WorldWideScience

Sample records for single-phase three-dimensional analysis

  1. COMMIX-1AR/P: A three-dimensional transient single-phase computer program for thermal hydraulic analysis of single and multicomponent systems

    Energy Technology Data Exchange (ETDEWEB)

    Garner, P.L.; Blomquist, R.N.; Gelbard, E.M.

    1992-09-01

    The COMMIX-LAR/P computer program is designed for analyzing the steady-state and transient aspects of single-phase fluid flow and heat transfer in three spatial dimensions. This version is an extension of the modeling in COMMIX-lA to include multiple fluids in physically separate regions of the computational domain, modeling descriptions for pumps, radiation heat transfer between surfaces of the solids which are embedded in or surround the fluid, a keg model for fluid turbulence, and improved numerical techniques. The porous-medium formulation in COMMIX allows the program to be applied to a wide range of problems involving both simple and complex geometrical arrangements. The internal aspects of the COMMIX-LAR/P program are presented, covering descriptions of subprograms, variables, and files.

  2. COMMIX-1AR/P: A three-dimensional transient single-phase computer program for thermal hydraulic analysis of single and multicomponent systems

    International Nuclear Information System (INIS)

    Garner, P.L.; Blomquist, R.N.; Gelbard, E.M.

    1992-09-01

    The COMMIX-1AR/P computer program is designed for analyzing the steady-state and transient aspects of single-phase fluid flow and heat transfer in three spatial dimensions. This version is an extension of the modeling in COMMIX-1A to include multiple fluids in physically separate regions of the computational domain, modeling descriptions for pumps, radiation heat transfer between surfaces of the solids which are embedded in or surround the fluid, a k-var-epsilon model for fluid turbulence, and improved numerical techniques. The porous-medium formulation in COMMIX allows the program to be applied to a wide range of problems involving both simple and complex geometrical arrangements. The input preparation and execution procedures are presented for the COMMIX-1AR/P program and several postprocessor programs which produce graphical displays of the calculated results

  3. COMMIX-1AR/P: A three-dimensional transient single-phase computer program for thermal hydraulic analysis of single and multicomponent systems

    Energy Technology Data Exchange (ETDEWEB)

    Garner, P.L.; Blomquist, R.N.; Gelbard, E.M.

    1992-09-01

    The COMMIX-1AR/P computer program is designed for analyzing the steady-state and transient aspects of single-phase fluid flow and heat transfer in three spatial dimensions. This version is an extension of the modeling in COMMIX-1A to include multiple fluids in physically separate regions of the computational domain, modeling descriptions for pumps, radiation heat transfer between surfaces of the solids which are embedded in or surround the fluid, a k-[var epsilon] model for fluid turbulence, and improved numerical techniques. The porous-medium formulation in COMMIX allows the program to be applied to a wide range of problems involving both simple and complex geometrical arrangements. The input preparation and execution procedures are presented for the COMMIX-1AR/P program and several postprocessor programs which produce graphical displays of the calculated results.

  4. COMMIX-1AR/P: A three-dimensional transient single-phase computer program for thermal hydraulic analysis of single and multicomponent systems. Volume 2, User`s guide

    Energy Technology Data Exchange (ETDEWEB)

    Garner, P.L.; Blomquist, R.N.; Gelbard, E.M.

    1992-09-01

    The COMMIX-1AR/P computer program is designed for analyzing the steady-state and transient aspects of single-phase fluid flow and heat transfer in three spatial dimensions. This version is an extension of the modeling in COMMIX-1A to include multiple fluids in physically separate regions of the computational domain, modeling descriptions for pumps, radiation heat transfer between surfaces of the solids which are embedded in or surround the fluid, a k-{var_epsilon} model for fluid turbulence, and improved numerical techniques. The porous-medium formulation in COMMIX allows the program to be applied to a wide range of problems involving both simple and complex geometrical arrangements. The input preparation and execution procedures are presented for the COMMIX-1AR/P program and several postprocessor programs which produce graphical displays of the calculated results.

  5. Unsteady single-phase natural circulation flow mixing prediction using CATHARE three-dimensional capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Salah, Anis Bousbia; Vlassenbroeck, Jacques [Bel V - Subsidiary of the Belgian Federal Agency for Nuclear Contro, Brussels (Belize)

    2017-04-15

    Coolant mixing under natural circulation flow regime constitutes a key parameter that may play a role in the course of an accidental transient in a nuclear pressurized water reactor. This issue has motivated some experimental investigations carried out within the OECD/NEA PKL projects. The aim was to assess the coolant mixing phenomenon in the reactor pressure vessel downcomer and the core lower plenum under several asymmetric steady and unsteady flow conditions, and to provide experimental data for code validations. Former studies addressed the mixing phenomenon using, on the one hand, one-dimensional computational approaches with cross flows that are not fully validated under transient conditions and, on the other hand, expensive computational fluid dynamic tools that are not always justified for large-scale macroscopic phenomena. In the current framework, an unsteady coolant mixing experiment carried out in the Rossendorf coolant mixing test facility is simulated using the three-dimensional porous media capabilities of the thermal–hydraulic system CATHARE code. The current study allows highlighting the current capabilities of these codes and their suitability for reproducing the main phenomena occurring during asymmetric transient natural circulation mixing conditions.

  6. Three-dimensional (3D) analysis of the temporomandibular joint

    DEFF Research Database (Denmark)

    Kitai, N.; Kreiborg, S.; Murakami, S.

    Symposium Orthodontics 2001: Where are We Now? Where are We Going?, three-dimensional analysis, temporomandibular joint......Symposium Orthodontics 2001: Where are We Now? Where are We Going?, three-dimensional analysis, temporomandibular joint...

  7. Three-dimensional analysis of craniofacial bones using three-dimensional computer tomography

    International Nuclear Information System (INIS)

    Ono, Ichiro; Ohura, Takehiko; Kimura, Chu

    1989-01-01

    Three-dimensional computer tomography (3DCT) was performed in patients with various diseases to visualize stereoscopically the deformity of the craniofacial bones. The data obtained were analyzed by the 3DCT analyzing system. A new coordinate system was established using the median sagittal plane of the face (a plane passing through sella, nasion and basion) on the three-dimensional image. Three-dimensional profilograms were prepared for detailed analysis of the deformation of craniofacial bones for cleft lip and palate, mandibular prognathia and hemifacial microsomia. For patients, asymmetry in the frontal view and twist-formed complicated deformities were observed, as well as deformity of profiles in the anteroposterior and up-and-down directions. A newly developed technique allows three-dimensional visualization of changes in craniofacial deformity. It would aid in determining surgical strategy, including crani-facial surgery and maxillo-facial surgery, and in evaluating surgical outcome. (N.K.)

  8. Three-dimensional analysis of craniofacial bones using three-dimensional computer tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Ichiro; Ohura, Takehiko; Kimura, Chu (Hokkaido Univ., Sapporo (Japan). School of Medicine) (and others)

    1989-08-01

    Three-dimensional computer tomography (3DCT) was performed in patients with various diseases to visualize stereoscopically the deformity of the craniofacial bones. The data obtained were analyzed by the 3DCT analyzing system. A new coordinate system was established using the median sagittal plane of the face (a plane passing through sella, nasion and basion) on the three-dimensional image. Three-dimensional profilograms were prepared for detailed analysis of the deformation of craniofacial bones for cleft lip and palate, mandibular prognathia and hemifacial microsomia. For patients, asymmetry in the frontal view and twist-formed complicated deformities were observed, as well as deformity of profiles in the anteroposterior and up-and-down directions. A newly developed technique allows three-dimensional visualization of changes in craniofacial deformity. It would aid in determining surgical strategy, including crani-facial surgery and maxillo-facial surgery, and in evaluating surgical outcome. (N.K.).

  9. Analysis of three-dimensional transonic compressors

    Science.gov (United States)

    Bourgeade, A.

    1984-01-01

    A method for computing the three-dimensional transonic flow around the blades of a compressor or of a propeller is given. The method is based on the use of the velocity potential, on the hypothesis that the flow is inviscid, irrotational and isentropic. The equation of the potential is solved in a transformed space such that the surface of the blade is mapped into a plane where the periodicity is implicit. This equation is in a nonconservative form and is solved with the help of a finite difference method using artificial time. A computer code is provided and some sample results are given in order to demonstrate the influence of three-dimensional effects and the blade's rotation.

  10. Three-dimensional turbopump flowfield analysis

    Science.gov (United States)

    Sharma, O. P.; Belford, K. A.; Ni, R. H.

    1992-01-01

    A program was conducted to develop a flow prediction method applicable to rocket turbopumps. The complex nature of a flowfield in turbopumps is described and examples of flowfields are discussed to illustrate that physics based models and analytical calculation procedures based on computational fluid dynamics (CFD) are needed to develop reliable design procedures for turbopumps. A CFD code developed at NASA ARC was used as the base code. The turbulence model and boundary conditions in the base code were modified, respectively, to: (1) compute transitional flows and account for extra rates of strain, e.g., rotation; and (2) compute surface heat transfer coefficients and allow computation through multistage turbomachines. Benchmark quality data from two and three-dimensional cascades were used to verify the code. The predictive capabilities of the present CFD code were demonstrated by computing the flow through a radial impeller and a multistage axial flow turbine. Results of the program indicate that the present code operated in a two-dimensional mode is a cost effective alternative to full three-dimensional calculations, and that it permits realistic predictions of unsteady loadings and losses for multistage machines.

  11. BACCHUS-3D/SP. A computer programme for the three-dimensional description of sodium single-phase flow in bundle geometry

    International Nuclear Information System (INIS)

    Bottoni, M.; Dorr, B.; Homann, C.; Struwe, D.

    1983-07-01

    The computer programme BACCHUS implemented at KfK includes a steady-state version, a two-dimensional and a three-dimensional transient single-phase flow version describing the thermal-hydraulic behaviour of the coolant (sodium or water) in bundle geometry under nominal or accident conditions. All versions are coupled with a pin model describing the temperature distribution in fuel (or electrical heaters) and cladding. The report describes the programme from the viewpoints of the geometrical model, the mathematical foundations and the numerical treatment of the basic equations. Although emphasis is put on the three-dimensional version, the two-dimensional and the steady state versions are also documented in self-consistent sections. (orig.) [de

  12. Discretization model for nonlinear dynamic analysis of three dimensional structures

    International Nuclear Information System (INIS)

    Hayashi, Y.

    1982-12-01

    A discretization model for nonlinear dynamic analysis of three dimensional structures is presented. The discretization is achieved through a three dimensional spring-mass system and the dynamic response obtained by direct integration of the equations of motion using central diferences. First the viability of the model is verified through the analysis of homogeneous linear structures and then its performance in the analysis of structures subjected to impulsive or impact loads, taking into account both geometrical and physical nonlinearities is evaluated. (Author) [pt

  13. Three-dimensional model analysis and processing

    CERN Document Server

    Yu, Faxin; Luo, Hao; Wang, Pinghui

    2011-01-01

    This book focuses on five hot research directions in 3D model analysis and processing in computer science:  compression, feature extraction, content-based retrieval, irreversible watermarking and reversible watermarking.

  14. Analysis and validation of carbohydrate three-dimensional structures

    International Nuclear Information System (INIS)

    Lütteke, Thomas

    2009-01-01

    The article summarizes the information that is gained from and the errors that are found in carbohydrate structures in the Protein Data Bank. Validation tools that can locate these errors are described. Knowledge of the three-dimensional structures of the carbohydrate molecules is indispensable for a full understanding of the molecular processes in which carbohydrates are involved, such as protein glycosylation or protein–carbohydrate interactions. The Protein Data Bank (PDB) is a valuable resource for three-dimensional structural information on glycoproteins and protein–carbohydrate complexes. Unfortunately, many carbohydrate moieties in the PDB contain inconsistencies or errors. This article gives an overview of the information that can be obtained from individual PDB entries and from statistical analyses of sets of three-dimensional structures, of typical problems that arise during the analysis of carbohydrate three-dimensional structures and of the validation tools that are currently available to scientists to evaluate the quality of these structures

  15. Three Dimensional Analysis of Elastic Rocket and Launcher at Launching

    Science.gov (United States)

    Takeuchi, Shinsuke

    In this paper, a three-dimensional analysis of launching dynamics of a sounding rocket is investigated. In the analysis, the elastic vibration of the vehicle and launcher is considered. To estimate a trajectory dispersion including the effect of elasticity of the vehicle and launcher, a three-dimensional numerical simulation of a launch is performed. The accuracy of the numerical simulation is discussed and it is concluded that the simulation can estimate the maximum value of the trajectory dispersion properly. After that, the maximum value is estimated for the actual sounding rocket and the value is shown to be within the safty margin for this particular case.

  16. Three-dimensional free vibration analysis of thick laminated circular ...

    African Journals Online (AJOL)

    Three-dimensional free vibration analysis of thick laminated circular plates. Sumit Khare, N.D. Mittal. Abstract. In this communication, a numerical analysis regarding free vibration of thick laminated circular plates, having free, clamped as well as simply-supported boundary conditions at outer edges of plates is presented.

  17. and three-dimensional models for analysis of optical absorption

    Indian Academy of Sciences (India)

    Unknown

    Goldberg et al 1975; Kam and Parkinson 1982; Baglio et al 1982, 1983; Oritz 1995; Li et al 1996) has been carried out on WS2, there is no detailed analysis of the absorption spectra obtained from the single crystals of WS2 on the basis of two- and three-dimensional models. We have therefore carried out this study and the.

  18. Electron tomography, three-dimensional Fourier analysis and colour prediction of a three-dimensional amorphous biophotonic nanostructure

    Science.gov (United States)

    Shawkey, Matthew D.; Saranathan, Vinodkumar; Pálsdóttir, Hildur; Crum, John; Ellisman, Mark H.; Auer, Manfred; Prum, Richard O.

    2009-01-01

    Organismal colour can be created by selective absorption of light by pigments or light scattering by photonic nanostructures. Photonic nanostructures may vary in refractive index over one, two or three dimensions and may be periodic over large spatial scales or amorphous with short-range order. Theoretical optical analysis of three-dimensional amorphous nanostructures has been challenging because these structures are difficult to describe accurately from conventional two-dimensional electron microscopy alone. Intermediate voltage electron microscopy (IVEM) with tomographic reconstruction adds three-dimensional data by using a high-power electron beam to penetrate and image sections of material sufficiently thick to contain a significant portion of the structure. Here, we use IVEM tomography to characterize a non-iridescent, three-dimensional biophotonic nanostructure: the spongy medullary layer from eastern bluebird Sialia sialis feather barbs. Tomography and three-dimensional Fourier analysis reveal that it is an amorphous, interconnected bicontinuous matrix that is appropriately ordered at local spatial scales in all three dimensions to coherently scatter light. The predicted reflectance spectra from the three-dimensional Fourier analysis are more precise than those predicted by previous two-dimensional Fourier analysis of transmission electron microscopy sections. These results highlight the usefulness, and obstacles, of tomography in the description and analysis of three-dimensional photonic structures. PMID:19158016

  19. Canonical and symplectic analysis for three dimensional gravity without dynamics

    International Nuclear Information System (INIS)

    Escalante, Alberto; Osmart Ochoa-Gutiérrez, H.

    2017-01-01

    In this paper a detailed Hamiltonian analysis of three-dimensional gravity without dynamics proposed by V. Hussain is performed. We report the complete structure of the constraints and the Dirac brackets are explicitly computed. In addition, the Faddeev–Jackiw symplectic approach is developed; we report the complete set of Faddeev–Jackiw constraints and the generalized brackets, then we show that the Dirac and the generalized Faddeev–Jackiw brackets coincide to each other. Finally, the similarities and advantages between Faddeev–Jackiw and Dirac’s formalism are briefly discussed. - Highlights: • We report the symplectic analysis for three dimensional gravity without dynamics. • We report the Faddeev–Jackiw constraints. • A pure Dirac’s analysis is performed. • The complete structure of Dirac’s constraints is reported. • We show that symplectic and Dirac’s brackets coincide to each other.

  20. Canonical and symplectic analysis for three dimensional gravity without dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Escalante, Alberto, E-mail: aescalan@ifuap.buap.mx [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48 72570, Puebla, Pue. (Mexico); Osmart Ochoa-Gutiérrez, H. [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apartado postal 1152, 72001 Puebla, Pue. (Mexico)

    2017-03-15

    In this paper a detailed Hamiltonian analysis of three-dimensional gravity without dynamics proposed by V. Hussain is performed. We report the complete structure of the constraints and the Dirac brackets are explicitly computed. In addition, the Faddeev–Jackiw symplectic approach is developed; we report the complete set of Faddeev–Jackiw constraints and the generalized brackets, then we show that the Dirac and the generalized Faddeev–Jackiw brackets coincide to each other. Finally, the similarities and advantages between Faddeev–Jackiw and Dirac’s formalism are briefly discussed. - Highlights: • We report the symplectic analysis for three dimensional gravity without dynamics. • We report the Faddeev–Jackiw constraints. • A pure Dirac’s analysis is performed. • The complete structure of Dirac’s constraints is reported. • We show that symplectic and Dirac’s brackets coincide to each other.

  1. Comparison of two three-dimensional cephalometric analysis computer software.

    Science.gov (United States)

    Sawchuk, Dena; Alhadlaq, Adel; Alkhadra, Thamer; Carlyle, Terry D; Kusnoto, Budi; El-Bialy, Tarek

    2014-10-01

    Three-dimensional cephalometric analyses are getting more attraction in orthodontics. The aim of this study was to compare two softwares to evaluate three-dimensional cephalometric analyses of orthodontic treatment outcomes. Twenty cone beam computed tomography images were obtained using i-CAT(®) imaging system from patient's records as part of their regular orthodontic records. The images were analyzed using InVivoDental5.0 (Anatomage Inc.) and 3DCeph™ (University of Illinois at Chicago, Chicago, IL, USA) software. Before and after orthodontic treatments data were analyzed using t-test. Reliability test using interclass correlation coefficient was stronger for InVivoDental5.0 (0.83-0.98) compared with 3DCeph™ (0.51-0.90). Paired t-test comparison of the two softwares shows no statistical significant difference in the measurements made in the two softwares. InVivoDental5.0 measurements are more reproducible and user friendly when compared to 3DCeph™. No statistical difference between the two softwares in linear or angular measurements. 3DCeph™ is more time-consuming in performing three-dimensional analysis compared with InVivoDental5.0.

  2. Three-dimensional analysis of two-pile caps

    Directory of Open Access Journals (Sweden)

    T.E.T. Buttignol

    Full Text Available This paper compares the results between a non-linear three-dimensional numerical analysis of pile caps with two piles and the experimental study conducted by Delalibera. It is verified the load-carrying capacity, the crack pattern distribution, the principal stress in concrete and steel, the deflection and the fracture of the pile cap. The numerical analysis is executed with the finite-element software ATENA 3D, considering a perfect bond between concrete and steel. The numerical and experimental results are presented and have demonstrated a good approximation, reasserting the results of the experimental model and corroborating the theory.

  3. Three-dimensional temporal reconstruction and analysis of plume images

    Science.gov (United States)

    Dhawan, Atam P.; Disimile, Peter J.; Peck, Charles, III

    1992-01-01

    An experiment with two subsonic jets generating a cross-flow was conducted as part of a study of the structural features of temporal reconstruction of plume images. The flow field structure was made visible using a direct injection flow visualization technique. It is shown that image analysis and temporal three-dimensional visualization can provide new information on the vortical structural dynamics of multiple jets in a cross-flow. It is expected that future developments in image analysis, quantification and interpretation, and flow visualization of rocket engine plume images may provide a tool for correlating the engine diagnostic features by interpreting the evolution of the structures in the plume.

  4. Tag gas burnup based on three-dimensional FTR analysis

    International Nuclear Information System (INIS)

    Kidman, R.B.

    1976-01-01

    Flux spectra from a three-dimensional diffusion theory analysis of the Fast Test Reactor (FTR) are used to predict gas tag ratio changes, as a function of exposure, for each FTR fuel and absorber subassembly plenum. These flux spectra are also used to predict Xe-125 equilibrium activities in absorber plena in order to assess the feasibility of using Xe-125 gamma rays to detect and distinguish control rod failures from fuel rod failures. Worst case tag burnup changes are used in conjunction with burnup and mass spectrometer uncertainties to establish the minimum spacing of tags which allows the tags to be unambiguously identified

  5. Analysis and visualization of complex unsteady three-dimensional flows

    Science.gov (United States)

    Van Dalsem, William R.; Buning, Pieter G.; Dougherty, F. Carroll; Smith, Merritt H.

    1989-01-01

    Flow field animation is the natural choice as a tool in the analysis of the numerical simulations of complex unsteady three-dimensional flows. The PLOT4D extension of the widely used PLOT3D code to allow the interactive animation of a broad range of flow variables was developed and is presented. To allow direct comparison with unsteady experimental smoke and dye flow visualization, the code STREAKER was developed to produce time accurate streaklines. Considerations regarding the development of PLOT4D and STREAKER, and example results are presented.

  6. Three-dimensional stress analysis of plain weave composites

    Science.gov (United States)

    Whitcomb, John D.

    1989-01-01

    Techniques were developed and described for performing three-dimensional finite element analysis of plain weave composites. Emphasized here are aspects of the analysis which are different from analysis of traditional laminated composites, such as the mesh generation and representative unit cells. The analysis was used to study several different variations of plain weaves which illustrate the effects of tow waviness on composite moduli, Poisson's ratios, and internal strain distributions. In-plane moduli decreased almost linearly with increasing tow waviness. The tow waviness was shown to cause large normal and shear strain concentrations in composites subjected to uniaxial load. These strain concentrations may lead to earlier damage initiation than occurs in traditional cross-ply laminates.

  7. CFD three dimensional wake analysis in complex terrain

    Science.gov (United States)

    Castellani, F.; Astolfi, D.; Terzi, L.

    2017-11-01

    Even if wind energy technology is nowadays fully developed, the use of wind energy in very complex terrain is still challenging. In particular, it is challenging to characterize the combination effects of wind ow over complex terrain and wake interactions between nearby turbines and this has a practical relevance too, for the perspective of mitigating anomalous vibrations and loads as well improving the farm efficiency. In this work, a very complex terrain site has been analyzed through a Reynolds-averaged CFD (Computational Fluid Dynamics) numerical wind field model; in the simulation the inuence of wakes has been included through the Actuator Disk (AD) approach. In particular, the upstream turbine of a cluster of 4 wind turbines having 2.3 MW of rated power is studied. The objective of this study is investigating the full three-dimensional wind field and the impact of three-dimensionality on the evolution of the waked area between nearby turbines. A post-processing method of the output of the CFD simulation is developed and this allows to estimate the wake lateral deviation and the wake width. The reliability of the numerical approach is inspired by and crosschecked through the analysis of the operational SCADA (Supervisory Control and Data Acquisition) data of the cluster of interest.

  8. A New Three-Dimensional Cephalometric Analysis for Orthognathic Surgery

    Science.gov (United States)

    Gateno, Jaime; Xia, James J.; Teichgraeber, John F.

    2010-01-01

    Two basic problems are associated with traditional 2-dimensional ((2D) cephalometry First, many important parameters cannot be measured on plain cephalograms; and second, most 2D cephalometric measurements are distorted in the presence of facial asymmetry. Three-dimensional (3D) cephalometry, which has been facilitated by the introduction of cone beam computed tomography scans, can be solved these problems. However, before this can be realized, fundamental problems must be solved. They are the unreliability of internal reference systems and some 3D measurements, and the lack of tools to assess and measure symmetry. In this manuscript, the authors present a new 3D cephalometric analysis that uses different geometric approaches to solve the fundamental problems previously mentioned. This analysis allows the accurate measurement of the size, shape, position and orientation of the different facial units and incorporates a novel method to measure asymmetry. PMID:21257250

  9. Multifractal analysis of three-dimensional histogram from color images

    International Nuclear Information System (INIS)

    Chauveau, Julien; Rousseau, David; Richard, Paul; Chapeau-Blondeau, Francois

    2010-01-01

    Natural images, especially color or multicomponent images, are complex information-carrying signals. To contribute to the characterization of this complexity, we investigate the possibility of multiscale organization in the colorimetric structure of natural images. This is realized by means of a multifractal analysis applied to the three-dimensional histogram from natural color images. The observed behaviors are confronted to those of reference models with known multifractal properties. We use for this purpose synthetic random images with trivial monofractal behavior, and multidimensional multiplicative cascades known for their actual multifractal behavior. The behaviors observed on natural images exhibit similarities with those of the multifractal multiplicative cascades and display the signature of elaborate multiscale organizations stemming from the histograms of natural color images. This type of characterization of colorimetric properties can be helpful to various tasks of digital image processing, as for instance modeling, classification, indexing.

  10. Analysis of three-dimensional transient seepage into ditch drains ...

    Indian Academy of Sciences (India)

    Ratan Sarmah

    dimensional solutions to the problem are actually valid not for a field of finite size but for an infinite one only. Keywords. Analytical models; three-dimensional ponded ditch drainage; transient seepage; variable ponding; hydraulic conductivity ...

  11. Comparison of two three-dimensional cephalometric analysis computer software

    OpenAIRE

    Sawchuk, Dena; Alhadlaq, Adel; Alkhadra, Thamer; Carlyle, Terry D; Kusnoto, Budi; El-Bialy, Tarek

    2014-01-01

    Background: Three-dimensional cephalometric analyses are getting more attraction in orthodontics. The aim of this study was to compare two softwares to evaluate three-dimensional cephalometric analyses of orthodontic treatment outcomes. Materials and Methods: Twenty cone beam computed tomography images were obtained using i-CAT® imaging system from patient's records as part of their regular orthodontic records. The images were analyzed using InVivoDental5.0 (Anatomage Inc.) and 3DCeph™ (Unive...

  12. Three-dimensional analysis of a postbuckled embedded delamination

    Science.gov (United States)

    Whitcomb, John D.

    1989-01-01

    Delamination growth caused by local buckling of a delaminated group of plies was investigated. Delamination growth was assumed to be governed by the strain energy release rates, G(1), G(2) and G(3). The strain energy release rates were calculated using a geometrically nonlinear three-dimensional finite element analysis. The program is described and several checks of the analysis are discussed. Based on a limited parametric study, the following conclusions were reached: (1) the problem is definitely mixed mode (in some cases G(1) is larger than G(2), for other cases the opposite is true); (2) in general, there is a large gradient in the strain energy release rates along the delamination front; (3) the locations of maximum G(1) and G(2) depend on the delamination shape and the applied strain; (4) the mode 3 component was negligible for all cases considered; and (5) the analysis predicted that parts of the delamination would overlap. The results presented did not impose contact constraints to prevent overlapping. Further work is needed to determine the effects of allowing the overlapping.

  13. Three Dimensional CFD Analysis of the GTX Combustor

    Science.gov (United States)

    Steffen, C. J., Jr.; Bond, R. B.; Edwards, J. R.

    2002-01-01

    The annular combustor geometry of a combined-cycle engine has been analyzed with three-dimensional computational fluid dynamics. Both subsonic combustion and supersonic combustion flowfields have been simulated. The subsonic combustion analysis was executed in conjunction with a direct-connect test rig. Two cold-flow and one hot-flow results are presented. The simulations compare favorably with the test data for the two cold flow calculations; the hot-flow data was not yet available. The hot-flow simulation Indicates that the conventional ejector-ramjet cycle would not provide adequate mixing at the conditions tested. The supersonic combustion ramjet flowfield was simulated with frozen chemistry model. A five-parameter test matrix was specified, according to statistical design-of-experiments theory. Twenty-seven separate simulations were used to assemble surrogate models for combustor mixing efficiency and total pressure recovery. Scramjet injector design parameters (injector angle, location, and fuel split) as well as mission variables (total fuel mass flow and freestream Mach number) were included in the analysis. A promising injector design has been identified that provides good mixing characteristics with low total pressure losses. The surrogate models can be used to develop performance maps of different injector designs. Several complex three-way variable interactions appear within the dataset that are not adequately resolved with the current statistical analysis.

  14. Three dimensional computerized microtomography in the analysis of sculpture.

    Science.gov (United States)

    Badde, Aurelia; Illerhaus, Bernhard

    2008-01-01

    The Alte Nationalgalerie, Staatliche Museen zu Berlin (SMB) and the Federal Institute for Materials Research and Testing (BAM) tested the accomplishment of the three dimensional computerized microtomography (3D-microCT)-a new flat panel detector computerized tomography (CT) system at the BAM with extended energy range, with high voltage X-ray tubes (330 and 225 kV), with micrometer focal spot size and micrometer resolution and enlarged object size (up to 70 cm diameter)-for examining plaster statues. The high spatial and density resolution of the tomograph enable detailed insights into the individual work processes of the investigated cast plaster statues. While initiated in support of the conservation process, computed tomography (CT) analysis has assisted in revealing relative chronologies within the series of the cast works of art, thus serving as a valuable tool in the art-historical appraisal of the oeuvres. The image-processing systems visualize the voids and cracks within and the cuts through the original cast works. Internal structures, armoring, sculptural reworking as well as restorative interventions are virtually reconstructed. The authors are currently employing the 3D-microCT systems at the BAM into the detection of defects in Carrara marble sculpture. Microcracks, fractures, and material flaws are visualized at spatial resolution down to 10 microm. Computerized reconstruction of ultrasound tomography is verified by analyzing correlations in the results obtained from the complementary application of these two non-destructive testing (NDT) methods of diagnosis.

  15. Three-dimensional cephalometric analysis in orthodontics: a systematic review.

    Science.gov (United States)

    Pittayapat, P; Limchaichana-Bolstad, N; Willems, G; Jacobs, R

    2014-05-01

    The scientific evidence of 3D cephalometry in orthodontics has not been well established. The aim of this systematic review was to evaluate the evidence for the diagnostic efficacy of 3D cephalometry in orthdontics, focusing on measurement accuracy and reproducibility of landmark identification. PubMed, EMBASE and the Cochrane library (from beginning to March 13, 2012) were searched. Search terms included: cone-beam computed tomography; tomography, spiral computed; imaging, three-dimensional; orthodontics. Two reviewers read the retrieved articles and selected relevant publications based on pre-established inclusion criteria. The selected publications had to elucidate the hierarchical model of the efficacy of diagnostic imaging systems by Fryback and Thornbury. The data was then extracted according to two protocols, which were based on the Quality Assessment of Diagnostic Accuracy Studies (QUADAS) tool. Next, levels of evidence were categorized into 3 groups: low, moderate and high evidence. 571 publications were found by database search strategies and 50 additional studies by hand search. A total of 35 publications were included in this review. Limited evidence for the diagnostic efficacy of 3D cephalometry was found. Only 6 studies met the criteria for a moderate level of evidence. Accordingly, this systematic review reveals that there is still need for methodologically standardized studies on 3D cephalometric analysis. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Three-dimensional analysis of anisotropic spatially reinforced structures

    Science.gov (United States)

    Bogdanovich, Alexander E.

    1993-01-01

    The material-adaptive three-dimensional analysis of inhomogeneous structures based on the meso-volume concept and application of deficient spline functions for displacement approximations is proposed. The general methodology is demonstrated on the example of a brick-type mosaic parallelepiped arbitrarily composed of anisotropic meso-volumes. A partition of each meso-volume into sub-elements, application of deficient spline functions for a local approximation of displacements and, finally, the use of the variational principle allows one to obtain displacements, strains, and stresses at anypoint within the structural part. All of the necessary external and internal boundary conditions (including the conditions of continuity of transverse stresses at interfaces between adjacent meso-volumes) can be satisfied with requisite accuracy by increasing the density of the sub-element mesh. The application of the methodology to textile composite materials is described. Several numerical examples for woven and braided rectangular composite plates and stiffened panels under transverse bending are considered. Some typical effects of stress concentrations due to the material inhomogeneities are demonstrated.

  17. Analysis of three-dimensional transient seepage into ditch drains ...

    Indian Academy of Sciences (India)

    Ratan Sarmah

    Abstract. An analytical solution in the form of infinite series is developed for predicting time-dependent three-dimensional seepage into ditch drains from a flat, homogeneous and anisotropic ponded field of finite size, the field being assumed to be surrounded on all its vertical faces by ditch drains with unequal water level ...

  18. Stability analysis of non-axisymmetric three-dimensional finite ...

    Indian Academy of Sciences (India)

    In three-dimensional formulation one prefers a spinning frame for derivation of the govern- ing equations (Nandi & Neogy 2001). In this spinning frame, the orthotropic bearing stiffness becomes periodic. The governing equations thus become parametric in nature. A rotor cross- section is symmetric when the rotor has same ...

  19. Three-Dimensional Analysis of Deep Space Network Antenna Coverage

    Science.gov (United States)

    Kegege, Obadiah; Fuentes, Michael; Meyer, Nicholas; Sil, Amy

    2012-01-01

    There is a need to understand NASA s Deep Space Network (DSN) coverage gaps and any limitations to provide redundant communication coverage for future deep space missions, especially for manned missions to Moon and Mars. The DSN antennas are required to provide continuous communication coverage for deep space flights, interplanetary missions, and deep space scientific observations. The DSN consists of ground antennas located at three sites: Goldstone in USA, Canberra in Australia, and Madrid in Spain. These locations are not separated by the exactly 120 degrees and some DSN antennas are located in the bowl-shaped mountainous terrain to shield against radiofrequency interference resulting in a coverage gap in the southern hemisphere for the current DSN architecture. To analyze the extent of this gap and other coverage limitations, simulations of the DSN architecture were performed. In addition to the physical properties of the DSN assets, the simulation incorporated communication forward link calculations and azimuth/elevation masks that constrain the effects of terrain for each DSN antenna. Analysis of the simulation data was performed to create coverage profiles with the receiver settings at a deep space altitudes ranging from 2 million to 10 million km and a spherical grid resolution of 0.25 degrees with respect to longitude and latitude. With the results of these simulations, two- and three-dimensional representations of the area without communication coverage and area with coverage were developed, showing the size and shape of the communication coverage gap projected in space. Also, the significance of this communication coverage gap is analyzed from the simulation data.

  20. Brain lesion analysis using three-dimensional SPECT imaging

    International Nuclear Information System (INIS)

    Shibata, Iekado; Onagi, Atsuo; Kuroki, Takao

    1995-01-01

    A three-headed gamma camera (PRISM 3000) is capable to scan the protocol of early dynamic SPECT and to analyze two radioisotopes at the same time. We have framed three-dimensional brain SPECT images for several brain diseases by using the Application Visualization System (AVS). We carried out volume measurements in brain tumors and/or AVMs by applying this methodology. Thallium-201 and/or 123I-IMP were used for brain SPECT imaging. The dynamic scan protocol was changed in accordance with the given disease. The protocol for brain tumors was derived from a preliminary comparative study with thallium-201 and 123I-IMP that had suggested a disparity in the detection of brain tumors and the differentiation between tumor tissue and normal brain. The three-dimension SPECT image represented the brain tumor or AVM in a striking fashion, and the changes with respect to tumor or AVM after radiosurgery or embolization were understood readily. (author)

  1. Three-dimensional analysis of magnetometer array data

    Science.gov (United States)

    Richmond, A. D.; Baumjohann, W.

    1984-01-01

    A technique is developed for mapping magnetic variation fields in three dimensions using data from an array of magnetometers, based on the theory of optimal linear estimation. The technique is applied to data from the Scandinavian Magnetometer Array. Estimates of the spatial power spectra for the internal and external magnetic variations are derived, which in turn provide estimates of the spatial autocorrelation functions of the three magnetic variation components. Statistical errors involved in mapping the external and internal fields are quantified and displayed over the mapping region. Examples of field mapping and of separation into external and internal components are presented. A comparison between the three-dimensional field separation and a two-dimensional separation from a single chain of stations shows that significant differences can arise in the inferred internal component.

  2. Are Three-Dimensional Monitors More Appropriate Than Two-Dimensional Monitors in the Three-Dimensional Analysis?

    Science.gov (United States)

    Ahn, Jaemyung; Hong, Jongrak

    2017-01-01

    In orthognathic surgery, three-dimensional (3D) program-based analysis of 3D reconstructions of computed tomography (CT) images is commonly used, and images viewed on a monitor. The authors compared the coordinates of facial landmarks on images in a 3D program displayed on a two-dimensional (2D) (standard) or 3D monitor. Facial bone CT data from 30 patients were reconstructed in 3D. Four researchers identified 33 facial landmarks, 3 times each on 2D and 3D monitors, for each patient, by their x-, y-, and z-coordinates. The time taken to complete these identifications was measured.For each set of coordinates, the average intraclass coefficient was >0.8 for 2D and 3D analyses, as well as among 4 readers. It took on average of 2 minutes 46 seconds to identify the landmarks on the 2D monitor, compared with 2 minutes 25 seconds on the 3D monitor. The variance of individual coordinates differed when measured on 2D or 3D monitor. The landmarks affected were located near the median region of the facial area, and are important for setting the reference sagittal plane during diagnosis for orthognathic surgery. Therefore, identifying facial landmarks using 3D monitors may be helpful for conducting accurate facial diagnoses.

  3. Analysis of Human Fibroadenomas Using Three-Dimensional Impedance Maps

    Science.gov (United States)

    Dapore, Alexander J.; King, Michael R.; Harter, Josephine; Sarwate, Sandhya; Oelze, Michael L.; Zagzebski, James A.; Do, Minh N.; Hall, Timothy J.

    2012-01-01

    Three-dimensional impedance maps (3DZMs) are virtual volumes of acoustic impedance values constructed from histology to represent tissue microstructure acoustically. From the 3DZM, the ultrasonic backscattered power spectrum can be predicted and model based scatterer properties, such as effective scatterer diameter (ESD), can be estimated. Additionally, the 3DZM can be exploited to visualize and identify possible scattering sites, which may aid in the development of more effective scattering models to better represent the ultrasonic interaction with underlying tissue microstructure. In this study, 3DZMs were created from a set of human fibroadenoma samples. ESD estimates were made assuming a fluid-filled sphere form factor model from 3DZMs of volume 300 × 300 × 300 µm. For a collection of 33 independent human fibroadenoma tissue samples, the ESD was estimated to be 111 ± 40.7 µm. The 3DZMs were then investigated visually to identify possible scattering sources which conformed to the estimated model scatterer dimensions. This estimation technique allowed a better understanding of the spatial distribution and variability of the estimates throughout the volume. PMID:21278015

  4. Analysis of secondary coxarthrosis by three dimensional computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Hemmi, Osamu [Keio Univ., Tokyo (Japan). School of Medicine

    1997-11-01

    The majority of coxarthrosis in Japan is due to congenital dislocation of the hip and acetabular dysplasia. Until now coxarthrosis has been chiefly analyzed on the basis of anterior-posterior radiographs. By using three-dimensional (3D) CT, it was possible to analyze the morphological features of secondary coxarthrosis more accurately, and by using new computer graphics software, it was possible to display the contact area in the hip joint and observe changes associated with progression of the stages of the disease. There were 34 subjects (68 joints), and all of who were women. The CT data were read into a work station, and 3D reconstruction was achieved with hip surgery simulation software (SurgiPlan). Pelvic inclination, acetabular anteversion, seven parameters indicating the investment of the femoral head and two indicating the position of the hip joint in the pelvis were measured. The results showed that secondary coxarthrosis is characterized not only by lateral malposition of the hip joint according to the pelvic coordinates, but by anterior malposition as well. Many other measurements provided 3D information on the acetabular dysplasia. Many of them were correlated with the CE angle on plain radiographs. Furthermore, a strong correlation was not found between anterior and posterior acetabular coverage of the femoral head. In addition, SurgiPlan`s distance mapping function enabled 3D observation of the pattern of progression of arthrosis based on the pattern of progression of joint space narrowing. (author)

  5. Analysis of secondary coxarthrosis by three dimensional computed tomography

    International Nuclear Information System (INIS)

    Hemmi, Osamu

    1997-01-01

    The majority of coxarthrosis in Japan is due to congenital dislocation of the hip and acetabular dysplasia. Until now coxarthrosis has been chiefly analyzed on the basis of anterior-posterior radiographs. By using three-dimensional (3D) CT, it was possible to analyze the morphological features of secondary coxarthrosis more accurately, and by using new computer graphics software, it was possible to display the contact area in the hip joint and observe changes associated with progression of the stages of the disease. There were 34 subjects (68 joints), and all of who were women. The CT data were read into a work station, and 3D reconstruction was achieved with hip surgery simulation software (SurgiPlan). Pelvic inclination, acetabular anteversion, seven parameters indicating the investment of the femoral head and two indicating the position of the hip joint in the pelvis were measured. The results showed that secondary coxarthrosis is characterized not only by lateral malposition of the hip joint according to the pelvic coordinates, but by anterior malposition as well. Many other measurements provided 3D information on the acetabular dysplasia. Many of them were correlated with the CE angle on plain radiographs. Furthermore, a strong correlation was not found between anterior and posterior acetabular coverage of the femoral head. In addition, SurgiPlan's distance mapping function enabled 3D observation of the pattern of progression of arthrosis based on the pattern of progression of joint space narrowing. (author)

  6. A three-dimensional analysis of the sigmoid notch

    Directory of Open Access Journals (Sweden)

    Evan D. Collins

    2011-12-01

    Full Text Available Fractures of the distal radius are among the most common injuries of the upper extremity, though treatment has traditionally focused on restoration of the radiocarpal joint and late sequelae may persist. X-ray imaging underestimates sigmoid notch involvement following distal radius fractures. No classification system exists for disruption patterns of the sigmoid notch of the radius associated with distal radius fractures. This study quantifies the anatomy of the sigmoid notch and identifies the landmarks of the articular surface and proximal boundaries of the distal radioulnar joint (DRUJ capsule. Computed tomography scans of freshly frozen cadaveric hands were used - followed by dissection, and three-dimensional reconstruction of the distal radius and sigmoid notch. The sigmoid notch surface was divided into two surfaces and measured. The Anterior Posterior (AP and Proximal Distal (PD widths of the articulating surface were reviewed, along with the radius of curvature, version angle and depth. The study showed that the sigmoid notch is flatter than previously believed - and only the distal 69% of its surface is covered by cartilage. On average, it has about nine degrees of retroversion, and its average inclination is almost parallel to the anatomical axis of the radius. Clinical implications exist for evaluation of the DRUJ involvement in distal radius fractures or degenerative diseases and for future development and evaluation of hemiarthroplasty replacement of the distal radius.

  7. Three-dimensional geometric analysis of felid limb bone allometry.

    Directory of Open Access Journals (Sweden)

    Michael Doube

    Full Text Available Studies of bone allometry typically use simple measurements taken in a small number of locations per bone; often the midshaft diameter or joint surface area is compared to body mass or bone length. However, bones must fulfil multiple roles simultaneously with minimum cost to the animal while meeting the structural requirements imposed by behaviour and locomotion, and not exceeding its capacity for adaptation and repair. We use entire bone volumes from the forelimbs and hindlimbs of Felidae (cats to investigate regional complexities in bone allometry.Computed tomographic (CT images (16435 slices in 116 stacks were made of 9 limb bones from each of 13 individuals of 9 feline species ranging in size from domestic cat (Felis catus to tiger (Panthera tigris. Eleven geometric parameters were calculated for every CT slice and scaling exponents calculated at 5% increments along the entire length of each bone. Three-dimensional moments of inertia were calculated for each bone volume, and spherical radii were measured in the glenoid cavity, humeral head and femoral head. Allometry of the midshaft, moments of inertia and joint radii were determined. Allometry was highly variable and related to local bone function, with joint surfaces and muscle attachment sites generally showing stronger positive allometry than the midshaft.Examining whole bones revealed that bone allometry is strongly affected by regional variations in bone function, presumably through mechanical effects on bone modelling. Bone's phenotypic plasticity may be an advantage during rapid evolutionary divergence by allowing exploitation of the full size range that a morphotype can occupy. Felids show bone allometry rather than postural change across their size range, unlike similar-sized animals.

  8. Three-dimensional geometric analysis of felid limb bone allometry.

    Science.gov (United States)

    Doube, Michael; Wiktorowicz-Conroy, Alexis; Conroy, Alexis Wiktorowicz; Christiansen, Per; Hutchinson, John R; Shefelbine, Sandra

    2009-01-01

    Studies of bone allometry typically use simple measurements taken in a small number of locations per bone; often the midshaft diameter or joint surface area is compared to body mass or bone length. However, bones must fulfil multiple roles simultaneously with minimum cost to the animal while meeting the structural requirements imposed by behaviour and locomotion, and not exceeding its capacity for adaptation and repair. We use entire bone volumes from the forelimbs and hindlimbs of Felidae (cats) to investigate regional complexities in bone allometry. Computed tomographic (CT) images (16435 slices in 116 stacks) were made of 9 limb bones from each of 13 individuals of 9 feline species ranging in size from domestic cat (Felis catus) to tiger (Panthera tigris). Eleven geometric parameters were calculated for every CT slice and scaling exponents calculated at 5% increments along the entire length of each bone. Three-dimensional moments of inertia were calculated for each bone volume, and spherical radii were measured in the glenoid cavity, humeral head and femoral head. Allometry of the midshaft, moments of inertia and joint radii were determined. Allometry was highly variable and related to local bone function, with joint surfaces and muscle attachment sites generally showing stronger positive allometry than the midshaft. Examining whole bones revealed that bone allometry is strongly affected by regional variations in bone function, presumably through mechanical effects on bone modelling. Bone's phenotypic plasticity may be an advantage during rapid evolutionary divergence by allowing exploitation of the full size range that a morphotype can occupy. Felids show bone allometry rather than postural change across their size range, unlike similar-sized animals.

  9. Three-Dimensional Analysis and Modeling of a Wankel Engine

    Science.gov (United States)

    Raju, M. S.; Willis, E. A.

    1991-01-01

    A new computer code, AGNI-3D, has been developed for the modeling of combustion, spray, and flow properties in a stratified-charge rotary engine (SCRE). The mathematical and numerical details of the new code are described by the first author in a separate NASA publication. The solution procedure is based on an Eulerian-Lagrangian approach where the unsteady, three-dimensional Navier-Stokes equations for a perfect gas-mixture with variable properties are solved in generalized, Eulerian coordinates on a moving grid by making use of an implicit finite-volume, Steger-Warming flux vector splitting scheme. The liquid-phase equations are solved in Lagrangian coordinates. The engine configuration studied was similar to existing rotary engine flow-visualization and hot-firing test rigs. The results of limited test cases indicate a good degree of qualitative agreement between the predicted and measured pressures. It is conjectured that the impulsive nature of the torque generated by the observed pressure nonuniformity may be one of the mechanisms responsible for the excessive wear of the timing gears observed during the early stages of the rotary combustion engine (RCE) development. It was identified that the turbulence intensities near top-dead-center were dominated by the compression process and only slightly influenced by the intake and exhaust processes. Slow mixing resulting from small turbulence intensities within the rotor pocket and also from a lack of formation of any significant recirculation regions within the rotor pocket were identified as the major factors leading to incomplete combustion. Detailed flowfield results during exhaust and intake, fuel injection, fuel vaporization, combustion, mixing and expansion processes are also presented. The numerical procedure is very efficient as it takes 7 to 10 CPU hours on a CRAY Y-MP for one entire engine cycle when the computations are performed over a 31 x16 x 20 grid.

  10. Three-dimensional thermal-hydraulic analysis of a liquid metal reactor design with the COMMIX code

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Y.W.

    1988-01-01

    Steady-state and transient thermal-hydraulic analysis of a liquid metal reactor (LMR) design have been performed with the COMMIX computer code and the results are discussed. The LMR design analyzed includes an inherent safety feature which enables the decay heat removal by natural convection of ambient air, and the purpose of this analysis is to evaluate the inherent safety feature of the LMR design. COMMIX is a three-dimensional thermal-hydraulic analysis computer code developed at Argonne National Laboratory. A single-phase version of COMMIX has been used. Radiation plays an important role in the overall heat transfer, and the COMMIX version used includes the radiation capability. The theoretical formulation of COMMIX, including the treatment of thermal structures and radiation, is also discussed. 6 refs., 8 figs.

  11. Quasi-Three-Dimensional Analysis Of Turbine Flow

    Science.gov (United States)

    Hsu, Wayne W.

    1988-01-01

    Computer program reduces computer time and treats multiple elements. Improved design-analysis program for turbomachinery applied to multiple turbine elements simultaneously. Enables continuous and coherent analyses rather than previous piece-meal analyses of flow fields. Effects of upstream elements on downstream flow taken into account automatically.

  12. Three dimensional mathematical model of tooth for finite element analysis

    Directory of Open Access Journals (Sweden)

    Puškar Tatjana

    2010-01-01

    Full Text Available Introduction. The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects in programmes for solid modeling. Objective. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. Methods. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analyzing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body into simple geometric bodies (cylinder, cone, pyramid,.... Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Results. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Conclusion Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.

  13. [Three dimensional mathematical model of tooth for finite element analysis].

    Science.gov (United States)

    Puskar, Tatjana; Vasiljević, Darko; Marković, Dubravka; Jevremović, Danimir; Pantelić, Dejan; Savić-Sević, Svetlana; Murić, Branka

    2010-01-01

    The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects) in programmes for solid modeling. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analysing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body) into simple geometric bodies (cylinder, cone, pyramid,...). Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.

  14. Three-dimensional volumetric analysis after sinus grafts.

    Science.gov (United States)

    Kim, Eun-Sik; Moon, Seong-Yong; Kim, Su-Gwan; Park, Hyun-Chun; Oh, Ji-Su

    2013-04-01

    The purpose of this study was to evaluate the augmentation volume of a sinus graft according to the time and graft materials based on cone-beam computed tomography (CBCT) scans and to assess efficacy of a bioabsorbable membrane. Fourteen patients were investigated, and volumetric analysis was performed using OnDemand 3DTM software (Cybermed, Seoul, Korea). CBCT scans were performed on patients before surgery, immediately after surgery, 6 months after surgery, and 1 year after surgery. Following this analysis, the volumetric data were compared with the actual grafted volumes. Bioabsorbable membranes were used in all patients to promote the protection of sinus membranes and to guide bone regeneration. Overall, the average percent volume of graft material that remained 6 months after implantation was 82.0%, and the average percent volume of graft material that remained 1 year after surgery was 60.4%. These reductions in the volume of graft material from immediately after surgery until 6 months or 1 year after surgery were shown to be statistically significant (P = 0.002 and P volumetric analysis performed using CBCT can provide highly accurate data. A significant difference was observed in volumetric change over time, but no significant differences were observed between materials. No significant relationship was observed between the resorption of grafted bone and the success rate.

  15. Three-dimensional analysis of mandibular growth and tooth eruption

    DEFF Research Database (Denmark)

    Krarup, S.; Darvann, Tron Andre; Larsen, Per

    2005-01-01

    Normal and abnormal jaw growth and tooth eruption are topics of great importance for several dental and medical disciplines. Thus far, clinical studies on these topics have used two-dimensional (2D) radiographic techniques. The purpose of the present study was to analyse normal mandibular growth...... and tooth eruption in three dimensions based on computer tomography (CT) scans, extending the principles of mandibular growth analysis proposed by Bjork in 1969 from two to three dimensions. As longitudinal CT data from normal children are not available (for ethical reasons), CT data from children...... with Apert syndrome were employed, because it has been shown that the mandible in Apert syndrome is unaffected by the malformation, and these children often have several craniofacial CT scans performed during childhood for planning of cranial and midface surgery and for follow-up after surgery. A total of 49...

  16. Three-dimensional analysis of mandibular growth and tooth eruption

    DEFF Research Database (Denmark)

    Krarup, S.; Darvann, Tron Andre; Larsen, Per

    2005-01-01

    Normal and abnormal jaw growth and tooth eruption are topics of great importance for several dental and medical disciplines. Thus far, clinical studies on these topics have used two-dimensional (2D) radiographic techniques. The purpose of the present study was to analyse normal mandibular growth...... and tooth eruption in three dimensions based on computer tomography (CT) scans, extending the principles of mandibular growth analysis proposed by Bjork in 1969 from two to three dimensions. As longitudinal CT data from normal children are not available (for ethical reasons), CT data from children......, relocated laterally during growth. Furthermore, the position of tooth buds remained relatively stable inside the jaw until root formation started. Eruption paths of canines and premolars were vertical, whereas molars erupted in a lingual direction. The 3D method would seem to offer new insight into jaw...

  17. Three-dimensional analysis of pharyngeal high-resolution manometry data.

    Science.gov (United States)

    Geng, Zhixian; Hoffman, Matthew R; Jones, Corinne A; McCulloch, Timothy M; Jiang, Jack J

    2013-07-01

    High-resolution manometry (HRM) represents a critical advance in the quantification of swallow-related pressure events in the pharynx. Previous analyses of the pressures measured by HRM, though, have been largely two-dimensional, focusing on a single sensor in a given region. We present a three-dimensional approach that combines information from adjacent sensors in a region. Two- and three-dimensional methods were compared for their ability to classify data correctly as normal or disordered. Case series evaluating new method of data analysis. A total of 1,324 swallows from 16 normal subjects and 61 subjects with dysphagia were included. Two-dimensional single sensor integrals of the area under the curves created by rises in pressure in the velopharynx, tongue base, and upper esophageal sphincter (UES) were calculated. Three-dimensional multi-sensor integrals of the volume under all curves corresponding to the same regions were also computed. The two sets of measurements were compared for their ability to classify data correctly as normal or disordered using an artificial neural network (ANN). Three-dimensional parameters yielded a maximal classification accuracy of 86.71% ± 1.47%, while two-dimensional parameters achieved a maximum accuracy of 83.36% ± 1.42%. Combining two- and three-dimensional parameters with all other variables, including three-dimensional parameters, yielded a classification accuracy of 96.99% ± 0.51%. Including two-dimensional parameters yielded a classification accuracy of 96.32% ± 1.05%. Three-dimensional analysis led to improved classification of swallows based on pharyngeal HRM. Artificial neural network performance with both two-dimensional and three-dimensional analyses was effective, classifying a large percentage of swallows correctly, thus demonstrating its potential clinical utility. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  18. Accuracy of three-dimensional seismic ground response analysis in time domain using nonlinear numerical simulations

    Science.gov (United States)

    Liang, Fayun; Chen, Haibing; Huang, Maosong

    2017-07-01

    To provide appropriate uses of nonlinear ground response analysis for engineering practice, a three-dimensional soil column with a distributed mass system and a time domain numerical analysis were implemented on the OpenSees simulation platform. The standard mesh of a three-dimensional soil column was suggested to be satisfied with the specified maximum frequency. The layered soil column was divided into multiple sub-soils with a different viscous damping matrix according to the shear velocities as the soil properties were significantly different. It was necessary to use a combination of other one-dimensional or three-dimensional nonlinear seismic ground analysis programs to confirm the applicability of nonlinear seismic ground motion response analysis procedures in soft soil or for strong earthquakes. The accuracy of the three-dimensional soil column finite element method was verified by dynamic centrifuge model testing under different peak accelerations of the earthquake. As a result, nonlinear seismic ground motion response analysis procedures were improved in this study. The accuracy and efficiency of the three-dimensional seismic ground response analysis can be adapted to the requirements of engineering practice.

  19. Three dimensional visualization breakthrough in analysis and communication of technical information for nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, D.H.; Cerny, B.A. [USDOE, Washington, DC (USA); Hill, E.R.; Krupka, K.M. [Pacific Northwest Lab., Washington, DC (USA); Smoot, J.L. [Pacific Northwest Lab., Richland, WA (USA); Smith, D.R.; Waldo, K. [Dynamic Graphics, Inc., Bethesda, MD (USA)

    1990-11-01

    Computer graphics systems that provide interactive display and manipulation of three-dimensional data are powerful tools for the analysis and communication of technical information required for characterization and design of a geologic repository for nuclear waste. Greater understanding of site performance and repository design information is possible when performance-assessment modeling results can be visually analyzed in relation to site geologic and hydrologic information and engineering data for surface and subsurface facilities. In turn, this enhanced visualization capability provides better communication between technical staff and program management with respect to analysis of available information and prioritization of program planning. A commercially-available computer system was used to demonstrate some of the current technology for three-dimensional visualization within the architecture of systems for nuclear waste management. This computer system was used to interactively visualize and analyze the information for two examples: (1) site-characterization and engineering data for a potential geologic repository at Yucca Mountain, Nevada; and (2) three-dimensional simulations of a hypothetical release and transport of contaminants from a source of radionuclides to the vadose zone. Users may assess the three-dimensional distribution of data and modeling results by interactive zooming, rotating, slicing, and peeling operations. For those parts of the database where information is sparse or not available, the software incorporates models for the interpolation and extrapolation of data over the three-dimensional space of interest. 12 refs., 4 figs.

  20. Three dimensional visualization breakthrough in analysis and communication of technical information for nuclear waste management

    International Nuclear Information System (INIS)

    Alexander, D.H.; Cerny, B.A.; Hill, E.R.; Krupka, K.M.; Smoot, J.L.; Smith, D.R.; Waldo, K.

    1990-11-01

    Computer graphics systems that provide interactive display and manipulation of three-dimensional data are powerful tools for the analysis and communication of technical information required for characterization and design of a geologic repository for nuclear waste. Greater understanding of site performance and repository design information is possible when performance-assessment modeling results can be visually analyzed in relation to site geologic and hydrologic information and engineering data for surface and subsurface facilities. In turn, this enhanced visualization capability provides better communication between technical staff and program management with respect to analysis of available information and prioritization of program planning. A commercially-available computer system was used to demonstrate some of the current technology for three-dimensional visualization within the architecture of systems for nuclear waste management. This computer system was used to interactively visualize and analyze the information for two examples: (1) site-characterization and engineering data for a potential geologic repository at Yucca Mountain, Nevada; and (2) three-dimensional simulations of a hypothetical release and transport of contaminants from a source of radionuclides to the vadose zone. Users may assess the three-dimensional distribution of data and modeling results by interactive zooming, rotating, slicing, and peeling operations. For those parts of the database where information is sparse or not available, the software incorporates models for the interpolation and extrapolation of data over the three-dimensional space of interest. 12 refs., 4 figs

  1. Assessment of altered three-dimensional blood characteristics in aortic disease by velocity distribution analysis

    NARCIS (Netherlands)

    Garcia, Julio; Barker, Alex J.; van Ooij, Pim; Schnell, Susanne; Puthumana, Jyothy; Bonow, Robert O.; Collins, Jeremy D.; Carr, James C.; Markl, Michael

    2015-01-01

    PurposeTo test the feasibility of velocity distribution analysis for identifying altered three-dimensional (3D) flow characteristics in patients with aortic disease based on 4D flow MRI volumetric analysis. MethodsForty patients with aortic (Ao) dilation (mid ascending aortic diameter MAA=407 mm,

  2. Three-dimensional window analysis for detecting positive selection at structural regions of proteins.

    Science.gov (United States)

    Suzuki, Yoshiyuki

    2004-12-01

    Detection of natural selection operating at the amino acid sequence level is important in the study of molecular evolution. Single-site analysis and one-dimensional window analysis can be used to detect selection when the biological functions of amino acid sites are unknown. Single-site analysis is useful when selection operates more or less constantly over evolutionary time, but less so when selection operates temporarily. One-dimensional window analysis is more sensitive than single-site analysis when the functions of amino acid sites in close proximity in the linear sequence are similar, although this is not always the case. Here I present a three-dimensional window analysis method for detecting selection given the three-dimensional structure of the protein of interest. In the three-dimensional structure, the window is defined as the sphere centered on the alpha-carbon of an amino acid site. The window size is the radius of the sphere. The sites whose alpha-carbons are included in the window are grouped for the neutrality test. The window is moved within the three-dimensional structure by sequentially moving the central site along the primary amino acid sequence. To detect positive selection, it may also be useful to group the surface-exposed sites in the window separately. Three-dimensional window analysis appears not only to be more sensitive than single-site analysis and one-dimensional window analysis but also to provide similar specificity for inferring positive selection in the analyses of the hemagglutinin and neuraminidase genes of human influenza A viruses. This method, however, may fail to detect selection when it operates only on a particular site, in which case single-site analysis may be preferred, although a large number of sequences is required.

  3. and three-dimensional models for analysis of optical absorption in ...

    Indian Academy of Sciences (India)

    Unknown

    Goldberg et al 1975; Kam and Parkinson 1982; Baglio et al 1982, 1983; Oritz 1995; Li et al 1996) has been carried out on WS2, there is no detailed analysis of the absorption spectra obtained from the single crystals of WS2 on the basis of two- and three-dimensional models. We have therefore carried out this study and the.

  4. Three dimensional finite element analysis of layered fiber-reinforced composite materials

    Science.gov (United States)

    Lee, J. D.

    1980-01-01

    A three-dimensional finite element analysis was performed for a biaxially loaded composite laminate (with a centered hole) consisting of several fiber-reinforced composite layers each with a specified fiber orientation. The detailed stress distribution around the hole was determined. Also, the locations of initial damage zones due to different failure mechanisms were indicated.

  5. Reliability of three-dimensional gait analysis in cervical spondylotic myelopathy.

    LENUS (Irish Health Repository)

    McDermott, Ailish

    2010-10-01

    Gait impairment is one of the primary symptoms of cervical spondylotic myelopathy (CSM). Detailed assessment is possible using three-dimensional gait analysis (3DGA), however the reliability of 3DGA for this population has not been established. The aim of this study was to evaluate the test-retest reliability of temporal-spatial, kinematic and kinetic parameters in a CSM population.

  6. Two-and three-dimensional models for analysis of optical absorption ...

    Indian Academy of Sciences (India)

    The optical energy gaps of WS2 single crystal were determined from the analysis of the absorption spectrum near the fundamental absorption edge at room temperature using light parallel to -axis incident normally on the basal plane. On the basis of two- and three-dimensional models it was found that both direct and ...

  7. Pulmonary vasculature in dogs assessed by three-dimensional fractal analysis and chemometrics.

    Science.gov (United States)

    Müller, Anna V; Marschner, Clara B; Kristensen, Annemarie T; Wiinberg, Bo; Sato, Amy F; Rubio, Jose M A; McEvoy, Fintan J

    2017-11-01

    Fractal analysis of canine pulmonary vessels could allow quantification of their space-filling properties. Aims of this prospective, analytical, cross-sectional study were to describe methods for reconstructing three dimensional pulmonary arterial vascular trees from computed tomographic pulmonary angiogram, applying fractal analyses of these vascular trees in dogs with and without diseases that are known to predispose to thromboembolism, and testing the hypothesis that diseased dogs would have a different fractal dimension than healthy dogs. A total of 34 dogs were sampled. Based on computed tomographic pulmonary angiograms findings, dogs were divided in three groups: diseased with pulmonary thromboembolism (n = 7), diseased but without pulmonary thromboembolism (n = 21), and healthy (n = 6). An observer who was aware of group status created three-dimensional pulmonary artery vascular trees for each dog using a semiautomated segmentation technique. Vascular three-dimensional reconstructions were then evaluated using fractal analysis. Fractal dimensions were analyzed, by group, using analysis of variance and principal component analysis. Fractal dimensions were significantly different among the three groups taken together (P = 0.001), but not between the diseased dogs alone (P = 0.203). The principal component analysis showed a tendency of separation between healthy control and diseased groups, but not between groups of dogs with and without pulmonary thromboembolism. Findings indicated that computed tomographic pulmonary angiogram images can be used to reconstruct three-dimensional pulmonary arterial vascular trees in dogs and that fractal analysis of these three-dimensional vascular trees is a feasible method for quantifying the spatial relationships of pulmonary arteries. These methods could be applied in further research studies on pulmonary and vascular diseases in dogs. © 2017 American College of Veterinary Radiology.

  8. Kinematics of swimming of the manta ray: three-dimensional analysis of open-water maneuverability.

    Science.gov (United States)

    Fish, Frank E; Kolpas, Allison; Crossett, Andrew; Dudas, Michael A; Moored, Keith W; Bart-Smith, Hilary

    2018-03-22

    For aquatic animals, turning maneuvers represent a locomotor activity that may not be confined to a single coordinate plane, making analysis difficult, particularly in the field. To measure turning performance in a three-dimensional space for the manta ray ( Mobula birostris ), a large open-water swimmer, scaled stereo video recordings were collected. Movements of the cephalic lobes, eye and tail base were tracked to obtain three-dimensional coordinates. A mathematical analysis was performed on the coordinate data to calculate the turning rate and curvature (1/turning radius) as a function of time by numerically estimating the derivative of manta trajectories through three-dimensional space. Principal component analysis was used to project the three-dimensional trajectory onto the two-dimensional turn. Smoothing splines were applied to these turns. These are flexible models that minimize a cost function with a parameter controlling the balance between data fidelity and regularity of the derivative. Data for 30 sequences of rays performing slow, steady turns showed the highest 20% of values for the turning rate and smallest 20% of turn radii were 42.65±16.66 deg s -1 and 2.05±1.26 m, respectively. Such turning maneuvers fall within the range of performance exhibited by swimmers with rigid bodies. © 2018. Published by The Company of Biologists Ltd.

  9. Three-Dimensional CST Parameterization Method Applied in Aircraft Aeroelastic Analysis

    Directory of Open Access Journals (Sweden)

    Hua Su

    2017-01-01

    Full Text Available Class/shape transformation (CST method has advantages of adjustable design variables and powerful parametric geometric shape design ability and has been widely used in aerodynamic design and optimization processes. Three-dimensional CST is an extension for complex aircraft and can generate diverse three-dimensional aircraft and the corresponding mesh automatically and quickly. This paper proposes a parametric structural modeling method based on gridding feature extraction from the aerodynamic mesh generated by the three-dimensional CST method. This novel method can create parametric structural model for fuselage and wing and keep the coordination between the aerodynamic mesh and the structural mesh. Based on the generated aerodynamic model and structural model, an automatic process for aeroelastic modeling and solving is presented with the panel method for aerodynamic solver and NASTRAN for structural solver. A reusable launch vehicle (RLV is used to illustrate the process for aeroelastic modeling and solving. The result shows that this method can generate aeroelastic model for diverse complex three-dimensional aircraft automatically and reduce the difficulty of aeroelastic analysis dramatically. It provides an effective approach to make use of the aeroelastic analysis at the conceptual design phase for modern aircraft.

  10. A three-dimensional steady-state thermal analysis of the reactor closure

    International Nuclear Information System (INIS)

    Honda, Mitsugu; Sosa, Yutaka; Otsubo, Toru.

    1991-01-01

    This report summarizes the thermal shield design and the three-dimensional thermal analysis on the upper reactor structures of FBR Monju. The analysis was performed by using NASTRAN taking account of both convective and radiative heat flow. Especially, local heat flow by circumferential natural convection in the annulus gaps was calculated by VANAC (Vertical Annulus Natural Convection Analysis Program) which was confirmed by the scale model experiments. (author)

  11. Automated three-dimensional analysis of particle measurements using an optical profilometer and image analysis software.

    Science.gov (United States)

    Bullman, V

    2003-07-01

    The automated collection of topographic images from an optical profilometer coupled with existing image analysis software offers the unique ability to quantify three-dimensional particle morphology. Optional software available with most optical profilers permits automated collection of adjacent topographic images of particles dispersed onto a suitable substrate. Particles are recognized in the image as a set of continuous pixels with grey-level values above the grey level assigned to the substrate, whereas particle height or thickness is represented in the numerical differences between these grey levels. These images are loaded into remote image analysis software where macros automate image processing, and then distinguish particles for feature analysis, including standard two-dimensional measurements (e.g. projected area, length, width, aspect ratios) and third-dimensional measurements (e.g. maximum height, mean height). Feature measurements from each calibrated image are automatically added to cumulative databases and exported to a commercial spreadsheet or statistical program for further data processing and presentation. An example is given that demonstrates the superiority of quantitative three-dimensional measurements by optical profilometry and image analysis in comparison with conventional two-dimensional measurements for the characterization of pharmaceutical powders with plate-like particles.

  12. X-ray computed tomography of packed bed chromatography columns for three dimensional imaging and analysis.

    Science.gov (United States)

    Johnson, T F; Levison, P R; Shearing, P R; Bracewell, D G

    2017-03-03

    Physical characteristics critical to chromatography including geometric porosity and tortuosity within the packed column were analysed based upon three dimensional reconstructions of bed structure in-situ. Image acquisition was performed using two X-ray computed tomography systems, with optimisation of column imaging performed for each sample in order to produce three dimensional representations of packed beds at 3μm resolution. Two bead materials, cellulose and ceramic, were studied using the same optimisation strategy but resulted in differing parameters required for X-ray computed tomography image generation. After image reconstruction and processing into a digital three dimensional format, physical characteristics of each packed bed were analysed, including geometric porosity, tortuosity, surface area to volume ratio as well as inter-bead void diameters. Average porosities of 34.0% and 36.1% were found for ceramic and cellulose samples and average tortuosity readings at 1.40 and 1.79 respectively, with greater porosity and reduced tortuosity overall values at the centre compared to the column edges found in each case. X-ray computed tomography is demonstrated to be a viable method for three dimensional imaging of packed bed chromatography systems, enabling geometry based analysis of column axial and radial heterogeneity that is not feasible using traditional techniques for packing quality which provide an ensemble measure. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  13. Three-dimensional analysis and computer modeling of the capillary endothelial vesicular system with electron tomography.

    Science.gov (United States)

    Wagner, Roger; Modla, Shannon; Hossler, Fred; Czymmek, Kirk

    2012-08-01

    We examined the three-dimensional organization of the endothelial vesicular system with TEM tomography of semi-thick sections. Mouse abdominal muscle capillaries were perfused with terbium to label vesicular compartments open to the luminal surface. The tissue was prepared for TEM and semi-thick (250 nm) sections were cut. Dual axis tilt series, collected from +60° to -60° at 1° increments, were acquired in regions of labeled abluminal caveolae. These tomograms were reconstructed and analyzed to reveal three-dimensional vesicular associations not evident in thin sections. Reconstructed tomograms revealed free vesicles, both labeled and unlabeled, in the endothelial cytoplasm as well as transendothelial channels that spanned the luminal and abluminal membranes. A large membranous compartment connecting the luminal and abluminal surfaces was also present. Computer modeling of tomographic data and video animations provided three-dimensional perspectives to these structures. Uncertainties associated with other three-dimensional methods to study the capillary wall are remedied by tomographic analysis of semi-thick sections. Transendothelial channels of fused vesicles and free cytoplasmic vesicles give credence to their role as large pores in the transport of solutes across the walls of continuous capillaries. © 2012 John Wiley & Sons Ltd.

  14. User's guide to HEATRAN: a computer program for three-dimensional transient fluid-flow and heat-transfer analysis

    International Nuclear Information System (INIS)

    Wong, C.N.C.; Cheng, S.K.; Todreas, N.E.

    1982-01-01

    This report provides the HEATRAN user with programming and input information. HEATRAN is a computer program which is written to analyze the transient three dimensional single phase incompressible fluid flow and heat transfer problem. In this report, the programming information is given first. This information includes details concerning the code and structure. The description of the required input variables is presented next. Following the input description, the sample problems are described and HEATRAN's results are presented

  15. Pulmonary vasculature in dogs assessed by three-dimensional fractal analysis and chemometrics

    DEFF Research Database (Denmark)

    Müller, Anna V; Marschner, Clara B; Kristensen, Annemarie T

    2017-01-01

    Fractal analysis of canine pulmonary vessels could allow quantification of their space-filling properties. Aims of this prospective, analytical, cross-sectional study were to describe methods for reconstructing three dimensional pulmonary arterial vascular trees from computed tomographic pulmonary...... angiogram, applying fractal analyses of these vascular trees in dogs with and without diseases that are known to predispose to thromboembolism, and testing the hypothesis that diseased dogs would have a different fractal dimension than healthy dogs. A total of 34 dogs were sampled. Based on computed...... for each dog using a semiautomated segmentation technique. Vascular three-dimensional reconstructions were then evaluated using fractal analysis. Fractal dimensions were analyzed, by group, using analysis of variance and principal component analysis. Fractal dimensions were significantly different among...

  16. Code for three dimensional analysis of thermal birefringence in solid-state lasers

    International Nuclear Information System (INIS)

    Furukawa, Hiroyuki; Yamanaka, Chiyoe; Hiura, Norimitsu; Matsui, Hiroki; Yoshida, Takuji; Kiriyama, Hiromitsu; Yamanaka, Masanobu; Izawa, Yasukazu; Nakai, Sadao

    1999-01-01

    A three dimensional (3D) analysis code of thermal birefringence in solid-state lasers was developed. Basic equations include thermal conduction, absorption of laser energy, thermal stress and thermal birefringence. Relative phase shifts induced by thermal effects measured and obtained by simulation are in good agreement with quantitatively. Edge effects of thermal birefringence are quantitatively estimated by 3D simulation. Those are unable to be estimated by 2D analysis. (author)

  17. [Three-dimensional analysis of nasal physiology : Representation by means of computational fluid dynamics].

    Science.gov (United States)

    Sommer, F; Hoffmann, T K; Mlynski, G; Reichert, M; Grossi, A-S; Kröger, R; Lindemann, J

    2018-04-01

    The human nose takes primary responsibility for preconditioning inhaled air. Numerous pathologies can affect the physiology of the nose. The beginnings of flow analyzes were carried out with three-dimensional casting models and differently colored liquids. Temperature and humidity could not be taken into account. Today, much more complex analyzes are possible using computational fluid dynamics (CFD), which are based on three-dimensional models generated from computed tomography (CT) or magnetic resonance imaging (MRI) datasets. Here, flow velocities, temperature, humidity, and pressure differences can be simulated and displayed in high-resolution videos as a function of multiple boundary conditions. The analysis of pathological changes or surgical interventions is thereby possible.

  18. A three-dimensional layerwise-differential quadrature free vibration analysis of laminated cylindrical shells

    International Nuclear Information System (INIS)

    Malekzadeh, P.; Farid, M.; Zahedinejad, P.

    2008-01-01

    A mixed layerwise theory and differential quadrature (DQ) method (LW-DQ) for three-dimensional free vibration analysis of arbitrary laminated circular cylindrical shells is introduced. Using the layerwise theory in conjunction with the three-dimensional form of Hamilton's principle, the transversely discretized equations of motion and the related boundary conditions are obtained. Then, the DQ method is employed to discretize the resulting equations in the axial directions. The fast convergence behavior of the method is demonstrated and its accuracy is verified by comparing the results with those of other shell theories obtained using conventional methods and also with those of ANSYS software. In the case of arbitrary laminated shells with simply supported ends, the exact solution is developed for comparison purposes. It is shown that using few DQ grid points, converged accurate solutions are obtained. Less computational efforts of the proposed approach with respect to ANSYS software is shown

  19. Decoupling Principle Analysis and Development of a Parallel Three-Dimensional Force Sensor.

    Science.gov (United States)

    Zhao, Yanzhi; Jiao, Leihao; Weng, Dacheng; Zhang, Dan; Zheng, Rencheng

    2016-09-15

    In the development of the multi-dimensional force sensor, dimension coupling is the ubiquitous factor restricting the improvement of the measurement accuracy. To effectively reduce the influence of dimension coupling on the parallel multi-dimensional force sensor, a novel parallel three-dimensional force sensor is proposed using a mechanical decoupling principle, and the influence of the friction on dimension coupling is effectively reduced by making the friction rolling instead of sliding friction. In this paper, the mathematical model is established by combining with the structure model of the parallel three-dimensional force sensor, and the modeling and analysis of mechanical decoupling are carried out. The coupling degree (ε) of the designed sensor is defined and calculated, and the calculation results show that the mechanical decoupling parallel structure of the sensor possesses good decoupling performance. A prototype of the parallel three-dimensional force sensor was developed, and FEM analysis was carried out. The load calibration and data acquisition experiment system are built, and then calibration experiments were done. According to the calibration experiments, the measurement accuracy is less than 2.86% and the coupling accuracy is less than 3.02%. The experimental results show that the sensor system possesses high measuring accuracy, which provides a basis for the applied research of the parallel multi-dimensional force sensor.

  20. Comparison of two intraoral scanners based on three-dimensional surface analysis.

    Science.gov (United States)

    Lee, Kyung-Min

    2018-02-12

    This in vivo study evaluated the difference of two well-known intraoral scanners used in dentistry, namely iTero (Align Technology) and TRIOS (3Shape). Thirty-two participants underwent intraoral scans with TRIOS and iTero scanners, as well as conventional alginate impressions. The scans obtained with the two intraoral scanners were compared with each other and were also compared with the corresponding model scans by means of three-dimensional surface analysis. The average differences between the two intraoral scans on the surfaces were evaluated by color-mapping. The average differences in the three-dimensional direction between each intraoral scans and its corresponding model scan were calculated at all points on the surfaces. The average differences between the two intraoral scanners were 0.057 mm at the maxilla and 0.069 mm at the mandible. Color histograms showed that local deviations between the two scanners occurred in the posterior area. As for difference in the three-dimensional direction, there was no statistically significant difference between two scanners. Although there were some deviations in visible inspection, there was no statistical significance between the two intraoral scanners.

  1. Comparison of two intraoral scanners based on three-dimensional surface analysis

    Directory of Open Access Journals (Sweden)

    Kyung-Min Lee

    2018-02-01

    Full Text Available Abstract Background This in vivo study evaluated the difference of two well-known intraoral scanners used in dentistry, namely iTero (Align Technology and TRIOS (3Shape. Methods Thirty-two participants underwent intraoral scans with TRIOS and iTero scanners, as well as conventional alginate impressions. The scans obtained with the two intraoral scanners were compared with each other and were also compared with the corresponding model scans by means of three-dimensional surface analysis. The average differences between the two intraoral scans on the surfaces were evaluated by color-mapping. The average differences in the three-dimensional direction between each intraoral scans and its corresponding model scan were calculated at all points on the surfaces. Results The average differences between the two intraoral scanners were 0.057 mm at the maxilla and 0.069 mm at the mandible. Color histograms showed that local deviations between the two scanners occurred in the posterior area. As for difference in the three-dimensional direction, there was no statistically significant difference between two scanners. Conclusions Although there were some deviations in visible inspection, there was no statistical significance between the two intraoral scanners.

  2. Correspondence Analysis in R, with Two- and Three-dimensional Graphics: The ca Package

    Directory of Open Access Journals (Sweden)

    Oleg Nenadic

    2007-02-01

    Full Text Available We describe an implementation of simple, multiple and joint correspondence analysis in R. The resulting package comprises two parts, one for simple correspondence analysis and one for multiple and joint correspondence analysis. Within each part, functions for computation, summaries and visualization in two and three dimensions are provided, including options to display supplementary points and perform subset analyses. Special emphasis has been put on the visualization functions that offer features such as different scaling options for biplots and three-dimensional maps using the rgl package. Graphical options include shading and sizing plot symbols for the points according to their contributions to the map and masses respectively.

  3. Three-dimensional analysis of eddy current with the finite element method

    International Nuclear Information System (INIS)

    Takano, Ichiro; Suzuki, Yasuo

    1977-05-01

    The finite element method is applied to three-dimensional analysis of eddy current induced in a large Tokamak device (JT-60). Two techniques to study the eddy current are presented: those of ordinary vector potential and modified vector potential. The latter is originally developed for decreasing dimension of the global matrix. Theoretical treatment of these two is given. The skin effect for alternate current flowing in the circular loop of rectangular cross section is examined as an example of the modified vector potential technique, and the result is compared with analytical one. This technique is useful in analysis of the eddy current problem. (auth.)

  4. Helmet Versus Active Repositioning for Plagiocephaly: A Three-Dimensional Analysis

    DEFF Research Database (Denmark)

    Lipira, A.B.; Gordon, S.; Darvann, Tron Andre

    2010-01-01

    BACKGROUND AND PURPOSE: Orthotic helmets and active repositioning are the most common treatments for deformational plagiocephaly (DP). Existing evidence is not sufficient to objectively inform decisions between these options. A three-dimensional (3D), whole-head asymmetry analysis was used......). The greatest difference was localized to the occipital region. CONCLUSIONS: Whole-head 3D asymmetry analysis is capable of rigorously quantifying the relative efficacy of the 2 common treatments of DP. Orthotic helmets provide statistically superior improvement in head symmetry compared with active...

  5. A computer-based biomechanical analysis of the three-dimensional motion of cementless hip prostheses.

    Science.gov (United States)

    Gilbert, J L; Bloomfeld, R S; Lautenschlager, E P; Wixson, R L

    1992-04-01

    A computer-based mathematical technique was developed to measure and completely describe the migration and micromotion of a femoral hip prosthesis relative to the femur. This technique utilized the mechanics of rigid-body motion analysis and apparatus of seven linear displacement transducers to measure and describe the complete three-dimensional motion of the prosthesis during cyclic loading. Computer acquisition of the data and custom analysis software allowed one to calculate the magnitude and direction of the motion of any point of interest on the prostheses from information about the motion of two points on the device. The data were also used to replay the tests using a computer animation technique, which allowed a magnified view of the three-dimensional motion of the prosthesis. This paper describes the mathematical development of the rigid-body motion analysis, the experimental method and apparatus for data collection, the technique used to animate the motion, the sources of error and the effect of the assumptions (rigid bodies) on the results. Selected results of individual test runs of uncemented and cemented prostheses are presented to demonstrate the efficacy of the method. The combined effect of the vibration and electrical noise resulted in a resolution of the system of about 3-5 microns motion for each transducer. Deformation effects appear to contribute about 3-15 microns to the measurement error. This measurement and analysis technique is a very sensitive and powerful means of assessing the effects of different design parameters on the migration and micromotion of total joint prostheses and can be applied to any other case (knee, dental implant) where three-dimensional relative motion between two bodies is important.

  6. Three-dimensional finite element impact analysis of a nuclear waste truck cask

    International Nuclear Information System (INIS)

    Miller, J.D.

    1985-01-01

    This paper presents a three-dimensional finite element impact analysis of a hypothetical accident event for the preliminary design of a shipping cask which is used to transport radioactive waste by standard tractor-semitrailer truck. The nonlinear dynamic structural analysis code DYNA3D run on Sandia's Cray-1 computer was used to calculate the effects of the cask's closure-end impacting a rigid frictionless surface on an edge of its external impact limiter after a 30-foot fall. The center of gravity of the cask (made of 304 stainless steel and depleted uranium) was assumed to be directly above the impact point. An elastic-plastic material constitutive model was used to calculate the nonlinear response of the cask components to the transient loading. Interactive color graphics (PATRAN and MOVIE BYU) were used throughout the analysis, proving to be extremely helpful for generation and verification of the geometry and boundary conditions of the finite element model and for interpretation of the analysis results. Results from the calculations show the cask sustained large localized deformations. However, these were almost entirely confined to the impact limiters built into the cask. The closure sections were determined to remain intact, and leakage would not be expected after the event. As an example of a large three-dimensional finite element dynamic impact calculation, this analysis can serve as an excellent benchmark for computer aided design procedures

  7. Three-dimensional thermoelastic analysis of a Fort St. Vrain core support block

    Energy Technology Data Exchange (ETDEWEB)

    Butler, T.A.; Anderson, C.A.

    1981-09-01

    A thermoelastic stress analysis of a graphite core support block in the Fort St. Vrain High-Temperature Gas-Cooled Reactor is described. The support block is subjected to thermal stresses caused by a loss of forced circulation accident of the reactor system. Two- and three-dimensional finite element models of the core support block are analyzed using the ADINAT and ADINA codes, and results are given that verify the integrity of this structural component under the given accident condition. 10 refs., 39 figs.

  8. Mathematical Description of Wafer-1, a Three-Dimensional Code for LWR Fuel Performance Analysis

    DEFF Research Database (Denmark)

    Kjær-Pedersen, Niels

    1975-01-01

    This article describes in detail the mathematical formulation used in the WAFER-1 code, which is presently used for three-dimensional analysis of LWR fuel pin performance. The code aims at a prediction of the local stress-strain history in the cladding, especially with regard to the ridging...... phenomenon. To achieve this, a clad model based on shell theory has been developed. This model interacts with a detailed finite difference pellet model which treats radial and transversal cracking in the pellet in a deterministic way, based on certain assumptions with respect to the cracking pattern. Pellet...

  9. Secondary Ion Mass Spectrometric Image Depth Profiling for Three-Dimensional Elemental Analysis.

    Science.gov (United States)

    1981-10-01

    69-74. 18. Hofker, W.K.; et al. Rad. Eff. 1973, 17, 83-90. 19. Lindhard , J .; Scharff, M.; Schiott, H.E. Mat. Fys. Medd. Dan . Vid. Selsk. 1963, 33, 1...7A-A1OS 092 CORNELL UNIV ITHACA NY DEPT OF CHEMISTRY F/9 7/4 SCONARY ION MASS SPECTROMETRIC MAGE DEPTH PROFILING FOR THKf-ETC LW OCT SI A . J PATKIN...SECONDARY ION MASS SPECTROMETRIC IMAGE DEPTH PROFILING FOR THREE-DIMENSIONAL ELEMENTAL ANALYSIS by Adam J . Patkin and George H. Morrison Prepared for

  10. Three-Dimensional Cephalometric Analysis of Orbital Morphology Modification for Midface Correction Surgery.

    Science.gov (United States)

    Smektala, Tomasz; Staniszewska, Ewelina; Sławińska, Agata; Sporniak-Tutak, Katarzyna; Tutak, Marcin; Jędrzejewski, Marcin; Chrusciel-Nogalska, Małgorzata; Olszewski, Raphael

    2016-09-01

    The aim of this study was to create an evidence-based three-dimensional cephalometric analysis of orbits in order to perform time-efficient measurements of postoperative orbital morphology changes. The authors used 23 (11 bilateral and 1 unilateral) anatomical landmarks. Based on these, 6 planes, 12 angular and 16 linear measurements were determined. A three dimensional analysis was performed twice by two observers on pre and post-operative computed tomography scans of six patients who had undergone midface advancement. The mean, minimal and maximal difference, as well as standard deviation (SD) and intraclass correlation coefficient (ICC) for the inter- and intra-observer landmark selection reliability were calculated. Additionally, the mean, minimal, maximal difference and standard deviation between pre- and post-operative angular and linear measurements were calculated to examine a connection between the established measurements and any morphological change. The inter and intra-examiner accuracy of all landmarks for three axes was >0.9 ICC. Despite excellent inter and intra-examiner agreement (dimensional cephalometric analysis of orbits proposed.

  11. Morphologic Analysis of the Normal Right Ventricle Using Three-Dimensional Echocardiography-Derived Curvature Indices.

    Science.gov (United States)

    Addetia, Karima; Maffessanti, Francesco; Muraru, Denisa; Singh, Amita; Surkova, Elena; Mor-Avi, Victor; Badano, Luigi P; Lang, Roberto M

    2018-02-02

    Right ventricular (RV) remodeling involves changes in size, wall thickness, function, and shape. Previous studies have suggested that regional curvature indices (rCI) may be useful for RV shape analysis. The aim of this study was to establish normal three-dimensional echocardiographic values of rCI in a large group of healthy subjects to facilitate future three-dimensional echocardiographic study of adverse RV remodeling. RV endocardial surfaces were reconstructed at end-diastole and end-systole in 245 healthy subjects (mean age, 42 ± 12 years) and analyzed using custom software to calculate mean curvature in six regions: RV inflow tract (RVIT) and RV outflow tract, apex, and body (both divided into free wall and septal regions). Associations with age and gender were studied. The apical free wall was convex, while the septum (apex and body) was more concave than the body free wall. Septal curvature did not change significantly from end-diastole to end-systole. The RV outflow tract and RVIT became flatter from end-diastole to end-systole. In keeping with the "bellows-like" action of RV contraction, the body free wall became flatter, while the apex free wall changed to a more convex surface. There were no intergender differences in rCI. In older subjects (≥55 years of age), the RV free wall and RV outflow tract were flatter, and from end-diastole to end-systole, the RVIT became less flattened and the apex less pointed. These changes suggest that the right ventricle is stiffer in older subjects, with less dynamic contraction of the RVIT and less bellows-like movement. This study established normal three-dimensional echocardiographic values for RV rCI, which are needed to further study RV diastolic dysfunction and remodeling with disease. Copyright © 2017 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  12. Three-dimensional free vibration analysis of functionally graded material plates resting on an elastic foundation

    Science.gov (United States)

    Amini, M. H.; Soleimani, M.; Rastgoo, A.

    2009-08-01

    This paper describes a method for three-dimensional free vibration analysis of rectangular FGM plates resting on an elastic foundation using Chebyshev polynomials and Ritz's method. The thickness can vary from thin to very thick. The elastic foundation is considered as a Winkler model. The analysis is based on a linear, small-strain, three-dimensional elasticity theory. The proposed technique yields very accurate natural frequencies and mode shapes of rectangular plates with arbitrary boundary conditions. A simple and general programme has been used for this purpose. For a plate with geometric symmetry, the vibration modes can be classified into symmetric and antisymmetric ones in that direction. In such a case, the computational cost can be greatly reduced while maintaining the same level of accuracy. Convergence studies and a comparison have been carried out using isotropic and FGM square plates with four simply-supported and clamped edges as examples. The results show that the present method enables rapid convergence, stable numerical operation and very high computational accuracy. Parametric investigations are presented for two-constituent metal-ceramic functionally graded clamped square plates on an elastic foundation with respect to different thickness-side ratios, gradient indexes and foundation stiffnesses.

  13. Three-dimensional analysis of a vacuum window connected to waveguide

    International Nuclear Information System (INIS)

    Nakatsuka, H.; Yoshida, N.

    1988-01-01

    Recently, as the experimental tokamak-type system for nuclear fusion has become larger, the additional heating system by microwave power has become more and more important. In this heating system the pillbox-type vacuum window is arranged for isolation, but discharge by local concentration of the electric field and destruction by local heating in this window are becoming serious problems. So far designing the system of the vacuum window and deciding on the matching condition, it is indispensable to know exactly the characteristics of the electromagnetic field. But the electromagnetic field inside such a system is very complicated because of its three-dimensional structure with various medium conditions. For the analysis of this complicated field numerical methods are generally known to be useful. The analysis by Bergeron's method has been shown to be effective for problems of this type involving complex boundary and medium conditions in three-dimensional space. In this paper, the authors show Bergeron's formulation of the pillbox-type vacuum window system and the fundamental characteristics of the electromagnetic field within this system. For an effective additional heating system in the experimental tokamak-type system the pillbox-type vacuum window is proposed to isolate each part. In this paper, the authors describe Bergeron's formulation of the pillbox-type vacuum window connected to cylindrical waveguides and show the fundamental characteristics of the electromagnetic field within this system

  14. Three-dimensional free vibration analysis of functionally graded material plates resting on an elastic foundation

    International Nuclear Information System (INIS)

    Amini, M H; Soleimani, M; Rastgoo, A

    2009-01-01

    This paper describes a method for three-dimensional free vibration analysis of rectangular FGM plates resting on an elastic foundation using Chebyshev polynomials and Ritz's method. The thickness can vary from thin to very thick. The elastic foundation is considered as a Winkler model. The analysis is based on a linear, small-strain, three-dimensional elasticity theory. The proposed technique yields very accurate natural frequencies and mode shapes of rectangular plates with arbitrary boundary conditions. A simple and general programme has been used for this purpose. For a plate with geometric symmetry, the vibration modes can be classified into symmetric and antisymmetric ones in that direction. In such a case, the computational cost can be greatly reduced while maintaining the same level of accuracy. Convergence studies and a comparison have been carried out using isotropic and FGM square plates with four simply-supported and clamped edges as examples. The results show that the present method enables rapid convergence, stable numerical operation and very high computational accuracy. Parametric investigations are presented for two-constituent metal–ceramic functionally graded clamped square plates on an elastic foundation with respect to different thickness–side ratios, gradient indexes and foundation stiffnesses

  15. Three-dimensional analysis of the Pratt and Whitney alternate design SSME fuel turbine

    Science.gov (United States)

    Kirtley, K. R.; Beach, T. A.; Adamczyk, J. J.

    1991-01-01

    The three dimensional viscous time-mean flow in the Pratt and Whitney alternate design space shuttle main engine fuel turbine is simulated using the average passage Navier-Stokes equations. The migration of secondary flows generated by upstream blade rows and their effect on the performance of downstream blade rows is studied. The present simulation confirms that the flow in this two stage turbine is highly three dimensional and dominated by the tip leakage flow. The tip leakage vortex generated by the first blade persists through the second blade and adversely affects its performance. The greatest mixing of the inlet total temperature distortion occurs in the second vane and is due to the large leakage vortex generated by the upstream rotor. It is assumed that the predominant spanwise mixing mechanism in this low aspect ratio turbine is the radial transport due to the deterministically unsteady vortical flow generated by upstream blade rows. A by-product of the analysis is accurate pressure and heat loads for all blade rows under the influence of neighboring blade rows. These aero loads are useful for advanced structural analysis of the vanes and blades.

  16. Three-Dimensional Assembly Tolerance Analysis Based on the Jacobian-Torsor Statistical Model

    Directory of Open Access Journals (Sweden)

    Peng Heping

    2017-01-01

    Full Text Available The unified Jacobian-Torsor model has been developed for deterministic (worst case tolerance analysis. This paper presents a comprehensive model for performing statistical tolerance analysis by integrating the unified Jacobian-Torsor model and Monte Carlo simulation. In this model, an assembly is sub-divided into surfaces, the Small Displacements Torsor (SDT parameters are used to express the relative position between any two surfaces of the assembly. Then, 3D dimension-chain can be created by using a surface graph of the assembly and the unified Jacobian-Torsor model is developed based on the effect of each functional element on the whole functional requirements of products. Finally, Monte Carlo simulation is implemented for the statistical tolerance analysis. A numerical example is given to demonstrate the capability of the proposed method in handling three-dimensional assembly tolerance analysis.

  17. Three-dimensional analysis of relationship between relative orientation and motion modes

    Directory of Open Access Journals (Sweden)

    Fan Shijie

    2014-12-01

    Full Text Available Target motion modes have a close relationship with the relative orientation of missile-to-target in three-dimensional highly maneuvering target interception. From the perspective of relationship between the sensor coordinate system and the target body coordinate system, a basic model of sensor is stated and the definition of relative angular velocity between the two coordinate systems is introduced firstly. Then, the three-dimensional analytic expressions of relative angular velocity for different motion modes are derived and simplified by analyzing the influences of target centroid motion, rotation around centroid and relative motion. Finally, the relationships of the relative angular velocity directions and values with motion modes are discussed. Simulation results validate the rationality of the theoretical analysis. It is demonstrated that there are significant differences of the relative orientation in different motion modes which include luxuriant information about motion modes. The conclusions are significant for the research of motion mode identification, maneuver detection, maneuvering target tracking and interception using target signatures.

  18. Improving three-dimensional mechanical imaging of breast lesions with principal component analysis.

    Science.gov (United States)

    Tyagi, Mohit; Wang, Yuqi; Hall, Timothy J; Barbone, Paul E; Oberai, Assad A

    2017-08-01

    Elastography has emerged as a new tool for detecting and diagnosing many types of diseases including breast cancer. To date, most clinical applications of elastography have utilized two-dimensional strain images. The goal of this paper is to present a new quasi-static elastography technique that yields shear modulus images in three dimensions. An automated breast volume scanner was used to acquire ultrasound images of the breast as it was gently compressed. Cross-correlation between successive images was used to determine the displacement within the tissue. The resulting displacement field was filtered of all but compressive motion through principal component analysis. This displacement field was used to infer spatial distribution of shear modulus by solving a 3D elastic inverse problem. Three dimensional shear modulus images of benign breast lesions for two subjects were generated using the techniques described above. It was found that the lesions were visualized more clearly in images generated using the displacement data de-noised through the use of principal components. We have presented experimental and algorithmic techniques that lead to three-dimensional imaging of shear modulus using quasi-static elastography. This work demonstrates feasibility of this approach, and lays the foundation for images of other, more informative, mechanical parameters. © 2017 American Association of Physicists in Medicine.

  19. Three dimensional computational fluid dynamic analysis of debris transport under emergency cooling water recirculation

    International Nuclear Information System (INIS)

    Park, Jong Woon

    2010-01-01

    This paper provides a computational fluid dynamic (CFD) analysis method on the evaluation of debris transport under emergency recirculation mode after loss of coolant accident of a nuclear power plant. Three dimensional reactor building floor geometrical model is constructed including flow obstacles larger than 6 inches such as mechanical components and equipments and considering various inlet flow paths from the upper reactor building such as break and spray flow. In the modeling of the inlet flows from the upper floors, effect of gravitational force was also reflected. For the precision of the analysis, 3 millions of tetrahedral-shaped meshes were generated. Reference calculation showed physically reasonable results. Sensitivity studies for mesh type and turbulence model showed very similar results to the reference case. This study provides useful information on the application of CFD to the evaluation of debris transport fraction for the design of new emergency sump filters. (orig.)

  20. Three-dimensional rail cooling analysis for a repetitively fired railgun

    International Nuclear Information System (INIS)

    Liu, H.P.

    1991-01-01

    This paper reports on a three-dimensional (3-D) rail cooling analysis for fabrication and demonstration of a stand-alone repetitive fire compulsator driven 9 MJ gun system which has been performed to assure the entire rail can be maintained below its thermal limit for multiple shots. The 3-D rail thermal model can predict the temperature, pressure, and convective heat transfer coefficient variations of the coolant along the 10 m long copper rail. The 9-MJ projectiles will be fired every 20 s for 3 min. Water cooling was used in the model for its high cooling capacity. Single liquid phase heat transfer was assumed in the cooling analysis. For multiple shots, the temperature difference between the rail and the water was enhanced due to accumulated heat in the rail. As a result, the heat removal by water increased from shot-to-shot. The rail temperature initially increased and finally stabilized after a number of shots

  1. Automated three-dimensional X-ray analysis using a dual-beam FIB

    International Nuclear Information System (INIS)

    Schaffer, Miroslava; Wagner, Julian; Schaffer, Bernhard; Schmied, Mario; Mulders, Hans

    2007-01-01

    We present a fully automated method for three-dimensional (3D) elemental analysis demonstrated using a ceramic sample of chemistry (Ca)MgTiO x . The specimen is serially sectioned by a focused ion beam (FIB) microscope, and energy-dispersive X-ray spectrometry (EDXS) is used for elemental analysis of each cross-section created. A 3D elemental model is reconstructed from the stack of two-dimensional (2D) data. This work concentrates on issues arising from process automation, the large sample volume of approximately 17x17x10 μm 3 , and the insulating nature of the specimen. A new routine for post-acquisition data correction of different drift effects is demonstrated. Furthermore, it is shown that EDXS data may be erroneous for specimens containing voids, and that back-scattered electron images have to be used to correct for these errors

  2. Use of three-dimensional parameters in the analysis of crystal structures under compression

    DEFF Research Database (Denmark)

    Balic Zunic, Tonci

    2007-01-01

    Volume-related parameters of atomic coordinations are an important tool for the analysis of structural changes. Unlike usual tables of bond distances and angles they directly depict three-dimensional properties of coordination polyhedra, and in many instances give more profound structural...... data through use of a procrystal model. For non-regular coordination polyhedra a determination of the point with the minimum variation of distances to the vertices (the centroid of coordination) is a necessary prerequisite for a calculation of the volume-related parameters. The three parameters...... of the coordination polyhedra of cations and the voids that separate them. Analysis of individual compressional characteristics of structural components gives clues for the strong and weak parts of structures under high pressures and paths for structural transformations. The expected behaviour of distortion...

  3. Three-dimensional analysis of mandibular dental root morphology in hominoids.

    Science.gov (United States)

    Emonet, Edouard-Georges; Tafforeau, Paul; Chaimanee, Yaowalak; Guy, Franck; de Bonis, Louis; Koufos, George; Jaeger, Jean-Jacques

    2012-01-01

    Although often preserved in the fossil record, mandibular dental roots are rarely used for evolutionary studies. This study qualitatively and quantitatively characterizes the three-dimensional morphology of hominoid dental roots. The sample comprises extant apes as well as two fossil species, Khoratpithecus piriyai and Ouranopithecus macedoniensis. The morphological differences between extant genera are observed, quantified and tested for their potential in systematics. Dental roots are imaged using X-ray computerized tomography, conventional microtomography and synchrotron microtomography. Resulting data attest to the high association between taxonomy and tooth root morphology, both qualitatively and quantitatively. A cladistic analysis based on the dental root characters resulted in a tree topology congruent with the consensus phylogeny of hominoids, suggesting that tooth roots might provide useful information in reconstructing hominoid phylogeny. Finally, the evolution of the dental root morphology in apes is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. A three-dimensional viscous/potential flow interaction analysis method for multi-element wings

    Science.gov (United States)

    Dvorak, F. A.; Woodward, F. A.; Maskew, B.

    1977-01-01

    An analysis method and computer program were developed for the calculation of the viscosity dependent aerodynamic characteristics of multi-element, finite wings in incompressible flow. A fully-three dimensional potential flow program is used to determine the inviscid pressure distribution about the configuration. The potential flow program uses surface source and vortex singularities to represent the inviscid flow. The method is capable of analysing configurations having at most one slat, a main element, and two slotted flaps. Configurations are limited to full span slats or flaps. The configuration wake is allowed to relax as a force free wake, although roll up is not allowed at this time. Once the inviscid pressure distribution is calculated, a series of boundary layer computations are made along streamwise strips.

  5. Analysis of three-dimensional SAR distributions emitted by mobile phones in an epidemiological perspective.

    Science.gov (United States)

    Deltour, Isabelle; Wiart, Joe; Taki, Masao; Wake, Kanako; Varsier, Nadège; Mann, Simon; Schüz, Joachim; Cardis, Elisabeth

    2011-12-01

    The three-dimensional distribution of the specific absorption rate of energy (SAR) in phantom models was analysed to detect clusters of mobile phones producing similar spatial deposition of energy in the head. The clusters' characteristics were described from the phones external features, frequency band and communication protocol. Compliance measurements with phones in cheek and tilt positions, and on the left and right side of a physical phantom were used. Phones used the Personal Digital Cellular (PDC), Code division multiple access One (CdmaOne), Global System for Mobile Communications (GSM) and Nordic Mobile Telephony (NMT) communication systems, in the 800, 900, 1500 and 1800 MHz bands. Each phone's measurements were summarised by the half-ellipsoid in which the SAR values were above half the maximum value. Cluster analysis used the Partitioning Around Medoids algorithm. The dissimilarity measure was based on the overlap of the ellipsoids, and the Manhattan distance was used for robustness analysis. Within the 800 MHz frequency band, and in part within the 900 MHz and the 1800 MHz frequency bands, weak clustering was obtained for the handset shape (bar phone, flip with top and flip with central antennas), but only in specific positions (tilt or cheek). On measurements of 120 phones, the three-dimensional distribution of SAR in phantom models did not appear to be related to particular external phone characteristics or measurement characteristics, which could be used for refining the assessment of exposure to radiofrequency energy within the brain in epidemiological studies such as the Interphone. Copyright © 2011 Wiley Periodicals, Inc.

  6. Rapid three-dimensional analysis of renal biopsy sections by low vacuum scanning electron microscopy.

    Science.gov (United States)

    Inaga, Sumire; Kato, Masako; Hirashima, Sayuri; Munemura, Chishio; Okada, Sinichi; Kameie, Toshio; Katsumoto, Tetsuo; Nakane, Hironobu; Tanaka, Keiichi; Hayashi, Kazuhiko; Naguro, Tomonori

    2010-01-01

    Renal biopsy paraffin sections were examined by low vacuum scanning electron microscopy (LVSEM) in the backscattered electron (BSE) mode, a novel method for rapid pathological analysis which allowed detailed and efficient three-dimensional observations of glomeruli. Renal samples that had been already diagnosed by light microscopy (LM) as exhibiting IgA nephropathy, minor glomerular abnormalities, and membranous glomerulonephritis (GN) were rapidly processed in the present study. Unstained paraffin sections of biopsy samples on glass slides were deparaffinized, stained with platinum blue (Pt-blue) or periodic acid silver-methenamine (PAM), and directly observed with a LVSEM. Overviews of whole sections and detailed observations of individual glomeruli were immediately performed at arbitrary magnifications between ×50 to ×18,000. Cut surface views and surface views of glomeruli were demonstrated at the same time. On Pt-blue-stained sections, podocytes, endothelia, mesangium, and glomerular basement membranes (GBMs) could be distinguished due to the different yields of BSE signals, and pathological features were investigated in every sample. The abnormal surface appearances of podocytes with foot processes and the varying thicknesses of GBM were revealed three-dimensionally, features difficult to observe under LM and transmission electron microscopy. PAM-positive GBM alterations in membranous GN were distinctly visualized through overlying cells without cell removal under LVSEM at high magnification. Not only prominent spike formation but also slight protrusions were clearly revealed in the side views of GBM. Crater-like or hole-like structures were shown in the en face views of GBM. Accordingly, LVSEM is expected to provide a novel approach to the pathological diagnosis of human glomerular diseases using conventional renal biopsy sections.

  7. Three-dimensional instability analysis of boundary layers perturbed by streamwise vortices

    Science.gov (United States)

    Martín, Juan A.; Paredes, Pedro

    2017-12-01

    A parametric study is presented for the incompressible, zero-pressure-gradient flat-plate boundary layer perturbed by streamwise vortices. The vortices are placed near the leading edge and model the vortices induced by miniature vortex generators (MVGs), which consist in a spanwise-periodic array of small winglet pairs. The introduction of MVGs has been experimentally proved to be a successful passive flow control strategy for delaying laminar-turbulent transition caused by Tollmien-Schlichting (TS) waves. The counter-rotating vortex pairs induce non-modal, transient growth that leads to a streaky boundary layer flow. The initial intensity of the vortices and their wall-normal distances to the plate wall are varied with the aim of finding the most effective location for streak generation and the effect on the instability characteristics of the perturbed flow. The study includes the solution of the three-dimensional, stationary, streaky boundary layer flows by using the boundary region equations, and the three-dimensional instability analysis of the resulting basic flows by using the plane-marching parabolized stability equations. Depending on the initial circulation and positioning of the vortices, planar TS waves are stabilized by the presence of the streaks, resulting in a reduction in the region of instability and shrink of the neutral stability curve. For a fixed maximum streak amplitude below the threshold for secondary instability (SI), the most effective wall-normal distance for the formation of the streaks is found to also offer the most stabilization of TS waves. By setting a maximum streak amplitude above the threshold for SI, sinuous shear layer modes become unstable, as well as another instability mode that is amplified in a narrow region near the vortex inlet position.

  8. Three-dimensional Crustal Structure beneath the Tibetan Plateau Revealed by Multi-scale Gravity Analysis

    Science.gov (United States)

    Xu, C.; Luo, Z.; Sun, R.; Li, Q.

    2017-12-01

    The Tibetan Plateau, the largest and highest plateau on Earth, was uplifted, shorten and thicken by the collision and continuous convergence of the Indian and Eurasian plates since 50 million years ago, the Eocene epoch. Fine three-dimensional crustal structure of the Tibetan Plateau is helpful in understanding the tectonic development. At present, the ordinary method used for revealing crustal structure is seismic method, which is inhibited by poor seismic station coverage, especially in the central and western plateau primarily due to the rugged terrain. Fortunately, with the implementation of satellite gravity missions, gravity field models have demonstrated unprecedented global-scale accuracy and spatial resolution, which can subsequently be employed to study the crustal structure of the entire Tibetan Plateau. This study inverts three-dimensional crustal density and Moho topography of the Tibetan Plateau from gravity data using multi-scale gravity analysis. The inverted results are in agreement with those provided by the previous works. Besides, they can reveal rich tectonic development of the Tibetan Plateau: (1) The low-density channel flow can be observed from the inverted crustal density; (2) The Moho depth in the west is deeper than that in the east, and the deepest Moho, which is approximately 77 km, is located beneath the western Qiangtang Block; (3) The Moho fold, the directions of which are in agreement with the results of surface movement velocities estimated from Global Positioning System, exists clearly on the Moho topography.This study is supported by the National Natural Science Foundation of China (Grant No. 41504015), the China Postdoctoral Science Foundation (Grant No. 2015M572146), and the Surveying and Mapping Basic Research Programme of the National Administration of Surveying, Mapping and Geoinformation (Grant No. 15-01-08).

  9. A three-dimensional biomechanical analysis of sumo and conventional style deadlifts.

    Science.gov (United States)

    Escamilla, R F; Francisco, A C; Fleisig, G S; Barrentine, S W; Welch, C M; Kayes, A V; Speer, K P; Andrews, J R

    2000-07-01

    Strength athletes often employ the deadlift in their training or rehabilitation regimens. The purpose of this study was to quantify kinematic and kinetic parameters by employing a three-dimensional analysis during sumo and conventional style deadlifts. Two 60-Hz video cameras recorded 12 sumo and 12 conventional style lifters during a national powerlifting championship. Parameters were quantified at barbell liftoff (LO), at the instant the barbell passed the knees (KP), and at lift completion. Unpaired t-tests (P < 0.05) were used to compare all parameters. At LO and KP, thigh position was 11-16 degrees more horizontal for the sumo group, whereas the knees and hips extended approximately 12 degrees more for the conventional group. The sumo group had 5-10 degrees greater vertical trunk and thigh positions, employed a wider stance (70 +/- 11 cm vs 32 +/- 8 cm), turned their feet out more (42 +/- 8 vs 14 +/- 6 degrees). and gripped the bar with their hands closer together (47 +/- 4 cm vs 55 +/- 10 cm). Vertical bar distance, mechanical work, and predicted energy expenditure were approximately 25-40% greater in the conventional group. Hip extensor, knee extensor, and ankle dorsiflexor moments were generated for the sumo group, whereas hip extensor, knee extensor, knee flexor, and ankle plantar flexor moments were generated for the conventional group. Ankle and knee moments and moment arms were significantly different between the sumo and conventional groups, whereas hip moments and moments arms did not show any significantly differences. Three-dimensional calculations were more accurate and significantly different than two-dimensional calculations, especially for the sumo deadlift. Biomechanical differences between sumo and conventional deadlifts result from technique variations between these exercises. Understanding these differences will aid the strength coach or rehabilitation specialist in determining which deadlift style an athlete or patient should employ.

  10. Present state and future of CFD based on three-dimensional RANS analysis

    International Nuclear Information System (INIS)

    Kim, Kwang Yong

    2004-01-01

    Computational Fluid Dynamics (CFD) based on Navier-Stokes equations has been developed rapidly for several decades with the developments of high speed computers and numerical algorithms, and presently is regarded as an essential analysis tool in the engineering applications containing fluid flow and convective heat transfer. It is known that for turbulent flow the Navier-Stokes equations can be calculated precisely by Direct Numerical Simulation (DNS). However, DNS needs huge computing time even for simple low-Reynolds number flows, and thus is not practical. Large Eddy Simulation (LES) can be an alternative. But, LES also needs considerable computing time for the analysis of engineering flows, and have some problem in the methods. Therefore, the analysis methods using Reynolds-averaged Navier-stokes equations (RANS) and turbulence closure models are still regarded as the major techniques for the analysis of turbulent flows in spite of the inaccuracy of the prediction. In this presentation, the present state and the prospect of CFD based on three-dimensional RANS analysis are introduced for physical models and numerical algorithms with the engineering examples. Especially, for the analysis of two-phase flows in nuclear reactor, the recently developed techniques are also introduced. And, the presentation includes the methods of design optimization using RANS analysis and numerical optimization techniques with variety of the applications

  11. Three-Dimensional Heat Transfer Analysis of Metal Fasteners in Roofing Assemblies

    Directory of Open Access Journals (Sweden)

    Manan Singh

    2016-11-01

    Full Text Available Heat transfer analysis was performed on typical roofing assemblies using HEAT3, a three-dimensional heat transfer analysis software. The difference in heat transferred through the roofing assemblies considered is compared between two cases—without any steel fasteners and with steel fasteners. In the latter case, the metal roofing fasteners were arranged as per Factor Mutual Global (FMG approvals, in the field, perimeter, and corner zones of the roof. The temperature conditions used for the analysis represented summer and winter conditions for three separate Climate Zones (CZ namely Climate Zone 2 or CZ2 represented by Orlando, FL; CZ3 represented by Atlanta, GA; and CZ6 zone represented by St. Paul, MN. In all the climatic conditions, higher energy transfer was observed with increase in the number of metal fasteners attributed to high thermal conductivity of metals as compared to the insulation and other materials used in the roofing assembly. This difference in heat loss was also quantified in the form of percentage change in the overall or effective insulation of the roofing assembly for better understanding of the practical aspects. Besides, a comparison of 2D heat transfer analysis (using THERM software and 3D analysis using HEAT3 is also discussed proving the relevance of 3D over 2D heat transfer analysis.

  12. System for generating two-dimensional masks from a three-dimensional model using topological analysis

    Science.gov (United States)

    Schiek, Richard [Albuquerque, NM

    2006-06-20

    A method of generating two-dimensional masks from a three-dimensional model comprises providing a three-dimensional model representing a micro-electro-mechanical structure for manufacture and a description of process mask requirements, reducing the three-dimensional model to a topological description of unique cross sections, and selecting candidate masks from the unique cross sections and the cross section topology. The method further can comprise reconciling the candidate masks based on the process mask requirements description to produce two-dimensional process masks.

  13. Three-dimensional analysis of facial morphology in Brazilian population with Caucasian, Asian, and Black ethnicity

    Directory of Open Access Journals (Sweden)

    Ana Maria Bettoni Rodrigues da Silva

    2017-01-01

    Full Text Available Aim: To compare facial features related to the nose, lips and face between the Caucasian, Asian, and Black ethnicity in the Brazilian population by means of linear measurements and proportion indices obtained from the analysis of three-dimensional (3D images taken by 3D stereophotogrammetry. Materials and Methods: Thirty healthy subjects, being 10 Caucasians, 10 Blacks and 10 Asians had reference points (landmarks demarcated on their faces, 3D images were obtained (Vectra M3 and the following measurements were calculated: Facial proportion indices relative to the nose, lips and face. The statistical analysis was performed comparing the ethnic groups (one-way analysis of variance. Results: The Blacks and Asians showed the greatest difference in the face analysis (width, height of the lower face, upper face index and lower face index – P < 0.05. In the comparisons between groups, differences were verified to the mouth width and lower lip vermilion height. In the nose analysis, the biggest differences were obtained for the proportion indices, being that Caucasians versus Asians and Caucasians versus Blacks have showed the largest differences. Conclusion: This study found the presence of some similarities in the proportion indices of nose, lips and face between the ethnic groups of the Brazilian population, as well as some important differences that should be known to guide surgical and forensics procedures, among others.

  14. Scanning photoelectron microscope for nanoscale three-dimensional spatial-resolved electron spectroscopy for chemical analysis.

    Science.gov (United States)

    Horiba, K; Nakamura, Y; Nagamura, N; Toyoda, S; Kumigashira, H; Oshima, M; Amemiya, K; Senba, Y; Ohashi, H

    2011-11-01

    In order to achieve nondestructive observation of the three-dimensional spatially resolved electronic structure of solids, we have developed a scanning photoelectron microscope system with the capability of depth profiling in electron spectroscopy for chemical analysis (ESCA). We call this system 3D nano-ESCA. For focusing the x-ray, a Fresnel zone plate with a diameter of 200 μm and an outermost zone width of 35 nm is used. In order to obtain the angular dependence of the photoelectron spectra for the depth-profile analysis without rotating the sample, we adopted a modified VG Scienta R3000 analyzer with an acceptance angle of 60° as a high-resolution angle-resolved electron spectrometer. The system has been installed at the University-of-Tokyo Materials Science Outstation beamline, BL07LSU, at SPring-8. From the results of the line-scan profiles of the poly-Si/high-k gate patterns, we achieved a total spatial resolution better than 70 nm. The capability of our system for pinpoint depth-profile analysis and high-resolution chemical state analysis is demonstrated. © 2011 American Institute of Physics

  15. The Contribution of Particle Swarm Optimization to Three-Dimensional Slope Stability Analysis

    Directory of Open Access Journals (Sweden)

    Roohollah Kalatehjari

    2014-01-01

    Full Text Available Over the last few years, particle swarm optimization (PSO has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D slope stability analysis. This paper applied PSO in three-dimensional (3D slope stability problem to determine the critical slip surface (CSS of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes.

  16. Chemometric analysis of MALDI mass spectrometric images of three-dimensional cell culture systems.

    Science.gov (United States)

    Weaver, Eric M; Hummon, Amanda B; Keithley, Richard B

    2015-09-07

    As imaging mass spectrometry (IMS) has grown in popularity in recent years, the applications of this technique have become increasingly diverse. Currently there is a need for sophisticated data processing strategies that maximize the information gained from large IMS data sets. Traditional two-dimensional heat maps of single ions generated in IMS experiments lack analytical detail, yet manual analysis of multiple peaks across hundreds of pixels within an entire image is time-consuming, tedious and subjective. Here, various chemometric methods were used to analyze data sets obtained by matrix-assisted laser desorption/ionization (MALDI) IMS of multicellular spheroids. HT-29 colon carcinoma multicellular spheroids are an excellent in vitro model system that mimic the three dimensional morphology of tumors in vivo . These data are especially challenging to process because, while different microenvironments exist, the cells are clonal which can result in strong similarities in the mass spectral profiles within the image. In this proof-of-concept study, a combination of principal component analysis (PCA), clustering methods, and linear discriminant analysis was used to identify unique spectral features present in spatially heterogeneous locations within the image. Overall, the application of these exploratory data analysis tools allowed for the isolation and detection of proteomic changes within IMS data sets in an easy, rapid, and unsupervised manner. Furthermore, a simplified, non-mathematical theoretical introduction to the techniques is provided in addition to full command routines within the MATLAB programming environment, allowing others to easily utilize and adapt this approach.

  17. The Contribution of Particle Swarm Optimization to Three-Dimensional Slope Stability Analysis

    Science.gov (United States)

    A Rashid, Ahmad Safuan; Ali, Nazri

    2014-01-01

    Over the last few years, particle swarm optimization (PSO) has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D) slope stability analysis. This paper applied PSO in three-dimensional (3D) slope stability problem to determine the critical slip surface (CSS) of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes. PMID:24991652

  18. [New progress on three-dimensional movement measurement analysis of human spine].

    Science.gov (United States)

    Qiu, Xiao-wen; He, Xi-jing; Huang, Si-hua; Liang, Bao-bao; Yu, Zi-rui

    2015-05-01

    Spinal biomechanics, especially the range of spine motion,has close connection with spinal surgery. The change of the range of motion (ROM) is an important indicator of diseases and injuries of spine, and the essential evaluating standards of effect of surgeries and therapies to spine. The analysis of ROM can be dated to the time of the invention of X-ray and even that before it. With the development of science and technology as well as the optimization of various types of calculation methods, diverse measuring methods have emerged, from imaging methods to non-imaging methods, from two-dimensional to three-dimensional, from measuring directly on the X-ray films to calculating automatically by computer. Analysis of ROM has made great progress, but there are some older methods cannot meet the needs of the times and disappear, some classical methods such as X-ray still have vitality. Combining different methods, three dimensions and more vivo spine research are the trend of analysis of ROM. And more and more researchers began to focus on vivo spine research. In this paper, the advantages and disadvantages of the methods utilized recently are presented through viewing recent literatures, providing reference and help for the movement analysis of spine.

  19. Single-phase power distribution system power flow and fault analysis

    Science.gov (United States)

    Halpin, S. M.; Grigsby, L. L.

    1992-01-01

    Alternative methods for power flow and fault analysis of single-phase distribution systems are presented. The algorithms for both power flow and fault analysis utilize a generalized approach to network modeling. The generalized admittance matrix, formed using elements of linear graph theory, is an accurate network model for all possible single-phase network configurations. Unlike the standard nodal admittance matrix formulation algorithms, the generalized approach uses generalized component models for the transmission line and transformer. The standard assumption of a common node voltage reference point is not required to construct the generalized admittance matrix. Therefore, truly accurate simulation results can be obtained for networks that cannot be modeled using traditional techniques.

  20. Stability boundary analysis in single-phase grid-connected inverters with PLL by LTP theory

    OpenAIRE

    Salis, Valerio; Costabeber, Alessando; Cox, Stephen M.; Zanchetta, Pericle; Formentini, Andrea

    2017-01-01

    Stability analysis of power converters in AC net¬works is complex due to the non-linear nature of the conversion systems. Whereas interactions of converters in DC networks can be studied by linearising about the operating point, the extension of the same approach to AC systems poses serious challenges, especially for single-phase or unbalanced three-phase systems. A general method for stability analysis of power converters suitable for single-phase or unbalanced AC networks is presented in th...

  1. Three-dimensional method for integrated transient analysis of reactor-piping systems

    International Nuclear Information System (INIS)

    Wang, C.Y.

    1981-01-01

    A three-dimensional method for integrated hydrodynamic, structural, and thermal analyses of reactor-piping systems is presented. The hydrodynamics are analyzed in a reference frame fixed to the piping and are treated with a two-dimensional Eulerian finite-difference technique. The structural responses are calculated with a three-dimensional co-rotational finite-element methodology. Interaction between fluid and structure is accounted for by iteratively enforcing the interface boundary conditions

  2. Effects of ductile matrix failure in three dimensional analysis of metal matrix composites

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    1998-01-01

    Full three dimensional numerical cell model analyses are carried out for a metal reinforced by short fibers, to study the development of ductile matrix failure. A porous ductile material model is used to describe the effect of the nucleation and growth of voids to coalescence. In each case studied...... a rounded vertex on the yield surface. The full three dimensional model is used to study effects of deviations from equal transverse tension in directions perpendicular to the fibers. (C) 1998 Acta Metallurgica Inc....

  3. Three-dimensional visualization of objects in scattering medium using integral imaging and spectral analysis

    Science.gov (United States)

    Lee, Yeonkyung; Yoo, Hoon

    2016-02-01

    This paper presents a three-dimensional visualization method of 3D objects in a scattering medium. The proposed method employs integral imaging and spectral analysis to improve the visual quality of 3D images. The images observed from 3D objects in the scattering medium such as turbid water suffer from image degradation due to scattering. The main reason is that the observed image signal is very weak compared with the scattering signal. Common image enhancement techniques including histogram equalization and contrast enhancement works improperly to overcome the problem. Thus, integral imaging that enables to integrate the weak signals from multiple images was discussed to improve image quality. In this paper, we apply spectral analysis to an integral imaging system such as the computational integral imaging reconstruction. Also, we introduce a signal model with a visibility parameter to analyze the scattering signal. The proposed method based on spectral analysis efficiently estimates the original signal and it is applied to elemental images. The visibility-enhanced elemental images are then used to reconstruct 3D images using a computational integral imaging reconstruction algorithm. To evaluate the proposed method, we perform the optical experiments for 3D objects in turbid water. The experimental results indicate that the proposed method outperforms the existing methods.

  4. Computer-Assisted Reconstruction and Motion Analysis of the Three-Dimensional Cell

    Directory of Open Access Journals (Sweden)

    David R. Soll

    2003-01-01

    Full Text Available Even though several microscopic techniques provide three-dimensional (3D information on fixed and living cells, the perception persists that cells are two-dimensional (2D. Cells are, in fact, 3D and their behavior, including the extension of pseudopods, includes an important 3D component. Although treating the cell as a 2D entity has proven effective in understanding how cells locomote, and in identifying defects in a variety of mutant and abnormal cells, there are cases in which 3D reconstruction and analysis are essential. Here, we describe advanced computer-assisted 3D reconstruction and motion analysis programs for both individual live, crawling cells and developing embryos. These systems (3D-DIAS, 3D-DIASemb can be used to reconstruct and motion analyze at short time intervals the nucleus and pseudopodia as well as the entire surface of a single migrating cell, or every cell and nucleus in a developing embryo. Because all images are converted to mathematical representations, a variety of motility and dynamic morphology parameters can be computed that have proven quite valuable in the identification of mutant behaviors. We also describe examples of mutant behaviors in Dictyostelium that were revealed through 3D analysis.

  5. Comparative analysis of facial morphology between Okinawa Islanders and mainland Japanese using three-dimensional images.

    Science.gov (United States)

    Miyazato, Eri; Yamaguchi, Kyoko; Fukase, Hitoshi; Ishida, Hajime; Kimura, Ryosuke

    2014-01-01

    Differences in facial height and breadth between Okinawa Islanders and mainland Japanese have been reported in previous craniometric and somatometric studies. This study using three-dimensional (3D) images aimed to identify more detailed characteristics of facial morphology in each population. Using a hand-held 3D scanner, we obtained 60 facial surface images each from Okinawa Islanders and mainland Japanese. Twenty-one landmarks were plotted on a computer and 27 measurements of distances and angles between the landmarks were taken. Statistical analyses such as t test, principal component analysis (PCA), regression analysis, and discriminant analysis were performed to identify sex and regional differences, the patterns of facial features, factors explaining the facial patterns, and other features. Okinawa Islanders showed lower facial and nasal heights than mainland Japanese. Furthermore, we identified larger protrusions of the glabella and nasal root in Okinawa Islanders than in mainland Japanese. In the PCA, we observed components of facial shape patterns. These components mainly represented facial size (PC1), facial depth (PC2), the prominence of the glabella and nasal root (PC3), and facial breadth (PC4). We identified that the population difference is strongly associated with PC3. This study quantitatively identified differences in the facial morphology between Okinawa Islanders and mainland Japanese using 3D digital images, with special emphases on the differences in the nasal height and the prominence of the glabella and nasal root. Copyright © 2014 Wiley Periodicals, Inc.

  6. Three-dimensional neuroimaging

    International Nuclear Information System (INIS)

    Toga, A.W.

    1990-01-01

    This book reports on new neuroimaging technologies that are revolutionizing the study of the brain be enabling investigators to visualize its structure and entire pattern of functional activity in three dimensions. The book provides a theoretical and practical explanation of the new science of creating three-dimensional computer images of the brain. The coverage includes a review of the technology and methodology of neuroimaging, the instrumentation and procedures, issues of quantification, analytic protocols, and descriptions of neuroimaging systems. Examples are given to illustrate the use of three-dimensional enuroimaging to quantitate spatial measurements, perform analysis of autoradiographic and histological studies, and study the relationship between brain structure and function

  7. Three-dimensional analysis of AP600 standard plant shield building roof

    Energy Technology Data Exchange (ETDEWEB)

    Greimann, L.; Fanous, F.; Safar, S.; Khalil, A.; Bluhm, D.

    1999-06-01

    The AP600 passive containment vessel is surrounded by a concrete cylindrical shell covered with a truncated conical roof. This roof supports the passive containment cooling system (PCS) annular tank, shield plate and other nonstructural attachments. When the shield building is subjected to different loading combinations as defined in the Standard Review Plan (SRP), some of the sections in the shield building could experience forces in excess of their design values. This report summarized the three-dimensional finite element analysis that was conducted to review the adequacy of the proposed Westinghouse shield building design. The ANSYS finite element software was utilized to analyze the Shield Building Roof (SBR) under dead, snow, wind, thermal and seismic loadings. A three-dimensional model that included a portion of the shield building cylindrical shell, the conical roof and its attachments, the eccentricities at the cone-cylinder connection and at the compression ring and the PCS tank was developed. Mesh sensitivity studies were conducted to select appropriate element size in the cylinder, cone, near air intakes and in the vicinity of the eccentricities. Also, a study was carried out to correctly idealize the water-structure interaction in the PCS tank. Response spectrum analysis was used to calculate the internal forces at different sections in the SBR under Safe Shutdown Earthquake (SSE). Forty-nine structural modes and twenty sloshing modes were used. Two horizontal components of the SSE together with a vertical component were used. Modal stress resultants were combined taking into account the effects of closely spaced modes. The three earthquake directions were combined by the Square Root of the Sum Squares method. Two load combinations were studied. The load combination that included dead, snow, fluid, thermal and seismic loads was selected to be the most critical. Interaction diagrams for critical sections were developed and used to check the design

  8. Three-dimensional analysis of AP600 standard plant shield building roof

    International Nuclear Information System (INIS)

    Greimann, L.; Fanous, F.; Safar, S.; Khalil, A.; Bluhm, D.

    1999-01-01

    The AP600 passive containment vessel is surrounded by a concrete cylindrical shell covered with a truncated conical roof. This roof supports the passive containment cooling system (PCS) annular tank, shield plate and other nonstructural attachments. When the shield building is subjected to different loading combinations as defined in the Standard Review Plan (SRP), some of the sections in the shield building could experience forces in excess of their design values. This report summarized the three-dimensional finite element analysis that was conducted to review the adequacy of the proposed Westinghouse shield building design. The ANSYS finite element software was utilized to analyze the Shield Building Roof (SBR) under dead, snow, wind, thermal and seismic loadings. A three-dimensional model that included a portion of the shield building cylindrical shell, the conical roof and its attachments, the eccentricities at the cone-cylinder connection and at the compression ring and the PCS tank was developed. Mesh sensitivity studies were conducted to select appropriate element size in the cylinder, cone, near air intakes and in the vicinity of the eccentricities. Also, a study was carried out to correctly idealize the water-structure interaction in the PCS tank. Response spectrum analysis was used to calculate the internal forces at different sections in the SBR under Safe Shutdown Earthquake (SSE). Forty-nine structural modes and twenty sloshing modes were used. Two horizontal components of the SSE together with a vertical component were used. Modal stress resultants were combined taking into account the effects of closely spaced modes. The three earthquake directions were combined by the Square Root of the Sum Squares method. Two load combinations were studied. The load combination that included dead, snow, fluid, thermal and seismic loads was selected to be the most critical. Interaction diagrams for critical sections were developed and used to check the design

  9. A three-dimensional model for thermal analysis in a vanadium flow battery

    International Nuclear Information System (INIS)

    Zheng, Qiong; Zhang, Huamin; Xing, Feng; Ma, Xiangkun; Li, Xianfeng; Ning, Guiling

    2014-01-01

    Highlights: • A three-dimensional model for thermal analysis in a VFB has been developed. • A quasi-static thermal behavior and temperature spatial distribution were showed. • Ohmic heat gets vital in heat generation if applied current density is large enough. • A lower porosity or a faster flow shows a more uniform temperature distribution. • The model shows good prospect in heat and temperature management for a VFB. - Abstract: A three-dimensional model for thermal analysis has been developed to gain a better understanding of thermal behavior in a vanadium flow battery (VFB). The model is based on a comprehensive description of mass, momentum, charge and energy transport and conservation, combining with a global kinetic model for reactions involving all vanadium species. The emphasis in this paper is placed on the heat losses inside a cell. A quasi-static behavior of temperature and the temperature spatial distribution were characterized via the thermal model. The simulations also indicate that the heat generation exhibits a strong dependence on the applied current density. The reaction rate and the over potential rise with an increased applied current density, resulting in the electrochemical reaction heat rises proportionally and the activation heat rises at a parabolic rate. Based on the Ohm’s law, the ohmic heat rises at a parabolic rate when the applied current density increases. As a result, the determining heat source varies when the applied current density changes. While the relative contribution of the three types of heat is dependent on the cell materials and cell geometry, the regularities of heat losses can also be attained via the model. In addition, the electrochemical reaction heat and activation heat have a lack of sensitivity to the porosity and flow rate, whereas an obvious increase of ohmic heat has been observed with the rise of the porosity. A lower porosity or a faster flow shows a better uniformity of temperature distribution in

  10. [Acetabular morphological analysis in patients with high dislocated DDH using three-dimensional surface reconstruction technique].

    Science.gov (United States)

    Zengy, Yi; Min, Li; Lai, Ou-jie; Shen, Bin; Yang, Jing; Zhou, Zong-ke; Kang, Peng-de; Pei, Fu-xing

    2015-03-01

    To simulate acetabular morphology and perform acetabular quantitative analysis in high dislocated developmental dysplasia of the hip (DDH) patients using three-dimensional (3D) surface reconstruction technique, in order to understand the acetabular anatomic features and develop operative strategies for acetabular reconstruction. 3D pelvic images were reconstructed by Mimics software from CT data of 13 patients (13 hips) with high developmental DDH and 13 normal persons (26 hips). True acetabular superior-inferior diameter, anterior-posterior diameter, acetabular depth, medial wall thickness, abduction angle and anteversion angle were measured and compared between the two groups of participants. Irregular acetabular shape was found in high dislocated group, showing a triangle with wide upper and narrow lower. The acetabular quantitative analysis revealed (38.29 +/- 2.71) mm superior-inferior diameter, (21.74 +/- 5.33) mm anterior-posterior diameter, (15.50 +/- 2.93) mm acetabular depth, (6.80 +/- 2.97) mm medial wall thickness, (49.29 +/- 7.40) degrees abduction angle and (23.82 +/- 11.21) degrees anteversion angle in high dislocated patients. The superior-inferior diameter, anterior-posterior diameter and acetabular depth of high dislocated patients were significantly smaller than those of the normal contirols (PDDH patients have acetabular features: irregular shape, lower opening, higher medial wall and bigger abduction and anteversion angles. Joint arthroplasty surgery in high dislocated DDH patients needs to look at these acetabular features.

  11. Registration and three-dimensional reconstruction of autoradiographic images by the disparity analysis method

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Weizhao; Ginsberg, M. (Univ. of Miami, FL (United States). Cerebral Vascular Disease Research Center); Young, T.Y. (Univ. of Miami, Coral Gables, FL (United States). Dept. of Electrical and Computer Engineering)

    1993-12-01

    Quantitative autoradiography is a powerful radio-isotopic-imaging method for neuroscientists to study local cerebral blood flow and glucose-metabolic rate at rest, in response to physiologic activation of the visual, auditory, somatosensory, and motor systems, and in pathologic conditions. Most autoradiographic studies analyze glucose utilization and blood flow in two-dimensional (2-D) coronal sections. With modern digital computer and image-processing techniques, a large number of closely spaced coronal sections can be stacked appropriately to form a three-dimensional (3-d) image. 3-D autoradiography allows investigators to observe cerebral sections and surfaces from any viewing angle. A fundamental problem in 3-D reconstruction is the alignment (registration) of the coronal sections. A new alignment method based on disparity analysis is presented which can overcome many of the difficulties encountered by previous methods. The disparity analysis method can deal with asymmetric, damaged, or tilted coronal sections under the same general framework, and it can be used to match coronal sections of different sizes and shapes. Experimental results on alignment and 3-D reconstruction are presented.

  12. Modeling and numerical analysis of a three-dimensional shape memory alloy shell structure

    Science.gov (United States)

    Zhao, Pengtao; Qiu, Jinhao; Ji, Hongli; Wang, Mingyi; Nie, Rui

    2012-04-01

    In this paper, modeling and numerical analysis of a three dimensional shell structure made of shape memory alloy (SMA) are introduced. As a new smart material, SMA material has been applied in many fields due to two significant macroscopic phenomena which are called the shape memory effect (SME) and pseudoelasticity. The material of SMA exhibits two-way shape memory effect (TWSME) after undergoing especial heat treatment and thermo-mechanical training. This work investigates the numerical simulation and application of the SMA component: SMA strip, which has been pre-curved in the room temperature. The component is expected to extend upon heating and shorten on cooling along the curve. Hence the shape memory effect can be used to change the shape of the structure. The return mapping algorithm of the 3-D SMA thermomechanical constitutive equations based on Boyd-Lagoudas model is used in the finite element analysis to describe the material features of the SMA. In this paper, the ABAQUS finite element program has been utilized with a user material subroutine (UMAT) which is written in the FORTRAN code for the modeling of the SMA strip. The SMA component which has a certain initial transformation strain can emerge considerable deflection during the reverse phase transformation inducing by the temperature.

  13. Abnormal ventricular contraction patterns in patients with arrhythmogenic substrates using three-dimensional phase analysis.

    Science.gov (United States)

    Clausen, M; Weismüller, P; Weller, R; Adam, W E; Henze, E

    1993-09-01

    Arrhythmogenic substrate diagnosis has been achieved by electrophysiological studies and best localized by successful radiofrequency ablation. Pre-invasive localization procedures have been based on surface ECGs and more recently on biomagnetism, but in addition to these electric and magnetic signals a mechanical signal may be utilized: the initial site of contraction may be detected by phase analysis during radionuclide ventriculography. Generation of three-dimensional data set of phases is achieved by incorporating the new emission tomography technique. The performance of this modified phase analysis has been investigated for the detection of the normal contraction pattern during sinus rhythm, the arrhythmogenic substrate of the WPW syndrome and ventricular tachycardia, and further, to define the limitations of the method in experimental studies on pigs. In 30 out of 44 patients with normal sinus rhythm and no ventricular lesion, a characteristic phase pattern was found. Physiologically, the initial site of contraction appeared to be paraseptal and in the anterior wall of the right ventricle close to the apex. In 13 patients with WPW syndrome and in seven with ventricular tachycardia, the phase data were compared to the electrophysiological study. In 14 of 20 there was a complete match, in 3 of 20 a mechanical focus was found in the area adjacent to the electric focus. From experimental pig studies with simulated stimulation, a spatial precision of at least 20 mm was found at a pre-excitation of 20 ms.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Beacon: A three-dimensional structural analysis code for bowing history of fast breeder reactor cores

    International Nuclear Information System (INIS)

    Miki, K.

    1979-01-01

    The core elements of an LMFBR are bowed due to radial gradients of both temperature and neutron flux in the core. Since all hexagonal elements are multiply supported by adjacent elements or the restraint system, restraint forces and bending stresses are induced. In turn, these forces and stresses are relaxed by irradiation enhanced creep of the material. The analysis of the core bowing behavior requires a three-dimensional consideration of the mechanical interactions among the core elements, because the core consists of different kinds of elements and of fuel assemblies with various burnup histories. A new computational code BEACON has been developed for analyzing the bowing behavior of an LMFBR's core in three dimensions. To evaluate mechanical interactions among core elements, the code uses the analytical method of the earlier SHADOW code. BEACON analyzes the mechanical interactions in three directions, which form angles of 60 0 with one another. BEACON is applied to the 60 0 sector of a typical LMFBR's core for analyzing the bowing history during one equilibrium cycle. 120 core elements are treated, assuming the boundary condition of rotational symmetry. The application confirms that the code can be an effective tool for parametric studies as well as for detailed structural analysis of LMFBR's core. (orig.)

  15. Three-dimensional morphometric analysis of the coracohumeral distance using magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Taku Hatta

    2017-03-01

    Full Text Available There have been no studies investigating three-dimensional (3D alteration of the coracohumeral distance (CHD associated with shoulder motion. The aim of this study was to investigate the change of 3D-CHD with the arm in flexion/internal rotation and horizontal adduction. Six intact shoulders of four healthy volunteers were obtained for this study. MRI was taken in four arm positions: with the arm in internal rotation at 0°, 45°, and 90° of flexion, and 90° of flexion with maximum horizontal adduction. Using a motion analysis system, 3D models of the coracoid process and proximal humerus were created from MRI data. The CHD among the four positions were compared, and the closest part of coracoid process to the proximal humerus was also assessed. 3D-CHD significantly decreased with the arm in 90° of flexion and in 90° of flexion with horizontal adduction comparing with that in 0° flexion (P<0.05. In all subjects, lateral part of the coracoid process was the closest to the proximal humerus in these positions. In vivo quasi-static motion analysis revealed that the 3D-CHD was narrower in the arm position of flexion with horizontal abduction than that in 0° flexion. The lateral part on the coracoid process should be considered to be closest to the proximal humerus during the motion.

  16. BWR core simulator using three-dimensional direct response matrix and analysis of cold critical experiments

    International Nuclear Information System (INIS)

    Hino, Tetsushi; Ishii, Kazuya; Mitsuyasu, Takeshi; Aoyama, Motoo

    2010-01-01

    A new core analysis method has been developed in which neutronic calculations using a three-dimensional direct response matrix (3D-DRM) method are coupled with thermal-hydraulic calculations. As it requires neither a diffusion approximation nor a homogenization process of lattice constants, a precise representation of the neutronic heterogeneity effect in an advanced core design is possible. Moreover, the pin-by-pin power distribution can be directly evaluated, which enables precise evaluations of core thermal margins. Verification of the neutronic calculation using the 3D-DRM method was examined by analyses of cold criticality experiments of commercial power plants. The standard deviations and maximum differences in predicted neutron multiplication factors were 0.07% Δk and 0.19% Δk for a BWR5 plant, and 0.11% Δk and 0.25% Δk for an ABWR plant, respectively. A coupled analysis of the 3D-DRM method and thermal-hydraulic calculations for a quarter ABWR core was done, and it was found that the thermal power and coolant-flow distributions were smoothly converged. (author)

  17. Three dimensional fuzzy influence analysis of fitting algorithms on integrated chip topographic modeling

    International Nuclear Information System (INIS)

    Liang, Zhong Wei; Wang, Yi Jun; Ye, Bang Yan; Brauwer, Richard Kars

    2012-01-01

    In inspecting the detailed performance results of surface precision modeling in different external parameter conditions, the integrated chip surfaces should be evaluated and assessed during topographic spatial modeling processes. The application of surface fitting algorithms exerts a considerable influence on topographic mathematical features. The influence mechanisms caused by different surface fitting algorithms on the integrated chip surface facilitate the quantitative analysis of different external parameter conditions. By extracting the coordinate information from the selected physical control points and using a set of precise spatial coordinate measuring apparatus, several typical surface fitting algorithms are used for constructing micro topographic models with the obtained point cloud. In computing for the newly proposed mathematical features on surface models, we construct the fuzzy evaluating data sequence and present a new three dimensional fuzzy quantitative evaluating method. Through this method, the value variation tendencies of topographic features can be clearly quantified. The fuzzy influence discipline among different surface fitting algorithms, topography spatial features, and the external science parameter conditions can be analyzed quantitatively and in detail. In addition, quantitative analysis can provide final conclusions on the inherent influence mechanism and internal mathematical relation in the performance results of different surface fitting algorithms, topographic spatial features, and their scientific parameter conditions in the case of surface micro modeling. The performance inspection of surface precision modeling will be facilitated and optimized as a new research idea for micro-surface reconstruction that will be monitored in a modeling process

  18. Sexual difference of human hyoid bones. Quantitative analysis of CT three-dimensional image

    International Nuclear Information System (INIS)

    Terashima, Yoshiharu; Izumi, Masahiro; Hanamura, Hajime; Takada, Yasushi

    2007-01-01

    We investigated sexual differences in hyoid bones of 50 dissected Japanese cadavers: 26 males (aged 52 to 101, averaged 81.9 years) and 24 females (aged 61 to 94, averaged 83.6 years). All extracted hyoid bones were scanned by multi-slice CT. Length of body, distance between bilateral greater horns, length of greater horns, distance between bilateral lesser horns, and length of lesser horns were measured on CT three-dimensional image, and were analyzed by univariate and multivariate statistics. t-tests showed significant sexual differences in all the dimensions; being about 20% longer in males than in females. In principal component analysis using five hyoid dimensions, factor 1, expressing the overall size of the bone, fairly separated each sex, but factors 2 and 3, expressing the shape, did not. Discriminant analysis by a stepwise model, using all the eight dimensions, classified sex rightly (88.6% of the bone) by a function of two dimensions: length of body and distance between bilateral tips of lesser horns. In conclusion, a sexual difference of the hyoid bone was evident in size rather than in shape. (author)

  19. Three-dimensional computed tomography cephalometry of plagiocephaly: asymmetry and shape analysis.

    Science.gov (United States)

    Netherway, D J; Abbott, A H; Gulamhuseinwala, N; McGlaughlin, K L; Anderson, P J; Townsend, G C; David, D J

    2006-03-01

    To investigate facial asymmetry associated with both deformational and synostotic plagiocephaly and to identify variables based on skeletal landmarks that distinguish the conditions and quantify severity. Retrospective, cross sectional. Australian Craniofacial Unit, Adelaide. Proportional differences between bilateral distances and principal component (PC) analysis of the skeletal landmarks. The three-dimensional positions of 78 osseous landmarks were determined from computed tomography (CT) scans of 21 patients with deformational plagiocephaly (DP), 20 patients with unilateral coronal synostosis (UCS), and 2 patients with unilateral lambdoid synostosis (ULS). For both DP and UCS, significant asymmetry was found for the orbital depths, mandibular lengths, maxillary depths, zygomatic arch lengths, lateral base of the parietal bone, and the angle between the anterior and the posterior cranial base projected onto the axial plane. The small sample size for ULS precluded definitive statistical statements but allowed some useful comparisons with the other conditions. The first three PC scores were able to distinguish among the three conditions and which side was affected. The asymmetry of the cranial base and facial structures, arising from localized abnormality or deformational forces in either the frontal or the occipital regions, can be quantified by a plethora of bilateral features or summarized by PC analysis.

  20. Biomechanical Property of a Newly Designed Assembly Locking Compression Plate: Three-Dimensional Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Jiang-Jun Zhou

    2017-01-01

    Full Text Available In this study, we developed and validated a refined three-dimensional finite element model of middle femoral comminuted fracture to compare the biomechanical stability after two kinds of plate fixation: a newly designed assembly locking compression plate (NALCP and a locking compression plate (LCP. CT data of a male volunteer was converted to middle femoral comminuted fracture finite element analysis model. The fracture was fixated by NALCP and LCP. Stress distributions were observed. Under slow walking load and torsion load, the stress distribution tendency of the two plates was roughly uniform. The anterolateral femur was the tension stress area, and the bone block shifted toward the anterolateral femur. Maximum stress was found on the lateral border of the number 5 countersink of the plate. Under a slow walking load, the NALCP maximum stress was 2.160e+03 MPa and the LCP was 8.561e+02 MPa. Under torsion load, the NALCP maximum stress was 2.260e+03 MPa and the LCP was 6.813e+02 MPa. Based on those results of finite element analysis, the NALCP can provide adequate mechanical stability for comminuted fractures, which would help fixate the bone block and promote bone healing.

  1. Three-dimensional ultrasound-based texture analysis of the effect of atorvastatin on carotid atherosclerosis

    Science.gov (United States)

    Awad, Joseph; Krasinski, Adam; Spence, David; Parraga, Grace; Fenster, Aaron

    2010-03-01

    Carotid atherosclerosis is the major cause of ischemic stroke, a leading cause of death and disability. This is driving the development of image analysis methods to quantitatively evaluate local arterial effects of potential treatments of carotid disease. Here we investigate the use of novel texture analysis tools to detect potential changes in the carotid arteries after statin therapy. Three-dimensional (3D) carotid ultrasound images were acquired from the left and right carotid arteries of 35 subjects (16 treated with 80 mg atorvastatin and 19 treated with placebo) at baseline and after 3 months of treatment. Two-hundred and seventy texture features were extracted from 3D ultrasound carotid artery images. These images previously had their vessel walls (VW) manually segmented. Highly ranked individual texture features were selected and compared to the VW volume (VWV) change using 3 measures: distance between classes, Wilcoxon rank sum test, and accuracy of the classifiers. Six classifiers were used. Using texture feature (L7R7) increases the average accuracy and area under the ROC curve to 74.4% and 0.72 respectively compared to 57.2% and 0.61 using VWV change. Thus, the results demonstrate that texture features are more sensitive in detecting drug effects on the carotid vessel wall than VWV change.

  2. Three-dimensional analysis of the swimming behavior of Daphnia magna exposed to nanosized titanium dioxide.

    Directory of Open Access Journals (Sweden)

    Christian Noss

    Full Text Available Due to their surface characteristics, nanosized titanium dioxide particles (nTiO2 tend to adhere to biological surfaces and we thus hypothesize that they may alter the swimming performance and behavior of motile aquatic organisms. However, no suitable approaches to address these impairments in swimming behavior as a result of nanoparticle exposure are available. Water fleas Daphnia magna exposed to 5 and 20 mg/L nTiO2 (61 nm; polydispersity index: 0.157 in 17.46 mg/L stock suspension for 96 h showed a significantly (p<0.05 reduced growth rate compared to a 1-mg/L treatment and the control. Using three-dimensional video observations of swimming trajectories, we observed a treatment-dependent swarming of D. magna in the center of the test vessels during the initial phase of the exposure period. Ensemble mean swimming velocities increased with increasing body length of D. magna, but were significantly reduced in comparison to the control in all treatments after 96 h of exposure. Spectral analysis of swimming velocities revealed that high-frequency variance, which we consider as a measure of swimming activity, was significantly reduced in the 5- and 20-mg/L treatments. The results highlight the potential of detailed swimming analysis of D. magna for the evaluation of sub-lethal mechanical stress mechanisms resulting from biological surface coating and thus for evaluating the effects of nanoparticles in the aquatic environment.

  3. Definition of coordinate system for three-dimensional data analysis in the foot and ankle.

    LENUS (Irish Health Repository)

    Green, Connor

    2012-02-01

    BACKGROUND: Three-dimensional data is required to have advanced knowledge of foot and ankle kinematics and morphology. However, studies have been difficult to compare due to a lack of a common coordinate system. Therefore, we present a means to define a coordinate frame in the foot and ankle and its clinical application. MATERIALS AND METHODS: We carried out ten CT scans in anatomically normal feet and segmented them in a general purpose segmentation program for grey value images. 3D binary formatted stereolithography files were then create and imported to a shape analysis program for biomechanics which was used to define a coordinate frame and carry out morphological analysis of the forefoot. RESULTS: The coordinate frame had axes standard deviations of 2.36 which are comparable to axes variability of other joint coordinate systems. We showed a strong correlation between the lengths of the metatarsals within and between the columns of the foot and also among the lesser metatarsal lengths. CONCLUSION: We present a reproducible method for construction of a coordinate system for the foot and ankle with low axes variability. CLINICAL RELEVANCE: To conduct meaningful comparison between multiple subjects the coordinate system must be constant. This system enables such comparison and therefore will aid morphological data collection and improve preoperative planning accuracy.

  4. Three-dimensional stress analysis of threaded cups - a finite element analysis.

    Science.gov (United States)

    Witzel, U; Rieger, W; Effenberger, H

    2008-04-01

    A three-dimensional model of the left acetabulum with inserted threaded cup has been generated, based on the finite element method, to calculate stress patterns in the standing phase during walking. In this study, a hemispherical cup with sharp threads, a parabolic cup with flat threads and a conical cup with sharp threads were analysed and compared. Stress patterns in both implant components and adjacent bony structures were calculated in a directly postoperative situation. The different cups were found to induce different stress patterns, deformations and shifting tendencies. The inlays deform notably and show characteristic rotational movement patterns together with the shell. The inclination angle increases in the hemispherical cup and decreases in the parabolic cup. The conical cup levers outward almost parallel to the bone stock by approximately 0.05 mm. The pole surfaces of the various cups - especially the very convex area next to the threads - induce increased compressive stress in the superior section of the acetabular base. This is increased by a factor of three in the conical cup in comparison to the hemispherical cup and less so in comparison to the parabolic cup. This study illustrates that three-dimensional stress calculations are suitable for procuring additional biomechanical information to augment clinical studies, for evaluating implants and for establishing stability prognoses, especially for newly developed prototypes.

  5. Three-dimensional stress analysis of threaded cups – a finite element analysis

    Science.gov (United States)

    Witzel, U.; Rieger, W.

    2007-01-01

    A three-dimensional model of the left acetabulum with inserted threaded cup has been generated, based on the finite element method, to calculate stress patterns in the standing phase during walking. In this study, a hemispherical cup with sharp threads, a parabolic cup with flat threads and a conical cup with sharp threads were analysed and compared. Stress patterns in both implant components and adjacent bony structures were calculated in a directly postoperative situation. The different cups were found to induce different stress patterns, deformations and shifting tendencies. The inlays deform notably and show characteristic rotational movement patterns together with the shell. The inclination angle increases in the hemispherical cup and decreases in the parabolic cup. The conical cup levers outward almost parallel to the bone stock by approximately 0.05 mm. The pole surfaces of the various cups – especially the very convex area next to the threads – induce increased compressive stress in the superior section of the acetabular base. This is increased by a factor of three in the conical cup in comparison to the hemispherical cup and less so in comparison to the parabolic cup. This study illustrates that three-dimensional stress calculations are suitable for procuring additional biomechanical information to augment clinical studies, for evaluating implants and for establishing stability prognoses, especially for newly developed prototypes. PMID:17318551

  6. Analysis of weakly nonlinear three-dimensional Rayleigh--Taylor instability growth

    International Nuclear Information System (INIS)

    Dunning, M.J.; Haan, S.W.

    1995-01-01

    Understanding the Rayleigh--Taylor instability, which develops at an interface where a low density fluid pushes and accelerates a higher density fluid, is important to the design, analysis, and ultimate performance of inertial confinement fusion targets. Existing experimental results measuring the growth of two-dimensional (2-D) perturbations (perturbations translationally invariant in one transverse direction) are adequately modeled using the 2-D hydrodynamic code LASNEX [G. B. Zimmerman and W. L. Kruer, Comments Plasma Phys. Controlled Fusion 11, 51 (1975)]. However, of ultimate interest is the growth of three-dimensional (3-D) perturbations such as those initiated by surface imperfections or illumination nonuniformities. Direct simulation of such 3-D experiments with all the significant physical processes included and with sufficient resolution is very difficult. This paper addresses how such experiments might be modeled. A model is considered that couples 2-D linear regime hydrodynamic code results with an analytic model to allow modeling of 3-D Rayleigh--Taylor growth through the linear regime and into the weakly nonlinear regime. The model is evaluated in 2-D by comparison with LASNEX results. Finally the model is applied to estimate the dynamics of a hypothetical 3-D foil

  7. Three-Dimensional Numerical Analysis of LOX/Kerosene Engine Exhaust Plume Flow Field Characteristics

    Directory of Open Access Journals (Sweden)

    Hong-hua Cai

    2017-01-01

    Full Text Available Aiming at calculating and studying the flow field characteristics of engine exhaust plume and comparative analyzing the effects of different chemical reaction mechanisms on the engine exhaust plume flow field characteristics, a method considering fully the combustion state influence is put forward, which is applied to exhaust plume flow field calculation of multinozzle engine. On this basis, a three-dimensional numerical analysis of the effects of different chemical reaction mechanisms on LOX/kerosene engine exhaust plume flow field characteristics was carried out. It is found that multistep chemical reaction can accurately describe the combustion process in the LOX/kerosene engine, the average chamber pressure from the calculation is 4.63% greater than that of the test, and the average chamber temperature from the calculation is 3.34% greater than that from the thermodynamic calculation. The exhaust plumes of single nozzle and double nozzle calculated using the global chemical reaction are longer than those using the multistep chemical reaction; the highest temperature and the highest velocity on the plume axis calculated using the former are greater than that using the latter. The important influence of chemical reaction mechanism must be considered in the study of the fixing structure of double nozzle engine on the rocket body.

  8. Three-dimensional static shape control analysis of composite plates using distributed piezoelectric actuators

    International Nuclear Information System (INIS)

    Shaik Dawood, M S I; Iannucci, L; Greenhalgh, E S

    2008-01-01

    In this work, based on a linear piezoelectric constitutive model, a three-dimensional finite element code using an eight-node brick element that includes the anisotropic and coupled field effects of piezoelectric actuators has been developed for the static shape control analysis of fibre reinforced composite laminates. The code was used to study voltage sensing and actuation capabilities of piezoelectric actuators on composite laminates. The required input voltages to the actuators in order to achieve a specified structural shape were determined using a weighted shape control method. The code was validated using two test cases obtained from the literature. The results were found to show good correlation for voltage actuation. However, since determining input voltages to achieve the desired structural shape is a type of inverse problem, there are no explicit solutions and hence the results obtained from the present model were not similar to those reported in the literature. The second validation also suggests that the anisotropic and coupled field effects of the piezoelectric actuators cannot be neglected as this has been shown to underestimate the required control voltages. The effects of different lamination angles, boundary conditions, plate length-to-thickness ratios and actuator dimensions on the control voltages have also been reported

  9. Three-dimensional textural analysis of brain images reveals distributed grey-matter abnormalities in schizophrenia

    Energy Technology Data Exchange (ETDEWEB)

    Ganeshan, Balaji [University of Sussex, Falmer, Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton (United Kingdom); University of Sussex, Falmer, Department of Engineering and Design, Brighton (United Kingdom); Miles, Kenneth A.; Critchley, Hugo D. [University of Sussex, Falmer, Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton (United Kingdom); Young, Rupert C.D.; Chatwin, Christopher R. [University of Sussex, Falmer, Department of Engineering and Design, Brighton (United Kingdom); Gurling, Hugh M.D. [University College London, Department of Mental Health Sciences, London (United Kingdom)

    2010-04-15

    Three-dimensional (3-D) selective- and relative-scale texture analysis (TA) was applied to structural magnetic resonance (MR) brain images to quantify the presence of grey-matter (GM) and white-matter (WM) textural abnormalities associated with schizophrenia. Brain TA comprised volume filtration using the Laplacian of Gaussian filter to highlight fine, medium and coarse textures within GM and WM, followed by texture quantification. Relative TA (e.g. ratio of fine to medium) was also computed. T1-weighted MR whole-brain images from 32 participants with diagnosis of schizophrenia (n = 10) and healthy controls (n = 22) were examined. Five patients possessed marker alleles (SZ8) associated with schizophrenia on chromosome 8 in the pericentriolar material 1 gene while the remaining five had not inherited any of the alleles (SZ0). Filtered fine GM texture (mean grey-level intensity; MGI) most significantly differentiated schizophrenic patients from controls (P = 0.0058; area under the receiver-operating characteristic curve = 0.809, sensitivity = 90%, specificity = 70%). WM measurements did not distinguish the two groups. Filtered GM and WM textures (MGI) correlated with total GM and WM volume respectively. Medium-to-coarse GM entropy distinguished SZ0 from controls (P = 0.0069) while measures from SZ8 were intermediate between the two. 3-D TA of brain MR enables detection of subtle distributed morphological features associated with schizophrenia, determined partly by susceptibility genes. (orig.)

  10. Three-dimensional textural analysis of brain images reveals distributed grey-matter abnormalities in schizophrenia

    International Nuclear Information System (INIS)

    Ganeshan, Balaji; Miles, Kenneth A.; Critchley, Hugo D.; Young, Rupert C.D.; Chatwin, Christopher R.; Gurling, Hugh M.D.

    2010-01-01

    Three-dimensional (3-D) selective- and relative-scale texture analysis (TA) was applied to structural magnetic resonance (MR) brain images to quantify the presence of grey-matter (GM) and white-matter (WM) textural abnormalities associated with schizophrenia. Brain TA comprised volume filtration using the Laplacian of Gaussian filter to highlight fine, medium and coarse textures within GM and WM, followed by texture quantification. Relative TA (e.g. ratio of fine to medium) was also computed. T1-weighted MR whole-brain images from 32 participants with diagnosis of schizophrenia (n = 10) and healthy controls (n = 22) were examined. Five patients possessed marker alleles (SZ8) associated with schizophrenia on chromosome 8 in the pericentriolar material 1 gene while the remaining five had not inherited any of the alleles (SZ0). Filtered fine GM texture (mean grey-level intensity; MGI) most significantly differentiated schizophrenic patients from controls (P = 0.0058; area under the receiver-operating characteristic curve = 0.809, sensitivity = 90%, specificity = 70%). WM measurements did not distinguish the two groups. Filtered GM and WM textures (MGI) correlated with total GM and WM volume respectively. Medium-to-coarse GM entropy distinguished SZ0 from controls (P = 0.0069) while measures from SZ8 were intermediate between the two. 3-D TA of brain MR enables detection of subtle distributed morphological features associated with schizophrenia, determined partly by susceptibility genes. (orig.)

  11. Development of three-dimensional shoulder kinematic and electromyographic exposure variation analysis methodology in violin musicians.

    Science.gov (United States)

    Reynolds, Jonathan F; Leduc, Robert E; Kahnert, Emily K; Ludewig, Paula M

    2014-01-01

    A total of 11 male and 19 female violinists performed 30-second random-ordered slow and fast musical repertoire while right shoulder three-dimensional kinematic, and upper trapezius and serratus anterior surface electromyography (EMG) data were summarised using exposure variation analysis (EVA), a bivariate distribution of work time spent at categories of signal amplitude, and duration spent at a fixed category of amplitude. Sixty-two per cent of intraclass correlation coefficients [1,1] for all kinematic and EMG variables exceeded 0.75, and 40% of standard error of the measurement results were below 5%, confirming EVA reliability. When fast repertoire was played, increases in odds ratios in short duration cells were seen in 23 of 24 possible instances, and decreases in longer duration cells were seen in 17 instances in all EVA arrays using multinomial logistic regression with random effects, confirming a shift towards shorter duration. A reliable technique to assess right shoulder kinematic and EMG exposure in violinists was identified. A reliable method of measuring right shoulder motion and muscle activity exposure variation in violinists was developed which can be used to assess ergonomic risk in other occupations. Recently developed statistical methods enabled differentiation between fast and slow musical performance of standardised musical repertoire.

  12. Application of equivalent elastic methods in three-dimensional finite element structural analysis

    International Nuclear Information System (INIS)

    Jones, D.P.; Gordon, J.L.; Hutula, D.N.; Holliday, J.E.; Jandrasits, W.G.

    1998-02-01

    This paper describes use of equivalent solid (EQS) modeling to obtain efficient solutions to perforated material problems using three-dimensional finite element analysis (3D-FEA) programs. It is shown that the accuracy of EQS methods in 3D-FEA depends on providing sufficient equivalent elastic properties to allow the EQS material to respond according to the elastic symmetry of the pattern. Peak stresses and ligament stresses are calculated from the EQS stresses by an appropriate 3D-FEA submodel approach. The method is demonstrated on the problem of a transversely pressurized simply supported plate with a central divider lane separating two perforated regions with circular penetrations arranged in a square pattern. A 3D-FEA solution for a model that incorporates each penetration explicitly is used for comparison with results from an EQS solution for the plate. Results for deflection and stresses from the EQS solution are within 3% of results from the explicit 3D-FE model. A solution to the sample problem is also provided using the procedures in the ASME B and PV Code. The ASME B and PV Code formulas for plate deflection were shown to overestimate the stiffening effects of the divider lane and the outer stiffening ring

  13. Three-dimensional airways volumetric analysis before and after fast and early mandibular osteodistraction.

    Science.gov (United States)

    Ramieri, Valerio; Basile, Emanuela; Bosco, Giulio; Caresta, Elena; Papoff, Paola; Cascone, Piero

    2017-03-01

    Newborns with Pierre Robin sequence (PRS) and syndromic micrognathia show microgenia and glossoptosis, which cause reduction of the airway and breathing difficulty from birth. Our goal is to analyze quantitative and qualitative volumetric changes before and after fast and early mandibular osteodistraction (FEMOD) and to compare radiological data. The sample was composed of 4 patients, who satisfied inclusion criteria for completeness of data. Computed tomography pre- and post-operation were performed, then a volumetric assessment was made with Dolphin Imaging. Polysomnography was performed before and after FEMOD. Pre- and post-operative CT scan data were compared. The analysis of all three sections showed a significant increase of volumetric parameters. The retroglossal volume average increase was 346%, and the retropalatal volume average increase was 169%. These data matched the improvement recorded by polysomnography. The data confirm FEMOD as an efficient treatment to improve airways and breathing problem in patients affected by Pierre Robin sequence and syndromic micrognathia. The three-dimensional volume rendering could be a useful method to evaluate and quantify the increase in airways volume. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  14. Three-dimensional linear and volumetric analysis of maxillary sinus pneumatization

    Directory of Open Access Journals (Sweden)

    Reham M. Hamdy

    2014-05-01

    Full Text Available Considering the anatomical variability related to the maxillary sinus, its intimate relation to the maxillary posterior teeth and because of all the implications that pneumatization may possess, three-dimensional assessment of maxillary sinus pneumatization is of most usefulness. The aim of this study is to analyze the maxillary sinus dimensions both linearly and volumetrically using cone beam computed tomography (CBCT to assess the maxillary sinus pneumatization. Retrospective analysis of 30 maxillary sinuses belonging to 15 patients’ CBCT scans was performed. Linear and volumetric measurements were conducted and statistically analyzed. The maximum craniocaudal extension of the maxillary sinus was located around the 2nd molar in 93% of the sinuses, while the maximum mediolateral and antroposterior extensions of the maxillary sinus were located at the level of root of zygomatic complex in 90% of sinuses. There was a high correlation between the linear measurements of the right and left sides, where the antroposterior extension of the sinus at level of the nasal floor had the largest correlation (0.89. There was also a high correlation between the Simplant and geometric derived maxillary sinus volumes for both right and left sides (0.98 and 0.96, respectively. The relations of the sinus floor can be accurately assessed on the different orthogonal images obtained through 3D CBCT scan. The geometric method offered a much cheaper, easier, and less sophisticated substitute; therefore, with the availability of software, 3D volumetric measurements are more facilitated.

  15. FLICA-4 (version 1) a computer code for three dimensional thermal analysis of nuclear reactor cores

    International Nuclear Information System (INIS)

    Raymond, P.; Allaire, G.; Boudsocq, G.

    1995-01-01

    FLICA-4 is a thermal-hydraulic computer code developed at the French Energy Atomic Commission (CEA) for three dimensional steady state or transient two phase flow for design and safety thermal analysis of nuclear reactor cores. The two phase flow model of FLICA-4 is based on four balance equations for the fluid which includes: three balance equations for the mixture and a mass balance equation for the less concentrated phase which permits the calculation of non-equilibrium flows as sub cooled boiling and superheated steam. A drift velocity model takes into account the velocity disequilibrium between phases. The thermal behaviour of fuel elements can be computed by a one dimensional heat conduction equation in plane, cylindrical or spherical geometries and coupled to the fluid flow calculation. Convection and diffusion of solution products which are transported either by the liquid or by the gas, can be evaluated by solving specific mass conservation equations. A one dimensional two phase flow model can also be used to compute 1-D flow in pipes, guide tubes, BWR assemblies or RBMK channels. The FLICA-4 computer code uses fast running time steam-water functions. Phasic and saturation physical properties are computed by using bi-cubic spline functions. Polynomial coefficients are tabulated from 0.1 to 22 MPa and 0 to 800 degrees C. Specific modules can be utilised in order to generate the spline coefficients for any other fluid properties

  16. A three-dimensional finite element analysis of the relationship between masticatory performance and skeletal malocclusion.

    Science.gov (United States)

    Park, Jung-Chul; Shin, Hyun-Seung; Cha, Jung-Yul; Park, Jong-Tae

    2015-02-01

    The aim of this study was to evaluate the transfer of different occlusal forces in various skeletal malocclusions using finite element analysis (FEA). Three representative human cone-beam computed tomography (CBCT) images of three skeletal malocclusions were obtained from the Department of Orthodontics, Yonsei University Dental Hospital, Seoul, South Korea. The CBCT scans were read into the visualization software after separating bones and muscles by uploading the CBCT images into Mimics (Materialise). Two separate three-dimensional (3D) files were exported to visualize the solid morphology of skeletal outlines without considering the inner structures. Individual dental impressions were taken and stone models were scanned with a 3D scanner. These images were integrated and occlusal motions were simulated. Displacement and Von Mises stress were measured at the nodes of the FEA models. The displacement and stress distribution were analyzed. FEA was performed to obtain the 3D deformation of the mandibles under loads of 100, 150, 200, and 225 kg. The distortion in all three skeletal malocclusions was comparable. Greater forces resulted in observing more distortion in FEA. Further studies are warranted to fully evaluate the impact of skeletal malocclusion on masticatory performance using information on muscle attachment and 3D temporomandibular joint movements.

  17. Analysis of tooth movement in extraction cases using three-dimensional reverse engineering technology.

    Science.gov (United States)

    Cha, Bong Kuen; Lee, Jae Yong; Jost-Brinkmann, Paul-Georg; Yoshida, Noriaki

    2007-08-01

    Despite inherent errors, cephalometric superimpositions are currently the most widely used means for assessing sagittal and vertical tooth movements. The purpose of this study was to compare three-dimensional (3D) digital model superimposition with cephalometric superimposition. The material was collected from initial and final maxillary casts and lateral cephalometric radiographs of 30 patients (6 males, 24 females, mean age 17.7 years) who underwent orthodontic treatment with extraction of permanent teeth. Each pair of cephalograms was traced and superimposed according to Ricketts' four-step method. 3D scanning of the maxillary dental casts was performed using INUS dental scanning solution(R), which consists of a 3D scanner, an autoscan system, and 3D reverse modelling software. The 3D superimposition was carried out using the surface-to-surface matching (best-fit method) function of the autoscan system. The antero-posterior movement of the maxillary first molar and central incisor was evaluated cephalometrically and on 3D digital models. To determine whether any difference existed between the two measuring techniques, paired t-tests and correlation analysis were undertaken. The results revealed no statistical differences between the mean incisor and molar movements as assessed cephalometrically or by 3D model superimposition. These findings suggest that the 3D digital orthodontic model superimposition technique used in this study is clinically as reliable as cephalometric superimposition for assessing orthodontic tooth movements.

  18. A three-dimensional finite element model for biomechanical analysis of the hip.

    Science.gov (United States)

    Chen, Guang-Xing; Yang, Liu; Li, Kai; He, Rui; Yang, Bin; Zhan, Yan; Wang, Zhi-Jun; Yu, Bing-Nin; Jian, Zhe

    2013-11-01

    The objective of this study was to construct a three-dimensional (3D) finite element model of the hip. The images of the hip were obtained from Chinese visible human dataset. The hip model includes acetabular bone, cartilage, labrum, and bone. The cartilage of femoral head was constructed using the AutoCAD and Solidworks software. The hip model was imported into ABAQUS analysis system. The contact surface of the hip joint was meshed. To verify the model, the single leg peak force was loaded, and contact area of the cartilage and labrum of the hip and pressure distribution in these structures were observed. The constructed 3D hip model reflected the real hip anatomy. Further, this model reflected biomechanical behavior similar to previous studies. In conclusion, this 3D finite element hip model avoids the disadvantages of other construction methods, such as imprecision of cartilage construction and the absence of labrum. Further, it provides basic data critical for accurately modeling normal and abnormal loads, and the effects of abnormal loads on the hip.

  19. An Integrative Platform for Three-dimensional Quantitative Analysis of Spatially Heterogeneous Metastasis Landscapes

    Science.gov (United States)

    Guldner, Ian H.; Yang, Lin; Cowdrick, Kyle R.; Wang, Qingfei; Alvarez Barrios, Wendy V.; Zellmer, Victoria R.; Zhang, Yizhe; Host, Misha; Liu, Fang; Chen, Danny Z.; Zhang, Siyuan

    2016-04-01

    Metastatic microenvironments are spatially and compositionally heterogeneous. This seemingly stochastic heterogeneity provides researchers great challenges in elucidating factors that determine metastatic outgrowth. Herein, we develop and implement an integrative platform that will enable researchers to obtain novel insights from intricate metastatic landscapes. Our two-segment platform begins with whole tissue clearing, staining, and imaging to globally delineate metastatic landscape heterogeneity with spatial and molecular resolution. The second segment of our platform applies our custom-developed SMART 3D (Spatial filtering-based background removal and Multi-chAnnel forest classifiers-based 3D ReconsTruction), a multi-faceted image analysis pipeline, permitting quantitative interrogation of functional implications of heterogeneous metastatic landscape constituents, from subcellular features to multicellular structures, within our large three-dimensional (3D) image datasets. Coupling whole tissue imaging of brain metastasis animal models with SMART 3D, we demonstrate the capability of our integrative pipeline to reveal and quantify volumetric and spatial aspects of brain metastasis landscapes, including diverse tumor morphology, heterogeneous proliferative indices, metastasis-associated astrogliosis, and vasculature spatial distribution. Collectively, our study demonstrates the utility of our novel integrative platform to reveal and quantify the global spatial and volumetric characteristics of the 3D metastatic landscape with unparalleled accuracy, opening new opportunities for unbiased investigation of novel biological phenomena in situ.

  20. Development of pin-by-pin core analysis method using three-dimensional direct response matrix

    International Nuclear Information System (INIS)

    Ishii, Kazuya; Hino, Tetsushi; Mitsuyasu, Takeshi; Aoyama, Motoo

    2009-01-01

    A three-dimensional direct response matrix method using a Monte Carlo calculation has been developed. The direct response matrix is formalized by four subresponse matrices in order to respond to a core eigenvalue k and thus can be recomposed at each outer iteration in core analysis. The subresponse matrices can be evaluated by ordinary single fuel assembly calculations with the Monte Carlo method in three dimensions. Since these subresponse matrices are calculated for the actual geometry of the fuel assembly, the effects of intra- and inter-assembly heterogeneities can be reflected on global partial neutron current balance calculations in core analysis. To verify this method, calculations for heterogeneous systems were performed. The results obtained using this method agreed well with those obtained using direct calculations with a Monte Carlo method. This means that this method accurately reflects the effects of intra- and inter-assembly heterogeneities and can be used for core analysis. A core analysis method, in which neutronic calculations using this direct response matrix method are coupled with thermal-hydraulic calculations, has also been developed. As it requires neither diffusion approximation nor a homogenization process of lattice constants, a precise representation of the effects of neutronic heterogeneities is possible. Moreover, the fuel rod power distribution can be directly evaluated, which enables accurate evaluations of core thermal margins. A method of reconstructing the response matrices according to the condition of each node in the core has been developed. The test revealed that the neutron multiplication factors and the fuel rod neutron production rates could be reproduced by interpolating the elements of the response matrix. A coupled analysis of neutronic calculations using the direct response matrix method and thermal-hydraulic calculations for an ABWR quarter core was performed, and it was found that the thermal power and coolant

  1. Three-dimensional depletion analysis of the axial end of a Takahama fuel rod

    International Nuclear Information System (INIS)

    DeHart, Mark D.; Gauld, Ian C.; Suyama, Kenya

    2008-01-01

    Recent developments in spent fuel characterization methods have involved the development of several three-dimensional depletion algorithms based on Monte Carlo methods for the transport solution. However, most validation done to-date has been based on radiochemical assay data for spent fuel samples selected from locations in fuel assemblies that can be easily analyzed using two-dimensional depletion methods. The development of a validation problem that has a truly three-dimensional nature is desirable to thoroughly test the full capabilities of advanced three-dimensional depletion tools. This paper reports on the results of three-dimensional depletion calculations performed using the T6-DEPL depletion sequence of the SCALE 5.1 code system, which couples the KENO-VI Monte Carlo transport solver with the ORIGEN-S depletion and decay code. Analyses are performed for a spent fuel sample that was extracted from within the last two centimeters of the fuel pellet stack. Although a three-dimensional behavior is clearly seen in the results of a number of calculations performed under different assumptions, the uncertainties associated with the position of the sample and its local surroundings render this sample of little value as a validation data point. (authors)

  2. Three-dimensional analysis of 0/90s and 90/0s laminates with a central circular hole

    Science.gov (United States)

    Raju, I. S.; Crews, J. H., Jr.

    1982-01-01

    Stress distributions were calculated near a circular hole in laminates, using a three dimensional finite element analysis. These stress distributions were presented three ways: through the thickness at the hole boundary, along radial lines at the 0/90 and 90/0 interfaces, and around the hole at these interfaces. The interlaminar normal stress, and the shear stress, distributions had very steep gradients near the hole boundary, suggesting interlaminar stress singularities. The largest compressive stress occurred at about 60 deg from the load axis. A simple procedure was introduced to calculate interlaminar stresses near the hole boundary. It used stresses calculated by an exact two dimensional analysis of a laminate with a hole as input to a quasi three dimensional model. It produced stresses that agreed closely with those from the three dimensional finite element model.

  3. Quantitative analysis of facial palsy using a three-dimensional facial motion measurement system.

    Science.gov (United States)

    Katsumi, Sachiyo; Esaki, Shinichi; Hattori, Koosuke; Yamano, Koji; Umezaki, Taizo; Murakami, Shingo

    2015-08-01

    The prognosis for facial nerve palsy (FNP) depends on its severity. Currently, many clinicians use the Yanagihara, House-Brackmann, and/or Sunnybrook grading systems to assess FNP. Although these assessments are performed by experts, inter- and intra-observer disagreements have been demonstrated. The quantitative and objective analyses of the degree of FNP would be preferred to monitor functional changes and to plan and evaluate therapeutic interventions in patients with FNP. Numerous two-dimensional (2-D) assessments have been proposed, however, the limitations of 2-D assessment have been reported. The purpose of this study was to introduce a three-dimensional (3-D) image generation system for the analysis of facial nerve palsy (FNP) and to show the correlation between the severity of FNP assessed by this method and two conventional systems. Five independent facial motions, resting, eyebrow raise, gentle eye closure, full smile with lips open and whistling were recorded with our system and the images were then analyzed using our software. The regional and gross facial symmetries were analyzed. The predicted scores were calculated and compared to the Yanagihara and H-B grading scores. We analyzed 15 normal volunteers and 42 patients with FNP. The results showed that 3-D analysis could measure mouth movement in the anteroposterior direction, whereas two-dimensional analysis could not. The system results showed good correlation with the clinical results from the Yanagihara (r(2)=0.86) and House-Brackmann (r(2)=0.81) grading scales. This objective method can produce consistent results that align with two conventional systems. Therefore, this method is ideally suited for use in a routine clinical setting. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Three Dimensional Volumetric Analysis of Solid Pulmonary Nodules on Chest CT: 
Cancer Risk Assessment

    Directory of Open Access Journals (Sweden)

    Mengqi LI

    2016-05-01

    Full Text Available Background and objective The management of pulmonary nodules relies on cancer risk assessment, in which the only widely accepted criterion is diameter. The development of volumetric computed tomography (CT and three-dimensional (3D software enhances the clarity in displaying the nodules’ characteristics. This study evaluated the values of the nodules’ volume and 3D morphological characteristics (edge, shape and location in cancer risk assessment. Methods The CT data of 200 pulmonary nodules were retrospectively evaluated using 3D volumetric software. The malignancy or benignity of all the nodules was confirmed by pathology, histology or follow up (>2 years. Logistic regression analysis was performed to calculate the odds ratios (ORs of the 3D margin (smooth, lobulated or spiculated/irregular, shape (spherical or non-spherical, location (purely intraparenchymal, juxtavascular or pleural-attached, and nodule volume in cancer risk assessment for total and sub-centimeter nodules. The receiver operating characteristic (ROC curve was employed to determine the optimal threshold for the nodule volume. Results Out of 200 pulmonary nodules, 78 were malignant, whereas 122 were benign. The Logistic regression analysis showed that the volume (OR=3.3; P0.05. ROC analysis showed that the optimal threshold for malignancy was 666 mm³. For sub-centimeter nodules, the 3D margin was the only valuable predictive factor of malignancy (OR=60.5, 75.0; P=0.003, 0.007. Conclusion The volume and 3D margin are important factors considered to assess the cancer risk of pulmonary nodules. Volumes larger than 666 mm³ can be determined as high risk for pulmonary nodules; by contrast, nodules with lobulated, spiculated, or irregular margin present a high malignancy probability.

  5. Versatile morphometric analysis and visualization of the three-dimensional structure of neurons.

    Science.gov (United States)

    Aguiar, Paulo; Sousa, Mafalda; Szucs, Peter

    2013-10-01

    The computational properties of a neuron are intimately related to its morphology. However, unlike electrophysiological properties, it is not straightforward to collapse the complexity of the three-dimensional (3D) structure into a small set of measurements accurately describing the structural properties. This strong limitation leads to the fact that many studies involving morphology related questions often rely solely on empirical analysis and qualitative description. It is possible however to acquire hierarchical lists of positions and diameters of points describing the spatial structure of the neuron. While there is a number of both commercially and freely available solutions to import and analyze this data, few are extendable in the sense of providing the possibility to define novel morphometric measurements in an easy to use programming environment. Fewer are capable of performing morphometric analysis where the output is defined over the topology of the neuron, which naturally requires powerful visualization tools. The computer application presented here, Py3DN, is an open-source solution providing novel tools to analyze and visualize 3D data collected with the widely used Neurolucida (MBF) system. It allows the construction of mathematical representations of neuronal topology, detailed visualization and the possibility to define non-standard morphometric analysis on the neuronal structures. Above all, it provides a flexible and extendable environment where new types of analyses can be easily set up allowing a high degree of freedom to formulate and test new hypotheses. The application was developed in Python and uses Blender (open-source software) to produce detailed 3D data representations.

  6. Three-dimensional principal strain analysis for characterizing subclinical changes in left ventricular function.

    Science.gov (United States)

    Pedrizzetti, Gianni; Sengupta, Shantanu; Caracciolo, Giuseppe; Park, Chan Seok; Amaki, Makoto; Goliasch, Georg; Narula, Jagat; Sengupta, Partho P

    2014-10-01

    Subendocardial strain analysis is currently feasible in two-dimensional and three-dimensional (3D) echocardiography; however, there is a lack of clarity regarding the most useful strain component for subclinical disease detection. The aim of this study was to test the hypothesis that strain analysis along the direction of strongest and weakest systolic compression (referred to as principal and secondary strain, respectively) circumvents the need for multidirectional strains and provides a more simplified assessment of left ventricular subendocardial function. Strain analyses were performed by using two-dimensional and 3D echocardiography in 41 consecutive subjects with normal results on electron-beam computed tomography, including 15 controls and 26 patients with systemic hypertension. The direction of principal strain referenced the myofiber geometry obtained from diffusion tensor magnetic resonance imaging of a normal autopsied human heart. The incremental value of principal strain over multidirectional two-dimensional and 3D strain was analyzed. In healthy subjects, 50 ± 3% of the subendocardial shortening occurred in the cross-fiber direction (left-handed helical); this balance was significantly altered in patients with hypertension (P = .01). The magnitude of longitudinal and circumferential strain was similar in patients with hypertension and controls. However, the alteration of the directional contraction pattern resulted in reduced secondary strain magnitude in patients with hypertension (P = .01), and the differences were further exaggerated when the secondary strain was normalized by the principal strain magnitude (P = .004). Two-component principal and secondary strain analysis can be related to left ventricular myofiber geometry and may simplify the assessment of 3D left ventricular deformation by circumventing the need to assess multiple shortening and shear strain components. Copyright © 2014 American Society of Echocardiography. Published by

  7. Three-Dimensional Finite Element Analysis of Sheet-Pile Cellular Cofferdams

    Science.gov (United States)

    1992-04-01

    CTC HC TC.SS T CTE fRTE ZI Figure 5.7: Projection of stress paths on triaxial plane. 168 CHAPTER 5. THREE-DIMENSIONAL SOIL CONSTITUTIVE MODEL source of... CTE RTE Figure 5.8: Stress paths in q-p stress space. 170 CHAPTER 5. THREE-DIMENSIONAL SOIL CONSTITUTIVE MODEL 10.00 8.00 I0 SHEA ST.00.c Fiue59 ha...from Mt. Blue High School, Farmingtion, Maine where he excelled in mathematic and science and was a standout in football and wrestling. He attended

  8. Analysis of Human Papillomavirus Genome Replication Using Two- and Three-Dimensional Agarose Gel Electrophoresis.

    Science.gov (United States)

    Henno, Liisi; Tombak, Eva-Maria; Geimanen, Jelizaveta; Orav, Marit; Ustav, Ene; Ustav, Mart

    2017-05-16

    This unit includes the necessary information to conduct neutral/neutral and neutral/alkaline two-dimensional and neutral/neutral/alkaline three-dimensional agarose gel electrophoresis. The methodology has been optimized over the years to gain a better outcome from the hard-to-interpret signals of human papilloma virus replication intermediates obtained from two- and three-dimensional agarose gels. Examples of typical results and interpretation of replication intermediate patterns are included, and the outcomes of multiple-dimension assays are assessed using previously published experimental data. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  9. Phase analysis for three-dimensional surface reconstruction of apples using structured-illumination reflectance imaging

    Science.gov (United States)

    Lu, Yuzhen; Lu, Renfu

    2017-05-01

    Three-dimensional (3-D) shape information is valuable for fruit quality evaluation. This study was aimed at developing phase analysis techniques for reconstruction of the 3-D surface of fruit from the pattern images acquired by a structuredillumination reflectance imaging (SIRI) system. Phase-shifted sinusoidal patterns, distorted by the fruit geometry, were acquired and processed through phase demodulation, phase unwrapping and other post-processing procedures to obtain phase difference maps relative to the phase of a reference plane. The phase maps were then transformed into height profiles and 3-D shapes in a world coordinate system based on phase-to-height and in-plane calibrations. A reference plane-based approach, coupled with the curve fitting technique using polynomials of order 3 or higher, was utilized for phase-to-height calibrations, which achieved superior accuracies with the root-mean-squared errors (RMSEs) of 0.027- 0.033 mm for a height measurement range of 0-91 mm. The 3rd-order polynomial curve fitting technique was further tested on two reference blocks with known heights, resulting in relative errors of 3.75% and 4.16%. In-plane calibrations were performed by solving a linear system formed by a number of control points in a calibration object, which yielded a RMSE of 0.311 mm. Tests of the calibrated system for reconstructing the surface of apple samples showed that surface concavities (i.e., stem/calyx regions) could be easily discriminated from bruises from the phase difference maps, reconstructed height profiles and the 3-D shape of apples. This study has laid a foundation for using SIRI for 3-D shape measurement, and thus expanded the capability of the technique for quality evaluation of horticultural products. Further research is needed to utilize the phase analysis techniques for stem/calyx detection of apples, and optimize the phase demodulation and unwrapping algorithms for faster and more reliable detection.

  10. Three-dimensional thermal analysis of a baseline spent fuel repository

    International Nuclear Information System (INIS)

    Altenbach, T.J.; Lowry, W.E.

    1980-01-01

    A three-dimensional thermal analysis has been performed using finite difference techniques to determine the near-field response of a baseline spent fuel repository in a deep geologic salt medium. A baseline design incorporates previous thermal modeling experience and OWI recommendations for areal thermal loading in specifying the waste form properties, package details, and emplacement configuration. The base case in this thermal analysis considers one 10-year old PWR spent fuel assembly emplaced to yield a 36 kw/acre (8.9 w/m 2 ) loading. A unit cell model in an infinite array is used to simplify the problem and provide upper-bound temperatures. Boundary conditions are imposed which allow simulations to 1000 years. Variations studied include a comparison of ventilated and unventilated storage room conditions, emplacement packages with and without air gaps surrounding the canister, and room cool-down scenarios with ventilation following an unventilated state for retrieval purposes. At this low power level ventilating the emplacement room has an immediate cooling influence on the canister and effectively maintains the emplacement room floor near the temperature of the ventilating air. The annular gap separating the canister and sleeve causes the peak temperature of the canister surface to rise by 10 0 F (5.6 0 C) over that from a no gap case assuming perfect thermal contact. It was also shown that the time required for the emplacement room to cool down to 100 0 F (38 0 C) from an unventilated state ranged from 2 weeks to 6 months; when ventilation initiated after times of 5 years to 50 years, respectively. As the work was performed for the Nuclear Regulatory Commission, these results provide a significant addition to the regulatory data base for spent fuel performance in a geologic repository

  11. Clinical-oriented Three-dimensional Gait Analysis Method for Evaluating Gait Disorder.

    Science.gov (United States)

    Mukaino, Masahiko; Ohtsuka, Kei; Tanikawa, Hiroki; Matsuda, Fumihiro; Yamada, Junya; Itoh, Norihide; Saitoh, Eiichi

    2018-03-04

    Three-dimensional gait analysis (3DGA) is shown to be a useful clinical tool for the evaluation of gait abnormality due to movement disorders. However, the use of 3DGA in actual clinics remains uncommon. Possible reasons could include the time-consuming measurement process and difficulties in understanding measurement results, which are often presented using a large number of graphs. Here we present a clinician-friendly 3DGA method developed to facilitate the clinical use of 3DGA. This method consists of simplified preparation and measurement processes that can be performed in a short time period in clinical settings and intuitive results presentation to facilitate clinicians' understanding of results. The quick, simplified measurement procedure is achieved by the use of minimum markers and measurement of patients on a treadmill. To facilitate clinician understanding, results are presented in figures based on the clinicians' perspective. A Lissajous overview picture (LOP), which shows the trajectories of all markers from a holistic viewpoint, is used to facilitate intuitive understanding of gait patterns. Abnormal gait pattern indices, which are based on clinicians' perspectives in gait evaluation and standardized using the data of healthy subjects, are used to evaluate the extent of typical abnormal gait patterns in stroke patients. A graph depicting the analysis of the toe clearance strategy, which depicts how patients rely on normal and compensatory strategies to achieve toe clearance, is also presented. These methods could facilitate implementation of 3DGA in clinical settings and further encourage development of measurement strategies from the clinician's point of view.

  12. Three-dimensional inverse scattering: High-frequency analysis of Newton's Marchenko equation

    International Nuclear Information System (INIS)

    Cheney, M.; Rose, J.H.

    1985-01-01

    We obtain a high-frequency asymptotic expansion of Newton's Marchenko equation for three-dimensional inverse scattering. We find that the inhomogeneous term contains the same high-frequency information as does the Born approximation. We show that recovery of the potential via Newton's Marchenko equation plus the ''miracle'' depends on low-frequency information

  13. Three-dimensional vortex analysis and aeroacoustic source characterization of jet core breakdown

    NARCIS (Netherlands)

    Violato, D.; Scarano, F.

    2013-01-01

    The three-dimensional behavior of jet core breakdown is investigated with experiments conducted on a free water jet at Re = 5000 by time-resolved tomographic particle image velocimetry (TR-TOMO PIV). The investigated domain encompasses the range between 0 and 10 jet diameters. The characteristic

  14. A general methodology for three-dimensional analysis of variation in target volume delineation

    NARCIS (Netherlands)

    Remeijer, P.; Rasch, C.; Lebesque, J. V.; van Herk, M.

    1999-01-01

    A generic method for three-dimensional (3-D) evaluation of target volume delineation in multiple imaging modalities is presented. The evaluation includes geometrical and statistical methods to estimate observer differences and variability in defining the Gross Tumor Volume (GTV) in relation to the

  15. Strategic planning for aircraft noise route impact analysis: A three dimensional approach

    Science.gov (United States)

    Bragdon, C. R.; Rowan, M. J.; Ahuja, K. K.

    1993-01-01

    The strategic routing of aircraft through navigable and controlled airspace to minimize adverse noise impact over sensitive areas is critical in the proper management and planning of the U.S. based airport system. A major objective of this phase of research is to identify, inventory, characterize, and analyze the various environmental, land planning, and regulatory data bases, along with potential three dimensional software and hardware systems that can be potentially applied for an impact assessment of any existing or planned air route. There are eight data bases that have to be assembled and developed in order to develop three dimensional aircraft route impact methodology. These data bases which cover geographical information systems, sound metrics, land use, airspace operational control measures, federal regulations and advisories, census data, and environmental attributes have been examined and aggregated. A three dimensional format is necessary for planning, analyzing space and possible noise impact, and formulating potential resolutions. The need to develop this three dimensional approach is essential due to the finite capacity of airspace for managing and planning a route system, including airport facilities. It appears that these data bases can be integrated effectively into a strategic aircraft noise routing system which should be developed as soon as possible, as part of a proactive plan applied to our FAA controlled navigable airspace for the United States.

  16. Analysis of the Pendular and Pitch Motions of a Driven Three-Dimensional Pendulum

    Science.gov (United States)

    Findley, T.; Yoshida, S.; Norwood, D. P.

    2007-01-01

    A three-dimensional pendulum, modelled after the Laser Interferometer Gravitational-Wave Observatory's suspended optics, was constructed to investigate the pendulum's dynamics due to suspension point motion. In particular, we were interested in studying the pendular-pitch energy coupling. Determination of the pendular's Q value (the quality factor…

  17. Extraction Analysis and Creation of Three-Dimensional Road Profiles Using Matlab OpenCRG Tool

    Directory of Open Access Journals (Sweden)

    Rakesh Hari Borse

    2015-08-01

    Full Text Available In vehicle systems dynamics there are wide applications of simulation of vehicles on road surfaces. These simulation applications are related to vehicle handling ride comfort and durability. For accurate prediction of results there is a need for a reliable and efficient road representations. The efficient representation of road surface profiles is to represent them in three-dimensional space. This is made possible by the CRG Curved Regular Grid approach. OpenCRG is a completely open source project including a tool suite for the creation modification and evaluation of road surfaces. Its objective is to standardized detailed road surface description and it may be used for applications like tire models vibrations or driving simulation. The Matlab tool suite of OpenCRG provides powerful modification or creation tools and allows to visualize the 3D road data representation. The current research focuses on basic concepts of OpenCRG and its Matlab environment. The extraction of longitudinal two-dimensional road profiles from three-dimensional CRG format is researched. The creation of simple virtual three-dimensional roads has been programmed. A Matlab software tool to extract create and analyze the three-dimensional road profiles is to be developed.

  18. Three dimensional monocular human motion analysis in end-effector space

    DEFF Research Database (Denmark)

    Hauberg, Søren; Lapuyade, Jerome; Engell-Nørregård, Morten Pol

    2009-01-01

    In this paper, we present a novel approach to three dimensional human motion estimation from monocular video data. We employ a particle filter to perform the motion estimation. The novelty of the method lies in the choice of state space for the particle filter. Using a non-linear inverse kinematics...

  19. Application of the three-dimensional transport code to analysis of the neutron streaming experiment

    International Nuclear Information System (INIS)

    Chatani, K.; Slater, C.O.

    1990-01-01

    The neutron streaming through an experimental mock-up of a Clinch River Breeder Reactor (CRBR) prototypic coolant pipe chaseway was recalculated with a three-dimensional discrete ordinates code. The experiment was conducted at the Tower Shielding Facility at Oak Ridge National Laboratory in 1976 and 1977. The measurement of the neutron flux, using Bonner ball detectors, indicated nine orders of attenuation in the empty pipeway, which contained two 90-deg bends and was surrounded by concrete walls. The measurement data were originally analyzed using the DOT3.5 two-dimensional discrete ordinates radiation transport code. However, the results did not agree with measurement data at the bend because of the difficulties in modeling the three-dimensional configurations using two-dimensional methods. The two-dimensional calculations used a three-step procedure in which each of the three legs making the two 90-deg bends was a separate calculation. The experiment was recently analyzed with the TORT three-dimensional discrete ordinates radiation transport code, not only to compare the calculational results with the experimental results, but also to compare with results obtained from analyses in Japan using DOT3.5, MORSE, and ENSEMBLE, which is a three-dimensional discrete ordinates radiation transport code developed in Japan

  20. Three-Dimensional (3D) Printers in Libraries: Perspective and Preliminary Safety Analysis

    Science.gov (United States)

    Bharti, Neelam; Singh, Shailendra

    2017-01-01

    As an emerging technology, three-dimensional (3D) printing has gained much attention as a rapid prototyping and small-scale manufacturing technology around the world. In the changing scenario of library inclusion, Makerspaces are becoming a part of most public and academic libraries, and 3D printing is one of the technologies included in…

  1. Three dimensional analysis of brace biomechanical efficacy for patients with AIS

    DEFF Research Database (Denmark)

    Lebel, David E; Al-Aubaidi, Zaid; Shin, Eyun-Jung

    2013-01-01

    Corrective three dimensional (3D) effect of different braces is debatable. We evaluated differences in in-brace radiographic correction comparing a custom thoracic-lumbo-sacral-orthosis (TLSO) (T) brace to a Chêneau type TLSO (C) brace using 3D EOS reconstruction technology. Our primary research ...

  2. Analysis of deformity in scaphoid non-unions using two- and three-dimensional imaging.

    Science.gov (United States)

    Ten Berg, P W L; Dobbe, J G G; Horbach, S E R; Gerards, R M; Strackee, S D; Streekstra, G J

    2016-09-01

    Pre-operative assessment of the deformity in scaphoid non-unions influences surgical decision-making. To characterize deformity, we used three-dimensional computed tomographic modelling in 28 scaphoid non-unions, and quantified bone loss, dorsal osteophyte volume and flexion deformity. We further related these three-dimensional parameters to the intrascaphoid and capitate-lunate angles, and stage of scaphoid non-union advanced collapse assessed on conventional two-dimensional images and to the chosen surgical procedure. Three-dimensional flexion deformity (mean 26°) did not correlate with intrascaphoid and capitate-lunate angles. Osteophyte volume was positively correlated with bone loss and stage of scaphoid non-union advanced collapse. Osteophyte volume and bone loss increased over time. Three-dimensional modelling enables the quantification of bone loss and osteophyte volume, which may be valuable parameters in the characterization of deformity and subsequent decision-making about treatment, when taken in addition to the clinical aspects and level of osteoarthritis. Level IV. © The Author(s) 2015.

  3. Analysis of Traditional versus Three-Dimensional Augmented Curriculum on Anatomical Learning Outcome Measures

    Science.gov (United States)

    Peterson, Diana Coomes; Mlynarczyk, Gregory S.A.

    2016-01-01

    This study examined whether student learning outcome measures are influenced by the addition of three-dimensional and digital teaching tools to a traditional dissection and lecture learning format curricula. The study was performed in a semester long graduate level course that incorporated both gross anatomy and neuroanatomy curricula. Methods…

  4. Digitization of simulated clinical dental impressions: virtual three-dimensional analysis of exactness.

    Science.gov (United States)

    Persson, Anna S K; Odén, Agneta; Andersson, Matts; Sandborgh-Englund, Gunilla

    2009-07-01

    To compare the exactness of simulated clinical impressions and stone replicas of crown preparations, using digitization and virtual three-dimensional analysis. Three master dies (mandibular incisor, canine and molar) were prepared for full crowns, mounted in full dental arches in a plane line articulator. Eight impressions were taken using an experimental monophase vinyl polysiloxane-based material. Stone replicas were poured in type IV stone (Vel-Mix Stone; Kerr). The master dies and the stone replicas were digitized in a touch-probe scanner (Procera) Forte; Nobel Biocare AB) and the impressions in a laser scanner (D250, 3Shape A/S), to create virtual models. The resulting point-clouds from the digitization of the master dies were used as CAD-Reference-Models (CRM). Discrepancies between the points in the pointclouds and the corresponding CRM were measured by a matching-software (CopyCAD 6.504 SP2; Delcam Plc). The distribution of the discrepancies was analyzed and depicted on color-difference maps. The discrepancies of the digitized impressions and the stone replicas compared to the CRM were of similar size with a mean+/-SD within 40microm, with the exception of two of the digitized molar impressions. The precision of the digitized impressions and stone replicas did not differ significantly (F=4.2; p=0.053). However, the shape affected the digitization (F=5.4; p=0.013) and the interaction effect of shape and digitization source (impression or stone replica) was pronounced (F=28; pimpressions varied with shape. Both impressions and stone replicas can be digitized repeatedly with a high reliability.

  5. Three dimensional thermal hydraulic characteristic analysis of reactor core based on porous media method

    International Nuclear Information System (INIS)

    Chen, Ronghua; Tian, Maolin; Chen, Sen; Tian, Wenxi; Su, G.H.; Qiu, Suizheng

    2017-01-01

    Highlights: • This study constructed a full CFD model for the RPV of a PWR. • The reactor core was simplified using the porous model in CFX. • The CFX simulation result was in good agreement with the scaled test and design values. • The analysis of the SGTR accident was performed. - Abstract: Thermal-hydraulic performance in the reactor core was an essential factor in the nuclear power plant design. In this study, we analyzed the three-dimensional (3-D) thermal-hydraulic characteristic of reactor core based on porous media method. Firstly, a 3-D rector pressure vessel (RPV) model was built, including the inlet leg nozzle, downcomer, lower plenum, reactor core, upper plenum and outlet leg nozzle. Porous media model was used to simplify the reactor core and upper plenum. The commercial CFD code ANSYS CFX was employed to solve the governing equations and provide the 3-D local velocity, temperature and pressure field. After appropriate parameters and turbulent model being carefully selected, the simulation was validated against the 1:5 scaled steady-state hydraulic test. The predicted hydraulic parameters (normalized flowrate distribution and pressure drop) were in good agreement with the test results. And the predicted thermal parameters agreed well with the designed values. The validation indicated that this method was practicable in analyzing the 3-D thermal-hydraulic phenomena in the RPV. Finally, the thermal-hydraulic features in reactor core were analyzed under the condition of the Steam Generator Tube Rupture (SGTR) accident. The simulation results showed that the coolant temperature increased gradually from the center to the periphery in the reactor core in the accident. But the temperature decreased to safety level rapidly after the reactor shutdown and safety injection operation. The reactor core could keep in a safe state if appropriate safety operations were performed after accidents.

  6. High-resolution three-dimensional imaging and analysis of rock falls in Yosemite valley, California

    Science.gov (United States)

    Stock, Gregory M.; Bawden, G.W.; Green, J.K.; Hanson, E.; Downing, G.; Collins, B.D.; Bond, S.; Leslar, M.

    2011-01-01

    We present quantitative analyses of recent large rock falls in Yosemite Valley, California, using integrated high-resolution imaging techniques. Rock falls commonly occur from the glacially sculpted granitic walls of Yosemite Valley, modifying this iconic landscape but also posing signifi cant potential hazards and risks. Two large rock falls occurred from the cliff beneath Glacier Point in eastern Yosemite Valley on 7 and 8 October 2008, causing minor injuries and damaging structures in a developed area. We used a combination of gigapixel photography, airborne laser scanning (ALS) data, and ground-based terrestrial laser scanning (TLS) data to characterize the rock-fall detachment surface and adjacent cliff area, quantify the rock-fall volume, evaluate the geologic structure that contributed to failure, and assess the likely failure mode. We merged the ALS and TLS data to resolve the complex, vertical to overhanging topography of the Glacier Point area in three dimensions, and integrated these data with gigapixel photographs to fully image the cliff face in high resolution. Three-dimensional analysis of repeat TLS data reveals that the cumulative failure consisted of a near-planar rock slab with a maximum length of 69.0 m, a mean thickness of 2.1 m, a detachment surface area of 2750 m2, and a volume of 5663 ?? 36 m3. Failure occurred along a surfaceparallel, vertically oriented sheeting joint in a clear example of granitic exfoliation. Stress concentration at crack tips likely propagated fractures through the partially attached slab, leading to failure. Our results demonstrate the utility of high-resolution imaging techniques for quantifying far-range (>1 km) rock falls occurring from the largely inaccessible, vertical rock faces of Yosemite Valley, and for providing highly accurate and precise data needed for rock-fall hazard assessment. ?? 2011 Geological Society of America.

  7. Relationships between bone strength and bone quality. Three-dimensional imaging analysis in ovariectomized mice

    International Nuclear Information System (INIS)

    Wakabayashi, Suguru; Sakurai, Takashi; Kashima, Isamu

    2004-01-01

    Low-energy trauma resulting in fractures of the distal femur is often observed in elderly patients with osteoporosis; such fractures are often associated with treatment difficulties and poor prognosis. The purpose of this study was to clarify the factors that affect the bone strength of the distal femur. We used ovariectomized mice to demonstrate bone quality factors associated with deterioration of the strength of the distal femur. Ten-week old ICR-strain mice were ovariectomized or sham-ovariectomized. Total bone mineral density (BMD), total bone area, cortical BMD, cortical thickness, and trabecular BMD were measured by peripheral quantitative computed tomography in the distal metaphyseal region of the femora. As three-dimensional architectural parameters, the trabecular number, trabecular thickness (Tb.Th), trabecular separation, and connectivity density were measured in the same region by micro-computed tomography. The maximum load measured by compression testing of the distal metaphyseal region was regarded as the bone strength of each sample. No significant differences in total bone area or in cortical BMD were found between the groups. Bone strength showed the closest relationship with total BMD (r=0.834). Multiple regression analysis demonstrated that total BMD greatly depended on cortical thickness. The addition of Tb.Th to trabecular BMD markedly reflected bone strength (R=0.857), suggesting that Tb.Th affected bone strength more significantly than trabecular BMD. These findings suggested that deterioration of bone strength of the distal femur (metaphysis) was not caused by a reduction in cortical BMD, but was related to reduced cortical thickness, which reduced total BMD, and to trabecular BMD and architecture, in particular to reduced Tb.Th. (author)

  8. Etiological factors in hallux valgus, a three-dimensional analysis of the first metatarsal.

    Science.gov (United States)

    Ota, Tomohiko; Nagura, Takeo; Kokubo, Tetsuro; Kitashiro, Masateru; Ogihara, Naomichi; Takeshima, Kenichiro; Seki, Hiroyuki; Suda, Yasunori; Matsumoto, Morio; Nakamura, Masaya

    2017-01-01

    It has been reported that hallux valgus (HV) is associated with axial rotation of the first metatarsal (1MT). However, the association between HV and torsion of the 1MT head with respect to the base has not been previously investigated. The present study examined whether there was a significant difference in 1MT torsion between HV and control groups. Three-dimensional (3D) computed tomography (CT) scans of 39 ft were obtained, and 3D surface models of the 1MT were generated to quantify the torsion of the head with respect to the base. The HV group consisted of 27 ft from 27 women (69.5 ± 7.5 years old). Only the feet of HV patients with an HV angle >20° on weight-bearing radiography were selected for analysis. The control group consisted of 12 ft from 12 women (67.7 ± 7.2 years old). In a virtual 3D space, two unit vectors, which describe the orientation of the 1MT head and base, were calculated. The angle formed by these two unit vectors representing 1MT torsion was compared between the control and hallux valgus groups. The mean (± standard deviation) of the torsional angle of the 1MT was 17.6 (± 7.7)° and 4.7 (± 4.0)° in the HV and control groups, respectively, and the difference was significant ( p  hallux valgus patients compared to control group patients.

  9. A three-dimensional finite element analysis of the osseointegration progression in the human mandible

    Science.gov (United States)

    Esmail, Enas; Hassan, Noha; Kadah, Yasser

    2010-02-01

    In this study, three-dimensional (3D) finite element analysis was used to model the effect of the peri-implant bone geometry and thickness on the biomechanical behavior of a dental implant/supporting bone system. The 3D finite element model of the jaw bone, cancellous and cortical, was developed based on computerized tomography (CT) scan technology while the dental implant model was created based on a commercially available implant design. Two models, cylindrical and threaded, representing the peri-implant bone region were simulated. In addition, various thicknesses (0.1 mm, 0.3 mm, 0.5 mm) of the peri-implant bone region were modeled to account for the misalingnment during the drilling process. Different biomechanical properties of the peri-implant bone region were used to simulate the progression of the osseointegration process with time. Four stages of osseointegration were modeled to mimic different phases of tissue healing of the peri- implant region starting with soft connective tissue and ending with complete bone maturation. For the realistic threaded model of the peri-implant bone region, the maximum von Mises stress and displacement in the dental implant and jaw bone were higher than those computed for the simple cylindrical peri-implant bone region model. The average von Mises stress and displacement in the dental implant and the jaw bone decreased as the oseeointegration progressed with time for all thicknesses of the peri-implant bone region. On the other hand, the maximum absolute vertical displacement of the dental implant increased as the drilled thickness of the peri-implant bone region increased.

  10. Two-dimensional and three-dimensional left ventricular deformation analysis: a study in competitive athletes.

    Science.gov (United States)

    D'Ascenzi, Flavio; Solari, Marco; Mazzolai, Michele; Cameli, Matteo; Lisi, Matteo; Andrei, Valentina; Focardi, Marta; Bonifazi, Marco; Mondillo, Sergio

    2016-12-01

    Two-dimensional (2D) speckle-tracking echocardiography (STE) has clarified functional adaptations accompanying the morphological features of 'athlete's heart'. However, 2D STE has some limitations, potentially overcome by three-dimensional (3D) STE. Unfortunately, discrepancies between 2D- and 3D STE have been described. We therefore sought to evaluate whether dimensional and functional differences exist between athletes and controls and whether 2D and 3D left ventricular (LV) strains differ in athletes. One hundred sixty-one individuals (91 athletes, 70 controls) were analysed. Athletes were members of professional sports teams. 2D and 3D echocardiography and STE were used to assess LV size and function. Bland-Altman analysis was used to estimate the level of agreement between 2D and 3D STE. Athletes had greater 2D and 3D-derived LV dimensions and LV mass (p dimensional longitudinal and circumferential strain values were lower (p < 0.0001 for both) while 3D radial strain was greater, as compared with 2D STE (p < 0.001). Bland-Altman plots demonstrated the presence of an absolute systematic error between 2D and 3D STE to analyse LV myocardial deformation. 3D STE is a useful and feasible technique for the assessment of myocardial deformation with the potential to overcome the limitations of 2D imaging. However, discrepancies exist between 2D and 3D-derived strain suggesting that 2D and 3D STE are not interchangeable.

  11. Test-retest reliability and minimal detectable change of three-dimensional gait analysis in chronic low back pain patients

    NARCIS (Netherlands)

    Fernandes, R.; Armada-da-Silva, P.; Pool-Goudzwaard, A.; Moniz-Pereira, V.; Veloso, A.P.

    2015-01-01

    Background and aim: Three-dimensional gait analysis (3DGA) can provide detailed data on gait impairment in chronic low back pain (CLBP) patients. However, data about reliability and measurement error of 3DGA in this population is lacking. The aim of this study is to investigate test-retest

  12. Three-dimensional cephalometric analysis of adolescents with cleft lip and palate using computed tomography-guided imaging.

    Science.gov (United States)

    Zhao, Zhen-min; Zhu, Yun; Huo, Ran; Su, Jing-ran; Gao, Feng

    2014-11-01

    To propose landmarks and a new coordinate system to aid three-dimensional cephalometric analysis of adolescent cleft lip and palate (CLP) using computed tomography (CT) imaging. Sixty-four-row CT images obtained from 52 adolescent patients were retrospectively analyzed with the MIMICS program (MIMICS 10.02; Materialise Technologies, Leuven, Belgium) to determine intrarater reliability of new landmarks for three-dimensional cephalometric analysis before surgery. Five points were located on each image including the midpoint between both uppermost external points of the external auditory meatus (EAM), the center of the sella turcica (sella, S), the most anterior point on the nasofrontal suture in the midline (nasion, N), and the right and left lowest points of the lower edge of the orbitale (r/l orbitale, r/l Or). The horizontal reference plane was then determined using EAM and bilateral Or. The sagittal reference plane was defined perpendicular to the horizontal plane, passing through N and S. The coronal reference plane included the EAM landmark and was perpendicular to the sagittal and horizontal planes. All 5 points had high intrarater reliability and proved easy to use in constructing the new coordinate system. The horizontal, sagittal, and coronal reference planes formed by these respective points improved the ease of performing three-dimensional cephalometric analysis of CLP adolescents with CT imaging. Our 5 landmarks provided reliable CT-guided three-dimensional cephalometric analysis of CLP, allowing for accurate quantitative assessment in adolescents before orthognathic surgery.

  13. Two-dimensional versus three-dimensional laparoscopy in surgical efficacy: a systematic review and meta-analysis.

    Science.gov (United States)

    Cheng, Ji; Gao, Jinbo; Shuai, Xiaoming; Wang, Guobin; Tao, Kaixiong

    2016-10-25

    Laparoscopy is a revolutionary technique in modern surgery. However, the comparative efficacy between two-dimensional laparoscopy and three-dimensional laparoscopy remains in uncertainty. Therefore we performed this systematic review and meta-analysis in order to seek for answers. Databases of PubMed, Web of Science, EMBASE and Cochrane Library were carefully screened. Clinical trials comparing two-dimensional versus three-dimensional laparoscopy were included for pooled analysis. Observational and randomized trials were methodologically appraised by Newcastle-Ottawa Scale and Revised Jadad's Scale respectively. Subgroup analyses were additionally conducted to clarify the potential confounding elements. Outcome stability was examined by sensitivity analysis, and publication bias was analyzed by Begg's test and Egger's test. 21 trials were screened out from the preliminary 3126 records. All included studies were high-quality in methodology, except for Bilgen 2013 and Ruan 2015. Three-dimensional laparoscopy was superior to two-dimensional laparoscopy in terms of surgical time (P analysis. Although Begg's test (P = 0.215) and Egger's test (P = 0.003) revealed that there was publication bias across included studies, Trim-and-Fill method confirmed that the results remained stable. Three-dimensional laparoscopy is a preferably surgical option against two-dimensional laparoscopy due to its better surgical efficacy.

  14. [Parallel factor analysis as an analysis technique for the ratio of three-dimensional fluorescence peak in Taihu Lake].

    Science.gov (United States)

    Zhu, Peng; Liao, Hai-qing; Hua, Zu-lin; Xie, Fa-zhi; Tang, Zhi; Zhang, Liang

    2012-01-01

    The present paper proposes a new method to find the ratio of three-dimensional fluorescence peak. At first, the excitation-emission fluorescence matrix of water samples was treated with parallel factor analysis (PARAFAC) and then fluorescence peaks intensity and ratio of fluorescence peak were obtained from the parallel factor analysis model. From the parallel factor analysis model, the same fluorescence peaks of different water samples lie at the same excitation-emission wavelength and the overlap of different fluorescence peaks of the same water sample is reduced. Analysing regional characteristic in Taihu Lake, the ratio of factor score and the ratio of fluorescence peak showed strong correlation.

  15. Uniqueness of the anterior dentition three-dimensionally assessed for forensic bitemark analysis.

    Science.gov (United States)

    Franco, A; Willems, G; Souza, Phc; Coucke, W; Thevissen, P

    2017-02-01

    The uniqueness of the human dentition (UHD) is an important concept in the comparative process in bitemark analysis. During this analysis, the incisal edges of the suspects' teeth are matched with the bitemarks collected from the victim's body or crime scenes. Despite playing an essential part to exclude suspects, the UHD contained in the involved incisal tooth edges remains an assumption on bitemark level. The present study was aimed, first, to investigate three-dimensionally (3D) the UHD within different quantities of dental material from the incisal edges; second, to test these outcomes in a bidimensional (2D) simulation. Four-hundred forty-five dental casts were collected to compose 4 study groups: I - randomly-selected subjects, II - orthodontically treated subjects, III - twins and IV - orthodontically treated twins. Additionally, 20 dental casts were included to create threshold groups on subjects from whom the dental impressions were taken at 2 different moments (Group V). All the dental casts were digitalized with an automated motion device (XCAD 3D ® (XCADCAM Technology ® , São Paulo, SP, Brazil). The digital cast files (DCF) were integrated in Geomagic Studio ® (3D Systems ® , Rock Hill, SC, USA) software package (GS) for cropping, automated superimposition and pair-wise comparisons. All the DCF were cropped remaining 3 mm (part 1), 2 mm (part 2) and 1 mm (part 3) from the incisal edges of the anterior teeth. For a 2D validation, slices of 1 mm, not including incisal edges (part 4), were also cropped. These procedures were repeated in Group V, creating specific thresholds for each of the study parts. The 4 study groups were compared with its respective threshold using ANOVA test with statistical significance of 5%. Groups I, II and III did not differ from the corresponding threshold (Group V) in all study parts (p > 0.05). Scientific evidence to support the UHD was not observed in the current study. Bitemark analysis should not be disregarded

  16. Cone-beam computed tomography: accuracy of three-dimensional cephalometry analysis and influence of patient scanning position.

    Science.gov (United States)

    Frongia, Gianluigi; Piancino, Maria Grazia; Bracco, Pietro

    2012-07-01

    The aim of this research was to analyze the influence of the position of the skull during cone-beam computed tomography (CBCT) scan and if the three-dimensional cephalometric measurements are influenced by skull orientation during CBCT scan.The study consisted of 5 CBCT scanning (KODAK 9500 Cone Beam 3D System unit) in 5 different positions of a dry skull. The data were imported in SIMPLANT OMS Software version 13.0. Fifteen three-dimensional cephalometric measurements were calculated; moreover, the mean, the SD, the maximum/minimum Δ, and the maximum/minimum Δ percentage were calculated. The statistical analysis was performed by an independent-samples t-test to evaluate differences between the 5 scans.No difference was found in all the three-dimensional analysis. Twelve of 15 measurements have a Δ greater than 1.5, and 7 of 15 measurements have a Δ greater than 2. Nine of 15 have a Δ percentage greater than 5%. The preliminary results suggest that the three-dimensional cephalometric analysis is influenced by patient scanning position.

  17. Method for aortic wall strain measurement with three-dimensional ultrasound speckle tracking and fitted finite element analysis.

    Science.gov (United States)

    Karatolios, Konstantinos; Wittek, Andreas; Nwe, Thet Htar; Bihari, Peter; Shelke, Amit; Josef, Dennis; Schmitz-Rixen, Thomas; Geks, Josef; Maisch, Bernhard; Blase, Christopher; Moosdorf, Rainer; Vogt, Sebastian

    2013-11-01

    Aortic wall strains are indicators of biomechanical changes of the aorta due to aging or progressing pathologies such as aortic aneurysm. We investigated the potential of time-resolved three-dimensional ultrasonography coupled with speckle-tracking algorithms and finite element analysis as a novel method for noninvasive in vivo assessment of aortic wall strain. Three-dimensional volume datasets of 6 subjects without cardiovascular risk factors and 2 abdominal aortic aneurysms were acquired with a commercial real time three-dimensional echocardiography system. Longitudinal and circumferential strains were computed offline with high spatial resolution using a customized commercial speckle-tracking software and finite element analysis. Indices for spatial heterogeneity and systolic dyssynchrony were determined for healthy abdominal aortas and abdominal aneurysms. All examined aortic wall segments exhibited considerable heterogenous in-plane strain distributions. Higher spatial resolution of strain imaging resulted in the detection of significantly higher local peak strains (p ≤ 0.01). In comparison with healthy abdominal aortas, aneurysms showed reduced mean strains and increased spatial heterogeneity and more pronounced temporal dyssynchrony as well as delayed systole. Three-dimensional ultrasound speckle tracking enables the analysis of spatially highly resolved strain fields of the aortic wall and offers the potential to detect local aortic wall motion deformations and abnormalities. These data allow the definition of new indices by which the different biomechanical properties of healthy aortas and aortic aneurysms can be characterized. Copyright © 2013 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  18. A three-dimensional biomechanical analysis of the squat during varying stance widths.

    Science.gov (United States)

    Escamilla, R F; Fleisig, G S; Lowry, T M; Barrentine, S W; Andrews, J R

    2001-06-01

    The purpose of this study was to quantify biomechanical parameters employing two-dimensional (2-D) and three-dimensional (3-D) analyses while performing the squat with varying stance widths. Two 60-Hz cameras recorded 39 lifters during a national powerlifting championship. Stance width was normalized by shoulder width (SW), and three stance groups were defined: 1) narrow stance squat (NS), 107 +/- 10% SW; 2) medium stance squat (MS), 142 +/- 12% SW; and 3) wide stance squat (WS), 169 +/- 12% SW. Most biomechanical differences among the three stance groups and between 2-D and 3-D analyses occurred between the NS and WS. Compared with the NS at 45 degrees and 90 degrees knee flexion angle (KF), the hips flexed 6-11 degrees more and the thighs were 7-12 degrees more horizontal during the MS and WS. Compared with the NS at 90 degrees and maximum KF, the shanks were 5-9 degrees more vertical and the feet were turned out 6 degrees more during the WS. No significant differences occurred in trunk positions. Hip and thigh angles were 3-13 degrees less in 2-D compared with 3-D analyses. Ankle plantar flexor (10-51 N.m), knee extensor (359-573 N.m), and hip extensor (275-577 N.m) net muscle moments were generated for the NS, whereas ankle dorsiflexor (34-284 N.m), knee extensor (447-756 N.m), and hip extensor (382-628 N.m) net muscle moments were generated for the MS and WS. Significant differences in ankle and knee moment arms between 2-D and 3-D analyses were 7-9 cm during the NS, 12-14 cm during the MS, and 16-18 cm during the WS. Ankle plantar flexor net muscle moments were generated during the NS, ankle dorsiflexor net muscle moments were produced during the MS and WS, and knee and hip moments were greater during the WS compared with the NS. A 3-D biomechanical analysis of the squat is more accurate than a 2-D biomechanical analysis, especially during the WS.

  19. Requirements For The Display And Analysis Of Three-Dimensional Medical Image Data

    Science.gov (United States)

    Flynn, , M.; Matteson, R.; Dickie, D.; Keyes, J. W.; Bookstein, F.

    1983-05-01

    Three dimensional arrays of data representing measures of human body tissue properties are produced with x-ray computed tomography, nuclear medicine, ultrasound and nuclear magnetic resonance imaging instruments. Array sizes vary from (64,64,64) to (512,512,128). Techniques to review the array values on a display screen include oblique plane, reprojection with selected dissolution, and simulated surface illumination display. The number of computer instructions required to generate these displays varies from 3.5 to 2500 million .The implementation of these methods requires large, fast random access memory (16 megabytes) and computers capable of executing a minimum of 10 million instructions per second. While computationally expensive, the use of three dimensional display techniques can be essential for accurate disease diagnosis and for optimizing disease treatment.

  20. Analysis of the Medial Opticocarotid Recess in Patients with Pituitary Macroadenoma Using Three-Dimensional Images.

    Science.gov (United States)

    Kikuchi, Ryogo; Toda, Masahiro; Wakahara, Sota; Fujiwara, Hirokazu; Jinzaki, Masahiro; Yoshida, Kazunari

    2016-09-01

    The medial opticocarotid recess (MOCR), which contains the lateral tubercular recess (LTR), is an important landmark for the cavernous internal carotid artery (ICA) and for accessing the parasellar and suprasellar regions. These microanatomic landmarks for endoscopic endonasal surgery can be observed using surgical simulation with three-dimensional images. The aim of this study was to analyze the MOCR in patients with pituitary macroadenoma using three-dimensional images. We constructed three-dimensional computed tomography images of 20 patients with pituitary macroadenoma and 20 patients with unruptured aneurysms as a control. Using these images, we measured the distance between the left and right LTR, the midline and the unilateral LTR, and the left and right ICA. The distance between the left and right LTR was statistically longer in the pituitary adenoma group versus the control group. Tumor volumes were multivariate parameters for the distance between the left and right LTR, which was significantly longer in the group with tumor volumes >5 cm(3) versus the other groups. This distance was also significantly correlated with the distance between the left and right ICA. Pituitary macroadenomas expand the distance between the left and right MOCR together with the distance between the left and right ICA. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Three-dimensional analysis of vestibular efferent neurons innervating semicircular canals of the gerbil

    Science.gov (United States)

    Purcell, I. M.; Perachio, A. A.

    1997-01-01

    Anterograde labeling techniques were used to examine peripheral innervation patterns of vestibular efferent neurons in the crista ampullares of the gerbil. Vestibular efferent neurons were labeled by extracellular injections of biocytin or biotinylated dextran amine into the contralateral or ipsilateral dorsal subgroup of efferent cell bodies (group e) located dorsolateral to the facial nerve genu. Anterogradely labeled efferent terminal field varicosities consist mainly of boutons en passant with fewer of the terminal type. The bouton swellings are located predominately in apposition to the basolateral borders of the afferent calyces and type II hair cells, but several boutons were identified close to the hair cell apical border on both types. Three-dimensional reconstruction and morphological analysis of the terminal fields from these cells located in the sensory neuroepithelium of the anterior, horizontal, and posterior cristae were performed. We show that efferent neurons densely innervate each end organ in widespread terminal fields. Subepithelial bifurcations of parent axons were minimal, with extensive collateralization occurring after the axons penetrated the basement membrane of the neuroepithelium. Axonal branching ranged between the 6th and 27th orders and terminal field collecting area far exceeds that of the peripheral terminals of primary afferent neurons. The terminal fields of the efferent neurons display three morphologically heterogeneous types: central, peripheral, and planum. All cell types possess terminal fields displaying a high degree of anisotropy with orientations typically parallel to or within +/-45 degrees of the longitudinal axis if the crista. Terminal fields of the central and planum zones predominately project medially toward the transverse axis from the more laterally located penetration of the basement membrane by the parent axon. Peripheral zone terminal fields extend predominately toward the planum semilunatum. The innervation

  2. Modeling and analysis of variable speed single phase induction motors with iron loss

    International Nuclear Information System (INIS)

    Vaez-Zadeh, S.; Zahedi, B.

    2009-01-01

    Despite their usual low power ratings of single phase induction motors, they consume a considerable part of total motors energy consumption due to their large and ever-increasing quantity. The recent rising of oil prices and environmental crises has fortified the idea of energy saving practices in all applications; particularly in single phase induction motors due to their typical low efficiency. An essential requirement for this practice is the modeling and analysis of machine electrical losses under variable frequency operation. In this paper an improved steady state model of single phase induction motors is derived to investigate major motor characteristics like torque-speed, input power, output power, etc. A special emphasis is placed on accurately representing core losses at variable frequency. The winding currents phase difference is reintroduced as a fundamental motor variable to determine motor performances including losses and efficiency. An advanced computerized motor test setup is designed and built for on-line measurement of motor characteristics at different supply and operating conditions. The extensive experimental results, in good agreement with the simulation results based on the mentioned analysis, confirm the validity of the proposed model.

  3. A hybrid method for quasi-three-dimensional slope stability analysis in a municipal solid waste landfill.

    Science.gov (United States)

    Yu, L; Batlle, F

    2011-12-01

    Limited space for accommodating the ever increasing mounds of municipal solid waste (MSW) demands the capacity of MSW landfill be maximized by building landfills to greater heights with steeper slopes. This situation has raised concerns regarding the stability of high MSW landfills. A hybrid method for quasi-three-dimensional slope stability analysis based on the finite element stress analysis was applied in a case study at a MSW landfill in north-east Spain. Potential slides can be assumed to be located within the waste mass due to the lack of weak foundation soils and geosynthetic membranes at the landfill base. The only triggering factor of deep-seated slope failure is the higher leachate level and the relatively high and steep slope in the front. The valley-shaped geometry and layered construction procedure at the site make three-dimensional slope stability analyses necessary for this landfill. In the finite element stress analysis, variations of leachate level during construction and continuous settlement of the landfill were taken into account. The "equivalent" three-dimensional factor of safety (FoS) was computed from the individual result of the two-dimensional analysis for a series of evenly spaced cross sections within the potential sliding body. Results indicate that the hybrid method for quasi-three-dimensional slope stability analysis adopted in this paper is capable of locating roughly the spatial position of the potential sliding mass. This easy to manipulate method can serve as an engineering tool in the preliminary estimate of the FoS as well as the approximate position and extent of the potential sliding mass. The result that FoS obtained from three-dimensional analysis increases as much as 50% compared to that from two-dimensional analysis implies the significance of the three-dimensional effect for this study-case. Influences of shear parameters, time elapse after landfill closure, leachate level as well as unit weight of waste on FoS were also

  4. Three-dimensional distribution of cortical synapses: a replicated point pattern-based analysis

    Directory of Open Access Journals (Sweden)

    Laura eAnton-Sanchez

    2014-08-01

    Full Text Available The biggest problem when analyzing the brain is that its synaptic connections are extremely complex. Generally, the billions of neurons making up the brain exchange information through two types of highly specialized structures: chemical synapses (the vast majority and so-called gap junctions (a substrate of one class of electrical synapse. Here we are interested in exploring the three-dimensional spatial distribution of chemical synapses in the cerebral cortex. Recent research has showed that the three-dimensional spatial distribution of synapses in layer III of the neocortex can be modeled by a random sequential adsorption (RSA point process, i.e., synapses are distributed in space almost randomly, with the only constraint that they cannot overlap. In this study we hypothesize that RSA processes can also explain the distribution of synapses in all cortical layers. We also investigate whether there are differences in both the synaptic density and spatial distribution of synapses between layers. Using combined focused ion beam milling and scanning electron microscopy (FIB/SEM, we obtained three-dimensional samples from the six layers of the rat somatosensory cortex and identified and reconstructed the synaptic junctions. A total volume of tissue of approximately 4500 μm3 and around 4000 synapses from three different animals were analyzed. Different samples, layers and/or animals were aggregated and compared using RSA replicated spatial point processes. The results showed no significant differences in the synaptic distribution across the different rats used in the study. We found that RSA processes described the spatial distribution of synapses in all samples of each layer. We also found that the synaptic distribution in layers II to VI conforms to a common underlying RSA process with different densities per layer. Interestingly, the results showed that synapses in layer I had a slightly different spatial distribution from the other layers.

  5. Fully three-dimensional analysis of high-speed traintracksoil-structure dynamic interaction

    OpenAIRE

    Galvín, Pedro; Romero Ordoñez, Antonio; Domínguez Abascal, José

    2010-01-01

    In this paper, a general and fully three dimensional multi-body-finite element-boundary element model, formulated in the time domain to predict vibrations due to train passage at the vehicle, the track and the free field, is presented. The vehicle is modelled as a multi-body system and, therefore, the quasi-static and the dynamic excitation mechanisms due to train passage can be considered. The track is modelled using finite elements. The soil is considered as a homogeneous half-space by the ...

  6. Three-dimensional analysis of liquid oxygen sloshing in Space Shuttle external tank

    Science.gov (United States)

    Kannapel, M. D.; Przekwas, A. J.; Singhal, A. K.; Costes, N. C.

    1987-01-01

    A three-dimensional numerical simulation has been performed in order to investigate the hydrodynamics within the liquid oxygen tank of the Space Shuttle external tank after liftoff. The results indicate that the LOX surface undergoes very high vertical accelerations (up to 5 g) and that splashing almost certainly occurs. Although the number of slosh baffles is not found to affect the surface, it is noted that the number of baffles may affect the structural motion of the tank. Surface accelerations are similar to those observed in previous two-dimensional simulations.

  7. Quantitative Analysis of Three-dimensional Microstructure of Li-ion Battery Electrodes

    Science.gov (United States)

    Liu, Zhao

    Li-ion batteries (LIBs) have attracted considerable attention in the past two decades due to their widespread applications in portable electronics, and their growing use in electric vehicles and large-scale grid storage. Increasing battery energy density and powder density while maintaining long life, along with battery safety, are the biggest challenges that limit their further development. Various approaches with materials and chemistry have been employed to improve performance. However, one less-studied aspect that also impacts performance is the electrode microstructure. In particular, three-dimensional (3D) electrode microstructural data for LIB electrodes, which were not widely available prior to this thesis, can provide important input for understanding and improving LIB performance. The focus of this thesis is to apply 3D tomographic techniques, together with electrochemical performance data, to obtain LIB microstructure-performance correlations. Two advanced 3D structural analysis techniques, focused ion beam-scanning electron microscopy (FIB-SEM) and transmission X-ray microscopy (TXM) nanotomography, are used to quantify LIB electrode microstructure. 3D characterization of LIB electrode microstructure is used to obtain a deeper understanding of mechanisms that limit LIB performance. Microstructural characterization before and after cycling is used to explore capacity loss mechanisms. It is hoped that the results can guide electrode microstructures design to improve performance and stability. Two types of commercial electrodes, LiCoO2 and LiCoO 2/Li(Ni1/3Mn1/3Co1/3)O2, are studied using FIB-SEM and TXM. Both methods were found to be applicable to quantifying the oxide particle microstructure, including volume fraction, surface area, and particle size distribution, and results agreed well. However, structural inhomogeneity found in these commercial samples, limited the capability to resolve microstructural changes during cycling. In order to also quantify

  8. Three-dimensional tsunami analysis for the plot plan of a sodium-cooled fast reactor plant

    International Nuclear Information System (INIS)

    Hayakawa, Satoshi; Watanabe, Osamu; Itoh, Kei; Yamamoto, Tomohiko

    2013-01-01

    As the practical evaluation method of the effect of tsunami on buildings, the formula of tsunami force has been used. However, it cannot be applied to complex geometry of buildings. In this study, to analyze the effect of tsunami on the buildings of sodium-cooled fast reactor plant more accurately, three-dimensional tsunami analysis was performed. In the analysis, VOF (Volume of Fluid) method was used to capture free surface of tsunami. At the beginning, it was confirmed that the tsunami experiment results was reproduced by VOF method accurately. Next, the three-dimensional tsunami analysis was performed with VOF method to evaluate the flow field around the buildings of the plant from the beginning of the tsunami until the backwash of that. (author)

  9. An analysis of three dimensional diffusion in a representative arterial wall mass transport model.

    Science.gov (United States)

    Denny, William J; O'Connell, Barry M; Milroy, John; Walsh, Michael T

    2013-05-01

    The development and use of drug eluting stents has brought about significant improvements in reducing in-stent restenosis, however, their long term presence in the artery is still under examination due to restenosis reoccurring. Current studies focus mainly on stent design, coatings and deployment techniques but few studies address the issue of the physics of three dimensional mass transport in the artery wall. There is a dearth of adequate validated numerical mass transport models that simulate the physics of diffusion dominated drug transport in the artery wall whilst under compression. A novel experimental setup used in a previous study was adapted and an expansion of that research was carried out to validate the physics of three dimensional diffusive mass transport into a compressed porous media. This study developed a more sensitive method for measuring the concentration of the species of interest. It revalidated mass transport in the radial direction and presented results which highlight the need for an evaluation of the governing equation for transient diffusive mass transport in a porous media, in its current form, to be carried out.

  10. Transient Three-Dimensional Side Load Analysis of a Film Cooled Nozzle

    Science.gov (United States)

    Wang, Ten-See; Guidos, Mike

    2008-01-01

    Transient three-dimensional numerical investigations on the side load physics for an engine encompassing a film cooled nozzle extension and a regeneratively cooled thrust chamber, were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Ultimately, the computational results will be provided to the nozzle designers for estimating of effect of the peak side load on the nozzle structure. Computations simulating engine startup at ambient pressures corresponding to sea level and three high altitudes were performed. In addition, computations for both engine startup and shutdown transients were also performed for a stub nozzle, operating at sea level. For engine with the full nozzle extension, computational result shows starting up at sea level, the peak side load occurs when the lambda shock steps into the turbine exhaust flow, while the side load caused by the transition from free-shock separation to restricted-shock separation comes at second; and the side loads decreasing rapidly and progressively as the ambient pressure decreases. For the stub nozzle operating at sea level, the computed side loads during both startup and shutdown becomes very small due to the much reduced flow area.

  11. Three-dimensional linear fracture mechanics analysis by a displacement-hybrid finite-element model

    International Nuclear Information System (INIS)

    Atluri, S.N.; Kathiresan, K.; Kobayashi, A.S.

    1975-01-01

    This paper deals with a finite-element procedures for the calculation of modes I, II and III stress intensity factors, which vary, along an arbitrarily curved three-dimensional crack front in a structural component. The finite-element model is based on a modified variational principle of potential energy with relaxed continuity requirements for displacements at the inter-element boundary. The variational principle is a three-field principle, with the arbitrary interior displacements for the element, interelement boundary displacements, and element boundary tractions as variables. The unknowns in the final algebraic system of equations, in the present displacement hybrid finite element model, are the nodal displacements and the three elastic stress intensity factors. Special elements, which contain proper square root and inverse square root crack front variations in displacements and stresses, respectively, are used in a fixed region near the crack front. Interelement displacement compatibility is satisfied by assuming an independent interelement boundary displacement field, and using a Lagrange multiplier technique to enforce such interelement compatibility. These Lagrangean multipliers, which are physically the boundary tractions, are assumed from an equilibrated stress field derived from three-dimensional Beltrami (or Maxwell-Morera) stress functions that are complete. However, considerable care should be exercised in the use of these stress functions such that the stresses produced by any of these stress function components are not linearly dependent

  12. Three-dimensional absorbed dose determinations by N.M.R. analysis of phantom-dosemeters

    International Nuclear Information System (INIS)

    Gambarini, G.; Birattari, C.; Fumagalli, M.L.; Vai, A.; Monti, D.; Salvadori, P.; Facchielli, L.; Sichirollo, A.E.

    1996-01-01

    Magnetic resonance imaging of a tissue-equivalent phantom is a promising technique for three-dimensional determination of absorbed dose from ionizing radiation. A reliable method of determining the spatial distribution of absorbed dose is indispensable for the planning of treatment in the presently developed radiotherapy techniques aimed at obtaining high energy selectively delivered to cancerous tissues, with low dose delivered to the surrounding healthy tissue. Aqueous gels infused with the Fricke dosemeter (i.e. with a ferrous sulphate solution), as proposed in 1984 by Gore et al., have shown interesting characteristics and, in spite of some drawbacks that cause a few limitations to their utilisation, they have shown the feasibility of three-dimensional dose determinations by nuclear magnetic resonance (NMR) imaging. Fricke-infused agarose gels with various compositions have been analysed, considering the requirements of the new radiotherapy techniques, in particular Boron Neutron Capture Therapy (B.N.C.T.) and proton therapy. Special attention was paid to obtain good tissue equivalence for every radiation type of interest. In particular, the tissue equivalence for thermal neutrons, which is a not simple problem, has also been satisfactorily attained. The responses of gel-dosemeters having the various chosen compositions have been analysed, by mean of NMR instrumentation. Spectrophotometric measurements have also been performed, to verify the consistence of the results. (author)

  13. Numerical analysis of the three-dimensional aerodynamics of a hovering rufous hummingbird ( Selasphorus rufus)

    Science.gov (United States)

    Yang, Songyuan; Zhang, Weiping

    2015-12-01

    Hummingbirds have a unique way of hovering. However, only a few published papers have gone into details of the corresponding three-dimensional vortex structures and transient aerodynamic forces. In order to deepen the understanding in these two realms, this article presents an integrated computational fluid dynamics study on the hovering aerodynamics of a rufous hummingbird. The original morphological and kinematic data came from a former researcher's experiments. We found that conical and stable leading-edge vortices (LEVs) with spanwise flow inside their cores existed on the hovering hummingbird's wing surfaces. When the LEVs and other near-field vortices were all shed into the wake after stroke reversals, periodically shed bilateral vortex rings were formed. In addition, a strong downwash was present throughout the flapping cycle. Time histories of lift and drag were also obtained. Combining the three-dimensional flow field and time history of lift, we believe that high lift mechanisms (i.e., rotational circulation and wake capture) which take place at stroke reversals in insect flight was not evident here. For mean lift throughout a whole cycle, it is calculated to be 3.60 g (104.0 % of the weight support). The downstroke and upstroke provide 64.2 % and 35.8 % of the weight support, respectively.

  14. Transient Three-Dimensional Analysis of Side Load in Liquid Rocket Engine Nozzles

    Science.gov (United States)

    Wang, Ten-See

    2004-01-01

    Three-dimensional numerical investigations on the nozzle start-up side load physics were performed. The objective of this study is to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, and pressure-based computational fluid dynamics formulation, and a simulated inlet condition based on a system calculation. Finite-rate chemistry was used throughout the study so that combustion effect is always included, and the effect of wall cooling on side load physics is studied. The side load physics captured include the afterburning wave, transition from free- shock to restricted-shock separation, and lip Lambda shock oscillation. With the adiabatic nozzle, free-shock separation reappears after the transition from free-shock separation to restricted-shock separation, and the subsequent flow pattern of the simultaneous free-shock and restricted-shock separations creates a very asymmetric Mach disk flow. With the cooled nozzle, the more symmetric restricted-shock separation persisted throughout the start-up transient after the transition, leading to an overall lower side load than that of the adiabatic nozzle. The tepee structures corresponding to the maximum side load were addressed.

  15. Comparison Between Interactive Closest Point and Procrustes Analysis for Determining the Median Sagittal Plane of Three-Dimensional Facial Data.

    Science.gov (United States)

    Xiong, Yuxue; Zhao, Yijiao; Yang, Huifang; Sun, Yucun; Wang, Yong

    2016-03-01

    To compare 2 digital methods to determine median sagittal plane of three-dimensional facial data-the interactive closest point algorithm and Procrustes analysis. The three-dimensional facial data of the 30 volunteers were got by the Face Scan 3D optical sensor (3D-Shape GmbH, Erlangen, Germany), and then were input to the reverse engineering software Imageware 13.0 (Siemens, Plano, TX) and Geomagic 2012 (Cary, NC). Their mirrored data were acquired and superimposed with the original data by the methods of interactive closest points and Procrustes analysis. The median sagittal planes of the 2 methods were extracted from the original and mirrored facial data respectively, 3 asymmetry indices were measured for comparison. Differences between the facial asymmetry indices of the 2 methods were evaluated using the paired sample t-test. In terms of the 3 asymmetry indices, there were no significant differences between interactive closest points and Procrustes analysis for extracting median sagittal plane from three-dimensional facial data.(t = 0.0.060, P = 0.953 for asymmetry index (AI) 1, t = -0.926, P = 0.362 for AI 2, t = 1.1172, P = 0.0.251 for AI 3). In this evaluation of 30 subjects, the Procrustes analysis and the interactive closest point median-sagittal planes were similar in terms of the 3 asymmetry indices. Thus, Procrustes analysis and interactive closest point can both be used to abstract median sagittal plane from three-dimensional facial data.

  16. Three-dimensional analysis of tarsal bone response to axial loading in patients with hallux valgus and normal feet.

    Science.gov (United States)

    Watanabe, Kota; Ikeda, Yasutoshi; Suzuki, Daisuke; Teramoto, Atsushi; Kobayashi, Takuma; Suzuki, Tomoyuki; Yamashita, Toshihiko

    2017-02-01

    Patients with hallux valgus present a variety of symptoms that may be related to the type of deformity. Weightbearing affects the deformities, and the evaluation of the load response of tarsal bones has been mainly performed using two-dimensional plane radiography. The purpose of this study was to investigate and compare structural changes in the medial foot arch between patients with hallux valgus and normal controls using a computer image analysis technique and weightbearing computed tomography data. Eleven patients with hallux valgus and eleven normal controls were included. Computed tomograms were obtained with and without simulated weightbearing using a compression device. Computed tomography data were transferred into a personal computer, and a three-dimensional bone model was created using image analysis software. The load responses of each tarsal bone in the medial foot arch were measured three-dimensionally and statistically compared between the two groups. Displacement of each tarsal bone under two weightbearing conditions was visually observed by creating three-dimensional bone models. At the first metatarsophalangeal joint, the proximal phalanges of the hallux valgus group showed significantly different displacements in multiple directions. Moreover, opposite responses to axial loading were also observed in both translation and rotation between the two groups. Weightbearing caused deterioration of the hallux valgus deformity three-dimensionally at the first metatarsophalangeal joint. Information from the computer image analysis was useful for understanding details of the pathology of foot disorders related to the deformities or instability and may contribute to the development of effective conservative and surgical treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. [Three-dimensional Finite Element Analysis to T-shaped Fracture of Pelvis in Sitting Position].

    Science.gov (United States)

    Fan, Yanping; Lei, Jianyin; Liu, Haibo; Li, Zhiqiang; Cai, Xianhua; Chen, Weiyi

    2015-10-01

    We developed a three-dimensional finite element model of the pelvis. According to Letournel methods, we established a pelvis model of T-shaped fracture with its three different fixation systems, i. e. double column reconstruction plates, anterior column plate combined with posterior column screws and anterior column plate combined with quadrilateral area screws. It was found that the pelvic model was effective and could be used to simulate the mechanical behavior of the pelvis. Three fixation systems had great therapeutic effect on the T-shaped fracture. All fixation systems could increase the stiffness of the model, decrease the stress concentration level and decrease the displacement difference along the fracture line. The quadrilateral area screws, which were drilled into cortical bone, could generate beneficial effect on the T-type fracture. Therefore, the third fixation system mentioned above (i. e. the anterior column plate combined with quadrilateral area screws) has the best biomechanical stability to the T-type fracture.

  18. Three-dimensional numerical analysis of heat and mass transfer in heat pipes

    Science.gov (United States)

    Kaya, Tarik; Goldak, John

    2007-06-01

    A three-dimensional finite-element numerical model is presented for simulation of the steady-state performance characteristics of heat pipes. The mass, momentum and energy conservation equations are solved for the liquid and vapor flow in the entire heat pipe domain. The calculated outer wall temperature profiles are in good agreement with the experimental data. The estimations of the liquid and vapor pressure distributions and velocity profiles are also presented and discussed. It is shown that the vapor flow field remains nearly symmetrical about the heat pipe centerline, even under a non-uniform heat load. The analytical method used to predict the heat pipe capillary limit is found to be conservative.

  19. Three-Dimensional Analysis of the Interactions between hLDH5 and Its Inhibitors.

    Science.gov (United States)

    Poli, Giulio; Granchi, Carlotta; Aissaoui, Mohamed; Minutolo, Filippo; Tuccinardi, Tiziano

    2017-12-13

    Inhibitors of human lactate dehydrogenase ( h LDH5)-the enzyme responsible for the conversion of pyruvate to lactate coupled with oxidation of NADH to NAD⁺-are promising therapeutic agents against cancer because this enzyme is generally found to be overexpressed in most invasive cancer cells and is linked to their vitality especially under hypoxic conditions. Consequently, significant efforts have been made for the identification of small-molecule h LDH5 inhibitors displaying high inhibitory potencies. X-ray structure of h LDH5 complexes as well as molecular modeling studies contribute to identify and explain the main binding modes of h LDH5 inhibitors reported in literature. The purpose of this review is to analyze the main three-dimensional interactions between some of the most potent inhibitors and h LDH5, in order to provide useful suggestions for the design of new derivatives.

  20. Three-dimensional vibration analysis of functionally graded material plates in thermal environment

    Science.gov (United States)

    Li, Q.; Iu, V. P.; Kou, K. P.

    2009-07-01

    Free vibration of functionally graded material rectangular plates with simply supported and clamped edges in the thermal environment is studied based on the three-dimensional linear theory of elasticity. Simply supported and clamped FGM plates with temperature-dependent material properties subjected to uniform temperature rise, linear temperature rise and nonlinear temperature rise are considered. The three displacements of the plates are expanded by a series of Chebyshev polynomials multiplied by appropriate functions to satisfy the essential boundary conditions. The natural frequencies are obtained by Ritz method. The numerical results of the present approach are compared with the results of other researchers for the validation. Parametric study is performed for supported conditions, temperature fields, volume fraction indices of FGM plates.

  1. Three-dimensional vibration analysis of functionally graded material sandwich plates

    Science.gov (United States)

    Li, Q.; Iu, V. P.; Kou, K. P.

    2008-03-01

    Free vibration of functionally graded material sandwich rectangular plates with simply supported and clamped edges is studied based on the three-dimensional linear theory of elasticity. Two common types of FGM sandwich plates, namely, the sandwich with FGM facesheet and homogeneous core and the sandwich with homogeneous facesheet and FGM core, are considered. The three displacements of the plates are expanded by a series of Chebyshev polynomials multiplied by appropriate functions to satisfy the essential boundary conditions. The natural frequencies are obtained by Ritz method. Rapid convergence is observed in this study. The natural frequencies of simply supported power-law FGM sandwich plates are compared with results from different two-dimensional plate theories. Parametric study is performed for varying volume fraction, layer thickness ratios, thickness-length ratios and aspect ratios of the sandwich plates.

  2. System analysis of formation and perception processes of three-dimensional images in volumetric displays

    Science.gov (United States)

    Bolshakov, Alexander; Sgibnev, Arthur

    2018-03-01

    One of the promising devices is currently a volumetric display. Volumetric displays capable to visualize complex three-dimensional information as nearly as possible to its natural – volume form without the use of special glasses. The invention and implementation of volumetric display technology will expand opportunities of information visualization in various spheres of human activity. The article attempts to structure and describe the interrelation of the essential characteristics of objects in the area of volumetric visualization. Also there is proposed a method of calculation of estimate total number of voxels perceived by observers during the 3D demonstration, generated using a volumetric display with a rotating screen. In the future, it is planned to expand the described technique and implement a system for estimation the quality of generated images, depending on the types of biplanes and their initial characteristics.

  3. Structural Analysis of Three-dimensional Human Neural Tissue derived from Induced Pluripotent Stem Cells

    DEFF Research Database (Denmark)

    Terrence Brooks, Patrick; Rasmussen, Mikkel Aabech; Hyttel, Poul

    2016-01-01

    Objective: The present study aimed at establishing a method for production of a three-dimensional (3D) human neural tissue derived from induced pluripotent stem cells (iPSCs) and analyzing the outcome by a combination of tissue ultrastructure and expression of neural markers. Methods: A two......-step cell culture procedure was implemented by subjecting human iPSCs to a 3D scaffoldbased neural differentiation protocol. First, neural fate-inducing small molecules were used to create a neuroepithelial monolayer. Second, the monolayer was trypsinized into single cells and seeded into a porous...... polystyrene scaffold and further cultured to produce a 3D neural tissue. The neural tissue was characterized by a combination of immunohistochemistry and transmission electron microscopy (TEM). Results: iPSCs developed into a 3D neural tissue expressing markers for neural progenitor cells, early neural...

  4. Three-Dimensional Numerical Analysis for Posture Stability of Laser Propulsion Vehicle

    Science.gov (United States)

    Takahashi, Masayuki; Ohnishi, Naofumi

    2011-11-01

    We have developed a three-dimensional hydrodynamics code coupling equation of motion of a rigid body for analyzing posture stability of laser propulsion vehicle through numerical simulations of flowfield interacting with unsteady motion of the vehicle. Asymmetric energy distribution is initially added around the focal spot (ring) in order to examine posture stability against an asymmetric blast wave resulting from a laser offset for a lightcraft-type vehicle. The vehicle moves to cancel out the offset from initial offset. However, the Euler angle grows and never returns to zero in a time scale of laser pulse. Also, we found that the vehicle moves to cancel tipping angle when the laser is irradiated to the vehicle with initial tipping angle over the wide angle range, through the vehicle cannot get sufficient restoring force in particular angle, and the tipping angle does not decrease from the initial value for that case.

  5. Three-Dimensional Vibration Analysis of Rectangular Thick Plates on Pasternak Foundation with Arbitrary Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Huimin Liu

    2017-01-01

    Full Text Available This paper presents the first known vibration characteristic of rectangular thick plates on Pasternak foundation with arbitrary boundary conditions on the basis of the three-dimensional elasticity theory. The arbitrary boundary conditions are obtained by laying out three types of linear springs on all edges. The modified Fourier series are chosen as the basis functions of the admissible function of the thick plates to eliminate all the relevant discontinuities of the displacements and their derivatives at the edges. The exact solution is obtained based on the Rayleigh–Ritz procedure by the energy functions of the thick plate. The excellent accuracy and reliability of current solutions are demonstrated by numerical examples and comparisons with the results available in the literature. In addition, the influence of the foundation coefficients as well as the boundary restraint parameters is also analyzed, which can serve as the benchmark data for the future research technique.

  6. Three-dimensional core analysis on a super fast reactor with negative local void reactivity

    International Nuclear Information System (INIS)

    Cao Liangzhi; Oka, Yoshiaki; Ishiwatari, Yuki; Ikejiri, Satoshi

    2009-01-01

    Keeping negative void reactivity throughout the cycle life is one of the most important requirements for the design of a supercritical water-cooled fast reactor (super fast reactor). Previous conceptual design has negative overall void reactivity. But the local void reactivity, which is defined as the reactivity change when the coolant of one fuel assembly disappears, also needs to be kept negative throughout the cycle life because the super fast reactor is designed with closed fuel assemblies. The mechanism of the local void reactivity is theoretically analyzed from the neutrons balance point of view. Three-dimensional neutronics/thermal-hydraulic coupling calculation is employed to analyze the characteristics of the super fast reactor including the local void reactivity. Some configurations of the core are optimized to decrease the local void reactivity. A reference core is successfully designed with keeping both overall and local void reactivity negative. The maximum local void reactivity is less than -30 pcm

  7. Analysis of HRR stress field at the three-dimensional crack tip, 1

    International Nuclear Information System (INIS)

    Kikuchi, Masanori; Yano, Kazunori.

    1989-01-01

    CT specimens with different thickness and a CCT specimen are analyzed precisely using the three-dimensional finite element method in the elastic-plastic stress states. The stress and displacement fields at the crack tip are compared with the HRR singular stress field and discussed. It is found that in the CT specimens, the thicknesses are larger than those recommended by the standard of fracture toughness testing; the stress and displacement fields agree very well with those of HRR fields. For the CT specimen, the thickness of which is a little smaller than the recommended value, the HRR field exists only on the inside of the specimen. It is shown that there are no HRR fields in the CCT specimen although its thickness in not small. (author)

  8. Three-dimensional analysis of deformities of the radius and ulna in congenital proximal radioulnar synostosis.

    Science.gov (United States)

    Nakasone, Motoko; Nakasone, Satoshi; Kinjo, Masaki; Murase, Tsuyoshi; Kanaya, Fuminori

    2018-01-01

    We reconstructed three-dimensional images of radius and ulna in 38 forearms of 25 patients with congenital proximal radioulnar synostosis from their computed tomographic studies. We also analysed correlations between the deformities of radius and ulna and degrees of fixed pronation of these forearms. The average ulnar deviation, flexion and internal rotation deformities of the radius were 6°, 3° and 18°, respectively. The average radial deviation, extension and internal rotation deformities of the ulna were 3°, 4° and 30°, respectively. The flexion deformity of the radius and the internal rotation deformity of the radius and ulna were correlated significantly with degree of fixed pronation. We conclude that the patients with congenital proximal radioulnar synostosis have remarkable flexion deformity of the radius and internal rotation deformity of the radius and ulna, which might impede forearm rotation after corrective surgery in the proximal part of the forearm.

  9. Far-field analysis of axially symmetric three-dimensional directional cloaks.

    Science.gov (United States)

    Ciracì, Cristian; Urzhumov, Yaroslav; Smith, David R

    2013-04-22

    Axisymmetric radiating and scattering structures whose rotational invariance is broken by non-axisymmetric excitations present an important class of problems in electromagnetics. For such problems, a cylindrical wave decomposition formalism can be used to efficiently obtain numerical solutions to the full-wave frequency-domain problem. Often, the far-field, or Fraunhofer region is of particular interest in scattering cross-section and radiation pattern calculations; yet, it is usually impractical to compute full-wave solutions for this region. Here, we propose a generalization of the Stratton-Chu far-field integral adapted for 2.5D formalism. The integration over a closed, axially symmetric surface is analytically reduced to a line integral on a meridional plane. We benchmark this computational technique by comparing it with analytical Mie solutions for a plasmonic nanoparticle, and apply it to the design of a three-dimensional polarization-insensitive cloak.

  10. User's manual for three-dimensional analysis of propeller flow fields

    Science.gov (United States)

    Chaussee, D. S.; Kutler, P.

    1983-01-01

    A detailed operating manual is presented for the prop-fan computer code (in addition to supporting programs) recently developed by Kutler, Chaussee, Sorenson, and Pulliam while at the NASA'S Ames Research Center. This code solves the inviscid Euler equations using an implicit numerical procedure developed by Beam and Warming of Ames. A description of the underlying theory, numerical techniques, and boundary conditions with equations, formulas, and methods for the mesh generation program (MGP), three dimensional prop-fan flow field program (3DPFP), and data reduction program (DRP) is provided, together with complete operating instructions. In addition, a programmer's manual is also provided to assist the user interested in modifying the codes. Included in the programmer's manual for each program is a description of the input and output variables, flow charts, program listings, sample input and output data, and operating hints.

  11. Stress analysis of three-dimensional roadway layout of stagger arrangement with field observation

    Science.gov (United States)

    Cui, Zimo; Chanda, Emmanuel; Zhao, Jingli; Wang, Zhihe

    2018-01-01

    Longwall top-coal caving (LTCC) has been a popular, more productive and cost-effective method for extracting thick (> 5 m) to ultra-thick coal seams in recent years. However, low-level recovery ratio of coal resources and top-coal loss above the supports at both ends of working face are long-term problems. Geological factors, such as large dip angle, soft rock, mining depth further complicate the problems. This paper proposes addressing this issue by adopting three-dimensional roadway layout of stagger arrangement (3-D RLSA). In this study, the first step was to analyse the stress environment surrounding head entry in the replacing working face based on the stress distribution characteristics at the triangular coal-pillar side in gob and the stress slip line field theory. In the second step, filed observation was conducted. Finally, an economic evaluation of the 3-D RLSA for extracting thick to ultra-thick seams was conducted.

  12. Three-dimensional anatomical analysis of ligamentous attachments of the second through fifth carpometacarpal joints

    International Nuclear Information System (INIS)

    Nanno, Mitsuhiko; Sawaizumi, Takuya; Horiguchi, Gen; Ito, Hiromoto

    2007-01-01

    The purpose of this study is to identify, measure, and show the anatomic locations and areas of specific ligamentous attachments and paths of the second through fifth carpometacarpal (CMC) joints on a three-dimensional (3-D) surface model. Ten fresh-frozen cadaver wrists were used to dissect and identify the second through fifth CMC ligaments. The ligamentous attachments and whole bone surfaces were digitized three-dimensionally, and their areas were calculated. The attachments of each ligament were represented in a model in which their surfaces, as seen on computed tomography (CT), were overlaid with a digitized 3-D surface, and they were also visually demonstrated with a specific color on 3-D images of the bones. A total of 9 dorsal and 9 volar CMC ligaments and 1 CMC interosseous ligament were identified in the second through fifth CMC joints. An intra-articular ligament between the third and fourth metacarpals (MCs) and the capitate and hamate was also identified. In addition, 5 dorsal and 5 volar intermetacarpal ligaments and 3 intermetacarpal interosseous ligaments were also identified in the second through fifth intermetacarpal joints. A previously undescribed volar intermetacarpal ligament was found located between the third, fourth, and fifth MC bases. The anatomic 3-D attachment sites of the second through fifth CMC ligaments were visually depicted qualitatively, and their areas were quantified. This study has improved the knowledge and understanding of the normal anatomy and its impact on the mechanics of the second through fifth CMC joints. This 3-D information should facilitate the accurate assessment of radiographic images and the treatment of various injuries seen in the second through fifth CMC joints when performing ligament reconstruction, repair, osteochondral grafting, and arthroscopy. (author)

  13. Three-dimensional analysis of osteophyte formation on distal radius following scaphoid nonunion.

    Science.gov (United States)

    Oura, Keiichiro; Moritomo, Hisao; Kataoka, Toshiyuki; Oka, Kunihiro; Murase, Tsuyoshi; Sugamoto, Kazuomi; Yoshikawa, Hideki

    2017-01-01

    The purposes of this study were to quantitatively analyze osteophyte formation of the distal radius following scaphoid nonunion and to investigate how fracture locations relate to osteophyte formation patterns. Three-dimensional surface models of the scaphoid and distal radius were constructed from computed tomographic images of both the wrists of 17 patients' with scaphoid nonunion. The scaphoid nonunions were classified into 3 types according to the location of the fracture line: distal extra-articular (n = 6); distal intra-articular (n = 5); and proximal (n = 6). The osteophyte models of the radius were created by subtracting the mirror image of the contralateral radius model from the affected radius model using a Boolean operation. The osteophyte locations on the radius were divided into 5 areas: styloid process, dorsal scaphoid fossa, volar scaphoid fossa, dorsal lunate fossa, and volar lunate fossa. Osteophyte volumes were compared among the areas and types of nonunion. The presence or absence of dorsal intercalated segment instability (DISI) deformity was also determined. The distal intra-articular type exhibited significantly larger osteophytes in the styloid process than the distal extra-articular type. Furthermore, the proximal type exhibited significantly larger osteophytes in the dorsal scaphoid fossa than the distal extra-articular type. Finally, the distal intra- and extra-articular types were more associated with DISI deformity and tended to have larger osteophytes in the lunate fossa than the proximal type. The pattern of osteophyte formation in the distal radius determined using three-dimensional computed tomography imaging varied among the different types of scaphoid nonunion (distal extra-articular, distal intra-articular, and proximal). The results of this study are clinically useful in determining whether additional resection of osteophytes or radial styloid is necessary or not during the treatment of the scaphoid nonunion. Copyright

  14. Three-dimensional reconstruction and modeling of middle ear biomechanics by high-resolution computed tomography and finite element analysis.

    Science.gov (United States)

    Lee, Chia-Fone; Chen, Peir-Rong; Lee, Wen-Jeng; Chen, Jyh-Horng; Liu, Tien-Chen

    2006-05-01

    To present a systematic and practical approach that uses high-resolution computed tomography to derive models of the middle ear for finite element analysis. This prospective study included 31 subjects with normal hearing and no previous otologic disorders. Temporal bone images obtained from 15 right ears and 16 left ears were used for evaluation and reconstruction. High-resolution computed tomography of temporal bone was performed using simultaneous acquisition of 16 sections with a collimated slice thickness of 0.625 mm. All images were transferred to an Amira visualization system for three-dimensional reconstruction. The created three-dimensional model was translated into two commercial modeling packages, Patran and ANSYS, for finite element analysis. The characteristic dimensions of the model were measured and compared with previously published histologic section data. This result confirms that the geometric model created by the proposed method is accurate except that the tympanic membrane is thicker than when measured by the histologic section method. No obvious difference in the geometrical dimension between right and left ossicles was found (P > .05). The three-dimensional model created by finite element method and predicted umbo and stapes displacements are close to the bounds of the experimental curves of Nishihara's, Huber's, Gan's, and Sun's data across the frequency range of 100 to 8000 Hz. The model includes a description of the geometry of the middle ear components and dynamic equations of vibration. The proposed method is quick, practical, low-cost, and, most importantly, noninvasive as compared with histologic section methods.

  15. Two- and three-dimensional pathline analysis of contributing areas to public-supply wells of Cape Cod, Massachusetts

    Science.gov (United States)

    Barlow, Paul M.

    1994-01-01

    Steady-state two- and three-dimensional ground-water-flow models coupled with particle tracking (fluid-particle pathline analysis) have been evaluated to determine their relative effectiveness in delineating contributing areas and particle traveltimes to public-supply wells in two contrasting stratified-drift aquifers of Cape Cod, Massachusetts. Several contributing areas delineated by the three-dimensional pathline analysis do not conform to simple ellipsoidal shapes that are typically delineated by use of two-dimensional analytical and numerical modeling techniques. They also include discontinuous areas of the water table and do not surround the supply wells. Because two-dimensional areal models do not account for vertical flow, they cannot adequately represent many of the hydrogeologic and well-design variables that complicate the delineation of contributing areas in three-dimensional flow systems on Cape Cod, including the presence and continuity of discrete zones of low hydraulic conductivity, large anisotropic ratios of horizontal to vertical hydraulic conductivity, partially penetrating supply wells, shallow streams and lakes, and low (less than about 0.1 million gallons per day) pumping rates. Particle traveltimes calculated by the two-dimensional models are longer than those calculated by the three-dimensional models, and time-related capture zones determined by the two-dimensional models underpredict the size of the land area contributing water to simulated wells. It appears that the two-dimensional models do not accurately represent shallow, partially penetrating wells, or heterogeneous and anisotropic sediments for the purposes of simulating contributing areas and traveltimes in complex ground-water systems.

  16. Three-dimensional analysis of the left atrial appendage for detecting paroxysmal atrial fibrillation in acute ischemic stroke.

    Science.gov (United States)

    Tanaka, Koji; Koga, Masatoshi; Sato, Kazuaki; Suzuki, Rieko; Minematsu, Kazuo; Toyoda, Kazunori

    2014-12-01

    Atrial fibrillation impairs left atrial appendage function and the thrombus formation in the left atrial appendage is a major cause of cardioembolic stroke. To evaluate the association between the volume of the left atrial appendage measured by real-time three-dimensional transesophageal echocardiography and presence of paroxysmal atrial fibrillation in patients with cerebral infarction or transient ischemic attack. Real-time three-dimensional transesophageal echocardiography was performed to measure left atrial appendage end-diastolic and end-systolic volumes to calculate left atrial appendage ejection fraction. Patients with normal sinus rhythm at the time of real-time three-dimensional transesophageal echocardiography were divided into groups with and without paroxysmal atrial fibrillation. Volumetric data were corrected with the body surface area. Of 146 patients registered, 102 (29 women, 72·2 ± 10·7 years) were normal sinus rhythm at the examination. In 23 patients with paroxysmal atrial fibrillation, left atrial appendage end-diastolic volume (4·78 ± 3·00 ml/m(2) vs. 3·14 ± 2·04 ml/m(2), P = 0·003) and end-systolic volume (3·10 ± 2·47 ml/m(2) vs. 1·39 ± 1·56 ml/m(2), P analysis, all these parameters were independently associated with paroxysmal atrial fibrillation after adjusting for sex, age, diabetes mellitus, and previous stroke. Left atrial appendage volumetric analysis by real-time three-dimensional transesophageal echocardiography is a promising method for detecting paroxysmal atrial fibrillation in acute cerebral infarction or transient ischemic attack. © 2014 The Authors. International Journal of Stroke © 2014 World Stroke Organization.

  17. Three-dimensional lung nodule segmentation and shape variance analysis to detect lung cancer with reduced false positives.

    Science.gov (United States)

    Krishnamurthy, Senthilkumar; Narasimhan, Ganesh; Rengasamy, Umamaheswari

    2016-01-01

    The three-dimensional analysis on lung computed tomography scan was carried out in this study to detect the malignant lung nodules. An automatic three-dimensional segmentation algorithm proposed here efficiently segmented the tissue clusters (nodules) inside the lung. However, an automatic morphological region-grow segmentation algorithm that was implemented to segment the well-circumscribed nodules present inside the lung did not segment the juxta-pleural nodule present on the inner surface of wall of the lung. A novel edge bridge and fill technique is proposed in this article to segment the juxta-pleural and pleural-tail nodules accurately. The centroid shift of each candidate nodule was computed. The nodules with more centroid shift in the consecutive slices were eliminated since malignant nodule's resultant position did not usually deviate. The three-dimensional shape variation and edge sharp analyses were performed to reduce the false positives and to classify the malignant nodules. The change in area and equivalent diameter was more for malignant nodules in the consecutive slices and the malignant nodules showed a sharp edge. Segmentation was followed by three-dimensional centroid, shape and edge analysis which was carried out on a lung computed tomography database of 20 patient with 25 malignant nodules. The algorithms proposed in this article precisely detected 22 malignant nodules and failed to detect 3 with a sensitivity of 88%. Furthermore, this algorithm correctly eliminated 216 tissue clusters that were initially segmented as nodules; however, 41 non-malignant tissue clusters were detected as malignant nodules. Therefore, the false positive of this algorithm was 2.05 per patient. © IMechE 2016.

  18. OBSERVER RATING VERSUS THREE-DIMENSIONAL MOTION ANALYSIS OF LOWER EXTREMITY KINEMATICS DURING FUNCTIONAL SCREENING TESTS: A SYSTEMATIC REVIEW.

    Science.gov (United States)

    Maclachlan, Liam; White, Steven G; Reid, Duncan

    2015-08-01

    Functional assessments are conducted in both clinical and athletic settings in an attempt to identify those individuals who exhibit movement patterns that may increase their risk of non-contact injury. In place of highly sophisticated three-dimensional motion analysis, functional testing can be completed through observation. To evaluate the validity of movement observation assessments by summarizing the results of articles comparing human observation in real-time or video play-back and three-dimensional motion analysis of lower extremity kinematics during functional screening tests. Systematic review. A computerized systematic search was conducted through Medline, SPORTSdiscus, Scopus, Cinhal, and Cochrane health databases between February and April of 2014. Validity studies comparing human observation (real-time or video play-back) to three-dimensional motion analysis of functional tasks were selected. Only studies comprising uninjured, healthy subjects conducting lower extremity functional assessments were appropriate for review. Eligible observers were certified health practitioners or qualified members of sports and athletic training teams that conduct athlete screening. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) was used to appraise the literature. Results are presented in terms of functional tasks. Six studies met the inclusion criteria. Across these studies, two-legged squats, single-leg squats, drop-jumps, and running and cutting manoeuvres were the functional tasks analysed. When compared to three-dimensional motion analysis, observer ratings of lower extremity kinematics, such as knee position in relation to the foot, demonstrated mixed results. Single-leg squats achieved target sensitivity values (≥ 80%) but not specificity values (≥ 50%>%). Drop-jump task agreement ranged from poor ( 80%). Two-legged squats achieved 88% sensitivity and 85% specificity. Mean underestimations as large as 198 (peak knee flexion) were found in

  19. Three-dimensional FE analysis of the thermal-mechanical behaviors in the nuclear fuel rods

    International Nuclear Information System (INIS)

    Jiang Yijie; Cui Yi; Huo Yongzhong; Ding Shurong

    2011-01-01

    Highlights: → We establish three-dimensional finite element models for nuclear fuel rods. → The thermal-mechanical behaviors at the initial stage of burnup are obtained. → Several parameters on the in-pile performances are investigated. → The parameters have remarkable effects on the in-pile behaviors. → This study lays a foundation for optimal design and irradiation safety. - Abstract: In order to implement numerical simulation of the thermal-mechanical behaviors in the nuclear fuel rods, a three-dimensional finite element model is established. The thermal-mechanical behaviors at the initial stage of burnup in both the pellet and the cladding are obtained. Comparison of the obtained numerical results with those from experiments validates the developed finite element model. The effects of the constraint conditions, several operation and structural parameters on the thermal-mechanical performances of the fuel rod are investigated. The research results indicate that: (1) with increasing the heat generation rates from 0.15 to 0.6 W/mm 3 , the maximum temperature within the pellet increases by 99.3% and the maximum radial displacement at the outer surface of the pellet increases by 94.3%. And the maximum Mises stresses in the cladding all increase; while the maximum values of the first principal stresses within the pellet decrease as a whole; (2) with increasing the heat transfer coefficients between the cladding and the coolant, the internal temperatures reduce and the temperature gradient remains similar; when the heat transfer coefficient is lower than a critical value, the temperature change is sensitive to the heat transfer coefficient. The maximum temperature increases only 7.13% when h changes from 0.5 W/mm 2 K to 0.01 W/mm 2 K, while increases up to 54.7% when h decreases from 0.01 W/mm 2 K to 0.005 W/mm 2 K; (3) the initial gap sizes between the pellet and the cladding significantly affect the thermal-mechanical behaviors in the fuel rod; when the

  20. Three-dimensional analysis of a ballet dancer with ischial tuberosity apophysitis. A case study.

    Science.gov (United States)

    Pohjola, Hanna; Sayers, Mark; Mellifont, Rebecca; Mellifont, Daniel; Venojärvi, Mika

    2014-12-01

    The purpose of this case study was to describe the three-dimensional biomechanics of common ballet exercises in a ballet dancer with ischial tuberosity apophysitis. This was achieved by comparing kinematics between the symptomatic (i.e. ischial apophyseal symptoms) and contralateral lower limbs, as well as via reported pain. Results suggest consistent differences in movement patterns in this dancer. These differences included: 1) decreased external rotation of contralateral hip, hence a decreased hip contribution to 'turn out'; 2) increased contralateral knee adduction and internal rotation; 3) an apparent synchronicity in the contralateral lower limb of the decreased hip external rotation and increased knee adduction; and 4) minimal use of ankle plantar/dorsiflexion movement for symptomatic side. Pain related to the left ischial apophysitis was associated with reduced amplitudes especially in fast ballet movements that required large range of motion in flexion and adduction in the left hip joint. These findings suggest that ischial apophysitis may limit dancer's ballet technique and performance. Key PointsThe pain related to the left ischial apophysitis was associated with reduced amplitudes especially in fast ballet movements that require large range of motion. This may affect to the lower limbs kinematics, and limit dancer's technique and performance.Compensatory strategies in the kinetic chain, differences in the joint angles between the lower limbs, traction forces, velocity and amplitude demands should be taken in consideration while training and rehabilitation of the ischial apophyseal injury within classical ballet.

  1. Analysis of Three-Dimensional Roller Performance in a Micro-g Environment

    Science.gov (United States)

    Roberts, B.; Shook, L.; Hossaini, L.; Cohen, R.

    1999-01-01

    Approximately 960 hours of extravehicular activity (EVA), or spacewalks, are planned for the construction of the International Space Station over the next six years. This is over two-and-a-half times the total number of EVA hours accumulated by the National Aeronautics and Space Administration (NASA) in the past 35 years of U.S. spaceflight. Therefore, it is advantageous to explore ways to assist astronauts in being more efficient while working in space. The Space Systems Laboratory at the University of Maryland is investigating ways of improving conventional ratcheting tools that do not work effectively in confined spaces and have been seen to exhibit other limitations that restrict their use during EVA. By replacing the traditional ratchet mechanism with a NASA/Goddard Space Flight Center-developed three-dimensional (3-D) sprag and roller mechanism, ratcheting tools can be made more efficient. In October of 1998, a 3-D roller mechanism was flown on space shuttle mission STS-95 as part of the Space Experiment Module program. The goal of the experiment was to quantify the roller's performance when operating for an extended period in a micro-g environment. This paper discusses the design of the experiment, as well as the results obtained.

  2. Retinal cartography. An analysis of two-dimensional and three-dimensional mapping of the retina.

    Science.gov (United States)

    Borodkin, M J; Thompson, J T

    1992-01-01

    The current two-dimensional (2D) retinal drawing chart is an azimuth equidistant representation of the retina. The distortion produced by this chart was analyzed and compared to other 2D projections, such as stereographic, equal area, and orthographic maps of the retina. Circumferential distortion was calculated for lesions at varying distances from the macula using the azimuth equidistant retinal map and was found to increase exponentially as a function of the distance from the macula. Circumferential distortion was 57.1% at the equator, 88.5% 3 mm anterior to the equator, and 137.8% 6 mm anterior to the equator. A three-dimensional (3D) model of the retinal surface was created using 3D computer assisted design (CAD) software. This 3D model was able to represent retinal lesions such that their true size, shape, location, and orientation were all conserved. Retinal lesions could be viewed from multiple angles and examined in cross section. The use of 3D CAD software coupled with ultrasound or magnetic resonance imaging data has the potential to represent retinal lesions more accurately than current methods.

  3. Three-dimensional facial analysis of Chinese children with repaired unilateral cleft lip and palate

    Science.gov (United States)

    Othman, Siti Adibah; Aidil Koay, Noor Airin

    2016-08-01

    We analyzed the facial features of Chinese children with repaired unilateral cleft lip and palate (UCLP) and compared them with a normal control group using a three-dimensional (3D) stereophotogrammetry camera. This cross-sectional study examined 3D measurements of the facial surfaces of 20 Chinese children with repaired UCLP and 40 unaffected Chinese children aged 7 to 12 years old, which were captured using the VECTRA 3D five-pod photosystem and analyzed using Mirror software. Twenty-five variables and two ratios were compared between both groups using independent t-test. Intra- and inter-observer reliability was determined using ten randomly selected images and analyzed using intra-class correlation coefficient test (ICC). The level of significance was set at p cleft group exhibited wider alar base root width, flattened nose and broader nostril floor width on the cleft side. They tended to have shorter upper lip length and thinner upper vermillion thickness. Faces of Chinese children with repaired UCLP displayed meaningful differences when compared to the normal group especially in the nasolabial regions.

  4. A novel three-dimensional smile analysis based on dynamic evaluation of facial curve contour

    Science.gov (United States)

    Lin, Yi; Lin, Han; Lin, Qiuping; Zhang, Jinxin; Zhu, Ping; Lu, Yao; Zhao, Zhi; Lv, Jiahong; Lee, Mln Kyeong; Xu, Yue

    2016-02-01

    The influence of three-dimensional facial contour and dynamic evaluation decoding on factors of smile esthetics is essential for facial beauty improvement. However, the kinematic features of the facial smile contour and the contribution from the soft tissue and underlying skeleton are uncharted. Here, the cheekbone-maxilla contour and nasolabial fold were combined into a “smile contour” delineating the overall facial topography emerges prominently in smiling. We screened out the stable and unstable points on the smile contour using facial motion capture and curve fitting, before analyzing the correlation between soft tissue coordinates and hard tissue counterparts of the screened points. Our finding suggests that the mouth corner region was the most mobile area characterizing smile expression, while the other areas remained relatively stable. Therefore, the perioral area should be evaluated dynamically while the static assessment outcome of other parts of the smile contour contribute partially to their dynamic esthetics. Moreover, different from the end piece, morphologies of the zygomatic area and the superior part of the nasolabial crease were determined largely by the skeleton in rest, implying the latter can be altered by orthopedic or orthodontic correction and the former better improved by cosmetic procedures to improve the beauty of smile.

  5. Numerical three-dimensional turbulent flow analysis trough a pump-turbine in the turbine modes

    International Nuclear Information System (INIS)

    Cvetkovski, Zlatko; Popovski, Predrag; Markov, Zoran; Lipej, Andrej

    2004-01-01

    During the design of a new or rehabilitated hydraulic machines, prediction of the performances is one of the most important step in development procedure. However, for re-design of old machines, a fast and reliable flow analyses tool is necessary for allocation of the 'bed geometry' condition. This work describes new computational approaches for modern re-design of a radial type single stage pump-turbine. A pump-turbine with specific speed ns = 89 was calculated, as an example of the applicability of this methodology. The simulation of three-dimensional turbulent flow through a Pump-Turbine impeller at turbine mode, as a part of the complete pump-turbine calculation [3] during the re-design procedure is presented. Four operational regimes were calculated based on the Computational Fluid Dynamics - CFD Methodology (Navier-Stokes equations and the k-e turbulent model). The mesh discretization, boundary conditions and calculated results are presented and the)) shall be useful for development, optimisation, refurbishment or rehabilitation projects, because the impeller behaviour can be a major criterion for increasing the performances of the Pump-Turbines. The complete flow field consists of spiral case, a channel between stator vanes, a channel between guide vanes, a channel between rotor vanes and complete draft tube. Two step calculations are applied. In the first step, calculation was performed for the spiral case and the stator. Second step of the calculations was performed for cascade, rotor and draft tube. (Author)

  6. Three dimensional analysis of turbulent steam jets in enclosed structures: a CFD approach

    International Nuclear Information System (INIS)

    Ishii, M.; NguyenLe, Q.

    1999-01-01

    This paper compares the three-dimensional numerical simulation with the experimental data of a steam blowdown event in a light water reactor containment building. The temperature and pressure data of a steam blowdown event was measured at the Purdue University Multi-Dimensional Integrated Test Assembly (PUMA), a scaled model of the General Electric simplified Boiling Water Reactor. A three step approach was used to analyze the steam jet behavior. First, a 1-Dimensional, system level RELAP5/Mod3.2 model of the steam blowdown event was created and the results used to set the initial conditions for the PUMA blowdown experiments. Second, 2-Dimensional CFD models of the discharged steam jets were computed using PHOENICS, a commercially available CFD package. Finally, 3-Dimensional model of the PUMA drywell was created with the boundary conditions based on experimental measurements. The results of the 1-D and 2-D models were reported in the previous meeting. This paper discusses in detail the formulation and the results of the 3-Dimensional PHOENICS model of the PUMA drywell. It is found that the 3-D CFD solutions compared extremely well with the measured data

  7. Three-dimensional fluorescence analysis of chernozem humic acids and their electrophoretic fractions

    Science.gov (United States)

    Trubetskoi, O. A.; Trubetskaya, O. E.

    2017-09-01

    Polyacrylamide gel electrophoresis in combination with size-exclusion chromatography (SEC-PAGE) has been used to obtain stable electrophoretic fractions of different molecular size (MS) from chernozem humic acids (HAs). Three-dimensional fluorescence charts of chernozem HAs and their fractions have been obtained for the first time, and all fluorescence excitation-emission maxima have been identified in the excitation wavelength range of 250-500 nm. It has been found that fractionation by the SEC-PAGE method results in a nonuniform distribution of protein- and humin-like fluorescence of the original HA preparation among the electrophoretic fractions. The electrophoretic fractions of the highest and medium MSs have only the main protein-like fluorescence maximum and traces of humin-like fluorescence. In the electrophoretic fraction of the lowest MS, the intensity of protein-like fluorescence is low, but the major part of humin-like fluorescence is localized there. Relationships between the intensity of protein-like fluorescence and the weight distribution of amino acids have been revealed, as well as between the degree of aromaticity and the intensity of humin-like fluorescence in electrophoretic fractions of different MSs. The obtained relationships can be useful in the interpretation of the spatial structural organization and ecological functions of soil HAs.

  8. Scapular asymmetry in participants with and without shoulder impingement syndrome; a three-dimensional motion analysis.

    Science.gov (United States)

    Turgut, Elif; Duzgun, Irem; Baltaci, Gul

    2016-11-01

    This study analyzed the dynamic three-dimensional scapular kinematics and scapular asymmetry in participants with and without shoulder impingement syndrome. Twenty-nine participants with shoulder impingement syndrome, have been suffering from unilateral shoulder pain at the dominant arm lasting more than six weeks and thirty-seven healthy controls participated in the study. Scapular kinematics was measured with an electromagnetic tracking device during shoulder elevation in the sagittal plane. Data for bilateral scapular orientation were analyzed at 30°, 60°, 90°, and 120° of humerothoracic elevation and lowering. The symmetry angle was calculated to quantify scapular asymmetry throughout shoulder elevation. Statistical comparisons indicated that the scapula was more downwardly rotated (pshoulder impingement syndrome compared to healthy controls. Side-to-side comparisons revealed that the scapula was more anteriorly tilted on the involved side of participants with shoulder impingement syndrome (p=0.01), and the scapula was rotated more internally (p=0.02) and downwardly (p=0.01) on the dominant side of healthy controls. Although there were side-to-side differences in both groups, symmetry angle calculation revealed that the scapular movement was more asymmetrical for scapular internal and upward rotation in individuals with shoulder impingement syndrome when compared with healthy controls (pshoulder assessment and rehabilitation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Fully three-dimensional analysis of high-speed train-track-soil-structure dynamic interaction

    Science.gov (United States)

    Galvín, P.; Romero, A.; Domínguez, J.

    2010-11-01

    In this paper, a general and fully three dimensional multi-body-finite element-boundary element model, formulated in the time domain to predict vibrations due to train passage at the vehicle, the track and the free field, is presented. The vehicle is modelled as a multi-body system and, therefore, the quasi-static and the dynamic excitation mechanisms due to train passage can be considered. The track is modelled using finite elements. The soil is considered as a homogeneous half-space by the boundary element method. This methodology could be used to take into account local soil discontinuities, underground constructions such as underpasses, and coupling with nearby structures that break the uniformity of the geometry along the track line. The nonlinear behaviour of the structures could be also considered. In the present paper, in order to test the model, vibrations induced by high-speed train passage are evaluated for a ballasted track. The quasi-static and dynamic load components are studied and the influence of the suspended mass on the vertical loads is analyzed. The numerical model is validated by comparison with experimental records from two HST lines. Finally, the dynamic behaviour of a transition zone between a ballast track and a slab track is analyzed and the obtained results from the proposed model are compared with those obtained from a model with invariant geometry with respect to the track direction.

  10. Three-dimensional analysis of post-caloric nystagmus caused by postural change.

    Science.gov (United States)

    Young, Y H; Chiang, C W; Wang, C P

    2001-01-01

    In order to record caloric nystagmus (CN) using three-dimensional videonystagmography (3D VNG) 14 subjects were placed in the supine position with the head tilted up 30 degrees relative to the earth's horizontal plane. After the primary-phase CN had terminated, the subjects were repositioned from a supine to a sitting position, with the head anteflexed 30 degrees for recording the post-caloric nystagmus (PCN). In addition, 8 of the original subjects were placed in the supine position but with the head turned 40 degrees to the left so that the irrigated (right) ear was oriented upwards. After the primary-phase CN had terminated, the subjects were rotated by 180 degrees so that the irrigated ear was oriented downwards to record PCN. The results indicated that both methods successfully provoked horizontal and vertical CN. For torsional CN, the irrigated ear up/down method produced a higher provocation rate (75%) than the supine/sitting method (50%), but the difference was not significant. Comparing the provocation rate of the PCN for the horizontal component revealed that the two methods do not differ significantly. However, when comparing the provocation rates of PCN for the vertical component, the irrigated ear up/down method showed a higher rate (82%) than the supine/sitting method (18%). Thus using 3D VNG coupled with postural change during caloric testing, the horizontal or vertical components of PCN can be successfully provoked.

  11. Three-Dimensional Analysis of a Ballet Dancer with Ischial Tuberosity Apophysitis. A Case Study

    Directory of Open Access Journals (Sweden)

    Hanna Pohjola

    2014-12-01

    Full Text Available The purpose of this case study was to describe the three-dimensional biomechanics of common ballet exercises in a ballet dancer with ischial tuberosity apophysitis. This was achieved by comparing kinematics between the symptomatic (i.e. ischial apophyseal symptoms and contralateral lower limbs, as well as via reported pain. Results suggest consistent differences in movement patterns in this dancer. These differences included: 1 decreased external rotation of contralateral hip, hence a decreased hip contribution to ‘turn out’; 2 increased contralateral knee adduction and internal rotation; 3 an apparent synchronicity in the contralateral lower limb of the decreased hip external rotation and increased knee adduction; and 4 minimal use of ankle plantar/dorsiflexion movement for symptomatic side. Pain related to the left ischial apophysitis was associated with reduced amplitudes especially in fast ballet movements that required large range of motion in flexion and adduction in the left hip joint. These findings suggest that ischial apophysitis may limit dancer’s ballet technique and performance.

  12. Three-Dimensional Analysis of the Curvature of the Femoral Canal in 426 Chinese Femurs

    Directory of Open Access Journals (Sweden)

    Xiu-Yun Su

    2015-01-01

    Full Text Available Purpose. The human femur has long been considered to have an anatomical anterior curvature in the sagittal plane. We established a new method to evaluate the femoral curvature in three-dimensional (3D space and reveal its influencing factors in Chinese population. Methods. 3D models of 426 femurs and the medullary canal were constructed using Mimics software. We standardized the positions of all femurs using 3ds Max software. After measuring the anatomical parameters, including the radius of femoral curvature (RFC and banking angle, of the femurs using the established femur-specific coordinate system, we analyzed and determined the relationships between the anatomical parameters of the femur and the general characteristics of the population. Results. Pearson’s correlation analyses showed that there were positive correlations between the RFC and height (r=0.339, p<0.001 and the femoral length and RFC (r=0.369, p<0.001 and a negative correlation between the femoral length and banking angle (r=-0.223, p<0.001. Stepwise linear regression analyses showed that the most relevant factors for the RFC and banking angle were the femoral length and gender, respectively. Conclusions. This study concluded that the banking angle of the femur was significantly larger in female than in male.

  13. A Simulation Technique for Three-Dimensional Mechanical Systems Using Universal Software Systems of Analysis

    Directory of Open Access Journals (Sweden)

    V. A. Trudonoshin

    2015-01-01

    Full Text Available The article proposes a technique to develop mathematical models (MM of elements of the three-dimensional (3D mechanical systems for universal simulation software systems that allow us automatically generate the MM of a system based on MM elements and their connections. The technique is based on the MM of 3 D body. Linear and angular velocities are used as the main phase variables (unknown in the MM of the system, linear and angular movements are used as the additional ones, the latter being defined by the normalized quaternions that have computational advantages over turning angles.The paper has considered equations of dynamics, formulas of transition from the global coordinate system to the local one and vice versa. A spherical movable joint is presented as an example of the interaction element between the bodies. The paper shows the MM equivalent circuits of a body and a spherical joint. Such a representation, as the equivalent circuit, automatically enables us to obtain topological equations of the system. Various options to build equations of the joint and advices for their practical use are given.

  14. Application of finite-element method to three-dimensional nuclear reactor analysis

    International Nuclear Information System (INIS)

    Cheung, K.Y.

    1985-01-01

    The application of the finite element method to solve a realistic one-or-two energy group, multiregion, three-dimensional static neutron diffusion problem is studied. Linear, quadratic, and cubic serendipity box-shape elements are used. The resulting sets of simultaneous algebraic equations with thousands of unknowns are solved by the conjugate gradient method, without forming the large coefficient matrix explicitly. This avoids the complicated data management schemes to store such a large coefficient matrix. Three finite-element computer programs: FEM-LINEAR, FEM-QUADRATIC and FEM-CUBIC were developed, using the linear, quadratic, and cubic box-shape elements respectively. They are self-contained, using simple nodal labeling schemes, without the need for separate finite element mesh generating routines. The efficiency and accuracy of these computer programs are then compared among themselves, and with other computer codes. The cubic element model is not recommended for practical usage because it gives almost identical results as the quadratic model, but it requires considerably longer computation time. The linear model is less accurate than the quadratic model, but it requires much shorter computation time. For a large 3-D problem, the linear model is to be preferred since it gives acceptable accuracy. The quadratic model may be used if improved accuracy is desired

  15. An inviscid three-dimensional analysis of the Space Shuttle main engine hot-gas manifold

    Science.gov (United States)

    Liang, P. Y.

    1983-01-01

    A numerical study using an inviscid three-dimensional Lagrangian fluid dynamics code has been conducted as a part of an overall effort to understand the flow behavior in the SSME fuel side hot-gas manifold. The model simulates flow from the high-pressure fuel turbine exit through the transfer ducts, including the effects of swirl, inlet flow symmetry, and presence of straightening vanes and struts; a separate, more-detailed effort is in progress that includes viscosity and turbulence effects. The simplified model presented is divided into two parts, the first includes the 180-degree turnaround duct downstream of the turbine exit and the spherical fuel bowl section, while the second models the three transfer ducts. The two parts of the model are coupled together with the interface conditions being updated through iteration. Results indicate that a transverse pressure differential of 165 psi would be imposed on the turbine exit and that unstable flow separation occurs around the vanes, struts, and within the transfer ducts. The three transfer ducts show a mass flux split of approximately 41, 21, and 38 percent. Results to date are encouraging that certain flow characteristics can be usefuly represented using a relatively coarse grid inviscid code.

  16. Immiscible three-dimensional fingering in porous media: A weakly nonlinear analysis

    Science.gov (United States)

    Brandão, Rodolfo; Dias, Eduardo O.; Miranda, José A.

    2018-03-01

    We present a weakly nonlinear theory for the development of fingering instabilities that arise at the interface between two immiscible viscous fluids flowing radially outward in a uniform three-dimensional (3D) porous medium. By employing a perturbative second-order mode-coupling scheme, we investigate the linear stability of the system as well as the emergence of intrinsically nonlinear finger branching events in this 3D environment. At the linear stage, we find several differences between the 3D radial fingering and its 2D counterpart (usual Saffman-Taylor flow in radial Hele-Shaw cells). These include the algebraic growth of disturbances and the existence of regions of absolute stability for finite values of viscosity contrast and capillary number in the 3D system. On the nonlinear level, our main focus is to get analytical insight into the physical mechanism resulting in the occurrence of finger tip-splitting phenomena. In this context, we show that the underlying mechanism leading to 3D tip splitting relies on the coupling between the fundamental interface modes and their first harmonics. However, we find that in three dimensions, in contrast to the usual 2D fingering structures normally encountered in radial Hele-Shaw flows, tip splitting into three branches can also be observed.

  17. Simplified thermal-hydraulic analysis of single phase natural circulation circuit with two heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, Larissa Cunha; Su, Jian, E-mail: larissa@lasme.coppe.ufrj.br, E-mail: sujian@lasme.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenhraria Nuclear; Cotta, Renato Machado, E-mail: cotta@mecanica.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (POLI/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica

    2015-07-01

    Single phase natural circulation circuits composed of two convective heat exchangers and connecting tubes are important for the passive heat removal from spent fuel pools (SFP). To keep the structural integrity of the stored spent fuel assemblies, continuously cooling has to be provided in order to avoid increase at the pool temperature and subsequent uncovering of the fuel and enhanced reaction between water and metal releasing hydrogen. Decay heat can achieve considerably high amounts of energy e.g. in the AP1000, considering the emergency fuel assemblies, the maximum heat decay will reach 13 MW in the 15th day (Westinghouse Electric Company, 2010). A highly efficient alternative to do so is by means of natural circulation, which is cost-effective compared to active cooling systems and is inherently safer since presents less associated devices and no external work is required. Many researchers have investigated safety and stability aspects of natural circulation loops (NCL). However, there is a lack of literature concerning the improvement of NCL through a standard unified methodology, especially for natural circulation circuits with two heat exchangers. In the present study, a simplified thermal-hydraulic analysis of single phase natural circulation circuit with two heat exchanges is presented. Relevant dimensionless key groups were proposed to for the design and safety analysis of a scaled NCL for the cooling of spent fuel storage pool with convective cooling and heating. (author)

  18. Three-Dimensional X-Ray Photoelectron Tomography on the Nanoscale: Limits of Data Processing by Principal Component Analysis

    DEFF Research Database (Denmark)

    Hajati, S.; Walton, J.; Tougaard, S.

    2013-01-01

    In a previous article, we studied the influence of spectral noise on a new method for three-dimensional X-ray photoelectron spectroscopy (3D XPS) imaging, which is based on analysis of the XPS peak shape [Hajati, S., Tougaard, S., Walton, J. & Fairley, N. (2008). Surf Sci 602, 3064-3070]. Here, we...... study in more detail the influence of noise reduction by principal component analysis (PCA) on 3D XPS images of carbon contamination of a patterned oxidized silicon sample and on 3D XPS images of Ag covered by a nanoscale patterned octadiene layer. PCA is very efficient for noise reduction, and using...

  19. Three-dimensional finite element analysis of different implant configurations for a mandibular fixed prosthesis.

    Science.gov (United States)

    Fazi, Giovanni; Tellini, Simone; Vangi, Dario; Branchi, Roberto

    2011-01-01

    The distribution of stresses in bone, implants, and prosthesis were analyzed via three-dimensional finite element modeling in different implant configurations for a fixed implant-supported prosthesis in an edentulous mandible. A finite element model was created with data obtained from computed tomographic scans of a human mandible. Anisotropic characteristics for cortical and cancellous bone were incorporated into the model. Six different configurations of intraforaminal implants were tested, with the number of implants varying from three to five and the distal implants inserted either parallel to the other implants or tilted distally by 17 or 34 degrees. A prosthetic structure connecting the implants was designed, with 20-mm posterior cantilevers for the parallel implant configurations, and a load of 200 N was applied to the distal portion of the cantilevers. Stresses were measured at the level of the implant, the prosthetic structure, and the bone. Bone-level stresses were analyzed at the implant-bone interface, at the external cortical bone surface, distal to the terminal implant, and in the cancellous bone along the implant body. A three-parallel-implant configuration resulted in higher stress in the implant and bone than configurations with four or five parallel implants. Configurations with the distal implants tilted resulted in a more favorable stress distribution at all levels. In parallel-implant configurations for fixed implant-supported mandibular prostheses, four and five implants resulted in similar stress distribution in the bone, framework, and implants. A distribution of four implants with the distal implants tilted 34 degrees (ie, the "All-on-Four" configuration) resulted in a favorable reduction of stresses in the bone, framework, and implants.

  20. Scapular-focused exercise treatment protocol for shoulder impingement symptoms: Three-dimensional scapular kinematics analysis.

    Science.gov (United States)

    Hotta, Gisele Harumi; Santos, Adriane Lopes; McQuade, Kevin James; de Oliveira, Anamaria Siriani

    2018-01-01

    The present study aimed to describe the effects of a periscapular strengthening and neuromuscular training protocol in three-dimensional scapular kinematics and resting positioning in participants with shoulder impingement symptoms. Self-reported function was also evaluated. The study group comprised 50 subjects with shoulder impingement syndrome (control group, n=25; treatment group, n=25). The treatment group underwent 8weeks of neuromuscular training and periscapular strengthening. Scapular kinematics was measured using an electromagnetic tracking device, and the Brazilian version of the Shoulder Pain and Disability Index (SPADI-Br) questionnaire was carried out before and after the treatment. In the resting position, treated subjects had lower (p<0.01) internal rotation of the scapula compared to the control group, with a large effect size (2.4). On the coronal plane, the treated group had less scapular upward rotation (p<0.01) and less internal rotation (p<0.05), with a medium effect size. On the sagittal plane, the treated group had less internal rotation (p<0.01), less upward rotation (p<0.05), and less scapular anterior tilt (p<0.01), with a medium effect size. On the scapular plane, a reduction in upward rotation (p<0.01) after the intervention was observed, with a large effect size. Moreover, a reduction in the total SPADI-Br score was found, with a mean difference of 32.4 [24.4; 40.4] points (p<0.01) after the implementation of the protocol and a large effect size (2.0). The results provide biomechanical support for the clinical rationale for indicating therapeutic exercises focused on the periscapular muscles to improve scapular dynamics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Three-dimensional analysis of otolith-ocular reflex during eccentric rotation in humans.

    Science.gov (United States)

    Takimoto, Yasumitsu; Imai, Takao; Okumura, Tomoko; Takeda, Noriaki; Inohara, Hidenori

    2016-10-01

    When a participant is rotated while displaced from the axis of rotation (eccentric rotation, ER), both rotational stimulation and linear acceleration are applied to the participant. As linear acceleration stimulates the otolith, the vestibulo-ocular reflex (VOR) caused by the otolith (linear VOR; lVOR) would be induced during ER. Ten participants were rotated sinusoidally at a maximum angular velocity of 50°/s and at frequencies of 0.1, 0.3, 0.5, and 0.7Hz. The radius of rotation during ER was 90cm. The participants sat on a chair at three different positions: on the axis (center rotation, CR), at 90cm backward from the axis (nose-in ER, NI-ER) and at 90cm forward from the axis (nose-out ER, NO-ER). Their eye movements during rotation were recorded and analyzed three-dimensionally. The VOR gain during NI-ER was lower at 0.5 and 0.7Hz, and that during NO-ER was higher at 0.3, 0.5, and 0.7Hz than during CR. These results indicate that lVOR actually worked at 0.5 and 0.7Hz during ER and that the enhancement and decline of the VOR gain relative to the VOR gain during CR was seen in humans. Thus, we suggest that otolith function can be assessed via rotational testing of NI-ER and NO-ER. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  2. Dacron graft as replacement to dissected aorta: A three-dimensional fluid-structure-interaction analysis.

    Science.gov (United States)

    Jayendiran, R; Nour, B M; Ruimi, A

    2018-02-01

    Aortic dissection (AD) is a serious medical condition characterized by a tear in the intima, the inner layer of the aortic walls. In such occurrence, blood is being diverted to the media (middle) layer and may result in patient death if not quickly attended. In the case where the diseased portion of the aorta needs to be replaced, one common surgical technique is to use a graft made of Dacron, a synthetic fabric. We investigate the response of a composite human aortic segment-Dacron graft structure subjected to blood flow using the three-dimensional fluid-structure-interaction (FSI) capability in Abaqus. We obtain stress and strain profiles in each of the three layers of the aortic walls as well as in the Dacron graft. Results are compared when elastic and hyperelastic models are used and when isotropy vs. anisotropy is assumed. The more complex case (hyperelastic-anisotropy) is represented by the Holzapfel-Gasser-Ogden (HGO) model which also accounts for the orientation of the fibers present in the tissues. The fluid flow is taken as Newtonian, incompressible, pulsatile and turbulent. The simulation show that for all the cases, the von Mises stress distribution at aorta-Dacron interface is well below the ultimate strength of the aorta. No significant change in radial displacement at the interface of the two materials due to blood flow is observed. Computation cost is also addressed and results show that the hyperelastic-anisotropic model takes about three times longer to run than the elastic isotropic case. Trade-off between accuracy and computational cost has to be weighted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Seismic response analysis of soil-structure interactive system using a coupled three-dimensional FE-IE method

    International Nuclear Information System (INIS)

    Ryu, Jeong-Soo; Seo, Choon-Gyo; Kim, Jae-Min; Yun, Chung-Bang

    2010-01-01

    This paper proposes a slightly new three-dimensional radial-shaped dynamic infinite elements fully coupled to finite elements for an analysis of soil-structure interaction system in a horizontally layered medium. We then deal with a seismic analysis technique for a three-dimensional soil-structure interactive system, based on the coupled finite-infinite method in frequency domain. The dynamic infinite elements are simulated for the unbounded domain with wave functions propagating multi-generated wave components. The accuracy of the dynamic infinite element and effectiveness of the seismic analysis technique may be demonstrated through a typical compliance analysis of square surface footing, an L-shaped mat concrete footing on layered soil medium and two kinds of practical seismic analysis tests. The practical analyses are (1) a site response analysis of the well-known Hualien site excited by all travelling wave components (primary, shear, Rayleigh waves) and (2) a generation of a floor response spectrum of a nuclear power plant. The obtained dynamic results show good agreement compared with the measured response data and numerical values of other soil-structure interaction analysis package.

  4. Simultaneous strain-volume analysis by three-dimensional echocardiography: validation in normal subjects with tagging cardiac magnetic resonance.

    Science.gov (United States)

    Lilli, Alessio; Tessa, Carlo; Diciotti, Stefano; Croisille, Pierre; Clarysse, Patrick; Del Meglio, Jacopo; Salvatori, Luca; Vignali, Claudio; Casolo, Giancarlo

    2017-04-01

    The aim of this study is to compare three-dimensional echocardiography strain-volume analysis with tagging cardiac magnetic resonance (cMR) measurements. Strain-volume analysis represents a noninvasive method to assess myocardial function and volumes simultaneously. It can be derived from echocardiography and speckle-tracking; however, it shows some variability that can limit clinical utilization. A three-dimensional approach partially overcomes these limitations since full-volume acquisition avoids images being foreshortened and geometrical reconstruction. In the study presented here, 23 healthy subjects were studied by three-dimensional echocardiography and cMR during the same session. Images were stored and the better cardiac cycle was chosen for simultaneous analysis of volumes and longitudinal (Long) and circumferential (Circ) strain. By means of full-volume acquisition all parameters can be calculated for each frame of the cardiac cycle using the speckle-tracking method. With cMR, left ventricle volumes were calculated as recommended; myocardial strains were computed in short-axis and long-axis views using the tagging technique. For each patient, volumes and strain values were plotted in a Cartesian system for strain-volume analysis. Data were compared between the two methods using Bland-Altman analysis based on mean difference and 95% limits of agreement (LoA). The volume as measured by three-dimensional echocardiography and cMR was comparable with the slightly higher end-diastolic volumes measured by cMR (mean difference 15.24 ml; LoA -53.6 to 26.5 ml, end-systolic volume 0.3 ml; LoA -19.9 to 20.5 ml). Long shortening was very similar in the two methods (1.5%; LoA -3.9 to 7%), whereas Circ strain was systematically lower with cMR (-8.5%; LoA -15.5 to -1.5%). Very similar values between three-dimensional echo and cMR both for Slope of strain-volume curves (-0.015; LoA -0.08 to 0.05) and ratio (-0.001; LoA -0.04 to 0.04) were observed in the

  5. Three-dimensional thermal-structural analysis of a swept cowl leading edge subjected to skewed shock-shock interference heating

    Science.gov (United States)

    Polesky, Sandra P.; Dechaumphai, Pramote; Glass, Christopher E.; Pandey, Ajay K.

    1990-01-01

    A three-dimensional flux-based thermal analysis method has been developed and its capability is demonstrated by predicting the transient nonlinear temperature response of a swept cowl leading edge subjected to intense three-dimensional aerodynamic heating. The predicted temperature response from the transient thermal analysis is used in a linear elastic structural analysis to determine thermal stresses. Predicted thermal stresses are compared with those obtained from a two-dimensional analysis which represents conditions along the chord where maximum heating occurs. Results indicate a need for a three-dimensional analysis to predict accurately the leading edge thermal stress response.

  6. Three-Dimensional Volumetric Analysis of Irradiated Lung With Adjuvant Breast Irradiation

    International Nuclear Information System (INIS)

    Teh, Amy Yuen Meei; Park, Eileen J.H.; Shen Liang; Chung, Hans T.

    2009-01-01

    Purpose: To retrospectively evaluate the dose-volume histogram data of irradiated lung in adjuvant breast radiotherapy (ABR) using a three-dimensional computed tomography (3D-CT)-guided planning technique; and to investigate the relationship between lung dose-volume data and traditionally used two-dimensional (2D) parameters, as well as their correlation with the incidence of steroid-requiring radiation pneumonitis (SRRP). Methods and Materials: Patients beginning ABR between January 2005 and February 2006 were retrospectively reviewed. Patients included were women aged ≥18 years with ductal carcinoma in situ or Stage I-III invasive carcinoma, who received radiotherapy using a 3D-CT technique to the breast or chest wall (two-field radiotherapy [2FRT]) with or without supraclavicular irradiation (three-field radiotherapy [3FRT]), to 50 Gy in 25 fractions. A 10-Gy tumor-bed boost was allowed. Lung dose-volume histogram parameters (V 10 , V 20 , V 30 , V 40 ), 2D parameters (central lung depth [CLD], maximum lung depth [MLD], and lung length [LL]), and incidence of SRRP were reported. Results: A total of 89 patients met the inclusion criteria: 51 had 2FRT, and 38 had 3FRT. With 2FRT, mean ipsilateral V 10 , V 20 , V 30 , V 40 and CLD, MLD, LL were 20%, 14%, 11%, and 8% and 2.0 cm, 2.1 cm, and 14.6 cm, respectively, with strong correlation between CLD and ipsilateral V 10-V40 (R 2 = 0.73-0.83, p 10 , V 20 , V 30 , and V 40 were 30%, 22%, 17%, and 11%, but its correlation with 2D parameters was poor. With a median follow-up of 14.5 months, 1 case of SRRP was identified. Conclusions: With only 1 case of SRRP observed, our study is limited in its ability to provide definitive guidance, but it does provide a starting point for acceptable lung irradiation during ABR. Further prospective studies are warranted.

  7. Three-dimensional analysis of the tibial resection plane relative to the arthritic tibial plateau in total knee arthroplasty.

    Science.gov (United States)

    Johnson, J Michael; Mahfouz, Mohamed R; Midillioğlu, Mehmet Rüştü; Nedopil, Alexander J; Howell, Stephen M

    2017-08-08

    Kinematically aligned total knee arthroplasty strives to correct the arthritic deformity by restoring the native tibial joint line. However, the precision of such surgical correction needs to be quantified in order to reduce recuts of the resection and to design assisting instrumentation. This study describes a method for novel three-dimensional analysis of tibial resection parameters in total knee arthroplasty. Pre-operative versus post-operative differences in the slopes of the varus-valgus and flexion-extension planes and the proximal-distal level between the tibia resection and the arthritic tibial joint line can reliably be measured using the three-dimensional models of the tibia and fibula. This work uses the proposed comparison method to determine the parameters for resecting the tibia in kinematically aligned total knee arthroplasty. Three-dimensional shape registration was performed between arthritic surface models segmented from pre-operative magnetic resonance imaging scans and resected surface models segmented from post-operative computed tomography scans. Mean, standard deviation and 95% confidence intervals were determined for all measurements.  RESULTS: Results indicate that kinematically aligned total knee arthroplasty consistently corrects the varus deformity and restores the slope of the flexion-extension plane and the proximal-distal level of the arthritic tibial joint line. The slope of the varus-valgus plane is most precisely associated with the overall arthritic slope after approximately 3° of correction and the posterior slope is biased towards the overall arthritic plateau, though less precisely than the varus correlation. Use of this analysis on a larger population can quantify the effectiveness of the tibial resection for correcting pathologies, potentially reduce imprecisions in the surgical technique, and enable development of instrumentation that reduces the risk of resection recuts. The kinematic alignment technique consistently

  8. Newly defined landmarks for a three-dimensionally based cephalometric analysis: a retrospective cone-beam computed tomography scan review.

    Science.gov (United States)

    Lee, Moonyoung; Kanavakis, Georgios; Miner, R Matthew

    2015-01-01

    To identify two novel three-dimensional (3D) cephalometric landmarks and create a novel three-dimensionally based anteroposterior skeletal measurement that can be compared with traditional two-dimensional (2D) cephalometric measurements in patients with Class I and Class II skeletal patterns. Full head cone-beam computed tomography (CBCT) scans of 100 patients with all first molars in occlusion were obtained from a private practice. InvivoDental 3D (version 5.1.6, Anatomage, San Jose, Calif) was used to analyze the CBCT scans in the sagittal and axial planes to create new landmarks and a linear 3D analysis (M measurement) based on maxillary and mandibular centroids. Independent samples t-test was used to compare the mean M measurement to traditional 2D cephalometric measurements, ANB and APDI. Interexaminer and intraexaminer reliability were evaluated using 2D and 3D scatterplots. The M measurement, ANB, and APDI could statistically differentiate between patients with Class I and Class II skeletal patterns (P < .001). The M measurement exhibited a correlation coefficient (r) of -0.79 and 0.88 with APDI and ANB, respectively. The overall centroid landmarks and the M measurement combine 2D and 3D methods of imaging; the measurement itself can distinguish between patients with Class I and Class II skeletal patterns and can serve as a potential substitute for ANB and APDI. The new three-dimensionally based landmarks and measurements are reliable, and there is great potential for future use of 3D analyses for diagnosis and research.

  9. Three-dimensional architectural and structural analysis--a transition in concept and design from Delaire's cephalometric analysis.

    Science.gov (United States)

    Lee, S-H; Kil, T-J; Park, K-R; Kim, B C; Kim, J-G; Piao, Z; Corre, P

    2014-09-01

    The aim of this study was to present a systematic sequence for three-dimensional (3D) measurement and cephalometry, provide the norm data for computed tomography-based 3D architectural and structural cephalometric analysis, and validate the 3D data through comparison with Delaire's two-dimensional (2D) lateral cephalometric data for the same Korean adults. 2D and 3D cephalometric analyses were performed for 27 healthy subjects and the measurements of both analyses were then individually and comparatively analyzed. Essential diagnostic tools for 3D cephalometry with modified definitions of the points, planes, and measurements were set up based on a review of the conceptual differences between two and three dimensions. Some 2D and 3D analysis results were similar, though significant differences were found with regard to craniofacial angle (C1-F1), incisal axis angles, cranial base length (C2), and cranial height (C3). The discrepancy in C2 and C3 appeared to be directly related to the magnification of 2D cephalometric images. Considering measurement discrepancies between 2D and 3D Delaire's analyses due to differences in concept and design, 3D architectural and structural analysis needs to be conducted based on norms and a sound 3D basis for the sake of its accurate application and widespread adoption. Copyright © 2014 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  10. Energetics analysis of interstitial loops in single-phase concentrated solid-solution alloys

    Science.gov (United States)

    Wang, Xin-Xin; Niu, Liang-Liang; Wang, Shaoqing

    2018-04-01

    Systematic energetics analysis on the shape preference, relative stability and radiation-induced segregation of interstitial loops in nickel-containing single-phase concentrated solid-solution alloys have been conducted using atomistic simulations. It is shown that the perfect loops prefer rhombus shape for its low potential energy, while the Frank faulted loops favor ellipse for its low potential energy and the possible large configurational entropy. The decrease of stacking fault energy with increasing compositional complexity provides the energetic driving force for the formation of faulted loops, which, in conjunction with the kinetic factors, explains the experimental observation that the fraction of faulted loops rises with increasing compositional complexity. Notably, the kinetics is primarily responsible for the absence of faulted loops in nickel-cobalt with a very low stacking fault energy. We further demonstrate that the simultaneous nickel enrichment and iron/chromium depletion on interstitial loops can be fully accounted for by their energetics.

  11. Single-phase pump model for analysis of LMFBR heat transport systems

    International Nuclear Information System (INIS)

    Madni, I.K.; Cazzoli, E.

    1978-05-01

    A single-phase pump model for transient and steady-state analysis of LMFBR heat transport systems is presented. Fundamental equations of the model are angular momentum balance to determine transient impeller speed and mass balance (including thermal expansion effects) to determine the level of sodium in the pump tank. Pump characteristics are modeled by homologous head and torque relations. All regions of pump operation are represented with reverse rotation allowed. The model also includes option for enthalpy rise calculations and pony motor operation. During steady state, the pump operating speed is determined by matching required head with total load in the circuit. Calculated transient results are presented for pump coastdown and double-ended pipe break accidents. The report examines the influence of frictional torque and specific speed on predicted response for the pump coastdown to natural circulation transient. The results for a double-ended pipe break accident indicate the necessity of including all regions of operation for pump characteristics

  12. Pattern formation in single-phase FAC. A stability analysis of an oxide layer

    Energy Technology Data Exchange (ETDEWEB)

    Zinemanas, Daniel [The Israel Electric Corp., Haifa (Israel). Dept. of Chemistry; Herszage, Amiel [The Israel Electric Corp., Haifa (Israel). Dept. of Energy Technologies Development

    2013-03-15

    Pattern formation is a salient characteristic of the flow-accelerated corrosion process, particularly in single-phase flow, where a typical ''orange peel'' surface texture is normally formed. The process of such pattern formation is, however, not well understood. In order to gain some insight into the role of the various processes and parameters involved in this process, a linear stability analysis of an oxide layer based on the Sanchez-Caldera model was performed. According to the results obtained in this study, it follows that the oxide layer is stable regarding perturbations of the oxide thickness or the reaction constant, but it is unstable in respect to perturbations of the mass transfer coefficient. These results suggest therefore that the flow, and not local surface in homogeneities, plays a central role in the pattern formation process. (orig.)

  13. Scaling analysis for the ocean motions in single phase natural circulation

    International Nuclear Information System (INIS)

    Yan, B.H.; Wen, Q.L.

    2015-01-01

    Highlights: • The scaling criteria for ocean motions are obtained. • The optimization and selection of the scaling criteria is also analyzed. • The oscillating period in experiments is determined by the time scale. - Abstract: The effects of ocean motions should be analyzed properly in order to guarantee the safety margin of facilities in the engineering design of floating nuclear reactor system. The scaling analysis for the ocean motions in single phase natural circulation is performed. The scaling criteria for both single ocean motions and compound ocean motions are obtained. The selection and optimization of scaling criteria is also analyzed. The oscillating amplitude in experiments should be kept to be identical to that in actual ocean motions. The oscillating period is determined by the time scale. The length scale, oscillating period and experimental power should be taken into consideration synthetically to obtain a reasonable experimental period

  14. Torque Analysis With Saturation Effects for Non-Salient Single-Phase Permanent-Magnet Machines

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Ritchie, Ewen

    2011-01-01

    The effects of saturation on torque production for non-salient, single-phase, permanent-magnet machines are studied in this paper. An analytical torque equation is proposed to predict the instantaneous torque with saturation effects. Compared to the existing methods, it is computationally faster......-element results, and experimental results obtained on a prototype single-phase permanent-magnet machine....

  15. Finite element analysis of stresses in fixed prosthesis and cement layer using a three-dimensional model

    Directory of Open Access Journals (Sweden)

    Arunachalam Sangeetha

    2012-01-01

    Full Text Available Context: To understand the effect of masticatory and parafunctional forces on the integrity of the prosthesis and the underlying cement layer. Aims: The purpose of this study was to evaluate the stress pattern in the cement layer and the fixed prosthesis, on subjecting a three-dimensional finite element model to simulated occlusal loading. Materials and Methods: Three-dimensional finite element model was simulated to replace missing mandibular first molar with second premolar and second molar as abutments. The model was subjected to a range of occlusal loads (20, 30, 40 MPa in two different directions - vertical and 30° to the vertical. The cements (zinc phosphate, polycarboxylate, glass ionomer, and composite were modeled with two cement thicknesses - 25 and 100 μm. Stresses were determined in certain reference points in fixed prosthesis and the cement layer. Statistical Analysis Used: The stress values are mathematic calculations without variance; hence, statistical analysis is not routinely required. Results: Stress levels were calculated according to Von Mises criteria for each node. Maximum stresses were recorded at the occlusal surface, axio-gingival corners, followed by axial wall. The stresses were greater with lateral load and with 100-μm cement thickness. Results revealed higher stresses for zinc phosphate cement, followed by composites. Conclusions: The thinner cement interfaces favor the success of the prosthesis. The stresses in the prosthesis suggest rounding of axio-gingival corners and a well-established finish line as important factors in maintaining the integrity of the prosthesis.

  16. Three-dimensional Navier-Stokes analysis and redesign of an imbedded bellmouth nozzle in a turbine cascade inlet section

    Science.gov (United States)

    VanFossen, G. J.; Lopez, L.; Giel, P. W.; Sirbaugh, J. R.

    1996-01-01

    Experimental measurements in the inlet of a transonic turbine blade cascade showed unacceptable pitchwise flow non-uniformity. A three-dimensional, Navier-Stokes computational fluid dynamics (CFD) analysis of the imbedded bellmouth inlet in the facility was performed to identify and eliminate the source of the flow non-uniformity. The blockage and acceleration effects of the blades were accounted for by specifying a periodic static pressure exit condition interpolated from a separate three-dimensional Navier-Stokes CFD solution of flow around a single blade in an infinite cascade. Calculations of the original inlet geometry showed total pressure loss regions consistent in strength and location to experimental measurements. The results indicate that the distortions were caused by a pair of streamwise vortices that originated as a result of the interaction of the flow with the imbedded bellmouth. Computations were performed for an inlet geometry which eliminated the imbedded bellmouth by bridging the region between it and the upstream wall. This analysis indicated that eliminating the imbedded bellmouth nozzle also eliminates the pair of vortices, resulting in a flow with much greater pitchwise uniformity. Measurements taken with an installed redesigned inlet verify that the flow non-uniformity has indeed been eliminated.

  17. The Three-Dimensional Elemental Distribution of 3D Printing Stainless Steel Gear via Confocal 3D–XRF Analysis

    Science.gov (United States)

    Qin, Min; Yi, Longtao; Wang, Jingbang; Han, Yue; Sun, Tianxi; Liu, Zhiguo

    2017-11-01

    The macroscopic mechanical properties of 3D printing product are closely related to their microstructure, it has significant importance to accurately characterize the micro-structure of 3D printing products. Confocal three-dimensional micro-X-ray fluorescence (3D-XRF) is a good surface analysis technology widely used to analyse elements and elemental distributions. Therefore, this technique is also very suitable for element distribution measurement of 3D printing product which is printed layer by layer. In this paper the 3D-XRF technique was used to study the spatial elemental distribution of a micro zone from the 3D printing stainless steel gear. An elemental mapping of two orthogonal sections in the depth direction and three dimensional elemental rendering of one micro-region were obtained. The result shows that elemental distribution of the sample is not uniform, the elemental layer structure is formed in the depth direction, the content of the element in measured area vary smoothly, and with no elemental mutation region. This indicates that the 3D printing sample are fused well between layers and layers, with no large pores or bubbles inside the sample. This study demonstrates that it is feasible to make assessment for micro-structure of 3D printing metal product by using confocal 3D-XRF.

  18. Evaluation of a standard breast tangent technique: a dose-volume analysis of tangential irradiation using three-dimensional tools

    International Nuclear Information System (INIS)

    Krasin, Matthew; McCall, Anne; King, Stephanie; Olson, Mary; Emami, Bahman

    2000-01-01

    Purpose: A thorough dose-volume analysis of a standard tangential radiation technique has not been published. We evaluated the adequacy of a tangential radiation technique in delivering dose to the breast and regional lymphatics, as well as dose delivered to underlying critical structures. Methods and Materials: Treatment plans of 25 consecutive women with breast cancer undergoing lumpectomy and adjuvant breast radiotherapy were studied. Patients underwent two-dimensional (2D) treatment planning followed by treatment with standard breast tangents. These 2D plans were reconstructed without modification on our three-dimensional treatment planning system and analyzed with regard to dose-volume parameters. Results: Adequate coverage of the breast (defined as 95% of the target receiving at least 95% of the prescribed dose) was achieved in 16 of 25 patients, with all patients having at least 85% of the breast volume treated to 95% of the prescribed dose. Only 1 patient (4%) had adequate coverage of the Level I axilla, and no patient had adequate coverage of the Level II axilla, Level III axilla, or the internal mammary lymph nodes. Conclusion: Three-dimensional treatment planning is superior in quantification of the dose received by the breast, regional lymphatics, and critical structures. The standard breast tangent technique delivers an adequate dose to the breast but does not therapeutically treat the regional lymph nodes in the majority of patients. If coverage of the axilla or internal mammary lymph nodes is desired, alternate beam arrangements or treatment fields will be necessary

  19. Initial force systems during bodily tooth movement with plastic aligners and composite attachments: A three-dimensional finite element analysis.

    Science.gov (United States)

    Gomez, Juan Pablo; Peña, Fabio Marcelo; Martínez, Valentina; Giraldo, Diana C; Cardona, Carlos Iván

    2015-05-01

    To describe, using a three-dimensional finite element (FE) model, the initial force system generated during bodily movement of upper canines with plastic aligners with and without composite attachments. A CAD model of an upper right canine, its alveolar bone and periodontal ligament, thermoformed plastic aligner, and two light-cured composite attachments were constructed. A FE model was used to analyze the effects of imposing a distal movement condition of 0.15 mm on the aligner (simulating the mechanics used to produce a distal bodily movement) with and without composite attachments. In terms of tension and compression stress distribution, without composite attachments a compression area in the cervical third of the distal root surface and a tension area in the apical third of the mesial surface were observed. With composite attachments, uniform compression areas in the distal root surface and uniform tension area in the mesial root surface were observed. Compression areas in the active surfaces of the composite attachments were also observed. In terms of movement patterns, an uncontrolled distal inclination, with rotation axis between the middle and cervical root thirds, was observed without composite attachment. Distal bodily movement (translation) was observed with composite attachment. In a three-dimensional FE analysis of a plastic aligner system biomechanically supplementary composite attachments generate the force system required to produce bodily tooth movement; the absence of biomechanically supplementary composite attachments favors the undesired inclination of the tooth during the translation movements.

  20. Folsom Dam Outlet Works Modification Project; Simplified Three-Dimensional Stress Analysis of Monolith 12

    National Research Council Canada - National Science Library

    Matheu, Enrique E; Garner, Sharon B

    2005-01-01

    This report presents a finite-element stress analysis of monolith 12 conducted to assess any potential adverse effects caused by the proposed dimensions of the air vent near the base of the spillway pier wall...

  1. Three-dimensional motion analysis of an improved head immobilization system for simulation, CT, MRI, and PET imaging

    International Nuclear Information System (INIS)

    Thornton, A.F. Jr.; Ten Haken, R.K.; Gerhardsson, A.; Correll, M.

    1991-01-01

    A mask/marker immobilization system for the routine radiation therapy treatment of head and neck disease is described, utilizing a commercially available thermoplastic mesh, indexed and mounted for a rigid frame attached to the therapy couch. Designed to permit CT, MRI, and PET diagnostics scans of the patient to be performed in the simulation and treatment position employing the same mask, the system has been tested in order to demonstrate the reproducibility of immobilization throughout a radical course of irradiation. Three-dimensional analysis of patient position over an 8-week course of daily radiation treatment has been performed for 9 patients from digitization of anatomic points identified on orthogonal radiographs. Studies employing weekly constructed system permits rapid mask formation to be performed on the treatment simulator, resulting in an immobilization device comparable to masks produced with vacuum-forming techniques. Details of motion analysis and central axis CT, MRI, and PET markers are offered. (author). 16 refs.; 3 figs

  2. Two and three-dimensional stress analysis of continua using the UNCLE finite element scheme

    International Nuclear Information System (INIS)

    Richardson, T.

    1982-04-01

    A description of the data requirements for the solution of stress analysis problems in bodies of complex shape using finite elements is given. The elements available include quadratic isoparametric elements in two- and three-dimensions. In addition to solving problems involving elastic deformation, calculations may be performed which involve creep or plasticity. It is also possible to carry out vibrational analysis of structures to find the natural frequencies and the corresponding modal shapes. (author)

  3. Development of whole core thermal-hydraulic analysis program ACT. 4. Incorporation of three-dimensional upper plenum model

    International Nuclear Information System (INIS)

    Ohshima, Hiroyuki

    2003-03-01

    The thermal-hydraulic analysis computer program ACT is under development for the evaluation of detailed flow and temperature fields in a core region of fast breeder reactors under various operation conditions. The purpose of this program development is to contribute not only to clarifying thermal hydraulic characteristics that cannot be revealed by experiments due to measurement difficulty but also to performing rational safety design and assessment. This report describes the incorporation of a three-dimensional upper plenum model to ACT and its verification study as part of the program development. To treat the influence of three-dimensional thermal-hydraulic behavior in a upper plenum on the in-core temperature field, the multi-dimensional general purpose thermal-hydraulic analysis program AQUA, which was developed and validated at JNC, was applied as the base of the upper plenum analysis module of ACT. AQUA enables to model the upper plenum configuration including immersed heat exchangers of the direct reactor auxiliary cooling system (DRACS). In coupling core analysis module that consists of the fuel-assembly and the inter-wrapper gap calculation parts with the upper plenum module, different types of computation mesh systems were jointed using the staggered quarter assembly mesh scheme. A coupling algorithm among core, upper plenum and heat transport system modules, which can keep mass, momentum and energy conservation, was developed and optimized in consideration of parallel computing. ACT was applied to analyzing a sodium experiment (PLANDTL-DHX) performed at JNC, which simulated the natural circulation decay heat removal under DRACS operation conditions for the program verification. From the calculation result, the validity of the improved program was confirmed. (author)

  4. Three-dimensional gait analysis reveals dynamic alignment change in a patient with dropped head syndrome: A case report.

    Science.gov (United States)

    Miura, Kousei; Kadone, Hideki; Koda, Masao; Kumagai, Hiroshi; Nagashima, Katsuya; Fujii, Kengo; Noguchi, Hiroshi; Funayama, Toru; Abe, Tetsuya; Furuya, Takeo; Yamazaki, Masashi

    2018-02-01

    Dropped head syndrome (DHS) is a cervical kyphotic deformity caused by apparent weakness of the neck extensor muscles. We often encounter patients whose symptoms, including impaired forward vision and neck pain, deteriorate while walking. This is the first report of a case of dynamic spinal alignment change in a patient with DHS during walking using three-dimensional gait analysis. A 78-year-old Japanese woman complained of impaired forward vision and neck pain while walking. Her radiograph showed severe cervical kyphosis. C2-C7 SVA was +74 mm and C7-S1 SVA was -18.4 mm. The patient attempted to compensate to improve forward vision through lumbar hyperlordosis. We analyzed the gait motion of the patient by using three-dimensional (3D) motion and wireless surface electromyographic analysis systems to measure two systems synchronously. The patient walked continuously for as long as possible. We calculated dynamic SVA from the 3D motion analysis. Her head drop deformity gradually progressed and interfered with her forward vision while walking. Cervical SVA gradually increased from 75 to 85 mm. Thoracic SVA, Lumbar SVA and Whole spine SVA were initially decreased because of compensatory lumbar hyperlordosis, but ultimately increased, suggesting decompensation by the time she had finished walking. EMG activity of the bilateral trapezius muscles gradually reduced, which reflected the disturbance of maintaining her posture. Previous static evaluation could not prove the dynamic change of spinal alignment and EMG activity during walking. By introducing 3D gait analysis, we could evaluate dynamic spinal alignment of a patient with DHS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Use of wand markers on the pelvis in three dimensional gait analysis

    DEFF Research Database (Denmark)

    Smith, Martin; Curtis, Derek; Bencke, Jesper

    2013-01-01

    During clinical gait analysis, surface markers are placed over the anterior superior iliac spines (ASIS) of the pelvis. However, this can be problematic in overweight or obese subjects, where excessive adipose tissue can obscure the markers and prevent accurate tracking. A novel solution to this ......During clinical gait analysis, surface markers are placed over the anterior superior iliac spines (ASIS) of the pelvis. However, this can be problematic in overweight or obese subjects, where excessive adipose tissue can obscure the markers and prevent accurate tracking. A novel solution...... to this problem has previously been proposed and tested on a limited sample of healthy, adult subjects. This involves use of wand markers on the pelvis, to virtually recreate the ASIS markers. The method was tested here on 20 typical subjects presenting for clinical gait analysis (adults and children, including...

  6. Three-dimensional segmented volumetric analysis of sporadic vestibular schwannomas: comparison of segmented and linear measurements.

    Science.gov (United States)

    Walz, Patrick C; Bush, Matthew L; Robinett, Zachary; Kirsch, Claudia F E; Welling, D Bradley

    2012-10-01

    To compare 3-D segmented volumetric analysis of vestibular schwannomas (VS) with traditional linear tumor measurement on serial magnetic resonance imaging (MRI) studies to assess volume and growth rates. Case series with retrospective chart review. Tertiary care medical center. This analysis identified 24 VS patients clinically followed with serial gadolinium enhanced images. Maximum linear dimensions (MLD) were obtained from gadolinium-contrasted T1 sequences from 3 serial MRI scans per RECIST guidelines. MLD was cubed (MLD(3)) and orthogonal analysis (OA) was carried out to provide volumetric estimates for comparison with segmented data. Segmented volumetric analysis (SVA) was performed with semi-automated 3-D conformal procedure. Tumor volume, percentage change in volume, and interval percentage change were compared using paired 2-tailed t tests. The average interval between MRIs was 2.6 years. Volume estimates differed significantly between SVA and OA and MLD(3) at all intervals. Linear growth measurements averaged 0.5 mm/y (5.4%). Volumetric growth was 50 mm(3)/y (22.8%) with SVA, 110 mm(3)/y (19.6%) with OA, and 210 mm(3)/y (14.4%) with MLD(3) estimates. Differences between MLD and both MLD(3) and SVA were significant, but significance between MLD(3) and SVA was only identified in interval analysis. Progression was identified in 75% more patients with SVA than OA, MLD(3), or MLD. VS assume complex configurations. Linear measurements inaccurately estimate tumor volume and growth compared with segmented analysis. SVA is a useful clinical tool that accurately assesses tumor volume. Use of outcomes such as tumor volume and percentage of volume change may be more sensitive in assessing tumor progression compared with linear measurements.

  7. Standard Specification for Sampling Single-Phase Geothermal Liquid or Steam for Purposes of Chemical Analysis

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1983-01-01

    1.1 This specification covers the basic requirements for equipment to be used for the collection of uncontaminated and representative samples from single-phase geothermal liquid or steam. Geopressured liquids are included. See Fig 1.

  8. Statistical Analysis to Develop a Three-Dimensional Surface Model of a Midsize-Male Foot

    Science.gov (United States)

    2013-10-31

    Anthropometry , Posture, Vehicle Occupants, Statistical Shape Analysis, Safety 16...Statement  A.  Approved  for  Public  Release    4   INTRODUCTION   Three-­‐dimensional   anthropometry  has  been  widely...analysis  methods.  A  sample  of  foot  scans  was  drawn  from  a  much   larger  study  of  soldier   anthropometry

  9. Coupled adjoint aerostructural wing optimization using quasi-three-dimensional aerodynamic analysis

    NARCIS (Netherlands)

    Elham, A.; van Tooren, M.J.L.

    2016-01-01

    This paper presents a method for wing aerostructural analysis and optimization, which needs much lower computational costs, while computes the wing drag and structural deformation with a level of accuracy comparable to the higher fidelity CFD and FEM tools. A quasi-threedimensional aerodynamic

  10. A three-dimensional kinematic analysis of tongue flicking in Python molurus

    NARCIS (Netherlands)

    Groot, de J.H.; Sluijs, van der I.; Snelderwaard, P.C.; Leeuwen, van J.L.

    2004-01-01

    The forked snake tongue is a muscular organ without hard skeletal support. A functional interpretation of the variable arrangement of the intrinsic muscles along the tongue requires a quantitative analysis of the motion performance during tongue protrusion and flicking. Therefore, high-speed

  11. Three-dimensional thermal analysis of a high-level waste repository

    International Nuclear Information System (INIS)

    Altenbach, T.J.

    1979-04-01

    The analysis used the TRUMP computer code to evaluate the thermal fields for six repository scenarios that studied the effects of room ventilation, room backfill, and repository thermal diffusivity. The results for selected nodes are presented as plots showing the effect of temperature as a function of time. 15 figures, 6 tables

  12. Three-Dimensional Turbulence Measurements in the Atmospheric Surface Layer: Experimental Design and Initial Analysis

    Science.gov (United States)

    2009-09-01

    However, knowing that such mixed states exist is one issue, predicting the strength, cutoff scales, and energy cascade mechanisms between the 2D and 3D...from Howell and Mahrt (1997) based on the Haar transform. Lumley’s analysis of the structural content of turbulence was primarily motivated by his

  13. Two- and three-dimensional imaging of multicomponent systems using scanning thermal microscopy and localized thermomechanical analysis.

    Science.gov (United States)

    Harding, Ljiljana; Wood, John; Reading, Mike; Craig, Duncan Q M

    2007-01-01

    The aim of this study was to develop a novel approach to the spatial characterization of multicomponent samples, based on the emergent technique of microthermal analysis. More specifically, we present an assessment of the use of scanning thermal microscopy as a means of component mapping via thermal conductivity; we include a new statistical approach to data handling, which allows reduction of topographic effects. We also introduce a novel three-dimensional mapping technique based on localized thermomechanical analysis. Tablets of paracetamol and hyproxypropyl methylcellulose (HPMC) and 50:50 mixes of the two were prepared and the materials characterized in scanning and localized modes using a TA Instruments 2990 microthermal analyzer with a Thermomicroscopes Explorer AFM head and Wollaston wire thermal probe. L-TMA studies of the pure components indicated markedly differing thermal responses, with the paracetamol showing a sharp melting accompanied by a probe pull-in effect, while HPMC showed only thermal expansion over the temperature range studied. Thermal conductivity and topographic images indicated that two-dimensional differentiation between the components was possible in scanning mode. A means of delineating the relative contribution of the topographic and conductivity effects was developed based on a regression analysis of the thermal conductivity measurements on a set of terms representing the local surface curvature. The results of three-dimensional imaging using a grid of L-TMA measurements is presented. This technique utilized the distinct thermal responses of the two components to allow the probe to melt through the paracetamol down to the underlying HPMC. The advantages and limitations of this novel imaging method are discussed in the context of pharmaceutical and broader uses of the approach.

  14. Two and three dimensional electron backscattered diffraction analysis of solid oxide cells materials

    DEFF Research Database (Denmark)

    Saowadee, Nath

    structure. In this case, lattice parameters analysis aid to differential the secondary phases. However lattice constant of secondary phase cannot measure by general tools such as x-ray diffraction due to its insufficiency. Point analysis in electron backscattered diffraction (EBSDX allows measuring......There are two main technique were developed in this work: a technique to calculate grain boundary energy and pressure and a technique to measure lattice constant from EBSD. The techniques were applied to Nb-doped Strontium titanate (STN) and yttria stabilized zirconia (YSZ) which are commonly used...... sectioning. Band contrast and band slope were used to describe the pattern quality. The FIB probe currents investigated ranged from 100 to 5000 pA and the accelerating voltage was either 30 or 5 kV. The results show that 30 kV FIB milling induced a significant reduction of the pattern quality of STN samples...

  15. Biomechanical three-dimensional finite element analysis of monolithic zirconia crown with different cement type

    OpenAIRE

    Ha, Seung-Ryong

    2015-01-01

    PURPOSE The objective of this study was to evaluate the influence of various cement types on the stress distribution in monolithic zirconia crowns under maximum bite force using the finite element analysis. MATERIALS AND METHODS The models of the prepared #46 crown (deep chamfer margin) were scanned and solid models composed of the monolithic zirconia crown, cement layer, and prepared tooth were produced using the computer-aided design technology and were subsequently translated into 3-dimens...

  16. Blood Capillary Length Estimation from Three-Dimensional Microscopic Data by Image Analysis and Stereology

    Czech Academy of Sciences Publication Activity Database

    Kubínová, Lucie; Mao, X. W.; Janáček, Jiří

    2013-01-01

    Roč. 19, č. 4 (2013), s. 898-906 ISSN 1431-9276 R&D Projects: GA MŠk(CZ) ME09010; GA MŠk(CZ) LH13028; GA ČR(CZ) GAP108/11/0794 Institutional research plan: CEZ:AV0Z5011922 Institutional support: RVO:67985823 Keywords : capillaries * confocal microscopy * image analysis * length * rat brain * stereology Subject RIV: EA - Cell Biology Impact factor: 1.757, year: 2013

  17. Two- and three-dimensional shape fabric analysis by the intercept method in grey levels

    Science.gov (United States)

    Launeau, Patrick; Archanjo, Carlos J.; Picard, David; Arbaret, Laurent; Robin, Pierre-Yves

    2010-09-01

    The count intercept is a robust method for the numerical analysis of fabrics Launeau and Robin (1996). It counts the number of intersections between a set of parallel scan lines and a mineral phase, which must be identified on a digital image. However, the method is only sensitive to boundaries and therefore supposes the user has some knowledge about their significance. The aim of this paper is to show that a proper grey level detection of boundaries along scan lines is sufficient to calculate the two-dimensional anisotropy of grain or crystal distributions without any particular image processing. Populations of grains and crystals usually display elliptical anisotropies in rocks. When confirmed by the intercept analysis, a combination of a minimum of 3 mean length intercept roses, taken on 3 more or less perpendicular sections, allows the calculation of 3-dimensional ellipsoids and the determination of their standard deviation with direction and intensity in 3 dimensions as well. The feasibility of this quick method is attested by numerous examples on theoretical objects deformed by active and passive deformation, on BSE images of synthetic magma flow, on drawing or direct analysis of thin section pictures of sandstones and on digital images of granites directly taken and measured in the field.

  18. Three-Dimensional Ultrasound Versus Computerized Tomography in Fat Graft Volumetric Analysis.

    Science.gov (United States)

    Blackshear, Charles Philip; Rector, Michael Anthony; Chung, Natalie Narie; Irizarry, Dre Michael; Flacco, John Stephen; Brett, Elizabeth Anne; Momeni, Arash; Lee, Gordon Kwanlyp; Longaker, Michael T; Wan, Derrick C

    2018-03-01

    Studies evaluating fat grafting in mice have frequently used micro-computed tomography (micro-CT) as an accurate radiographic tool to measure longitudinal volume retention without killing the animal. Over the past decade, however, microultrasonography has emerged as an equally powerful preclinical imaging tool. Given their respective strengths in 3-dimensional reconstruction, there is no study to our knowledge that directly compares micro-CT with microultrasound in volumetric analysis. In this study, we compared the performance of micro-CT with microultrasound in the evaluation of adipose tissue graft volume in a murine model. Fifteen immunodeficient mice were given 200 μL of adipose tissue grafts. In vivo volumetric analysis of the grafts by micro-CT and microultrasound was conducted at discrete time points up to postoperative day 105. Three mice were killed at multiple time points, and explanted grafts were reimaged by CT and ultrasound, as mentioned previously. Analysis revealed that in vivo graft volumes measured by micro-CT do not differ significantly from those of microultrasound. Furthermore, both micro-CT and microultrasound were capable of accurately measuring fat grafts as in vivo volumes closely correlated with explanted volumes. Finally, ultrasound was found to yield improved soft tissue contrast compared with micro-CT. Therefore, either modality may be used, depending on experimental needs.

  19. A new TriBeam system for three-dimensional multimodal materials analysis

    Science.gov (United States)

    Echlin, McLean P.; Mottura, Alessandro; Torbet, Christopher J.; Pollock, Tresa M.

    2012-02-01

    The unique capabilities of ultrashort pulse femtosecond lasers have been integrated with a focused ion beam (FIB) platform to create a new system for rapid 3D materials analysis. The femtosecond laser allows for in situ layer-by-layer material ablation with high material removal rates. The high pulse frequency (1 kHz) of ultrashort (150 fs) laser pulses can induce material ablation with virtually no thermal damage to the surrounding area, permitting high resolution imaging, as well as crystallographic and elemental analysis, without intermediate surface preparation or removal of the sample from the chamber. The TriBeam system combines the high resolution and broad detector capabilities of the DualBeamTM microscope with the high material removal rates of the femtosecond laser, allowing 3D datasets to be acquired at rates 4-6 orders of magnitude faster than 3D FIB datasets. Design features that permit coupling of laser and electron optics systems and positioning of a stage in the multiple analysis positions are discussed. Initial in situ multilayer data are presented.

  20. Three-dimensional computer-aided human factors engineering analysis of a grafting robot.

    Science.gov (United States)

    Chiu, Y C; Chen, S; Wu, G J; Lin, Y H

    2012-07-01

    The objective of this research was to conduct a human factors engineering analysis of a grafting robot design using computer-aided 3D simulation technology. A prototype tubing-type grafting robot for fruits and vegetables was the subject of a series of case studies. To facilitate the incorporation of human models into the operating environment of the grafting robot, I-DEAS graphic software was applied to establish individual models of the grafting robot in line with Jack ergonomic analysis. Six human models (95th percentile, 50th percentile, and 5th percentile by height for both males and females) were employed to simulate the operating conditions and working postures in a real operating environment. The lower back and upper limb stresses of the operators were analyzed using the lower back analysis (LBA) and rapid upper limb assessment (RULA) functions in Jack. The experimental results showed that if a leg space is introduced under the robot, the operator can sit closer to the robot, which reduces the operator's level of lower back and upper limbs stress. The proper environmental layout for Taiwanese operators for minimum levels of lower back and upper limb stress are to set the grafting operation at 23.2 cm away from the operator at a height of 85 cm and with 45 cm between the rootstock and scion units.

  1. Three dimensional analysis of piping components using BARC finite element based damage mechanics code MADAM

    International Nuclear Information System (INIS)

    Samal, M.K.; Dutta, B.K.; Kushwaha, H.S.

    2001-11-01

    This work has been carried out at State Institute for Material Testing (MPA), University of Stuttgart, Germany as part of the research project named Transferabililty of specimen data to component level under Indo-German Bilateral project (IND-98/329) during the period 5 th August, 2000 to 30 th December, 2000. In this project, we have used Gurson-Tvergaard-Needleman's model for predicting the fracture behaviour of real life pipes and elbows made of two different materials (one German austenitic steel and other Indian ferritic steel). The inhouse damage mechanics MADAM has been used for all the calculations. The results have been compared with the experimental results in order to establish the method and the Gurson parameters. The Gurson parameters have been determined by a hybrid methodoly of metallographic analysis, numerical analysis of notched tensile tests and compact tension (C(T)) tests and by comparison with experimental results. Analysis has also be done for determining the multiaxiality parameter q existing in the crack plane of these components for both stationary crack and running crack. The parameter q has been studied for transferability of J-R curve from specimen to component level. The Gurson parameters have then been used to analyse a straight pipe with 122 deg circumferential throughwall crack under internal pressure of 16 Mpa and increasing bending moment for the German steel. For SA333 Gr.6 steel, the components tested are straight pipes and elbows with throughwall circumferential cracks of different crack angles under four point bending load. This report has been divided into three sections. Section-I deals with numerical analysis of ductile fracture for the German austenitic steel, i.e., DIN X6CrNiNb 18 10. Section-II deals with numerical analysis of ductile fracture for the Indian PHT material, i.e., SA333 Gr.6 carbon steel. Section-III deals with evaluation of stress multiaxiality quotient q for all the cracked geometries of importance at

  2. Three dimensional analysis on lateral flow of liquefied ground and its mitigation by sheet pile walls

    Science.gov (United States)

    Kobayashi, Y.; Towhata, I.

    2005-01-01

    Since the design policy of countermeasures to liquefaction is currently prevention of liquefaction, conventional liquefaction analysis aims to predict the possibility of liquefaction at a target site. However, quantitative prediction of ground flow by liquefaction has been studied for new design policy that allows the deformation of liquefied ground if it is not critical. This paper presents a method for prediction of the ground deformation related liquefaction by viscous fluid model. Furthermore, the mitigation effect of a sheet pile wall is assessed by modeling a sheet pile wall as an elastic beam.

  3. Three-dimensional analysis of the cranio-cervico-mandibular complex during piano performance.

    Science.gov (United States)

    Clemente, M; Lourenço, S; Coimbra, D; Silva, A; Gabriel, J; Pinho, Jc

    2014-09-01

    Piano players, as well as other musicians, spend a long time training to achieve the best results, sometimes adopting unnatural body positions that may cause musculoskeletal pain. This paper presents the preliminary results of a study targeting the analysis of the head and cervical postures of 17 piano players during musical performance. It was found, as a common feature, that the players tilt the head to the right and forward towards the score and keyboard. Players who know the score by heart tend to move their heads more compared to the ones who have to keep their eyes on the score.

  4. Use of three-dimensional parameters in the analysis of crystal structures under compression

    DEFF Research Database (Denmark)

    Balic Zunic, Tonci

    2007-01-01

    . For a complete understanding of structural changes, the behaviour of all coordination polyhedra plus the voids that separate them must be investigated. The structural voids in a framework are identified by a Voronoi tessellation. It can be performed e.g. on the anionic framework alone to find the centres...... of the coordination polyhedra of cations and the voids that separate them. Analysis of individual compressional characteristics of structural components gives clues for the strong and weak parts of structures under high pressures and paths for structural transformations. The expected behaviour of distortion...

  5. Three dimensional finite element analysis of weld overlay application on a plastically formed feeder tube

    Energy Technology Data Exchange (ETDEWEB)

    Ku, F.H.; Riccardella, P.C.; Lashley, M.S. [Structural Integrity Associates Inc., California (United States); Chen, Y. [Structural Integrity Associates, Inc., Ontario (Canada); Yee, R.K. [San Jose State Univ., California (United States)

    2010-07-01

    This paper presents a finite element analysis (FEA) model to predict the residual stresses in a tight-radius warm bend feeder tube in a CANDU nuclear reactor coolant system throughout the various stages of the manufacturing and welding processes, including feeder tube forming, Grayloc hub weld, and weld overlay application. The FEA employs 3-D elastic-plastic technology with large deformation capability to predict the residual stresses due to the feeder tube forming and various welding processes. The results demonstrate that the FEA method captures the residual stress trends resulted from warm bending and weld overlay with acceptable accuracy. (author)

  6. Three-dimensional analysis of chevron-notched specimens by boundary integral method

    Science.gov (United States)

    Mendelson, A.; Ghosn, L.

    1983-01-01

    The chevron-notched short bar and short rod specimens was analyzed by the boundary integral equations method. This method makes use of boundary surface elements in obtaining the solution. The boundary integral models were composed of linear triangular and rectangular surface segments. Results were obtained for two specimens with width to thickness ratios of 1.45 and 2.00 and for different crack length to width ratios ranging from 0.4 to 0.7. Crack opening displacement and stress intensity factors determined from displacement calculations along the crack front and compliance calculations were compared with experimental values and with finite element analysis.

  7. Three-dimensional multi-physics analysis and commissioning frequency tuning strategy of a radio-frequency quadrupole accelerator

    Science.gov (United States)

    Ma, Wei; Lu, Liang; Liu, Ting; Xu, Xianbo; Sun, Liepeng; Li, Chenxing; Shi, Longbo; Wang, Wenbin; He, Yuan; Zhao, Hongwei

    2017-09-01

    The resonant frequency stability of the radio frequency quadrupole (RFQ) is an important concern during commissioning. The power dissipated on the RFQ internal surface will heat the cavity and lead to a temperature rise and a structural deformation, especially in the continuous wave (CW) RFQs, which will cause the resonant frequency shifts. It is important to simulate the temperature rise, the deformation and the frequency shift of the RFQ cavity. The cooling water takes away the power to maintain the frequency stability. Meanwhile, the RFQ resonant frequency can be tuned by adjusting the water temperature. In this paper, a detailed three-dimensional multi-physics analysis of the Low Energy Accelerator Facility (LEAF) RFQ will be presented and a commissioning frequency tuning strategy will be studied.

  8. Three-dimensional finite element analysis of stress distribution in inlay-restored mandibular first molar under simultaneous thermomechanical loads.

    Science.gov (United States)

    Çelik Köycü, Berrak; Imirzalioğlu, Pervin; Özden, Utku Ahmet

    2016-01-01

    Functional occlusal loads and intraoral temperature changes create stress in teeth. The purpose of this study was to evaluate the impact of simultaneous thermomechanical loads on stress distribution related to inlay restored teeth by three-dimensional finite element analysis. A mandibular first molar was constructed with tooth structures, surrounding bone and inlays of Type II gold alloy, ceramic, and composite resin. Stress patterns on the restorative materials, adhesive resin, enamel and dentin were analyzed after simulated temperature changes from 36°C to 4 or 60°C for 2 s with 200-N oblique loading. The results showed that the three types of inlays had similar stress distribution in the tooth structures and restorative materials. Concerning the adhesive resin, the composite resin inlay model exhibited lower stresses than ceramic and gold alloy inlays. Simultaneous thermomechanical loads caused high stress patterns in inlay-restored teeth. Composite resin inlays may be the better choice to avoid adhesive failure.

  9. The validation of the parallel three-dimensional solver for analysis of optical plasmonic bi-periodic multilayer nanostructures

    DEFF Research Database (Denmark)

    Ni, X.; Liu, Z.; Boltasseva, Alexandra

    2010-01-01

    Fundamentals of the three-dimensional spatial harmonic analysis (SHA) approach are reviewed, and the advantages of a fast-converging formulation versus the initial SHA formulation are emphasized with examples using periodic plasmonic nanostructures. First, two independent parallel versions of both...... formulations are implemented using the scattering matrix algorithm for multilayer cascading. Then, by comparing the results from both formulations, it is shown that choosing an advanced fast-converging scheme could be essential for accurate and efficient modeling of plasmonic structures. Important obstacles...... to the fast parallel implementation of this approach are also revealed. The results of test simulations are validated using the data obtained from a commercial finite-element method (FEM) simulations and from the experimental characterization of fabricated samples....

  10. Three-dimensional analysis of spreading and mixing of miscible compound in heterogeneous variable-aperture fracture

    Directory of Open Access Journals (Sweden)

    Zhi Dou

    2016-10-01

    Full Text Available As mass transport mechanisms, the spreading and mixing (dilution processes of miscible contaminated compounds are fundamental to understanding reactive transport behaviors and transverse dispersion. In this study, the spreading and dilution processes of a miscible contaminated compound in a three-dimensional self-affine rough fracture were simulated with the coupled lattice Boltzmann method (LBM. Moment analysis and the Shannon entropy (dilution index were employed to analyze the spreading and mixing processes, respectively. The corresponding results showed that the spreading process was anisotropic due to the heterogeneous aperture distribution. A compound was transported faster in a large aperture region than in a small aperture region due to the occurrence of preferential flow. Both the spreading and mixing processes were highly dependent on the fluid flow velocity and molecular diffusion. The calculated results of the dilution index showed that increasing the fluid flow velocity and molecular diffusion coefficient led to a higher increasing rate of the dilution index.

  11. Automatic classification of retinal three-dimensional optical coherence tomography images using principal component analysis network with composite kernels.

    Science.gov (United States)

    Fang, Leyuan; Wang, Chong; Li, Shutao; Yan, Jun; Chen, Xiangdong; Rabbani, Hossein

    2017-11-01

    We present an automatic method, termed as the principal component analysis network with composite kernel (PCANet-CK), for the classification of three-dimensional (3-D) retinal optical coherence tomography (OCT) images. Specifically, the proposed PCANet-CK method first utilizes the PCANet to automatically learn features from each B-scan of the 3-D retinal OCT images. Then, multiple kernels are separately applied to a set of very important features of the B-scans and these kernels are fused together, which can jointly exploit the correlations among features of the 3-D OCT images. Finally, the fused (composite) kernel is incorporated into an extreme learning machine for the OCT image classification. We tested our proposed algorithm on two real 3-D spectral domain OCT (SD-OCT) datasets (of normal subjects and subjects with the macular edema and age-related macular degeneration), which demonstrated its effectiveness. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  12. Reconstruction of Interfering Waves from Three Dimensional Analysis of Their Interference Pattern

    Directory of Open Access Journals (Sweden)

    M. T. Tavassoli

    1997-04-01

    Full Text Available   Optical interferometry is being used as an efficient tool to analyse smooth surfaces for more than a century. Although, due to introduction of novel computer assisted analyzing techniques and array detectors, like CCD, the speed and the precision of processing have been increased tremendously, but the main equation involved is not changed. The main equation is the intensity distribution in the interference pattern of a plane reference wave and the required wave.   In the paper it is shown that by analysis of the interference pattern of two unknown waves in three dimension (which is possible for coherent waves it is possible to reconstruct each wave separately. This approach has several useful applications, namely, on can do without reference plane wave in the interferometric surface analysis and, it is possible to reconstruct an unknown wave by making it to interfere with itself. This is very useful in determining the profile of laser beams and erasing the effect of atmospheric disturbances on observing astronomical objects.

  13. Overhead spine arch analysis of dairy cows from three-dimensional video

    Science.gov (United States)

    Abdul Jabbar, K.; Hansen, M. F.; Smith, M. L.; Smith, L. N.

    2017-02-01

    We present a spine arch analysis method in dairy cows using overhead 3D video data. This method is aimed for early stage lameness detection. That is important in order to allow early treatment; and thus, reduce the animal suffering and minimize the high forecasted financial losses, caused by lameness. Our physical data collection setup is non-intrusive, covert and designed to allow full automation; therefore, it could be implemented on a large scale or daily basis with high accuracy. We track the animal's spine using shape index and curvedness measure from the 3D surface as she walks freely under the 3D camera. Our spinal analysis focuses on the thoracic vertebrae region, where we found most of the arching caused by lameness. A cubic polynomial is fitted to analyze the arch and estimate the locomotion soundness. We have found more accurate results by eliminating the regular neck/head movements' effect from the arch. Using 22-cow data set, we are able to achieve an early stage lameness detection accuracy of 95.4%.

  14. Three-dimensional inversion of Qsub(p) from low magnitude earthquakes analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wittlinger, G.; Haessler, H.; Granet, M. (Institut de Physique du Globe, 67 - Strasbourg (France))

    The seismological description of the crust is more meaningful if 3 D attenuation model is available in addition to a 3 D velocity model. To achieve this Qsub(p) study we propose a new method based on the analysis of P-wave displacement spectrum of very low magnitude earthquakes (M < 1). This method seems to give coherent values of Qsub(p) as we show it on some examples. A 3 D inversion of the observed Qsub(p) values has been performed to obtain a discrete Qsub(p) model. This analysis method is applied to the aftershocks following the magnitude 5.8 Swabian Jura (West-Germany) earthquake of September 3, 1978, registered on a local 7 stations network. The results show clearly low Qsub(p) values located principally in the vicinity of the hypocentral area of the major earthquake and in the upper part of the Hohenzollern Graben which is the main tectonic feature of this region. This supports the assumption of a relation between crack-density, partial saturation and attenuation. We may also point out that the Qsub(p) inversion leads to stronger relative variations than a 3 D velocity inversion. This last one performed from the same records leads to very weak anomalies in this area.

  15. Evaluation of micro structure by fusion of three dimensional shape measurement and ultimate analysis using SEM

    Directory of Open Access Journals (Sweden)

    Arai Yasuhiko

    2015-01-01

    Full Text Available The 3-D measurement method by SEM has already been proposed by using the principle of projection moiré. In this method, by the mechanism of producing some shadows of grid on the surface of the object by back scattering electron beam, a micro-size object can be measured in high resolution. However, in the case of measurement of industrial elements, not only 3-D shape measurement, but also the physical properties of material is sometimes required to check strongly for practical uses. For example, the precise patterning lines and the existence of some kinds of atoms in IC circuits are parameters concerning important feature of the circuits. The distribution of atoms in fractured sections is also an important feature in destructive inspection. In this paper, the realization of such inspection technology by combining the ultimate analysis and 3-D measurement method by SEM is discussed. The new measurement technology by fusion of 3-D shape measurement and ultimate analysis is proposed. In experimental results, the 3-D shape measurement of the micro object made of alloy material is measured. From measured results, the validity of the new method is discussed.

  16. Three-dimensional kinematic analysis of the snatch technique for lifting different barbell weights.

    Science.gov (United States)

    Hadi, Gökhan; Akkuş, Hasan; Harbili, Erbil

    2012-06-01

    The purpose of this study was to investigate the effects of increased barbell loads on barbell and body kinematics of the snatch lifts at 60, 80, and 100% of 1 repetition maximum and to evaluate the biomechanics of snatch technique. The study was performed on 7 elite male weightlifters of the Turkish national team. Four cameras operating at 50 fields per second were used to record the lifts. For 3D kinematic analysis of center of gravity (CG) and barbell movement, the points on the body and the barbell were digitized by using an Ariel Performance Analysis System. There were significant differences between the vertical work values (p barbell, maximum vertical velocity of the barbell, maximum vertical displacement of CG, the vertical velocity of CG during the turnover under the barbell. The results demonstrated that vertical and horizontal kinematics of the barbell and body decreased at the pull phase of the snatch technique as the barbell load increased. The power output during the second pull increased although the work done did not change, whereas work and power output increased during the first pull phase depending on the increase in the barbell weight. The finding of this study suggested that weightlifters had to perform the turnover under the barbell and the catch phase faster, because when the barbell weight was increased at snatch lift, vertical kinematics of the barbell decreased.

  17. Embryonic lineage analysis using three-dimensional, time-lapse in-vivo fluorescent microscopy

    Science.gov (United States)

    Minden, Jonathan; Kam, Zvi; Agard, David A.; Sedat, John W.; Alberts, Bruce

    1990-08-01

    Drosophila melanogaster has become one of the most extensively studied organisms because of its amenability to genetic analysis. Unfortunately, the biochemistry and cell biology ofDrosophila has lagged behind. To this end we have been microinjecting fluorescently labelled proteins into the living embryo and observing the behavior of these proteins to determine their role in the cell cycle and development. Imaging of these fluorescent probes is an extremely important element to this form of analysis. We have taken advantage of the sensitivity and well behaved characteristics of the charge coupled device (CCD) camera in conjunction with digital image enhancement schemes to produce highly accurate images of these fluorescent probes in vivo. One of our major goals is to produce a detailed map of cell fate so that we can understand how fate is determined and maintained. In order produce such a detailed map, protocols for following the movements and mitotic behavior of a large number of cells in three dimensions over relatively long periods of time were developed. We will present our results using fluorescently labelled histone proteins as a marker for nuclear location1. In addition, we will also present our initial results using a photoactivatable analog of fluorescein to mark single cells so that their long range fate can be unambiguously determined.

  18. Three-dimensional analysis of surface crack-Hertzian stress field interaction

    Science.gov (United States)

    Ballarini, R.; Hsu, Y.

    1989-01-01

    The results are presented of a stress intensity factor analysis of semicircular surface cracks in the inner raceway of an engine bearing. The loading consists of a moving spherical Hertzian contact load and an axial stress due to rotation and shrink fit. A 3-D linear elastic Boundary Element Method code was developed to perform the stress analysis. The element library includes linear and quadratic isoparametric surface elements. Singular quarter point elements were employed to capture the square root displacement variation and the inverse square root stress singularity along the crack front. The program also possesses the capability to separate the whole domain into two subregions. This procedure enables one to solve nonsymmetric fracture mechanics problems without having to separate the crack surfaces a priori. A wide range of configuration parameters was investigated. The ratio of crack depth to bearing thickness was varied from one-sixtieth to one-fifth for several different locations of the Hertzian load. The stress intensity factors for several crack inclinations were also investigated. The results demonstrate the efficiency and accuracy of the Boundary Element Method. Moreover, the results can provide the basis for crack growth calculations and fatigue life prediction.

  19. Citizenship, parity of participation and the three-dimensional model analysis of Nancy Fraser

    Directory of Open Access Journals (Sweden)

    Fábio Luiz Lopes Cardoso

    2012-05-01

    Full Text Available This paper seeks to portray, in a synthetic form, the theoretical elaboration of American political scientist Nancy Fraser about her threedimensional model analysis (recognition, redistribution and parity of participation as a form of theoretical and practical intervention in the debates of recognition and shape of action of so-called new social movements. It is of key importance for his theory the elaboration of the idea of recognition and status regarding the inclusion of the political dimension in the idea of parity of participation. Both, however, have been developed during the elaboration of the theory, giving it new life, but also presenting new challenges. To make a systematic balance of this formulation is necessary to try to understand the propositions of Fraser from his latest model. We also emphasize some inroads, as the consideration of the concept of citizenship, to continue the debate on this important contribution.

  20. Three-Dimensional Exact Free Vibration Analysis of Spherical, Cylindrical, and Flat One-Layered Panels

    Directory of Open Access Journals (Sweden)

    Salvatore Brischetto

    2014-01-01

    equilibrium written in orthogonal curvilinear coordinates for the free vibrations of simply supported structures. These equations consider an exact geometry for shells without simplifications. The main novelty is the possibility of a general formulation for different geometries. The equations written in general orthogonal curvilinear coordinates allow the analysis of spherical shell panels and they automatically degenerate into cylindrical shell panel, cylindrical closed shell, and plate cases. Results are proposed for isotropic and orthotropic structures. An exhaustive overview is given of the vibration modes for a number of thickness ratios, imposed wave numbers, geometries, embedded materials, and angles of orthotropy. These results can also be used as reference solutions to validate two-dimensional models for plates and shells in both analytical and numerical form (e.g., closed solutions, finite element method, differential quadrature method, and global collocation method.

  1. Image processing analysis of vortex dynamics of lobed jets from three-dimensional diffusers

    International Nuclear Information System (INIS)

    Nastase, Ilinca; Meslem, Amina; El Hassan, Mouhammad

    2011-01-01

    The passive control of jet flows with the aim to enhance mixing and entrainment is of wide practical interest. Our purpose here is to develop new air diffusers for heating ventilating air conditioning systems by using lobed geometry nozzles, in order to ameliorate the users' thermal comfort. Two turbulent six-lobed air jets, issued from a lobed tubular nozzle and an innovative hemispherical lobed nozzle, were studied experimentally. It was shown that the proposed innovative concept of a lobed jet, which can be easily integrated in air diffusion devices, is very efficient regarding induction capability. A vortical dynamics analysis for the two jets is performed using a new method of image processing, namely dynamic mode decomposition. A validation of this method is also proposed suggesting that the dynamical mode decomposition (DMD) image processing method succeeds in capturing the most dominant frequencies of the flow dynamics, which in our case are related to the quite special dynamics of the Kelvin–Helmholtz vortices.

  2. Three-Dimensional Analysis of Enamel Crack Behavior Using Optical Coherence Tomography.

    Science.gov (United States)

    Segarra, M S; Shimada, Y; Sadr, A; Sumi, Y; Tagami, J

    2017-03-01

    The aim of this study was to nondestructively analyze enamel crack behavior on different areas of teeth using 3D swept source-optical coherence tomography (SS-OCT). Ten freshly extracted human teeth of each type on each arch ( n = 80 teeth) were inspected for enamel crack patterns on functional, contact and nonfunctional, or noncontact areas using 3D SS-OCT. The predominant crack pattern for each location on each specimen was noted and analyzed. The OCT observations were validated by direct observations of sectioned specimens under confocal laser scanning microscopy (CLSM). Cracks appeared as bright lines with SS-OCT, with 3 crack patterns identified: Type I - superficial horizontal cracks; Type II - vertically (occluso-gingival) oriented cracks; and Type III - hybrid or complicated cracks, a combination of a Type I and Type III cracks, which may or may not be confluent with each other. Type II cracks were predominant on noncontacting surfaces of incisors and canines and nonfunctional cusps of posterior teeth. Type I and III cracks were predominant on the contacting surfaces of incisors, cusps of canines, and functional cusps of posterior teeth. Cracks originating from the dental-enamel junction and enamel tufts, crack deflections, and the initiation of new cracks within the enamel (internal cracks) were observed as bright areas. CLSM observations corroborated the SS-OCT findings. We found that crack pattern, tooth type, and the location of the crack on the tooth exhibited a strong correlation. We show that the use of 3D SS-OCT permits for the nondestructive 3D imaging and analysis of enamel crack behavior in whole human teeth in vitro. 3D SS-OCT possesses potential for use in clinical studies for the analysis of enamel crack behavior.

  3. Three-dimensional geometric analysis of the talus for designing talar prosthetics.

    Science.gov (United States)

    Islam, Kamrul; Dobbe, Ashlee; Duke, Kajsa; El-Rich, Marwan; Dhillon, Sukhvinder; Adeeb, Samer; Jomha, Nadr M

    2014-04-01

    Proper understanding of the complex geometric shape of the talus bone is important for the design of generic talar body prosthetics and restoration of the proper ankle joint function after surgery. To date, all talus implants have been patient-specific with the limitation that complex computer modeling is required to produce a mirrored image from the unaffected opposite side followed by machining a patient-specific prosthesis. To develop an "off-the-shelf" non-custom talar prosthesis, it is important to perform a thorough investigation of the geometric shape of the talus bone. This article addresses the applicability of a scaling approach for investigating the geometric shape and similarity of talus bones. This study used computed tomography scan images of the ankle joints of 27 different subjects to perform the analysis. Results of the deviation analyses showed that the deviation in the articulating surfaces of the talus bones was not excessive in terms of talus size. These results suggest that a proposed range of five implant sizes is possible. Finally, it is concluded that the talus bones of the ankle joints are geometrically similar, and a proposed range of five implant sizes will fit a wide range of subjects. This information may help to develop generic talus implants that might be applicable to patients with a severe talus injury.

  4. Parametric analysis of three dimensional flow models applied to tidal energy sites in Scotland

    Science.gov (United States)

    Rahman, Anas; Venugopal, Vengatesan

    2017-04-01

    This paper presents a detailed parametric analysis on various input parameters of two different numerical models, namely Telemac3D and Delft3D, used for the simulation of tidal current flow at potential tidal energy sites in the Pentland Firth in Scotland. The motivation behind this work is to investigate the influence of the input parameters on the above 3D models, as the majority of past research has mainly focused on using the 2D depth-averaged flow models for this region. An extended description of the models setup, along with the utilised parameters is provided. The International Hydrographic Organisation (IHO) tidal gauges and Acoustic Doppler and Current Profiler (ADCP) measurements are used in calibrating model output to ensure the robustness of the models. Extensive parametric study on the impact of varying drag coefficients, roughness formulae and turbulence models has been investigated and reported. The results indicate that both Telemac3D and Delft3D models are able to produce excellent comparison against measured data; however, with Delft3D, the model parameters which provided higher correlation with the measured data, are found to be different from those reported in the previous literature, which could be attributed to the choice of boundary conditions and the mesh size.

  5. A Reduced Three Dimensional Model for SAW Sensors Using Finite Element Analysis.

    Science.gov (United States)

    El Gowini, Mohamed M; Moussa, Walied A

    2009-01-01

    A major problem that often arises in modeling Micro Electro Mechanical Systems (MEMS) such as Surface Acoustic Wave (SAW) sensors using Finite Element Analysis (FEA) is the extensive computational capacity required. In this study a new approach is adopted to significantly reduce the computational capacity needed for analyzing the response of a SAW sensor using the finite element (FE) method. The approach is based on the plane wave solution where the properties of the wave vary in two dimensions and are uniform along the thickness of the device. The plane wave solution therefore allows the thickness of the SAW device model to be minimized; the model is referred to as a Reduced 3D Model (R3D). Various configurations of this novel R3D model are developed and compared with theoretical and experimental frequency data and the results show very good agreement. In addition, two-dimensional (2D) models with similar configurations to the R3D are developed for comparison since the 2D approach is widely adopted in the literature as a computationally inexpensive approach to model SAW sensors using the FE method. Results illustrate that the R3D model is capable of capturing the SAW response more accurately than the 2D model; this is demonstrated by comparison of centre frequency and insertion loss values. These results are very encouraging and indicate that the R3D model is capable of capturing the MEMS-based SAW sensor response without being computationally expensive.

  6. Image processing analysis of vortex dynamics of lobed jets from three-dimensional diffusers

    Energy Technology Data Exchange (ETDEWEB)

    Nastase, Ilinca [Technical University of Civil Engineering in Bucharest, Building Services Department, 66 Avenue Pache Protopopescu, 020396, Bucharest (Romania); Meslem, Amina; El Hassan, Mouhammad, E-mail: inastase@instal.utcb.ro, E-mail: ameslem@univ-lr.fr [LEPTIAB, University of La Rochelle, Pole Sciences et Technologie, avenue Michel Crepeau, 17042 La Rochelle (France)

    2011-12-01

    The passive control of jet flows with the aim to enhance mixing and entrainment is of wide practical interest. Our purpose here is to develop new air diffusers for heating ventilating air conditioning systems by using lobed geometry nozzles, in order to ameliorate the users' thermal comfort. Two turbulent six-lobed air jets, issued from a lobed tubular nozzle and an innovative hemispherical lobed nozzle, were studied experimentally. It was shown that the proposed innovative concept of a lobed jet, which can be easily integrated in air diffusion devices, is very efficient regarding induction capability. A vortical dynamics analysis for the two jets is performed using a new method of image processing, namely dynamic mode decomposition. A validation of this method is also proposed suggesting that the dynamical mode decomposition (DMD) image processing method succeeds in capturing the most dominant frequencies of the flow dynamics, which in our case are related to the quite special dynamics of the Kelvin-Helmholtz vortices.

  7. Three dimensional conjugated heat transfer analysis in sodium fast reactor wire-wrapped fuel assembly

    International Nuclear Information System (INIS)

    Peniguel, C.; Rupp, I.; Juhel, JP.; Rolfo, S.; Guillaud, M.; Gervais, N.

    2009-01-01

    Fast reactors with liquid metal coolant have recently received a renewed interest owing to a more efficient usage of the primary uranium resources, and they are one of the proposal for the next Generation IV. In order to evaluate nuclear power plant design and safety, 3D analysis of the flow and heat transfer in a wire spacer fuel assembly are ongoing at EDF. The introduction of the wire wrapped spacers, helically wound along the pin axis, enhances the mixing of the coolant between sub-channels and prevents contact between the fuel pins. The mesh generation step constitutes a challenging task if a reasonable amount of cells in conjunction with a suitable spatial discretization is wanted. Several approaches have been investigated and will be presented. Quite complex global flow patterns are found using either k-ε or preferably Reynolds Stress turbulent models. Preliminary conjugated heat transfer calculations using a coupling between the finite element thermal code SYRTHES and the finite volume CFD code Code Saturne are also shown. (author)

  8. Biomechanical three-dimensional finite element analysis of monolithic zirconia crown with different cement type

    Science.gov (United States)

    2015-01-01

    PURPOSE The objective of this study was to evaluate the influence of various cement types on the stress distribution in monolithic zirconia crowns under maximum bite force using the finite element analysis. MATERIALS AND METHODS The models of the prepared #46 crown (deep chamfer margin) were scanned and solid models composed of the monolithic zirconia crown, cement layer, and prepared tooth were produced using the computer-aided design technology and were subsequently translated into 3-dimensional finite element models. Four models were prepared according to different cement types (zinc phosphate, polycarboxylate, glass ionomer, and resin). A load of 700 N was applied vertically on the crowns (8 loading points). Maximum principal stress was determined. RESULTS Zinc phosphate cement had a greater stress concentration in the cement layer, while polycarboxylate cement had a greater stress concentration on the distal surface of the monolithic zirconia crown and abutment tooth. Resin cement and glass ionomer cement showed similar patterns, but resin cement showed a lower stress distribution on the lingual and mesial surface of the cement layer. CONCLUSION The test results indicate that the use of different luting agents that have various elastic moduli has an impact on the stress distribution of the monolithic zirconia crowns, cement layers, and abutment tooth. Resin cement is recommended for the luting agent of the monolithic zirconia crowns. PMID:26816578

  9. Three-dimensional finite element analysis of implant-assisted removable partial dentures.

    Science.gov (United States)

    Eom, Ju-Won; Lim, Young-Jun; Kim, Myung-Joo; Kwon, Ho-Beom

    2017-06-01

    Whether the implant abutment in implant-assisted removable partial dentures (IARPDs) functions as a natural removable partial denture (RPD) tooth abutment is unknown. The purpose of this 3-dimensional finite element study was to analyze the biomechanical behavior of implant crown, bone, RPD, and IARPD. Finite element models of the partial maxilla, teeth, and prostheses were generated on the basis of a patient's computed tomographic data. The teeth, surveyed crowns, and RPDs were created in the model. With the generated components, four 3-dimensional finite element models of the partial maxilla were constructed: tooth-supported RPD (TB), implant-supported RPD (IB), tooth-tissue-supported RPD (TT), and implant-tissue-supported RPD (IT) models. Oblique loading of 300 N was applied on the crowns and denture teeth. The von Mises stress and displacement of the denture abutment tooth and implant system were identified. The highest von Mises stress values of both IARPDs occurred on the implants, while those of both natural tooth RPDs occurred on the frameworks of the RPDs. The highest von Mises stress of model IT was about twice that of model IB, while the value of model TT was similar to that of model TB. The maximum displacement was greater in models TB and TT than in models IB and IT. Among the 4 models, the highest maximum displacement value was observed in the model TT and the lowest value was in the model IB. Finite element analysis revealed that the stress distribution pattern of the IARPDs was different from that of the natural tooth RPDs and the stress distribution of implant-supported RPD was different from that of implant-tissue-supported RPD. When implants are used for RPD abutments, more consideration concerning the RPD design and the number or location of the implant is necessary. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  10. Analysis of cardiac ventricular wall motion based on a three-dimensional electromechanical biventricular model

    International Nuclear Information System (INIS)

    Xia Ling; Huo Meimei; Wei Qing; Liu Feng; Crozier, Stuart

    2005-01-01

    This paper describes a biventricular model, which couples the electrical and mechanical properties of the heart, and computer simulations of ventricular wall motion and deformation by means of a biventricular model. In the constructed electromechanical model, the mechanical analysis was based on composite material theory and the finite-element method; the propagation of electrical excitation was simulated using an electrical heart model, and the resulting active forces were used to calculate ventricular wall motion. Regional deformation and Lagrangian strain tensors were calculated during the systole phase. Displacements, minimum principal strains and torsion angle were used to describe the motion of the two ventricles. The simulations showed that during the period of systole (1) the right ventricular free wall moves towards the septum, and at the same time, the base and middle of the free wall move towards the apex, which reduces the volume of the right ventricle; the minimum principle strain (E3) is largest at the apex, then at the middle of the free wall and its direction is in the approximate direction of the epicardial muscle fibres; (2) the base and middle of the left ventricular free wall move towards the apex and the apex remains almost static; the torsion angle is largest at the apex; the minimum principle strain E3 is largest at the apex and its direction on the surface of the middle wall of the left ventricle is roughly in the fibre orientation. These results are in good accordance with results obtained from MR tagging images reported in the literature. This study suggests that such an electromechanical biventricular model has the potential to be used to assess the mechanical function of the two ventricles, and also could improve the accuracy of ECG simulation when it is used in heart-torso model-based body surface potential simulation studies

  11. Three-dimensional elasto-plastic soil modelling and analysis of sauropod tracks

    Directory of Open Access Journals (Sweden)

    Eugenio Sanz

    2016-06-01

    Full Text Available This paper reports the use of FEA (Finite Element Analysis to model dinosaur tracks. Satisfactory reproductions of sauropod ichnites were simulated using 3D numerical models of the elasto-plastic behaviour of soils. Though the modelling was done of ichnites in situ at the Miraflores I tracksite (Soria, Spain, the methodology could be applied to other tracksites to improve their ichnological interpretation and better understand how the type and state of the trodden sediment at the moment the track is created is a fundamental determinant of the morphology of the ichnite. The results obtained explain why the initial and commonly adopted hypothesis—that soft sediments become progressively more rigid and resistant at depth—is not appropriate at this tracksite. We explain why it is essential to consider a more rigid superficial layer (caused by desiccation overlying a softer layer that is extruded to form a displacement rim. Adult sauropods left trackways behind them. These tracks could be filled up with water due to phreatic level was close to the ground surface. The simulation provides us with a means to explain the differences between similar tracks (of different depths; with or without displacement rims in the various stratigraphic layers of the tracksite and to explain why temporary and variable conditions of humidity lead to these differences in the tracks. The simulations also demonstrate that track depth alone is insufficient to differentiate true tracks from undertracks and that other discrimination criteria need to be taken into account. The scarcity of baby sauropod tracks is explained because they are shallow and easily eroded.

  12. A THREE-DIMENSIONAL ANALYSIS OF THE CENTER OF MASS FOR THREE DIFFERENT JUDO THROWING TECHNIQUES

    Directory of Open Access Journals (Sweden)

    Rodney T. Imamura

    2006-07-01

    Full Text Available Four black belt throwers (tori and one black belt faller (uke were filmed and analyzed in three-dimensions using two video cameras (JVC 60 Hz and motion analysis software. Average linear momentum in the anteroposterior (x, vertical (y, and mediolateral (z directions and average resultant impulse of uke's center of mass (COM were investigated for three different throwing techniques; harai-goshi (hip throw, seoi-nage (hand throw, and osoto-gari (leg throw. Each throw was broken down into three main phases; kuzushi (balance breaking, tsukuri (fit-in, and kake (throw. For the harai-goshi and osoto-gari throws, impulse measurements were the largest within kuzushi and tsukuri phases (where collision between tori and uke predominantly occurs. Both throws indicated an importance for tori to create large momentum prior to contact with uke. The seoi-nage throw demonstrated the lowest impulse and maintained forward momentum on the body of uke throughout the entire throw. The harai-goshi and osoto-gari are considered power throws well-suited for large and strong judo players. The seoi-nage throw is considered more technical and is considered well-suited for shorter players with good agility. A form of resistance by uke was found during the kuzushi phase for all throws. The resistance which can be initiated by tori's push or pull allows for the tsukuri phase to occur properly by freezing uke for a good fit-in. Strategies for initiating an effective resistance include initiating movement of uke so that their COM is shifted to their left (for right handed throw by incorporating an instantaneous "snap pull" with the pulling hand during kuzushi to create an opposite movement from uke

  13. Cone-Beam Computed Tomography-Based Three-Dimensional McNamara Cephalometric Analysis.

    Science.gov (United States)

    Santos, Rodrigo Mologni Gonçalves Dos; De Martino, José Mario; Haiter Neto, Francisco; Passeri, Luis Augusto

    2018-01-19

    This article introduces a method that extends the McNamara cephalometric analysis to produce 3-dimensional (3D) measurement values from cone-beam computed tomography images. In the extended method, the cephalometric landmarks are represented by 3D points; the bilateral cephalometric landmarks are identified on both sides of the skull; the cephalometric lines, with the exception of the facial axis, are represented by 3D lines; the cephalometric planes, with the exception of the facial plane, are represented by planes; the effective mandibular length, the effective midfacial length, and the lower anterior facial height are measured as 3D point-to-point distances; the nasion perpendicular to point A, the pogonion to nasion perpendicular, the upper incisor to point A vertical, and the lower incisor to point A-pogonion line are measured each as components of a vector; the facial axis angle is measured as a line-to-plane angle; and the mandibular plane angle is measured as a plane-to-plane angle. As a result, the method provides real effective lengths of the maxilla and mandible on both sides of the skull; real height of the lower anterior face; directed distances from the point A to the nasion perpendicular, from the pogonion to the nasion perpendicular, from the left and right upper incisor to the point A vertical, and from the left and right lower incisor to the point A-pogonion line for both the lateral and posteroanterior views of the skull; and real angles of the facial axis and the mandibular plane. Additionality, the method enables the identification of craniofacial asymmetries.

  14. Three-dimensional complex resistivity analysis for clay characterization in hydrogeologic study

    Science.gov (United States)

    Yang, Jeong-Seok

    Mapping the distribution, fractional amount and type of clay is important in understanding groundwater flow and contaminant transport. Clay minerals have distinctive surface electrical properties and large surface areas that lead to decreased electrical resistivity in soils containing them and to a distinctive frequency dependent complex resistivity known as induced polarization (IP). IP depends on the clay type, concentration, cation exchange capacity and other factors, which are the same as those controlling fluid and contaminant transport. Extraction of intrinsic clay properties from surface surveys would be valuable in all hydrological studies. It is known that surface measurements of IP using arrays of current and voltage electrodes can detect clays but there has been little work to determine whether surface data can be used quantitatively to map intrinsic properties. The inversion of surface resistivity survey data for Cole-Cole parameters first requires an accurate representation of the do resistivity and IP distribution. To investigate the accuracy of modeling and inversion algorithms this study used a horizontal 3-D rectangular slab to represent a clay body. The analysis shows that for idealized clay bodies with a high contrast with their surroundings, IP interpretation requires full 3-D modeling, especially for the imaginary components. The traditional 2-D assumption is only useful for IP interpretation if the strike extent of the body is at least 20 times its cross-sectional dimension. Further, for practical detection, and recovery of intrinsic properties, the depth of the tabular clay body cannot exceed about three times its vertical dimension. This model study indicates that at least for confined clay rich zones accurate IP surveys can yield the data to determine the intrinsic Cole-Cole parameters. In view of this result, it appears that a major study is warranted to establish what quantitative relationships exist between the Cole-Cole parameters and

  15. A three-dimensional analysis of the center of mass for three different judo throwing techniques.

    Science.gov (United States)

    Imamura, Rodney T; Hreljac, Alan; Escamilla, Rafael F; Edwards, W Brent

    2006-01-01

    Four black belt throwers (tori) and one black belt faller (uke) were filmed and analyzed in three-dimensions using two video cameras (JVC 60 Hz) and motion analysis software. Average linear momentum in the anteroposterior (x), vertical (y), and mediolateral (z) directions and average resultant impulse of uke's center of mass (COM) were investigated for three different throwing techniques; harai-goshi (hip throw), seoi-nage (hand throw), and osoto-gari (leg throw). Each throw was broken down into three main phases; kuzushi (balance breaking), tsukuri (fit-in), and kake (throw). For the harai-goshi and osoto-gari throws, impulse measurements were the largest within kuzushi and tsukuri phases (where collision between tori and uke predominantly occurs). Both throws indicated an importance for tori to create large momentum prior to contact with uke. The seoi-nage throw demonstrated the lowest impulse and maintained forward momentum on the body of uke throughout the entire throw. The harai-goshi and osoto-gari are considered power throws well-suited for large and strong judo players. The seoi-nage throw is considered more technical and is considered well-suited for shorter players with good agility. A form of resistance by uke was found during the kuzushi phase for all throws. The resistance which can be initiated by tori's push or pull allows for the tsukuri phase to occur properly by freezing uke for a good fit-in. Strategies for initiating an effective resistance include initiating movement of uke so that their COM is shifted to their left (for right handed throw) by incorporating an instantaneous "snap pull "with the pulling hand during kuzushi to create an opposite movement from uke. Key PointsThe degree of collision between the thrower (tori) and person being thrown (uke) may be a reflection of throwing power.The hip throw (harai-goshi) and leg throw (osoto-gari) created large collisions onto uke and are considered power throws well-suited for stronger and heavier

  16. Three-dimensional morphological analysis of the human sacroiliac joint: influences on the degenerative changes of the auricular surfaces.

    Science.gov (United States)

    Nishi, Keita; Tsurumoto, Toshiyuki; Okamoto, Keishi; Ogami-Takamura, Keiko; Hasegawa, Takashi; Moriuchi, Takefumi; Sakamoto, Junya; Oyamada, Joichi; Higashi, Toshio; Manabe, Yoshitaka; Saiki, Kazunobu

    2018-02-01

    The sacroiliac joint (SIJ) is responsible for weight transmission between the spine and lower extremity. However, details of the structure and function of the SIJ remain unclear. In a previous study, we devised a method of quantitatively evaluating the level of degeneration of the SIJ using an age estimation procedure for the auricular surface of the ilium. Our results in that study suggested that the degree of degeneration of the joint surface may be associated with the morphology of the auricular surface of the ilium. In that study, however, the morphology of the auricular surface of the ilium was simplified for analysis, meaning that more detailed investigations were required in future. In the present study, we focused on individual differences in the shape of SIJ and carried out three-dimensional quantitative evaluation of the morphology of the auricular surface of the ilium to ascertain its association with joint degeneration. We produced three-dimensional images of the right auricular surfaces of the ilium of 100 modern Japanese men (age 19-83), and obtained the three-dimensional rectangular coordinates of 11 defined measurement points. We then calculated 16 parameters indicating the morphological characteristics of the auricular surfaces of the ilium from the three-dimensional rectangular coordinates of these measurement points, and used these to perform principal component analysis to investigate trends in the morphology of the auricular surface of the ilium. We found that the morphology of the auricular surface of the ilium could be characterized in terms of (i) size, (ii) concavity of the posterior border and (iii) amount of undulation. An investigation of the correlation between these parameters and age suggested that the amount of undulation of the auricular surface of the ilium tends to diminish with advancing age. In an investigation of the association between morphology of the auricular surface of the ilium and degeneration of the articular surface

  17. Stress distribution in delayed replanted teeth splinted with different orthodontic wires: a three-dimensional finite element analysis.

    Science.gov (United States)

    de Souza, Fernando Isquierdo; Poi, Wilson Roberto; da Silva, Vanessa Ferreira; Martini, Ana Paula; Melo, Regis Alexandre da Cunha; Panzarini, Sonia Regina; Rocha, Eduardo Passos

    2015-06-01

    The aim was to evaluate the biomechanical behavior of the supporting bony structures of replanted teeth and the periodontal ligament (PDL) of adjacent teeth when orthodontic wires with different mechanical properties are applied, with three-dimensional finite element analysis. Based on tomographic and microtomographic data, a three-dimensional model of the anterior maxilla with the corresponding teeth (tooth 13-tooth 23) was generated to simulate avulsion and replantation of the tooth 21. The teeth were splinted with orthodontic wire (Ø 0.8 mm) and composite resin. The elastic modulus of the three orthodontic wires used, that is, steel wire (FA), titanium-molybdenum wire (FTM), and nitinol wire (FN) were 200 GPa, 84 GPa, and 52 GPa, respectively. An oblique load (100 N) was applied at an angle of 45° on the incisal edge of the replanted tooth and was analyzed using Ansys Workbench software. The maximum (σmax) and minimum (σmin) principal stresses generated in the PDL, cortical and alveolar bones, and the modified von Mises (σvM) values for the orthodontic wires were obtained. With regard to the cortical bone and PDL, the highest σmin and σmax values for FTM, FN, and FA were checked. With regard to the alveolar bone, σmax and σmin values were highest for FA, followed by FTM and FN. The σvM values of the orthodontic wires followed the order of rigidity of the alloys, that is, FA > FTM > FN. The biomechanical behavior of the analyzed structures with regard to all the three patterns of flexibility was similar. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Application of CUPID for subchannel-scale thermal–hydraulic analysis of pressurized water reactor core under single-phase conditions

    Directory of Open Access Journals (Sweden)

    Seok Jong Yoon

    2018-02-01

    Full Text Available There have been recent efforts to establish methods for high-fidelity and multi-physics simulation with coupled thermal–hydraulic (T/H and neutronics codes for the entire core of a light water reactor under accident conditions. Considering the computing power necessary for a pin-by-pin analysis of the entire core, subchannel-scale T/H analysis is considered appropriate to achieve acceptable accuracy in an optimal computational time. In the present study, the applicability of in-house code CUPID of the Korea Atomic Energy Research Institute was extended to the subchannel-scale T/H analysis. CUPID is a component-scale T/H analysis code, which uses three-dimensional two-fluid models with various closure models and incorporates a highly parallelized numerical solver. In this study, key models required for a subchannel-scale T/H analysis were implemented in CUPID. Afterward, the code was validated against four subchannel experiments under unheated and heated single-phase incompressible flow conditions. Thereafter, a subchannel-scale T/H analysis of the entire core for an Advanced Power Reactor 1400 reactor core was carried out. For the high-fidelity simulation, detailed geometrical features and individual rod power distributions were considered in this demonstration. In this study, CUPID shows its capability of reproducing key phenomena in a subchannel and dealing with the subchannel-scale whole core T/H analysis.

  19. Reliability-Oriented Design and Analysis of Input Capacitors in Single-Phase Transformer-less Photovoltaic Inverters

    DEFF Research Database (Denmark)

    Wang, Huai; Yang, Yongheng; Blaabjerg, Frede

    2013-01-01

    . A reliability-oriented design guideline is proposed in this paper for the input capacitors in single-phase transformer-less PV inverters. The guideline ensures that the service time requirement is to be accomplished under different power levels and ambient temperature profiles. The theoretical analysis has been......While 99% efficiency has been reported, the target of 20 years of service time imposes new challenge to cost-effective solutions for grid-connected photovoltaic (PV) inverters. Aluminum electrolytic capacitors are the weak-link in terms of reliability and lifetime in single-phase PV systems...

  20. Field-circuit analysis and measurements of a single-phase self-excited induction generator

    Science.gov (United States)

    Makowski, Krzysztof; Leicht, Aleksander

    2017-12-01

    The paper deals with a single-phase induction machine operating as a stand-alone self-excited single-phase induction generator for generation of electrical energy from renewable energy sources. By changing number of turns and size of wires in the auxiliary stator winding, an improvement of performance characteristics of the generator were obtained as regards no-load and load voltage of the stator windings as well as stator winding currents of the generator. Field-circuit simulation models of the generator were developed using Flux2D software package for the generator with shunt capacitor in the main stator winding. The obtained results have been validated experimentally at the laboratory setup using the single-phase capacitor induction motor of 1.1 kW rated power and 230 V voltage as a base model of the generator.

  1. Three dimensional energy profile:

    International Nuclear Information System (INIS)

    Kowsari, Reza; Zerriffi, Hisham

    2011-01-01

    The provision of adequate, reliable, and affordable energy has been considered as a cornerstone of development. More than one-third of the world's population has a very limited access to modern energy services and suffers from its various negative consequences. Researchers have been exploring various dimensions of household energy use in order to design strategies to provide secure access to modern energy services. However, despite more than three decades of effort, our understanding of household energy use patterns is very limited, particularly in the context of rural regions of the developing world. Through this paper, the past and the current trends in the field of energy analysis are investigated. The literature on rural energy and energy transition in developing world has been explored and the factors affecting households' decisions on energy use are listed. The and the factors affecting households' decisions on energy use are listed. The gaps identified in the literature on rural household energy analysis provide a basis for developing an alternative model that can create a more realistic view of household energy use. The three dimensional energy profile is presented as a new conceptual model for assessment of household energy use. This framework acts as a basis for building new theoretical and empirical models of rural household energy use. - Highlights: ► Reviews literature on household energy, energy transitions and decision-making in developing countries. ► Identifies gaps in rural household energy analysis and develops a new conceptual framework. ► The 3-d energy profile provides a holistic view of household energy system characteristics. ► Illustrates the use of the framework for understanding household energy transitions.

  2. Three-dimensional motion analysis of upper limb movement in the bowing arm of string-playing musicians.

    Science.gov (United States)

    Turner-Stokes, L; Reid, K

    1999-07-01

    To explore the role of three-dimensional movement analysis in defining patterns of joint movement while bowing on different stringed instruments, and its potential for future use by the clinician in the study of musculoskeletal problems in musicians. A protocol was developed for analysis of bowing arm movements using the MacReflex 3-D analysis system- including definition of marker sites, positioning of the musician within the calibrated area and standardised bowing sequences. This protocol was then used to determine whether the system was sensitive to differences between instrument types and to variation in bowing style and technique between individual players. The ranges of movement in the shoulder, elbow and wrist were compared between instrument groups in a cohort of 39 asymptomatic string players. The system gave reproducible results on repeated testing, and demonstrated clear differences between instruments, as well as stylistic differences between players. Range of shoulder movement increased progressively towards the upper register of the cello, while decreasing on the violin. Maximum elevation of the shoulder was significantly greater on the cello (Pviolin. Clear and reproducible differences in style and technique were demonstrated between individuals. The increased range of shoulder movement in the upper register of the 'cello may contribute to the greater prevalence of neck and shoulder symptoms among 'cellists. Further study is required to establish whether different musculoskeletal symptoms produce characteristic patterns which could help in diagnosis and development is required to make the system feasible for routine use. Musculoskeletal problems are common among musicians. Different instruments and playing positions make different demands on joints and may contribute to the variance in reported incidence of musculoskeletal symptoms among violinists and cellists. Three-dimensional analysis may prove helpful in the future for the diagnosis of different

  3. Failure analysis of fuel cell electrodes using three-dimensional multi-length scale X-ray computed tomography

    Science.gov (United States)

    Pokhrel, A.; El Hannach, M.; Orfino, F. P.; Dutta, M.; Kjeang, E.

    2016-10-01

    X-ray computed tomography (XCT), a non-destructive technique, is proposed for three-dimensional, multi-length scale characterization of complex failure modes in fuel cell electrodes. Comparative tomography data sets are acquired for a conditioned beginning of life (BOL) and a degraded end of life (EOL) membrane electrode assembly subjected to cathode degradation by voltage cycling. Micro length scale analysis shows a five-fold increase in crack size and 57% thickness reduction in the EOL cathode catalyst layer, indicating widespread action of carbon corrosion. Complementary nano length scale analysis shows a significant reduction in porosity, increased pore size, and dramatically reduced effective diffusivity within the remaining porous structure of the catalyst layer at EOL. Collapsing of the structure is evident from the combination of thinning and reduced porosity, as uniquely determined by the multi-length scale approach. Additionally, a novel image processing based technique developed for nano scale segregation of pore, ionomer, and Pt/C dominated voxels shows an increase in ionomer volume fraction, Pt/C agglomerates, and severe carbon corrosion at the catalyst layer/membrane interface at EOL. In summary, XCT based multi-length scale analysis enables detailed information needed for comprehensive understanding of the complex failure modes observed in fuel cell electrodes.

  4. Analysis of Variable-Speed Operation of Drives with Single-Phase Machines

    Czech Academy of Sciences Publication Activity Database

    Chomát, Miroslav; Schreier, Luděk; Bendl, Jiří

    2007-01-01

    Roč. 52, č. 2 (2007), s. 139-147 ISSN 0001-7043 R&D Projects: GA ČR GA102/06/0215 Institutional research plan: CEZ:AV0Z20570509 Keywords : single-phase machines * induction machines * variable-speed drives Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  5. Biomechanical effects of different vertebral heights after augmentation of osteoporotic vertebral compression fracture: a three-dimensional finite element analysis.

    Science.gov (United States)

    Zhao, Wen-Tao; Qin, Da-Ping; Zhang, Xiao-Gang; Wang, Zhi-Peng; Tong, Zun

    2018-02-08

    Clinical results have shown that different vertebral heights have been restored post-augmentation of osteoporotic vertebral compression fractures (OVCFs) and the treatment results are consistent. However, no significant results regarding biomechanical effects post-augmentation have been found with different types of vertebral deformity or vertebral heights by biomechanical analysis. Therefore, the present study aimed to investigate the biomechanical effects between different vertebral heights of OVCFs before and after augmentation using three-dimensional finite element analysis. Four patients with OVCFs of T12 underwent computed tomography (CT) of the T11-L1 levels. The CT images were reconstructed as simulated three-dimensional finite-element models of the T11-L1 levels (before and after the T12 vertebra was augmented with cement). Four different kinds of vertebral height models included Genant semi-quantitative grades 0, 1, 2, and 3, which simulated unilateral augmentation. These models were assumed to represent vertical compression and flexion, left flexion, and right flexion loads, and the von Mises stresses of the T12 vertebral body were assessed under different vertebral heights before and after bone cement augmentation. Data showed that the von Mises stresses significantly increased under four loads of OVCFs of the T12 vertebral body before the operation from grade 0 to grade 3 vertebral heights. The maximum stress of grade 3 vertebral height pre-augmentation was produced at approximately 200%, and at more than 200% for grade 0. The von Mises stresses were significantly different between different vertebral heights preoperatively. The von Mises stresses of the T12 vertebral body significantly decreased in four different loads and at different vertebral body heights (grades 0-3) after augmentation. There was no significant difference between the von Mises stresses of grade 0, 1, and 3 vertebral heights postoperatively. The von Mises stress significantly

  6. A three-dimensional multivariate image processing technique for the analysis of FTIR spectroscopic images of multiple tissue sections

    Directory of Open Access Journals (Sweden)

    Evans Corey J

    2006-10-01

    Full Text Available Abstract Background Three-dimensional (3D multivariate Fourier Transform Infrared (FTIR image maps of tissue sections are presented. A villoglandular adenocarcinoma from a cervical biopsy with a number of interesting anatomical features was used as a model system to demonstrate the efficacy of the technique. Methods Four FTIR images recorded using a focal plane array detector of adjacent tissue sections were stitched together using a MATLAB® routine and placed in a single data matrix for multivariate analysis using Cytospec™. Unsupervised Hierarchical Cluster Analysis (UHCA was performed simultaneously on all 4 sections and 4 clusters plotted. The four UHCA maps were then stacked together and interpolated with a box function using SCIRun software. Results The resultant 3D-images can be rotated in three-dimensions, sliced and made semi-transparent to view the internal structure of the tissue block. A number of anatomical and histopathological features including connective tissue, red blood cells, inflammatory exudate and glandular cells could be identified in the cluster maps and correlated with Hematoxylin & Eosin stained sections. The mean extracted spectra from individual clusters provide macromolecular information on tissue components. Conclusion 3D-multivariate imaging provides a new avenue to study the shape and penetration of important anatomical and histopathological features based on the underlying macromolecular chemistry and therefore has clear potential in biology and medicine.

  7. A three-dimensional multivariate image processing technique for the analysis of FTIR spectroscopic images of multiple tissue sections.

    Science.gov (United States)

    Wood, Bayden R; Bambery, Keith R; Evans, Corey J; Quinn, Michael A; McNaughton, Don

    2006-10-03

    Three-dimensional (3D) multivariate Fourier Transform Infrared (FTIR) image maps of tissue sections are presented. A villoglandular adenocarcinoma from a cervical biopsy with a number of interesting anatomical features was used as a model system to demonstrate the efficacy of the technique. Four FTIR images recorded using a focal plane array detector of adjacent tissue sections were stitched together using a MATLAB routine and placed in a single data matrix for multivariate analysis using Cytospec. Unsupervised Hierarchical Cluster Analysis (UHCA) was performed simultaneously on all 4 sections and 4 clusters plotted. The four UHCA maps were then stacked together and interpolated with a box function using SCIRun software. The resultant 3D-images can be rotated in three-dimensions, sliced and made semi-transparent to view the internal structure of the tissue block. A number of anatomical and histopathological features including connective tissue, red blood cells, inflammatory exudate and glandular cells could be identified in the cluster maps and correlated with Hematoxylin & Eosin stained sections. The mean extracted spectra from individual clusters provide macromolecular information on tissue components. 3D-multivariate imaging provides a new avenue to study the shape and penetration of important anatomical and histopathological features based on the underlying macromolecular chemistry and therefore has clear potential in biology and medicine.

  8. Three-dimensional finite element analysis of zirconia all-ceramic cantilevered fixed partial dentures with different framework designs.

    Science.gov (United States)

    Miura, Shoko; Kasahara, Shin; Yamauchi, Shinobu; Egusa, Hiroshi

    2017-06-01

    The purpose of this study were: to perform stress analyses using three-dimensional finite element analysis methods; to analyze the mechanical stress of different framework designs; and to investigate framework designs that will provide for the long-term stability of both cantilevered fixed partial dentures (FPDs) and abutment teeth. An analysis model was prepared for three units of cantilevered FPDs that assume a missing mandibular first molar. Four types of framework design (Design 1, basic type; Design 2, framework width expanded buccolingually by 2 mm; Design 3, framework height expanded by 0.5 mm to the occlusal surface side from the end abutment to the connector area; and Design 4, a combination of Designs 2 and 3) were created. Two types of framework material (yttrium-oxide partially stabilized zirconia and a high precious noble metal gold alloy) and two types of abutment material (dentin and brass) were used. In the framework designs, Design 1 exhibited the highest maximum principal stress value for both zirconia and gold alloy. In the abutment tooth, Design 3 exhibited the highest maximum principal stress value for all abutment teeth. In the present study, Design 4 (the design with expanded framework height and framework width) could contribute to preventing the concentration of stress and protecting abutment teeth. © 2017 Eur J Oral Sci.

  9. Xlink Analyzer: software for analysis and visualization of cross-linking data in the context of three-dimensional structures.

    Science.gov (United States)

    Kosinski, Jan; von Appen, Alexander; Ori, Alessandro; Karius, Kai; Müller, Christoph W; Beck, Martin

    2015-03-01

    Structural characterization of large multi-subunit protein complexes often requires integrating various experimental techniques. Cross-linking mass spectrometry (XL-MS) identifies proximal protein residues and thus is increasingly used to map protein interactions and determine the relative orientation of subunits within the structure of protein complexes. To fully adapt XL-MS as a structure characterization technique, we developed Xlink Analyzer, a software tool for visualization and analysis of XL-MS data in the context of the three-dimensional structures. Xlink Analyzer enables automatic visualization of cross-links, identifies cross-links violating spatial restraints, calculates violation statistics, maps chemically modified surfaces, and allows interactive manipulations that facilitate analysis of XL-MS data and aid designing new experiments. We demonstrate these features by mapping interaction sites within RNA polymerase I and the Rvb1/2 complex. Xlink Analyzer is implemented as a plugin to UCSF Chimera, a standard structural biology software tool, and thus enables seamless integration of XL-MS data with, e.g. fitting of X-ray structures to EM maps. Xlink Analyzer is available for download at http://www.beck.embl.de/XlinkAnalyzer.html. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Three-Dimensional Analysis of Nuclear Size, Shape and Displacement in Clover Root Cap Statocytes from Space and a Clinostat

    Science.gov (United States)

    Smith, J.D.; Todd, P. W.; Staehelin, L. A.; Holton, Emily (Technical Monitor)

    1997-01-01

    Under normal (l-g) conditions the statocytes of root caps have a characteristic polarity with the nucleus in tight association with the proximal cell wall; but, in altered gravity environments including microgravity (mu-g) and the clinostat (c-g) movement of the nucleus away from the proximal cell wall is not uncommon. To further understand the cause of gravity-dependent nuclear displacement in statocytes, three-dimensional cell reconstruction techniques were used to precisely measure the volumes, shapes, and positions of nuclei in white clover (Trifolium repens) flown in space and rotated on a clinostat. Seeds were germinated and grown for 72 hours aboard the Space Shuttle (STS-63) in the Fluid Processing Apparatus (BioServe Space Technologies, Univ. of Colorado, Boulder). Clinorotation experiments were performed on a two-axis clinostat (BioServe). Computer reconstruction of selected groups of statocytes were made from serial sections (0.5 microns thick) using the ROSS (Reconstruction Of Serial Sections) software package (Biocomputation Center, NASA Ames Research Center). Nuclei were significantly displaced from the tops of cells in mu-g (4.2 +/- 1.0 microns) and c-g (4.9 +/- 1.4 microns) when compared to l-g controls (3.4 +/- 0.8 gm); but, nuclear volume (113 +/- 36 cu microns, 127 +/- 32 cu microns and 125 +/- 28 cu microns for l-g, mu-g and c-g respectively) and the ratio of nuclear volume to cell volume (4.310.7%, 4.211.0% and 4.911.4% respectively) were not significantly dependent on gravity treatment (ANOVA; alpha = 0.05). Three-dimensional analysis of nuclear shape and proximity to the cell wall, however, showed that nuclei from l-g controls appeared ellipsoidal while those from space and the clinostat were more spherically shaped. This change in nuclear shape may be responsible for its displacement under altered gravity conditions. Since the cytoskeleton is known to affect nuclear polarity in root cap statocytes, those same cytoskeletal elements could also

  11. ProMoIJ: A new tool for automatic three-dimensional analysis of microglial process motility.

    Science.gov (United States)

    Paris, Iñaki; Savage, Julie C; Escobar, Laura; Abiega, Oihane; Gagnon, Steven; Hui, Chin-Wai; Tremblay, Marie-Ève; Sierra, Amanda; Valero, Jorge

    2018-04-01

    Microglia, the immune cells of the central nervous system, continuously survey the brain to detect alterations and maintain tissue homeostasis. The motility of microglial processes is indicative of their surveying capacity in normal and pathological conditions. The gold standard technique to study motility involves the use of two-photon microscopy to obtain time-lapse images from brain slices or the cortex of living animals. This technique generates four dimensionally-coded images which are analyzed manually using time-consuming, non-standardized protocols. Microglial process motility analysis is frequently performed using Z-stack projections with the consequent loss of three-dimensional (3D) information. To overcome these limitations, we developed ProMoIJ, a pack of ImageJ macros that perform automatic motility analysis of cellular processes in 3D. The main core of ProMoIJ is formed by two macros that assist the selection of processes, automatically reconstruct their 3D skeleton, and analyze their motility (process and tip velocity). Our results show that ProMoIJ presents several key advantages compared with conventional manual analysis: (1) reduces the time required for analysis, (2) is less sensitive to experimenter bias, and (3) is more robust to varying numbers of processes analyzed. In addition, we used ProMoIJ to demonstrate that commonly performed 2D analysis underestimates microglial process motility, to reveal that only cells adjacent to a laser injured area extend their processes toward the lesion site, and to demonstrate that systemic inflammation reduces microglial process motility. ProMoIJ is a novel, open-source, freely-available tool which standardizes and accelerates the time-consuming labor of 3D analysis of microglial process motility. © 2017 Wiley Periodicals, Inc.

  12. Design and analysis of linear oscillatory single-phase permanent magnet generator for free-piston stirling engine systems

    OpenAIRE

    Jeong-Man Kim; Jang-Young Choi; Kyu-Seok Lee; Sung-Ho Lee

    2017-01-01

    This study focuses on the design and analysis of a linear oscillatory single-phase permanent magnet generator for free-piston stirling engine (FPSE) systems. In order to implement the design of linear oscillatory generator (LOG) for suitable FPSEs, we conducted electromagnetic analysis of LOGs with varying design parameters. Then, detent force analysis was conducted using assisted PM. Using the assisted PM gave us the advantage of using mechanical strength by detent force. To improve the effi...

  13. Three Dimensional Checkerboard Synergy Analysis of Colistin, Meropenem, Tigecycline against Multidrug-Resistant Clinical Klebsiella pneumonia Isolates.

    Science.gov (United States)

    Stein, Claudia; Makarewicz, Oliwia; Bohnert, Jürgen A; Pfeifer, Yvonne; Kesselmeier, Miriam; Hagel, Stefan; Pletz, Mathias W

    2015-01-01

    The spread of carbapenem-non-susceptible Klebsiella pneumoniae strains bearing different resistance determinants is a rising problem worldwide. Especially infections with KPC (Klebsiella pneumoniae carbapenemase) - producers are associated with high mortality rates due to limited treatment options. Recent clinical studies of KPC-blood stream infections revealed that colistin-based combination therapy with a carbapenem and/or tigecycline was associated with significantly decreased mortality rates when compared to colistin monotherapy. However, it remains unclear if these observations can be transferred to K. pneumoniae harboring other mechanisms of carbapenem resistance. A three-dimensional synergy analysis was performed to evaluate the benefits of a triple combination with meropenem, tigecycline and colistin against 20 K. pneumoniae isolates harboring different β-lactamases. To examine the mechanism behind the clinically observed synergistic effect, efflux properties and outer membrane porin (Omp) genes (ompK35 and ompK36) were also analyzed. Synergism was found for colistin-based double combinations for strains exhibiting high minimal inhibition concentrations against all of the three antibiotics. Adding a third antibiotic did not result in further increased synergistic effect in these strains. Antagonism did not occur. These results support the idea that colistin-based double combinations might be sufficient and the most effective combination partner for colistin should be chosen according to its MIC.

  14. The effect of implant and abutment diameter on peri-implant bone stress: A three-dimensional finite element analysis

    Directory of Open Access Journals (Sweden)

    Helen Mary Abraham

    2016-01-01

    Full Text Available Introduction: Load transfer mechanisms from the implant to surrounding bone and failure of osseointegrated implants are affected by implant geometry and mechanical properties of the site of placement as well as crestal bone resorption. Estimation of such effects allows for a correct design of implant geometry to minimize crestal bone loss and implant failure. Objectives: To evaluate the effect of implant and abutment diameter on stress distribution in the peri-implant area. Materials and Methods: Three-dimensional finite element models created to replicate completely osseointegrated endosseous titanium implants and were used for the purpose of stress analysis. Two study groups that consisting of a regular platform (RP group and narrow platform (NP group were used with a standard bone density and loaded using the ANSYS Workbench software to calculate the von Mises and Principal (maximum tensile and minimum compressive stress. Results: The von Mises, compressive, and tensile stresses in the peri-implant bone were lower in the RP model compared to the NP model. Conclusion: RP model yielded a positive result with regard to lowering of peri-implant bone stress levels, in healthy as well as compromised bone qualities when compared to NP designs.

  15. Three-dimensional finite element analysis of stress distribution in composite resin cores with fiber posts of varying diameters.

    Science.gov (United States)

    Okamoto, Kazuhiko; Ino, Teruno; Iwase, Naoki; Shimizu, Eitaroh; Suzuki, Megumi; Satoh, Goh; Ohkawa, Shuji; Fujisawa, Masanori

    2008-01-01

    Using three-dimensional finite element analysis (3D-FEA), stress distributions in the remaining radicular tooth structure were investigated under the condition of varying diameters of fiber post for fiber post-reinforced composite resin cores (fiber post and core) in maxillary central incisors. Four 3D-FEA models were constructed: (1) fiber post (ø1.2, ø1.4, and ø1.6 mm) and composite resin core; and (2) gold-cast post and core. Maximum stresses in the tooth structure for fiber post and core were higher than that for gold-cast post and core. In the former models, stresses in the tooth structure as well as in the composite resin were slightly reduced with increase in fiber post diameter. These results thus suggested that to reduce stress in the remaining radicular tooth with a large coronal defect, it is recommended to accompany a composite resin core with a fiber post of a large diameter.

  16. Comparison of five different fixation techniques of sagittal split ramus osteotomy using three-dimensional finite elements analysis.

    Science.gov (United States)

    Sato, F R L; Asprino, L; Noritomi, P Y; da Silva, J V L; de Moraes, M

    2012-08-01

    The aim of this study was to compare the mechanical stress over hemimandible substrate and hardware after sagittal split ramus osteotomy (SSRO) fixed with five different techniques using three-dimensional (3D) finite element analysis. A 3D finite element model of a hemimandible was created and a 5mm advancement SSRO was simulated on a computer model. The model was fixed with five different techniques: 3 linear 60° screw arrangement; 3 linear 90° screw arrangement; 3 inverted L screw arrangement; 1 conventional miniplate; and 1 locking miniplate with four monocortical screws. Load was applied until 3mm displacement was reached and the results were compared with previous mechanical and photoelastic tests, thus analysing the mechanical stresses developed in the proximity of miniplates and screws and within the fixation system itself. The maximum principal stress values demonstrate a lower mechanical stress rate in bone and in the fixation system with the inverted L arrangement, followed by the linear 90° and linear 60° arrangements. The locking miniplate/screw system presented lower maximum principal stress and better stress distribution compared with the conventional system. Under the conditions tested, the reversed L arrangement provided the most favourable stress dissipation behaviour. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  17. Three Dimensional Checkerboard Synergy Analysis of Colistin, Meropenem, Tigecycline against Multidrug-Resistant Clinical Klebsiella pneumonia Isolates.

    Directory of Open Access Journals (Sweden)

    Claudia Stein

    Full Text Available The spread of carbapenem-non-susceptible Klebsiella pneumoniae strains bearing different resistance determinants is a rising problem worldwide. Especially infections with KPC (Klebsiella pneumoniae carbapenemase - producers are associated with high mortality rates due to limited treatment options. Recent clinical studies of KPC-blood stream infections revealed that colistin-based combination therapy with a carbapenem and/or tigecycline was associated with significantly decreased mortality rates when compared to colistin monotherapy. However, it remains unclear if these observations can be transferred to K. pneumoniae harboring other mechanisms of carbapenem resistance. A three-dimensional synergy analysis was performed to evaluate the benefits of a triple combination with meropenem, tigecycline and colistin against 20 K. pneumoniae isolates harboring different β-lactamases. To examine the mechanism behind the clinically observed synergistic effect, efflux properties and outer membrane porin (Omp genes (ompK35 and ompK36 were also analyzed. Synergism was found for colistin-based double combinations for strains exhibiting high minimal inhibition concentrations against all of the three antibiotics. Adding a third antibiotic did not result in further increased synergistic effect in these strains. Antagonism did not occur. These results support the idea that colistin-based double combinations might be sufficient and the most effective combination partner for colistin should be chosen according to its MIC.

  18. Automated three-dimensional reconstruction and morphological analysis of dendritic spines based on semi-supervised learning.

    Science.gov (United States)

    Shi, Peng; Huang, Yue; Hong, Jinsheng

    2014-05-01

    A dendritic spine is a small membranous protrusion from a neuron's dendrite that typically receives input from a single synapse of an axon. Recent research shows that the morphological changes of dendritic spines have a close relationship with some specific diseases. The distribution of different dendritic spine phenotypes is a key indicator of such changes. Therefore, it is necessary to classify detected spines with different phenotypes online. Since the dendritic spines have complex three dimensional (3D) structures, current neuron morphological analysis approaches cannot classify the dendritic spines accurately with limited features. In this paper, we propose a novel semi-supervised learning approach in order to perform the online morphological classification of dendritic spines. Spines are detected by a new approach based on wavelet transform in the 3D space. A small training data set is chosen from the detected spines, which has the spines labeled by the neurobiologists. The remaining spines are then classified online by the semi-supervised learning (SSL) approach. Experimental results show that our method can quickly and accurately analyze neuron images with modest human intervention.

  19. The three-dimensional elemental distribution based on the surface topography by confocal 3D-XRF analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Longtao; Qin, Min; Wang, Kai; Peng, Shiqi; Sun, Tianxi; Liu, Zhiguo [Beijing Normal University, College of Nuclear Science and Technology, Beijing (China); Lin, Xue [Northwest University, School of Cultural Heritage, Xi' an (China)

    2016-09-15

    Confocal three-dimensional micro-X-ray fluorescence (3D-XRF) is a good surface analysis technology widely used to analyse elements and elemental distributions. However, it has rarely been applied to analyse surface topography and 3D elemental mapping in surface morphology. In this study, a surface adaptive algorithm using the progressive approximation method was designed to obtain surface topography. A series of 3D elemental mapping analyses in surface morphology were performed in laboratories to analyse painted pottery fragments from the Majiayao Culture (3300-2900 BC). To the best of our knowledge, for the first time, sample surface topography and 3D elemental mapping were simultaneously obtained. Besides, component and depth analyses were also performed using synchrotron radiation confocal 3D-XRF and tabletop confocal 3D-XRF, respectively. The depth profiles showed that the sample has a layered structure. The 3D elemental mapping showed that the red pigment, black pigment, and pottery coat contain a large amount of Fe, Mn, and Ca, respectively. From the 3D elemental mapping analyses at different depths, a 3D rendering was obtained, clearly showing the 3D distributions of the red pigment, black pigment, and pottery coat. Compared with conventional 3D scanning, this method is time-efficient for analysing 3D elemental distributions and hence especially suitable for samples with non-flat surfaces. (orig.)

  20. Three-dimensional radiotherapy planning system for esophageal tumors: comparison of treatment techniques and analysis of probability of complications

    International Nuclear Information System (INIS)

    Justino, Pitagoras Baskara; Carvalho, Heloisa de Andrade; Ferauche, Debora; Ros, Renato

    2003-01-01

    Radiotherapy techniques for esophageal cancer were compared using a three-dimensional planning system. We studied the following treatment techniques used for a patient with squamous cell carcinoma of the middle third of the esophagus: two antero-posterior and two latero-lateral parallel opposed fields, three fields ('Y' and 'T'), and four fields ('X'). Dose-volume histograms were obtained considering spinal cord and lungs as organs at risk. Analysis was performed comparing doses in these organs as recommended by the Normal Tissue Complication Probability (NTCP) and Tumor Control Probability (TCP). When only the lungs were considered the best technique was two antero-posterior parallel opposed fields. The spinal cord was best protected using latero-lateral fields. We suggest the combination of at least two treatment techniques: antero-posterior fields with 'Y' or 'T' techniques, or latero-lateral fields in order to balance the doses in the lungs and the spinal cord. Another option may be the use of any of the three-field techniques during the whole treatment. (author)

  1. Three-dimensional analysis of somatic mitochondrial dynamics in fission-deficient injured motor neurons using FIB/SEM.

    Science.gov (United States)

    Tamada, Hiromi; Kiryu-Seo, Sumiko; Hosokawa, Hiroki; Ohta, Keisuke; Ishihara, Naotada; Nomura, Masatoshi; Mihara, Katsuyoshi; Nakamura, Kei-Ichiro; Kiyama, Hiroshi

    2017-08-01

    Mitochondria undergo morphological changes through fusion and fission for their quality control, which are vital for neuronal function. In this study, we examined three-dimensional morphologies of mitochondria in motor neurons under normal, nerve injured, and nerve injured plus fission-impaired conditions using the focused ion beam/scanning electron microscopy (FIB/SEM), because the FIB/SEM technology is a powerful tool to demonstrate both 3D images of whole organelle and the intra-organellar structure simultaneously. Crossing of dynamin-related protein 1 (Drp1) gene-floxed mice with neuronal injury-specific Cre driver mice, Atf3:BAC Tg mice, allowed for Drp1 ablation specifically in injured neurons. FIB/SEM analysis demonstrated that somatic mitochondrial morphologies in motor neurons were not altered before or after nerve injury. However, the fission impairment resulted in prominent somatic mitochondrial enlargement, which initially induced complex morphologies with round regions and long tubular processes, subsequently causing a decrease in the number of processes and further enlargement of the round regions, which eventually resulted in big spheroidal mitochondria without processes. The abnormal mitochondria exhibited several degradative morphologies: local or total cristae collapse, vacuolization, and mitophagy. These suggest that mitochondrial fission is crucial for maintaining mitochondrial integrity in injured motor neurons, and multiple forms of mitochondria degradation may accelerate neuronal degradation. © 2017 Wiley Periodicals, Inc.

  2. Three-Dimensional Finite Element Analysis of Phase Change Memory Cell with Thin TiO2 Film

    International Nuclear Information System (INIS)

    Yan, Liu; Zhi-Tang, Song; Yun, Ling; Song-Lin, Feng

    2010-01-01

    A thin TiO 2 layer inserted in a phase change memory (PCM) cell to form a deep sub-micro bottom electrode (DBE) is proposed and its electro-thermal characteristics are investigated with the three-dimensional finite element analysis. Compared with the conventional PCM cell with a SiN stop layer, the reset threshold current of the PCM cell with the TiO 2 layer is reduced from 1.8 mA to 1.2 mA and the ratio of the amorphous resistance and crystalline resistive increases from 65 to 100. The optimum thickness of the TiO 2 layer and the optimum height of DBE are 10 nm and 200 nm, respectively. Therefore, the PCM cell with the TiO 2 layer can decrease the programming power consumption and increase heating efficiency. The TiO 2 film is a better candidate for the SiN film in the PCM cell structure to prepare DBE and to reduce programming power in the reset operation. (cross-disciplinary physics and related areas of science and technology)

  3. A comparison between flexible electrogoniometers, inclinometers and three-dimensional video analysis system for recording neck movement.

    Science.gov (United States)

    Carnaz, Letícia; Moriguchi, Cristiane S; de Oliveira, Ana Beatriz; Santiago, Paulo R P; Caurin, Glauco A P; Hansson, Gert-Åke; Coury, Helenice J C Gil

    2013-11-01

    This study compared neck range of movement recording using three different methods goniometers (EGM), inclinometers (INC) and a three-dimensional video analysis system (IMG) in simultaneous and synchronized data collection. Twelve females performed neck flexion-extension, lateral flexion, rotation and circumduction. The differences between EGM, INC, and IMG were calculated sample by sample. For flexion-extension movement, IMG underestimated the amplitude by 13%; moreover, EGM showed a crosstalk of about 20% for lateral flexion and rotation axes. In lateral flexion movement, all systems showed similar amplitude and the inter-system differences were moderate (4-7%). For rotation movement, EGM showed a high crosstalk (13%) for flexion-extension axis. During the circumduction movement, IMG underestimated the amplitude of flexion-extension movements by about 11%, and the inter-system differences were high (about 17%) except for INC-IMG regarding lateral flexion (7%) and EGM-INC regarding flexion-extension (10%). For application in workplace, INC presents good results compared to IMG and EGM though INC cannot record rotation. EGM should be improved in order to reduce its crosstalk errors and allow recording of the full neck range of movement. Due to non-optimal positioning of the cameras for recording flexion-extension, IMG underestimated the amplitude of these movements. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  4. Stress Distribution in Single Dental Implant System: Three-Dimensional Finite Element Analysis Based on an In Vitro Experimental Model.

    Science.gov (United States)

    Rezende, Carlos Eduardo Edwards; Chase-Diaz, Melody; Costa, Max Doria; Albarracin, Max Laurent; Paschoeto, Gabriela; Sousa, Edson Antonio Capello; Rubo, José Henrique; Borges, Ana Flávia Sanches

    2015-10-01

    This study aimed to analyze the stress distribution in single implant system and to evaluate the compatibility of an in vitro model with finite element (FE) model. The in vitro model consisted of Brånemark implant; multiunit set abutment of 5 mm height; metal-ceramic screw-retained crown, and polyurethane simulating the bone. Deformations were recorded in the peri-implant region in the mesial and distal aspects, after an axial 300 N load application at the center of the occlusal aspect of the crown, using strain gauges. This in vitro model was scanned with micro CT to design a three-dimensional FE model and the strains in the peri-implant bone region were registered to check the compatibility between both models. The FE model was used to evaluate stress distribution in different parts of the system. The values obtained from the in vitro model (20-587 με) and the finite element analysis (81-588 με) showed agreement among them. The highest stresses because of axial and oblique load, respectively were 5.83 and 40 MPa for the cortical bone, 55 and 1200 MPa for the implant, and 80 and 470 MPa for the abutment screw. The FE method proved to be effective for evaluating the deformation around single implant. Oblique loads lead to higher stress concentrations.

  5. Test-retest reliability and minimal detectable change of three-dimensional gait analysis in chronic low back pain patients.

    Science.gov (United States)

    Fernandes, Rita; Armada-da-Silva, Paulo; Pool-Goudzwaard, Annelies L; Moniz-Pereira, Vera; Veloso, António P

    2015-10-01

    Three-dimensional gait analysis (3DGA) can provide detailed data on gait impairment in chronic low back pain (CLBP) patients. However, data about reliability and measurement error of 3DGA in this population is lacking. The aim of this study is to investigate test-retest reliability and minimal detectable change of 3DGA in a sample of CLBP patients. A test-retest study was conducted with a sample of 14 CLBP patients that underwent two biomechanical gait assessments with an interval of 7.6 ± 1.8 days. Anthropometric and time-distance parameters, as well as peak values for lower limb and trunk joint angles and moments, were computed. Intraclass Correlation Coefficient (ICC3,k) and their 95% confidence intervals were calculated. Standard error of measurement (SEM), minimal detectable change (MDC) and limits of agreement (LOA) were also estimated. The obtained ICC values demonstrate high test-retest reliability for most joint angles, with low SEM ( 0.86). The results of this study show high test-retest reliability for lower limb and trunk joint angles, and time-distance parameters during gait in CLBP individuals, together with a low measurement error. These results also support the use of this method in clinical assessments of CLBP patients' gait patterns. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Three-dimensional analysis and classification of arteries in the skin and subcutaneous adipofascial tissue by computer graphics imaging.

    Science.gov (United States)

    Nakajima, H; Minabe, T; Imanishi, N

    1998-09-01

    To develop new types of surgical flaps that utilize portions of the skin and subcutaneous tissue (e.g., a thin flap or an adipofascial flap), three-dimensional investigation of the vasculature in the skin and subcutaneous tissue has been anticipated. In the present study, total-body arterial injection and three-dimensional imaging of the arteries by computer graphics were performed. The full-thickness skin and subcutaneous adipofascial tissue samples, which were obtained from fresh human cadavers injected with radio-opaque medium, were divided into three distinct layers. Angiograms of each layer were introduced into a personal computer to construct three-dimensional images. On a computer monitor, each artery was shown color-coded according to the three portions: the deep adipofascial layer, superficial adipofascial layer, and dermis. Three-dimensional computerized images of each artery in the skin and subcutaneous tissue revealed the components of each vascular plexus and permitted their classification into six types. The distribution of types in the body correlated with the tissue mobility of each area. Clinically, appreciation of the three-dimensional structure of the arteries allowed the development of several new kinds of flaps.

  7. Study of structural attachments of a pool type LMFBR vessel through seismic analysis of a simplified three dimensional finite element model

    International Nuclear Information System (INIS)

    Ahmed, H.; Ma, D.

    1979-01-01

    A simplified three dimensional finite element model of a pool type LMFBR in conjunction with the computer program ANSYS is developed and scoping results of seismic analysis are produced. Through this study various structural attachments of a pool type LMFBR like the reactor vessel skirt support, the pump support and reactor shell-support structure interfaces are studied. This study also provides some useful results on equivalent viscous damping approach and some improvements to the treatment of equivalent viscous damping are recommended. This study also sets forth pertinent guidelines for detailed three dimensional finite element seismic analysis of pool type LMFBR

  8. Predicting Peri-Device Leakage of Left Atrial Appendage Device Closure Using Novel Three-Dimensional Geometric CT Analysis.

    Science.gov (United States)

    Chung, Hyemoon; Jeon, Byunghwan; Chang, Hyuk-Jae; Han, Dongjin; Shim, Hackjoon; Cho, In Jeong; Shim, Chi Young; Hong, Geu-Ru; Kim, Jung-Sun; Jang, Yangsoo; Chung, Namsik

    2015-12-01

    After left atrial appendage (LAA) device closure, peri-device leakage into the LAA persists due to incomplete occlusion. We hypothesized that pre-procedural three-dimensional (3D) geometric analysis of the interatrial septum (IAS) and LAA orifice can predict this leakage. We investigated the predictive parameters of LAA device closure obtained from baseline cardiac computerized tomography (CT) using a novel 3D analysis system. We conducted a retrospective study of 22 patients who underwent LAA device closure. We defined peri-device leakage as the presence of a Doppler signal inside the LAA after device deployment (group 2, n = 5) compared with patients without peri-device leakage (group 1, n = 17). Conventional parameters were measured by cardiac CT. Angles θ and φ were defined between the IAS plane and the line, linking the LAA orifice center and foramen ovale. Group 2 exhibited significantly better left atrial (LA) function than group 1 (p = 0.031). Pre-procedural θ was also larger in this group (41.9° vs. 52.3°, p = 0.019). The LAA cauliflower-type morphology was more common in group 2. Overall, the patients' LA reserve significantly decreased after the procedure (21.7 mm(3) vs. 17.8 mm(3), p = 0.035). However, we observed no significant interval changes in pre- and post-procedural values of θ and φ in either group (all p > 0.05). Angles between the IAS and LAA orifice might be a novel anatomical parameter for predicting peri-device leakage after LAA device closure. In addition, 3D CT analysis of the LA and LAA orifice could be used to identify clinically favorable candidates for LAA device closure.

  9. Comparison of radiograph-based texture analysis and bone mineral density with three-dimensional microarchitecture of trabecular bone.

    Science.gov (United States)

    Ranjanomennahary, P; Ghalila, S Sevestre; Malouche, D; Marchadier, A; Rachidi, M; Benhamou, Cl; Chappard, C

    2011-01-01

    Hip fracture is a serious health problem and textural methods are being developed to assess bone quality. The authors aimed to perform textural analysis at femur on high-resolution digital radiographs compared to three-dimensional (3D) microarchitecture comparatively to bone mineral density. Sixteen cadaveric femurs were imaged with an x-ray device using a C-MOS sensor. One 17 mm square region of interest (ROI) was selected in the femoral head (FH) and one in the great trochanter (GT). Two-dimensional (2D) textural features from the co-occurrence matrices were extracted. Site-matched measurements of bone mineral density were performed. Inside each ROI, a 16 mm diameter core was extracted. Apparent density (Dapp) and bone volume proportion (BV/TV(Arch)) were measured from a defatted bone core using Archimedes' principle. Microcomputed tomography images of the entire length of the core were obtained (Skyscan 1072) at 19.8 microm of resolution and usual 3D morphometric parameters were computed on the binary volume after calibration from BV/TV(Arch). Then, bone surface/bone volume, trabecular thickness, trabecular separation, and trabecular number were obtained by direct methods without model assumption and the structure model index was calculated. In univariate analysis, the correlation coefficients between 2D textural features and 3D morphological parameters reached 0.83 at the FH and 0.79 at the GT. In multivariate canonical correlation analysis, coefficients of the first component reached 0.95 at the FH and 0.88 at the GT. Digital radiographs, widely available and economically viable, are an alternative method for evaluating bone microarchitectural structure.

  10. Joint analysis of three-dimensional anatomical and functional data considering the cerebral post mortem imaging in rodents

    International Nuclear Information System (INIS)

    Dubois, Albertine

    2008-01-01

    The recent development of dedicated small animal anatomical (MRI) and functional (micro-PET) scanners has opened up the possibility of performing repeated functional in vivo studies in the same animal as the longitudinal follow-up of cerebral glucose metabolism. However, these systems still suffer technical limitations including a limited sensitivity and a reduced spatial resolution. Hence, autoradiography and histological studies remain the reference and widely used techniques for biological studies in small animals. The major disadvantage of these post mortem imaging techniques is that they require brain tissue sectioning, entailing the production of large numbers (up to several hundreds) of serial sections and the inherent loss of three-dimensional (3D) spatial consistency. The first step towards improving the analysis of this post mortem information was the development of reliable, automated procedures for the 3D reconstruction of the whole brain sections. We first developed an optimized data acquisition from large numbers of post mortem data (2D sections and block-face photographs). Then, we proposed different strategies of 3D reconstruction of the corresponding volumes. We also addressed the histological to autoradiographic sections and to block-face photographs co-registration problem (the photographic volume is intrinsically spatially consistent). These developments were essential for the 3D reconstruction but also enabled the evaluation of different methods of functional data analysis, from the most straightforward (manual delineation of regions of interest) to the most automated (Statistical Parametric Mapping-like approaches for group analysis). Two biological applications were carried out: visual stimulation in rats and cerebral metabolism in a transgenic mouse model of Alzheimer's disease. One perspective of this work is to match reconstructed post mortem data with in vivo images of the same animal. (author) [fr

  11. Effect of Oval Posts on Stress Distribution in Endodontically Treated Teeth: A Three-Dimensional Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Mojtaba Mahmoodi

    2017-09-01

    Full Text Available Introduction: In post-core crown restorations, the use of prefabricated composite posts concentrate stress at the cervical region and the use of metal posts (prefabricated and customized posts concentrates stress at the interfaces. Fiber reinforced composite posts (FRCs with oval cross-section (oval posts were proposed for post-core crown restorations to reduce the stress levels at the cervical region. The aim of the present study was to investigate the impact of oval cross-section composite posts on stress distribution of premolar with oval-shaped canal by using three-dimensional (3D finite element analysis. Materials and Methods: An extracted premolar tooth was mounted, sectioned, and photographed to create a 3D model. The surrounding tissues of the tooth, periodontal ligament, as well as cortical and trabecular bones were modeled. Seven taper posts with two different cross-section geometries (circular and oval shapes were modeled, as well. Then, the effect of post geometry, post material (carbon fiber and fiberglass, and cement material were investigated by 3D finite element analysis and the stress distribution results were compared. Results: In all the models, the highest stress levels of the dentin were accumulated at the coronal third of the root, and the highest stress levels at the bonding layers were accumulated at the cervical margin. Narrow circular posts induced the highest stress levels, whereas the stress levels were reduced by using thick oval posts. Application of elastic cement reduces the stress at the bonding layers but increases stress at the dentin. Conclusion: Finite element analysis showed that prefabricated oval posts are superior to traditional circular ones. The use of cement with low elastic modulus reduces the risk of debonding but raises the risk of root fracture.

  12. Three-dimensional single-channel thermal analysis of fully ceramic microencapsulated fuel via two-temperature homogenized model

    International Nuclear Information System (INIS)

    Lee, Yoonhee; Cho, Nam Zin

    2014-01-01

    Highlights: • Two-temperature homogenized model is applied to thermal analysis of fully ceramic microencapsulated (FCM) fuel. • Based on the results of Monte Carlo calculation, homogenized parameters are obtained. • 2-D FEM/1-D FDM hybrid method for the model is used to obtain 3-D temperature profiles. • The model provides the fuel-kernel and SiC matrix temperatures separately. • Compared to UO 2 fuel, the FCM fuel shows ∼560 K lower maximum temperatures at steady- and transient states. - Abstract: The fully ceramic microencapsulated (FCM) fuel, one of the accident tolerant fuel (ATF) concepts, consists of TRISO particles randomly dispersed in SiC matrix. This high heterogeneity in compositions leads to difficulty in explicit thermal calculation of such a fuel. For thermal analysis of a fuel element of very high temperature reactors (VHTRs) which has a similar configuration to FCM fuel, two-temperature homogenized model was recently proposed by the authors. The model was developed using particle transport Monte Carlo method for heat conduction problems. It gives more realistic temperature profiles, and provides the fuel-kernel and graphite temperatures separately. In this paper, we apply the two-temperature homogenized model to three-dimensional single-channel thermal analysis of the FCM fuel element for steady- and transient-states using 2-D FEM/1-D FDM hybrid method. In the analyses, we assume that the power distribution is uniform in radial direction at steady-state and that in axial direction it is in the form of cosine function for simplicity. As transient scenarios, we consider (i) coolant inlet temperature transient, (ii) inlet mass flow rate transient, and (iii) power transient. The results of analyses are compared to those of conventional UO 2 fuel having the same geometric dimension and operating conditions

  13. Three-dimensional construction and omni-directional rolling analysis of a novel frame-like lattice modular robot

    Science.gov (United States)

    Ding, Wan; Wu, Jianxu; Yao, Yan'an

    2015-07-01

    Lattice modular robots possess diversity actuation methods, such as electric telescopic rod, gear rack, magnet, robot arm, etc. The researches on lattice modular robots mainly focus on their hardware descriptions and reconfiguration algorithms. Meanwhile, their design architectures and actuation methods perform slow telescopic and moving speeds, relative low actuation force verse weight ratio, and without internal space to carry objects. To improve the mechanical performance and reveal the locomotion and reconfiguration binary essences of the lattice modular robots, a novel cube-shaped, frame-like, pneumatic-based reconfigurable robot module called pneumatic expandable cube(PE-Cube) is proposed. The three-dimensional(3D) expanding construction and omni-directional rolling analysis of the constructed robots are the main focuses. The PE-Cube with three degrees of freedom(DoFs) is assembled by replacing the twelve edges of a cube with pneumatic cylinders. The proposed symmetric construction condition makes the constructed robots possess the same properties in each supporting state, and a binary control strategy cooperated with binary actuator(pneumatic cylinder) is directly adopted to control the PE-Cube. Taking an eight PE-Cube modules' construction as example, its dynamic rolling simulation, static rolling condition, and turning gait are illustrated and discussed. To testify telescopic synchronization, respond speed, locomotion feasibility, and repeatability and reliability of hardware system, an experimental pneumatic-based robotic system is built and the rolling and turning experiments of the eight PE-Cube modules' construction are carried out. As an extension, the locomotion feasibility of a thirty-two PE-Cube modules' construction is analyzed and proved, including dynamic rolling simulation, static rolling condition, and dynamic analysis in free tipping process. The proposed PE-Cube module, construction method, and locomotion analysis enrich the family of the

  14. Influence of Spatial Resolution in Three-dimensional Cine Phase Contrast Magnetic Resonance Imaging on the Accuracy of Hemodynamic Analysis.

    Science.gov (United States)

    Fukuyama, Atsushi; Isoda, Haruo; Morita, Kento; Mori, Marika; Watanabe, Tomoya; Ishiguro, Kenta; Komori, Yoshiaki; Kosugi, Takafumi

    2017-10-10

    We aim to elucidate the effect of spatial resolution of three-dimensional cine phase contrast magnetic resonance (3D cine PC MR) imaging on the accuracy of the blood flow analysis, and examine the optimal setting for spatial resolution using flow phantoms. The flow phantom has five types of acrylic pipes that represent human blood vessels (inner diameters: 15, 12, 9, 6, and 3 mm). The pipes were fixed with 1% agarose containing 0.025 mol/L gadolinium contrast agent. A blood-mimicking fluid with human blood property values was circulated through the pipes at a steady flow. Magnetic resonance (MR) images (three-directional phase images with speed information and magnitude images for information of shape) were acquired using the 3-Tesla MR system and receiving coil. Temporal changes in spatially-averaged velocity and maximum velocity were calculated using hemodynamic analysis software. We calculated the error rates of the flow velocities based on the volume flow rates measured with a flowmeter and examined measurement accuracy. When the acrylic pipe was the size of the thoracicoabdominal or cervical artery and the ratio of pixel size for the pipe was set at 30% or lower, spatially-averaged velocity measurements were highly accurate. When the pixel size ratio was set at 10% or lower, maximum velocity could be measured with high accuracy. It was difficult to accurately measure maximum velocity of the 3-mm pipe, which was the size of an intracranial major artery, but the error for spatially-averaged velocity was 20% or less. Flow velocity measurement accuracy of 3D cine PC MR imaging for pipes with inner sizes equivalent to vessels in the cervical and thoracicoabdominal arteries is good. The flow velocity accuracy for the pipe with a 3-mm-diameter that is equivalent to major intracranial arteries is poor for maximum velocity, but it is relatively good for spatially-averaged velocity.

  15. Dentine morphology of Atapuerca-Sima de los Huesos lower molars: Evolutionary implications through three-dimensional geometric morphometric analysis.

    Science.gov (United States)

    Hanegraef, Hester; Martinón-Torres, María; Martínez de Pinillos, Marina; Martín-Francés, Laura; Vialet, Amélie; Arsuaga, Juan Luis; Bermúdez de Castro, José María

    2018-02-08

    This study aims to explore the affinities of the Sima de los Huesos (SH) population in relation to Homo neanderthalensis, Arago, and early and contemporary Homo sapiens. By characterizing SH intra-population variation, we test current models to explain the Neanderthal origins. Three-dimensional reconstructions of dentine surfaces of lower first and second molars were produced by micro-computed tomography. Landmarks and sliding semilandmarks were subjected to generalized Procrustes analysis and principal components analysis. SH is often similar in shape to Neanderthals, and both groups are generally discernible from Homo sapiens. For example, the crown height of SH and Neanderthals is lower than for modern humans. Differences in the presence of a mid-trigonid crest are also observed, with contemporary Homo sapiens usually lacking this feature. Although SH and Neanderthals show strong affinities, they can be discriminated based on certain traits. SH individuals are characterized by a lower intra-population variability, and show a derived dental reduction in lower second molars compared to Neanderthals. SH also differs in morphological features from specimens that are often classified as Homo heidelbergensis, such as a lower crown height and less pronounced mid-trigonid crest in the Arago fossils. Our results are compatible with the idea that multiple evolutionary lineages or populations coexisted in Europe during the Middle Pleistocene, with the SH paradigm phylogenetically closer to Homo neanderthalensis. Further research could support the possibility of SH as a separate taxon. Alternatively, SH could be a subspecies of Neanderthals, with the variability of this clade being remarkably higher than previously thought. © 2018 Wiley Periodicals, Inc.

  16. Three-dimensional arrangement of β-tricalcium phosphate granules evaluated by microcomputed tomography and fractal analysis.

    Science.gov (United States)

    Ndiaye, Mambaye; Terranova, Lisa; Mallet, Romain; Mabilleau, Guillaume; Chappard, Daniel

    2015-01-01

    The macrophysical properties of granular biomaterials used to fill bone defects have rarely been considered. Granules of a given biomaterial occupy three-dimensional (3-D) space when packed together and create a macroporosity suitable for the invasion of vascular and bone cells. Granules of β-tricalcium phosphate were prepared using polyurethane foam technology and increasing the amount of material powder in the slurry (10, 11, 15, 18, 21 and 25 g). After sintering, granules of 1000-2000 μm were prepared by sieving. They were analyzed morphologically by scanning electron microscopy and placed in polyethylene test tubes to produce 3-D scaffolds. Microcomputed tomography (microCT) was used to image the scaffolds and to determine porosity and fractal dimension in three dimensions. Two-dimensional sections of the microCT models were binarized and used to compute classical morphometric parameters describing porosity (interconnectivity index, strut analysis and star volumes) and fractal dimensions. In addition, two newly important fractal parameters (lacunarity and succolarity) were measured. Compression analysis of the stacks of granules was done. Porosity decreased as the amount of material in the slurry increased but non-linear relationships were observed between microarchitectural parameters describing the pores and porosity. Lacunarity increased in the series of granules but succolarity (reflecting the penetration of a fluid) was maximal in the 15-18 g groups and decreased noticeably in the 25 g group. The 3-D arrangement of biomaterial granules studied by these new fractal techniques allows the optimal formulation to be derived based on the lowest amount of material, suitable mechanical resistance during crushing and the creation of large interconnected pores. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Segmentation and Analysis of the Three-Dimensional Redistribution of Nuclear Components in Human Mesenchymal Stem Cells

    NARCIS (Netherlands)

    Vermolen, B.J.; Garini, Yuval; Young, Ian T.; Dirks, Roeland W.; Raz, Vered

    2008-01-01

    To better understand the impact of changes in nuclear architecture on nuclear functions, it is essential to quantitatively elucidate the three-dimensional organization of nuclear components using image processing tools. We have developed a novel image segmentation method, which involves a contrast

  18. The Impact of Three-Dimensional Computational Modeling on Student Understanding of Astronomy Concepts: A Qualitative Analysis. Research Report

    Science.gov (United States)

    Hansen, John; Barnett, Michael; MaKinster, James; Keating, Thomas

    2004-01-01

    In this study, we explore an alternate mode for teaching and learning the dynamic, three-dimensional (3D) relationships that are central to understanding astronomical concepts. To this end, we implemented an innovative undergraduate course in which we used inexpensive computer modeling tools. As the second of a two-paper series, this report…

  19. Real-time three-dimensional echocardiography: segmental analysis of the right ventricle in patients with repaired tetralogy of fallot

    NARCIS (Netherlands)

    van der Hulst, Annelies E.; Roest, Arno A. W.; Holman, Eduard R.; de Roos, Albert; Blom, Nico A.; Bax, Jeroen J.; Delgado, Victoria

    2011-01-01

    The accurate assessment of right ventricular (RV) function and dimensions has important prognostic implications in patients with repaired tetralogy of Fallot (ToF). Three-dimensional imaging is the preferred methodology to evaluate RV function. Novel postprocessing software applications to evaluate

  20. Transthoracic two-dimensional xPlane and three-dimensional echocardiographic analysis of the site of mitral valve prolapse

    NARCIS (Netherlands)

    J.S. Vletter-McGhie (Jackie); L.E. de Groot-de Laat (Lotte); B. Ren (Ben); W.B. Vletter (Wim); R. Frowijn (René); F.B. Oei (Frans); M.L. Geleijnse (Marcel)

    2015-01-01

    textabstractThis study sought to assess the value of two-dimensional (2D) transthoracic echocardiography (TTE), 2D xPlane imaging and three-dimensional (3D) TTE for the definition of the site and the extent of mitral valve (MV) prolapse. Fifty patients underwent transthoracic 2D, 2D xPlane and 3D

  1. Numerical Analysis of Three-Dimensional Natural Convection in a Closed Rectangular Cavity Under Conditions of Radiant Heating and Conjugate Heat Exchange

    Directory of Open Access Journals (Sweden)

    Nee Alexander E.

    2017-01-01

    Full Text Available The numerical simulation results of three-dimensional natural convection in a closed cavity were presented under conditions of the bottom horizontal solid-fluid interface radiant heating and conjugate heat exchange. Conservation equations of mass, momentum, and energy were formulated in terms of vorticity vector – vector potential – temperature dimensionless variables and solved by means of the finite difference method. It was found that the heat transfer process under study had a significant unsteady nature. According to the results of conjugate heat exchange integral analysis, it was shown that similar trends of mean Nusselt numbers versus dimensionless time were formed for both two and three dimensional problem formulations.

  2. Three-dimensional numerical analysis of hybrid heterojunction silicon wafer solar cells with heterojunction rear point contacts

    Directory of Open Access Journals (Sweden)

    Zhi Peng Ling

    2015-07-01

    Full Text Available This paper presents a three-dimensional numerical analysis of homojunction/heterojunction hybrid silicon wafer solar cells, featuring front-side full-area diffused homojunction contacts and rear-side heterojunction point contacts. Their device performance is compared with conventional full-area heterojunction solar cells as well as conventional diffused solar cells featuring locally diffused rear point contacts, for both front-emitter and rear-emitter configurations. A consistent set of simulation input parameters is obtained by calibrating the simulation program with intensity dependent lifetime measurements of the passivated regions and the contact regions of the various types of solar cells. We show that the best efficiency is obtained when a-Si:H is used for rear-side heterojunction point-contact formation. An optimization of the rear contact area fraction is required to balance between the gains in current and voltage and the loss in fill factor with shrinking rear contact area fraction. However, the corresponding optimal range for the rear-contact area fraction is found to be quite large (e.g. 20-60 % for hybrid front-emitter cells. Hybrid rear-emitter cells show a faster drop in the fill factor with decreasing rear contact area fraction compared to front-emitter cells, stemming from a higher series resistance contribution of the rear-side a-Si:H(p+ emitter compared to the rear-side a-Si:H(n+ back surface field layer. Overall, we show that hybrid silicon solar cells in a front-emitter configuration can outperform conventional heterojunction silicon solar cells as well as diffused solar cells with rear-side locally diffused point contacts.

  3. Three-dimensional analysis of the occlusal plane related to the hamular-incisive-papilla occlusal plane in young adults.

    Science.gov (United States)

    Fu, P-S; Hung, C-C; Hong, J-M; Wang, J-C

    2007-02-01

    The planes which serve as references for cranium and face in dental clinical application included the occlusal plane, Frankfort plane, Camper's plane and hamular-incisive-papilla (HIP) plane. The HIP occlusal plane is a horizontal plane passing through the bilateral hamular notches and the incisive papilla (Dent Surv. 1975;51:60). The aim of this study was to estimate the relationship between the various occlusal planes and the HIP plane in Taiwanese young adults with approximately optimal occlusion. Study casts of 100 young adults (50 men and 50 women) were selected in this study. All market points on the maxillary casts were measured by a three-dimensional precise measuring device. The angular relationship between the four various occlusal planes and the HIP plane were investigated. The vertical distances between the cusp tips and incisal edges of maxillary teeth to the HIP plane were measured. Data were performed by the Statistic analysis software programme (JMP 4.02). The Student's t-test and Pearson's correlation test were used to test the statistical significance (P occlusal plane defined as the incisal edge of maxillary central incisor to mesiobuccal cusp tips of maxillary second molars had the smallest included angle with the HIP plane (2.61 +/- 0.81 degrees). The incisal edge of maxillary right central incisal to mesiopalatal cusp tips of maxillary first molars had the largest included angle with the HIP plane (7.72 +/- 1.60 degrees). The curve is drawn through the buccal cusp tips of maxillary teeth had better parallelism with the HIP plane.

  4. Quantitative three-dimensional computed tomography analysis of glenoid fracture patterns according to the AO/OTA classification.

    Science.gov (United States)

    ter Meulen, Dirk P; Janssen, Stein J; Hageman, Michiel G J S; Ring, David C

    2016-02-01

    This study measures the characteristics of glenoid fractures to determine if the AO Foundation and Orthopaedic Trauma Association (AO/OTA) classification captures the most common fracture patterns. The primary null hypothesis was that surface area and degree of fragmentation do not differ among the different fracture types. Secondarily, we tested if there was a relationship between high- vs. low-energy trauma and fracture classification. Three-dimensional models were created for a consecutive series of 53 fractures. The fracture classifications, the number of fragments, and the fragmented articular surface area were related to the type of injury. The difference of articular surface size and number of fragments among classification groups was analyzed with the Kruskal-Wallis test. There is a significant difference in fractured articular surface area among classification groups. Compared with transverse and multifragmented fractures, both anterior and posterior fractures involved significantly less of the articular surface area. High-energy trauma is associated with transverse and multifragmented fractures in 93% of the cases. It is associated with a greater number of fracture fragments and fracture of a larger percentage of the glenoid surface area, with a mean fractured surface of 60% for high-energy fractures and 25% for low-energy injuries. Quantitative 3-dimensional CT analysis confirms that the current AO/OTA classification adequately characterizes and discriminates glenoid fracture patterns. The classification groups are related to the fragmented articular surface area and the number of fragments. Also, the mechanism of injury is related to the classification group, which supports the clinical relevance of the classification. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  5. Correlation between cuspal inclination and tooth cracked syndrome: a three-dimensional reconstruction measurement and finite element analysis.

    Science.gov (United States)

    Qian, Yunzhu; Zhou, Xuefeng; Yang, Jianxin

    2013-06-01

    This paper explored the correlation between cuspal inclination and tooth cracked syndrome by measuring and reconstructing the cuspal inclinations of cracked maxillary first molars through three-dimensional (3D) finite element analysis (FEA). The cuspal inclinations of 11 maxillary left first molars with cracked tooth syndrome and 22 intact controls were measured by 3D reconstruction. The mean values of each group were used to construct two 3D finite element models of maxillary first molar for comparing stress distribution under the loads of 200N at 0°, 45°, and 90°, respectively, to the tooth axis. There was statistically significant difference in the cuspal inclination between the incompletely fractured group and the intact control group ( P  < 0.001), which was 5.5-6.7 degrees steeper. The model from the mean cuspal inclinations of the incompletely fractured molars showed the maximum tensile stress of 5.83, 10.87, and 25.32 MPa, respectively, in comparison with 5.40, 8.49, and 22.76 MPa for the model of the control group. Besides, the tensile stress was mainly at the center groove and cervical region of the molar model. Steeper cuspal inclinations resulted in an increment in tensile stress that was mainly at the center groove and cervical region of the molar model under equivalent loads. Higher unfavorable tensile stress was generated with the increasing horizontal component load on the cuspal incline. This indicates an effective reduction of cuspal inclination to the compromised teeth for dentists. © 2012 John Wiley & Sons A/S.

  6. Effects of Global Postural Reeducation on gait kinematics in parkinsonian patients: a pilot randomized three-dimensional motion analysis study.

    Science.gov (United States)

    Agosti, Valeria; Vitale, Carmine; Avella, Dario; Rucco, Rosaria; Santangelo, Gabriella; Sorrentino, Pierpaolo; Varriale, Pasquale; Sorrentino, Giuseppe

    2016-04-01

    The Global Postural Reeducation (GPR) method is a physical therapy based on the stretching of antigravity muscle chains with the parallel enhancement of the basal tone of antagonistic muscles addressed to improve static and dynamic stability. Through a three-dimensional motion analysis (3DMA) system, our study aims to investigate whether in Parkinson's disease (PD) patients a GPR program results in a more physiological gait pattern. The kinematic parameters of gait of twenty subjects with clinically diagnosed PD were calculated. The patients were randomly assigned to a study (10 or control (10) group. All subjects underwent neurological and 3DMA assessments at entry time (t 0), at 4 weeks (t 1, end of GPR program), and at 8 and 12 weeks (t 2 and t 3, follow-up evaluation). The study group underwent a four-week GPR program, three times a week, for 40 min individual sessions. Kinematic gait parameters of thigh (T), knee (K) and ankle (A) and UPDRS-III scores were evaluated. At the end of the GPR program, we observed an improvement of the kinematic gait pattern, documented by the increase in KΔc and TΔc values that respectively express the flexion amplitude of knee and thigh. The amelioration was persistent at follow-up assessments, with a parallel enhancement in clinical parameters. GPR intervention shows a long-term efficacy on gait pattern in PD patients. Furthermore, we validated 3DMA as a valuable tool to study the kinematics of gait thus refining the understanding of the effects of specific rehabilitation programs.

  7. Transthoracic two-dimensional xPlane and three-dimensional echocardiographic analysis of the site of mitral valve prolapse.

    Science.gov (United States)

    McGhie, Jackie S; de Groot-de Laat, Lotte; Ren, Ben; Vletter, Wim; Frowijn, René; Oei, Frans; Geleijnse, Marcel L

    2015-12-01

    This study sought to assess the value of two-dimensional (2D) transthoracic echocardiography (TTE), 2D xPlane imaging and three-dimensional (3D) TTE for the definition of the site and the extent of mitral valve (MV) prolapse. Fifty patients underwent transthoracic 2D, 2D xPlane and 3D echocardiography. With 2D xPlane a segmental analysis of the MV was performed, by making a lateral sweep across the MV coaptation line as seen in the parasternal short-axis view. Inter-observer agreement for specific scallop prolapse was for 2D xPlane excellent (97%, kappa = 0.94) and for 3D TTE moderate (85%, kappa = 0.67). The respective sensitivities of standard 2D TTE, 2D xPlane, and 3D TTE for the identification of the precise posterior scallop prolapse were for P1 92, 85, and 92%, for P2 96, 96, and 82%, and for P3 86, 81, and 71%. In total, 5 (8%) prolapsing MV scallops were missed by 2D TTE, 7 (12%) by 2D xPlane, and 12 (20%) by 3D TTE. The sensitivity of 3D TTE was significantly lower than standard 2D imaging (80% versus 93%, P TTE. 2D xPlane imaging is an accurate, easy to use (compared to 3D TTE) and easy to interpret (compared to 2D and 3D TTE) imaging modality to study the site and the extent of MV prolapse.

  8. Deviation analysis for C1/2 pedicle screw placement using a three-dimensional printed drilling guide.

    Science.gov (United States)

    Wu, Xinghuo; Liu, Rong; Yu, Jie; Lu, Lin; Yang, Cao; Shao, Zengwu; Ye, Zhewei

    2017-06-01

    Cervical transarticular fixation is a technically demanding procedure. This study aimed to develop a safer and more accurate method for C1/2 pedicle screw placement using a three-dimensional printed drilling guide. A total of 20 patients with C1/2 fractures and dislocations were recruited, and their computed tomography scans were evaluated. Under the assistance of the three-dimensional printed drilling guide, bilateral C1/2 pedicle screws were successfully placed in the three-dimensional C1/2 models. Then, sagittal and axial computed tomography scans were obtained, and the accuracy and safety of screw placement were evaluated based on X-Y-Z axis setup. The average depths for C1 and C2 pedicle screws were 30.1 ± 1.12 and 31.81 ± 0.85 mm on the left side and 29.54 ± 1.01 and 31.35 ± 0.27 mm on the right side, respectively. The average dimensional parameters for C1/C2 pedicle screw of both sides were measured and analyzed, which showed no statistically significant differences in the ideal and the actual entry points, inclined angles, and tailed angles. The method of developing a three-dimensional printed drilling guide is an easy and safe technique. This novel technique is applicable for C1/2 pedicle screw fixation; the potential use of the three-dimensional printed guide to place C1/2 pedicle screw is promising.

  9. [Analysis of three dimensional stability of the hypoplastic maxilla after orthognathic surgery in cleft lip and palate patients].

    Science.gov (United States)

    Yingwang, Jun-Zi; Shen, Shun-Yao; Li, Biao; Sun, Hao; Wang, Xu-Dong

    2016-06-01

    To establish a three dimensional spacial measurement method to analyze the short-term stability of maxilla after orthognathic surgery in cleft lip and palate patients. Twenty-five patients with maxillary hypoplasia secondary to cleft lip and palate seeking for orthognathic surgery were included in this study between January 2008 and September 2012. The spiral CT scan for the skull were taken 6 weeks preoperatively (T0), 4 days postoperatively (T1),3 months postoperatively (T2), and 6 months postoperatively (T3) and collected. A three dimensional analytic method for measuring maxilla was set up in ProPlan CMF software, and good repeatability of identification of landmarks was confirmed. Twenty-two indicators to describe the maxillary position and three new angles to describe the maxillary orientation were measured and analyzed. Student's t test was used to analyze the difference between T2 and T3 using SPSS 16.0 software package. In 25 patients with cleft palate there was a translational relapse upwards along vertical axis and a pitch-up relapse of maxilla with an average of 7.46% at the anterior part of the cleft maxilla. The relapse rate was 30.95% in LUCLP, 8.01% in RUCLP, and 34.76% in BCLP, but with no significant difference. Along the horizontal axis, there was a maxillary translational relapse toward noncleft side in both LUCLP and RUCLP group, while a yaw relapse was confirmed with the anterior part of maxilla toward noncleft side and the posterior part toward cleft side. There is a three-dimensional relapse tendency for the maxilla in the cleft patient postoperatively. The established three-dimensional analytic method well describes the special position of cleft maxilla especially in the translational and rotational movement of maxilla in three different axes comparing with that from lateral cephalometry, thus providing references for accurate measurements in study of the three dimensional maxillary stability after orthognathic surgery.

  10. Design and analysis of sensorless torque optimization for single phase induction motors

    International Nuclear Information System (INIS)

    Vaez-Zadeh, S.; Payman, A.

    2006-01-01

    Single phase induction motors are traditionally used in constant speed applications and suffer from unsymmetrical performance. A reliable speed signal can improve their performance and extend their applications as variable speed drives. In this paper, a speed estimation method for these motors is proposed based on a machine model in the stator flux reference frame. The method is examined in a sensorless torque optimization system over a wide operating range. Extensive simulation results prove the validity of the proposed method. Also, the motor performance under the torque optimization system is analyzed

  11. Three dimensional system integration

    CERN Document Server

    Papanikolaou, Antonis; Radojcic, Riko

    2010-01-01

    Three-dimensional (3D) integrated circuit (IC) stacking is the next big step in electronic system integration. It enables packing more functionality, as well as integration of heterogeneous materials, devices, and signals, in the same space (volume). This results in consumer electronics (e.g., mobile, handheld devices) which can run more powerful applications, such as full-length movies and 3D games, with longer battery life. This technology is so promising that it is expected to be a mainstream technology a few years from now, less than 10-15 years from its original conception. To achieve thi

  12. Three-dimensional metamaterials

    Science.gov (United States)

    Burckel, David Bruce [Albuquerque, NM

    2012-06-12

    A fabrication method is capable of creating canonical metamaterial structures arrayed in a three-dimensional geometry. The method uses a membrane suspended over a cavity with predefined pattern as a directional evaporation mask. Metallic and/or dielectric material can be evaporated at high vacuum through the patterned membrane to deposit resonator structures on the interior walls of the cavity, thereby providing a unit cell of micron-scale dimension. The method can produce volumetric metamaterial structures comprising layers of such unit cells of resonator structures.

  13. Three-Dimensional Flows

    CERN Document Server

    Araujo, Vitor; Viana, Marcelo

    2010-01-01

    In this book, the authors present the elements of a general theory for flows on three-dimensional compact boundaryless manifolds, encompassing flows with equilibria accumulated by regular orbits. The book aims to provide a global perspective of this theory and make it easier for the reader to digest the growing literature on this subject. This is not the first book on the subject of dynamical systems, but there are distinct aspects which together make this book unique. Firstly, this book treats mostly continuous time dynamical systems, instead of its discrete counterpart, exhaustively treated

  14. Validation of a Numerical Model for Dynamic Three-Dimensional Railway Bridge Analysis by Comparison with a Small-Scale Laboratory Model

    DEFF Research Database (Denmark)

    Bucinskas, Paulius; Sneideris, Jonas; Agapii, Liuba

    2017-01-01

    is constructed in the laboratory, and the results are compared with the proposed computational model. The computational analysis employs a multi-degree-of-freedom system for the vehicle, a three-dimensional finite-element model for the bridge structure and a semi-analytical solution for the subsoil, using...

  15. Three-dimensional analysis of future groundwater flow conditions and contaminant plume transport in the Hanford Site unconfined aquifer system: FY 1996 and 1997 status report

    International Nuclear Information System (INIS)

    Cole, C.R.; Wurstner, S.K.; Williams, M.D.; Thorne, P.D.; Bergeron, M.P.

    1997-12-01

    A three-dimensional numerical model of groundwater flow and transport, based on the Coupled Fluid Energy, and Solute Transport (CFEST) code, was developed for the Hanford Site to support the Hanford Groundwater Project (HGWP), managed by Pacific Northwest National Laboratory. The model was developed to increase the understanding and better forecast the migration of several contaminant plumes being monitored by the HGWP, and to support the Hanford Site Composite Analysis for low-level waste disposal in the 200-Area Plateau. Recent modeling efforts have focused on continued refinement of an initial version of the three-dimensional model developed in 1995 and its application to simulate future transport of selected contaminant plumes in the aquifer system. This version of the model was updated using a more current version of the CFEST code called CFEST96. Prior to conducting simulations of contaminant transport with the three-dimensional model, a previous steady-state, two-dimensional model of the unconfined aquifer system was recalibrated to 1979 water-table conditions with a statistical inverse method implemented in the CFEST-INV computer code. The results of the recalibration were used to refine the three-dimensional conceptual model and to calibrate it with a conceptualization that preserves the two-dimensional hydraulic properties and knowledge of the aquifer's three-dimensional properties for the same 1979 water-table conditions. The transient behavior of the three-dimensional flow model was also calibrated by adjusting model storage properties (specific yield) until transient water-table predictions approximated observed water-table elevations between 1979 and 1996

  16. Three-dimensional analysis of future groundwater flow conditions and contaminant plume transport in the Hanford Site unconfined aquifer system: FY 1996 and 1997 status report

    Energy Technology Data Exchange (ETDEWEB)

    Cole, C.R.; Wurstner, S.K.; Williams, M.D.; Thorne, P.D.; Bergeron, M.P.

    1997-12-01

    A three-dimensional numerical model of groundwater flow and transport, based on the Coupled Fluid Energy, and Solute Transport (CFEST) code, was developed for the Hanford Site to support the Hanford Groundwater Project (HGWP), managed by Pacific Northwest National Laboratory. The model was developed to increase the understanding and better forecast the migration of several contaminant plumes being monitored by the HGWP, and to support the Hanford Site Composite Analysis for low-level waste disposal in the 200-Area Plateau. Recent modeling efforts have focused on continued refinement of an initial version of the three-dimensional model developed in 1995 and its application to simulate future transport of selected contaminant plumes in the aquifer system. This version of the model was updated using a more current version of the CFEST code called CFEST96. Prior to conducting simulations of contaminant transport with the three-dimensional model, a previous steady-state, two-dimensional model of the unconfined aquifer system was recalibrated to 1979 water-table conditions with a statistical inverse method implemented in the CFEST-INV computer code. The results of the recalibration were used to refine the three-dimensional conceptual model and to calibrate it with a conceptualization that preserves the two-dimensional hydraulic properties and knowledge of the aquifer`s three-dimensional properties for the same 1979 water-table conditions. The transient behavior of the three-dimensional flow model was also calibrated by adjusting model storage properties (specific yield) until transient water-table predictions approximated observed water-table elevations between 1979 and 1996.

  17. Design and analysis of linear oscillatory single-phase permanent magnet generator for free-piston stirling engine systems

    Directory of Open Access Journals (Sweden)

    Jeong-Man Kim

    2017-05-01

    Full Text Available This study focuses on the design and analysis of a linear oscillatory single-phase permanent magnet generator for free-piston stirling engine (FPSE systems. In order to implement the design of linear oscillatory generator (LOG for suitable FPSEs, we conducted electromagnetic analysis of LOGs with varying design parameters. Then, detent force analysis was conducted using assisted PM. Using the assisted PM gave us the advantage of using mechanical strength by detent force. To improve the efficiency, we conducted characteristic analysis of eddy-current loss with respect to the PM segment. Finally, the experimental result was analyzed to confirm the prediction of the FEA.

  18. Design and analysis of linear oscillatory single-phase permanent magnet generator for free-piston stirling engine systems

    Science.gov (United States)

    Kim, Jeong-Man; Choi, Jang-Young; Lee, Kyu-Seok; Lee, Sung-Ho

    2017-05-01

    This study focuses on the design and analysis of a linear oscillatory single-phase permanent magnet generator for free-piston stirling engine (FPSE) systems. In order to implement the design of linear oscillatory generator (LOG) for suitable FPSEs, we conducted electromagnetic analysis of LOGs with varying design parameters. Then, detent force analysis was conducted using assisted PM. Using the assisted PM gave us the advantage of using mechanical strength by detent force. To improve the efficiency, we conducted characteristic analysis of eddy-current loss with respect to the PM segment. Finally, the experimental result was analyzed to confirm the prediction of the FEA.

  19. Equilibrium: three-dimensional configurations

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    This chapter considers toroidal MHD configurations that are inherently three-dimensional. The motivation for investigation such complicated equilibria is that they possess the potential for providing toroidal confinement without the need of a net toroidal current. This leads to a number of advantages with respect to fusion power generation. First, the attractive feature of steady-state operation becomes more feasible since such configurations no longer require a toroidal current transformer. Second, with zero net current, one potentially dangerous class of MHD instabilities, the current-driven kink modes, is eliminated. Finally, three-dimensional configurations possess nondegenerate flux surfaces even in the absence of plasma pressure and plasma current. Although there is an enormous range of possible three-dimensional equilibria, the configurations of interest are accurately described as axisymmetric tori with superimposed helical fields; furthermore, they possess no net toroidal current. Instead, two different and less obvious restoring forces are developed: the helical sideband force and the toroidal dipole current force. Each is discussed in detail in Chapter 7. A detailed discussion of the parallel current constraint, including its physical significance, is given in section 7.2. A general analysis of helical sideband equilibria, along with a detailed description of the Elmo bumpy torus, is presented in sections 7.3 and 7.4. A general description of toroidal dipole-current equilibria, including a detailed discussion of stellarators, heliotrons, and torsatrons, is given in sections 7.5 and 7.6

  20. Kidney lower pole pelvicaliceal anatomy: comparative analysis between intravenous urogram and three-dimensional helical computed tomography.

    Science.gov (United States)

    Rachid Filho, Daibes; Favorito, Luciano A; Costa, Waldemar S; Sampaio, Francisco J B

    2009-12-01

    The aim of our study was to evaluate if there is any advantage of three-dimensional helical computed tomography (3D-HCT) over intravenous urogram (IVU) in the morphometric and morphological analysis of lower pole spatial anatomy of the kidney. We analyzed 52 renal collecting systems in 30 patients, ranging in age from 23 to 80 years. The study compared the following features: (1) the angle formed between the lower infundibulum and the renal pelvis (i.e., lower infundibulum-pelvic angle [IPA]), (2) the lower infundibulum diameter (ID), and (3) the spatial distribution and number of lower pole calices (i.e., caliceal distribution [CD]). The study started with the 3D-HCT images obtained for posterior reconstruction and analysis. Afterward, we obtained anteroposterior and oblique IVU images. For IPA (in degrees) we found a mean +/- standard deviation (SD) value of 75.79 +/- 15.3 with 3D-HCT and 77.4 +/- 17.17 with IVU, which were not statistically significant. For ID (in mm) we found a mean +/- SD value of 7.5 +/- 2.92 with 3D-HCT and 8.15 +/- 3.27 with IVU. For CD we found a mean +/- SD value of 2.37 +/- 0.75 calices with 3D-HCT and 2.43 +/- 0.67 calices with IVU. On analyzing the difference between 3D-HCT and IVU, we found a mean +/- SD value of 0.06 +/- 0.51, and we verified that 74.5% of the examinations compared did not present statistically significant difference, with a Wilcoxon p-value of 0.405. Although 3D-HCT is more precise to study calculus location, tumors, and vessels, IVU was also demonstrated to be as precise as 3D-HCT for studying the lower pole spatial anatomy. We did not observe any statistically significant difference in the measurements of IPA, ID, and CD obtained using 3D-HCT when compared with those obtained using IVU. Therefore, 3D-HCT does not present any advantage over IVU in the evaluation of lower pole caliceal anatomy.

  1. Three-dimensional modelling of the human carotid artery using the lattice Boltzmann method: I. Model and velocity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, J [Cardiovascular Research Group Physics, University of New England, Armidale, NSW 2351 (Australia); Buick, J M [Department of Mechanical and Design Engineering, University of Portsmouth, Anglesea Building, Anglesea Road, Portsmouth PO1 3DJ (United Kingdom)

    2008-10-21

    Numerical modelling is a powerful tool in the investigation of human blood flow and arterial diseases such as atherosclerosis. It is known that near wall velocity and shear are important in the pathogenesis and progression of atherosclerosis. In this paper results for a simulation of blood flow in a three-dimensional carotid artery geometry using the lattice Boltzmann method are presented. The velocity fields in the body of the fluid are analysed at six times of interest during a physiologically accurate velocity waveform. It is found that the three-dimensional model agrees well with previous literature results for carotid artery flow. Regions of low near wall velocity and circulatory flow are observed near the outer wall of the bifurcation and in the lower regions of the external carotid artery, which are regions that are typically prone to atherosclerosis.

  2. Three-dimensional modelling of the human carotid artery using the lattice Boltzmann method: I. Model and velocity analysis

    International Nuclear Information System (INIS)

    Boyd, J; Buick, J M

    2008-01-01

    Numerical modelling is a powerful tool in the investigation of human blood flow and arterial diseases such as atherosclerosis. It is known that near wall velocity and shear are important in the pathogenesis and progression of atherosclerosis. In this paper results for a simulation of blood flow in a three-dimensional carotid artery geometry using the lattice Boltzmann method are presented. The velocity fields in the body of the fluid are analysed at six times of interest during a physiologically accurate velocity waveform. It is found that the three-dimensional model agrees well with previous literature results for carotid artery flow. Regions of low near wall velocity and circulatory flow are observed near the outer wall of the bifurcation and in the lower regions of the external carotid artery, which are regions that are typically prone to atherosclerosis.

  3. Comprehensive three-dimensional analysis of surface plasmon polariton modes at uniaxial liquid crystal-metal interface.

    Science.gov (United States)

    Yen, Yin-Ray; Lee, Tsun-Hsiun; Wu, Zheng-Yu; Lin, Tsung-Hsien; Hung, Yu-Ju

    2015-12-14

    This paper describes the derivation of surface plasmon polariton modes associated with the generalized three-dimensional rotation of liquid crystal molecules on a metal film. The calculated dispersion relation was verified by coupling laser light into surface plasmon polariton waves in a one-dimensional grating device. The grating-assisted plasmon coupling condition was consistent with the formulated k(spp) value. This provides a general rule for the design of liquid-crystal tunable plasmonic devices.

  4. Locating and quantifying geological uncertainty in three-dimensional models : analysis of the Gippsland Basin, southeastern Australia

    OpenAIRE

    Lindsay, M. D.; Ailleres, L.; Jessell, Mark; de Kemp, E. A.; Betts, P. G.

    2012-01-01

    Geological three-dimensional (3D) models are constructed to reliably represent a given geological target. The reliability of a model is heavily dependent on the input data and is sensitive to uncertainty. This study examines the uncertainty introduced by geological orientation data by producing a suite of implicit 3d models generated from orientation measurements subjected to uncertainty simulations. The resulting uncertainty associated with different regions of the geological model can be lo...

  5. Graphic system for the analysis of representation of a complex three-dimensional configuration for radiation shield calculation

    International Nuclear Information System (INIS)

    Berezhkov, A.B.; Gordeeva, E.K.; Mazanov, V.L.; Solov'ev, V.Yu.; Ryabov, A.V.; Khokhlov, V.F.; Shejno, I.N.

    1987-01-01

    Programs for obtaining phantom images when calculating the radiation shield structure for nuclear-engineering plants, using computer graphics, are developed. Programs are designed to accompany calculational investigations using the SUPER2/RRI3-PICSCH program and ZAMOK-TOMOGRAF program comutering complexes. Design geometry techniques, allowing to present three-dimensional object in the form of two-dimensional perspective projection to the screen plane, are realized in the programs

  6. Single-phase sodium pump model for LMFBR thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Madni, I.K.; Cazzoli, E.G.; Agrawal, A.K.

    1979-01-01

    A single-phase, homologous pump model has been developed for simulation of safety-related transients in LMFBR systems. Pump characteristics are modeled by homologous head and torque relations encompassing all regimes of operation. These relations were derived from independent model test results with a centrifugal pump of specific speed equal to 35 (SI units) or 1800 (gpm units), and are used to analyze the steady-state and transient behavior of sodium pumps in a number of LMFBR plants. Characteristic coefficients for the polynomials in all operational regimes are provided in a tabular form. The speed and flow dependence of head is included through solutions of the impeller and coolant dynamic equations. Results show the model to yield excellent agreement with experimental data in sodium for the FFTF prototype pump, and with vendor calculations for the CRBR pump. A sample pipe rupture calculation is also performed to demonstrate the necessity for modeling the complete pump characteristics

  7. Transient thermal and stress analysis of maxillary second premolar tooth using an exact three-dimensional model

    Directory of Open Access Journals (Sweden)

    Hashemipour Maryam

    2010-01-01

    Full Text Available Aim : In this paper, the temperature and stress distributions in an exact 3D-model of a restored maxillary second premolar tooth are obtained with finite element approach. Objective : The carious teeth need to restore with appropriate restorative materials. There are too many restorative materials which can be used instead of tooth structures; since tooth structures are being replaced, the restorative materials should be similar to original structure as could as possible . Materials and Methods : In the present study, a Mesial Occlusal Distal (MOD type of restoration is chosen and applied to a sound tooth model. Four cases of restoration are investigated: two cases in which base are used under restorative materials and two cases in which base is deleted. The restorative materials are amalgam and composite and glass-inomer is used as a base material. Modeling is done in the solid works ambient by means of an exact measuring of a typical human tooth dimensions. Tooth behavior under thermal load due to consuming hot liquids is analyzed by means of a three dimensional finite element method using ANSYS software. The highest values of tensile and compressive stresses are compared with tensile and compressive strength of the tooth and restorative materials and the value of shear stress on the tooth and restoration junctions is compared with the bond strength. Also, sound tooth under the same thermal load is analyzed and the results are compared with those obtained for restored models. Results : Temperature and stress distributions in the tooth are calculated for each case, with a special consideration in the vicinity of pulp and restoration region. Numerical results show that in two cases with amalgam, using the base material (Glass-ionomer under the restorative material causes to decrease the maximum temperature in the restorative teeth . In the stress analysis, it is seen that the principal stress has its maximum values in composite restorations

  8. Association between implant apex and sinus floor in posterior maxilla dental implantation: A three-dimensional finite element analysis

    Science.gov (United States)

    YAN, XU; ZHANG, XINWEN; CHI, WEICHAO; AI, HONGJUN; WU, LIN

    2015-01-01

    The aim of the present study was to evaluate the effect of the association between the implant apex and the sinus floor in posterior maxilla dental implantation by means of three-dimensional (3D) finite element (FE) analysis. Ten 3D FE models of a posterior maxillary region with a sinus membrane and different heights of alveolar ridge with different thicknesses of sinus floor cortical bone were constructed according to anatomical data of the sinus area. Six models were constructed with the same thickness of crestal cortical bone and a 1-mm thick sinus floor cortical bone, but differing heights of alveolar ridge (between 10 and 14 mm). The four models of the second group were similar (11-mm-high alveolar ridge and 1-mm-thick crestal cortical bone) but with a changing thickness of sinus floor cortical bone (between 0.5 and 2.0 mm). The standard implant model based on the Nobel Biocare® implant system was created by computer-aided design (CAD) software and assembled into the models. The materials were assumed to be isotropic and linearly elastic. An inclined force of 129 N was applied. The maximum von Mises stress, stress distribution, implant displacement and resonance frequencies were calculated using CAD software. The von Mises stress was concentrated on the surface of the crestal cortical bone around the implant neck with the exception of that for the bicortical implantation. For immediate loading, when the implant apex broke into or through the sinus cortical bone, the maximum displacements of the implant, particularly at the implant apex, were smaller than those in the other groups. With increasing depth of the implant apex in the sinus floor cortical bone, the maximum displacements decreased and the implant axial resonance frequencies presented a linear upward tendency, but buccolingual resonance frequencies were hardly affected. This FE study on the association between implant apex and sinus floor showed that having the implant apex in contact with, piercing

  9. Study on prestressed concrete reactor vessel structures. II-5: Crack analysis by three dimensional finite elements method of 1/20 multicavity type PCRV subjected to internal pressure

    Science.gov (United States)

    1978-01-01

    A three-dimensional finite elements analysis is reported of the nonlinear behavior of PCRV subjected to internal pressure by comparing calculated results with test results. As the first stage, an analysis considering the nonlinearity of cracking in concrete was attempted. As a result, it is found possible to make an analysis up to three times the design pressure (50 kg/sqcm), and calculated results agree well with test results.

  10. Finite element analysis of three dimensional crack growth by the use of a boundary element sub model

    DEFF Research Database (Denmark)

    Lucht, Tore

    2009-01-01

    A new automated method to model non-planar three dimensional crack growth is proposed which combines the advantages of both the boundary element method and the finite element method. The proposed method links the two methods by a submodelling strategy in which the solution of a global finite...... element model containing an approximation of the crack is interpolated to a much smaller boundary element model containing a fine discretization of the real crack. The method is validated through several numerical comparisons and by comparison to crack growth measured in a test specimen for an engineering...

  11. Three-dimensional contact analysis of coupled surfaces by a novel contact transformation method based on localized Lagrange multipliers

    Directory of Open Access Journals (Sweden)

    Yi-Tsung Lin

    2016-04-01

    Full Text Available Instead of obsessively emphasizing to reduce the number of time increments and reshape the models, a novel surface contact transformation to increase efficiency is presented in this study. Wear on the bearing surfaces was investigated following the coupled regions from the pressure distribution, computed by means of three-dimensional finite element method models; an approximate analytical model and formulation in three-dimensional frictional contact problems based on modified localized Lagrange multiplier method have also been developed and discussed. Understanding wear behavior patterns in mechanical components is a significant task in engineering design. The proposed approach provides a complete and effective solution to the wear problem in a quasi-dynamic manner. However, expensive computing time is needed in the incremental procedures. In this article, an alternative and efficient finite element approach is introduced to reduce the computation costs of wear prediction. Through the successful verification of wear depth and volume loss of the pin-on-plate, block-on-ring, and metal-on-plastic artificial hip joint wear behaviors, the numerical calculations are shown to be both valid and feasible. Furthermore, the results also show that the central processing unit time required by the proposed method is nearly half that of the previous methods without loss of accuracy.

  12. Three-dimensional analysis of mesiobuccal root canal of Japanese maxillary first molar using Micro-CT

    International Nuclear Information System (INIS)

    Yamada, Masashi; Ide, Yoshinobu; Matsunaga, Satoru; Kato, Hiroshi; Nakagawa, Kan-Ichi

    2011-01-01

    The objective of this study was to three-dimensionally observe the morphological characteristics of mesiobuccal root canals of Japanese maxillary first molars using microcomputed tomography (Micro-CT) and classify root canal variations. This study used 90 maxillary first molars. Three-dimensional reconstruction was performed using data obtained by Micro-CT, and cross-sections of the root canals were observed. Moreover, the root canal morphology was classified by the configuration and root canal diameter, and was evaluated for occurrence using the classification by Weine et al. (1969) as a reference. Overall, single root canals were observed in 44.4%, incomplete separation root canals in 22.3%, and completely separate root canals (upper and lower separation root canals) in 33.3%. Mesiobuccal root canals often had intricate configurations, and accessory root canals (lateral canals and apical ramifications) were observed in most of the mesiobuccal root canals (76.7%), irrespective of whether there were ramifications of the main root canals. While there were no marked differences in the incidence of root canal ramifications between this study and earlier reports, the incidence of accessory root canals was higher in this study. This result may be explained by the far more superior visualization ability of Micro-CT than conventional methods, which allowed the detection of microscopic apical ramifications previously difficult to observe. (author)

  13. Single-Phase Full-Wave Rectifier as an Effective Example to Teach Normalization, Conduction Modes, and Circuit Analysis Methods

    Directory of Open Access Journals (Sweden)

    Predrag Pejovic

    2013-12-01

    Full Text Available Application of a single phase rectifier as an example in teaching circuit modeling, normalization, operating modes of nonlinear circuits, and circuit analysis methods is proposed.The rectifier supplied from a voltage source by an inductive impedance is analyzed in the discontinuous as well as in the continuous conduction mode. Completely analytical solution for the continuous conduction mode is derived. Appropriate numerical methods are proposed to obtain the circuit waveforms in both of the operating modes, and to compute the performance parameters. Source code of the program that performs such computation is provided.

  14. Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation

    Directory of Open Access Journals (Sweden)

    Vinci Maria

    2012-03-01

    Full Text Available Abstract Background There is overwhelming evidence that in vitro three-dimensional tumor cell cultures more accurately reflect the complex in vivo microenvironment than simple two-dimensional cell monolayers, not least with respect to gene expression profiles, signaling pathway activity and drug sensitivity. However, most currently available three-dimensional techniques are time consuming and/or lack reproducibility; thus standardized and rapid protocols are urgently needed. Results To address this requirement, we have developed a versatile toolkit of reproducible three-dimensional tumor spheroid models for dynamic, automated, quantitative imaging and analysis that are compatible with routine high-throughput preclinical studies. Not only do these microplate methods measure three-dimensional tumor growth, but they have also been significantly enhanced to facilitate a range of functional assays exemplifying additional key hallmarks of cancer, namely cell motility and matrix invasion. Moreover, mutual tissue invasion and angiogenesis is accommodated by coculturing tumor spheroids with murine embryoid bodies within which angiogenic differentiation occurs. Highly malignant human tumor cells were selected to exemplify therapeutic effects of three specific molecularly-targeted agents: PI-103 (phosphatidylinositol-3-kinase (PI3K-mammalian target of rapamycin (mTOR inhibitor, 17-N-allylamino-17-demethoxygeldanamycin (17-AAG (heat shock protein 90 (HSP90 inhibitor and CCT130234 (in-house phospholipase C (PLCγ inhibitor. Fully automated analysis using a Celigo cytometer was validated for tumor spheroid growth and invasion against standard image analysis techniques, with excellent reproducibility and significantly increased throughput. In addition, we discovered key differential sensitivities to targeted agents between two-dimensional and three-dimensional cultures, and also demonstrated enhanced potency of some agents against cell migration

  15. Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation

    Science.gov (United States)

    2012-01-01

    Background There is overwhelming evidence that in vitro three-dimensional tumor cell cultures more accurately reflect the complex in vivo microenvironment than simple two-dimensional cell monolayers, not least with respect to gene expression profiles, signaling pathway activity and drug sensitivity. However, most currently available three-dimensional techniques are time consuming and/or lack reproducibility; thus standardized and rapid protocols are urgently needed. Results To address this requirement, we have developed a versatile toolkit of reproducible three-dimensional tumor spheroid models for dynamic, automated, quantitative imaging and analysis that are compatible with routine high-throughput preclinical studies. Not only do these microplate methods measure three-dimensional tumor growth, but they have also been significantly enhanced to facilitate a range of functional assays exemplifying additional key hallmarks of cancer, namely cell motility and matrix invasion. Moreover, mutual tissue invasion and angiogenesis is accommodated by coculturing tumor spheroids with murine embryoid bodies within which angiogenic differentiation occurs. Highly malignant human tumor cells were selected to exemplify therapeutic effects of three specific molecularly-targeted agents: PI-103 (phosphatidylinositol-3-kinase (PI3K)-mammalian target of rapamycin (mTOR) inhibitor), 17-N-allylamino-17-demethoxygeldanamycin (17-AAG) (heat shock protein 90 (HSP90) inhibitor) and CCT130234 (in-house phospholipase C (PLC)γ inhibitor). Fully automated analysis using a Celigo cytometer was validated for tumor spheroid growth and invasion against standard image analysis techniques, with excellent reproducibility and significantly increased throughput. In addition, we discovered key differential sensitivities to targeted agents between two-dimensional and three-dimensional cultures, and also demonstrated enhanced potency of some agents against cell migration/invasion compared with

  16. Feasibility and Accuracy of Automated Software for Transthoracic Three-Dimensional Left Ventricular Volume and Function Analysis: Comparisons with Two-Dimensional Echocardiography, Three-Dimensional Transthoracic Manual Method, and Cardiac Magnetic Resonance Imaging.

    Science.gov (United States)

    Tamborini, Gloria; Piazzese, Concetta; Lang, Roberto M; Muratori, Manuela; Chiorino, Elisa; Mapelli, Massimo; Fusini, Laura; Ali, Sarah Ghulam; Gripari, Paola; Pontone, Gianluca; Andreini, Daniele; Pepi, Mauro

    2017-11-01

    Recently, a new automated software package (HeartModel) was developed to obtain three-dimensional (3D) left ventricular (LV) volumes using a model-based algorithm (MBA) with a "one-button" simple system and user-adjustable slider. The aims of this study were to verify the feasibility and accuracy of the MBA in comparison with other commonly used imaging techniques in a large unselected population, to evaluate possible accuracy improvements of free operator border adjustments or changes of the slider's default position, and to identify differences in method accuracy related to specific pathologies. This prospective study included consecutive 200 patients. LV volumes and ejection fraction were obtained using the MBA and compared with the two-dimensional biplane method, the 3D full-volume (3DFV) modality, and, in 90 of 200 cases, cardiac magnetic resonance (CMR) measurements. To evaluate the optimal position of the slider with respect to the 3DFV and CMR modalities, a set of threefold cross-validation experiments was performed. Optimized and manually corrected LV volumes obtained using the MBA were also tested. Linear correlation and Bland-Altman analysis were used to assess intertechnique agreement. Automatic volumes were feasible in 194 patients (94.5%), with a mean processing time of 29 ± 10 sec. MBA-derived volumes correlated significantly with all evaluated methods, with slight overestimation of two-dimensional biplane and slight underestimation of CMR measurements. Higher correlations were found between MBA and 3DFV measurements, with negligible differences both in volumes (overestimation) and in LV ejection fraction (underestimation), respectively. Optimization of the user-adjustable slider position improved the correlation and markedly reduced the bias between the MBA and 3DFV or CMR. The accuracy of MBA volumes was lower in some pathologies for incorrect definition of LV endocardium. The MBA is highly feasible, reproducible, and rapid, and it correlates

  17. Three-dimensional echocardiography

    International Nuclear Information System (INIS)

    Buck, Thomas

    2011-01-01

    Presents tips and tricks for beginners and experts Provides educational material for 3D training courses Features comprehensively illustrated cases Includes an accompanying DVD with video clips of all sample cases Three-dimensional echocardiography is the most recent fundamental advancement in echocardiography. Since real-time 3D echocardiography became commercially available in 2002, it has rapidly been accepted in echo labs worldwide. This book covers all clinically relevant aspects of this fascinating new technology, including a comprehensive explanation of its basic principles, practical aspects of clinical application, and detailed descriptions of specific uses in the broad spectrum of clinically important heart disease. The book was written by a group of well-recognized international experts in the field, who have not only been involved in the scientific and clinical evolution of 3D echocardiography since its inception but are also intensively involved in expert training courses. As a result, the clear focus of this book is on the practical application of 3D echocardiography in daily clinical routine with tips and tricks for both beginners and experts, accompanied by more than 150 case examples comprehensively illustrated in more than 800 images and more than 500 videos provided on a DVD. In addition to an in-depth review of the most recent literature on real-time 3D echocardiography, this book represents an invaluable reference work for beginners and expert users of 3D echocardiography. - Tips and tricks for beginners and experts - Educational material for 3D training courses - Comprehensively illustrated cases - DVD with video clips of all sample cases.

  18. Evaluation of the marginal and internal gaps of three different dental prostheses: comparison of the silicone replica technique and three-dimensional superimposition analysis.

    Science.gov (United States)

    Park, Jin-Young; Bae, So-Yeon; Lee, Jae-Jun; Kim, Ji-Hwan; Kim, Hae-Young; Kim, Woong-Chul

    2017-06-01

    The purposes of this study were to evaluate the marginal and internal gaps, and the potential clinical applications of three different methods of dental prostheses fabrication, and to compare the prostheses prepared using the silicone replica technique (SRT) and those prepared using the three-dimensional superimposition analysis (3DSA). Five Pekkton, lithium disilicate, and zirconia crowns were each manufactured and tested using both the SRT and the two-dimensional section of the 3DSA. The data were analyzed with the nonparametric version of a two-way analysis of variance using rank-transformed values and the Tukey's post-hoc test (α = .05). Significant differences were observed between the fabrication methods in the marginal gap ( P .350), deep chamfer ( P > .719), and axial wall ( P > .150). As the 3DSA method is three-dimensional, it allows for the measurement of arbitrary points. All of the three fabrication methods are valid for measuring clinical objectives because they produced prostheses within the clinically acceptable range. Furthermore, a three-dimensional superimposition analysis verification method such as the silicone replica technique is also applicable in clinical settings.

  19. Three-dimensional lithographically-defined organotypic tissue arrays for quantitative analysis of morphogenesis and neoplastic progression

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Celeste M.; Inman, Jamie L.; Bissell, Mina J.

    2008-02-13

    Here we describe a simple micromolding method to construct three-dimensional arrays of organotypic epithelial tissue structures that approximate in vivo histology. An elastomeric stamp containing an array of posts of defined geometry and spacing is used to mold microscale cavities into the surface of type I collagen gels. Epithelial cells are seeded into the cavities and covered with a second layer of collagen. The cells reorganize into hollow tissues corresponding to the geometry of the cavities. Patterned tissue arrays can be produced in 3-4 h and will undergo morphogenesis over the following one to three days. The protocol can easily be adapted to study a variety of tissues and aspects of normal and neoplastic development.

  20. Seismic Analysis of Deep Water Pile Foundation Based on Three-Dimensional Potential-Based Fluid Elements

    Directory of Open Access Journals (Sweden)

    Kai Wei

    2013-01-01

    Full Text Available This paper investigates the use of three-dimensional (3D ϕ-u potential-based fluid elements for seismic analyses of deep water pile foundation. The mathematical derivations of the potential-based formulations are presented for reference. The potential-based modeling technique is studied and validated through experimental data and analytical solutions. Earthquake time history analyses for a 9-pile foundation in dry and different water environments are conducted, respectively. The seismic responses are discussed to investigate the complex effect of earthquake-induced fluid-structure interaction. Through the analyses, the potential-based fluid and interface elements are shown to perform adequately for the seismic analyses of pile foundation-water systems, and some interesting conclusions and recommendations are drawn.

  1. Direct laser writing and geometrical analysis of scaffolds with designed pore architecture for three-dimensional cell culturing

    Science.gov (United States)

    Käpylä, Elli; Aydogan, Dogu Baran; Virjula, Sanni; Vanhatupa, Sari; Miettinen, Susanna; Hyttinen, Jari; Kellomäki, Minna

    2012-11-01

    Traditional scaffold fabrication methods used in tissue engineering enable only limited control over essential parameters such as porosity, pore size and pore interconnectivity. In this study, we designed and fabricated five different types of three-dimensionally interconnected, highly porous scaffolds with precise control over the scaffold characteristics. We used two-photon polymerization (2PP) with a commercial polymer-ceramic material (Ormocomp®) for scaffold fabrication. Also for the first time, we analyzed the 2PP fabrication accuracy with respect to scaffold design parameters. Our results showed that the porosity values decreased up to 13% compared to the design specifications due to the fabrication process and the shrinkage of the material. Finally, we showed that our scaffolds supported human adipose stem cell adhesion and proliferation in a six day culture. By precise tuning of scaffold parameters, our design and fabrication method provides a novel approach for studying the effect of scaffold architecture on cell behavior in vitro.

  2. Energy analysis of four dimensional extended hyperbolic Scarf I plus three dimensional separable trigonometric noncentral potentials using SUSY QM approach

    International Nuclear Information System (INIS)

    Suparmi, A.; Cari, C.; Deta, U. A.; Handhika, J.

    2016-01-01

    The non-relativistic energies and wave functions of extended hyperbolic Scarf I plus separable non-central shape invariant potential in four dimensions are investigated using Supersymmetric Quantum Mechanics (SUSY QM) Approach. The three dimensional separable non-central shape invariant angular potential consists of trigonometric Scarf II, Manning Rosen and Poschl-Teller potentials. The four dimensional Schrodinger equation with separable shape invariant non-central potential is reduced into four one dimensional Schrodinger equations through variable separation method. By using SUSY QM, the non-relativistic energies and radial wave functions are obtained from radial Schrodinger equation, the orbital quantum numbers and angular wave functions are obtained from angular Schrodinger equations. The extended potential means there is perturbation terms in potential and cause the decrease in energy spectra of Scarf I potential. (paper)

  3. Three-dimensional thermal analysis of in-floor type nuclear waste repository for a ceramic waste form

    International Nuclear Information System (INIS)

    Sizgek, G. Devlet

    2005-01-01

    A thermal model is constructed and analyses are performed for an 'in-floor' type nuclear waste repository in granitic rock for a high level nuclear waste (HLW)-bearing ceramic waste form (synroc). Transient calculations for a three-dimensional (3-D) model have been carried out for both 20 and 10 wt.% HLW-bearing synroc, for surface cooling periods between reactor discharge and geological disposal varying from 5 to 40 years. This study investigates the temperature distribution in one of the boreholes of a hypothetical tunnel for a basic geometrical setting as well as the effect of varying the distance between adjacent boreholes and the distance between adjacent tunnels. The temperatures in the repository were found to be sensitive to the interim surface cooling period as well as the amount of waste loaded. The results showed that decreasing the spacing between the canisters has a more pronounced effect on the temperature field than decreasing the spacing between the tunnels

  4. Three dimensional vibration and bending analysis of carbon nanotubes embedded in elastic medium based on theory of elasticity

    Directory of Open Access Journals (Sweden)

    M. Shaban

    Full Text Available This paper studies free vibration and bending behavior of singlewalled carbon nanotubes (SWCNTs embedded on elastic medium based on three-dimensional theory of elasticity. To accounting the size effect of carbon nanotubes, non-local theory is adopted to shell model. The nonlocal parameter is incorporated into all constitutive equations in three dimensions. The surrounding medium is modeled as two-parameter elastic foundation. By using Fourier series expansion in axial and circumferential direction, the set of coupled governing equations are reduced to the ordinary differential equations in thickness direction. Then, the state-space method as an efficient and accurate method is used to solve the resulting equations analytically. Comprehensive parametric studies are carried out to show the influences of the nonlocal parameter, radial and shear elastic stiffness, thickness-to-radius ratio and radiusto-length ratio.

  5. Three-dimensional symmetry analysis of a direct-drive irradiation scheme for the laser megajoule facility

    International Nuclear Information System (INIS)

    Ramis, R.; Temporal, M.; Canaud, B.; Brandon, V.

    2014-01-01

    The symmetry of a Direct-Drive (DD) irradiation scheme has been analyzed by means of three-dimensional (3D) simulations carried out by the code MULTI (R. Ramis et al., Comput. Phys. Commun. 49, 475 (1988)) that includes hydrodynamics, heat transport, and 3D laser ray-tracing. The implosion phase of a target irradiated by the Laser Megajoule (LMJ) facility in the context of the Shock Ignition scheme has been considered. The LMJ facility has been designed for Indirect-Drive, and by this reason that the irradiation scheme must be modified when used for DD. Thus, to improve the implosion uniformity to acceptable levels, the beam centerlines should be realigned and the beam power balance should be adjusted. Several alternatives with different levels of complexity are presented and discussed

  6. Three-dimensional elastic-plastic analysis of shallow cracks in single-edge-crack-tension specimens

    Science.gov (United States)

    Shivakumar, Kunigal N.; Newman, James C., Jr.

    1990-01-01

    Three dimensional, elastic-plastic, finite element results are presented for single-edge crack-tension specimens with several shallow crack-length-to-width ratios (0.05 less than or equal to a/W less than or equal to 0.5). Results showed the need to model the initial yield plateau in the stress-strain behavior to accurately model deformation of the A36 steel specimens. The crack-tip-opening-displacement was found to be linearly proportional to the crack-mouth-opening displacement. A new deformation dependent plastic-eta factor equation is presented for calculating the J-integral from test load-displacement records. This equation was shown to be accurate for all crack lengths considered.

  7. Three-dimensional modelling of the human carotid artery using the lattice Boltzmann method: II. Shear analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, J [Cardiovascular Research Group, Physics, University of New England, Armidale, NSW 2351 (Australia); Buick, J M [Mechanical and Design Engineering, Anglesea Building, Anglesea Road, University of Portsmouth, Portsmouth, PO1 3DJ (United Kingdom)

    2008-10-21

    Near-wall shear is known to be important in the pathogenesis and progression of atherosclerosis. In this paper, the shear field in a three-dimensional model of the human carotid artery is presented. The simulations are performed using the lattice Boltzmann model and are presented at six times of interest during a physiologically accurate velocity waveform. The near-wall shear rate and von Mises effective shear are also examined. Regions of low near-wall shear rates are observed near the outer wall of the bifurcation and in the lower regions of the external carotid artery. These are regions where low near-wall velocity and circulatory flows have been observed and are regions that are typically prone to atherosclerosis.

  8. Three-dimensional modelling of the human carotid artery using the lattice Boltzmann method: II. Shear analysis

    International Nuclear Information System (INIS)

    Boyd, J; Buick, J M

    2008-01-01

    Near-wall shear is known to be important in the pathogenesis and progression of atherosclerosis. In this paper, the shear field in a three-dimensional model of the human carotid artery is presented. The simulations are performed using the lattice Boltzmann model and are presented at six times of interest during a physiologically accurate velocity waveform. The near-wall shear rate and von Mises effective shear are also examined. Regions of low near-wall shear rates are observed near the outer wall of the bifurcation and in the lower regions of the external carotid artery. These are regions where low near-wall velocity and circulatory flows have been observed and are regions that are typically prone to atherosclerosis.

  9. Nasal changes after orthognathic surgery for patients with prognathism and Class III malocclusion: analysis using three-dimensional photogrammetry.

    Science.gov (United States)

    Worasakwutiphong, Saran; Chuang, Ya-Fang; Chang, Hsin-Wen; Lin, Hsiu-Hsia; Lin, Pei-Ju; Lo, Lun-Jou

    2015-02-01

    Orthognathic surgery alters the position of maxilla and mandible, and consequently changes the nasal shape. The nasal change remains a concern to Asian patients. The aim of this study was to measure the nasal changes using a novel three-dimensional photographic imaging method. A total of 38 patients with Class III malocclusion and prognathism were enrolled. All patients underwent two-jaw surgery with the standard technique. A nasal alar cinching suture was included at the end of procedure. Facial landmarks and nasal morphology were defined and measured from pre- and postoperative three-dimensional photographic images. Intra-rater errors on landmark identification were controlled. Patient's reports of perceptual nasal changes were recorded. The average width of the alar base and subalare remained similar after surgery. Alar width was increased by 0.74 mm. Nasal height and length remained the same. Nasolabial angle increased significantly. The area of nostril show revealed a significant increase and was correlated with a decrease of columella inclination. Nasal tip projection decreased significantly, by 1.99 mm. Preoperative nasal morphology was different between patients with and without cleft lip/palate, but most nasal changes were concordant. In the self-perception, 37% of patients reported improved nasal appearance, 58% reported no change, and 5% were not satisfied with the nasal changes. After the surgery, characteristic nasal changes occurred with an increase of nasolabial angle and nostril show, but a preserved nasal width. The majority of patients did not perceive adverse nasal changes. Copyright © 2014. Published by Elsevier B.V.

  10. Biomechanical effect of a zirconia dental implant-crown system: a three-dimensional finite element analysis.

    Science.gov (United States)

    Chang, Chih-Ling; Chen, Chen-Sheng; Yeung, Tze Cheung; Hsu, Ming-Lun

    2012-01-01

    The objective of this study was to analyze and compare the stresses in two different bone-implant interface conditions in anisotropic three-dimensional finite element models (FEMs) of an osseointegrated implant of either commercially pure titanium or yttrium-partially stabilized zirconia (Y-PSZ) in combination with different superstructures (gold alloy or Y-PSZ crown) in the posterior maxilla. Three-dimensional FEMs were created of a first molar section of the maxilla into which was embedded an implant, connected to an abutment and superstructure, using commercial software. Two versions of the FEM were constructed; these allowed varying assignment of properties (either a bonded and or a contact interface), so that all experimental variables could be investigated in eight groups. Compact and cancellous bone were modeled as fully orthotropic and transversely isotropic, respectively. Oblique (200-N vertical and 40-N horizontal) occlusal loading was applied at the central and distal fossae of the crown. Maximum von Mises and compressive stresses in the compact bone in the two interfaces were lower in the zirconia implant groups than in the titanium implant groups. A similar pattern of stress distribution in cancellous bone was observed, not only on the palatal side of the platform but also in the apical area of both types of implants. The biomechanical parameters of the new zirconia implant generated a performance similar to that of the titanium implant in terms of displacement, stresses on the implant, and the bone-implant interface; therefore, it may be a viable alternative, especially for esthetic regions.

  11. Three-dimensional analysis of marginal and internal fit of copings fabricated with polyetherketoneketone (PEKK) and zirconia.

    Science.gov (United States)

    Bae, So-Yeon; Park, Jin-Young; Jeong, Il-Do; Kim, Hae-Young; Kim, Ji-Hwan; Kim, Woong-Chul

    2017-04-01

    The purpose of this in vitro study was to compare and analyze the three-dimensional marginal and internal fit of PEKK and zirconia copings. Two acrylic models of the right maxillary canine, first molar were fabricated as master dies and duplicated by one-step dual viscosity impressions. Five stone replicas from each model were digitized with a blue-light scanner and copings were machined from Pekkton and Zirconia blanks. The inner surface of all the copings and two original acrylic models were digitized by a highly accurate optical scanner. By superimposing the digitized coping data with the CAD-reference die three-dimensionally, visual fit-discrepancies were drawn by calculating the root mean square (RMS) and visualized on a color-difference map. Each calculated RMS-value was statistically analyzed by 3-way ANOVA. In addition, Student's t-test was conducted in order to verify the significance (α=.05) of fit-discrepancies based on the type of abutment tooth and the materials. Mean RMS-values for marginal fit (internal fit) ranged from 51.64±1.5 (36.12±1.34) to 69.62±8.11 (41.6±1.63)μm. Differences in marginal fit (canine: P=.001; molar: P=.047) and internal fit (canine: P=.017; molar: P=.046) were statistically significant. The results of the 3-way ANOVA showed statistically significant differences in the RMS values of the two groups for the material (Pzirconia copings of both canine and molar were within the clinically acceptable range. However, the PEKK presented better fitness compared with the zirconia. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  12. Similarity analysis and scaling criteria for LWRs under single-phase and two-phase natural circulation

    International Nuclear Information System (INIS)

    Ishii, M.; Kataoka, I.

    1983-03-01

    Scaling criteria for a natural circulation loop under single phase and two-phase flow conditions have been derived. For a single phase case the continuity, integral momentum, and energy equations in one-dimensional area average forms have been used. From this, the geometrical similarity groups, friction number, Richardson number, characteristic time constant ratio, Biot number, and heat source number are obtained. The Biot number involves the heat transfer coefficient which may cause some difficulties in simulating the turbulent flow regime. For a two-phase flow case, the similarity groups obtained from a perturbation analysis based on the one-dimensional drift-flux model have been used. The physical significance of the phase change number, subcooling number, drift-flux number, friction number are discussed and conditions imposed by these groups are evaluated. In the two-phase flow case, the critical heat flux is one of the most important transients which should be simulated in a scale model. The above results are applied to the LOFT facility in case of a natural circulation simulation. Some preliminary conclusions on the feasibility of the facility have been obtained

  13. Similarity analysis and scaling criteria for LWRs under single-phase and two-phase natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, M.; Kataoka, I.

    1983-03-01

    Scaling criteria for a natural circulation loop under single phase and two-phase flow conditions have been derived. For a single phase case the continuity, integral momentum, and energy equations in one-dimensional area average forms have been used. From this, the geometrical similarity groups, friction number, Richardson number, characteristic time constant ratio, Biot number, and heat source number are obtained. The Biot number involves the heat transfer coefficient which may cause some difficulties in simulating the turbulent flow regime. For a two-phase flow case, the similarity groups obtained from a perturbation analysis based on the one-dimensional drift-flux model have been used. The physical significance of the phase change number, subcooling number, drift-flux number, friction number are discussed and conditions imposed by these groups are evaluated. In the two-phase flow case, the critical heat flux is one of the most important transients which should be simulated in a scale model. The above results are applied to the LOFT facility in case of a natural circulation simulation. Some preliminary conclusions on the feasibility of the facility have been obtained.

  14. Three-dimensional ICT reconstruction

    International Nuclear Information System (INIS)

    Zhang Aidong; Li Ju; Chen Fa; Sun Lingxia

    2005-01-01

    The three-dimensional ICT reconstruction method is the hot topic of recent ICT technology research. In the context, qualified visual three-dimensional ICT pictures are achieved through multi-piece two-dimensional images accumulation by, combining with thresholding method and linear interpolation. Different direction and different position images of the reconstructed pictures are got by rotation and interception respectively. The convenient and quick method is significantly instructive to more complicated three-dimensional reconstruction of ICT images. (authors)

  15. Three-dimensional ICT reconstruction

    International Nuclear Information System (INIS)

    Zhang Aidong; Li Ju; Chen Fa; Sun Lingxia

    2004-01-01

    The three-dimensional ICT reconstruction method is the hot topic of recent ICT technology research. In the context qualified visual three-dimensional ICT pictures are achieved through multi-piece two-dimensional images accumulation by order, combining with thresholding method and linear interpolation. Different direction and different position images of the reconstructed pictures are got by rotation and interception respectively. The convenient and quick method is significantly instructive to more complicated three-dimensional reconstruction of ICT images. (authors)

  16. Thermophysical analysis for three-dimensional MHD stagnation-point flow of nano-material influenced by an exponential stretching surface

    Directory of Open Access Journals (Sweden)

    Fiaz Ur Rehman

    2018-03-01

    Full Text Available In the present paper a theoretical investigation is performed to analyze heat and mass transport enhancement of water-based nanofluid for three dimensional (3D MHD stagnation-point flow caused by an exponentially stretched surface. Water is considered as a base fluid. There are three (3 types of nanoparticles considered in this study namely, CuO (Copper oxide, Fe3O4 (Magnetite, and Al2O3 (Alumina are considered along with water. In this problem we invoked the boundary layer phenomena and suitable similarity transformation, as a result our three dimensional non-linear equations of describing current problem are transmuted into nonlinear and non-homogeneous differential equations involving ordinary derivatives. We solved the final equations by applying homotopy analysis technique. Influential outcomes of aggressing parameters involved in this study, effecting profiles of temperature field and velocity are explained in detail. Graphical results of involved parameters appearing in considered nanofluid are presented separately. It is worth mentioning that Skin-friction along x and y-direction is maximum for Copper oxide-water nanofluid and minimum for Alumina-water nanofluid. Result for local Nusselt number is maximum for Copper oxide-water nanofluid and is minimum for magnetite-water nanofluid. Keywords: Heat transfer, Nanofluids, Stagnation-point flow, Three-dimensional flow, Nano particles, Boundary layer

  17. Three-dimensional analysis of the airflow in an industrial nozzle; Analisis tridimensional del flujo de aire en tobera industrial

    Energy Technology Data Exchange (ETDEWEB)

    Vigueras Zuniga, M. O.; Santos Nunez, C.; Bolado Estandia, R. [Instituto Mexicano del Petroleo, Veracruz (Mexico)

    2010-11-15

    This work presents an estimation of the aerodynamics' effects produced by the air flow velocity in the inlet of an industrial oven. The research was based on a combustor chamber installed at the Laboratorio de Sistemas de Combustion del Instituto Mexicano del Petroleo, Veracruz, Mexico. The results showed the numerical simulations of the three-dimensional effects of the air flow. The range of the velocity air flow (0 to 1.5 m/s) resulted that the flow behaviour and the recirculation zone were symmetric from the axial axis. On the other hand, the range of the velocity flow (1.5 to 3.8 m/s) resulted that the recirculation was not uniform and it was observed that the flow was directed to the top region of the chamber wall. This information was compared with experimental data recorded in a previous test. Finally, this work demonstrated that the flow velocity range of 1.5 to 3.8 m/s produced three-dimensional effects and changed the flame position. For that reason, it is important to correct this problem to improve the combustion process. [Spanish] El siguiente trabajo presenta una estimacion de los efectos aerodinamicos producidos por la velocidad del flujo de aire en la garganta de admision de un horno industrial. Para esta investigacion se considero la actual configuracion del horno instalado en el Laboratorio de Sistemas de Combustion del Instituto Mexicano del Petroleo en Veracruz, Mexico. Los resultados fueron obtenidos a partir de la creacion de un modelo de simulacion numerica que permitio estudiar los efectos tridimensionales del flujo de aire. Basados en los resultados de la simulacion, se determino que el rango de 0 a 1.5 m/s (velocidad del flujo de aire) se comporta de forma simetrica respecto al eje axial central. Para un rango de velocidades mayor a 1.5 m/s el flujo de aire se comporta no uniforme con una tendencia de direccion a la parte superior de la camara de combustion. La informacion obtenida del modelo fue comparada con datos experimentales

  18. Form and function in the platyrrhine skull: a three-dimensional analysis of dental and TMJ morphology.

    Science.gov (United States)

    Terhune, Claire E; Cooke, Siobhán B; Otárola-Castillo, Erik

    2015-01-01

    Cranial and temporomandibular joint (TMJ) form has been shown to reflect masticatory forces and mandibular range of motion, which vary in relation to feeding strategy. Similarly, the dentition, as the portion of the masticatory apparatus most directly involved in triturating food items, strongly reflects dietary profile. Fine control over condylar and mandibular movements guides the teeth into occlusion, while the topography and position of the dental arcade mediate mandibular movements. We hypothesize that masticatory, and particularly TMJ, morphology and dental form covary in predictable ways with one another and with diet. We employed three-dimensional geometric morphometric techniques to examine inter-specific variation in ten platyrrhine species. Landmarks were collected on six datasets describing the upper and lower molars, cranium, glenoid fossa, mandible, and mandibular condyle; two-block partial least squares analyses were performed to assess covariation between cranial morphology, dentition, and diet. Significant relationships were identified between the molars and the cranium, mandible, and glenoid fossa. Some of these shape complexes reflect feeding strategy; for example, higher crowned/cusped dentitions, as found in primates consuming larger quantities of structural carbohydrates (e.g., Alouatta and Saimiri), correspond to anteroposterior longer and deeper glenoid fossae. These results indicate strong covariance between dental and TMJ form, aspects of which are related to feeding behavior. However, other aspects of morphological variation display a strong phylogenetic signal; we must therefore examine further ways in which to control for phylogeny when examining covariation in interspecific masticatory form. © 2014 Wiley Periodicals, Inc.

  19. Nasal position of nasotracheal tubes: a retrospective analysis of intraoperatively generated three-dimensional X-rays during maxillofacial surgery.

    Science.gov (United States)

    Plümer, Lili; Schön, Gerhard; Klatt, Jan; Hanken, Henning; Schmelzle, Rainer; Pohlenz, Philipp

    2014-10-17

    The aim of this retrospective investigation was to evaluate the position of the nasotracheal tube in the nose and to show its anatomical relationship with the maxillary sinus ostium. Fifty data sets from patients who had undergone endonasal intubation were analyzed for tube positioning. There was a drop-out of eight data sets due to missing information concerning tube size and mode. Tube positioning was determined at the maxillary sinus ostium in the intraoperatively generated three-dimensional X-ray data sets. The type of tube, the tube size, and the presence of maxillary sinusitis were analyzed 30 minutes after intubation. The tube was positioned in the middle nasal meatus in 35 (83.3%) patients and not in the middle nasal meatus in 7 (16.7%) patients. The difference in comparison with equal distribution was significant (P tubes are positioned in the middle nasal meatus. This result can be part of the answer to the question of the causal relationship between position of the breathing tube and the onset of maxillary sinusitis. The indications for prolonged nasotracheal intubation instead of orotracheal intubation or early tracheostomy should be considered carefully.

  20. Three-dimensional analysis for liquid hydrogen in a cryogenic storage tank with heat pipe pump system

    Science.gov (United States)

    Ho, Son H.; Rahman, Muhammad M.

    2008-01-01

    This paper presents a study on fluid flow and heat transfer of liquid hydrogen in a zero boil-off cryogenic storage tank in a microgravity environment. The storage tank is equipped with an active cooling system consisting of a heat pipe and a pump-nozzle unit. The pump collects cryogen at its inlet and discharges it through its nozzle onto the evaporator section of the heat pipe in order to prevent the cryogen from boiling off due to the heat leaking through the tank wall from the surroundings. A three-dimensional (3-D) finite element model is employed in a set of numerical simulations to solve for velocity and temperature fields of liquid hydrogen in steady state. Complex structures of 3-D velocity and temperature distributions determined from the model are presented. Simulations with an axisymmetric model were also performed for comparison. Parametric study results from both models predict that as the speed of the cryogenic fluid discharged from the nozzle increases, the mean or bulk cryogenic fluid speed increases linearly and the maximum temperature within the cryogenic fluid decreases.

  1. Three-dimensional transport coefficient model and prediction-correction numerical method for thermal margin analysis of PWR cores

    International Nuclear Information System (INIS)

    Chiu, C.

    1981-01-01

    Combustion Engineering Inc. designs its modern PWR reactor cores using open-core thermal-hydraulic methods where the mass, momentum and energy equations are solved in three dimensions (one axial and two lateral directions). The resultant fluid properties are used to compute the minimum Departure from Nuclear Boiling Ratio (DNBR) which ultimately sets the power capability of the core. The on-line digital monitoring and protection systems require a small fast-running algorithm of the design code. This paper presents two techniques used in the development of the on-line DNB algorithm. First, a three-dimensional transport coefficient model is introduced to radially group the flow subchannel into channels for the thermal-hydraulic fluid properties calculation. Conservation equations of mass, momentum and energy for this channels are derived using transport coefficients to modify the calculation of the radial transport of enthalpy and momentum. Second, a simplified, non-iterative numerical method, called the prediction-correction method, is applied together with the transport coefficient model to reduce the computer execution time in the determination of fluid properties. Comparison of the algorithm and the design thermal-hydraulic code shows agreement to within 0.65% equivalent power at a 95/95 confidence/probability level for all normal operating conditions of the PWR core. This algorithm accuracy is achieved with 1/800th of the computer processing time of its parent design code. (orig.)

  2. Three dimensional analysis of CT image on naso-maxillary complex in cleft lip and palate patients

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Rong-Rong [Tokyo Medical and Dental Univ. (Japan). School of Dentistry

    1994-12-01

    This study was designed to clarify the three dimensional features of naso-maxillary complex in cleft lip and palate (CLP) by using computed tomography (CT) and to examine its change following an upper dental arch expansion. Sequential CT images with 2mm-thickness were obtained for 11 unilateral CLP boys (UCLP), 6 bilateral CLP boys (BCLP) and 4 boys without cleft (non-cleft). Additionally, two serial sets of upper dental cast before and after dental arch expansion coupled with CT images in UCLP were used to evaluate the effect of dental arch expansion on the naso-maxillary complex. UCLP demonstrated a remarkable naso-maxillary deformity characterized by a decreased volume of maxillary sinus in comparison with the non-cleft patients. Both the volume and shape of nasal cavity were significantly different between the cleft and non cleft side. Naso-maxillary morphology of BCLP, however, was similar to that of the non cleft except for the decreased volume of alveolar arch. Comparative study of UCLP and BCLP showed a significant difference in naso-maxillary morphology. There were some significant correlations between the dental arch expansion and change of each naso-maxillary component, suggesting the effect of expansion stress on the naso-maxillary complex in UCLP. However, deformation caused by expansion stress varied, depending on each component of the naso-maxillary complex. (author) 61 refs.

  3. Three dimensional analysis of CT image on naso-maxillary complex in cleft lip and palate patients

    International Nuclear Information System (INIS)

    Ma, Rong-Rong

    1994-01-01

    This study was designed to clarify the three dimensional features of naso-maxillary complex in cleft lip and palate (CLP) by using computed tomography (CT) and to examine its change following an upper dental arch expansion. Sequential CT images with 2mm-thickness were obtained for 11 unilateral CLP boys (UCLP), 6 bilateral CLP boys (BCLP) and 4 boys without cleft (non-cleft). Additionally, two serial sets of upper dental cast before and after dental arch expansion coupled with CT images in UCLP were used to evaluate the effect of dental arch expansion on the naso-maxillary complex. UCLP demonstrated a remarkable naso-maxillary deformity characterized by a decreased volume of maxillary sinus in comparison with the non-cleft patients. Both the volume and shape of nasal cavity were significantly different between the cleft and non cleft side. Naso-maxillary morphology of BCLP, however, was similar to that of the non cleft except for the decreased volume of alveolar arch. Comparative study of UCLP and BCLP showed a significant difference in naso-maxillary morphology. There were some significant correlations between the dental arch expansion and change of each naso-maxillary component, suggesting the effect of expansion stress on the naso-maxillary complex in UCLP. However, deformation caused by expansion stress varied, depending on each component of the naso-maxillary complex. (author) 61 refs

  4. Aneurysm Surgery with Preoperative Three-Dimensional Planning in a Virtual Reality Environment: Technique and Outcome Analysis.

    Science.gov (United States)

    Kockro, Ralf A; Killeen, Tim; Ayyad, Ali; Glaser, Martin; Stadie, Axel; Reisch, Robert; Giese, Alf; Schwandt, Eike

    2016-12-01

    Aneurysm surgery demands precise spatial understanding of the vascular anatomy and its surroundings. We report on a decade of experience planning clipping procedures preoperatively in a virtual reality (VR) workstation and present outcomes with respect to mortality, morbidity, and aneurysm occlusion rate. Between 2006 and 2015, the clipping of 115 intracranial aneurysms in 105 patients was preoperatively planned with the Dextroscope, a stereoscopic, patient-specific VR environment. The outcome data for all cases, planned and performed in 3 institutions, were analyzed based on clinical charts and radiologic reports. Eighty-five incidental, unruptured aneurysms in 77 patients were electively planned and treated surgically. Mortality was 0% and morbidity (modified Rankin Scale score >2) was 2.6%. The rate of complete aneurysm obliteration on postoperative imaging was 91.8%. In addition, 30 aneurysms were treated in 28 patients with previous subarachnoid hemorrhage. Mortality in these cases was 3.6%, morbidity (modified Rankin Scale score >2) 7.1%, and the rate of complete aneurysm clipping was 90%. Meticulous three-dimensional surgical planning in a VR environment enhances the surgeon's spatial understanding of the individual vascular anatomy and allows clip preselection and positioning as well as anticipation of potential difficulties and complications. VR planning was associated, in this multi-institutional series, with excellent clinical outcomes and rates of complete aneurysm closure equivalent to benchmark cohorts. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Volumetric Analysis of Alveolar Bone Defect Using Three-Dimensional-Printed Models Versus Computer-Aided Engineering.

    Science.gov (United States)

    Du, Fengzhou; Li, Binghang; Yin, Ningbei; Cao, Yilin; Wang, Yongqian

    2017-03-01

    Knowing the volume of a graft is essential in repairing alveolar bone defects. This study investigates the 2 advanced preoperative volume measurement methods: three-dimensional (3D) printing and computer-aided engineering (CAE). Ten unilateral alveolar cleft patients were enrolled in this study. Their computed tomographic data were sent to 3D printing and CAE software. A simulated graft was used on the 3D-printed model, and the graft volume was measured by water displacement. The volume calculated by CAE software used mirror-reverses technique. The authors compared the actual volumes of the simulated grafts with the CAE software-derived volumes. The average volume of the simulated bone grafts by 3D-printed models was 1.52 mL, higher than the mean volume of 1.47 calculated by CAE software. The difference between the 2 volumes was from -0.18 to 0.42 mL. The paired Student t test showed no statistically significant difference between the volumes derived from the 2 methods. This study demonstrated that the mirror-reversed technique by CAE software is as accurate as the simulated operation on 3D-printed models in unilateral alveolar cleft patients. These findings further validate the use of 3D printing and CAE technique in alveolar defect repairing.

  6. The three-dimensional microstructure of trabecular bone: Analysis of site-specific variation in the human jaw bone

    International Nuclear Information System (INIS)

    Kim, Jo Eun; Yi, Won Jin; Heo, Min Suk; Lee, Sam Sun; Choi, Soon Chul; Huh, Kyung Hoe; Shin, Jae Myung; Oh, Sung Ook

    2013-01-01

    This study was performed to analyze human maxillary and mandibular trabecular bone using the data acquired from micro-computed tomography (micro-CT), and to characterize the site-specific microstructures of trabeculae. Sixty-nine cylindrical bone specimens were prepared from the mandible and maxilla. They were divided into 5 groups by region: the anterior maxilla, posterior maxilla, anterior mandible, posterior mandible, and mandibular condyle. After the specimens were scanned using a micro-CT system, three-dimensional microstructural parameters such as the percent bone volume, bone specific surface, trabecular thickness, trabecular separation, trabecular number, structure model index, and degrees of anisotropy were analyzed. Among the regions other than the condylar area, the anterior mandibular region showed the highest trabecular thickness and the lowest value for the bone specific surface. On the other hand, the posterior maxilla region showed the lowest trabecular thickness and the highest value for the bone specific surface. The degree of anisotropy was lowest at the anterior mandible. The condyle showed thinner trabeculae with a more anisotropic arrangement than the other mandibular regions. There were microstructural differences between the regions of the maxilla and mandible. These results suggested that different mechanisms of external force might exist at each site.

  7. The three-dimensional microstructure of trabecular bone: Analysis of site-specific variation in the human jaw bone

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jo Eun; Yi, Won Jin; Heo, Min Suk; Lee, Sam Sun; Choi, Soon Chul; Huh, Kyung Hoe [Dept. of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul (Korea, Republic of); Shin, Jae Myung [Dept. of Oral and Maxillofacial Surgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang (Korea, Republic of); Oh, Sung Ook [A Plus Dental Clinic, Seoul (Korea, Republic of)

    2013-12-15

    This study was performed to analyze human maxillary and mandibular trabecular bone using the data acquired from micro-computed tomography (micro-CT), and to characterize the site-specific microstructures of trabeculae. Sixty-nine cylindrical bone specimens were prepared from the mandible and maxilla. They were divided into 5 groups by region: the anterior maxilla, posterior maxilla, anterior mandible, posterior mandible, and mandibular condyle. After the specimens were scanned using a micro-CT system, three-dimensional microstructural parameters such as the percent bone volume, bone specific surface, trabecular thickness, trabecular separation, trabecular number, structure model index, and degrees of anisotropy were analyzed. Among the regions other than the condylar area, the anterior mandibular region showed the highest trabecular thickness and the lowest value for the bone specific surface. On the other hand, the posterior maxilla region showed the lowest trabecular thickness and the highest value for the bone specific surface. The degree of anisotropy was lowest at the anterior mandible. The condyle showed thinner trabeculae with a more anisotropic arrangement than the other mandibular regions. There were microstructural differences between the regions of the maxilla and mandible. These results suggested that different mechanisms of external force might exist at each site.

  8. Three-Dimensional Analysis of the Contact Pattern between the Cortical Bone and Femoral Prosthesis after Cementless Total Hip Arthroplasty

    Directory of Open Access Journals (Sweden)

    Hiroshi Wada

    2016-01-01

    Full Text Available The cementless stem Excia (B. Braun, Melsungen, Germany implant has a rectangular cross-sectional shape with back-and-forth flanges and a plasma-sprayed, dicalcium phosphate dihydrate coating from the middle to proximal portion to increase initial fixation and early bone formation. Here, the conformity of the Excia stem to the femoral canal morphology was three-dimensionally assessed using computed tomography. Forty-three patients (45 hips were examined after primary total hip arthroplasty with a mean follow-up of 27 ± 3 months (range: 24–36 months. Spot welds occurred at zone 2 in 16 hips and at zone 6 in 24 hips, with 83% (20/24 hips of those occurring within 3 months after surgery. First- (n=12 hips, second- (n=32, and third- (n=1 degree stress shielding were observed. The stem was typically in contact with the cortical bone in the anterolateral mid-portion (100% and posteromedial distal portions (85%. Stress shielding did not progress, even in cases where the stems were in contact with the distal portions. The anterior flange was in contact with the bone in all cases. The stability of the mid-lateral portion with the dicalcium phosphate dihydrate coating and the anterior flange may have inhibited the progression of stress shielding beyond the second degree.

  9. Qualitative and quantitative evaluation of human dental enamel after bracket debonding: a noncontact three-dimensional optical profilometry analysis.

    Science.gov (United States)

    Ferreira, Fabiano G; Nouer, Darcy F; Silva, Nelson P; Garbui, Ivana U; Correr-Sobrinho, Lourenço; Nouer, Paulo R A

    2014-09-01

    The aim of this study was to undertake a qualitative and quantitative evaluation of changes on enamel surfaces after debonding of brackets followed by finishing procedures, using a high-resolution three-dimensional optical profiler and to investigate the accuracy of the technique. The labial surfaces of 36 extracted upper central incisors were examined. Before bonding, the enamel surfaces were subjected to profilometry, recording four amplitude parameters. Brackets were then bonded using two types of light-cured orthodontic adhesive: composite resin and resin-modified glass ionomer cement. Finishing was performed by three different methods: pumice on a rubber cup, fine and ultrafine aluminum oxide discs, and microfine diamond cups followed by silicon carbide brushes. The samples were subsequently re-analyzed by profilometry. Wilcoxon signed-rank test, Kruskal-Wallis test (p enamel roughness when diamond cups followed by silicon carbide brushes were used to finish surfaces that had remnants of resin-modified glass ionomer adhesive and when pumice was used to finish surfaces that had traces of composite resin. Enamel loss was minimal. The 3D optical profilometry technique was able to provide accurate qualitative and quantitative assessment of changes on the enamel surface after debonding. Morphological changes in the topography of dental surfaces, especially if related to enamel loss and roughness, are of considerable clinical importance. The quantitative evaluation method used herein enables a more comprehensive understanding of the effects of orthodontic bonding on teeth.

  10. Three-dimensional image analysis of a head of the giant panda by the cone-beam type CT

    International Nuclear Information System (INIS)

    Endo, H.; Komiya, T.; Narushima, E.; Suzuki, N.

    2002-01-01

    The cone-beam type CT (Computed Tomography) enabled us to collect the three-dimensional (3D) digitalized data directly from the animal carcass. In this study, we applied the techniques of the cone-beam type CT for a carcass head of the giant panda (Ailuropoda melanoleuca) to obtain the 3D images easily without reconstruction process, and could morphologically examine the sections from the 3D data by means of non-destructive observations. The important results of the study represent the two following points. 1) We could show the morphological relationships between the muscles of mastication and the mandible in non-destructive status from the 3D data. The exact position of the coronoid process could be recognized in the rostro-lateral space of the temporal fossa. 2) By the serial sections from the 3D data sets, the morphological characteristics in the nasal cavity were detailed with high resolution in this rare species. The nasal concha was well-developed in the nasal cavity. The ethmoidal labyrinth was encountered immediately caudal to the nasal cavity and close to the region of the olfactory bulb. The ethmoidal labyrinth consisted of the complicated osseous structure in this area. The data will be useful to discuss the olfactory function in the reproduction behavior of this species

  11. Harmonic Instability Analysis of Single-Phase Grid Connected Converter using Harmonic State Space (HSS) modeling method

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth

    2015-01-01

    The increasing number of renewable energy sources at the distribution grid is becoming a major issue for utility companies, since the grid connected converters are operating at different operating points due to the probabilistic characteristics of renewable energy. Besides, typically, the harmonics...... proposes a new model of a single phase grid connected renewable energy source using the Harmonic State Space modeling approach, which is able to identify such problems and the model can be extended to be applied in the multiple connected converter analysis. The modeling results show the different harmonic...... and impedance from other renewable energy sources are not taken carefully into account in the installation and design. However, this may bring an unknown harmonic instability into the multiple power sourced system and also make the analysis difficult due to the complexity of the grid network. This paper...

  12. Single-Phase PLLs

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    Single-phase phase-locked loops (PLLs) are popular for the synchronization and control of single-phase gridconnected converters. They are also widely used for monitoring and diagnostic purposes in the power and energy areas. In recent years, a large number of single-phase PLLs with different...... structures and properties have been proposed in the literature. The main aim of this paper is to provide a review of these PLLs. To this end, the single-phase PLLs are first classified into two major categories: 1) power-based PLLs (pPLLs), and 2) quadrature signal generation-based PLLs (QSG......-PLLs). The members of each category are then described and their pros and cons are discussed. This work provides a deep insight into characteristics of different single-phase PLLs and, therefore, can be considered as a reference for researchers and engineers....

  13. Three-dimensional effects in fracture mechanics

    International Nuclear Information System (INIS)

    Benitez, F.G.

    1991-01-01

    An overall view of the pioneering theories and works, which enlighten the three-dimensional nature of fracture mechanics during the last years is given. the main aim is not an exhaustive reviewing but the displaying of the last developments on this scientific field in a natural way. This work attempts to envisage the limits of disregarding the three-dimensional behaviour in theories, analyses and experiments. Moreover, it tries to draw attention on the scant fervour, although increasing, this three-dimensional nature of fracture has among the scientific community. Finally, a constructive discussion is presented on the use of two-dimensional solutions in the analysis of geometries which bear a three-dimensional configuration. the static two-dimensional solutions and its applications fields are reviewed. also, the static three-dimensional solutions, wherein a comparative analysis with elastoplastic and elastostatic solutions are presented. to end up, the dynamic three-dimensional solutions are compared to the asymptotic two-dimensional ones under the practical applications point of view. (author)

  14. Pore pressure measurement plan of near field rock used on three dimensional groundwater flow analysis in demonstration test of cavern type disposal facility

    International Nuclear Information System (INIS)

    Onuma, Kazuhiro; Terada, Kenji; Matsumura, Katsuhide; Koyama, Toshihiro; Yajima, Kazuaki

    2008-01-01

    Demonstration test of underground cavern type disposal facilities is planed though carrying out construction of full scale engineering barrier system which simulated in the underground space in full scale and under actual environment. This test consists of three part, these are construction test, performance test and measurement test. Behavior of near field rock mass is measured about hydrological behavior under and after construction to evaluate effect at test facility. To make plan of pore pressure measurement, three dimensional groundwater flow analysis has been carried out. Based on comparison of analysis before and after test, detail plan has been studied. (author)

  15. Characterization of Small (Accuracy of Spectral Analysis Using Single-Phase Contrast-Enhanced Dual-Energy CT.

    Science.gov (United States)

    Patel, Bhavik N; Bibbey, Alex; Choudhury, Kingshuk R; Leder, Richard A; Nelson, Rendon C; Marin, Daniele

    2017-10-01

    The purpose of this study is to determine whether single-phase contrast-enhanced dual-energy quantitative spectral analysis improves the accuracy of diagnosis of small (men and 41 women; mean age, 54 years) with 144 renal lesions (111 benign and 33 malignant) underwent single-energy unenhanced and dual-energy contrast-enhanced CT of the abdomen. For each renal lesion, attenuation measurements were obtained, and an attenuation change of 15 HU or greater was considered evidence of enhancement. Dual-energy spectral attenuation curves were generated for each lesion. The slope of each curve was measured between 40 and 50 keV (λHU 40-50 ), 40 and 70 keV (λHU 40-70 ), and 40 and 140 keV (λHU 40-140 ). Mean lesion attenuation values and spectral attenuation curve parameters were compared between benign and malignant renal lesions by use of the two-sample t test. Diagnostic accuracy was assessed and validated using cross-validation analysis. With the use of cross-validated optimal thresholds at 100% sensitivity, specificity for differentiating between benign and malignant renal lesions improved significantly when both λHU 40-70 and λHU 40-140 were used, compared with conventional enhancement measurements (93% [103/111; 95% CI, 86-97%] vs 81% [90/111; 95% CI, 73-88%]) (p = 0.02). The sensitivity of λHU 40-70 and λHU 40-140 was also higher than that of conventional enhancement measurements, although it was not statistically significant. Single-phase contrast-enhanced dual-energy quantitative spectral analysis significantly improves the specificity for characterization of small (< 4.0 cm) renal lesions, compared with conventional single-energy attenuation measurements.

  16. Three dimensional moire pattern alignment

    Science.gov (United States)

    Juday, Richard D. (Inventor)

    1991-01-01

    An apparatus is disclosed for determining three dimensional positioning relative to a predetermined point utilizing moire interference patterns such that the patterns are complementary when viewed on axis from the predetermined distance. Further, the invention includes means for determining rotational positioning in addition to three dimensional translational positioning.

  17. The Three-Dimensional Sign.

    Science.gov (United States)

    Davis, Daniel R.

    1997-01-01

    Discusses the implications of the three-dimensional sign proposed by Harris (1990) for general linguistic theory and the philosophy of language. The article places the principal characteristics of the three-dimensional sign (contextuality, cotemporality, communicational relevance, and experiential grounding) against those of the two-dimensional…

  18. Volumetric analysis and three-dimensional glucose metabolic mapping of the striatum and thalamus in patients with autism spectrum disorders.

    Science.gov (United States)

    Haznedar, M Mehmet; Buchsbaum, Monte S; Hazlett, Erin A; LiCalzi, Elizabeth M; Cartwright, Charles; Hollander, Eric

    2006-07-01

    In patients with autism, behavioral deficits as well as neuroimaging studies of the anterior cingulate cortex suggest ventral rather than dorsal striatal and thalamic abnormalities in structure and function. The authors used imaging studies to map volumetric and metabolic differences within the entire dorsoventral extent of the striatum and thalamus. Magnetic resonance imaging (MRI) and positron emission tomography (PET) were used to measure volumes and metabolic activity in the thalamus, caudate, and putamen in 17 patients with autism or Asperger's disorder and 17 age- and sex-matched comparison subjects. Subjects performed a serial verbal learning test during the [(18)F]-fluorodeoxyglucose uptake period. The regions of interest were outlined on contiguous axial MRI slices. After PET/MRI coregistration, region-of-interest coordinates were applied to the PET scan for each individual. Between-group differences in metabolism were assessed by three-dimensional statistical probability mapping. The patients with autism spectrum disorders had greater volumes of the right caudate nucleus than comparison subjects as well as a reversal of the expected left-greater-than-right hemispheric asymmetry. Patients also had lower relative glucose metabolic rates bilaterally in the ventral caudate, putamen, and thalamus. Patients with autism had lower metabolic activity in the ventral thalamus than those with Asperger's disorder, but they did not differ from comparison subjects in metabolic activity in the caudate nucleus. These results are consistent with a deficit in the anterior cingulate-ventral striatum-anterior thalamic pathway in patients with autism spectrum disorders. The results also suggest an important role for the caudate in helping support working-memory demands.

  19. Two- and three-dimensional reformatted computed tomography imaging analysis of the lumbosacropelvic structure in degenerative anterolisthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ergun, T., E-mail: tarkanergun@yahoo.co [Department of Radiology, Baskent University, Alanya Teaching and Medical Research Center, Alanya (Turkey); Sahin, M.S. [Department of Orthopaedics and Traumatology, Baskent University, Alanya Teaching and Medical Research Center, Alanya (Turkey); Lakadamyali, H. [Department of Radiology, Baskent University, Alanya Teaching and Medical Research Center, Alanya (Turkey)

    2010-11-15

    Aim: To evaluate the differences in the lumbosacropelvic structure between normal individuals and those with pseudospondylolisthesis. Materials and methods: The renal stone protocol abdominal CT images of 452 patients were retrospectively analysed. Twenty individuals who had degenerative anterolisthesis at the L5-S1 level were included in the study. Moreover, a control group of individuals was formed, similar in age and gender to the study group. A number of linear and angular lumbosacral morphological parameters were evaluated using two- and three-dimensionally reformatted CT images. The data of the two groups were compared using the t-test and Mann-Whitney U-test. Results: There was an association between spondylolisthesis and decreased thickness of the transverse process (p = 0.01), the height of the iliac crest (p = 0.028), lumbar angle (p = 0.041), sacral table angle (p = 0.033), sacral table index (p = 0.0001), sacral kyphosis (p = 0.025), sacral slope (p = 0.007), and width of the transverse process (p = 0.038), and increased transverse articular dimension of the facet joint (p = 0.003), axial angle of the facet joint (p = 0.002), sagittal angle of the facet joint (p = 0.012), S1 vertebra interfacet index (p = 0.003), the distance between the L5 vertebral transverse process and the iliac crest (p = 0.003), pelvic incidence (p = 0.016), L5 vertebra posterior angle (p = 0.001), and intersacroiliac joint angle (p = 0.024). Conclusion: The lumbosacropelvic morphology in patients with degenerative spondylolisthesis is quite different from that of normal individuals. These abnormalities should be revealed using imaging methods as they can be defining for pseudospondylolisthesis development and have important effects on therapy planning.

  20. Three-dimensional facial analysis in acromegaly: a novel tool to quantify craniofacial characteristics after long-term remission.

    Science.gov (United States)

    Wagenmakers, M A E M; Roerink, S H P P; Maal, T J J; Pelleboer, R H; Smit, J W A; Hermus, A R M M; Bergé, S J; Netea-Maier, R T; Xi, T

    2015-02-01

    The exact quantification of craniofacial characteristics in patients with acromegaly is important because it provides insight in the pathophysiology of the disease and offers a tool to evaluate the effects of treatment on tissue specific endpoints. However, until recently this was not feasible due to limitations of available cephalometric methods. The new technique of three-dimensional (3D) cephalometry enables the accurate quantification of facial anatomical characteristics of both soft tissue and bone. This is the first study that uses 3D cephalometry to analyze craniofacial disproportions in patients in long-term remission of acromegaly. Sixteen patients in remission of acromegaly for over 24 months (50% male, mean age 56.0 ± 10.7 years, mean body mass index 29.3 ± 5.5 kg/m(2)) were compared to 16 matched control subjects. A 3D cone beam computed tomography scan and 3D stereophotograph of each individual were acquired and analyzed using 3D cephalometry. In addition to an accurate quantification of the classical craniofacial characteristics, 3D cephalometry, shows that many typical soft tissue deformities persist, even after long-term remission. Furthermore, we found that, compared to controls, the patients in remission of acromegaly have a wider face at the level of the zygoma and longer maxilla (p cephalometry is an attractive novel imaging modality to accurately investigate craniofacial disproportions of both soft tissue and bony parts of the face in patients with acromegaly, which makes it a promising technique for future research purposes and clinical practice.

  1. Biomechanical Effects of Platform Switching in Two Different Implant Systems: A Three-Dimensional Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Mahasti Sahabi

    2013-01-01

    Full Text Available Aims: The purpose of this study was to determine the influence of platform switching on stress distribution of two different implant systems, using three-dimensional (3D finite element models.Methods: Six 3D finite element models were created to replicate two different implant systems with peri-implant bone tissue, in which six different implant-abutment configurations were represented: model XiVE-a: 3.8-mm-diameter implant and 3.8-mm-diameter abutment; model XiVE-b (platform-switching model: 4.5-mm-diameter implant and 3.8-mm-diameter abutment; model XiVE-c: 4.5-mm-diameter implant and 4.5-mm-diameter abutment; model 3i-a: 4.0-mm-diameter implant and 4.1-mm-diameter abutment; model 3i-b (platform-switching model: 5.0-mm-diameter implant and 4.1-mm-diameter abutment; model 3i-c: 5.0-mm-diameter implant and 5.0-mm-diameter abutment. Axial and oblique loads of 100 were applied to all models.Results: While the pattern of stress distribution was similar for both loading situations, oblique loading resulted in higher intensity and greater distribution of stress than axial loading in both cortical bone and abutment-implant interface. Stress distribution at peri-implant bone was almost identical with similar magnitudes for all six models. In both implant systems, platform switching models demonstrated lower maximum von Mises stress in cortical bone than conventional models. However, in both implant systems and under both loading situation, platform switching models showed higher stresses at the abutment-implant interface than conventional models.Conclusion: In both implant systems, platform switching design reduced the stress concentration in the crestal bone and shifted it towards the area of implant-abutment interface

  2. Three-dimensional microstructural analysis of human lumber vertebrae using microcomputed tomography in bone metastasis from prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Tamada, Tsutomu [Kawasaki Medical School, Kurashiki, Okayama (Japan)

    2000-11-01

    Prostate cancer frequently metastasizes to bone, inducing osteosclerotic lesions. However, the morphological details of bone metastasis of prostate cancer have not been clarified. The trabecular bone structure of bone metastasis from prostate cancer was investigated in three dimensions using microcomputed tomography (micro-CT). A total of 17 cubes of the lumber spine of a 77-year-old man with prostate cancer were excised post mortem: four of them from non-metastatic and the rest from metastatic sites. The samples were measured using micro-CT with a resolution of 23.2 {mu}m and the standard structural indices and degree of anisotropy were computed. After micro-CT measurement, the samples were tested in a destructive manner for the assessment of mechanical properties. Samples from the metastatic sites showed significantly higher values than those from non-metastatic sites for bone volume (BV), bone surface (BS), bone volume fraction (BV/TV), trabecular thickness (Tb.Th), and trabecular number (Tb.N) (p<0.005). Bone surface density (BS/BV) and trabecular separation (Tb.Sp) were significantly higher in the samples from non-metastatic sites (p<0.001). Samples from metastatic sites showed a more isotropic arrangement of trabecular bone than those from non-metastatic sites. Three-dimensionally reconstructed images depicted several different patterns of sclerotic bone metastasis, and osteolytic appearance was observed in all of them. Structural parameters such as BV/TV were well correlated with the mechanical properties (r=0.899). The present study clarified the trabecular microstructure of bone metastasis from prostate cancer and suggests that both osteolysis and osteogenesis progress while interacting with each other in all phases of bone metastasis. (author)

  3. Three-Dimensional Analysis of Syncytial-Type Cell Plates during Endosperm Cellularization Visualized by High Resolution Electron Tomography W⃞

    Science.gov (United States)

    Otegui, Marisa S.; Mastronarde, David N.; Kang, Byung-Ho; Bednarek, Sebastian Y.; Staehelin, L. Andrew

    2001-01-01

    The three-dimensional architecture of syncytial-type cell plates in the endosperm of Arabidopsis has been analyzed at ∼6-nm resolution by means of dual-axis high-voltage electron tomography of high-pressure frozen/freeze-substituted samples. Mini-phragmoplasts consisting of microtubule clusters assemble between sister and nonsister nuclei. Most Golgi-derived vesicles appear connected to these microtubules by two molecules that resemble kinesin-like motor proteins. These vesicles fuse with each other to form hourglass-shaped intermediates, which become wide (∼45 nm in diameter) tubules, the building blocks of wide tubular networks. New mini-phragmoplasts also are generated de novo around the margins of expanding wide tubular networks, giving rise to new foci of cell plate growth, which later become integrated into the main cell plate. Spiral-shaped rings of the dynamin-like protein ADL1A constrict but do not fission the wide tubules at irregular intervals. These rings appear to maintain the tubular geometry of the network. The wide tubular network matures into a convoluted fenestrated sheet in a process that involves increases of 45 and 130% in relative membrane surface area and volume, respectively. The proportionally larger increase in volume appears to reflect callose synthesis. Upon fusion with the parental plasma membrane, the convoluted fenestrated sheet is transformed into a planar fenestrated sheet. This transformation involves clathrin-coated vesicles that reduce the relative membrane surface area and volume by ∼70%. A ribosome-excluding matrix encompasses the cell plate membranes from the fusion of the first vesicles until the onset of the planar fenestrated sheet formation. We postulate that this matrix contains the molecules that mediate cell plate assembly. PMID:11549762

  4. [Three-dimensional gait analysis of patients with osteonecrosis of femoral head before and after treatments with vascularized greater trochanter bone flap].

    Science.gov (United States)

    Cui, Daping; Zhao, Dewei

    2011-03-01

    To provide the objective basis for the evaluation of the operative results of vascularized greater trochanter bone flap in treating osteonecrosis of the femoral head (ONFH) by three-dimensional gait analysis. Between March 2006 and March 2007, 35 patients with ONFH were treated with vascularized greater trochanter bone flap, and gait analysis was made by using three-dimensional gait analysis system before operation and at 1, 2 years after operation. There were 23 males and 12 females, aged 21-52 years (mean, 35.2 years), including 8 cases of steroid-induced, 7 cases of traumatic, 6 cases of alcoholic, and 14 cases of idiopathic ONFH. The left side was involved in 15 cases, and right side in 20 cases. According to Association Research Circulation Osseous (ARCO) classification, all patients were diagnosed as having femoral-head necrosis at stage III. Preoperative Harris hip functional score (HHS) was 56.2 +/- 5.6. The disease duration was 1.5-18.6 years (mean, 5.2 years). All incisions healed at stage I without early postoperative complications of deep vein thrombosis and infections of incision. Thirty-five patients were followed up 2-3 years with an average of 2.5 years. At 2 years after operation, the HHS score was 85.8 +/- 4.1, showing significant difference when compared with the preoperative score (t = 23.200, P = 0.000). Before operation, patients showed a hip muscles gait, short gait, reduce pain gait, and the pathological gaits significantly improved at 1 year after operation. At 1 year and 2 years after operation, step frequency, pace, step length and hip flexion, hip extension, knee flexion, ankle flexion were significantly improved (P petronas wave appeared at swing phase; the preoperative situation was three normal phase waves. These results suggest that three-dimensional gait analysis before and after vascularized greater trochanter for ONFH can evaluate precisely hip vitodynamics variation.

  5. Three dimensional model-based analysis of the lenticulostriate arteries and identification of the vessels correlated to the infarct area: preliminary results.

    Science.gov (United States)

    Kang, Chang-Ki; Wörz, Stefan; Liao, Wei; Park, Chan-A; Kim, Young-Bo; Park, Cheol-Wan; Lee, Young-Bae; Rohr, Karl; Cho, Zang-Hee

    2012-10-01

    Small vessel diseases have been studied noninvasively with magnetic resonance imaging. Direct observation or visualization of the connected microvessel to the infarct, however, was not possible due to the limited resolution. Hence, one could not determine whether vessel occlusion or abnormal narrowing is the cause of an infarct. In this report, we demonstrate that the small vessel related to the infarct can be detected using ultra-high-field (7 T) magnetic resonance imaging and a three dimensional image analysis and modeling technique for microvessels, which thereby enables us to quantify the vessel morphology directly, that is, visualize the vessel that is related to the infarct. We compared vessels of selected stroke patients, who had recovered from stroke, with vessels from typical stroke patients, who had after effects like motor weakness, and age-matched healthy subjects to demonstrate the potential of the technique. The experimental results show that typical stroke patients had overall degradation or loss of small vessels, compared with the selected patients as well as healthy subjects. The selected patients, however, had only minimal loss of vessels, except for one vessel located close to the infarct area. These preliminary results demonstrated that 7 T magnetic resonance imaging together with a three dimensional image analysis and modeling technique could provide information for detection of the vessel related to the infarct. In addition, three dimensional image analysis and modeling of vessels could further provide quantitative information on the microvessel structures comprising diameter, length and tortuosity. © 2011 The Authors. International Journal of Stroke © 2011 World Stroke Organization.

  6. High-contrast three-dimensional imaging of the Arabidopsis leaf enables the analysis of cell dimensions in the epidermis and mesophyll

    Directory of Open Access Journals (Sweden)

    Granier Christine

    2010-07-01

    Full Text Available Abstract Background Despite the wide spread application of confocal and multiphoton laser scanning microscopy in plant biology, leaf phenotype assessment still relies on two-dimensional imaging with a limited appreciation of the cells' structural context and an inherent inaccuracy of cell measurements. Here, a successful procedure for the three-dimensional imaging and analysis of plant leaves is presented. Results The procedure was developed based on a range of developmental stages, from leaf initiation to senescence, of soil-grown Arabidopsis thaliana (L. Heynh. Rigorous clearing of tissues, made possible by enhanced leaf permeability to clearing agents, allowed the optical sectioning of the entire leaf thickness by both confocal and multiphoton microscopy. The superior image quality, in resolution and contrast, obtained by the latter technique enabled the three-dimensional visualisation of leaf morphology at the individual cell level, cell segmentation and the construction of structural models. Image analysis macros were developed to measure leaf thickness and tissue proportions, as well as to determine for the epidermis and all layers of mesophyll tissue, cell density, volume, length and width. For mesophyll tissue, the proportion of intercellular spaces and the surface areas of cells were also estimated. The performance of the procedure was demonstrated for the expanding 6th leaf of the Arabidopsis rosette. Furthermore, it was proven to be effective for leaves of another dicotyledon, apple (Malus domestica Borkh., which has a very different cellular organisation. Conclusions The pipeline for the three-dimensional imaging and analysis of plant leaves provides the means to include variables on internal tissues in leaf growth studies and the assessment of leaf phenotypes. It also allows the visualisation and quantification of alterations in leaf structure alongside changes in leaf functioning observed under environmental constraints. Data

  7. ACCEPT: a three-dimensional finite element program for large deformation elastic-plastic-creep analysis of pressurized tubes (LWBR/AWBA Development Program)

    International Nuclear Information System (INIS)

    Hutula, D.N.; Wiancko, B.E.

    1980-03-01

    ACCEPT is a three-dimensional finite element computer program for analysis of large-deformation elastic-plastic-creep response of Zircaloy tubes subjected to temperature, surface pressures, and axial force. A twenty-mode, tri-quadratic, isoparametric element is used along with a Zircaloy materials model. A linear time-incremental procedure with residual force correction is used to solve for the time-dependent response. The program features an algorithm which automatically chooses the time step sizes to control the accuracy and numerical stability of the solution. A contact-separation capability allows modeling of interaction of reactor fuel rod cladding with fuel pellets or external supports

  8. Leakage current analysis of single-phase transformer-less grid-connected PV inverters

    DEFF Research Database (Denmark)

    Ma, Lin; Kerekes, Tamas; Teodorescu, Remus

    2015-01-01

    Transformer-less string PV inverter is getting more and more widely utilized due to its higher efficiency, smaller volume and weight. However, without the galvanic isolation, the leakage current limitation and operation safety became the key issues of transformer-less inverters. This paper...... simplifies the leakage current generation circuit model and presents a leakage current estimation method both in real time and frequency domain. It shows that the leakage current is related to the circuit stray parameters, output filter and common mode voltage. Furthermore, with the proposed analysis method......, the leakage current generation of H-bridge with different modulation methods and HERIC inverter are discussed individually. At last, the presented method has been verified via simulation....

  9. Single phase-change analysis of two different PCMs filled in a heat transfer module

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Gyu; Kang, Chae Dong [Chonbuk National University, Jeonju (Korea, Republic of); Kim, Hyung Kuk [Hyundai Heavy Industries Co., Ulsan (Korea, Republic of)

    2014-07-15

    Phase change material(PCM) is tried to secondary heat source in solar heat pump system. A numerical study of the phase change dominant heat transfer is done with a heat transfer module, which consists of a water path(BRINE), heat transfer plates(HTP), and PCM layers of high-temperature one(HPCM, 78-79 .deg. C) and low-temperature one(LPCM, 28-29 .deg. C). There are five arrangements consisting of BRINE, HTP, HPCM, and LPCM layers in the heat transfer module. The time and heat transfer rate for PCM melting/solidification are compared between arrangements. And the numerical time without convection is compared to the experimental one for melting/solidification. From the numerical analysis, the time for melting/solidification is different to 10 hours, depending on the arrangement.

  10. The analysis of three-dimensional effects of nitanium palatal expander 2 and hyrax maxillary expansion appliances on craniofacial structures: A finite element study

    Directory of Open Access Journals (Sweden)

    Avinash Kumar

    2017-01-01

    Full Text Available Objectives: To analyze three-dimensional effects of stress distribution and displacement on the craniofacial structures, following the application of forces from Nitanium Palatal Expander 2 (NPE2 and Hyrax appliance in early mixed dentition period using finite element analysis. Materials and Methods: Three-dimensional finite element models of the young dried human skull, NPE2 and Hyrax were constructed, and the initial activation of the expanders was simulated to carry out the analysis and to evaluate the von misses stresses and displacement on the craniofacial structures. Results: Both the models demonstrated the highest stresses at the mid-palatal suture, with maximum posterior dislocation. The inferior nasal floor showed highest downward displacement and point A showed outward, backward, and upward displacement in both the models. The pattern of stress distribution was almost similar in both the groups, but NPE2 revealed lower magnitude stresses than Hyrax. The cusp of the erupting canine and the mesiobuccal cusp of the second molar showed outward, backward, and downward displacement signifying eruption pattern following maxillary expansion. Conclusions: Nickel titanium palatal expander-2 and Hyrax produced similar stress pattern in early mixed dentition period finite element model. We conclude from this finite element method study that NPE2 is equally effective as Hyrax when used in early mixed dentition period as it exhibits orthopedic nature of expansion with minimal residual stresses in the craniofacial structures.

  11. Statistical analysis of entropy generation in longitudinally finned tube heat exchanger with shell side nanofluid by a single phase approach

    Directory of Open Access Journals (Sweden)

    Konchada Pavan Kumar

    2016-06-01

    Full Text Available The presence of nanoparticles in heat exchangers ascertained increment in heat transfer. The present work focuses on heat transfer in a longitudinal finned tube heat exchanger. Experimentation is done on longitudinal finned tube heat exchanger with pure water as working fluid and the outcome is compared numerically using computational fluid dynamics (CFD package based on finite volume method for different flow rates. Further 0.8% volume fraction of aluminum oxide (Al2O3 nanofluid is considered on shell side. The simulated nanofluid analysis has been carried out using single phase approach in CFD by updating the user-defined functions and expressions with thermophysical properties of the selected nanofluid. These results are thereafter compared against the results obtained for pure water as shell side fluid. Entropy generated due to heat transfer and fluid flow is calculated for the nanofluid. Analysis of entropy generation is carried out using the Taguchi technique. Analysis of variance (ANOVA results show that the inlet temperature on shell side has more pronounced effect on entropy generation.

  12. Design-Oriented Analysis of Slow-Scale Bifurcations in Single Phase DC-AC Inverters via Autonomous Transformation Approach

    Science.gov (United States)

    Zhang, Hao; Ding, Honghui; Yi, Chuanzhi

    2017-06-01

    This paper deals with the design-oriented analysis of slow-scale bifurcations in single phase DC-AC inverters. Since DC-AC inverter belongs to a class of nonautonomous piecewise systems with periodic equilibrium orbits, the original averaged model has to be translated into an equivalent autonomous one via a virtual rotating coordinate transformation in order to simplify the theoretical analysis. Based on the virtual equivalent model, eigenvalue sensitivity is used to estimate the effect of the important parameters on the system stability. Furthermore, theoretical analysis is performed to identify slow-scale bifurcation behaviors by judging in what way the eigenvalue loci of the Jacobian matrix move under the variation of some important parameters. In particular, the underlying mechanism of the slow-scale unstable phenomenon is uncovered and discussed thoroughly. In addition, some behavior boundaries are given in the parameter space, which are suitable for optimizing the circuit design. Finally, physical experiments are performed to verify the above theoretical results.

  13. Analogous Three-Dimensional Constructive Interference in Steady State Sequences Enhance the Utility of Three-Dimensional Time of Flight Magnetic Resonance Angiography in Delineating Lenticulostriate Arteries in Insular Gliomas: Evidence from a Prospective Clinicoradiologic Analysis of 48 Patients.

    Science.gov (United States)

    Rao, Arun S; Thakar, Sumit; Sai Kiran, Narayanam Anantha; Aryan, Saritha; Mohan, Dilip; Hegde, Alangar S

    2018-01-01

    Three-dimensional (3D) time of flight (TOF) imaging is the current gold standard for noninvasive, preoperative localization of lenticulostriate arteries (LSAs) in insular gliomas; however, the utility of this modality depends on tumor intensity. Over a 3-year period, 48 consecutive patients with insular gliomas were prospectively evaluated. Location of LSAs and their relationship with the tumor were determined using a combination of contrast-enhanced coronal 3D TOF magnetic resonance angiography and coronal 3D constructive interference in steady state (CISS) sequences. These findings were analyzed with respect to extent of tumor resection and early postoperative motor outcome. Tumor was clearly visualized in 29 (60.4%) patients with T1-hypointense tumors using 3D TOF and in all patients using CISS sequences. Using combined 3D TOF and CISS, LSA-tumor interface was well seen in 47 patients, including all patients with T1-heterointense or T1-isointense tumors. Extent of resection was higher in the LSA-pushed group compared with the LSA-encased group. In the LSA-encased group, 6 (12.5%) patients developed postoperative hemiparesis; 2 (4.2%) cases were attributed to LSA injury. Contrast-enhanced 3D TOF can delineate LSAs in almost all insular gliomas but is limited in identifying the LSA-tumor interface. This limitation can be overcome by addition of analogous CISS sequences that delineate the LSA-tumor interface regardless of tumor intensity. Combined 3D TOF and 3D CISS is a useful tool for surgical planning and safer resections of insular tumors and may have added surgical relevance when included as an intraoperative adjunct. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Thermophysical analysis for three-dimensional MHD stagnation-point flow of nano-material influenced by an exponential stretching surface

    Science.gov (United States)

    Ur Rehman, Fiaz; Nadeem, Sohail; Ur Rehman, Hafeez; Ul Haq, Rizwan

    2018-03-01

    In the present paper a theoretical investigation is performed to analyze heat and mass transport enhancement of water-based nanofluid for three dimensional (3D) MHD stagnation-point flow caused by an exponentially stretched surface. Water is considered as a base fluid. There are three (3) types of nanoparticles considered in this study namely, CuO (Copper oxide), Fe3O4 (Magnetite), and Al2O3 (Alumina) are considered along with water. In this problem we invoked the boundary layer phenomena and suitable similarity transformation, as a result our three dimensional non-linear equations of describing current problem are transmuted into nonlinear and non-homogeneous differential equations involving ordinary derivatives. We solved the final equations by applying homotopy analysis technique. Influential outcomes of aggressing parameters involved in this study, effecting profiles of temperature field and velocity are explained in detail. Graphical results of involved parameters appearing in considered nanofluid are presented separately. It is worth mentioning that Skin-friction along x and y-direction is maximum for Copper oxide-water nanofluid and minimum for Alumina-water nanofluid. Result for local Nusselt number is maximum for Copper oxide-water nanofluid and is minimum for magnetite-water nanofluid.

  15. Analysis of changes in gingival contour from three-dimensional co-ordinate data in subjects with drug-induced gingival overgrowth.

    Science.gov (United States)

    Thomason, J M; Ellis, J S; Jovanovski, V; Corson, M; Lynch, E; Seymour, R A

    2005-10-01

    This aim of this study was to develop and assess a technique that could be used to assess accurately the gingival volume changes seen in drug-induced gingival overgrowth by the analysis of data obtained from an entire gingival surface by means of three-dimensional imaging. Stone dental models of patients before and after gingivectomy procedures were digitized with a laser scanner and then regenerated as computer models constructed from the acquired three-dimensional co-ordinate data. A comparison of superposed "before" and "after" surfaces was undertaken to assess and accurately quantify changes in gingival contour. The mean vertical tissue reduction varied from 1.58 to 2.56 mm in the four study subjects and individual differences are shown. The maximum thickness of removed buccal gingival overgrowth was found to range between 1.20 and 3.40 mm. The volume of tissue removed from each inter-dental papilla ranged from 4.2 to 46.1 mm3 and the mean volume of the papilla removed from each subject+/-SD values was 24.8+/-13.1 mm3. This method will measure changes in gingival tissues to within 60 microm in one plane, making it ideal for the assessment of longitudinal changes in gingival contour as seen in the development of gingival overgrowth, its recurrence after surgery or the changes in volume brought about by surgery.

  16. Influence of Different Abutment Designs on the Biomechanical Behavior of Dental Root-Analog Implant: A Three-Dimensional Finite Element Analysis.

    Science.gov (United States)

    He, Ling; Li, Deli; Zhang, Jiwu; Li, Xiucheng; Lu, Songhe; Tang, Zhihui

    2016-12-01

    The aim of this study was to evaluate cross-sectional area of the abutments, strain distribution in the periimplant bone, stress in the abutments and dental root-analog implant by different abutment design under different loading conditions, through three-dimensional finite element analysis. Two three-dimensional finite element models were established. Two types of abutments, oval cross section abutment (OCSA) and circular cross section abutment (CCSA) were designed, keeping the size of the thinnest implant wall 0.75 mm. Two types of load were applied to the abutment in each model: 100 N vertical load (V), 100 N vertical/50 N horizontal load (VH). The biomechanical behaviors of abutments, implants, and periimplant bone were recorded. The cross-section area of OCSA is 36.5% larger than that of CCSA. In implants, the maximum von Mises stress value in OCSA design was 24.6% lower than that in CCSA design under V and under VH. In abutments, the maximum von Mises stress value in OCSA design was 40.0% lower than that in CCSA design under V, the maximum von Mises stress value in OCSA design was 12.2% lower than that in CCSA design under VH. The irregular design offers advantages over regular design.

  17. Three-dimensional reconstruction of an in-situ Miocene peat forest from the lower Rhine Embayment, northwestern Germany - new methods in palaeovegetation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mosbrugger, V.; Gee, C.T.; Belz, G.; Ashraf, A.R. (University of Tubingen, Tubingen (Germany). Inst. of Geology and Palaeontology)

    1994-08-01

    New techniques have been developed for the analysis of stump horizons that result in a relatively detailed three-dimensional reconstruction of ancient forests. In addition, a rough estimate of their above-ground standing biomass can be calculated. These techniques are applied to an in-situ Miocene peat forest preserved in the Lower Rhine Embayment, northwestern Germany. In a study area of 2500 m[sup 2], 476 stumps were mapped and used in the forest reconstruction. Additionally, pollen samples and leaf remains have been analysed. The peat forest consists primarily of conifers (in particular Taxodiaceae and Pinaceae) with Sciadopitys being the most common genus. The only angiosperms in the wood flora were palms, but in the pollen flora, evidence for the Myricaceae, Mastixiaceae, Ericaceae and a few other angiosperms is also present. The forest was relatively dense with 1904 trees/ha and a basal area of 164 m[sup 2]. Mean trunk diameter was 28 cm, while mean tree height is calculated to have been 9.9 m. Estimated above ground biomass is 750 t/ha, but this value also includes dead or partly dead trees. This peat forest does not closely compare with previous reconstructions of Miocene peat forests. Its three dimensional structure and biomass differ from those of modern bald cypress swamps.

  18. Analysis of spatial distribution characteristics of dissolved organic matter in typical greenhouse soil of northern China using three dimensional fluorescence spectra technique and parallel factor analysis model.

    Science.gov (United States)

    Pan, Hong-wei; Lei, Hong-jun; Han, Yu-ping; Xi, Bei-dou; He, Xiao-song; Xu, Qi-gong; Li, Dan

    2014-06-01

    The aim of the present work is to study the soil DOM characteristics in the vegetable greenhouse with a long-term of cultivation. Results showed that the soil DOM mainly consisted of three components, fulvic acid-like (C1), humic acid-like (C2) and protein-like (C3), with C1 as the majority one. The distribution of DOM in space was also studied. In vertical direction, C1 and C2 decreased significantly with the increase in soil depth, while C3 component decreased after increased. The humification coefficient decreased fast from 0-20 to 30-40 cm, and then increased from 30-40 to 40-50 cm. In the horizontal direction, the level of C2 component varied greatly in space, while that of C1 component changed little, and that of C3 component fell in between the above two. The change in the humification degree of each soil layer significantly varied spatially. Humification process of soil organic matter mainly occurred in the surface soil layer. In addition, the humification degree in space also changed significantly. The new ideas of this study are: (1) Analyze the composition and spatial heterogeneity of soil DOM in the vegetable greenhouse; (2) Use three dimensional fluorescence spectra technology and parallel factor analysis model successfully to quantify the components of soil DOM, which provides a new method for the soil DOM analysis.

  19. Three-dimensional fabric analysis for anisotropic material using multi-directional scanning line. Application to x-ray CI image

    International Nuclear Information System (INIS)

    Takemura, Takato; Takahashi, Manabu; Oda, Masanobu; Hirai, Hidekazu; Murakoshi, Atsushi; Miura, Makoto

    2007-01-01

    In microscopic analysis, materials are characterized by a three-dimensional (3D) microstructure which is composed of constituent elements such as pores, voids and cracks. A material's mechanical and hydrological properties are strongly dependent on its microstructure. In order to discuss the mechanics of geomaterials on a microstructural level, detailed information on their 3D macrostructure is required. X-ray computed tomography is a powerful non-destructive method for determining the microstructure, however it can be difficult to determine a material's microstructure from the reconstructed 3D image. We successfully evaluated the 3D microstructural anisotropy of porous and fibrous materials using a multi-directional scanning line method that employs straightforward image analysis, and its results were visualized using stereonet projection. (author)

  20. Establishment of critical contamination risk locations ("hot spots") in environmental monitoring by means of three-dimensional airflow analysis and particulate evaluation.

    Science.gov (United States)

    Katayama, Hirohito; Higo, Takashi; Tokunaga, Yuji; Hiyama, Yukio; Morikawa, Kaoru

    2005-01-01

    A practical approach for the qualification of the surrounding environment of the critical area in aseptic processing has been developed. This method uses three-dimensional air velocity measurements combined with airborne particle monitoring. The analysis of the results obtained using the methods described in this article are beneficial in the selection of sample sites and frequencies and in refining personnel procedures and materials flow in aseptic processing. We propose that this improved qualification method can be widely applicable for both existing and new aseptic processing areas. This paper shows the results of one case study utilizing this method. The particle distribution map of a Grade B environment based upon extensive analysis was found to correspond to room airflow, as visualized by air vector mapping. The actual annual environmental monitoring data, which include airborne particles and microbes, as well as other microbial monitoring data, are also presented with respect to their relationship to the airflow pattern.

  1. Experimental Validation of a Numerical Model for Three-Dimensional High-Speed Railway Bridge Analysis by Comparison with a Small-Scale Model

    DEFF Research Database (Denmark)

    Sneideris, J.; Bucinskas, Paulius; Agapii, L.

    2015-01-01

    The aim of this paper is to perform dynamic analysis of a multi-span railway bridge interacting with the underlying soil. A small-scale model of a bridge structure is constructed for experimental testing and the results are compared with a computational model. The computational model in this paper...... is based on finite-element analysis for the bridge structure and a semi-analytical solution for the subsoil. The bridge deck and columns are modelled using three-dimensional beam elements. The foundations are implemented as rigid footings placed on the ground surface. The vehicle is modelled as a two...... a passing train. Mattress foam is used to substitute for the subsoil. The model is equipped with a number of accelerometers, strategically placed in certain positions to analyse the dynamic structural response. Finally, the results obtained from experimental tests are used to calibrate and validate...

  2. Influence of single-phase heat transfer correlations on safety analysis of research reactors with narrow rectangular fuel channels

    International Nuclear Information System (INIS)

    Rawashdeh, A.; Altamimi, R.; Lee, B.; Chung, Y. J.; Park, S.

    2013-01-01

    The influence of different single-phase heat transfer correlations on the fuel temperature and minimum critical heat flux ratio (MCHFR) during a typical accident of a 5 MW research reactor is investigated. A reactor uses plate type fuel, of which the cooling channels have a narrow rectangular shape. RELAP5/MOD3.3 tends to over-predict the Nusselt number (Nu) at a low Reynolds number (Re) region, and therefore the correlation set is modified to properly describe the thermal behavior at that region. To demonstrate the effect of Nu at a low-Re region on an accident analysis, a two-pump failure accident was chosen as a sample problem. In the accident, the downward core flow decreases by a pump coast-down, and then reverses upward by natural convection. During the pump coast-down and flow reversal, the flow undergoes a laminar flow regime which has a different Nu with respect to the correlation sets. Compared to the results by the original RELAP5/MOD3.3, the modified correlation set predicts the fuel temperature to be a little higher than the original value, and the MCHFR to be a little lower than the original value. Although the modified correlation set predicts the fuel temperature and the MCHFR to be less conservative than those calculated from the original correlation of RELAP5/MOD3.3, the maximum fuel temperature and the MCHFR still satisfy the safety acceptance criteria

  3. Small-Signal Analysis of Single-Phase and Three-phase DC/AC and AC/DC PWM Converters with the Frequency-Shift Technique

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Aquila, A. Dell’; Liserre, Marco

    2004-01-01

    of dc/dc converters via a 50 Hz frequency-shift. The input admittance is calculated and measured for two study examples (a three-phase active rectifier and a single-phase photovoltaic inverter). These examples show that the purpose of a well designed controller for grid-connected converters......A systematic approach to study dc/ac and ac/dc converters without the use of synchronous transformation is proposed. The use of a frequency-shift technique allows a straightforward analysis of single-phase and three-phase systems. The study of dc/ac and of ac/dc converters is reported to the study...

  4. Effect of posterior instrumented fusion on three-dimensional volumetric growth of cervical ossification of the posterior longitudinal ligament: a multiple regression analysis.

    Science.gov (United States)

    Lee, Jong Joo; Shin, Dong Ah; Yi, Seong; Kim, Keung Nyun; Yoon, Do Heum; Shin, Hyun Chul; Ha, Yoon

    2018-03-08

    Despite the fact that ossification of posterior longitudinal ligament (OPLL) is a three-dimensional disease, conventional studies have mainly focused on a two-dimensional measurement, and it is difficult to accurately determine the volume of OPLL growth and analyze the factors affecting OPLL growth after posterior decompression (laminoplasty or laminectomy and fusion). This study aimed to investigate the factors affecting OPLL volume growth using a three-dimensional measurement. This was a retrospective case study. Eighty-three patients with cervical OPLL who were diagnosed as having multilevel cervical OPLL of more than three levels on cervical computed tomography (CT) scans were retrospectively reviewed from June 1, 1998 to December 31, 2015. The OPLL volume from the C1 vertebrae to the C7 vertebrae was measured on preoperative and the most recent follow-up CT scans. Eighty-three patients were retrospectively examined for age, sex, body mass index, hypertension, diabetes, type of OPLL, surgical method, preoperative cervical curvature, and preoperative and postoperative cervical range of motion. Preoperative cervical CT and the most recent follow-up cervical CT scans were converted to digital imaging and communications in medicine data, and the OPLL volume was three-dimensionally measured using the Mimics® program (Materialise, Leuven, Belgium). The OPLL volume growth was analyzed using univariate and multivariate analyses. The average follow-up period was 32.36 (±23.39) months. Patients' mean age was 54.92 (±8.21) years. In univariate analysis, younger age (p = 0.037) and laminoplasty (p = 0.012) were significantly associated with a higher mean annual growth rate of OPLL (%/year). In multivariate analysis, only laminoplasty (p = 0.027) was significantly associated with a higher mean annual growth rate of OPLL (%/year). The mean annual growth rate of OPLL was about 7 times faster with laminoplasty (8.00 ± 13.06%/year) than with laminectomy and fusion (1.16

  5. Finite-element formulations for the thermal stress analysis of two- and three-dimensional thin reactor structures

    International Nuclear Information System (INIS)

    Kulak, R.F.; Kennedy, J.M.; Belytschko, T.B.; Schoeberle, D.F.

    1977-01-01

    In several postulated LMFBR subassembly-to-subassembly failure propagation events, it is hypothesized that the duct wall of an accident subassembly fails and deposits molten fuel on the outer wall of an adjacent subassembly. It is therefore necessary to determine if the deposited fuel will fail the adjacent wall and thus propagate the event. This entails a thermal stress analysis, and since at times the adjacent subassembly is internally pressurized, thermomechanical analysis are also of value. Solutions are presented for several elastic plastic thermal problems. Some of these examples are compared to available analytic solutions. In addition, the hypothetical accident of molten fuel deposition on the adjacent hexcan is addressed. Combinations of pressure and thermal loading are considered. It is shown that the principal feature of the response is a large in-plane compressive stress which would undoubtedly cause buckling

  6. Comparison of alveolar ridge preservation method using three dimensional micro-computed tomographic analysis and two dimensional histometric evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Seok; Kim, Sung Tae; Oh, Seung Hee; Park, Hee Jung; Lee, Sophia; Kim, Taeil; Lee, Young Kyu; Heo, Min Suk [School of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    2014-06-15

    This study evaluated the efficacy of alveolar ridge preservation methods with and without primary wound closure and the relationship between histometric and micro-computed tomographic (CT) data. Porcine hydroxyapatite with polytetrafluoroethylene membrane was implanted into a canine extraction socket. The density of the total mineralized tissue, remaining hydroxyapatite, and new bone was analyzed by histometry and micro-CT. The statistical association between these methods was evaluated. Histometry and micro-CT showed that the group which underwent alveolar preservation without primary wound closure had significantly higher new bone density than the group with primary wound closure (P<0.05). However, there was no significant association between the data from histometry and micro-CT analysis. These results suggest that alveolar ridge preservation without primary wound closure enhanced new bone formation more effectively than that with primary wound closure. Further investigation is needed with respect to the comparison of histometry and micro-CT analysis.

  7. Three-dimensional volumetric analysis of ghost cell odontogenic carcinoma using 3-D reconstruction software: a case report.

    Science.gov (United States)

    Gomes, João Pedro Perez; Costa, Andre Luiz Ferreira; Chone, Carlos Takahiro; Altemani, Albina Messias de Almeida Milani; Altemani, João Maurício Carrasco; Lima, Carmen Silvia Passos

    2017-05-01

    Ghost cell odontogenic carcinoma is a very rare malignant neoplasm. Tumor volume may be a more precise alternative for determining size, which is usually measured by maximum linear dimension. The purpose of this case report is to highlight the importance of obtaining 3-dimensional (3-D) images of the tumor for volumetric analysis to improve the chances of surgical success. This report presents a case of ghost cell odontogenic carcinoma infiltrating the maxillary sinus through the palate. The lesion was surgically treated and subsequently selected for volumetric reconstruction and analysis of the tumor by using InVesalius software. In this case report, we describe the use of a pictorial technique in which the tumor volume was calculated to help predict the surgical results. The tumor could be visualized in 3-D, with color improving the image of the segmented volume and thus increasing the perception of boundaries and depth. Recognition of the lesion shape by volumetric analysis can provide the surgical team with clearer information, thereby helping in surgical planning and consequently increasing the chances of surgical success. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Three dimensional reflection velocity analysis based on velocity model scan; Model scan ni yoru sanjigen hanshaha sokudo kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Minegishi, M.; Tsuru, T. [Japan National Oil Corp., Tokyo (Japan); Matsuoka, T. [Japan Petroleum Exploration Corp., Tokyo (Japan)

    1996-05-01

    Introduced herein is a reflection wave velocity analysis method using model scanning as a method for velocity estimation across a section, the estimation being useful in the construction of a velocity structure model in seismic exploration. In this method, a stripping type analysis is carried out, wherein optimum structure parameters are determined for reflection waves one after the other beginning with those from shallower parts. During this process, the velocity structures previously determined for the shallower parts are fixed and only the lowest of the layers undergoing analysis at the time is subjected to model scanning. To consider the bending of ray paths at each velocity boundaries involving shallower parts, the ray path tracing method is utilized for the calculation of the reflection travel time curve for the reflection surface being analyzed. Out of the reflection wave travel time curves calculated using various velocity structure models, one that suits best the actual reflection travel time is detected. The degree of matching between the calculated result and actual result is measured by use of data semblance in a time window provided centering about the calculated reflective wave travel time. The structure parameter is estimated on the basis of conditions for the maximum semblance. 1 ref., 4 figs.

  9. Design, analysis, and initial testing of a fiber-optic shear gage for three-dimensional, high-temperature flows

    Science.gov (United States)

    Orr, Matthew W.

    This investigation concerns the design, analysis, and initial testing of a new, two-component wall shear gage for 3D, high-temperature flows. This gage is a direct-measuring, non-nulling design with a round head surrounded by a small gap. Two flexure wheels are used to allow small motions of the floating head. Fiber-optic displacement sensors measure how far the polished faces of counterweights on the wheels move in relation to a fixed housing as the primary measurement system. No viscous damping was required. The gage has both fiber-optic instrumentation and strain gages mounted on the flexures for validation of the newer fiber optics. The sensor is constructed of Haynes RTM 230RTM, a high-temperature nickel alloy. The gage housing is made of 316 stainless steel. All components of the gage in pure fiber-optic form can survive to a temperature of 1073 K. The bonding methods of the backup strain gages limit their maximum temperature to 473 K. The dynamic range of the gage is from 0--500 Pa (0--10g) and higher shears can be measured by changing the floating head size. Extensive use of finite element modeling was critical to the design and analysis of the gage. Static structural, modal, and thermal analyses were performed on the flexures using the ANSYS finite element package. Static finite element analysis predicted the response of the flexures to a given load, and static calibrations using a direct force method confirmed these results. Finite element modal analysis results were within 16.4% for the first mode and within 30% for the second mode when compared with the experimentally determined modes. Vibration characteristics of the gage were determined from experimental free vibration data after the gage was subjected to an impulse. Uncertainties in the finished geometry make this level of error acceptable. A transient thermal analysis examined the effects of a very high heat flux on the exposed head of the gage. The 100,000 W/m2 heat flux used in this analysis is

  10. Novel three dimensional position analysis of the mandibular foramen in patients with skeletal class III mandibular prognathism

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sang Hoon; Kim, Yeon Ho; Won, Yu Jin; Kim, Moon Key [Dept. of Oral and Maxillofacial Surgery, National Health Insurance Service Ilsan Hospital, Goyang (Korea, Republic of)

    2016-06-15

    To analyze the relative position of the mandibular foramina (MnFs) in patients diagnosed with skeletal class III malocclusion. Computed tomography (CT) images were collected from 85 patients. The vertical lengths of each anatomic point from the five horizontal planes passing through the MnF were measured at the coronoid process, sigmoid notch, condyle, and the gonion. The distance from the anterior ramus point to the posterior ramus point on the five horizontal planes was designated the anteroposterior horizontal distance of the ramus for each plane. The perpendicular distance from each anterior ramus point to each vertical plane through the MnF was designated the horizontal distance from the anterior ramus to the Mn F. The horizontal and vertical positions were examined by regression analysis. Regression analysis showed the heights of the coronoid process, sigmoid notch, and condyle for the five horizontal planes were significantly related to the height of the MnF, with the highest significance associated with the MnF-mandibular plane (coefficients of determination (R2): 0.424, 0.597, and 0.604, respectively). The horizontal anteroposterior length of the ramus and the distance from the anterior ramus point to the MnF were significant by regression analysis. The relative position of the MnF was significantly related to the vertical heights of the sigmoid notch, coronoid process, and condyle as well as to the horizontal anteroposterior length of the ascending ramus. These findings should be clinically useful for patients with skeletal class III mandibular prognathism.

  11. Differentiated analysis of orthodontic tooth movement in rats with an improved rat model and three-dimensional imaging.

    Science.gov (United States)

    Kirschneck, Christian; Proff, Peter; Fanghaenel, Jochen; Behr, Michael; Wahlmann, Ulrich; Roemer, Piero

    2013-12-01

    Rat models currently available for analysis of orthodontic tooth movement often lack differentiated, reliable and precise measurement systems allowing researchers to separately investigate the individual contribution of tooth tipping, body translation and root torque to overall displacement. Many previously proposed models have serious limitations such as the rather inaccurate analysis of the effects of orthodontic forces on rat incisors. We therefore developed a differentiated measurement system that was used within a rat model with the aim of overcoming the limitations of previous studies. The first left upper molar and the upper incisors of 24 male Wistar rats were subjected to a constant orthodontic force of 0.25 N by means of a NiTi closed coil spring for up to four weeks. The extent of the various types of tooth movement was measured optometrically with a CCD microscope camera and cephalometrically by means of cone beam computed tomography (CBCT). Both types of measurement proved to be reliable for consecutive measurements and the significant tooth movement induced had no harmful effects on the animals. Movement kinetics corresponded to known physiological processes and tipping and body movement equally contributed to the tooth displacement. The upper incisors of the rats were significantly deformed and their natural eruption was effectively halted. The results showed that our proposed measurement systems used within a rat model resolved most of the inadequacies of previous studies. They are reliable, precise and physiological tools for the differentiated analysis of orthodontic tooth movement while simultaneously preserving animal welfare. Copyright © 2013 Elsevier GmbH. All rights reserved.

  12. Hybrid finite-element/rigorous coupled wave analysis for scattering from three-dimensional doubly periodic structures.

    Science.gov (United States)

    Kuloglu, Mustafa; Lee, Robert

    2012-07-01

    A new hybrid finite-element/rigorous coupled wave analysis formulation is presented for the modeling of electromagnetic wave interactions with doubly periodic structures. The structures under investigation are periodic in two dimensions and have a finite extent in the third dimension. The proposed model can handle structures that have material properties varying arbitrarily in any of the dimensions within the unit cell. Employment of Fourier series expansion and Floquet's theory in one of the periodic dimensions helps to reduce the dimension of the mesh. Results obtained from alternative methods are used to verify the proposed method's validity.

  13. Three-dimensional assessment of the palatal contour changes in orthodontically treated cases: A scanned maxillary cast analysis

    Directory of Open Access Journals (Sweden)

    Anadha Gujar

    2016-01-01

    Full Text Available Context: An accurate method for assessing the contour, symmetry, and stability of the dental arches is a prerequisite for investigations of form-function relationship. Various approaches to the study of arch shape have been described, but they were either best suited for simple visual analysis or when maximal accuracy was desired. The cost and complexity of the techniques and the equipment employed for assessing the arch shape preclude their general application. Hence, the present study was undertaken to evaluate the changes in palatal contour in orthodontically treated cases using scanned maxillary casts. Aims: The aim of the study was to evaluate the changes in palatal contour in orthodontically treated cases using scanned maxillary casts. Settings and Design: Retrospective study. Subjects and Methods: One hundred pre- and post-treatment maxillary casts of fifty completed cases in permanent dentition phase managed with fixed mechano