques. The monograph is intended for post-graduate students and those beginning to work with the radiation detectors. (author)

  4. Proposal of a postal system for Ir-192 sources calibration used in high dose rate brachytherapy with LiF:Mn:Ti thermoluminescent dosemeters

    International Nuclear Information System (INIS)

    Vieira, W.S.; Borges, J.C.; Almeida, C.E.V.

    1998-01-01

    A proposal in order to improve the brachytherapy quality control and to allow postal intercomparison of Ir-192 sources used in high dose rate brachytherapy has been presented. The LiF: Mn: Ti (TLD 100) detector has been selected for such purpose. The experimental array and the TLDs irradiation and calibration techniques, at the treatment units, have been specified in the light of more recent methodology of Ir-192 calibration sources. (Author)

  5. Detecting infrared luminescence and non-chemical signaling of living cells: single cell mid-IR spectroscopy in cryogenic environments

    Science.gov (United States)

    Pereverzev, Sergey

    2017-02-01

    Many life-relevant interaction energies are in IR range, and it is reasonable to believe that some biochemical reactions inside cells can results in emission of IR photons. Cells can use this emission for non-chemical and non-electrical signaling. Detecting weak infrared radiation from live cells is complicated because of strong thermal radiation background and absorption of radiation by tissues. A microfluidic device with live cells inside a vacuum cryogenic environment should suppress this background, and thereby permit observation of live cell auto-luminescence or signaling in the IR regime. One can make IR-transparent windows not emitting in this range, so only the cell and a small amount of liquid around it will emit infrared radiation. Currently mid-IR spectroscopy of single cells requires the use of a synchrotron source to measure absorption or reflection spectra. Decreasing of thermal radiation background will allow absorption and reflection spectroscopy of cells without using synchrotron light. Moreover, cell auto-luminescence can be directly measured. The complete absence of thermal background radiation for cryogenically cooled samples allows the use IR photon-sensitive detectors and obtaining single molecule sensitivity in IR photo-luminescence measurements. Due to low photon energies, photo-luminescence measurements will be non-distractive for pressures samples. The technique described here is based upon US patent 9366574.

  6. Detectors for Particle Radiation

    Science.gov (United States)

    Kleinknecht, Konrad

    1999-01-01

    This textbook provides a clear, concise and comprehensive review of the physical principles behind the devices used to detect charged particles and gamma rays, and the construction and performance of these many different types of detectors. Detectors for high-energy particles and radiation are used in many areas of science, especially particle physics and nuclear physics experiments, nuclear medicine, cosmic ray measurements, space sciences and geological exploration. This second edition includes all the latest developments in detector technology, including several new chapters covering micro-strip gas chambers, silicion strip detectors and CCDs, scintillating fibers, shower detectors using noble liquid gases, and compensating calorimeters for hadronic showers. This well-illustrated textbook contains examples from the many areas in science in which these detectors are used. It provides both a coursebook for students in physics, and a useful introduction for researchers in other fields.

  7. Silicon Telescope Detectors

    CERN Document Server

    Gurov, Yu B; Sandukovsky, V G; Yurkovski, J

    2005-01-01

    The results of research and development of special silicon detectors with a large active area ($> 8 cm^{2}$) for multilayer telescope spectrometers (fulfilled in the Laboratory of Nuclear Problems, JINR) are reviewed. The detector parameters are listed. The production of totally depleted surface barrier detectors (identifiers) operating under bias voltage two to three times higher than depletion voltage is described. The possibility of fabrication of lithium drifted counters with a very thin entrance window on the diffusion side of the detector (about 10--20 $\\mu$m) is shown. The detector fabrication technique has allowed minimizing detector dead regions without degradation of their spectroscopic characteristics and reliability during long time operation in charge particle beams.

  8. Physics of scintillation detectors

    International Nuclear Information System (INIS)

    Novotny, R.

    1991-01-01

    The general concept of a radiation detector is based on three fundamental principles: sensitivity of the device to the radiation of interest which requires a large cross-section in the detector material, detector response function to the physical properties of the radiation. As an example, a scintillation detector for charged particles should allow to identify the charge of the particle, its kinetic energy and the time of impact combined with optimum resolutions. Optimum conversion of the detector response (like luminescence of a scintillator) into electronical signals for further processing. The following article will concentrate on the various aspects of the first two listed principles as far as they appear to be relevant for photon and charged particle detection using organic and inorganic scintillation detectors. (orig.)

  9. The atlas detector

    International Nuclear Information System (INIS)

    Perrodo, P.

    2001-01-01

    The ATLAS detector, one of the two multi-purpose detectors at the Large Hadron Collider at CERN, is currently being built in order to meet the first proton-proton collisions in time. A description of the detector components will be given, corresponding to the most up to date design and status of construction, completed with test beam results and performances of the first serial modules. (author)

  10. Cherenkov water detector NEVOD

    Science.gov (United States)

    Petrukhin, A. A.

    2015-05-01

    A unique multipurpose Cherenkov water detector, the NEVOD facility, uses quasispherical measuring modules to explore all the basic components of cosmic rays on Earth's surface, including neutrinos. Currently, the experimental complex includes the Cherenkov water detector, a calibration telescope system, and a coordinate detector. This paper traces the basic development stages of NEVOD, examines research directions, presents the results obtained, including the search for the solution to the 'muon puzzle', and discusses possible future development prospects.

  11. Noble Gas Detectors

    CERN Document Server

    Aprile, Elena; Bolozdynya, Alexander I; Doke, Tadayoshi

    2006-01-01

    This book discusses the physical properties of noble fluids, operational principles of detectors based on these media, and the best technical solutions to the design of these detectors. Essential attention is given to detector technology: purification methods and monitoring of purity, information readout methods, electronics, detection of hard ultra-violet light emission, selection of materials, cryogenics etc.The book is mostly addressed to physicists and graduate students involved in the preparation of fundamental next generation experiments, nuclear engineers developing instrumentation

  12. Study on Silicon detectors

    International Nuclear Information System (INIS)

    Gervino, G.; Boero, M.; Manfredotti, C.; Icardi, M.; Gabutti, A.; Bagnolatti, E.; Monticone, E.

    1990-01-01

    Prototypes of Silicon microstrip detectors and Silicon large area detectors (3x2 cm 2 ), realized directly by our group, either by ion implantation or by diffusion are presented. The physical detector characteristics and their performances determined by exposing them to different radioactive sources and the results of extensive tests on passivation, where new technological ways have been investigated, are discussed. The calculation of the different terms contributing to the total dark current is reported

  13. The solenoidal detector collaboration silicon detector system

    International Nuclear Information System (INIS)

    Ziock, H.J.; Gamble, M.T.; Miller, W.O.; Palounek, A.P.T.; Thompson, T.C.

    1992-01-01

    Silicon tracking systems (STS) will be fundamental components of the tracking systems for both planned major SSC experiments. The STS is physically a small part of the central tracking system and the calorimeter of the detector being proposed by the Solenoidal Detector Collaboration (SDC). Despite its seemingly small size, it occupies a volume of more than 5 meters in length and 1 meter in diameter and is an order of magnitude larger than any silicon detector system previously built. The STS will consist of silicon microstrip detectors and possibly silicon pixel detectors. The other two components are an outer barrel tracker, which will consist of straw tubes or scintillating fibers; and an outer intermediate angle tracker, which will consist of gas microstrips. The components are designed to work as an integrated system. Each componenet has specific strengths, but is individually incapable of providing the overall performance required by the physics goals of the SSC. The large particle fluxes, the short times between beam crossing, the high channel count, and the required very high position measurement accuracy pose challenging problems that must be solved. Furthermore, to avoid degrading the measurements, the solutions must be achieved using only a minimal amount of material. An additional constraint is that only low-Z materials are allowed. If that were not difficlut enough, the solutions must also be affordable

  14. LHCb Detector Performance

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Brown, Henry; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Geraci, Angelo; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lopez-March, Neus; Lowdon, Peter; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Moggi, Niccolò; Molina Rodriguez, Josue; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Pessina, Gianluigi; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skillicorn, Ian; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiedner, Dirk; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilschut, Hans; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander

    2015-03-05

    The LHCb detector is a forward spectrometer at the Large Hadron Collider (LHC) at CERN. The experiment is designed for precision measurements of CP violation and rare decays of beauty and charm hadrons. In this paper the performance of the various LHCb sub-detectors and the trigger system are described, using data taken from 2010 to 2012. It is shown that the design criteria of the experiment have been met. The excellent performance of the detector has allowed the LHCb collaboration to publish a wide range of physics results, demonstrating LHCb's unique role, both as a heavy flavour experiment and as a general purpose detector in the forward region.

  15. ALFA Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS (A Toroidal LHC Apparatus). The ALFA system is composed by four stations installed in the LHC tunnel 240 m away from the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronics for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  16. ALFA Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS/LHC. The ALFA system is composed by two stations installed in the LHC tunnel 240 m away from each side of the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronic for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  17. The LHC detector challenge

    CERN Document Server

    Virdee, Tejinder S

    2004-01-01

    The Large Hadron Collider (LHC) from CERN, scheduled to come online in 2007, is a multi-TeV proton-proton collider with vast detectors. Two of the more significant detectors for LHC are ATLAS and CMS. Currently, both detectors are more than 65% complete in terms of financial commitment, and the experiments are being assembled at an increasing pace. ATLAS is being built directly in its underground cavern, whereas CMS is being assembled above ground. When completed, both detectors will aid researchers in determining what lies at the high-energy frontier, in particular the mechanism by which particles attain mass. (Edited abstract).

  18. AIM cryocooler developments for HOT detectors

    Science.gov (United States)

    Rühlich, I.; Mai, M.; Withopf, A.; Rosenhagen, C.

    2014-06-01

    Significantly increased FPA temperatures for both Mid Wave and Long Wave IR detectors, i.e. HOT detectors, which have been developed in recent years are now leaving the development phase and are entering real application. HOT detectors allowing to push size weight and power (SWaP) of Integrated Detectors Cooler Assemblies (IDCA's) to a new level. Key component mainly driving achievable weight, volume and power consumption is the cryocooler. AIM cryocooler developments are focused on compact, lightweight linear cryocoolers driven by compact and high efficient digital cooler drive electronics (DCE) to also achieve highest MTTF targets. This technology is using moving magnet driving mechanisms and dual or single piston compressors. Whereas SX030 which was presented at SPIE in 2012 consuming less 3 WDC to operate a typical IDCA at 140K, next smaller cooler SX020 is designed to provide sufficient cooling power at detector temperature above 160K. The cooler weight of less than 200g and a total compressor length of 60mm makes it an ideal solution for all applications with limited weight and power budget, like in handheld applications. For operating a typical 640x512, 15μm MW IR detector the power consumption will be less than 1.5WDC. MTTF for the cooler will be in excess of 30,000h and thus achieving low maintenance cost also in 24/7 applications. The SX020 compressor is based on a single piston design with integrated passive balancer in a new design achieves very low exported vibration in the order of 100mN in the compressor axis. AIM is using a modular approach, allowing the chose between 5 different compressor types for one common Stirling expander. The 6mm expander with a total length of 74mm is now available in a new design that fits into standard dewar bores originally designed for rotary coolers. Also available is a 9mm coldfinger in both versions. In development is an ultra-short expander with around 35mm total length to achieve highest compactness. Technical

  19. Single point mutations distributed in 10 soluble and membrane regions of the Nicotiana plumbaginifolia plasma membrane PMA2 H+-ATPase activate the enzyme and modify the structure of the C-terminal region.

    Science.gov (United States)

    Morsomme, P; Dambly, S; Maudoux, O; Boutry, M

    1998-12-25

    The Nicotiana plumbaginifolia pma2 (plasma membrane H+-ATPase) gene is capable of functionally replacing the H+-ATPase genes of the yeast Saccharomyces cerevisiae, provided that the external pH is kept above 5.0. Single point mutations within the pma2 gene were previously identified that improved H+-ATPase activity and allowed yeast growth at pH 4.0. The aim of the present study was to identify most of the PMA2 positions, the mutation of which would lead to improved growth and to determine whether all these mutations result in similar enzymatic and structural modifications. We selected additional mutants in total 42 distinct point mutations localized in 30 codons. They were distributed in 10 soluble and membrane regions of the enzyme. Most mutant PMA2 H+-ATPases were characterized by a higher specific activity, lower inhibition by ADP, and lower stimulation by lysophosphatidylcholine than wild-type PMA2. The mutants thus seem to be constitutively activated. Partial tryptic digestion and immunodetection showed that the PMA2 mutants had a conformational change making the C-terminal region more accessible. These data therefore support the hypothesis that point mutations in various H+-ATPase parts displace the inhibitory C-terminal region, resulting in enzyme activation. The high density of mutations within the first half of the C-terminal region suggests that this part is involved in the interaction between the inhibitory C-terminal region and the rest of the enzyme.

  20. High dose rate 192Ir calibration: Indonesia experiences

    International Nuclear Information System (INIS)

    Nasukha; Tjiptanto, D.; Darmasyah, R.; Kurniawan, B.

    2002-01-01

    Indonesia with a population of more than 200 Million people which spread on about 5000 islands, up to now only has 23 radiotherapy centers and some not active anymore. As mention by Parkin et al that Cervix/Utery and breast cancer are the most estimated numbers of new cases of cancers in women for developing countries, stomach and lung cancers in men. Indonesia as a developing country is likely similar to other developing countries on numbers of new cases of cancers in women. But quite different in men, in Indonesia the most common cancers are nasopharynx and thyroid cancers. The use of lr-192 sources in high dose-rate (HDR) remotely afterloaded brachytherapy treatments have greatly increased in recent years and variety of such sources are commercially available. Nine radiotherapy centers in Indonesia installed Nucletron microSelectron HDR remote afterloader. Based on the data of CiptoMangunkusurno Hospital, Jakarta that the most common cancers are the cervix, breast, nasopharynx and thyroid cancers which of percentage are about 31%, 25 %, 13%, and 6 % respectively. It means that the use of HDR 192 Ir brachytherapy has to be an effective tool in the treatments. Two methods have been studied and applied to calibrate HDR 192 Ir brachytherapy in Indonesia, especially for Nucletron microSelectron HDR 192 lr remote afterloader brachytherapy. Calibration of HDR 192 Ir brachytherapy source has been done by Cavity lonization Chamber and with Well Type lonization Chamber. First, 0.6 cc of NE Farmer type dosimeter that was calibrated to 60 Co and 250 kV of x-rays in air kerma was used in this experiment. Position of measurement (detector and source) at the center of the room and about 1 meter from the floor. Eight variation of distances from 10 cm to 40 cms have been carried out measurement as recommended by IAEA-TECDOC-1079. Correction have been given for scatters, non-uniformity, and attenuation. To solve the problem of scatter correction factor was used Matlab programming

  1. Iridium Interfacial Stack - IrIS

    Science.gov (United States)

    Spry, David

    2012-01-01

    Iridium Interfacial Stack (IrIS) is the sputter deposition of high-purity tantalum silicide (TaSi2-400 nm)/platinum (Pt-200 nm)/iridium (Ir-200 nm)/platinum (Pt-200 nm) in an ultra-high vacuum system followed by a 600 C anneal in nitrogen for 30 minutes. IrIS simultaneously acts as both a bond metal and a diffusion barrier. This bondable metallization that also acts as a diffusion barrier can prevent oxygen from air and gold from the wire-bond from infiltrating silicon carbide (SiC) monolithically integrated circuits (ICs) operating above 500 C in air for over 1,000 hours. This TaSi2/Pt/Ir/Pt metallization is easily bonded for electrical connection to off-chip circuitry and does not require extra anneals or masking steps. There are two ways that IrIS can be used in SiC ICs for applications above 500 C: it can be put directly on a SiC ohmic contact metal, such as Ti, or be used as a bond metal residing on top of an interconnect metal. For simplicity, only the use as a bond metal is discussed. The layer thickness ratio of TaSi2 to the first Pt layer deposited thereon should be 2:1. This will allow Si from the TaSi2 to react with the Pt to form Pt2Si during the 600 C anneal carried out after all layers have been deposited. The Ir layer does not readily form a silicide at 600 C, and thereby prevents the Si from migrating into the top-most Pt layer during future anneals and high-temperature IC operation. The second (i.e., top-most) deposited Pt layer needs to be about 200 nm to enable easy wire bonding. The thickness of 200 nm for Ir was chosen for initial experiments; further optimization of the Ir layer thickness may be possible via further experimentation. Ir itself is not easily wire-bonded because of its hardness and much higher melting point than Pt. Below the iridium layer, the TaSi2 and Pt react and form desired Pt2Si during the post-deposition anneal while above the iridium layer remains pure Pt as desired to facilitate easy and strong wire-bonding to the Si

  2. Preparation of bubble damage detectors

    International Nuclear Information System (INIS)

    Tu Caiqing; Guo Shilun; Wang Yulan; Hao Xiuhong; Chen Changmao; Su Jingling

    1997-01-01

    Bubble damage detectors have been prepared by using polyacrylamide as detector solid and freon as detector liquid. Tests show that the prepared detectors are sensitive to fast neutrons and have proportionality between bubble number and neutron fluence within a certain range of neutron fluence. Therefore, it can be used as a fast neutron detector and a dosimeter

  3. Suppression of superconductivity in Nb by IrMn in IrMn/Nb bilayers

    KAUST Repository

    Wu, B. L.; Yang, Y. M.; Guo, Z. B.; Wu, Y. H.; Qiu, J. J.

    2013-01-01

    Effect of antiferromagnet on superconductivity has been investigated in IrMn/Nb bilayers. Significant suppression of both transition temperature (Tc) and lower critical field (Hc1) of Nb is found in IrMn/Nb bilayers as compared to a single layer Nb

  4. Single-nucleotide polymorphism of INS, INSR, IRS1, IRS2, PPAR-G ...

    Indian Academy of Sciences (India)

    2017-03-02

    Mar 2, 2017 ... Abstract. Polycystic ovary syndrome (PCOS) is the most common and a complex female endocrine disorder, and is one of the leading cause of female infertility. Here, we aimed to investigate the association of single-nucleotide polymorphism of INS, INSR,. IRS1, IRS2, PPAR-G and CAPN10 gene in the ...

  5. ALICE Photon Multiplicity Detector

    CERN Multimedia

    Nayak, T

    2013-01-01

    Photon Multiplicity Detector (PMD) measures the multiplicity and spatial distribution of photons in the forward region of ALICE on a event-by-event basis. PMD is a pre-shower detector having fine granularity and full azimuthal coverage in the pseudo-rapidity region 2.3 < η < 3.9.

  6. New detector concepts

    International Nuclear Information System (INIS)

    Kemmer, J.; Lutz, G.

    1986-07-01

    On the basis of the semiconductor drift chamber many new detectors are proposed, which enable the determination of energy, energy loss, position and penetration depth of radiation. A novel integrated transistor-detector configuration allows non destructive repeated readout and amplification of the signal. The concept may be used for the construction of one or two-dimensional PIXEL arrays. (orig.)

  7. Stanford's big new detector

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    A detector constructed for the Standford Linear Collider is described. It consists of a central drift chamber in the field of a surrounding superconducting solenoid. Furthermore included are a Cherenkov ring imaging detector for particle identification and a liquid argon calorimeter. (HSI).

  8. CMS Detector Posters

    CERN Multimedia

    2016-01-01

    CMS Detector posters (produced in 2000): CMS installation CMS collaboration From the Big Bang to Stars LHC Magnetic Field Magnet System Trackering System Tracker Electronics Calorimetry Eletromagnetic Calorimeter Hadronic Calorimeter Muon System Muon Detectors Trigger and data aquisition (DAQ) ECAL posters (produced in 2010, FR & EN): CMS ECAL CMS ECAL-Supermodule cooling and mechatronics CMS ECAL-Supermodule assembly

  9. Pixel detector readout chip

    CERN Multimedia

    1991-01-01

    Close-up of a pixel detector readout chip. The photograph shows an aera of 1 mm x 2 mm containing 12 separate readout channels. The entire chip contains 1000 readout channels (around 80 000 transistors) covering a sensitive area of 8 mm x 5 mm. The chip has been mounted on a silicon detector to detect high energy particles.

  10. Drift chamber detectors

    International Nuclear Information System (INIS)

    Duran, I.; Martinez Laso, L.

    1989-01-01

    A review of High Energy Physics detectors based on drift chambers is presented. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysied, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author)

  11. Drift Chambers detectors

    International Nuclear Information System (INIS)

    Duran, I.; Martinez laso, L.

    1989-01-01

    We present here a review of High Energy Physics detectors based on drift chambers. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysed, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author) 115 refs

  12. Solid state track detectors

    International Nuclear Information System (INIS)

    Reuther, H.

    1976-11-01

    This paper gives a survey of the present state of the development and the application of solid state track detectors. The fundamentals of the physical and chemical processes of the track formation and development are explained, the different detector materials and their registration characteristics are mentioned, the possibilities of the experimental practice and the most variable applications are discussed. (author)

  13. LHCb detector performance

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Adinol, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Onderwater, C. J. G.; Pellegrino, A.; Wilschut, H. W.

    2015-01-01

    The LHCb detector is a forward spectrometer at the Large Hadron Collider (LHC) at CERN. The experiment is designed for precision measurements of CP violation and rare decays of beauty and charm hadrons. In this paper the performance of the various LHCb sub-detectors and the trigger system are

  14. The LDC detector concept

    Indian Academy of Sciences (India)

    Abstract. In preparation of the experimental program at the international linear collider (ILC), the large detector concept (LDC) is being developed. The main points of the LDC are a large volume gaseous tracking system, combined with high precision vertex detector and an extremely granular calorimeter. The main design ...

  15. Detector Systems at CLIC

    CERN Document Server

    Simon, Frank

    2011-01-01

    The Compact Linear Collider CLIC is designed to deliver e+e- collisions at a center of mass energy of up to 3 TeV. The detector systems at this collider have to provide highly efficient tracking and excellent jet energy resolution and hermeticity for multi-TeV final states with multiple jets and leptons. In addition, the detector systems have to be capable of distinguishing physics events from large beam-induced background at a crossing frequency of 2 GHz. Like for the detector concepts at the ILC, CLIC detectors are based on event reconstruction using particle flow algorithms. The two detector concepts for the ILC, ILD and SID, were adapted for CLIC using calorimeters with dense absorbers limiting leakage through increased compactness, as well as modified forward and vertex detector geometries and precise time stamping to cope with increased background levels. The overall detector concepts for CLIC are presented, with particular emphasis on the main detector and engineering challenges, such as: the ultra-thi...

  16. Future particle detector systems

    International Nuclear Information System (INIS)

    Clark, Allan G.

    2000-01-01

    Starting with a short summary of the major new experimental physics programs, we attempt to motivate the reasons why existing general-purpose detectors at Hadron Colliders are what they are, why they are being upgraded, and why new facilities are being constructed. The CDF and ATLAS detectors are used to illustrate these motivations. Selected physics results from the CDF experiment provide evidence for limitations on the detector performance, and new physics opportunities motivate both machine and detector upgrades. This is discussed with emphasis on the improved physics reach of the CDF experiment at the Fermilab Tevatron (√(s)=2 TeV). From 2005, the Large Hadron Collider (LHC) at CERN will become operational at a collision energy of √(s)=14 TeV, seven times larger than at the Tevatron Collider. To exploit the physics capability of the LHC, several large detectors are being constructed. The detectors are significantly more complex than those at the Tevatron Collider because of physics and operational constraints. The detector design and technology of the aspects of the large general-purpose detector ATLAS is described

  17. Developments on RICH detectors

    International Nuclear Information System (INIS)

    Besson, P.; Bourgeois, P.

    1996-01-01

    The RICH (ring imaging Cherenkov) detector which is dedicated to Cherenkov radiation detection is described. An improvement made by replacing photo sensible vapor with solid photocathode is studied. A RICH detector prototype with a CsI photocathode has been built in Saclay and used with Saturne. The first results are presented. (A.C.)

  18. ALICE Silicon Strip Detector

    CERN Multimedia

    Nooren, G

    2013-01-01

    The Silicon Strip Detector (SSD) constitutes the two outermost layers of the Inner Tracking System (ITS) of the ALICE Experiment. The SSD plays a crucial role in the tracking of the particles produced in the collisions connecting the tracks from the external detectors (Time Projection Chamber) to the ITS. The SSD also contributes to the particle identification through the measurement of their energy loss.

  19. Improved mid infrared detector for high spectral or spatial resolution and synchrotron radiation use

    Energy Technology Data Exchange (ETDEWEB)

    Faye, Mbaye; Bordessoule, Michel; Kanouté, Brahim; Brubach, Jean-Blaise; Roy, Pascale [Synchrotron SOLEIL, L’Orme des Merisiers, F-91192 Gif-sur-Yvette (France); Manceron, Laurent [Synchrotron SOLEIL, L’Orme des Merisiers, F-91192 Gif-sur-Yvette (France); Laboratoire MONARIS, CNRS-Université Pierre et Marie Curie, UMR 8233, 4 Place Jussieu, F-75252 Paris Cedex (France)

    2016-06-15

    When using bright, small effective size sources, such as synchrotron radiation light beam, for broadband spectroscopy at spectral or spatial high resolution for mid-IR FTIR measurements, a marked detectivity improvement can be achieved by setting up a device matching the detector optical étendue to that of the source. Further improvement can be achieved by reducing the background unmodulated flux and other intrinsic noise sources using a lower temperature cryogen, such as liquid helium. By the combined use of cooled apertures, cold reimaging optics, filters and adapted detector polarization, and preamplification electronics, the sensitivity of a HgCdTe photoconductive IR detector can be improved by a significant factor with respect to standard commercial devices (more than one order of magnitude on average over 6–20 μm region) and the usable spectral range extended to longer wavelengths. The performances of such an optimized detector developed on the AILES Beamline at SOLEIL are presented here.

  20. The GDH-Detector

    CERN Document Server

    Helbing, K; Fausten, M; Menze, D; Michel, T; Nagel, A; Ryckbosch, D; Speckner, T; Vyver, R V D; Zeitler, G

    2002-01-01

    For the GDH-Experiment at ELSA, the helicity dependent total photoabsorption cross-section is to be determined. These measurements will be performed with the newly developed GDH-Detector which is presented here. The concept of the GDH-Detector is to detect at least one reaction product from all possible hadronic processes with almost complete acceptance concerning solid angle and efficiency. This is realized by an arrangement of scintillators and lead. The overall acceptance for hadronic processes is better than 99%. The electromagnetic background is suppressed by about five orders of magnitude by means of a threshold Cherenkov detector. In dedicated tests, it has been demonstrated that all individual components of the GDH-Detector fulfill the design goals. Measurements of unpolarized total photoabsorption cross-sections were performed to ensure that the complete GDH-Detector is operational.

  1. Introduction to detectors

    CERN Document Server

    Walenta, Albert H

    1995-01-01

    Concepts for momentum measurements,particle identification and energy measurements (calorimeters) as well for imaging applications in medecine, biology and industry (non destructive testing) will be put into relation to the specific detection princip In particular the resolution for position, time, energy and intensity measurement and the efficiency will be discussed. Signal extraction,electronic signal processing and principles of information capture will close the logic circle to the input : the radiation properties.The lecture will provide some sources for data tables and small demonstration computer programs f The basic detector physics as interaction of radiation with matter, information transport via free charges,photons and phonons and the signal formation will be presented in some depth with emphasis on the influence on specific parameters for detector The lecture will cover the most popular detector principles, gas detectors (ion chambers,MPWC's and MSGC's), semiconductor detectors scintillators and ...

  2. ATLAS ITk Pixel detector

    CERN Document Server

    Gemme, Claudia; The ATLAS collaboration

    2016-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenge to the ATLAS tracker. The current inner detector will be replaced with a whole silicon tracker which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected high radiation level are requiring the development of upgraded silicon sensors as well as new a front-end chip. The dense tracking environment will require finer granularity detectors. The data rates will require new technologies for high bandwidth data transmission and handling. The current status of the HL-LHC ATLA Pixel detector developments as well as the various layout options will be reviewed.

  3. Undepleted silicon detectors

    International Nuclear Information System (INIS)

    Rancoita, P.G.; Seidman, A.

    1985-01-01

    Large-size silicon detectors employing relatively low resistivity material can be used in electromagnetic calorimetry. They can operate in strong magnetic fields, under geometric constraints and with microstrip detectors a high resolution can be achieved. Low noise large capacitance oriented electronics was developed to enable good signal-to-noise ratio for single relativistic particles traversing large area detectors. In undepleted silicon detectors, the charge migration from the field-free region has been investigated by comparing the expected peak position (from the depleted layer only) of the energy-loss of relativistic electrons with the measured one. Furthermore, the undepleted detectors have been employed in a prototype of Si/W electromagnetic colorimeter. The sensitive layer was found to be systematically larger than the depleted one

  4. Advanced far infrared detectors

    International Nuclear Information System (INIS)

    Haller, E.E.

    1993-05-01

    Recent advances in photoconductive and bolometric semiconductor detectors for wavelength 1 mm > λ > 50 μm are reviewed. Progress in detector performance in this photon energy range has been stimulated by new and stringent requirements for ground based, high altitude and space-borne telescopes for astronomical and astrophysical observations. The paper consists of chapters dealing with the various types of detectors: Be and Ga doped Ge photoconductors, stressed Ge:Ga devices and neutron transmutation doped Ge thermistors. Advances in the understanding of basic detector physics and the introduction of modern semiconductor device technology have led to predictable and reliable fabrication techniques. Integration of detectors into functional arrays has become feasible and is vigorously pursued by groups worldwide

  5. Charged corpuscular beam detector

    Energy Technology Data Exchange (ETDEWEB)

    Hikawa, H; Nishikawa, Y

    1970-09-29

    The present invention relates to a charged particle beam detector which prevents transient phenomena disturbing the path and focusing of a charged particle beam travelling through a mounted axle. The present invention provides a charged particle beam detector capable of decreasing its reaction to the charge in energy of the charged particle beam even if the relative angle between the mounted axle and the scanner is unstable. The detector is characterized by mounting electrically conductive metal pieces of high melting point onto the face of a stepped, heat-resistant electric insulating material such that the pieces partially overlap each other and individually provide electric signals, whereby the detector is no longer affected by the beam. The thickness of the metal piece is selected so that an eddy current is not induced therein by an incident beam, thus the incident beam is not affected. The detector is capable of detecting a misaligned beam since the metal pieces partially overlap each other.

  6. Kas netilpo tarp politikos ir diplomatijos?

    OpenAIRE

    Streikus, Arūnas

    2008-01-01

    The review analyzes A. Kasparavičius’s monograph “Tarp Politikos ir Diplomatijos: Šventasis Sostas ir Lietuvos Respublika” (Vilnius, 2008). The historiographic value of the study is undisputed. A. Kasperavičius had an opportunity to use a broad spectrum of sources, among which two sets of archive documents stand out: the funds of the archives of Ministry of Foreign Affairs of Lithuania and the Lithuanian Embassy under the Holy See in Rome. A. Kasparavičius managed to avoid the arid scientific...

  7. Elecciones Legislativas en Irán

    Directory of Open Access Journals (Sweden)

    José Antonio Sainz de la Peña

    2012-05-01

    Full Text Available Las elecciones legislativas en Irán, una vez eliminados los reformistas se han celebrado en un clima de rivalidad. Las elecciones tenían que dejar claro quién mandaba en Irán, si los clérigos y el Guía el ayatolá Seyed Ali Jamenei o, el Presidente de la República, el laico Mahmud Ahmadineyad, apoyado en el Cuerpo de Guardias Revolucionarios. La realidad ha sido que las facciones conservadoras encabezadas por el Frente Unido Principalista, apoyados por el Guía Supremo, han obtenido el triunfo.

  8. The Solenoidal Detector Collaboration silicon detector system

    International Nuclear Information System (INIS)

    Ziock, H.J.; Gamble, M.T.; Miller, W.O.; Palounek, A.P.T.; Thompson, T.C.

    1992-01-01

    Silicon tracking systems will be fundamental components of the tracking systems for both planned major SSC experiments. Despite its seemingly small size, it occupies a volume of more than 5 meters in length and 1 meter in diameter and is an order of magnitude larger than any silicon detector system previously built. This report discusses its design and operation

  9. CDF [Collider Detector at Fermilab] detector simulation

    International Nuclear Information System (INIS)

    Freeman, J.

    1987-12-01

    The Collider Detector at Fermilab (CDF) uses several different simulation programs, each tuned for specific applications. The programs rely heavily on the extensive test beam data that CDF has accumulated. Sophisticated shower parameterizations are used, yielding enormous gains in speed over full cascade programs. 3 refs., 5 figs

  10. Infrared detectors and arrays; Proceedings of the Meeting, Orlando, FL, Apr. 6, 7, 1988

    International Nuclear Information System (INIS)

    Dereniak, E.L.

    1988-01-01

    The papers contained in this volume provide an overview of recent advances in theoretical and experimental research related to IR detector materials and arrays. The major subject areas covered include IR Schottky barrier silicide arrays, HdCdTe developments, SPRITE technology, superlattice or bandgap-engineered devices, extrinsic silicon technology, indium antimonide technology, and pyroelectric arrays. Papers are presented on time division multiplexed time delay integration, spatial noise in staring IR focal plane arrays, pyroelectrics in a harsh environment, and testing of focal plane arrays

  11. Proposal of a postal system for Ir-192 sources calibration used in high dose rate brachytherapy with LiF:Mn:Ti thermoluminescent dosemeters; Proposta de um sistema postal para a calibracao de fontes de {sup 192} Ir, utilizadas em braquiterapia de alta taxa de dose, com dosimetros termoluminescentes de LiF: Mn: Ti

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, W.S.; Borges, J.C.; Almeida, C.E.V. [Instituto de Radioprotecao e Dosimetria. CNEN Caixa Postal 37750, 22780-160, Rio de Janeiro (Brazil)

    1998-12-31

    A proposal in order to improve the brachytherapy quality control and to allow postal intercomparison of Ir-192 sources used in high dose rate brachytherapy has been presented. The LiF: Mn: Ti (TLD 100) detector has been selected for such purpose. The experimental array and the TLDs irradiation and calibration techniques, at the treatment units, have been specified in the light of more recent methodology of Ir-192 calibration sources. (Author)

  12. Fine-scale spatial response of CdZnTe radiation detectors

    International Nuclear Information System (INIS)

    Brunett, B.A.; Van Scyoc, J.M.; Hilton, N.R.; Lund, J.C.; James, R.B.; Schlesinger, T.E.

    1998-01-01

    Several studies have suggested that the uniformity of Cadmium Zinc Telluride (CZT) detectors play an important role in their performance when operated as gamma-ray spectrometers. However the detailed gamma response of simple planar detectors as a function of position over the device area is largely unknown. To address this issue the authors have built a system capable of measuring the detector response with a resolution of ∼250 (micro)m. The system consists of a highly collimated (∼200 (micro)m) photon source (<150 kev) scanned over the detector using a computer controlled two-axis translation stage. Fifteen samples configured as planar detectors were examined with the new apparatus. The material grade of the detectors examined varied from counter to select discriminator. Two classes of spatial response variation were observed and are presented here. Infrared (IR) transmission images were also acquired for each sample and correlation between features in the pulse height spectrum and crystalline defects were observed

  13. Measurement of the Ir-191,193(n,2n)Ir-190,192 Reaction Cross Section Between 9.0 and 16.5 MeV

    Science.gov (United States)

    Wildenhain, Elizabeth; Finch, Sean; Tornow, Werner; Krishichayan, F.

    2017-09-01

    Iridium is one of the elements prioritized by Nonproliferation and Homeland Security agencies. In addition, Ir-192 is being used in various medical treatments. Improved data and corresponding evaluations of neutron-induced reactions on the iridium isotopes are required to meet the demands of several applications of societal interest. This study measured the cross section of the Ir-191,193(n, 2n)Ir-190,192 reactions at energies from 9.0 to 16.5 MeV using the activation technique. Natural Ir samples [Ir-191 37.3%, Ir-193 62.7%] were sandwiched between Au-197 monitor foils and irradiated with monoenergetic neutron beams at the tandem facility of the Triangle Universities Nuclear Laboratory (TUNL). Gamma rays from the irradiated samples were counted in TUNL's low background facility using high-efficient HPGe detectors. Measured cross-section data are compared to previous data and to predictions from nuclear data libraries (e.g. ENDF). Research at TUNL funded by the NSF.

  14. Ice contamination on satellite IR sensors: the MIPAS case

    Science.gov (United States)

    Niro, F.; Fehr, T.; Kleinert, A.; Laur, H.; Lecomte, P.; Perron, G.

    2009-04-01

    MIPAS on board the ENVISAT platform is a Michelson Interferometer measuring the atmospheric limb emission in the mid-infrared (IR), from 4.15 µm to 14.5 µm [1]. The calibrated MIPAS measurements are radiance spectra as a function of wavenumber. The radiometric and spectral calibrations of the raw data are part of the Level 1 processing in the Ground Segment [2]. The accuracy of the radiometric calibration is essential in order to ensure precise temperature and trace gas retrieval in the Level 2 processing. This calibration process requires a set of cold space measurements and a series of measurements of a black body source to determine the radiometric gain function and to correct for instrument self-emission. The deep space measurements are repeated every four limb scanning sequences with the purpose of compensating the variation of instrument's temperature along the orbit. The radiometric gain function is updated every week to correct for a degraded transmission at the detector due to ice contamination. The ice contamination leads to a decrease of the signal, mainly due to ice absorption of the incoming IR radiation. This paper presents an analysis of the effect of ice contamination during the MIPAS mission; in particular we will study its impact on the radiometric accuracy and on the Level 2 retrieval precision. We will highlight the importance of the ice monitoring for the MIPAS mission and we will show that this type of monitoring allows improving the stability and the overall performances of the MIPAS instrument. The effect of ice in other ENVISAT instruments will be also mentioned (e.g., AATSR). The lessons learned during the mission about ice contamination are very important, especially for IR sensors that are the most affected by this type of problem. These lessons will be useful in order to improve the in-flight operations of present and future satellite missions. [1] H. Fischer, M. Birk, C. Blom, B. Carli, M. Carlotti, T. von Clarmann, L. Delbouille, A

  15. Inter-comparison of MARS and FLUKA: Predictions on Energy Deposition in LHC IR Quadrupoles

    CERN Document Server

    Hoa, C; Cerutti, F; Ferrai, A

    2008-01-01

    Detailed modellings of the LHC insertion regions (IR) have earlier been performed to evaluate energy deposition in the IR superconducting magnets [1-4]. Proton-proton collisions at 14 TeV in the centre of mass lead to debris, depositing energy in the IR components. To evaluate uncertainties in those simulations and gain further confidence in the tools and approaches used, inter-comparison calculations have been performed with the latest versions of the FLUKA (2006.3b) [5, 6] and MARS15 [7, 8] Monte Carlo codes. These two codes, used worldwide for multi particle interaction and transport in accelerator, detector and shielding components, have been thoroughly benchmarked by the code authors and the user community (see, for example, recent [9, 10]). In the study described below, a better than 5% agreement was obtained for energy deposition calculated with these two codes - based on different independent physics models - for the identical geometry and initial conditions of a simple model representing the IR5 and ...

  16. Inter-comparison of MARS and FLUKA: Predictions on energy deposition in LHC IR quadrupoles

    International Nuclear Information System (INIS)

    Hoa, Christine; Cerutti, F.; Ferrari, A.; Mokhov, N.V.

    2008-01-01

    Detailed modelings of the LHC insertion regions (IR) have earlier been performed to evaluate energy deposition in the IR superconducting magnets [1-4]. Proton-proton collisions at 14 TeV in the centre of mass lead to debris, depositing energy in the IR components. To evaluate uncertainties in those simulations and gain further confidence in the tools and approaches used, inter-comparison calculations have been performed with the latest versions of the FLUKA (2006.3b) [5, 6] and MARS15 [7, 8] Monte Carlo codes. These two codes, used worldwide for multi particle interaction and transport in accelerator, detector and shielding components, have been thoroughly benchmarked by the code authors and the user community (see, for example, recent [9, 10]). In the study described below, a better than 5% agreement was obtained for energy deposition calculated with these two codes--based on different independent physics models--for the identical geometry and initial conditions of a simple model representing the IR5 and its first quadrupole

  17. Functional Requirements on the Design of the Detectors and the Interaction Region of an e+e- Linear Collider with a Push-Pull Arrangement of Detectors

    International Nuclear Information System (INIS)

    Markiewicz, T.

    2009-01-01

    The Interaction Region of the International Linear Collider is based on two experimental detectors working in a push-pull mode. A time efficient implementation of this model sets specific requirements and challenges for many detector and machine systems, in particular the IR magnets, the cryogenics and the alignment system, the beamline shielding, the detector design and the overall integration. This paper attempts to separate the functional requirements of a push pull interaction region and machine detector interface from any particular conceptual or technical solution that might have been proposed to date by either the ILC Beam Delivery Group or any of the three detector concepts. As such, we hope that it provides a set of ground rules for interpreting and evaluating the MDI parts of the proposed detector concept's Letters of Intent, due March 2009. The authors of the present paper are the leaders of the IR Integration Working Group within Global Design Effort Beam Delivery System and the representatives from each detector concept submitting the Letters Of Intent.

  18. ATLAS Detector Interface Group

    CERN Multimedia

    Mapelli, L

    Originally organised as a sub-system in the DAQ/EF-1 Prototype Project, the Detector Interface Group (DIG) was an information exchange channel between the Detector systems and the Data Acquisition to provide critical detector information for prototype design and detector integration. After the reorganisation of the Trigger/DAQ Project and of Technical Coordination, the necessity to provide an adequate context for integration of detectors with the Trigger and DAQ lead to organisation of the DIG as one of the activities of Technical Coordination. Such an organisation emphasises the ATLAS wide coordination of the Trigger and DAQ exploitation aspects, which go beyond the domain of the Trigger/DAQ project itself. As part of Technical Coordination, the DIG provides the natural environment for the common work of Trigger/DAQ and detector experts. A DIG forum for a wide discussion of all the detector and Trigger/DAQ integration issues. A more restricted DIG group for the practical organisation and implementation o...

  19. The HERMES recoil detector

    International Nuclear Information System (INIS)

    Airapetian, A.; Belostotski, S.

    2013-02-01

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with an integrated field strength of 1Tm. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  20. Smile detectors correlation

    Science.gov (United States)

    Yuksel, Kivanc; Chang, Xin; Skarbek, Władysław

    2017-08-01

    The novel smile recognition algorithm is presented based on extraction of 68 facial salient points (fp68) using the ensemble of regression trees. The smile detector exploits the Support Vector Machine linear model. It is trained with few hundreds exemplar images by SVM algorithm working in 136 dimensional space. It is shown by the strict statistical data analysis that such geometric detector strongly depends on the geometry of mouth opening area, measured by triangulation of outer lip contour. To this goal two Bayesian detectors were developed and compared with SVM detector. The first uses the mouth area in 2D image, while the second refers to the mouth area in 3D animated face model. The 3D modeling is based on Candide-3 model and it is performed in real time along with three smile detectors and statistics estimators. The mouth area/Bayesian detectors exhibit high correlation with fp68/SVM detector in a range [0:8; 1:0], depending mainly on light conditions and individual features with advantage of 3D technique, especially in hard light conditions.

  1. The HERMES recoil detector

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Giessen Univ. (Germany). Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Laboratory of Physics; Aschenauer, E.C. [DESY, Zeuthen (Germany); Belostotski, S. [B.P. Konstantinov Petersburg Nuclear Physics Insitute, Gatchina (Russian Federation)] [and others; Collaboration: HERMES Recoil Detector Group

    2013-02-15

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with an integrated field strength of 1Tm. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  2. Detectors for Tomorrow's Instruments

    Science.gov (United States)

    Moseley, Harvey

    2009-01-01

    Cryogenically cooled superconducting detectors have become essential tools for a wide range of measurement applications, ranging from quantum limited heterodyne detection in the millimeter range to direct searches for dark matter with superconducting phonon detectors operating at 20 mK. Superconducting detectors have several fundamental and practical advantages which have resulted in their rapid adoption by experimenters. Their excellent performance arises in part from reductions in noise resulting from their low operating temperatures, but unique superconducting properties provide a wide range of mechanisms for detection. For example, the steep dependence of resistance with temperature on the superconductor/normal transition provides a sensitive thermometer for calorimetric and bolometric applications. Parametric changes in the properties of superconducting resonators provides a mechanism for high sensitivity detection of submillimeter photons. From a practical point of view, the use of superconducting detectors has grown rapidly because many of these devices couple well to SQUID amplifiers, which are easily integrated with the detectors. These SQUID-based amplifiers and multiplexers have matured with the detectors; they are convenient to use, and have excellent noise performance. The first generation of fully integrated large scale superconducting detection systems are now being deployed. I will discuss the prospects for a new generation of instruments designed to take full advantage of the revolution in detector technology.

  3. TIJAH: Embracing IR Methods in XML Databases

    NARCIS (Netherlands)

    List, Johan; Mihajlovic, V.; Ramirez, Georgina; de Vries, A.P.; Hiemstra, Djoerd; Blok, H.E.

    2005-01-01

    This paper discusses our participation in INEX (the Initiative for the Evaluation of XML Retrieval) using the TIJAH XML-IR system. TIJAH's system design follows a `standard' layered database architecture, carefully separating the conceptual, logical and physical levels. At the conceptual level, we

  4. IR and OLAP in XML document warehouses

    DEFF Research Database (Denmark)

    Perez, Juan Manuel; Pedersen, Torben Bach; Berlanga, Rafael

    2005-01-01

    In this paper we propose to combine IR and OLAP (On-Line Analytical Processing) technologies to exploit a warehouse of text-rich XML documents. In the system we plan to develop, a multidimensional implementation of a relevance modeling document model will be used for interactively querying...

  5. Isolated Gramicidin Peptides Probed by IR Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Rijs, A. M.; Kabeláč, Martin; Abo-Riziq, A.; Hobza, Pavel; de Vries, M. S.

    2011-01-01

    Roč. 12, č. 10 (2011), s. 1816-1821 ISSN 1439-4235 R&D Projects: GA MŠk LC512; GA AV ČR IAA400550808 Institutional research plan: CEZ:AV0Z40550506 Keywords : density functional calculations * gramicidin * IR spectroscopy * protein folding Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.412, year: 2011

  6. Airborne pipeline leak detection: UV or IR?

    Science.gov (United States)

    Babin, François; Gravel, Jean-François; Allard, Martin

    2016-05-01

    This paper presents a study of different approaches to the measurement of the above ground vapor plume created by the spill caused by a small 0.1 l/min (or less) leak in an underground liquid petroleum pipeline. The scenarios are those for the measurement from an airborne platform. The usual approach is that of IR absorption, but in the case of liquid petroleum products, there are drawbacks that will be discussed, especially when using alkanes to detect a leak. The optical measurements studied include UV enhanced Raman lidar, UV fluorescence lidar and IR absorption path integrated lidars. The breadboards used for testing the different approaches will be described along with the set-ups for leak simulation. Although IR absorption would intuitively be the most sensitive, it is shown that UV-Raman could be an alternative. When using the very broad alkane signature in the IR, the varying ground spectral reflectance are a problem. It is also determined that integrated path measurements are preferred, the UV enhanced Raman measurements showing that the vapor plume stays very close to the ground.

  7. Near IR spectra of symbiotic stars

    International Nuclear Information System (INIS)

    Andrillat, Y.

    1982-01-01

    The author reports on recent observations from the near IR spectra of symbiotic stars. The helium and oxygen lines useful for the construction of theoretical models are identified. Observations for cool stars and novae (nebular phase) are outlined and the spectra of specific symbiotic stars between lambdalambda 8000-11000 are presented and discussed. (Auth./C.F.)

  8. Methanol decomposition and oxidation on Ir(111)

    NARCIS (Netherlands)

    Weststrate, C.J.; Ludwig, W.; Bakker, J.W.; Gluhoi, A.C.; Nieuwenhuys, B.E.

    2007-01-01

    The adsorption, decompn., and oxidn. of methanol (CH3OH) has been studied on Ir(111) using temp.-programmed desorption and high-energy resoln. fast XPS. Mol. methanol desorption from a methanol-satd. surface at low temp. shows three desorption peaks, around 150 K (alpha ), around 170 K (beta 1), and

  9. Column Stores as an IR Prototyping Tool

    NARCIS (Netherlands)

    H.F. Mühleisen (Hannes); T. Samar (Thaer); J.J.P. Lin (Jimmy); A.P. de Vries (Arjen)

    2014-01-01

    textabstract. We make the suggestion that instead of implementing custom index structures and query evaluation algorithms, IR researchers should simply store document representations in a column-oriented relational database and write ranking models using SQL. For rapid prototyping, this is

  10. Quantitative analysis of semivolatile organic compounds in selected fractions of air sample extracts by GC/MI-IR spectrometry

    International Nuclear Information System (INIS)

    Childers, J.W.; Wilson, N.K.; Barbour, R.K.

    1990-01-01

    The authors are currently investigating the capabilities of gas chromatography/matrix isolation infrared (GC/MI-IR) spectrometry for the determination of semivolatile organic compounds (SVOCs) in environmental air sample extracts. Their efforts are focused on the determination of SVOCs such as alkylbenzene positional isomers, which are difficult to separate chromatographically and to distinguish by conventional electron-impact ionization GC/mass spectrometry. They have performed a series of systematic experiments to identify sources of error in quantitative GC/MI-IR analyses. These experiments were designed to distinguish between errors due to instrument design or performance and errors that arise from some characteristic inherent to the GC/MI-IR technique, such as matrix effects. They have investigated repeatability as a function of several aspects of GC/MI IR spectrometry, including sample injection, spectral acquisition, cryogenic disk movement, and matrix deposition. The precision, linearity, dynamic range, and detection limits of a commercial GC/MI-IR system for target SVOCs were determined and compared to those obtained with the system's flame ionization detector. The use of deuterated internal standards in the quantitative GC/MI-IR analysis of selected fractions of ambient air sample extracts will be demonstrated. They will also discuss the current limitations of the technique in quantitative analyses and suggest improvements for future consideration

  11. Study of (n,2n reaction on 191,193Ir isotopes and isomeric cross section ratios

    Directory of Open Access Journals (Sweden)

    Vlastou R.

    2017-01-01

    Full Text Available The cross section of 191Ir(n,2n190Irg+m1 and 191Ir(n,2n190Irm2 reactions has been measured at 17.1 and 20.9 MeV neutron energies at the 5.5 MV tandem T11/25 Accelerator Laboratory of NCSR “Demokritos”, using the activation method. The neutron beams were produced by means of the 3H(d,n4He reaction at a flux of the order of 2 × 105 n/cm2s. The neutron flux has been deduced implementing the 27Al(n,α reaction, while the flux variation of the neutron beam was monitored by using a BF3 detector. The 193Ir(n,2n192Ir reaction cross section has also been determined, taking into account the contribution from the contaminant 191Ir(n,γ192Ir reaction. The correction method is based on the existing data in ENDF for the contaminant reaction, convoluted with the neutron spectra which have been extensively studied by means of simulations using the NeusDesc and MCNP codes. Statistical model calculations using the code EMPIRE 3.2.2 and taking into account pre-equilibrium emission, have been performed on the data measured in this work as well as on data reported in literature.

  12. The effect of solarradiation and UV photons on the CR-39 nuclear track detector

    International Nuclear Information System (INIS)

    Saad, A.F.

    2003-01-01

    The effects induced in the CR-39 polymer detector by total solar radiation (TSR) and UV photons were investigated. Thr exposure of detector samples to solar photons was carried out according to certain conditions. The TSR exposure period started in the middle of july and lasted unitel 12 th of september. 2000: the hottest months in zagazig, egypt. Another set of detector samples was exposed to UV photons from a UV lamp for different intervals. After UV exposure, these detectors were analysed with an FT-IR sepectrometer of jasco type 5300 in transmission mode. The FT-IR spectra does not show any considerable modifications due to UV irradiation in that detector. The effects of UV light were compared with those of solar radiation containing ultraviolet photons , on the registration properties of this polymer detector. Preliminaryresults revealed a proportionate increase in bluk etch rate of CR-39 detector with the increase of exposure time to the solar radiation. The results indicated that the CR-39 polymer detector can be used as a solar radiation dosimeter

  13. A New Virtual Point Detector Concept for a HPGe detector

    International Nuclear Information System (INIS)

    Byun, Jong In; Yun, Ju Yong

    2009-01-01

    For last several decades, the radiation measurement and radioactivity analysis techniques using gamma detectors have been well established. Especially , the study about the detection efficiency has been done as an important part of gamma spectrometry. The detection efficiency depends strongly on source-to-detector distance. The detection efficiency with source-to-detector distance can be expressed by a complex function of geometry and physical characteristics of gamma detectors. In order to simplify the relation, a virtual point detector concept was introduced by Notea. Recently, further studies concerning the virtual point detector have been performed. In previous other works the virtual point detector has been considered as a fictitious point existing behind the detector end cap. However the virtual point detector position for the front and side of voluminous detectors might be different due to different effective central axis of them. In order to more accurately define the relation, therefore, we should consider the virtual point detector for the front as well as side and off-center of the detector. The aim of this study is to accurately define the relation between the detection efficiency and source-to-detector distance with the virtual point detector. This paper demonstrates the method to situate the virtual point detectors for a HPGe detector. The new virtual point detector concept was introduced for three area of the detector and its characteristics also were demonstrated by using Monte Carlo Simulation method. We found that the detector has three virtual point detectors except for its rear area. This shows that we should consider the virtual point detectors for each area when applying the concept to radiation measurement. This concept can be applied to the accurate geometric simplification for the detector and radioactive sources.

  14. Detectors - Electronics; Detecteurs - Electronique

    Energy Technology Data Exchange (ETDEWEB)

    Bregeault, J.; Gabriel, J.L.; Hierle, G.; Lebotlan, P.; Leconte, A.; Lelandais, J.; Mosrin, P.; Munsch, P.; Saur, H.; Tillier, J. [Lab. de Physique Corpusculaire, Caen Univ., 14 (France)

    1998-04-01

    The reports presents the main results obtained in the fields of radiation detectors and associated electronics. In the domain of X-ray gas detectors for the keV range efforts were undertaken to rise the detector efficiency. Multiple gap parallel plate chambers of different types as well as different types of X {yields} e{sup -} converters were tested to improve the efficiency (values of 2.4% at 60 KeV were reached). In the field of scintillators a study of new crystals has been carried out (among which Lutetium orthosilicate). CdTe diode strips for obtaining X-ray imaging were studied. The complete study of a linear array of 8 CdTe pixels has been performed and certified. The results are encouraging and point to this method as a satisfying solution. Also, a large dimension programmable chamber was used to study the influence of temperature on the inorganic scintillators in an interval from -40 deg. C to +150 deg. C. Temperature effects on other detectors and electronic circuits were also investigated. In the report mentioned is also the work carried out for the realization of the DEMON neutron multidetector. For neutron halo experiments different large area Si detectors associated with solid and gas position detectors were realized. In the frame of a contract with COGEMA a systematic study of Li doped glasses was undertaken aiming at replacing with a neutron probe the {sup 3}He counters presently utilized in pollution monitoring. An industrial prototype has been realised. Other studies were related to integrated analog chains, materials for Cherenkov detectors, scintillation probes for experiments on fundamental processes, gas position sensitive detectors, etc. In the field of associated electronics there are mentioned the works related to the multidetector INDRA, data acquisition, software gamma spectrometry, automatic gas pressure regulation in detectors, etc

  15. Layered semiconductor neutron detectors

    Science.gov (United States)

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  16. Lithium germanium detectors reactivation

    International Nuclear Information System (INIS)

    Nicolai, J.A.; Marti, G.V.; Riso, J.M.; Gimenez, C.R.

    1981-01-01

    A convenient method to regenerate the characteristics of damaged Ge(li) detectors, that has been applied in the authors' laboratory, is described. The procedure consists in warming-up the crystal in its cryostat to temperatures between 10 deg C and 30 deg C above room temperature, in order to clean its surface. Subsequent cooling down to liquid nitrogen temperature, followed by one or more clean-up drifting processes, are applied to the crystals. This paper summarizes the results obtained with several detectors; this method was applied successfully to 15 detectors more. (author) [es

  17. The AGILE anticoincidence detector

    International Nuclear Information System (INIS)

    Perotti, F.; Fiorini, M.; Incorvaia, S.; Mattaini, E.; Sant'Ambrogio, E.

    2006-01-01

    AGILE is a γ-ray astrophysics space mission which will operate, starting from 2006, in the 30 MeV-50 GeV energy range with imaging capability also in the 15-45 keV energy band. In order to achieve the required detection sensitivity, all AGILE detectors are surrounded by an anticoincidence detector aimed at charged particle background rejection with an inefficiency as low as 10 -4 . In this work, the design and the structure of this anticoincidence detector are presented, as well as its performances in terms of charged particles detection inefficiency as derived from extensive calibrations performed at CERN PS

  18. Liquid ionizing radiaion detector

    International Nuclear Information System (INIS)

    deGaston, A.N.

    1979-01-01

    A normally nonconducting liquid such as liquid hydrocarbon is encased between a pair of electrodes in an enclosure so that when the liquid is subjected to ionizing radiation, the ion pairs so created measurably increase the conductivity of the fluid. The reduced impedance between the electrodes is detectable with a sensitive ohm-meter and indicates the amount of ionizing radiation. The enclosure, the electrodes and the fluid can be constructed of materials that make the response of the detector suitable for calibrating a large range of radiation energy levels. The detector is especially useful in medical applications where tissue equivalent X ray detectors are desired

  19. Ionization detectors, ch. 3

    International Nuclear Information System (INIS)

    Sevcik, J.

    1976-01-01

    Most measuring devices used in gas chromatography consist of detectors that measure the ionization current. The process is based on the collision of a moving high-energy particle with a target particle that is ionised while an electron is freed. The discussion of the conditions of the collision reaction, the properties of the colliding particles, and the intensity of the applied field point to a unified classification of ionisation detectors. Radioactive sources suitable for use in these detectors are surveyed. The slow-down mechanism, recombination and background current effect are discussed

  20. The Clover detector

    Energy Technology Data Exchange (ETDEWEB)

    Beck, F A; Byrski, Th; Durien, D; Duchene, G; France, G de; Kharraja, B; Wei, L [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Butler, P; Jones, G; Jones, P [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.; Hannachi, F [Daresbury Lab. (United Kingdom)

    1992-08-01

    The EUROGAM Phase I device is almost running for experiments and new technical developments are in progress for its second phase. For example, a composite Ge detector should enable: a very large photopeak efficiency with good energy and timing resolutions; and, the covering, with Ge, of a large portion of 4{pi}-Str. The Clover detector, proposed by the CRN, Strasbourg, is one of this new generation of Ge detectors. It is currently developed in France by the EUROGAM collaboration. The design, the technical characteristics of the counter and the first results of the prototype tests are discussed in this contribution. (author). 1 ref., 2 tabs., 2 refs.

  1. Fuel rod leak detector

    International Nuclear Information System (INIS)

    Womack, R.E.

    1978-01-01

    A typical embodiment of the invention detects leaking fuel rods by means of a radiation detector that measures the concentration of xenon-133 ( 133 Xe) within each individual rod. A collimated detector that provides signals related to the energy of incident radiation is aligned with one of the ends of a fuel rod. A statistically significant sample of the gamma radiation (γ-rays) that characterize 133 Xe is accumulated through the detector. The data so accumulated indicates the presence of a concentration of 133 Xe appropriate to a sound fuel rod, or a significantly different concentration that reflects a leaking fuel rod

  2. The HOTWAXS detector

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, J.E.; Derbyshire, G.E. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Diakun, G. [Science and Technology Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom); Duxbury, D.M. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom)], E-mail: d.m.duxbury@rl.ac.uk; Fairclough, J.P.A. [Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF (United Kingdom); Harvey, I.; Helsby, W.I. [Science and Technology Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom); Lipp, J.D.; Marsh, A.S.; Salisbury, J. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Sankar, G. [Royal Institution of GB, 21 Albemarle Street, London W1S 4BS (United Kingdom); Spill, E.J.; Stephenson, R. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Terrill, N.J. [Diamond Light Source LTD, Harwell Science and Innovation Campus, Diamond House, Chilton, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2007-10-11

    The development and testing of the HOTWAXS position-sensitive X-ray detector for Synchrotron Radiation Sources is described. Funded from a facility development grant, the aim of the project was to produce a high counting rate, parallax-free photon counting detector to be used in the combined studies of X-ray absorption fine structure and X-ray diffraction (XAFS/XRD), and also in the technique of small angle and wide angle X-ray scattering (SAXS/WAXS). The detector system is described together with results of experiments carried out at the Daresbury Laboratory Synchrotron Radiation Source.

  3. The HOTWAXS detector

    International Nuclear Information System (INIS)

    Bateman, J.E.; Derbyshire, G.E.; Diakun, G.; Duxbury, D.M.; Fairclough, J.P.A.; Harvey, I.; Helsby, W.I.; Lipp, J.D.; Marsh, A.S.; Salisbury, J.; Sankar, G.; Spill, E.J.; Stephenson, R.; Terrill, N.J.

    2007-01-01

    The development and testing of the HOTWAXS position-sensitive X-ray detector for Synchrotron Radiation Sources is described. Funded from a facility development grant, the aim of the project was to produce a high counting rate, parallax-free photon counting detector to be used in the combined studies of X-ray absorption fine structure and X-ray diffraction (XAFS/XRD), and also in the technique of small angle and wide angle X-ray scattering (SAXS/WAXS). The detector system is described together with results of experiments carried out at the Daresbury Laboratory Synchrotron Radiation Source

  4. Semiconductor ionizino. radiation detectors

    International Nuclear Information System (INIS)

    1982-01-01

    Spectrometric semiconductor detectors of ionizing radiation with the electron-hole junction, based on silicon and germanium are presented. The following parameters are given for the individual types of germanium detectors: energy range of detected radiation, energy resolution given as full width at half maximum (FWHM) and full width at one tenth of maximum (FWTM) for 57 Co and 60 Co, detection sensitivity, optimal voltage, and electric capacitance at optimal voltage. For silicon detectors the value of FWHM for 239 Pu is given, the sensitive area and the depth of the sensitive area. (E.S.)

  5. Microfluidic Scintillation Detectors

    CERN Multimedia

    Microfluidic scintillation detectors are devices of recent introduction for the detection of high energy particles, developed within the EP-DT group at CERN. Most of the interest for such technology comes from the use of liquid scintillators, which entails the possibility of changing the active material in the detector, leading to an increased radiation resistance. This feature, together with the high spatial resolution and low thickness deriving from the microfabrication techniques used to manufacture such devices, is desirable not only in instrumentation for high energy physics experiments but also in medical detectors such as beam monitors for hadron therapy.

  6. The TApIR experiment. IR absorption spectra of liquid hydrogen isotopologues

    International Nuclear Information System (INIS)

    Groessle, Robin

    2015-01-01

    The scope of the thesis is the infrared absorption spectroscopy of liquid hydrogen isotopologues with the tritium absorption infrared spectroscopy (TApIR) experiment at the tritium laboratory Karlsruhe (TLK). The calibration process from the sample preparation to the reference measurements are described. A further issue is the classical evaluation of FTIR absorption spectra and the extension using the rolling circle filter (RCF) including the effects on statistical and systematical errors. The impact of thermal and nuclear spin temperature on the IR absorption spectra is discussed. An empirical based modeling for the IR absorption spectra of liquid hydrogen isotopologues is performed.

  7. Training detector as simulator of alpha detector

    International Nuclear Information System (INIS)

    Tirosh, D.; Duvniz, E.; Assido, H.; Barak, D.; Paran, J.

    1997-01-01

    Alpha contamination is a common phenomena in radiation research laboratories and other sites. Training staff to properly detect and control alpha contamination, present special problems. In order to train health physics personnel, while using alpha sources, both the trainers and the trainees are inevitably exposed to alpha contamination. This fact of course, comes in conflict with safety principles. In order to overcome these difficulties, a training detector was developed, built and successfully tested. (authors)

  8. Multi electrode semiconductors detectors

    CERN Document Server

    Amendolia, S R; Bertolucci, Ennio; Bosisio, L; Bradaschia, C; Budinich, M; Fidecaro, F; Foà, L; Focardi, E; Giazotto, A; Giorgi, M A; Marrocchesi, P S; Menzione, A; Ristori, L; Rolandi, Luigi; Scribano, A; Stefanini, A; Vincelli, M L

    1981-01-01

    Detectors with very high space resolution have been built in this laboratory and tested at CERN in order to investigate their possible use in high energy physics experiments. These detectors consist of thin layers of silicon crystals acting as ionization chambers. Thin electrodes, structured in strips or in more fancy shapes are applied to their surfaces by metal coating. The space resolution which could be reached is of the order of a few microns. An interesting feature of these solid state detectors is that they can work under very high or low external pressure or at very low temperature. The use of these detectors would strongly reduce the dimensions and the cost of high energy experiments. (3 refs).

  9. Multi electrode semiconductor detectors

    International Nuclear Information System (INIS)

    Amendolia, S.R.; Batignani, G.; Bertolucci, E.; Bosisio, L.; Budinich, M.; Bradaschia, C.; Fidecaro, F.; Foa, L.; Focardi, E.; Giazotto, A.; Giorgi, M.A.; Marrocchesi, P.S.; Menzione, A.; Ristori, L.; Rolandi, L.; Scribano, A.; Stefanini, A.; Vincelli, M.L.

    1981-01-01

    Detectors with very high space resolution have been built in the laboratory and tested at CERN in order to investigate their possible use in high energy physics experiments. These detectors consist of thin layers of silicon crystals acting as ionization chambers. Thin electrodes, structured in strips or in more fancy shapes are applied to their surfaces by metal coating. The space resolution which could be reached is of the order of a few microns. An interesting feature of these solid state detectors is that they can work under very high or low external pressure or at very low temperature. The use of these detectors would strongly reduce the dimensions and the cost of high energy experiments. (Auth.)

  10. Inverter ratio failure detector

    Science.gov (United States)

    Wagner, A. P.; Ebersole, T. J.; Andrews, R. E. (Inventor)

    1974-01-01

    A failure detector which detects the failure of a dc to ac inverter is disclosed. The inverter under failureless conditions is characterized by a known linear relationship of its input and output voltages and by a known linear relationship of its input and output currents. The detector includes circuitry which is responsive to the detector's input and output voltages and which provides a failure-indicating signal only when the monitored output voltage is less by a selected factor, than the expected output voltage for the monitored input voltage, based on the known voltages' relationship. Similarly, the detector includes circuitry which is responsive to the input and output currents and provides a failure-indicating signal only when the input current exceeds by a selected factor the expected input current for the monitored output current based on the known currents' relationship.

  11. Sensitive detectors in HPLC

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Detection of sample components in HPLC is difficult for many reasons; the key difficulty is the mobile phase which usually has properties similar to the solute. A variety of detectors have been developed for use in HPLC based on one of the above approaches; however, the search is still continuing for an ideal or universal detector. A universal detector should have the following characteristics: (1) responds to all solutes or has predictable specificity; (2) high detectability and the same predictable response; (3) fast response; (4) wide range of linearity; (5) unaffected by changes in temperature and mobile-phase flow; (6) responds independently of the mobile phase; (7) makes no contribution to extracolumn band broadening; (8) reliable and convenient to use; (9) nondestructive to the solute; (10) provides qualitative information on the detected peak. Unfortunately, no available HPLC detector possesses all these properties. 145 refs

  12. OPAL detector electromagnetic calorimeter

    CERN Multimedia

    1988-01-01

    Half of the electromagnetic calorimeter of the OPAL detector is seen in this photo. This calorimeter consists of 4720 blocks of lead glass. It was used to detect and measure the energy of photons, electrons and positrons by absorbing them.

  13. Metal-Mesh Optical Filter Technology for Mid IR, Far IR, and Submillimeter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovative, high transmission band-pass filter technology proposed here is an improvement in multilayer metal-mesh filter design and manufacture for the far IR...

  14. IR-IR Conformation Specific Spectroscopy of Na+(Glucose) Adducts

    Science.gov (United States)

    Voss, Jonathan M.; Kregel, Steven J.; Fischer, Kaitlyn C.; Garand, Etienne

    2018-01-01

    We report an IR-IR double resonance study of the structural landscape present in the Na+(glucose) complex. Our experimental approach involves minimal modifications to a typical IR predissociation setup, and can be carried out via ion-dip or isomer-burning methods, providing additional flexibility to suit different experimental needs. In the current study, the single-laser IR predissociation spectrum of Na+(glucose), which clearly indicates contributions from multiple structures, was experimentally disentangled to reveal the presence of three α-conformers and five β-conformers. Comparisons with calculations show that these eight conformations correspond to the lowest energy gas-phase structures with distinctive Na+ coordination. [Figure not available: see fulltext.

  15. Detector Control System for the ATLAS Forward Proton detector

    CERN Document Server

    Czekierda, Sabina; The ATLAS collaboration

    2017-01-01

    The ATLAS Forward Proton (AFP) is a forward detector using a Roman Pot technique, recently installed in the LHC tunnel. It is aiming at registering protons that were diffractively or electromagnetically scattered in soft and hard processes. Infrastructure of the detector consists of hardware placed both in the tunnel and in the control room USA15 (about 330 meters from the Roman Pots). AFP detector, like the other detectors of the ATLAS experiment, uses the Detector Control System (DCS) to supervise the detector and to ensure its safe and coherent operation, since the incorrect detector performance may influence the physics results. The DCS continuously monitors the detector parameters, subset of which is stored in data bases. Crucial parameters are guarded by alarm system. A detector representation as a hierarchical tree-like structure of well-defined subsystems built with the use of the Finite State Machine (FSM) toolkit allows for overall detector operation and visualization. Every node in the hierarchy is...

  16. New detector techniques

    CERN Document Server

    Iarocci, Enzo

    1994-03-14

    The intense R&D effort being carried out in view of LHC has given rise in a relatively short time to a wide spectrum of new detector concepts and technologies. Subject of the lectures will be some of the most interesting new ideas and developments, in the field of noble liquid, crystal and scintillating fiber trackers. The emphasis will be on the basic aspects of detector operation.

  17. The Micro Wire Detector

    International Nuclear Information System (INIS)

    Adeva, B.; Gomez, F.; Pazos, A.; Pfau, R.; Plo, M.; Rodriguez, J.M.; Vazquez, P.; Labbe, J.C.

    1999-01-01

    We present the performance of a new proportional gas detector. Its geometry consists of a cathode plane with 70x70 μm 2 apertures, crossed by 25 μm anode strips to which it is attached by 50 μm kapton spacers. In the region where the avalanche takes place, the anode strips are suspended in the gas mixture as in a standard wire chamber. This detector exhibits high rate capability and large gains, introducing very little material. (author)

  18. Calibration of germanium detectors

    International Nuclear Information System (INIS)

    Bjurman, B.; Erlandsson, B.

    1985-01-01

    This paper describes problems concerning the calibration of germanium detectors for the measurement of gamma-radiation from environmental samples. It also contains a brief description of some ways of reducing the uncertainties concerning the activity determination. These uncertainties have many sources, such as counting statistics, full energy peak efficiency determination, density correction and radionuclide specific-coincidence effects, when environmental samples are investigated at close source-to-detector distances

  19. Lepton detector workshop summary

    International Nuclear Information System (INIS)

    Imlay, R.; Iwata, S.; Thorndike, A.

    1976-01-01

    The study group met from June 7 to 11, 1976, with the dual purpose of reviewing an earlier Lepton Detector report in order to resolve some of the remaining design problems and of considering possible alternatives. Since the role of this group was primarily that of providing a critique of the earlier work, the reader is referred to that earlier paper for the general motivation and design of the detector. Problems studied at this session are described

  20. Liquid xenon detector engineering

    International Nuclear Information System (INIS)

    Chen, E.; Chen, M.; Gaudreau, M.P.J.; Montgomery, D.B.; Pelly, J.D.; Shotkin, S.; Sullivan, J.D.; Sumorok, K.; Yan, X.; Zhang, X.; Lebedenko, V.

    1991-01-01

    The design, engineering constraints and R and D status of a 15 m 3 precision liquid xenon, electromagnetic calorimeter for the Superconducting Super Collider are discussed in this paper. Several prototype liquid xenon detectors have been built, and preliminary results are described. The design of a conical 7 cell by 7 cell detector capable of measuring fully contained high energy electron showers is described in detail

  1. The LUCID-2 Detector

    CERN Document Server

    Sbarra, Carla; The ATLAS collaboration

    2018-01-01

    LUCID-2 (LUminosity Cherenkov Integrating Detector) is the upgrade of the main detector dedicated to luminosity measurements in ATLAS. Most changes were motivated by the number of interactions per bunch-crossing and the 25 ns bunch-spacing expected in LHC RUN II (2015-2018). Both fast online information used by LHC for luminosity optimisation and levelling in ATLAS, and per-bunch data to be used offline, come from LUCID-2

  2. FERMILAB: Collider detectors -2

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Last month's edition (April, page 12) included a status report on data collection and preliminary physics results from the 'newcomer' DO detector at Fermilab's Tevatron proton-antiproton collider. This time the spotlight falls in the Veteran' CDF detector, in action since 1985 and meanwhile significantly upgraded. Meanwhile the Tevatron collider continues to improve, with record collision rates

  3. Microsonic detector (MSD)

    International Nuclear Information System (INIS)

    Bober, J.T.; Haridas, P.; Oh, S.H.; Pless, I.A.; Stoughton, T.B.

    1983-01-01

    The microsonic detector (MSD) has good spatial resolution, moderate flux capacity, moderate event rate, and small volume. The MSD is a super clean bubble chamber driven at 10-50 KHz. It would be used in experiments as a vertex detector to detect short lived particles. Its characteristics--active volume, density, absorption length, radiation length, and spatial resolution--are given. The setup is schematicized, and a photograph of a 130 MeV/C photon bremsstrahlung beam is given

  4. Protecting detectors in ALICE

    International Nuclear Information System (INIS)

    Lechman, M.; Augustinus, A.; Chochula, P.; Di Mauro, A.; Stig Jirden, L.; Rosinsky, P.; Schindler, H.; Cataldo, G. de; Pinazza, O.; Kurepin, A.; Moreno, A.

    2012-01-01

    ALICE (A Large Ion Collider Experiment) is one of the big LHC (Large Hadron Collider) experiments at CERN in Geneva. It is composed of many sophisticated and complex detectors mounted very compactly around the beam pipe. Each detector is a unique masterpiece of design, engineering and construction and any damage to it could stop the experiment for months or even for years. It is therefore essential that the detectors are protected from any danger and this is one very important role of the Detector Control System (DCS). One of the main dangers for the detectors is the particle beam itself. Since the detectors are designed to be extremely sensitive to particles they are also vulnerable to any excess of beam conditions provided by the LHC accelerator. The beam protection consists of a combination of hardware interlocks and control software and this paper will describe how this is implemented and handled in ALICE. Tools have also been developed to support operators and shift leaders in the decision making related to beam safety. The gained experiences and conclusions from the individual safety projects are also presented. (authors)

  5. Radiation detectors for reactors

    International Nuclear Information System (INIS)

    Balagi, V.

    2005-01-01

    Detection and measurement of radiation plays a vital role in nuclear reactors from the point of view of control and safety, personnel protection and process control applications. Various types of radiation are measured over a wide range of intensity. Consequently a variety of detectors find use in nuclear reactors. Some of these devices have been developed in Electronics Division. They include gas-filled detectors such as 10 B-lined proportional counters and chambers, fission detectors and BF 3 counters are used for the measurement of neutron flux both for reactor control and safety, process control as well as health physics instrumentation. In-core neutron flux instrumentation employs the use detectors such as miniature fission detectors and self-powered detectors. In this development effort, several indigenous materials, technologies and innovations have been employed to suit the specific requirement of nuclear reactor applications. This has particular significance in view of the fact that several new types of reactors such as P-4, PWR and AHWR critical facilities, FBTR, PFBR as well as the refurbishment of old units like CIRUS are being developed. The development work has sought to overcome some difficulties associated with the non-availability of isotopically enriched neutron-sensing materials, achieving all-welded construction etc. The present paper describes some of these innovations and performance results. (author)

  6. Detectors for CBA

    International Nuclear Information System (INIS)

    Baggett, N.; Gordon, H.A.; Palmer, R.B.; Tannenbaum, M.J.

    1983-05-01

    We discuss some current approaches to a large solid angle detector. An alternative approach for utilizing the high rate of events at CBA is to design special purpose detectors for specific physics goals which can be pursued within a limited solid angle. In many cases this will be the only way to proceed, and then high luminosity has a different significance. The total rate in the restricted acceptance is less likely to be a problem, while the need for high luminosity to obtain sufficient data is obvious. Eight such experiments from studies carried out in the community are surveyed. Such experiments could be run on their own or in combination with others at the same intersection, or even with a large solid angle detector, if a window can be provided in the larger facility. The small solid angle detector would provide the trigger and special information, while the facility would provide back-up information on the rest of the event. We consider some possibilities of refurbishing existing detectors for use at CBA. This discussion is motivated by the fact that there is a growing number of powerful detectors at colliding beam machines around the world. Their builders have invested considerable amounts of time, money and ingenuity in them, and may wish to extend the useful lives of their creations, as new opportunities arise

  7. GANIL beam profile detectors

    International Nuclear Information System (INIS)

    Tribouillard, C.

    1997-01-01

    In the design phase of GANIL which started in 1977, one of the priorities of the project management was equipping the beamlines with a fast and efficient system for visualizing the beam position, thus making possible adjustment of the beam transport lines optics and facilitating beam control. The implantation of some thirty detectors was foreseen in the initial design. The assembly of installed detectors (around 190) proves the advantages of these detectors for displaying all the beams extracted from GANIL: transfer and transport lines, beam extracted from SISSI, very high intensity beam, secondary ion beams from the production target of the LISE and SPEG spectrometers, different SPIRAL project lines. All of these detectors are based on standard characteristics: - standard flange diameter (DN 160) with a standard booster for all the sensors; - identical analog electronics for all the detectors, with networking; - unique display system. The new micro-channel plate non-interceptive detectors (beam profile and ion packet lengths) make possible in-line control of the beam quality and accelerator stability. (author)

  8. Formulation development and comparative in vitro study of metoprolol tartrate (IR) tablets.

    Science.gov (United States)

    Husain, Tazeen; Shoaib, Muhammad Harris; Yousuf, Rabia Ismail; Maboos, Madiha; Khan, Madeeha; Bashir, Lubna; Naz, Shazia

    2016-05-01

    The objective of the present work was to develop Immediate Release (IR) tablets of Metoprolol Tartrate (MT) and to compare trial formulations to a reference product. Six formulations (F1-F6) were designed using central composite method and compared to a reference brand (A). Two marketed products (brands B and C) were also evaluated. F1-F6 were prepared with Avicel PH101 (filler), Crospovidone (disintegrant) and Magnesium Stearate (lubricant) by direct compression. Pharmacopoeial and non-pharmacopoeial methods were used to assess their quality. Furthermore, drug profiles were characterized using model dependent and independent (f(2)) approaches. Brands B and C and F5 and F6 did not qualify the tests for content uniformity. Moreover, brand B did not meet weight variation criteria and brand C did not satisfy requirements for single point dissolution test. Of the trial formulations, F2 failed the test for uniformity in thickness while F4 did not disintegrate within time limit. Only F1 and F3 met all quality parameters and were subjected to accelerated stability testing without significant alterations in their physicochemical characteristics. Based on AIC and r(2)(adjusted) values obtained by applying various kinetic models, drug release was determined to most closely follow Hixson-Crowell cube root law. F1 was determined to be the optimized formulation.

  9. Development of IR imaging at IRnova

    Science.gov (United States)

    Martijn, Henk; Asplund, Carl; Malm, Hedda; Smuk, Sergiy; Höglund, Linda; Gustafsson, Oscar; Hammar, Mattias; Hellström, Staffan

    2009-05-01

    Historically IRnova has exclusively been a company, focused on manufacturing of QWIP detectors. Nowadays, besides continuous improvements of the performance of QWIP FPAs and development of new formats IRnova is involved in development of QWIP detectors for special applications and has started the development of the next generation infrared detectors, as well. In the light of the development of new formats we validate experimentally theoretical calculations of the response of QWIPs for smaller pixel size. These results allow for the development of high performance megapixel QWIP FPA that exhibit the high uniformity and operability QWIP detectors are known for. QWIP is also being considered for space applications. The requirements on dark current and operating temperature are however much more stringent as compared to the terrestrial applications. We show ways to improve the material quality with as a result a higher detector operating temperature. IRnova is also looking at antimony-based strained superlattice material for the LWIR region together with partners at the IMAGIC centre of excellence. One of the ways to overcome the problem with surface currents is passivating overgrowth. We will report the status and results of overgrowing the detector mesas with AlGa(As)Sb in a MOVPE system. At the same centre of excellence a novel material concept is being developed for LWIR detection. This new material contains a superlattice of vertically aligned and electronically coupled InAs and GaSb quantum dots. Simulations show that it should be possible to have LWIR detection in this material. We will present the current status and report results in this research.

  10. Suppression of superconductivity in Nb by IrMn in IrMn/Nb bilayers

    KAUST Repository

    Wu, B. L.

    2013-10-10

    Effect of antiferromagnet on superconductivity has been investigated in IrMn/Nb bilayers. Significant suppression of both transition temperature (Tc) and lower critical field (Hc1) of Nb is found in IrMn/Nb bilayers as compared to a single layer Nb of same thickness; the suppression effect is even stronger than that of a ferromagnet in NiFe/Nb bilayers. The addition of an insulating MgO layer at the IrMn-Nb interface nearly restores Tc to that of the single layer Nb, but Hc1 still remains suppressed. These results suggest that, in addition to proximity effect and magnetic impurity scattering, magnetostatic interaction also plays a role in suppressing superconductivity of Nb in IrMn/Nb bilayers. In addition to reduced Tc and Hc1, the IrMn layer also induces broadening in the transition temperature of Nb, which can be accounted for by a finite distribution of stray field from IrMn.

  11. Discrimination of Chinese Sauce liquor using FT-IR and two-dimensional correlation IR spectroscopy

    Science.gov (United States)

    Sun, Su-Qin; Li, Chang-Wen; Wei, Ji-Ping; Zhou, Qun; Noda, Isao

    2006-11-01

    We applied the three-step IR macro-fingerprint identification method to obtain the IR characteristic fingerprints of so-called Chinese Sauce liquor (Moutai liquor and Kinsly liquor) and a counterfeit Moutai. These fingerprints can be used for the identification and discrimination of similar liquor products. The comparison of their conventional IR spectra, as the first step of identification, shows that the primary difference in Sauce liquor is the intensity of characteristic peaks at 1592 and 1225 cm -1. The comparison of the second derivative IR spectra, as the second step of identification, shows that the characteristic absorption in 1400-1800 cm -1 is substantially different. The comparison of 2D-IR correlation spectra, as the third and final step of identification, can discriminate the liquors from another direction. Furthermore, the method was successfully applied to the discrimination of a counterfeit Moutai from the genuine Sauce liquor. The success of the three-step IR macro-fingerprint identification to provide a rapid and effective method for the identification of Chinese liquor suggests the potential extension of this technique to the identification and discrimination of other wine and spirits, as well.

  12. Development of monolithic pixel detector with SOI technology for the ILC vertex detector

    Science.gov (United States)

    Yamada, M.; Ono, S.; Tsuboyama, T.; Arai, Y.; Haba, J.; Ikegami, Y.; Kurachi, I.; Togawa, M.; Mori, T.; Aoyagi, W.; Endo, S.; Hara, K.; Honda, S.; Sekigawa, D.

    2018-01-01

    We have been developing a monolithic pixel sensor for the International Linear Collider (ILC) vertex detector with the 0.2 μm FD-SOI CMOS process by LAPIS Semiconductor Co., Ltd. We aim to achieve a 3 μm single-point resolution required for the ILC with a 20×20 μm2 pixel. Beam bunch crossing at the ILC occurs every 554 ns in 1-msec-long bunch trains with an interval of 200 ms. Each pixel must record the charge and time stamp of a hit to identify a collision bunch for event reconstruction. Necessary functions include the amplifier, comparator, shift register, analog memory and time stamp implementation in each pixel, and column ADC and Zero-suppression logic on the chip. We tested the first prototype sensor, SOFIST ver.1, with a 120 GeV proton beam at the Fermilab Test Beam Facility in January 2017. SOFIST ver.1 has a charge sensitive amplifier and two analog memories in each pixel, and an 8-bit Wilkinson-type ADC is implemented for each column on the chip. We measured the residual of the hit position to the reconstructed track. The standard deviation of the residual distribution fitted by a Gaussian is better than 3 μm.

  13. Accurate and independent spectral response scale based on silicon trap detectors and spectrally invariant detectors

    International Nuclear Information System (INIS)

    Gran, Jarle

    2005-01-01

    The study aims to establish an independent high accuracy spectral response scale over a broad spectral range based on standard laboratory equipment at a moderate cost. This had to be done by a primary method, where the responsivity of the detector is linked to fundamental constants. Summary, conclusion and future directions: In this thesis it has been demonstrated that an independent spectral response scale from the visual to the IR based on simple relative measurements can be established. The accuracy obtained by the hybrid self-calibration method demonstrates that state of the art accuracy is obtained with self-calibration principles. A calculable silicon trap detector with low internal losses over a wide spectral range is needed to establish the scale, in addition to a linear, spectrally independent detector with a good signal to noise ratio. By fitting the parameters in the responsivity model to a purely relative measurement we express the spectral response in terms of fundamental constants with a known uncertainty This is therefore a primary method. By applying a digital filter on the relative measurements of the InGaAs detectors in the infrared reduces the standard deviation by 30 %. In addition, by optimising the necessary scaling constant converting the relative calibration to absolute values, we have managed to establish an accurate and cost efficient spectral response scale in the IR. The full covariance analysis, which takes into account the correlation in the absolute values of the silicon detector, the correlation caused by the filter and the scaling constant, shows that the spectral response scale established in the infrared with InGaAs detectors is done with high accuracy. A similar procedure can be used in the UV, though it has not been demonstrated here. In fig. 10 the responsitivities of the detectors (a) and their associated uncertainties (b) at the 1 sigma level of confidence is compared for the three publications. We see that the responsivity

  14. Basic Radiation Detectors. Chapter 6

    Energy Technology Data Exchange (ETDEWEB)

    Van Eijk, C. W.E. [Faculty of Applied Sciences, Delft University of Technology, Delft (Netherlands)

    2014-12-15

    Radiation detectors are of paramount importance in nuclear medicine. The detectors provide a wide range of information including the radiation dose of a laboratory worker and the positron emission tomography (PET) image of a patient. Consequently, detectors with strongly differing specifications are used. In this chapter, general aspects of detectors are discussed.

  15. Frontier detectors for frontier physics

    International Nuclear Information System (INIS)

    Cervelli, F.; Scribano, A.

    1984-01-01

    These proceedings contain the articles presented at the named meeting. These concern developments of radiation detectors and counting techniques in high energy physics. Especially considered are tracking detectors, calorimeters, time projection chambers, detectors for rare events, solid state detectors, particle identification, and optical readout systems. See hints under the relevant topics. (HSI)

  16. The ALICE forward multiplicity detector

    DEFF Research Database (Denmark)

    Holm Christensen, Christian; Gulbrandsen, Kristjan; Sogaard, Carsten

    2007-01-01

    The ALICE Forward Multiplicity Detector (FMD) is a silicon strip detector with 51,200 strips arranged in 5 rings, covering the range $-3.4......The ALICE Forward Multiplicity Detector (FMD) is a silicon strip detector with 51,200 strips arranged in 5 rings, covering the range $-3.4...

  17. Progress in semiconductor drift detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Walton, J.; Gatti, E.

    1985-01-01

    Progress in testing semiconductor drift detectors is reported. Generally better position and energy resolutions were obtained than resolutions published previously. The improvement is mostly due to new electronics better matched to different detectors. It is shown that semiconductor drift detectors are becoming versatile and reliable detectors for position and energy measurements

  18. Infrared detectors and focal plane arrays; Proceedings of the Meeting, Orlando, FL, Apr. 18, 19, 1990

    Science.gov (United States)

    Dereniak, Eustace L.; Sampson, Robert E.

    1990-09-01

    The papers contained in this volume provide an overview of recent advances and the current state of developments in the field of infrared detectors and focal plane arrays. Topics discussed include nickel silicide Schottky-barrier detectors for short-wavelength infrared applications; high performance PtSi linear and focal plane arrays; and multispectral band Schottky-barrier IRSSD for remote-sensing applications. Papers are also presented on the performance of an Insi hybrid focal array; characterization of IR focal plane test stations; GaAs CCD readout for engineered bandgap detectors; and fire detection system for aircraft cargo bays.

  19. Detectors on the drawing board

    CERN Document Server

    Katarina Anthony

    2011-01-01

    Linear collider detector developers inside and outside CERN are tackling the next generation of detector technology. While their focus has centred on high-energy linear collider detectors, their innovative concepts and designs will be applicable to any future detector.   A simulated event display in one of the new generation detectors. “While the LHC experiments remain the pinnacle of detector technology, you may be surprised to realise that the design and expertise behind them is well over 10 years old,” says Lucie Linssen, CERN’s Linear Collider Detector (LCD) project manager whose group is pushing the envelope of detector design. “The next generation of detectors will have to surpass the achievements of the LHC experiments. It’s not an easy task but, by observing detectors currently in operation and exploiting a decade’s worth of technological advancements, we’ve made meaningful progress.” The LCD team is curr...

  20. Development of pixellated Ir-TESs

    Science.gov (United States)

    Zen, Nobuyuki; Takahashi, Hiroyuki; Kunieda, Yuichi; Damayanthi, Rathnayaka M. T.; Mori, Fumiakira; Fujita, Kaoru; Nakazawa, Masaharu; Fukuda, Daiji; Ohkubo, Masataka

    2006-04-01

    We have been developing Ir-based pixellated superconducting transition edge sensors (TESs). In the area of material or astronomical applications, the sensor with few eV energy resolution and over 1000 pixels imaging property is desired. In order to achieve this goal, we have been analyzing signals from pixellated TESs. In the case of a 20 pixel array of Ir-TESs, with 45 μm×45 μm pixel sizes, the incident X-ray signals have been classified into 16 groups. We have applied numerical signal analysis. On the one hand, the energy resolution of our pixellated TES is strongly degraded. However, using pulse shape analysis, we can dramatically improve the resolution. Thus, we consider that the pulse signal analysis will lead this device to be used as a practical photon incident position identifying TES.

  1. Development of pixellated Ir-TESs

    International Nuclear Information System (INIS)

    Zen, Nobuyuki; Takahashi, Hiroyuki; Kunieda, Yuichi; Dayanthi, Rathnayaka M.T.; Mori, Fumiakira; Fujita, Kaoru; Nakazawa, Masaharu; Fukuda, Daiji; Ohkubo, Masataka

    2006-01-01

    We have been developing Ir-based pixellated superconducting transition edge sensors (TESs). In the area of material or astronomical applications, the sensor with few eV energy resolution and over 1000 pixels imaging property is desired. In order to achieve this goal, we have been analyzing signals from pixellated TESs. In the case of a 20 pixel array of Ir-TESs, with 45 μmx45 μm pixel sizes, the incident X-ray signals have been classified into 16 groups. We have applied numerical signal analysis. On the one hand, the energy resolution of our pixellated TES is strongly degraded. However, using pulse shape analysis, we can dramatically improve the resolution. Thus, we consider that the pulse signal analysis will lead this device to be used as a practical photon incident position identifying TES

  2. Universal single board tester for investigation of the avalanche photo detectors

    Czech Academy of Sciences Publication Activity Database

    Kushpil, Vasilij; Kushpil, Svetlana

    2012-01-01

    Roč. 7, JAN 2012 (2012), C01084/1-C01084/8 ISSN 1748-0221 R&D Projects: GA MŠk LC07048 Institutional support: RVO:61389005 Keywords : control systems * photon detectors for UV * visible and IR photons * solid-state Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.869, year: 2011

  3. Characterization of Ir/Au pixel TES

    International Nuclear Information System (INIS)

    Kunieda, Y.; Takahashi, H.; Zen, N.; Damayanthi, R.M.T.; Mori, F.; Fujita, K.; Nakazawa, M.; Fukuda, D.; Ohkubo, M.

    2006-01-01

    Signal shapes and noise characteristics of an asymmetrical ten-pixel Ir/Au-TES have been studied. The asymmetric design may be effective to realize an imaging spectrometer. Distinct two exponential decays observed for X-ray events are consistent with a two-step R-T curve. A theoretical thermal model for noise in multi-pixel devices reasonably explains the experimental data

  4. Analysis and Control of Carrier Transport in Unipolar Barrier Mid-Infrared (IR) Detectors

    Science.gov (United States)

    2017-01-03

    TERMS Device, electronic, radiation degradation, radiation effects, semiconductor, theory 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...contrast microscopy (DIC), atomic force microscopy (AFM), steady-state PL, and time-resolved photoluminescence (TRPL) spectra all indicate monotonic...lifetimes observed from higher growth temperatures provides further evidence that this material is of higher crystalline quality. Figure 4. (Color

  5. Inherent Limitations in Mid-Wave and Long-Wave-IR Upconversion Detector

    DEFF Research Database (Denmark)

    Barh, Ajanta; Tseng, Yu-Pei; Pedersen, Christian

    2017-01-01

    Inherent limitations in terms of optical losses, selection of nonlinear crystal(s), detection efficiency and pumping conditions in mid-wave (3-5 µm) and long-wave (8-12 µm) infrared frequency upconversion modules are investigated in this paper.......Inherent limitations in terms of optical losses, selection of nonlinear crystal(s), detection efficiency and pumping conditions in mid-wave (3-5 µm) and long-wave (8-12 µm) infrared frequency upconversion modules are investigated in this paper....

  6. Supplemental Security Income (SSI) / Internal Revenue Service (IRS) 1099

    Data.gov (United States)

    Social Security Administration — A finder file from SSA's Title XVI database is provided to the IRS. The IRS discloses 1099 information to SSA for use in verifying eligibility, amount, and benefits...

  7. Detectors for proton counting. Si-APD and scintillation detectors

    International Nuclear Information System (INIS)

    Kishimoto, Shunji

    2008-01-01

    Increased intensity of synchrotron radiation requests users to prepare photon pulse detectors having higher counting rates. As detectors for photon counting, silicon-avalanche photodiode (Si-APD) and scintillation detectors were chosen for the fifth series of detectors. Principle of photon detection by pulse and need of amplification function of the detector were described. Structure and working principle, high counting rate measurement system, bunch of electrons vs. counting rate, application example of NMR time spectroscopy measurement and comments for users were described for the Si-APD detector. Structure of scintillator and photomultiplier tube, characteristics of scintillator and performance of detector were shown for the NaI detector. Future development of photon pulse detectors was discussed. (T. Tanaka)

  8. Infrared detectors, focal plane arrays, and imaging sensors; Proceedings of the Meeting, Orlando, FL, Mar. 30, 31, 1989

    Science.gov (United States)

    Dereniak, Eustace L.; Sampson, Robert T.

    1989-10-01

    The present conference on advancements in IR detectors, Schottky-barrier focal plane arrays, CCD image analysis, and HgCdTe materials gives attention to a 256 x 256 PtSi array for IR astronomy, proposals for a second-generation meteosat's advanced optical payload, cryogenic bipolar technology for on-focal-plane signal processing, a parallel cellular processing system for fast generation of perspective plots, and ultrahigh-speed CCD image sensors for scanning applications. Also discussed are MBE GaAs rib waveguide experiments at 10.6 microns, an interferometric thermal detector, the development status of superconducting IR detector research, the absorption coefficients of n-type Hg(1-x)Cd(x)Te samples, and the influence of the surface channel on crosstalk in HgCdTe photovoltaic arrays.

  9. Magnesium borate radiothermoluminescent detectors

    International Nuclear Information System (INIS)

    Kazanskaya, V.A.; Kuzmin, V.V.; Minaeva, E.E.; Sokolov, A.D.

    1974-01-01

    In the report the technology of obtaining polycrystalline magnesium borate activated by dysprosium is described briefly and the method of preparing the tabletted detectors from it is presented. The dependence of the light sum of the samples on the proportion of the components and on the sintering regime has shown that the most sensitive material is obtained at the proportion of boric anhydride and magnesium oxide 2.2-2.4 and at the dysprosium concentration about 1 milligram-atom per gram molecule of the base. The glow curve of such a material has a simple form with one peak the maximum of which is located at 190-200 0 C. The measurement of the main dosimetric characteristics of the magnesium borate tabletted detectors and the comparison with similar parmaeters of the lithium fluoride tabletted detectors have shown that at practically identical effective number the former detectors have the following substantial advantages: the sensitivity is ten-twenty times as large, they are substantially more technological on synthesis of the radiothermoluminophor and during the production of the tabletted detectors, they have a simple glow curve, they do not require the utilization of the thermocycling during the use. (author)

  10. HPGe detector shielding adjustment

    International Nuclear Information System (INIS)

    Trnkova, L.; Rulik, P.

    2008-01-01

    Low-level background shielding of HPGe detectors is used mainly for environmental samples with very low content of radionuclides. National Radiation Protection Institute (SURO) in Prague is equipped with 14 HPGe detectors with relative efficiency up to 150%. The detectors are placed in a room built from materials with low content of natural radionuclides and equipped with a double isolation of the floor against radon. Detectors themselves are placed in lead or steel shielding. Steel shielding with one of these detectors with relative efficiency of 100% was chosen to be rebuilt to achieve lower minimum detectable activity (MDA). Additional lead and copper shielding was built up inside the original steel shielding to reduce the volume of the inner space and filled with nitrogen by means of evaporating liquid nitrogen. The additional lead and copper shielding, consequent reduction of the inner volume and supply of evaporated nitrogen, caused a decrease of the background count and accordingly MDA values as well. The effect of nitrogen evaporation on the net areas of peaks belonging to radon daughters is significant. The enhanced shielding adjustment has the biggest influence in low energy range, what can be seen in collected data. MDA values in energy range from 30 keV to 400 keV decreased to 0.65-0.85 of original value, in energy range from 400 keV to 2 MeV they fell to 0.70-0.97 of original value. (authors)

  11. ATLAS muon detector

    CERN Multimedia

    Muon detectors from the outer layer of the ATLAS experiment at the Large Hadron Collider. Over a million individual detectors combine to make up the outer layer of ATLAS. All of this is exclusively to track the muons, the only detectable particles to make it out so far from the collision point. How the muon’s path curves in the magnetic field depends on how fast it is travelling. A fast muon curves only a very little, a slower one curves a lot. Together with the calorimeters, the muon detectors play an essential role in deciding which collisions to store and which to ignore. Certain signals from muons are a sure sign of exciting discoveries. To make sure the data from these collisions is not lost, some of the muon detectors react very quickly and trigger the electronics to record. The other detectors take a little longer, but are much more precise. Their job is to measure exactly where the muons have passed, calculating the curvature of their tracks in the magnetic field to the nearest five hundredths of a ...

  12. Lepton detector workshop summary

    International Nuclear Information System (INIS)

    Imlay, R.; Iwata, S.; Jacobs, S.

    1976-01-01

    A discussion is given of the initial detector design, focusing on the cost estimates and on the inner detector modules. With regard to inner modules, the rate problem was examined for the closest elements, and the question whether one should use argon or lead-liquid scintillator calorimeters was discussed. New designs which involved major modifications to the lepton detector are considered. The major motivations for alternative designs were twofold. One was that the original detector looked quite expensive, and a study of the tradeoff of money versus physics had not really been done yet. The second point was that, since the physics region to be explored was totally new ground, one would like to leave as many options open as possible and build a detector that was as flexible as possible. A scaled-down version of the original design, which was strongly favored by this study, appears to save an appreciable amount of money with a small decrease in the initial physics scope. The more modular designs seem quite attractive, but not enough time was spent to demonstrate feasibility

  13. IGF-IR targeted therapy: Past, present and future

    NARCIS (Netherlands)

    J.A.M.J.L. Janssen (Joseph); A.J. Varewijck (Aimee)

    2014-01-01

    textabstractThe IGF-I receptor (IGF-IR) has been studied as an anti-cancer target. However, monotherapy trials with IGF-IR targeted antibodies or with IGF-IR specific tyrosine kinase inhibitors have, overall, been very disappointing in the clinical setting. This review discusses potential reasons

  14. IR Cards: Inquiry-Based Introduction to Infrared Spectroscopy

    Science.gov (United States)

    Bennett, Jacqueline; Forster, Tabetha

    2010-01-01

    As infrared spectroscopy (IR) is frequently used in undergraduate organic chemistry courses, an inductive introduction to IR spectroscopy that uses index cards printed with spectra, structures, and chemical names is described. Groups of students are given an alphabetized deck of these "IR cards" to sort into functional groups. The students then…

  15. New technologies of silicon position-sensitive detectors for future tracker systems

    CERN Document Server

    Bassignana, Daniela; Lozano, M

    In view of the new generation of high luminosity colliders, HL-LHC and ILC, a farther investigation of silicon radiation detectors design and technology is demanded, in order to satisfy the stringent requirements of the experiments at such sophisticated machines. In this thesis, innovative technologies of silicon radiation detectors for future tracking systems are proposed. Three dierent devices have been studied and designed with the help of dierent tools for computer simulations. They have been manufactured in the IMB-CNM clean room facilities in Barcelona and characterized with proper experimental set-ups in order to test the detectors capabilities and the quality and suitability of the technologies used for their fabrication. The rst technology deals with the upgrade of dedicated sensors for laser alignment systems in future tracker detectors. The design and technology of common single-sided silicon microstrip detectors have been slightly modied in order to improve IR light transmittance of the devices. T...

  16. BOOTES-IR: near IR follow-up GRB observations by a robotic system

    International Nuclear Information System (INIS)

    Castro-Tirado, A.J.; Postrigo, A. de Ugarte; Jelinek, M.

    2005-01-01

    BOOTES-IR is the extension of the BOOTES experiment, which operates in Southern Spain since 1998, to the near IR (NIR). The goal is to follow up the early stage of the gamma ray burst (GRB) afterglow emission in the NIR, alike BOOTES does already at optical wavelengths. The scientific case that drives the BOOTES-IR performance is the study of GRBs with the support of spacecraft like INTEGRAL, SWIFT and GLAST. Given that the afterglow emission in both, the NIR and the optical, in the instances immediately following a GRB, is extremely bright (reached V = 8.9 in one case), it should be possible to detect this prompt emission at NIR wavelengths too. The combined observations by BOOTES-IR and BOOTES-1 and BOOTES-2 will allow for real time identification of trustworthy candidates to have a high redshift (z > 5). It is expected that, few minutes after a GRB, the IR magnitudes be H ∼ 7-10, hence very high quality spectra can be obtained for objects as far as z = 10 by larger instruments

  17. Solid state detector module

    International Nuclear Information System (INIS)

    Hoffman, D. M.

    1985-01-01

    A solid state detector in which each scintillator is optimally configured and coupled with its associated sensing diode in a way which exploits light piping effects to enhance efficiency, and at the same time provide a detector which is modular in nature. To achieve light piping, the scintillator crystal is oriented such that its sides conform with the crystal cleavage plane, and the sides are highly polished. An array of tungsten collimator plates define the individual channels. Multi-channel scintillator/diode modules are mounted behind and in registry with the plurality of collimator plates. A plurality of scintillators are bonded together after coating the surfaces thereof to minimize optical crosstalk. After lapping the face of the scintillator module, it is then bonded to a diode module with individual scintillators in registration with individual diodes. The module is then positioned in the detector array with collimator plates at the junctions between the scintillators

  18. Cryogenic Tracking Detectors

    CERN Multimedia

    Luukka, P R; Tuominen, E M; Mikuz, M

    2002-01-01

    The recent advances in Si and diamond detector technology give hope of a simple solution to the radiation hardness problem for vertex trackers at the LHC. In particular, we have recently demonstrated that operating a heavily irradiated Si detector at liquid nitrogen (LN$_2$) temperature results in significant recovery of Charge Collection Efficiency (CCE). Among other potential benefits of operation at cryogenic temperatures are the use of large low-resistivity wafers, simple processing, higher and faster electrical signal because of higher mobility and drift velocity of carriers, and lower noise of the readout circuit. A substantial reduction in sensor cost could result The first goal of the approved extension of the RD39 program is to demonstrate that irradiation at low temperature in situ during operation does not affect the results obtained so far by cooling detectors which were irradiated at room temperature. In particular we shall concentrate on processes and materials that could significantly reduce th...

  19. The H1 detector

    International Nuclear Information System (INIS)

    Cozzika, G.

    1992-11-01

    The H1 detector presently operating at the HERA e-p collider is described. A general overview of the detector is given with particular emphasis on the calorimeters, the main element of which is a liquid Argon calorimeter enclosed within a large radius solenoid. Calorimetry in the proton direction, close to the beam-pipe is provided by a copper-silicon pad hadronic calorimeter. In the electron direction a lead-scintillator electromagnetic calorimeter closes the solid angle between the rear part of the liquid Argon calorimeter and the beam-pipe. An iron limited streamer tube tail catcher using the return yoke of the solenoid as absorber completes the calorimetry of the detector. The hardware triggers derived from the calorimeters are also described and some performance details of the calorimeters are given

  20. Improved photon detector

    International Nuclear Information System (INIS)

    Zermeno, A.; Marsh, L.M.

    1981-01-01

    Apparatus and methods used to obtain image information from modulation of a uniform flux. A multi-layered detector apparatus is disclosed which comprises a first conductive layer having two sides, a photoconductive layer thick enough to obtain a desired level of sensitivity and resolution of the detector apparatus when the detector apparatus is exposed to radiation of known energy, one side of the photoconductive layer being integrally affixed to and in electrical contact with one side of the first conductive layer, an insulating layer having two sides that is a phosphor that will emit light when irradiated by x-rays, one side of the insulating layer being affixed to the other side of the photoconductive layer and a transparent conductive layer having two sides, one side of the transparent conductive layer being affixed to the other side of the insulating layer. (author)

  1. The ATLAS Inner Detector

    CERN Document Server

    Gray, HM; The ATLAS collaboration

    2012-01-01

    The ATLAS experiment at the LHC is equipped with a charged particle tracking system, the Inner Detector, built on three subdetectors, which provide high precision measurements made from a fine detector granularity. The Pixel and microstrip (SCT) subdetectors, which use the silicon technology, are complemented with the Transition Radiation Tracker. Since the LHC startup in 2009, the ATLAS inner tracker has played a central role in many ATLAS physics analyses. Rapid improvements in the calibration and alignment of the detector allowed it to reach nearly the nominal performance in the timespan of a few months. The tracking performance proved to be stable as the LHC luminosity increased by five orders of magnitude during the 2010 proton run, New developments in the offline reconstruction for the 2011 run will improve the tracking performance in high pile-up conditions as well as in highly boosted jets will be discussed.

  2. Silicon radiation detector

    International Nuclear Information System (INIS)

    Benc, I.; Kerhart, J.; Kopecky, J.; Krca, P.; Veverka, V.; Weidner, M.; Weinova, H.

    1992-01-01

    The silicon radiation detector, which is designed for the detection of electrons with energies above 500 eV and of radiation within the region of 200 to 1100 nm, comprises a PIN or PNN + type photodiode. The active acceptor photodiode is formed by a detector surface of shallow acceptor diffusion surrounded by a collector band of deep acceptor diffusion. The detector surface of shallow P-type diffusion with an acceptor concentration of 10 15 to 10 17 atoms/cm 3 reaches a depth of 40 to 100 nm. One sixth to one eighth of the collector band width is overlapped by the P + collector band at a width of 150 to 300 μm with an acceptor concentration of 10 20 to 10 21 atoms/cm 3 down a depth of 0.5 to 3 μm. This band is covered with a conductive layer, of NiCr for instance. (Z.S.)

  3. Superlattice electroabsorption radiation detector

    International Nuclear Information System (INIS)

    Cooke, B.J.

    1993-06-01

    This paper provides a preliminary investigation of a new class of superlattice electroabsorption radiation detectors that employ direct optical modulation for high-speed, two-dimensional (2-D), high-resolution imaging. Applications for the detector include nuclear radiation measurements, tactical guidance and detection (laser radar), inertial fusion plasma studies, and satellite-based sensors. Initial calculations discussed in this paper indicate that a 1.5-μm (GaAlAs) multi-quantum-well (MQW) Fabry-Perot detector can respond directly to radiation of energies 1 eV to 10 KeV, and indirectly (with scattering targets) up through gamma, with 2-D sample rates on the order of 20 ps

  4. The AFP Detector Control System

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00514541; The ATLAS collaboration

    2017-01-01

    The ATLAS Forward Proton (AFP) detector is one of the forward detectors of the ATLAS experiment at CERN aiming at measuring momenta and angles of diffractively scattered protons. Silicon Tracking and Time-of-Flight detectors are located inside Roman Pot stations inserted into beam pipe aperture. The AFP detector is composed of two stations on each side of the ATLAS interaction point and is under commissioning. The detector is provided with high and low voltage distribution systems. Each station has vacuum and cooling systems, movement control and all the required electronics for signal processing. Monitoring of environmental parameters, like temperature and radiation, is also available. The Detector Control System (DCS) provides control and monitoring of the detector hardware and ensures the safe and reliable operation of the detector, assuring good data quality. Comparing with DCS systems of other detectors, the AFP DCS main challenge is to cope with the large variety of AFP equipment. This paper describes t...

  5. The AFP detector control system

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00514541; The ATLAS collaboration; Caforio, Davide; Czekierda, Sabina; Hajduk, Zbigniew; Olszowska, Jolanta; Sicho, Petr; Zabinski, Bartlomiej

    The ATLAS Forward Proton (AFP) detector is one of the forward detectors of the ATLAS experiment at CERN aiming at measuring momenta and angles of diffractively scattered protons. Silicon Tracking and Time-of-Flight detectors are located inside Roman Pot stations inserted into beam pipe aperture. The AFP detector is composed of two stations on each side of the ATLAS interaction point and is under commissioning. The detector is provided with high and low voltage distribution systems. Each station has vacuum and cooling systems, movement control and all the required electronics for signal processing. Monitoring of environmental parameters, like temperature and radiation, is also available. The Detector Control System (DCS) provides control and monitoring of the detector hardware and ensures the safe and reliable operation of the detector, assuring good data quality. Comparing with DCS systems of other detectors, the AFP DCS main challenge is to cope with the large variety of AFP equipment. This paper describes t...

  6. Thermophysics modeling of an infrared detector cryochamber for transient operational scenario

    Science.gov (United States)

    Singhal, Mayank; Singhal, Gaurav; Verma, Avinash C.; Kumar, Sushil; Singh, Manmohan

    2016-05-01

    An infrared detector (IR) is essentially a transducer capable of converting radiant energy in the infrared regime into a measurable form. The benefit of infrared radiation is that it facilitates viewing objects in dark or through obscured conditions by detecting the infrared energy emitted by them. One of the most significant applications of IR detector systems is for target acquisition and tracking of projectile systems. IR detectors also find widespread applications in the industry and commercial market. The performance of infrared detector is sensitive to temperatures and performs best when cooled to cryogenic temperatures in the range of nearly 120 K. However, the necessity to operate in such cryogenic regimes increases the complexity in the application of IR detectors. This entails a need for detailed thermophysics analysis to be able to determine the actual cooling load specific to the application and also due to its interaction with the environment. This will enable design of most appropriate cooling methodologies suitable for specific scenarios. The focus of the present work is to develop a robust thermo-physical numerical methodology for predicting IR cryochamber behavior under transient conditions, which is the most critical scenario, taking into account all relevant heat loads including radiation in its original form. The advantage of the developed code against existing commercial software (COMSOL, ANSYS, etc.), is that it is capable of handling gas conduction together with radiation terms effectively, employing a ubiquitous software such as MATLAB. Also, it requires much smaller computational resources and is significantly less time intensive. It provides physically correct results enabling thermal characterization of cryochamber geometry in conjunction with appropriate cooling methodology. The code has been subsequently validated experimentally as the observed cooling characteristics are found to be in close agreement with the results predicted using

  7. Semiconductor Thermal Neutron Detector

    Directory of Open Access Journals (Sweden)

    Toru Aoki

    2014-02-01

    Full Text Available The  CdTe  and  GaN  detector  with  a  Gd  converter  have  been developed  and  investigated  as  a  neutron  detector  for neutron  imaging.  The  fabricated  Gd/CdTe  detector  with  the  25  mm  thick  Gd  was  designed  on  the  basis  of  simulation results  of  thermal  neutron  detection  efficiency  and  spatial  resolution.  The  Gd/CdTe  detector  shows  the  detection  of neutron  capture  gamma  ray  emission  in  the  155Gd(n,  g156Gd,  157Gd(n,  g158Gd  and  113Cd(n,  g114Cd  reactions  and characteristic X-ray emissions due to conversion-electrons generated inside the Gd film. The observed efficient thermal neutron detection with the Gd/CdTe detector shows its promise in neutron radiography application. Moreover, a BGaN detector has also investigated to separate neutron signal from gamma-ray clearly. 

  8. Detectors for rare events

    International Nuclear Information System (INIS)

    Charpak, G.

    1984-01-01

    This chapter discusses the possibility of combining the advantages of photographic data retrieval with the flexibility of operation of conventional gaseous or liquid detectors operated with electronic data retrieval. Possible applications of the proposed detectors to such problems as nucleon decay, neutrinoelectron interaction, and the search for magnetic monopoles are examined. Topics considered include the photography of ionization patterns, the photography of ionization tracks with the multistep avalanche chambers, and exploiting the stimulated scintillation light. Two processes which give rise to the emission of light when ionizing electrons interact in gases under the influence of an electric field are described

  9. The Micro Wire Detector

    Energy Technology Data Exchange (ETDEWEB)

    Adeva, B.; Gomez, F.; Pazos, A.; Pfau, R.; Plo, M. E-mail: maximo.plo@cern.ch; Rodriguez, J.M.; Vazquez, P.; Labbe, J.C

    1999-10-11

    We present the performance of a new proportional gas detector. Its geometry consists of a cathode plane with 70x70 {mu}m{sup 2} apertures, crossed by 25 {mu}m anode strips to which it is attached by 50 {mu}m kapton spacers. In the region where the avalanche takes place, the anode strips are suspended in the gas mixture as in a standard wire chamber. This detector exhibits high rate capability and large gains, introducing very little material. (author)

  10. A neutron activation detector

    International Nuclear Information System (INIS)

    Ambardanishvili, T.S.; Kolomiitsev, M.A.; Zakharina, T.Y.; Dundua, V.J.; Chikhladze, N.V.

    1973-01-01

    The present invention concerns a neutron activation detector made from a moulded and hardened composition. According to the invention, that composition contains an activable substance constituted by at least two chemical elements and/or compounds of at least two chemical elements. Each of these chemical elements is capable of reacting with the neutrons forming radio-active isotopes with vatious levels of energy during desintegration. This neutron detector is mainly suitable for measuring integral thermal neutron and fast neutron fluxes during irradiation of the sample, and also for measuring the intensities of neutron fields [fr

  11. Acoustic emission intrusion detector

    International Nuclear Information System (INIS)

    Carver, D.W.; Whittaker, J.W.

    1980-01-01

    An intrusion detector is provided for detecting a forcible entry into a secured structure while minimizing false alarms. The detector uses a piezoelectric crystal transducer to sense acoustic emissions. The transducer output is amplified by a selectable gain amplifier to control the sensitivity. The rectified output of the amplifier is applied to a Schmitt trigger circuit having a preselected threshold level to provide amplitude discrimination. Timing circuitry is provided which is activated by successive pulses from the Schmitt trigger which lie within a selected time frame for frequency discrimination. Detected signals having proper amplitude and frequency trigger an alarm within the first complete cycle time of a detected acoustical disturbance signal

  12. Compton current detector

    International Nuclear Information System (INIS)

    Carvalho Campos, J.S. de.

    1984-01-01

    The project and construction of a Compton current detector, with cylindrical geometry using teflon as dielectric material; for electromagnetic radiation in range energy between 10 KeV and 2 MeV are described. The measurements of Compton current in teflon were obtained using an electrometer. The Compton current was promoted by photon flux proceeding from X ray sources (MG 150 Muller device) and gamma rays of 60 Co. The theory elaborated to explain the experimental results is shown. The calibration curves for accumulated charge and current in detector in function of exposition rates were obtained. (M.C.K.) [pt

  13. ATLAS Forward Proton Detector

    CERN Document Server

    Grieco, Chiara; The ATLAS collaboration

    2018-01-01

    The aim of the ATLAS Forward Proton (AFP) detector system is the measurement of protons scattered diffractively or electromagnetically at very small angles. The full two-arm setup was installed during the 2016/2017 EYETS. This allows measurements of processes with two forward protons: central diffraction, exclusive production, and two-photon processes. In 2017, AFP participated in the ATLAS high-luminosity data taking on the day-by-day basis. In addition, several special runs with reduced luminosity were taken. The poster will present the AFP detectors and the lessons learned from the last year operation and some performance from 2016 and 2017.

  14. Failed fuel detector

    International Nuclear Information System (INIS)

    Kogure, Sumio; Seya, Toru; Watanabe, Masaaki.

    1976-01-01

    Purpose: To enhance the reliability of a failed fuel detector which detects radioactivity of nuclear fission products leaked out from fuel elements in cooling water. Constitution: Collected specimen is introduced into a separator and co-existing material considered to be an impediment is separated and removed by ion exchange resins, after which this specimen is introduced into a container housing therein a detector to systematically measure radioactivity. Thereby, it is possible to detect a signal lesser in variation in background, and inspection work also becomes simple. (Kawakami, Y.)

  15. Neutron detector assembly

    International Nuclear Information System (INIS)

    Hanai, Koi; Shirayama, Shinpei.

    1978-01-01

    Purpose: To prevent gamma-ray from leaking externally passing through the inside of a neutron detector assembly. Constitution: In a neutron detector assembly having a protection pipe formed with an enlarged diameter portion which serves also as a spacer, partition plates with predetermined width are disposed at the upper and the lower portions in this expanded portion. A lot of metal particles are filled into spaces formed by the partition plates. In such a structure, the metal particles well-absorb the gamma-rays from above and convert them into heat to provide shielding for the gamma-rays. (Horiuchi, T.)

  16. Multiple chamber ionization detector

    International Nuclear Information System (INIS)

    Solomon, E.E.

    1982-01-01

    An ionization smoke detector employs a single radiation source in a construction comprising at least two chambers with a center or node electrode. The radioactive source is associated with this central electrode, and its positioning may be adjusted relative to the electrode to alter the proportion of the source that protrudes into each chamber. The source may also be mounted in the plane of the central electrode, and positioned relative to the center of the electrode. The central electrode or source may be made tiltable relative to the body of the detector

  17. High efficiency scintillation detectors

    International Nuclear Information System (INIS)

    Noakes, J.E.

    1976-01-01

    A scintillation counter consisting of a scintillation detector, usually a crystal scintillator optically coupled to a photomultiplier tube which converts photons to electrical pulses is described. The photomultiplier pulses are measured to provide information on impinging radiation. In inorganic crystal scintillation detectors to achieve maximum density, optical transparency and uniform activation, it has been necessary heretofore to prepare the scintillator as a single crystal. Crystal pieces fail to give a single composite response. Means are provided herein for obtaining such a response with crystal pieces, such means comprising the combination of crystal pieces and liquid or solid organic scintillator matrices having a cyclic molecular structure favorable to fluorescence. 8 claims, 6 drawing figures

  18. ALICE Transition Radiation Detector

    CERN Multimedia

    Pachmayer, Y

    2013-01-01

    The Transition Radiation Detector (TRD) is the main electron detector in ALICE. In conduction with the TPC and the ITS, it provides the necessary electron identification capability to study: - Production of light and heavy vector mesons as well as the continuum in the di-electron channel, - Semi leptonic decays of hadrons with open charm and open beauty via the single-electron channel using the displaced vertex information provided by the ITS, - Correlated DD and BB pairs via coincidences of electrons in the central barrel and muons in the forward muon arm, - Jets with high Pτ tracks in one single TRD stack.

  19. The LUCID-2 Detector

    CERN Document Server

    Sbarra, Carla; The ATLAS collaboration

    2018-01-01

    LUCID-2 (LUminosity Cherenkov Integrating Detector) is the upgrade of the main detector dedicated to luminosity monitoring and measurements in the ATLAS Experiment at CERN. Most changes were motivated by the large (up to 50) number of interactions per bunch-crossing and short (25 ns) bunch-spacing expected in LHC run 2 (2015-2018). Both fast online information used by LHC for luminosity optimisation and levelling in ATLAS, and per-bunch data to be used offline, come from LUCID-2.

  20. Electret radiation detector

    International Nuclear Information System (INIS)

    Kubu, M.

    1981-01-01

    The electret radiation detector consists of 30 to 35% of bee wax and of 65 to 70% of colophony. It is mainly the induction conductivity of charo.es between the dipoles in the electret which is used for detection. In the manufacture of the detector, the average atomic number of the electret can be altered by adding various compounds, such as ZnO, which also increases efficiency for gamma radiation. An alpha or beta emitter can also be built-in in the electret. (B.S.)

  1. Report of the compact detector subgroup

    International Nuclear Information System (INIS)

    Kirkby, J.; Kondo, T.; Olsen, S.L.

    1988-01-01

    This report discusses different detector designs that are being proposed for Superconducting Super Collider experiments. The detectors discussed are: Higgs particle detector, Solid State Box detector, SMART detector, muon detection system, and forward detector. Also discussed are triggering strategies for these detectors, high field solenoids, barium fluoride option for EM calorimetry, radiation damage considerations, and cost estimates

  2. Design of mini-multi-gas monitoring system based on IR absorption

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Q.L.; Zhang, W.D.; Xue, C.Y.; Xiong, J.J.; Ma, Y.C.; Wen, F. [Northern University of China, Taiyuan (China)

    2008-07-15

    In this paper, a novel non-dispersive infrared ray (IR) gas detection system is described. Conventional devices typically include several primary components: a broadband source (usually all incandescent filament), a rotating chopper shutter, a narrow-band filter, a sample tube and a detector. But we mainly use file mini-multi-channel detector, electrical modulation means and mini-gas-cell structure. To solve the problems of gas accidents in coal mines, and for family safety that results from using gas, this new IR detection system with integration, miniaturization and non-moving parts has been developed. It is based on the principle that certain gases absorb infrared radiation at specific (and often unique) wavelengths. The infrared detection optics principle used in developing this system is mainly analyzed. The idea of multi-gas detection is introduced and guided through the analysis of the single-gas detection. Through researching the design of cell structure, a cell with integration and miniaturization has been devised. By taking a single-chip microcomputer (SCM) as intelligence handling, the functional block diagram of a gas detection system is designed with the analyzing and devising of its hardware and software system. The way of data transmission on a controller area network (CAN) bus and wireless data transmission mode is explained. This system has reached the technology requirement of lower power consumption, mini-volume, wide measure range, and is able to realize multi-gas detection.

  3. Chemical fingerprinting of Arabidopsis using Fourier transform infrared (FT-IR) spectroscopic approaches.

    Science.gov (United States)

    Gorzsás, András; Sundberg, Björn

    2014-01-01

    Fourier transform infrared (FT-IR) spectroscopy is a fast, sensitive, inexpensive, and nondestructive technique for chemical profiling of plant materials. In this chapter we discuss the instrumental setup, the basic principles of analysis, and the possibilities for and limitations of obtaining qualitative and semiquantitative information by FT-IR spectroscopy. We provide detailed protocols for four fully customizable techniques: (1) Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS): a sensitive and high-throughput technique for powders; (2) attenuated total reflectance (ATR) spectroscopy: a technique that requires no sample preparation and can be used for solid samples as well as for cell cultures; (3) microspectroscopy using a single element (SE) detector: a technique used for analyzing sections at low spatial resolution; and (4) microspectroscopy using a focal plane array (FPA) detector: a technique for rapid chemical profiling of plant sections at cellular resolution. Sample preparation, measurement, and data analysis steps are listed for each of the techniques to help the user collect the best quality spectra and prepare them for subsequent multivariate analysis.

  4. Life Finder Detectors: An Overview of Detector Technologies for Detecting Life on Other Worlds

    Science.gov (United States)

    Rauscher, Bernard J.; Domagal-Goldman, Shawn; Greenhouse, Matthew A.; Hsieh, Wen-Ting; McElwain, Michael W.; Moseley, Samuel H.; Noroozian, Omid; Norton, Tim; Kutyrev, Alexander; Rinehart, Stephen; stock, Joseph

    2015-01-01

    Future large space telescopes will seek evidence for life on other worlds by searching for spectroscopic biosignatures. Atmospheric biosignature gases include oxygen, ozone, water vapor, and methane. Non-biological gases, including carbon monoxide and carbon dioxide, are important for discriminating false positives. All of these gases imprint spectroscopic features in the UV through mid-IR that are potentially detectable using future space based coronagraphs or star shades for starlight suppression.Direct spectroscopic biosignature detection requires sensors capable of robustly measuring photon arrival rates on the order of 10 per resolution element per hour. Photon counting is required for some wavefront sensing and control approaches to achieve the requisite high contrast ratios. We review life finder detector technologies that either exist today, or are under development, that have the potential to meet these challenging requirements. We specifically highlight areas where more work or development is needed.Life finder detectors will be invaluable for a wide variety of other major science programs. Because of its cross cutting nature; UV, optical, and infrared (UVOIR) detector development features prominently in the 2010 National Research Council Decadal Survey, 'New Worlds, New Horizons in Astronomy and Astrophysics', and the NASA Cosmic Origins Program Technology Roadmap.

  5. The Upgraded D0 detector

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, D.L.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahmed, S.N.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G.A.; Anastasoaie, M.; Andeen, T.; Anderson, J.T.; Anderson, S.; /Buenos Aires U. /Rio de Janeiro, CBPF /Sao Paulo, IFT /Alberta U.

    2005-07-01

    The D0 experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to D0.

  6. DEPFET-detectors: New developments

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, G. [MPI Semiconductor Laboratory, Max Planck Institut fuer Physik, Otto Hahn Ring 6, D 81739 Munich (Germany)]. E-mail: gerhard.lutz@cern.ch; Andricek, L. [MPI Semiconductor Laboratory, Max Planck Institut fuer Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Eckardt, R. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Haelker, O. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Hermann, S. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Lechner, P. [MPI Semiconductor Laboratory, PNSensor GmbH, Otto Hahn Ring 6, D 81739 Munich (Germany); Richter, R. [MPI Semiconductor Laboratory, Max Planck Institut fuer Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Schaller, G. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Schopper, F. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Soltau, H. [MPI Semiconductor Laboratory, PNSensor GmbH, Otto Hahn Ring 6, D 81739 Munich (Germany); Strueder, L. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Treis, J. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Woelfl, S. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Zhang, C. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany)

    2007-03-01

    The Depleted Field Effect Transistor (DEPFET) detector-amplifier structure forms the basis of a variety of detectors being developed at the MPI semiconductor laboratory. These detectors are foreseen to be used in astronomy and particle physics as well as other fields of science. The detector developments are described together with some intended applications. They comprise the X-ray astronomy missions XEUS and SIMBOL-X as well as the vertex detector of the planned International Linear Collider (ILC). All detectors are produced in the MPI semiconductor laboratory that has a complete silicon technology available.

  7. DEPFET-detectors: New developments

    International Nuclear Information System (INIS)

    Lutz, G.; Andricek, L.; Eckardt, R.; Haelker, O.; Hermann, S.; Lechner, P.; Richter, R.; Schaller, G.; Schopper, F.; Soltau, H.; Strueder, L.; Treis, J.; Woelfl, S.; Zhang, C.

    2007-01-01

    The Depleted Field Effect Transistor (DEPFET) detector-amplifier structure forms the basis of a variety of detectors being developed at the MPI semiconductor laboratory. These detectors are foreseen to be used in astronomy and particle physics as well as other fields of science. The detector developments are described together with some intended applications. They comprise the X-ray astronomy missions XEUS and SIMBOL-X as well as the vertex detector of the planned International Linear Collider (ILC). All detectors are produced in the MPI semiconductor laboratory that has a complete silicon technology available

  8. Characteristics of Ir/Au transition edge sensor

    International Nuclear Information System (INIS)

    Kunieda, Yuichi; Ohno, Masashi; Nakazawa, Masaharu; Takahashi, Hiroyuki; Fukuda, Daiji; Ohkubo, Masataka

    2004-01-01

    A new type of microcalorimeter has been developed using a transition edge sensor (TES) and an electro-thermal feedback (ETF) method to achieve higher energy resolution and higher count rate. We are developing a superconducting Ir-based transition edge sensor (TES) microcalorimeters. To improve thermal conductivity and achieve higher energy resolution with an Ir-TES, we fabricated an Ir/Au bilayer TES by depositing gold on Ir and investigated the influence of intermediate between superconducting and normal states at the transition edge for signal responses by microscopic observation in the Ir/Au-TES. (T. Tanaka)

  9. Performance overview of the Euclid infrared focal plane detector subsystems

    Science.gov (United States)

    Waczynski, A.; Barbier, R.; Cagiano, S.; Chen, J.; Cheung, S.; Cho, H.; Cillis, A.; Clémens, J.-C.; Dawson, O.; Delo, G.; Farris, M.; Feizi, A.; Foltz, R.; Hickey, M.; Holmes, W.; Hwang, T.; Israelsson, U.; Jhabvala, M.; Kahle, D.; Kan, Em.; Kan, Er.; Loose, M.; Lotkin, G.; Miko, L.; Nguyen, L.; Piquette, E.; Powers, T.; Pravdo, S.; Runkle, A.; Seiffert, M.; Strada, P.; Tucker, C.; Turck, K.; Wang, F.; Weber, C.; Williams, J.

    2016-07-01

    In support of the European space agency (ESA) Euclid mission, NASA is responsible for the evaluation of the H2RG mercury cadmium telluride (MCT) detectors and electronics assemblies fabricated by Teledyne imaging systems. The detector evaluation is performed in the detector characterization laboratory (DCL) at the NASA Goddard space flight center (GSFC) in close collaboration with engineers and scientists from the jet propulsion laboratory (JPL) and the Euclid project. The Euclid near infrared spectrometer and imaging photometer (NISP) will perform large area optical and spectroscopic sky surveys in the 0.9-2.02 μm infrared (IR) region. The NISP instrument will contain sixteen detector arrays each coupled to a Teledyne SIDECAR application specific integrated circuit (ASIC). The focal plane will operate at 100K and the SIDECAR ASIC will be in close proximity operating at a slightly higher temperature of 137K. This paper will describe the test configuration, performance tests and results of the latest engineering run, also known as pilot run 3 (PR3), consisting of four H2RG detectors operating simultaneously. Performance data will be presented on; noise, spectral quantum efficiency, dark current, persistence, pixel yield, pixel to pixel uniformity, linearity, inter pixel crosstalk, full well and dynamic range, power dissipation, thermal response and unit cell input sensitivity.

  10. Mesoporous silica nanoparticle supported PdIr bimetal catalyst for selective hydrogenation, and the significant promotional effect of Ir

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui; Huang, Chao; Yang, Fan [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Yang, Xu [Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China); Du, Li [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China); Liao, Shijun, E-mail: chsjliao@scut.edu.cn [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China)

    2015-12-01

    Graphical abstract: A mesoporous silica nanoparticle (MSN) supported bimetal catalyst, PdIr/MSN, was prepared by a facile impregnation and hydrogen reduction method. The strong promotional effect of Ir was observed and thoroughly investigated. At the optimal molar ratio of Ir to Pd (N{sub Ir}/N{sub Pd} = 0.1), the activity of PdIr{sub 0.1}/MSN was up to eight times and 28 times higher than that of monometallic Pd/MSN and Ir/MSN, respectively. The catalysts were characterized comprehensively by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen temperature programmed reduction, which revealed that the promotional effect of Ir may be due to the enhanced dispersion of active components on the MSN, and to the intensified Pd–Ir electronic interaction caused by the addition of Ir. - Highlights: • Mesoporous nanoparticles were synthesized and used as support for metal catalyst. • PdIr bimetallic catalyst exhibited significantly improved hydrogenation activity. • The strong promotion of Ir was recognized firstly and investigated intensively. • PdIr exhibits 18 times higher activity than Pd to the hydrogenation of nitrobenzene. - Abstract: A mesoporous silica nanoparticle (MSN) supported bimetal catalyst, PdIr/MSN, was prepared by a facile impregnation and hydrogen reduction method. The strong promotional effect of Ir was observed and thoroughly investigated. At the optimal molar ratio of Ir to Pd (N{sub Ir}/N{sub Pd} = 0.1), the activity of PdIr{sub 0.1}/MSN was up to eight times and 28 times higher than that of monometallic Pd/MSN and Ir/MSN, respectively. The catalysts were characterized comprehensively by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen temperature programmed reduction, which revealed that the promotional effect of Ir may be due to the enhanced dispersion of active components on the MSN, and to the intensified Pd–Ir electronic interaction

  11. Controlling Hydrogenation of Graphene on Ir(111)

    DEFF Research Database (Denmark)

    Balog, Richard; Andersen, Mie; Jørgensen, Bjarke

    2013-01-01

    Combined fast X-ray photoelectron spectroscopy and density functional theory calculations reveal the presence of two types of hydrogen adsorbate structures at the graphene/ Ir(111) interface, namely, graphane-like islands and hydrogen dimer structures. While the former give rise to a periodic...... pattern, dimers tend to destroy the periodicity. Our data reveal distinctive growth rates and stability of both types of structures, thereby allowing one to obtain well-defined patterns of hydrogen clusters. The ability to control and manipulate the formation and size of hydrogen structures on graphene...

  12. PEP-II IR-2 Alignment

    International Nuclear Information System (INIS)

    Seryi, A

    2004-01-01

    This paper describes the first results and preliminary analysis obtained with several alignment monitoring systems recently installed in the PEP-II interaction region. The hydrostatic level system, stretched wire system, and laser tracker have been installed in addition to the existing tiltmeters and LVDT sensors. These systems detected motion of the left raft, which correlated primarily with the low energy ring (LER) current. The motion is of the order of 120 micrometers. The cause was identified as synchrotron radiation heating the beampipe, causing its expansion which then results in its deformation and offset of the IR quadrupoles. We also discuss further plans on measurements, analysis and means to counteract this motion

  13. Computer dosimetry of 192Ir wire

    International Nuclear Information System (INIS)

    Kline, R.W.; Gillin, M.T.; Grimm, D.F.; Niroomand-Rad, A.

    1985-01-01

    The dosimetry of 192 Ir linear sources with a commercial treatment planning computer system has been evaluated. Reference dose rate data were selected from the literature and normalized in a manner consistent with our clinical and dosimetric terminology. The results of the computer calculations are compared to the reference data and good agreement is shown at distances within about 7 cm from a linear source. The methodology of translating source calibration in terms of exposure rate for use in the treatment planning computer is developed. This may be useful as a practical guideline for users of similar computer calculation programs for iridium as well as other sources

  14. Stringy horizons and UV/IR mixing

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Israel, Roy [Physics Department, Tel-Aviv University Israel,Ramat-Aviv, 69978 (Israel); Giveon, Amit [Racah Institute of Physics, The Hebrew University,Jerusalem, 91904 (Israel); Itzhaki, Nissan; Liram, Lior [Physics Department, Tel-Aviv University Israel,Ramat-Aviv, 69978 (Israel)

    2015-11-24

    The target-space interpretation of the exact (in α{sup ′}) reflection coefficient for scattering from Euclidean black-hole horizons in classical string theory is studied. For concreteness, we focus on the solvable SL(2,ℝ){sub k}/U(1) black hole. It is shown that it exhibits a fascinating UV/IR mixing, dramatically modifying the late-time behavior of general relativity. We speculate that this might play an important role in the black-hole information puzzle, as well as in clarifying features related with the non-locality of Little String Theory.

  15. Atsiskaitymai e. versle: ypatumai ir naujos tendencijos

    OpenAIRE

    Vyšniauskas, Jonas

    2014-01-01

    Alternatyvių atsiskaitymų e. versle sistemos pradeda kelti rimtą grėsmę tradiciniams atsiskaitymams elektronine bankininkyste, mokėjimo kortelėmis ar grynaisiais pinigais. Todėl būtina detaliau išsiaiškinti kokie yra alternatyvių atsiskaitymų ypatumai, kurie veiksniai vartotojams yra svarbiausi ir kokie yra alternatyvūs atsiskaitymo būdai. Tai siekiama padaryti išanalizuojant mokslinę literatūrą, pateikiant pagrindines alternatyvių atsiskaitymų sistemas, atliekant alternatyvių atsiskaitymų pa...

  16. Fast IR diodes thermometer for tokamak

    International Nuclear Information System (INIS)

    Chen Xiangbo

    2001-01-01

    A 30 channel fast IR pyrometry array has been constructed for tokamak, which has 0.5 μs time response, 10 mm diameter spatial resolution and 5 degree C temperature resolution. The temperature measuring range is from 250 degree C to 1200 degree C. The two dimensional temperature profiles of the first wall during both major and minor disruptions can be measured with an accuracy of about 1% measuring temperature, which is adequate for tokamak experiments. This gives a very useful tool for the disruption study, especially for the divertor physics and edge heat flux research on tokamak and other magnetic confinement devices

  17. Reprocessing WFC3/IR Exposures Affected by Time-Variable Backgrounds

    Science.gov (United States)

    Brammer, G.

    2016-11-01

    The background seen in WFC3/IR observations frequently shows strong time-dependent behavior above the constant flux expected for zodiacal continuum light. This is often caused by an emission line of helium at 1.083 μm excited in the sun-illuminated upper atmosphere, when seen in the filters (F105W, F110W) and grisms (G102, G141) sensitive to the feature. The default behavior of the calwf3 pipeline assumes constant source-plus-background fluxes when it performs up-the-ramp fitting to identify cosmic rays and determine the average count rate within a MULTIACCUM IR exposure. calwf3 provides undesirable results in the presence of strongly variable backgrounds, primarily in the form of elevated and non-Gaussian noise in the FLT products. Here we describe methods to improve the noise properties of the reduced products. In the first, we simply turn off the calwf3 crcorr step, treating the IR detector as if it were a CCD, i.e., accumulating flux and reading it out at the end of the exposure. Next, we artificially flatten the ramps in the IMA products and then allow calwf3 to proceed as normal fitting the ramp and identifying CRs. Either of these procedures enable recovery of datasets otherwise corrupted beyond repair and have no discernible effects on photometry of sources in deep combined images.

  18. SAT's infrared equipment using second-generation detectors

    Science.gov (United States)

    Siriex, Michel B.

    1995-09-01

    In 1982 SAT proposed for the first time a second generation detector in the design of FLIRs for the TRIGAT program, since then different types of IR equipment have been developed on the basis of this technology: (1) An infra-red seeker for the MICA missile. (2) Three types of IRST: VAMPIR MB for naval applications, SIRENE for the Army and OSF for the Rafale aircraft. (3) Three thermal imagers: Condor 1 for the mast mounted sight equipping the long range anti tank system, Tiger installed on the sight of the medium range antitank system, and Condor 2 for the pilot sight of the TRIGAT French-German helicopter. Infra-red detectors are MCT IR-CCD focal plane arrays developed by SOFRADIR with the objective of the best standardization possible in spite of different configurations and specifications for each program. In this paper, we intend to present the main features of this technology for these programs and the advantages obtained by comparison with the first generation in terms of performance. Industrialization of these products is starting now, and a specific effort has been made to standardize the components, especially the driving and read out electronics. A set of ASICs has been developed to make compact detection modules including a detector in his dewar, a cooling machine, and a proximity electronic.

  19. Design and Development of transducer for IR radiation measurement

    International Nuclear Information System (INIS)

    Pattarachindanuwong, Surat; Poopat, Bovornchoke; Meethong, Wachira

    2003-06-01

    Recently, IR radiation has many important roles such as for plastics industry, food industry and medical instrumentation. The consequence of exposed irradiation objects from IR can be greatly affected by the quantity of IR radiation. Therefore the objectively this research is to design and develop a transducer for IR radiation measurement. By using a quartz halogen lamp as a IR heat source of IR radiation and a thermopile sensor as a transducer. The thermal conductivity of transducer and air flow, were also considered for design and development of transducer. The study shows that the designed transducer can be used and applied in high temperature process, for example, the quality control of welding, the non-contact temperature measurement of drying oven and the testing of IR source in medical therapy device

  20. Electromagnetic radiation detector

    Science.gov (United States)

    Benson, Jay L.; Hansen, Gordon J.

    1976-01-01

    An electromagnetic radiation detector including a collimating window, a cathode member having a photoelectric emissive material surface angularly disposed to said window whereby radiation is impinged thereon at acute angles, an anode, separated from the cathode member by an evacuated space, for collecting photoelectrons emitted from the emissive cathode surface, and a negatively biased, high transmissive grid disposed between the cathode member and anode.

  1. B-factory detectors

    International Nuclear Information System (INIS)

    Marlow, D.R.

    2002-01-01

    The designs of the recently commissioned BaBar and Belle B-Factory detectors are described. The discussion is organized around the methods and instruments used to detect the so-called gold-plated-mode B 0 →J/ΨK S decays and related modes

  2. The LUCID-2 Detector

    CERN Document Server

    Pinfold, James; The ATLAS collaboration

    2017-01-01

    The LUCID-2 detector is the main online and offline luminosity provider of the ATLAS experiment. It provides over 100 different luminosity measurements from different algorithms for each of the 2808/3546 filled/total LHC bunches. LUCID was entirely redesigned in preparation for LHC Run 2: both the detector and the electronics were upgraded in order to cope with the challenging conditions expected at the LHC center of mass energy of 13 TeV with only 25 ns bunch-spacing. While LUCID-1 used gas as a Cherenkov medium, the LUCID-2 detector is in a new unique way using the quartz windows of small photomultipliers as the Cherenkov medium. The main challenge for a luminometer is to keep the efficiency constant during years of data-taking. LUCID-2 is using an innovative calibration system based on radioactive 207 Bi sources deposited on the quartz window of the readout photomultipliers. This makes it possible to accurately monitor and control the gain of the photomultipliers so that the detector efficiency can be kept...

  3. ATLAS Pixel Detector Upgrade

    CERN Document Server

    Flick, T; The ATLAS collaboration

    2009-01-01

    The first upgrade for higher luminosity at LHC for the ATLAS pixel detector is the insertion of a forth layer, the IBL. The talk gives an overview about what the IBL is and how it will be set up, as well as to give a status of the research and develoment work.

  4. Calibration of germanium detectors

    International Nuclear Information System (INIS)

    Debertin, K.

    1983-01-01

    The process of determining the energy-dependent detection probability with measurements using Ge (Li) and high-grade germanium detectors is described. The paper explains which standards are best for a given purpose and given requirements as to accuracy, and how to assess measuring geometry variations and summation corrections. (DG) [de

  5. filled neutron detectors

    Indian Academy of Sciences (India)

    Boron trifluoride (BF3) proportional counters are used as detectors for thermal neutrons. They are characterized by high neutron sensitivity and good gamma discriminating properties. Most practical BF3 counters are filled with pure boron trifluoride gas enriched up to 96% 10B. But BF3 is not an ideal proportional counter ...

  6. The BABAR Detector

    Energy Technology Data Exchange (ETDEWEB)

    Luth, Vera G

    2001-05-18

    BABAR, the detector for the SLAC PEP-II asymmetric e{sup +}e{sup -} B Factory operating at the {Upsilon}(4S) resonance, was designed to allow comprehensive studies of CP-violation in B-meson decays. Charged particle tracks are measured in a multi-layer silicon vertex tracker surrounded by a cylindrical wire drift chamber. Electromagentic showers from electrons and photons are detected in an array of CsI crystals located just inside the solenoidal coil of a superconducting magnet. Muons and neutral hadrons are identified by arrays of resistive plate chambers inserted into gaps in the steel flux return of the magnet. Charged hadrons are identified by dE/dx measurements in the tracking detectors and in a ring-imaging Cherenkov detector surrounding the drift chamber. The trigger, data acquisition and data-monitoring systems, VME- and network-based, are controlled by custom-designed online software. Details of the layout and performance of the detector components and their associated electronics and software are presented.

  7. The LUCID-2 Detector

    CERN Document Server

    Soluk, Richard; The ATLAS collaboration

    2017-01-01

    The LUCID-2 detector is the main online and offline luminosity provider of the ATLAS experiment. It provides over 100 different luminosity measurements from different algorithms for each of the 2808 LHC bunches. LUCID was entirely redesigned in preparation for LHC Run 2: both the detector and the electronics were upgraded in order to cope with the challenging conditions expected at the LHC center of mass energy of 13 TeV with only 25 ns bunch-spacing. While LUCID-1 used gas as a Cherenkov medium, the LUCID-2 detector is in a new unique way using the quartz windows of small photomultipliers as the Cherenkov medium. The main challenge for a luminometer is to keep the efficiency constant during years of data-taking. LUCID-2 is using an innovative calibration system based on radioactive 207 Bi sources deposited on the quartz window of the readout photomultipliers. This makes it possible to accurately monitor and control the gain of the photomultipliers so that the detector efficiency can be kept stable at a perce...

  8. Diamond Pixel Detectors

    International Nuclear Information System (INIS)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Doroshenko, J.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foster, J.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Gobbi, B.; Grim, G.P.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Lander, R.; Logiudice, A.; Lu, R.; Lynne, L.M.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L.S.; Pernicka, M.; Perera, L.; Pirollo, S.; Plano, R.; Procario, M.; Riester, J.L.; Roe, S.; Rott, C.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Zoeller, M.

    2001-01-01

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles

  9. Diamond Pixel Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D' Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Doroshenko, J.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foster, J.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Gobbi, B.; Grim, G.P.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Lander, R.; Logiudice, A.; Lu, R.; Lynne, L.M.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L.S.; Pernicka, M.; Perera, L. E-mail: perera@physics.rutgers.edu; Pirollo, S.; Plano, R.; Procario, M.; Riester, J.L.; Roe, S.; Rott, C.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Zoeller, M

    2001-06-01

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles.

  10. Ionic smoke detectors

    CERN Document Server

    2002-01-01

    Ionic smoke detectors are products incorporating radioactive material. This article summarises the process for their commercialization and marketing, and how the activity is controlled, according to regulations establishing strict design and production requisites to guarantee the absence of radiological risk associated both with their use and their final handling as conventional waste. (Author)

  11. Superconducting Single Photon Detectors

    NARCIS (Netherlands)

    Dorenbos, S.N.

    2011-01-01

    This thesis is about the development of a detector for single photons, particles of light. New techniques are being developed that require high performance single photon detection, such as quantum cryptography, single molecule detection, optical radar, ballistic imaging, circuit testing and

  12. The LUCID-2 detector

    CERN Document Server

    Sbarra, Carla; The ATLAS collaboration

    2018-01-01

    The LUCID-2 detector is the main online and offline luminosity provider of the ATLAS experiment. It provides over 100 different luminosity measurements from different algorithms for each of the 2808 LHC bunches. LUCID was entirely redesigned in preparation for LHC Run 2: both the detector and the electronics were upgraded in order to cope with the challenging conditions expected at the LHC center of mass energy of 13 TeV with only 25 ns bunch-spacing. While LUCID-1 used gas as a Cherenkov medium, the LUCID-2 detector is in a new unique way using the quartz windows of small photomultipliers as the Cherenkov medium. The main challenge for a luminometer is to keep the efficiency constant during years of data-taking. LUCID-2 is using an innovative calibration system based on radioactive 207 Bi sources deposited on the quartz window of the readout photomultipliers. This makes it possible to accurately monitor and control the gain of the photomultipliers so that the detector efficiency can be kept stable at a perce...

  13. Semiconductor detector physics

    International Nuclear Information System (INIS)

    Equer, B.

    1987-01-01

    Comprehension of semiconductor detectors follows comprehension of some elements of solid state physics. They are recalled here, limited to the necessary physical principles, that is to say the conductivity. P-n and MIS junctions are discussed in view of their use in detection. Material and structure (MOS, p-n, multilayer, ..) are also reviewed [fr

  14. Ionization chamber smoke detectors

    International Nuclear Information System (INIS)

    1988-03-01

    One kind of smoke detector, the ionization-type, is regulated by the Atomic Energy Control Board (AECB) because it uses a radioactive substance in its mechanism. Radioactivity and radiation are natural phenomena, but they are not very familiar to the average householder. This has led to a number of questions being asked of the AECB. These questions and AECB responses are outlined

  15. Radiation detector. [100 A

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P D; Hollands, D V

    1975-12-04

    A radiation detector is described in which the radiation is led to a sensor via a 100 A thick gold film filter, which reduces the infrared components of the irradiation to a greater extent than the ultra-violet component reaching the sensor.

  16. The LDC detector concept

    Indian Academy of Sciences (India)

    foresees a TPC with around 200 points measured along a track, and read out by a system of micro-pattern gas detectors. These novel gas amplification devices promise to provide a stable, reliable readout system, which can be realized with comparatively little material in the endplate compared to a traditional wire readout.

  17. Choosing a Motion Detector.

    Science.gov (United States)

    Ballard, David M.

    1990-01-01

    Examines the characteristics of three types of motion detectors: Doppler radar, infrared, and ultrasonic wave, and how they are used on school buses to prevent students from being killed by their own school bus. Other safety devices cited are bus crossing arms and a camera monitor system. (MLF)

  18. Photovoltaic radiation detector element

    International Nuclear Information System (INIS)

    Agouridis, D.C.

    1980-01-01

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein in the edge of which closely approaches but is spaced from the current collector strips

  19. ALICE Silicon Pixel Detector

    CERN Multimedia

    Manzari, V

    2013-01-01

    The Silicon Pixel Detector (SPD) forms the innermost two layers of the 6-layer barrel Inner Tracking System (ITS). The SPD plays a key role in the determination of the position of the primary collision and in the reconstruction of the secondary vertices from particle decays.

  20. First ALICE detectors installed!

    CERN Multimedia

    2006-01-01

    Detectors to track down penetrating muon particles are the first to be placed in their final position in the ALICE cavern. The Alice muon spectrometer: in the foreground the trigger chamber is positioned in front of the muon wall, with the dipole magnet in the background. After the impressive transport of its dipole magnet, ALICE has begun to fill the spectrometer with detectors. In mid-July, the ALICE muon spectrometer team achieved important milestones with the installation of the trigger and the tracking chambers of the muon spectrometer. They are the first detectors to be installed in their final position in the cavern. All of the eight half planes of the RPCs (resistive plate chambers) have been installed in their final position behind the muon filter. The role of the trigger detector is to select events containing a muon pair coming, for instance, from the decay of J/ or Y resonances. The selection is made on the transverse momentum of the two individual muons. The internal parts of the RPCs, made o...

  1. Smoke Detector Technology.

    Science.gov (United States)

    Powell, Pamela, Ed.; Portugill, Jestyn, Ed.

    This manual, one in a series developed for public education, provides information on smoke detector selection, installation, operation, and maintenance. For the prospective buyer, the importance of looking for the seal of a recognized national testing laboratory--such as Underwriters' Laboratories, Inc. (UL)--indicating adequate laboratory testing…

  2. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2012-01-01

    The RPC system is operating with a very high uptime, an average chamber efficiency of about 95% and an average cluster size around 1.8. The average number of active channels is 97.7%. Eight chambers are disconnected and forty are working in single-gap mode due to high-voltage problems. The total luminosity lost due to RPCs in 2012 is 88.46 pb–1. One of the main goals of 2012 was to improve the stability of the endcap trigger that is strongly correlated to the performances of the detector, due to the 3-out-3 trigger logic. At beginning of 2011 the instability of the detector efficiency was about 10%. Detailed studies found that this was mainly due to the strong correlation between the performance of the detector and the atmospheric pressure (P). Figure XXY shows the linear correlation between the average cluster size of the endcap chamber versus P. This effect is expected for gaseous detectors and can be reduced by correcting the applied high-voltage working point (HVapp) according to the followi...

  3. Chemochromic Hydrogen Leak Detectors

    Science.gov (United States)

    Roberson, Luke; Captain, Janine; Williams, Martha; Smith, Trent; Tate, LaNetra; Raissi, Ali; Mohajeri, Nahid; Muradov, Nazim; Bokerman, Gary

    2009-01-01

    At NASA, hydrogen safety is a key concern for space shuttle processing. Leaks of any level must be quickly recognized and addressed due to hydrogen s lower explosion limit. Chemo - chromic devices have been developed to detect hydrogen gas in several embodiments. Because hydrogen is odorless and colorless and poses an explosion hazard, there is an emerging need for sensors to quickly and accurately detect low levels of leaking hydrogen in fuel cells and other advanced energy- generating systems in which hydrogen is used as fuel. The device incorporates a chemo - chromic pigment into a base polymer. The article can reversibly or irreversibly change color upon exposure to hydrogen. The irreversible pigment changes color from a light beige to a dark gray. The sensitivity of the pigment can be tailored to its application by altering its exposure to gas through the incorporation of one or more additives or polymer matrix. Furthermore, through the incorporation of insulating additives, the chemochromic sensor can operate at cryogenic temperatures as low as 78 K. A chemochromic detector of this type can be manufactured into any feasible polymer part including injection molded plastic parts, fiber-spun textiles, or extruded tapes. The detectors are simple, inexpensive, portable, and do not require an external power source. The chemochromic detectors were installed and removed easily at the KSC launch pad without need for special expertise. These detectors may require an external monitor such as the human eye, camera, or electronic detector; however, they could be left in place, unmonitored, and examined later for color change to determine whether there had been exposure to hydrogen. In one type of envisioned application, chemochromic detectors would be fabricated as outer layers (e.g., casings or coatings) on high-pressure hydrogen storage tanks and other components of hydrogen-handling systems to provide visible indications of hydrogen leaks caused by fatigue failures or

  4. Evolution of the vertebrate insulin receptor substrate (Irs) gene family.

    Science.gov (United States)

    Al-Salam, Ahmad; Irwin, David M

    2017-06-23

    Insulin receptor substrate (Irs) proteins are essential for insulin signaling as they allow downstream effectors to dock with, and be activated by, the insulin receptor. A family of four Irs proteins have been identified in mice, however the gene for one of these, IRS3, has been pseudogenized in humans. While it is known that the Irs gene family originated in vertebrates, it is not known when it originated and which members are most closely related to each other. A better understanding of the evolution of Irs genes and proteins should provide insight into the regulation of metabolism by insulin. Multiple genes for Irs proteins were identified in a wide variety of vertebrate species. Phylogenetic and genomic neighborhood analyses indicate that this gene family originated very early in vertebrae evolution. Most Irs genes were duplicated and retained in fish after the fish-specific genome duplication. Irs genes have been lost of various lineages, including Irs3 in primates and birds and Irs1 in most fish. Irs3 and Irs4 experienced an episode of more rapid protein sequence evolution on the ancestral mammalian lineage. Comparisons of the conservation of the proteins sequences among Irs paralogs show that domains involved in binding to the plasma membrane and insulin receptors are most strongly conserved, while divergence has occurred in sequences involved in interacting with downstream effector proteins. The Irs gene family originated very early in vertebrate evolution, likely through genome duplications, and in parallel with duplications of other components of the insulin signaling pathway, including insulin and the insulin receptor. While the N-terminal sequences of these proteins are conserved among the paralogs, changes in the C-terminal sequences likely allowed changes in biological function.

  5. Spin orientations of the spin-half Ir(4+) ions in Sr3NiIrO6, Sr2IrO4, and Na2IrO3: Density functional, perturbation theory, and Madelung potential analyses.

    Science.gov (United States)

    Gordon, Elijah E; Xiang, Hongjun; Köhler, Jürgen; Whangbo, Myung-Hwan

    2016-03-21

    The spins of the low-spin Ir(4+) (S = 1/2, d(5)) ions at the octahedral sites of the oxides Sr3NiIrO6, Sr2IrO4, and Na2IrO3 exhibit preferred orientations with respect to their IrO6 octahedra. We evaluated the magnetic anisotropies of these S = 1/2 ions on the basis of density functional theory (DFT) calculations including spin-orbit coupling (SOC), and probed their origin by performing perturbation theory analyses with SOC as perturbation within the LS coupling scheme. The observed spin orientations of Sr3NiIrO6 and Sr2IrO4 are correctly predicted by DFT calculations, and are accounted for by the perturbation theory analysis. As for the spin orientation of Na2IrO3, both experimental studies and DFT calculations have not been unequivocal. Our analysis reveals that the Ir(4+) spin orientation of Na2IrO3 should have nonzero components along the c- and a-axis directions. The spin orientations determined by DFT calculations are sensitive to the accuracy of the crystal structures employed, which is explained by perturbation theory analyses when interactions between adjacent Ir(4+) ions are taken into consideration. There are indications implying that the 5d electrons of Na2IrO3 are less strongly localized compared with those of Sr3NiIrO6 and Sr2IrO4. This implication was confirmed by showing that the Madelung potentials of the Ir(4+) ions are less negative in Na2IrO3 than in Sr3NiIrO6 and Sr2IrO4. Most transition-metal S = 1/2 ions do have magnetic anisotropies because the SOC induces interactions among their crystal-field split d-states, and the associated mixing of the states modifies only the orbital parts of the states. This finding cannot be mimicked by a spin Hamiltonian because this model Hamiltonian lacks the orbital degree of freedom, thereby leading to the spin-half syndrome. The spin-orbital entanglement for the 5d spin-half ions Ir(4+) is not as strong as has been assumed.

  6. The detectability of cracks using sonic IR

    Science.gov (United States)

    Morbidini, Marco; Cawley, Peter

    2009-05-01

    This paper proposes a methodology to study the detectability of fatigue cracks in metals using sonic IR (also known as thermosonics). The method relies on the validation of simple finite-element thermal models of the cracks and specimens in which the thermal loads have been defined by means of a priori measurement of the additional damping introduced in the specimens by each crack. This estimate of crack damping is used in conjunction with a local measurement of the vibration strain during ultrasonic excitation to retrieve the power released at the crack; these functions are then input to the thermal model of the specimens to find the resulting temperature rises (sonic IR signals). The method was validated on mild steel beams with two-dimensional cracks obtained in the low-cycle fatigue regime as well as nickel-based superalloy beams with three-dimensional "thumbnail" cracks generated in the high-cycle fatigue regime. The equivalent 40kHz strain necessary to obtain a desired temperature rise was calculated for cracks in the nickel superalloy set, and the detectability of cracks as a function of length in the range of 1-5mm was discussed.

  7. Irène Jacob visits CERN

    CERN Document Server

    CERN Bulletin

    2010-01-01

    French actress Irène Jacob, the daughter of physicist Maurice Jacob, visited the ATLAS and CMS control rooms on Monday 17 May together with Italian theatre actor-director Pippo Delbono, in search of inspiration for a short film. The film will be screened at the “nuit des particules” event accompanying this year’s ICHEP.   Pippo Delbono et Irène Jacob discussing their project. “La nuit des particules” (night of the particles) is an event open to the general public that is being organised for the evening of Tuesday, 27 July, to accompany the 35th International Conference on High Energy Physics (ICHEP). ICHEP is a major highlight in every physicist’s calendar, and this year’s edition is being held in Paris from 22 to 28 July. The short film will be screened during the evening, which will include a lecture and a show at the legendary Parisian cinema Le Grand Rex, with a colossal seating capacity of 2 700 spe...

  8. Fire Emulator/Detector Evaluator

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The fire emulator/detector evaluator (FE/DE) is a computer-controlled flow tunnel used to re-create the environments surrounding detectors in the early...

  9. The status of BAT detector

    Science.gov (United States)

    Lien, Amy; Markwardt, Craig B.; Krimm, Hans Albert; Barthelmy, Scott D.; Cenko, Bradley

    2018-01-01

    We will present the current status of the Swift/BAT detector. In particular, we will report the updated detector gain calibration, the number of enable detectors, and the global bad time intervals with potential calibration issues. We will also summarize the results of the yearly BAT calibration using the Crab nebula. Finally, we will discuss the effects on the BAT survey, such as the sensitivity, localization, and spectral analysis, due to the changes in detector status.

  10. HOMA1-IR and HOMA2-IR indexes in identifying insulin resistance and metabolic syndrome: Brazilian Metabolic Syndrome Study (BRAMS).

    Science.gov (United States)

    Geloneze, Bruno; Vasques, Ana Carolina Junqueira; Stabe, Christiane França Camargo; Pareja, José Carlos; Rosado, Lina Enriqueta Frandsen Paez de Lima; Queiroz, Elaine Cristina de; Tambascia, Marcos Antonio

    2009-03-01

    To investigate cut-off values for HOMA1-IR and HOMA2-IR to identify insulin resistance (IR) and metabolic syndrome (MS), and to assess the association of the indexes with components of the MS. Nondiabetic subjects from the Brazilian Metabolic Syndrome Study were studied (n = 1,203, 18 to 78 years). The cut-off values for IR were determined from the 90th percentile in the healthy group (n = 297) and, for MS, a ROC curve was generated for the total sample. In the healthy group, HOMA-IR indexes were associated with central obesity, triglycerides and total cholesterol (p 2.7 and HOMA2-IR > 1.8; and, for MS were: HOMA1-IR > 2.3 (sensitivity: 76.8%; specificity: 66.7%) and HOMA2-IR > 1.4 (sensitivity: 79.2%; specificity: 61.2%). The cut-off values identified for HOMA1-IR and HOMA2-IR indexes have a clinical and epidemiological application for identifying IR and MS in Westernized admixtured multi-ethnic populations.

  11. Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action

    DEFF Research Database (Denmark)

    Rabiee, Atefeh; Krüger, Marcus; Ardenkjær-Larsen, Jacob

    2018-01-01

    Insulin/IGF-1 action is driven by a complex and highly integrated signalling network. Loss-of-function studies indicate that the major insulin/IGF-1 receptor substrate (IRS) proteins, IRS-1 and IRS-2, mediate different biological functions in vitro and in vivo, suggesting specific signalling...... properties despite their high degree of homology. To identify mechanisms contributing to the differential signalling properties of IRS-1 and IRS-2 in the mediation of insulin/IGF-1 action, we performed comprehensive mass spectrometry (MS)-based phosphoproteomic profiling of brown preadipocytes from wild type......, IRS-1-/-and IRS-2-/-mice in the basal and IGF-1-stimulated states. We applied stable isotope labeling by amino acids in cell culture (SILAC) for the accurate quantitation of changes in protein phosphorylation. We found ~10% of the 6262 unique phosphorylation sites detected to be regulated by IGF-1...

  12. Selective C--C coupling of ir-ethene and ir-carbenoid radicals

    NARCIS (Netherlands)

    Dzik, W.I.; Reek, J.N.H.; de Bruin, B.

    2008-01-01

    The reactivity of the paramagnetic iridium(II) complex [IrII(ethene)(Me3tpa)]2+ (1) (Me3tpa=N,N,N-tris(6-methyl-2-pyridylmethyl) amine) towards the diazo compounds ethyl diazoacetate (EDA) and trimethylsilyldiazomethane (TMSDM) was investigated. The reaction with EDA gave rise to selective CC bond

  13. Radiation detectors laboratory; Laboratorio de detectores de radiacion

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez J, F.J. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  14. New electronically black neutron detectors

    International Nuclear Information System (INIS)

    Drake, D.M.; Feldman, W.C.; Hurlbut, C.

    1986-03-01

    Two neutron detectors are described that can function in a continuous radiation background. Both detectors identify neutrons by recording a proton recoil pulse followed by a characteristic capture pulse. This peculiar signature indicates that the neutron has lost all its energy in the scintillator. Resolutions and efficiencies have been measured for both detectors

  15. Workshops on radiation imaging detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sochinskii, N V; Sun, G C; Kostamo, P; Silenas, A; Saynatjoki, A; Grant, J; Owens, A; Kozorezov, A G; Noschis, E; Van Eijk, C; Nagarkar, V; Sekiya, H; Pribat, D; Campbell, M; Lundgren, J; Arques, M; Gabrielli, A; Padmore, H; Maiorino, M; Volpert, M; Lebrun, F; Van der Putten, S; Pickford, A; Barnsley, R; Anton, M E.G.; Mitschke, M; Gros d' Aillon, E; Frojdh, C; Norlin, B; Marchal, J; Quattrocchi, M; Stohr, U; Bethke, K; Bronnimann, C H; Pouvesle, J M; Hoheisel, M; Clemens, J C; Gallin-Martel, M L; Bergamaschi, A; Redondo-Fernandez, I; Gal, O; Kwiatowski, K; Montesi, M C; Smith, K

    2005-07-01

    This document gathers the transparencies that were presented at the international workshop on radiation imaging detectors. 9 sessions were organized: 1) materials for detectors and detector structure, 2) front end electronics, 3) interconnected technologies, 4) space, fusion applications, 5) the physics of detection, 6) industrial applications, 7) synchrotron radiation, 8) X-ray sources, and 9) medical and other applications.

  16. Workshops on radiation imaging detectors

    International Nuclear Information System (INIS)

    Sochinskii, N.V.; Sun, G.C.; Kostamo, P.; Silenas, A.; Saynatjoki, A.; Grant, J.; Owens, A.; Kozorezov, A.G.; Noschis, E.; Van Eijk, C.; Nagarkar, V.; Sekiya, H.; Pribat, D.; Campbell, M.; Lundgren, J.; Arques, M.; Gabrielli, A.; Padmore, H.; Maiorino, M.; Volpert, M.; Lebrun, F.; Van der Putten, S.; Pickford, A.; Barnsley, R.; Anton, M.E.G.; Mitschke, M.; Gros d'Aillon, E.; Frojdh, C.; Norlin, B.; Marchal, J.; Quattrocchi, M.; Stohr, U.; Bethke, K.; Bronnimann, C.H.; Pouvesle, J.M.; Hoheisel, M.; Clemens, J.C.; Gallin-Martel, M.L.; Bergamaschi, A.; Redondo-Fernandez, I.; Gal, O.; Kwiatowski, K.; Montesi, M.C.; Smith, K.

    2005-01-01

    This document gathers the transparencies that were presented at the international workshop on radiation imaging detectors. 9 sessions were organized: 1) materials for detectors and detector structure, 2) front end electronics, 3) interconnected technologies, 4) space, fusion applications, 5) the physics of detection, 6) industrial applications, 7) synchrotron radiation, 8) X-ray sources, and 9) medical and other applications

  17. Black and grey neutron detectors

    International Nuclear Information System (INIS)

    Gabbard, F.

    1977-01-01

    Recent progress in the development and use of ''black'' and ''grey'' detectors is reviewed. Such detectors are widely used for counting neutrons in (p,n) and (α,n) experiments and in neutron cross section measurements. Accuracy of each detector is stressed. 19 figures

  18. Advanced far infrared blocked impurity band detectors based on germanium liquid phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Christopher Sean [Univ. of California, Berkeley, CA (United States)

    1998-05-01

    This research has shown that epilayers with residual impurity concentrations of 5 x 1013 cm-3 can be grown by producing the purest Pb available in the world. These epilayers have extremely low minority acceptor concentrations, which is ideal for fabrication of IR absorbing layers. The Pb LPE growth of Ge also has the advantageous property of gettering Cu from the epilayer and the substrate. Epilayers have been grown with intentional Sb doping for IR absorption on lightly doped substrates. This research has proven that properly working Ge BIB detectors can be fabricated from the liquid phase as long as pure enough solvents are available. The detectors have responded at proper wavelengths when reversed biased even though the response did not quite reach minimum wavenumbers. Optimization of the Sb doping concentration should further decrease the photoionization energy of these detectors. Ge BIB detectors have been fabricated that respond to 60 cm-1 with low responsivity. Through reduction of the minority residual impurities, detector performance has reached responsivities of 1 A/W. These detectors have exhibited quantum efficiency and NEP values that rival conventional photoconductors and are expected to provide a much more sensitive tool for new scientific discoveries in a number of fields, including solid state studies, astronomy, and cosmology.

  19. Electronic structure, local magnetism, and spin-orbit effects of Ir(IV)-, Ir(V)-, and Ir(VI)-based compounds

    Energy Technology Data Exchange (ETDEWEB)

    Laguna-Marco, M. A.; Kayser, P.; Alonso, J. A.; Martínez-Lope, M. J.; van Veenendaal, M.; Choi, Y.; Haskel, D.

    2015-06-01

    Element- and orbital-selective x-ray absorption and magnetic circular dichroism measurements are carried out to probe the electronic structure and magnetism of Ir 5d electronic states in double perovskite Sr2MIrO6 (M = Mg, Ca, Sc, Ti, Ni, Fe, Zn, In) and La2NiIrO6 compounds. All the studied systems present a significant influence of spin-orbit interactions in the electronic ground state. In addition, we find that the Ir 5d local magnetic moment shows different character depending on the oxidation state despite the net magnetization being similar for all the compounds. Ir carries an orbital contribution comparable to the spin contribution for Ir4+ (5d(5)) and Ir5+ (5d(4)) oxides, whereas the orbital contribution is quenched for Ir6+ (5d(3)) samples. Incorporation of a magnetic 3d atom allows getting insight into the magnetic coupling between 5d and 3d transition metals. Together with previous susceptibility and neutron diffractionmeasurements, the results indicate that Ir carries a significant local magnetic moment even in samples without a 3d metal. The size of the (small) net magnetization of these compounds is a result of predominant antiferromagnetic interactions between local moments coupled with structural details of each perovskite structure

  20. The Introduction of an Undergraduate Interventional Radiology (IR) Curriculum: Impact on Medical Student Knowledge and Interest in IR

    International Nuclear Information System (INIS)

    Shaikh, M.; Shaygi, B.; Asadi, H.; Thanaratnam, P.; Pennycooke, K.; Mirza, M.; Lee, M.

    2016-01-01

    IntroductionInterventional radiology (IR) plays a vital role in modern medicine, with increasing demand for services, but with a shortage of experienced interventionalists. The aim of this study was to determine the impact of a recently introduced IR curriculum on perception, knowledge, and interest of medical students regarding various aspects of IR.MethodsIn 2014, an anonymous web-based questionnaire was sent to 309 4th year medical students in a single institution within an EU country, both before and after delivery of a 10-h IR teaching curriculum.ResultsSeventy-six percent (236/309) of the respondents participated in the pre-IR module survey, while 50 % (157/309) responded to the post-IR module survey. While 62 % (147/236) of the respondents reported poor or no knowledge of IR compared to other medical disciplines in the pre-IR module survey, this decreased to 17 % (27/157) in the post-IR module survey. The correct responses regarding knowledge of selected IR procedures improved from 70 to 94 % for venous access, 78 to 99 % for uterine fibroid embolization, 75 to 97 % for GI bleeding embolization, 60 to 92 % for trauma embolization, 71 to 92 % for tumor ablation, and 81 to 94 % for angioplasty and stenting in peripheral arterial disease. With regard to knowledge of IR clinical roles, responses improved from 42 to 59 % for outpatient clinic review of patients and having inpatient beds, 63–76 % for direct patient consultation, and 43–60 % for having regular ward rounds. The number of students who would consider a career in IR increased from 60 to 73 %.ConclusionDelivering an undergraduate IR curriculum increased the knowledge and understanding of various aspects of IR and also the general enthusiasm for pursuing this specialty as a future career choice.