WorldWideScience

Sample records for single-phase thermohaline convection

  1. Effect of rotation on ferro thermohaline convection

    CERN Document Server

    Sekar, R; Ramanathan, A

    2000-01-01

    The ferro thermohaline convection in a rotating medium heated from below and salted from above has been analysed. The solute is magnetic oxide, which modifies the magnetic field established as a perturbation. The effect of salinity has been included in magnetisation and in the density of the ferrofluid. The conditions for both stationary and oscillatory modes have been obtained using linear stability analysis and it has been found that stationary mode is favoured in comparison with oscillatory mode. The numerical and graphical results are presented. It has been observed that rotation stabilises the system.

  2. Single-mode theory of diffusive layers in thermohaline convection

    Science.gov (United States)

    Gough, D. O.; Toomre, J.

    1982-01-01

    A two-layer configuration of thermohaline convection is studied, with the principal aim of explaining the observed independence of the buoyancy-flux ratio on the stability parameter when the latter is large. Temperature is destabilizing and salinity is stabilizing, so diffusive interfaces separate the convecting layers. The convection is treated in the single-mode approximation, with a prescribed horizontal planform and wavenumber. Surveys of numerical solutions are presented for a selection of Rayleigh numbers R, stability parameters lambda and horizontal wavenumbers. The solutions yield a buoyancy flux ratio chi that is insensitive to lambda, in accord with laboratory experiments. However chi increases with increasing R, in contradiction to laboratory observations.

  3. On the Existence of Oscillatory-Convective Thermohaline Flow in Sedimentary Basins

    Science.gov (United States)

    Graf, T.; Diersch, H. G.; Simmons, C. T.

    2009-05-01

    In the Earth's crust, both groundwater temperature and salinity increase with depth. As a consequence, water density is variable, thereby creating density-driven thermohaline groundwater flow. While prior steady-state studies of thermohaline flow in porous media identified conductive, oscillatory and convective thermohaline flow modes, the present study numerically analyzes thermohaline flow using a transient approach. We discovered the existence of an oscillatory-convective flow mode within a specific range of thermal and haline Raleigh numbers. Oscillatory-convective thermohaline flow only exists when water temperature and salinity increase with depth (positive RaT, negative RaS). Candidate sedimentary basins of oscillatory-convective thermohaline flow may be found in Western Canada (Alberta), in the Gulf of Mexico, in Northern Germany, or in Australia.

  4. Dynamics of fingering convection II: The formation of thermohaline staircases

    OpenAIRE

    Stellmach, S.; Traxler, A.; Garaud, P.; Brummell, N.; Radko, T.

    2011-01-01

    The article of record as published may be found at http://dx.doi.org/10.1017/jfm.2011.99 Regions of the ocean's thermocline unstable to salt fingering are often observed to host thermohaline staircases, stacks of deep well-mixed convective layers separated by thin stably-stratified interfaces. Decades after their discovery, however, their origin remains controversial. In this paper we use 3D direct numerical simulations to shed light on the problem. We study the evolution of an analogous d...

  5. Interannual variability of the thermohaline structure in the convective gyre of the Greenland Sea

    Science.gov (United States)

    Alekseev, G. V.; Ivanov, V. V.; Korablev, A. A.

    The temporal variability of thermohaline conditions in the Greenland Sea Convective gyre is examined on the basis of the long term observational series. The existence of two stable types of winter thermohaline structure is discovered. The transition from one type to another occurs through the pre-convective state and consequent convection. The characteristic feature ofthe pre-convective state is an increased (about 0.07 PSU above normal) surface salinity, caused by the external salt water influx. Potential temperature and salinity time series joint analysis confirms the crucial role of the surface salinity in the convection realization. An explanation of the surface to bottom overturning events and of the low frequency variability of convection activity is suggested on this basis.

  6. INFLUENCE OF THERMOHALINE CONVECTION ON DIFFUSION-INDUCED IRON ACCUMULATION IN A STARS

    International Nuclear Information System (INIS)

    Theado, S.; Vauclair, S.; Alecian, G.; LeBlanc, F.

    2009-01-01

    Atomic diffusion may lead to heavy-element accumulation inside stars in certain specific layers. Iron accumulation in the Z-bump opacity region has been invoked by several authors to quantitatively account for abundance anomalies observed in some stars, or to account for stellar oscillations through the induced κ-mechanism. These authors, however, never took into account the fact that such an accumulation creates an inverse μ-gradient, unstable for thermohaline convection. Here, we present results for A-F stars, where abundance variations are computed with and without this process. We show that iron accumulation is still present when thermohaline convection is taken into account, but much reduced compared to when this physical process is neglected. The consequences of thermohaline convection for A-type stars as well as for other types of stars are presented.

  7. A note on similarity in single-phase and porous-medium natural convection

    International Nuclear Information System (INIS)

    Lyall, H.G.

    1981-03-01

    The similarity laws for single-phase and porous-medium natural convection are developed. For single-phase flow Nu = Nu(Ra) implies that inertial effects are negligible, while Nu = Nu(Ra.Pr) implies that viscous effects are. The first correlation is adequate for Pr>10, while the second applies for Pr<0.01. For intermediate values of Pr, a more general correlation, Nu = Nu(Ra,Pr) is necessary. For a porous-medium, if inertial effects and dispersion are negligible, Nu* = Nu*(Ra*). However dispersion will only be negligible if the ratio of grain size d to the width of the region L is very small (d/L<< l). If this condition does not hold it is necessary to model d/L. If inertial effects are significant, i.e. the Reynolds number is too large for Darcy's law to apply, a group containing the effective Prandtl number, Pr*, also needs to be modelled for similarity. (author)

  8. Can the heat transfer coefficients for single-phase flow and for convective flow boiling be equivalent?

    Science.gov (United States)

    Dorao, C. A.; Drewes, S.; Fernandino, M.

    2018-02-01

    During the past few decades, heat transfer during convective flow boiling inside pipes has been widely studied with the goal of unveiling the physics of the process. Different heat transfer mechanisms have been suggested based on different assumptions. This fact has resulted in a large number of models including different dimensionless numbers and in some cases up to a dozen of adjusted parameters. Here, we show that the convective flow boiling heat transfer coefficient is equivalent to the one for single-phase flow when the influence of the vapour velocity is taken into account.

  9. On the prediction of single-phase forced convection heat transfer in narrow rectangular channels

    International Nuclear Information System (INIS)

    Ghione, Alberto; Noel, Brigitte; Vinai, Paolo; Demazière, Christophe

    2014-01-01

    In this paper, selected heat transfer correlations for single-phase forced convection are assessed for the case of narrow rectangular channels. The work is of interest in the thermal-hydraulic analysis of the Jules Horowitz Reactor (JHR), which is a research reactor under construction at CEA-Cadarache (France). In order to evaluate the validity of the correlations, about 300 tests from the SULTAN-JHR database were used. The SULTAN-JHR program was carried out at CEA-Grenoble and it includes different kinds of tests for two different vertical rectangular channels with height of 600 mm and gap of 1.51 and 2.16 mm. The experimental conditions range between 2 - 9 bar for the pressure; 0.5 - 18 m/s for the coolant velocity and 0.5 - 7.5 MW/m 2 for the heat flux (whose axial distribution is uniform). Forty-two thermocouples and eight pressure taps were placed at several axial locations, measuring wall temperature and pressure respectively. The analysis focused on turbulent flow with Reynolds numbers between 5.5 x 10 3 - 2.4 x 10 5 and Prandtl numbers between 1.5 - 6. It was shown that standard correlations as the Dittus-Boelter and Seider-Tate significantly under-estimate the heat transfer coefficient, especially at high Reynolds number. Other correlations specifically designed for narrow rectangular channels were also taken into account and compared. The correlation of Popov-Petukhov in the form suggested by Siman-Tov still under-estimates the heat transfer coefficient, even if slight improvements could be seen. A better agreement for the tests with gap equal to 2.16 mm could be found with the correlation of Ma and the one of Liang. However the heat transfer coefficient when the gap is equal to 1.51 mm could not be predicted accurately. Furthermore these correlations were based on data at low Reynolds numbers (up to 13000) and low heat flux, so the use of them for SULTAN-JHR may be questionable. According to the authors’ knowledge, existing models of heat transfer

  10. Comparison of numerical results with experimental data for single-phase natural convection in an experimental sodium loop

    International Nuclear Information System (INIS)

    Ribando, R.J.

    1979-01-01

    A comparison is made between computed results and experimental data for a single-phase natural convection test in an experimental sodium loop. The test was conducted in the Thermal-Hydraulic Out-of-Reactor Safety (THORS) facility, an engineering-scale high temperature sodium loop at the Oak Ridge National Laboratory (ORNL) used for thermal-hydraulic testing of simulated Liquid Metal Fast Breeder Reactor (LMFBR) subassemblies at normal and off-normal operating conditions. Heat generation in the 19 pin assembly during the test was typical of decay heat levels. The test chosen for analysis in this paper was one of seven natural convection runs conducted in the facility using a variety of initial conditions and testing parameters. Specifically, in this test the bypass line was open to simulate a parallel heated assembly and the test was begun with a pump coastdown from a small initial forced flow. The computer program used to analyze the test, LONAC (LOw flow and NAtural Convection) is an ORNL-developed, fast-running, one-dimensional, single-phase, finite-difference model used for simulating forced and free convection transients in the THORS loop

  11. Comparison of numerical results with experimental data for single-phase natural convection in an experimental sodium loop. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Ribando, R.J.

    1979-01-01

    A comparison is made between computed results and experimental data for a single-phase natural convection test in an experimental sodium loop. The test was conducted in the Thermal-Hydraulic Out-of-Reactor Safety (THORS) facility, an engineering-scale high temperature sodium loop at the Oak Ridge National Laboratory (ORNL) used for thermal-hydraulic testing of simulated Liquid Metal Fast Breeder Reactor (LMFBR) subassemblies at normal and off-normal operating conditions. Heat generation in the 19 pin assembly during the test was typical of decay heat levels. The test chosen for analysis in this paper was one of seven natural convection runs conducted in the facility using a variety of initial conditions and testing parameters. Specifically, in this test the bypass line was open to simulate a parallel heated assembly and the test was begun with a pump coastdown from a small initial forced flow. The computer program used to analyze the test, LONAC (LOw flow and NAtural Convection) is an ORNL-developed, fast-running, one-dimensional, single-phase, finite-difference model used for simulating forced and free convection transients in the THORS loop.

  12. Effects of rolling on single-phase water forced convective heat transfer characteristics

    International Nuclear Information System (INIS)

    Guo Yanming; Gao Puzhen; Huang Zhen

    2010-01-01

    A series of single-phase forced circulation tests in a vertical tube with rolling motion were performed in order to investigate effects of rolling motion on thermal-hydraulic characteristics. The amplitudes of the rolling motion in the tests were 10 degree, 15 degree and 20 degree. The rolling periods were 7.5 s, 10 s, 15 s and 20 s. The Reynolds number was from 6000 to 15000. Heat transfer in the test tube is bated by the rolling motion. As the test-bed rolling more acutely, the heat transfer coefficient of the test tube becomes smaller when the mass flow rate in the test tube is a constant. The heat transfer coefficient calculated by the formula which is for stable state doesn't fit very well with that from experiments. At last a formula for calculating heat transfer in rolling motion was introduced. (authors)

  13. Single-phase liquid flow forced convection under a nearly uniform heat flux boundary condition in microchannels

    KAUST Repository

    Lee, Man

    2012-02-22

    A microchannel heat sink, integrated with pressure and temperature microsensors, is utilized to study single-phase liquid flow forced convection under a uniform heat flux boundary condition. Utilizing a waferbond-and-etch- back technology, the heat source, temperature and pressure sensors are encapsulated in a thin composite membrane capping the microchannels, thus allowing experimentally good control of the thermal boundary conditions. A three-dimensional physical model has been constructed to facilitate numerical simulations of the heat flux distribution. The results indicate that upstream the cold working fluid absorbs heat, while, within the current operating conditions, downstream the warmer working fluid releases heat. The Nusselt number is computed numerically and compared with experimental and analytical results. The wall Nusselt number in a microchannel can be estimated using classical analytical solutions only over a limited range of the Reynolds number, Re: both the top and bottom Nusselt numbers approach 4 for Re < 1, while the top and bottom Nusselt numbers approach 0 and 5.3, respectively, for Re > 100. The experimentally estimated Nusselt number for forced convection is highly sensitive to the location of the temperature measurements used in calculating the Nusselt number. © 2012 IOP Publishing Ltd.

  14. Assessment of thermal conductivity, viscosity and specific heat of nanofluids in single phase laminar indernal forced convection

    NARCIS (Netherlands)

    Vanapalli, Srinivas; ter Brake, Hermanus J.M.

    2013-01-01

    Nanofluids are considered for improving the heat exchange in forced convective flow. In literature, the benefit of nanofluids compared to the corresponding base fluid is represented by several figures-of-merit in which the heat transfer benefit and the cost of pumping the fluid are considered. These

  15. Theoretical study to determine the heat transfer by forced convection coefficient in an empirical correlation in single phase, for annular channels

    International Nuclear Information System (INIS)

    Herrera A, E.

    1994-01-01

    In the heat transfer studies by forced convection, we have few data about behavior of the fluids in an annular channel heated by a concentric pipe, such date is necessary to know the heat transfer coefficient that establish the interchange of energy and the thermic properties of the fluid with the geometry of the flow. In this work the objective, was to compare some empirical correlations that we needed for determinate the heat transfer coefficient for annular channels, where we obtained similar at the theoretical results of an experiment made by Miller and Benforado. It is important to know such coefficients because we can determinate the heat quantity transmitted to a probe zone, in which we simulate a nuclear fuel element that developed huge heat quantity that must be dispersed in short time. We give theoretical data of the heat forced transfer convection and we analyzed the phenomena in annular channels given some empirical correlations employed by some investigators and we analyzed each one. (Author)

  16. Single-Phase PLLs

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    Single-phase phase-locked loops (PLLs) are popular for the synchronization and control of single-phase gridconnected converters. They are also widely used for monitoring and diagnostic purposes in the power and energy areas. In recent years, a large number of single-phase PLLs with different...... structures and properties have been proposed in the literature. The main aim of this paper is to provide a review of these PLLs. To this end, the single-phase PLLs are first classified into two major categories: 1) power-based PLLs (pPLLs), and 2) quadrature signal generation-based PLLs (QSG......-PLLs). The members of each category are then described and their pros and cons are discussed. This work provides a deep insight into characteristics of different single-phase PLLs and, therefore, can be considered as a reference for researchers and engineers....

  17. An experimental study on single phase convection heat transfer and pressure drop in two brazed plate heat exchangers with different chevron shapes and hydraulic diameters

    International Nuclear Information System (INIS)

    Kim, Man Bae; Park, Chang Yong

    2017-01-01

    An experimental study on heat transfer and pressure drop characteristics was performed at single phase flow in two Brazed plate heat exchangers (BPHEs) with different geometries. The corrugation density of one of the BPHE (Type II) was two times as high as that of the other BPHE (Type I). The hydraulic diameter of the type II BPHE was 2.13 mm, which was 38 % smaller than that of the type I BPHE. Also, the cross section shape of the flow channels for the type II BPHE was different from that for conventional BPHEs due to the unusual corrugation patterns and brazing points. The experimental conditions for temperatures were varied from 4.6 °C to 49.1 °C, and for mass flow rates were changed from 0.07 kg/s to 1.24 kg/s. The measured results showed that pressure drop in the type II BPHE was about 110 % higher than that in the type I BPHE. Nu of the type II was higher than that of the type I BPHE and the enhancement became larger with the increase of Re at the ranges above 800. New correlations for fF and Nu were proposed by this study and their prediction accuracy could be improved by considering the surface enlargement factor in the correlations. The performance evaluation of the two BPHEs was performed by (j/f F 1 /3 ) which represented the ratio of heat transfer and pressure drop performance. Also, a new parameter, the capacity compactness of PHE, was proposed and it presented the PHE capacity per unit volume and unit log mean temperature difference. The comparison showed that the two BPHEs had similar values of the (j/f F 1 /3 ), whereas they had significantly different values of the capacity compactness. The capacity compactness of the type II BPHE was 1.5 times higher than that for the type I BPHE.

  18. Structure and Dynamics of the Thermohaline Staircases in the Beaufort Gyre

    National Research Council Canada - National Science Library

    Wilson, Ana L

    2007-01-01

    .... The primary convective regime in the Arctic region is characterized by the spontaneous formation of well mixed layers separated by thin high-gradient interfaces known as thermohaline staircases...

  19. Deep Convection in the Ocean

    National Research Council Canada - National Science Library

    McWilliams, James

    1999-01-01

    ... mechanism of water mass transformation. The resultant newly mixed deep water masses form a component of the thermohaline circulation, and hence it is essential to understand the deep convection process if the variability of the meridional...

  20. Acoustic Mapping of Thermohaline Staircases in the Arctic Ocean.

    Science.gov (United States)

    Stranne, Christian; Mayer, Larry; Weber, Thomas C; Ruddick, Barry R; Jakobsson, Martin; Jerram, Kevin; Weidner, Elizabeth; Nilsson, Johan; Gårdfeldt, Katarina

    2017-11-09

    Although there is enough heat contained in inflowing warm Atlantic Ocean water to melt all Arctic sea ice within a few years, a cold halocline limits upward heat transport from the Atlantic water. The amount of heat that penetrates the halocline to reach the sea ice is not well known, but vertical heat transport through the halocline layer can significantly increase in the presence of double diffusive convection. Such convection can occur when salinity and temperature gradients share the same sign, often resulting in the formation of thermohaline staircases. Staircase structures in the Arctic Ocean have been previously identified and the associated double diffusive convection has been suggested to influence the Arctic Ocean in general and the fate of the Arctic sea ice cover in particular. A central challenge to understanding the role of double diffusive convection in vertical heat transport is one of observation. Here, we use broadband echo sounders to characterize Arctic thermohaline staircases at their full vertical and horizontal resolution over large spatial areas (100 s of kms). In doing so, we offer new insight into the mechanism of thermohaline staircase evolution and scale, and hence fluxes, with implications for understanding ocean mixing processes and ocean-sea ice interactions.

  1. Oceanic thermohaline intrusions: theory

    Science.gov (United States)

    Ruddick, Barry; Kerr, Oliver

    2003-03-01

    This is a review of theories governing growth and evolution of thermohaline intrusive motions. We discuss theories based on eddy coefficients and salt finger flux ratios and also on molecular Fickian diffusion, drawing relationships and parallels where possible. We discuss linear theories of various physical configurations, effects of rotation and shear, and nonlinear theories. A key requirement for such theories to become quantitatively correct is the development and field testing of relationships between double-diffusive fluxes and average vertical gradients of temperature and salinity. While we have some ideas about the functional dependencies and rough observational constraints on the magnitudes of such flux/gradient relationships, many questions will not be answered until usable ‘flux laws’ exist. Furthermore, numerical experiments on double-diffusive intrusions are currently feasible, but will have more quantitative meaning when fluxes are parameterised with such laws. We conclude that more work needs to be done in at least two areas. Firstly, tests of linear theory against observations should continue, particularly to discover the extent to which linear theories actually explain the genesis of intrusions. Secondly, theoretical studies are needed on the nonlinear effects that control the evolution and finite amplitude state of intrusions, since these determine the lateral fluxes of salt, heat, and momentum.

  2. THERMOHALINE INSTABILITIES INSIDE STARS: A SYNTHETIC STUDY INCLUDING EXTERNAL TURBULENCE AND RADIATIVE LEVITATION

    Energy Technology Data Exchange (ETDEWEB)

    Vauclair, Sylvie; Theado, Sylvie, E-mail: sylvie.vauclair@irap.omp.eu [Universite de Toulouse, UPS-OMP and CNRS, Institut de Recherche en Astrophysique et Planetologie, 14 avenue Edouard Belin, F-31400 Toulouse (France)

    2012-07-01

    We have derived a new expression for the thermohaline mixing coefficient in stars, including the effects of radiative levitation and external turbulence, by solving Boussinesq equations in a nearly incompressible stratified fluid with a linear approximation. It is well known that radiative levitation of individual elements can lead to their accumulation in specific stellar layers. In some cases, it can induce important effects on the stellar structure. Here we confirm that this accumulation is moderated by thermohaline convection due to the resulting inverse {mu}-gradient. The new coefficient that we have derived shows that the effect of radiative accelerations on the thermohaline instability itself is small. This effect must however be checked in all computations. We also confirm that the presence of large horizontal turbulence can reduce or even suppress the thermohaline convection. These results are important as they concern all the cases of heavy element accumulation in stars. Computations of radiative diffusion must be revisited to include thermohaline convection and its consequences. It may be one of the basic reasons for the fact that the observed abundances are always smaller than those predicted by pure atomic diffusion. In any case, these processes have to compete with rotation-induced mixing, but this competition is more complex than previously thought due to their mutual interaction.

  3. Internal variability of the thermohaline ocean circulation

    OpenAIRE

    Raa, Lianke Alinda te

    2003-01-01

    Variations in the ocean circulation can strongly influence climate due to the large heat transport by the ocean currents. Variability of the thermohaline ocean circulation, the part of the ocean circulation driven by density gradients, occurs typically on (inter)decadal and longer time scales and is an important issue in present-day climate research. Although there are many indications from observations and numerical modeling studies that internal variability of the thermohaline circulation m...

  4. Thermohaline mixing in evolved low-mass stars

    OpenAIRE

    Cantiello, M.; Langer, N.

    2010-01-01

    Thermohaline mixing has recently been proposed to occur in low-mass red giants, with large consequence for the chemical yields of low-mass stars. We investigate the role of thermohaline mixing during the evolution of stars between 1Msun and 3Msun, in comparison to other mixing processes acting in these stars. We use a stellar evolution code which includes rotational mixing, internal magnetic fields and thermohaline mixing. We confirm that during the red giant stage, thermohaline mixing has th...

  5. Harmonic generation by internal waves in a thermohaline staircase with rotation

    Science.gov (United States)

    Wunsch, Scott

    2017-11-01

    Thermohaline staircases, generated by double-diffusive convection, are found in many regions of the ocean. Oceanic internal waves interact with these staircases. Recent results show that, in linear theory, internal waves with sufficiently long wavelengths are transmitted through the staircase, while short wavelengths may be reflected. However, nonlinear self-interaction of internal waves with the sharp density jumps within the staircase is expected to generate double-wavenumber harmonics of the incident waves. This effect removes energy from the incident waves, reducing the transmitted energy in some cases. Energy transferred to the harmonic waves may also impact the stability of the staircase. Here, weakly nonlinear theory is used to explore the implications of this nonlinear effect on the dynamics of internal waves in oceanic thermohaline staircases. Rotation is included, and variations with latitude are considered.

  6. Internal variability of the thermohaline ocean circulation

    NARCIS (Netherlands)

    Raa, Lianke Alinda te

    2003-01-01

    Variations in the ocean circulation can strongly influence climate due to the large heat transport by the ocean currents. Variability of the thermohaline ocean circulation, the part of the ocean circulation driven by density gradients, occurs typically on (inter)decadal and longer time scales and is

  7. METAL-RICH ACCRETION AND THERMOHALINE INSTABILITIES IN EXOPLANET-HOST STARS: CONSEQUENCES ON THE LIGHT ELEMENTS ABUNDANCES

    Energy Technology Data Exchange (ETDEWEB)

    Theado, Sylvie; Vauclair, Sylvie, E-mail: stheado@ast.obs-mip.fr [Institut de Recherches en Astrophysique et Planetologie, Universite de Toulouse, CNRS, 14 avenue Edouard Belin, 31400 Toulouse (France)

    2012-01-10

    The early evolution of planetary systems is expected to depend on various periods of disk matter accretion onto the central star, which may include the accretion of metal-rich matter after the star settles on the main sequence. When this happens, the accreted material is rapidly mixed within the surface convective zone and induces an inverse mean-molecular-weight gradient, unstable for thermohaline convection. The induced mixing, which dilutes the metal excess, may also have important consequences on the light elements abundances. We model and analyze this process, and present the results according to various possible accretion scenarios. We give a detailed discussion of the different ways of treating thermohaline mixing, as proposed by previous authors, and converge on a consistent view, including the most recent numerical simulations. We show how the observations of light elements in stars can be used as tracers of such events.

  8. Impact of largescale ocean-air interaction on thermohaline anomalies in Northwest Atlantic and Nordic Seas

    Science.gov (United States)

    Vyazilova, Anastasia

    2014-05-01

    Oceanography of Northwest Atlantic and Nordic Seas are formed by similar large-scale processes: export of warm and saline North Atlantic Water and flows of cold fresh water from Arctic Ocean. These processes in both regions develop in some opposition driven by the atmospheric circulation presented by NAO and AO indexes. Temperature and salinity time series indicates that convection in Labrador Sea became deeper since mid-1960s till early 1990s as the same time deep water of the Greenland Sea is warmer and saltier since the early 70s. NAO/AO circulation modes have an effect on air temperature in the Nordic Seas and NW Atlantic that influences on winter convection. When index NAO is negative air temperature is reduced in Greenland Sea. During positive phase of NAO air temperature is dropped in Labrador Sea. Correlation between air temperature and water temperature in upper 500 m in both regions is 0.6÷0.7. Inflow of freshened water to the Northwest Atlantic (the Labrador Sea and Baffin Bay) and Nordic Seas (the Norwegian and Greenland seas) has an effect on thermohaline anomalies and convective processes in both regions. The fresh water flows from the Arctic through the Fram Strait with the East-Greenland current and through the Baffin Bay and the Davis Strait. Summer warming in 1960s and 1990-2000s are followed by increasing freshwater in the Labrador Sea and Baffin Bay, there is also correlation between NAO phases and fresh water anomalies. Correlation between thermohaline and atmosphere anomalies over these regions enable to value mutual impact of atmosphere and ocean with defining time lag. This analyze allows to compare spatial-temporal variability of thermohaline anomalies with climate change in the regions.

  9. Seismic imaging of a thermohaline staircase in the western tropical North Atlantic

    Directory of Open Access Journals (Sweden)

    I. Fer

    2010-07-01

    Full Text Available Multichannel seismic data acquired in the Lesser Antilles in the western tropical North Atlantic indicate that the seismic reflection method has imaged an oceanic thermohaline staircase. Synthetic acoustic modeling using measured density and sound speed profiles corroborates inferences from the seismic data. In a small portion of the seismic image, laterally coherent, uniform layers are present at depths ranging from 550–700 m and have a separation of ~20 m, with thicknesses increasing with depth. The reflection coefficient, a measure of the acoustic impedance contrasts across these reflective interfaces, is one order of magnitude greater than background noise. Hydrography sampled in previous surveys suggests that the layers are a permanent feature of the region. Spectral analysis of layer horizons in the thermohaline staircase indicates that internal wave activity is anomalously low, suggesting weak internal wave-induced turbulence. Results from two independent measurements, the application of a finescale parameterization to observed high-resolution velocity profiles and direct measurements of turbulent dissipation rate, confirm these low levels of turbulence. The lack of internal wave-induced turbulence may allow for the maintenance of the staircase or may be due to suppression by the double-diffusive convection within the staircase. Our observations show the potential for seismic oceanography to contribute to an improved understanding of occurrence rates and the geographical distribution of thermohaline staircases, and should thereby improve estimates of vertical mixing rates ascribable to salt fingering in the global ocean.

  10. Structure and Evolution of Thermohaline Staircases in Tropical North Atlantic

    Science.gov (United States)

    2007-12-01

    series of mixed layers separated by sharp interfaces. The discovery of these ‘ thermohaline staircases’ by Tait and Howe (1968) further stimulated...EVOLUTION OF THERMOHALINE STAIRCASES IN TROPICAL NORTH ATLANTIC by Steven Wall December 2007 Thesis Advisor: Timour Radko Second Reader...DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Structure and Evolution of Thermohaline Staircases in Tropical North Atlantic 6. AUTHOR(S

  11. Observed interannual variability of the thermohaline structure in the south eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Kurian, N.; Costa, J.; Suneel, V.; Gopalakrishna, V.V.; Rao, R.R.; Girish, K.; Amritash, S.; Ravichandran, M.; John, L.; Ravichandran, C.

    Author version: Remote Sensing of the Changing Oceans. Ed. by: Tang, D.Springer, vol.Pt. 4(Chap. 16); 2011; 305-323 Observed interannual variability of the near-surface thermohaline structure in the South Eastern Arabian Sea Nisha Kurian 1 , Joshua... this region intense organised moist convection occurs heralding rapid northward advance of the summer monsoon (Gadgil et al, 1984; Joseph, 1990; Shenoi et al, 1999; Vinayachandran and Shetye, 1991; Rao and Sivakumar, 1999; Shenoi et al 2005). The region off...

  12. Preparation of single phase molybdenum boride

    International Nuclear Information System (INIS)

    Camurlu, Hasan Erdem

    2011-01-01

    Highlights: → Formation of Mo and a mixture of molybdenum boride phases take place in preparation of molybdenum borides. → It is intricate to prepare single phase molybdenum borides. → Formation of single phase MoB from MoO 3 + B 2 O 3 + Mg mixtures has not been reported previously. → Single phase MoB was successfully prepared through a combination of mechanochemical synthesis and annealing process. - Abstract: The formation of MoB through volume combustion synthesis (VCS), and through mechanochemical synthesis (MCS) followed by annealing has been investigated. MoO 3 , B 2 O 3 and Mg were used as reactants while MgO and NaCl were introduced as diluents. Products were leached in dilute HCl solution and were subjected to X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) examinations. Mo was the major phase component in the VCS products under all the experimental conditions. Mo 2 B, MoB, MoB 2 and Mo 2 B 5 were found as minor phases. Products of MCS contained a mixture of Mo 2 B, MoB, MoB 2 and Mo. After annealing the MCS product at 1400 deg. C for 3 h, single phase α-MoB was obtained.

  13. Single phase induction motor with starting performance

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, M.; Demeter, E. [Research Institute for Electrical Machines, ICPE-ME, Bucharest (Romania); Navrapescu, V. [University `Politehnica` Bucharest, Electrical Engineering Faculty Splaiul Independentei, Bucharest (Romania)

    1997-12-31

    The paper presents problems related to a special type of single phase induction motor. The main novelty consists in the use of a conducting (aluminium casted) shell distributed on the periferic region of the rotor. As a result the starting performance, as well as the rated ones, is much improved in comparison with the conventional construction. (orig.) 4 refs.

  14. Seismic Oceanography in the Tyrrhenian Sea: Thermohaline Staircases, Eddies, and Internal Waves

    Science.gov (United States)

    Buffett, G. G.; Krahmann, G.; Klaeschen, D.; Schroeder, K.; Sallarès, V.; Papenberg, C.; Ranero, C. R.; Zitellini, N.

    2017-11-01

    We use seismic oceanography to document and analyze oceanic thermohaline fine structure across the Tyrrhenian Sea. Multichannel seismic (MCS) reflection data were acquired during the MEDiterranean OCcidental survey in April-May 2010. We deployed along-track expendable bathythermograph probes simultaneous with MCS acquisition. At nearby locations we gathered conductivity-temperature-depth data. An autonomous glider survey added in situ measurements of oceanic properties. The seismic reflectivity clearly delineates thermohaline fine structure in the upper 2,000 m of the water column, indicating the interfaces between Atlantic Water/Winter Intermediate Water, Levantine Intermediate Water, and Tyrrhenian Deep Water. We observe the Northern Tyrrhenian Anticyclone, a near-surface mesoscale eddy, plus laterally and vertically extensive thermohaline staircases. Using MCS, we are able to fully image the anticyclone to a depth of 800 m and to confirm the horizontal continuity of the thermohaline staircases of more than 200 km. The staircases show the clearest step-like gradients in the center of the basin while they become more diffuse toward the periphery and bottom, where impedance gradients become too small to be detected by MCS. We quantify the internal wave field and find it to be weak in the region of the eddy and in the center of the staircases, while it is stronger near the coastlines. Our results indicate this is because of the influence of the boundary currents, which disrupt the formation of staircases by preventing diffusive convection. In the interior of the basin, the staircases are clearer and the internal wave field weaker, suggesting that other mixing processes such as double diffusion prevail.

  15. Convective transfers; Transferts convectifs

    Energy Technology Data Exchange (ETDEWEB)

    Accary, G.; Raspo, I.; Bontoux, P. [Aix-Marseille-3 Univ. Paul Cezanne, CNRS, Lab. MSNM-GP UMR 6181, 13 - Marseille (France); Zappoli, B. [Centre National d' Etudes Spatiales (CNES), 31 - Toulouse (France); Polidori, G.; Fohanno, S. [Laboratoire de Thermomecanique, 51 - Reims (France); Hirata, S.C.; Goyeau, B.; Gobin, D. [Paris-6 et Paris-11 Univ., FAST-UMR CNRS 7608, 91 - Orsay (France); Cotta, R.M. [UFRJ/LTTC/PEM/EE/COPPE, Rio de Janeiro (Brazil); Perrin, L.; Reulet, P.; Micheli, F.; Millan, P. [Office National d' Etudes et de Recherches Aerospatiales (ONERA), 31 - Toulouse (France); Menard, V. [France Telecom R and D, 22 - Lannion (France); Benkhelifa, A.; Penot, F. [Ecole Nationale Superieure de Mecanique et d' Aerotechnique (ENSMA), Lab. d' Etudes Thermiques, UMR CNRS 6608, 86 - Poitiers (France); Ng Wing Tin, M.; Haquet, J.F.; Journeau, C. [CEA Cadarache (DEN/DTN/STRI/LMA), Lab. d' Essais pour la Maitrise des Accidents Graves, 13 - Saint-Paul-lez-Durance (France); Naffouti, T.; Hammani, M.; Ben Maad, R. [Faculte des Sciences de Tunis, Lab. d' Energetique et des Transferts Thermique et Massique, Dept. de Physique, Tunis (Tunisia); Zinoubi, J. [Institut Preparatoire aux Etudes d' Ingenieurs de Nabeul (Tunisia); Menard, V.; Le Masson, S.; Nortershauser, D. [France Telecom R and D, 22 - Lannion (France); Stitou, A.; Perrin, L.; Millan, P. [ONERA, 31 - Toulouse (France)

    2005-07-01

    exchange coefficient of a mobile cylinder impacted by a water jet - study of single-phase forced convection; second order modeling of the thermal field of an homogenous turbulence; numerical study of the effect of a periodical disturbance on the dynamical structure of the flow downstream of a descending step; numerical study of flows and heat transfers inside the air gap of a rotating machine; dynamical and thermal characteristics of boundary layers inside a turbulent Poiseuille flow with low flow rate ratio downstream of a T-junction; study of convective transfers at the inlet of a cylindrical tube with a low shape ratio (L/D = 8); experimental study of convective transfers in a rotor/stator system subjected to a air flux; correction of the strength and heat flux transferred by a moving cylinder between two parallel planes in Stokes-type regime; algebraic model for the forecasting of turbulent heat fluxes. (J.S.)

  16. Thermohaline mixing in low-mass giants: RGB and beyond

    NARCIS (Netherlands)

    Cantiello, M.; Hoekstra, H.; Langer, N.; Poelarends, A.J.T.

    2007-01-01

    Thermohaline mixing has recently been proposed to occur in low mass red giants, with large consequence for the chemical yields of low mass stars.We investigate the role of thermohaline mixing during the evolution of stars between 1M⊙ and 3M⊙, in comparison to other mixing processes acting in these

  17. Thermohaline mixing in evolved low-mass stars

    NARCIS (Netherlands)

    Cantiello, M.|info:eu-repo/dai/nl/304840866; Langer, N.|info:eu-repo/dai/nl/304829498

    2010-01-01

    Context. Thermohaline mixing has recently been proposed to occur in low-mass red giants, with large consequence for the chemical yields of low-mass stars. Aims. We investigate the role of thermohaline mixing during the evolution of stars between 1 M and 3 M , in comparison with other mixing

  18. Abrupt climate change and thermohaline circulation: mechanisms and predictability.

    Science.gov (United States)

    Marotzke, J

    2000-02-15

    The ocean's thermohaline circulation has long been recognized as potentially unstable and has consequently been invoked as a potential cause of abrupt climate change on all timescales of decades and longer. However, fundamental aspects of thermohaline circulation changes remain poorly understood.

  19. Abrupt climate change and thermohaline circulation: Mechanisms and predictability

    OpenAIRE

    Marotzke, Jochem

    2000-01-01

    The ocean's thermohaline circulation has long been recognized as potentially unstable and has consequently been invoked as a potential cause of abrupt climate change on all timescales of decades and longer. However, fundamental aspects of thermohaline circulation changes remain poorly understood.

  20. Thermohaline feedback loops and Natural Capital

    Directory of Open Access Journals (Sweden)

    Tom Sawyer Hopkins

    2001-12-01

    Full Text Available Human interference now represents an inextricable component of all major ecosystems. Whether this is through top-down overharvesting of ecosystem production or bottom-up alteration (deliberate or inadvertent of the abiotic conditions, the planet´s ecosphere is in a vicious degradation cycle. For our economy to shift from exploiting to sustaining the natural systems, the solution, if there is to be one, will involve incorporation of the value of natural capital into the economic and political feedback loop. For the science sector, this will involve developing methodologies to evaluate the nonlinear and behavioral dynamics of entire systems in ways that can be coupled with economic models. One essential characteristic of systems science involves the interactions between internal components and external systems. Thermohaline circulations and their feedback loops illustrate a class of such interactive pathways. Examples from the Arctic, Mediterranean, and the US East Coast along with some of their associated ecological impacts are reviewed. Understanding how thermohaline interactions provide stability to the marine biotic environment and under what conditions this stability could be destabilized is a fundamental step toward evaluating the non-linear response of marine systems to anthropogenic stress.

  1. On the interbasin-scale thermohaline circulation

    Science.gov (United States)

    Schmitz, William J.

    1995-05-01

    The global-scale circulation has long been one of oceanography's most challenging and exciting research topics. A few features of the abyssal (near bottom) and deep circulation of the Atlantic Ocean have been known for over 50 years, and in the past decade or so there has been a developing focus on the world oceans' thermohaline circulation. The term thermohaline circulation as used here applies not only to a direct response to atmospheric buoyancy fluxes but also in the general sense of water mass modification or conversion, where mechanisms may be associated with internal mixing processes and even wind forcing (i.e., wind-induced upwelling or wind-driven mixing). The thermohaline circulation components reviewed and summarized in the following are associated with water mass conversion processes that are involved with interbasin exchange. Updated summary maps of the volume transports (in sverdrups; 1Sv = 106 m³ s-1) for the interbasin-scale pathways of the abyssal and deep thermohaline circulation and associated upper level compensating flows are developed for two to four vertical layers or potential density intervals, based primarily on a synthesis of published observational results. The cell(s) involving the largest worldwide exchange transport-wise (53 Sv) are associated with an interaction between various deep and bottom water components via Circumpolar Deep Water (CDW). The first major conversion step in the replacement path for the renewal (14 Sv) of North Atlantic Deep Water (NADW) is taken to be primarily to CDW. Bottom water in the Indian Ocean originates as lower CDW which recirculates while also moving equatorward in deep western boundary currents with eventual conversion to both deep and intermediate layer flows. Some of the intermediate water so formed in the Indian Ocean moves through the Agulhas Current system (ACS) and may "leak" into the Benguela Current regime (BCR), although probably primarily flowing through the ACS into the Subantarctic

  2. Instability of single-phase natural circulation

    International Nuclear Information System (INIS)

    Xie Heng; Zhang Jinling; Jia Dounan

    1997-01-01

    The author has investigated the instability of single-phase flows in natural circulation loops. The momentum equation and energy equation are made dimensionless according to some definitions, and some important dimensionless parameters are gotten. The authors decomposed the mean mass flowrate and temperature into a steady solution and a small disturbance equations. Through solving the disturbance equations, the authors get the neutral stability curves. The authors have studied the effect of the two parameters which represent the ratio of buoyancy force to the friction loss in the loop on the stability of loops. The authors also have studied the effect of the difference of height between the center of heat source and the heat sink on the stability

  3. The role of the thermohaline circulation in abrupt climate change.

    Science.gov (United States)

    Clark, Peter U; Pisias, Nicklas G; Stocker, Thomas F; Weaver, Andrew J

    2002-02-21

    The possibility of a reduced Atlantic thermohaline circulation in response to increases in greenhouse-gas concentrations has been demonstrated in a number of simulations with general circulation models of the coupled ocean-atmosphere system. But it remains difficult to assess the likelihood of future changes in the thermohaline circulation, mainly owing to poorly constrained model parameterizations and uncertainties in the response of the climate system to greenhouse warming. Analyses of past abrupt climate changes help to solve these problems. Data and models both suggest that abrupt climate change during the last glaciation originated through changes in the Atlantic thermohaline circulation in response to small changes in the hydrological cycle. Atmospheric and oceanic responses to these changes were then transmitted globally through a number of feedbacks. The palaeoclimate data and the model results also indicate that the stability of the thermohaline circulation depends on the mean climate state.

  4. The South China Sea Thermohaline Structure and Circulation

    National Research Council Canada - National Science Library

    Chu, Peter C; Ma, Binbing; Chen, Yuchun

    2002-01-01

    ...), consisting of 116,019 temperature and 9,617 salinity profiles, during 1968-1984 to investigate the temporal and spatial variabilities of South China Sea thermohaline structures and circulation...

  5. Thermohaline staircases in the Amundsen Basin: Possible disruption by shear and mixing

    Science.gov (United States)

    Guthrie, John D.; Fer, Ilker; Morison, James H.

    2017-10-01

    As part of the 2013 and 2014 North Pole Environmental Observatories (NPEO) in the Amundsen Basin of the Arctic Ocean, two similar temperature microstructure experiments were performed with different results. In 2013, vertical fluxes were through a thermohaline staircase, and in 2014, the thermohaline staircase was largely absent. Here we investigate the reasons for this difference. The 2013 data set was characterized by an extensive thermohaline staircase, indicative of the diffusive convective type of double diffusion (DC), from 120 to 250 m depths. The staircase was absent above 200 m in 2014, even though analysis of density ratio, Rρ, still shows high susceptibility to DDC. In the depth range of interest, survey-averaged Rρ = 3.8 in 2013 and Rρ = 3.6 in 2014, indicating that the temperature-salinity structure in the pycnocline was not the cause of the lack of a staircase in 2014. We propose that exceptionally weak turbulent mixing, even for the typically quiescent Arctic Ocean, allowed formation of the staircase in 2013. Average thermal diffusivity, KT, between 50 and 120 m is elevated in 2014, 2 × 10-5 m2 s-1, compared to 2013, 1 × 10-6 m2 s-1. However, vertical Atlantic Water (AW) DC heat fluxes in 2013 are remarkably consistent with turbulent heat fluxes in 2014. Similar data sets collected in 2007 and 2008 both resemble 2014, showing consistently higher mixing values compared to 2013. The suppression of turbulence during NPEO 2013 resulted from increased near-surface stratification, possibly caused by a different large-scale circulation pattern that year.

  6. Dynamics of the Thermohaline Circulation under Wind forcing

    OpenAIRE

    Gao, Hongjun; Duan, Jinqiao

    2001-01-01

    The ocean thermohaline circulation, also called meridional overturning circulation, is caused by water density contrasts. This circulation has large capacity of carrying heat around the globe and it thus affects the energy budget and further affects the climate. We consider a thermohaline circulation model in the meridional plane under external wind forcing. We show that, when there is no wind forcing, the stream function and the density fluctuation (under appropriate metrics) tend to zero ex...

  7. Thermohaline processes in a tropical coastal zone

    Science.gov (United States)

    Enriquez, Cecilia; Mariño-Tapia, Ismael; Jeronimo, Gilberto; Capurro-Filograsso, Luis

    2013-10-01

    The detailed thermohaline structure of the northern Yucatan coastal zone was obtained for the first time in order to gain an insight into the interactions between various processes in this complex tropical environment of extreme evaporation and high precipitation rates. From the continent, it has water exchange with numerous coastal lagoons (ranging from brackish to hypersaline) and receives intense submarine groundwater discharges (SGD). In the summer of 2006 a high-resolution (500 m cross-shore and 5 km along-shore) oceanographic campaign was performed starting at Holbox Island down to the mouth of Celestun Lagoon. CTD profiles were measured at 1020 stations along 69 coastal cross-shore transects. Additionally, CTD data from 2 wider surveys, covering the continental shelf (Campeche Bank) and the southern Gulf of Mexico respectively were used to complement the results. From the thermohaline properties, two main water masses were identified: (a) the Caribbean Subtropical Underwater (CSUW), upwelled from the Caribbean, which was observed at the bottom very close to the coast in more than 260 km (from the upwelling region near Cape Catoche to approximately 89.5 W during the summer of 2006) and (b) the second dominant group was a mass of warm hypersaline water which originates in Yucatan due to the high temperature and evaporation rates. We call this water mass the Yucatan Sea Water (YSW) after finding evidence of its presence in various field campaigns both in the Yucatan Sea and further to the west in the southern Gulf of Mexico. All the water masses present in the Yucatan coastal zone showed pronounced variations with important dilution and salinisation effects. The permeable karstic geology of the region prevents the continental water from discharging into the ocean through surface rivers and instead the rainfall permeates directly to the aquifer and travels through caves and fractures towards the sea. Three main regions showed evidence of continental discharges

  8. Global warming and thermohaline circulation stability.

    Science.gov (United States)

    Wood, Richard A; Vellinga, Michael; Thorpe, Robert

    2003-09-15

    The Atlantic thermohaline circulation (THC) plays an important role in global climate. Theoretical and palaeoclimatic evidence points to the possibility of rapid changes in the strength of the THC, including a possible quasi-permanent shutdown. The climatic impacts of such a shutdown would be severe, including a cooling throughout the Northern Hemisphere, which in some regions is greater in magnitude than the changes expected from global warming in the next 50 years. Other climatic impacts would likely include a severe alteration of rainfall patterns in the tropics, the Indian subcontinent and Europe. Modelling the future behaviour of the THC focuses on two key questions. (i) Is a gradual weakening of the THC likely in response to global warming, and if so by how much? (ii) Are there thresholds beyond which rapid or irreversible changes in the THC are likely? Most projections of the response of the THC to increasing concentrations of greenhouse gases suggest a gradual weakening over the twenty-first century. However, there is a wide variation between different models over the size of the weakening. Rapid or irreversible THC shutdown is considered a low-probability (but high-impact) outcome; however, some climate models of intermediate complexity do show the possibility of such events. The question of the future of the THC is beset with conceptual, modelling and observational uncertainties, but some current and planned projects show promise to make substantial progress in tackling these uncertainties in future.

  9. Hydrology of surface waters and thermohaline circulation during the last glacial period; Hydrologie des eaux de surface et circulation thermohaline au cours de la derniere periode glaciaire

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, L.

    1996-03-27

    Sedimentological studies on oceanic cores from the north Atlantic have revealed, over the last glacial period, abrupt climatic changes with a periodicity of several thousand years which contrasts strongly with the glacial-interglacial periodicity (several tens of thousand years). These periods of abrupt climate changes correspond to massive icebergs discharges into the north Atlantic. The aim of this work was to study the evolution of the thermohaline circulation in relation to these episodic iceberg discharges which punctuated the last 60 ka. To reconstruct the oceanic circulation in the past, we have analysed oxygen and carbon stable isotopes on benthic foraminifera from north Atlantic deep-sea cores. First of all, the higher temporal resolution of sedimentary records has enabled us to establish a precise chrono-stratigraphy for the different cores. Then, we have shown the close linkage between surface water hydrology and deep circulation, giving evidence of the sensibility of thermohaline circulation to melt water input in the north Atlantic ocean. Indeed, changes in deep circulation are synchronous from those identified in surface waters and are recorded on a period which lasted {approx} 1500 years. Deep circulation reconstructions, before and during a typical iceberg discharge reveal several modes of circulation linked to different convection sites at the high latitudes of the Atlantic basin. Moreover, the study of the last glacial period gives the opportunity to differentiate circulation changes due to the external forcing (variations of the orbital parameters) and those linked to a more local forcing (icebergs discharges). 105 refs., 50 figs., 14 tabs., 4 appends.

  10. Numerical Simulations, Mean Field Theory and Modulational Stability Analysis of Thermohaline Intrusions

    Science.gov (United States)

    2011-09-01

    the temporal and spatial variability of the ocean circulation (Schmitt, 2003). This signifies that these thermohaline intrusions cannot be ignored...still calculating the net effects of double diffusion via crude parameterizations, the study showed that the thermohaline circulations in the model...SIMULATIONS, MEAN FIELD THEORY AND MODULATIONAL STABLITY ANALYSIS OF THERMOHALINE INTRUSIONS by Mark A. Hebert September 2011 Thesis Advisor

  11. Simplified thermal-hydraulic analysis of single phase natural circulation circuit with two heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, Larissa Cunha; Su, Jian, E-mail: larissa@lasme.coppe.ufrj.br, E-mail: sujian@lasme.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenhraria Nuclear; Cotta, Renato Machado, E-mail: cotta@mecanica.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (POLI/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica

    2015-07-01

    Single phase natural circulation circuits composed of two convective heat exchangers and connecting tubes are important for the passive heat removal from spent fuel pools (SFP). To keep the structural integrity of the stored spent fuel assemblies, continuously cooling has to be provided in order to avoid increase at the pool temperature and subsequent uncovering of the fuel and enhanced reaction between water and metal releasing hydrogen. Decay heat can achieve considerably high amounts of energy e.g. in the AP1000, considering the emergency fuel assemblies, the maximum heat decay will reach 13 MW in the 15th day (Westinghouse Electric Company, 2010). A highly efficient alternative to do so is by means of natural circulation, which is cost-effective compared to active cooling systems and is inherently safer since presents less associated devices and no external work is required. Many researchers have investigated safety and stability aspects of natural circulation loops (NCL). However, there is a lack of literature concerning the improvement of NCL through a standard unified methodology, especially for natural circulation circuits with two heat exchangers. In the present study, a simplified thermal-hydraulic analysis of single phase natural circulation circuit with two heat exchanges is presented. Relevant dimensionless key groups were proposed to for the design and safety analysis of a scaled NCL for the cooling of spent fuel storage pool with convective cooling and heating. (author)

  12. Current Harmonics from Single-Phase Grid-Connected Inverters

    DEFF Research Database (Denmark)

    Yang, Yongheng; Zhou, Keliang; Blaabjerg, Frede

    2016-01-01

    factor, or in the low voltage ride through mode with reactive current injection. In this paper, the mechanism of the harmonic current injection from grid-connected single-phase inverter systems is thus explored, and the analysis is conducted on single-phase PV systems. In particular, the analysis......-phase applications as a promising harmonic mitigation solution. Experiments on single-phase grid-connected systems have verified the correctness of the relevant analysis and also the effectiveness of the tailor-made control solution in terms of good harmonic mitigation....

  13. Conceptual models of the wind-driven and thermohaline circulation

    NARCIS (Netherlands)

    Drijfhout, S.S.; Marshall, D.P.; Dijkstra, H.A.

    2013-01-01

    Conceptual models are a vital tool for understanding the processes that maintain the global ocean circulation, both in nature and in complex numerical ocean models. In this chapter we provide a broad overview of our conceptual understanding of the wind-driven circulation, the thermohaline

  14. Simulation of the phenomenon of single-phase and two-phase natural circulation

    International Nuclear Information System (INIS)

    Castrillo, Lazara Silveira

    1998-02-01

    Natural convection phenomenon is often used to remove the residual heat from the surfaces of bodies where the heat is generated e.g. during accidents or transients of nuclear power plants. Experimental study of natural circulation can be done in small scale experimental circuits and the results can be extrapolated for larger operational facilities. The numerical analysis of transients can be carried out by using large computational codes that simulate the thermohydraulic behavior in such facilities. The computational code RELAP5/MOD2, (Reactor Excursion and Leak Analysis Program) was developed by U.S. Nuclear Regulatory Commissions's. Division of Reactor Safety Research with the objective of analysis of transients and postulated accidents in the light water reactor (LWR) systems, including small and large ruptures with loss of coolant accidents (LOCA's). The results obtained by the simulation of single-phase and two-phase natural circulation, using the RELAP5/MOD2, are presented in this work. The study was carried out using the experimental circuit built at the 'Departamento de Engenharia Quimica da Escola Politecnica da Universidade de Sao Paulo'. In the circuit, two experiments were carried out with different conditions of power and mass flow, obtaining a single-phase regime with a level of power of 4706 W and flow of 5.10 -5 m 3 /s (3 l/min) and a two-phase regime with a level of power of 6536 W and secondary flow 2,33.10 -5 m 3 /s (1,4 l/min). The study allowed tio evaluate the capacity of the code for representing such phenomena as well as comparing the transients obtained theoretically with the experimental results. The comparative analysis shows that the code represents fairly well the single-phase transient, but the results for two-phase transients, starting from the nodalization and calibration used for the case single-phase transient, did not reproduce faithfully some experimental results. (author)

  15. Thermohaline circulation: a missing equation and its climate-change implications

    Science.gov (United States)

    Ou, Hsien-Wang

    2018-01-01

    We formulate a box model of coupled ocean-atmosphere to examine the differential fields interactive with the thermohaline circulation (THC) and their response to global warming. We discern a robust convective bound on the atmospheric heat transport, which would divide the climate regime into warm and cold branches; but unlike the saline mode of previous box models, the cold state, if allowed, has the same-signed—though weaker—density contrast and THC as the present climate, which may explain its emergence from coupled general circulation models. We underscore the nondeterminacy of the THC due to random eddy shedding and apply the fluctuation theorem to constrain the shedding rate, thus closing the problem. The derivation reveals an ocean propelled toward the maximum entropy production (MEP) on millennial timescale (termed "MEP-adjustment"), the long timescale arising from the compounding effect of microscopic fluctuations in the shedding rate and their slight probability bias. Global warming may induce hysteresis between the two branches, like that seen in GCMs, but the cold transition is far more sensitive to the moistening than the heating effects as the latter would be countered by the hydrological feedback. The uni- or bi-modality of the current state—hence whether the THC may recover after the cold transition—depends on the global-mean convective flux and may not be easily assessed due to its observed uncertainty.

  16. Hydrology of surface waters and thermohaline circulation during the last glacial period

    International Nuclear Information System (INIS)

    Vidal, L.

    1996-01-01

    Sedimentological studies on oceanic cores from the north Atlantic have revealed, over the last glacial period, abrupt climatic changes with a periodicity of several thousand years which contrasts strongly with the glacial-interglacial periodicity (several tens of thousand years). These periods of abrupt climate changes correspond to massive icebergs discharges into the north Atlantic. The aim of this work was to study the evolution of the thermohaline circulation in relation to these episodic iceberg discharges which punctuated the last 60 ka. To reconstruct the oceanic circulation in the past, we have analysed oxygen and carbon stable isotopes on benthic foraminifera from north Atlantic deep-sea cores. First of all, the higher temporal resolution of sedimentary records has enabled us to establish a precise chrono-stratigraphy for the different cores. Then, we have shown the close linkage between surface water hydrology and deep circulation, giving evidence of the sensibility of thermohaline circulation to melt water input in the north Atlantic ocean. Indeed, changes in deep circulation are synchronous from those identified in surface waters and are recorded on a period which lasted ∼ 1500 years. Deep circulation reconstructions, before and during a typical iceberg discharge reveal several modes of circulation linked to different convection sites at the high latitudes of the Atlantic basin. Moreover, the study of the last glacial period gives the opportunity to differentiate circulation changes due to the external forcing (variations of the orbital parameters) and those linked to a more local forcing (icebergs discharges). 105 refs., 50 figs., 14 tabs., 4 appends

  17. Interactions Between the Thermohaline Circulation and Tropical Atlantic SST in a Coupled General Circulation Model

    Science.gov (United States)

    Miller, Ron; Jiang, Xing-Jian; Travis, Larry (Technical Monitor)

    2001-01-01

    Tropical Atlantic SST shows a (statistically well-defined) decadal time scale in a 104-year simulation of unforced variability by a coupled general circulation model (CGCM). The SST anomalies superficially resemble observed Tropical Atlantic variability (TAV), and are associated with changes in the atmospheric circulation. Brazilian rainfall is modulated with a decadal time scale, along with the strength of the Atlantic trade winds, which are associated with variations in evaporation and the net surface heat flux. However, in contrast to observed tropical Atlantic variability, the trade winds damp the associated anomalies in ocean temperature, indicating a negative feedback. Tropical SST anomalies in the CGCM, though opposed by the surface heat flux, are advected in from the Southern Hemisphere mid-latitudes. These variations modulate the strength of the thermohaline circulation (THC): warm, salty anomalies at the equator sink drawing cold, fresh mid-latitude water. Upon reaching the equator, the latter inhibit vertical overturning and advection from higher latitudes, which allows warm, salty anomalies to reform, returning the cycle to its original state. Thus, the cycle results from advection of density anomalies and the effect of these anomalies upon the rate of vertical overturning and surface advection. This decadal modulation of Tropical Atlantic SST and the thermohaline circulation is correlated with ocean heat transport to the Northern Hemisphere high latitudes and Norwegian Sea SST. Because of the central role of equatorial convection, we question whether this mechanism is present in the current climate, although we speculate that it may have operated in palaeo times, depending upon the stability of the tropical water column.

  18. MPC of Single Phase Inverter for PV System

    OpenAIRE

    Irtaza M. Syed; Kaamran Raahemifar

    2014-01-01

    This paper presents a model predictive control (MPC) of a utility interactive (UI) single phase inverter (SPI) for a photovoltaic (PV) system at residential/distribution level. The proposed model uses single-phase phase locked loop (PLL) to synchronize SPI with the grid and performs MPC control in a dq reference frame. SPI model consists of boost converter (BC), maximum power point tracking (MPPT) control, and a full bridge (FB) voltage source inverter (VSI). No PI regula...

  19. Single-phase to three-phase power conversion interface

    Science.gov (United States)

    Wu, Jinn-Chang; Wang, Yung-Shan; Jou, Hurng-Liahng; Lu, Wei-Tso

    2016-07-01

    This study proposes a single-phase to three-phase power conversion interface which converts the power from a single-phase utility to three-phase power for a three-phase load. The proposed single-phase to three-phase power conversion interface comprises a bridge-type switch set, a set of three-phase inductors, a transformer set and a set of three-phase capacitors. A current-mode control controls the switching of bridge-type switch set, to generate a set of nonzero-sequence (NZS) currents and a set of zero-sequence (ZS) currents. The transformer set is used to decouple the NZS currents and the ZS currents. The NZS currents are used to generate a high-quality three-phase voltage that supplies power to a three-phase load. The ZS currents flow to the single-phase utility so that the utility current is sinusoidal and in phase with the utility voltage. Accordingly, only a bridge-type switch set is used in the single-phase to three-phase power conversion interface to simply the power circuit. A prototype is developed and tested to verify the performance of the proposed single-phase to three-phase power conversion interface.

  20. FINE THERMOHALINE STRUCTURE OF THE COLOMBIAN PACIFIC OCEAN

    Directory of Open Access Journals (Sweden)

    Villegas Nancy

    2004-06-01

    Full Text Available The present document shows strata classification of the Colombian Pacific Ocean - COLUMBIAN PACIFIC OCEAN, done by first time according its fine thermohaline structure, based on temperature and salinity fields analysis. Layers, where different mechanisms of fine structure predominate, were determined and everywhere in the area a stable stratification was observed, although conditions for not stability as a result of the double diffusion were present.

  1. A Novel Single Phase Hybrid Switched Reluctance Motor Drive System

    DEFF Research Database (Denmark)

    Liang, Jianing; Xu, Guoqing; Jian, Linni

    2011-01-01

    phase boost converter is applied to improve the performance of this motor. It is easy to generate a double dclink voltage and dc-link voltage and switch both of them. The voltage of boost capacitor is self balance, so the protective circuit is not need to consider. The fast excitation mode helps hybrid......In this paper, a novel single phase hybrid switched reluctance motor(SRM) drive system is proposed. It integrated a single phase hybrid SRM and a novel single phase boost converter. This motor can reduce the number of phase switch. And the permanent magnet which is used in the motor can improve...... the performance and efficiency of SR motor. However, the inherent characteristic of this motor is that the negative torque is very sensitive with the excitation current near the turn-on angle. The slow excitation current limits the torque generation region and reduces the average torque. Therefore, a novel single...

  2. Ultrafast Switching Superjunction MOSFETs for Single Phase PFC Applications

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos; Petersen, Lars Press; Andersen, Michael A. E.

    2014-01-01

    This paper presents a guide on characterizing state-of-the-art silicon superjunction (SJ) devices in the 600V range for single phase power factor correction (PFC) applications. The characterization procedure is based on a minimally inductive double pulse tester (DPT) with a very low intrusive...... investigates the latest SJ devices in order to set a reference for future research on improvement over silicon (Si) attained with the introduction of wide bandgap devices in single phase PFC applications. The obtained results show that the latest generation of SJ devices set a new benchmark for its wide...

  3. The Single-Phase ProtoDUNE Technical Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Abi, B. [Univ. of Padova (Italy); et al.

    2017-06-21

    ProtoDUNE-SP is the single-phase DUNE Far Detector prototype that is under construction and will be operated at the CERN Neutrino Platform (NP) starting in 2018. ProtoDUNE-SP, a crucial part of the DUNE effort towards the construction of the first DUNE 10-kt fiducial mass far detector module (17 kt total LAr mass), is a significant experiment in its own right. With a total liquid argon (LAr) mass of 0.77 kt, it represents the largest monolithic single-phase LArTPC detector to be built to date. It's technical design is given in this report.

  4. the steady-state performance characteristics of single phase transfer

    African Journals Online (AJOL)

    2012-11-03

    Nov 3, 2012 ... The paper reports the derivation of the steady- state equivalent circuit of a single phase transfer ... series opposition between the two halves of the ma- ..... from its equivalent circuit of fig 6 for different values of slip. Impedance due to forward field. Zf = Rf + jXf = Rr. 2(2s - 1). + jxr. 2. (19) in parallel with jxm. 2.

  5. An Asymmetrical Space Vector Method for Single Phase Induction Motor

    DEFF Research Database (Denmark)

    Cui, Yuanhai; Blaabjerg, Frede; Andersen, Gert Karmisholt

    2002-01-01

    Single phase induction motors are the workhorses in low-power applications in the world, and also the variable speed is necessary. Normally it is achieved either by the mechanical method or by controlling the capacitor connected with the auxiliary winding. Any above method has some drawback which...

  6. Improvement of Torque Production in Single-Phase Induction Motors ...

    African Journals Online (AJOL)

    Existing single phase induction motors exhibit low starting torque. Moreover, during accelerating time and at steady state, they produce a significant level of torque pulsations which gives rise to noise and vibration in the machine. As part of efforts to mitigate these problems, a performance improvement strategy using a PWM ...

  7. A simple output voltage control scheme for single phase wavelet ...

    African Journals Online (AJOL)

    DR OKE

    Wavelet based techniques have been extensively used in various power engineering applications. Recently, wavelet has also been proposed to generate switching signal for single-phase pulse-width-modulated (PWM) dc-ac inverter. The main advantage of the wavelet modulated (WM) scheme is that a single synthesis ...

  8. experimental implementation of single-phase, three-level, sinusoidal

    African Journals Online (AJOL)

    Experimental Implementation of SPWM VSI with R-L Load. 3. Figure 2: Switching pattern of the proposed single-phase, three-level PWM inverter. Figure 3: Prototype setup. (a) Power circuits for both inverters. (b) Logic and Driver circuits. Nigerian Journal of Technology. Vol. 31, No. 1, March 2012.

  9. A single phase photovoltaic inverter control for grid connected system

    Indian Academy of Sciences (India)

    This paper presents a control scheme for single phase grid connected photovoltaic (PV) system operating under both grid connected and isolated grid mode. The control techniques include voltage and current control of grid-tie PV inverter. During grid connected mode, grid controls the amplitude and frequency of the PV ...

  10. Load compensation for single phase system using series active filter ...

    African Journals Online (AJOL)

    In this paper a new control strategy for series active filter has been proposed for improvement of power quality problems in single phase system. Since the non linear loads in the system comprises of both voltage source harmonic and current source harmonic loads and the dominancy of each type of load varies from time to ...

  11. Control of Single-Stage Single-Phase PV inverter

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai; Teodorescu, Remus; Blaabjerg, Frede

    2005-01-01

    In this paper the issue of control strategies for single-stage photovoltaic (PV) inverter is addressed. Two different current controllers have been implemented and an experimental comparison between them has been made. A complete control structure for the single-phase PV system is also presented...

  12. Single-phase convection heat transfer characteristics of pebble-bed channels with internal heat generation

    International Nuclear Information System (INIS)

    Meng Xianke; Sun Zhongning; Xu Guangzhan

    2012-01-01

    Graphical abstract: The core of the water-cooled pebble bed reactor is the porous channels which stacked with spherical fuel elements. The gaps between the adjacent fuel elements are complex because they are stochastic and often shift. We adopt electromagnetic induction heating method to overall heat the pebble bed. By comparing and analyzing the experimental data, we get the rule of power distribution and the rule of heat transfer coefficient with particle diameter, heat flux density, inlet temperature and working fluid's Re number. Highlights: ► We adopt electromagnetic induction heating method to overall heat the pebble bed to be the internal heat source. ► The ball diameter is smaller, the effect of the heat transfer is better. ► With Re number increasing, heat transfer coefficient is also increasing and eventually tends to stabilize. ► The changing of heat power makes little effect on the heat transfer coefficient of pebble bed channels. - Abstract: The reactor core of a water-cooled pebble bed reactor includes porous channels that are formed by spherical fuel elements. This structure has notably improved heat transfer. Due to the variability and randomness of the interstices in pebble bed channels, heat transfer is complex, and there are few studies regarding this topic. To study the heat transfer characters of pebble bed channels with internal heat sources, oxidized stainless steel spheres with diameters of 3 and 8 mm and carbon steel spheres with 8 mm diameters are used in a stacked pebble bed. Distilled water is used as a refrigerant for the experiments, and the electromagnetic induction heating method is used to heat the pebble bed. By comparing and analyzing the experimental results, we obtain the governing rules for the power distribution and the heat transfer coefficient with respect to particle diameter, heat flux density, inlet temperature and working fluid Re number. From fitting of the experimental data, we obtain the dimensionless average heat transfer coefficient correlation criteria and find that the deviation between the fitted results and the experimental results is 12% or less.

  13. Climate change in a hydrothermal-thermohaline framework

    Science.gov (United States)

    Aldama Campino, Aitor; Döös, Kristofer

    2017-04-01

    In this study, the response of the oceanic thermohaline circulation and the atmospheric hydrothermal circulation to a future climate change scenario are compared to the present climate. We will use stream functions based on purely thermodynamic coordinates to represent the atmospheric and oceanic circulation in one single representation. The oceanic thermohaline stream function makes it possible to analyse and quantify the entire world-ocean conversion rate between cold/warm and fresh/saline waters. The hydrothermal stream function, the analogous circulation in the atmosphere, captures the conversion rate between cold/warm and dry/humid air. The two stream functions have been computed from data from the Earth System Model EC-Earth. For the future climate change scenario the Representative Concentration Pathway (RCP) 8.5 was selected. The effects of the anthropogenic climate change is analysed in this study comparing the difference between the last 10 years of the historical simulation (1996-2005) to the RCP 8.5 simulation (2090-2100). Both circulations are compared on the same diagram by scaling the axes. The salinity axis of the ocean circulation is scaled by the equivalent latent heat energy required to move an air parcel on the moisture axis in the atmospheric circulation. In the future scenario, the atmospheric and oceanic circulation show a weakening and widening a of the stream function. The circulation expands both in the temperature space and in the humidity space for the atmosphere (salinity for the ocean). These results leads us to propose that the Clausius-Clapeyron relationship guides not only the moist branch of the hydrothermal circulation but also the warming branches of the thermohaline circulation both in the present climate and in a future scenario.

  14. Thermohaline circulation in the North Atlantic and its simulation with a box model

    Science.gov (United States)

    Averyanova, E. A.; Polonsky, A. B.; Sannikov, V. F.

    2017-05-01

    Features of the North Atlantic thermohaline circulation response to periodic, stochastic, and instantaneous forcing are studied using a four-box model. The present-day circulation is shown to be characterized by a stable quasi-periodic oscillatory mode that manifests itself as the Atlantic Multidecadal Oscillation. The thermohaline catastrophe is unlikely in the modern climate epoch.

  15. Influence of the Atlantic subpolar gyre on the thermohaline circulation.

    Science.gov (United States)

    Hátún, Hjálmar; Sandø, Anne Britt; Drange, Helge; Hansen, Bogi; Valdimarsson, Hedinn

    2005-09-16

    During the past decade, record-high salinities have been observed in the Atlantic Inflow to the Nordic Seas and the Arctic Ocean, which feeds the North Atlantic thermohaline circulation (THC). This may counteract the observed long-term increase in freshwater supply to the area and tend to stabilize the North Atlantic THC. Here we show that the salinity of the Atlantic Inflow is tightly linked to the dynamics of the North Atlantic subpolar gyre circulation. Therefore, when assessing the future of the North Atlantic THC, it is essential that the dynamics of the subpolar gyre and its influence on the salinity are taken into account.

  16. Effects of the synoptic scale variability on the thermohaline circulation

    Directory of Open Access Journals (Sweden)

    J. J. Taboada

    2005-01-01

    Full Text Available In this paper the effect of the synoptic scale variability is analyzed using a simple atmosphere-ocean coupled model. This high frequency variability has been taken into account in the model adding white gaussian noise in variables related to zonal and meridional temperature differences. Results show that synoptic scale frequency variability on longitudinal heating contrast between land and sea can produce a collapse of thermohaline circulation when a threshold of noise is overcome. This result is significant because if synoptic scale variability in the next century increases due to the climatic change an increment of the probability of this collapse could be produced.

  17. Overview of Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2017-01-01

    A continuous booming installation of solar photovoltaic (PV) systems has been witnessed worldwide. It is mainly driven by the imperative demand of “clean” power generation from renewables. Grid-connected PV systems will thus become an even more active player in the future mixed power systems, which...... systems. This chapter thus gives an overview of the advancement of power electronics converters in single-phase grid-connected PV systems, being commonly used in residential applications. Demands to single-phase grid-connected PV systems and the general control strategies are also addressed...... are linked together by a vast of power electronics converters and the power grid. In order to achieve a reliable and efficient power generation from PV systems, more stringent demands have been imposed on the entire PV system. It, in return, advances the development of the power converter technology in PV...

  18. Instantaneous power flow determination for single-phase UPFC

    Energy Technology Data Exchange (ETDEWEB)

    Dobrucky, B.; Drozdy, S.; Pokorny, M.; Pavlanin, R. [Zilina Univ., Zilina (Slovakia)

    2007-07-01

    The parallel shunt active filter in a unified power flow conditioner (UPFC) can filter and compensate the reactive power of basic and higher current harmonics. This paper reported on a study in which a new theory of orthogonal transform was used to control a single-phase UPFC system and transform it into a two-axes system. In addition to estimating the load current phase shifts, the study also determined the instantaneous active and reactive powers. The new theory is based on the premise that ordinary single-phase quantity can be complemented by a virtual fictitious phase so that both of them will create an orthogonal system, as is usual in three-phase systems. The theory uses efficient methods of analysis, such as time-sub-optimal determination of fundamental harmonics; average- and/or root-mean-square values; or instantaneous reactive power methods. The load current phase shift can be used to compensate for voltage drops. This paper outlined a practical application of the method in a case of active and reactive power determination for single-phase UPFC. It also presented some examples of the successful simulation experiments results focused on regulation output voltage of UPFC. 9 refs., 13 figs., 1 appendix.

  19. Black Sea thermohaline properties: Long‐term trends and variations

    Science.gov (United States)

    Stips, A.; Garcia‐Gorriz, E.; Macias Moy, D.

    2017-01-01

    Abstract The current knowledge about spatial and temporal dynamics of the Black Sea's thermohaline structure is incomplete because of missing data and sparse distribution of existing measurements in space and time. This study presents 56 year continuous simulations of the Black Sea's hydrodynamics using the 3D General Estuarine Transport Model (GETM), without incorporating any relaxation toward climatological or observational data fields. This property of the model allows us to estimate independent temporal trends, in addition to resolving the spatial structure. The simulations suggest that the intermediate layer temperature is characterized by a weak positive trend (warming), whereas the surface temperature does not show a clear linear trend. Different salinity trends have been established at the surface (negative), upper (weaker negative) and main halocline (positive). Three distinct dynamic periods are identified (1960–1970, 1970–1995, 1995–2015), which exhibit pronounced changes in the Black Sea's thermohaline properties and basin circulation. Strengthening of the main cyclonic circulation, accompanied by intensification of the mesoscale anticyclonic eddy formation is found. Both events strongly affect the sea surface salinity but contribute in opposing directions. Specifically, strong composite large‐scale circulation leads to an increase in sea surface salinity, while enhanced formation of mesoscale anticyclones decreases it. Salinity evolution with time is thus the result of the competition of these two opposing yet interdependent processes. PMID:28989833

  20. State variables for modelling thermohaline flow in rocks

    Energy Technology Data Exchange (ETDEWEB)

    Kroehn, Klaus-Peter

    2010-12-15

    Modelling thermohaline flow can easily involve complex physical interactions even if only the basic processes occurring in density-driven flow and heat transport are considered. In the light of these complexities it is of vital importance to know the thermal and hydraulic parameters required for the model and their dependencies as precise as possible. But also for designing a numerical simulator it is useful to know the dependencies of the parameters on the primary variables temperature, pressure and salinity in order to select an appropriate underlying mathematical model. The present report thus compiles the mathematical formulations for the fluid parameters from the literature. For each parameter the origin, at least one meaningful figure, a comment where necessary and conclusions about the influence of each primary variable on the thermo-hydraulic parameters are given. All required coefficients and auxiliary functions including dimensions are listed, too. Simulation of heat transport requires also information about some properties of the porous medium. Thus some complementary information about the properties of rocks is also given. In contrast to the properties for pure substances that are considered for the fluid the porous medium cannot be characterised as easily. Usually, the solids are a mixture of different materials with locally varying composition. Thus rather hints than exact values are provided for the rocks considered here. This compilation represents a complete set of mathematical formulations for fluid and solid properties to be used for thermohaline modelling that can directly used in the composing of a numerical simulator. (orig.)

  1. Black Sea thermohaline properties: Long-term trends and variations.

    Science.gov (United States)

    Miladinova, S; Stips, A; Garcia-Gorriz, E; Macias Moy, D

    2017-07-01

    The current knowledge about spatial and temporal dynamics of the Black Sea's thermohaline structure is incomplete because of missing data and sparse distribution of existing measurements in space and time. This study presents 56 year continuous simulations of the Black Sea's hydrodynamics using the 3D General Estuarine Transport Model (GETM), without incorporating any relaxation toward climatological or observational data fields. This property of the model allows us to estimate independent temporal trends, in addition to resolving the spatial structure. The simulations suggest that the intermediate layer temperature is characterized by a weak positive trend (warming), whereas the surface temperature does not show a clear linear trend. Different salinity trends have been established at the surface (negative), upper (weaker negative) and main halocline (positive). Three distinct dynamic periods are identified (1960-1970, 1970-1995, 1995-2015), which exhibit pronounced changes in the Black Sea's thermohaline properties and basin circulation. Strengthening of the main cyclonic circulation, accompanied by intensification of the mesoscale anticyclonic eddy formation is found. Both events strongly affect the sea surface salinity but contribute in opposing directions. Specifically, strong composite large-scale circulation leads to an increase in sea surface salinity, while enhanced formation of mesoscale anticyclones decreases it. Salinity evolution with time is thus the result of the competition of these two opposing yet interdependent processes.

  2. How northern freshwater input can stabilise thermohaline circulation

    Directory of Open Access Journals (Sweden)

    Erwin Lambert

    2016-11-01

    Full Text Available The North Atlantic thermohaline circulation (THC carries heat and salt towards the Arctic. This circulation is partly sustained by buoyancy loss and is generally believed to be inhibited by northern freshwater input as indicated by the ‘box-model’ of Stommel (1961. The inferred freshwater-sensitivity of the THC, however, varies considerably between studies, both quantitatively and qualitatively. The northernmost branch of the Atlantic THC, which forms a double estuarine circulation in the Arctic Mediterranean, is one example where both buoyancy loss and buoyancy gain facilitate circulation. We have built on Stommel's original concept to examine the freshwater-sensitivity of a double estuarine circulation. The net inflow into the double estuary is found to be more sensitive to a change in the distribution of freshwater than to a change in the total freshwater input. A double estuarine circulation is more stable than a single overturning, requiring a larger amount and more localised freshwater input into regions of buoyancy loss to induce a thermohaline ‘collapse’. For the Arctic Mediterranean, these findings imply that the Atlantic inflow may be relatively insensitive to increased freshwater input. Complementing Stommel's thermal and haline flow regimes, the double estuarine circulation allows for a third: the throughflow regime. In this regime, a THC with warm poleward surface flow can be sustained without production of dense water; a decrease in high-latitude dense water formation does therefore not necessarily affect regional surface conditions as strongly as generally thought.

  3. Investigation on a Novel Discontinuous Pulse-Width Modulation Algorithm for Single-phase Voltage Source Rectifier

    DEFF Research Database (Denmark)

    Qu, Hao; Yang, Xijun; Guo, Yougui

    2014-01-01

    Single-phase voltage source converter (VSC) is an important power electronic converter (PEC), including single-phase voltage source inverter (VSI), single-phase voltage source rectifier (VSR), single-phase active power filter (APF) and single-phase grid-connection inverter (GCI). Single-phase VSC...

  4. An experimental study of thermal and thermohaline convection in saturated porous media

    NARCIS (Netherlands)

    Imran, M.

    2013-01-01

    Worldwide increased focus on environment, depletion and over exploitation of fossil fuel resources, and their high inflation rates demand to look for sustainable alternative sources of energy. Geothermal energy is a clean, environment friendly, economical, and sustainable natural source of energy.

  5. Investigation of effect of single phase electrical faults at LOFT

    International Nuclear Information System (INIS)

    Yeates, J.A.

    1978-01-01

    This LTR presents the general basic engineering facts related to an open phase fault in a three phase power system commonly referred to as a single phase condition. It describes the probable results to electrical motors and describes the LOFT system design factors which minimize the likelihood of such a fault occurring at LOFT. It recognizes that the hazard of such a fault is a realistic threat and notes the types of relays designed to provide protection. Recommendations are made to perform a detailed engineering study to determine the most advantageous protective relay design, and to implement such a design by installation of the necessary devices and controls

  6. Improved PLL structures for single-phase grid inverters

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai; Teodorescu, Remus; Blaabjerg, Frede

    2005-01-01

    of the reference signals. This paper presents two improved phase-locked-loop (PLL) methods for single-phase grid connected systems. The investigated PLL methods are based on a transport delay method and an inverse Park transformation method. The improvements in the case of using the delay-based PLL are: non......-frequency dependent and better filtering of the harmonics. For the other investigated PLL method based on inverse Park transformation the improvement consists of better filtering of the harmonics. Experimental results validate the effectiveness of the two proposed methods....

  7. Dynamics Assessment of Advanced Single-Phase PLL Structures

    DEFF Research Database (Denmark)

    Golestan, Saeed; Monfarad, Mohammad; Freijedo, Francisco D.

    2013-01-01

    , and desired performance under frequency-varying and harmonically distorted grid conditions. Despite the wide acceptance and use of these two advanced PLLs, no comprehensive design guidelines to fine-tune their parameters have been reported yet. Through a detailed mathematical analysis it is shown......Recently, several advanced phase locked loop (PLL) techniques have been proposed for single-phase applications. Among these, the Park-PLL, and the second order generalized integrator (SOGI) based PLL are very attractive, owing to their simple digital implementation, low computational burden...

  8. Solution Concept of Modular Single Phase Active Power Filters

    Directory of Open Access Journals (Sweden)

    Marek Roch

    2006-01-01

    Full Text Available This paper investigates a modular or a decentralised single-phase active power filter control strategy. It is based on the evaluation of the harmonic reference load currents for the active power filter blocks operating under specific harmonic frequencies. The underlying principle of the modular active power filter is explained and it is shown how the required reference harmonic currents can be evaluated. Simulation results demonstrated the improvement in the dynamic performance of the modular active power filter presented here in comparison with the conventional type.

  9. A Transformer-less Single Phase Inverter For photovoltaic Systems

    DEFF Research Database (Denmark)

    Mostaan, Ali; Alizadeh, Ebrahim; Qu, Ying

    2017-01-01

    A single phase transformer-less inverter is introduced in this paper. The negative polarities of the input voltage and output terminal have common ground. Therefore, the leakage current problem that is common in PV systems is eliminated naturally. In addition, the proposed inverter has fewer...... components compared with its counterparts and only one switch conducts during the active states which enhance the inverter efficiency. The proposed inverter is analyzed in details and compared with some existing topologies. The performance of the proposed inverter is validated using the simulation results....

  10. SOME FEATURES OF THE BLACK SEA SEASONAL THERMOHALINE VARIABILITY: MODERN VIEW

    Directory of Open Access Journals (Sweden)

    Valentin Tuzhilkin

    2010-01-01

    Full Text Available Results of statistical processing and physical analyses of the historical and recent hydrographic data set are presented. Seasonal thermohaline (hydrographic variabilities of the Black Sea main baroclinic layer (0–200 m are considered. In the upper 50-m layer, seasonal thermohaline variability is generated mainly by the heat and freshwater fluxes across the sea surface. In the main pycnocline between depths of 50 and 200 m it is caused by the flux of the wind-stress relative vorticity. Thermohaline effects of these processes are described.

  11. Thermohaline fine structure in an oceanographic front from seismic reflection profiling.

    Science.gov (United States)

    Holbrook, W Steven; Páramo, Pedro; Pearse, Scott; Schmitt, Raymond W

    2003-08-08

    We present acoustic images of oceanic thermohaline structure created from marine seismic reflection profiles across the major oceanographic front between the Labrador Current and the North Atlantic Current. The images show that distinct water masses can be mapped, and their internal structure imaged, using low-frequency acoustic reflections from sound speed contrasts at interfaces across which temperature changes. The warm/cold front is characterized by east-dipping reflections generated by thermohaline intrusions in the uppermost 1000 meters of the ocean. Our results imply that marine seismic reflection techniques can provide excellent spatial resolution of important oceanic phenomena, including thermohaline intrusions, internal waves, and eddies.

  12. [Variation of thermohaline properties in the Nicoya Gulf, Costa Rica].

    Science.gov (United States)

    Brenes, C L; Léon, S; Chaves, J

    2001-12-01

    The time-space behavior of thermohaline properties of the water masses in the Gulf of Nicoya, a tropical estuary in the Costa Rican Pacific coast, was studied by sampling monthly from April 1992 to April 1993. The saline field has a seasonal maximum during April, a month before the maximum temperature is observed. Minimun values were observed during October and November, in the rainy season. A defined surface saline front is located towards the east of Negritos Islands; it is produced by the interaction of freshwater from the Tarcoles River and the oceanic waters that enter through the occidental coast of the gulf. The vertical distribution of temperature and salinity indicates a gulf whose internal area is highly stratified in the rainy season, and much less stratified, or even well mixed in the dry season. The outer area of the Gulf is stratified throughout the year.

  13. Tropical Pacific influences on the North Atlantic Thermohaline Circulation

    Directory of Open Access Journals (Sweden)

    M. Latif

    2003-06-01

    Full Text Available Most global climate models simulate a weakening of the North Atlantic Thermohaline Circulation (THC in response to enhanced greenhouse warming. Both surface warming and freshening in high latitudes, the so-called sinking region, contribute to the weakening of the THC. Some models simulate even a complete breakdown of the THC at sufficiently strong forcing. Here results from a state-of-the-art global climate model are presented that does not simulate a weakening of the THC in response to greenhouse warming. Large-scale air-sea interactions in the tropics, similar to those operating during present-day El Niños, lead to anomalously high salinities in the tropical Atlantic. These are advected into the sinking region, thereby increasing the surface density and compensating the effects of the local warming and freshening. The results of the model study are corroborated by the analysis of observations.

  14. Synthesis and magnetic properties of single phase titanomagnetites

    Energy Technology Data Exchange (ETDEWEB)

    Schoenthal, W., E-mail: wms@andrew.cmu.edu; Liu, X.; Cox, T.; Laughlin, D. E.; McHenry, M. E. [Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Mesa, J. L.; Diaz-Michelena, M. [Instituto Nacional de Tecnica Aeroespacial, Madrid (Spain); Maicas, M. [Universidad Politecnica de Madrid, ISOM-ETSIT, Madrid (Spain)

    2014-05-07

    The focus of this paper is the study of cation distributions and resulting magnetizations in titanomagnetites (TMs), (1−x)Fe{sub 3}O{sub 4−x}Fe{sub 2}TiO{sub 4} solid solutions. TM remnant states are hypothesized to contribute to planetary magnetic field anomalies. This work correlates experimental data with proposed models for the TM pseudobinary. Improved synthesis procedures are reported for single phase Ulvöspinel (Fe{sub 2}TiO{sub 4}), and TM solid solutions were made using solid state synthesis techniques. X-ray diffraction and scanning electron microscopy show samples to be single phase solid solutions. M-H curves of TM75, 80, 85, 90, and 95 (TMX where X = at. % of ulvöspinel) were measured using a Physical Property Measurement System at 10 K, in fields of 0 to 8 T. The saturation magnetization was found to be close to that predicted by the Neel model for cation distribution in TMs. M-T curves of the remnant magnetization were measured from 10 K to 350 K. The remnant magnetization was acquired at 10 K by applying an 8 T field and then releasing the field. Experimental Neel temperatures are reported for samples in the Neel model ground state.

  15. Viscosity effects and anthropogenic impact on thermohaline flow in the Schleswig-Holstein region (Germany)

    Energy Technology Data Exchange (ETDEWEB)

    Magri, F.; Bayer, U. [GeoForschungsZentrum Potsdam (Germany)

    2008-10-23

    Coupled fluid flow, heat and mass transport (i.e. thermohaline flow) simulations have been carried out in order to study the interactions between shallow and deep brine flow in an aquifer system which includes a salt dome close to the surface. Particular attention has been given to the role of young processes (i.e., faults, Quaternary channels, and shallow salt structures) in affecting groundwater flow at basin scale. The results show that beside topography-driven flow, different convective regimes play a role for extensive solute exchange between shallow and deep aquifers. Particularly, heavy brines sink from the shallow salt dome crest into deeper aquifers. Furthermore, the young basin features strongly control discharge and recharge processes. At this state, the issues to be solved are the role of a transition zone along the salt flank, the effects of variable fluid viscosity in affecting the system dynamics and the impact of anthropogenic activities such as pumping stations on brine migration and heat transport. So far, viscosity effects are well described for rising hot plumes, while their influence on sinking brines are not studied yet. With regard to anthropogenic impact, pumping groundwater in saline environment can provide severe problems. For instance, brines up-coning can disturb wells and pollute the freshwater resources. Although the presented studies focus on the Schleswig-Holstein region (Germany), the results are of great interest for many sedimentary basins in which the described features are commonly encountered. Investigations concerning the potential impact of anthropogenic activities on the dynamics of deep and shallow groundwater processes will provide additional knowledge concerning key factors controlling the formation and evolution of saline waters within basins. At the same time, this research has an important practical use for water resource management. (orig.)

  16. Reducing Electromagnetic Interference in a Grid Tied Single Phase Power Inverter

    Science.gov (United States)

    2016-09-01

    ELECTROMAGNETIC INTERFERENCE IN A GRID TIED SINGLE PHASE POWER INVERTER by Jason Hassan Valiani September 2016 Thesis Advisor: Giovanna Oriti...3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE REDUCING ELECTROMAGNETIC INTERFERENCE IN A GRID TIED SINGLE PHASE POWER...The addition of a passive filter proved to minimize the conducted EMI for a single -phase grid-tied inverter. 14. SUBJECT TERMS single -phase

  17. Optimal nonlinear excitation of decadal variability of the North Atlantic thermohaline circulation

    NARCIS (Netherlands)

    Ziqing, Z.; Mu, M.; Dijkstra, H.A.

    2013-01-01

    Nonlinear development of salinity perturbations in the Atlantic thermohaline circulation (THC) is investigated with a three-dimensional ocean circulation model, using the conditional nonlinear optimal perturbation method. The results show two types of optimal initial perturbations of sea surface

  18. Modeling Studies of Wind and Thermohaline Forcing on the California Current System

    National Research Council Canada - National Science Library

    Vance, Phillip

    1997-01-01

    A high-resolution, multi-level, primitive equation model is initialized with climatological data to study the combined effects of wind and thermohaline forcing on the ocean circulation of the California Current System (CCS...

  19. Simulation of the Bohai Sea Circulation and Thermohaline Structure Using COHERENS Model

    National Research Council Canada - National Science Library

    Obino, Rodrigo

    2002-01-01

    The goals of this work are to simulate the Bohai Sea circulation and thermohaline structure and to Investigate the physical mechanisms using the Coupled Hydrodynamical-Ecological Model for Regional and Shelf Seas (COHERENS...

  20. Hydrothermal, multiphase convection of H2O-NaCl fluids from ambient to magmatic temperatures : A new numerical scheme and benchmarks for code comparison

    NARCIS (Netherlands)

    Weis, P.; Driesner, T.; Coumou, D.; Geiger, S.

    2014-01-01

    Thermohaline convection of subsurface fluids strongly influences heat and mass fluxes within the Earth's crust. The most effective hydrothermal systems develop in the vicinity of magmatic activity and can be important for geothermal energy production and ore formation. As most parts of these systems

  1. Model Based Control of Single-Phase Marine Cooling Systems

    DEFF Research Database (Denmark)

    Hansen, Michael

    2014-01-01

    these systems. Traditionally, control for this type of cooling system has been limited to open-loop control of pumps combined with a couple of local PID controllers for bypass valves to keep critical temperatures within design limits. This research considers improvements in a retrofit framework to the control...... linearization, an H∞-control design is applied to the resulting linear system. Disturbance rejection capabilities and robustness of performance for this control design methodology is compared to a baseline design derived from classical control theory. This shows promising results for the nonlinear robust design......This thesis is concerned with the problem of designing model-based control for a class of single-phase marine cooling systems. While this type of cooling system has been in existence for several decades, it is only recently that energy efficiency has become a focus point in the design and operation...

  2. Modeling of a single-phase photovoltaic inverter

    Energy Technology Data Exchange (ETDEWEB)

    Maris, T.I. [Department of Electrical Engineering, Technological Educational Institute of Chalkida, 334 40 Psachna Evias (Greece); Kourtesi, St. [Hellenic Public Power Corporation S.A., 22 Chalcocondyli Str., 104 32 Athens (Greece); Ekonomou, L. [Hellenic American University, 12 Kaplanon Str., 106 80 Athens (Greece); Fotis, G.P. [National Technical University of Athens, School of Electrical and Computer Engineering, High Voltage Laboratory, 9 Iroon Politechniou St., Zografou, 157 80 Athens (Greece)

    2007-11-06

    The paper presents the design of a single-phase photovoltaic inverter model and the simulation of its performance. Furthermore, the concept of moving real and reactive power after coupling this inverter model with an a.c. source representing the main power distribution grid was studied. Brief technical information is given on the inverter design, with emphasis on the operation of the circuit used. In the technical information section, a description of real and reactive power components is given with special reference to the control of these power components by controlling the power angle or the difference in voltage magnitudes between two voltage sources. This a.c. converted voltage has practical interest, since it is useful for feeding small house appliances. (author)

  3. Control of Single-Stage Single-Phase PV inverter

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai; Teodorescu, Remus; Blaabjerg, Frede

    2005-01-01

    In this paper the issue of control strategies for single-stage photovoltaic (PV) inverter is addressed. Two different current controllers have been implemented and an experimental comparison between them has been made. A complete control structure for the single-phase PV system is also presented......-forward; - and the grid current controller implemented in two different ways, using the classical proportional integral (PI) and the novel proportional resonant (PR) controllers. The control strategy was tested experimentally on 1.5 kW PV inverter........ The main elements of the PV control structure are: - a maximum power point tracker (MPPT) algorithm using the incremental conductance method; - a synchronization method using the phase-locked-loop (PLL), based on delay; - the input power control using the dc voltage controller and power feed...

  4. Benchmarks for single-phase flow in fractured porous media

    Science.gov (United States)

    Flemisch, Bernd; Berre, Inga; Boon, Wietse; Fumagalli, Alessio; Schwenck, Nicolas; Scotti, Anna; Stefansson, Ivar; Tatomir, Alexandru

    2018-01-01

    This paper presents several test cases intended to be benchmarks for numerical schemes for single-phase fluid flow in fractured porous media. A number of solution strategies are compared, including a vertex and two cell-centred finite volume methods, a non-conforming embedded discrete fracture model, a primal and a dual extended finite element formulation, and a mortar discrete fracture model. The proposed benchmarks test the schemes by increasing the difficulties in terms of network geometry, e.g. intersecting fractures, and physical parameters, e.g. low and high fracture-matrix permeability ratio as well as heterogeneous fracture permeabilities. For each problem, the results presented are the number of unknowns, the approximation errors in the porous matrix and in the fractures with respect to a reference solution, and the sparsity and condition number of the discretized linear system. All data and meshes used in this study are publicly available for further comparisons.

  5. Structure and Evolution of Thermohaline Staircases in Tropical North Atlantic

    National Research Council Canada - National Science Library

    Wall, Steven

    2007-01-01

    .... Salt finger convection is generally observed in mid-latitude regions, particularly in the Atlantic Ocean and Mediterranean Sea, between the hase of the mixed layer and the top of the intermediate water...

  6. Three-Dimensional Structure of Thermohaline Staircases in the Tropical North Atlantic and Their Effect on Acoustic Propagation

    Science.gov (United States)

    2012-12-01

    STRUCTURE OF THERMOHALINE STAIRCASES IN THE TROPICAL NORTH ATLANTIC AND THEIR EFFECT ON ACOUSTIC PROPAGATION by Amy C. Bulters December... THERMOHALINE STAIRCASES IN THE TROPICAL NORTH ATLANTIC AND THEIR EFFECT ON ACOUSTIC PROPAGATION 5. FUNDING NUMBERS 6. AUTHOR(S) Amy C. Bulters 7...overlies cold, fresh fluid). The formation of staircases in the thermohaline structure of the ocean has been observed since the late 1960s, with

  7. Transitions of Spherical Thermohaline Circulation to Multiple Equilibria

    Science.gov (United States)

    Özer, Saadet; Şengül, Taylan

    2017-06-01

    The main aim of the paper is to investigate the transitions of the thermohaline circulation in a spherical shell in a parameter regime which only allows transitions to multiple equilibria. We find that the first transition is either continuous (Type-I) or drastic (Type-II) depending on the sign of the transition number. The transition number depends on the system parameters and l_c , which is the common degree of spherical harmonics of the first critical eigenmodes, and it can be written as a sum of terms describing the nonlinear interactions of various modes with the critical modes. We obtain the exact formulas of this transition number for l_c=1 and l_c=2 cases. Numerically, we find that the main contribution to the transition number is due to nonlinear interactions with modes having zero wave number and the contribution from the nonlinear interactions with higher frequency modes is negligible. In our numerical experiments we encountered both types of transition for Le1 . In the continuous transition scenario, we rigorously prove that an attractor in the phase space bifurcates which is homeomorphic to the 2l_c dimensional sphere and consists entirely of degenerate steady state solutions.

  8. A grid-connected single-phase photovoltaic micro inverter

    Science.gov (United States)

    Wen, X. Y.; Lin, P. J.; Chen, Z. C.; Wu, L. J.; Cheng, S. Y.

    2017-11-01

    In this paper, the topology of a single-phase grid-connected photovoltaic (PV) micro-inverter is proposed. The PV micro-inverter consists of DC-DC stage with high voltage gain boost and DC-AC conversion stage. In the first stage, we apply the active clamp circuit and two voltage multipliers to achieve soft switching technology and high voltage gain. In addition, the flower pollination algorithm (FPA) is employed for the maximum power point tracking (MPPT) in the PV module in this stage. The second stage cascades a H-bridge inverter and LCL filter. To feed high quality sinusoidal power into the grid, the software phase lock, outer voltage loop and inner current loop control method are adopted as the control strategy. The performance of the proposed topology is tested by Matlab/Simulink. A PV module with maximum power 300W and maximum power point voltage 40V is applied as the input source. The simulation results indicate that the proposed topology and the control strategy are feasible.

  9. Performance Improvement of Single Phase Inverter using SPWM

    Science.gov (United States)

    Gavaskar Reddy, B., Dr; Maheswari, L., Dr; Ganeswari Kale, Adi

    2017-08-01

    This paper concentrates on modelling and simulation of single phase inverter as a frequency changer modulated by Pulse Width Modulation (PWM). An inverter is a circuit that converts DC sources to AC sources. Pulse Width Modulation is a method that utilization as an approach to abatement add up to harmonic distortion in inverter circuit. The model is executed utilizing MATLAB/Simulink software with the SimPower System Block Set in light of PC simulation. PC simulation assumes an imperative part in the plan, investigation, and assessment of force electronic converter and their controller. MATLAB is a successful instrument to examine a PWM inverter. Preferences of utilizing MATLAB are the accompanying: Faster reaction, accessibility of different simulation devices and utilitarian squares and the nonappearance of joining issues. Safe-replacement methodology need be actualized is to explain exchanging Transients. In this way, Insulated Gate Bipolar Transistor (IGBT) is use as exchanging gadgets. IGBT is ideal since it is anything but difficult to control and low misfortunes. The outcome from Simulink was checked utilizing MATLAB simulation.

  10. Self-assembled single-phase perovskite nanocomposite thin films.

    Science.gov (United States)

    Kim, Hyun-Suk; Bi, Lei; Paik, Hanjong; Yang, Dae-Jin; Park, Yun Chang; Dionne, Gerald F; Ross, Caroline A

    2010-02-10

    Thin films of perovskite-structured oxides with general formula ABO(3) have great potential in electronic devices because of their unique properties, which include the high dielectric constant of titanates, (1) high-T(C) superconductivity in cuprates, (2) and colossal magnetoresistance in manganites. (3) These properties are intimately dependent on, and can therefore be tailored by, the microstructure, orientation, and strain state of the film. Here, we demonstrate the growth of cubic Sr(Ti,Fe)O(3) (STF) films with an unusual self-assembled nanocomposite microstructure consisting of (100) and (110)-oriented crystals, both of which grow epitaxially with respect to the Si substrate and which are therefore homoepitaxial with each other. These structures differ from previously reported self-assembled oxide nanocomposites, which consist either of two different materials (4-7) or of single-phase distorted-cubic materials that exhibit two or more variants. (8-12) Moreover, an epitaxial nanocomposite SrTiO(3) overlayer can be grown on the STF, extending the range of compositions over which this microstructure can be formed. This offers the potential for the implementation of self-organized optical/ferromagnetic or ferromagnetic/ferroelectric hybrid nanostructures integrated on technologically important Si substrates with applications in magnetooptical or spintronic devices.

  11. Heat convection

    Energy Technology Data Exchange (ETDEWEB)

    Jiji, L.M. [City Univ. of New York, NY (United States). Dept. of Mechanical Engineering

    2006-07-01

    Professor Jiji's broad teaching experience lead him to select the topics for this book to provide a firm foundation for convection heat transfer with emphasis on fundamentals, physical phenomena, and mathematical modelling of a wide range of engineering applications. Reflecting recent developments, this textbook is the first to include an introduction to the challenging topic of microchannels. The strong pedagogic potential of Heat Convection is enhanced by the following ancillary materials: (1) Power Point lectures, (2) Problem Solutions, (3) Homework Facilitator, and, (4) Summary of Sections and Chapters. (orig.)

  12. Heat Convection

    Science.gov (United States)

    Jiji, Latif M.

    Professor Jiji's broad teaching experience lead him to select the topics for this book to provide a firm foundation for convection heat transfer with emphasis on fundamentals, physical phenomena, and mathematical modelling of a wide range of engineering applications. Reflecting recent developments, this textbook is the first to include an introduction to the challenging topic of microchannels. The strong pedagogic potential of Heat Convection is enhanced by the follow ing ancillary materials: (1) Power Point lectures, (2) Problem Solutions, (3) Homework Facilitator, and, (4) Summary of Sections and Chapters.

  13. Thermohaline variability and mesoscale activities observed at the E2M3A deep site in the south Adriatic Sea

    Science.gov (United States)

    Bensi, M.; Cardin, V.; Gačić, M.

    2012-04-01

    The south Adriatic Sea is recognized as a dense water formation site which is able to oxygenate the deep layer of the whole eastern Mediterranean Sea. The entrance of salty water from the Ionian Sea represents a preconditioning factor for the deep convection which can occur during winters characterized by particularly vigorous air-sea heat exchanges. Continuous sampling measurements are strictly essential to better understand the deep convection. For that reason, the south Adriatic Sea has been constantly monitored by means of the E2M3A deep mooring site located in its central part (Latitude 41° 50' N, Longitude 17° 45' E, maximum depth 1250m) since 2006. Temperature, salinity and currents time series at the E2M3A site from 2006 till 2010 are analyzed. They represent currently the longest timeseries available for this region. Moreover, their integration with data obtained from several oceanographic cruises provides the necessary spatial distribution of the thermohaline properties in the study area. Here we report on the abrupt temperature and salinity decrease particularly evident down to 600m depth from March 2008 on. In fact, the intermediate layer shows a maximum temperature and salinity decrease of ~0.3°C and ~0.06 respectively, clearly evident after each severe winter. The bottom layer (~1200m) shows an opposite behaviour: it suffered an unforeseen and continous temperature and salinity increase (linear trend of ~0.05 °C y-1 and ~0.004 psu y-1respectively) during the whole observational period. The results show a strong relationship between the recently discovered variability of the Ionian surface circulation (Gačić et al. 2010) and the thermohaline variability observed in the south Adriatic. In particular, we demonstrate here the role of the winter convection in trasferring fresher surface waters towards deeper layers triggering salt content changes in the Adriatic. The intrusion of fresher water at the depth of about 700-800m noticed in the mooring

  14. Servo characteristics of single-phase spindle motor in DVD-ROM

    Science.gov (United States)

    Wang, KingYin; Kuei, ChingPing; Chang, SungSan; Lee, YaoYu; Kuo, YuHung

    2000-07-01

    The single-phase DC motor has the low-cost advantage over 3- phase DC motor owing to its easy-assembling and high yield- rate, however, it has larger torque ripple and cogging torque. Single-phase DC motor is currently applied to low profit margin products such as cooling fan. In order to utilize single-phase DC motor to high precision system, for instance, DVD (Digital Versatile Disk), the vibration caused by torque ripple and cogging torque needs to be solved. In this paper, focusing error, tracking error, seeking ability and some velocity control performances are studied when single-phase DC motor is used in DVD related products.

  15. Equivalence of two models in single-phase multicomponent flow simulations

    KAUST Repository

    Wu, Yuanqing

    2016-02-28

    In this work, two models to simulate the single-phase multicomponent flow in reservoirs are introduced: single-phase multicomponent flow model and two-phase compositional flow model. Because the single-phase multicomponent flow is a special case of the two-phase compositional flow, the two-phase compositional flow model can also simulate the case. We compare and analyze the two models when simulating the single-phase multicomponent flow, and then demonstrate the equivalence of the two models mathematically. An experiment is also carried out to verify the equivalence of the two models.

  16. A simple and self-consistent geostrophic-force-balance model of the thermohaline circulation with boundary mixing

    Directory of Open Access Journals (Sweden)

    J. Callies

    2012-01-01

    Full Text Available A simple model of the thermohaline circulation (THC is formulated, with the objective to represent explicitly the geostrophic force balance of the basinwide THC. The model comprises advective-diffusive density balances in two meridional-vertical planes located at the eastern and the western walls of a hemispheric sector basin. Boundary mixing constrains vertical motion to lateral boundary layers along these walls. Interior, along-boundary, and zonally integrated meridional flows are in thermal-wind balance. Rossby waves and the absence of interior mixing render isopycnals zonally flat except near the western boundary, constraining meridional flow to the western boundary layer. The model is forced by a prescribed meridional surface density profile.

    This two-plane model reproduces both steady-state density and steady-state THC structures of a primitive-equation model. The solution shows narrow deep sinking at the eastern high latitudes, distributed upwelling at both boundaries, and a western boundary current with poleward surface and equatorward deep flow. The overturning strength has a 2/3-power-law dependence on vertical diffusivity and a 1/3-power-law dependence on the imposed meridional surface density difference. Convective mixing plays an essential role in the two-plane model, ensuring that deep sinking is located at high latitudes. This role of convective mixing is consistent with that in three-dimensional models and marks a sharp contrast with previous two-dimensional models.

    Overall, the two-plane model reproduces crucial features of the THC as simulated in simple-geometry three-dimensional models. At the same time, the model self-consistently makes quantitative a conceptual picture of the three-dimensional THC that hitherto has been expressed either purely qualitatively or not self-consistently.

  17. A Three-Box Model of Thermohaline Circulation under the Energy Constraint

    International Nuclear Information System (INIS)

    Shen Yang; Guan Yu-Ping; Liang Chu-Jin; Chen Da-Ke

    2011-01-01

    The driving mechanism of thermohaline circulation is still a controversial topic in physical oceanography. Classic theory is based on Stommel's two-box model under buoyancy constraint. Recently, Guan and Huang proposed a new viewpoint in the framework of energy constraint with a two-box model. We extend it to a three-box model, including the effect of wind-driven circulation. Using this simple model, we further study how ocean mixing impacts on thermohaline circulation under the energy constraint. (geophysics, astronomy, and astrophysics)

  18. A hierarchy of thermohaline circulation models. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cessi, P.; Young, W.R.

    1998-04-01

    The objectives of this effort were: (1) to understand the variability caused by the competitive roles of salt and heat in the ocean circulation; (2) to understand the effect of differential advection of active tracers, such as temperature, salinity and angular momentum; and (3) to improve the parametrization of convection in models of the ocean circulation. One result of the project is the discovery that the characteristics of the quasi-periodic centennial and millennial oscillations found in OGCM`s, associated with alternating suppression and activation of high latitude convection, are extremely sensitive to the salinity flux and specific choice of convective adjustment scheme. In particular, the period of the oscillation depends crucially on the salinity fluxes (whether deterministic or with a stochastic component) and can be arbitrarily long. This result has clarified that these long-period oscillations (termed flushes) are not the result of the excitation of an intrinsic linear eigenmode of the system, but rather are relaxation-oscillations towards one of the several equilibria available to the system. This implies that it is the amplitude, rather than the period, of the oscillation which is almost independent of the salinity flux.

  19. Structure and magnetism of single-phase epitaxial gamma '-Fe4N

    NARCIS (Netherlands)

    Costa-Kramer, JL; Borsa, DM; Garcia-Martin, JM; Martin-Gonzalez, MS; Boerma, DO; Briones, F

    Single phase epitaxial pure gamma(')-Fe4N films are grown on MgO (001) by molecular beam epitaxy of iron in the presence of nitrogen obtained from a radio frequency atomic source. The epitaxial, single phase nature of the films is revealed by x-ray diffraction and by the local magnetic environment

  20. new topology for single-phase, three-level, spwm vsi with lc filter

    African Journals Online (AJOL)

    level PWM inverter. However, this is not the case with single-phase PWM inverters. In these days, the popular single-phase inverters adopt the full-bridge type using approximate sinusoidal modulation technique. The output voltage in them has two values: zero and pos- itive supply dc voltage levels in the positive half cycle.

  1. Torque Analysis With Saturation Effects for Non-Salient Single-Phase Permanent-Magnet Machines

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Ritchie, Ewen

    2011-01-01

    The effects of saturation on torque production for non-salient, single-phase, permanent-magnet machines are studied in this paper. An analytical torque equation is proposed to predict the instantaneous torque with saturation effects. Compared to the existing methods, it is computationally faster......-element results, and experimental results obtained on a prototype single-phase permanent-magnet machine....

  2. Thermohaline structure of an inverse estuary - The Gulf of Kachchh: Measurements and model simulations

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Babu, M.T.; Ramanamurty, M.V.; Saran, A.K.; Joseph, A.; Sudheesh, K.; Patgaonkar, R.S.; Jayakumar, S.

    K thermohaline structure and its variability, based on field measurements and model simulations. Though GoK is considered as a well-mixed system, the study reveals that only the central Gulf is well mixed. Vertical gradients in temperature and salinity fields...

  3. Response of the western European climate to a collapse of the thermohaline circulation

    NARCIS (Netherlands)

    Laurian, A.; Drijfhout, S.S.; Hazeleger, W.; Hurk, van den B.J.J.M.

    2010-01-01

    Two ensemble simulations with the ECHAM5/MPI-OM climate model have been investigated for the atmospheric response to a thermohaline circulation (THC) collapse. The model forcing was specified from observations between 1950 and 2000 and it followed a rising greenhouse gases emission scenario from

  4. Imperfections of the thermohaline circulation: latitudinal asymmetry and preferred northern sinking

    NARCIS (Netherlands)

    Dijkstra, H.A.; Neelin, J.D.

    1998-01-01

    The present Atlantic thermohaline circulation is dominated by deep water formation in the north despite the fact that surface buoyancy forcing has relatively modest latitudinal asymmetry.Many studies have shown that even with buoyancy forcing that is symmetric about the equator,spontaneous

  5. A Fully Implicit Model of the Three-Dimensional Thermohaline Ocean Circulation

    NARCIS (Netherlands)

    Dijkstra, Henk A.; Oksuzoglu, Hakan; Wubs, Fred. W.; Botta, Eugen F.F.

    2001-01-01

    In this paper, a fully implicit numerical model of the three-dimensional thermohaline ocean circulation is presented. With this numerical model it is possible to follow branches of steady states in parameter space and monitor their linear stability. Also, transient flows can be computed allowing

  6. The response of Mediterranean thermohaline circulation to climate change: a minimal model

    NARCIS (Netherlands)

    Meijer, P.Th.; Dijkstra, H.A.

    2009-01-01

    Physics-based understanding of the effects of paleoclimate and paleogeography on the thermohaline circulation of the Mediterranean Sea requires an ocean model capable of long integrations and involving a minimum of assumptions about the atmospheric forcing. Here we examine the sensitivity of

  7. The response of Mediterranean thermohaline circulation to climate change: a minimal model

    NARCIS (Netherlands)

    Meijer, P.Th.; Dijkstra, H.A.

    2009-01-01

    Physics-based understanding of the effects of paleoclimate and paleogeography on the thermohaline circulation of the Mediterranean Sea requires an ocean model capable of long integrations and involving a minimum of assumptions about the atmospheric forcing. Here we examine the sensitivity of the

  8. Southern Ocean origin for the resumption of Atlantic thermohaline circulation during deglaciation.

    Science.gov (United States)

    Knorr, Gregor; Lohmann, Gerrit

    2003-07-31

    During the two most recent deglaciations, the Southern Hemisphere warmed before Greenland. At the same time, the northern Atlantic Ocean was exposed to meltwater discharge, which is generally assumed to reduce the formation of North Atlantic Deep Water. Yet during deglaciation, the Atlantic thermohaline circulation became more vigorous, in the transition from a weak glacial to a strong interglacial mode. Here we use a three-dimensional ocean circulation model to investigate the impact of Southern Ocean warming and the associated sea-ice retreat on the Atlantic thermohaline circulation. We find that a gradual warming in the Southern Ocean during deglaciation induces an abrupt resumption of the interglacial mode of the thermohaline circulation, triggered by increased mass transport into the Atlantic Ocean via the warm (Indian Ocean) and cold (Pacific Ocean) water route. This effect prevails over the influence of meltwater discharge, which would oppose a strengthening of the thermohaline circulation. A Southern Ocean trigger for the transition into an interglacial mode of circulation provides a consistent picture of Southern and Northern hemispheric climate change at times of deglaciation, in agreement with the available proxy records.

  9. Picoplankton distribution influenced by thermohaline circulation in the southern Adriatic

    Science.gov (United States)

    Šilović, Tina; Mihanović, Hrvoje; Batistić, Mirna; Radić, Iris Dupčić; Hrustić, Enis; Najdek, Mirjana

    2018-03-01

    In this study, we focus on the interactive dynamics between physico-chemical processes and picoplankton distribution in order to advance our current understanding of the roles of various parameters in regulating picoplankton community structure in highly dynamic marine system such as the South Adriatic Sea. The research was carried out between October 2011 and September 2012 along the transect in the northern part of the South Adriatic Pit. The deep water convection occurred in the southern Adriatic during February 2012, with vertical mixing reaching the depth of 500 m. The picoplankton community was highly affected by this mixing event, whilst its compartments each responded differently. During deep water convection low nucleic acid heterotrophic bacteria (LNA HB) and Synechococcus had their lowest abundances (4 × 105 cell ml-1 and 8 × 102 cell ml-1, respectively), picoeucaryotes had their highest abundances (104 cell ml-1), while Prochlorococcus was absent from the area, most likely due to intense cooling and vertical mixing. In March 2012 Eastern Adriatic Current (EAC) brought warm and saline water with more nutrients, which resulted in the proliferation of high nucleic acid heterotrophic bacteria (HNA HB), having maximal abundance (4 × 105 cell ml-1). The re-establishment of Levantine Intermediate Water (LIW) intrusion after the deep water convection resulted in the re-appearance of Prochlorococcus and maximal abundances of Synechococcus (4 × 104 cell ml-1) in May 2012. The distribution of picoheterotrophs was mainly explained by the season, while the distribution of picophytoplankton was explained by the depth. Aside from nutrients, salinity was an important parameter, affecting particularly Prochlorococcus. The re-appearance of Prochlorococcus in the southern Adriatic during the period of LIW intrusion, together with their correlation with salinity, indicates their potential association with LIW. The relationship between Prochloroccocus distribution and

  10. National Convective Weather Diagnostic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current convective hazards identified by the National Convective Weather Detection algorithm. The National Convective Weather Diagnostic (NCWD) is an automatically...

  11. Convective heater

    Science.gov (United States)

    Thorogood, Robert M.

    1983-01-01

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.

  12. A Novel Model Predictive Control for Single-Phase Grid-Connected Photovoltaic Inverters

    DEFF Research Database (Denmark)

    Zangeneh Bighash, Esmaeil; Sadeghzadeh, Seyed Mohammad; Ebrahimzadeh, Esmaeil

    2017-01-01

    Single-phase grid-connected inverters with LCL filter are widely used to connect photovoltaic systems to the utility grid. Among the existing control schemes, predictive control methods are faster and more accurate but also more complicated to implement. Recently, the Model Predictive Control (MPC......) algorithm for single-phase inverter has been presented, where the algorithm implementation is straightforward. In the MPC approach, all switching states are considered in each switching period to achieve the control objectives. However, since the number of switching states in single-phase inverters is small...... vectors. Simulation results show that the proposed approach lead to a lower THD in the injected current combined with fast dynamics. The proposed predictive control has been simulated and implemented on a 1 kW single-phase HERIC (highly efficient and reliable inverter concept) inverter with an LCL filter...

  13. Light-Weight, Low-Cost, Single-Phase, Liquid-Cooled Cold Plate (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, S.

    2013-07-01

    This presentation, 'Light-Weight, Low-Cost, Single-Phase Liquid-Cooled Cold Plate,' directly addresses program goals of increased power density, specific power, and lower cost of power electronics components through improved thermal management.

  14. Standard Specification for Sampling Single-Phase Geothermal Liquid or Steam for Purposes of Chemical Analysis

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1983-01-01

    1.1 This specification covers the basic requirements for equipment to be used for the collection of uncontaminated and representative samples from single-phase geothermal liquid or steam. Geopressured liquids are included. See Fig 1.

  15. Network model of free convection within internally heated porous media

    International Nuclear Information System (INIS)

    Conrad, P.W.

    1977-01-01

    A hypothetical core-disruptive accident (HCDA) in a liquid metal fast breeder reactor (LMFBR) may result in the formation of an internally heated debris bed. Considerable attention has been given to postulated mechanisms by which such beds may be cooled. It is the purpose of the work described to demonstrate a method for computing the heat transfer from such a bed to the overlying sodium pool due to single-phase, free convection

  16. Younger Dryas thermohaline circulation in the N-Atlantic: Irminger Sea versus Norwegian Sea Basin

    Science.gov (United States)

    Kuijpers, Antoon; Seidenkrantz, Marit-Solveig; Luise Knudsen, Karen; Knutz, Paul C.; Sicre, Marie-Alexandrine; Andresen, Camilla S.; Pearce, Christof

    2016-04-01

    Oceanographic observations from the early 1990's show a marked cooling and freshening of the Nordic Seas due to eastward expansion of East Greenland Current derived Polar Waters under influence of strong zonal atmospheric circulation(1). For the cold Younger Dryas (YD) period, ca 12,900 - 11,600 years ago, the impact of Northern Hemisphere late glacial melt water pulses on N- Atlantic thermohaline circulation has been discussed as a likely mechanism for cooling. Melt water discharge sources have been a matter of much debate, but recent evidence point to important melt water pulses emanating from the Arctic region (2, e.g. MacKenzie Valley discharge). The largest volume of these fresh water masses reached the North Atlantic via Fram Strait, less through the Canadian archipelago. During preceding Bølling-Allerød warming, the size of the Laurentide Ice Sheet may have been still large enough to have influenced atmospheric planetary waves resulting in a more zonal Atlantic jet axis(3). In addition, Northern Hemisphere high summer insolation favored a northward displaced west wind belt forcing surface waters away from the Greenland coast. Hence, in analogue to recent observations, ice-loaded meltwater masses in the western Greenland Sea were forced eastward, creating a pool of cold,low salinity (ice-loaded) surface water masses in the Norwegian Sea(4), while transport of cold Polar Water via Denmark Strait to the Irminger Sea would be suppressed. Our own sediment core data from offshore Iceland, Greenland and Davis Strait(5,6,7)together with results from lake studies in southern Greenland(8) point to an active Irminger Current and well-developed Irminger Sea Water subsurface transport towards Davis Strait. Subsequent incorporation of the latter water mass into the south-flowing Labrador Current may have contributed to tidewater glacier melting in eastern Canada and eventually triggering of the H0 meltwater pulse. The sediment core data indicate Irminger Sea deep

  17. CHEMICAL TRANSPORT AND SPONTANEOUS LAYER FORMATION IN FINGERING CONVECTION IN ASTROPHYSICS

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Justin M. [Department of Astronomy and Astrophysics, University of California Santa Cruz, 201 Interdisciplinary Sciences Building, Santa Cruz, CA 95064 (United States); Garaud, Pascale [Department of Applied Mathematics and Statistics, Baskin School of Engineering, 1156 High Street, Mail Stop SOE2, Santa Cruz, CA 95064 (United States); Stellmach, Stephan, E-mail: jumbrown@ucsc.edu [Institut fuer Geophysik, Westfaelische Wilhelms-Universitaet Muenster, D-48149 Muenster (Germany)

    2013-05-01

    A region of a star that is stable to convection according to the Ledoux criterion may nevertheless undergo additional mixing if the mean molecular weight increases with radius. This process is called fingering (thermohaline) convection and may account for some of the unexplained mixing in stars such as those that have been polluted by planetary infall and those burning {sup 3}He. We propose a new model for mixing by fingering convection in the parameter regime relevant for stellar (and planetary) interiors. Our theory is based on physical principles and supported by three-dimensional direct numerical simulations. We also discuss the possibility of formation of thermocompositional staircases in fingering regions, and their role in enhancing mixing. Finally, we provide a simple algorithm to implement this theory in one-dimensional stellar codes, such as KEPLER and MESA.

  18. Influence of single-phase heat transfer correlations on safety analysis of research reactors with narrow rectangular fuel channels

    International Nuclear Information System (INIS)

    Rawashdeh, A.; Altamimi, R.; Lee, B.; Chung, Y. J.; Park, S.

    2013-01-01

    The influence of different single-phase heat transfer correlations on the fuel temperature and minimum critical heat flux ratio (MCHFR) during a typical accident of a 5 MW research reactor is investigated. A reactor uses plate type fuel, of which the cooling channels have a narrow rectangular shape. RELAP5/MOD3.3 tends to over-predict the Nusselt number (Nu) at a low Reynolds number (Re) region, and therefore the correlation set is modified to properly describe the thermal behavior at that region. To demonstrate the effect of Nu at a low-Re region on an accident analysis, a two-pump failure accident was chosen as a sample problem. In the accident, the downward core flow decreases by a pump coast-down, and then reverses upward by natural convection. During the pump coast-down and flow reversal, the flow undergoes a laminar flow regime which has a different Nu with respect to the correlation sets. Compared to the results by the original RELAP5/MOD3.3, the modified correlation set predicts the fuel temperature to be a little higher than the original value, and the MCHFR to be a little lower than the original value. Although the modified correlation set predicts the fuel temperature and the MCHFR to be less conservative than those calculated from the original correlation of RELAP5/MOD3.3, the maximum fuel temperature and the MCHFR still satisfy the safety acceptance criteria

  19. Links between salinity variation in the Caribbean and North Atlantic thermohaline circulation.

    Science.gov (United States)

    Schmidt, Matthew W; Spero, Howard J; Lea, David W

    2004-03-11

    Variations in the strength of the North Atlantic Ocean thermohaline circulation have been linked to rapid climate changes during the last glacial cycle through oscillations in North Atlantic Deep Water formation and northward oceanic heat flux. The strength of the thermohaline circulation depends on the supply of warm, salty water to the North Atlantic, which, after losing heat to the atmosphere, produces the dense water masses that sink to great depths and circulate back south. Here we analyse two Caribbean Sea sediment cores, combining Mg/Ca palaeothermometry with measurements of oxygen isotopes in foraminiferal calcite in order to reconstruct tropical Atlantic surface salinity during the last glacial cycle. We find that Caribbean salinity oscillated between saltier conditions during the cold oxygen isotope stages 2, 4 and 6, and lower salinities during the warm stages 3 and 5, covarying with the strength of North Atlantic Deep Water formation. At the initiation of the Bølling/Allerød warm interval, Caribbean surface salinity decreased abruptly, suggesting that the advection of salty tropical waters into the North Atlantic amplified thermohaline circulation and contributed to high-latitude warming.

  20. A phenomenological modification of thermohaline mixing in globular cluster red giants

    Science.gov (United States)

    Henkel, Kate; Karakas, Amanda I.; Lattanzio, John C.

    2017-08-01

    Thermohaline mixing is a favoured mechanism for the so-called `extra mixing' on the red giant branch of low-mass stars. The mixing is triggered by the molecular weight inversion created above the hydrogen shell during first dredge-up when helium-3 burns via 3He(3He,2p)4He. The standard 1D diffusive mixing scheme cannot simultaneously match carbon and lithium abundances to NGC 6397 red giants. We investigate two modifications to the standard scheme: (1) an advective two-stream mixing algorithm and (2) modifications to the standard 1D thermohaline mixing formalism. We cannot simultaneously match carbon and lithium abundances using our two-stream mixing approach. However, we develop a modified diffusive scheme with an explicit temperature dependence that can simultaneously fit carbon and lithium abundances to NGC 6397 stars. Our modified diffusive scheme induces mixing that is faster than the standard theory predicts in the hotter part of the thermohaline region and mixing that is slower in the cooler part. Our results infer that the extra mixing mechanism needs further investigation and more observations are required, particularly for stars in different clusters spanning a range in metallicity.

  1. The stability of the thermohaline circulation in a coupled ocean-atmosphere general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Schiller, A. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Mikolajewicz, U. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Voss, R. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany)

    1996-02-01

    The stability of the Atlantic thermohaline circulation against meltwater input is investigated in a coupled ocean-atmosphere general circulation model. The meltwater input to the Labrador Sea is increased linearly for 250 years to a maximum input of 0.625 Sv and then reduced again to 0 (both instantaneously and slowly decreasing over 250 years). The resulting freshening forces a shutdown of the formation of North Atlantic deepwater and a subsequent reversal of the thermohaline circulation of the Atlantic, filling the deep Atlantic with Antarctic bottom water. The change in the overturning pattern causes a drastic reduction of the Atlantic northward heat transport, resulting in a strong cooling with maximum amplitude over the northern North Atlantic and a southward shift of the sea-ice margin in the Atlantic. Due to the increased meridional temperature gradient, the Atlantic intertropical convergence zone is displaced southward and the westerlies in the northern hemisphere gain strength. We identify four main feedbacks affecting the stability of the thermohaline circulation: the change in the overturning circulation of the Atlantic leads to longer residence times of the surface waters in high northern latitudes, which allows them to accumulate more precipitation and runoff from the continents, which results in an increased stability in the North Atlantic.

  2. Single-phase ProtoDUNE, the Prototype of a Single-Phase Liquid Argon TPC for DUNE at the CERN Neutrino Platform

    CERN Document Server

    Cavanna, F; Touramanis, C

    2017-01-01

    ProtoDUNE-SP is the single-phase DUNE Far Detector prototype that is under construction and will be operated at the CERN Neutrino Platform (NP) starting in 2018. It was proposed to the CERN SPSC in June 2015 (SPSC-P-351) and was approved in December 2015 as experiment NP04 (ProtoDUNE). ProtoDUNE-SP, a crucial part of the DUNE effort towards the construction of the first DUNE 10-kt fiducial mass far detector module (17 kt total LAr mass), is a significant experiment in its own right. With a total liquid argon (LAr) mass of 0.77 kt, it represents the largest monolithic single phase LArTPC detector to be built to date. It is housed in an extension to the EHN1 hall in the North Area, where the CERN NP is providing a new dedicated charged-particle test beamline. ProtoDUNE-SP aims to take its first beam data before the LHC long shutdown (LS2) at the end of 2018. ProtoDUNE-SP prototypes the designs of most of the single-phase DUNE far detector module (DUNE-SP) components at a 1:1 scale, with an extrapolation of abo...

  3. Experimental study on convective boiling heat transfer in narrow-gap annulus tubes

    International Nuclear Information System (INIS)

    Li Bin; Zhao Jianfu; Tang Zemei; Hu Wenrui; Zhou Fangde

    2004-01-01

    Since convective boiling or highly subcooled single-phase forced convection in micro-channels is an effective cooling mechanism with a wide range of applications, more experimental and theoretical studies are required to explain and verify the forced convection heat transfer phenomenon in narrow channels. In this experimental study, authors model the convective boiling behavior of water with low latent heat substance Freon 113 (R-113), with the purpose of saving power consumption and visualizing experiments. Both heat transfer and pressure drop characteristics were measured in subcooled and saturated concentric narrow gap forced convection boiling. Data were obtained to qualitatively identify the effects of gap size, pressure, flow rate and wall superheat on boiling regimes and the transition between various regimes. Some significant differences from unconfined forced convection boiling were found, and also, the flow patterns in narrow vertical annulus tubes have been studied quantitatively. (authors)

  4. Coordinated single-phase control scheme for voltage unbalance reduction in low voltage network.

    Science.gov (United States)

    Pullaguram, Deepak; Mishra, Sukumar; Senroy, Nilanjan

    2017-08-13

    Low voltage (LV) distribution systems are typically unbalanced in nature due to unbalanced loading and unsymmetrical line configuration. This situation is further aggravated by single-phase power injections. A coordinated control scheme is proposed for single-phase sources, to reduce voltage unbalance. A consensus-based coordination is achieved using a multi-agent system, where each agent estimates the averaged global voltage and current magnitudes of individual phases in the LV network. These estimated values are used to modify the reference power of individual single-phase sources, to ensure system-wide balanced voltages and proper power sharing among sources connected to the same phase. Further, the high X / R ratio of the filter, used in the inverter of the single-phase source, enables control of reactive power, to minimize voltage unbalance locally. The proposed scheme is validated by simulating a LV distribution network with multiple single-phase sources subjected to various perturbations.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).

  5. Searching for Next Single-Phase High-Entropy Alloy Compositions

    Directory of Open Access Journals (Sweden)

    David E. Alman

    2013-10-01

    Full Text Available There has been considerable technological interest in high-entropy alloys (HEAs since the initial publications on the topic appeared in 2004. However, only several of the alloys investigated are truly single-phase solid solution compositions. These include the FCC alloys CoCrFeNi and CoCrFeMnNi based on 3d transition metals elements and BCC alloys NbMoTaW, NbMoTaVW, and HfNbTaTiZr based on refractory metals. The search for new single-phase HEAs compositions has been hindered by a lack of an effective scientific strategy for alloy design. This report shows that the chemical interactions and atomic diffusivities predicted from ab initio molecular dynamics simulations which are closely related to primary crystallization during solidification can be used to assist in identifying single phase high-entropy solid solution compositions. Further, combining these simulations with phase diagram calculations via the CALPHAD method and inspection of existing phase diagrams is an effective strategy to accelerate the discovery of new single-phase HEAs. This methodology was used to predict new single-phase HEA compositions. These are FCC alloys comprised of CoFeMnNi, CuNiPdPt and CuNiPdPtRh, and HCP alloys of CoOsReRu.

  6. Reliability Evaluation of a Single-phase H-bridge Inverter with Integrated Active Power Decoupling

    DEFF Research Database (Denmark)

    Tang, Junchaojie; Wang, Haoran; Ma, Siyuan

    2016-01-01

    Various power decoupling methods have been proposed recently to replace the DC-link Electrolytic Capacitors (E-caps) in single-phase conversion system, in order to extend the lifetime and improve the reliability of the DC-link. However, it is still an open question whether the converter level...... reliability becomes better or not, since additional components are introduced and the loading of the existing components may be changed. This paper aims to study the converter level reliability of a single-phase full-bridge inverter with two kinds of active power decoupling module and to compare...... it with the traditional passive DC-link solution. The converter level reliability is obtained by component level electro-thermal stress modeling, lifetime model, Weibull distribution, and Reliability Block Diagram (RBD) method. The results are demonstrated by a 2 kW single-phase inverter application....

  7. Field-circuit analysis and measurements of a single-phase self-excited induction generator

    Science.gov (United States)

    Makowski, Krzysztof; Leicht, Aleksander

    2017-12-01

    The paper deals with a single-phase induction machine operating as a stand-alone self-excited single-phase induction generator for generation of electrical energy from renewable energy sources. By changing number of turns and size of wires in the auxiliary stator winding, an improvement of performance characteristics of the generator were obtained as regards no-load and load voltage of the stator windings as well as stator winding currents of the generator. Field-circuit simulation models of the generator were developed using Flux2D software package for the generator with shunt capacitor in the main stator winding. The obtained results have been validated experimentally at the laboratory setup using the single-phase capacitor induction motor of 1.1 kW rated power and 230 V voltage as a base model of the generator.

  8. Benchmarking of grid fault modes in single-phase grid-connected photovoltaic systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede; Zou, Zhixiang

    2012-01-01

    Pushed by the booming installations of single-phase photovoltaic (PV) systems, the grid demands regarding the integration of PV systems are expected to be modified. Hence, the future PV systems should become more active with functionalities of low voltage ride-through (LVRT) and the grid support...... capability. The control methods, together with grid synchronization techniques, are responsible for the generation of appropriate reference signals in order to handle ride-through grid faults. Thus, it is necessary to evaluate the behaviors of grid synchronization methods and control possibilities in single...... phase systems under grid faults. The intent of this paper is to present a benchmarking of grid fault modes that might come in future single-phase PV systems. In order to map future challenges, the relevant detection and control strategies are discussed. Some faulty modes are studied experimentally...

  9. 16 channel WDM regeneration in a single phase-sensitive amplifier through optical Fourier transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Da Ros, Francesco; Lillieholm, Mads

    2016-01-01

    We demonstrate simultaneous phase regeneration of 16-WDM DPSK channels using optical Fourier transformation and a single phase-sensitive amplifier. The BERs of 16-WDM×10-Gbit/s phase noise degraded DPSK signals are improved by 0.4-1.3 orders of magnitude......We demonstrate simultaneous phase regeneration of 16-WDM DPSK channels using optical Fourier transformation and a single phase-sensitive amplifier. The BERs of 16-WDM×10-Gbit/s phase noise degraded DPSK signals are improved by 0.4-1.3 orders of magnitude...

  10. Single-phase power distribution system power flow and fault analysis

    Science.gov (United States)

    Halpin, S. M.; Grigsby, L. L.

    1992-01-01

    Alternative methods for power flow and fault analysis of single-phase distribution systems are presented. The algorithms for both power flow and fault analysis utilize a generalized approach to network modeling. The generalized admittance matrix, formed using elements of linear graph theory, is an accurate network model for all possible single-phase network configurations. Unlike the standard nodal admittance matrix formulation algorithms, the generalized approach uses generalized component models for the transmission line and transformer. The standard assumption of a common node voltage reference point is not required to construct the generalized admittance matrix. Therefore, truly accurate simulation results can be obtained for networks that cannot be modeled using traditional techniques.

  11. Common-Ground-Type Tansformerless Inverters for Single-Phase Solar Photovoltaic Systems

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; Blaabjerg, Frede

    2018-01-01

    This paper proposes a family of novel flying capacitor transformerless inverters for single-phase photovoltaic (PV) systems. Each of the new topologies proposed is based on a flying capacitor principle and requires only four power switches and/or diodes, one capacitor, and a small filter at the o......This paper proposes a family of novel flying capacitor transformerless inverters for single-phase photovoltaic (PV) systems. Each of the new topologies proposed is based on a flying capacitor principle and requires only four power switches and/or diodes, one capacitor, and a small filter...

  12. Challenges in thermal design of industrial single-phase power inverter

    Directory of Open Access Journals (Sweden)

    Ninković Predrag

    2016-01-01

    Full Text Available This paper presents the influence of thermal aspects in design process of an industrial single-phase inverter, choice of its topology and components. Stringent design inputs like very high overload level, demand for natural cooling and very wide input voltage range have made conventional circuit topology inappropriate therefore asking for alternative solution. Different power losses calculations in semiconductors are performed and compared, outlining the guidelines how to choose the final topology. Some recommendations in power magnetic components design are given. Based on the final project, a 20kVA single-phase inverter for thermal power plant supervisory and control system is designed and commissioned.

  13. Stability boundary analysis in single-phase grid-connected inverters with PLL by LTP theory

    OpenAIRE

    Salis, Valerio; Costabeber, Alessando; Cox, Stephen M.; Zanchetta, Pericle; Formentini, Andrea

    2017-01-01

    Stability analysis of power converters in AC net¬works is complex due to the non-linear nature of the conversion systems. Whereas interactions of converters in DC networks can be studied by linearising about the operating point, the extension of the same approach to AC systems poses serious challenges, especially for single-phase or unbalanced three-phase systems. A general method for stability analysis of power converters suitable for single-phase or unbalanced AC networks is presented in th...

  14. Soft-Switched Neutral-Point-Clamped Single-Phase Boost Rectifier

    Science.gov (United States)

    Itoh, Ryozo; Ishizaka, Kouichi

    A soft-switched neutral-point-clamped single-phase boost rectifier capable of compensating the imbalance load voltage is studied. This is based on a single-phase rectifier, in which an inductor is placed in series with the AC supply to resonate with a capacitor connected across the DC output of a full-bridge rectifier and the switching transition is mainly governed by a series resonance. The experimental prototype using insulated-gate bipolar transistors is implemented to investigate the operation under the charge control. The experimental results confirm that the rectifier has a neutral-point-clamp feature providing a good quality AC current.

  15. National Convective Weather Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NCWF is an automatically generated depiction of: (1) current convection and (2) extrapolated signficant current convection. It is a supplement to, but does NOT...

  16. A Novel Flying Capacitor Transformerless Inverter for Single-Phase Grid Connected Solar Photovoltaic System

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; Blaabjerg, Frede

    2016-01-01

    This paper proposes a new single-phase flying capacitor transformerless PV inverter for grid-connected photovoltaic (PV) systems. The neutral of the grid can be directly connected to the negative terminal of the source (PV). It consists of four power switches, one diode, one capacitor and a small...

  17. A single phase multilevel inverter as power converter for 3-phase ...

    African Journals Online (AJOL)

    A single phase multilevel inverter as power converter for 3-phase electric loads. ... m-phase maker was simulated using MATLAB and the results confirmed the excellent perfor-mance of the RBNPS. The listed advantages attained could be incorporated in the design and operation of a converter for an electric drive of a car.

  18. Low Voltage Ride-Through of Single-Phase Transformerless Photovoltaic Inverters

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede; Wang, Huai

    2014-01-01

    , e.g. Low Voltage Ride-Through (LVRT) under grid faults and grid support service. In order to map future challenges, the LVRT capability of three mainstream single-phase transformerless PV inverters under grid faults are explored in this paper. Control strategies with reactive power injections...

  19. PI and repetitive control for single phase inverter based on virtual rotating coordinate system

    Science.gov (United States)

    Li, Mengqi; Tong, Yibin; Jiang, Jiuchun; Liang, Jiangang

    2018-03-01

    Microgrid technology developed rapidly and nonlinear loads were connected increasingly. A new control strategy was proposed for single phase inverter when connected nonlinear loads under island condition. PI and repetitive compound controller was realized under synchronous rotating coordinate system and acquired high quality sinusoidal voltage output without voltage spike when loads step changed. Validity and correctness were verified by simulation using MATLAB/Simulink.

  20. Pressure Drop Correlations of Single-Phase and Two-Phase Flow in Rolling Tubes

    International Nuclear Information System (INIS)

    Xia-xin Cao; Chang-qi Yan; Pu-zhen Gao; Zhong-ning Sun

    2006-01-01

    A series of experimental studies of frictional pressure drop for single phase and two-phase bubble flow in smooth rolling tubes were carried out. The tube inside diameters were 15 mm, 25 mm and 34.5 mm respectively, the rolling angles of tubes could be set as 10 deg. and 20 deg., and the rolling periods could be set as 5 s, 10 s and 15 s. Combining with the analysis of single-phase water motion, it was found that the traditional correlations for calculating single-phase frictional coefficient were not suitable for the rolling condition. Based on the experimental data, a new correlation for calculating single-phase frictional coefficient under rolling condition was presented, and the calculations not only agreed well with the experimental data, but also could display the periodically dynamic characteristics of frictional coefficients. Applying the new correlation to homogeneous flow model, two-phase frictional pressure drop of bubble flow in rolling tubes could be calculated, the results showed that the relative error between calculation and experimental data was less than ± 25%. (authors)

  1. Single-Phase 3L PR Controlled qZS Inverter Connected to the Distorted Grid

    DEFF Research Database (Denmark)

    Makovenko, Elena; Husev, Oleksandr; Roncero-Clemente, Carlos

    2016-01-01

    This paper presents a single-phase three-level NPC qZS inverter connected to a distorted grid using PID and PR regulators. A case study system along with the control strategy are described. Tuning approaches for PID and PR regulators are addressed and validated by means of simulation results...

  2. Hybrid Control Method for a Single Phase PFC using a Low Cost Microcontroller

    DEFF Research Database (Denmark)

    Jakobsen, Lars Tønnes; Nielsen, Nils; Wolf, Christian

    2005-01-01

    This paper presents a hybrid control method for single phase boost PFCs. The high bandwidth current loop is analog while the voltage loop is implemented in an 8-bit microcontroller. The design focuses on minimizing the number of calculations done in the microcontroller. A 1kW prototype has been...

  3. Novel Motion Sensorless Control of Single Phase Brushless D.C. PM Motor Drive, with experiments

    DEFF Research Database (Denmark)

    Lepure, Liviu Ioan; Boldea, Ion; Andreescu, Gheorghe Daniel

    2010-01-01

    A motion sensorless control for single phase permanent magnet brushless d.c. (PM-BLDC) motor drives, based on flux integration and prior knowledge of the PM flux/position characteristic is proposed here and an adequate correction algorithm is adopted, in order to increase the robustness to noise...

  4. Single phase inverter for a three phase power generation and distribution system

    Science.gov (United States)

    Lindena, S. J.

    1976-01-01

    A breadboard design of a single-phase inverter with sinusoidal output voltage for a three-phase power generation and distribution system was developed. The three-phase system consists of three single-phase inverters, whose output voltages are connected in a delta configuration. Upon failure of one inverter the two remaining inverters will continue to deliver three-phase power. Parallel redundancy as offered by two three-phase inverters is substituted by one three-phase inverter assembly with high savings in volume, weight, components count and complexity, and a considerable increase in reliability. The following requirements must be met: (1) Each single-phase, current-fed inverter must be capable of being synchronized to a three-phase reference system such that its output voltage remains phaselocked to its respective reference voltage. (2) Each single-phase, current-fed inverter must be capable of accepting leading and lagging power factors over a range from -0.7 through 1 to +0.7.

  5. Control Method of Single-phase Inverter Based Grounding System in Distribution Networks

    DEFF Research Database (Denmark)

    Wang, Wen; Yan, L.; Zeng, X.

    2016-01-01

    of neutral-to-ground voltage is critical for the safety of distribution networks. An active grounding system based on single-phase inverter is proposed to achieve this objective. Relationship between output current of the system and neutral-to-ground voltage is derived to explain the principle of neutral...

  6. protoDUNE-Single Phase and protDUNE-DualPhase

    CERN Multimedia

    Brice, Maximilien

    2016-01-01

    At the EHN1 two big 8m x 8m x8m detector prototypes (protoDUNE-Single Phase and protDUNE-DualPhase) are being constructed. The aim is to test technologies and detector performances for DUNE, a new generation of LBN neutr

  7. Single phase cascaded H5 inverter with leakage current elimination for transformerless photovoltaic system

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Jia, X.; Lu, Z.

    2016-01-01

    Leakage current reduction is one of the important issues for the transformelress PV systems. In this paper, the transformerless single-phase cascaded H-bridge PV inverter is investigated. The common mode model for the cascaded H4 inverter is analyzed. And the reason why the conventional cascade H...

  8. A Generic Topology Derivation Method for Single-phase Converters with Active Capacitive DC-links

    DEFF Research Database (Denmark)

    Wang, Haoran; Wang, Huai; Zhu, Guorong

    2016-01-01

    capacitive DCDC- link solutions, but important aspects of the topology assess-ment, such as the total energy storage, overall capacitive energy buffer ratio, cost, and reliability are still not available. This paper proposes a generic topology derivation method of single-phase power converters...

  9. Modeling and Control of a Single-Phase Marine Cooling System

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2013-01-01

    This paper presents two model-based control design approaches for a single-phase marine cooling system. Models are derived from first principles and aim at describing significant system dynamics including nonlinearities and transport delays, while keeping the model complexity low. The two...

  10. Single-Phase Phase-Locked Loop Based on Derivative Elements

    DEFF Research Database (Denmark)

    Guan, Qingxin; Zhang, Yu; Kang, Yong

    2017-01-01

    High-performance phase-locked loops (PLLs) are critical for power control in grid-connected systems. This paper presents a new method of designing a PLL for single-phase systems based on derivative elements (DEs). The quadrature signal generator (QSG) is constructed by two DEs with the same...

  11. A review of single-phase grid-connected inverters for photovoltaic modules

    DEFF Research Database (Denmark)

    Kjaer, Soren Baekhoej; Pedersen, John Kim; Blaabjerg, Frede

    2005-01-01

    This review focuses on inverter technologies for connecting photovoltaic (PV) modules to a single-phase grid. The inverters are categorized into four classifications: 1) the number of power processing stages in cascade; 2) the type of power decoupling between the PV module(s) and the single...

  12. A Direct Maximum Power Point Tracking Method for Single-Phase Grid Connected PV Inverters

    DEFF Research Database (Denmark)

    EL Aamri, Faicel; Maker, Hattab; Sera, Dezso

    2018-01-01

    in dynamic conditions, especially in low irradiance when the measurement of signals becomes more sensitive to noise. The proposed MPPT is designed for single-phase single-stage grid-connected PV inverters, and is based on estimating the instantaneous PV power and voltage ripples, using second...

  13. A re-look at critical factors influencing single-phase formation of Ba2 ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 30; Issue 4. A re-look at critical factors influencing single-phase formation of Ba2Ti9O20 microwave dielectrics. Unnikrishnan Gopinath Dhanya Chandran Seema Ansari Bindu Krishnan Rani Panicker Raghu Natarajan. Electrical Properties Volume 30 Issue 4 August ...

  14. Regeneration of phase unlocked serial multiplexed DPSK signals in a single phase sensitive amplifier

    DEFF Research Database (Denmark)

    Guan, Pengyu; Da Ros, Francesco; Kjøller, Niels-Kristian

    2017-01-01

    We demonstrate phase-regeneration of phase unlocked OTDM-DPSK serial signals in a single phase sensitive amplifier through optical cross-phase modulation. The BER of an 8×10 Gbit/s OTDM-DPSK signal is improved by 2 orders of magnitude....

  15. Analysis of Variable-Speed Operation of Drives with Single-Phase Machines

    Czech Academy of Sciences Publication Activity Database

    Chomát, Miroslav; Schreier, Luděk; Bendl, Jiří

    2007-01-01

    Roč. 52, č. 2 (2007), s. 139-147 ISSN 0001-7043 R&D Projects: GA ČR GA102/06/0215 Institutional research plan: CEZ:AV0Z20570509 Keywords : single-phase machines * induction machines * variable-speed drives Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  16. Flux Concentration and Pole Shaping in a Single Phase Hybrid Switched Reluctance Motor Drive

    DEFF Research Database (Denmark)

    Jakobsen, Uffe; Lu, Kaiyuan

    2010-01-01

    The single phase hybrid switched reluctance motor (HSRM) may be a good candidate for low-cost drives used for pump applications. This paper presents a new design of the HSRM with improved starting torque achieved by stator pole shaping, and a better arrangement of the embedded stator permanent...

  17. Synchronization in single-phase grid-connected photovoltaic systems under grid faults

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2012-01-01

    under grid faults. The focus of this paper is put on the benchmarking of synchronization techniques, mainly about phase locked loop (PLL) based methods, in single-phase PV power systems operating under grid faults. Some faulty mode cases are studied at the end of this paper in order to compare...

  18. Development of a single-phase thermosiphon for cold collection and storage of radiative cooling

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dongliang; Martini, Christine Elizabeth; Jiang, Siyu; Ma, Yaoguang; Zhai, Yao; Tan, Gang; Yin, Xiaobo; Yang, Ronggui

    2017-11-01

    A single-phase thermosiphon is developed for cold collection and storage of radiative cooling. Compared to the conventional nocturnal radiative cooling systems that use an electric pump to drive the heat transfer fluid, the proposed single-phase thermosiphon uses the buoyancy force to drive heat transfer fluid. This solution does not require electricity, therefore improving the net gain of the radiative cooling system. A single-phase thermosiphon was built, which consists of a flat panel, a cold collection tank, a water return tube, and a water distribution tank. Considering that outdoor radiative cooling flux is constantly changing (i.e. uncontrollable), an indoor testing facility was developed to provide a controllable cooling flux (comparable to a radiative cooling flux of 100 W/m2) for the evaluation of thermosiphon performance. The testing apparatus is a chilled aluminum flat plate that has a controlled air gap separation relative to the flat panel surface of the thermosiphon to emulate radiative cooling. With an average of 105 W/m2 cooling flux, the 18 liters of water in the thermosiphon was cooled to an average temperature of 12.5 degrees C from an initial temperature of 22.2 degrees C in 2 h, with a cold collection efficiency of 96.8%. The results obtained have demonstrated the feasibility of using a single-phase thermosiphon for cold collection and storage of radiative cooling. Additionally, the effects of the thermosiphon operation conditions, such as tilt angle of the flat panel, initial water temperature, and cooling energy flux, on the performance have been experimentally investigated. Modular design of the single-phase thermosiphon gives flexibility for its scalability. A radiative cooling system with multiple thermosiphon modules is expected to play an important role in cooling buildings and power plant condensers.

  19. THE ROLE OF THERMOHALINE MIXING IN INTERMEDIATE- AND LOW-METALLICITY GLOBULAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Angelou, George C.; Stancliffe, Richard J.; Church, Ross P.; Lattanzio, John C. [Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, Melbourne, VIC 3800 (Australia); Smith, Graeme H., E-mail: George.Angelou@monash.edu [Department of Astronomy and Astrophysics, University of California Observatories/Lick Observatory, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States)

    2012-04-20

    It is now widely accepted that globular cluster red giant branch (RGB) stars owe their strange abundance patterns to a combination of pollution from progenitor stars and in situ extra mixing. In this hybrid theory a first generation of stars imprints abundance patterns into the gas from which a second generation forms. The hybrid theory suggests that extra mixing is operating in both populations and we use the variation of [C/Fe] with luminosity to examine how efficient this mixing is. We investigate the observed RGBs of M3, M13, M92, M15, and NGC 5466 as a means to test a theory of thermohaline mixing. The second parameter pair M3 and M13 are of intermediate metallicity and our models are able to account for the evolution of carbon along the RGB in both clusters, although in order to fit the most carbon-depleted main-sequence stars in M13 we require a model whose initial [C/Fe] abundance leads to a carbon abundance lower than is observed. Furthermore, our results suggest that stars in M13 formed with some primary nitrogen (higher C+N+O than stars in M3). In the metal-poor regime only NGC 5466 can be tentatively explained by thermohaline mixing operating in multiple populations. We find thermohaline mixing unable to model the depletion of [C/Fe] with magnitude in M92 and M15. It appears as if extra mixing is occurring before the luminosity function bump in these clusters. To reconcile the data with the models would require first dredge-up to be deeper than found in extant models.

  20. A short circuit in thermohaline circulation: A cause for northern hemisphere glaciation?

    Science.gov (United States)

    Driscoll; Haug

    1998-10-16

    The cause of Northern Hemisphere glaciation about 3 million years ago remains uncertain. Closing the Panamanian Isthmus increased thermohaline circulation and enhanced moisture supply to high latitudes, but the accompanying heat would have inhibited ice growth. One possible solution is that enhanced moisture transported to Eurasia also enhanced freshwater delivery to the Arctic via Siberian rivers. Freshwater input to the Arctic would facilitate sea ice formation, increase the albedo, and isolate the high heat capacity of the ocean from the atmosphere. It would also act as a negative feedback on the efficiency of the "conveyor belt" heat pump.

  1. Simulation of the phenomenon of single-phase and two-phase natural circulation; Simulacao do fenomeno de circulacao natural mono e bifasica

    Energy Technology Data Exchange (ETDEWEB)

    Castrillo, Lazara Silveira

    1998-02-01

    Natural convection phenomenon is often used to remove the residual heat from the surfaces of bodies where the heat is generated e.g. during accidents or transients of nuclear power plants. Experimental study of natural circulation can be done in small scale experimental circuits and the results can be extrapolated for larger operational facilities. The numerical analysis of transients can be carried out by using large computational codes that simulate the thermohydraulic behavior in such facilities. The computational code RELAP5/MOD2, (Reactor Excursion and Leak Analysis Program) was developed by U.S. Nuclear Regulatory Commissions's. Division of Reactor Safety Research with the objective of analysis of transients and postulated accidents in the light water reactor (LWR) systems, including small and large ruptures with loss of coolant accidents (LOCA's). The results obtained by the simulation of single-phase and two-phase natural circulation, using the RELAP5/MOD2, are presented in this work. The study was carried out using the experimental circuit built at the 'Departamento de Engenharia Quimica da Escola Politecnica da Universidade de Sao Paulo'. In the circuit, two experiments were carried out with different conditions of power and mass flow, obtaining a single-phase regime with a level of power of 4706 W and flow of 5.10{sup -5} m{sup 3}/s (3 l/min) and a two-phase regime with a level of power of 6536 W and secondary flow 2,33.10{sup -5} m{sup 3}/s (1,4 l/min). The study allowed tio evaluate the capacity of the code for representing such phenomena as well as comparing the transients obtained theoretically with the experimental results. The comparative analysis shows that the code represents fairly well the single-phase transient, but the results for two-phase transients, starting from the nodalization and calibration used for the case single-phase transient, did not reproduce faithfully some experimental results. (author)

  2. Microcontroller Based SPWM Single-Phase Inverter For Wind Power Application

    Directory of Open Access Journals (Sweden)

    Khin Ohmar Lin

    2017-04-01

    Full Text Available In this paper microcontroller based sinusoidal pulse width modulation SPWM single-phase inverter is emphasized to constant frequency conversion scheme for wind power application. The wind-power generator output voltage and frequency are fluctuated due to the variation of wind velocity. Therefore the AC output voltage of wind-generator is converted into DC voltage by using rectifier circuit and this DC voltage is converted back to AC voltage by using inverter circuit. SPWM technique is used in inverter to get nearly sine wave and reduce harmonic content. The rating of inverter is 500W single-phase 220V 50 Hz. The required SPWM timing pulses for the inverter are generated from the PIC16F877A microcontroller. Circuit simulation was done by using Proteus 7 Professional and MATLABR 2008 software. The software for microcontroller is implemented by using MPASM assembler.

  3. An Open-Loop Grid Synchronization Approach for Single-Phase Applications

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2018-01-01

    in the presence of frequency drifts. This is particularly true in single-phase applications, where the lack of multiple independent input signals makes the implementation of the synchronization technique difficult. The aim of this paper is to develop an effective OLS technique for single-phase power and energy...... applications. The proposed OLS method benefits from a straightforward implementation, a fast dynamic response (a response time less than two cycles of the nominal frequency), and a complete immunity against the DC component in the grid voltage. In addition, the designed OLS method totally blocks (significantly...... attenuates) all harmonics up to the aliasing point under a nominal (off-nominal) frequency. The effectiveness of the designed OLS technique is verified using comparative experimental results....

  4. Single-Phase Hybrid Switched Reluctance Motor for Low-Power Low-Cost Applications

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Rasmussen, Peter Omand; Jakobsen, Uffe

    2011-01-01

    This paper presents a new single-phase, Hybrid Switched Reluctance (HSR) motor for low-cost, low-power, pump or fan drive systems. Its single-phase configuration allows use of a simple converter to reduce the system cost. Cheap ferrite magnets are used and arranged in a special flux concentration...... manner to increase effectively the torque density and efficiency of this machine. The efficiency of this machine is comparable to the efficiency of a traditional permanent magnet machine in the similar power range. The cogging torque, due to the existence of the permanent magnetic field, is beneficially...... used to reduce the torque ripple and enable self-starting of the machine. The starting torque of this machine is significantly improved by a slight extension of the stator pole-arc. A prototype machine and a complete drive system has been manufactured and tested. Results are given in this paper....

  5. Evaluation of 600V Superjunction Devices in Single Phase PFC Applications under CCM Operation

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos; Petersen, Lars Press; Andersen, Michael A. E.

    2014-01-01

    This paper pr esents a power density/efficiency evaluation in single phase power factor correction (PFC) applications operating in continuous conduction mode (CCM). The comparison is based on semiconductor dynamic characterization and a mathematical model for prediction of the conducted electroma......This paper pr esents a power density/efficiency evaluation in single phase power factor correction (PFC) applications operating in continuous conduction mode (CCM). The comparison is based on semiconductor dynamic characterization and a mathematical model for prediction of the conducted...... electromagnetic interference (EMI). The dynamic characterization is based on a low inductive double pulse tester (DPT). The measured switching energy is used in order to evaluate the devices performance in a conventional PFC. This data is used together with the mathematical model for prediction of the conducted...... electromagnetic interference. The method allows comparing different devices and evaluating the performance as a function of the PFC power density and efficiency....

  6. Power decoupling with autonomous reference generation for single-phase differential inverters

    DEFF Research Database (Denmark)

    Yao, Wenli; Zhang, Xiaobin; Wang, Xiongfei

    2015-01-01

    The second-harmonic power ripple in single-phase inverter may introduce the issue of low reliability and low power density. In order to replace the bulky dc-link capacitor, an alternative approach is to use active power decoupling so that the ripple power can be diverted into other energy storages...... are used for realizing an improved power decoupling control, capacitor voltage and inductor current regulation. By substituting the corresponding parameter into unified model, the proposed control loop can be applied to different inverter types (Buck, Buck-Boost and Boost). Finally, detailed laboratory....... However, the performance of existing active power decoupling methods depends heavily on certain control references, which unfortunately are parameter dependent. In this paper an autonomous reference generation technique is proposed for single phase differential inverter without relying on the system...

  7. DQ reference frame modeling and control of single-phase active power decoupling circuits

    DEFF Research Database (Denmark)

    Tang, Yi; Qin, Zian; Blaabjerg, Frede

    2015-01-01

    Power decoupling circuits can compensate the inherent double line frequency ripple power in single-phase systems and greatly facilitate their dc-link capacitor design. Example applications of power decoupling circuit include photovoltaic, light-emitting diode, fuel cell, and motor drive systems....... This paper presents the dq synchronous reference frame modeling of single-phase power decoupling circuits and a complete model describing the dynamics of dc-link ripple voltage is presented. The proposed model is universal and valid for both inductive and capacitive decoupling circuits, and the input...... of decoupling circuits can be either dependent or independent of its front-end converters. Based on this model, a dq synchronous reference frame controller is designed which allows the decoupling circuit to operate in two different modes because of the circuit symmetry. Simulation and experimental results...

  8. Ion beam induced single phase nanocrystalline TiO2 formation

    Science.gov (United States)

    Rukade, Deepti A.; Tribedi, L. C.; Bhattacharyya, Varsha

    2014-06-01

    Single phase TiO2 nanostructures are fabricated by oxygen ion implantation (60 keV) at fluence ranging from 1×1016 ions/cm2 to 1×1017 ions/cm2 in titanium thin films deposited on fused silica substrate and subsequent thermal annealing in argon atmosphere. GAXRD and Raman spectroscopy study reveals formation of single rutile phases of TiO2. Particle size is found to vary from 29 nm to 35 nm, establishing nanostructure formation. Nanostructure formation is also confirmed by the quantum confinement effect manifested by the blueshift of the UV-vis absorption spectra. Photoluminescence spectra show peaks corresponding to TiO2 rutile phase and reveal the presence of oxygen defects due to implantation. The controlled synthesis of single phase nanostructure is attributed to ion induced defects and post-implantation annealing. It is observed that the size of the nanostructures formed is strongly dependent on the ion fluence.

  9. A New Power Calculation Method for Single-Phase Grid-Connected Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2013-01-01

    A new method to calculate average active power and reactive power for single-phase systems is proposed in this paper. It can be used in different applications where the output active power and reactive power need to be calculated accurately and fast. For example, a grid-connected photovoltaic...... system in low voltage ride through operation mode requires a power feedback for the power control loop. Commonly, a Discrete Fourier Transform (DFT) based power calculation method can be adopted in such systems. However, the DFT method introduces at least a one-cycle time delay. The new power calculation...... method, which is based on the adaptive filtering technique, can achieve a faster response. The performance of the proposed method is verified by experiments and demonstrated in a 1 kW single-phase grid-connected system operating under different conditions.Experimental results show the effectiveness...

  10. An efficiency improved single-phase PFC converter for electric vehicle charger applications

    DEFF Research Database (Denmark)

    Zhu, Dexuan; Tang, Yi; Jin, Chi

    2013-01-01

    This paper presents an efficiency improved single-phase power factor correction (PFC) converter with its target application to plug-in hybrid electric vehicle (PHEV) charging systems. The proposed PFC converter features sinusoidal input current, three-level output characteristic, and wide range...... of output DC voltage. Moreover, the involved DC/DC buck conversion stage may only need to convert partial input power rather than full scale of input power, and therefore the system overall efficiency can be much improved. Through proper control of the buck converter, it is also possible to mitigate...... the double-line frequency ripple power that is inherent in a single-phase AC/DC system. Both simulation and experimental results are presented to show the effectiveness of this converter....

  11. Benchmarking of Grid Fault Modes in Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede; Zou, Zhixiang

    2013-01-01

    Pushed by the booming installations of singlephase photovoltaic (PV) systems, the grid demands regarding the integration of PV systems are expected to be modified. Hence, the future PV systems should become more active with functionalities of Low Voltage Ride-Through (LVRT) and grid support...... capability. The control methods, together with grid synchronization techniques, are responsible for the generation of appropriate reference signals in order to handle ride-through grid faults. Thus, it is necessary to evaluate the behaviors of grid synchronization methods and control possibilities in single...... phase systems under grid faults. The intent of this paper is to present a benchmarking of grid fault modes that might come in future single-phase PV systems. In order to map future challenges, the relevant synchronization and control strategies are discussed. Some faulty modes are studied experimentally...

  12. 100-nm thick single-phase wurtzite BAlN films with boron contents over 10%

    KAUST Repository

    Li, Xiaohang

    2017-01-11

    Growing thicker BAlN films while maintaining single-phase wurtzite structure and boron content over 10% has been challenging. In this study, we report on the growth of 100 nm-thick single-phase wurtzite BAlN films with boron contents up to 14.4% by MOCVD. Flow-modulated epitaxy was employed to increase diffusion length of group-III atoms and reduce parasitic reactions between the metalorganics and NH3. A large growth efficiency of ∼2000 μm mol−1 was achieved as a result. Small B/III ratios up to 17% in conjunction with high temperatures up to 1010 °C were utilized to prevent formation of the cubic phase and maintain wurtzite structure.

  13. Strain-hardening in nano-structured single phase steels: mechanisms and control.

    Science.gov (United States)

    Bouaziz, O; Barbier, D

    2012-11-01

    The detrimental effect of grain size refinement on the strain hardening is highlighted in single phase steels. A physical based approach for understanding the underlying mechanisms is presented. In order to overcome this limitation a promising metallurgical route exploiting the thermal stability of mechanically induced twins in austenitic steels has been successfully applied to a stainless grade confirming the opportunity to get nano-structured alloys exhibiting high yield stress with high strain-hardening.

  14. A New Synchronous Reference Frame-Based Method for Single-Phase Shunt Active Power Filters

    DEFF Research Database (Denmark)

    Monfared, Mohammad; Golestan, Saeed; Guerrero, Josep M.

    2013-01-01

    This paper deals with the design of a novel method in the synchronous reference frame (SRF) to extract the reference compensating current for single-phase shunt active power filters (APFs). Unlike previous works in the SRF, the proposed method has an innovative feature that it does not need the f...... the excellent performance of the suggested approach. Theoretical evaluations are confirmed by experimental results....

  15. Physical investigation of square cylinder array dynamical response under single-phase cross-flow

    International Nuclear Information System (INIS)

    Longatte, E.; Baj, F.

    2014-01-01

    Fluid structure interaction and flow-induced vibration in square cylinder arrangement under single-phase incompressible laminar cross flow are investigated in the present paper. Dynamic instability governed by damping generation is studied without any consideration about mixing with turbulence effects. Conservative and non-conservative effects are pointed out and dynamical stability limit sensitivity to physical parameters is analyzed. Finally the influence of key physical parameters on fluid solid dynamics interaction is quantified. (authors)

  16. Decoupling of Fluctuating Power in Single-Phase Systems Through a Symmetrical Half-Bridge Circuit

    DEFF Research Database (Denmark)

    Tang, Yi; Blaabjerg, Frede; Loh, Poh Chiang

    2015-01-01

    Single-phase ac/dc or dc/ac systems are inherently subject to the harmonic disturbance that is caused by the well-known double-line frequency ripple power. This issue can be eased through the installation of bulky electrolytic capacitors in the dc link. Unfortunately, such passive filtering...... power decoupling method, and both the input current and output voltage of the converter can be well regulated even when very small dc-link capacitors are employed....

  17. A re-look at critical factors influencing single-phase formation of Ba2 ...

    Indian Academy of Sciences (India)

    TECS

    BaSnO3, B2O3 etc, single-phase 2: 9 has been achieved through solid-state route (Yu et al 1994; Lin and Robert. 1999; Wang et al 2003). It is recorded in literature that phase pure 2:9 ceramics without any stabilizing agent will result in better material for microwave dielectric applica- tions (Lin et al 1997; Lin and Robert ...

  18. Single-phase DECT with VNCT compared with three-phase CTU in patients with haematuria

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Jae; Park, Byung Kwan; Kim, Chan Kyo [Sungkyunkwan University School of Medicine, Department of Radiology, Samsung Medical Center, Seoul (Korea, Republic of)

    2016-10-15

    To retrospectively evaluate the diagnostic performance of single-phase dual-energy CT (DECT) with virtual non-contrast CT (VNCT) compared with three-phase CT urography (CTU) in patients with haematuria. A total of 296 patients underwent three-phase CTU (NCT at 120 kVp; nephrographic phase and excretory phase DECTs at 140 kVp and 80 kVp) owing to haematuria. Diagnostic performances of CT scans were compared for detecting urothelial tumours and urinary stones. Dose-length product (DLP) was compared in relation to single-phase DECT and three-phase CTU Dose-length product (DLP) was compared in relation to single-phase DECT and three-phase CTU. Sensitivity and specificity for tumour were 95 % (19/20) and 98.9 % (273/276) on CTU, 95 % (19/20) and 98.2 % (271/276) on nephrographic phase DECT, and 90 % (18/20) and 98.2 % (271/276) on excretory phase DECT (P > 0.1). Of the 148 stones detected on NCT, 108 (73 %) and 100 (67.6 %) were detected on nephrographic phase and excretory phase VNCTs, respectively. The mean size of stones undetected on nephrographic and excretory VNCTs was measured as 1.5 ± 0.5 mm and 1.6 ± 0.6 mm, respectively. The mean DLPs of three-phase CTU, nephrographic phase DECT and excretory phase DECT were 1076 ± 248 mGy . cm, 410 ± 98 mGy . cm, and 360 ± 87 mGy . cm, respectively (P < 0.001). Single-phase DECT has a potential to replace three-phase CTU for detecting tumours with a lower radiation dose. (orig.)

  19. Modeling and analysis of variable speed single phase induction motors with iron loss

    International Nuclear Information System (INIS)

    Vaez-Zadeh, S.; Zahedi, B.

    2009-01-01

    Despite their usual low power ratings of single phase induction motors, they consume a considerable part of total motors energy consumption due to their large and ever-increasing quantity. The recent rising of oil prices and environmental crises has fortified the idea of energy saving practices in all applications; particularly in single phase induction motors due to their typical low efficiency. An essential requirement for this practice is the modeling and analysis of machine electrical losses under variable frequency operation. In this paper an improved steady state model of single phase induction motors is derived to investigate major motor characteristics like torque-speed, input power, output power, etc. A special emphasis is placed on accurately representing core losses at variable frequency. The winding currents phase difference is reintroduced as a fundamental motor variable to determine motor performances including losses and efficiency. An advanced computerized motor test setup is designed and built for on-line measurement of motor characteristics at different supply and operating conditions. The extensive experimental results, in good agreement with the simulation results based on the mentioned analysis, confirm the validity of the proposed model.

  20. SINGLE-PHASE AND TWO-PHASE SECONDARY COOLANTS: SIMULATION AND EVALUATION OF THEIR THERMOPHYSICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Pedro Samuel Gomes Medeiros

    2011-09-01

    Full Text Available This paper makes a comparative analysis of the thermophysical properties of ice slurry with conventional single-phase secondary fluids used in thermal storage cooling systems. The ice slurry is a two-phase fluid consisting of water, antifreeze and ice crystals. It is a new technology that has shown great energy potential. In addition to transporting energy as a heat transfer fluid, it has thermal storage properties due to the presence of ice, storing coolness by latent heat of fusion. The single-phase fluids analyzed are water-NaCl and water-propylene glycol solutions, which also operate as carrier fluids in ice slurry. The presence of ice changes the thermophysical properties of aqueous solutions and a number of these properties were determined: density, thermal conductivity and dynamic viscosity. Data were obtained by software simulation. The results show that the presence of 10% by weight of ice provides a significant increase in thermal conductivity and dynamic viscosity, without causing changes in density. The rheological behavior of ice slurries, associated with its high viscosity, requires higher pumping power; however, this was not significant because higher thermal conductivity allows a lower mass flow rate without the use of larger pumps. Thus, the ice slurry ensures its high potential as a secondary fluid in thermal storage cooling systems, proving to be more efficient than single-phase secondary fluids.

  1. Estimation of the economic impact of temperature changes induced by a shutdown of the thermohaline circulation: an application of FUND

    NARCIS (Netherlands)

    Link, P.M.; Tol, R.S.J.

    2011-01-01

    The integrated assessment model FUND 2.8n is applied in an assessment to estimate the magnitude of the general market and non-market impacts of temperature changes caused by a possible shutdown of the thermohaline circulation (THC). The monetized impacts of this change in environmental conditions

  2. Effect of duration of the pause single-phase auto-reclosing on electro-power transmission capacitance

    Directory of Open Access Journals (Sweden)

    Krasil'nikova Tatyana

    2017-01-01

    Full Text Available This paper discusses the problem associated with accidents in the aerial line (AL ultra-high voltage (UHV due to its big length. In lines with a voltage of 500-1150 kV the overwhelming proportion of trips (98% is caused by single-phase short circuit (SPSC. A substantial portion (70% single-phase short circuits is erratic arc accidents which can be successfully eliminated in a high-speed auto-reclosing (HSAR or single-phase auto-reclosing (SPAR. Success single-phase auto-reclosing (SPAR at liquidation by single-phase short circuit (SPSC, on the one hand, is determined by the characteristics of the secondary arc current, and on the other hand the effectiveness of ways to reduce secondary arc current and recovery voltage development. The minimum dead time, at a HSAR it is usually taken as 0.5 s., at single-phase autoreclosing (SPAR it depends on the current value of the arc support is in the range of 0.5-3.0 s. The article shows high efficiency of use single-phase auto reclosing (SPAR at liquidation SPSC in a single-chain AL voltage of 500 kV, the dependence of the bandwidth of transmission in maintaining the dynamic stability from the length of the pause SPAR.

  3. Computational simulation of flow and heat transfer in single-phase natural circulation loops; Simulacao computacional de escoamento e transferencia de calor em circuitos de circulacao natural monofasica

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, Larissa Cunha

    2017-07-01

    Passive decay heat removal systems based on natural circulation are essential assets for the new Gen III+ nuclear power reactors and nuclear spent fuel pools. The aim of the present work is to study both laminar and turbulent flow and heat transfer in single-phase natural circulation systems through computational fluid dynamics simulations. The working fluid is considered to be incompressible with constant properties. In the way, the Boussinesq Natural Convection Hypothesis was applied. The model chosen for the turbulence closure problem was the k -- εThe commercial computational fluid dynamics code ANSYS CFX 15.0 was used to obtain the numerical solution of the governing equations. Two single-phase natural circulation circuits were studied, a 2D toroidal loop and a 3D rectangular loop, both with the same boundary conditions of: prescribed heat flux at the heater and fixed wall temperature at the cooler. The validation and verification was performed with the numerical data provided by DESRAYAUD et al. [1] and the experimental data provided by MISALE et al. [2] and KUMAR et al. [3]. An excellent agreement between the Reynolds number (Re) and the modified Grashof number (Gr{sub m}), independently of Prandtl Pr number was observed. However, the convergence interval was observed to be variable with Pr, thus indicating that Pr is a stability governing parameter for natural circulation. Multiple steady states was obtained for Pr = 0,7. Finally, the effect of inclination was studied for the 3D circuit, both in-plane and out-of-plane inclinations were verified for the steady state laminar regime. As a conclusion, the Re for the out-of-plane inclination was in perfect agreement with the correlation found for the zero inclination system, while for the in-plane inclined system the results differ from that of the corresponding vertical loop. (author)

  4. Thermohaline circulation crisis and impacts during the mid-Pleistocene transition.

    Science.gov (United States)

    Pena, Leopoldo D; Goldstein, Steven L

    2014-07-18

    The mid-Pleistocene transition (MPT) marked a fundamental change in glacial-interglacial periodicity, when it increased from ~41-thousand-year to 100-thousand-year cycles and developed higher-amplitude climate variability without substantial changes in the Milankovitch forcing. Here, we document, by using Nd isotopes, a major disruption of the ocean thermohaline circulation (THC) system during the MPT between marine isotope stages (MISs) 25 and 21 at ~950 to 860 thousand years ago, which effectively marks the first 100-thousand-year cycle, including an exceptional weakening through a critical interglacial (MIS 23) at ~900 thousand years ago. Its recovery into the post-MPT 100-thousand-year world is characterized by continued weak glacial THC. The MPT ocean circulation crisis facilitated the coeval drawdown of atmospheric CO2 and high-latitude ice sheet growth, generating the conditions that stabilized 100-thousand-year cycles. Copyright © 2014, American Association for the Advancement of Science.

  5. Simulation of the global ocean thermohaline circulation with an eddy-resolving INMIO model configuration

    Science.gov (United States)

    Ushakov, K. V.; Ibrayev, R. A.

    2017-11-01

    In this paper, the first results of a simulation of the mean World Ocean thermohaline characteristics obtained by the INMIO ocean general circulation model configured with 0.1 degree resolution in a 5-year long numerical experiment following the CORE-II protocol are presented. The horizontal and zonal mean distributions of the solution bias against the WOA09 data are analyzed. The seasonal cycle of heat content at a specified site of the North Atlantic is also discussed. The simulation results demonstrate a clear improvement in the quality of representation of the upper ocean compared to the results of experiments with 0.5 and 0.25 degree model configurations. Some remaining biases of the model solution and possible ways of their overcoming are highlighted.

  6. Influence of Sea Ice on the Thermohaline Circulation in the Arctic-North Atlantic Ocean

    Science.gov (United States)

    Mauritzen, Cecilie; Haekkinen, Sirpa

    1997-01-01

    A fully prognostic coupled ocean-ice model is used to study the sensitivity of the overturning cell of the Arctic-North-Atlantic system to sea ice forcing. The strength of the thermohaline cell will be shown to depend on the amount of sea ice transported from the Arctic to the Greenland Sea and further to the subpolar gyre. The model produces a 2-3 Sv increase of the meridional circulation cell at 25N (at the simulation year 15) corresponding to a decrease of 800 cu km in the sea ice export from the Arctic. Previous modeling studies suggest that interannual and decadal variability in sea ice export of this magnitude is realistic, implying that sea ice induced variability in the overturning cell can reach 5-6 Sv from peak to peak.

  7. High Performance Harmonic Isolation By Means of The Single-phase Series Active Filter Employing The Waveform Reconstruction Method

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Hava, Ahmet M.

    2009-01-01

    This paper proposes the Waveform Reconstruction Method (WRM), which is utilized in the single-phase Series Active Filter's (SAF's) control algorithm, in order to extract the load harmonic voltage component of voltage harmonic type single-phase diode rectifier loads. Employing WRM and the line...... current sampling delay reduction method (SDRM), a single-phase SAF compensated system provides higher harmonic isolation performance and higher stability margins compared to the system using conventional synchronous reference frame based methods. The analytical, simulation, and experimental studies of a 2...

  8. Fabrication of single phase 2D homologous perovskite microplates by mechanical exfoliation

    Science.gov (United States)

    Li, Junze; Wang, Jun; Zhang, Yingjun; Wang, Haizhen; Lin, Gaoming; Xiong, Xuan; Zhou, Weihang; Luo, Hongmei; Li, Dehui

    2018-04-01

    The two-dimensional (2D) Ruddlesden-Popper type perovskites have attracted intensive interest for their great environmental stability and various potential optoelectronic applications. Fundamental understanding of the photophysical and electronic properties of the 2D perovskites with pure single phase is essential for improving the performance of the optoelectronic devices and designing devices with new architectures. Investigating the optical and electronic properties of these materials with pure single phase is required to obtain pure single phase 2D perovskites. Here, we report on an alternative approach to fabricate (C4H9NH3)2(CH3NH3) n-1Pb n I3n+1 microplates with pure single n-number perovskite phase for n  >  2 by mechanical exfoliation. Micro-photoluminescence and absorption spectroscopy studies reveal that the as-synthesized 2D perovskite plates for n  >  2 are comprised by dominant n-number phase and small inclusions of hybrid perovskite phases with different n values, which is supported by excitation power dependent photoluminescence. By mechanical exfoliation method, 2D perovskite microplates with the thickness of around 20 nm are obtained, which surprisingly have single n-number perovskite phase for n  =  2-5. In addition, we have demonstrated that the exfoliated 2D perovskite microplates can be integrated with other 2D layered materials such as boron nitride, and are able to be transferred to prefabricated electrodes for photodetections. Our studies not only provide a strategy to prepare 2D perovskites with a single n-number perovskite phase allowing us to extract the basic optical and electronic parameters of pure phase perovskites, but also demonstrate the possibility to integrate the 2D perovskites with other 2D layered materials to extend the device’s functionalities.

  9. Long term analysis of the Polar Front position and thermohaline characteristics in Drake Passage, Antarctic.

    Science.gov (United States)

    Ribeiro, N.; Sprintall, J.; Mata, M. M.

    2016-02-01

    Several studies have observed a consistent warming of the Southern Ocean with the migration of the Antarctic Circumpolar Current and the associated frontal systems southwards. This shift, is thought to be related to the predominantly positive phase of the Southern Annular Mode (SAM). This study use the long term salinity and temperature measurements from the High Resolution XBT Program (HR-XBT) in Drake Passage to analyze the temporal variability of the thermohaline properties of the Polar Front (PF). The measurements span from 1996 to 2014. The analysis of the variability of the thermohaline properties along both the isobars and isopycnals in the PF was carried out using Bindoff & McDougall's (1994) method to account for warming, freshening and heaving of the water column. The main results indicate a southward migratory trend of the PF of 0.0229°/year ( 2.5km) which is consistent with a positive SAM influence. Freshening dominates changes in the Drake Passage region and heaving is the least important of all three processes. Freshening occurs throughout the water column south of the PF while that signal is limited to the surface towards the north of the PF. The most significant freshening seems to be occurring along the isopycnals 27.2 to 27.5 kg/m³, values that correspond to 100 and 400m depth, respectively. In terms of T/S anomalies with depth, the results show positive anomalies for Pure Warming and negative anomalies for Pure Freshening in both isobaric and neutral surfaces, indicating also that the region is getting fresher with time. Overall, these results endorse the hypothesis that freshening plays a major role in the observed subsurface heating signal occurring along isopycnals.

  10. Reliable Grid Condition Detection and Control of Single-Phase Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai

    to the utility grid but also to sustain it. This thesis was divided into two main parts, namely "Grid Condition Detection" and "Control of Single-Phase DPGS". In the first part, the main focus was on reliable Phase Locked Loop (PLL) techniques for monitoring the grid voltage and on grid impedance estimation...... of the entire system. Regarding the advance control of DPGS, an active damping technique for grid-connected systems using inductor-capacitorinductor (LCL) filters was proposed in the thesis. The method is based on a notch filter, whose stopband can be automatically adjusted in relation with an estimated value...

  11. Power quality improvement of single-phase photovoltaic systems through a robust synchronization method

    DEFF Research Database (Denmark)

    Hadjidemetriou, Lenos; Kyriakides, Elias; Yang, Yongheng

    2014-01-01

    An increasing amount of single-phase photovoltaic (PV) systems on the distribution network requires more advanced synchronization methods in order to meet the grid codes with respect to power quality and fault ride through capability. The response of the synchronization technique selected...... to the harmonic voltage distortion without affecting the dynamic response of the synchronization. Therefore, the accurate response of the proposed MHDC-PLL enhances the power quality of the PV inverter systems and additionally, the proper fault ride-through operation of PV systems can be enabled by the fast...

  12. Frequency Adaptive Repetitive Control of Grid-Tied Single-Phase PV Inverters

    DEFF Research Database (Denmark)

    Zhou, Keliang; Yang, Yongheng; Blaabjerg, Frede

    2015-01-01

    . This paper thus explores a frequency adaptive repetitive control strategy for grid converters, which employs fractional delay filters in order to adapt to the change of the grid frequency. Case studies with experimental results of a single-phase grid-connected PV inverter system are provided to verify......The internal model principle based Repetitive Control (RC) offers an accurate control strategy for grid-tied power converters to feed sinusoidal current into the grid. However, in the presence of grid frequency variations, the conventional RC fails to produce high quality feeding current...... the proposed controller....

  13. Design and analysis of sensorless torque optimization for single phase induction motors

    International Nuclear Information System (INIS)

    Vaez-Zadeh, S.; Payman, A.

    2006-01-01

    Single phase induction motors are traditionally used in constant speed applications and suffer from unsymmetrical performance. A reliable speed signal can improve their performance and extend their applications as variable speed drives. In this paper, a speed estimation method for these motors is proposed based on a machine model in the stator flux reference frame. The method is examined in a sensorless torque optimization system over a wide operating range. Extensive simulation results prove the validity of the proposed method. Also, the motor performance under the torque optimization system is analyzed

  14. Indirect Control of a low power Single-Phase Active Power Filter

    Directory of Open Access Journals (Sweden)

    SILVIU EPURE

    2010-12-01

    Full Text Available This paper deals with a low power, single phase active filter used to compensate nonlinear loads. The filter uses the indirect control method and it is based on a particular connection between filter, polluting load and grid to avoid timeconsuming mathematic operations or signal processing computations and assures good rejection of harmonic currents injected by the nonlinear load into the grid. A scale model was first simulated in Simulink and then physically implemented. The paper presents simulation and experimental results, and highlight problems encountered during experiments.

  15. Pressure drop and heat transfer of lithium single-phase flow under transverse magnetic field

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Aritomi, Masanori; Inoue, Akira; Matsuzaki, Mitsuo

    1996-01-01

    Pressure drop and heat transfer characteristics of a lithium single-phase flow in a rectangular channel was investigated experimentally in the presence of a magnetic field. Friction loss coefficient under non-magnetic field and skin friction coefficient under magnetic field agreed well with the Blasius formula and a simple analytical expression, respectively. Nusselt number under non-magnetic field was slightly lower than the correlation by Hartnett and Irvine. Heat transfer was enhanced by increasing magnetic field above the Hartmann number of about 200. (author)

  16. Benchmarking of small-signal dynamics of single-phase PLLs

    DEFF Research Database (Denmark)

    Zhang, Chong; Wang, Xiongfei; Blaabjerg, Frede

    2015-01-01

    Phase-looked Loop (PLL) is a critical component for the control and grid synchronization of grid-connected power converters. This paper presents a benchmarking study on the small-signal dynamics of three commonly used PLLs for single-phase converters, including enhanced PLL, second......-order generalized integrator based PLL, and the inverse-PLL. First, a unified small-signal model of those PLLs is established for comparing their dynamics. Then, a systematic design guideline for parameters tuning of the PLLs is formulated. To confirm the validity of theoretical analysis, nonlinear time...

  17. An LLCL Power Filter for Single-Phase Grid-Tied Inverter

    DEFF Research Database (Denmark)

    Wu, Weimin; He, Yuanbin; Blaabjerg, Frede

    2012-01-01

    This paper presents a new topology of higher order power filter for grid-tied voltage-source inverters, named the LLCL filter, which inserts a small inductor in the branch loop of the capacitor in the traditional LCL filter to compose a series resonant circuit at the switching frequency...... to the inverter system control. The parameter design criteria of the proposed LLCL filter is also introduced. The comparative analysis and discussions regarding the traditional LCL filter and the proposed LLCL filter have been presented and evaluated through experiment on a 1.8-kW-single-phase grid-tied inverter...

  18. A MPPT Algorithm Based PV System Connected to Single Phase Voltage Controlled Grid

    Science.gov (United States)

    Sreekanth, G.; Narender Reddy, N.; Durga Prasad, A.; Nagendrababu, V.

    2012-10-01

    Future ancillary services provided by photovoltaic (PV) systems could facilitate their penetration in power systems. In addition, low-power PV systems can be designed to improve the power quality. This paper presents a single-phase PV systemthat provides grid voltage support and compensation of harmonic distortion at the point of common coupling thanks to a repetitive controller. The power provided by the PV panels is controlled by a Maximum Power Point Tracking algorithm based on the incremental conductance method specifically modified to control the phase of the PV inverter voltage. Simulation and experimental results validate the presented solution.

  19. A control strategy for induction motors fed from single phase supply

    DEFF Research Database (Denmark)

    Søndergård, Lars Møller

    1993-01-01

    It is often required that a three-phased asynchronous motor can run at variable speed, which makes it necessary to use a three-phase inverter driven from a DC-source. Today, most inverters are driven from the network using a simple diode bridge and an electrolytic capacitor. The problem...... with the simple diode bridge and the electrolytic capacitor is that current is only drawn for short periods, which gives rise to harmonic currents in the network. For small drive systems (motor+inverter), i.e. less than 1.5 kW, a single phase network outlet is often used. The author describes a method whereby...

  20. Novel Position and Speed Estimator for PM Single Phase Brushless D.C. Motor Drives

    DEFF Research Database (Denmark)

    Lepure, Liviu I.; Andreescu, Gheorghe-Daniel; Iles, Doris

    2010-01-01

    A novel position and speed estimator for single phase permanent magnet brushless d.c. (PMBLDC) motor drives, based on flux integration and prior knowledge of ΨPM (θ) is proposed here and an adequate correction algorithm is adopted in order to increase the robustness to noise and to reduce...... the sensitivity to accuracy of flux linkage estimation. A speed and current close loop control is employed based on the Hall signal and the motor is controlled at different speeds in order to validate the proposed estimation algorithm with satisfying results. The position correction effect is analyzed...

  1. Single Phase Transformer-less Buck-Boost Inverter with Zero Leakage Current for PV Systems

    DEFF Research Database (Denmark)

    Mostaan, Ali; Abdelhakim, Ahmed; N. Soltani, Mohsen

    2017-01-01

    In this paper, a novel single-stage single-phase transformer-less buck-boost inverter is proposed, in which a reduced number of passive components is used. The proposed inverter combines the conventional buck, boost, and buck-boost converters in one converter in order to obtain a sinusoidal output...... voltage. In the proposed inverter, the input DC source and the load or grid have the same ground. Therefore, the leakage current problem in photovoltaic (PV) systems is eliminated. Furthermore, the proposed inverter supports the bi-directional power flow capability and it can inject reactive power...

  2. Single phase and two-phase flow pressure losses through restrictions, expansions and inserts

    International Nuclear Information System (INIS)

    Glenat, P.; Solignac, P.

    1984-11-01

    We give a selection of methods to predict pressure losses through retrictions, expansions and inserts. In single phase flow, we give the classical method based on the one-dimensional momentum and mass balances. In two-phase flow, we propose the method given by Harshe et al. and an empirical approach suggested by Chisholm. We notice the distinction between long and short inserts depends upon wether or not the vena contracta lies within insert. Finally, we propose three correlations to calculate void fraction through the singularities which have been considered [fr

  3. Reaction kinetics of oxygen on single-phase alloys, oxidation of nickel and niobium alloys

    International Nuclear Information System (INIS)

    Lalauze, Rene

    1973-01-01

    This research thesis first addresses the reaction kinetics of oxygen on alloys. It presents some generalities on heterogeneous reactions (conventional theory, theory of jumps), discusses the core reaction (with the influence of pressure), discusses the influence of metal self-diffusion on metal oxidation kinetics (equilibrium conditions at the interface, hybrid diffusion regime), reports the application of the hybrid diffusion model to the study of selective oxidation of alloys (Wagner model, hybrid diffusion model) and the study of the oxidation kinetics of an alloy forming a solid solution of two oxides. The second part reports the investigation of the oxidation of single phase nickel and niobium alloys (phase α, β and γ)

  4. A low capacitance single-phase AC-DC converter with inherent power ripple decoupling

    OpenAIRE

    Gottardo, Davide; De Lillo, Liliana; Empringham, Lee; Costabeber, Alessando

    2016-01-01

    This paper proposes a new single-phase AC-DC conversion topology with inherent power ripple decoupling, based on the combination of a PWM H-bridge inverter, an AC side LC filter and a ZVS line commutated H-bridge. A capacitor on the AC side is used as power decoupling element. By appropriate selection of the capacitor voltage, the power ripple at twice the AC frequency can be cancelled from the DC side instantaneous power, achieving negligible DC voltage ripple using a smaller total capacitan...

  5. Single Phase Current-Source Active Rectifier for Traction: Control System Design and Practical Problems

    Directory of Open Access Journals (Sweden)

    Jan Michalik

    2006-01-01

    Full Text Available This research has been motivated by industrial demand for single phase current-source active rectifier dedicated for reconstruction of older types of dc machine locomotives. This paper presents converters control structure design and simulations. The proposed converter control is based on the mathematical model and due to possible interaction with railway signaling and required low switching frequency employs synchronous PWM. The simulation results are verified by experimental tests performed on designed laboratory prototype of power of 7kVA

  6. Dynamics Assessment of Grid-Synchronization Algorithms for Single-Phase Grid-Connected Converters

    DEFF Research Database (Denmark)

    Han, Yang; Luo, Mingyu; Guerrero, Josep M.

    2015-01-01

    and low computational burden. Meanwhile, some other techniques have been proposed to enhance system robustness and stability characteristics. In this paper, a comprehensive comparison among the OSG-based PLLs and the advanced single-phase PLLs is presented when the grid voltage undergoes disturbances......, and the performance comparison of transient response and disturbance rejection capabilities are presented. Finally, the moving average filter (MAF) is applied to enhance steady state and dynamic response of the delayed-type PLL, derivator-based PLL and the complex-coefficient filter (CCF-PLL) under grid frequency...

  7. High Quality Model Predictive Control for Single Phase Grid Connected Photovoltaic Inverters

    DEFF Research Database (Denmark)

    Zangeneh Bighash, Esmaeil; Sadeghzadeh, Seyed Mohammad; Ebrahimzadeh, Esmaeil

    2018-01-01

    Single phase grid-connected inverters with LCL filter are widely used to connect the photovoltaic systems to the utility grid. Among the presented control schemes, predictive control methods are faster and more accurate but are more complex to implement. Recently, the model-predictive control...... is low, the inverter output current has a high total harmonic distortions. In order to reduce the total harmonic distortions of the injected current, this paper presents a high-quality model-predictive control for one of the newest structure of the grid connected photovoltaic inverter, i.e., HERIC...

  8. A new type of single-phase five-level inverter

    Science.gov (United States)

    Xu, Zhi; Li, Shengnan; Qin, Risheng; Zhao, Yanhang

    2017-11-01

    At present, Neutral Point Clamped (NPC) multilevel inverter is widely applied in new energy field. However, it has some disadvantages including low utilization rate of direct current (DC) voltage source and the unbalance of neutral potential. Therefore, a new single-phase five level inverter is proposed in this paper. It has two stage structure, the former stage is equivalent to three level DC/DC converter, and the back stage uses H bridge to realize inverter. Compared with the original central clamp type inverter, the new five level inverter can improve the utilization of DC voltage, and realize the neutral point potential balance with hysteresis comparator.

  9. Dispersed single-phase-step Michelson interferometer for Doppler imaging using sunlight.

    Science.gov (United States)

    Wan, Xiaoke; Ge, Jian

    2012-09-15

    A Michelson interferometer is dispersed with a fiber array-fed spectrograph, providing 59 Doppler sensing channels using sunlight in the 510-570 nm wavelength region. The interferometer operates at a single-phase-step mode, which is particularly advantageous in multiplexing and data processing compared to the phase-stepping mode of other interferometer spectrometer instruments. Spectral templates are prepared using a standard solar spectrum and simulated interferometer modulations, such that the correlation function with a measured 1D spectrum determines the Doppler shift. Doppler imaging of a rotating cylinder is demonstrated. The average Doppler sensitivity is ~12 m/s, with some channels reaching ~5 m/s.

  10. Solar Surface Convection

    Directory of Open Access Journals (Sweden)

    Nordlund Åke

    2009-04-01

    Full Text Available We review the properties of solar convection that are directly observable at the solar surface, and discuss the relevant underlying physics, concentrating mostly on a range of depths from the temperature minimum down to about 20 Mm below the visible solar surface.The properties of convection at the main energy carrying (granular scales are tightly constrained by observations, in particular by the detailed shapes of photospheric spectral lines and the topology (time- and length-scales, flow velocities, etc. of the up- and downflows. Current supercomputer models match these constraints very closely, which lends credence to the models, and allows robust conclusions to be drawn from analysis of the model properties.At larger scales the properties of the convective velocity field at the solar surface are strongly influenced by constraints from mass conservation, with amplitudes of larger scale horizontal motions decreasing roughly in inverse proportion to the scale of the motion. To a large extent, the apparent presence of distinct (meso- and supergranulation scales is a result of the folding of this spectrum with the effective “filters” corresponding to various observational techniques. Convective motions on successively larger scales advect patterns created by convection on smaller scales; this includes patterns of magnetic field, which thus have an approximately self-similar structure at scales larger than granulation.Radiative-hydrodynamical simulations of solar surface convection can be used as 2D/3D time-dependent models of the solar atmosphere to predict the emergent spectrum. In general, the resulting detailed spectral line profiles agree spectacularly well with observations without invoking any micro- and macroturbulence parameters due to the presence of convective velocities and atmosphere inhomogeneities. One of the most noteworthy results has been a significant reduction in recent years in the derived solar C, N, and O abundances with

  11. Origin and climatic impact of a thermo-haline changes in next centuries in the IPSL-CM4 coupled model

    International Nuclear Information System (INIS)

    Swingedouw, D.

    2006-11-01

    The thermo-haline circulation (THC) strongly influences the climate of the North Atlantic. The warming caused by the release of anthropic CO 2 risks to affect this oceanic circulation and then the climate. In this thesis we point to evaluate this risk and to understand the climatic impact of the THC in the future thanks to the tri-dimensional ocean-atmosphere-sea-ice-land IPSL-CM4 coupled model. In a first part we have done a survey of the principal theories and knowledge concerning the THC. We have then validated the pertinence of IPSL-CM4 to lead our study. The role of the salt has appeared primordial for the dynamics of the THC. Then, we have evaluated the sensitivity of the THC to the global fresh water forcing of the ocean. Different sensitivities of the convection sites of the North Atlantic, related to salinity transport process, have been revealed in IPSL-CM4. We have then analysed some scenario simulations for next centuries. It has appeared a significant diminution of the THC in those simulations, which is strongly magnified if the melting of Greenland is taken in account. The analysis of several scenarios taking into account or not this glacier melting has permitted to isolate in an original manner the role played by THC feedbacks. Last, the effect of the THC on the climate has been quantified in IPSL-CM4. It appears to be more slight that the global warming, even locally on Europe. The explanation of the mechanisms at the origin of the influence of the THC on climate has also been clarified. The impact of the THC on the oceanic carbon uptake in the ocean has been lastly evaluated, and appears to be very small on 140 years. This study thus gives a clear vision of the role of the THC on the climate and its possible future. (author)

  12. Observing Convective Aggregation

    Science.gov (United States)

    Holloway, Christopher E.; Wing, Allison A.; Bony, Sandrine; Muller, Caroline; Masunaga, Hirohiko; L'Ecuyer, Tristan S.; Turner, David D.; Zuidema, Paquita

    2017-11-01

    Convective self-aggregation, the spontaneous organization of initially scattered convection into isolated convective clusters despite spatially homogeneous boundary conditions and forcing, was first recognized and studied in idealized numerical simulations. While there is a rich history of observational work on convective clustering and organization, there have been only a few studies that have analyzed observations to look specifically for processes related to self-aggregation in models. Here we review observational work in both of these categories and motivate the need for more of this work. We acknowledge that self-aggregation may appear to be far-removed from observed convective organization in terms of time scales, initial conditions, initiation processes, and mean state extremes, but we argue that these differences vary greatly across the diverse range of model simulations in the literature and that these comparisons are already offering important insights into real tropical phenomena. Some preliminary new findings are presented, including results showing that a self-aggregation simulation with square geometry has too broad distribution of humidity and is too dry in the driest regions when compared with radiosonde records from Nauru, while an elongated channel simulation has realistic representations of atmospheric humidity and its variability. We discuss recent work increasing our understanding of how organized convection and climate change may interact, and how model discrepancies related to this question are prompting interest in observational comparisons. We also propose possible future directions for observational work related to convective aggregation, including novel satellite approaches and a ground-based observational network.

  13. Magneto-convection.

    Science.gov (United States)

    Stein, Robert F

    2012-07-13

    Convection is the transport of energy by bulk mass motions. Magnetic fields alter convection via the Lorentz force, while convection moves the fields via the curl(v×B) term in the induction equation. Recent ground-based and satellite telescopes have increased our knowledge of the solar magnetic fields on a wide range of spatial and temporal scales. Magneto-convection modelling has also greatly improved recently as computers become more powerful. Three-dimensional simulations with radiative transfer and non-ideal equations of state are being performed. Flux emergence from the convection zone through the visible surface (and into the chromosphere and corona) has been modelled. Local, convectively driven dynamo action has been studied. The alteration in the appearance of granules and the formation of pores and sunspots has been investigated. Magneto-convection calculations have improved our ability to interpret solar observations, especially the inversion of Stokes spectra to obtain the magnetic field and the use of helioseismology to determine the subsurface structure of the Sun.

  14. Novel Family of Single-Phase Modified Impedance-Source Buck-Boost Multilevel Inverters with Reduced Switch Count

    DEFF Research Database (Denmark)

    Husev, Oleksandr; Strzelecki, Ryszard; Blaabjerg, Frede

    2016-01-01

    This paper describes novel single-phase solutions with increased inverter voltage levels derived by means of a nonstandard inverter configuration and impedance source networks. Operation principles based on special modulation techniques are presented. Detailed component design guidelines along wi...

  15. A Nonadaptive Window-Based PLL for Single-Phase Applications

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2018-01-01

    The rectangular window filter, typically known as the moving average filter (MAF), is a quasi-ideal low-pass filter that has found wide application in designing advanced single-phase phase-locked loops (PLLs). Most often, the MAF is employed as an in-loop filter within the control loop of the sin......The rectangular window filter, typically known as the moving average filter (MAF), is a quasi-ideal low-pass filter that has found wide application in designing advanced single-phase phase-locked loops (PLLs). Most often, the MAF is employed as an in-loop filter within the control loop...... response is avoided. Nevertheless, the PLL implementation complexity considerably increases as MAFs are frequency-adaptive and, therefore, they require an additional frequency detector for estimating the grid frequency. To reduce the implementation complexity while maintaining a good performance, using...... a nonadaptive MAF-based QSG with some error compensators is suggested in this letter. The effectiveness of the resultant PLL, which is briefly called the nonadaptive MAF-based PLL, is verified using experimental results....

  16. Ion beam induced single phase nanocrystalline TiO{sub 2} formation

    Energy Technology Data Exchange (ETDEWEB)

    Rukade, Deepti A. [Department of Physics, University of Mumbai, Mumbai 400098 (India); Tribedi, L.C. [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India); Bhattacharyya, Varsha, E-mail: varsha.b1.physics@gmail.com [Department of Physics, University of Mumbai, Mumbai 400098 (India)

    2014-06-15

    Single phase TiO{sub 2} nanostructures are fabricated by oxygen ion implantation (60 keV) at fluence ranging from 1×10{sup 16} ions/cm{sup 2} to 1×10{sup 17} ions/cm{sup 2} in titanium thin films deposited on fused silica substrate and subsequent thermal annealing in argon atmosphere. GAXRD and Raman spectroscopy study reveals formation of single rutile phases of TiO{sub 2}. Particle size is found to vary from 29 nm to 35 nm, establishing nanostructure formation. Nanostructure formation is also confirmed by the quantum confinement effect manifested by the blueshift of the UV–vis absorption spectra. Photoluminescence spectra show peaks corresponding to TiO{sub 2} rutile phase and reveal the presence of oxygen defects due to implantation. The controlled synthesis of single phase nanostructure is attributed to ion induced defects and post-implantation annealing. It is observed that the size of the nanostructures formed is strongly dependent on the ion fluence.

  17. FUZZY LOGIC BASED OPTIMIZATION OF CAPACITOR VALUE FOR SINGLE PHASE OPEN WELL SUBMERSIBLE INDUCTION MOTOR

    Directory of Open Access Journals (Sweden)

    R. Subramanian

    2011-01-01

    Full Text Available Purpose – The aim of this paper is to optimize the capacitor value of a single phase open well submersible motor operating under extreme voltage conditions using fuzzy logic optimization technique and compared with no-load volt-ampere method. This is done by keeping the displacement angle (a between main winding and auxiliary winding near 90o, phase angle (f between the supply voltage and line current near 0o. The optimization work is carried out by using Fuzzy Logic Toolbox software built on the MATLAB technical computing environment with Simulink software. Findings – The optimum capacitor value obtained is used with a motor and tested for different supply voltage conditions. The vector diagrams obtained from the experimental test results indicates that the performance is improved from the existing value. Originality/value – This method will be highly useful for the practicing design engineers in selecting the optimum capacitance value for single phase induction motors to achieve the best performance for operating at extreme supply voltage conditions.

  18. MECHANICAL CHARACTERISTICS OF THREE-PHASE INDUCTION MOTORS WITH SINGLE-PHASE POWER SUPPLY

    Directory of Open Access Journals (Sweden)

    V.S. Malyar

    2016-06-01

    Full Text Available Aim. Development of a method for calculating mechanical characteristics of three-phase induction motors with single-phase power supply. Methods. The developed algorithm is based on the high-adequacy mathematical model of motor and projection method for solving the boundary problem for equations of electrical circuits balance presented in the three-phase coordinate system. As a result of asymmetry of power supply to the stator windings, in steady state, flux-linkage and current change according to the periodic law. They are determined by solving the boundary problem. Results. The developed mathematical model allows determining periodic dependence of coordinates as a function of slip and, based on them, mechanical characteristics of motors. Academic novelty. The developed method relies on a completely new mathematical approach to calculation of stationary modes of nonlinear electromagnetic circuits, which allows obtaining periodic solution in a timeless domain. Practical value. Using the developed calculation algorithm, one can select capacitance required to start an induction motor with single-phase power supply and calculate static mechanical characteristics at a given capacitance.

  19. Experimental study of single-phase pressure drops in coarse particle beds

    Energy Technology Data Exchange (ETDEWEB)

    Clavier, R., E-mail: remi.clavier@irsn.fr [IRSN Cadarache, Saint Paul-lez-Durance (France); Chikhi, N., E-mail: nourdine.chikhi@irsn.fr [IRSN Cadarache, Saint Paul-lez-Durance (France); Fichot, F., E-mail: florian.fichot@irsn.fr [IRSN Cadarache, Saint Paul-lez-Durance (France); Quintard, M., E-mail: Michel.Quintard@imft.fr [Université de Toulouse, Allée Camille Soula, F-31400 Toulouse (France); INPT, UPS, Allée Camille Soula, F-31400 Toulouse (France); IMFT (Institut de Mécanique des Fluides de Toulouse), Allée Camille Soula, F-31400 Toulouse (France); CNRS, F-31400 Toulouse (France)

    2017-02-15

    Motivated by uncertainty reduction in nuclear debris beds coolability, experiments have been conducted on the CALIDE facility in order to investigate single-phase pressure losses in representative debris beds, i.e., high sphericity (>80%) particle beds with small size dispersion (from 1 mm to 10 mm), for which no validated model exists. In this paper, experimental results are presented and analyzed in order to identify a simple correlation for single-phase flow pressure losses generated in this kind of porous media in reflooding flowing conditions, which cover Darcy to weakly turbulent regimes. In the literature, it has been observed that their behavior can be accurately described by a Darcy–Forchheimer law, involving the sum of a linear term and a quadratic non-linear deviation, with respect to the filtration velocity. Expressions for the coefficients of the linear and quadratic terms are determined by assessing the possibility to evaluate equivalent diameters, i.e., characteristic lengths allowing correct predictions of the linear and quadratic terms by the Ergun equation. It has been observed that the Sauter diameter of particles allows a very precise prediction of the linear term, while the quadratic term can be predicted using the product of the Sauter diameter and a sphericity coefficient as an equivalent diameter.

  20. Numerical investigation of refrigeration machine compressor operation considering single-phase electric motor dynamic characteristics

    Science.gov (United States)

    Baidak, Y.; Smyk, V.

    2017-08-01

    Using as the base the differential equations system which was presented in relative units for generalized electric motor of hermetic refrigeration compressor, mathematical model of the software for dynamic performance calculation of refrigeration machine compressors drive low-power asynchronous motors was developed. Performed on its ground calculations of the basic model of two-phase electric motor drive of hermetic compressor and the proposed newly developed model of the motor with single-phase stator winding, which is an alternative to the industrial motor winding, have confirmed the benefits of the motor with innovative stator winding over the base engine. Given calculations of the dynamic characteristics of compressor drive motor have permitted to determine the value of electromagnetic torque swinging for coordinating compressor and motor mechanical characteristics, and for taking them into consideration in choosing compressor elements construction materials. Developed and used in the process of investigation of refrigeration compressor drive asynchronous single-phase motor mathematical and software can be considered as an element of computer-aided design system for design of the aggregate of refrigeration compression unit refrigerating machine.

  1. Validation of CATHENA MOD-3.5/Rev0 for single-phase water hammer

    International Nuclear Information System (INIS)

    Beuthe, T.G.

    2000-01-01

    This paper describes work performed to validate the system thermalhydraulics code CATHENA MOD-3.5c/Rev0 for single-phase water hammer. Simulations were performed and are compared quantitatively against numerical tests and experimental results from the Seven Sisters Water Hammer Facility to demonstrate CATHENA can predict the creation and propagation of pressure waves when valves are opened and closed. Simulations were also performed to show CATHENA can model the behaviour of reflected and transmitted pressure waves at area changes, dead ends, tanks, boundary conditions, and orifices in simple and more complex piping systems. The CATHENA results are shown to calculate pressure and wave propagation speeds to within 0.2% and 0.5% respectively for numerical tests and within 3.3% and 5% for experimental results respectively. These results are used to help validate CATHENA for use in single-phase water hammer analysis. They also provide assurance that the fundamental parameters needed to successfully model more complex forms of water hammer are accounted for in the MOD-3.5c/Rev0 version of CATHENA, and represent the first step in the process to validate the code for use in modelling two-phase water hammer and condensation-induced water hammer. (author)

  2. Transition to finger convection in double-diffusive convection

    OpenAIRE

    Kellner, M.; Tilgner, A.

    2014-01-01

    Finger convection is observed experimentally in an electrodeposition cell in which a destabilizing gradient of copper ions is maintained against a stabilizing temperature gradient. This double-diffusive system shows finger convection even if the total density stratification is unstable. Finger convection is replaced by an ordinary convection roll if convection is fast enough to prevent sufficient heat diffusion between neighboring fingers, or if the thermal buoyancy force is less than 1/30 of...

  3. The Role of Fingering Convection in Accreting Hydrogen-rich White Dwarfs: the Case of GD 133 and G 29-38

    Science.gov (United States)

    Wachlin, F. C.; Vauclair, S.; Vauclair, G.; Althaus, L. G.

    2017-03-01

    The accretion of heavy material from debris disk on the surface of hydrogen-rich white dwarfs induces a double-diffusivity instability known as the fingering (thermohaline) convection. It leads to an efficient extra mixing which brings the accreted material deeper in the star than by considering only mixing in the surface dynamical convection zone, in a time scale much shorter than that of gravitational settling. We performed numerical simulations of a continuous accretion of heavy material having a bulk Earth composition on the two well studied DAZ and ZZ Ceti pulsators GD 133 and G 29-38. We find that the existence of fingering convection implies much larger accretion rates to explain the observed abundances than previous estimates based on the standard mixing length theory and gravitational settling only.

  4. Convective heat transfer

    CERN Document Server

    Kakac, Sadik; Pramuanjaroenkij, Anchasa

    2014-01-01

    Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids....

  5. Pressure drop-flow rate curves for single-phase steam in Combustion Engineering type steam generator U-tubes during severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Fynan, Douglas A.; Ahn, Kwang-Il, E-mail: kiahn@kaeri.re.kr

    2016-12-15

    Highlights: • Pressure drop-flow rate curves for superheated steam in U-tubes were generated. • Forward flow of hot steam is favored in the longer and taller U-tubes. • Reverse flow of cold steam is favored in short U-tubes. • Steam generator U-tube bundle geometry and tube diameter are important. • Need for correlation development for natural convention heat transfer coefficient. - Abstract: Characteristic pressure drop-flow rate curves are generated for all row numbers of the OPR1000 steam generators (SGs), representative of Combustion Engineering (CE) type SGs featuring square bend U-tubes. The pressure drop-flow rate curves are applicable to severe accident natural circulations of single-phase superheated steam during high pressure station blackout sequences with failed auxiliary feedwater and dry secondary side which are closely related to the thermally induced steam generator tube rupture event. The pressure drop-flow rate curves which determine the recirculation rate through the SG tubes are dependent on the tube bundle geometry and hydraulic diameter of the tubes. The larger CE type SGs have greater variation of tube length and height as a function of row number with forward flow of steam favored in the longer and taller high row number tubes and reverse flow favored in the short low row number tubes. Friction loss, natural convection heat transfer coefficients, and temperature differentials from the primary to secondary side are dominant parameters affecting the recirculation rate. The need for correlation development for natural convection heat transfer coefficients for external flow over tube bundles currently not modeled in system codes is discussed.

  6. Single-phase cadmium telluride thin films deposited by electroless electrodeposition

    International Nuclear Information System (INIS)

    Khrypunov, G.; Klochko, N.; Lyubov, V.; Li, T.; Volkova, N.

    2010-01-01

    Full text : Today cadmium telluride (CdTe) is a leading base material for the fabrication of thin film solar cells. Equally with the creation of traditional thin film photovoltaic devices on the base of CdTe in recent years several approaches have been investigated to develop solar cells with extremely thin (80-500 nm) CdTe absorber (so-called ηE(eta)-solar cells) that offer the potential to reduce recombination losses in the base layers and thus use low cost materials. Until today the CdTe depositions for the η-solar cells manufacture were performed by vapour phase epitaxy under dynamical vacuum at working temperature 750 degrees Celsium or by electrodeposition in the special electrochemical cell equipped with the potentiostat. Development research of simple and inexpensive method for obtaining of the single-phase stoichiometric cadmium telluride films has required an improvement of the electroless electrodeposition technique, which theretofore was characterized by some disadvantages, namely, the CdTe films were polluted by free tellurium additions and the composition of the films was Cd:Te=55:45. So, for the showing up the synthesis of doped or stoichiometric cadmium telluride films conditions and in order to decide the problem of the deposition of single-phase CdTe layers it was researched the electrochemical processes going during electroless electrolysis in sulfate solutions with different acidities and CdSO 4 concentrations. Some film samples during deposition were illuminated by 500 W halogen lamp. Deposition time was 10-15 min. The phase composition and structure of the deposited films were determined by XRD-method, the average sizes of the crystalline grains in the films were estimated using Debye-Scherer formula. The transmittance spectra of the samples were measured by double beam spectrophotometer in the spectral range of 0.6-1.1 μm. Surface morphology of the films was researched by scanning electron microscopy. By means of analysis of the

  7. THE C-FLAME QUENCHING BY CONVECTIVE BOUNDARY MIXING IN SUPER-AGB STARS AND THE FORMATION OF HYBRID C/O/Ne WHITE DWARFS AND SN PROGENITORS

    Energy Technology Data Exchange (ETDEWEB)

    Denissenkov, P. A.; Herwig, F. [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, BC V8W 3P6 (Canada); Truran, J. W. [The Joint Institute for Nuclear Astrophysics, Notre Dame, IN 46556 (United States); Paxton, B., E-mail: pavelden@uvic.ca, E-mail: fherwig@uvic.ca [Kavli Institute for Theoretical Physics and Department of Physics, Kohn Hall, University of California, Santa Barbara, CA 93106 (United States)

    2013-07-20

    After off-center C ignition in the cores of super asymptotic giant branch (SAGB) stars, the C flame propagates all the way down to the center, trailing behind it the C-shell convective zone, and thus building a degenerate ONe core. This standard picture is obtained in stellar evolution simulations if the bottom C-shell convection boundary is assumed to be a discontinuity associated with a strict interpretation of the Schwarzschild condition for convective instability. However, this boundary is prone to additional mixing processes, such as thermohaline convection and convective boundary mixing. Using hydrodynamic simulations, we show that contrary to previous results, thermohaline mixing is too inefficient to interfere with the C-flame propagation. However, even a small amount of convective boundary mixing removes the physical conditions required for the C-flame propagation all the way to the center. This result holds even if we allow for some turbulent heat transport in the CBM region. As a result, SAGB stars build in their interiors hybrid C-O-Ne degenerate cores composed of a relatively large CO core (M{sub CO} Almost-Equal-To 0.2 M{sub Sun }) surrounded by a thick ONe zone ({Delta}M{sub ONe} {approx}> 0.85 M{sub Sun }) with another thin CO layer above. If exposed by mass loss, these cores will become hybrid C-O-Ne white dwarfs. Otherwise, the ignition of C-rich material in the central core, surrounded by the thick ONe zone, may trigger a thermonuclear supernova (SN) explosion. The quenching of the C-flame may have implications for the ignition mechanism of SN Ia in the double-degenerate merger scenario.

  8. Thermohaline instability and rotation-induced mixing in low and intermediate mass stars: Consequences on global asteroseismic quantities

    Directory of Open Access Journals (Sweden)

    Ekström S.

    2013-03-01

    Full Text Available Thermohaline mixing has been recently identified as the probable dominating process that governs the photospheric composition of low-mass bright red giant stars. Here, we present the predictions of stellar models computed with the code STAREVOL including this process together with rotational mixing. We compare our theoretical predictions with recent observations, and discuss the effects of both mechanisms on asteroseismic diagnostics.

  9. Energetics analysis of interstitial loops in single-phase concentrated solid-solution alloys

    Science.gov (United States)

    Wang, Xin-Xin; Niu, Liang-Liang; Wang, Shaoqing

    2018-04-01

    Systematic energetics analysis on the shape preference, relative stability and radiation-induced segregation of interstitial loops in nickel-containing single-phase concentrated solid-solution alloys have been conducted using atomistic simulations. It is shown that the perfect loops prefer rhombus shape for its low potential energy, while the Frank faulted loops favor ellipse for its low potential energy and the possible large configurational entropy. The decrease of stacking fault energy with increasing compositional complexity provides the energetic driving force for the formation of faulted loops, which, in conjunction with the kinetic factors, explains the experimental observation that the fraction of faulted loops rises with increasing compositional complexity. Notably, the kinetics is primarily responsible for the absence of faulted loops in nickel-cobalt with a very low stacking fault energy. We further demonstrate that the simultaneous nickel enrichment and iron/chromium depletion on interstitial loops can be fully accounted for by their energetics.

  10. On Thermodynamics Problems in the Single-Phase-Lagging Heat Conduction Model

    Directory of Open Access Journals (Sweden)

    Shu-Nan Li

    2016-11-01

    Full Text Available Thermodynamics problems for the single-phase-lagging (SPL model have not been much studied. In this paper, the violation of the second law of thermodynamics by the SPL model is studied from two perspectives, which are the negative entropy production rate and breaking equilibrium spontaneously. The methods for the SPL model to avoid the negative entropy production rate are proposed, which are extended irreversible thermodynamics and the thermal relaxation time. Modifying the entropy production rate positive or zero is not enough to avoid the violation of the second law of thermodynamics for the SPL model, because the SPL model could cause breaking equilibrium spontaneously in some special circumstances. As comparison, it is shown that Fourier’s law and the CV model cannot break equilibrium spontaneously by analyzing mathematical energy integral.

  11. Single-Phase Microgrid with Seamless Transition Capabilities between Modes of Operation

    DEFF Research Database (Denmark)

    Micallef, Alexander; Apap, Maurice; Spiteri-Staines, Cyril

    2015-01-01

    Microgrids are an effective way to increase the penetration of DG into the grid. They are capable of operating either in grid-connected or in islanded mode thereby increasing the supply reliability for the end user. This paper focuses on achieving seamless transitions from islanded to grid......-connected and vice versa for a single phase microgrid made up from voltage controlled voltage source inverters (VC-VSIs) and current controlled voltage source inverters (CC-VSIs) working together in both modes of operation. The primary control structures for the VC-VSIs and CC-VSIs is considered together...... with the secondary control loops that are used to synchronize the microgrid as a single unit to the grid. Simulation results are given that show the seamless transitions between the two modes without any disconnection times for the CC-VSIs and VC-VSIs connected to the microgrid....

  12. Single-phase pump model for analysis of LMFBR heat transport systems

    International Nuclear Information System (INIS)

    Madni, I.K.; Cazzoli, E.

    1978-05-01

    A single-phase pump model for transient and steady-state analysis of LMFBR heat transport systems is presented. Fundamental equations of the model are angular momentum balance to determine transient impeller speed and mass balance (including thermal expansion effects) to determine the level of sodium in the pump tank. Pump characteristics are modeled by homologous head and torque relations. All regions of pump operation are represented with reverse rotation allowed. The model also includes option for enthalpy rise calculations and pony motor operation. During steady state, the pump operating speed is determined by matching required head with total load in the circuit. Calculated transient results are presented for pump coastdown and double-ended pipe break accidents. The report examines the influence of frictional torque and specific speed on predicted response for the pump coastdown to natural circulation transient. The results for a double-ended pipe break accident indicate the necessity of including all regions of operation for pump characteristics

  13. Single-phase sodium pump model for LMFBR thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Madni, I.K.; Cazzoli, E.G.; Agrawal, A.K.

    1979-01-01

    A single-phase, homologous pump model has been developed for simulation of safety-related transients in LMFBR systems. Pump characteristics are modeled by homologous head and torque relations encompassing all regimes of operation. These relations were derived from independent model test results with a centrifugal pump of specific speed equal to 35 (SI units) or 1800 (gpm units), and are used to analyze the steady-state and transient behavior of sodium pumps in a number of LMFBR plants. Characteristic coefficients for the polynomials in all operational regimes are provided in a tabular form. The speed and flow dependence of head is included through solutions of the impeller and coolant dynamic equations. Results show the model to yield excellent agreement with experimental data in sodium for the FFTF prototype pump, and with vendor calculations for the CRBR pump. A sample pipe rupture calculation is also performed to demonstrate the necessity for modeling the complete pump characteristics

  14. Analytical Determining Of The Steinmetz Equivalent Diagram Elements Of Single-Phase Transformer

    Directory of Open Access Journals (Sweden)

    T. Aly Saandy

    2015-08-01

    Full Text Available This article presents to an analytical calculation methodology of the Steinmetz Equivalent Diagram Elements applied to the prediction of Eddy current loss in a single-phase transformer. Based on the electrical circuit theory the active and reactive powers consumed by the core are expressed analytically in function of the electromagnetic parameters as resistivity permeability and the geometrical dimensions of the core. The proposed modeling approach is established with the duality parallel series. The equivalent diagram elements empirically determined by Steinmetz are analytically expressed using the expressions of the no loaded transformer consumptions. To verify the relevance of the model validations both by simulations with different powers and measurements were carried out to determine the resistance and reactance of the core. The obtained results are in good agreement with the theoretical approach and the practical results.

  15. Analytical Modeling Of The Steinmetz Coefficient For Single-Phase Transformer Eddy Current Loss Prediction

    Directory of Open Access Journals (Sweden)

    T. Aly Saandy

    2015-08-01

    Full Text Available Abstract This article presents to an analytical calculation methodology of the Steinmetz coefficient applied to the prediction of Eddy current loss in a single-phase transformer. Based on the electrical circuit theory the active power consumed by the core is expressed analytically in function of the electrical parameters as resistivity and the geometrical dimensions of the core. The proposed modeling approach is established with the duality parallel series. The required coefficient is identified from the empirical Steinmetz data based on the experimented active power expression. To verify the relevance of the model validations both by simulations with two in two different frequencies and measurements were carried out. The obtained results are in good agreement with the theoretical approach and the practical results.

  16. Low voltage ride-through of single-phase transformerless photovoltaic inverters

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede; Wang, Huai

    2013-01-01

    Transformerless photovoltaic (PV) inverters are going to be more widely adopted in order to achieve high efficiency, as the penetration level of PV systems is continuously booming. However, problems may arise in highly PV-integrated distribution systems. For example, a sudden stoppage of all PV...... systems due to anti-islanding protection may trigger grid disturbances. Thus, standards featuring with ancillary services for the next generation PV systems are under a revision in some countries. The future PV systems have to provide a full range of services as what the conventional power plants do, e...... discussed. The selected inverters are the full-bridge inverter with bipolar modulation, full-bridge inverter with DC bypass and the Highly Efficient and Reliable Inverter Concept (HERIC). A 1 kW single-phase grid-connected PV system is analyzed to verify the discussions. The tests confirmed that, although...

  17. Modelling and Simulation of Single-Phase Series Active Compensator for Power Quality Improvement

    Science.gov (United States)

    Verma, Arun Kumar; Mathuria, Kirti; Singh, Bhim; Bhuvaneshwari, G.

    2017-10-01

    A single-phase active series compensator is proposed in this work to reduce harmonic currents at the ac mains and to regulate the dc link voltage of a diode bridge rectifier (DBR) that acts as the front end converter for a voltage source inverter feeding an ac motor. This ac motor drive is used in any of the domestic, commercial or industrial appliances. Under fluctuating ac mains voltages, the dc link voltage of the DBR depicts wide variations and hence the ac motor is used at reduced rating as compared to its name-plate rating. The active series compensator proposed here provides dual functions of improving the power quality at the ac mains and regulating the dc link voltage thus averting the need for derating of the ac motor.

  18. Reactive Power Injection Strategies for Single-Phase Photovoltaic Systems Considering Grid Requirements

    DEFF Research Database (Denmark)

    Yang, Yongheng; Wang, Huai; Blaabjerg, Frede

    2014-01-01

    .g. Germany and Italy. Those advanced features can be provided by next generation PV systems, and will be enhanced in the future to ensure an even efficient and reliable utilization of PV systems. In light of this, Reactive Power Injection (RPI) strategies for single-phase PV systems are explored...... like what the conventional power plants do today in the grid regulation participation. Requirements of ancillary services like Low-Voltage Ride-Through (LVRT) associated with reactive current injection and voltage support through reactive power control, have been in effectiveness in some countries, e...... in this paper. The RPI possibilities are: a) constant average active power control, b) constant active current control, c) constant peak current control and d) thermal optimized control strategy. All those strategies comply with the currently active grid codes, but are with different objectives. The proposed...

  19. Reactive Power Injection Strategies for Single-Phase Photovoltaic Systems Considering Grid Requirements

    DEFF Research Database (Denmark)

    Yang, Yongheng; Wang, Huai; Blaabjerg, Frede

    2014-01-01

    . Those advanced features can be provided by next-generation PV systems, and will be enhanced in the future to ensure an even efficient and reliable utilization of PV systems. In the light of this, Reactive Power Injection (RPI) strategies for single-phase PV systems are explored in this paper. The RPI...... like what the conventional power plants do today in the grid regulation participation. Requirements of ancillary services like Low-Voltage Ride-Through (LVRT) associated with reactive current injection and voltage support through reactive power control, have been in effectiveness in some countries...... possibilities are: a) constant average active power control, b) constant active current control, c) constant peak current control and d) thermal optimized control strategy. All those strategies comply with the currently active grid codes, but are with different objectives. The thermal optimized control strategy...

  20. Abrasion resistance, microhardness and microstructures of single-phase niobium nitride films

    International Nuclear Information System (INIS)

    Singer, I.L.; Bolster, R.N.; Wolf, S.A.; Skelton, E.F.; Jeffries, R.A.

    1983-01-01

    The relative abrasive wear resistance of single-phase niobium nitride films deposited at 900 and 500 0 C was measured. Wear resistance versus depth profiles of films abraded against 1-5 μm diamond were obtained by weight loss methods. A β phase Nb 2 N film was five to 20 times more abrasion resistant, but only slightly (40%) harder, than the delta phase NbN films made at the same temperature. The β-Nb 2 N film was deformed plastically during wear, reorienting the [002] c axis perpendicular to the plane of the substrate. The abrasion resistance of the delta-NbN films was initially proportional to the microhardness. Two films had changes in their abrasion resistance as wear proceeded: for one film the change was attributable to deviations in stoichiometry and for the other film it was attributable to increased lattice distortion. (Auth.)

  1. Influence of modulation method on using LC-traps with single-phase voltage source converters

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Min, Huang; Bai, Haofeng

    2015-01-01

    The switching-frequency LC-trap filter has recently been employed with high-order passive filters for Voltage Source Inverters (VSIs). This paper investigates the influence of modulation method on using the LC-traps with single-phase VSIs. Two-level (bipolar) and three-level (unipolar) modulations...... that include phase distortion and alternative phase opposition distortion methods are analyzed. Harmonic filtering performances of four LC-trap-based filters with different locations of LC-traps are compared. It is shown that the use of parallel-LC-traps in series with filter inductors, either grid...... or converter side, has a worse harmonic filtering performance than using series-LC-trap in the shunt branch. Simulations and experimental results are presented for verifications....

  2. Condition monitoring of shaft of single-phase induction motor using optical sensor

    Science.gov (United States)

    Fulzele, Asmita G.; Arajpure, V. G.; Holay, P. P.; Patil, N. M.

    2012-05-01

    Transmission type of optical technique is developed to sense the condition of rotating shafts from a distance. A parallel laser beam is passed tangential over the surface of rotating shaft of a single phase induction motor and its flickering shadow is received on a photo sensor. Variations in sensor voltage output are observed on a digital storage oscilloscope. It is demonstrated that this signal carries information about shaft defects like miss alignment, play and impacts in bearings along with surface deformities. Mathematical model of signals corresponding to these shaft defects is developed. During the development and testing of the sensor, effects of reflections are investigated, sensing phenomenon is simulated, frequency response of the sensor is obtained and its performance is compared with conventional accelerometer.

  3. POD-Galerkin Model for Incompressible Single-Phase Flow in Porous Media

    KAUST Repository

    Wang, Yi

    2017-01-25

    Fast prediction modeling via proper orthogonal decomposition method combined with Galerkin projection is applied to incompressible single-phase fluid flow in porous media. Cases for different configurations of porous media, boundary conditions and problem scales are designed to examine the fidelity and robustness of the model. High precision (relative deviation 1.0 x 10(-4)% similar to 2.3 x 10(-1)%) and large acceleration (speed-up 880 similar to 98454 times) of POD model are found in these cases. Moreover, the computational time of POD model is quite insensitive to the complexity of problems. These results indicate POD model is especially suitable for large-scale complex problems in engineering.

  4. Broadband single-phase hyperbolic elastic metamaterials for super-resolution imaging.

    Science.gov (United States)

    Dong, Hao-Wen; Zhao, Sheng-Dong; Wang, Yue-Sheng; Zhang, Chuanzeng

    2018-02-02

    Hyperbolic metamaterials, the highly anisotropic subwavelength media, immensely widen the engineering feasibilities for wave manipulation. However, limited by the empirical structural topologies, the reported hyperbolic elastic metamaterials (HEMMs) suffer from the limitations of the relatively narrow frequency width, inflexible adjustable operating subwavelength scale and difficulty to further improve the imaging resolution. Here, we show an inverse-design strategy for HEMMs by topology optimization. We design broadband single-phase HEMMs supporting multipolar resonances at different prescribed deep-subwavelength scales, and demonstrate the super-resolution imaging for longitudinal waves. Benefiting from the extreme enhancement of the evanescent waves, an optimized HEMM at an ultra-low frequency can yield an imaging resolution of ~λ/64, representing the record in the field of elastic metamaterials. The present research provides a novel and general design methodology for exploring the HEMMs with unrevealed mechanisms and guides the ultrasonography and general biomedical applications.

  5. Pressure drop characteristics of single-phase flow in vertical rolling pipes

    International Nuclear Information System (INIS)

    Cao Xiaxin; Yan Changqi; Sun Licheng; Sun Zhongning

    2007-01-01

    Experimental studies of single-phase pressure drop in rolling pipes were carried out. The inside diameters of three pipes which were fixed on the rolling platform were 15 mm, 25 mm, and 34.5 mm respectively, the rolling periods of the rolling platform could be set as 5s, 10s, 15s, and rolling angles of the rolling platform were 10 degree and 20 degree. The experimental results showed that the frictional factor periodically fluctuated with the time variable, and its amplitude was obviously affected by the change of Reynolds number and pipe diameters. The amplitude and average value of frictional factor both decreased with the increase of Re number, but the bigger the tube diameter was, the larger the amplitude of frictional factor was. At any moment, the transient frictional factor increased with the increase of rolling period. However, the effect of changing rolling angles on the frictional factor was not obvious. (authors)

  6. Green synthesis of isopropyl myristate in novel single phase medium Part I: Batch optimization studies.

    Science.gov (United States)

    Vadgama, Rajeshkumar N; Odaneth, Annamma A; Lali, Arvind M

    2015-12-01

    Isopropyl myristate finds many applications in food, cosmetic and pharmaceutical industries as an emollient, thickening agent, or lubricant. Using a homogeneous reaction phase, non-specific lipase derived from Candida antartica, marketed as Novozym 435, was determined to be most suitable for the enzymatic synthesis of isopropyl myristate. The high molar ratio of alcohol to acid creates novel single phase medium which overcomes mass transfer effects and facilitates downstream processing. The effect of various reaction parameters was optimized to obtain a high yield of isopropyl myristate. Effect of temperature, agitation speed, organic solvent, biocatalyst loading and batch operational stability of the enzyme was systematically studied. The conversion of 87.65% was obtained when the molar ratio of isopropyl alcohol to myristic acid (15:1) was used with 4% (w/w) catalyst loading and agitation speed of 150 rpm at 60 °C. The enzyme has also shown good batch operational stability under optimized conditions.

  7. Rotor Design for an Efficient Single-Phase Induction Motor for Refrigerator Compressors

    Directory of Open Access Journals (Sweden)

    Hyun-Jin Ahn

    2016-03-01

    Full Text Available This article describes a rotor making technology for the production of high-efficiency single-phase induction motors (SPIMs to be used in refrigerator compressors. Rotors can have different aluminum fill factors according to the fabrication method. In order to examine the association between the fill factor and the efficiency of the rotor, we analyzed the distribution of magnetic flux density using the finite element method (FEM. Next, we made prototype rotors by conventional casting methods and by the proposed casting method and compared their fill factors. In addition, SPIMs were made using the rotors, and their efficiencies were measured using a dynamometer. Moreover, the SPIMs were put to use in a compressor, for testing, and for each SPIM the refrigerating capacity of the compressor was measured with a calorimeter. Based on the results of the FEM analysis of the magnetic flux density and the experiments, the reliability and validity of the proposed method were proven.

  8. Control of single-phase islanded PV/battery minigrids based on power-line signaling

    DEFF Research Database (Denmark)

    Quintana, Pablo; Guerrero, Josep M.; Dragicevic, Tomislav

    2014-01-01

    Power regulation of all converter units in a micro-grid should not be only determined by load demand, but also by the available power of each unit, i.e. a converter fed by a battery. Energy management control is essential in order to handle the variety of prime movers which may include different...... should be utilized as efficiently as possible. This paper proposes a coordinated control strategy based on power-line signaling (PLS), instead of common communications, for a single-phase minigrid in which each unit can operate in different operation modes taking into account the resource limitation....... The whole system is explained ahead and finally, Hardware in the loop results obtained with a dSPACE are presented in order to validate the proposed control strategy....

  9. Reliability assessment of single-phase grid-connected PV microinverters considering mission profile and uncertainties

    DEFF Research Database (Denmark)

    Zare, Mohammad Hadi; Mohamadian, Mustafa; Wang, Huai

    2017-01-01

    Microinverters usually connect a PV panel to a Single-phase power grid. In such system, the input power is constant while the output power oscillates twice the line frequency. Thus, the input and output power differences should be stored in a storage component, which is typically an electrolytic...... capacitor. However, electrolytic capacitors are usually blamed for their short lifetime. Recently, some active power decoupling methods are introduced in the literature which can takes advantage of high reliable film capacitors. However, some extra switches and diodes are added to the microinverter which...... can influence the microinverter lifetime. This paper investigates the microinverter reliability according to mission profile where it is installed. To get more accurate results, uncertainties in both lifetime model and manufacturing process are considered. The effect of ambient temperature and solar...

  10. Decoupling of fluctuating power in single-phase systems through a symmetrical half-bridge circuit

    DEFF Research Database (Denmark)

    Tang, Yi; Blaabjerg, Frede; Loh, Poh Chiang

    2014-01-01

    Single-phase AC/DC or DC/AC systems inherently subject to harmonic disturbance which is caused by the well-known double line frequency ripple power. This issue can be eased through the installation of bulky electrolytic capacitors in the dc-link, but such passive filtering approach may inevitably...... or film capacitors to store the ripple power, and this again leads to increased component costs. In view of this, this paper presents a symmetrical half-bridge circuit which utilizes the dc-link capacitors to absorb the ripple power, and the only additional components are a pair of switches and a small...... filtering inductor. A design example is presented and the proposed circuit concept is also verified with simulation and experimental results. It shows that at least ten times capacitance reduction can be achieved with the proposed active power decoupling method, which proves its effectiveness....

  11. Pattern formation in single-phase FAC. A stability analysis of an oxide layer

    Energy Technology Data Exchange (ETDEWEB)

    Zinemanas, Daniel [The Israel Electric Corp., Haifa (Israel). Dept. of Chemistry; Herszage, Amiel [The Israel Electric Corp., Haifa (Israel). Dept. of Energy Technologies Development

    2013-03-15

    Pattern formation is a salient characteristic of the flow-accelerated corrosion process, particularly in single-phase flow, where a typical ''orange peel'' surface texture is normally formed. The process of such pattern formation is, however, not well understood. In order to gain some insight into the role of the various processes and parameters involved in this process, a linear stability analysis of an oxide layer based on the Sanchez-Caldera model was performed. According to the results obtained in this study, it follows that the oxide layer is stable regarding perturbations of the oxide thickness or the reaction constant, but it is unstable in respect to perturbations of the mass transfer coefficient. These results suggest therefore that the flow, and not local surface in homogeneities, plays a central role in the pattern formation process. (orig.)

  12. Realization of single-phase single-stage grid-connected PV system

    Directory of Open Access Journals (Sweden)

    Osama M. Arafa

    2017-05-01

    Full Text Available This paper presents a single phase single stage grid-tied PV system. Grid angle detection is introduced to allow operation at any arbitrary power factor but unity power factor is chosen to utilize the full inverter capacity. The system ensures MPPT using the incremental conductance method and it can track the changes in insolation level without oscillations. A PI voltage controller and a dead-beat current controller are used to ensure high quality injected current to the grid. The paper investigates the system structure and performance through numerical simulation using Matlab/Simulink. An experimental setup controlled by the MicrolabBox DSP prototyping platform is utilized to realize the system and study its performance. The precautions for smooth and safe system operation including the startup sequence are fully considered in the implementation.

  13. Adaptive fuzzy sliding control of single-phase PV grid-connected inverter.

    Directory of Open Access Journals (Sweden)

    Juntao Fei

    Full Text Available In this paper, an adaptive fuzzy sliding mode controller is proposed to control a two-stage single-phase photovoltaic (PV grid-connected inverter. Two key technologies are discussed in the presented PV system. An incremental conductance method with adaptive step is adopted to track the maximum power point (MPP by controlling the duty cycle of the controllable power switch of the boost DC-DC converter. An adaptive fuzzy sliding mode controller with an integral sliding surface is developed for the grid-connected inverter where a fuzzy system is used to approach the upper bound of the system nonlinearities. The proposed strategy has strong robustness for the sliding mode control can be designed independently and disturbances can be adaptively compensated. Simulation results of a PV grid-connected system verify the effectiveness of the proposed method, demonstrating the satisfactory robustness and performance.

  14. Rapid synthesis of single-phase bismuth ferrite by microwave-assisted hydrothermal method

    International Nuclear Information System (INIS)

    Cao, Wenqian; Chen, Zhi; Gao, Tong; Zhou, Dantong; Leng, Xiaonan; Niu, Feng; Zhu, Yuxiang; Qin, Laishun; Wang, Jiangying; Huang, Yuexiang

    2016-01-01

    This paper describes on the fast synthesis of bismuth ferrite by the simple microwave-assisted hydrothermal method. The phase transformation and the preferred growth facets during the synthetic process have been investigated by X-ray diffraction. Bismuth ferrite can be quickly prepared by microwave hydrothermal method by simply controlling the reaction time, which is further confirmed by Fourier Transform infrared spectroscopy and magnetic measurement. - Graphical abstract: Single-phase BiFeO 3 could be realized at a shortest reaction time of 65 min. The reaction time has strong influences on the phase transformation and the preferred growth facets. - Highlights: • Rapid synthesis (65 min) of BiFeO 3 by microwave-assisted hydrothermal method. • Reaction time has influence on the purity and preferred growth facets. • FTIR and magnetic measurement further confirm the pure phase.

  15. S4 Grid-Connected Single-Phase Transformerless Inverter for PV Application

    DEFF Research Database (Denmark)

    Ardashir, Jaber Fallah; Siwakoti, Yam Prasad; Sabahi, Mehran

    2016-01-01

    This paper introduces a new single-phase transformerless inverter for grid-connected photovoltaic systems with low leakage current. It consists of four power switches, two diodes, two capacitors and a filter at the output stage. The neutral of the grid is directly connected to the negative terminal...... of the PV source. This results in a constant common-mode voltage and almost zero leakage current. A unipolar Sinusoidal Pulse-Width Modulation (SPWM) technique is used to modulate the inverter to reduce the output current ripple and the filter requirements. The main advantages of this inverter are compact...... clearly verify the performance of the proposed inverter and its practical application for grid-connected PV systems....

  16. Modelling of the modified-LLCL-filter-based single-phase grid-tied Aalborg inverter

    DEFF Research Database (Denmark)

    Liu, Zifa; Wu, Huiyun; Liu, Yuan

    2017-01-01

    Owing to less conduction and switching power losses, the recently proposed Aalborg inverter has high efficiency within a wide range of input DC voltage for single-phase DC/AC power conversion. In theory, the conduction power losses can be further decreased, if an LLCL-filter is adopted instead....... In this study, the small signal analysis for the modified-LLCL-filter-based Aalborg inverter is addressed. Through the modelling, it can be proven that compared with the LCL-filter, the modified-LLCL-filter causes no extra control challenge for the Aalborg inverter, and therefore more inductance in the power...... of an LCL-filter for a voltage source inverter, mainly due to the reduced inductance. The Aalborg inverter shows the characteristic of a current source inverter, when working in the `boost' state. Whether the LLCL-filter can meet the control requirement of this type inverter needs to be further explored...

  17. Compact ASD Topologies for Single-Phase Integrated Motor Drives with Sinusoidal Input Current

    DEFF Research Database (Denmark)

    Klumpner, Christian; Blaabjerg, Frede; Thoegersen, Paul

    2005-01-01

    A standard configuration of an Adjustable Speed Drive (ASD) consists of two separate units: an AC motor, which runs with fixed speed when it is supplied from a constant frequency grid voltage and a frequency converter, which is used to provide the motor with variable voltage-variable frequency......-density integration of the converter caused by the large size of the passive components (electrolytic capacitors and iron chokes) and vibration of the converter enclosure. This paper analyzes the implementation aspects for obtaining a compact and cost effective single-phase ASD with sinusoidal input current...... for high frequency operation, higher core losses will occur, but outside the converter enclosure. The advantages are: the reduction of the number of active semiconductor devices, the reduction of the ASD size and the better integration potential....

  18. A Rotor Flux and Speed Observer for Sensorless Single-Phase Induction Motor Applications

    Directory of Open Access Journals (Sweden)

    Massimo Caruso

    2012-01-01

    Full Text Available It is usual to find single-phase induction motor (SPIM in several house, office, shopping, farm, and industry applications, which are become each time more sophisticated and requiring the development of efficient alternatives to improve the operational performance of this machine. Although the rotor flux and rotational speed are essential variables in order to optimize the operation of a SPIM, the use of conventional sensors to measure them is not a viable option. Thus, the adoption of sensorless strategies is the more reasonable proposal for these cases. This paper presents a rotor flux and rotational speed observer for sensorless applications involving SPIMs. Computer simulations and the experimental results are used to verify the performance of the proposed observer.

  19. Factors that affect the calibration of turbines in single-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Piper, T. C.

    1977-05-01

    Basic turbine operation in single-phase flow is related. Causes and relative magnitudes of retarding torque are given for two sizes of turbines when used for water flow measurement. An equation for slip caused by retarding torques is given. Evaluation of turbine slip behavior at the turbine low flow region shows that bearing retarding torques, change in flow patterns, or other effects can predominate in the relatively large changes in the calibration ''constant'' that occurs there. Fluid lubricity is singled out as an important fluid property in certain types of bearings and flow. Temperature induced changes in turbine size are shown to cause calibration changes if a turbine is used at a temperature significantly different than that at which it was calibrated.

  20. Factors that affect the calibration of turbines in single-phase flow

    International Nuclear Information System (INIS)

    Piper, T.C.

    1977-05-01

    Basic turbine operation in single-phase flow is related. Causes and relative magnitudes of retarding torque are given for two sizes of turbines when used for water flow measurement. An equation for slip caused by retarding torques is given. Evaluation of turbine slip behavior at the turbine low flow region shows that bearing retarding torques, change in flow patterns, or other effects can predominate in the relatively large changes in the calibration ''constant'' that occurs there. Fluid lubricity is singled out as an important fluid property in certain types of bearings and flow. Temperature induced changes in turbine size are shown to cause calibration changes if a turbine is used at a temperature significantly different than that at which it was calibrated

  1. Single-phase pressure-drop measurements over low void reactivity fuel

    International Nuclear Information System (INIS)

    Senaratne, U.P.M.; Leung, L.K.H.; Doria, F.J.; Lau, J.H.

    2006-01-01

    An experiment has been performed to obtain pressure-drop measurements over Low Reactivity Fuel (LVRF) bundles in Refrigerant-134a flow. Production LVRF bundles inserted into the test station with either an uncrept or a 5.1% crept flow channel. For comparison purposes, several production Bruce 37-element bundles were also included in the test string. Overall, the single-phase pressure drop of the LVRF bundle is slightly higher than that Bruce 37-element bundle. Pressure-drop measurements were used to derive bundle and loss coefficients for hydraulic calculations in safety analyses. Applying these loss coefficients, an assessment showed that the overall pressure drop over a string of 12 LVRF bundles (after conversion) remains less than that over a string of 13 Bruce 37-element fuel bundles (before conversion) at the Bruce Nuclear Generating Station. (author)

  2. Calculation of single phase AC and monopolar DC hybrid corona effects

    International Nuclear Information System (INIS)

    Zhao, T.; Sebo, S.A.; Kasten, D.G.

    1996-01-01

    Operating a hybrid HVac and HVdc line is an option for increasing the efficiency of power transmission and overcoming the difficulties in obtaining a new right-of-way. This paper proposes a new calculation method for the study of hybrid line corona. The proposed method can be used to calculate dc corona losses and corona currents in dc or ac conductors for single phase ac and monopolar dc hybrid lines. Profiles of electric field strength and ion current density at ground level can be estimated. The effects of the presence of an energized ac conductor on dc conductor corona and dc voltage on ac conductor corona are included in the method. Full-scale and reduced-scale experiments were utilized to investigate the hybrid line corona effects. Verification of the proposed calculation method is given

  3. Hybrid Three-Phase/Single-Phase Microgrid Architecture with Power Management Capabilities

    DEFF Research Database (Denmark)

    Sun, Qiuye; Zhou, Jianguo; Guerrero, Josep M.

    2015-01-01

    With the fast proliferation of single-phase distributed generation (DG) units and loads integrated into residential microgrids, independent power sharing per phase and full use of the energy generated by DGs have become crucial. To address these issues, this paper proposes a hybrid microgrid...... control of load power sharing among phases, as well as to allow fully utilization of the energy generated by DGs. Meanwhile, the method combining the modified adaptive backstepping-sliding mode control approach and droop control is also proposed to design the SPBTB system controllers. With the application...... of the proposed PSU and its power management strategy, the loads among different phases can be properly supplied and the energy can be fully utilized as well as obtaining better load sharing. Simulation and experimental results are provided to demonstrate the validity of the proposed hybrid microgrid structure...

  4. Comparative study of Nusselt number for a single phase fluid flow using plate heat exchanger

    Directory of Open Access Journals (Sweden)

    Shanmugam Rajasekaran

    2016-01-01

    Full Text Available In this study, the plate heat exchangers are used for various applications in the industries for heat exchange process such as heating, cooling and condensation. The performance of plate heat exchanger depends on many factors such as flow arrangements, plate design, chevron angle, enlargement factor, type of fluid used, etc. The various Nusselt number correlations are developed by considering that the water as a working fluid. The main objective of the present work is to design the experimental set-up for a single phase fluid flow using plate heat exchanger and studied the heat transfer performance. The experiments are carried out for various Reynolds number between 500 and 2200, the heat transfer coefficients are estimated. Based on the experimental results the new correlation is developed for Nusselt number and compared with an existing correlation.

  5. Scaling analysis for the ocean motions in single phase natural circulation

    International Nuclear Information System (INIS)

    Yan, B.H.; Wen, Q.L.

    2015-01-01

    Highlights: • The scaling criteria for ocean motions are obtained. • The optimization and selection of the scaling criteria is also analyzed. • The oscillating period in experiments is determined by the time scale. - Abstract: The effects of ocean motions should be analyzed properly in order to guarantee the safety margin of facilities in the engineering design of floating nuclear reactor system. The scaling analysis for the ocean motions in single phase natural circulation is performed. The scaling criteria for both single ocean motions and compound ocean motions are obtained. The selection and optimization of scaling criteria is also analyzed. The oscillating amplitude in experiments should be kept to be identical to that in actual ocean motions. The oscillating period is determined by the time scale. The length scale, oscillating period and experimental power should be taken into consideration synthetically to obtain a reasonable experimental period

  6. Harmonics Suppression for Single-Phase Grid-Connected Photovoltaic Systems in Different Operation Modes

    DEFF Research Database (Denmark)

    Yang, Yongheng; Zhou, Keliang; Blaabjerg, Frede

    2013-01-01

    -connected PV inverters may be severely affected in different operation modes. In this paper, a detailed analysis is conducted to reveal the relationship between the harmonics level with the power factor and the current level in the PV systems. A current control solution which employs an Internal Model...... Principle (IMP) is proposed to suppress the harmonic currents injected into the grid. Experiments are carried out to verify the analysis and the performance of the proposed control method. It is demonstrated that the proposed method presents an effective solution to harmonics suppression for single......-phase grid-connected PV systems in different operation modes. Especially, it can remove higher order harmonics effectively leading to a better power quality compared to the Proportional plus Multi-Resonant Controller, and it has less computational burden....

  7. Time domain spectral phase encoding/DPSK data modulation using single phase modulator for OCDMA application.

    Science.gov (United States)

    Wang, Xu; Gao, Zhensen; Kataoka, Nobuyuki; Wada, Naoya

    2010-05-10

    A novel scheme using single phase modulator for simultaneous time domain spectral phase encoding (SPE) signal generation and DPSK data modulation is proposed and experimentally demonstrated. Array- Waveguide-Grating and Variable-Bandwidth-Spectrum-Shaper based devices can be used for decoding the signal directly in spectral domain. The effects of fiber dispersion, light pulse width and timing error on the coding performance have been investigated by simulation and verified in experiment. In the experiment, SPE signal with 8-chip, 20GHz/chip optical code patterns has been generated and modulated with 2.5 Gbps DPSK data using single modulator. Transmission of the 2.5 Gbps data over 34km fiber with BEROCDMA) and secure optical communication applications. (c) 2010 Optical Society of America.

  8. Simulation of the remanence influence on the transient states in a single-phase multiwinding transformer

    Directory of Open Access Journals (Sweden)

    Wilk Andrzej

    2017-03-01

    Full Text Available This paper presents the mathematical model of a single-phase multi-winding core type transformer taking into account magnetic hysteresis phenomenon based on the feedback Preisach model (FPM. The set of loop differential equations was developed for a K-th winding transformer model where the flux linkages of each winding includes flux Φ common to all windings as a function of magneto motive force Θ of all windings. The first purpose of this paper is to implement a hysteresis nonlinearity involved in the Φ(Θ function which also accounts residual magnetic flux. The second purpose of this paper is experimental validation of the developed transformer model in a capacitor discharge test and several different values of residual magnetic flux.

  9. Adaptive fuzzy sliding control of single-phase PV grid-connected inverter.

    Science.gov (United States)

    Fei, Juntao; Zhu, Yunkai

    2017-01-01

    In this paper, an adaptive fuzzy sliding mode controller is proposed to control a two-stage single-phase photovoltaic (PV) grid-connected inverter. Two key technologies are discussed in the presented PV system. An incremental conductance method with adaptive step is adopted to track the maximum power point (MPP) by controlling the duty cycle of the controllable power switch of the boost DC-DC converter. An adaptive fuzzy sliding mode controller with an integral sliding surface is developed for the grid-connected inverter where a fuzzy system is used to approach the upper bound of the system nonlinearities. The proposed strategy has strong robustness for the sliding mode control can be designed independently and disturbances can be adaptively compensated. Simulation results of a PV grid-connected system verify the effectiveness of the proposed method, demonstrating the satisfactory robustness and performance.

  10. A Robust DC-Split-Capacitor Power Decoupling Scheme for Single-Phase Converter

    DEFF Research Database (Denmark)

    Yao, Wenli; Loh, Poh Chiang; Tang, Yi

    2017-01-01

    , instead of the usual single dc-link capacitor bank. Methods for regulating this power decoupler have earlier been developed, but almost always with equal capacitances assumed for forming the dc-split capacitor, even though it is not realistic in practice. The assumption should, hence, be evaluated more......Instead of bulky electrolytic capacitors, active power decoupling circuit can be introduced to a single-phase converter for diverting second harmonic ripple away from its dc source or load. One possible circuit consists of a half-bridge and two capacitors in series for forming a dc-split capacitor...... thoroughly, especially when it is shown in the paper that even a slight mismatch can render the power decoupling scheme ineffective and the IEEE 1547 standard to be breached. A more robust compensation scheme is, thus, needed for the dc-split capacitor circuit, as proposed and tested experimentally...

  11. Zero-voltage ride-through capability of single-phase grid-connected photovoltaic systems

    DEFF Research Database (Denmark)

    Zhang, Zhen; Yang, Yongheng; Ma, Ruiqing

    2017-01-01

    Distributed renewable energy systems play an increasing role in today’s energy paradigm. Thus, intensive research activities have been centered on improving the performance of renewable energy systems, including photovoltaic (PV) systems, which should be of multiple-functionality. That is, the PV...... systems should be more intelligent in the consideration of grid stability, reliability, and fault protection. Therefore, in this paper, the performance of single-phase grid-connected PV systems under an extreme grid fault (i.e., when the grid voltage dips to zero) is explored. It has been revealed...... that combining a fast and accurate synchronization mechanism with appropriate control strategies for the zero-voltage ride-through (ZVRT) operation is mandatory. Accordingly, the representative synchronization techniques (i.e., the phase-locked loop (PLL) methods) in the ZVRT operation are compared in terms...

  12. A unified active damping control for single-phase differential buck inverter with LCL-filter

    DEFF Research Database (Denmark)

    Yao, Wenli; Wang, Xiongfei; Zhang, Xiaobin

    2015-01-01

    and control of a grid-connected differential mode buck inverter with an LCL filter. A generalized small-signal model of the inverter is built first with the averaged switching model. It is shown that the LCL filter resonance merely occurs in the differential mode, while an LC filter resonance exists......The single-phase differential mode buck inverter is recently introduced with a differential mode for power transfer and a common mode for actively decoupling the second-order power oscillation. However, it is limited to islanded applications with an LC filter. This paper addresses the stability...... in the common mode, provided that the filter parameters of the two bridges are kept the same. A unified active damping control approach is then proposed for stabilizing the inverter and improving the transient performance under a wide range of grid impedance. Lastly, experimental tests are carried out...

  13. Single-phase dual-energy CT urography in the evaluation of haematuria.

    Science.gov (United States)

    Ascenti, G; Mileto, A; Gaeta, M; Blandino, A; Mazziotti, S; Scribano, E

    2013-02-01

    To assess the value of a single-phase dual-energy computed tomography (DECT) urography protocol with synchronous nephrographic-excretory phase enhancement and to calculate the potential dose reduction by omitting the unenhanced scan. Eighty-four patients referred for haematuria underwent CT urography using a protocol that included single-energy unenhanced and dual-energy contrast-enhanced with synchronous nephrographic-excretory phase scans. DECT-based images [virtual unenhanced (VUE), weighted average, and colour-coded iodine overlay] were reconstructed. Opacification degree by contrast media of the upper urinary tract, and image quality of virtual unenhanced images were independently evaluated using a four-point scale. The diagnostic accuracy in detecting urothelial tumours on DECT-based images was determined. The dose of a theoretical dual-phase single-energy protocol was obtained by multiplying the effective dose of the unenhanced single-energy acquisition by two. Radiation dose saving by omitting the unenhanced scan was calculated. The degree of opacification was scored as optimal or good in 86.9% of cases (k = 0.72); VUE image quality was excellent or good in 83.3% of cases (k = 0.82). Sensitivity, specificity, positive predictive value, and negative predictive value for urothelial tumours detection were 85.7, 98.6, 92.3, and 97.1%. Omission of the unenhanced scan led to a mean dose reduction of 42.7 ± 5%. Single-phase DECT urography with synchronous nephrographic-excretory phase enhancement represents an accurate "all-in-one'' approach with a radiation dose saving up to 45% compared with a standard dual-phase protocol. Copyright © 2012 The Royal College of Radiologists. All rights reserved.

  14. Single-phase dual-energy CT urography in the evaluation of haematuria

    International Nuclear Information System (INIS)

    Ascenti, G.; Mileto, A.; Gaeta, M.; Blandino, A.; Mazziotti, S.; Scribano, E.

    2013-01-01

    Aim: To assess the value of a single-phase dual-energy computed tomography (DECT) urography protocol with synchronous nephrographic–excretory phase enhancement and to calculate the potential dose reduction by omitting the unenhanced scan. Materials and methods: Eighty-four patients referred for haematuria underwent CT urography using a protocol that included single-energy unenhanced and dual-energy contrast-enhanced with synchronous nephrographic–excretory phase scans. DECT-based images [virtual unenhanced (VUE), weighted average, and colour-coded iodine overlay] were reconstructed. Opacification degree by contrast media of the upper urinary tract, and image quality of virtual unenhanced images were independently evaluated using a four-point scale. The diagnostic accuracy in detecting urothelial tumours on DECT-based images was determined. The dose of a theoretical dual-phase single-energy protocol was obtained by multiplying the effective dose of the unenhanced single-energy acquisition by two. Radiation dose saving by omitting the unenhanced scan was calculated. Results: The degree of opacification was scored as optimal or good in 86.9% of cases (k = 0.72); VUE image quality was excellent or good in 83.3% of cases (k = 0.82). Sensitivity, specificity, positive predictive value, and negative predictive value for urothelial tumours detection were 85.7, 98.6, 92.3, and 97.1%. Omission of the unenhanced scan led to a mean dose reduction of 42.7 ± 5%. Conclusion: Single-phase DECT urography with synchronous nephrographic–excretory phase enhancement represents an accurate “all-in-one’’ approach with a radiation dose saving up to 45% compared with a standard dual-phase protocol.

  15. Multi-scale Modeling of Compressible Single-phase Flow in Porous Media using Molecular Simulation

    KAUST Repository

    Saad, Ahmed Mohamed

    2016-05-01

    In this study, an efficient coupling between Monte Carlo (MC) molecular simulation and Darcy-scale flow in porous media is presented. The cell-centered finite difference method with a non-uniform rectangular mesh were used to discretize the simulation domain and solve the governing equations. To speed up the MC simulations, we implemented a recently developed scheme that quickly generates MC Markov chains out of pre-computed ones, based on the reweighting and reconstruction algorithm. This method astonishingly reduces the required computational time by MC simulations from hours to seconds. In addition, the reweighting and reconstruction scheme, which was originally designed to work with the LJ potential model, is extended to work with a potential model that accounts for the molecular quadrupole moment of fluids with non-spherical molecules such as CO2. The potential model was used to simulate the thermodynamic equilibrium properties for single-phase and two-phase systems using the canonical ensemble and the Gibbs ensemble, respectively. Comparing the simulation results with the experimental data showed that the implemented model has an excellent fit outperforming the standard LJ model. To demonstrate the strength of the proposed coupling in terms of computational time efficiency and numerical accuracy in fluid properties, various numerical experiments covering different compressible single-phase flow scenarios were conducted. The novelty in the introduced scheme is in allowing an efficient coupling of the molecular scale and Darcy scale in reservoir simulators. This leads to an accurate description of the thermodynamic behavior of the simulated reservoir fluids; consequently enhancing the confidence in the flow predictions in porous media.

  16. Effects of rolling on characteristics of single-phase water flow in narrow rectangular ducts

    International Nuclear Information System (INIS)

    Xing Dianchuan; Yan Changqi; Sun Licheng; Xu Chao

    2012-01-01

    Highlights: ► Mass flow rate and friction pressure drop with different pressure head are compared. ► The effect of pressure head on flow fluctuation is considered theoretically. ► Time-mean and real-time friction pressure drop in different rolling motion are studied. ► Rolling motion influences the fluctuation of friction pressure drop in two aspects. ► New correlation for frictional coefficient in rolling motion is achieved. - Abstract: Experimental and theoretical studies of rolling effects on characteristics of single-phase water flow in narrow rectangular ducts are performed under ambient temperature and pressure. Two types of pressure head are supplied by elevate water tank and pump respectively. The results show that the frictional pressure drop under rolling condition fluctuates periodically, with its amplitude decaying as mean Reynolds number increase and the rolling amplitude decrease, while the amplitude is nearly invariable with rolling period. Rolling motion influences the fluctuation amplitude of frictional pressure drop in two aspects, on the one hand, rolling reduced periodical pulsing flow leads to the fluctuation of the frictional pressure drop, on the other hand, additional force acting on fluid near the wall due to the rolling motion makes local frictional resistance oscillate periodically. The mass flow rate oscillates periodically in rolling motion with the pressure head supplied by water tank, while its fluctuation is so weak that could be neglected for the case of the pressure head supplied by pump. An empirical correlation for the frictional coefficient under rolling condition is achieved, and the experimental data is well correlated. A mathematical model is also developed to study the effect of pressure head on mass flow rate fluctuation in rolling motion. The fluctuation amplitude of the mass flow rate decreases rapidly with a higher pressure head. Comparing with the vertical condition, rolling motion nearly has no effects on

  17. Implementing Numerical Experiments Based on the Coupled Model of Atmospheric General Circulation and Thermohaline Ocean One

    Directory of Open Access Journals (Sweden)

    V. P. Parhomenko

    2015-01-01

    Full Text Available The paper presents a realized hydrodynamic three-dimensional global climatic model, which comprises the model blocks of atmospheric general circulation, thermohaline large-scale circulation of the ocean, and sea ice evolution. Before rather strongly aggregated heat-moisturebalance model of the atmosphere for temperature and humidity of a surface layer was used as a model of the atmosphere. The atmospheric general circulation model is significantly more complicated and allows us to describe processes in the atmosphere more adequately. Functioning of a coupled climatic model is considered in conditions of the seasonal cycle of solar radiation.The paper considers a procedure for coupled calculation of the ocean model and atmospheric general circulation model. Synchronization of a number of parameters in both models is necessary for their joint action. In this regard a procedure of two-dimensional interpolation of data defined on the grids of the ocean model and atmosphere model and back is developed. A feature of this task is discrepancy of grid nodes and continental configurations in models. Coupled model-based long-term calculations for more than 400 years have shown its stable work. Calculation results and comparison with observation data are under discussion.The paper shows distribution of mean global atmosphere temperature versus time in stable conditions to demonstrate that there is inter-annual variability of atmosphere temperature at the steady state of a climate system. It presents distribution of temperature difference of the ocean surface from the observations and from the model of the ocean thermohaline circulation for January. Noticeable deviations of temperature are observed near Antarctica. Apparently, it is because of inaccurate calculation of the sea ice distribution in model. The geographical distribution of the ocean surface temperature for January with coupled calculation shows, in general, a zonal uniform structure of isolines

  18. Simulating deep convection with a shallow convection scheme

    Directory of Open Access Journals (Sweden)

    C. Hohenegger

    2011-10-01

    Full Text Available Convective processes profoundly affect the global water and energy balance of our planet but remain a challenge for global climate modeling. Here we develop and investigate the suitability of a unified convection scheme, capable of handling both shallow and deep convection, to simulate cases of tropical oceanic convection, mid-latitude continental convection, and maritime shallow convection. To that aim, we employ large-eddy simulations (LES as a benchmark to test and refine a unified convection scheme implemented in the Single-column Community Atmosphere Model (SCAM. Our approach is motivated by previous cloud-resolving modeling studies, which have documented the gradual transition between shallow and deep convection and its possible importance for the simulated precipitation diurnal cycle.

    Analysis of the LES reveals that differences between shallow and deep convection, regarding cloud-base properties as well as entrainment/detrainment rates, can be related to the evaporation of precipitation. Parameterizing such effects and accordingly modifying the University of Washington shallow convection scheme, it is found that the new unified scheme can represent both shallow and deep convection as well as tropical and mid-latitude continental convection. Compared to the default SCAM version, the new scheme especially improves relative humidity, cloud cover and mass flux profiles. The new unified scheme also removes the well-known too early onset and peak of convective precipitation over mid-latitude continental areas.

  19. Thermohaline structure of an inverse estuary--The Gulf of Kachchh: measurements and model simulations.

    Science.gov (United States)

    Vethamony, P; Babu, M T; Ramanamurty, M V; Saran, A K; Joseph, Antony; Sudheesh, K; Padgaonkar, Rupali S; Jayakumar, S

    2007-06-01

    The Gulf of Kachchh (GoK) is situated in the northeastern Arabian Sea. The presence of several industries along its coastal belt makes GoK a highly sensitive coastal ecosystem. In the present study, an attempt is made for the first time to study GoK thermohaline structure and its variability, based on field measurements and model simulations. Though GoK is considered as a well-mixed system, the study reveals that only the central Gulf is well mixed. Vertical gradients in temperature and salinity fields are noticed in the eastern Gulf, where a cold and high saline tongue is observed in the subsurface layers. Salinity indicates the characteristic feature of an inverse estuary with low values (37.20 psu) near the mouth and high values (>40.0 psu) near the head of the Gulf. The model simulated temperature and salinity fields exhibit semidiurnal oscillations similar to that of field observations. Model results show cold, high saline waters advecting from the east during ebb forming a transition zone, which oscillates with tides. A high salinity tongue is seen in the bottom layer, indicating a westward flowing bottom current. The transient zone acts as an dynamic barrier, and plays a vital role in the pollutant transport.

  20. Was the East Mediterranean deep thermohaline cell weakening during 2006-2009?

    Energy Technology Data Exchange (ETDEWEB)

    Kontoyiannis, H., E-mail: hk@ath.hcmr.gr; Lykoysis, V.

    2011-01-21

    The East Mediterranean deep thermohaline cell is a series of processes that refer to the water sinking during winter at specific locations and the subsequent spreading that fills the deep near-bottom layers of the East Mediterranean with oxygen-rich water masses. These waters tend to preserve the hydrologic characteristics (temperature, salinity, and transparency) of their formation region. Hydrographic sections offshore from Cape Passero (west Ionian Sea) and near the southwest tip of Peloponnisos (east Ionian Sea), in the framework of the deep-neutrino-telescope-related KM3net program, cut through a bottom plume of Adriatic water at {approx}3500 m in the southwest Ionian and a deep vein at {approx}3200 m of Cretan water in the southeast Ionian. In the period 2006-2009, the Adriatic plume, originally characterized by a strong signal of locally higher salinity and oxygen and lower transparency in the near-bottom 500 m, tends to weaken and shrink within the near-bottom {approx}200 m in 2009. This weakening trend may be associated with the relatively warm/mild winters following 2006. It may be typical inter-annual variability or a signature of global warming in which case an expected prolonged continuation can potentially affect the deep oxygen supply.

  1. Increased thermohaline stratification as a possible cause for an ocean anoxic event in the Cretaceous period.

    Science.gov (United States)

    Erbacher, J; Huber, B T; Norris, R D; Markey, M

    2001-01-18

    Ocean anoxic events were periods of high carbon burial that led to drawdown of atmospheric carbon dioxide, lowering of bottom-water oxygen concentrations and, in many cases, significant biological extinction. Most ocean anoxic events are thought to be caused by high productivity and export of carbon from surface waters which is then preserved in organic-rich sediments, known as black shales. But the factors that triggered some of these events remain uncertain. Here we present stable isotope data from a mid-Cretaceous ocean anoxic event that occurred 112 Myr ago, and that point to increased thermohaline stratification as the probable cause. Ocean anoxic event 1b is associated with an increase in surface-water temperatures and runoff that led to decreased bottom-water formation and elevated carbon burial in the restricted basins of the western Tethys and North Atlantic. This event is in many ways similar to that which led to the more recent Plio-Pleistocene Mediterranean sapropels, but the greater geographical extent and longer duration (approximately 46 kyr) of ocean anoxic event 1b suggest that processes leading to such ocean anoxic events in the North Atlantic and western Tethys were able to act over a much larger region, and sequester far more carbon, than any of the Quaternary sapropels.

  2. Loire and Gironde turbid plumes: Characterization and influence on thermohaline properties

    Science.gov (United States)

    Costoya, X.; Fernández-Nóvoa, D.; deCastro, M.; Gómez-Gesteira, M.

    2017-12-01

    Knowledge and predictability of turbid river plumes is of great importance because they modulate the properties of the seawater adjacent to river mouths. The Loire and Gironde Rivers form the most important plumes in the Bay of Biscay, as they provide > 75% of total runoff. The development of the turbid plume under the influence of its main drivers was analyzed using Moderate Resolution Imaging Spectroradiometer satellite data from the period 2003-2015. River discharge was found to be the main driver, followed by wind, which also had an important effect in modulating the turbid plume during periods of high river discharge. Seaward and upwelling favorable winds enhanced the dispersion of plumes on seawater, whereas landward and downwelling favorable winds limited mixing with the adjacent ocean water. The maximum extension of the turbid plume was reached under landward winds. In addition, the spatio-temporal evolution of the East Atlantic pattern and the North Atlantic Oscillation was observed to affect the dynamics of plumes: positive values of both indices favored a greater extension of the plume. Thermohaline properties differed inside and outside the area affected by both rivers. In particular, these rivers maintain winter stratification inside the turbid plume, which results in a different warming ratio when compared with the adjacent ocean.

  3. Numerical modeling of general circulation, thermohaline structure, and residence time in Gorgan Bay, Iran

    Science.gov (United States)

    Ranjbar, Mohammad Hassan; Hadjizadeh Zaker, Nasser

    2018-01-01

    Gorgan Bay is a semi-enclosed basin located in the southeast of the Caspian Sea, Iran. The bay is recognized as a resting place for migratory birds as well as a spawning habitat for native fish. However, apparently, no detailed research on its physical processes has previously been conducted. In this study, a 3D coupled hydrodynamic and solute transport model was used to investigate general circulation, thermohaline structure, and residence time in Gorgan Bay. Model outputs were validated against a set of field observations. Bottom friction and attenuation coefficient of light intensity were tuned in order to achieve optimum agreement with the observations. Results revealed that, due to the interaction between bathymetry and prevailing winds, a barotropic double-gyre circulation, dominating the general circulation, existed during all seasons in Gorgan Bay. Furthermore, temperature and salinity fluctuations in the bay were seasonal, due to the seasonal variability of atmospheric fluxes. Results also indicated that under the prevailing winds, the domain-averaged residence time in Gorgan Bay would be approximately 95 days. The rivers discharging into Gorgan Bay are considered as the main sources of nutrients in the bay. Since their mouths are located in the area with a residence time of over 100 days, Gorgan Bay could be at risk of eutrophication; it is necessary to adopt preventive measures against water quality degradation.

  4. Impacts of Wind Stress Changes on the Global Heat Transport, Baroclinic Instability, and the Thermohaline Circulation

    Directory of Open Access Journals (Sweden)

    Jeferson Prietsch Machado

    2016-01-01

    Full Text Available The wind stress is a measure of momentum transfer due to the relative motion between the atmosphere and the ocean. This study aims to investigate the anomalous pattern of atmospheric and oceanic circulations due to 50% increase in the wind stress over the equatorial region and the Southern Ocean. In this paper we use a coupled climate model of intermediate complexity (SPEEDO. The results show that the intensification of equatorial wind stress causes a decrease in sea surface temperature in the tropical region due to increased upwelling and evaporative cooling. On the other hand, the intensification of wind stress over the Southern Ocean induces a regional increase in the air and sea surface temperatures which in turn leads to a reduction in Antarctic sea ice thickness. This occurs in association with changes in the global thermohaline circulation strengthening the rate of Antarctic Bottom Water formation and a weakening of the North Atlantic Deep Water. Moreover, changes in the Southern Hemisphere thermal gradient lead to modified atmospheric and oceanic heat transports reducing the storm tracks and baroclinic activity.

  5. The role of stochastic forcing on the behavior of thermohaline circulation.

    Science.gov (United States)

    Lorenzo, M N; Taboada, J J; Iglesias, I; Alvarez, I

    2008-12-01

    The nonlinear nature of the climate system suggests that its reactions to unexpected perturbations could be different from the expected ones. In nonlinear science it is recognized as a promising paradigm that stochastic fluctuations can generate order or other counterintuitive effects. Thus, noise sources, adequately coupled to a nonlinear system, may give rise to a rich new phenomenology not present in a deterministic noiseless scenario. In this review we focus attention on thermohaline circulation (THC). THC presents two modes of operation; one state shows active THC and the other inactive. Previous episodes of transitions between both states of THC observed in paleoclimatic records and the influence of this circulation on climate have resulted in detailed investigations on the dynamics of the THC. A weakening or a collapse of this current could trigger the onset of a new Younger Dryas. In this review the introduction of stochastic forcing in key parameters, both in a simple box model and in an earth model of intermediate complexity, provokes a weakening and even a shutdown of the THC. The consequences of this weakening are observed in different variables. The surface air temperature and the sea surface temperature are dominated by cooling of the Northern Hemisphere. Changes in the position of the Intertropical Convergence Zone and in precipitation are observed. There is also an intensification of the North Atlantic Oscillation values during winter. These results reinforce the necessity to consider stochastic sources in climate models to improve our understanding of the climate.

  6. The climatological mean atmospheric transport under weakened Atlantic thermohaline circulation climate scenario

    Energy Technology Data Exchange (ETDEWEB)

    Erukhimova, T. [Texas A and M University, Department of Physics, College Station, TX (United States); Zhang, R. [GFDL/NOAA, Princeton, NJ (United States); Bowman, K.P. [Texas A and M University, Department of Atmospheric Sciences, College Station, TX (United States)

    2009-02-15

    Global atmospheric transport in a climate subject to a substantial weakening of the Atlantic thermohaline circulation (THC) is studied by using climatological Green's functions of the mass conservation equation for a conserved, passive tracer. Two sets of Green's functions for the perturbed climate and for the present climate are evaluated from 11-year atmospheric trajectory calculations, based on 3-D winds simulated by GFDL's newly developed global coupled ocean-atmosphere model (CM2.1). The Green's function analysis reveals pronounced effects of the climate change on the atmospheric transport, including seasonally modified Hadley circulation with a stronger Northern Hemisphere cell in DJF and a weaker Southern Hemisphere cell in JJA. A weakened THC is also found to enhance mass exchange rates through mixing barriers between the tropics and the two extratropical zones. The response in the tropics is not zonally symmetric. The 3-D Green's function analysis of the effect of THC weakening on transport in the tropical Pacific shows a modified Hadley cell in the eastern Pacific, confirming the results of our previous studies, and a weakening (strengthening) of the upward and eastward motion to the south (north) of the Equator in the western Pacific in the perturbed climate as compared to the present climate. (orig.)

  7. Response of the Western European climate to a collapse of the thermohaline circulation

    Energy Technology Data Exchange (ETDEWEB)

    Laurian, A.; Drijfhout, S.S.; Hazeleger, W.; Hurk, B. van den [KNMI, Royal Netherlands Meteorological Institute, De Bilt (Netherlands)

    2010-04-15

    Two ensemble simulations with the ECHAM5/MPI-OM climate model have been investigated for the atmospheric response to a thermohaline circulation (THC) collapse. The model forcing was specified from observations between 1950 and 2000 and it followed a rising greenhouse gases emission scenario from 2001 to 2100. In one ensemble, a THC collapse was induced by adding freshwater in the northern North Atlantic, from 2001 onwards. After about 20 years, an almost stationary response pattern develops, that is, after the THC collapse, global mean temperature rises equally fast in both ensembles with the hosing ensemble displaying a constant offset. The atmospheric response to the freshwater hosing features a strong zonal gradient in the anomalous 2-m air temperature over Western Europe, associated with a strong land-sea contrast. Since Western Europe climate features a strong marine impact due to the prevailing westerlies, the question arises how such a strong land-sea contrast can be maintained. We show that a strong secondary cloud response is set up with increased cloud cover over sea and decreased cloud cover over land. Also, the marine impact on Western European climate decreases, which results from a reduced transport of moist static energy from sea to land. As a result, the change in lapse rate over the cold sea surface temperature (SST) anomalies west of the continent is much larger than over land, dominated by changes in moisture content rather than temperature. (orig.)

  8. Stability of the interhemispheric thermohaline circulation in a coupled box model

    Science.gov (United States)

    Stone, Peter H.; Krasovskiy, Yuriy P.

    1999-07-01

    The coupled atmosphere-ocean box model of the interhemispheric thermohaline circulation (THC) formulated by Scott et al. [Scott, J.R., Marotzke, J., Stone, P.H., 1999. Interhemispheric THC in a coupled box model. J. Phys. Oceanogr., 29, 351-365.] is solved analytically, by introducing the approximation that the time variations of salinity in the ocean are much slower than the time variations in the temperature. The analytic solution shows that there is an unstable limit cycle near the bifurcation where the flow becomes unstable, as suggested by Scott et al.'s numerical solutions. The solution also leads to an analytic expression for the conditions under which the instability discovered by Scott et al. sets in, which is more general than that found by Scott et al. In particular, it includes the effect of coupling the THC to the atmospheric meridional transports of heat and moisture. It shows that the stability of THC is much more sensitive to the representation of the atmospheric heat transport, i.e., to how it depends on the meridional temperature gradient, than it is in hemispheric models. In particular, it shows that interhemispheric ocean models that use mixed boundary conditions, or couple the ocean to a diffusive representation of the atmospheric heat transport, are less susceptible to this kind of instability than when the ocean is coupled to a representation of the atmospheric meridional heat transport which is more sensitive to the meridional temperature gradient, as is implied by observations and theory.

  9. Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation.

    Science.gov (United States)

    Yang, Qian; Dixon, Timothy H; Myers, Paul G; Bonin, Jennifer; Chambers, Don; van den Broeke, M R

    2016-01-22

    The Atlantic Meridional Overturning Circulation (AMOC) is an important component of ocean thermohaline circulation. Melting of Greenland's ice sheet is freshening the North Atlantic; however, whether the augmented freshwater flux is disrupting the AMOC is unclear. Dense Labrador Sea Water (LSW), formed by winter cooling of saline North Atlantic water and subsequent convection, is a key component of the deep southward return flow of the AMOC. Although LSW formation recently decreased, it also reached historically high values in the mid-1990s, making the connection to the freshwater flux unclear. Here we derive a new estimate of the recent freshwater flux from Greenland using updated GRACE satellite data, present new flux estimates for heat and salt from the North Atlantic into the Labrador Sea and explain recent variations in LSW formation. We suggest that changes in LSW can be directly linked to recent freshening, and suggest a possible link to AMOC weakening.

  10. Mathematical models of convection

    CERN Document Server

    Andreev, Victor K; Goncharova, Olga N; Pukhnachev, Vladislav V

    2012-01-01

    Phenomena of convection are abundant in nature as well as in industry. This volume addresses the subject of convection from the point of view of both, theory and application. While the first three chapters provide a refresher on fluid dynamics and heat transfer theory, the rest of the book describes the modern developments in theory. Thus it brings the reader to the ""front"" of the modern research. This monograph provides the theoretical foundation on a topic relevant to metallurgy, ecology, meteorology, geo-and astrophysics, aerospace industry, chemistry, crystal physics, and many other fiel

  11. Power Based Phase-Locked Loop Under Adverse Conditions with Moving Average Filter for Single-Phase System

    OpenAIRE

    Menxi Xie; CanYan Zhu; BingWei Shi; Yong Yang

    2017-01-01

    High performance synchronization methord is citical for grid connected power converter. For single-phase system, power based phase-locked loop(pPLL) uses a multiplier as phase detector(PD). As single-phase grid voltage is distorted, the phase error information contains ac disturbances oscillating at integer multiples of fundamental frequency which lead to detection error. This paper presents a new scheme based on moving average filter(MAF) applied in-loop of pPLL. The signal characteristic of...

  12. Reliability-Oriented Design and Analysis of Input Capacitors in Single-Phase Transformer-less Photovoltaic Inverters

    DEFF Research Database (Denmark)

    Wang, Huai; Yang, Yongheng; Blaabjerg, Frede

    2013-01-01

    . A reliability-oriented design guideline is proposed in this paper for the input capacitors in single-phase transformer-less PV inverters. The guideline ensures that the service time requirement is to be accomplished under different power levels and ambient temperature profiles. The theoretical analysis has been......While 99% efficiency has been reported, the target of 20 years of service time imposes new challenge to cost-effective solutions for grid-connected photovoltaic (PV) inverters. Aluminum electrolytic capacitors are the weak-link in terms of reliability and lifetime in single-phase PV systems...

  13. Thermal Optimized Operation of the Single-Phase Full-Bridge PV Inverter under Low Voltage Ride-Through Mode

    DEFF Research Database (Denmark)

    Wang, Huai; Yang, Yongheng; Blaabjerg, Frede

    2013-01-01

    . At the same time, the target of a long service time (25 years or more) imposes new challenges to grid-connected transformer-less PV systems. Achieving more reliable PV inverters is of intense interest in recent research. As one of the most critical stresses that induce failures, the thermal stresses...... on the power devices of a single-phase full-bridge PV inverter are analyzed in different operational modes in this paper. The low voltage grid condition is specially taken into account in this paper. The analysis is demonstrated by a 3 kW single-phase full-bridge grid-connected PV system by simulations...

  14. Lifetime Estimation of DC-link Capacitors in a Single-phase Converter with an Integrated Active Power Decoupling Module

    DEFF Research Database (Denmark)

    Ma, Siyuan; Wang, Haoran; Tang, Junchaojie

    2016-01-01

    In single-phase inverters, DC-link capacitors are installed at the DC-link to buffer the ripple power between the AC side and DC side. Active decoupling methods introduce additional circuits at the DC side or AC side to partially or fully supply the ripple power. So that the demanded DC-link capa......In single-phase inverters, DC-link capacitors are installed at the DC-link to buffer the ripple power between the AC side and DC side. Active decoupling methods introduce additional circuits at the DC side or AC side to partially or fully supply the ripple power. So that the demanded DC...

  15. CDM Convective Forecast Planning guidance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CDM Convective Forecast Planning (CCFP) guidance product provides a foreast of en-route aviation convective hazards. The forecasts are updated every 2 hours and...

  16. Long-lived convective chimneys in the Greenland sea and their climatic role

    Science.gov (United States)

    Wadhams, P.; Wilkinson, J. P.; Pavlov, V.; Hansen, E.; Budeus, G.

    2003-04-01

    The longest-lived convective chimney yet detected in the world ocean was first mapped in the central Greenland Sea (75degN, 0degE) in March 2001 and has been observed during the succeeding summer, winter and summer for a total of 18 months. It is 10 km in diameter and extends to a depth of 2500 m. It has remained relatively stationary during that period, acquiring a surface cap of low-salinity water in summer which was lost again in the following winter. The water in the chimney is in anticyclonic rotation, with an inner core rotating faster than an outer skirt. Hitherto, it was believed that Greenland Sea winter convection had been shutting down, reducing both in volume and depth (to 1200 m or less), and that this was due to a reduction in salt forcing from ice production in the region, the so-called Odden ice tongue. The consequences were expected to include a weakening of the Atlantic thermohaline circulation and a cooling impact on the climate of NW Europe. The recent chimney discovery makes it necessary to re-assess the role of the Greenland Sea in the climate of the northern North Atlantic region. A central question is that of the dynamics and structure of the chimney itself: how it formed, how water is convected through it, how long it will last, and how many other chimneys exist in the region. We attempt answers to these questions based on the most recent survey work.

  17. Design of single phase inverter using microcontroller assisted by data processing applications software

    Science.gov (United States)

    Ismail, K.; Muharam, A.; Amin; Widodo Budi, S.

    2015-12-01

    Inverter is widely used for industrial, office, and residential purposes. Inverter supports the development of alternative energy such as solar cells, wind turbines and fuel cells by converting dc voltage to ac voltage. Inverter has been made with a variety of hardware and software combinations, such as the use of pure analog circuit and various types of microcontroller as controller. When using pure analog circuit, modification would be difficult because it will change the entire hardware components. In inverter with microcontroller based design (with software), calculations to generate AC modulation is done in the microcontroller. This increases programming complexity and amount of coding downloaded to the microcontroller chip (capacity flash memory in the microcontroller is limited). This paper discusses the design of a single phase inverter using unipolar modulation of sine wave and triangular wave, which is done outside the microcontroller using data processing software application (Microsoft Excel), result shows that complexity programming was reduce and resolution sampling data is very influence to THD. Resolution sampling must taking ½ A degree to get best THD (15.8%).

  18. Synthesis of single phase of CuTl-1234 thin films

    CERN Document Server

    Khan, N A; Ishida, K; Tateai, F; Kojima, T; Terada, N; Ihara, H

    1999-01-01

    Thin films of CuTl-1234 superconductor have been prepared for the first time using an amorphous phase epitaxy method (APE). In this method, an amorphous phase is sputtered from a target of stoichiometric composition CuBa/sub 2/Ca/sub 3/Cu/sub 4/O/sub x/. Thin films on the SrTiO/sub 3/ substrate after the thallium treatment are biaxially oriented. The XRD reflected a predominant single phase with c-axis 18.7 AA and pole figure measurements of (103) reflections showed a-axis oriented films with Delta phi =0.8 degrees . Resistivity measurements showed T/sub c/=113 K and preliminary J/sub c/ measurements manifested a current density of 1.0*10/sup 6/ A/cm (77 K, 0 T). The composition of films after EDX measurements is Cu /sub 0.3/Tl/sub 0.7/CuBa/sub 2/Ca/sub 3/Cu/sub 4/O/sub 12-y/. (8 refs).

  19. Single-phased Fault Location on Transmission Lines Using Unsynchronized Voltages

    Directory of Open Access Journals (Sweden)

    ISTRATE, M.

    2009-10-01

    Full Text Available The increased accuracy into the fault's detection and location makes it easier for maintenance, this being the reason to develop new possibilities for a precise estimation of the fault location. In the field literature, many methods for fault location using voltages and currents measurements at one or both terminals of power grids' lines are presented. The double-end synchronized data algorithms are very precise, but the current transformers can limit the accuracy of these estimations. The paper presents an algorithm to estimate the location of the single-phased faults which uses only voltage measurements at both terminals of the transmission lines by eliminating the error due to current transformers and without introducing the restriction of perfect data synchronization. In such conditions, the algorithm can be used with the actual equipment of the most power grids, the installation of phasor measurement units with GPS system synchronized timer not being compulsory. Only the positive sequence of line parameters and sources are used, thus, eliminating the incertitude in zero sequence parameter estimation. The algorithm is tested using the results of EMTP-ATP simulations, after the validation of the ATP models on the basis of registered results in a real power grid.

  20. A single-phase model for liquid-feed DMFCs with non-Tafel kinetics

    Science.gov (United States)

    Vera, Marcos

    An isothermal single-phase 3D/1D model for liquid-feed direct methanol fuel cells (DMFC) is presented. Three-dimensional (3D) mass, momentum and species transport in the anode channels and gas diffusion layer is modeled using a commercial, finite-volume based, computational fluid dynamics (CFD) software complemented with user supplied subroutines. The 3D model is locally coupled to a one-dimensional (1D) model accounting for the electrochemical reactions in both the anode and the cathode, which provides a physically sound boundary condition for the velocity and methanol concentration fields at the anode gas diffusion layer/catalyst interface. The 1D model - comprising the membrane-electrode assembly, cathode gas diffusion layer, and cathode channel - assumes non-Tafel kinetics to describe the complex kinetics of the multi-step methanol oxidation reaction at the anode, and accounts for the mixed potential associated with methanol crossover, induced both by diffusion and electro-osmotic drag. Polarization curves computed for various methanol feed concentrations, temperatures, and methanol feed velocities show good agreement with recent experimental results. The spatial distribution of methanol in the anode channels, together with the distributions of current density, methanol crossover and fuel utilization at the anode catalyst layer, are also presented for different opperating conditions.

  1. Benchmarking of Constant Power Generation Strategies for Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2016-01-01

    With a still increase of grid-connected Photovoltaic (PV) systems, challenges have been imposed on the grid due to the continuous injection of a large amount of fluctuating PV power, like overloading the grid infrastructure (e.g., transformers) during peak power production periods. Hence, advanced...... strategies based on: 1) a power control (P-CPG), 2) a current limit method (I-CPG) and 3) the Perturb and Observe algorithm (P&O-CPG). However, the operational mode changes (e.g., from the maximum power point tracking to a CPG operation) will affect the entire system performance. Thus, a benchmarking...... of the proposed CPG strategies is also conducted on a 3-kW single-phase grid-connected PV system. Comparisons reveal that either the P-CPG or I-CPG strategies can achieve fast dynamics and satisfactory steady-state performance. In contrast, the P&OCPG algorithm is the most suitable solution in terms of high...

  2. Benchmarking of Constant Power Generation Strategies for Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2018-01-01

    With a still increase of grid-connected Photovoltaic (PV) systems, challenges have been imposed on the grid due to the continuous injection of a large amount of fluctuating PV power, like overloading the grid infrastructure (e.g., transformers) during peak power production periods. Hence, advanced...... strategies based on: 1) a power control method (P-CPG), 2) a current limit method (I-CPG) and 3) the Perturb and Observe algorithm (P&O-CPG). However, the operational mode changes (e.g., from the maximum power point tracking to a CPG operation) will affect the entire system performance. Thus, a benchmarking...... of the presented CPG strategies is also conducted on a 3-kW single-phase grid-connected PV system. Comparisons reveal that either the P-CPG or I-CPG strategies can achieve fast dynamics and satisfactory steady-state performance. In contrast, the P&O-CPG algorithm is the most suitable solution in terms of high...

  3. ASSERT validation against the Stern Laboratories' single-phase pressure drop tests

    International Nuclear Information System (INIS)

    Waddington, G.M.; Kiteley, J.C.; Carver, M.B.

    1995-01-01

    This paper describes the preliminary validation of ASSERT-IV against the single-phase pressure drop tests from the 37-element CHF (critical heat flux) experiments conducted at Stern Laboratories, and shows how this study fits into the overall ASSERT validation plan. The effects on the pressure drop of several friction and form loss models are evaluated, including the geometry-based K-factor model. The choice of friction factor has a small effect on the predicted channel pressure drop, compared to the form loss model choice. Using the uniform K-factors of Hameed, the computed pressure drops are in excellent agreement with the experimental results from the nominal pressure tube tests. For future ASSERT applications, either Hameed's uniform K-factors or the geometry-based model using Idelchik's thick-edged orifice equation are recommended, as are the friction factor correlations of Colebrook-White, Selander, and Aly and Groeneveld. More analysis of the geometry-based K-factor model is required. (author). 23 refs., 4 tabs., 9 figs

  4. Adaptive Hysteresis Band Current Control for Transformerless Single-Phase PV Inverters

    DEFF Research Database (Denmark)

    Vázquez, Gerardo; Rodriguez, Pedro; Ordoñez, Rafael

    2009-01-01

    Current control based on hysteresis algorithms are widely used in different applications, such as motion control, active filtering or active/reactive power delivery control in distributed generation systems. The hysteresis current control provides to the system a fast and robust dynamic response,...... different single-phase PV inverter topologies, by means of simulations performed with PSIM. In addition, the behavior of the thermal losses when using each control structure in such converters has been studied as well.......Current control based on hysteresis algorithms are widely used in different applications, such as motion control, active filtering or active/reactive power delivery control in distributed generation systems. The hysteresis current control provides to the system a fast and robust dynamic response......, and requires a simple implementation in standard digital signal platforms. On the other hand, the main drawback of classical hysteresis current control lies in the fact that the switching frequency is variable, as the hysteresis band is fixed. In this paper a variable band hysteresis control algorithm...

  5. Green synthesis of isopropyl myristate in novel single phase medium Part I: Batch optimization studies

    Directory of Open Access Journals (Sweden)

    Rajeshkumar N. Vadgama

    2015-12-01

    Full Text Available Isopropyl myristate finds many applications in food, cosmetic and pharmaceutical industries as an emollient, thickening agent, or lubricant. Using a homogeneous reaction phase, non-specific lipase derived from Candida antartica, marketed as Novozym 435, was determined to be most suitable for the enzymatic synthesis of isopropyl myristate. The high molar ratio of alcohol to acid creates novel single phase medium which overcomes mass transfer effects and facilitates downstream processing. The effect of various reaction parameters was optimized to obtain a high yield of isopropyl myristate. Effect of temperature, agitation speed, organic solvent, biocatalyst loading and batch operational stability of the enzyme was systematically studied. The conversion of 87.65% was obtained when the molar ratio of isopropyl alcohol to myristic acid (15:1 was used with 4% (w/w catalyst loading and agitation speed of 150 rpm at 60 °C. The enzyme has also shown good batch operational stability under optimized conditions.

  6. POWER FACTOR CORRECTION IN PERMANENT MAGNET BRUSHLESS DC MOTOR DRIVE USING SINGLE-PHASE CUK CONVERTER

    Directory of Open Access Journals (Sweden)

    SANJEEV SINGH

    2010-12-01

    Full Text Available Permanent magnet brushless DC motor (PMBLDCM drives are being employed in many variable speed applications due to their high efficiency, silent operation, compact size, high reliability, ease of control, and low maintenance requirements. These drives have power quality problems and poor power factor at input AC mains as they are mostly fed through diode bridge rectifier based voltage source inverters. To overcome such problems a single-phase single-switch power factor correction AC-DC converter topology based on a Cuk converter is proposed to feed voltage source inverters based PMBLDCM. It focuses on the analysis, design and performance evaluation of the proposed PFC converter topology for a 1.5 kW, 1500 rpm, 400 V PMBLDCM drive used for an air-conditioning system. The proposed PFC converter topology is modelled and its performance is simulated in Matlab-Simulink environment and results show an improved power quality and good power factor in wide speed range of the drive.

  7. Design And Development Of An Automatic Single Phase Protective Device Using Ssr

    Directory of Open Access Journals (Sweden)

    Michael E.

    2017-10-01

    Full Text Available Since the discovery of energy safety has been a paramount subject matter. This we can see in todays electrical systems where protective devices such as fuse and circuit breakers are used to prevent fire hazards resulting from overload overvoltage and short circuits. However with all the revolution in technology these options may be considered less smart since the fuse made with wire strands calculated for specific current capacity faults permanently when the specified current rating is exceeded. While the circuit breaker which is made up of mechanical switch fails as a result of carbon forming and the wearing away of the contacts because of arcing. As a means of improvement this paper presents the design and development of an automatic single phase protective device using solid state relay SSR. This study is to ensure automatic cut off from power supply in cases of overvoltage above 240 V AC or when overload and short circuit current above 8amps is detected without permanent damage of a fuse placed along current path. Also the design will ensure that there is an automatic close circuit whenever the trigger switch is momentary switch is closed. The system is achieved via the use of PIC micro-controller current sensor and other discrete components. The system is tested and works well inhibiting the frequent faulting of fuses. It also helps to prevent hazard as a result of overvoltage overload and short circuit and ensures a close circuit when the trigger switch is closed.

  8. Modified Dual Three-Pulse Modulation technique for single-phase inverter topology

    Science.gov (United States)

    Sree Harsha, N. R.; Anitha, G. S.; Sreedevi, A.

    2016-01-01

    In a recent paper, a new modulation technique called Dual Three Pulse Modulation (DTPM) was proposed to improve the efficiency of the power converters of the Electric/Hybrid/Fuel-cell vehicles. It was simulated in PSIM 9.0.4 and uses analog multiplexers to generate the modulating signals for the DC/DC converter and inverter. The circuit used is complex and many other simulation softwares do not support the analog multiplexers as well. Also, the DTPM technique produces modulating signals for the converter, which are essentially needed to produce the modulating signals for the inverter. Hence, it cannot be used efficiently to switch the valves of a stand-alone inverter. We propose a new method to generate the modulating signals to switch MOSFETs of a single phase Dual-Three pulse Modulation based stand-alone inverter. The circuits proposed are simulated in Multisim 12.0. We also show an alternate way to switch a DC/DC converter in a way depicted by DTPM technique both in simulation (MATLAB/Simulink) and hardware. The circuitry is relatively simple and can be used for the further investigations of DTPM technique.

  9. Single Scattering Detection in Turbin Media Using Single-Phase Structured Illumination Filtering

    Science.gov (United States)

    Berrocal, E.; Johnsson, J.; Kristensson, E.; Alden, M.

    2012-05-01

    This work shows a unique possibility of visualizing the exponential intensity decay due to light extinction, when laser adiation propagates through a homogeneous scattering edium. This observation implies that the extracted intensity mostly riginates from single scattering events. The filtering of this single light scattering intensity is performed by means of a single-phase structured illumination filtering approach. Results from numerical Monte Carlo simulation confirm the experimental findings for an extinction coefficient of μ_e = 0.36 mm^-1. This article demonstrates an original and reliable way of measuring the extinction coefficient of particulate turbid media based on sidescattering imaging. Such an approach has capabilities to replace the commonly used transmission measurement within the intermediate single-to multiple scattering regime where the optical depth ranges between 1 procedure and set-up. Applications of the technique has potential in probing challenging homogeneous scattering media, such as biomedical tissues, turbid emulsions, etc, in situations where dilution cannot be applied and where conventional transmission measurements fail.

  10. Low-temperature synthesis of single-phase Co7Sb2O12

    International Nuclear Information System (INIS)

    Brito, M.S.L.; Escote, M.T.; Santos, C.O.P.; Lisboa-Filho, P.N.; Leite, E.R.; Oliveira, J.B.L.; Gama, L.; Longo, E.

    2004-01-01

    Polycrystalline Co 7 Sb 2 O 12 compounds have been synthesized by a chemical route, which is based on a modified polymeric precursor method. In order to study the physical properties of the samples, X-ray diffraction (XRD), thermal analyses (TG and DSC), infrared spectroscopy (IR), specific surface area (BET), and magnetization measurements were performed on these materials. Characterization through XRD revealed that the samples are single-phase after a heat-treatment at 1100 deg. C for 2 h, while the X-ray patterns of the samples heat-treated at lower temperatures revealed the presence of additional Bragg reflections belonging to the Co 6 Sb 2 O 6 phase. These data were analyzed by means of Rietveld refinement and further analyze showed that Co 7 Sb 2 O 12 displays an inverse spinel crystalline structure. In this structure, the Co 2+ ions occupy the eight tetrahedral positions, and the sixteen octahedral positions are randomly occupied by the Sb 5+ and Co 2+ ions. IR studies disclosed two strong absorption bands, ν 1 and ν 2 , in the expected spectral range for a spinel-type binary oxide with space group Fd3m. Exploratory studies concerning the magnetic properties indicated that this sample presents a spin-glass transition at T f ∼ 64 K

  11. Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors

    International Nuclear Information System (INIS)

    Liao, Xiaofeng; Zhu, Shuangyan; Zhong, Delai; Zhu, Jingping; Liao, Li

    2014-01-01

    Highlights: • Anaerobic co-digestion strategy for food waste treatment at OLR 41.8 g VS/L. • A certain amount of raw leachate effectively relieved acidic inhibition. • The study showed that food waste was completely degraded. - Abstract: In order to investigate the effect of raw leachate on anaerobic digestion of food waste, co-digestions of food waste with raw leachate were carried out. A series of single-phase batch mesophilic (35 ± 1 °C) anaerobic digestions were performed at a food waste concentration of 41.8 g VS/L. The results showed that inhibition of biogas production by volatile fatty acids (VFA) occurred without raw leachate addition. A certain amount of raw leachate in the reactors effectively relieved acidic inhibition caused by VFA accumulation, and the system maintained stable with methane yield of 369–466 mL/g VS. Total ammonia nitrogen introduced into the digestion systems with initial 2000–3000 mgNH 4 –N/L not only replenished nitrogen for bacterial growth, but also formed a buffer system with VFA to maintain a delicate biochemical balance between the acidogenic and methanogenic microorganisms. UV spectroscopy and fluorescence excitation–emission matrix spectroscopy data showed that food waste was completely degraded. We concluded that using raw leachate for supplement water addition and pH modifier on anaerobic digestion of food waste was effective. An appropriate fraction of leachate could stimulate methanogenic activity and enhance biogas production

  12. Cost Optimal Design of a Single-Phase Dry Power Transformer

    Directory of Open Access Journals (Sweden)

    Raju Basak

    2015-08-01

    Full Text Available The Dry type transformers are preferred to their oil-immersed counterparts for various reasons, particularly because their operation is hazardless. The application of dry transformers was limited to small ratings in the earlier days. But now these are being used for considerably higher ratings.  Therefore, their cost-optimal design has gained importance. This paper deals with the design procedure for achieving cost optimal design of a dry type single-phase power transformer of small rating, subject to usual design constraints on efficiency and voltage regulation. The selling cost for the transformer has been taken as the objective function. Only two key variables have been chosen, the turns/volt and the height: width ratio of window, which affects the cost function to high degrees. Other variables have been chosen on the basis of designers’ experience. Copper has been used as conductor material and CRGOS as core material to achieve higher efficiency, lower running cost and compact design. The electrical and magnetic loadings have been kept at their maximum values without violating the design constraints. The optimal solution has been obtained by the method of exhaustive search using nested loops.

  13. A single-phase embedded Z-source DC-AC inverter.

    Science.gov (United States)

    Kim, Se-Jin; Lim, Young-Cheol

    2014-01-01

    In the conventional DC-AC inverter consisting of two DC-DC converters with unipolar output capacitors, the output capacitor voltages of the DC-DC converters must be higher than the DC input voltage. To overcome this weakness, this paper proposes a single-phase DC-AC inverter consisting of two embedded Z-source converters with bipolar output capacitors. The proposed inverter is composed of two embedded Z-source converters with a common DC source and output AC load. Though the output capacitor voltages of the converters are relatively low compared to those of a conventional inverter, an equivalent level of AC output voltages can be obtained. Moreover, by controlling the output capacitor voltages asymmetrically, the AC output voltage of the proposed inverter can be higher than the DC input voltage. To verify the validity of the proposed inverter, experiments were performed with a DC source voltage of 38 V. By controlling the output capacitor voltages of the converters symmetrically or asymmetrically, the proposed inverter can produce sinusoidal AC output voltages. The experiments show that efficiencies of up to 95% and 97% can be achieved with the proposed inverter using symmetric and asymmetric control, respectively.

  14. Single-phase and two phase bubbly flow in a T connection: theoretical and experimental study

    International Nuclear Information System (INIS)

    Hervieu, Eric

    1988-01-01

    The objective of this research thesis is to highlight the driving factors of the separation of phases of a bubbly flow in a T junction, and to develop a prediction model. In a first part, the author reports the rigorous formulation of equations averaged on the T volume. He shows that it's not possible to solve globally the problem with these equations. Then, he reports a bibliographical study on the modelling of a bubbly flow, and, based upon this study, highlights intrinsic characteristics of the flow, and explains its dynamic mechanisms. He reports the development of the theoretical model, and describes the experimental installation used to validate it. In the third part, he reports the study of the liquid-gas interaction, and presents the adopted approach: study of the behaviour of an isolated bubble within a single-phase flow. Experimentation is used to check theoretical predictions. Results are used to compute phase separation. The obtained results are again compared with experimental results to validate the global relevance of the model [fr

  15. Even distribution/dividing of single-phase fluids by symmetric bifurcation of flow channels

    International Nuclear Information System (INIS)

    Liu, Hong; Li, Peiwen

    2013-01-01

    Highlights: ► We addressed an issue of distributing a flow to a number of flow channels uniformly. ► The flow distribution is accomplished through bifurcation of channels. ► Some key parameters to the flow distribution uniformity have been identified. ► Flow uniformity was studied for several versions of flow distributor designs. ► A novel fluid packaging device of high efficiency was provided. -- Abstract: This study addresses a fundamental issue of distributing a single-phase fluid flow into a number of flow channels uniformly. A basic mechanism of flow distribution is accomplished through bifurcation of channels that symmetrically split one flow channel into two downstream channels. Applying the basic mechanism, cascades flow distributions are designed to split one flow into a large number of downstream flows uniformly. Some key parameters decisive to the flow distribution uniformity in such a system have been identified, and the flow distribution uniformity of air was studied for several versions of flow distributor designs using CFD analysis. The effect of the key parameters of the flow channel designs to the flow distribution uniformity was investigated. As an example of industrial application, a novel fluid packaging device of high efficiency was proposed and some CFD analysis results for the device were provided. The optimized flow distributor makes a very good uniform flow distribution which will significantly improve the efficiency of fluid packaging. The technology is expected to be of great significance to many industrial devices that require high uniformity of flow distribution

  16. A single-phase model for liquid-feed DMFCs with non-Tafel kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Vera, Marcos [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganes (Spain)

    2007-09-27

    An isothermal single-phase 3D/1D model for liquid-feed direct methanol fuel cells (DMFC) is presented. Three-dimensional (3D) mass, momentum and species transport in the anode channels and gas diffusion layer is modeled using a commercial, finite-volume based, computational fluid dynamics (CFD) software complemented with user supplied subroutines. The 3D model is locally coupled to a one-dimensional (1D) model accounting for the electrochemical reactions in both the anode and the cathode, which provides a physically sound boundary condition for the velocity and methanol concentration fields at the anode gas diffusion layer/catalyst interface. The 1D model - comprising the membrane-electrode assembly, cathode gas diffusion layer, and cathode channel - assumes non-Tafel kinetics to describe the complex kinetics of the multi-step methanol oxidation reaction at the anode, and accounts for the mixed potential associated with methanol crossover, induced both by diffusion and electro-osmotic drag. Polarization curves computed for various methanol feed concentrations, temperatures, and methanol feed velocities show good agreement with recent experimental results. The spatial distribution of methanol in the anode channels, together with the distributions of current density, methanol crossover and fuel utilization at the anode catalyst layer, are also presented for different opperating conditions. (author)

  17. Convective overshooting in stars

    NARCIS (Netherlands)

    Andrássy, R.

    2015-01-01

    Numerous observations provide evidence that the standard picture, in which convective mixing is limited to the unstable layers of a star, is incomplete. The mixing layers in real stars are significantly more extended than what the standard models predict. Some of the observations require changing

  18. Stochasticc convection parameterization

    NARCIS (Netherlands)

    Dorrestijn, J.

    2016-01-01

    Clouds are chaotic, difficult to predict, but above all, magnificent natural phenomena. There are different types of clouds: stratus, a layer of clouds that may produce drizzle, cirrus, clouds in the higher parts of the atmosphere, and cumulus, clouds that arise in convective updrafts. Thermals,

  19. Convective Propagation Characteristics Using a Simple Representation of Convective Organization

    Science.gov (United States)

    Neale, R. B.; Mapes, B. E.

    2016-12-01

    Observed equatorial wave propagation is intimately linked to convective organization and it's coupling to features of the larger-scale flow. In this talk we a use simple 4 level model to accommodate vertical modes of a mass flux convection scheme (shallow, mid-level and deep). Two paradigms of convection are used to represent convective processes. One that has only both random (unorganized) diagnosed fluctuations of convective properties and one with organized fluctuations of convective properties that are amplified by previously existing convection and has an explicit moistening impact on the local convecting environment We show a series of model simulations in single-column, 2D and 3D configurations, where the role of convective organization in wave propagation is shown to be fundamental. For the optimal choice of parameters linking organization to local atmospheric state, a broad array of convective wave propagation emerges. Interestingly the key characteristics of propagating modes are the low-level moistening followed by deep convection followed by mature 'large-scale' heating. This organization structure appears to hold firm across timescales from 5-day wave disturbances to MJO-like wave propagation.

  20. Thermohaline forcing and interannual variability of northwestern inflows into the northern North Sea

    Science.gov (United States)

    Sheehan, Peter M. F.; Berx, Barbara; Gallego, Alejandro; Hall, Rob A.; Heywood, Karen J.; Hughes, Sarah L.

    2017-04-01

    A long-established, 127 km-long hydrographic section in the northern North Sea at 59.28°N that runs from the eastern coast of Orkney (2.23°W) to the central North Sea (0°) crosses the path of the main inflows of Atlantic water. Data from 122 occupations between 1989 and 2015 are examined to determine the annual cycle and long-term trends of temperature, salinity and depth-varying geostrophic flow across the section. In an average year, the geostrophic flow referenced to the seafloor is at its narrowest (40 km) in winter, during which time it is driven by the strong horizontal salinity gradient; the horizontal temperature gradient is very weak. Velocity exceeds 4 cm s-1, but transport is at a minimum (0.11 Sv). In the deeper water in the east of the section, thermal stratification develops throughout summer and persists until October, whereas the west is tidally mixed all year. The bottom temperature gradient becomes the primary driver of the geostrophic flow, which is fastest (9 cm s-1) in September and broadest (100 km) in October. Maximum transport (0.36 Sv) occurs in October. Throughout the summer, the horizontal salinity gradient weakens, as does its contribution to the flow. However, it nevertheless acts to broaden the flow west of the location of the strongest horizontal temperature gradient. Section-mean de-seasoned temperature is found to be positively correlated to the Atlantic Multidecadal Oscillation and negatively correlated to the North Atlantic Oscillation. These results refine our understanding of the thermohaline forcing of Atlantic inflow into the northern North Sea, particularly in relation to the salinity distribution. Understanding the variability of this inflow is important for understanding the dynamics of the North Sea ecosystem.

  1. Application of a Regional Thermohaline Inverse Method to observational reanalyses in an Arctic domain

    Science.gov (United States)

    Mackay, Neill; Wilson, Chris; Zika, Jan

    2017-04-01

    The Overturning in the Subpolar North Atlantic Program (OSNAP) aims to quantify the subpolar AMOC and its variability, including associated fluxes of heat and freshwater, using a combination of observations and models. In contribution OSNAP, we have developed a novel inverse method that diagnoses the interior mixing and advective flux at the boundary of an enclosed volume in the ocean. This Regional Thermohaline Inverse Method (RTHIM) operates in salinity-temperature (S-T) coordinates, a framework which allows us to gain insights into water mass transformation within the control volume and boundary fluxes of heat and freshwater. RTHIM will use multiple long-term observational datasets and reanalyses, including Argo, to provide a set of inverse estimates to be used to understand the sub-annual transport timescales sampled by the OSNAP array. Having validated the method using the NEMO model, we apply RTHIM to an Arctic domain using temperature and salinity and surface flux data from reanalyses. We also use AVISO surface absolute geostrophic velocities which, combined with thermal wind balance, provide an initial estimate for the inflow and outflow through the boundary. We diagnose the interior mixing in S-T coordinates and the boundary flow, calculating the transformation rates of well-known water masses and the individual contributions to these rates from surface flux processes, boundary flow and interior mixing. Outputs from RTHIM are compared with similar metrics from previous literature on the region. The inverse solution reproduces an observed pattern of warm, saline Atlantic waters entering the Arctic volume and cooler, fresher waters leaving. Meanwhile, surface fluxes act to create waters at the extremes of the S-T distribution and interior mixing acts in opposition, creating water masses at intermediate S-T and destroying them at the extremes. RTHIM has the potential to be compared directly with the OSNAP array observations by defining a domain boundary which

  2. Interactions of the northern and southern branches of the thermohaline circulation

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, D.A.

    1996-12-31

    Coarse resolution models are used to investigate the influence of Southern Hemisphere processes on the northern branch of the thermohaline circulation. The link between the zonal wind stress at the latitude of Drake Passage and the production of deep water in the Northern Hemisphere is explored. A nearly linear response to wind stress at the tip of South America is seen in northern deep water production rates in both one- and two-basin configurations. Transient studies are conducted that illustrate the transmission of the wind generated signal from the Southern Hemisphere to the northern sinking region. Mixed-boundary condition experiments are conducted in a number of model configurations. The results of the OGCM mixed boundary condition experiments are investigated using simple box models. Two scenarios are presented to produce oscillations that are similar to deep-decoupling oscillations in the presence of continued AABW production. First, the high northern latitudes are subjected to a melt pulse/retreat pattern of freshening. These perturbations can cause transitions from one stable mode to another, as well as overturning flushes that are followed by a return to the original stable overturning mode. Second, stochastic forcing is applied to the high northern latitude surface fresh water flux. The variations in surface forcing are capable of producing transitions between overturning states that are similar to deep-decoupling oscillations. The stochastic forcing acts to overcome the stabilizing effect of the AABW. In two-basin mixed boundary condition experiments, cooling the climate is seen to result in deep-decoupling type oscillations under stochastic forcing that produced no such variability in a warmer climate.

  3. The response of Mediterranean thermohaline circulation to climate change: a minimal model

    Directory of Open Access Journals (Sweden)

    P. Th. Meijer

    2009-11-01

    Full Text Available Physics-based understanding of the effects of paleoclimate and paleogeography on the thermohaline circulation of the Mediterranean Sea requires an ocean model capable of long integrations and involving a minimum of assumptions about the atmospheric forcing. Here we examine the sensitivity of the deep circulation in the eastern Mediterranean basin to changes in atmospheric forcing, considered a key factor in the deposition of organic-rich sediments (sapropels. To this extent we explore the setup of an ocean general circulation model (MOMA with realistic (present-day bathymetry and highly idealized forcing. The model proves able to qualitatively capture some important features of the large-scale overturning circulation, in particular for the eastern basin. The response to (i a reduction in the imposed meridional temperature gradient, or (ii a reduction in net evaporation, proves to be non-linear and, under certain conditions, of transient nature. Consistent with previous model studies, but now based on a minimum of assumptions, we find that a reduction in net evaporation (such as due to an increase in freshwater input may halt the deep overturning circulation. The ability to perform long model integrations allows us to add the insight that, in order to have the conditions favourable for sapropel formation persist, we must also assume that the vertical mixing of water properties was reduced. The "minimal" model here presented opens the way to experiments in which one truly follows the basin circulation into, or out of, the period of sapropel formation and where forcing conditions are continously adjusted to the precession cycle.

  4. An Islanding Detection Method by Using Frequency Positive Feedback Based on FLL for Single-Phase Microgrid

    DEFF Research Database (Denmark)

    Sun, Qinfei; Guerrero, Josep M.; Jing, Tianjun

    2017-01-01

    An active islanding detection method based on Frequency-Locked Loop (FLL) for constant power controlled inverter in single-phase microgrid is proposed. This method generates a phase shift comparing the instantaneous frequency obtained from FLL unit with the nominal frequency to modify the reference...

  5. A Single-Phase Transformerless Inverter With Charge Pump Circuit Concept for Grid-Tied PV Applications

    DEFF Research Database (Denmark)

    Ardashir, Jaber Fallah; Sabahi, Mehran; Hosseini, Seyed Hossein

    2017-01-01

    This paper proposes a new single-phase transformerless photovoltaic (PV) inverter for grid-tied PV systems. The topology is derived from the concept of a charge pump circuit in order to eliminate the leakage current. It is composed of four power switches, two diodes, two capacitors, and an LCL ou...

  6. Analysis of phase-locked loop influence on the stability of single-phase grid-connected inverter

    DEFF Research Database (Denmark)

    Zhang, Chong; Wang, Xiongfei; Blaabjerg, Frede

    2015-01-01

    A controlled power inverter can cause instability at the point of common coupling (PCC) with its output filter and the grid. This paper analyzes the influence of the Phase-Locked Loop (PLL) on the output admittance of single-phase current-controlled inverters with different grid stiffness. It shows...

  7. Performance Evaluation of the Single-Phase Split-Source Inverter Using an Alternative DC-AC Configuration

    DEFF Research Database (Denmark)

    Abdelhakim, Ahmed; Mattavelli, Paolo; Davari, Pooya

    2018-01-01

    This paper investigates and evaluates the performance of a single-phase split-source inverter (SSI), where an alternative unidirectional dc-ac configuration is used. Such configuration is utilized in order to use two common-cathode diodes in a single-device instead of using two separate diodes, r...

  8. Research on High Efficient Single-Phase Multi-Stage Interleaved Bridgeless PFC Frontend for Class-D Amplifiers

    DEFF Research Database (Denmark)

    Li, Qingnan; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2012-01-01

    In this paper, a 3.5kW single-phase high efficient interleaved Bridgeless PFC (IBPFC) is proposed for class-D amplifiers. This topology achieves a relatively higher efficiency in a wide output power range, which helps to reduce the energy consuming of the whole system. In addition, a detailed...

  9. Hybrid I-f starting and observer-based Ssnsorless control of single-phase BLDC-PM motor drives

    DEFF Research Database (Denmark)

    Iepure, Liviu Ioan; Boldea, Ion; Blaabjerg, Frede

    2012-01-01

    A motion sensorless control for single-phase permanent magnet brushless dc motor based on an I-f starting sequence and a real-time permanent magnet flux estimation is proposed here. The special calculation for extracting the position and speed used here implies the generating of an orthogonal flux......-speed blower-motor (40 W, 10 krpm, 12 Vdc)....

  10. A Novel Neural Network Vector Control for Single-Phase Grid-Connected Converters with L, LC and LCL Filters

    Directory of Open Access Journals (Sweden)

    Xingang Fu

    2016-04-01

    Full Text Available This paper investigates a novel recurrent neural network (NN-based vector control approach for single-phase grid-connected converters (GCCs with L (inductor, LC (inductor-capacitor and LCL (inductor-capacitor-inductor filters and provides their comparison study with the conventional standard vector control method. A single neural network controller replaces two current-loop PI controllers, and the NN training approximates the optimal control for the single-phase GCC system. The Levenberg–Marquardt (LM algorithm was used to train the NN controller based on the complete system equations without any decoupling policies. The proposed NN approach can solve the decoupling problem associated with the conventional vector control methods for L, LC and LCL-filter-based single-phase GCCs. Both simulation study and hardware experiments demonstrate that the neural network vector controller shows much more improved performance than that of conventional vector controllers, including faster response speed and lower overshoot. Especially, NN vector control could achieve very good performance using low switch frequency. More importantly, the neural network vector controller is a damping free controller, which is generally required by a conventional vector controller for an LCL-filter-based single-phase grid-connected converter and, therefore, can overcome the inefficiency problem caused by damping policies.

  11. Space Vector Pulse Width Modulation Strategy for Single-Phase Three-Level CIC T-source Inverter

    DEFF Research Database (Denmark)

    Shults, Tatiana E.; Husev, Oleksandr O.; Blaabjerg, Frede

    2016-01-01

    This paper presents a novel space vector pulse-width modulation strategy for a single-phase three-level buck-boost inverter based on an impedance-source network. The case study system is based on T-source inverter with continuous input current. To demonstrate the improved performance of the inver...

  12. Analysis and MPPT control of a wind-driven three-phase induction generator feeding single-phase utility grid

    Directory of Open Access Journals (Sweden)

    Krishnan Arthishri

    2017-05-01

    Full Text Available In this study, a three-phase diode bridge rectifier and a single-phase voltage source inverter topology has been proposed for feeding single-phase utility grid employing a three-phase induction generator fed from wind energy. A self-excited induction generator configuration has been chosen for wide speed operation of wind turbine system, which gives the scope for extracting maximum power available in the wind. In addition to maximum power point tracking (MPPT, the generator can be loaded to its rated capacity for feeding single-phase utility grid using a three-phase induction machine, whereas it is not possible with existing configurations because of the absence of power converters. For the proposed system, MPPT algorithm has been devised by continuously monitoring the grid current and a proportional resonant controller has been employed for grid synchronisation of voltage source inverter with single-phase grid. A MATLAB/Simulink model of the proposed system has been developed to ascertain its successful working by predetermining the overall performance characteristics. The present proposal has also been tested with sag, swell and distortion in the grid voltage. The control strategy has been implemented using field programmable gate array (FPGA controller with modularised programming approach. The efficacy of the system has been demonstrated with the results obtained from an experimental set-up in the laboratory.

  13. Low-Complexity Model Predictive Control of Single-Phase Three-Level Rectifiers with Unbalanced Load

    DEFF Research Database (Denmark)

    Ma, Junpeng; Song, Wensheng; Wang, Xiongfei

    2018-01-01

    The fluctuation of the neutral-point potential in single-phase three-level rectifiers leads to coupling between the line current regulation and dc-link voltage balancing, deteriorating the quality of line current. For addressing this issue, this paper proposes a low-complexity model predictive...

  14. Adjusting output impedance using a PI controller to improve the stability of a single-phase inverter under weak grid

    Directory of Open Access Journals (Sweden)

    Jiao Jiao

    2016-11-01

    Full Text Available Explored in this paper is the grid impedance effect on the stability of a single-phase grid connected inverter with an LC filter based on an analysis of the inverter output impedance. For a single-phase grid connected inverter, a PI controller is often used to regulate the current injected into the grid. However, the control performance can be influenced when the inverter is connected to a weak grid. Also, the utility grid has background harmonic noise, which can make the injected current distorted. Therefore, analysis of the output impedance of a single-phase grid connected inverter is important for the robustness and stability of the system. By modeling the output impedance of inverter, it can be determined that the proportional gain and integral gain of the controller have an effect on the output impedance. Analytical results show that by adjusting the PI controller parameters, the ability for harmonic reduction and stability of the system can be improved. Simulation and experiments using a 1 kW single-phase grid connected inverter verify the effectiveness of the theoretical analysis.

  15. Safe-commutation principle for direct single-phase AC-AC converters for use in audio power amplification

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2004-01-01

    This paper presents an alternative safe commutation principle for a single phase bidirectional bridge, for use in the new generation of direct single-stage AC-AC audio power amplifiers. As compared with the bridge commutation with load current or source voltage sensing, in this approach...

  16. Convective heat transfer on Mars

    International Nuclear Information System (INIS)

    Arx, A.V. von; Delgado, A. Jr.

    1991-01-01

    An examination was made into the feasibility of using convective heat transfer on Mars to reject the waste heat from a Closed Brayton Cycle. Forced and natural convection were compared to thermal radiation. For the three radiator configurations studied, it was concluded that thermal radiation will yield the minimum mass and forced convection will result in the minimum area radiator. Other issues such as reliability of a fan motor were not addressed. Convective heat transfer on Mars warrants further investigation. However, the low density of the Martian atmosphere makes it difficult to utilize convective heat transfer without incurring a weight penalty

  17. Mediterranean Thermohaline Response to Large-Scale Winter Atmospheric Forcing in a High-Resolution Ocean Model Simulation

    Science.gov (United States)

    Cusinato, Eleonora; Zanchettin, Davide; Sannino, Gianmaria; Rubino, Angelo

    2018-04-01

    Large-scale circulation anomalies over the North Atlantic and Euro-Mediterranean regions described by dominant climate modes, such as the North Atlantic Oscillation (NAO), the East Atlantic pattern (EA), the East Atlantic/Western Russian (EAWR) and the Mediterranean Oscillation Index (MOI), significantly affect interannual-to-decadal climatic and hydroclimatic variability in the Euro-Mediterranean region. However, whereas previous studies assessed the impact of such climate modes on air-sea heat and freshwater fluxes in the Mediterranean Sea, the propagation of these atmospheric forcing signals from the surface toward the interior and the abyss of the Mediterranean Sea remains unexplored. Here, we use a high-resolution ocean model simulation covering the 1979-2013 period to investigate spatial patterns and time scales of the Mediterranean thermohaline response to winter forcing from NAO, EA, EAWR and MOI. We find that these modes significantly imprint on the thermohaline properties in key areas of the Mediterranean Sea through a variety of mechanisms. Typically, density anomalies induced by all modes remain confined in the upper 600 m depth and remain significant for up to 18-24 months. One of the clearest propagation signals refers to the EA in the Adriatic and northern Ionian seas: There, negative EA anomalies are associated to an extensive positive density response, with anomalies that sink to the bottom of the South Adriatic Pit within a 2-year time. Other strong responses are the thermally driven responses to the EA in the Gulf of Lions and to the EAWR in the Aegean Sea. MOI and EAWR forcing of thermohaline properties in the Eastern Mediterranean sub-basins seems to be determined by reinforcement processes linked to the persistency of these modes in multiannual anomalous states. Our study also suggests that NAO, EA, EAWR and MOI could critically interfere with internal, deep and abyssal ocean dynamics and variability in the Mediterranean Sea.

  18. Thermohaline circulation, the achilles heel of our climate system: will man-made CO2 upset the current balance?

    Science.gov (United States)

    Broecker

    1997-11-28

    During the last glacial period, Earth's climate underwent frequent large and abrupt global changes. This behavior appears to reflect the ability of the ocean's thermohaline circulation to assume more than one mode of operation. The record in ancient sedimentary rocks suggests that similar abrupt changes plagued the Earth at other times. The trigger mechanism for these reorganizations may have been the antiphasing of polar insolation associated with orbital cycles. Were the ongoing increase in atmospheric CO2 levels to trigger another such reorganization, it would be bad news for a world striving to feed 11 to 16 billion people.

  19. Natural circulation in single-phase and two-phase flow

    International Nuclear Information System (INIS)

    Cheung, F.B.; El-Genk, M.S.

    1989-01-01

    Natural circulation usually arises in a closed loop between a heat source and a heat sink were the fluid motion is driven by density difference. It may also occur in enclosures or cavities where the flow is induced primarily by temperature or concentration gradients within the fluid. The subject has recently received special attention by the heat transfer and nuclear reactor safety communities because of it importance to the areas of energy extraction, decay, heat removal in nuclear reactors, solar and geothermal heating, and cooling of electronic equipment. Although many new results and physical insights have been gained of the various natural circulation phenomena, a number of critical issues remain unresolved. These include, for example, transition from laminar to turbulent flow, buoyancy-induced turbulent flow modeling, change of flow regimes, flow field visualization, variable property effects, and flow instability. This symposium volume contains papers presented in the Natural Circulation in Single-Phase and Two-Phase Flow session at the 1989 Winter Annual Meeting of ASME, by authors from different countries including the United States, Japan, Canada, and Brazil. The papers deal with experimental and theoretical studies as well as state-of-the-art reviews, covering a broad spectrum of topics in natural circulation including: variable-conductance thermosyphons, microelectronic chip cooling, natural circulation in anisotropic porous media and in cavities, heat transfer in flat plat solar collectors, shutdown heat removal in fast reactors, cooling of light-water and heavy-water reactors. The breadth of papers contained in this volume clearly reflect the importance of the current interest in natural circulation as a means for passive cooling and heating

  20. A Single-Phase Multilevel PV Generation System with an Improved Ripple Correlation Control MPPT Algorithm

    Directory of Open Access Journals (Sweden)

    Manel Hammami

    2017-12-01

    Full Text Available The implementation of maximum power point tracking (MPPT schemes by the ripple correlation control (RCC algorithm is presented in this paper. A reference is made to single-phase single-stage multilevel photovoltaic (PV generation systems, when the inverter input variables (PV voltage and PV current have multiple low-frequency (ripple harmonics. The harmonic analysis is carried out with reference to a multilevel configuration consisting of an H-bridge inverter and level doubling network (LDN cell, leading to the multilevel inverter having double the output voltage levels as compared to the basic H-bridge inverter topology (i.e., five levels vs. three levels. The LDN cell is basically a half-bridge fed by a floating capacitor, with self-balancing voltage capability. The multilevel configuration introduces additional PV voltage and current low-frequency harmonics, perturbing the basic implementation of the RCC scheme (based on the second harmonic component, leading to malfunctioning. The proposed RCC algorithm employs the PV current and voltage harmonics at a specific frequency for the estimation of the voltage derivative of power dP/dV (or dI/dV, driving the PV operating point toward the maximum power point (MPP in a faster and more precise manner. The steady-state and transient performances of the proposed RCC-MPPT schemes have been preliminarily tested and compared using MATLAB/Simulink. Results have been verified by experimental tests considering the whole multilevel PV generation system, including real PV modules, multilevel insulated-gate bipolar transistor (IGBT inverters, and utility grids.

  1. ESTABLISHED MODES AND STATIC CHARACTERISTICS OF THREE-PHASE ASYNCHRONOUS MOTOR POWERED WITH SINGLE PHASE NETWORK

    Directory of Open Access Journals (Sweden)

    V. S. Malyar

    2016-01-01

    Full Text Available A mathematical model is developed to study the operation of three-phase asynchronous motor with squirrel-cage rotor when the stator winding is powered from a single phase network. To create a rotating magnetic field one of the phases is fed through the capacitor. Due to the asymmetry of power feed not only transients, but the steady-state regimes are dynamic, so they are described by differential equations in any coordinate system. Their study cannot be carried out with sufficient adequacy on the basis of known equivalent circuits and require the use of dynamic parameters. In the mathematical model the state equations of the circuits of the stator and rotor are composed in the stationary three phase coordinate system. Calculation of the established mode is performed by solving the boundary problem that makes it possible to obtain the coordinate dependences over the period, without calculation of the transient process. In order to perform it, the original nonlinear differential equations are algebraized by approximating the variables with the use of cubic splines. The resulting nonlinear system of algebraic equations is a discrete analogue of the initial system of differential equations. It is solved by parameter continuation method. To calculate the static characteristics as a function of a certain variable, the system is analytically differentiated, and then numerically integrated over this variable. In the process of integration, Newton's refinement is performed at each step or at every few steps, making it possible to implement the integration in just a few steps using Euler's method. Jacobi matrices in both cases are the same. To account for the current displacement in the rods of the squirrel-cage rotor, each of them, along with the squirrel-cage rings, is divided in height into several elements. This results in several squirrel-cage rotor windings which are represented by three-phase windings with magnetic coupling between them.

  2. Multilevel markov chain monte carlo method for high-contrast single-phase flow problems

    KAUST Repository

    Efendiev, Yalchin R.

    2014-12-19

    In this paper we propose a general framework for the uncertainty quantification of quantities of interest for high-contrast single-phase flow problems. It is based on the generalized multiscale finite element method (GMsFEM) and multilevel Monte Carlo (MLMC) methods. The former provides a hierarchy of approximations of different resolution, whereas the latter gives an efficient way to estimate quantities of interest using samples on different levels. The number of basis functions in the online GMsFEM stage can be varied to determine the solution resolution and the computational cost, and to efficiently generate samples at different levels. In particular, it is cheap to generate samples on coarse grids but with low resolution, and it is expensive to generate samples on fine grids with high accuracy. By suitably choosing the number of samples at different levels, one can leverage the expensive computation in larger fine-grid spaces toward smaller coarse-grid spaces, while retaining the accuracy of the final Monte Carlo estimate. Further, we describe a multilevel Markov chain Monte Carlo method, which sequentially screens the proposal with different levels of approximations and reduces the number of evaluations required on fine grids, while combining the samples at different levels to arrive at an accurate estimate. The framework seamlessly integrates the multiscale features of the GMsFEM with the multilevel feature of the MLMC methods following the work in [26], and our numerical experiments illustrate its efficiency and accuracy in comparison with standard Monte Carlo estimates. © Global Science Press Limited 2015.

  3. Single phase flow pressure drop and heat transfer in rectangular metallic microchannels

    International Nuclear Information System (INIS)

    Sahar, Amirah M.; Özdemir, Mehmed R.; Fayyadh, Ekhlas M.; Wissink, Jan; Mahmoud, Mohamed M.; Karayiannis, Tassos G.

    2016-01-01

    Numerical simulations were performed using Fluent 14.5 to investigate single phase flow and conjugate heat transfer in copper rectangular microchannels. Two different configurations were simulated: (1) single channel with hydraulic diameter of 0.561 mm and (2) multichannel configuration consisting of inlet and outlet manifolds and 25 channels with hydraulic diameter of 0.409 mm. In the single channel configuration, four numerical models were investigated namely, 2D thin-wall, 3D thin-wall (heated from the bottom), 3D thin-wall (three side heated) and 3D full conjugate models. In the multichannel configuration, only 3D full conjugate model was used. The simulation results of the single channel configuration were validated using experimental data of water as a test fluid while the results of the multichannel configuration were validated using experimental data of R134a refrigerant. In the multichannel configuration, flow distribution among the channels was also investigated. The 3D thin-wall model simulation was conducted at thermal boundary conditions similar to those assumed in the experimental data reduction (uniform heat flux) and showed excellent agreement with the experimental data. However, the results of the 3D full conjugate model demonstrated that there is a significant conjugate effect and the heat flux is not uniformly distributed along the channel resulting in significant deviation compared to the experimental data (more than 50%). Also, the results demonstrated that there is a significant difference between the 3D thin-wall and full conjugate models. The simulation of the multichannel configuration with an inlet manifold having gradual decrease in cross sectional area achieved very reasonable uniform flow distribution among the channels which will provide uniform heat transfer rates across the base of the microchannels.

  4. Single-phase cross-mixing measurements in a 4 x 4 rod bundle

    International Nuclear Information System (INIS)

    Yloenen, Arto; Bissels, Wilhelm-Martin; Prasser, Horst-Michael

    2011-01-01

    Highlights: → The wire-mesh sensor technique has been successfully introduced into a fuel rod bundle geometry. → Quantitative information on the turbulent dispersion of the fluid was obtained. → In full spatial and temporal resolution, the data is interesting for the unsteady CFD validation. - Abstract: The wire-mesh sensor technique has been successfully introduced into a fuel rod bundle geometry for the first time. In this context, a dedicated test facility (SUBFLOW) has been designed and constructed at Paul Scherrer Institut (PSI) in a co-operation with the Swiss Federal Institute of Technology (ETH Zuerich). Two wire-mesh sensors designed and built in-house were installed in the upper part of the vertical test section of SUBFLOW, and single-phase experiments on the turbulent mass exchange between neighboring sub-channels were performed. For this purpose, salt tracer was injected locally in one of the sub-channels and conductivity distributions in the bundle measured by the wire-mesh sensor. Both flow rate and distance from the injection point were varied. The latter was achieved by using injection nozzles at different heights. In this way, the sensor located in the upper part of the channel could be used to characterize the progress of the mixing along the flow direction, and the degree of cross-mixing assessed using the quantity of tracer arriving in the neighboring sub-channels. Fluctuations of the tracer concentration in time were used for statistical evaluations, such as the calculation of standard deviations and two-point correlations.

  5. A NEW STELLAR MIXING PROCESS OPERATING BELOW SHELL CONVECTION ZONES FOLLOWING OFF-CENTER IGNITION

    Energy Technology Data Exchange (ETDEWEB)

    Mocak, M.; Siess, L. [Institut d' Astronomie et d' Astrophysique, Universite Libre de Bruxelles, CP 226, 1050 Brussels (Belgium); Meakin, Casey A. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Mueller, E., E-mail: mmocak@ulb.ac.be [Max-Planck-Institut fuer Astrophysik, Postfach 1312, 85741 Garching (Germany)

    2011-12-10

    During most stages of stellar evolution the nuclear burning of lighter to heavier elements results in a radial composition profile which is stabilizing against buoyant acceleration, with light material residing above heavier material. However, under some circumstances, such as off-center ignition, the composition profile resulting from nuclear burning can be destabilizing and characterized by an outwardly increasing mean molecular weight. The potential for instabilities under these circumstances and the consequences that they may have on stellar structural evolution remain largely unexplored. In this paper we study the development and evolution of instabilities associated with unstable composition gradients in regions that are initially stable according to linear Schwarzschild and Ledoux criteria. In particular, we study the development of turbulent flow under a variety of stellar evolution conditions with multi-dimensional hydrodynamic simulation; the phases studied include the core helium flash in a 1.25 M{sub Sun} star, the core carbon flash in a 9.3 M{sub Sun} star, and oxygen shell burning in a 23 M{sub Sun} star. The results of our simulations reveal a mixing process associated with regions having outwardly increasing mean molecular weight that reside below convection zones. The mixing is not due to overshooting from the convection zone, nor is it due directly to thermohaline mixing which operates on a timescale several orders of magnitude larger than the simulated flows. Instead, the mixing appears to be due to the presence of a wave field induced in the stable layers residing beneath the convection zone which enhances the mixing rate by many orders of magnitude and allows a thermohaline type mixing process to operate on a dynamical, rather than thermal, timescale. The mixing manifests itself in the form of overdense and cold blob-like structures originating from density fluctuations at the lower boundary of convective shell and 'shooting' down

  6. Single phase-change analysis of two different PCMs filled in a heat transfer module

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Gyu; Kang, Chae Dong [Chonbuk National University, Jeonju (Korea, Republic of); Kim, Hyung Kuk [Hyundai Heavy Industries Co., Ulsan (Korea, Republic of)

    2014-07-15

    Phase change material(PCM) is tried to secondary heat source in solar heat pump system. A numerical study of the phase change dominant heat transfer is done with a heat transfer module, which consists of a water path(BRINE), heat transfer plates(HTP), and PCM layers of high-temperature one(HPCM, 78-79 .deg. C) and low-temperature one(LPCM, 28-29 .deg. C). There are five arrangements consisting of BRINE, HTP, HPCM, and LPCM layers in the heat transfer module. The time and heat transfer rate for PCM melting/solidification are compared between arrangements. And the numerical time without convection is compared to the experimental one for melting/solidification. From the numerical analysis, the time for melting/solidification is different to 10 hours, depending on the arrangement.

  7. 2D OR NOT 2D: THE EFFECT OF DIMENSIONALITY ON THE DYNAMICS OF FINGERING CONVECTION AT LOW PRANDTL NUMBER

    Energy Technology Data Exchange (ETDEWEB)

    Garaud, Pascale; Brummell, Nicholas [Department of Applied Mathematics and Statistics, Baskin School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz CA 95060 (United States)

    2015-12-10

    Fingering convection (otherwise known as thermohaline convection) is an instability that occurs in stellar radiative interiors in the presence of unstable compositional gradients. Numerical simulations have been used in order to estimate the efficiency of mixing induced by this instability. However, fully three-dimensional (3D) computations in the parameter regime appropriate for stellar astrophysics (i.e., low Prandtl number) are prohibitively expensive. This raises the question of whether two-dimensional (2D) simulations could be used instead to achieve the same goals. In this work, we address this issue by comparing the outcome of 2D and 3D simulations of fingering convection at low Prandtl number. We find that 2D simulations are never appropriate. However, we also find that the required 3D computational domain does not have to be very wide: the third dimension only needs to contain a minimum of two wavelengths of the fastest-growing linearly unstable mode to capture the essentially 3D dynamics of small-scale fingering. Narrow domains, however, should still be used with caution since they could limit the subsequent development of any large-scale dynamics typically associated with fingering convection.

  8. Convection and stellar oscillations

    DEFF Research Database (Denmark)

    Aarslev, Magnus Johan

    2017-01-01

    energy exchange between convection and pulsations, i.e. the modal part of the surface effect. Studying excitation and damping mechanisms requires a non-adiabatic treatment. A major part of my research has been modelling damping rates of red giant stars observed by {\\Kp}. The basis for the non...... atmospheres to replace the outer layers of stellar models. The additional turbulent pressure and asymmetrical opacity effects in the atmosphere model, compared to convection in stellar evolution models, serve to expand the atmosphere. The enlarged acoustic cavity lowers the pulsation frequencies bringing them....... However, the effects are barely prominent enough to be distinguishable with today's observational precision. But it does provide means of determining the mixing-length and enables consistent patching. The previously mentioned investigations are based on adiabatic frequency calculations, which neglect...

  9. Convection heat transfer

    CERN Document Server

    Bejan, Adrian

    2013-01-01

    Written by an internationally recognized authority on heat transfer and thermodynamics, this second edition of Convection Heat Transfer contains new and updated problems and examples reflecting real-world research and applications, including heat exchanger design. Teaching not only structure but also technique, the book begins with the simplest problem solving method (scale analysis), and moves on to progressively more advanced and exact methods (integral method, self similarity, asymptotic behavior). A solutions manual is available for all problems and exercises.

  10. Dense intermediate water outflow from the Cretan Sea: A salinity driven, recurrent phenomenon, connected to thermohaline circulation changes

    Science.gov (United States)

    Velaoras, Dimitris; Krokos, George; Nittis, Kostas; Theocharis, Alexander

    2014-08-01

    Data collected from different platforms in the Cretan Sea during the 2000s decade present evidence of gradually increasing salinity in the intermediate and deep intermediate layers after the middle of the decade. The observed gradual salt transport toward the deeper layers indicates contributions of dense water masses formed in various Aegean Sea subbasins. The accumulation of these saline and dense water masses in the Cretan Sea finally led to outflow from both Cretan Straits, with density greater than typical Levantine/Cretan Intermediate water but not dense enough to penetrate into the deep layers of the Eastern Mediterranean. We name this outflowing water mass as dense Cretan Intermediate Water (dCIW). A retrospective analysis of in situ data and literature references during the last four decades shows that similar events have occurred in the past in two occasions: (a) in the 1970s and (b) during the Eastern Mediterranean Transient (EMT) onset (1987-1991). We argue that these salinity-driven Aegean outflows are mostly attributed to recurrent changes of the Eastern Mediterranean upper thermohaline circulation that create favorable dense water formation conditions in the Aegean Sea through salinity preconditioning. We identify these phenomena as "EMT-like" events and argue that in these cases internal thermohaline mechanisms dominate over atmospheric forcing in dense water production. However, intense atmospheric forcing over an already salinity preconditioned basin is indispensable for creating massive deep water outflow from the Cretan Sea, such as the EMT event.

  11. Variability of synoptic-scale quasi-stationary thermohaline stratification patterns in the Gulf of Finland in summer 2009

    Directory of Open Access Journals (Sweden)

    T. Liblik

    2012-08-01

    Full Text Available We present and analyze high-resolution observational data of thermohaline structure and currents acquired in the Gulf of Finland (Baltic Sea, using an autonomous buoy profiler and bottom-mounted acoustic Doppler current profiler during July–August 2009. Vertical profiles of temperature and salinity were measured in the upper 50-m layer with a 3 h time resolution, and vertical profiles of current velocity and direction were recorded with a 10 min time resolution. Although large temporal variations of vertical temperature and salinity distributions were revealed, it was possible to define several periods with quasi-stationary vertical thermohaline structure. These quasi-stationary stratification patterns persisted for 4–15 days and were dominated by certain physical processes: upwelling, relaxation of upwelling, estuarine circulation and its wind-induced reversal, and downwelling. Vertical profiles of current velocities supported the concept of synoptic-scale, quasi-stationary periods of hydrophysical fields, characterized by distinct layered flow structures and current oscillations. To estimate the contribution of different processes to the changes in stratification, a simple conceptual model was developed. The model accounts for heat flux through the sea surface, wind mixing, wind-induced transport (parallel to the horizontal salinity gradient in the upper layer, and estuarine circulation. It reproduced observed changes in vertical stratification reasonably well. The largest discrepancies between observations and model results were found when water motions across the Gulf and associated vertical displacements of isopycnals (upwelling or downwelling were dominant processes.

  12. Short-time scale coupling between thermohaline and meteorological forcing in the Ría de Pontevedra

    Directory of Open Access Journals (Sweden)

    Paula C. Pardo

    2001-07-01

    Full Text Available Two cruises were performed in May-June and October-November 1997 in the Ría de Pontevedra under strong downwelling conditions. Temperature and salinity data were recorded in short sampling periods to describe the changes in thermohaline property distribution in a short time scale. In order to obtain the residual fluxes in the Ría, a bi-dimensional non-stationary salt and thermal-energy weight averaged box-model was applied. Outputs from this kinematic model were compared with Upwelling Index, river flow and density gradient, resulting in a good multiple correlation, which proves the strong coupling between thermohaline properties and meteorological variability. Ekman forcing affects the whole area but mainly controls the dynamics of outer zones. The intensity of its effect on the circulation pattern within the Ría depends on the grade of stratification of the water bodies. River flow is more relevant in inner parts. According to estimated spatially averaged velocities, water residence time is lower than two weeks in outer parts of the Ría, and decreases toward the inner zones.

  13. Large-scale response of the Eastern Mediterranean thermohaline circulation to African monsoon intensification during sapropel S1 formation

    Science.gov (United States)

    Tesi, T.; Asioli, A.; Minisini, D.; Maselli, V.; Dalla Valle, G.; Gamberi, F.; Langone, L.; Cattaneo, A.; Montagna, P.; Trincardi, F.

    2017-03-01

    The formation of Eastern Mediterranean sapropels has periodically occurred during intensification of northern hemisphere monsoon precipitation over North Africa. However, the large-scale response of the Eastern Mediterranean thermohaline circulation during these monsoon-fuelled freshening episodes is poorly constrained. Here, we investigate the formation of the youngest sapropel (S1) along an across-slope transect in the Adriatic Sea. Foraminifera-based oxygen index, redox-sensitive elements and biogeochemical parameters reveal - for the first time - that the Adriatic S1 was synchronous with the deposition of south-eastern Mediterranean S1 beds. Proxies of paleo thermohaline currents indicate that the bottom-hugging North Adriatic Dense Water (NAdDW) suddenly decreased at the sapropel onset simultaneously with the maximum freshening of the Levantine Sea during the African Humid Period. We conclude that the lack of the "salty" Levantine Intermediate Water hampered the preconditioning of the northern Adriatic waters necessary for the NAdDW formation prior to the winter cooling. Consequently, a weak NAdDW limited in turn the Eastern Mediterranean Deep Water (EMDWAdriatic) formation with important consequences for the ventilation of the Ionian basin as well. Our results highlight the importance of the Adriatic for the deep water ventilation and the interdependence among the major eastern Mediterranean water masses whose destabilization exerted first-order control on S1 deposition.

  14. Single phase and two phase erosion corrosion in broilers of gas-cooled reactors

    International Nuclear Information System (INIS)

    Harrison, G.S.; Fountain, M.J.

    1988-01-01

    Erosion-corrosion is a phenomenon causing metal wastage in a variety of locations in water and water-steam circuits throughout the power generation industry. Erosion-corrosion can occur in a number of regions of the once-through boiler designs used in the later Magnox and AGR type of gas cooled nuclear reactor. This paper will consider two cases of erosion-corrosion damage (single and two phase) in once through boilers of gas cooled reactors and will describe the solutions that have been developed. The single phase problem is associated with erosion-corrosion damage of mild steel downstream of a boiler inlet flow control orifice. With metal loss rates of up to 1 mm/year at 150 deg. C and pH in the range 9.0-9.4 it was found that 5 μg/kg oxygen was sufficient to reduce erosion-corrosion rates to less than 0.02 mm/year. A combined oxygen-ammonia-hydrazine feedwater regime was developed and validated to eliminate oxygen carryover and hence give protection from stress corrosion in the austenitic section of the AGR once through boiler whilst still providing erosion-corrosion control. Two phase erosion-corrosion tube failures have occurred in the evaporator of the mild steel once through boilers of the later Magnox reactors operating at pressures in the range 35-40 bar. Rig studies have shown that amines dosed in the feedwater can provide a significant reduction in metal loss rates and a tube lifetime assessment technique has been developed to predict potential tube failure profiles in a fully operational boiler. The solutions identified for both problems have been successfully implemented and the experience obtained following implementation including any problems or other benefits arising from the introduction of the new regimes will be presented. Methods for monitoring and evaluating the efficiency of the solutions have been developed and the results from these exercises will also be discussed. Consideration will also be given to the similarities in the metal loss

  15. Changes in Equatorial Atlantic Ocean Thermohaline Circulation Across the Mid-Pleistocene Transition

    Science.gov (United States)

    Yehudai, M.; Kim, J.; Seguí, M. J.; Goldstein, S. L.; Pena, L. D.; Haynes, L.; Hoenisch, B.; Farmer, J. R.; Ford, H. L.; Raymo, M. E.; Bickert, T.

    2016-12-01

    The Mid-Pleistocene Transition (MPT) marked a change in the duration of glacial-interglacial cycles from 41 to 100kyr between 1.3-0.7 Ma. A recent study (Pena and Goldstein, Science, 2014) from the Southern Atlantic Ocean found evidence for major disruptions in the global thermohaline circulation (THC) between MIS 25-21 ( 950-850ka), which may have triggered intensified glacial periods and the onset of the 100 kyr cycles. We report new Nd isotope data on Fe-Mn oxide encrusted foraminifera and fish debris from ODP Site 926 (3.719N, 42.908W, 3598m) between 1.2-0.4 Ma, in order to evaluate changes in the THC in the equatorial Atlantic, through comparison with North and South Atlantic sites. The ODP 926 ɛNd values fall in-between those in the North Atlantic (DSDP 607) and South Atlantic (ODP 1088 and 1090) throughout the studied interval, consistent with mixing between northern and southern end-members, and supporting the interpretation that the data represent the THC signal at this site. Pre-MPT data show smaller glacial-interglacial differences compared to the greater post-MPT glacial-interglacial variability. As Pena and Goldstein (2014) observed in the South Atlantic, during MIS 23 at 900 ka, ɛNd values do not shift significantly toward North Atlantic more negative values, consistent with a weak THC through this critical weak interglacial. Comparing ODP 926 and DSDP 607 data, ɛNd values converge during most interglacial peaks (excepting MIS 23) and diverge otherwise. This observation indicates that northern-sourced water masses dominate the site during peak interglacials, and confirms that the THC has been strongest during peak interglacials throughout the studied interval. Otherwise, diverging ɛNd values indicate a stronger southern-source signal and weaker northern-source signal at the ODP 926 site. This confirms that there was an active but variable THC system before, during, and after the MPT, with stronger deep water export from the North Atlantic during

  16. Computational simulation of turbulent natural convection in a corium pool

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Camila B.; Su, Jian, E-mail: camila@lasme.coppe.ufrj.br, E-mail: sujian@lasme.coppe.ufrj.br [Coordenacao dos Cursos de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Niceno, Bojan, E-mail: bojan.niceno@psi.ch [Paul Scherrer Institut (PSI), Villigen (Switzerland). Nuclear Energy and Safety

    2013-07-01

    After a severe accident in a nuclear power plant, the total thermal loading on the vessel of a nuclear reactor is controlled by the convective heat transfer. Taking that fact into account, this work aimed to analyze the turbulent natural convection inside a representative lower head cavity. By means of an open-source CFD code, OpenFOAM (Open Field Operation and Manipulation), numerical simulations were performed to investigate a volumetrically heated fluid (Pr = 7.0) at internal Rayleigh (Ra) numbers ranging from 10{sup 8} to 10{sup 15}. Bearing in mind that severe accident scenario and the physical-chemical effects are many and complex, the fluid analyzed was considered Newtonian, with constant physical properties, homogeneous and single phase. Even working with that simplifications, the modeling of turbulent natural convection has posed a considerable challenge for the Reynolds Averaged Navier-Stokes (RANS) equations based models, not only because of the complete unsteadiness of the flow and the strong turbulence effects in the near wall regions, but also because of the correct treatment of the turbulent heat fluxes (θu{sub i}). So, this work outlined three approaches for treating the turbulent heat fluxes: the Simple Gradient Diffusion Hypothesis (SGDH), the Generalized Gradient Diffusion Hypothesis (GGDH) and the Algebraic Flux Model (AFM). Simulations performed at BALI test based geometry with a four equations model, k-ε-v{sup 2} -f (commonly called as v{sup 2}-f and V2-f), showed that despite of AFM and GGDH have provided reasonable agreement with experimental data for turbulent natural convection in a differentially heated cavity, they proved to be very unstable for buoyancy-driven flows with internal source in comparison to SGDH model. (author)

  17. Computational simulation of turbulent natural convection in a corium pool

    International Nuclear Information System (INIS)

    Vieira, Camila B.; Su, Jian; Niceno, Bojan

    2013-01-01

    After a severe accident in a nuclear power plant, the total thermal loading on the vessel of a nuclear reactor is controlled by the convective heat transfer. Taking that fact into account, this work aimed to analyze the turbulent natural convection inside a representative lower head cavity. By means of an open-source CFD code, OpenFOAM (Open Field Operation and Manipulation), numerical simulations were performed to investigate a volumetrically heated fluid (Pr = 7.0) at internal Rayleigh (Ra) numbers ranging from 10 8 to 10 15 . Bearing in mind that severe accident scenario and the physical-chemical effects are many and complex, the fluid analyzed was considered Newtonian, with constant physical properties, homogeneous and single phase. Even working with that simplifications, the modeling of turbulent natural convection has posed a considerable challenge for the Reynolds Averaged Navier-Stokes (RANS) equations based models, not only because of the complete unsteadiness of the flow and the strong turbulence effects in the near wall regions, but also because of the correct treatment of the turbulent heat fluxes (θu i ). So, this work outlined three approaches for treating the turbulent heat fluxes: the Simple Gradient Diffusion Hypothesis (SGDH), the Generalized Gradient Diffusion Hypothesis (GGDH) and the Algebraic Flux Model (AFM). Simulations performed at BALI test based geometry with a four equations model, k-ε-v 2 -f (commonly called as v 2 -f and V2-f), showed that despite of AFM and GGDH have provided reasonable agreement with experimental data for turbulent natural convection in a differentially heated cavity, they proved to be very unstable for buoyancy-driven flows with internal source in comparison to SGDH model. (author)

  18. A High-Power-Density Single-Phase Rectifier Based on Three-Level Neutral-Point Clamped Circuits

    Directory of Open Access Journals (Sweden)

    Tao Zhou

    2017-05-01

    Full Text Available A single-phase three-level converter is suitable for medium-power applications, with an interface voltage that is higher than that of a traditional two-level configuration. The three-level neutral-point clamped converter is adopted using four switches in each bridge arm, which, compared to a two-level rectifier, leads to less voltage stress, a lower switching frequency, and switching loss on switches. The transient current control strategy is designed to control the active power. The single-phase space vector pulse width modulation (SVPWM with a voltage balance strategy is designed to solve the neutral point voltage fluctuation problem and keep the dc-link voltage stable. A 1.3 kW high-power-density prototype based on SiC MOSFET was built and tested. The experimental results verified the high performance of steady-state and dynamic responses.

  19. Impact of Intragranular Substructure Parameters on the Forming Limit Diagrams of Single-Phase B.C.C. Steels

    Directory of Open Access Journals (Sweden)

    Gérald Franz

    2013-11-01

    Full Text Available An advanced elastic-plastic self-consistent polycrystalline model, accounting for intragranular microstructure development and evolution, is coupled with a bifurcation-based localization criterion and applied to the numerical investigation of the impact of microstructural patterns on ductility of single-phase steels. The proposed multiscale model, taking into account essential microstructural aspects, such as initial and induced textures, dislocation densities, and softening mechanisms, allows us to emphasize the relationship between intragranular microstructure of B.C.C. steels and their ductility. A qualitative study in terms of forming limit diagrams for various dislocation networks, during monotonic loading tests, is conducted in order to analyze the impact of intragranular substructure parameters on the formability of single-phase B.C.C. steels.

  20. Theoretical modelling and experimental investigation of single-phase and two-phase flow division at a tee-junction

    International Nuclear Information System (INIS)

    Lemonnier, H.; Hervieu, E.

    1991-01-01

    Phase separation in a tee-junction is modelled in the particular case of bubbly-flow. The model is based on a two-dimensional approach and hence, uses local equations. The first step consists in modelling the single-phase flow in the tee-junction. The free streamline theory is used to predict the flow of the continuous phase. The two recirculation zones which are presented in this case are predicted by the model. The second step consists in predicting the gas bubble paths as a result of the actions of the single-phase flow. Finally, the trajectories of gas bubbles are used to predict the separation characteristics of the tee-junction. Each step of the modelling procedure has been carefully tested by an in-depth experimental investigation. Excellent quantitative agreement is obtained between experimental results and model predictions. Moreover, the phase separation phenomenon is found to be clearly described by the model. (orig.)

  1. Green synthesis of isopropyl myristate in novel single phase medium Part II: Packed bed reactor (PBR) studies.

    Science.gov (United States)

    Vadgama, Rajeshkumar N; Odaneth, Annamma A; Lali, Arvind M

    2015-12-01

    Isopropyl myristate is a useful functional molecule responding to the requirements of numerous fields of application in cosmetic, pharmaceutical and food industry. In the present work, lipase-catalyzed production of isopropyl myristate by esterification of myristic acid with isopropyl alcohol (molar ratio of 1:15) in the homogenous reaction medium was performed on a bench-scale packed bed reactors, in order to obtain suitable reaction performance data for upscaling. An immobilized lipase B from Candida antartica was used as the biocatalyst based on our previous study. The process intensification resulted in a clean and green synthesis process comprising a series of packed bed reactors of immobilized enzyme and water dehydrant. In addition, use of the single phase reaction system facilitates efficient recovery of the product with no effluent generated and recyclability of unreacted substrates. The single phase reaction system coupled with a continuous operating bioreactor ensures a stable operational life for the enzyme.

  2. Green synthesis of isopropyl myristate in novel single phase medium Part II: Packed bed reactor (PBR studies

    Directory of Open Access Journals (Sweden)

    Rajeshkumar N. Vadgama

    2015-12-01

    Full Text Available Isopropyl myristate is a useful functional molecule responding to the requirements of numerous fields of application in cosmetic, pharmaceutical and food industry. In the present work, lipase-catalyzed production of isopropyl myristate by esterification of myristic acid with isopropyl alcohol (molar ratio of 1:15 in the homogenous reaction medium was performed on a bench-scale packed bed reactors, in order to obtain suitable reaction performance data for upscaling. An immobilized lipase B from Candida antartica was used as the biocatalyst based on our previous study. The process intensification resulted in a clean and green synthesis process comprising a series of packed bed reactors of immobilized enzyme and water dehydrant. In addition, use of the single phase reaction system facilitates efficient recovery of the product with no effluent generated and recyclability of unreacted substrates. The single phase reaction system coupled with a continuous operating bioreactor ensures a stable operational life for the enzyme.

  3. An Adaptive Quadrature Signal Generation Based Single-Phase Phase-Locked Loop for Grid-Connected Applications

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.; Abusorrah, Abdullah

    2017-01-01

    The quadrature signal generation based phase-locked loops (QSG-PLLs) are highly popular for synchronization purposes in single-phase systems. The main difference among these PLLs often lies in the technique they use for creating the fictitious quadrature component. One of the easiest QSG approaches...... is delaying the original single-phase signal by a quarter of a cycle. The PLL with such QSG technique is often called the transfer delay based PLL (TD-PLL). The TD-PLL benefits from a simple structure, rather fast dynamic response, and a good detection accuracy when the grid frequency is at its nominal value......, but it suffers from a phase offset error and double frequency oscillatory error in the estimated phase and frequency in the presence of frequency drifts. In this paper, a simple yet effective approach to remove the aforementioned errors of the TD-PLL is proposed. The resultant PLL structure is called...

  4. The Influence of phase-locked loop on the stability of single-phase grid-connected inverter

    DEFF Research Database (Denmark)

    Zhang, Chong; Wang, Xiongfei; Blaabjerg, Frede

    2015-01-01

    admittance of single-phase current-controlled inverters with different grid stiffness is analyzed in this paper. It shows that the PLL introduces a negative paralleled admittance into the output admittance of the inverter, which may lead to unintentional low-order harmonic oscillation in a weak grid...... for avoiding the PLL induced instability in single-phase inverters. At last the relationship between PLL bandwidth and the Short Circuit Ratio (SCR) of the grid has been derived to guide the design of the PLL. Experimental results are presented in order to verify this analysis, and the resonant frequencies can...... be predicted by the method. The possible instability due to different PLL bandwidth is also demonstrated....

  5. Analysis and Mitigation of Dead Time Harmonics in the Single-Phase Full-Bridge PWM Converters with Repetitive Controllers

    DEFF Research Database (Denmark)

    Yang, Yongheng; Zhou, Keliang; Wang, Huai

    2018-01-01

    -Width Modulation (PWM) schemes. Both solutions will contribute to a degradation of the injected current quality. As a consequence, the harmonics induced by the dead time (referred to as "dead time harmonics" hereafter) have to be compensated in order to achieve a satisfactory current quality as required...... by standards. In this paper, the emission mechanism of dead time harmonics in single-phase PWM inverters is thus presented considering the modulation schemes in details. More importantly, a repetitive controller has been adopted to eliminate the dead time effect in single-phase grid-connected PWM converters....... The repetitive controller has been plugged into a proportional resonant-based fundamental current controller so as to mitigate the dead time harmonics and also maintain the control of the fundamental-frequency grid current in terms of dynamics. Simulations and experiments are provided, which confirm...

  6. Analysis, Design, and Experimental Verification of A Synchronous Reference Frame Voltage Control for Single-Phase Inverters

    DEFF Research Database (Denmark)

    Monfared, Mohammad; Golestan, Saeed; Guerrero, Josep M.

    2014-01-01

    Control of three-phase power converters in the synchronous reference frame is now a mature and well developed research topic. However, for single-phase converters, it is not as well-established as three-phase applications. This paper deals with the design of a synchronous reference frame multi......-loop control strategy for single phase inverter-based islanded distributed generation (DG) systems. The proposed controller uses a synchronous reference frame PI (SRFPI) controller to regulate the instantaneous output voltage, a capacitor current shaping loop in the stationary reference frame to provide active...... in the synchronous reference frame, it is not straightforward to fine-tune the control parameters and evaluate the stability of the whole closed loop system. To overcome this problem, the stationary reference frame equivalent of the voltage loop is derived. Then, a step-by-step systematic design procedure based...

  7. Challenges to Grid Synchronization of Single-Phase Grid-Connected Inverters in Zero-Voltage Ride-Through Operation

    DEFF Research Database (Denmark)

    Zhang, Zhen; Yang, Yongheng; Blaabjerg, Frede

    2016-01-01

    With the fast development in Photovoltaic (PV) technology, the relevant grid-connection requirements/standards are continuously being updated, and more challenges have been imposed on both single-phase and three-phase grid-connected PV systems. For instance, PV systems are currently required...... to remain connected under grid voltage sags (even zero voltage condition). In this case, much attention should be paid to the grid synchronization in such a way to properly ride-through grid faults. Thus, in this paper, the most commonly-used and recently-developed Phase Locked Loop (PLL) synchronization...... methods have been evaluated for single-phase grid-connected PV systems in the case of Zero-Voltage Ride-Through (ZVRT) operation. The performances of the prior-art PLL methods in response to zero voltage faults in terms of detection precision and dynamic response are assessed in this paper. Simulation...

  8. Power Based Phase-Locked Loop Under Adverse Conditions with Moving Average Filter for Single-Phase System

    Directory of Open Access Journals (Sweden)

    Menxi Xie

    2017-06-01

    Full Text Available High performance synchronization methord is citical for grid connected power converter. For single-phase system, power based phase-locked loop(pPLL uses a multiplier as phase detector(PD. As single-phase grid voltage is distorted, the phase error information contains ac disturbances oscillating at integer multiples of fundamental frequency which lead to detection error. This paper presents a new scheme based on moving average filter(MAF applied in-loop of pPLL. The signal characteristic of phase error is dissussed in detail. A predictive rule is adopted to compensate the delay induced by MAF, thus achieving fast dynamic response. In the case of frequency deviate from nomimal, estimated frequency is fed back to adjust the filter window length of MAF and buffer size of predictive rule. Simulation and experimental results show that proposed PLL achieves good performance under adverse grid conditions.

  9. Impact of an intense water column mixing (0-1500 m) on prokaryotic diversity and activities during an open-ocean convection event in the NW Mediterranean Sea.

    Science.gov (United States)

    Severin, Tatiana; Sauret, Caroline; Boutrif, Mehdi; Duhaut, Thomas; Kessouri, Fayçal; Oriol, Louise; Caparros, Jocelyne; Pujo-Pay, Mireille; Durrieu de Madron, Xavier; Garel, Marc; Tamburini, Christian; Conan, Pascal; Ghiglione, Jean-François

    2016-12-01

    Open-ocean convection is a fundamental process for thermohaline circulation and biogeochemical cycles that causes spectacular mixing of the water column. Here, we tested how much the depth-stratified prokaryotic communities were influenced by such an event, and also by the following re-stratification. The deep convection event (0-1500 m) that occurred in winter 2010-2011 in the NW Mediterranean Sea resulted in a homogenization of the prokaryotic communities over the entire convective cell, resulting in the predominance of typical surface Bacteria, such as Oceanospirillale and Flavobacteriales. Statistical analysis together with numerical simulation of vertical homogenization evidenced that physical turbulence only was not enough to explain the new distribution of the communities, but acted in synergy with other parameters such as exported particulate and dissolved organic matters. The convection also stimulated prokaryotic abundance (+21%) and heterotrophic production (+43%) over the 0-1500 m convective cell, and resulted in a decline of cell-specific extracellular enzymatic activities (-67%), thus suggesting an intensification of the labile organic matter turnover during the event. The rapid re-stratification of the prokaryotic diversity and activities in the intermediate layer 5 days after the intense mixing indicated a marked resilience of the communities, apart from the residual deep mixed water patch. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Safe-commutation principle for direct single-phase AC-AC converters for use in audio power amplification

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.; Andersen, Michael A.E.

    2005-07-01

    This paper presents an alternative safe commutation principle for a single phase bidirectional bridge, for use in the new generation of direct single-stage AC-AC audio power amplifiers. As compared with the bridge commutation with load current or source voltage sensing, in this approach it is not required to do any measurements, thus making it more reliable. Initial testing made on the prototype prove the feasibility of the approach. (au)

  11. Phase Balancing by Means of Electric Vehicles Single-Phase Connection Shifting in a Low Voltage Danish Grid

    DEFF Research Database (Denmark)

    Lico, Pasqualino; Marinelli, Mattia; Knezovic, Katarina

    2015-01-01

    In Denmark, household consumers are supplied with three phase with neutral cable. In addition, the distribution service operator cannot decide to which phase electrical appliance are connected. The technician who realizes the installation connects the loads according to his technical expertise...... stations are equipped with single-phase converters. According to the designed control strategy, the charging spot can select the phase to be used for the charge. The selection is done according to a phase voltage measurement....

  12. A single-phase PWM controlled AC to DC converter based on control of unity displacement power factor

    OpenAIRE

    Funabiki, Shigeyuki

    1990-01-01

    A modified pulse-width modulation (PWM) technique that improves the displacement power factor and the input power factor of a single-phase AC to DC converter is discussed. The modified converter is shown to have a high input power factor and allows the of DC voltage from zero to more than the maximum value of the source voltage. The displacement power factor is unity, and the input power factor is almost unity in the wide range of current command

  13. Design and analysis of linear oscillatory single-phase permanent magnet generator for free-piston stirling engine systems

    OpenAIRE

    Jeong-Man Kim; Jang-Young Choi; Kyu-Seok Lee; Sung-Ho Lee

    2017-01-01

    This study focuses on the design and analysis of a linear oscillatory single-phase permanent magnet generator for free-piston stirling engine (FPSE) systems. In order to implement the design of linear oscillatory generator (LOG) for suitable FPSEs, we conducted electromagnetic analysis of LOGs with varying design parameters. Then, detent force analysis was conducted using assisted PM. Using the assisted PM gave us the advantage of using mechanical strength by detent force. To improve the effi...

  14. Application of higher harmonics in protection against single-phase earth faults in resonant grounded cable networks of medium voltage

    OpenAIRE

    Vinokurova, T. Yu.; Dobryagina, O. A.; Shagurina, E. S.; Shuin, V. A.

    2015-01-01

    Protections based by higher harmonics absolute measurements the zero sequence currents of the protected object connections against single-phase earth faults in resonant grounded cable networks of medium voltage industrial and urban energy supply systems have been widely applied in Russia since the late 60s of the 20th century. However, some operational problems connected with sufficient selectivity and sensitivity of these protection devices appeared with time. Sensitivity and selectivity of ...

  15. Performance enhancement of the single-phase series active filter by employing the load voltage waveform reconstruction and line current sampling delay reduction methods

    DEFF Research Database (Denmark)

    Senturk, O.S.; Hava, A.M.

    2011-01-01

    This paper proposes the waveform reconstruction method (WRM), which is utilized in the single-phase series active filter's (SAF's) control algorithm, in order to extract the load harmonic voltage component of voltage harmonic type single-phase diode rectifier loads. Employing WRM and the line...

  16. Modelling of stellar convection

    Science.gov (United States)

    Kupka, Friedrich; Muthsam, Herbert J.

    2017-07-01

    The review considers the modelling process for stellar convection rather than specific astrophysical results. For achieving reasonable depth and length we deal with hydrodynamics only, omitting MHD. A historically oriented introduction offers first glimpses on the physics of stellar convection. Examination of its basic properties shows that two very different kinds of modelling keep being needed: low dimensional models (mixing length, Reynolds stress, etc.) and "full" 3D simulations. A list of affordable and not affordable tasks for the latter is given. Various low dimensional modelling approaches are put in a hierarchy and basic principles which they should respect are formulated. In 3D simulations of low Mach number convection the inclusion of then unimportant sound waves with their rapid time variation is numerically impossible. We describe a number of approaches where the Navier-Stokes equations are modified for their elimination (anelastic approximation, etc.). We then turn to working with the full Navier-Stokes equations and deal with numerical principles for faithful and efficient numerics. Spatial differentiation as well as time marching aspects are considered. A list of codes allows assessing the state of the art. An important recent development is the treatment of even the low Mach number problem without prior modification of the basic equation (obviating side effects) by specifically designed numerical methods. Finally, we review a number of important trends such as how to further develop low-dimensional models, how to use 3D models for that purpose, what effect recent hardware developments may have on 3D modelling, and others.

  17. Numerical Analysis of General Trends in Single-Phase Natural Circulation in a 2D-Annular Loop

    Directory of Open Access Journals (Sweden)

    Gilles Desrayaud

    2008-01-01

    Full Text Available The aim of this paper is to address fluid flow behavior of natural circulation in a 2D-annular loop filled with water. A two-dimensional, numerical analysis of natural convection in a 2D-annular closed-loop thermosyphon has been performed for various radius ratios from 1.2 to 2.0, the loop being heated at a constant flux over the bottom half and cooled at a constant temperature over the top half. It has been numerically shown that natural convection in a 2D-annular closed-loop thermosyphon is capable of showing pseudoconductive regime at pitchfork bifurcation, stationary convective regimes without and with recirculating regions occurring at the entrance of the exchangers, oscillatory convection at Hopf bifurcation and Lorenz-like chaotic flow. The complexity of the dynamic properties experimentally encountered in toroidal or rectangular loops is thus also found here.

  18. Bidispersive-inclined convection

    Science.gov (United States)

    Mulone, Giuseppe; Straughan, Brian

    2016-01-01

    A model is presented for thermal convection in an inclined layer of porous material when the medium has a bidispersive structure. Thus, there are the usual macropores which are full of a fluid, but there are also a system of micropores full of the same fluid. The model we employ is a modification of the one proposed by Nield & Kuznetsov (2006 Int. J. Heat Mass Transf. 49, 3068–3074. (doi:10.1016/j.ijheatmasstransfer.2006.02.008)), although we consider a single temperature field only. PMID:27616934

  19. Analysis of free-surface flows through energy considerations: Single-phase versus two-phase modeling.

    Science.gov (United States)

    Marrone, Salvatore; Colagrossi, Andrea; Di Mascio, Andrea; Le Touzé, David

    2016-05-01

    The study of energetic free-surface flows is challenging because of the large range of interface scales involved due to multiple fragmentations and reconnections of the air-water interface with the formation of drops and bubbles. Because of their complexity the investigation of such phenomena through numerical simulation largely increased during recent years. Actually, in the last decades different numerical models have been developed to study these flows, especially in the context of particle methods. In the latter a single-phase approximation is usually adopted to reduce the computational costs and the model complexity. While it is well known that the role of air largely affects the local flow evolution, it is still not clear whether this single-phase approximation is able to predict global flow features like the evolution of the global mechanical energy dissipation. The present work is dedicated to this topic through the study of a selected problem simulated with both single-phase and two-phase models. It is shown that, interestingly, even though flow evolutions are different, energy evolutions can be similar when including or not the presence of air. This is remarkable since, in the problem considered, with the two-phase model about half of the energy is lost in the air phase while in the one-phase model the energy is mainly dissipated by cavity collapses.

  20. Identification of thermohaline structure of a tropical estuary and its sensitivity to meteorological disturbance through temperature, salinity, and surface meteorological measurements

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A; Mehra, P.; Desai, R.G.P.; Sivadas, T.K.; Balachandran, K.K.; Vijaykumar, K.; Revichandran, C.; Agarvadekar, Y.; Francis, R.; Martin, G.D.

    the thermohaline structure of KB. Rainfall and associated river influx cause large haline stratification in the mouth region, in which a approx. 1-4 m thick layer of low salinity water (approx. 0-2 psu) floats on the surface....

  1. Evaluation on numerical simulation accuracy of the commercial CFD program for FBR thermal-hydraulic conditions and applications. Single phase multi-dimensional thermal-hydraulic evaluation problems

    International Nuclear Information System (INIS)

    Okano, Yasushi

    2003-03-01

    Commercial computational fluid dynamic program is taken up to be employed for nuclear thermal-hydraulic applications due to the advantages in high-speed solution and easy-to-use operation. The principal objective of this report is evaluating the numerical simulation accuracy of the Fluent, on single-phase multi-dimensional thermal hydraulic problems. The evaluation problems are: 1) Laminar flow over a backward-facing step, 2) Turbulent flow over a backward-facing step, 3) Temperature of a inner rectangular rotating flow, 4) Thermal-driven natural convection flow in a square cavity, and 5) Turbulent flow in a cubic cavity, those were selected in supposing nuclear reactor thermal-hydraulic conditions by the technical committee of the Japan atomic energy society. The features on numerical method and accuracy of the Fluent being identified are: 1) Spatial differential schemes for convection term: 1st upwind, power-law, 2nd upwind, and Quick, upgrade the numerical accuracy in this order. Each scheme has the same accuracy as of the existing referenced numerical results. Quick scheme employs numerical stability oriented filtering so that no over- or under-shoots are observed. Yet, 2nd central differential scheme -used in large eddy simulation (LES)- leads numerical instability (i.e. temporal oscillation in pressure, and spatial wavering in velocity) typically when we deal with in low-resolution domains. 2) Turbulent models: (Standard, RNG, Realizable) k-ε, (Standard, SST) k-ω, and, (Standard, Quadratic) RST, necessitate to involve non-equilibrium wall function to take numerical accuracy and stability. The Fluent evaluations on re-attaching points and velocity distributions show nearly the same as -and on several counts more accurate than- those of the existing reference results. The LES turbulent model can be used only for 3-D simulations. 3) The evaluations of thermal-driven natural convection flow, which is one of the heat transfer and fluidics coupling problem, show

  2. Convective Lyapunov spectra

    Science.gov (United States)

    Kenfack Jiotsa, Aurélien; Politi, Antonio; Torcini, Alessandro

    2013-06-01

    We generalize the concept of the convective (or velocity-dependent) Lyapunov exponent from the maximum rate Λ(v) to an entire spectrum Λ(v, n). Our results are derived by following two distinct computational protocols: (i) Legendre transform within the chronotopic approach (Lepri et al 1996 J. Stat. Phys. 82 1429); (ii) by letting evolve an ensemble of initially localized perturbations. The two approaches turn out to be mutually consistent. Moreover, we find the existence of a phase transition: above a critical value n = nc of the integrated density of exponents, the zero-velocity convective exponent is strictly smaller than the corresponding Lyapunov exponent. This phenomenon is traced back to a change of concavity of the so-called temporal Lyapunov spectrum for n > nc, which, therefore, turns out to be a dynamically invariant quantity. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Lyapunov analysis: from dynamical systems theory to applications’.

  3. Convection in porous media

    CERN Document Server

    Nield, Donald A

    1992-01-01

    This book provides a user-friendly introduction to the topic of convection in porous media The authors as- sume that the reader is familiar with the basic elements of fluid mechanics and heat transfer, but otherwise the book is self-contained The book will be useful both as a review (for reference) and as a tutorial work, suitable as a textbook in a graduate course or seminar The book brings into perspective the voluminous research that has been performed during the last two decades The field has recently exploded because of worldwide concern with issues such as energy self-sufficiency and pollution of the environment Areas of application include the insulation of buildings and equipment, energy storage and recovery, geothermal reservoirs, nuclear waste disposal, chemical reactor engineering, and the storage of heat-generating materials such as grain and coal Geophysical applications range from the flow of groundwater around hot intrusions to the stability of snow against avalanches

  4. Convection in Porous Media

    CERN Document Server

    Nield, Donald A

    2013-01-01

    Convection in Porous Media, 4th Edition, provides a user-friendly introduction to the subject, covering a wide range of topics, such as fibrous insulation, geological strata, and catalytic reactors. The presentation is self-contained, requiring only routine mathematics and the basic elements of fluid mechanics and heat transfer. The book will be of use not only to researchers and practicing engineers as a review and reference, but also to graduate students and others entering the field. The new edition features approximately 1,750 new references and covers current research in nanofluids, cellular porous materials, strong heterogeneity, pulsating flow, and more. Recognized as the standard reference in the field Includes a comprehensive, 250-page reference list Cited over 2300 times to date in its various editions Serves as an introduction for those entering the field and as a comprehensive reference for experienced researchers Features new sections on nanofluids, carbon dioxide sequestration, and applications...

  5. Comparative Studies of Silicon Dissolution in Molten Aluminum Under Different Flow Conditions, Part I: Single-Phase Flow

    Science.gov (United States)

    Seyed Ahmadi, Mehran; Argyropoulos, Stavros A.; Bussmann, Markus; Doutre, Don

    2015-02-01

    This manuscript presents research work related to the assimilation of Silicon (Si) in molten Aluminum (Al) under natural and forced convection conditions. The effects of impurity levels of solid Si, Al bath temperature, and fluid flow conditions were investigated. It was found that a polycrystalline metallurgical grade Si (MGSi) with higher levels of impurities dissolved more slowly than high purity polycrystalline MGSi, which showed a similar dissolution rate to monocrystalline electronic grade Si. For high-purity Si cylinders, the experimental data under natural convection conditions exhibit good agreement with a correlation for vertical cylinders: overline{Sh} = ( 0. 1 1 {{to}}0.129)(Gr_m Sc)^{1/3} . Under forced convection conditions, by rotating the molten Al, the mass transfer rate increased at higher liquid velocities, implying that the dissolution process is controlled by liquid phase diffusion. When the forced convection prevails, the experimental data are well predicted by a correlation for vertical cylinders in cross flow: overline{Sh} = 0.3 + {0.62{Re}^{1/2} Sc^{1/3} }/{[ {1 + (0.4/Sc)^{2/3 } ]^{1/4} }}[ {1 + ( {{Re} /282000} )^{5/8} } ]^{4/5} . Finally, at lower velocities of liquid Al, the combined effect of natural and forced convection must be considered, and a correlation is proposed based on the buoyancy force normal to the direction of the flow.

  6. Internal Wave Generation by Convection

    Science.gov (United States)

    Lecoanet, Daniel Michael

    In nature, it is not unusual to find stably stratified fluid adjacent to convectively unstable fluid. This can occur in the Earth's atmosphere, where the troposphere is convective and the stratosphere is stably stratified; in lakes, where surface solar heating can drive convection above stably stratified fresh water; in the oceans, where geothermal heating can drive convection near the ocean floor, but the water above is stably stratified due to salinity gradients; possible in the Earth's liquid core, where gradients in thermal conductivity and composition diffusivities maybe lead to different layers of stable or unstable liquid metal; and, in stars, as most stars contain at least one convective and at least one radiative (stably stratified) zone. Internal waves propagate in stably stratified fluids. The characterization of the internal waves generated by convection is an open problem in geophysical and astrophysical fluid dynamics. Internal waves can play a dynamically important role via nonlocal transport. Momentum transport by convectively excited internal waves is thought to generate the quasi-biennial oscillation of zonal wind in the equatorial stratosphere, an important physical phenomenon used to calibrate global climate models. Angular momentum transport by convectively excited internal waves may play a crucial role in setting the initial rotation rates of neutron stars. In the last year of life of a massive star, convectively excited internal waves may transport even energy to the surface layers to unbind them, launching a wind. In each of these cases, internal waves are able to transport some quantity--momentum, angular momentum, energy--across large, stable buoyancy gradients. Thus, internal waves represent an important, if unusual, transport mechanism. This thesis advances our understanding of internal wave generation by convection. Chapter 2 provides an underlying theoretical framework to study this problem. It describes a detailed calculation of the

  7. Ferrofluid convective heat transfer under the influence of external magnetic source

    Directory of Open Access Journals (Sweden)

    M. Sheikholeslami

    2018-03-01

    Full Text Available Ferrofluid convective heat transfer in a cavity with sinusoidal cold wall is examined under the influence of external magnetic source. The working fluid is Fe3O4-water nanofluid. Single phase model is used to estimate the behavior of nanofluid. Vorticity stream function formulation is utilized to eliminate pressure gradient source terms. New numerical method is chosen namely Control volume base finite element method. Influences of Rayleigh, Hartmann numbers, amplitude of the sinusoidal wall and volume fraction of Fe3O4 on hydrothermal characteristics are presented. Results indicate that temperature gradient enhances as space between cold and hot walls reduces at low buoyancy force. Lorentz forces cause the nanofluid velocity to reduce and augment the thermal boundary layer thickness. Nusselt number augments with rise of buoyancy forces but it decreases with augment of Lorentz forces. Keywords: Nanofluid, Natural convection, Magnetic source, CVFEM, Sinusoidal wall

  8. A review of modern advances in analyses and applications of single-phase natural circulation loop in nuclear thermal hydraulics

    International Nuclear Information System (INIS)

    Basu, Dipankar N.; Bhattacharyya, Souvik; Das, P.K.

    2014-01-01

    Highlights: • Comprehensive review of state-of-the-art on single-phase natural circulation loops. • Detailed discussion on growth in solar thermal system and nuclear thermal hydraulics. • Systematic development in scaling methodologies for fabrication of test facilities. • Importance of numerical modeling schemes for stability assessment using 1-D codes. • Appraisal of current trend of research and possible future directions. - Abstract: A comprehensive review of single-phase natural circulation loop (NCL) is presented here. Relevant literature reported since the later part of 1980s has been meticulously surveyed, with occasional obligatory reference to a few pioneering studies originating prior to that period, summarizing the key observations and the present trend of research. Development in the concept of buoyancy-induced flow is discussed, with introduction to flow initiation in an NCL due to instability. Detailed discussion on modern advancement in important application areas like solar thermal systems and nuclear thermal hydraulics are presented, with separate analysis for various reactor designs working on natural circulation. Identification of scaling criteria for designing lab-scale experimental facilities has gone through a series of modification. A systematic analysis of the same is presented, considering the state-of-the-art knowledge base. Different approaches have been followed for modeling single-phase NCLs, including simplified Lorenz system mostly for toroidal loops, 1-D computational modeling for both steady-state and stability characterization and 3-D commercial system codes to have a better flow visualization. Methodical review of the relevant studies is presented following a systematic approach, to assess the gradual progression in understanding of the practical system. Brief appraisal of current research interest is reported, including the use of nanofluids for fluid property augmentation, marine reactors subjected to rolling waves

  9. Synthesis and reactivity of single-phase Be{sub 17}Ti{sub 2} intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Hwan, E-mail: kim.jaehwan@jaea.go.jp [Breeding Functional Materials Development Group, Sector of Fusion Research and Development, Japan Atomic Energy Agency (Japan); Iwakiri, Hirotomo; Furugen, Tatsuaki [Faculty of Education Elementary and Secondary School Teacher Training Program, University of the Ryukyus, Okinawa (Japan); Nakamichi, Masaru [Breeding Functional Materials Development Group, Sector of Fusion Research and Development, Japan Atomic Energy Agency (Japan)

    2016-01-15

    Highlights: • Preliminary synthesis of single-phase Be{sub 17}Ti{sub 2} was succeeded. • Reactivity difference between beryllium and beryllides may be caused by a lattice strain. • Oxidation of Be{sub 17}Ti{sub 2} at high temperatures results in the formation of TiO{sub 2}. • Simulation results reveal that a stable site for hydrogen at the center of tetrahedron exists. - Abstract: To investigate feasibility for application of Be{sub 17}Ti{sub 2} as a neutron multiplier as well as a refractory material, single-phase Be{sub 17}Ti{sub 2} intermetallic compounds were synthesized using an annealing heat treatment of the starting powder and a plasma sintering method. Scanning electron microscopic observations and X-ray diffraction measurements reveal that the single-phase Be{sub 17}Ti{sub 2} compounds were successfully synthesized. We examined the reactivity of Be{sub 17}Ti{sub 2} with 1% H{sub 2}O and discovered that a larger stoichiometric amount of Ti resulted in the formation of TiO{sub 2} on the surface at high temperatures. This oxidation may also contribute to an increase in both weight gain and generation of H{sub 2}. This suggests that the formation of the Ti-depleted Be{sub 17}Ti{sub 2−x} layer as a result of oxidation facilitates an increased reactivity with H{sub 2}O. To evaluate the safety aspects of Be{sub 17}Ti{sub 2}, we also investigated the hydrogen positions and solution energies based on the first principle. The calculations reveal that there are 10 theoretical sites, where 9 of these sites have hydrogen solution energies with a positive value (endothermic) and 1 site located at the center of a tetrahedron comprising two Be and two Ti atoms gives a negative value (exothermic).

  10. Reduction of waveform distortion in grid-injection current from single-phase utility interactive PV-inverter

    International Nuclear Information System (INIS)

    Hamid, Muhammad Imran; Jusoh, Awang

    2014-01-01

    Highlights: • A reduction scheme for harmonics from utility interactive PV-inverter is proposed. • Single-phase conditioner with 3-phase expandability structure is used. • The single-phase conditioner in 3-phase structure work independently. • The scheme works effectively within overall operation range of the PV-inverter. • Conditioner in the scheme also improves the PV-inverter and plant’s utility factor. - Abstract: As the natural behavior of energy source and design characteristic, the current generated by a grid-interactive PV-inverter may contain harmonics. This distortion component will be carried on from the PV-inverter during injection power into the grid. Excessive harmonics in a grid will lead to a variety of power quality problems. This paper presents a distortion reduction scheme, utilizing a fed forward single-phase, generation-side power conditioner with a structure that can be expanded for use in a three-phase system and can work independently under imbalanced condition. Conditioner is placed in parallel with the photovoltaic plant and it functions to compensate the plant’s output current distortion, so that the total current flow to the grid is sinusoidal. This method also includes the implementation of a simpler control system for the conditioner, which consists of a combination of distortion current extraction, synchronization and a current control system, and realized through a TMS320F28335: a 150 MHz floating point DSP controller. Testing of the conditioner prototype, which was conducted on a real operation of a PV plant, showed that the scheme worked effectively within the overall operation range of the PV plant. This paper also discusses the potential of utility factor improvement of the PV-inverter and plant due to implementation of conditioner in the scheme

  11. Design and analysis of linear oscillatory single-phase permanent magnet generator for free-piston stirling engine systems

    Directory of Open Access Journals (Sweden)

    Jeong-Man Kim

    2017-05-01

    Full Text Available This study focuses on the design and analysis of a linear oscillatory single-phase permanent magnet generator for free-piston stirling engine (FPSE systems. In order to implement the design of linear oscillatory generator (LOG for suitable FPSEs, we conducted electromagnetic analysis of LOGs with varying design parameters. Then, detent force analysis was conducted using assisted PM. Using the assisted PM gave us the advantage of using mechanical strength by detent force. To improve the efficiency, we conducted characteristic analysis of eddy-current loss with respect to the PM segment. Finally, the experimental result was analyzed to confirm the prediction of the FEA.

  12. A modified P&O MPPT algorithm for single-phase PV systems based on deadbeat control

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2012-01-01

    A modified perturb and observe (P&O) algorithm is presented to improve maximum power point tracking (MPPT) performance of photovoltaic (PV) systems. This modified algorithm is applied to a single-phase PV system based on deadbeat control in order to test the tracking accuracy and its impact...... on the reliability of the whole system. Both simulations and experimental results show that the proposed algorithm offers a fast response as well as smaller steady-state oscillations even under low irradiance condition compared with classical methods....

  13. A Comparison between Boundary and Continuous Conduction Modes in Single Phase PFC Using 600V Range Devices

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos; Petersen, Lars Press; Andersen, Michael A. E.

    2015-01-01

    This paper presents an analysis and comparison of boundary conduction mode (BCM) and continuous conduction mode (CCM) in single phase power factor correction (PFC) applications. The comparison is based on double pulse tester (DPT) characterization results of state-of-the-art superjunction devices...... in the 600V range. The measured switching energy is used to evaluate the devices performance in a conventional PFC. This data is used together with a mathematical model for prediction of the conducted electromagnetic interference (EMI). This allows comparing the different devices in BCM and CCM operation...... modes and evaluating the performance as a function of the PFC power density and efficiency....

  14. Analysis, Control and Experimental Verification of a Single-Phase Capacitive-Coupling Grid-Connected Inverter

    DEFF Research Database (Denmark)

    Dai, Ning-Yi; Zhang, Wen-Chen; Wong, Man-Chung

    2015-01-01

    This study proposes a capacitive-coupling grid-connected inverter (CGCI), which consists of a full-bridge single-phase inverter coupled to a power grid via one capacitor in series with an inductor. The fundamental-frequency impedance of the coupling branch is capacitive. In contrast...... reactive power at an operational voltage much lower than that of the IGCI. This reduces the system's initial cost and operational losses, as well as the energy stored in the DC-link capacitor. The CGCI has been analysed and a DC voltage selection method is proposed. Using this method, the DC-link voltage...

  15. Myocardial CT perfusion imaging in a large animal model: comparison of dynamic versus single-phase acquisitions.

    Science.gov (United States)

    Schwarz, Florian; Hinkel, Rabea; Baloch, Elisabeth; Marcus, Roy P; Hildebrandt, Kristof; Sandner, Torleif A; Kupatt, Christian; Hoffmann, Verena; Wintersperger, Bernd J; Reiser, Maximilian F; Theisen, Daniel; Nikolaou, Konstantin; Bamberg, Fabian

    2013-12-01

    This study sought to compare dynamic versus single-phase high-pitch computed tomography (CT) acquisitions for the assessment of myocardial perfusion in a porcine model with adjustable degrees of coronary stenosis. The incremental value of the 2 different approaches to CT-based myocardial perfusion imaging remains unclear. Country pigs received stent implantation in the left anterior descending coronary artery, in which an adjustable narrowing (50% and 75% stenoses) was created using a balloon catheter. All animals underwent CT-based rest and adenosine-stress myocardial perfusion imaging using dynamic and single-phase high-pitch acquisitions at both degrees of stenosis. Fluorescent microspheres served as a reference standard for myocardial blood flow. Segmental CT-based myocardial blood flow (MBFCT) was derived from dynamic acquisitions. Segmental single-phase enhancement (SPE) was recorded from high-pitch, single-phase examinations. MBFCT and SPE were compared between post-stenotic and reference segments, and receiver-operating characteristic curve analysis was performed. Among 6 animals (28 ± 2 kg), there were significant differences of MBFCT and SPE between post-stenotic and reference segments for all acquisitions at 75% stenosis. By contrast, although for 50% stenosis at rest, MBFCT was lower in post-stenotic than in reference segments (0.65 ± 0.10 ml/g/min vs. 0.75 ± 0.16 ml/g/min, p < 0.05), there was no difference for SPE (128 ± 27 Hounsfield units vs. 137 ± 35 Hounsfield units, p = 0.17), which also did not significantly change under adenosine stress. In receiver-operating characteristic curve analyses, segmental MBFCT showed significantly better performance for ischemia prediction at 75% stenosis and stress (area under the curve: 0.99 vs. 0.89, p < 0.05) as well as for 50% stenosis, regardless of adenosine administration (area under the curve: 0.74 vs. 0.57 and 0.88 vs. 0.61, respectively, both p < 0.05). At higher degrees of coronary stenosis, both

  16. A simple and consistent equation of state for sodium in the single phase and two phase regions

    International Nuclear Information System (INIS)

    Breton, J.P.

    1976-01-01

    An equation of state valid over an extended temperature and density range has been derived. Then, the following properties have been deduced : coefficient of thermal expansion, isothermal coefficient of bulk compressibility, thermal pressure coefficient, heat capacity at constant pressure, at constant volume, along the saturation curve for liquid, for vapor, heat of vaporization, speed of sound, and finally the Mollier diagram and the entropy diagram. All the obtained properties are thermodynamically consistent and satisfy the basic relations of thermodynamics for both single phase and two-phase regions. Experimental results were always used when available. (auth.)

  17. A Single-Phase Voltage-Controlled Grid-Connected Photovoltaic System With Power Quality Conditioner Functionality

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Liserre, Marco; Mastromauro, R. A.

    2009-01-01

    Future ancillary services provided by photovoltaic (PV) systems could facilitate their penetration in power systems. Also low power PV systems can be designed to improve the power quality. This paper presents a single-phase photovoltaic system that provides grid voltage support and compensation...... of harmonic distortion at the point of common coupling (PCC) thanks to a repetitive controller. The power provided by the PV panels is controlled by a Maximum Power Point Tracking (MPPT) algorithm based on the incremental conductance method specifically modified to control the phase of the PV inverter voltage...

  18. Design and analysis of linear oscillatory single-phase permanent magnet generator for free-piston stirling engine systems

    Science.gov (United States)

    Kim, Jeong-Man; Choi, Jang-Young; Lee, Kyu-Seok; Lee, Sung-Ho

    2017-05-01

    This study focuses on the design and analysis of a linear oscillatory single-phase permanent magnet generator for free-piston stirling engine (FPSE) systems. In order to implement the design of linear oscillatory generator (LOG) for suitable FPSEs, we conducted electromagnetic analysis of LOGs with varying design parameters. Then, detent force analysis was conducted using assisted PM. Using the assisted PM gave us the advantage of using mechanical strength by detent force. To improve the efficiency, we conducted characteristic analysis of eddy-current loss with respect to the PM segment. Finally, the experimental result was analyzed to confirm the prediction of the FEA.

  19. A Hybrid Estimator for Active/Reactive Power Control of Single-Phase Distributed Generation Systems with Energy Storage

    DEFF Research Database (Denmark)

    Pahlevani, Majid; Eren, Suzan; Guerrero, Josep M.

    2016-01-01

    This paper presents a new active/reactive power closed-loop control system for a hybrid renewable energy generation system used for single-phase residential/commercial applications. The proposed active/reactive control method includes a hybrid estimator, which is able to quickly and accurately...... estimate the active/reactive power values. The proposed control system enables the hybrid renewable energy generation system to be able to perform real-time grid interconnection services such as active voltage regulation, active power control, and fault ride-through.Simulation and experimental results...... demonstrate the superior performance of the proposed closed-loop control system....

  20. Single-Phase Full-Wave Rectifier as an Effective Example to Teach Normalization, Conduction Modes, and Circuit Analysis Methods

    Directory of Open Access Journals (Sweden)

    Predrag Pejovic

    2013-12-01

    Full Text Available Application of a single phase rectifier as an example in teaching circuit modeling, normalization, operating modes of nonlinear circuits, and circuit analysis methods is proposed.The rectifier supplied from a voltage source by an inductive impedance is analyzed in the discontinuous as well as in the continuous conduction mode. Completely analytical solution for the continuous conduction mode is derived. Appropriate numerical methods are proposed to obtain the circuit waveforms in both of the operating modes, and to compute the performance parameters. Source code of the program that performs such computation is provided.

  1. Comparison between Synthetic Inertia and Fast Frequency Containment Control Based on Single Phase EVs in a Microgrid

    DEFF Research Database (Denmark)

    Rezkalla, Michel M.N.; Zecchino, Antonio; Martinenas, Sergejus

    2017-01-01

    solutions. The objective of this paper is twofold: first, it aims to implement and validate fast frequency control and synthetic (virtual) inertia control, employing single phase electric vehicles as flexibility resources. Second, it proposes a trade-off analysis between the two controllers......The increasing share of distributed and inertia-less resources entails an upsurge in balancing and system stabilisation services. In particular, the displacement of conventional generation reduces the available rotational inertia in the power system, leading to high interest in synthetic inertia...

  2. Synthesis of single-phase L10-FeNi magnet powder by nitrogen insertion and topotactic extraction

    OpenAIRE

    Goto, Sho; Kura, Hiroaki; Watanabe, Eiji; Hayashi, Yasushi; Yanagihara, Hideto; Shimada, Yusuke; Mizuguchi, Masaki; Takanashi, Koki; Kita, Eiji

    2017-01-01

    Tetrataenite (L10-FeNi) is a promising candidate for use as a permanent magnet free of rare-earth elements because of its favorable properties. In this study, single-phase L10-FeNi powder with a high degree of order was synthesized through a new method, nitrogen insertion and topotactic extraction (NITE). In the method, FeNiN, which has the same ordered arrangement as L10-FeNi, is formed by nitriding A1-FeNi powder with ammonia gas. Subsequently, FeNiN is denitrided by topotactic reaction to ...

  3. An experimental and numerical study of developed single phase axial turbulent flow in a smooth rod bundle

    International Nuclear Information System (INIS)

    Hooper, J.D.

    1977-01-01

    A combined experimental and numerical model of a turbulent single phase coolant, flowing axially along the fuel pins of a nuclear reactor, was developed. The experimental rig represented two interconnected subchannels of a square array at a pitch/diameter ratio of 1.193. Air was the working fluid, and measurements were made of the mean radial velocity profiles, wall shear stress variation, turbulence velocity spectra and intensities. The numerically predicted wall shear distribution and mean velocity profiles, obtained using an empirical two-dimensional mixing length and eddy diffusivity concept to represent fluid turbulence, showed good agreement with the experimental results. (Author)

  4. Profile and bottle data collected on the RV Melville (cruise Vancouver 06) from the Agulhas-South Atlantic Thermohaline Transport Experiment (ASTTEX) in the Atlantic Ocean from 20030102 to 20030115 (NODC Accession 0074001)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Introduction: The Agulhas-South Atlantic Thermohaline Experiment (ASTTEX) examined the fluxes of heat, salt and mass entering the South Atlantic ocean via the...

  5. The convection patterns in microemulsions

    International Nuclear Information System (INIS)

    Korneta, W.; Lopez Quintela, M.A.; Fernandez Novoa, A.

    1991-07-01

    The Rayleigh-Benard convection in the microemulsion consisting of water (7.5%), cyclohexan (oil-61.7%) and diethylenglycolmonobutylether (surfactant-30.8%) is studied from the onset of convection to the phase separation. The five classes of convection patterns are observed and recorded on the video: localized travelling waves, travelling waves, travelling waves and localized steady rolls, steady rolls and steady polygons. The Fourier transforms and histograms of these patterns are presented. The origin of any pattern is discussed. The intermittent behaviour close to the phase separation was observed. Possible applications of the obtained results are suggested. (author). 6 refs, 4 figs

  6. Convection-enhanced water evaporation

    Directory of Open Access Journals (Sweden)

    B. M. Weon

    2011-03-01

    Full Text Available Water vapor is lighter than air; this can enhance water evaporation by triggering vapor convection but there is little evidence. We directly visualize evaporation of nanoliter (2 to 700 nL water droplets resting on silicon wafer in calm air using a high-resolution dual X-ray imaging method. Temporal evolutions of contact radius and contact angle reveal that evaporation rate linearly changes with surface area, indicating convective (instead of diffusive evaporation in nanoliter water droplets. This suggests that convection of water vapor would enhance water evaporation at nanoliter scales, for instance, on microdroplets or inside nanochannels.

  7. Similarity analysis and scaling criteria for LWRs under single-phase and two-phase natural circulation

    International Nuclear Information System (INIS)

    Ishii, M.; Kataoka, I.

    1983-03-01

    Scaling criteria for a natural circulation loop under single phase and two-phase flow conditions have been derived. For a single phase case the continuity, integral momentum, and energy equations in one-dimensional area average forms have been used. From this, the geometrical similarity groups, friction number, Richardson number, characteristic time constant ratio, Biot number, and heat source number are obtained. The Biot number involves the heat transfer coefficient which may cause some difficulties in simulating the turbulent flow regime. For a two-phase flow case, the similarity groups obtained from a perturbation analysis based on the one-dimensional drift-flux model have been used. The physical significance of the phase change number, subcooling number, drift-flux number, friction number are discussed and conditions imposed by these groups are evaluated. In the two-phase flow case, the critical heat flux is one of the most important transients which should be simulated in a scale model. The above results are applied to the LOFT facility in case of a natural circulation simulation. Some preliminary conclusions on the feasibility of the facility have been obtained

  8. Similarity analysis and scaling criteria for LWRs under single-phase and two-phase natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, M.; Kataoka, I.

    1983-03-01

    Scaling criteria for a natural circulation loop under single phase and two-phase flow conditions have been derived. For a single phase case the continuity, integral momentum, and energy equations in one-dimensional area average forms have been used. From this, the geometrical similarity groups, friction number, Richardson number, characteristic time constant ratio, Biot number, and heat source number are obtained. The Biot number involves the heat transfer coefficient which may cause some difficulties in simulating the turbulent flow regime. For a two-phase flow case, the similarity groups obtained from a perturbation analysis based on the one-dimensional drift-flux model have been used. The physical significance of the phase change number, subcooling number, drift-flux number, friction number are discussed and conditions imposed by these groups are evaluated. In the two-phase flow case, the critical heat flux is one of the most important transients which should be simulated in a scale model. The above results are applied to the LOFT facility in case of a natural circulation simulation. Some preliminary conclusions on the feasibility of the facility have been obtained.

  9. Design and testing of an integrated electronically controlled capacitor for integral and fractional horse power single phase induction motor

    International Nuclear Information System (INIS)

    Faiz, Jawad; Kasebi, F.; Pillay, P.

    2004-01-01

    This paper addresses a problem that occurs in many small appliances. As such, it is an important problem of energy utilization. To improve the performance of a single phase capacitor start/run induction motor, FET type power transistors could be used to replace a SCR H bridge. Such a configuration can lead to a simpler and more inexpensive circuit for the electronically controlled capacitor. In this paper, ICs and an OP-AMP are used to design an electronically controlled capacitor for a single phase induction motor. The design can compensate for the input voltage fluctuations that are present in the normal operation of the motor. In addition, an improvement in its performance can be obtained. At present, the use of a tachometer can be considered a disadvantage of the proposed scheme. Thus, a configuration that enables removal of the tachometer, while maintaining reasonable cost, is desirable. In addition, replacing the ac capacitor with one rated for dc can lead to a system reduction, in addition to a considerable reduction in the size of the circuit due to the use of integrated circuits

  10. Research on Single-Phase PWM Converter with Reverse Conducting IGBT Based on Loss Threshold Desaturation Control

    Directory of Open Access Journals (Sweden)

    Xianjin Huang

    2017-11-01

    Full Text Available In the application of vehicle power supply and distributed power generation, there are strict requirements for the pulse width modulation (PWM converter regarding power density and reliability. When compared with the conventional insulated gate bipolar transistor (IGBT module, the Reverse Conducting-Insulated Gate Bipolar Transistor (RC-IGBT with the same package has a lower thermal resistance and higher current tolerance. By applying the gate desaturation control, the reverse recovery loss of the RC-IGBT diode may be reduced. In this paper, a loss threshold desaturation control method is studied to improve the output characteristics of the single-phase PWM converter with a low switching frequency. The gate desaturation control characteristics of the RC-IGBT’s diode are studied. A proper current limit is set to avoid the ineffective infliction of the desaturation pulse, while the bridge arm current crosses zero. The expectation of optimized loss decrease is obtained, and the better performance for the RC-IGBTs of the single-phase PWM converter is achieved through the optimized desaturation pulse distribution. Finally, the improved predictive current control algorithm that is applied to the PWM converter with RC-IGBTs is simulated, and is operated and tested on the scaled reduced power platform. The results prove that the gate desaturation control with the improved predictive current algorithm may effectively improve the RC-IGBT’s characteristics, and realize the stable output of the PWM converter.

  11. The Application Three-phase to Single-phase Z-Source Matrix Converter in Wind Turbine

    Directory of Open Access Journals (Sweden)

    vahid asadi rad

    2017-01-01

    Full Text Available In this paper a new idea of direct three-phase to single-phase Z-source matrix converter (impedance-source matrix converter applicable in stand-alone wind turbine is introduced. In the direct Z-source matrix converter amplitude of output voltage and frequency regulation are of importance to control system. In wind turbines, input voltage and frequency are usually changing due to wind speed variation that these alterations could be easily regulated by means of a direct Z-source matrix converter. A scheme is also offered to control the proposed direct three-phase to single-phase Z-source matrix converter. the control strategy would be able to adjust the output voltage and frequency at desired value as well as producing low THD (total harmonic distortion at the output voltage. The proposed structure and the control methodology are simulated using matlab simulink software and results are investigated and discussed to confirm the performance of the direct Z-source matrix converter in wind turbine.

  12. Indirect Matrix Converter for Hybrid Electric Vehicle Application with Three-Phase and Single-Phase Outputs

    Directory of Open Access Journals (Sweden)

    Yeongsu Bak

    2015-04-01

    Full Text Available This paper presents an indirect matrix converter (IMC topology for hybrid electric vehicle (HEV application with three-phase and single-phase outputs. The HEV includes mechanical, electrical, control, and electrochemical systems among others. In the mechanical system, a traction motor and a compressor motor are used to drive the HEV. The traction motor and the compressor motor are usually operated as three-phase and single-phase motors, respectively. In this respect, a dual AC-drive system can operate the traction and the compressor motor simultaneously. Furthermore, compared to a conventional dual matrix converter system, the proposed topology can reduce the number of switches that the dual outputs share with a DC-link. The application of this system for HEV has advantages, like long lifetime and reduced volume due to the lack of a DC-link. The proposed control strategy and modulation schemes ensure the sinusoidal input and output waveforms and bidirectional power transmission. The proposed system for the HEV application is verified by simulation and experiments.

  13. RELAP-7 Progress Report: A Mathematical Model for 1-D Compressible, Single-Phase Flow Through a Branching Junction

    Energy Technology Data Exchange (ETDEWEB)

    Berry, R. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-08-14

    In the literature, the abundance of pipe network junction models, as well as inclusion of dissipative losses between connected pipes with loss coefficients, has been treated using the incompressible flow assumption of constant density. This approach is fundamentally, physically wrong for compressible flow with density change. This report introduces a mathematical modeling approach for general junctions in piping network systems for which the transient flows are compressible and single-phase. The junction could be as simple as a 1-pipe input and 1-pipe output with differing pipe cross-sectional areas for which a dissipative loss is necessary, or it could include an active component, between an inlet pipe and an outlet pipe, such as a pump or turbine. In this report, discussion will be limited to the former. A more general branching junction connecting an arbitrary number of pipes with transient, 1-D compressible single-phase flows is also presented. These models will be developed in a manner consistent with the use of a general equation of state like, for example, the recent Spline-Based Table Look-up method [1] for incorporating the IAPWS-95 formulation [2] to give accurate and efficient calculations for properties for water and steam with RELAP-7 [3].

  14. Innovation design of beta test loop system for heat transfer experiments in single-phase and two-phase flows

    International Nuclear Information System (INIS)

    Kiswanta; Edy Sumarno; Joko Prasetio W; Ainur Rosidi; G B Heru K

    2013-01-01

    Innovation design of BETA test loop has been done. BETA test loop is a research facility used as a support for experiments of reactor accident simulation. The innovation was performed to prepare experimental facilities in order to study flow of heat transfer in single-phase and two-phase flows. The design was executed by modifying new piping of UUB's primary system, addition of heat flux measurements and imaging thermal for easiness of experimental result analysis. UUB development and experiments were carried out to understand heat transfer process in the narrow gap of two-phase flow considering this phenomenon is one of the conditions postulated in PWR typed nuclear power plant accident scenario. The innovation design of BETA test loop is still in the planning stages so that the design has not been constructed. Piping systems made of SS-304 with the ability to use a maximum pressure of 10 bar with a diameter of % inch pipe to, from the calculation of minimal design that is 7.27 mm. If the tube SS-304 - ASTM B88 is the wall thickness of 0.083 inches. From this design it is indicated that the design is able to be fabricated and used for experimental study of heat transfer in single-phase and two-phase flows. (author)

  15. 3D microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys

    Science.gov (United States)

    Adam, Khaled; Zöllner, Dana; Field, David P.

    2018-04-01

    Modeling the microstructural evolution during recrystallization is a powerful tool for the profound understanding of alloy behavior and for use in optimizing engineering properties through annealing. In particular, the mechanical properties of metallic alloys are highly dependent upon evolved microstructure and texture from the softening process. In the present work, a Monte Carlo (MC) Potts model was used to model the primary recrystallization and grain growth in cold rolled single-phase Al alloy. The microstructural representation of two kinds of dislocation densities, statistically stored dislocations and geometrically necessary dislocations were quantified based on the ViscoPlastic Fast Fourier transform method. This representation was then introduced into the MC Potts model to identify the favorable sites for nucleation where orientation gradients and entanglements of dislocations are high. Additionally, in situ observations of non-isothermal microstructure evolution for single-phase aluminum alloy 1100 were made to validate the simulation. The influence of the texture inhomogeneity is analyzed from a theoretical point of view using an orientation distribution function for deformed and evolved texture.

  16. Synthesis of single-phase L10-FeNi magnet powder by nitrogen insertion and topotactic extraction.

    Science.gov (United States)

    Goto, Sho; Kura, Hiroaki; Watanabe, Eiji; Hayashi, Yasushi; Yanagihara, Hideto; Shimada, Yusuke; Mizuguchi, Masaki; Takanashi, Koki; Kita, Eiji

    2017-10-16

    Tetrataenite (L1 0 -FeNi) is a promising candidate for use as a permanent magnet free of rare-earth elements because of its favorable properties. In this study, single-phase L1 0 -FeNi powder with a high degree of order was synthesized through a new method, nitrogen insertion and topotactic extraction (NITE). In the method, FeNiN, which has the same ordered arrangement as L1 0 -FeNi, is formed by nitriding A1-FeNi powder with ammonia gas. Subsequently, FeNiN is denitrided by topotactic reaction to derive single-phase L1 0 -FeNi with an order parameter of 0.71. The transformation of disordered-phase FeNi into the L1 0 phase increased the coercive force from 14.5 kA/m to 142 kA/m. The proposed method not only significantly accelerates the development of magnets using L1 0 -FeNi but also offers a new synthesis route to obtain ordered alloys in non-equilibrium states.

  17. A Single Phase Doubly Grounded Semi-Z-Source Inverter for Photovoltaic (PV Systems with Maximum Power Point Tracking (MPPT

    Directory of Open Access Journals (Sweden)

    Tofael Ahmed

    2014-06-01

    Full Text Available In this paper, a single phase doubly grounded semi-Z-source inverter with maximum power point tracking (MPPT is proposed for photovoltaic (PV systems. This proposed system utilizes a single-ended primary inductor (SEPIC converter as DC-DC converter to implement the MPPT algorithm for tracking the maximum power from a PV array and a single phase semi-Z-source inverter for integrating the PV with AC power utilities. The MPPT controller utilizes a fast-converging algorithm to track the maximum power point (MPP and the semi-Z-source inverter utilizes a nonlinear SPWM to produce sinusoidal voltage at the output. The proposed system is able to track the MPP of PV arrays and produce an AC voltage at its output by utilizing only three switches. Experimental results show that the fast-converging MPPT algorithm has fast tracking response with appreciable MPP efficiency. In addition, the inverter shows the minimization of common mode leakage current with its ground sharing feature and reduction of the THD as well as DC current components at the output during DC-AC conversion.

  18. A single-phase axially-magnetized permanent-magnet oscillating machine for miniature aerospace power sources

    Science.gov (United States)

    Sui, Yi; Zheng, Ping; Cheng, Luming; Wang, Weinan; Liu, Jiaqi

    2017-05-01

    A single-phase axially-magnetized permanent-magnet (PM) oscillating machine which can be integrated with a free-piston Stirling engine to generate electric power, is investigated for miniature aerospace power sources. Machine structure, operating principle and detent force characteristic are elaborately studied. With the sinusoidal speed characteristic of the mover considered, the proposed machine is designed by 2D finite-element analysis (FEA), and some main structural parameters such as air gap diameter, dimensions of PMs, pole pitches of both stator and mover, and the pole-pitch combinations, etc., are optimized to improve both the power density and force capability. Compared with the three-phase PM linear machines, the proposed single-phase machine features less PM use, simple control and low controller cost. The power density of the proposed machine is higher than that of the three-phase radially-magnetized PM linear machine, but lower than the three-phase axially-magnetized PM linear machine.

  19. Convective heat flow probe

    Science.gov (United States)

    Dunn, James C.; Hardee, Harry C.; Striker, Richard P.

    1985-01-01

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packer-type seals are provided along the probe above and below the heater pads.

  20. Convection-enhanced water evaporation

    OpenAIRE

    B. M. Weon; J. H. Je; C. Poulard

    2011-01-01

    Water vapor is lighter than air; this can enhance water evaporation by triggering vapor convection but there is little evidence. We directly visualize evaporation of nanoliter (2 to 700 nL) water droplets resting on silicon wafer in calm air using a high-resolution dual X-ray imaging method. Temporal evolutions of contact radius and contact angle reveal that evaporation rate linearly changes with surface area, indicating convective (instead of diffusive) evaporation in nanoliter water droplet...

  1. The role of freshwater fluxes in the thermohaline circulation: Insights from a laboratory analogue

    Science.gov (United States)

    Mullarney, Julia C.; Griffiths, Ross W.; Hughes, Graham O.

    2007-01-01

    Regime transitions in the meridional overturning circulation (MOC) and the rate of formation of deep and bottom waters are thought to be sensitive to changes in the freshwater flux at high latitudes. We model convective overturning in the presence of a surface freshwater input using laboratory experiments that are inverted relative to the ocean: we establish an equilibrium circulation forced by differential heating and cooling along the base of a box and perturb this flow by adding a stabilizing saltwater input at the 'polar' end of the box. An initially stable layer forms near the source of the salinity anomaly as a 'polar halocline'. The subsequent circulation is governed largely by the ratio of salinity and thermal buoyancy supply. For small values of this ratio we observe periodic formation and breakdown of the halocline. Larger values of the flux ratio lead to subthermocline intrusions and stable layering laterally throughout the basin, isolating the bulk of the water column from the forcing boundary. The shutdown of deep overturning and formation of a shallow circulation occurs at a salinity buoyancy input of order 0.1 times the rate of loss of thermal buoyancy. This salinity buoyancy is then comparable to the buoyancy that forces the deep sinking plume below the thermocline in steady-state overturning. When the salinity buoyancy flux is removed, the circulation slowly returns to its original state.

  2. Use of Artificial Neural Networks for Prediction of Convective Heat Transfer in Evaporative Units

    Directory of Open Access Journals (Sweden)

    Romero-Méndez Ricardo

    2014-01-01

    Full Text Available Convective heat transfer prediction of evaporative processes is more complicated than the heat transfer prediction of single-phase convective processes. This is due to the fact that physical phenomena involved in evaporative processes are very complex and vary with the vapor quality that increases gradually as more fluid is evaporated. Power-law correlations used for prediction of evaporative convection have proved little accuracy when used in practical cases. In this investigation, neural-network-based models have been used as a tool for prediction of the thermal performance of evaporative units. For this purpose, experimental data were obtained in a facility that includes a counter-flow concentric pipes heat exchanger with R134a refrigerant flowing inside the circular section and temperature controlled warm water moving through the annular section. This work also included the construction of an inverse Rankine refrigeration cycle that was equipped with measurement devices, sensors and a data acquisition system to collect the experimental measurements under different operating conditions. Part of the data were used to train several neural-network configurations. The best neural-network model was then used for prediction purposes and the results obtained were compared with experimental data not used for training purposes. The results obtained in this investigation reveal the convenience of using artificial neural networks as accurate predictive tools for determining convective heat transfer rates of evaporative processes.

  3. Experimental investigation on single-phase pressure losses in nuclear debris beds: Identification of flow regimes and effective diameter

    Energy Technology Data Exchange (ETDEWEB)

    Clavier, R., E-mail: remi.clavier@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN) – PSN-RES/SEREX/LE2M, Cadarache bât. 327, 13115 St Paul-lez-Durance (France); Chikhi, N., E-mail: nourdine.chikhi@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN) – PSN-RES/SEREX/LE2M, Cadarache bât. 327, 13115 St Paul-lez-Durance (France); Fichot, F. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN) – PSN-RES/SAG/LEPC, Cadarache bât. 700, 13115 St Paul-lez-Durance (France); Quintard, M. [Université de Toulouse – INPT – UPS – Institut de Mécanique des Fluides de Toulouse (IMFT), Allée Camille Soula, F-31400 Toulouse (France); CNRS – IMFT, F-31400 Toulouse (France)

    2015-10-15

    Highlights: • Single-phase pressure drops versus flow rates in particle beds are measured. • Conditions are representative of the reflooding of a nuclear fuel debris bed. • Darcy, weak inertial, strong inertial and weak turbulent regimes are observed. • A Darcy–Forchheimer law is found to be a good approximation in this domain. • A predictive correlation is derived from new experimental data. - Abstract: During a severe nuclear power plant accident, the degradation of the reactor core can lead to the formation of debris beds. The main accident management procedure consists in injecting water inside the reactor vessel. Nevertheless, large uncertainties remain regarding the coolability of such debris beds. Motivated by the reduction of these uncertainties, experiments have been conducted on the CALIDE facility in order to investigate single-phase pressure losses in representative debris beds. In this paper, these results are presented and analyzed in order to identify a simple single-phase flow pressure loss correlation for debris-bed-like particle beds in reflooding conditions, which cover Darcean to Weakly Turbulent flow regimes. The first part of this work is dedicated to study macro-scale pressure losses generated by debris-bed-like particle beds, i.e., high sphericity (>80%) particle beds with relatively small size dispersion (from 1 mm to 10 mm). A Darcy–Forchheimer law, involving the sum of a linear term and a quadratic deviation, with respect to filtration velocity, has been found to be relevant to describe this behavior in Darcy, Strong Inertial and Weak Turbulent regimes. It has also been observed that, in a restricted domain (Re = 15 to Re = 30) between Darcy and Weak Inertial regimes, deviation is better described by a cubic term, which corresponds to the so-called Weak Inertial regime. The second part of this work aims at identifying expressions for coefficients of linear and quadratic terms in Darcy–Forchheimer law, in order to obtain a

  4. Tropical deep convective cloud morphology

    Science.gov (United States)

    Igel, Matthew R.

    A cloud-object partitioning algorithm is developed. It takes contiguous CloudSat cloudy regions and identifies various length scales of deep convective clouds from a tropical, oceanic subset of data. The methodology identifies a level above which anvil characteristics become important by analyzing the cloud object shape. Below this level in what is termed the pedestal region, convective cores are identified based on reflectivity maxima. Identifying these regions allows for the assessment of length scales of the anvil and pedestal of the deep convective clouds. Cloud objects are also appended with certain environmental quantities from the ECMWF reanalysis. Simple geospatial and temporal assessments show that the cloud object technique agrees with standard observations of local frequency of deep-convective cloudiness. Additionally, the nature of cloud volume scale populations is investigated. Deep convection is seen to exhibit power-law scaling. It is suggested that this scaling has implications for the continuous, scale invariant, and random nature of the physics controlling tropical deep convection and therefore on the potentially unphysical nature of contemporary convective parameterizations. Deep-convective clouds over tropical oceans play important roles in Earth's climate system. The response of tropical, deep convective clouds to sea surface temperatures (SSTs) is investigated using this new data set. Several previously proposed feedbacks are examined: the FAT hypothesis, the Iris hypothesis, and the Thermostat hypothesis. When the data are analyzed per cloud object, each hypothesis is broadly found to correctly predict cloud behavior in nature, although it appears that the FAT hypothesis needs a slight modification to allow for cooling cloud top temperatures with increasing SSTs. A new response that shows that the base temperature of deep convective anvils remains approximately constant with increasing SSTs is introduced. These cloud-climate feedbacks are

  5. Control strategy for Single-phase Transformerless Three-leg Unified Power Quality Conditioner Based on Space Vector Modulation

    DEFF Research Database (Denmark)

    Lu, Yong; Xiao, Guochun; Wang, Xiongfei

    2016-01-01

    The unified power quality conditioner (UPQC) is known as an effective compensation device to improve PQ for sensitive end-users. This paper investigates the operation and control of a single-phase three-leg UPQC (TL-UPQC), where a novel space vector modulation method is proposed for naturally...... solving the coupling problem introduced by the common switching leg. The modulation method is similar to the well-known space vector modulation widely used with three-phase voltage source converters, which thus brings extra flexibility to the TL-UPQC system. Two optimized modulation modes with either...... reduced switching loss or harmonic distortion are derived, evaluated, and discussed, in order to demonstrate the flexibility brought by the space vector modulated TL-UPQC. Simulations and experimental results are presented to verify the feasibility and effectiveness of the proposed space vector modulation...

  6. A Simple Differential Mode EMI Suppressor for the LLCL-Filter-Based Single-Phase Grid-Tied Transformerless Inverter

    DEFF Research Database (Denmark)

    Ji, Junhao; Wu, Weimin; He, Yuanbin

    2015-01-01

    The single-phase power converter topologies evolving of photovoltaic applications are still including passive filters, like the LCLor LLCL-filter. Compared with the LCL-filter, the total inductance of the LLCL-filter can be reduced a lot. However, due to the resonant inductor in series...... with the bypass capacitor, the differential mode (DM) electromagnetic interference (EMI) noise attenuation of an LLCL-filter-based grid-tied inverter declines. Conventionally, a capacitor was inserted in parallel with the LC resonant circuit branch of the LLCL-filter to suppress the DM EMI noise. In order...... to achieve a small value of capacitor as well as to minimize the additional reactive power, a novel simple DM EMI suppressor for the LLCL-filter-based system is proposed. The characters of two kinds of DM EMI suppressor are analyzed and compared in detail. Simulations and experiments on a 0.5-kW 110-V/50-Hz...

  7. A residual-based a posteriori error estimator for single-phase Darcy flow in fractured porous media

    KAUST Repository

    Chen, Huangxin

    2016-12-09

    In this paper we develop an a posteriori error estimator for a mixed finite element method for single-phase Darcy flow in a two-dimensional fractured porous media. The discrete fracture model is applied to model the fractures by one-dimensional fractures in a two-dimensional domain. We consider Raviart–Thomas mixed finite element method for the approximation of the coupled Darcy flows in the fractures and the surrounding porous media. We derive a robust residual-based a posteriori error estimator for the problem with non-intersecting fractures. The reliability and efficiency of the a posteriori error estimator are established for the error measured in an energy norm. Numerical results verifying the robustness of the proposed a posteriori error estimator are given. Moreover, our numerical results indicate that the a posteriori error estimator also works well for the problem with intersecting fractures.

  8. Experimental Implementation of a Low-Cost Single Phase Five-Level Inverter for Autonomous PV System Applications Without Batteries

    Directory of Open Access Journals (Sweden)

    A. Nouaiti

    2018-02-01

    Full Text Available This paper presents the design and the implementation of a low-cost single phase five-level inverter for photovoltaic applications. The proposed multilevel inverter is composed of a simple boost converter, a switched-capacitor converter, and an H-bridge converter. An efficient control method which associates a closed-loop regulation method with a simple maximum power point tracking (MPPT method is applied in order to allow the proposed multilevel inverter to transfer power energy from solar panels to autonomous load with no storage batteries. An experimental prototype of this inverter is fabricated at the laboratory and tested with a digital control system. Obtained results confirm the simplicity and the performance of the proposed photovoltaic system.

  9. Reduced junction temperature control during low-voltage ride-through for single-phase photovoltaic inverters

    DEFF Research Database (Denmark)

    Yang, Yongheng; Wang, Huai; Blaabjerg, Frede

    2014-01-01

    Future photovoltaic (PV) inverters are expected to comply with more stringent grid codes and reliability requirements, especially when a high penetration degree is reached, and also to lower the cost of energy. A junction temperature control concept is proposed in this study for the switching......, allowing an optimal design of the proposed control scheme with controlled mean junction temperature and reduced junction temperature swings. The effectiveness of the control method in terms of both thermal performance and electrical performance is validated by the simulations and experiments, respectively....... Both test results show that single-phase PV inverters with the proposed control approach not only can support the grid voltage recovery in low-voltage ride-through operation but also can improve the overall reliability with a reduced junction temperature....

  10. High performance control strategy for single-phase three-level neutral-point-clamped traction four-quadrant converters

    DEFF Research Database (Denmark)

    Kejian, Song; Konstantinou, Georgios; Jing, Li

    2017-01-01

    multiple unit traction system is proposed in this study. The strategy is based on a multiple frequency tuned quasi-proportional resonant controller in the ac-side current loop and a multiple frequency tuned notch filter in the dc-link voltage loop. Under the typical supply voltage distortion present......Operational data from Chinese railways indicate a number of challenges for traction four-quadrant converter (4QC) control including low-order voltage and current harmonics and reference tracking. A control strategy for a single-phase three-level neutral-point-clamped 4QC employed in the electric...... in the network, the proposed control strategy improves the current tracking performance and reduces the line current harmonics, when compared with conventional control strategies. Experimental results, both under purely sinusoidal and distorted supply voltages, validate the effectiveness of the proposed control...

  11. Liquid Hole-Multipliers: A potential concept for large single-phase noble-liquid TPCs of rare events

    Science.gov (United States)

    Breskin, Amos

    2013-10-01

    A novel concept is proposed for large-volume single-phase noble-liquid TPC detectors for rare events. Both radiation-induced scintillation-light and ionization-charge are detected by Liquid Hole-Multipliers (LHM), immersed in the noble liquid. The latter may consist of cascaded Gas Electron Multipliers (GEM), Thick Gas Electron Multiplier (THGEM) electrodes or others, coated with CsI UV-photocathodes. Electrons, photo-induced on CsI by primary scintillation in the noble liquid, and event-correlated drifting ionization electrons are amplified in the cascaded elements primarily through electroluminescence, and possibly through additional moderate avalanche, occurring within the holes. The resulting charge-signals or light-pulses are recorded on anode pads or with photosensors - e.g. gaseous photomultipliers (GPM), respectively. Potential affordable solutions are proposed for multi-ton dark-matter detectors; open questions are formulated for validating this dream.

  12. Liquid Hole-Multipliers: A potential concept for large single-phase noble-liquid TPCs of rare events

    International Nuclear Information System (INIS)

    Breskin, Amos

    2013-01-01

    A novel concept is proposed for large-volume single-phase noble-liquid TPC detectors for rare events. Both radiation-induced scintillation-light and ionization-charge are detected by Liquid Hole-Multipliers (LHM), immersed in the noble liquid. The latter may consist of cascaded Gas Electron Multipliers (GEM), Thick Gas Electron Multiplier (THGEM) electrodes or others, coated with CsI UV-photocathodes. Electrons, photo-induced on CsI by primary scintillation in the noble liquid, and event-correlated drifting ionization electrons are amplified in the cascaded elements primarily through electroluminescence, and possibly through additional moderate avalanche, occurring within the holes. The resulting charge-signals or light-pulses are recorded on anode pads or with photosensors – e.g. gaseous photomultipliers (GPM), respectively. Potential affordable solutions are proposed for multi-ton dark-matter detectors; open questions are formulated for validating this dream

  13. Design and Tuning of a Modified Power-Based PLL for Single-Phase Grid-Connected Power Conditioning Systems

    DEFF Research Database (Denmark)

    Golestan, Saeed; Monfared, Mohammad; D. Freijedo, Francisco

    2012-01-01

    they present. Typically, the single-phase PLLs use a sinusoidal multiplier as the phase detector (PD). These PLLs are generally referred to as the power-based PLL (pPLL). In this paper, the drawbacks associated with the pPLL technique (i.e., the sensitivity to the grid voltage variations, and the double...... frequency oscillations which appear in the estimated phase/frequency) are discussed in detail, and some of the previously reported solutions are examined. Then, to overcome these drawbacks, a simple and effective technique, called the double-frequency and amplitude compensation (DFAC) method is proposed....... The effectiveness of the proposed method is evaluated through a detailed mathematical analysis. A systematic design method to fine-tune the PLL parameters is then suggested, which guarantees a fast transient response, a high disturbance rejection capability, and a robust performance. Finally, the simulation...

  14. Harmonic Instability Analysis of Single-Phase Grid Connected Converter using Harmonic State Space (HSS) modeling method

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth

    2015-01-01

    The increasing number of renewable energy sources at the distribution grid is becoming a major issue for utility companies, since the grid connected converters are operating at different operating points due to the probabilistic characteristics of renewable energy. Besides, typically, the harmonics...... proposes a new model of a single phase grid connected renewable energy source using the Harmonic State Space modeling approach, which is able to identify such problems and the model can be extended to be applied in the multiple connected converter analysis. The modeling results show the different harmonic...... and impedance from other renewable energy sources are not taken carefully into account in the installation and design. However, this may bring an unknown harmonic instability into the multiple power sourced system and also make the analysis difficult due to the complexity of the grid network. This paper...

  15. SiC MOSFET Based Single Phase Active Boost Rectifier with Power Factor Correction for Wireless Power Transfer Applications

    Energy Technology Data Exchange (ETDEWEB)

    Onar, Omer C [ORNL; Tang, Lixin [ORNL; Chinthavali, Madhu Sudhan [ORNL; Campbell, Steven L [ORNL; Miller (JNJ), John M. [JNJ-Miller PLC

    2014-01-01

    Wireless Power Transfer (WPT) technology is a novel research area in the charging technology that bridges the utility and the automotive industries. There are various solutions that are currently being evaluated by several research teams to find the most efficient way to manage the power flow from the grid to the vehicle energy storage system. There are different control parameters that can be utilized to compensate for the change in the impedance due to variable parameters such as battery state-of-charge, coupling factor, and coil misalignment. This paper presents the implementation of an active front-end rectifier on the grid side for power factor control and voltage boost capability for load power regulation. The proposed SiC MOSFET based single phase active front end rectifier with PFC resulted in >97% efficiency at 137mm air-gap and >95% efficiency at 160mm air-gap.

  16. Experimental research on single-phase heat transfer characteristics in a vertical circular tube under marine conditions

    International Nuclear Information System (INIS)

    Du Sijia; Zhang Hong; Jia Baoshan

    2011-01-01

    Experiments have been conducted to study the heat transfer characteristics of single-phase forced circulation when the test tube was under different marine conditions. The experiments measured the wall temperature of test tube to calculate the heat transfer coefficients at different circumferential places. When the test tube was under inclined conditions, the heat transfer coefficient increased at downside and decreased at upside of test tube because of buoyancy effect. When the test tube was under rolling conditions, the heat transfer coefficients fluctuated with the rolling motions, and the Coriolis force dominated the heat transfer fluctuation during the rolling motion. CFD method was used to simulate the heat transfer phenomena under marine conditions, and the results were accord to the experimental phenomena. (authors)

  17. Numerical Simulation of a Single-Phase Flow Through Fractures with Permeable, Porous and Non-Ductile Walls

    Directory of Open Access Journals (Sweden)

    N. Pour Mahmoud

    2017-10-01

    Full Text Available This paper attempts to study flows within fractures through a set of numerical simulations. In addition, a special care is given to hydraulic features and characteristics of fractures. The research is performed through the application of calculative fluid dynamics and a finite volume discrete schema. The investigated flows are laminar, single-phase and stable flows of water and air through fractures with penetrable walls. The selected fracture geometry is inspired from the tomographic scan of a stone fracture. Water and air are modeled in fractures with permeable walls and different permeability levels. It has been observed that in case of permeable matrixes, the friction coefficient is lower compared to impermeable matrixes. In fact permeability reduced friction. In addition, highest pressure drops were observed in areas with smaller fracture diaphragms. Nonetheless, the surrounding area of the fracture is analyzed with the consideration of Darcy's rule.

  18. Thermal analysis of hybrid single-phase, two-phase and heat pump thermal control system (TCS) for future spacecraft

    International Nuclear Information System (INIS)

    Lee, S.H.; Mudawar, I.; Hasan, Mohammad M.

    2016-01-01

    Highlights: • Hybrid Thermal Control System (H-TCS) is proposed for future spacecraft. • Thermodynamic performance of H-TCS is examined for different space missions. • Operational modes including single-phase, two-phase and heat pump are explored. • R134a is deemed most appropriate working fluid. - Abstract: An urgent need presently exists to develop a new class of versatile spacecraft capable of conducting different types of missions and enduring varying gravitational and temperature environments, including Lunar, Martian and Near Earth Object (NEOs). This study concerns the spacecraft's Thermal Control System (TCS), which tackles heat acquisition, especially from crew and avionics, heat transport, and ultimate heat rejection by radiation. The primary goal of the study is to explore the design and thermal performance of a Hybrid Thermal Control System (H-TCS) that would satisfy the diverse thermal requirements of the different space missions. The H-TCS must endure both ‘cold’ and ‘hot’ environments, reduce weight and size, and enhance thermodynamic performance. Four different operational modes are considered: single-phase, two-phase, basic heat pump and heat pump with liquid-side, suction-side heat exchanger. A thermodynamic trade study is conducted for six different working fluids to assess important performance parameters including mass flow rate of the working fluid, maximum pressure, radiator area, compressor/pump work, and coefficient of performance (COP). R134a is determined to be most suitable based on its ability to provide a balanced compromise between reducing flow rate and maintaining low system pressure, and a moderate coefficient of performance (COP); this fluid is also both nontoxic and nonflammable, and features zero ozone depletion potential (ODP) and low global warming potential (GWP). It is shown how specific mission stages dictate which mode of operation is most suitable, and this information is used to size the radiator for

  19. Myocardial ischemia detection with single-phase CT perfusion in symptomatic patients using high-pitch helical image acquisition technique.

    Science.gov (United States)

    Bischoff, Bernhard; Deseive, Simon; Rampp, Martin; Todica, Andrei; Wermke, Marc; Martinoff, Stefan; Massberg, Steffen; Reiser, Maximilian F; Becker, Hans-Christoph; Hausleiter, Jörg

    2017-04-01

    Coronary CT angiography (CCTA) suffers from a reduced diagnostic accuracy in patients with heavily calcified coronary arteries or prior myocardial revascularisation due to artefacts caused by calcifications and stent material. CT myocardial perfusion imaging (CTMPI) yields high potential for the detection of myocardial ischemia and might help to overcome the above mentioned limitations. We analysed CT single-phase perfusion using high-pitch helical image acquisition technique in patients with prior myocardial revascularisation. Thirty-six patients with an indication for invasive coronary angiography (28 with coronary stents, 2 with coronary artery bypass grafts and 6 with both) were included in this prospective study at two study sites. All patients were examined on a 2nd generation dual-source CT system. Stress CT images were obtained using a prospectively ECG-triggered single-phase high-pitch helical image acquisition technique. During stress the tracer for myocardial perfusion (MP) SPECT imaging was administered. Rest CT images were acquired using prospectively ECG-triggered sequential CT. MP-SPECT imaging and invasive coronary angiography served as standard of reference. In this heavily diseased patient cohort CCTA alone showed a low overall diagnostic accuracy for detection of hemodynamically relevant coronary artery stenosis of only 31% on a per-patient base and 60% on a per-vessel base. Combining CCTA and CTMPI allowed for a significantly higher overall diagnostic accuracy of 78% on a per-patient base and 92% on a per-vessel base (p CT scans was 0.9 mSv, mean radiation dose for rest CT scans was 5.0 mSv. In symptomatic patients with known coronary artery disease and prior myocardial revascularization combining CCTA and CTMPI showed significantly higher diagnostic accuracy in detection of hemodynamically significant coronary artery stenosis when compared to CCTA alone.

  20. Characterization of Small (Accuracy of Spectral Analysis Using Single-Phase Contrast-Enhanced Dual-Energy CT.

    Science.gov (United States)

    Patel, Bhavik N; Bibbey, Alex; Choudhury, Kingshuk R; Leder, Richard A; Nelson, Rendon C; Marin, Daniele

    2017-10-01

    The purpose of this study is to determine whether single-phase contrast-enhanced dual-energy quantitative spectral analysis improves the accuracy of diagnosis of small (men and 41 women; mean age, 54 years) with 144 renal lesions (111 benign and 33 malignant) underwent single-energy unenhanced and dual-energy contrast-enhanced CT of the abdomen. For each renal lesion, attenuation measurements were obtained, and an attenuation change of 15 HU or greater was considered evidence of enhancement. Dual-energy spectral attenuation curves were generated for each lesion. The slope of each curve was measured between 40 and 50 keV (λHU 40-50 ), 40 and 70 keV (λHU 40-70 ), and 40 and 140 keV (λHU 40-140 ). Mean lesion attenuation values and spectral attenuation curve parameters were compared between benign and malignant renal lesions by use of the two-sample t test. Diagnostic accuracy was assessed and validated using cross-validation analysis. With the use of cross-validated optimal thresholds at 100% sensitivity, specificity for differentiating between benign and malignant renal lesions improved significantly when both λHU 40-70 and λHU 40-140 were used, compared with conventional enhancement measurements (93% [103/111; 95% CI, 86-97%] vs 81% [90/111; 95% CI, 73-88%]) (p = 0.02). The sensitivity of λHU 40-70 and λHU 40-140 was also higher than that of conventional enhancement measurements, although it was not statistically significant. Single-phase contrast-enhanced dual-energy quantitative spectral analysis significantly improves the specificity for characterization of small (< 4.0 cm) renal lesions, compared with conventional single-energy attenuation measurements.

  1. Model thermohaline trends in the Mediterranean Sea during the last years: a change with respect to the last decades?

    Science.gov (United States)

    Soto-Navarro, F Javier; Criado-Aldeanueva, Francisco

    2012-01-01

    Temperature and salinity outputs from ECCO (years 93-09) and GLORYS (years 03-09) models have been used to compute the thermohaline and steric sea level trends in the surface (0-150 m), intermediate (150 m-600 m), and deep (600 m-bottom) layers of the Mediterranean Sea. Some changes with respect to the second half of the 20th century have been observed: the cooling of the upper waters of the entire eastern basin since 1950 seems to have vanished; the warming of WMDW historically reported for the second half of the last century could have reversed, although there is no agreement between both models at this point (trends of different sign are predicted); the salinification of WMDW reported for the previous decades is not observed in the south-westernmost area in the period 93-09, and a clear change from positive to negative in the steric sea level trend with respect to the period 93-05 is detected due to the sharp decreasing steric sea level of years 02-06.

  2. The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the Thermohaline Circulation.

    Science.gov (United States)

    Cózar, Andrés; Martí, Elisa; Duarte, Carlos M; García-de-Lomas, Juan; van Sebille, Erik; Ballatore, Thomas J; Eguíluz, Victor M; González-Gordillo, J Ignacio; Pedrotti, Maria L; Echevarría, Fidel; Troublè, Romain; Irigoien, Xabier

    2017-04-01

    The subtropical ocean gyres are recognized as great marine accummulation zones of floating plastic debris; however, the possibility of plastic accumulation at polar latitudes has been overlooked because of the lack of nearby pollution sources. In the present study, the Arctic Ocean was extensively sampled for floating plastic debris from the Tara Oceans circumpolar expedition. Although plastic debris was scarce or absent in most of the Arctic waters, it reached high concentrations (hundreds of thousands of pieces per square kilometer) in the northernmost and easternmost areas of the Greenland and Barents seas. The fragmentation and typology of the plastic suggested an abundant presence of aged debris that originated from distant sources. This hypothesis was corroborated by the relatively high ratios of marine surface plastic to local pollution sources. Surface circulation models and field data showed that the poleward branch of the Thermohaline Circulation transfers floating debris from the North Atlantic to the Greenland and Barents seas, which would be a dead end for this plastic conveyor belt. Given the limited surface transport of the plastic that accumulated here and the mechanisms acting for the downward transport, the seafloor beneath this Arctic sector is hypothesized as an important sink of plastic debris.

  3. Abrupt climate change around 4 ka BP: Role of the Thermohaline circulation as indicated by a GCM experiment

    Science.gov (United States)

    Wang, Shaowu; Zhou, Tianjun; Cai, Jingning; Zhu, Jinhong; Xie, Zhihui; Gong, Daoyi

    2004-04-01

    A great deal of palaeoenvironmental and palaeoclimatic evidence suggests that a predominant temperature drop and an aridification occurred at ca. 4.0 ka BP. Palaeoclimate studies in China support this dedution. The collapse of ancient civilizations at ca. 4.0 ka BP in the Nile Valley and Mesopotamia has been attributed to climate-induced aridification. A widespread alternation of the ancient cultures was also found in China at ca. 4.0 ka BP in concert with the collapse of the civilizations in the Old World. Palaeoclimatic studies indicate that the abrupt climate change at 4.0 ka BP is one of the realizations of the cold phase in millennial scale climate oscillations, which may be related to the modulation of the Thermohaline Circulation (THC) over the Atlantic Ocean. Therefore, this study conducts a numerical experiment of a GCM with SST forcing to simulate the impact of the weakening of the THC. Results show a drop in temperature from North Europe, the northern middle East Asia, and northern East Asia and a significant reduction of precipitation in East Africa, the Middle East, the Indian Peninsula, and the Yellow River Valley. This seems to support the idea that coldness and aridification at ca. 4.0 ka BP was caused by the weakening of the THC.

  4. The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the Thermohaline Circulation

    Science.gov (United States)

    Cózar, Andrés; Martí, Elisa; Duarte, Carlos M.; García-de-Lomas, Juan; van Sebille, Erik; Ballatore, Thomas J.; Eguíluz, Victor M.; González-Gordillo, J. Ignacio; Pedrotti, Maria L.; Echevarría, Fidel; Troublè, Romain; Irigoien, Xabier

    2017-01-01

    The subtropical ocean gyres are recognized as great marine accummulation zones of floating plastic debris; however, the possibility of plastic accumulation at polar latitudes has been overlooked because of the lack of nearby pollution sources. In the present study, the Arctic Ocean was extensively sampled for floating plastic debris from the Tara Oceans circumpolar expedition. Although plastic debris was scarce or absent in most of the Arctic waters, it reached high concentrations (hundreds of thousands of pieces per square kilometer) in the northernmost and easternmost areas of the Greenland and Barents seas. The fragmentation and typology of the plastic suggested an abundant presence of aged debris that originated from distant sources. This hypothesis was corroborated by the relatively high ratios of marine surface plastic to local pollution sources. Surface circulation models and field data showed that the poleward branch of the Thermohaline Circulation transfers floating debris from the North Atlantic to the Greenland and Barents seas, which would be a dead end for this plastic conveyor belt. Given the limited surface transport of the plastic that accumulated here and the mechanisms acting for the downward transport, the seafloor beneath this Arctic sector is hypothesized as an important sink of plastic debris. PMID:28439534

  5. The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the Thermohaline Circulation

    KAUST Repository

    Cózar, Andrés

    2017-04-20

    The subtropical ocean gyres are recognized as great marine accummulation zones of floating plastic debris; however, the possibility of plastic accumulation at polar latitudes has been overlooked because of the lack of nearby pollution sources. In the present study, the Arctic Ocean was extensively sampled for floating plastic debris from the Tara Oceans circumpolar expedition. Although plastic debris was scarce or absent in most of the Arctic waters, it reached high concentrations (hundreds of thousands of pieces per square kilometer) in the northernmost and easternmost areas of the Greenland and Barents seas. The fragmentation and typology of the plastic suggested an abundant presence of aged debris that originated from distant sources. This hypothesis was corroborated by the relatively high ratios of marine surface plastic to local pollution sources. Surface circulation models and field data showed that the poleward branch of the Thermohaline Circulation transfers floating debris from the North Atlantic to the Greenland and Barents seas, which would be a dead end for this plastic conveyor belt. Given the limited surface transport of the plastic that accumulated here and the mechanisms acting for the downward transport, the seafloor beneath this Arctic sector is hypothesized as an important sink of plastic debris.

  6. Residual circulation and thermohaline distribution of the Ría de Vigo: A 3-D hydrodynamical model

    Directory of Open Access Journals (Sweden)

    S. Torres López

    2001-07-01

    Full Text Available A three-dimensional, non-linear, baroclinic model is described and tested for the first time to study the residual circulation and the thermohaline distribution of the Ría de Vigo (NW Spain at short time scales and under different wind stress regimes. Two markedly different realistic scenarios were chosen: northerly upwelling-favourable winds and southerly downwelling-favourable winds. The numerical experiments carried out indicate that the hydrodynamic regime of the Ría de Vigo is mostly a consequence of wind events. As could be expected, moderately strong North winds reinforce the normal (positive Ría circulation, while winds blowing from the South, when sufficiently strong, reverse the typical circulation pattern and reduce the characteristic outgoing velocities and the flushing time inside the Ría. The temperature and salinity fields generated by the model in both situations were compared with observations and found to be in qualitatively good agreement, supporting the 3D velocity field distribution.

  7. The role of wind-forced coastal upwelling on the thermohaline functioning of the North Aegean Sea

    Science.gov (United States)

    Mamoutos, Ioannis; Zervakis, Vassilis; Tragou, Elina; Karydis, Michael; Frangoulis, Constantin; Kolovoyiannis, Vassilis; Georgopoulos, Dimitris; Psarra, Stella

    2017-10-01

    This work examines the impact of coastal upwelling on the exchanges of a semi-enclosed basin with the open sea. Five oceanographic transects were performed with a cross-shore direction relative to the western coast of Lesvos island of the eastern Aegean Sea, a region where coastal upwelling is regularly observed during the summer Etesian northerly winds. Filaments of highly saline water were observed during upwelling incidents, and were attributed to the enhanced transport of Levantine water from the south due to the baroclinic response to upwelling. All our observations, as well as a 9-year hindcast of the phenomenon revealed that the origin of the upwelled isopycnals usually remained above 40 m depth, and never exceeded the depth of 60 m. On the contrary, the isopycnals hosting the nutricline appear to downwell during upwelling incidents. Our hindcast showed that the secondary geostrophic circulation is comprised both by surface and subsurface longshore currents, which affect the meridional exchanges at the surface and intermediate layers and reduce the residence time of the water in the basin. We conclude that coastal upwelling in a region with longshore temperature and salinity gradients can modify the transport of salt and heat along the coast, possibly affecting the thermohaline functioning of a basin.

  8. Thermohaline circulation below the Ross Ice Shelf - A consequence of tidally induced vertical mixing and basal melting

    Science.gov (United States)

    Macayeal, D. R.

    1984-01-01

    The warmest water below parts of the Ross Ice Shelf resides in the lowest portion of the water column because of its high salinity. Vertical mixing caused by tidal stirring can thus induce ablation by lifting the warm but dense water into contact with the ice shelf. A numerical tidal simulation indicates that vertically well-mixed conditions predominate in the southeastern part of the sub-ice shelf cavity, where the water column thickness is small. Basal melting in this region is expected to be between 0.05 and 0.5 m/yr and will drive a thermohaline circulation having the following characteristics: high salinity shelf water (at - 1.8 C), formed by winter sea ice production in the open Ross Sea, flows along the seabed toward the tidal mixing fronts below the ice shelf; and meltwater (at -2.2 C), produced in the well-mixed region, flows out of the sub-ice shelf cavity along the ice shelf bottom. Sensitivity of this ablation process to climatic change is expected to be small because high salinity shelf water is constrained to have the sea surface freezing temperature.

  9. Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: Comparison of start-up, reactor stability and process performance

    International Nuclear Information System (INIS)

    Ganesh, Rangaraj; Torrijos, Michel; Sousbie, Philippe; Lugardon, Aurelien; Steyer, Jean Philippe; Delgenes, Jean Philippe

    2014-01-01

    Highlights: • Single-phase and two-phase systems were compared for fruit and vegetable waste digestion. • Single-phase digestion produced a methane yield of 0.45 m 3 CH 4 /kg VS and 83% VS removal. • Substrate solubilization was high in acidification conditions at 7.0 kg VS/m 3 d and pH 5.5–6.2. • Energy yield was lower by 33% for two-phase system compared to the single-phase system. • Simple and straight-forward operation favored single phase process over two-phase process. - Abstract: Single-phase and two-phase digestion of fruit and vegetable waste were studied to compare reactor start-up, reactor stability and performance (methane yield, volatile solids reduction and energy yield). The single-phase reactor (SPR) was a conventional reactor operated at a low loading rate (maximum of 3.5 kg VS/m 3 d), while the two-phase system consisted of an acidification reactor (TPAR) and a methanogenic reactor (TPMR). The TPAR was inoculated with methanogenic sludge similar to the SPR, but was operated with step-wise increase in the loading rate and with total recirculation of reactor solids to convert it into acidification sludge. Before each feeding, part of the sludge from TPAR was centrifuged, the centrifuge liquid (solubilized products) was fed to the TPMR and centrifuged solids were recycled back to the reactor. Single-phase digestion produced a methane yield of 0.45 m 3 CH 4 /kg VS fed and VS removal of 83%. The TPAR shifted to acidification mode at an OLR of 10.0 kg VS/m 3 d and then achieved stable performance at 7.0 kg VS/m 3 d and pH 5.5–6.2, with very high substrate solubilization rate and a methane yield of 0.30 m 3 CH 4 /kg COD fed. The two-phase process was capable of high VS reduction, but material and energy balance showed that the single-phase process was superior in terms of volumetric methane production and energy yield by 33%. The lower energy yield of the two-phase system was due to the loss of energy during hydrolysis in the TPAR and the

  10. A compact seven switches topology and reduced DC-link capacitor size for single-phase stand-alone PV system with hybrid energy storages

    DEFF Research Database (Denmark)

    Liu, Xiong; Wang, Peng; Loh, Poh Chiang

    2011-01-01

    Single-phase stand-alone PV system is suitable for household applications in remote area. Hybrid battery/ultra-capacitor energy storage can reduce charge and discharge cycles and avoid deep discharges of battery. This paper proposes a compact seven switches structure for stand-alone PV system......-order harmonic current caused by single-phase inverter. In the proposed compact topology, a small size DC-link capacitor can achieve the same function through charging/discharging control of ultra-capacitor to mitigate second-order ripple current. Simulation results are provided to validate the effectiveness......, which otherwise needs nine switches configuration, inclusive of one switch for boost converter, four switches for single-phase inverter and four switches for two DC/DC converters of battery and ultra-capacitor. It is well-known that a bulky DC-link capacitor is always required to absorb second...

  11. Low Voltage Ride-Through Capability of a Single-Stage Single-Phase Photovoltaic System Connected to the Low-Voltage Grid

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2013-01-01

    The progressively growing of single-phase photovoltaic (PV) systems makes the Distribution System Operators (DSO) to update or revise the existing grid codes in order to guarantee the availability, quality and reliability of the electrical system. It is expected that the future PV systems connected...... to the low-voltage grid will be more active with functionalities of low voltage ride-through (LVRT) and the grid support capability, which is not the case today. In this paper, the operation principle is demonstrated for a single-phase grid-connected PV system in low voltage ride through operation in order...... to map future challenges. The system is verified by simulations and experiments. Test results show that the proposed power control method is effective and the single-phase PV inverters connected to low-voltage networks are ready to provide grid support and ride-through voltage fault capability...

  12. ENVIRONMENTAL ASPECTS OF THE INTENSIFICATION CONVECTIVE DRYING

    Directory of Open Access Journals (Sweden)

    A. M. Gavrilenkov

    2012-01-01

    Full Text Available Identified and analyzed the relationship of the intensity convective drying and air pollution emissions of heat. The ways to reduce the thermal pollution of the atmosphere at convective drying.

  13. Accurate prediction of complex free surface flow around a high speed craft using a single-phase level set method

    Science.gov (United States)

    Broglia, Riccardo; Durante, Danilo

    2017-11-01

    This paper focuses on the analysis of a challenging free surface flow problem involving a surface vessel moving at high speeds, or planing. The investigation is performed using a general purpose high Reynolds free surface solver developed at CNR-INSEAN. The methodology is based on a second order finite volume discretization of the unsteady Reynolds-averaged Navier-Stokes equations (Di Mascio et al. in A second order Godunov—type scheme for naval hydrodynamics, Kluwer Academic/Plenum Publishers, Dordrecht, pp 253-261, 2001; Proceedings of 16th international offshore and polar engineering conference, San Francisco, CA, USA, 2006; J Mar Sci Technol 14:19-29, 2009); air/water interface dynamics is accurately modeled by a non standard level set approach (Di Mascio et al. in Comput Fluids 36(5):868-886, 2007a), known as the single-phase level set method. In this algorithm the governing equations are solved only in the water phase, whereas the numerical domain in the air phase is used for a suitable extension of the fluid dynamic variables. The level set function is used to track the free surface evolution; dynamic boundary conditions are enforced directly on the interface. This approach allows to accurately predict the evolution of the free surface even in the presence of violent breaking waves phenomena, maintaining the interface sharp, without any need to smear out the fluid properties across the two phases. This paper is aimed at the prediction of the complex free-surface flow field generated by a deep-V planing boat at medium and high Froude numbers (from 0.6 up to 1.2). In the present work, the planing hull is treated as a two-degree-of-freedom rigid object. Flow field is characterized by the presence of thin water sheets, several energetic breaking waves and plungings. The computational results include convergence of the trim angle, sinkage and resistance under grid refinement; high-quality experimental data are used for the purposes of validation, allowing to

  14. Unprecedented Al supersaturation in single-phase rock salt structure VAlN films by Al+ subplantation

    Science.gov (United States)

    Greczynski, G.; Mráz, S.; Hans, M.; Primetzhofer, D.; Lu, J.; Hultman, L.; Schneider, J. M.

    2017-05-01

    Modern applications of refractory ceramic thin films, predominantly as wear-protective coatings on cutting tools and on components utilized in automotive engines, require a combination of excellent mechanical properties, thermal stability, and oxidation resistance. Conventional design approaches for transition metal nitride coatings with improved thermal and chemical stability are based on alloying with Al. It is well known that the solubility of Al in NaCl-structure transition metal nitrides is limited. Hence, the great challenge is to increase the Al concentration substantially while avoiding precipitation of the thermodynamically favored wurtzite-AlN phase, which is detrimental to mechanical properties. Here, we use VAlN as a model system to illustrate a new concept for the synthesis of metastable single-phase NaCl-structure thin films with the Al content far beyond solubility limits obtained with conventional plasma processes. This supersaturation is achieved by separating the film-forming species in time and energy domains through synchronization of the 70-μs-long pulsed substrate bias with intense periodic fluxes of energetic Al+ metal ions during reactive hybrid high power impulse magnetron sputtering of the Al target and direct current magnetron sputtering of the V target in the Ar/N2 gas mixture. Hereby, Al is subplanted into the cubic VN grains formed by the continuous flux of low-energy V neutrals. We show that Al subplantation enables an unprecedented 42% increase in metastable Al solubility limit in V1-xAlxN, from x = 0.52 obtained with the conventional method to 0.75. The elastic modulus is 325 ± 5 GPa, in excellent agreement with density functional theory calculations, and approximately 50% higher than for corresponding films grown by dc magnetron sputtering. The extension of the presented strategy to other Al-ion-assisted vapor deposition methods or materials systems is straightforward, which opens up the way for producing supersaturated single-phase

  15. Small-Signal Analysis of Single-Phase and Three-phase DC/AC and AC/DC PWM Converters with the Frequency-Shift Technique

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Aquila, A. Dell’; Liserre, Marco

    2004-01-01

    of dc/dc converters via a 50 Hz frequency-shift. The input admittance is calculated and measured for two study examples (a three-phase active rectifier and a single-phase photovoltaic inverter). These examples show that the purpose of a well designed controller for grid-connected converters......A systematic approach to study dc/ac and ac/dc converters without the use of synchronous transformation is proposed. The use of a frequency-shift technique allows a straightforward analysis of single-phase and three-phase systems. The study of dc/ac and of ac/dc converters is reported to the study...

  16. Solar Surface Magneto-Convection

    Directory of Open Access Journals (Sweden)

    Robert F. Stein

    2012-07-01

    Full Text Available We review the properties of solar magneto-convection in the top half of the convection zones scale heights (from 20 Mm below the visible surface to the surface, and then through the photosphere to the temperature minimum. Convection is a highly non-linear and non-local process, so it is best studied by numerical simulations. We focus on simulations that include sufficient detailed physics so that their results can be quantitatively compared with observations. The solar surface is covered with magnetic features with spatial sizes ranging from unobservably small to hundreds of megameters. Three orders of magnitude more magnetic flux emerges in the quiet Sun than emerges in active regions. In this review we focus mainly on the properties of the quiet Sun magnetic field. The Sun’s magnetic field is produced by dynamo action throughout the convection zone, primarily by stretching and twisting in the turbulent downflows. Diverging convective upflows and magnetic buoyancy carry magnetic flux toward the surface and sweep the field into the surrounding downflow lanes where the field is dragged downward. The result is a hierarchy of undulating magnetic Ω- and U-loops of different sizes. New magnetic flux first appears at the surface in a mixed polarity random pattern and then collects into isolated unipolar regions due to underlying larger scale magnetic structures. Rising magnetic structures are not coherent, but develop a filamentary structure. Emerging magnetic flux alters the convection properties, producing larger, darker granules. Strong field concentrations inhibit transverse plasma motions and, as a result, reduce convective heat transport toward the surface which cools. Being cooler, these magnetic field concentrations have a shorter scale height and become evacuated. The field becomes further compressed and can reach strengths in balance with the surrounding gas pressure. Because of their small internal density, photons escape from deeper in

  17. Stationary thermal convection in a viscoelastic ferrofluid

    Energy Technology Data Exchange (ETDEWEB)

    Laroze, D., E-mail: david.laroze@gmail.co [Max Planck Institute for Polymer Research, D 55021 Mainz (Germany); Instituto de Alta Investigacion, Universidad de Tarapaca, Casilla 7D, Arica (Chile); Martinez-Mardones, J. [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile); Perez, L.M. [Departamento de Ingenieria Metalurgica, Universidad de Santiago de Chile, Av. Bernardo OHiggins 3363, Santiago (Chile); Rojas, R.G. [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile)

    2010-11-15

    We report theoretical and numerical results on convection for a magnetic fluid in a viscoelastic carrier liquid. We focus in the stationary convection for idealized boundary conditions. We obtain explicit expressions of convective thresholds in terms of the control parameters of the system. Close to bifurcation, the coefficients of the corresponding amplitude equation are determined analytically. Finally, the secondary instabilities are performed.

  18. Design comparison of single phase outer and inner-rotor hybrid excitation flux switching motor for hybrid electric vehicles

    Science.gov (United States)

    Mazlan, Mohamed Mubin Aizat; Sulaiman, Erwan; Husin, Zhafir Aizat; Othman, Syed Muhammad Naufal Syed; Khan, Faisal

    2015-05-01

    In hybrid excitation machines (HEMs), there are two main flux sources which are permanent magnet (PM) and field excitation coil (FEC). These HEMs have better features when compared with the interior permanent magnet synchronous machines (IPMSM) used in conventional hybrid electric vehicles (HEVs). Since all flux sources including PM, FEC and armature coils are located on the stator core, the rotor becomes a single piece structure similar with switch reluctance machine (SRM). The combined flux generated by PM and FEC established more excitation fluxes that are required to produce much higher torque of the motor. In addition, variable DC FEC can control the flux capabilities of the motor, thus the machine can be applied for high-speed motor drive system. In this paper, the comparisons of single-phase 8S-4P outer and inner rotor hybrid excitation flux switching machine (HEFSM) are presented. Initially, design procedures of the HEFSM including parts drawing, materials and conditions setting, and properties setting are explained. Flux comparisons analysis is performed to investigate the flux capabilities at various current densities. Then the flux linkages of PM with DC FEC of various DC FEC current densities are examined. Finally torque performances are analyzed at various armature and FEC current densities for both designs. As a result, the outer-rotor HEFSM has higher flux linkage of PM with DC FEC and higher average torque of approximately 10% when compared with inner-rotor HEFSM.

  19. The shape and dynamics of the generation of the splash forms in single-phase systems after drop hitting

    Science.gov (United States)

    Sochan, Agata; Beczek, Michał; Mazur, Rafał; RyŻak, Magdalena; Bieganowski, Andrzej

    2018-02-01

    The splash phenomenon is being increasingly explored with the use of modern measurement tools, including the high-speed cameras. Recording images at a rate of several thousand frames per second facilitates parameterization and description of the dynamics of splash phases. This paper describes the impact of a single drop of a liquid falling on the surface of the same liquid. Three single-phase liquid systems, i.e., water, petrol, and diesel fuel, were examined. The falling drops were characterized by different kinetic energy values depending on the height of the fall, which ranged from 0.1 to 7.0 m. Four forms, i.e., waves, crowns, semi-closed domes, and domes, were distinguished depending on the drop energy. The analysis of the recorded images facilitated determination of the static and dynamic parameters of each form, e.g., the maximum height of each splash form, the width of the splash form at its maximum height, and the rate of growth of the splash form. We, Re, Fr, and K numbers were determined for all analyzed liquid systems. On the basis of the obtained values of dimensionless numbers, the areas of occurrence of characteristic splash forms were separated.

  20. Performance analysis of the Single-Phase Grid-Connected Inverter of a photovoltaic system in water and wind applications

    Directory of Open Access Journals (Sweden)

    Borkowski Dariusz

    2016-01-01

    Full Text Available Single-phase grid connected inverters are nowadays broadly developed and tested in various types of applications especially in photovoltaic systems. The main aim of the inverter control strategy is to extract the maximum energy from the PV system which corresponds to the maximum power at certain conditions. However, the MPPT methods are also important in other renewable energy conversion systems. This paper analyses the performance of a commercially available photovoltaic inverter in water and wind systems. Presented models are implemented in a laboratory test bench in the form of torque characteristics realised by an induction motor fed by the inverter with vector control. The parameters are scaled into relative variables to provide a proper performance comparison. Presented tests include step response to assess the performance of a system dynamic. The dynamic tests showed a fast response of the investigated systems. The MPPT tracking accuracy tested under realistic profiles is similar for both cases: 98% and 96% respectively for the wind and water systems. These results prove the satisfactory performance of the MPPT of the PV microinverter in these applications.

  1. A DAB Converter with Common-Point-Connected Winding Transformers Suitable for a Single-Phase 5-Level SST System

    Directory of Open Access Journals (Sweden)

    Hyeok-Jin Yun

    2018-04-01

    Full Text Available One of the main disadvantages of the multi-level solid-state transformer (SST system is the voltage imbalance on the output of the rectifier modules. This voltage imbalance can be caused by parameter mismatch of the active and passive components, different loads, and the floating structure of the high voltage DC-links. Some studies have been done to solve this voltage imbalance problem. A common way to avoid this imbalance is to balance the voltage of DC-links at the AC/DC conversion stage and balance the power between the modules at the DC/DC conversion stage. Most of these methods require a complex balancing controller or additional circuits. This paper proposes a novel dual active bridge (DAB converter specialized in power balancing in a single-phase 5-level SST system. The proposed DAB converter does not require any additional balancing controllers or techniques for power balancing. The performance of the proposed DAB converter was verified by simulation and experiments using a 3 kW 5-level SST prototype system.

  2. A Current-Forced Line-Commutated Inverter for Single-Phase Grid-Connected Photovoltaic Generation Systems

    Directory of Open Access Journals (Sweden)

    UNLU, M.

    2015-05-01

    Full Text Available A simple power electronic interface based on the line-commutated inverter (LCI has been developed in order to inject sinusoidal current to the grid for single-phase grid-connected photovoltaic (PV energy generation systems. The proposed inverter facilitates controlling the injecting/grid current with a controllable power factor in contrast to the conventional LCI system. It is achieved that the total harmonic distortion (THD of the injecting currents for the different firing angles/power factors and reference currents is about 5% or less than 5%. Thus, the grid-connected standards for injecting current are satisfied without filter equipment unlike the conventional LCI system. The proposed system has been built in MATLAB/Simulink and examined experimentally on PV array of 160 W. The simulation and experimental results are better performance than the conventional line-commutated inverter methods reported in the literature. The proposed LCI has a simple and robust structure, and it can be easily synchronized with grid thanks to self-latching property of SCRs. Therefore, it is a good alternative for the power transferring from PV panels to the utility grid in grid-connected PV systems.

  3. Highly efficient GaN HEMTs transformer-less single-phase inverter for grid-tied fuel cell

    Science.gov (United States)

    Alatawi, Khaled; Almasoudi, Fahad; Matin, Mohammad

    2017-08-01

    Transformer-less inverters are the most efficient approach to utilize renewable energy sources for grid tied applications. In this paper, a grid-tied fuel cell transformer-less single-phase inverter equipped with GaN HEMTs is proposed. The new topology is derived from conventional H5 inverter. The benefits of using GaN HEMTs are to enable the system to switch at high frequency, which will reduce the size, volume and cost of the system. Moreover, inverter control is designed and proposed to supply real power to the grid and to work as DSTATCOM to mitigate any voltage sag and compensate reactive power in the system. A comparison of the performance of the proposed inverter with Si IGBT and GaN HEMTs was presented to analyze the benefits of using WBG devices. The switching strategy of the new topology creates a new current path which reduces the conduction losses significantly. The analysis of the proposed system was carried out using MATLAB/SIMULINK and PSIM and the results show that the proposed controller improves voltage stability, power quality, mitigates voltage sag and compensates reactive power. Accordingly, the results prove the effectiveness of the system for grid-tied applications.

  4. Statistical analysis of entropy generation in longitudinally finned tube heat exchanger with shell side nanofluid by a single phase approach

    Directory of Open Access Journals (Sweden)

    Konchada Pavan Kumar

    2016-06-01

    Full Text Available The presence of nanoparticles in heat exchangers ascertained increment in heat transfer. The present work focuses on heat transfer in a longitudinal finned tube heat exchanger. Experimentation is done on longitudinal finned tube heat exchanger with pure water as working fluid and the outcome is compared numerically using computational fluid dynamics (CFD package based on finite volume method for different flow rates. Further 0.8% volume fraction of aluminum oxide (Al2O3 nanofluid is considered on shell side. The simulated nanofluid analysis has been carried out using single phase approach in CFD by updating the user-defined functions and expressions with thermophysical properties of the selected nanofluid. These results are thereafter compared against the results obtained for pure water as shell side fluid. Entropy generated due to heat transfer and fluid flow is calculated for the nanofluid. Analysis of entropy generation is carried out using the Taguchi technique. Analysis of variance (ANOVA results show that the inlet temperature on shell side has more pronounced effect on entropy generation.

  5. General correlations for pressure drop and heat transfer for single-phase turbulent flow in internally ribbed tubes

    International Nuclear Information System (INIS)

    Ravigururajan, T.S.; Bergles, A.E.

    1985-01-01

    General correlations for friction factors and heat transfer coefficients for single-phase turbulent flow in internally ribbed tubes are presented. Data from previous investigations are gathered for a wide range of tube parameters with e/d: 0.01 to 0.2; p/d: 0.1 to 7.0; α/90: 0.3 to 1.0, and flow parameters Re: 5000 to 250,000 and Pr: 0.66 to 37.6. The data were applied to a linear model to get normalized correlations that were then modified to fit tubes with extremely small parametric values. A shape function was included in the friction correlation to account for different rib profiles. The friction correlation predicts 96% of the data base to within +. 50% and 77% of the data base to within +. 20%. Corresponding figures for the heat transfer correlation are 99% and 69%. The present correlations are superior, for this extensive data base, to those presented by other investigators

  6. Design-Oriented Analysis of Slow-Scale Bifurcations in Single Phase DC-AC Inverters via Autonomous Transformation Approach

    Science.gov (United States)

    Zhang, Hao; Ding, Honghui; Yi, Chuanzhi

    2017-06-01

    This paper deals with the design-oriented analysis of slow-scale bifurcations in single phase DC-AC inverters. Since DC-AC inverter belongs to a class of nonautonomous piecewise systems with periodic equilibrium orbits, the original averaged model has to be translated into an equivalent autonomous one via a virtual rotating coordinate transformation in order to simplify the theoretical analysis. Based on the virtual equivalent model, eigenvalue sensitivity is used to estimate the effect of the important parameters on the system stability. Furthermore, theoretical analysis is performed to identify slow-scale bifurcation behaviors by judging in what way the eigenvalue loci of the Jacobian matrix move under the variation of some important parameters. In particular, the underlying mechanism of the slow-scale unstable phenomenon is uncovered and discussed thoroughly. In addition, some behavior boundaries are given in the parameter space, which are suitable for optimizing the circuit design. Finally, physical experiments are performed to verify the above theoretical results.

  7. Output-Feedback Nonlinear Adaptive Control Strategy of the Single-Phase Grid-Connected Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Abdelmajid Abouloifa

    2018-01-01

    Full Text Available This paper addresses the problem of controlling the single-phase grid connected to the photovoltaic system through a full bridge inverter with LCL-filter. The control aims are threefold: (i imposing the voltage in the output of PV panel to track a reference provided by the MPPT block; (ii regulating the DC-link voltage to guarantee the power exchange between the source and AC grid; (iii ensuring a satisfactory power factor correction (PFC. The problem is dealt with using a cascade nonlinear adaptive controller that is developed making use of sliding-mode technique and observers in order to estimate the state variables and grid parameters, by measuring only the grid current, PV voltage, and the DC bus voltage. The control problem addressed by this work involves several difficulties, including the uncertainty of some parameters of the system and the numerous state variables are inaccessible to measurements. The results are confirmed by simulation under MATLAB∖Simulink∖SimPowerSystems, which show that the proposed regulator is robust with respect to climate changes.

  8. Development of a single-phase 330kVA HTS transformer using GdBCO tapes

    Science.gov (United States)

    Hu, Daoyu; Li, Zhuyong; Hong, Zhiyong; Jin, Zhijian

    2017-08-01

    With the mature of manufacture process and technology of high temperature superconductors, the critical current and stability are gradually increased. High temperature superconductors could be used in transformer, current limiter, generator, magnet and etc. This paper focuses on development and characteristic tests of a single-phase high temperature superconducting (HTS) power transformer with capacity of 330 kVA by using GdBCO tapes, which is 1/3 model of a 1 MVA / 10 kV / 0.4 kV HTS transformer. The specifications of iron core, HTS windings and cryostat are described in detail. The iron core is made of silicon steel plate. The arrangement of HTS windings are based on experimental and simulated results. The cryostat with a room temperature bore is manufactured using nonmetallic materials. Several characteristic tests and insulation tests are performed in liquid nitrogen of 77 K. The efficiency and AC loss at rated load is 99.90% and 243.7 W, respectively. In addition, an overload test was also performed.

  9. Single-phase and two-phase flow properties of mesaverde tight sandstone formation; random-network modeling approach

    Science.gov (United States)

    Bashtani, Farzad; Maini, Brij; Kantzas, Apostolos

    2016-08-01

    3D random networks are constructed in order to represent the tight Mesaverde formation which is located in north Wyoming, USA. The porous-space is represented by pore bodies of different shapes and sizes which are connected to each other by pore throats of varying length and diameter. Pore bodies are randomly distributed in space and their connectivity varies based on the connectivity number distribution which is used in order to generate the network. Network representations are then validated using publicly available mercury porosimetry experiments. The network modeling software solves the fundamental equations of two-phase immiscible flow incorporating wettability and contact angle variability. Quasi-static displacement is assumed. Single phase macroscopic properties (porosity, permeability) are calculated and whenever possible are compared to experimental data. Using this information drainage and imbibition capillary pressure, and relative permeability curves are predicted and (whenever possible) compared to experimental data. The calculated information is grouped and compared to available literature information on typical behavior of tight formations. Capillary pressure curve for primary drainage process is predicted and compared to experimental mercury porosimetry in order to validate the virtual porous media by history matching. Relative permeability curves are also calculated and presented.

  10. Structural and optical characterization of single-phase γ-In2Se3 films with room-temperature photoluminescence

    International Nuclear Information System (INIS)

    Lyu, D.Y.; Lin, T.Y.; Chang, T.W.; Lan, S.M.; Yang, T.N.; Chiang, C.C.; Chen, C.L.; Chiang, H.P.

    2010-01-01

    The single-phase γ-In 2 Se 3 films with red room-temperature photoluminescence (PL) have been realized by atmospheric metal-organic chemical vapor deposition at the temperature range of 350-500 o C. The crystal structure of the γ-In 2 Se 3 films was determined by X-ray diffraction and Raman spectroscopy. From the temperature dependence of the free exciton line, the room-temperature energy gap of γ-In 2 Se 3 films is found to be about 1.947 eV. At 10 K, the free exciton emissions was observed and located at 2.145 eV. The temperature dependence of the near band-edge emission in the temperature region of 10-300 K has been investigated. The measured peak energy of near band-edge emission redshifts by about 200 meV with increasing temperature from 10 to 300 K, and is expressed by, E g (T) = 2.149 + ((-8.50 x 10 -4 )T 2 /(T + 75.5)) eV. This study was done to complete the reported information about γ-In 2 Se 3 thin films.

  11. High efficiency H6 single-phase transformerless grid-tied PV inverter with proposed modulation for reactive power generation

    Science.gov (United States)

    Almasoudi, Fahad M.; Alatawi, Khaled S.; Matin, Mohammad

    2017-08-01

    Implementation of transformerless inverters in PV grid-tied system offer great benefits such as high efficiency, light weight, low cost, etc. Most of the proposed transformerless inverters in literature are verified for only real power application. Currently, international standards such as VDE-AR-N 4105 has demanded that PV grid-tied inverters should have the ability of controlling a specific amount of reactive power. Generation of reactive power cannot be accomplished in single phase transformerless inverter topologies because the existing modulation techniques are not adopted for a freewheeling path in the negative power region. This paper enhances a previous high efficiency proposed H6 trnasformerless inverter with SiC MOSFETs and demonstrates new operating modes for the generation of reactive power. A proposed pulse width modulation (PWM) technique is applied to achieve bidirectional current flow through freewheeling state. A comparison of the proposed H6 transformerless inverter using SiC MOSFETs and Si MOSFTEs is presented in terms of power losses and efficiency. The results show that reactive power control is attained without adding any additional active devices or modification to the inverter structure. Also, the proposed modulation maintains a constant common mode voltage (CM) during every operating mode and has low leakage current. The performance of the proposed system verifies its effectiveness in the next generation PV system.

  12. Breadth-First Search-Based Single-Phase Algorithms for Bridge Detection in Wireless Sensor Networks

    Science.gov (United States)

    Akram, Vahid Khalilpour; Dagdeviren, Orhan

    2013-01-01

    Wireless sensor networks (WSNs) are promising technologies for exploring harsh environments, such as oceans, wild forests, volcanic regions and outer space. Since sensor nodes may have limited transmission range, application packets may be transmitted by multi-hop communication. Thus, connectivity is a very important issue. A bridge is a critical edge whose removal breaks the connectivity of the network. Hence, it is crucial to detect bridges and take preventions. Since sensor nodes are battery-powered, services running on nodes should consume low energy. In this paper, we propose energy-efficient and distributed bridge detection algorithms for WSNs. Our algorithms run single phase and they are integrated with the Breadth-First Search (BFS) algorithm, which is a popular routing algorithm. Our first algorithm is an extended version of Milic's algorithm, which is designed to reduce the message length. Our second algorithm is novel and uses ancestral knowledge to detect bridges. We explain the operation of the algorithms, analyze their proof of correctness, message, time, space and computational complexities. To evaluate practical importance, we provide testbed experiments and extensive simulations. We show that our proposed algorithms provide less resource consumption, and the energy savings of our algorithms are up by 5.5-times. PMID:23845930

  13. Performance Evaluation of Low/Zero Voltage Ride-Through Operations for Single-Stage Single-Phase Photovoltaic Inverters

    DEFF Research Database (Denmark)

    Zhang, Zhen; Yang, Yongheng; Blaabjerg, Frede

    2017-01-01

    With the fast development of distributed power generations, stability and security have attracted extensive attention in the recent years. As a representative of clean energies, Photovoltaic (PV) systems have been installed extensively worldwide. This drives grid-connected requirements to be cont......With the fast development of distributed power generations, stability and security have attracted extensive attention in the recent years. As a representative of clean energies, Photovoltaic (PV) systems have been installed extensively worldwide. This drives grid-connected requirements......-connected single-stage single-phase PV systems in the case of Low/Zero Voltage Ride-Through (LVRT/ZVRT) operation. A comparative analysis of the two LVRT/ZVRT control methods for PV systems is presented. Simulation results are presented, which verifies that the LVRT/ZVRT methods can help the PV systems...... to temporarily ride-through the grid low-/zero-voltage faults. The power phase-angle control method has a better dynamic response....

  14. Controlling effects of mesoscale eddies on thermohaline structure and in situ chlorophyll distribution in the western North Pacific

    Science.gov (United States)

    Gao, Wei; Wang, Zhenyan; Zhang, Kainan

    2017-11-01

    Based on the conductivity, temperature and depth (CTD) data collected at 93 hydrographic stations during a marine cruise and on contemporary satellite altimeter observations, a series of eddies have been observed passing over the stratified upper water of the Parece Vela Basin. The results from hydrographic measurements and in situ chlorophyll fluorescence measurements have revealed that these eddies exerted significant controlling effects on the thermohaline structure and chlorophyll distribution, especially on the prevalent subsurface chlorophyll maximum layer (SCML). Based on these observations and particulate beam attenuation coefficient (cp) data, the in situ phytoplankton bloom around the pycnocline can be largely attributable to the formation of a well-developed SCML in the studied system. The uplift of the cold subsurface water within the cyclone, shoaling the pycnocline to a shallower layer, resulted in a low-temperature anomaly and different salinity anomalies at different depths. This uplift in the cyclone further caused the SCML to appear at a shallower depth with a higher in situ chlorophyll concentration than that in the normal domain. Conversely, the sinking of the warm surface water to the subsurface layer within the anticyclone depressed the pycnocline to a deeper layer and generated a high-temperature anomaly and opposite salinity anomalies compared with the cyclone. The sinking of the pycnocline within the anticyclone considerably influenced the characteristics of the SCML, which had a deeper depth and a lower in situ chlorophyll concentration than that of the normal sea. This study contributes rare quasi-synchronous CTD observations capturing mesoscale eddies and provides valuable descriptions of the variations in the SCML under the influence of mesoscale eddies based on in situ optical measurements from the seldom-discussed western North Pacific.

  15. Changes in the Thermohaline Flow due to changes in the WAIS and Astronomical Forcing during the MIS31 Superinterglacial

    Science.gov (United States)

    Justino, F. J.; Lindemann, D.; Kucharski, F.; Wilson, A.; Bromwich, D. H.; Stordal, F.

    2017-12-01

    The Marine Isotope Stage 31 (MIS31, between 1085 ka and 1055 ka) was characterised by higher extra-tropical air temperatures and a substantial recession of polar glaciers compared to today. Paleoreconstructions and model simulations have increased the understanding of the MIS31 interval, but questions remain regarding the role of the Atlantic and Pacific Oceans in modifying the climate associated with the variations in Earth's orbital parameters. Multi-century coupled climate simulations, with the astronomical configuration of the MIS31 and modified West Antarctic Ice Sheet (WAIS) topography, show an increase in the thermohaline flux and northward oceanic heat transport (OHT) in the Pacific Ocean. These oceanic changes are driven by anomalous atmospheric circulation and increased surface salinity in concert with a stronger meridional overturning circulation (MOC). The intensified northward OHT is responsible for up to 85% of the global OHT anomalies and contributes to the overall reduction in sea-ice in the Northern Hemisphere (NH) due to Earth's astronomical configuration. The relative contributions of the Atlantic Ocean to global OHT and MOC anomalies are minor compared to that of the Pacific. However, sea-ice changes are remarkable, highlighted by decreased (increased) cover in Ross (Weddell) Sea but widespread reductions of sea-ice across the NH. These modeling results have enormous implications for paleoreconstructions of the MIS31 climate that mostly assume overall ice free conditions in the vicinity of the Antarctic continent. Since these reconstructions may depict dominant signals in a particular time interval and locale, they cannot be assumed to geographically represent large-scale domains. Therefore, their ability to reproduce long-term environmental conditions should be considered with care. Finally, it is important to emphasize that understanding past interglacial intervals that are characterized by a depleted WAIS can shed light on the potential

  16. Potential of enhancing a natural convection loop with a thermomagnetically pumped ferrofluid

    Energy Technology Data Exchange (ETDEWEB)

    Aursand, Eskil; Gjennestad, Magnus Aa.; Lervåg, Karl Yngve, E-mail: karl.lervag@sintef.no; Lund, Halvor

    2016-11-01

    The feasibility of using a thermomagnetically pumped ferrofluid to enhance the performance of a natural convection cooling loop is investigated. First, a simplified analytical estimate for the thermomagnetic pumping action is derived, and then design rules for optimal solenoid and ferrofluid are presented. The design rules are used to set up a medium-scale (1 m, 10–1000 W) case study, which is modeled using a previously published and validated model (Aursand et al. [1]). The results show that the thermomagnetic driving force is significant compared to the natural convection driving force, and may in some cases greatly surpass it. The results also indicate that cooling performance can be increased by factors up to 4 and 2 in the single-phase and two-phase regimes, respectively, even when taking into the account the added heat from the solenoid. The performance increases can alternatively be used to obtain a reduction in heat-sink size by up to 75%. - Highlights: • We consider a thermomagnetically pumped ferrofluid for heat transfer. • The performance of the thermomagnetic pump is compared to natural convection. • The flow is simulated using a two-phase flow model. • The thermomagnetic driving force improves heat transfer significantly.

  17. Interannual thermohaline (1979-2014) and nutrient (2002-2014) dynamics in the Levantine surface and intermediate water masses, SE Mediterranean Sea

    Science.gov (United States)

    Ozer, Tal; Gertman, Isaac; Kress, Nurit; Silverman, Jacob; Herut, Barak

    2017-04-01

    In this study a > 30 years dataset of 1382 CTD casts in the Levantine Basin (LB) was analyzed to examine the thermohaline trends of the Surface ( 0-50 m) and Intermediate ( 150-350 m) Water masses (LSW, LIW). In addition, a 13 years (2002-2014) dataset of 3 deep water stations (> 1000 m) in the eastern Levantine Basin (Haifa Section cruises) that were visited 2-3 times annually was used to explore the relations between the physical and nutrient properties in the LIW. Over the past 30 years the LSW and LIW masses displayed positive long-term trends in salinity of + 0.008 ± 0.006 and + 0.005 ± 0.003 year- 1, respectively, and temperature of + 0.12 ± 0.07 and + 0.03 ± 0.02 °C year- 1, respectively. Decadal variations in salinity and temperature were superimposed on all long-term trends. Throughout the period 2002-2014 nutrient levels in the LIW core and corresponding integrated values of chlorophyll a also varied in nearly opposite phase with temperature and salinity. Furthermore, these variations occurred with a similar decadal periodicity, but with shifted phase with those observed in the Southern Adriatic and North Ionian Seas in the same water mass. The latter were considered to be caused by decadal reversals in the North Ionian Gyre, i.e. Bimodal Oscillation System (BiOS). These results indicate that the thermohaline flux variations attributed to the BiOS mechanism have a significant impact in magnitude on the available nutrients and the dynamics of the eastern basin primary productivity. These results should be taken into consideration in assessing the relative contribution of external nutrient loads in comparison to those attributed to variations in thermohaline fluxes and in the assessment of long-term and interannual primary productivity (chlorophyll a and nutrients) trends in the LB.

  18. A transilient matrix for moist convection

    Energy Technology Data Exchange (ETDEWEB)

    Romps, D.; Kuang, Z.

    2011-08-15

    A method is introduced for diagnosing a transilient matrix for moist convection. This transilient matrix quantifies the nonlocal transport of air by convective eddies: for every height z, it gives the distribution of starting heights z{prime} for the eddies that arrive at z. In a cloud-resolving simulation of deep convection, the transilient matrix shows that two-thirds of the subcloud air convecting into the free troposphere originates from within 100 m of the surface. This finding clarifies which initial height to use when calculating convective available potential energy from soundings of the tropical troposphere.

  19. Seismic Constraints on Interior Solar Convection

    Science.gov (United States)

    Hanasoge, Shravan M.; Duvall, Thomas L.; DeRosa, Marc L.

    2010-01-01

    We constrain the velocity spectral distribution of global-scale solar convective cells at depth using techniques of local helioseismology. We calibrate the sensitivity of helioseismic waves to large-scale convective cells in the interior by analyzing simulations of waves propagating through a velocity snapshot of global solar convection via methods of time-distance helioseismology. Applying identical analysis techniques to observations of the Sun, we are able to bound from above the magnitudes of solar convective cells as a function of spatial convective scale. We find that convection at a depth of r/R(solar) = 0.95 with spatial extent l < 30, where l is the spherical harmonic degree, comprise weak flow systems, on the order of 15 m/s or less. Convective features deeper than r/R(solar) = 0.95 are more difficult to image due to the rapidly decreasing sensitivity of helioseismic waves.

  20. Optimal Performance Design Guideline of Hybrid Reference Frame-based Dual Loop Control Strategy for Stand-Alone Single-Phase Inverters

    DEFF Research Database (Denmark)

    Han, Yang; Jiang, Ai-Ting; Coelho, Ernane A. A.

    2018-01-01

    The dual-loop control strategies in hybrid reference frame (HRF) for single-phase voltage source inverters (VSIs) in islanded operation mode is studied, which applies a capacitor voltage shaping loop in the synchronous reference frame (SRF) and a capacitor current shaping loop in the stationary r...