WorldWideScience

Sample records for single-phase nanocrystalline anatase

  1. Characterization of nanocrystalline anatase titania: an in situ HTXRD study

    International Nuclear Information System (INIS)

    Jagtap, Neelam; Bhagwat, Mahesh; Awati, Preeti; Ramaswamy, Veda

    2005-01-01

    Nanocrystalline titania was synthesized by the hydrolysis of titanium iso-propoxide using ultrasonication. The powder XRD patterns of the sample were recorded in static air and vacuum using a Philips X-pert Pro diffractometer equipped with a high-temperature attachment (HTK16) from room temperature (298 K) to 1173 K and were analyzed by the Rietveld refinement technique. The anatase to rutile phase transformation was observed at 1173 K for the data collected in static air. Only 3% of anatase titania transformed to rutile when the experiments were carried out at 1173 K in vacuum. The phase transformation from anatase to rutile is accompanied by a continuous increase in the crystallite size of the anatase phase from 9 nm at room temperature to 28 nm at 873 K and then to 50 nm at 1173 K in air while the process of crystallite growth was suppressed in vacuum. A linear increase in the unit cell parameters 'a' and 'c', and thus, an overall linear increase in the unit cell volume was observed as a function of temperature in static air as well as vacuum. The lattice and volume thermal expansion coefficients (TEC), α a , α c and α V at 873 K are 8.57 x 10 -6 , 8.71 x 10 -6 and 25.91 x 10 -6 K -1 in air and 18.01 x 10 -6 , 14.95 x 10 -6 and 51.13 x 10 -6 K -1 in vacuum, respectively

  2. Photocatalytic characteristics of single phase Fe-doped anatase TiO2 nanoparticles sensitized with vitamin B12

    International Nuclear Information System (INIS)

    Gharagozlou, Mehrnaz; Bayati, R.

    2015-01-01

    Highlights: • Anatase TiO 2 /B 12 hybrid nanostructured catalyst was successfully synthesized by sol–gel technique. • The nanoparticle catalyst was doped with iron at several concentrations. • Nanoparticles were characterized in detail by XRD, Raman, TEM, EDS, and spectroscopy techniques. • The formation mechanism and role of point defects on photocatalytic properties were discussed. • A structure-property-processing correlation was established. - Abstract: We report a processing-structure-property correlation in B 12 -anatase titania hybrid catalysts doped with several concentrations of iron. Our results clearly show that low-level iron doping alters structure, defect content, and photocatalytic characteristics of TiO 2 . XRD and Raman studies revealed formation of a single-phase anatase TiO 2 where no iron based segregation in particular iron oxide, was detected. FT-IR spectra clearly confirmed sensitization of TiO 2 nanoparticles with vitamin B 12 . TEM micrographs and diffraction patterns confirmed crystallization of anatase nanoparticles with a radius of 15–20 nm. Both XRD and Raman signals showed a peak shift and a peak broadening which are surmised to originate from creation of point defects, namely oxygen vacancy and titanium interstitial. The doped samples revealed a narrower band gap as compared to undoped samples. Photocatalytic activity of the samples was assessed through measuring the decomposition rate of rhodamine B. It was found that sensitization with vitamin B 12 and Fe-doping significantly enhances the photocatalytic efficiency of the anatase nanoparticles. We also showed that there is an optimum Fe-doping level where the maximum photocatalytic activity is achieved. The boost of photocatalytic activity was qualitatively understood to originate from a more effective use of the light photons, formation of point defects, which enhance the charge separation, higher carrier mobility

  3. Synthesis and electronic structure of low-density monoliths of nanoporous nanocrystalline anatase TiO2

    Energy Technology Data Exchange (ETDEWEB)

    Kucheyev, S O; Baumann, T F; Wang, Y M; van Buuren, T; Satcher, J H

    2004-08-13

    Monolithic nanocrystalline anatase titania aerogels are synthesized by the epoxide sol-gel method followed by thermal annealing at 550 C. These aerogels are formed by {approx}10-20 nm size anatase nanoparticles which are randomly oriented and interconnected into an open-cell solid network. Aerogel monoliths have an apparent density of {approx}6% and a surface area of {approx} 100 m{sup 2} g{sup -1}. High-resolution transmission electron microscopy and soft x-ray absorption near-edge structure spectroscopy reveal good crystallinity of the anatase nanoparticles forming the aerogel skeleton.

  4. Photocatalytic characteristics of single phase Fe-doped anatase TiO{sub 2} nanoparticles sensitized with vitamin B{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Gharagozlou, Mehrnaz, E-mail: gharagozlou@icrc.ac.ir [Department of Nanomaterials and Nanotechnology, Institute for Color Science and Technology, Tehran (Iran, Islamic Republic of); Bayati, R. [Intel Corporation, IMO-SC, SC2, Santa Clara, CA 95054 (United States)

    2015-01-15

    Highlights: • Anatase TiO{sub 2}/B{sub 12} hybrid nanostructured catalyst was successfully synthesized by sol–gel technique. • The nanoparticle catalyst was doped with iron at several concentrations. • Nanoparticles were characterized in detail by XRD, Raman, TEM, EDS, and spectroscopy techniques. • The formation mechanism and role of point defects on photocatalytic properties were discussed. • A structure-property-processing correlation was established. - Abstract: We report a processing-structure-property correlation in B{sub 12}-anatase titania hybrid catalysts doped with several concentrations of iron. Our results clearly show that low-level iron doping alters structure, defect content, and photocatalytic characteristics of TiO{sub 2}. XRD and Raman studies revealed formation of a single-phase anatase TiO{sub 2} where no iron based segregation in particular iron oxide, was detected. FT-IR spectra clearly confirmed sensitization of TiO{sub 2} nanoparticles with vitamin B{sub 12}. TEM micrographs and diffraction patterns confirmed crystallization of anatase nanoparticles with a radius of 15–20 nm. Both XRD and Raman signals showed a peak shift and a peak broadening which are surmised to originate from creation of point defects, namely oxygen vacancy and titanium interstitial. The doped samples revealed a narrower band gap as compared to undoped samples. Photocatalytic activity of the samples was assessed through measuring the decomposition rate of rhodamine B. It was found that sensitization with vitamin B{sub 12} and Fe-doping significantly enhances the photocatalytic efficiency of the anatase nanoparticles. We also showed that there is an optimum Fe-doping level where the maximum photocatalytic activity is achieved. The boost of photocatalytic activity was qualitatively understood to originate from a more effective use of the light photons, formation of point defects, which enhance the charge separation, higher carrier mobility.

  5. Room temperature growth of nanocrystalline anatase TiO2 thin films by dc magnetron sputtering

    International Nuclear Information System (INIS)

    Singh, Preetam; Kaur, Davinder

    2010-01-01

    We report, the structural and optical properties of nanocrystalline anatase TiO 2 thin films grown on glass substrate by dc magnetron sputtering at room temperature. The influence of sputtering power and pressure over crystallinity and surface morphology of the films were investigated. It was observed that increase in sputtering power activates the TiO 2 film growth from relative lower surface free energy to higher surface free energy. XRD pattern revealed the change in preferred orientation from (1 0 1) to (0 0 4) with increase in sputtering power, which is accounted for different surface energy associated with different planes. Microstructure of the films also changes from cauliflower type to columnar type structures with increase in sputtering power. FESEM images of films grown at low pressure and low sputtering power showed typical cauliflower like structure. The optical measurement revealed the systematic variation of the optical constants with deposition parameters. The films are highly transparent with transmission higher than 90% with sharp ultraviolet cut off. The transmittance of these films was found to be influenced by the surface roughness and film thickness. The optical band gap was found to decrease with increase in the sputtering power and pressure. The refractive index of the films was found to vary in the range of 2.50-2.24 with increase in sputtering pressure or sputtering power, resulting in the possibility of producing TiO 2 films for device applications with different refractive index, by changing the deposition parameters.

  6. Room temperature growth of nanocrystalline anatase TiO{sub 2} thin films by dc magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Preetam, E-mail: preetamphy@gmail.co [Functional Nanomaterials Research Lab, Department of Physics and Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Kaur, Davinder [Functional Nanomaterials Research Lab, Department of Physics and Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2010-03-01

    We report, the structural and optical properties of nanocrystalline anatase TiO{sub 2} thin films grown on glass substrate by dc magnetron sputtering at room temperature. The influence of sputtering power and pressure over crystallinity and surface morphology of the films were investigated. It was observed that increase in sputtering power activates the TiO{sub 2} film growth from relative lower surface free energy to higher surface free energy. XRD pattern revealed the change in preferred orientation from (1 0 1) to (0 0 4) with increase in sputtering power, which is accounted for different surface energy associated with different planes. Microstructure of the films also changes from cauliflower type to columnar type structures with increase in sputtering power. FESEM images of films grown at low pressure and low sputtering power showed typical cauliflower like structure. The optical measurement revealed the systematic variation of the optical constants with deposition parameters. The films are highly transparent with transmission higher than 90% with sharp ultraviolet cut off. The transmittance of these films was found to be influenced by the surface roughness and film thickness. The optical band gap was found to decrease with increase in the sputtering power and pressure. The refractive index of the films was found to vary in the range of 2.50-2.24 with increase in sputtering pressure or sputtering power, resulting in the possibility of producing TiO{sub 2} films for device applications with different refractive index, by changing the deposition parameters.

  7. Visible active nanocrystalline N-doped anatase TiO{sub 2} particles for photocatalytic mineralization studies

    Energy Technology Data Exchange (ETDEWEB)

    Barkul, R.P. [Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Sub–campus Osmanabad, 413 501, MS (India); Koli, V.B.; Shewale, V.B. [Department of Chemistry, Shivaji University, Kolhapur, 416 004, MS (India); Patil, M.K. [Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Sub–campus Osmanabad, 413 501, MS (India); Delekar, S.D., E-mail: sddelekar7@rediffmail.com [Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Sub–campus Osmanabad, 413 501, MS (India); Department of Chemistry, Shivaji University, Kolhapur, 416 004, MS (India); Department of Chemistry and Biochemistry, Florida State University, Tallahassee, 30306-4390, FL (United States)

    2016-04-15

    Nitrogen-doped TiO{sub 2} nanoparticles (N–TiO{sub 2} NPs) with anatase phase were synthesized by sol–gel method using a single precursor containing titanium (IV) terbutoxide, glacial acetic acid, sodium dodecyl sulphate, ammonia, and urea. X-ray diffraction (XRD) reveals the nanocrystalline nature with anatase phase of all the samples. The particle size of all samples was found in the range of 5–12 nm using transmission electron microscopy (TEM). UV–visible absorption measurements examined that the optical band gap of the doped samples decrease with increase in dopant concentration from 0.0 to 7.0 mol%. Field-emission scanning electron microscopy (FESEM) with energy dispersive atomic X-ray (EDAX) spectroscopy was employed to analyse the morphology and chemical composition of these N–TiO{sub 2} NPs. The photocatalytic activity of bare/doped TiO{sub 2} samples was demonstrated for the degradation of Rhodamine B (RhB) dye under direct sunlight irradiation. The photocatalytic degradation was monitored by measuring the kinetic parameters based on UV–visible spectroscopy as well as the chemical oxygen demand (COD) during the course of the reaction. The effect of dye concentration and pH of the solution on the photocatalytic degradation reaction in the presence of colloidal bare/doped TiO{sub 2} were also studied. The N–TiO{sub 2} catalyst, with a nitrogen concentration of 7.0 mol%, showed the highest activity for photocatalytic mineralization of dye at acidic or alkaline medium than neutral condition under solar light irradiation directly. - Highlights: • Nitrogen doped TiO{sub 2} nanoparticles where synthesized by using simple sol–gel method at room temperature. • N–TiO{sub 2} nanoparticles shows red shift. • Hydroxylation on the surface of TiO{sub 2} increase with increasing nitrogen concentration. • In presence of sunlight N–TiO{sub 2} shows enhancement in degradation of RhB dye.

  8. Coupling of Nanocrystalline Anatase TiO2 to Porous Nanosized LaFeO3 for Efficient Visible-Light Photocatalytic Degradation of Pollutants

    Directory of Open Access Journals (Sweden)

    Muhammad Humayun

    2016-01-01

    Full Text Available In this work we have successfully fabricated nanocrystalline anatase TiO2/perovskite-type porous nanosized LaFeO3 (T/P-LFO nanocomposites using a simple wet chemical method. It is clearly demonstrated by means of atmosphere-controlled steady-state surface photovoltage spectroscopy (SPS responses, photoluminescence spectra, and fluorescence spectra related to the formed OH− radical amount that the photogenerated charge carriers in the resultant T/P-LFO nanocomposites with a proper mole ratio percentage of TiO2 display much higher separation in comparison to the P-LFO alone. This is highly responsible for the improved visible-light activities of T/P-LFO nanocomposites for photocatalytic degradation of gas-phase acetaldehyde and liquid-phase phenol. This work will provide a feasible route to synthesize visible-light responsive nano-photocatalysts for efficient solar energy utilization.

  9. Anomalous behavior of B1g mode in highly transparent anatase nano-crystalline Nb-doped Titanium Dioxide (NTO thin films

    Directory of Open Access Journals (Sweden)

    Subodh K. Gautam

    2015-12-01

    Full Text Available The effect of Niobium doping and size of crystallites on highly transparent nano-crystalline Niobium doped Titanium Dioxide (NTO thin films with stable anatase phase are reported. The Nb doping concentration is varied within the solubility limit in TiO2 lattice. Films were annealed in controlled environment for improving the crystallinity and size of crystallites. Elemental and thickness analysis were carried out using Rutherford backscattering spectrometry and cross sectional field emission scanning electron microscopy. Structural characteristics reveal a substitutional incorporation of Nb+5 in the TiO2 lattice which inhibits the anatase crystallites growth with increasing the doping percentage. The micro-Raman (MR spectra of films with small size crystallites shows stiffening of about 4 cm−1 for the Eg(1 mode and is ascribed to phonon confinement and non-stoichiometry. In contrast, B1g mode exhibits a large anomalous softening of 20 cm−1 with asymmetrical broadening; which was not reported for the case of pure TiO2 crystallites. This anomalous behaviour is explained by contraction of the apical Ti-O bonds at the surface upon substitutional Nb5+ doping induced reduction of Ti4+ ions also known as hetero-coordination effect. The proposed hypotheses is manifested through studying the electronic structure and phonon dynamics by performing the near edge x-ray absorption fine structure (NEXAFS and temperature dependent MR down to liquid nitrogen temperature on pure and 2.5 at.% doped NTO films, respectively.

  10. Synthesis and visible light photoactivity of anatase Ag, and garlic loaded TiO2 nanocrystalline catalyst

    Science.gov (United States)

    An excellent visible light activated Ag and S doped TiO2 nanocatalyst was prepared by using AgNO3 and garlic (Allium sativum) as Ag+ and sulfur sources, respectively. The catalyst resisted the change from anatase to rutile phase even at calcination at 700 oC. The photocatalytic e...

  11. XRD Analysis of Nanocrystalline Anatase Powders Prepared by Various Chemical Routes: Correlations between Micro-structure and Crystal Structure Parameters

    Czech Academy of Sciences Publication Activity Database

    Matěj, Z.; Matějová, Lenka; Kužel, R.

    2013-01-01

    Roč. 28, Suppl. 2 (2013), s. 161-183 ISSN 0885-7156 Grant - others:UK(CZ) UNCE 204023/2012; MŠk(CZ) GAP108/11/1539 Institutional support: RVO:67985858 Keywords : anatase * crystallite size * lattice parameters * XRD * vacancies * anisotropy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.586, year: 2013

  12. Equilibrium lithium-ion transport between nanocrystalline lithium-inserted anatase TiO2 and the electrolyte.

    Science.gov (United States)

    Ganapathy, Swapna; van Eck, Ernst R H; Kentgens, Arno P M; Mulder, Fokko M; Wagemaker, Marnix

    2011-12-23

    The power density of lithium-ion batteries requires the fast transfer of ions between the electrode and electrolyte. The achievable power density is directly related to the spontaneous equilibrium exchange of charged lithium ions across the electrolyte/electrode interface. Direct and unique characterization of this charge-transfer process is very difficult if not impossible, and consequently little is known about the solid/liquid ion transfer in lithium-ion-battery materials. Herein we report the direct observation by solid-state NMR spectroscopy of continuous lithium-ion exchange between the promising nanosized anatase TiO(2) electrode material and the electrolyte. Our results reveal that the energy barrier to charge transfer across the electrode/electrolyte interface is equal to or greater than the barrier to lithium-ion diffusion through the solid anatase matrix. The composition of the electrolyte and in turn the solid/electrolyte interface (SEI) has a significant effect on the electrolyte/electrode lithium-ion exchange; this suggests potential improvements in the power of batteries by optimizing the electrolyte composition. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Electronic structure of the indium tin oxide/nanocrystalline anatase (TiO2)/ruthenium-dye interfaces in dye-sensitized solar cells

    Science.gov (United States)

    Lyon, J. E.; Rayan, M. K.; Beerbom, M. M.; Schlaf, R.

    2008-10-01

    The electronic structure of two interfaces commonly found in dye-sensitized photovoltaic cells based on nanocrystalline anatase TiO2 ("Grätzel cells") was investigated using photoemission spectroscopy (PES). X-ray photoemission spectroscopy (XPS) and ultraviolet photoemission spectroscopy (UPS) measurements were carried out on the indium tin oxide (ITO)/TiO2 and the TiO2/cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)-ruthenium(II)bis-tetrabutylammonium dye ("N719" or "Ruthenium 535-bisTBA") interfaces. Both contacts were investigated using a multistep deposition procedure where the entire structure was prepared in vacuum using electrospray deposition. In between deposition steps the surface was characterized with XPS and UPS resulting in a series of spectra, allowing the determination of the orbital and band lineup at the interfaces. The results of these efforts confirm previous PES measurements on TiO2/dye contacts prepared under ambient conditions, suggesting that ambient contamination might not have significant influence on the electronic structure at the dye/TiO2 interface. The results also demonstrate that there may be a significant barrier for electron injection at the sputtered ITO/TiO2 interface and that this interface should be viewed as a semiconductor heterojunction rather than as metal-semiconductor (Schottky) contact.

  14. Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy

    International Nuclear Information System (INIS)

    Fu, Zhiqiang; Chen, Weiping; Wen, Haiming; Zhang, Dalong; Chen, Zhen; Zheng, Baolong; Zhou, Yizhang; Lavernia, Enrique J.

    2016-01-01

    We report on a study of the design, phase formation, microstructure, mechanical behavior and strengthening mechanisms of a novel single-phase Co 25 Ni 25 Fe 25 Al 7.5 Cu 17.5 (at.%) high-entropy alloy (HEA). In this investigation, a bulk nanocrystalline (nc) Co 25 Ni 25 Fe 25 Al 7.5 Cu 17.5 HEA with the face-centered cubic (FCC) crystal structure was fabricated by mechanical alloying (MA) followed by consolidation via spark plasma sintering (SPS). The X-ray diffraction (XRD) and transmission electron microscopy (TEM) results revealed that a single FCC solid-solution phase with an average grain diameter of 24 nm was produced following MA. Following SPS, bulk samples exhibiting a bimodal microstructure with both nanoscale grains and ultra-fine grains (UFGs) and with an average grain diameter of 95 nm were obtained, possessing a single FCC solid-solution phase identical to that in the milled powders. The single-phase feature of the Co 25 Ni 25 Fe 25 Al 7.5 Cu 17.5 HEA principally resulted from remarkably high mutual solubility in most binary atom-pairs of the constituent elements, which appears to correspond to a high entropy of mixing. Approximately 5 vol.% of nanoscale twins were observed in the bulk nc samples. The bulk nc Co 25 Ni 25 Fe 25 Al 7.5 Cu 17.5 HEA exhibits a compressive yield strength of 1795 MPa with a hardness of 454 Hv, which is dramatically higher than the yield strength of most previously reported FCC structured HEAs (∼130–700 MPa). Compared to those of the bulk coarse-grained (CG) Co 25 Ni 25 Fe 25 Al 7.5 Cu 17.5 HEA fabricated by arc-melting, the yield strength and Vickers hardness values of the bulk nc samples increased by 834.9% and 251.9%, respectively. Quantitative calculations of the respective contributions from each strengthening mechanism demonstrate that grain boundary strengthening and dislocation strengthening are principally responsible for the measured ultra-high strength of the bulk nc Co 25 Ni 25 Fe 25 Al 7.5 Cu 17.5 HEA.

  15. Single-Phase PLLs

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    Single-phase phase-locked loops (PLLs) are popular for the synchronization and control of single-phase gridconnected converters. They are also widely used for monitoring and diagnostic purposes in the power and energy areas. In recent years, a large number of single-phase PLLs with different stru......-PLLs). The members of each category are then described and their pros and cons are discussed. This work provides a deep insight into characteristics of different single-phase PLLs and, therefore, can be considered as a reference for researchers and engineers....

  16. Solvothermal preparation of nanocrystalline anatase containing TiO{sub 2} and TiO{sub 2}/SiO{sub 2} coating agents for application of photocatalytic treatments

    Energy Technology Data Exchange (ETDEWEB)

    Mahltig, B., E-mail: boris.mahltig@hs-niederrhein.de [University of Applied Sciences Niederrhein, Faculty of Textile and Clothing Technology, Webschulstrasse 31, D-41065 Moenchengladbach (Germany); Gesellschaft zur Foerderung von Medizin-, Bio- und Umwelttechnologien e.V., GMBU e.V., Postfach 520165, D-01317 Dresden (Germany); Gutmann, E. [Technische Universitaet Dresden, Institut fuer Strukturphysik, D-01062 Dresden (Germany); Meyer, D.C. [Technische Universitaet Dresden, Institut fuer Strukturphysik, D-01062 Dresden (Germany); Technische Universitaet Bergakademie Freiberg, Institut fuer Experimentelle Physik, D-09596 Freiberg (Germany)

    2011-05-16

    Research highlights: {yields} TiO{sub 2} and TiO{sub 2}/SiO{sub 2} materials prepared by a solvothermal sol-gel process. {yields} Photodecomposition with oxygen increases with increasing solvothermal process temperature. {yields} In presence of H{sub 2}O{sub 2} the dye decomposition is observed even without UV light illumination. {yields} The materials contain potential for cleaning waste water containing dye stuffs. - Abstract: This paper reports on TiO{sub 2} and TiO{sub 2}/SiO{sub 2} materials prepared by a sol-gel process under solvothermal conditions with process temperatures between 120 deg. C and 180 deg. C. Under the preparation conditions chosen, the formation of anatase crystallites starts at a process temperature of 160 deg. C, as observed by X-ray diffraction. From TiO{sub 2} and TiO{sub 2}/SiO{sub 2} sols coatings on viscose fabrics and powders have been prepared. The photoactivity of both materials - coated textiles and powders - is determined by the decomposition of the dye AcidOrange under UV light illumination. Significant dye decomposition is only observed for samples containing a high ratio of TiO{sub 2} and that are solvothermally prepared at 180 deg. C. In contrast, when the photoactivity is determined in presence of H{sub 2}O{sub 2} totally different results are obtained and the degree of AcidOrange decomposition is higher for most of the samples. Furthermore, in presence of H{sub 2}O{sub 2} the dye decomposition is observed even without UV light illumination. Especially samples prepared with the polymer Pluronic P123 under lower solvothermal process temperatures exhibit strong dye decomposition without illumination in presence of H{sub 2}O{sub 2}. Therefore, these materials could be of high interest for cleaning waste water containing dye stuffs from textile industry.

  17. Nanocrystalline solids

    International Nuclear Information System (INIS)

    Gleiter, H.

    1991-01-01

    Nanocrystalline solids are polycrystals, the crystal size of which is a few (typically 1 to 10) nanometres so that 50% or more of the solid consists of incoherent interfaces between crystals of different orientations. Solids consisting primarily of internal interfaces represent a separate class of atomic structures because the atomic arrangement formed in the core of an interface is known to be an arrangement of minimum energy in the potential field of the two adjacent crystal lattices with different crystallographic orientations on either side of the boundary core. These boundary conditions result in atomic structures in the interfacial cores which cannot be formed elsewhere (e.g. in glasses or perfect crystals). Nanocrystalline solids are of interest for the following four reasons: (1) Nanocrystalline solids exhibit an atomic structure which differs from that of the two known solid states: the crystalline (with long-range order) and the glassy (with short-range order). (2) The properties of nanocrystalline solids differ (in some cases by several orders of magnitude) from those of glasses and/or crystals with the same chemical composition, which suggests that they may be utilized technologically in the future. (3) Nanocrystalline solids seem to permit the alloying of conventionally immiscible components. (4) If small (1 to 10 nm diameter) solid droplets with a glassy structure are consolidated (instead of small crystals), a new type of glass, called nanoglass, is obtained. Such glasses seem to differ structurally from conventional glasses. (orig.)

  18. Surfactant-assisted sol gel preparation of high-surface area mesoporous TiO2 nanocrystalline Li-ion battery anodes

    International Nuclear Information System (INIS)

    Casino, S.; Di Lupo, F.; Francia, C.; Tuel, A.; Bodoardo, S.; Gerbaldi, C.

    2014-01-01

    Highlights: • Mesoporous TiO 2 nanocrystalline lithium battery anodes with tunable morphology. • Simple sol–gel technique using different cationic surfactants is adopted. • Textural/morphological characteristics define the electrochemical behaviour. • TiO 2 anatase using C16TAB exhibits stable performance after 200 cycles. • It shows promising prospects as high-voltage safe Li-ion battery anode. - Abstract: We here investigate the physico-chemical/morphological characteristics and cycling behaviour of several kinds of nanocrystalline TiO 2 Li-ion battery anodes selectively prepared through a simple sol–gel strategy based on a low-cost titanium oxysulfate precursor, by mediation of different cationic surfactants having different features (e.g., chain lengths, counter ion, etc.): i.e., cetyl-trimethylammonium bromide (CTAB), cetyl-trimethylammonium chloride (CTAC), benzalkonium chloride (BC) or octadecyl-trimethyl ammonium bromide (C 18 TAB). X-ray diffraction profiles reveal single phase anatase having good correspondence with the reference pattern when using short chain CTAB, while in the other cases the presence of chloride and/or an increased chain length affect the purity of the samples. FESEM analysis reveal nanosized particles forming cauliflower-like aggregates. TiO 2 materials demonstrate mesoporous characteristics and large specific surface area ranging from 250 to 30 m 2 g −1 . Remarkably stable electrode performance are achieved by appropriately selecting the cationic surfactant and the surfactant/precursor ratio. Detailed analysis is provided on the effect of the reaction conditions upon the formation of mesoporous crystalline titania enlightening new directions for the development of high performing lithium storage electrodes by a simple and low cost sol–gel strategy

  19. Surfactant-assisted sol gel preparation of high-surface area mesoporous TiO{sub 2} nanocrystalline Li-ion battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Casino, S. [GAME Lab, Department of Applied Science and Technology – DISAT, Institute of Chemistry, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Di Lupo, F., E-mail: francesca.dilupo@polito.it [GAME Lab, Department of Applied Science and Technology – DISAT, Institute of Chemistry, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Francia, C. [GAME Lab, Department of Applied Science and Technology – DISAT, Institute of Chemistry, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Tuel, A. [IRCELYON, Institut de Recherches sur la Catalyse et l’environnement de Lyon, UMR 5256, CNRS-Université de Lyon 1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex (France); Bodoardo, S. [GAME Lab, Department of Applied Science and Technology – DISAT, Institute of Chemistry, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Gerbaldi, C., E-mail: claudio.gerbaldi@polito.it [GAME Lab, Department of Applied Science and Technology – DISAT, Institute of Chemistry, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy)

    2014-05-01

    Highlights: • Mesoporous TiO{sub 2} nanocrystalline lithium battery anodes with tunable morphology. • Simple sol–gel technique using different cationic surfactants is adopted. • Textural/morphological characteristics define the electrochemical behaviour. • TiO{sub 2} anatase using C16TAB exhibits stable performance after 200 cycles. • It shows promising prospects as high-voltage safe Li-ion battery anode. - Abstract: We here investigate the physico-chemical/morphological characteristics and cycling behaviour of several kinds of nanocrystalline TiO{sub 2} Li-ion battery anodes selectively prepared through a simple sol–gel strategy based on a low-cost titanium oxysulfate precursor, by mediation of different cationic surfactants having different features (e.g., chain lengths, counter ion, etc.): i.e., cetyl-trimethylammonium bromide (CTAB), cetyl-trimethylammonium chloride (CTAC), benzalkonium chloride (BC) or octadecyl-trimethyl ammonium bromide (C{sub 18}TAB). X-ray diffraction profiles reveal single phase anatase having good correspondence with the reference pattern when using short chain CTAB, while in the other cases the presence of chloride and/or an increased chain length affect the purity of the samples. FESEM analysis reveal nanosized particles forming cauliflower-like aggregates. TiO{sub 2} materials demonstrate mesoporous characteristics and large specific surface area ranging from 250 to 30 m{sup 2} g{sup −1}. Remarkably stable electrode performance are achieved by appropriately selecting the cationic surfactant and the surfactant/precursor ratio. Detailed analysis is provided on the effect of the reaction conditions upon the formation of mesoporous crystalline titania enlightening new directions for the development of high performing lithium storage electrodes by a simple and low cost sol–gel strategy.

  20. Synthesis and characterization of anatase-TiO2 thin films

    International Nuclear Information System (INIS)

    Sankapal, B.R.; Lux-Steiner, M.Ch.; Ennaoui, A.

    2005-01-01

    A new and effective method for the preparation of nanocrystalline TiO 2 (anatase) thin films is presented. This method is based on the use of peroxo-titanium complex as a single precursor. Post-annealing treatment is necessary to convert the deposited amorphous film into TiO 2 (anatase) phase. The films obtained are uniform, compact and free of pinholes. A wide range of techniques are used for characterization, namely X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDAX) and UV-Vis-NIR spectrophotometer. Glass, indium-doped tin oxide (ITO) and quartz are used as substrates. TiO 2 (anatase) phase with (1 0 1) preferred orientation is obtained for the films. Byproduct (collected powder) consists of the same crystal structure. The optical measurement reveals the indirect bandgap of 3.2 eV

  1. Synthesis and characterization of anatase-TiO 2 thin films

    Science.gov (United States)

    Sankapal, B. R.; Lux-Steiner, M. Ch.; Ennaoui, A.

    2005-01-01

    A new and effective method for the preparation of nanocrystalline TiO 2 (anatase) thin films is presented. This method is based on the use of peroxo-titanium complex as a single precursor. Post-annealing treatment is necessary to convert the deposited amorphous film into TiO 2 (anatase) phase. The films obtained are uniform, compact and free of pinholes. A wide range of techniques are used for characterization, namely X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDAX) and UV-Vis-NIR spectrophotometer. Glass, indium-doped tin oxide (ITO) and quartz are used as substrates. TiO 2 (anatase) phase with (1 0 1) preferred orientation is obtained for the films. Byproduct (collected powder) consists of the same crystal structure. The optical measurement reveals the indirect bandgap of 3.2 eV.

  2. Synthesis and characterization of anatase-TiO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sankapal, B.R.; Lux-Steiner, M.Ch.; Ennaoui, A

    2005-01-15

    A new and effective method for the preparation of nanocrystalline TiO{sub 2} (anatase) thin films is presented. This method is based on the use of peroxo-titanium complex as a single precursor. Post-annealing treatment is necessary to convert the deposited amorphous film into TiO{sub 2} (anatase) phase. The films obtained are uniform, compact and free of pinholes. A wide range of techniques are used for characterization, namely X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDAX) and UV-Vis-NIR spectrophotometer. Glass, indium-doped tin oxide (ITO) and quartz are used as substrates. TiO{sub 2} (anatase) phase with (1 0 1) preferred orientation is obtained for the films. Byproduct (collected powder) consists of the same crystal structure. The optical measurement reveals the indirect bandgap of 3.2 eV.

  3. Single phase induction motor with starting performance

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, M.; Demeter, E. [Research Institute for Electrical Machines, ICPE-ME, Bucharest (Romania); Navrapescu, V. [University `Politehnica` Bucharest, Electrical Engineering Faculty Splaiul Independentei, Bucharest (Romania)

    1997-12-31

    The paper presents problems related to a special type of single phase induction motor. The main novelty consists in the use of a conducting (aluminium casted) shell distributed on the periferic region of the rotor. As a result the starting performance, as well as the rated ones, is much improved in comparison with the conventional construction. (orig.) 4 refs.

  4. Preparation of single phase molybdenum boride

    International Nuclear Information System (INIS)

    Camurlu, Hasan Erdem

    2011-01-01

    Highlights: → Formation of Mo and a mixture of molybdenum boride phases take place in preparation of molybdenum borides. → It is intricate to prepare single phase molybdenum borides. → Formation of single phase MoB from MoO 3 + B 2 O 3 + Mg mixtures has not been reported previously. → Single phase MoB was successfully prepared through a combination of mechanochemical synthesis and annealing process. - Abstract: The formation of MoB through volume combustion synthesis (VCS), and through mechanochemical synthesis (MCS) followed by annealing has been investigated. MoO 3 , B 2 O 3 and Mg were used as reactants while MgO and NaCl were introduced as diluents. Products were leached in dilute HCl solution and were subjected to X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) examinations. Mo was the major phase component in the VCS products under all the experimental conditions. Mo 2 B, MoB, MoB 2 and Mo 2 B 5 were found as minor phases. Products of MCS contained a mixture of Mo 2 B, MoB, MoB 2 and Mo. After annealing the MCS product at 1400 deg. C for 3 h, single phase α-MoB was obtained.

  5. Load compensation for single phase system using series active filter

    African Journals Online (AJOL)

    user

    Keywords: Active power filter (APF), current source type of harmonic load ... Single phase active filters could attract less attention than three phase due to its low ..... Generalised single-phase p-q theory for active power filtering: simulation and.

  6. Spontaneous and Photoinduced Conversion of CO2 on TiO2 Anatase (001)/(101) Surfaces

    Czech Academy of Sciences Publication Activity Database

    Ferus, Martin; Kavan, Ladislav; Zukalová, Markéta; Zukal, Arnošt; Klementová, Mariana; Civiš, Svatopluk

    2014-01-01

    Roč. 118, č. 46 (2014), s. 26845-26850 ISSN 1932-7447 R&D Projects: GA ČR(CZ) GAP108/12/0814; GA MŠk LD14115; GA MŠk(CZ) LD13060 Grant - others:COST(XE) CM1104 Institutional support: RVO:61388955 ; RVO:61388980 ; RVO:68081707 Keywords : TiO2 * FT-IR spectroscopy * nanocrystalline anatase Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.772, year: 2014

  7. Instability of single-phase natural circulation

    International Nuclear Information System (INIS)

    Xie Heng; Zhang Jinling; Jia Dounan

    1997-01-01

    The author has investigated the instability of single-phase flows in natural circulation loops. The momentum equation and energy equation are made dimensionless according to some definitions, and some important dimensionless parameters are gotten. The authors decomposed the mean mass flowrate and temperature into a steady solution and a small disturbance equations. Through solving the disturbance equations, the authors get the neutral stability curves. The authors have studied the effect of the two parameters which represent the ratio of buoyancy force to the friction loss in the loop on the stability of loops. The authors also have studied the effect of the difference of height between the center of heat source and the heat sink on the stability

  8. Nanocrystalline ceramic materials

    Science.gov (United States)

    Siegel, Richard W.; Nieman, G. William; Weertman, Julia R.

    1994-01-01

    A method for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material.

  9. Domain switching in single-phase multiferroics

    Science.gov (United States)

    Jia, Tingting; Cheng, Zhenxiang; Zhao, Hongyang; Kimura, Hideo

    2018-06-01

    Multiferroics are a time-honoured research subject by reason for their tremendous application potential in the information industry, such as in multi-state information storage devices and new types of sensors. An outburst of studies on multiferroicity has been witnessed in the 21st century, although this field has a long research history since the 19th century. Multiferroicity has now become one of the hottest research topics in condensed matter physics and materials science. Numerous efforts have been made to investigate the cross-coupling phenomena among ferroic orders such as ferroelectricity, (anti-)ferromagnetism, and ferroelasticity, especially the coupling between electric and magnetic orderings that would account for the magnetoelectric (ME) effect in multiferroic materials. The magnetoelectric properties and coupling behavior of single phase multiferroics are dominated by their domain structures. It was also noted that, however, the multiferroic materials exhibit very complicated domain structures. Studies on domain structure characterization and domain switching are a crucial step in the exploration of approaches to the control and manipulation of magnetic (electric) properties using an electric (magnetic) field or other means. In this review, following a concise outline of our current basic knowledge on the magnetoelectric (ME) effect, we summarize some important research activities on domain switching in single-phase multiferroic materials in the form of single crystals and thin films, especially domain switching behavior involving strain and the related physics in the last decade. We also introduce recent developments in characterization techniques for domain structures of ferroelectric or multiferroic materials, which have significantly advanced our understanding of domain switching dynamics and interactions. The effects of a series of issues such as electric field, magnetic field, and stress effects on domain switching are been discussed as well. It

  10. Chemical and electrochemical synthesis of nano-sized TiO{sub 2} anatase for large-area photon conversion

    Energy Technology Data Exchange (ETDEWEB)

    Babasaheb, Raghunath Sankapal; Shrikrishna, Dattatraya Sartale; Lux-Steiner, M.Ch.; Ennaoui, A. [Hahn-Meitner-Institut, Div. of Solar Energy Research, Berlin (Germany)

    2006-05-15

    We report on the synthesis of nanocrystalline titanium dioxide thin films and powders by chemical and electrochemical deposition methods. Both methods are simple, inexpensive and suitable for large-scale production. Air-annealing of the films and powders at T = 500 C leads to densely packed nanometer sized anatase TiO{sub 2} particles. The obtained layers are characterized by different methods such as: X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Titanium dioxide TiO{sub 2} (anatase) phase with (101) preferred orientation has been obtained for the films deposited on glass; indium doped tin oxide (ITO) and quartz substrates. The powder obtained as the byproduct consists of TiO{sub 2} with anatase-phase as well. (authors)

  11. Chemical and electrochemical synthesis of nano-sized TiO2 anatase for large-area photon conversion

    International Nuclear Information System (INIS)

    Babasaheb, Raghunath Sankapal; Shrikrishna, Dattatraya Sartale; Lux-Steiner, M.Ch.; Ennaoui, A.

    2006-01-01

    We report on the synthesis of nanocrystalline titanium dioxide thin films and powders by chemical and electrochemical deposition methods. Both methods are simple, inexpensive and suitable for large-scale production. Air-annealing of the films and powders at T = 500 C leads to densely packed nanometer sized anatase TiO 2 particles. The obtained layers are characterized by different methods such as: X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Titanium dioxide TiO 2 (anatase) phase with (101) preferred orientation has been obtained for the films deposited on glass; indium doped tin oxide (ITO) and quartz substrates. The powder obtained as the byproduct consists of TiO 2 with anatase-phase as well. (authors)

  12. In-situ anatase phase stabilization of titania photocatalyst by sintering in presence of Zr4+ organic salts

    Science.gov (United States)

    Strini, Alberto; Sanson, Alessandra; Mercadelli, Elisa; Bendoni, Riccardo; Marelli, Marcello; Dal Santo, Vladimiro; Schiavi, Luca

    2015-08-01

    The direct in-situ stabilization of an anatase-based nanocrystalline photocatalyst (Degussa P25) was obtained by sintering the catalyst powder in presence of Zr4+ organic salts. This approach allows the doping of an already-formed nanocrystalline photocatalyst instead of introducing the dopant in the crystal lattice during the catalyst synthesis. The procedure was demonstrated by the production of thick ceramic layers using the screen printing technique. This new method allows to easily stabilize the anatase phase 200 °C higher than the undoped P25 maintaining the same photocatalytic activity. The process was studied using specifically formulated screen-printing inks added with Zr4+ organic salt at 1% and 2% Zr/Ti molar ratio. The anatase phase stability was investigated in the 500-900 °C temperature range analysing the resulting catalysts with XRD, TEM and (S)TEM-EDS. The catalytic activity of the screen-printed layers was assessed by measuring the degradation of toluene in air at ambient concentration (500 nmol m-3) and low UV-A irradiance (180 μW cm-2). The described in-situ stabilization method could be potentially applied to any deposition process involving already formed anatase photocatalyst, allowing higher sintering temperature and then an improved mechanical stability of the active layers without photocatalytic activity degradation.

  13. Metal-to-Insulator Transition in Anatase TiO2 Thin Films Induced by Growth Rate Modulation

    International Nuclear Information System (INIS)

    Tachikawa, Takashi

    2012-01-01

    We demonstrate control of the carrier density of single phase anatase TiO 2 thin films by nearly two orders of magnitude by modulating the growth kinetics during pulsed laser deposition, under fixed thermodynamic conditions. The resistivity and the intensity of the photoluminescence spectra of these TiO 2 samples, both of which correlate with the number of oxygen vacancies, are shown to depend strongly on the growth rate. A quantitative model is used to explain the carrier density changes.

  14. In-situ anatase phase stabilization of titania photocatalyst by sintering in presence of Zr{sup 4+} organic salts

    Energy Technology Data Exchange (ETDEWEB)

    Strini, Alberto, E-mail: alberto.strini@itc.cnr.it [Istituto per le Tecnologie della Costruzione (ITC-CNR), via Lombardia, 49, I-20098 San Giuliano Milanese (MI) (Italy); Sanson, Alessandra; Mercadelli, Elisa [Istituto di Scienza e Tecnologia dei Materiali Ceramici (ISTEC-CNR), via Granarolo, 64, I-48018 Faenza (RA) (Italy); Bendoni, Riccardo [Istituto di Scienza e Tecnologia dei Materiali Ceramici (ISTEC-CNR), via Granarolo, 64, I-48018 Faenza (RA) (Italy); Dipartimento di Scienze e Tecnologie Chimiche e Centro NAST - Università di Roma Tor Vergata, via della Ricerca Scientifica, I-00133 Roma (Italy); Marelli, Marcello; Dal Santo, Vladimiro [CNR–Istituto di Scienze e Tecnologie Molecolari, via Golgi, 19, I-20133 Milano (Italy); Schiavi, Luca [Istituto per le Tecnologie della Costruzione (ITC-CNR), via Lombardia, 49, I-20098 San Giuliano Milanese (MI) (Italy)

    2015-08-30

    Graphical abstract: - Highlights: • Existing commercial (P25) anatase was stabilized in-situ with Zr(IV) doping. • Highly active catalytic layers were obtained by screen-printing. • Increased thermal stability was demonstrated up to 200 °C without activity loss. • Enhanced activity was obtained because of the Zr(IV) doping. • Zirconium diffusion was assessed by STEM-EDS analysis. - Abstract: The direct in-situ stabilization of an anatase-based nanocrystalline photocatalyst (Degussa P25) was obtained by sintering the catalyst powder in presence of Zr{sup 4+} organic salts. This approach allows the doping of an already-formed nanocrystalline photocatalyst instead of introducing the dopant in the crystal lattice during the catalyst synthesis. The procedure was demonstrated by the production of thick ceramic layers using the screen printing technique. This new method allows to easily stabilize the anatase phase 200 °C higher than the undoped P25 maintaining the same photocatalytic activity. The process was studied using specifically formulated screen-printing inks added with Zr{sup 4+} organic salt at 1% and 2% Zr/Ti molar ratio. The anatase phase stability was investigated in the 500–900 °C temperature range analysing the resulting catalysts with XRD, TEM and (S)TEM-EDS. The catalytic activity of the screen-printed layers was assessed by measuring the degradation of toluene in air at ambient concentration (500 nmol m{sup −3}) and low UV-A irradiance (180 μW cm{sup −2}). The described in-situ stabilization method could be potentially applied to any deposition process involving already formed anatase photocatalyst, allowing higher sintering temperature and then an improved mechanical stability of the active layers without photocatalytic activity degradation.

  15. In-situ anatase phase stabilization of titania photocatalyst by sintering in presence of Zr4+ organic salts

    International Nuclear Information System (INIS)

    Strini, Alberto; Sanson, Alessandra; Mercadelli, Elisa; Bendoni, Riccardo; Marelli, Marcello; Dal Santo, Vladimiro; Schiavi, Luca

    2015-01-01

    Graphical abstract: - Highlights: • Existing commercial (P25) anatase was stabilized in-situ with Zr(IV) doping. • Highly active catalytic layers were obtained by screen-printing. • Increased thermal stability was demonstrated up to 200 °C without activity loss. • Enhanced activity was obtained because of the Zr(IV) doping. • Zirconium diffusion was assessed by STEM-EDS analysis. - Abstract: The direct in-situ stabilization of an anatase-based nanocrystalline photocatalyst (Degussa P25) was obtained by sintering the catalyst powder in presence of Zr 4+ organic salts. This approach allows the doping of an already-formed nanocrystalline photocatalyst instead of introducing the dopant in the crystal lattice during the catalyst synthesis. The procedure was demonstrated by the production of thick ceramic layers using the screen printing technique. This new method allows to easily stabilize the anatase phase 200 °C higher than the undoped P25 maintaining the same photocatalytic activity. The process was studied using specifically formulated screen-printing inks added with Zr 4+ organic salt at 1% and 2% Zr/Ti molar ratio. The anatase phase stability was investigated in the 500–900 °C temperature range analysing the resulting catalysts with XRD, TEM and (S)TEM-EDS. The catalytic activity of the screen-printed layers was assessed by measuring the degradation of toluene in air at ambient concentration (500 nmol m −3 ) and low UV-A irradiance (180 μW cm −2 ). The described in-situ stabilization method could be potentially applied to any deposition process involving already formed anatase photocatalyst, allowing higher sintering temperature and then an improved mechanical stability of the active layers without photocatalytic activity degradation

  16. Current Harmonics from Single-Phase Grid-Connected Inverters

    DEFF Research Database (Denmark)

    Yang, Yongheng; Zhou, Keliang; Blaabjerg, Frede

    2016-01-01

    Environmental conditions and operational modes may significantly impact the distortion level of the injected current from single-phase grid-connected inverter systems, such as photovoltaic (PV) inverters, which may operate in cloudy days with a maximum power point tracking, in a non-unity power...... factor, or in the low voltage ride through mode with reactive current injection. In this paper, the mechanism of the harmonic current injection from grid-connected single-phase inverter systems is thus explored, and the analysis is conducted on single-phase PV systems. In particular, the analysis...... is focused on the impacts of the power factor and the feed-in grid current level on the quality of the feed-in grid current from single-phase inverters. As a consequence, an internal model principle based high performance current control solution is tailor-made and developed for single-phase grid-connected...

  17. Improvement of Torque Production in Single-Phase Induction Motors

    African Journals Online (AJOL)

    OLUWASOGO

    PID controller. Simulation results show the starting torque of the motor increased by 75% under the developed drive .... The model equations of the capacitor-run single phase induction .... process using the MATLAB pidtool command (Control.

  18. A Novel Single Phase Hybrid Switched Reluctance Motor Drive System

    DEFF Research Database (Denmark)

    Liang, Jianing; Xu, Guoqing; Jian, Linni

    2011-01-01

    In this paper, a novel single phase hybrid switched reluctance motor(SRM) drive system is proposed. It integrated a single phase hybrid SRM and a novel single phase boost converter. This motor can reduce the number of phase switch. And the permanent magnet which is used in the motor can improve...... the performance and efficiency of SR motor. However, the inherent characteristic of this motor is that the negative torque is very sensitive with the excitation current near the turn-on angle. The slow excitation current limits the torque generation region and reduces the average torque. Therefore, a novel single...... phase boost converter is applied to improve the performance of this motor. It is easy to generate a double dclink voltage and dc-link voltage and switch both of them. The voltage of boost capacitor is self balance, so the protective circuit is not need to consider. The fast excitation mode helps hybrid...

  19. Load compensation for single phase system using series active filter ...

    African Journals Online (AJOL)

    Load compensation for single phase system using series active filter. ... KK Mishra, R Gupta ... load varies from time to time, the non linear load ranging from voltage source type harmonic load (VSHL) dominant to current source type harmonic ...

  20. Thermally Stable Nanocrystalline Steel

    Science.gov (United States)

    Hulme-Smith, Christopher Neil; Ooi, Shgh Woei; Bhadeshia, Harshad K. D. H.

    2017-10-01

    Two novel nanocrystalline steels were designed to withstand elevated temperatures without catastrophic microstructural changes. In the most successful alloy, a large quantity of nickel was added to stabilize austenite and allow a reduction in the carbon content. A 50 kg cast of the novel alloy was produced and used to verify the formation of nanocrystalline bainite. Synchrotron X-ray diffractometry using in situ heating showed that austenite was able to survive more than 1 hour at 773 K (500 °C) and subsequent cooling to ambient temperature. This is the first reported nanocrystalline steel with high-temperature capability.

  1. Preparation and characterization of phase-pure anatase and rutile TiO2 powder by new chemistry route

    International Nuclear Information System (INIS)

    Pereira, E. A.; Montanhera, M.A.; Paula, F.R.; Spada, E.R.

    2014-01-01

    Titanium dioxide (TiO 2 ) is used in a wire range applications such as photocatalysis and sensor device. In this work is shown a new and effective method for the preparation of TiO 2 nanocrystalline in the crystallographic forms, anatase and rutile. The method involves dissolving the TiOSO 4 powder in H 2 O 2 solution and thermal treatment of amorphous precipitate. The technique of X-ray diffraction was used to follow the structure evolution of amorphous precipitate. Pure anatase structure and rutile are obtained at 600 deg C and 1000 deg C with a grain size estimated 24 and 55 nm respectively. TiO 2 nanoparticles is a promising alternative of the low cost whose potential for solar cells deserve a careful evaluation, especially in hybrid solar cells that employs TiO 2 as electron acceptor and as transport channels. (author)

  2. The Single-Phase ProtoDUNE Technical Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Abi, B. [Univ. of Padova (Italy); et al.

    2017-06-21

    ProtoDUNE-SP is the single-phase DUNE Far Detector prototype that is under construction and will be operated at the CERN Neutrino Platform (NP) starting in 2018. ProtoDUNE-SP, a crucial part of the DUNE effort towards the construction of the first DUNE 10-kt fiducial mass far detector module (17 kt total LAr mass), is a significant experiment in its own right. With a total liquid argon (LAr) mass of 0.77 kt, it represents the largest monolithic single-phase LArTPC detector to be built to date. It's technical design is given in this report.

  3. Anatase nanoparticles from hydrated titania gels

    Czech Academy of Sciences Publication Activity Database

    Pulišová, Petra; Boháček, Jaroslav; Šubrt, Jan; Szatmáry, Lórant; Bezdička, Petr; Murafa, Nataliya

    2011-01-01

    Roč. 161, č. 1 (2011), s. 84-90 ISSN 0920-5861 R&D Projects: GA MŠk 1M0577 Institutional research plan: CEZ:AV0Z40320502 Keywords : anatase particles Subject RIV: CA - Inorganic Chemistry Impact factor: 3.407, year: 2011

  4. A Transformer-less Single Phase Inverter For photovoltaic Systems

    DEFF Research Database (Denmark)

    Mostaan, Ali; Alizadeh, Ebrahim; Qu, Ying

    2017-01-01

    A single phase transformer-less inverter is introduced in this paper. The negative polarities of the input voltage and output terminal have common ground. Therefore, the leakage current problem that is common in PV systems is eliminated naturally. In addition, the proposed inverter has fewer comp...

  5. Dynamics Assessment of Advanced Single-Phase PLL Structures

    DEFF Research Database (Denmark)

    Golestan, Saeed; Monfarad, Mohammad; Freijedo, Francisco D.

    2013-01-01

    Recently, several advanced phase locked loop (PLL) techniques have been proposed for single-phase applications. Among these, the Park-PLL, and the second order generalized integrator (SOGI) based PLL are very attractive, owing to their simple digital implementation, low computational burden...

  6. experimental implementation of single-phase, three-level, sinusoidal

    African Journals Online (AJOL)

    Page 1 ... of many multilevel inverter configurations. This paper presents an experimental report of a simplified topology for single-phase, SPWM, three-level voltage source inverter wit R-L load. To keep the power circuit ... employed in many industrial applications such as variable speed drives, uninterruptible power sup-.

  7. An Asymmetrical Space Vector Method for Single Phase Induction Motor

    DEFF Research Database (Denmark)

    Cui, Yuanhai; Blaabjerg, Frede; Andersen, Gert Karmisholt

    2002-01-01

    Single phase induction motors are the workhorses in low-power applications in the world, and also the variable speed is necessary. Normally it is achieved either by the mechanical method or by controlling the capacitor connected with the auxiliary winding. Any above method has some drawback which...

  8. Solar-Based Boost Differential Single Phase Inverter | Eya | Nigerian ...

    African Journals Online (AJOL)

    Solar-Based Boost Differential Single Phase Inverter. ... Solar-based boost differential inverter is reduced down to 22.37% in closed loop system with the aid of Proportional –integral-Differential (PID) ... The dc power source is photovoltaic cell.

  9. A single phase photovoltaic inverter control for grid connected system

    Indian Academy of Sciences (India)

    This paper presents a control scheme for single phase grid connected photovoltaic (PV) system operating under both grid connected and isolated grid mode. The control techniques include voltage and current control of grid-tie PV inverter. During grid connected mode, grid controls the amplitude and frequency of the PV ...

  10. A simple output voltage control scheme for single phase wavelet ...

    African Journals Online (AJOL)

    DR OKE

    of the wavelet modulated (WM) scheme is that a single synthesis function, derived ... a single-phase H-bridge voltage-source (VS) inverter using MATLAB simulations. ... reconstruction process has been suggested to device a new class of ...

  11. Elemental separation in nanocrystalline Cu-Al alloys

    Science.gov (United States)

    Wang, Y. B.; Liao, X. Z.; Zhao, Y. H.; Cooley, J. C.; Horita, Z.; Zhu, Y. T.

    2013-06-01

    Nanocrystallization by high-energy severe plastic deformation has been reported to increase the solubility of alloy systems and even to mix immiscible elements to form non-equilibrium solid solutions. In this letter, we report an opposite phenomenon—nanocrystallization of a Cu-Al single-phase solid solution by high-pressure torsion separated Al from the Cu matrix when the grain sizes are refined to tens of nanometers. The Al phase was found to form at the grain boundaries of nanocrystalline Cu. The level of the separation increases with decreasing grain size, which suggests that the elemental separation was caused by the grain size effect.

  12. Synthesis and Characterization of Anatase TiO_2 Powder using a Homogeneous Precipitation Method

    International Nuclear Information System (INIS)

    Choi, Soon Ok; Cho, Jee Hee; Lim, Sung Hwan; Chung, Eun Young

    2011-01-01

    This paper studies the experimental method that uses the homogeneous precipitation method to prepare mica flakes coated with anatase-type titania pearlescent pigment with urea as precipitant. The optimum technology parameters, the chemical composition, the microstructure, and the color property of resulting pigments are discussed. The coating principle of mica coated titania with various coating thickness is analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy(TEM) and tested by spectrophotometer analysis. The colored nanocrystalline pigments with different morphology and coating thickness 45-170 nm were prepared by homogeneous precipitation treatment of TiOSO_4(titanum oxysulfate) aqueous solutions. Characterizations on the pigments show that the pearlescent effects of the pigments depend mainly on mica size, thickness of the metal oxide deposit, its chemical composition, and crystal structure.

  13. Metal-to-Insulator Transition in Anatase TiO2 Thin Films Induced by Growth Rate Modulation

    Energy Technology Data Exchange (ETDEWEB)

    Tachikawa, T; Minohara, M.; Nakanishi, Y.; Hikita, Y.; Yoshita, M.; Akiyama, H.; Bell, C.; Hwang, H.Y.

    2012-06-21

    We demonstrate control of the carrier density of single phase anatase TiO{sub 2} thin films by nearly two orders of magnitude by modulating the growth kinetics during pulsed laser deposition, under fixed thermodynamic conditions. The resistivity and the intensity of the photoluminescence spectra of these TiO{sub 2} samples, both of which correlate with the number of oxygen vacancies, are shown to depend strongly on the growth rate. A quantitative model is used to explain the carrier density changes.

  14. Overview of Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2017-01-01

    A continuous booming installation of solar photovoltaic (PV) systems has been witnessed worldwide. It is mainly driven by the imperative demand of “clean” power generation from renewables. Grid-connected PV systems will thus become an even more active player in the future mixed power systems, which...... systems. This chapter thus gives an overview of the advancement of power electronics converters in single-phase grid-connected PV systems, being commonly used in residential applications. Demands to single-phase grid-connected PV systems and the general control strategies are also addressed...... are linked together by a vast of power electronics converters and the power grid. In order to achieve a reliable and efficient power generation from PV systems, more stringent demands have been imposed on the entire PV system. It, in return, advances the development of the power converter technology in PV...

  15. Enhanced visible-light photocatalytic activity for selective oxidation of amines into imines over TiO{sub 2}(B)/anatase mixed-phase nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Jun [Institute of Applied Chemistry, Henan Polytechnic University, Jiaozuo 454003 (China); State Key Laboratory Cultivation Base for Gas Geology and Gas Control, School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003 (China); Yang, Juan, E-mail: yangjuanhpu@yahoo.com [Institute of Applied Chemistry, Henan Polytechnic University, Jiaozuo 454003 (China); Wang, Xiaohan; Zhang, Lei; Li, Yingjie [Institute of Applied Chemistry, Henan Polytechnic University, Jiaozuo 454003 (China)

    2015-09-15

    Graphical abstract: Visible-light photocatalytic activities for selective oxidation of amines into imines are greatly affected by the crystal structure of TiO{sub 2} catalysts and mixed-phase TiO{sub 2}(B)/anatase possess higher photoactivity because of the moderate adsorption ability and efficient charge separation. - Highlights: • Visible-light photocatalytic oxidation of amines to imines is studied over different TiO{sub 2}. • Photocatalytic activities are greatly affected by the crystal structure of TiO{sub 2} nanowires. • Mixed-phase TiO{sub 2}(B)/anatase exhibits higher catalytic activity than single-phase TiO{sub 2}. • Enhanced activity is ascribed to efficient adsorption ability and interfacial charge separation. • Photoinduced charge transfer mechanism on TiO{sub 2}(B)/anatase catalysts is also proposed. - Abstract: Wirelike catalysts of mixed-phase TiO{sub 2}(B)/anatase TiO{sub 2}, bare anatase TiO{sub 2} and TiO{sub 2}(B) are synthesized via calcining precursor hydrogen titanate obtained from hydrothermal process at different temperatures between 450 and 700 °C. Under visible light irradiation, mixed-phase TiO{sub 2}(B)/anatase TiO{sub 2} catalysts exhibit enhanced photocatalytic activity in comparison with pure TiO{sub 2}(B) and anatase TiO{sub 2} toward selective oxidation of benzylamines into imines and the highest photocatalytic activity is achieved by TW-550 sample consisting of 65% TiO{sub 2}(B) and 35% anatase. The difference in photocatalytic activities of TiO{sub 2} samples can be attributed to the different adsorption abilities resulted from their crystal structures and interfacial charge separation driven by surface-phase junctions between TiO{sub 2}(B) and anatase TiO{sub 2}. Moreover, the photoinduced charge transfer mechanism of surface complex is also proposed over mixed-phase TiO{sub 2}(B)/anatase TiO{sub 2} catalysts. Advantages of this photocatalytic system include efficient utilization of solar light, general suitability to

  16. Enhanced visible-light photocatalytic activity for selective oxidation of amines into imines over TiO2(B)/anatase mixed-phase nanowires

    International Nuclear Information System (INIS)

    Dai, Jun; Yang, Juan; Wang, Xiaohan; Zhang, Lei; Li, Yingjie

    2015-01-01

    Graphical abstract: Visible-light photocatalytic activities for selective oxidation of amines into imines are greatly affected by the crystal structure of TiO 2 catalysts and mixed-phase TiO 2 (B)/anatase possess higher photoactivity because of the moderate adsorption ability and efficient charge separation. - Highlights: • Visible-light photocatalytic oxidation of amines to imines is studied over different TiO 2 . • Photocatalytic activities are greatly affected by the crystal structure of TiO 2 nanowires. • Mixed-phase TiO 2 (B)/anatase exhibits higher catalytic activity than single-phase TiO 2 . • Enhanced activity is ascribed to efficient adsorption ability and interfacial charge separation. • Photoinduced charge transfer mechanism on TiO 2 (B)/anatase catalysts is also proposed. - Abstract: Wirelike catalysts of mixed-phase TiO 2 (B)/anatase TiO 2 , bare anatase TiO 2 and TiO 2 (B) are synthesized via calcining precursor hydrogen titanate obtained from hydrothermal process at different temperatures between 450 and 700 °C. Under visible light irradiation, mixed-phase TiO 2 (B)/anatase TiO 2 catalysts exhibit enhanced photocatalytic activity in comparison with pure TiO 2 (B) and anatase TiO 2 toward selective oxidation of benzylamines into imines and the highest photocatalytic activity is achieved by TW-550 sample consisting of 65% TiO 2 (B) and 35% anatase. The difference in photocatalytic activities of TiO 2 samples can be attributed to the different adsorption abilities resulted from their crystal structures and interfacial charge separation driven by surface-phase junctions between TiO 2 (B) and anatase TiO 2 . Moreover, the photoinduced charge transfer mechanism of surface complex is also proposed over mixed-phase TiO 2 (B)/anatase TiO 2 catalysts. Advantages of this photocatalytic system include efficient utilization of solar light, general suitability to amines, reusability and facile separation of nanowires catalysts

  17. Permanent split capacitor single phase electric motor system

    Science.gov (United States)

    Kirschbaum, H.S.

    1984-08-14

    A permanent split capacitor single phase electric motor achieves balanced operation at more than one operating point by adjusting the voltage supplied to the main and auxiliary windings and adjusting the capacitance in the auxiliary winding circuit. An intermediate voltage tap on an autotransformer supplies voltage to the main winding for low speed operation while a capacitive voltage divider is used to adjust the voltage supplied to the auxiliary winding for low speed operation. 4 figs.

  18. Stability characteristics of a single-phase free convection loop

    Science.gov (United States)

    Creveling, H. F.; De Paz, J. F.; Baladi, J. Y.; Schoenhals, R. J.

    1975-01-01

    Experiments investigating the stability characteristics of a single-phase free convection loop are reported. Results of the study confirm the contention made by previous workers that instabilities near the thermodynamic critical point can occur for ordinary fluids as well as those with unusual behavior in the near-critical region. Such a claim runs counter to traditional beliefs, but it is supported by the observation of such instabilities for water at atmospheric pressure and moderate temperatures in the present work.

  19. Single-phase high-entropy alloys. An overview

    Energy Technology Data Exchange (ETDEWEB)

    Kozak, Roksolana; Steurer, Walter [ETH Zurich (Switzerland). Lab. of Crystallography; Sologubenko, Alla [ETH Zurich (Switzerland). Lab. of Nanotechnology

    2015-02-01

    The term 'high-entropy alloys (HEAs)' first appeared about 10 years ago defining alloys composed of n=5-13 principal elements with concentrations of approximately 100/n at.% each. Since then many equiatomic (or near equiatomic) single- and multi-phase multicomponent alloys were developed, which are reported for a combination of tunable properties: high hardness, strength and ductility, oxidation and wear resistance, magnetism, etc. In our paper, we focus on probably single-phase HEAs (solid solutions) out of all HEAs studied so far, discuss ways of their prediction, mechanical properties. In contrast to classical multielement/multiphase alloys, only single-phase multielement alloys (solid solutions) represent the basic concept underlying HEAs as mixing-entropy stabilized homogenous materials. The literature overview is complemented by own studies demonstrating that the alloys CrFeCoNi, CrFeCoNiAl{sub 0.3} and PdFeCoNi homogenized at 1300 and 1100 C, respectively, for 1 week are not single-phase HEAs, but a coherent mixture of two solid solutions.

  20. Investigation on a Novel Discontinuous Pulse-Width Modulation Algorithm for Single-phase Voltage Source Rectifier

    DEFF Research Database (Denmark)

    Qu, Hao; Yang, Xijun; Guo, Yougui

    2014-01-01

    Single-phase voltage source converter (VSC) is an important power electronic converter (PEC), including single-phase voltage source inverter (VSI), single-phase voltage source rectifier (VSR), single-phase active power filter (APF) and single-phase grid-connection inverter (GCI). Single-phase VSC...

  1. Structural transformation of nanocrystalline titania by sol-gel and the growth kinetics of crystallites

    International Nuclear Information System (INIS)

    Hu Linhua; Dai Songyuan; Wang Kongjia

    2002-05-01

    Structural transformation of nanocrystalline titania prepared by sol-gel with hydrolysis precursor titanium isopropoxide was investigated. At the same time, the growth kinetics of titania powders was also studied here. It was found that the grain size of the powders increased slowly with autoclave heating temperature up to 230 degree C, when hydrolysis pH was 0.9, but grew rapidly when heating temperature was higher that 230 degree C. The activation energies for growth of anatase crystallites in two temperature regions were calculated to be 18.5 kJ/mol and 59.7 kJ/mol respectively. The X-ray diffraction results show that the transformation from anatase phase to rutile phase starts at 230 degree C and structural transformation finished when temperature raises to 270 degree C, which is a temperature much more lower than that of the transformation by conventional literature reports

  2. Preparation of anatase TiO2 nanoparticles using low hydrothermal temperature for dye-sensitized solar cell

    Science.gov (United States)

    Sofyan, N.; Ridhova, A.; Yuwono, A. H.; Udhiarto, A.

    2018-03-01

    One device being developed as an alternative source of renewable energy by utilizing solar energy source is dye-sensitized solar cells (DSSC). This device works using simple photosynthetic-electrochemical principle in the molecular level. In this device, the inorganic oxide semiconductor of titanium dioxide (TiO2) has a great potential for the absorption of the photon energy from the solar energy source, especially in the form of TiO2 nanoparticle structure. This nanoparticle structure is expected to improve the performance of DSSC because the surface area to weight ratio of this nanostructures is very large. In this study, the synthesis of TiO2 nanoparticle from its precursors has been performed along with the fabrication of the DSSC device. Effort to improve the size of nanocrystalline anatase TiO2 was accomplished by low hydrothermal treatment at various temperatures whereas the crystallinity of the anatase phase in the structure was performed by calcination process. Characterization of the materials was performed using X-ray Diffraction (XRD) and scanning electron microscope (SEM), while the DSSC performance was examined through a high precision current versus voltage (I-V) curve analyzer. The results showed that pure anatase TiO2 nanoparticles could be obtained at low hydrothermal of 100, 125, and 150 °C followed by calcination at 450 °C. The best performance of photocurrent-voltage characteristic was given by TiO2 hydrothermally synthesized at 150 °C with power conversion efficiency (PCE) of 4.40 %, whereas the standard TiO2 nanoparticles has PCE only 4.02 %. This result is very promising in terms low temperature and thus low cost of anatase TiO2 semiconductor preparation for DSSC application.

  3. Investigation of effect of single phase electrical faults at LOFT

    International Nuclear Information System (INIS)

    Yeates, J.A.

    1978-01-01

    This LTR presents the general basic engineering facts related to an open phase fault in a three phase power system commonly referred to as a single phase condition. It describes the probable results to electrical motors and describes the LOFT system design factors which minimize the likelihood of such a fault occurring at LOFT. It recognizes that the hazard of such a fault is a realistic threat and notes the types of relays designed to provide protection. Recommendations are made to perform a detailed engineering study to determine the most advantageous protective relay design, and to implement such a design by installation of the necessary devices and controls

  4. Ultrafast Switching Superjunction MOSFETs for Single Phase PFC Applications

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos; Petersen, Lars Press; Andersen, Michael A. E.

    2014-01-01

    This paper presents a guide on characterizing state-of-the-art silicon superjunction (SJ) devices in the 600V range for single phase power factor correction (PFC) applications. The characterization procedure is based on a minimally inductive double pulse tester (DPT) with a very low intrusive...... current measurement method, which enables reaching the switching speed limits of these devices. Due to the intrinsic low and non-linear capacitances in vertical SJ MOSFETs, special attention needs to be paid to the gate drive design to minimize oscillations and limit the maximum at turn off. This paper...

  5. Critical flow rate in a single phase flow. Blocking concept

    International Nuclear Information System (INIS)

    Giot, Michel

    1978-01-01

    After referring to the phenomena accompanying the appearance of a critical flow rate in a nozzle and presenting equations governing single phase flows, the critical condition is defined. Several particular cases are then examined; the horizontal and vertical isentropic flow, Fanno's flow and Raleigh's and the isothermal flow. The entropy deviation is calculated on either side of a normal impact. To conclude, the link existing between the concepts of critical flow and the propagation rate of small perturbations is demonstrated. To do so, the method of perturbations, that of Prandtl and that of characteristic directions are applied in turn [fr

  6. Control of Single-Stage Single-Phase PV inverter

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai; Teodorescu, Remus; Blaabjerg, Frede

    2005-01-01

    In this paper the issue of control strategies for single-stage photovoltaic (PV) inverter is addressed. Two different current controllers have been implemented and an experimental comparison between them has been made. A complete control structure for the single-phase PV system is also presented......-forward; - and the grid current controller implemented in two different ways, using the classical proportional integral (PI) and the novel proportional resonant (PR) controllers. The control strategy was tested experimentally on 1.5 kW PV inverter....

  7. Lithium ion intercalation into thin film anatase

    International Nuclear Information System (INIS)

    Kundrata, I.; Froehlich, K.; Ballo, P.

    2015-01-01

    The aim of this work is to find the optimal parameters for thin film TiO 2 anatase grown by Atomic layer deposition (ALD) for use as electrode in lithium ion batteries. Two parameters, the optimal film thickness and growth conditions are aimed for. Optimal film thickness for achieving optimum between capacity gained from volume and capacity gained by changing of the intercalation constant and optimal growth conditions for film conformity on structured substrates with high aspect ratio. Here we presents first results from this ongoing research and discuss future outlooks. (authors)

  8. Modelling a single phase voltage controlled rectifier using Laplace transforms

    Science.gov (United States)

    Kraft, L. Alan; Kankam, M. David

    1992-01-01

    The development of a 20 kHz, AC power system by NASA for large space projects has spurred a need to develop models for the equipment which will be used on these single phase systems. To date, models for the AC source (i.e., inverters) have been developed. It is the intent of this paper to develop a method to model the single phase voltage controlled rectifiers which will be attached to the AC power grid as an interface for connected loads. A modified version of EPRI's HARMFLO program is used as the shell for these models. The results obtained from the model developed in this paper are quite adequate for the analysis of problems such as voltage resonance. The unique technique presented in this paper uses the Laplace transforms to determine the harmonic content of the load current of the rectifier rather than a curve fitting technique. Laplace transforms yield the coefficient of the differential equations which model the line current to the rectifier directly.

  9. Electrophoretic deposition of nanocrystalline TiO2 films on Ti substrates for use in flexible dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Tan Weiwei; Yin Xiong; Zhou Xiaowen; Zhang Jingbo; Xiao Xurui; Lin Yuan

    2009-01-01

    Nanocrystalline TiO 2 films were prepared on flexible Ti-metal sheets by electrophoretic deposition followed by chemical treatment with tetra-n-butyl titanate (TBT) and sintering at 450 deg. C. X-ray diffraction (XRD) analysis indicates that TBT treatment led to the formation of additional anatase TiO 2 , which plays an important role in improving the interconnection between TiO 2 particles, as well as the adherence of the film to the substrate, and in modifying the surface properties of the nanocrystalline particles. The effect of TBT treatment on the electron transport in the nanocrystalline films was studied by intensity-modulated photocurrent spectroscopy (IMPS). An increase in the conversion efficiency was obtained for the dye-sensitized solar cells with TBT-treated nanocrystalline TiO 2 films. The cell performance was further optimized by designing nanocrystalline TiO 2 films with a double-layer structure composed of a light-scattering layer and a transparent layer. The light-scattering effect of the double-layer nanocrystalline films was evaluated by diffuse reflectance spectra. Employing the double-layer nanocrystalline films as the photoelectrodes resulted in a significant improvement in the incident photo-to-current conversion efficiency of the corresponding cells due to enhanced solar absorption by light scattering. A high conversion efficiency of 6.33% was measured under illumination with 100 mW cm -2 (AM 1.5) simulated sunlight.

  10. 30 CFR 77.806 - Connection of single-phase loads.

    Science.gov (United States)

    2010-07-01

    ... COAL MINES Surface High-Voltage Distribution § 77.806 Connection of single-phase loads. Single-phase loads, such as transformer primaries, shall be connected phase to phase in resistance grounded systems. ...

  11. 30 CFR 77.905 - Connection of single-phase loads.

    Science.gov (United States)

    2010-07-01

    ... COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.905 Connection of single-phase loads. Single-phase loads shall be connected phase-to-phase in resistance grounded systems. ...

  12. The isolated anatase for dye sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Ilmi, Irfan, E-mail: irfan.ilmi149@gmail.com [Postgraduate Program, Department of Chemistry, Universitas Gadjah Mada, Yogyakarta 55281 Indonesia (Indonesia); Functional Coating Materials Research Group, Department of Chemistry, Universitas Gadjah Mada, Yogyakarta 55281 Indonesia (Indonesia); Kartin, Indriana; Suyanta [Functional Coating Materials Research Group, Department of Chemistry, Universitas Gadjah Mada, Yogyakarta 55281 Indonesia (Indonesia); Department of Chemistry,Universitas Gadjah Mada, Yogyakarta 55281 Indonesia (Indonesia); Ohtani, Bunsho; Wang, Kunlei [Graduate School of Environmental and Earth Science, Hokkaido University Japan (Japan)

    2015-09-30

    The isolation of crystallite anatase from commercial TiO{sub 2} P25 Degussa was investigated. The aim of this research was to study of isolated anatase based DSSC as an effort to develop industrial DSSC. The crystal phase, crystallite size and crystal shape both of original P25 and isolated anatase were characterized by XRD and TEM. By observing DSSC parameters such as FF, Jsc and Voc resulted in cell test, the efficiency of samples based DSSC was known. The isolation of anatase crystal was done by dissolving P25 in ammonia catalyzed hydrogen peroxide solution for 15 hours followed by washing and drying. DSSC cell performance was evaluated by applying the isolated anantase and original P25 as photoanode in the Gratzel cell system. The observation of cell efficiency was measured under 100 mW /cm{sup 2} with active area 1.5 cm{sup 2}. X-ray diffraction pattern showed obviously that no rutile contaminant in produced isolated anatase. TEM image shows typical anatase crystal with the particle size 21 nm. Surface area measurement exhibits that surface area of isolated anatase was 64.7m{sup 2}/g. I-V measurement showed that the efficiency of anatase based cell and P25 based cell is 0.79% and 0.51% respectively.

  13. Determination of Crystallite Size Distribution Histogram in Nanocrystalline Anatase Powders by XRD

    Czech Academy of Sciences Publication Activity Database

    Matěj, Z.; Matějová, Lenka; Novotný, F.; Drahokoupil, Jan; Kužel, R.

    2011-01-01

    Roč. 1, - (2011), s. 87-92 [European Powder Diffraction Conference EPDIC 12 /12./. Darmstadt, 27.08.2010-30.08.2010] R&D Projects: GA AV ČR KAN400720701 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z10100520 Keywords : titanium dioxide * crystallite size * crystallite size distribution Subject RIV: CA - Inorganic Chemistry http://www.oldenbourg-link.com/ toc /zkpr/current

  14. Structure and single-phase regime of boron carbides

    International Nuclear Information System (INIS)

    Emin, D.

    1988-01-01

    The boron carbides are composed of twelve-atom icosahedral clusters which are linked by direct covalent bonds and through three-atom intericosahedral chains. The boron carbides are known to exist as a single phase with carbon concentrations from about 8 to about 20 at. %. This range of carbon concentrations is made possible by the substitution of boron and carbon atoms for one another within both the icosahedra and intericosahedral chains. The most widely accepted structural model for B 4 C (the boron carbide with nominally 20% carbon) has B/sub 11/C icosahedra with C-B-C intericosahedral chains. Here, the free energy of the boron carbides is studied as a function of carbon concentration by considering the effects of replacing carbon atoms within B 4 C with boron atoms. It is concluded that entropic and energetic considerations both favor the replacement of carbon atoms with boron atoms within the intericosahedral chains, C-B-C→C-B-B. Once the carbon concentration is so low that the vast majority of the chains are C-B-B chains, near B/sub 13/C 2 , subsequent substitutions of carbon atoms with boron atoms occur within the icosahedra, B/sub 11/C→B/sub 12/. Maxima of the free energy occur at the most ordered compositions: B 4 C,B/sub 13/C 2 ,B/sub 14/C. This structural model, determined by studying the free energy, agrees with that previously suggested by analysis of electronic and thermal transport data. These considerations also provide an explanation for the wide single-phase regime found for boron carbides

  15. Preparation and characterization of phase-pure anatase and rutile TiO{sub 2} powder by new chemistry route; Preparacao e caracterizacao de nanoparticulas de TiO{sub 2} nas fases anatase e rutila por uma nova rota quimica

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, E. A.; Montanhera, M.A.; Paula, F.R., E-mail: sevlarede2@yahoo.com.br [Universidade Estadual Paulista Julio de Mesquista Filho (UNESP), Ilha Soltiera, SP (Brazil). Faculdade de Engenharia. Departameinto de Fisica e Quimica; Spada, E.R. [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Institutlo de Fisica

    2014-07-01

    Titanium dioxide (TiO{sub 2}) is used in a wire range applications such as photocatalysis and sensor device. In this work is shown a new and effective method for the preparation of TiO{sub 2} nanocrystalline in the crystallographic forms, anatase and rutile. The method involves dissolving the TiOSO{sub 4} powder in H{sub 2}O{sub 2} solution and thermal treatment of amorphous precipitate. The technique of X-ray diffraction was used to follow the structure evolution of amorphous precipitate. Pure anatase structure and rutile are obtained at 600 deg C and 1000 deg C with a grain size estimated 24 and 55 nm respectively. TiO{sub 2} nanoparticles is a promising alternative of the low cost whose potential for solar cells deserve a careful evaluation, especially in hybrid solar cells that employs TiO{sub 2} as electron acceptor and as transport channels. (author)

  16. Carbon-coated anatase for water purification - cyclic performance

    International Nuclear Information System (INIS)

    Inagaki, M.; Kojin, F.; Nonaka, M.; Toyoda, M.

    2005-01-01

    It was reported that carbon-coated anatase photo-catalysts were able to be prepared through a simple process and gave various advantages for water purification [1-6]. Carbon coating suppressed the phase transformation from anatase to rutile, resulting in a high crystallinity of anatase phase which was desirable for the decomposition of pollutants in water. A high adsorptivity was given to carbon-coated anatase, because of porous nature of carton layers [7]. In addition, these carbon-coated anatase powders could be fixed on the substrate by using organic binder because carbon layer interrupt the direct contact between photo-catalytic anatase particles and organic binder [1]. In the present work, cyclic performance of carbon-coated anatase was studied for the decomposition of a model pollutant, methylene blue (MB), in water by fixing the photo-catalyst particles on a tape. Carbon-coated anatase photo-catalysts were prepared by heating the powder mixtures of commercially available anatase (ST-01, Ishihara Sngyo Co., Ltd) with poly(vinyl alcohol) (PVA) in different mass ratios at 900 C in N 2 , gas flow. Carbon-coated anatase powders thus prepared were fixed on a scotch tape. Photo-catalytic activity was measured on these tapes by irradiating UV rays on one side of the tape in MB solution with 0.3x10 -5 mol/L concentration. Since carbon-coated anatase had a high adsorptivity for MB, all tapes were saturated their adsorption in a concentrated MB solution in advance. The rate constant k for MB photo-decomposition was determined from the linear relations of logarithm of relative concentration of MB in the solution, ln(c/c 0 ), with irradiation time t. In Fig. 1, changes in ln(c/c 0 ) of MB with irradiation time t were shown on two samples with different carbon contents, 8 and 2 mass%, with cycle number. Good linearity was obtained between ln(c/c 0 ) and t. The values of rate constant k calculated from these linear relations were plotted against carbon content of the

  17. Synthesis of nanocrystalline fluorinated hydroxyapatite

    Indian Academy of Sciences (India)

    Fluorinated hydroxyapatite; nanocrystalline; microwave synthesis; dissolution. ... HA by the presence of other ions such as carbonate, magnesium, fluoride, etc. ... Fourier transform infrared spectroscopy (FT–IR) and laser Raman spectroscopy.

  18. A grid-connected single-phase photovoltaic micro inverter

    Science.gov (United States)

    Wen, X. Y.; Lin, P. J.; Chen, Z. C.; Wu, L. J.; Cheng, S. Y.

    2017-11-01

    In this paper, the topology of a single-phase grid-connected photovoltaic (PV) micro-inverter is proposed. The PV micro-inverter consists of DC-DC stage with high voltage gain boost and DC-AC conversion stage. In the first stage, we apply the active clamp circuit and two voltage multipliers to achieve soft switching technology and high voltage gain. In addition, the flower pollination algorithm (FPA) is employed for the maximum power point tracking (MPPT) in the PV module in this stage. The second stage cascades a H-bridge inverter and LCL filter. To feed high quality sinusoidal power into the grid, the software phase lock, outer voltage loop and inner current loop control method are adopted as the control strategy. The performance of the proposed topology is tested by Matlab/Simulink. A PV module with maximum power 300W and maximum power point voltage 40V is applied as the input source. The simulation results indicate that the proposed topology and the control strategy are feasible.

  19. Single-phase convective heat transfer in rod bundles

    International Nuclear Information System (INIS)

    Holloway, Mary V.; Beasley, Donald E.; Conner, Michael E.

    2008-01-01

    The convective heat transfer for turbulent flow through rod bundles representative of nuclear fuel rods used in pressurized water reactors is examined. The rod bundles consist of a square array of parallel rods that are held on a constant pitch by support grids spaced axially along the rod bundle. Split-vane pair support grids, which create swirling flow in the rod bundle, as well as disc and standard support grids are investigated. Single-phase convective heat transfer coefficients are measured for flow downstream of support grids in a rod bundle. The rods are heated using direct resistance heating, and a bulk axial flow of air is used to cool the rods in the rod bundle. Air is used as the working fluid instead of water to reduce the power required to heat the rod bundle. Results indicate heat transfer enhancement for up to 10 hydraulic diameters downstream of the support grids. A general correlation is developed to predict the heat transfer development downstream of support grids. In addition, circumferential variations in heat transfer coefficients result in hot streaks that develop on the rods downstream of split-vane pair support grids

  20. Single-phase convective heat transfer in rod bundles

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, Mary V. [Mechanical Engineering Department, United States Naval Academy, 590 Holloway Rd., Annapolis, MD 21402 (United States)], E-mail: holloway@usna.edu; Beasley, Donald E. [Mechanical Engineering Department, Clemson University, Clemson, SC 29634 (United States); Conner, Michael E. [Westinghouse Nuclear Fuel, 5801 Bluff Road, Columbia, SC 29250 (United States)

    2008-04-15

    The convective heat transfer for turbulent flow through rod bundles representative of nuclear fuel rods used in pressurized water reactors is examined. The rod bundles consist of a square array of parallel rods that are held on a constant pitch by support grids spaced axially along the rod bundle. Split-vane pair support grids, which create swirling flow in the rod bundle, as well as disc and standard support grids are investigated. Single-phase convective heat transfer coefficients are measured for flow downstream of support grids in a rod bundle. The rods are heated using direct resistance heating, and a bulk axial flow of air is used to cool the rods in the rod bundle. Air is used as the working fluid instead of water to reduce the power required to heat the rod bundle. Results indicate heat transfer enhancement for up to 10 hydraulic diameters downstream of the support grids. A general correlation is developed to predict the heat transfer development downstream of support grids. In addition, circumferential variations in heat transfer coefficients result in hot streaks that develop on the rods downstream of split-vane pair support grids.

  1. Self-assembled single-phase perovskite nanocomposite thin films.

    Science.gov (United States)

    Kim, Hyun-Suk; Bi, Lei; Paik, Hanjong; Yang, Dae-Jin; Park, Yun Chang; Dionne, Gerald F; Ross, Caroline A

    2010-02-10

    Thin films of perovskite-structured oxides with general formula ABO(3) have great potential in electronic devices because of their unique properties, which include the high dielectric constant of titanates, (1) high-T(C) superconductivity in cuprates, (2) and colossal magnetoresistance in manganites. (3) These properties are intimately dependent on, and can therefore be tailored by, the microstructure, orientation, and strain state of the film. Here, we demonstrate the growth of cubic Sr(Ti,Fe)O(3) (STF) films with an unusual self-assembled nanocomposite microstructure consisting of (100) and (110)-oriented crystals, both of which grow epitaxially with respect to the Si substrate and which are therefore homoepitaxial with each other. These structures differ from previously reported self-assembled oxide nanocomposites, which consist either of two different materials (4-7) or of single-phase distorted-cubic materials that exhibit two or more variants. (8-12) Moreover, an epitaxial nanocomposite SrTiO(3) overlayer can be grown on the STF, extending the range of compositions over which this microstructure can be formed. This offers the potential for the implementation of self-organized optical/ferromagnetic or ferromagnetic/ferroelectric hybrid nanostructures integrated on technologically important Si substrates with applications in magnetooptical or spintronic devices.

  2. Comparison Study on the Microstructure of Nanocrystalline TiO2 in Different Ti-Si Binary Oxides

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Three different Ti-Si oxide structuares, silica supported titania, silica coated titania and intimately mixed silicatitania, containing 10%-40% SiO2, were made by sol-gel process. The variations of microstructure parameters of nanocrystalline (nc) TiO2-anatase in the three kirds of binary oxides, including in-plane spacing d, cell constants (a0, CQ), cell volume V, cell axial ratio c0/a0 and crystal grain size, were comparatively investigated by high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). It is found that the microstructure parameters vary remarkably with increasing SiO2 content and annealing temperature. Different structured Ti-Si binary oxides lead to different variation tendencies of microstructure parameters. The more SiO2 the binary oxide contains, the more lattice defects of nc TiO2-anatase appear; diffusion or migration of Si cations could be an important influential factor in the variations of microstructure. The grain size of nc TiO2 in the three kinds of binary oxides not only depends on SiO2 content and annealing temperature but also on the degree of lattice microstrain and distortion of nc TiO2-anatase. Both grain size and phase transformation of nc TiO2-anatase are effectively inhibited with increasing SiOa content.

  3. European developments in single phase turbulence for innovative reactors

    Energy Technology Data Exchange (ETDEWEB)

    Roelofs, F., E-mail: roelofs@nrg.eu [NRG, Petten (Netherlands); Rohde, M. [DUT, Delft (Netherlands); and others

    2011-07-01

    Thermal-hydraulics is recognized as a key scientific subject in the development of different innovative nuclear reactor systems. From the thermal-hydraulic point of view, different innovative reactors are mainly characterized by their coolants (gas, water, liquid metals and molten salt). They result in specific behavior of flow and heat transfer, which requires specific models and advanced analysis tools. However, many common thermal-hydraulic issues are identified among various innovative nuclear systems. In Europe, such cross-cutting thermal-hydraulics topics are the motivation for the THINS (Thermal-Hydraulics of Innovative Nuclear Systems) project which is sponsored by the European Commission from 2010 to 2014. This paper describes the ongoing developments in an important part of this project devoted to single phase turbulence issues. To this respect, the two main issues have been identified: Non-unity Prandtl number turbulence. In case of liquid metals, molten salts or supercritical fluids, the commonly applied constant turbulent Prandtl number concept is not applicable and robust engineering turbulence models are needed. This paper will report on the progress achieved with respect to the development and validation of turbulence models available in commonly used engineering tools. The paper also reports about the supporting experiments and direct numerical simulations; and, Temperature fluctuations possibly leading to thermal fatigue in innovative reactors. The status is described of a fundamental experiment dealing with the mixing of different density gases in a rectangular channel, an experiment in a more complex geometry of a small mixing plenum using a supercritical fluid, and direct numerical simulations of conjugate heat transfer on temperature fluctuations in liquid metal. (author)

  4. European developments in single phase turbulence for innovative reactors

    International Nuclear Information System (INIS)

    Roelofs, F.; Rohde, M.

    2011-01-01

    Thermal-hydraulics is recognized as a key scientific subject in the development of different innovative nuclear reactor systems. From the thermal-hydraulic point of view, different innovative reactors are mainly characterized by their coolants (gas, water, liquid metals and molten salt). They result in specific behavior of flow and heat transfer, which requires specific models and advanced analysis tools. However, many common thermal-hydraulic issues are identified among various innovative nuclear systems. In Europe, such cross-cutting thermal-hydraulics topics are the motivation for the THINS (Thermal-Hydraulics of Innovative Nuclear Systems) project which is sponsored by the European Commission from 2010 to 2014. This paper describes the ongoing developments in an important part of this project devoted to single phase turbulence issues. To this respect, the two main issues have been identified: Non-unity Prandtl number turbulence. In case of liquid metals, molten salts or supercritical fluids, the commonly applied constant turbulent Prandtl number concept is not applicable and robust engineering turbulence models are needed. This paper will report on the progress achieved with respect to the development and validation of turbulence models available in commonly used engineering tools. The paper also reports about the supporting experiments and direct numerical simulations; and, Temperature fluctuations possibly leading to thermal fatigue in innovative reactors. The status is described of a fundamental experiment dealing with the mixing of different density gases in a rectangular channel, an experiment in a more complex geometry of a small mixing plenum using a supercritical fluid, and direct numerical simulations of conjugate heat transfer on temperature fluctuations in liquid metal. (author)

  5. Synthesis of a single phase of high-entropy Laves intermetallics in the Ti-Zr-V-Cr-Ni equiatomic alloy

    Science.gov (United States)

    Yadav, T. P.; Mukhopadhyay, Semanti; Mishra, S. S.; Mukhopadhyay, N. K.; Srivastava, O. N.

    2017-12-01

    The high-entropy Ti-Zr-V-Cr-Ni (20 at% each) alloy consisting of all five hydride-forming elements was successfully synthesised by the conventional melting and casting as well as by the melt-spinning technique. The as-cast alloy consists entirely of the micron size hexagonal Laves Phase of C14 type; whereas, the melt-spun ribbon exhibits the evolution of nanocrystalline Laves phase. There was no evidence of any amorphous or any other metastable phases in the present processing condition. This is the first report of synthesising a single phase of high-entropy complex intermetallic compound in the equiatomic quinary alloy system. The detailed characterisation by X-ray diffraction, scanning and transmission electron microscopy and energy-dispersive X-ray spectroscopy confirmed the existence of a single-phase multi-component hexagonal C14-type Laves phase in all the as-cast, melt-spun and annealed alloys. The lattice parameter a = 5.08 Å and c = 8.41 Å was determined from the annealed material (annealing at 1173 K). The thermodynamic calculations following the Miedema's approach support the stability of the high-entropy multi-component Laves phase compared to that of the solid solution or glassy phases. The high hardness value (8.92 GPa at 25 g load) has been observed in nanocrystalline high-entropy alloy ribbon without any cracking. It implies that high-yield strength ( 3.00 GPa) and the reasonable fracture toughness can be achieved in this high-entropy material.

  6. Equivalence of two models in single-phase multicomponent flow simulations

    KAUST Repository

    Wu, Yuanqing

    2016-02-28

    In this work, two models to simulate the single-phase multicomponent flow in reservoirs are introduced: single-phase multicomponent flow model and two-phase compositional flow model. Because the single-phase multicomponent flow is a special case of the two-phase compositional flow, the two-phase compositional flow model can also simulate the case. We compare and analyze the two models when simulating the single-phase multicomponent flow, and then demonstrate the equivalence of the two models mathematically. An experiment is also carried out to verify the equivalence of the two models.

  7. Equivalence of two models in single-phase multicomponent flow simulations

    KAUST Repository

    Wu, Yuanqing; Sun, Shuyu

    2016-01-01

    In this work, two models to simulate the single-phase multicomponent flow in reservoirs are introduced: single-phase multicomponent flow model and two-phase compositional flow model. Because the single-phase multicomponent flow is a special case of the two-phase compositional flow, the two-phase compositional flow model can also simulate the case. We compare and analyze the two models when simulating the single-phase multicomponent flow, and then demonstrate the equivalence of the two models mathematically. An experiment is also carried out to verify the equivalence of the two models.

  8. Dye-Sensitized Solar Cells with Anatase TiO2 Nanorods Prepared by Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Ming-Jer Jeng

    2013-01-01

    Full Text Available The hydrothermal method provides an effective reaction environment for the synthesis of nanocrystalline materials with high purity and well-controlled crystallinity. In this work, we started with various sizes of commercial TiO2 powders and used the hydrothermal method to prepare TiO2 thin films. We found that the synthesized TiO2 nanorods were thin and long when smaller TiO2 particles were used, while larger TiO2 particles produced thicker and shorter nanorods. We also found that TiO2 films prepared by TiO2 nanorods exhibited larger surface roughness than those prepared by the commercial TiO2 particles. It was found that a pure anatase phase of TiO2 nanorods can be obtained from the hydrothermal method. The dye-sensitized solar cells fabricated with TiO2 nanorods exhibited a higher solar efficiency than those fabricated with commercial TiO2 nanoparticles directly. Further, triple-layer structures of TiO2 thin films with different particle sizes were investigated to improve the solar efficiency.

  9. new topology for single-phase, three-level, spwm vsi with lc filter

    African Journals Online (AJOL)

    level PWM inverter. However, this is not the case with single-phase PWM inverters. In these days, the popular single-phase inverters adopt the full-bridge type using approximate sinusoidal modulation technique. The output voltage in them has two values: zero and pos- itive supply dc voltage levels in the positive half cycle.

  10. Torque Analysis With Saturation Effects for Non-Salient Single-Phase Permanent-Magnet Machines

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Ritchie, Ewen

    2011-01-01

    The effects of saturation on torque production for non-salient, single-phase, permanent-magnet machines are studied in this paper. An analytical torque equation is proposed to predict the instantaneous torque with saturation effects. Compared to the existing methods, it is computationally faster......-element results, and experimental results obtained on a prototype single-phase permanent-magnet machine....

  11. Phase evolution and its effects on the magnetic performance of nanocrystalline SmCo7 alloy

    International Nuclear Information System (INIS)

    Zhang Zhexu; Song Xiaoyan; Xu Wenwu

    2011-01-01

    The evolution of the phase constitution and the microstructure, as well as their effects on magnetic performance, were investigated systematically using a prepared nanocrystalline single-phase SmCo 7 alloy as the starting material for a series of annealing processes. The SmCo 7 (1:7 H) phase was discovered to have a good single-phase stability from room temperature up to 600 deg. C. The destabilization of the SmCo 7 phase results in the formation of the Sm 2 Co 17 (2:17 R) and SmCo 5 (1:5 H) phases, which exist as phase-transformation twins and particulate precipitates, respectively, with a completely coherent relationship with the 1:7 H parent phase. For the first time the formation mechanism of the 2:17 R phase-transformation twins has been proposed, in which the ordered substitution of 1/3 of the Sm atoms by Co-Co dumbbell pairs along two particular crystal directions was demonstrated. The characteristic width values of the 2:17 R phase-transformation twins, as deduced from this model of the mechanism, were unambiguously verified by the experimental results. Among the SmCo 7 alloys with various phase constitutions and microstructures, the best magnetic properties were obtained in the nanocrystalline 1:7 H single-phase alloys. The present work may promote a new understanding of nanoscale-stabilized single-phase SmCo 7 and its potential applications as unique high-temperature permanent magnets.

  12. The swelling transition of lepidocrocite-type protonated layered titanates into anatase under hydrothermal treatment

    OpenAIRE

    Yuan, Huiyu; Besselink, Rogier; Liao, Zhaoliang; ten Elshof, Johan E.

    2014-01-01

    The common facets of anatase crystals are the (001) and (101) planes. However, the phase transformation from lepidocrocite-type titanate into anatase by hydrothermal processing yields an anatase microstructure with high concentration of exposed (010) planes. The phase transformation of a lepidocrocite-type protonated layered titanate (HTO) into anatase was studied using XRD, TEM, FTIR, and measurement of pH and zeta potential. It was found that HTO is proton-deficient. The phase transformatio...

  13. Synthesis of anatase nanoparticles with extremely wide solid solution range and ScTiNbO6 with α-PbO2 structure

    International Nuclear Information System (INIS)

    Hirano, Masanori; Ito, Takaharu

    2009-01-01

    Anatase-type nanoparticles Sc X Ti 1-2X Nb X O 2 with wide solid solution range (X=0-0.35) were hydrothermally formed at 180 deg. C for 5 h. The lattice parameters a 0 and c 0 , and the optical band gap of anatase gradually and linearly increased with the increase of the content of niobium and scandium from X=0 to 0.35. Their photocatalytic activity and adsorptivity by the measurement of the concentration of methylene blue (MB) that remained in the solution in the dark or under UV-light irradiation were evaluated. The anatase phase existed stably up to 900 deg. C for the samples with X=0.25-0.30 and 750 deg. C for that with X=0.35 during heat treatment in air. The phase with α-PbO 2 structure and the rutile phases coexisted in the samples with X=0.25-0.30 after heated at temperatures above 900-950 deg. C. The α-PbO 2 structure having composition ScTiNbO 6 with possibly some cation order similar to that seen in wolframite existed as almost completely single phase after heat treatment at temperatures 900-1500 deg. C through phase transformation from anatase-type ScTiNbO 6 . - Graphical abstract: Anatase-type Sc X Ti 1-2X Nb X O 2 solid solutions with wide solid solution range (X=0-0.35) were hydrothermally formed as nanoparticles from the precursor solutions of Sc(NO 3 ) 3 , TiOSO 4 , NbCl 5 at 180 deg. C for 5 h using the hydrolysis of urea. Anatase-type ScTiNbO 6 was synthesized under hydrothermal condition. ScTiNbO 6 having α-PbO 2 structure with possibly some cation order similar to that seen in wolframite was formed through phase transformation above 900 deg. C.

  14. The swelling transition of lepidocrocite-type protonated layered titanates into anatase under hydrothermal treatment

    NARCIS (Netherlands)

    Yuan, H.; Besselink, R.; Liao, Zhaoliang; ten Elshof, Johan E.

    2014-01-01

    The common facets of anatase crystals are the (001) and (101) planes. However, the phase transformation from lepidocrocite-type titanate into anatase by hydrothermal processing yields an anatase microstructure with high concentration of exposed (010) planes. The phase transformation of a

  15. Nanocrystalline diamond films for biomedical applications

    DEFF Research Database (Denmark)

    Pennisi, Cristian Pablo; Alcaide, Maria

    2014-01-01

    Nanocrystalline diamond films, which comprise the so called nanocrystalline diamond (NCD) and ultrananocrystalline diamond (UNCD), represent a class of biomaterials possessing outstanding mechanical, tribological, and electrical properties, which include high surface smoothness, high corrosion...... performance of nanocrystalline diamond films is reviewed from an application-specific perspective, covering topics such as enhancement of cellular adhesion, anti-fouling coatings, non-thrombogenic surfaces, micropatterning of cells and proteins, and immobilization of biomolecules for bioassays. In order...

  16. Strength and structure of nanocrystalline titanium

    International Nuclear Information System (INIS)

    Noskova, N.I.; Pereturina, I.A.; Elkina, O.A.; Stolyarov, V.V.

    2004-01-01

    Investigation results on strength and plasticity of nanocrystalline titanium VT-1 are presented. Specific features of plastic deformation on tension of this material specimens in an electron microscope column are studied in situ. It is shown that nanocrystalline titanium strength and plasticity at room temperature are dependent on the structure and nanograin size. It is revealed that deformation processes in nanocrystalline titanium are characterized by activation of deformation rotational modes and microtwinning [ru

  17. A Novel Model Predictive Control for Single-Phase Grid-Connected Photovoltaic Inverters

    DEFF Research Database (Denmark)

    Zangeneh Bighash, Esmaeil; Sadeghzadeh, Seyed Mohammad; Ebrahimzadeh, Esmaeil

    2017-01-01

    Single-phase grid-connected inverters with LCL filter are widely used to connect photovoltaic systems to the utility grid. Among the existing control schemes, predictive control methods are faster and more accurate but also more complicated to implement. Recently, the Model Predictive Control (MPC......) algorithm for single-phase inverter has been presented, where the algorithm implementation is straightforward. In the MPC approach, all switching states are considered in each switching period to achieve the control objectives. However, since the number of switching states in single-phase inverters is small......, the inverter output current has a high Total Harmonic Distortions (THD). In order to reduce this, this paper presents an improved MPC for single-phase grid-connected inverters. In the proposed approach, the switching algorithm is changed and the number of the switching states is increased by means of virtual...

  18. Standard Specification for Sampling Single-Phase Geothermal Liquid or Steam for Purposes of Chemical Analysis

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1983-01-01

    1.1 This specification covers the basic requirements for equipment to be used for the collection of uncontaminated and representative samples from single-phase geothermal liquid or steam. Geopressured liquids are included. See Fig 1.

  19. POD-Galerkin Model for Incompressible Single-Phase Flow in Porous Media

    KAUST Repository

    Wang, Yi; Yu, Bo; Sun, Shuyu

    2017-01-01

    Fast prediction modeling via proper orthogonal decomposition method combined with Galerkin projection is applied to incompressible single-phase fluid flow in porous media. Cases for different configurations of porous media, boundary conditions

  20. High-pressure polymorphs of anatase TiO2

    DEFF Research Database (Denmark)

    Arlt, T.; Bermejo, M.; Blanco, M. A.

    2000-01-01

    The equation of state of anatase TiO2 has been determined experimentally-using polycrystalline as well as single-crystal material-and compared with theoretical calculations using the ab initio perturbed ion model. The results are highly consistent, the zero-pressure bulk modulus being 179(2) GPa ...

  1. Reducing Electromagnetic Interference in a Grid Tied Single Phase Power Inverter

    Science.gov (United States)

    2016-09-01

    With the growing demand for a reliable electrical grid, backup power supplies and energy management systems are a necessity. Systems such as server...ELECTROMAGNETIC INTERFERENCE IN A GRID TIED SINGLE PHASE POWER INVERTER by Jason Hassan Valiani September 2016 Thesis Advisor: Giovanna Oriti...3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE REDUCING ELECTROMAGNETIC INTERFERENCE IN A GRID TIED SINGLE PHASE POWER

  2. The radiation response of mesoporous nanocrystalline zirconia thin films

    Energy Technology Data Exchange (ETDEWEB)

    Manzini, Ayelén M.; Alurralde, Martin A. [Comisión Nacional de Energía Atómica, Centro Atómico Constituyentes, Av. General Paz 1499, 1650 San Martin, Provincia de Buenos Aires (Argentina); Giménez, Gustavo [Instituto Nacional de Tecnología Industrial - CMNB, Av. General Paz 5445, 1650 San Martín, Provincia de Buenos Aires (Argentina); Luca, Vittorio, E-mail: vluca@cnea.gov.ar [Comisión Nacional de Energía Atómica, Centro Atómico Constituyentes, Av. General Paz 1499, 1650 San Martin, Provincia de Buenos Aires (Argentina)

    2016-12-15

    pattern of films prepared at both 350 and 500 °C implying either a monoclinic-to-tetragonal or a monoclinic-to-amorphous transition. This irradiation at very high doses resulted in film shrinkage and a loss of mesopore ordering but little or no degradation of the crystallinity of the tetragonal phase. A small increase in the crystalline domain size of the tZrO{sub 2} phase was noted in these films. In contrast, single-phase Ce{sup 3+}-stabilized tetragonal nanocrystalline zirconia mesoporous films prepared at 350 °C suffered considerable loss of crystalline order when irradiated at 82 dpa. This loss of crystallinity was less pronounced in films heated to 500 °C. The loss of crystallinity of the tetragonal phase in the Ce-stabilized tetragonal zirconia thin films w.r.t. the tetragonal phase in the unstabilized films was attributed to the oxygen vacancies introduced in the latter due to the need for charge compensation. - Highlights: • Radiation response mesoporous and nanocrystalline Ce{sub x}Zr{sub 1-x}O{sub 2} thin films measured. • Radiation response evaluated using X-ray scattering methods XRR and GIXRD. • Irradiation resulted in film shrinkage and elimination of the monoclinic phase. • In unstabilized films the tetragonal ZrO{sub 2} phase was stable up to 82 dpa. • Very little grain growth occurred even at the highest doses.

  3. Red shifts of the Eg(1) Raman mode of nanocrystalline TiO2:Er monoliths grown by sol-gel process

    Science.gov (United States)

    Palomino-Merino, R.; Trejo-Garcia, P.; Portillo-Moreno, O.; Jiménez-Sandoval, S.; Tomás, S. A.; Zelaya-Angel, O.; Lozada-Morales, R.; Castaño, V. M.

    2015-08-01

    Nanocrystalline monoliths of Er doped TiO2 were prepared by the sol-gel technique, by controlling the Er-doping levels into the TiO2 precursor solution. As-prepared and annealed in air samples showed the anatase TiO2 phase. The average diameter of the nanoparticles ranged from 19 to 2.6 nm as the nominal concentration of Er varies from 0% to 7%, as revealed by EDS analysis in an electron microscope. Photo Acoustic Spectroscopy (PAS) allowed calculate the forbidden band gap, evidencing an absorption edge at around 300 nm, attributed to TiO2 and evidence of electronic transitions or Er3+. The Raman spectra, corresponding to the anatase phase, show the main phonon mode Eg(1) band position at 144 cm-1 with a red shift for the annealing samples.

  4. Nanocrystalline diamond coatings for machining

    Energy Technology Data Exchange (ETDEWEB)

    Frank, M.; Breidt, D.; Cremer, R. [CemeCon AG, Wuerselen (Germany)

    2007-07-01

    This history of CVD diamond synthesis goes back to the fifties of the last century. However, the scientific and economical potential was only gradually recognized. In the eighties, intensive worldwide research on CVD diamond synthesis and applications was launched. Industrial products, especially diamond-coated cutting tools, were introduced to the market in the middle of the nineties. This article shows the latest developments in this area, which comprises nanocrystalline diamond coating structures. (orig.)

  5. Dielectric response and room temperature ferromagnetism in Cr doped anatase TiO2 nanoparticles

    Science.gov (United States)

    Naseem, Swaleha; Khan, Wasi; Khan, Shakeel; Husain, Shahid; Ahmad, Abid

    2018-02-01

    In the present work, nanocrystalline samples of Ti1-xCrxO2 (x = 0, 0.02, 0.04, 0.06 and 0.08) were synthesized in anatase phase through simple and cost effective acid modified sol gel method. The influence of Cr doping on thermal, microstructural, electrical and magnetic properties was investigated in TiO2 host matrix. The surface morphology has revealed less agglomeration and considerable reduction in particle size in case of Cr doped TiO2 as compared to undoped TiO2 nanoparticles (NPs). Energy dispersive x-ray spectroscopy (EDS), Raman and X-ray photoelectron spectroscopy (XPS) established high purity, appropriate stoichiometry and oxidation states of the compositions. The dielectric properties of the nanoparticles were altered by the doping concentration, applied frequency as well as temperature variation. The variation in dielectric constant (ε‧), dielectric loss (δ) and ac conductivity as a function of frequency and temperature at different doping concentration of Cr were interpreted in the light of Maxwell Wagner theory, space charge polarization mechanism and drift mobility of charge carriers. Both undoped and Cr doped TiO2 samples exhibit room temperature ferromagnetism (RTFM) that remarkably influenced by means of the Cr content. The significant enhancement in the magnetization was observed at 4% Cr doping. However, decrease in magnetization for higher doping signify antiferromagnetic interactions between Cr ions or superexchange mechanism. These results reveal that the oxygen vacancies play a crucial role to initiate the RTFM. Therefore, the present investigation suggests the potential applications of Cr doped TiO2 nanoparticles for spintronics application.

  6. Antimicrobial activity of TiO{sub 2}:Ag nanocrystalline heterostructures: Experimental and theoretical insights

    Energy Technology Data Exchange (ETDEWEB)

    André, Rafaela S. [UFSCar – Universidade Federal de São Carlos, Department of Chemistry, 13565-905 São Carlos, SP (Brazil); Zamperini, Camila A. [UNESP – Universidade Estadual Paulista, Instituto de Química, 14801-907 Araraquara, SP (Brazil); Mima, Ewerton G. [UNESP – Universidade Estadual Paulista, Escola de Odontologia de Araraquara, Departamento de Materias Odontológicos e Próteses Dentárias, 14801-903 Araraquara, SP (Brazil); Longo, Valéria M., E-mail: valeria.longo@liec.ufscar.br [USP – Universidade de São Paulo, Instituto de Física de São Carlos, 13560-970 São Carlos, SP (Brazil); Albuquerque, Anderson R. [UNESP – Universidade Estadual Paulista, Grupo de Modelagem e Simulação Molecular, P.O. Box 477, CEP 17033-360 Bauru, SP (Brazil); Instituto Federal de Educação, Ciência e Tecnologia do Sertão Pernambucano, IFSetão-PE, 56400-000 Floresta, PE (Brazil); Sambrano, Júlio R. [UNESP – Universidade Estadual Paulista, Grupo de Modelagem e Simulação Molecular, P.O. Box 477, CEP 17033-360 Bauru, SP (Brazil); and others

    2015-09-28

    Highlights: • Greener hydrothermal process to obtain nanocrystalline TiO{sub 2} anatase with Ag nanoparticles. • Antifungal effect against planktonic cells of C. albicans and Staphylococcus aureus. • DFT calculations of anatase TiO{sub 2} and metallic Ag. • Mechanism for the formation of reactive species at surface. - Abstract: We report the synthesis and characterization of silver-decorated titanium dioxide (TiO{sub 2}:Ag) nanoparticles, as well as a discussion of their antimicrobial activity. This material was synthesized by microwave-assisted hydrothermal treatment and characterized by complementary techniques. The minimum inhibitory concentration and minimum bactericidal/fungicidal concentration of TiO{sub 2}:Ag nanoparticles against planktonic and biofilm-forming strains of methicillin-resistant Staphylococcus aureus, Candida species (spp.) and the total biofilm mass were determined. The basis of the biological activity of TiO{sub 2}:Ag was investigated by electronic analysis of the material using theoretical quantum chemical calculations. In the proposed mechanism of action, the impregnated semiconductor donates electrons to the forbidden band gaps in the metal, generating point defects, with partially located electrons and holes at the surface, initiating a radical process involving the solvent and biological target. Our results suggest that this TiO{sub 2}:Ag nanomaterial has potential for use in the development of new therapeutic agents.

  7. Structure and thermal stability of nanocrystalline materials

    Indian Academy of Sciences (India)

    In addition, study of the thermal stability of nanocrystalline materials against significant grain growth is both scientific and technological interest. A sharp increase in grain size (to micron levels) during consolidation of nanocrystalline powders to obtain fully dense materials may consequently result in the loss of some unique ...

  8. Single-phase ProtoDUNE, the Prototype of a Single-Phase Liquid Argon TPC for DUNE at the CERN Neutrino Platform

    CERN Document Server

    Cavanna, F; Touramanis, C

    2017-01-01

    ProtoDUNE-SP is the single-phase DUNE Far Detector prototype that is under construction and will be operated at the CERN Neutrino Platform (NP) starting in 2018. It was proposed to the CERN SPSC in June 2015 (SPSC-P-351) and was approved in December 2015 as experiment NP04 (ProtoDUNE). ProtoDUNE-SP, a crucial part of the DUNE effort towards the construction of the first DUNE 10-kt fiducial mass far detector module (17 kt total LAr mass), is a significant experiment in its own right. With a total liquid argon (LAr) mass of 0.77 kt, it represents the largest monolithic single phase LArTPC detector to be built to date. It is housed in an extension to the EHN1 hall in the North Area, where the CERN NP is providing a new dedicated charged-particle test beamline. ProtoDUNE-SP aims to take its first beam data before the LHC long shutdown (LS2) at the end of 2018. ProtoDUNE-SP prototypes the designs of most of the single-phase DUNE far detector module (DUNE-SP) components at a 1:1 scale, with an extrapolation of abo...

  9. Searching for Next Single-Phase High-Entropy Alloy Compositions

    Directory of Open Access Journals (Sweden)

    David E. Alman

    2013-10-01

    Full Text Available There has been considerable technological interest in high-entropy alloys (HEAs since the initial publications on the topic appeared in 2004. However, only several of the alloys investigated are truly single-phase solid solution compositions. These include the FCC alloys CoCrFeNi and CoCrFeMnNi based on 3d transition metals elements and BCC alloys NbMoTaW, NbMoTaVW, and HfNbTaTiZr based on refractory metals. The search for new single-phase HEAs compositions has been hindered by a lack of an effective scientific strategy for alloy design. This report shows that the chemical interactions and atomic diffusivities predicted from ab initio molecular dynamics simulations which are closely related to primary crystallization during solidification can be used to assist in identifying single phase high-entropy solid solution compositions. Further, combining these simulations with phase diagram calculations via the CALPHAD method and inspection of existing phase diagrams is an effective strategy to accelerate the discovery of new single-phase HEAs. This methodology was used to predict new single-phase HEA compositions. These are FCC alloys comprised of CoFeMnNi, CuNiPdPt and CuNiPdPtRh, and HCP alloys of CoOsReRu.

  10. Coordinated single-phase control scheme for voltage unbalance reduction in low voltage network.

    Science.gov (United States)

    Pullaguram, Deepak; Mishra, Sukumar; Senroy, Nilanjan

    2017-08-13

    Low voltage (LV) distribution systems are typically unbalanced in nature due to unbalanced loading and unsymmetrical line configuration. This situation is further aggravated by single-phase power injections. A coordinated control scheme is proposed for single-phase sources, to reduce voltage unbalance. A consensus-based coordination is achieved using a multi-agent system, where each agent estimates the averaged global voltage and current magnitudes of individual phases in the LV network. These estimated values are used to modify the reference power of individual single-phase sources, to ensure system-wide balanced voltages and proper power sharing among sources connected to the same phase. Further, the high X / R ratio of the filter, used in the inverter of the single-phase source, enables control of reactive power, to minimize voltage unbalance locally. The proposed scheme is validated by simulating a LV distribution network with multiple single-phase sources subjected to various perturbations.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).

  11. Effect of Fe2+ and Fe3+ substitution on the crystal structure, optical and magnetic properties of anatase Ti1-δ (δ %Fe2+)O2 nanoparticles

    International Nuclear Information System (INIS)

    Wisnu Ari Adi; Adel Fisli

    2018-01-01

    Recently electromagnetic wave absorber materials are becoming a very interesting study to be studied more deeply because it is unique in terms of its interaction with electromagnetic waves itself. The main requirement to be met as an electromagnetic wave absorber material is that the material must have the characteristics of dielectric loss and magnetic loss are high. Anatase TiO 2 is a good dielectric material but these material is diamagnetic. Fe substitution was expected to manipulate the magnetic properties of this material. Modification of anatase TiO 2 was prepared by the precipitation method through the procedure as follows: 25 ml of iron salt solution containing 0.3 M Fe 2+ and 0.3 M Fe 3+ (mol ratio of 2 : 1) respectively mixed into 50 ml of 3 M TiCl 4 . The mixture solution of titanium and iron was added to a 150 ml solution of 2.5 M ammonia with drop wise rate 3 ml/min. After that the precipitate was washed then heated in an oven and calcined at 500 °C for 3 hours. There are two types of samples obtained namely anatase Ti 1-δ (δ %Fe 3+ ) Ti 1-δ (δ %Fe 2+ ) where (δ =0, 0.5, 1, and 5 wt %). Phase identification was measured by X-ray diffraction and crystal structure was analyzed by using the Rietveld method. Refinement result indicates that the sample has tetragonal crystal structure a single phase of anatase TiO 2 . Fe atoms have been successfully substituted into Ti without changing the crystal structure of this material. While based on the results of the analysis of optical and magnetic properties showed that the substitution effect of both Fe 2+ and Fe 3+ has managed to reduce energy of band gap and can transform this magnetic phase of this material from diamagnetic becomes paramagnetic at room temperature. It was concluded that it has successfully carried out material engineering of anatase TiO 2 with a substitution of up to 5 wt % of either Fe 2+ or Fe 3+ into ion Ti 4+ by the precipitation method. (author)

  12. Hydrothermal Preparation of Apatite Composite with Magnetite or Anatase

    International Nuclear Information System (INIS)

    Murakami, Setsuaki; Ishida, Emile H.; Ioku, Koji

    2006-01-01

    Microstructure designed porous hydroxyapatite (Ca10(PO4)6(OH)2) composites with magnetite (Fe3O4) particles or anatase (TiO2) dispersion were prepared by hydrothermal treatment. These composites had micro-pores of about 0.1-0.5 μm in size. Magnetite / Hydroxyapatite composites should be suitable for medical treatment of cancer, especially in bones, because HA can bond to bones directly and magnetite can generate heat. They must be used for hyperthermia therapies of cancer in bones. Meanwhile, anatase / Hydroxyapatite composite should be suitable for environmental purification, because HA rod-shape particles expose the specific crystal face, which adsorbs organic contaminants and so on

  13. Growth of anatase titanium dioxide nanotubes via anodization

    Directory of Open Access Journals (Sweden)

    Ed Adrian Dilla

    2012-06-01

    Full Text Available In this work, titanium dioxide nanotubes were grown via anodization of sputtered titanium thin films using different anodization parameters in order to formulate a method of producing long anatase titanium dioxide nanotubes intended for solar cell applications. The morphological features of the nanotubes grown via anodization were explored using a Philips XL30 Field Emission Scanning Electron Microscope. Furthermore, the grown nanotubes were also subjected to X-ray diffraction and Raman spectroscopy in order to investigate the effect of the predominant crystal orientation of the parent titanium thin film on the crystal phase of the nanotubes. After optimizing the anodization parameters, nanotubes with anatase TiO2 crystal phase and tube length more than 2 microns was produced from parent titanium thin films with predominant Ti(010 crystal orientation and using ammonium fluoride in ethylene glycol as an electrolyte with a working voltage equal to 60V during 1-hour anodization runs.

  14. Reliability Evaluation of a Single-phase H-bridge Inverter with Integrated Active Power Decoupling

    DEFF Research Database (Denmark)

    Tang, Junchaojie; Wang, Haoran; Ma, Siyuan

    2016-01-01

    it with the traditional passive DC-link solution. The converter level reliability is obtained by component level electro-thermal stress modeling, lifetime model, Weibull distribution, and Reliability Block Diagram (RBD) method. The results are demonstrated by a 2 kW single-phase inverter application.......Various power decoupling methods have been proposed recently to replace the DC-link Electrolytic Capacitors (E-caps) in single-phase conversion system, in order to extend the lifetime and improve the reliability of the DC-link. However, it is still an open question whether the converter level...... reliability becomes better or not, since additional components are introduced and the loading of the existing components may be changed. This paper aims to study the converter level reliability of a single-phase full-bridge inverter with two kinds of active power decoupling module and to compare...

  15. High Quality Model Predictive Control for Single Phase Grid Connected Photovoltaic Inverters

    DEFF Research Database (Denmark)

    Zangeneh Bighash, Esmaeil; Sadeghzadeh, Seyed Mohammad; Ebrahimzadeh, Esmaeil

    2018-01-01

    Single phase grid-connected inverters with LCL filter are widely used to connect the photovoltaic systems to the utility grid. Among the presented control schemes, predictive control methods are faster and more accurate but are more complex to implement. Recently, the model-predictive control...... algorithm for single-phase inverter has been presented, where the algorithm implementation is straightforward. In the proposed approach, all switching states are tested in each switching period to achieve the control objectives. However, since the number of the switching states in single-phase inverter...... is low, the inverter output current has a high total harmonic distortions. In order to reduce the total harmonic distortions of the injected current, this paper presents a high-quality model-predictive control for one of the newest structure of the grid connected photovoltaic inverter, i.e., HERIC...

  16. Benchmarking of Grid Fault Modes in Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede; Zou, Zhixiang

    2013-01-01

    Pushed by the booming installations of singlephase photovoltaic (PV) systems, the grid demands regarding the integration of PV systems are expected to be modified. Hence, the future PV systems should become more active with functionalities of Low Voltage Ride-Through (LVRT) and grid support...... phase systems under grid faults. The intent of this paper is to present a benchmarking of grid fault modes that might come in future single-phase PV systems. In order to map future challenges, the relevant synchronization and control strategies are discussed. Some faulty modes are studied experimentally...... and provided at the end of this paper. It is concluded that there are extensive control possibilities in single-phase PV systems under grid faults. The Second Order General Integral based PLL technique might be the most promising candidate for future single-phase PV systems because of its fast adaptive...

  17. Photocatalytic properties of nanocrystalline TiO2 thin film with Ag additions

    International Nuclear Information System (INIS)

    Chang, C.-C.; Lin, C.-K.; Chan, C.-C.; Hsu, C.-S.; Chen, C.-Y.

    2006-01-01

    In the present study, nanocrystalline TiO 2 /Ag composite thin films were prepared by a sol-gel spin coating technique. While, by introducing polystyrene (PS) microspheres, porous TiO 2 /Ag films were obtained after calcining at a temperature of 500 o C. The as-prepared TiO 2 and TiO 2 /Ag thin films were characterized by X-ray diffractometry, and scanning electron microscopy to reveal the structural and morphological differences. In addition, the photocatalytic properties of these films were investigated by degrading methylene blue under UV irradiation. After 500 o C calcination, the microstructure of PS-TiO 2 film without Ag addition exhibited a sponge-like microstructure while significant sintering effect was noticed with Ag additions and the films exhibited a porous microstructure. Meanwhile, coalescence of nanocrystalline anatase-phase TiO 2 can be observed with respect to the sharpening of XRD diffraction peaks. The photodegradation of porous TiO 2 doped with 1 mol% Ag exhibited the best photocatalytic efficiency where 72% methylene blue can be decomposed after UV exposure for 12 h

  18. Influence of nanocrystalline structure and surface properties of TiO2 thin films on the viability of L929 cells

    Directory of Open Access Journals (Sweden)

    Osękowska Małgorzata

    2015-09-01

    Full Text Available In this work the physicochemical and biological properties of nanocrystalline TiO2 thin films were investigated. Thin films were prepared by magnetron sputtering method. Their properties were examined by X-ray diffraction, photoelectron spectroscopy, atomic force microscopy, optical transmission method and optical profiler. Moreover, surface wettability and scratch resistance were determined. It was found that as-deposited coatings were nanocrystalline and had TiO2-anatase structure, built from crystallites in size of 24 nm. The surface of the films was homogenous, composed of closely packed grains and hydrophilic. Due to nanocrystalline structure thin films exhibited good scratch resistance. The results were correlated to the biological activity (in vitro of thin films. Morphological changes of mouse fibroblasts (L929 cell line after contact with the surface of TiO2 films were evaluated with the use of a contrast-phase microscope, while their viability was tested by MTT colorimetric assay. The viability of cell line upon contact with the surface of nanocrystalline TiO2 film was comparable to the control sample. L929 cells had homogenous cytoplasm and were forming a confluent monofilm, while lysis and inhibition of cell growth was not observed. Moreover, the viability in contact with surface of examined films was high. This confirms non-cytotoxic effect of TiO2 film surface on mouse fibroblasts.

  19. Synchronization in single-phase grid-connected photovoltaic systems under grid faults

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2012-01-01

    The highly increasing penetration of single-phase photovoltaic (PV) systems pushes the grid requirements related to the integration of PV power systems to be updated. These upcoming regulations are expected to direct the grid-connected renewable generators to support the grid operation and stabil......The highly increasing penetration of single-phase photovoltaic (PV) systems pushes the grid requirements related to the integration of PV power systems to be updated. These upcoming regulations are expected to direct the grid-connected renewable generators to support the grid operation...

  20. Single phase cascaded H5 inverter with leakage current elimination for transformerless photovoltaic system

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Jia, X.; Lu, Z.

    2016-01-01

    Leakage current reduction is one of the important issues for the transformelress PV systems. In this paper, the transformerless single-phase cascaded H-bridge PV inverter is investigated. The common mode model for the cascaded H4 inverter is analyzed. And the reason why the conventional cascade H4...... inverter fails to reduce the leakage current is clarified. In order to solve the problem, a new cascaded H5 inverter is proposed to solve the leakage current issue. Finally, the experimental results are presented to verify the effectiveness of the proposed topology with the leakage current reduction...... for the single-phase transformerless PV systems....

  1. Challenges in thermal design of industrial single-phase power inverter

    Directory of Open Access Journals (Sweden)

    Ninković Predrag

    2016-01-01

    Full Text Available This paper presents the influence of thermal aspects in design process of an industrial single-phase inverter, choice of its topology and components. Stringent design inputs like very high overload level, demand for natural cooling and very wide input voltage range have made conventional circuit topology inappropriate therefore asking for alternative solution. Different power losses calculations in semiconductors are performed and compared, outlining the guidelines how to choose the final topology. Some recommendations in power magnetic components design are given. Based on the final project, a 20kVA single-phase inverter for thermal power plant supervisory and control system is designed and commissioned.

  2. Single-Phase Hybrid Switched Reluctance Motor for Low-Power Low-Cost Applications

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Rasmussen, Peter Omand; Jakobsen, Uffe

    2011-01-01

    This paper presents a new single-phase, Hybrid Switched Reluctance (HSR) motor for low-cost, low-power, pump or fan drive systems. Its single-phase configuration allows use of a simple converter to reduce the system cost. Cheap ferrite magnets are used and arranged in a special flux concentration...... manner to increase effectively the torque density and efficiency of this machine. The efficiency of this machine is comparable to the efficiency of a traditional permanent magnet machine in the similar power range. The cogging torque, due to the existence of the permanent magnetic field, is beneficially...

  3. An Open-Loop Grid Synchronization Approach for Single-Phase Applications

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2018-01-01

    in the presence of frequency drifts. This is particularly true in single-phase applications, where the lack of multiple independent input signals makes the implementation of the synchronization technique difficult. The aim of this paper is to develop an effective OLS technique for single-phase power and energy...... applications. The proposed OLS method benefits from a straightforward implementation, a fast dynamic response (a response time less than two cycles of the nominal frequency), and a complete immunity against the DC component in the grid voltage. In addition, the designed OLS method totally blocks (significantly...

  4. Fractional single-phase-lagging heat conduction model for describing anomalous diffusion

    Directory of Open Access Journals (Sweden)

    T.N. Mishra

    2016-03-01

    Full Text Available The fractional single-phase-lagging (FSPL heat conduction model is obtained by combining scalar time fractional conservation equation to the single-phase-lagging (SPL heat conduction model. Based on the FSPL heat conduction model, anomalous diffusion within a finite thin film is investigated. The effect of different parameters on solution has been observed and studied the asymptotic behavior of the FSPL model. The analytical solution is obtained using Laplace transform method. The whole analysis is presented in dimensionless form. Numerical examples of particular interest have been studied and discussed in details.

  5. Modeling and Stability Assessment of Single-Phase Grid Synchronization Techniques

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.; Vasquez, Juan

    2018-01-01

    (GSTs) is of vital importance. This task is most often based on obtaining a linear time-invariant (LTI) model for the GST and applying standard stability tests to it. Another option is modeling and dynamics/stability assessment of GSTs in the linear time-periodic (LTP) framework, which has received...... a very little attention. In this letter, the procedure of deriving the LTP model for single-phase GSTs is first demonstrated. The accuracy of the LTP model in predicting the GST dynamic behavior and stability is then evaluated and compared with that of the LTI one. Two well-known single-phase GSTs, i...

  6. Dynamic recovery in nanocrystalline Ni

    International Nuclear Information System (INIS)

    Sun, Z.; Van Petegem, S.; Cervellino, A.; Durst, K.; Blum, W.; Van Swygenhoven, H.

    2015-01-01

    The constant flow stress reached during uniaxial deformation of electrodeposited nanocrystalline Ni reflects a quasi-stationary balance between dislocation slip and grain boundary (GB) accommodation mechanisms. Stress reduction tests allow to suppress dislocation slip and bring recovery mechanisms into the foreground. When combined with in situ X-ray diffraction it can be shown that grain boundary recovery mechanisms play an important role in producing plastic strain while hardening the microstructure. This result has a significant consequence for the parameters of thermally activated glide of dislocations, such as athermal stress and activation volume, which are traditionally derived from stress/strain rate change tests

  7. Host-Sensitized and Tunable Luminescence of GdNbO4:Ln3+ (Ln3+ = Eu3+/Tb3+/Tm3+) Nanocrystalline Phosphors with Abundant Color.

    Science.gov (United States)

    Liu, Xiaoming; Chen, Chen; Li, Shuailong; Dai, Yuhua; Guo, Huiqin; Tang, Xinghua; Xie, Yu; Yan, Liushui

    2016-10-17

    Up to now, GdNbO 4 has always been regarded as an essentially inert material in the visible region with excitation of UV light and electron beams. Nevertheless, here we demonstrate a new recreating blue emission of GdNbO 4 nanocrystalline phosphors with a quantum efficiency of 41.6% and host sensitized luminescence in GdNbO 4 :Ln 3+ (Ln 3+ = Eu 3+ /Tb 3+ /Tm 3+ ) nanocrystalline phosphors with abundant color in response to UV light and electron beams. The GdNbO 4 and GdNbO 4 :Ln 3+ (Ln 3+ = Eu 3+ /Tb 3+ /Tm 3+ ) nanocrystalline phosphors were synthesized by a Pechini-type sol-gel process. With excitation of UV light and low-voltage electron beams, the obtained GdNbO 4 nanocrystalline phosphor presents a strong blue luminescence from 280 to 650 nm centered around 440 nm, and the GdNbO 4 :Ln 3+ nanocrystalline phosphors show both host emission and respective emission lines derived from the characterize f-f transitions of the doping Eu 3+ , Tb 3+ , and Tm 3+ ions. The luminescence color of GdNbO 4 :Ln 3+ nanocrystalline phosphors can be tuned from blue to green, red, blue-green, orange, pinkish, white, etc. by varying the doping species, concentration, and relative ratio of the codoping rare earth ions in GdNbO 4 host lattice. A single-phase white-light-emission has been realized in Eu 3+ /Tb 3+ /Tm 3+ triply doped GdNbO 4 nanocrystalline phosphors. The luminescence properties and mechanisms of GdNbO 4 and GdNbO 4 :Ln 3+ (Ln 3+ = Eu 3+ /Tb 3+ /Tm 3+ ) are updated.

  8. Photochemical solar cells based on dye-sensitization of nanocrystalline TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Deb, S.K.; Ellingson, R.; Ferrere, S.; Frank, A.J.; Gregg, B.A.; Nozik, A.J.; Park, N.; Schlichthoerl, G. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    A photoelectrochemical solar cell that is based on the dye-sensitization of thin nanocrystalline films of TiO{sub 2} (anatase) nanoparticles in contact with a non-aqueous liquid electrolyte is described. The cell, fabricated at NREL, shows a conversion efficiency of {approximately} 9.2% at AM1.5, which approaches the best reported value of 10--11% by Graetzel at EPFL in Lausanne, Switzerland. The femtosecond (fs) pump-probe spectroscopy has been used to time resolve the injection of electrons into the conduction band of nanocrystalline TiO{sub 2} films under ambient conditions following photoexcitation of the adsorbed Ru(II)-complex dye. The measurement indicates an instrument-limited {minus}50 fs upper limit on the electron injection time. The authors also report the sensitization of nanocrystalline TiO{sub 2} by a novel iron-based dye, CIS-[Fe{sup II}(2,2{prime}-bipyridine-4,4,{prime}-dicarboxylic acid){sub 2}(CN){sub 2}], a chromophore with an extremely short-lived, nonemissive excited state. The dye also exhibits a unique band selective sensitization through one of its two absorption bands. The operational principle of the device has been studied through the measurement of electric field distribution within the device structure and studies on the pH dependence of dye-redox potential. The incorporation of WO{sub 3}-based electrochromic layer into this device has led to a novel photoelectrochromic device structure for smart window application.

  9. SINTERING EFFECTS ON THE DENSIFICATION OF NANOCRYSTALLINE HYDROXYAPATITE

    Directory of Open Access Journals (Sweden)

    M. Amiriyan

    2011-06-01

    Full Text Available The effects of sintering profiles on the densification behaviour of synthesized nanocrystalline hydroxyapatite (HA powder were investigated in terms of phase stability and mechanical properties. A wet chemical precipitation method was successfully employed to synthesize a high purity and single phase HA powder. Green HA compacts were prepared and subjected to sintering in air atmosphere over a temperature range of 700° C to 1300° C. In this study two different holding times were compared, i.e. 1 minute versus the standard 120 minutes. The results revealed that the 1 minute holding time sintering profile was indeed effective in producing a HA body with high density of 98% theoretical when sintered at 1200° C. High mechanical properties such as fracture toughness of 1.41 MPa.m1/2 and hardness of 9.5 GPa were also measured for HA samples sintered under this profile. Additionally, XRD analysis indicated that decomposition of the HA phase during sintering at high temperatures was suppressed.

  10. Synthesis and electrical conductivity of nanocrystalline tetragonal FeS

    International Nuclear Information System (INIS)

    Zeng Shu-Lin; Wang Hui-Xian; Dong Cheng

    2014-01-01

    A convenient method for synthesis of tetragonal FeS using iron powder as iron source, is reported. Nanocrystalline tetragonal FeS samples were successfully synthesized by reacting metallic iron powder with sodium sulfide in acetate buffer solution. The obtained sample is single-phase tetragonal FeS with lattice parameters a = 0.3767 nm and c = 0.5037 nm, as revealed by X-ray diffraction. The sample consists of flat nanosheets with lateral dimensions from 20 nm up to 200 nm and average thickness of about 20 nm. We found that tetragonal FeS is a fairly good conductor from the electrical resistivity measurement on a pellet of the nanosheets. The temperature dependence of conductivity of the pellet was well fitted using an empirical equation wherein the effect of different grain boundaries was taken into consideration. This study provides a convenient, economic way to synthesize tetragonal FeS in a large scale and reports the first electrical conductivity data for tetragonal FeS down to liquid helium temperature. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  11. Single Phase Transformer-less Buck-Boost Inverter with Zero Leakage Current for PV Systems

    DEFF Research Database (Denmark)

    Mostaan, Ali; Abdelhakim, Ahmed; N. Soltani, Mohsen

    2017-01-01

    In this paper, a novel single-stage single-phase transformer-less buck-boost inverter is proposed, in which a reduced number of passive components is used. The proposed inverter combines the conventional buck, boost, and buck-boost converters in one converter in order to obtain a sinusoidal output...

  12. An efficiency improved single-phase PFC converter for electric vehicle charger applications

    DEFF Research Database (Denmark)

    Zhu, Dexuan; Tang, Yi; Jin, Chi

    2013-01-01

    This paper presents an efficiency improved single-phase power factor correction (PFC) converter with its target application to plug-in hybrid electric vehicle (PHEV) charging systems. The proposed PFC converter features sinusoidal input current, three-level output characteristic, and wide range...

  13. Design and Implementation of Wireless Energy Meter System for Monitoring the Single Phase Supply

    OpenAIRE

    U. V, Prashanth B.

    2013-01-01

    Wireless energy meter is a system developed to serve as a basic single-phase energy meter with advanced functionalities such as Peak hour setting, Peak load setting Wireless reading transmission; further the system eliminates the role of a Meter Reader.

  14. Multi-scale Modeling of Compressible Single-phase Flow in Porous Media using Molecular Simulation

    KAUST Repository

    Saad, Ahmed Mohamed

    2016-01-01

    potential model that accounts for the molecular quadrupole moment of fluids with non-spherical molecules such as CO2. The potential model was used to simulate the thermodynamic equilibrium properties for single-phase and two-phase systems using the canonical

  15. Dynamics Assessment of Grid-Synchronization Algorithms for Single-Phase Grid-Connected Converters

    DEFF Research Database (Denmark)

    Han, Yang; Luo, Mingyu; Guerrero, Josep M.

    2015-01-01

    Several advanced phase-lock-loop (PLL) algorithms have been proposed for single-phase power electronic systems. Among these algorithms, the orthogonal signal generators (OSGs) are widely utilized to generate a set of in-quadrature signals, owing to its benefit of simple digital implementation and...

  16. Comparative Performance Evaluation of Orthogonal-Signal-Generators-Based Single-Phase PLL Algorithms

    DEFF Research Database (Denmark)

    Han, Yang; Luo, Mingyu; Zhao, Xin

    2016-01-01

    The orthogonal signal generator based phase-locked loops (OSG-PLLs) are among the most popular single-phase PLLs within the areas of power electronics and power systems, mainly because they are often easy to be implement and offer a robust performance against the grid disturbances. The main aim o...

  17. Novel Motion Sensorless Control of Single Phase Brushless D.C. PM Motor Drive, with experiments

    DEFF Research Database (Denmark)

    Lepure, Liviu Ioan; Boldea, Ion; Andreescu, Gheorghe Daniel

    2010-01-01

    A motion sensorless control for single phase permanent magnet brushless d.c. (PM-BLDC) motor drives, based on flux integration and prior knowledge of the PM flux/position characteristic is proposed here and an adequate correction algorithm is adopted, in order to increase the robustness to noise...

  18. Single-Phase 3L PR Controlled qZS Inverter Connected to the Distorted Grid

    DEFF Research Database (Denmark)

    Makovenko, Elena; Husev, Oleksandr; Roncero-Clemente, Carlos

    2016-01-01

    This paper presents a single-phase three-level NPC qZS inverter connected to a distorted grid using PID and PR regulators. A case study system along with the control strategy are described. Tuning approaches for PID and PR regulators are addressed and validated by means of simulation results...

  19. Potential pitfalls of single phasing operation in a three phase distribution network

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, V S

    1986-07-01

    Finding it difficult to cope with the increased demand for electric power, some electricity boards have resorted to single phasing techniques in distribution system. This practice is harmful to the equipment in the power system. Some of the potential dangers associated with this undesirable practice are briefly discussed.

  20. PI and repetitive control for single phase inverter based on virtual rotating coordinate system

    Science.gov (United States)

    Li, Mengqi; Tong, Yibin; Jiang, Jiuchun; Liang, Jiangang

    2018-03-01

    Microgrid technology developed rapidly and nonlinear loads were connected increasingly. A new control strategy was proposed for single phase inverter when connected nonlinear loads under island condition. PI and repetitive compound controller was realized under synchronous rotating coordinate system and acquired high quality sinusoidal voltage output without voltage spike when loads step changed. Validity and correctness were verified by simulation using MATLAB/Simulink.

  1. 16 channel WDM regeneration in a single phase-sensitive amplifier through optical Fourier transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Da Ros, Francesco; Lillieholm, Mads

    2016-01-01

    We demonstrate simultaneous phase regeneration of 16-WDM DPSK channels using optical Fourier transformation and a single phase-sensitive amplifier. The BERs of 16-WDM×10-Gbit/s phase noise degraded DPSK signals are improved by 0.4-1.3 orders of magnitude...

  2. Forest resources of southeast Alaska, 2000: results of a single-phase systematic sample.

    Science.gov (United States)

    Willem W.S. van Hees

    2003-01-01

    A baseline assessment of forest resources in southeast Alaska was made by using a single-phase, unstratified, systematic-grid sample, with ground plots established at each grid intersection. Ratio-of-means estimators were used to develop population estimates. Forests cover an estimated 48 percent of the 22.9-million-acre southeast Alaska inventory unit. Dominant forest...

  3. Zero-Voltage Ride-Through Capability of Single-Phase Grid-Connected Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2017-03-01

    Full Text Available Distributed renewable energy systems play an increasing role in today’s energy paradigm. Thus, intensive research activities have been centered on improving the performance of renewable energy systems, including photovoltaic (PV systems, which should be of multiple-functionality. That is, the PV systems should be more intelligent in the consideration of grid stability, reliability, and fault protection. Therefore, in this paper, the performance of single-phase grid-connected PV systems under an extreme grid fault (i.e., when the grid voltage dips to zero is explored. It has been revealed that combining a fast and accurate synchronization mechanism with appropriate control strategies for the zero-voltage ride-through (ZVRT operation is mandatory. Accordingly, the representative synchronization techniques (i.e., the phase-locked loop (PLL methods in the ZVRT operation are compared in terms of detection precision and dynamic response. It shows that the second-order generalized integrator (SOGI-PLL is a promising solution for single-phase systems in the case of fault ride-through. A control strategy by modifying the SOGI-PLL scheme is then introduced to single-phase grid-connected PV systems for ZVRT operation. Simulations are performed to verify the discussions. The results have demonstrated that the proposed method can help single-phase PV systems to temporarily ride through zero-voltage faults with good dynamics.

  4. Modeling and Control of a Single-Phase Marine Cooling System

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2013-01-01

    This paper presents two model-based control design approaches for a single-phase marine cooling system. Models are derived from first principles and aim at describing significant system dynamics including nonlinearities and transport delays, while keeping the model complexity low. The two...

  5. Single phase inverter for a three phase power generation and distribution system

    Science.gov (United States)

    Lindena, S. J.

    1976-01-01

    A breadboard design of a single-phase inverter with sinusoidal output voltage for a three-phase power generation and distribution system was developed. The three-phase system consists of three single-phase inverters, whose output voltages are connected in a delta configuration. Upon failure of one inverter the two remaining inverters will continue to deliver three-phase power. Parallel redundancy as offered by two three-phase inverters is substituted by one three-phase inverter assembly with high savings in volume, weight, components count and complexity, and a considerable increase in reliability. The following requirements must be met: (1) Each single-phase, current-fed inverter must be capable of being synchronized to a three-phase reference system such that its output voltage remains phaselocked to its respective reference voltage. (2) Each single-phase, current-fed inverter must be capable of accepting leading and lagging power factors over a range from -0.7 through 1 to +0.7.

  6. protoDUNE-Single Phase and protDUNE-DualPhase

    CERN Multimedia

    Brice, Maximilien

    2016-01-01

    At the EHN1 two big 8m x 8m x8m detector prototypes (protoDUNE-Single Phase and protDUNE-DualPhase) are being constructed. The aim is to test technologies and detector performances for DUNE, a new generation of LBN neutr

  7. Benchmarking of grid fault modes in single-phase grid-connected photovoltaic systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede; Zou, Zhixiang

    2012-01-01

    Pushed by the booming installations of single-phase photovoltaic (PV) systems, the grid demands regarding the integration of PV systems are expected to be modified. Hence, the future PV systems should become more active with functionalities of low voltage ride-through (LVRT) and the grid support...

  8. Frequency Adaptive Repetitive Control of Grid-Tied Single-Phase PV Inverters

    DEFF Research Database (Denmark)

    Zhou, Keliang; Yang, Yongheng; Blaabjerg, Frede

    2015-01-01

    . This paper thus explores a frequency adaptive repetitive control strategy for grid converters, which employs fractional delay filters in order to adapt to the change of the grid frequency. Case studies with experimental results of a single-phase grid-connected PV inverter system are provided to verify...

  9. The Effect of Grain Size on Mechanical Instability in Single-Phase Li-Alloy Anodes

    National Research Council Canada - National Science Library

    Wolfenstine, Jeff

    2000-01-01

    .... The results of this study suggest that decreasing the particle and/or grain size is not a practical approach to solving the mechanical instability problem of single phase Li alloys that are intended to be used as anodes in Li-ion batteries.

  10. Lyapunov-Based Control Scheme for Single-Phase Grid-Connected PV Central Inverters

    NARCIS (Netherlands)

    Meza, C.; Biel, D.; Jeltsema, D.; Scherpen, J. M. A.

    A Lyapunov-based control scheme for single-phase single-stage grid-connected photovoltaic central inverters is presented. Besides rendering the closed-loop system globally stable, the designed controller is able to deal with the system uncertainty that depends on the solar irradiance. A laboratory

  11. Decoupling of fluctuating power in single-phase systems through a symmetrical half-bridge circuit

    DEFF Research Database (Denmark)

    Tang, Yi; Blaabjerg, Frede; Loh, Poh Chiang

    2014-01-01

    Single-phase AC/DC or DC/AC systems inherently subject to harmonic disturbance which is caused by the well-known double line frequency ripple power. This issue can be eased through the installation of bulky electrolytic capacitors in the dc-link, but such passive filtering approach may inevitably...

  12. A Direct Maximum Power Point Tracking Method for Single-Phase Grid Connected PV Inverters

    DEFF Research Database (Denmark)

    EL Aamri, Faicel; Maker, Hattab; Sera, Dezso

    2018-01-01

    in dynamic conditions, especially in low irradiance when the measurement of signals becomes more sensitive to noise. The proposed MPPT is designed for single-phase single-stage grid-connected PV inverters, and is based on estimating the instantaneous PV power and voltage ripples, using second...

  13. Pressure Drop Correlations of Single-Phase and Two-Phase Flow in Rolling Tubes

    International Nuclear Information System (INIS)

    Xia-xin Cao; Chang-qi Yan; Pu-zhen Gao; Zhong-ning Sun

    2006-01-01

    A series of experimental studies of frictional pressure drop for single phase and two-phase bubble flow in smooth rolling tubes were carried out. The tube inside diameters were 15 mm, 25 mm and 34.5 mm respectively, the rolling angles of tubes could be set as 10 deg. and 20 deg., and the rolling periods could be set as 5 s, 10 s and 15 s. Combining with the analysis of single-phase water motion, it was found that the traditional correlations for calculating single-phase frictional coefficient were not suitable for the rolling condition. Based on the experimental data, a new correlation for calculating single-phase frictional coefficient under rolling condition was presented, and the calculations not only agreed well with the experimental data, but also could display the periodically dynamic characteristics of frictional coefficients. Applying the new correlation to homogeneous flow model, two-phase frictional pressure drop of bubble flow in rolling tubes could be calculated, the results showed that the relative error between calculation and experimental data was less than ± 25%. (authors)

  14. Hybrid Control Method for a Single Phase PFC using a Low Cost Microcontroller

    DEFF Research Database (Denmark)

    Jakobsen, Lars Tønnes; Nielsen, Nils; Wolf, Christian

    2005-01-01

    This paper presents a hybrid control method for single phase boost PFCs. The high bandwidth current loop is analog while the voltage loop is implemented in an 8-bit microcontroller. The design focuses on minimizing the number of calculations done in the microcontroller. A 1kW prototype has been...

  15. A Generic Topology Derivation Method for Single-phase Converters with Active Capacitive DC-links

    DEFF Research Database (Denmark)

    Wang, Haoran; Wang, Huai; Zhu, Guorong

    2016-01-01

    capacitive DCDC- link solutions, but important aspects of the topology assess-ment, such as the total energy storage, overall capacitive energy buffer ratio, cost, and reliability are still not available. This paper proposes a generic topology derivation method of single-phase power converters...

  16. Flux Concentration and Pole Shaping in a Single Phase Hybrid Switched Reluctance Motor Drive

    DEFF Research Database (Denmark)

    Jakobsen, Uffe; Lu, Kaiyuan

    2010-01-01

    The single phase hybrid switched reluctance motor (HSRM) may be a good candidate for low-cost drives used for pump applications. This paper presents a new design of the HSRM with improved starting torque achieved by stator pole shaping, and a better arrangement of the embedded stator permanent...

  17. Modelling and simulation of multiple single - phase induction motor in parallel connection

    Directory of Open Access Journals (Sweden)

    Sujitjorn, S.

    2006-11-01

    Full Text Available A mathematical model for parallel connected n-multiple single-phase induction motors in generalized state-space form is proposed in this paper. The motor group draws electric power from one inverter. The model is developed by the dq-frame theory and was tested against four loading scenarios in which satisfactory results were obtained.

  18. Anatase thin film with diverse epitaxial relationship grown on yttrium stabilized zirconia substrate by chemical vapor deposition

    International Nuclear Information System (INIS)

    Miyagi, Takahira; Ogawa, Tomoyuki; Kamei, Masayuki; Wada, Yoshiki; Mitsuhashi, Takefumi; Yamazaki, Atsushi

    2003-01-01

    An anatase epitaxial thin film with diverse epitaxial relationship, YSZ (001) // anatase (001), YSZ (010) // anatase (110), was grown on a single crystalline yttrium stabilized zirconia (YSZ) (001) substrate by metal organic chemical vapor deposition (MOCVD). The full width at half maximum (FWHM) of the (004) reflection of this anatase epitaxial film was 0.4deg, and the photoluminescence of this anatase epitaxial film showed visible emission with broad spectral width and large Stokes shift at room temperature. These results indicate that this anatase epitaxial film possessed almost equal crystalline quality compared with that grown under identical growth conditions on single crystalline SrTiO 3 substrate. (author)

  19. Development of a single-phase thermosiphon for cold collection and storage of radiative cooling

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dongliang; Martini, Christine Elizabeth; Jiang, Siyu; Ma, Yaoguang; Zhai, Yao; Tan, Gang; Yin, Xiaobo; Yang, Ronggui

    2017-11-01

    A single-phase thermosiphon is developed for cold collection and storage of radiative cooling. Compared to the conventional nocturnal radiative cooling systems that use an electric pump to drive the heat transfer fluid, the proposed single-phase thermosiphon uses the buoyancy force to drive heat transfer fluid. This solution does not require electricity, therefore improving the net gain of the radiative cooling system. A single-phase thermosiphon was built, which consists of a flat panel, a cold collection tank, a water return tube, and a water distribution tank. Considering that outdoor radiative cooling flux is constantly changing (i.e. uncontrollable), an indoor testing facility was developed to provide a controllable cooling flux (comparable to a radiative cooling flux of 100 W/m2) for the evaluation of thermosiphon performance. The testing apparatus is a chilled aluminum flat plate that has a controlled air gap separation relative to the flat panel surface of the thermosiphon to emulate radiative cooling. With an average of 105 W/m2 cooling flux, the 18 liters of water in the thermosiphon was cooled to an average temperature of 12.5 degrees C from an initial temperature of 22.2 degrees C in 2 h, with a cold collection efficiency of 96.8%. The results obtained have demonstrated the feasibility of using a single-phase thermosiphon for cold collection and storage of radiative cooling. Additionally, the effects of the thermosiphon operation conditions, such as tilt angle of the flat panel, initial water temperature, and cooling energy flux, on the performance have been experimentally investigated. Modular design of the single-phase thermosiphon gives flexibility for its scalability. A radiative cooling system with multiple thermosiphon modules is expected to play an important role in cooling buildings and power plant condensers.

  20. Bilirubin adsorption on nanocrystalline titania films

    International Nuclear Information System (INIS)

    Yang Zhengpeng; Si Shihui; Fung Yingsing

    2007-01-01

    Bilirubin produced from hemoglobin metabolism and normally conjugated with albumin is a kind of lipophilic endotoxin, and can cause various diseases when its concentration is high. Bilirubin adsorption on the nanocrystalline TiO 2 films was investigated using quartz crystal microbalance, UV-vis and IR techniques, and factors affecting its adsorption such as pH, bilirubin concentration, solution ionic strength, temperature and thickness of TiO 2 films were discussed. The amount of adsorption and parameters for the adsorption kinetics were estimated from the frequency measurements of quartz crystal microbalance. A fresh surface of the nanocrystalline TiO 2 films could be photochemically regenerated because holes and hydroxyl radicals were generated by irradiating the nanocrystalline TiO 2 films with UV light, which could oxidize and decompose organic materials, and the nanocrystalline TiO 2 films can be easily regenerated when it is used as adsorbent for the removal of bilirubin

  1. Crystallographic and magnetic properties of nanocrystalline perovskite structure SmFeO3 orthoferrite

    Science.gov (United States)

    Kumar, Ashwini; Shen, Jingdong; Zhao, Huihui; Zhengjian, Qi; Li, Qi

    2018-05-01

    In this article, we present the structural and magnetic studies of pristine SmFeO3 nanocrystalline ceramic samples as sintered at temperature 850 °C and 1000 °C. X-ray powder diffraction data confirm the existence of single-phase nature with orthorhombic (Pbnm) structure of the samples. The SEM image reveals spherical particles with a size range of 60-130 nm for SFO-850 and SFO-1000 samples. X-ray absorption spectroscopy studies on Fe L3,2 and O K-edges of SmFeO3 sample revealed the homo-valence state of Fe in these materials. From magnetization studies it has been observed the materials exhibit ferromagnetic and antiferromagnetic (canted spin structure) sub-lattices, which results strong magnetic anisotropy in the system.

  2. A New Power Calculation Method for Single-Phase Grid-Connected Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2013-01-01

    A new method to calculate average active power and reactive power for single-phase systems is proposed in this paper. It can be used in different applications where the output active power and reactive power need to be calculated accurately and fast. For example, a grid-connected photovoltaic...... system in low voltage ride through operation mode requires a power feedback for the power control loop. Commonly, a Discrete Fourier Transform (DFT) based power calculation method can be adopted in such systems. However, the DFT method introduces at least a one-cycle time delay. The new power calculation...... method, which is based on the adaptive filtering technique, can achieve a faster response. The performance of the proposed method is verified by experiments and demonstrated in a 1 kW single-phase grid-connected system operating under different conditions.Experimental results show the effectiveness...

  3. 100-nm thick single-phase wurtzite BAlN films with boron contents over 10%

    KAUST Repository

    Li, Xiaohang

    2017-01-11

    Growing thicker BAlN films while maintaining single-phase wurtzite structure and boron content over 10% has been challenging. In this study, we report on the growth of 100 nm-thick single-phase wurtzite BAlN films with boron contents up to 14.4% by MOCVD. Flow-modulated epitaxy was employed to increase diffusion length of group-III atoms and reduce parasitic reactions between the metalorganics and NH3. A large growth efficiency of ∼2000 μm mol−1 was achieved as a result. Small B/III ratios up to 17% in conjunction with high temperatures up to 1010 °C were utilized to prevent formation of the cubic phase and maintain wurtzite structure.

  4. 100-nm thick single-phase wurtzite BAlN films with boron contents over 10%

    KAUST Repository

    Li, Xiaohang; Wang, Shuo; Liu, Hanxiao; Ponce, Fernando A.; Detchprohm, Theeradetch; Dupuis, Russell D.

    2017-01-01

    Growing thicker BAlN films while maintaining single-phase wurtzite structure and boron content over 10% has been challenging. In this study, we report on the growth of 100 nm-thick single-phase wurtzite BAlN films with boron contents up to 14.4% by MOCVD. Flow-modulated epitaxy was employed to increase diffusion length of group-III atoms and reduce parasitic reactions between the metalorganics and NH3. A large growth efficiency of ∼2000 μm mol−1 was achieved as a result. Small B/III ratios up to 17% in conjunction with high temperatures up to 1010 °C were utilized to prevent formation of the cubic phase and maintain wurtzite structure.

  5. Stability analysis of single-phase thermosyphon loops by finite difference numerical methods

    International Nuclear Information System (INIS)

    Ambrosini, W.

    1998-01-01

    In this paper, examples of the application of finite difference numerical methods in the analysis of stability of single-phase natural circulation loops are reported. The problem is here addressed for its relevance for thermal-hydraulic system code applications, in the aim to point out the effect of truncation error on stability prediction. The methodology adopted for analysing in a systematic way the effect of various finite difference discretization can be considered the numerical analogue of the usual techniques adopted for PDE stability analysis. Three different single-phase loop configurations are considered involving various kinds of boundary conditions. In one of these cases, an original dimensionless form of the governing equations is proposed, adopting the Reynolds number as a flow variable. This allows for an appropriate consideration of transition between laminar and turbulent regimes, which is not possible with other dimensionless forms, thus enlarging the field of validity of model assumptions. (author). 14 refs., 8 figs

  6. Microcontroller Based SPWM Single-Phase Inverter For Wind Power Application

    Directory of Open Access Journals (Sweden)

    Khin Ohmar Lin

    2017-04-01

    Full Text Available In this paper microcontroller based sinusoidal pulse width modulation SPWM single-phase inverter is emphasized to constant frequency conversion scheme for wind power application. The wind-power generator output voltage and frequency are fluctuated due to the variation of wind velocity. Therefore the AC output voltage of wind-generator is converted into DC voltage by using rectifier circuit and this DC voltage is converted back to AC voltage by using inverter circuit. SPWM technique is used in inverter to get nearly sine wave and reduce harmonic content. The rating of inverter is 500W single-phase 220V 50 Hz. The required SPWM timing pulses for the inverter are generated from the PIC16F877A microcontroller. Circuit simulation was done by using Proteus 7 Professional and MATLABR 2008 software. The software for microcontroller is implemented by using MPASM assembler.

  7. Hybrid Three-Phase/Single-Phase Microgrid Architecture with Power Management Capabilities

    DEFF Research Database (Denmark)

    Sun, Qiuye; Zhou, Jianguo; Guerrero, Josep M.

    2015-01-01

    With the fast proliferation of single-phase distributed generation (DG) units and loads integrated into residential microgrids, independent power sharing per phase and full use of the energy generated by DGs have become crucial. To address these issues, this paper proposes a hybrid microgrid...... architecture and its power management strategy. In this microgrid structure, a power sharing unit (PSU), composed of three single-phase back-to-back (SPBTB) converters, is proposed to be installed at the point of common coupling (PCC). The aim of the PSU is mainly to realize the power exchange and coordinated...... control of load power sharing among phases, as well as to allow fully utilization of the energy generated by DGs. Meanwhile, the method combining the modified adaptive backstepping-sliding mode control approach and droop control is also proposed to design the SPBTB system controllers. With the application...

  8. A High Power Density Single-Phase PWM Rectifier With Active Ripple Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruxi [Virginia Polytechnic Institute and State University (Virginia Tech); Wang, Fei [ORNL; Boroyevich, Dushan [Virginia Polytechnic Institute and State University (Virginia Tech); Burgos, Rolando [ABB; Lai, Rixin [General Electric; Ning, Puqi [ORNL; Rajashekara, Kaushik [Rolls Royce

    2011-01-01

    It is well known that single-phase pulse width modulation rectifiers have second-order harmonic currents and corresponding ripple voltages on the dc bus. The low-frequency harmonic current is normally filtered using a bulk capacitor in the bus, which results in low power density. However, pursuing high power density in converter design is a very important goal in the aerospace applications. This paper studies methods for reducing the energy storage capacitor for single-phase rectifiers. The minimum ripple energy storage requirement is derived independently of a specific topology. Based on theminimum ripple energy requirement, the feasibility of the active capacitor s reduction schemes is verified. Then, we propose a bidirectional buck boost converter as the ripple energy storage circuit, which can effectively reduce the energy storage capacitance. The analysis and design are validated by simulation and experimental results.

  9. Experimental research on single phase convection heat transfer in micro-fin tube

    International Nuclear Information System (INIS)

    Fan Guangming; Sun Zhongning; Zhu Sheng

    2011-01-01

    An experimental investigation of heat transfer and flow resistance characteristics of single phase water in three micro-fin tubes with different fin height was conducted. At the same time, the efficiency of micro-fin tubes within the experimental scope was evaluated and the optimal working region was determined. Based on the experimental data in the optimal working region, correlations for predicting the heat transfer and flow resistance were also given by multiple regression method. The result indicates that the micro-fin tubes can greatly enhance the single-phase heat transfer in turbulent flow, and the increase of heat transfer coefficient is higher than the increase of flow resistance. The accuracy of the correlation is very high, of which the deviation from the experimental value is very small. (authors)

  10. Experimental research of inclined-micro-fin flat tube on single phase convection heat transfer

    International Nuclear Information System (INIS)

    Fan Guangming; Sun Zhongning; Wang Meng

    2011-01-01

    The experimental research of heat transfer and flow resistance characteristics of single phase water in four inclined-micro-fin flat tubes with different physical dimensions was conducted. At the same time,suitable criteria were selected to evaluate the efficiency of inclined-micro-fin flat tubes within the experimental scope and the optimal working region was determined. The results indicate that inclined-micro-fin flat tubes can greatly enhance the single-phase heat transfer in turbulent flow and the maximum heat transfer coefficient attains to 5.9 times of that in smooth tube. The quantities of heat transfer for inclined-micro-fin flat tubes are three times higher than that of smooth tube with the same of heat exchange area and pump power. (authors)

  11. A Synchronization Method for Single-Phase Grid-Tied Inverters

    DEFF Research Database (Denmark)

    Hadjidemetriou, Lenos; Kyriakides, Elias; Yang, Yongheng

    2016-01-01

    The controllers of single-phase grid-tied inverters require improvements to enable distribution generation systems to meet the grid codes/standards with respect to power quality and the fault ride through capability. In that case, the response of the selected synchronization technique is crucial...... for the performance of the entire grid-tied inverter. In this paper, a new synchronization method with good dynamics and high accuracy under a highly distorted voltage is proposed. This method uses a Multi-Harmonic Decoupling Cell (MHDC), which thus can cancel out the oscillations on the synchronization signals due...... to the harmonic voltage distortion while maintaining the dynamic response of the synchronization. Therefore, the accurate and dynamic response of the proposed MHDC-PLL can be beneficial for the performance of the whole single-phase grid-tied inverter....

  12. In-Flight Formation of Nano-Crystalline Titanium Dioxide Powder in a Plasma Jet and Its Characterization

    International Nuclear Information System (INIS)

    Ananthapadmanabhan, P. V.; Thiyagarajan, T. K.; Sreekumar, K. P.; Vijay, M.; Selvarajan, V.; Yu, Jiaguo; Liu, Shengwei

    2010-01-01

    Nanocrystalline titanium dioxide powder was synthesized by in-flight oxidation of titanium dihydride (TiH 2 ) powder in a thermal plasma jet. TiH 2 powder was injected into the thermal plasma jet and allowed to react with oxygen injected downstream the jet. Characterization of the powder by various analytical tools indicated that the powder consisted of nano-sized titanium dioxide particles consisting predominantly of the anatase phase. It is suggested that the thermo-chemistry of the oxidation process contributes significantly to the formation of nano-sized titania. The large energy released during the oxidation process dissociates the TiO 2 particles into TiO (g) and titanium vapour, which recombine downstream with oxygen and form nano particles of TiO 2 .

  13. Removal of Direct Current Link Harmonic Ripple in Single Phase Voltage Source Inverter Systems Using Supercapacitors

    Science.gov (United States)

    2016-09-01

    Khaligh, “Optimization of sizing and battery cycle life in battery/ultracapacitor hybrid energy storage systems for electric vehicle applications...depth cycling operation in photovoltaic system ,” in 22nd International Conference “Mixed Design of Integrated Circuits and Systems ,” Toruń, Poland...CURRENT LINK HARMONIC RIPPLE IN SINGLE-PHASE VOLTAGE SOURCE INVERTER SYSTEMS USING SUPERCAPACITORS by Gabriel D. Hernandez September 2016

  14. Geometric relationships for homogenization in single-phase binary alloy systems

    Science.gov (United States)

    Unnam, J.; Tenney, D. R.; Stein, B. A.

    1978-01-01

    A semiempirical relationship is presented which describes the extent of interaction between constituents in single-phase binary alloy systems having planar, cylindrical, or spherical interfaces. This relationship makes possible a quick estimate of the extent of interaction without lengthy numerical calculations. It includes two parameters which are functions of mean concentration and interface geometry. Experimental data for the copper-nickel system are included to demonstrate the usefulness of this relationship.

  15. Single-phase flow and flow boiling of water in horizontal rectangular microchannels

    OpenAIRE

    Mirmanto

    2013-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University The current study is part of a long term experimental project devoted to investigating single-phase flow pressure drop and heat transfer, flow boiling pressure drop and heat transfer, flow boiling instability and flow visualization of de-ionized water flow in microchannels. The experimental facility was first designed and constructed by S. Gedupudi (2009) and in the present study; ...

  16. Simulation of the phenomenon of single-phase and two-phase natural circulation

    International Nuclear Information System (INIS)

    Castrillo, Lazara Silveira

    1998-02-01

    Natural convection phenomenon is often used to remove the residual heat from the surfaces of bodies where the heat is generated e.g. during accidents or transients of nuclear power plants. Experimental study of natural circulation can be done in small scale experimental circuits and the results can be extrapolated for larger operational facilities. The numerical analysis of transients can be carried out by using large computational codes that simulate the thermohydraulic behavior in such facilities. The computational code RELAP5/MOD2, (Reactor Excursion and Leak Analysis Program) was developed by U.S. Nuclear Regulatory Commissions's. Division of Reactor Safety Research with the objective of analysis of transients and postulated accidents in the light water reactor (LWR) systems, including small and large ruptures with loss of coolant accidents (LOCA's). The results obtained by the simulation of single-phase and two-phase natural circulation, using the RELAP5/MOD2, are presented in this work. The study was carried out using the experimental circuit built at the 'Departamento de Engenharia Quimica da Escola Politecnica da Universidade de Sao Paulo'. In the circuit, two experiments were carried out with different conditions of power and mass flow, obtaining a single-phase regime with a level of power of 4706 W and flow of 5.10 -5 m 3 /s (3 l/min) and a two-phase regime with a level of power of 6536 W and secondary flow 2,33.10 -5 m 3 /s (1,4 l/min). The study allowed tio evaluate the capacity of the code for representing such phenomena as well as comparing the transients obtained theoretically with the experimental results. The comparative analysis shows that the code represents fairly well the single-phase transient, but the results for two-phase transients, starting from the nodalization and calibration used for the case single-phase transient, did not reproduce faithfully some experimental results. (author)

  17. Single-phase DECT with VNCT compared with three-phase CTU in patients with haematuria

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Jae; Park, Byung Kwan; Kim, Chan Kyo [Sungkyunkwan University School of Medicine, Department of Radiology, Samsung Medical Center, Seoul (Korea, Republic of)

    2016-10-15

    To retrospectively evaluate the diagnostic performance of single-phase dual-energy CT (DECT) with virtual non-contrast CT (VNCT) compared with three-phase CT urography (CTU) in patients with haematuria. A total of 296 patients underwent three-phase CTU (NCT at 120 kVp; nephrographic phase and excretory phase DECTs at 140 kVp and 80 kVp) owing to haematuria. Diagnostic performances of CT scans were compared for detecting urothelial tumours and urinary stones. Dose-length product (DLP) was compared in relation to single-phase DECT and three-phase CTU Dose-length product (DLP) was compared in relation to single-phase DECT and three-phase CTU. Sensitivity and specificity for tumour were 95 % (19/20) and 98.9 % (273/276) on CTU, 95 % (19/20) and 98.2 % (271/276) on nephrographic phase DECT, and 90 % (18/20) and 98.2 % (271/276) on excretory phase DECT (P > 0.1). Of the 148 stones detected on NCT, 108 (73 %) and 100 (67.6 %) were detected on nephrographic phase and excretory phase VNCTs, respectively. The mean size of stones undetected on nephrographic and excretory VNCTs was measured as 1.5 ± 0.5 mm and 1.6 ± 0.6 mm, respectively. The mean DLPs of three-phase CTU, nephrographic phase DECT and excretory phase DECT were 1076 ± 248 mGy . cm, 410 ± 98 mGy . cm, and 360 ± 87 mGy . cm, respectively (P < 0.001). Single-phase DECT has a potential to replace three-phase CTU for detecting tumours with a lower radiation dose. (orig.)

  18. Influence of microstructure on low cycle fatigue in some single phase and biphasic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Stolarz, J. [Ecole Nationale Superieure des Mines, Centre SMS, URA CNRS 1884, Saint-Etienne (France)

    2004-07-01

    This overview deals with the effects of microstructural parameters in different single phase and biphasic stainless steels on short crack behaviour and on fatigue life in the low cycle regime. The effect of the grain size is investigated in a single phase austenitic stainless steel. Under plastic strain control, the fatigue life increases when the grain size decreases. The results are discussed by analysing the distributions of crack depths as a function of the grain size. The second type of material is a metastable austenitic steel which partially transforms into martensite during LCF at temperatures between -50 C and +120 C. The grain size of the initially single phase austenitic microstructure has a combined influence on the volume fraction of martensite produced during fatigue and on the fatigue life. In this case, the grain size effect is still considerable but totally indirect because all fatigue cracks grow exclusively in the martensite. The cyclic behaviour analysis in biphasic alloys in which two phases undergo plastic deformation during LCF is considerably more complex because the conventional concept of microstructural barriers cannot be applied. The possible damage patterns in a pair of grains with different mechanical properties are discussed on the example of a solution treated and aged superduplex austenitic-ferritic stainless steel (SDSS). The hardening of one phase (ferrite) through ageing at 475 C changes the cyclic behaviour of the initial ''quasi single phase'' microstructure. Consequently, the fatigue life under plastic strain control decreases compared with the solution treated SDSS. The discussion is focussed on LCF damage mechanisms at the microstructure size scale with a particular accent put on the propagation of short cracks in the bulk. All the microstructures exhibit some common features with respect to the behaviour of short cracks. In particular a strong effect of microstructural barriers in the bulk and the

  19. The swelling transition of lepidocrocite-type protonated layered titanates into anatase under hydrothermal treatment

    Science.gov (United States)

    Yuan, Huiyu; Besselink, Rogier; Liao, Zhaoliang; Ten Elshof, Johan E.

    2014-04-01

    The common facets of anatase crystals are the (001) and (101) planes. However, the phase transformation from lepidocrocite-type titanate into anatase by hydrothermal processing yields an anatase microstructure with high concentration of exposed (010) planes. The phase transformation of a lepidocrocite-type protonated layered titanate (HTO) into anatase was studied using XRD, TEM, FTIR, and measurement of pH and zeta potential. It was found that HTO is proton-deficient. The phase transformation process begins after uptake of a sufficient number of protons into the lepidocrocite-type structure. With the uptake of protons new hydroxyl groups form on the internal surfaces of the layered titanate and result in a bilayer state of HTO. The phase transformation reaction is a topotactic dehydration reaction in which anatase forms and water is expelled by syneresis.

  20. The swelling transition of lepidocrocite-type protonated layered titanates into anatase under hydrothermal treatment.

    Science.gov (United States)

    Yuan, Huiyu; Besselink, Rogier; Liao, Zhaoliang; Ten Elshof, Johan E

    2014-04-03

    The common facets of anatase crystals are the (001) and (101) planes. However, the phase transformation from lepidocrocite-type titanate into anatase by hydrothermal processing yields an anatase microstructure with high concentration of exposed (010) planes. The phase transformation of a lepidocrocite-type protonated layered titanate (HTO) into anatase was studied using XRD, TEM, FTIR, and measurement of pH and zeta potential. It was found that HTO is proton-deficient. The phase transformation process begins after uptake of a sufficient number of protons into the lepidocrocite-type structure. With the uptake of protons new hydroxyl groups form on the internal surfaces of the layered titanate and result in a bilayer state of HTO. The phase transformation reaction is a topotactic dehydration reaction in which anatase forms and water is expelled by syneresis.

  1. On the development of a grid-enhanced single-phase convective heat transfer correlation

    International Nuclear Information System (INIS)

    Miller, D.J.; Cheung, F.B.; Bajorek, S.M.

    2011-01-01

    A new single-phase convective heat transfer augmentation correlation has been developed using single phase steam cooling experimental data obtained from the Penn State/NRC Rod Bundle Heat Transfer (RBHT) facility. Experimental data obtained from the RBHT single phase steam cooling tests have been evaluated and new findings identified. Previous rod bundle tests showed the importance of spacer grid on the local heat transfer, and that the augmentation in heat transfer downstream of a grid decays exponentially. The RBHT data also shows that the Reynolds number affects the rate at which this augmentation decays. The new correlation includes the strong dependence of heat transfer on both the Reynolds number and the grid blockage ratio. While the effects of both parameters were clearly evident in the RBHT experimental data, existing correlations do not account for the Reynolds number effect. The developed correlation incorporates Reynolds number in the decay curve of heat transfer. The newly developed correlation adequately accounts for the dependence of the heat transfer augmentation decay rate on the local flow Reynolds number. (author)

  2. SINGLE-PHASE AND TWO-PHASE SECONDARY COOLANTS: SIMULATION AND EVALUATION OF THEIR THERMOPHYSICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Pedro Samuel Gomes Medeiros

    2011-09-01

    Full Text Available This paper makes a comparative analysis of the thermophysical properties of ice slurry with conventional single-phase secondary fluids used in thermal storage cooling systems. The ice slurry is a two-phase fluid consisting of water, antifreeze and ice crystals. It is a new technology that has shown great energy potential. In addition to transporting energy as a heat transfer fluid, it has thermal storage properties due to the presence of ice, storing coolness by latent heat of fusion. The single-phase fluids analyzed are water-NaCl and water-propylene glycol solutions, which also operate as carrier fluids in ice slurry. The presence of ice changes the thermophysical properties of aqueous solutions and a number of these properties were determined: density, thermal conductivity and dynamic viscosity. Data were obtained by software simulation. The results show that the presence of 10% by weight of ice provides a significant increase in thermal conductivity and dynamic viscosity, without causing changes in density. The rheological behavior of ice slurries, associated with its high viscosity, requires higher pumping power; however, this was not significant because higher thermal conductivity allows a lower mass flow rate without the use of larger pumps. Thus, the ice slurry ensures its high potential as a secondary fluid in thermal storage cooling systems, proving to be more efficient than single-phase secondary fluids.

  3. Structural elucidation of nanocrystalline biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Maltsev, S.

    2008-10-23

    Bone diseases, such as osteoporosis and osteoarthritis, are the second most prevalent health problem worldwide. In Germany approximately 5 millions people are affected by arthritis. Investigating biomineralization processes and bone molecular structure is of key importance for developing new drugs for preventing and healing bone diseases. Nuclear magnetic resonance (NMR) was the primary technique used due to its advantages in characterising poorly ordered and disordered materials. Compared to all the diffraction techniques that widely applied in structural investigations, the usefulness of NMR is independent of long range molecular order. This makes NMR an outstanding technique for studies of complex/amorphous materials. Conventional NMR experiments (single pulse, spin-echo, cross polarization (CP), etc.) as well as their modifications and high-end techniques (2D HETCOR, REDOR, etc.) were used in this work. Combining the contributions from different techniques enhances the information content of the investigations and can increase the precision of the overall conclusions. Also XRD, TEM and FTIR were applied to different extent in order to get a general idea of nanocrystalline hydroxyapatite crystallite structure. Results: - A new approach named 'Solid-state NMR spectroscopy using the lost I spin magnetization in polarization transfer experiments' has been developed for measuring the transferred I spin magnetization from abundant nuclei, which is normally lost when detecting the S spin magnetization. - A detailed investigation of nanocrystalline hydroxyapatite core was made to prove that proton environment of the phosphates units and phosphorus environment of hydroxyl units are the same as in highly crystalline hydroxyapatite sample. - Using XRD it was found that the surface of the hydroxyapatite nanocrystals is not completely disordered, as it was suggested before, but resembles the hydroxyapatite structure with HPO{sub 4}{sup 2-} (and some CO{sub 3}{sup

  4. Structural elucidation of nanocrystalline biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Maltsev, S

    2008-10-23

    Bone diseases, such as osteoporosis and osteoarthritis, are the second most prevalent health problem worldwide. In Germany approximately 5 millions people are affected by arthritis. Investigating biomineralization processes and bone molecular structure is of key importance for developing new drugs for preventing and healing bone diseases. Nuclear magnetic resonance (NMR) was the primary technique used due to its advantages in characterising poorly ordered and disordered materials. Compared to all the diffraction techniques that widely applied in structural investigations, the usefulness of NMR is independent of long range molecular order. This makes NMR an outstanding technique for studies of complex/amorphous materials. Conventional NMR experiments (single pulse, spin-echo, cross polarization (CP), etc.) as well as their modifications and high-end techniques (2D HETCOR, REDOR, etc.) were used in this work. Combining the contributions from different techniques enhances the information content of the investigations and can increase the precision of the overall conclusions. Also XRD, TEM and FTIR were applied to different extent in order to get a general idea of nanocrystalline hydroxyapatite crystallite structure. Results: - A new approach named 'Solid-state NMR spectroscopy using the lost I spin magnetization in polarization transfer experiments' has been developed for measuring the transferred I spin magnetization from abundant nuclei, which is normally lost when detecting the S spin magnetization. - A detailed investigation of nanocrystalline hydroxyapatite core was made to prove that proton environment of the phosphates units and phosphorus environment of hydroxyl units are the same as in highly crystalline hydroxyapatite sample. - Using XRD it was found that the surface of the hydroxyapatite nanocrystals is not completely disordered, as it was suggested before, but resembles the hydroxyapatite structure with HPO{sub 4}{sup 2-} (and some CO{sub 3}{sup 2

  5. Extreme biomimetic approach for synthesis of nanocrystalline chitin-(Ti,Zr)O{sub 2} multiphase composites

    Energy Technology Data Exchange (ETDEWEB)

    Wysokowski, Marcin, E-mail: Marcin.Wysokowski@put.poznan.pl [Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60965, Poznan (Poland); Motylenko, Mykhaylo; Rafaja, David [TU Bergakademie Freiberg, Institute of Materials Science, Gustav-Zeuner-Str. 5, 09596, Freiberg (Germany); Koltsov, Iwona [Laboratory of Nanostructures, Institute of High Pressure Physics of The Polish Academy of Sciences, Sokołowska 29/37, 01-142, Warsaw (Poland); Stöcker, Hartmut [TU Bergakademie Freiberg, Institute of Experimental Physics, Leipziger str. 23, 09596, Freiberg (Germany); Szalaty, Tadeusz J. [Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60965, Poznan (Poland); Bazhenov, Vasilii V., E-mail: vasily.bazhenov@gmail.com [TU Bergakademie Freiberg, Institute of Experimental Physics, Leipziger str. 23, 09596, Freiberg (Germany); Stelling, Allison L. [Duke University, Department of Biochemistry, Durham, NC, 27708 (United States); Beyer, Jan; Heitmann, Johannes [TU Bergakademie Freiberg, Institute of Applied Physics, Leipziger str. 23, 09596, Freiberg (Germany); Jesionowski, Teofil [Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60965, Poznan (Poland); Petovic, Slavica; Đurović, Mirko [Institute of Marine Biology, Dobrota, 85330, Kotor (Montenegro); Ehrlich, Hermann [TU Bergakademie Freiberg, Institute of Experimental Physics, Leipziger str. 23, 09596, Freiberg (Germany)

    2017-02-15

    This work presents an extreme biomimetics route for the modification of the surface of fibre-based scaffolds of poriferan origin by the creation of novel nanostructured multiphase biocomposites. The exceptional thermal stability of the nanostructured sponge chitin allowed for the formation of a novel nanocrystalline chitin-(Ti,Zr)O{sub 2} composite with a well-defined nanoscale structure under hydrothermal conditions (160 °C). Using a combination of experimental techniques, including X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy, EDX mapping and near-edge electron loss spectroscopy (ELNES) in TEM and thermogravimetry/differential scanning calorimetry coupled with mass spectrometry; we showed that this bioorganic scaffold facilitates selective crystallization of TiO{sub 2}, predominantly in form of anatase, over the monoclinic zirconium dioxide (baddeleyite). The control of the crystal morphology through the chitin templates is also demonstrated. Obtained samples were characterized in terms of their photoluminescent properties and photocatalytic performance. These data confirm the high potential of the extreme biomimetics approach for developing a new generation of multiphase biopolymer-based nanostructured materials. - Highlights: • Extreme biomimetically prepared chitin-(Ti,Zr)O{sub 2} and (Ti,Zr)O{sub 2} composites. • Chitin-(Ti,Zr)O{sub 2} composite contains anatase as the most inorganic component. • The mean crystallite size is (31.7 ± 0.3) nm for chitin-(Ti,Zr)O{sub 2} composite. • The mean crystallite size is (2.4 ± 0.5) nm for (Ti,Zr)O{sub 2} composite. • (Ti,Zr)O{sub 2} composite is 2 times more effective photocatalyst than chitin-(Ti,Zr)O{sub 2}.

  6. Extreme biomimetic approach for synthesis of nanocrystalline chitin-(Ti,Zr)O2 multiphase composites

    International Nuclear Information System (INIS)

    Wysokowski, Marcin; Motylenko, Mykhaylo; Rafaja, David; Koltsov, Iwona; Stöcker, Hartmut; Szalaty, Tadeusz J.; Bazhenov, Vasilii V.; Stelling, Allison L.; Beyer, Jan; Heitmann, Johannes; Jesionowski, Teofil; Petovic, Slavica; Đurović, Mirko; Ehrlich, Hermann

    2017-01-01

    This work presents an extreme biomimetics route for the modification of the surface of fibre-based scaffolds of poriferan origin by the creation of novel nanostructured multiphase biocomposites. The exceptional thermal stability of the nanostructured sponge chitin allowed for the formation of a novel nanocrystalline chitin-(Ti,Zr)O 2 composite with a well-defined nanoscale structure under hydrothermal conditions (160 °C). Using a combination of experimental techniques, including X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy, EDX mapping and near-edge electron loss spectroscopy (ELNES) in TEM and thermogravimetry/differential scanning calorimetry coupled with mass spectrometry; we showed that this bioorganic scaffold facilitates selective crystallization of TiO 2 , predominantly in form of anatase, over the monoclinic zirconium dioxide (baddeleyite). The control of the crystal morphology through the chitin templates is also demonstrated. Obtained samples were characterized in terms of their photoluminescent properties and photocatalytic performance. These data confirm the high potential of the extreme biomimetics approach for developing a new generation of multiphase biopolymer-based nanostructured materials. - Highlights: • Extreme biomimetically prepared chitin-(Ti,Zr)O 2 and (Ti,Zr)O 2 composites. • Chitin-(Ti,Zr)O 2 composite contains anatase as the most inorganic component. • The mean crystallite size is (31.7 ± 0.3) nm for chitin-(Ti,Zr)O 2 composite. • The mean crystallite size is (2.4 ± 0.5) nm for (Ti,Zr)O 2 composite. • (Ti,Zr)O 2 composite is 2 times more effective photocatalyst than chitin-(Ti,Zr)O 2 .

  7. Effect of duration of the pause single-phase auto-reclosing on electro-power transmission capacitance

    Directory of Open Access Journals (Sweden)

    Krasil'nikova Tatyana

    2017-01-01

    Full Text Available This paper discusses the problem associated with accidents in the aerial line (AL ultra-high voltage (UHV due to its big length. In lines with a voltage of 500-1150 kV the overwhelming proportion of trips (98% is caused by single-phase short circuit (SPSC. A substantial portion (70% single-phase short circuits is erratic arc accidents which can be successfully eliminated in a high-speed auto-reclosing (HSAR or single-phase auto-reclosing (SPAR. Success single-phase auto-reclosing (SPAR at liquidation by single-phase short circuit (SPSC, on the one hand, is determined by the characteristics of the secondary arc current, and on the other hand the effectiveness of ways to reduce secondary arc current and recovery voltage development. The minimum dead time, at a HSAR it is usually taken as 0.5 s., at single-phase autoreclosing (SPAR it depends on the current value of the arc support is in the range of 0.5-3.0 s. The article shows high efficiency of use single-phase auto reclosing (SPAR at liquidation SPSC in a single-chain AL voltage of 500 kV, the dependence of the bandwidth of transmission in maintaining the dynamic stability from the length of the pause SPAR.

  8. Soft Magnetic Properties of Nanocrystalline Fe-M-(B and/or O)(M=Group IV A, V A Elements) Alloy Films

    OpenAIRE

    Hayakawa, Y.; Makino, A.; Inoue, A.; Masumoto, T.

    1996-01-01

    In Fe-M-(B and/or O)(M=group IV A, V A elements) alloy films, nanocrystalline bcc phase are formed by annealing the amorphous single phase for Fe-M-B films, whereas the bcc nanocrystals are already formed in an as-deposited state for Fe-M-O or Fe-M-B-O) films. Among Fe-M-B films with various M elements, Fe-(Zr, Hf, Nb, Ta)-B alloy films exhibit high saturation magnetization (Is) above 1.4 T and high relative permeability (|μ|) above 1000 at 1MHz. The highest |μ| of 3460 at 1MHz is obtained fo...

  9. Total robotic radical rectal resection with da Vinci Xi system: single docking, single phase technique.

    Science.gov (United States)

    Tamhankar, Anup Sunil; Jatal, Sudhir; Saklani, Avanish

    2016-12-01

    This study aims to assess the advantages of Da Vinci Xi system in rectal cancer surgery. It also assesses the initial oncological outcomes after rectal resection with this system from a tertiary cancer center in India. Robotic rectal surgery has distinct advantages over laparoscopy. Total robotic resection is increasing following the evolution of hybrid technology. The latest Da Vinci Xi system (Intuitive Surgical, Sunnyvale, USA) is enabled with newer features to make total robotic resection possible with single docking and single phase. Thirty-six patients underwent total robotic resection in a single phase and single docking. We used newer port positions in a straight line. Median distance from the anal verge was 4.5 cm. Median robotic docking time and robotic procedure time were 9 and 280 min, respectively. Median blood loss was 100 mL. One patient needed conversion to an open approach due to advanced disease. Circumferential resection margin and longitudinal resection margins were uninvolved in all other patients. Median lymph node yield was 10. Median post-operative stay was 7 days. There were no intra-operative adverse events. The latest Da Vinci Xi system has made total robotic rectal surgery feasible in single docking and single phase. With the new system, four arm total robotic rectal surgery may replace the hybrid technique of laparoscopic and robotic surgery for rectal malignancies. The learning curve for the new system appears to be shorter than anticipated. Early perioperative and oncological outcomes of total robotic rectal surgery with the new system are promising. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Fabrication of single phase 2D homologous perovskite microplates by mechanical exfoliation

    Science.gov (United States)

    Li, Junze; Wang, Jun; Zhang, Yingjun; Wang, Haizhen; Lin, Gaoming; Xiong, Xuan; Zhou, Weihang; Luo, Hongmei; Li, Dehui

    2018-04-01

    The two-dimensional (2D) Ruddlesden-Popper type perovskites have attracted intensive interest for their great environmental stability and various potential optoelectronic applications. Fundamental understanding of the photophysical and electronic properties of the 2D perovskites with pure single phase is essential for improving the performance of the optoelectronic devices and designing devices with new architectures. Investigating the optical and electronic properties of these materials with pure single phase is required to obtain pure single phase 2D perovskites. Here, we report on an alternative approach to fabricate (C4H9NH3)2(CH3NH3) n-1Pb n I3n+1 microplates with pure single n-number perovskite phase for n  >  2 by mechanical exfoliation. Micro-photoluminescence and absorption spectroscopy studies reveal that the as-synthesized 2D perovskite plates for n  >  2 are comprised by dominant n-number phase and small inclusions of hybrid perovskite phases with different n values, which is supported by excitation power dependent photoluminescence. By mechanical exfoliation method, 2D perovskite microplates with the thickness of around 20 nm are obtained, which surprisingly have single n-number perovskite phase for n  =  2-5. In addition, we have demonstrated that the exfoliated 2D perovskite microplates can be integrated with other 2D layered materials such as boron nitride, and are able to be transferred to prefabricated electrodes for photodetections. Our studies not only provide a strategy to prepare 2D perovskites with a single n-number perovskite phase allowing us to extract the basic optical and electronic parameters of pure phase perovskites, but also demonstrate the possibility to integrate the 2D perovskites with other 2D layered materials to extend the device’s functionalities.

  11. A PWM strategy for acoustic noise reduction for grid-connected single-phase inverters

    Energy Technology Data Exchange (ETDEWEB)

    Shao, R.; Guo, Z.; Chang, L. [New Brunswick Univ., Fredericton, NB (Canada). Dept. of Electrical and Computer Engineering

    2006-07-01

    This paper presented a newly proposed and improved pulse width modulation (PWM) strategy for grid-connected single-phase inverters. Small distributed generators using energy from renewable resources such as PV and wind systems typically use grid-connected single-phase inverters as voltage source inverters for good acoustic performance. PWM is generally applied in these inverters in order to achieve good waveforms of output current as required by interconnection standards. In routine simultaneous switching PWM methods, the current ripples through the inverter output filter inductor are at the carrier switching frequency, which is one of the major causes for inverter acoustic noise. The new PWM strategy effectively alleviates acoustic noise and improves output power quality. It is based on the principle of evenly splitting the switching of Insulated Gate Bipolar Transistors (IGBT) in each switching cycle among all IGBTs of the full bridge, thereby using a non-simultaneous mode of PWM which doubles the output current ripple frequency. This increases the inductor current ripple frequency to twice the carrier frequency. It is therefore possible to increase the current ripple frequency, or noise frequency into the range of ultrasonic which is inaudible to the human ear, without increasing the inverter's switching frequency to which the inverter's switching loss is proportional. In addition, this new PWM scheme can reduce the output current harmonics distortion and dc link current ripples. As such, lower capacitance in dc link capacitors and lower inductance of output inductor are needed. The improved PWM scheme was verified in a 3 kW grid-connected single-phase inverter. It was shown that the PWM strategy can be readily implemented with a digital signal processing microcontroller. 8 refs., 11 figs.

  12. Reliability-Oriented Design and Analysis of Input Capacitors in Single-Phase Transformer-less Photovoltaic Inverters

    DEFF Research Database (Denmark)

    Wang, Huai; Yang, Yongheng; Blaabjerg, Frede

    2013-01-01

    While 99% efficiency has been reported, the target of 20 years of service time imposes new challenge to cost-effective solutions for grid-connected photovoltaic (PV) inverters. Aluminum electrolytic capacitors are the weak-link in terms of reliability and lifetime in single-phase PV systems....... A reliability-oriented design guideline is proposed in this paper for the input capacitors in single-phase transformer-less PV inverters. The guideline ensures that the service time requirement is to be accomplished under different power levels and ambient temperature profiles. The theoretical analysis has been...... demonstrated by a 1 kW single-phase PV inverter....

  13. Indirect Control of a low power Single-Phase Active Power Filter

    Directory of Open Access Journals (Sweden)

    SILVIU EPURE

    2010-12-01

    Full Text Available This paper deals with a low power, single phase active filter used to compensate nonlinear loads. The filter uses the indirect control method and it is based on a particular connection between filter, polluting load and grid to avoid timeconsuming mathematic operations or signal processing computations and assures good rejection of harmonic currents injected by the nonlinear load into the grid. A scale model was first simulated in Simulink and then physically implemented. The paper presents simulation and experimental results, and highlight problems encountered during experiments.

  14. A Novel Flying Capacitor Transformerless Inverter for Single-Phase Grid Connected Solar Photovoltaic System

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; Blaabjerg, Frede

    2016-01-01

    This paper proposes a new single-phase flying capacitor transformerless PV inverter for grid-connected photovoltaic (PV) systems. The neutral of the grid can be directly connected to the negative terminal of the source (PV). It consists of four power switches, one diode, one capacitor and a small...... and some topologies, which requires two times of the peak ac-voltage magnitude) and, (5) the flying capacitor charges every switching cycle, which reduces the size of the required capacitor with switching frequency. In addition, industry standard half bridge module can be used in the new inverter without...

  15. S4 Grid-Connected Single-Phase Transformerless Inverter for PV Application

    DEFF Research Database (Denmark)

    Ardashir, Jaber Fallah; Siwakoti, Yam Prasad; Sabahi, Mehran

    2016-01-01

    This paper introduces a new single-phase transformerless inverter for grid-connected photovoltaic systems with low leakage current. It consists of four power switches, two diodes, two capacitors and a filter at the output stage. The neutral of the grid is directly connected to the negative terminal...... size, low cost, flexible grounding configuration and higher efficiency. The operating principle and analysis of the proposed circuit are presented in details. Experimental results of a 500 W prototype are demonstrated to validate the proposed topology and the overall concept. The results obtained...... clearly verify the performance of the proposed inverter and its practical application for grid-connected PV systems....

  16. Low voltage ride-through of single-phase transformerless photovoltaic inverters

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede; Wang, Huai

    2013-01-01

    Transformerless photovoltaic (PV) inverters are going to be more widely adopted in order to achieve high efficiency, as the penetration level of PV systems is continuously booming. However, problems may arise in highly PV-integrated distribution systems. For example, a sudden stoppage of all PV...... discussed. The selected inverters are the full-bridge inverter with bipolar modulation, full-bridge inverter with DC bypass and the Highly Efficient and Reliable Inverter Concept (HERIC). A 1 kW single-phase grid-connected PV system is analyzed to verify the discussions. The tests confirmed that, although...

  17. H-Bridge Transformerless Inverter with Common Ground for Single-Phase Solar-Photovoltaic System

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; Blaabjerg, Frede

    2017-01-01

    This paper proposes a new single-phase H-Bridge transformerless inverter with common ground for grid-connected photovoltaic systems (hereafter it is called ‘Siwakoti-H’ inverter). The inverter works on the principle of flying capacitor and consists of only four power switches (two reverse blocking...... IGBT's (RB-IGBT) and two MOSFET's), a capacitor and a small filter at the output stage. The proposed topology share a common ground with the grid and the PV source. A Unipolar Sinusoidal Pulse-Width Modulation (SPWM) technique is used to modulate the inverter to minimize switching loss, output current...

  18. Pressure drop and heat transfer of lithium single-phase flow under transverse magnetic field

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Aritomi, Masanori; Inoue, Akira; Matsuzaki, Mitsuo

    1996-01-01

    Pressure drop and heat transfer characteristics of a lithium single-phase flow in a rectangular channel was investigated experimentally in the presence of a magnetic field. Friction loss coefficient under non-magnetic field and skin friction coefficient under magnetic field agreed well with the Blasius formula and a simple analytical expression, respectively. Nusselt number under non-magnetic field was slightly lower than the correlation by Hartnett and Irvine. Heat transfer was enhanced by increasing magnetic field above the Hartmann number of about 200. (author)

  19. A review of single-phase grid-connected inverters for photovoltaic modules

    DEFF Research Database (Denmark)

    Kjaer, Soren Baekhoej; Pedersen, John Kim; Blaabjerg, Frede

    2005-01-01

    -phase grid; 3) whether they utilizes a transformer (either line or high frequency) or not; and 4) the type of grid-connected power stage. Various inverter topologies are presented, compared, and evaluated against demands, lifetime, component ratings, and cost. Finally, some of the topologies are pointed out......This review focuses on inverter technologies for connecting photovoltaic (PV) modules to a single-phase grid. The inverters are categorized into four classifications: 1) the number of power processing stages in cascade; 2) the type of power decoupling between the PV module(s) and the single...

  20. Single phase and two-phase flow pressure losses through restrictions, expansions and inserts

    International Nuclear Information System (INIS)

    Glenat, P.; Solignac, P.

    1984-11-01

    We give a selection of methods to predict pressure losses through retrictions, expansions and inserts. In single phase flow, we give the classical method based on the one-dimensional momentum and mass balances. In two-phase flow, we propose the method given by Harshe et al. and an empirical approach suggested by Chisholm. We notice the distinction between long and short inserts depends upon wether or not the vena contracta lies within insert. Finally, we propose three correlations to calculate void fraction through the singularities which have been considered [fr

  1. Fixed switching frequency applied in single-phase boost AC to DC converter

    International Nuclear Information System (INIS)

    Chen, T.-C.; Ren, T.-J.; Ou, J.-C.

    2009-01-01

    The fixed switching frequency control for a single-phase boost AC to DC converter to achieve a sinusoidal line current and unity power factor is proposed in this paper. The relation between the line current error and the fixed switching frequency was developed. For a limit line current error, the minimum switching frequency for a boost AC to DC converter can be achieved. The proposed scheme was implemented using a 32-bit digital signal processor TMS320C32. Simulations and experimental results demonstrate the feasibility and fast dynamic response of the proposed control strategy.

  2. An empirical relationship for homogenization in single-phase binary alloy systems

    Science.gov (United States)

    Unnam, J.; Tenney, D. R.; Stein, B. A.

    1979-01-01

    A semiempirical formula is developed for describing the extent of interaction between constituents in single-phase binary alloy systems with planar, cylindrical, or spherical interfaces. The formula contains two parameters that are functions of mean concentration and interface geometry of the couple. The empirical solution is simple, easy to use, and does not involve sequential calculations, thereby allowing quick estimation of the extent of interactions without lengthy calculations. Results obtained with this formula are in good agreement with those from a finite-difference analysis.

  3. A Study on Energy Saving of Single Phase Induction Motor By Voltage Control

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jong Moon [Pusan College of Information Technolgy, Pusan (Korea); Kim, Joon Hong [Dong Myong College, Pusan (Korea)

    2001-06-01

    This paper describes a simple effective method for energy saving of AC motors having a widely variable load. The proposed method is based on an optimal efficiency control which is operated by voltage-current pattern such as to maintain the maximum efficiency on the efficiency-output characteristics of the motor, TRIAC voltage control characteristics. The parameters of simplified voltage-current pattern can be determined approximately and reliably from the rated voltage and current of the motor. Experiments are focused on a single phase capacitor motor, the optimal energy saving are proved by proposed method. (author). 8 refs., 15 figs.

  4. Power quality improvement of single-phase photovoltaic systems through a robust synchronization method

    DEFF Research Database (Denmark)

    Hadjidemetriou, Lenos; Kyriakides, Elias; Yang, Yongheng

    2014-01-01

    An increasing amount of single-phase photovoltaic (PV) systems on the distribution network requires more advanced synchronization methods in order to meet the grid codes with respect to power quality and fault ride through capability. The response of the synchronization technique selected...... is crucial for the performance of PV inverters. In this paper, a new synchronization method with good dynamics and accurate response under highly distorted voltage is proposed. This method uses a Multi-Harmonic Decoupling Cell (MHDC), which cancels out the oscillations on the synchronization signals due...

  5. DQ reference frame modeling and control of single-phase active power decoupling circuits

    DEFF Research Database (Denmark)

    Tang, Yi; Qin, Zian; Blaabjerg, Frede

    2015-01-01

    . This paper presents the dq synchronous reference frame modeling of single-phase power decoupling circuits and a complete model describing the dynamics of dc-link ripple voltage is presented. The proposed model is universal and valid for both inductive and capacitive decoupling circuits, and the input...... of decoupling circuits can be either dependent or independent of its front-end converters. Based on this model, a dq synchronous reference frame controller is designed which allows the decoupling circuit to operate in two different modes because of the circuit symmetry. Simulation and experimental results...... are presented to verify the effectiveness of the proposed modeling and control method....

  6. A New Synchronous Reference Frame-Based Method for Single-Phase Shunt Active Power Filters

    DEFF Research Database (Denmark)

    Monfared, Mohammad; Golestan, Saeed; Guerrero, Josep M.

    2013-01-01

    This paper deals with the design of a novel method in the synchronous reference frame (SRF) to extract the reference compensating current for single-phase shunt active power filters (APFs). Unlike previous works in the SRF, the proposed method has an innovative feature that it does not need...... the fictitious current signal. Frequency-independent operation, accurate reference current extraction and relatively fast transient response are other key features of the presented strategy. The effectiveness of the proposed method is investigated by means of detailed mathematical analysis. The results confirm...

  7. Control Method of Single-phase Inverter Based Grounding System in Distribution Networks

    DEFF Research Database (Denmark)

    Wang, Wen; Yan, L.; Zeng, X.

    2016-01-01

    of neutral-to-ground voltage is critical for the safety of distribution networks. An active grounding system based on single-phase inverter is proposed to achieve this objective. Relationship between output current of the system and neutral-to-ground voltage is derived to explain the principle of neutral......The asymmetry of the inherent distributed capacitances causes the rise of neutral-to-ground voltage in ungrounded system or high resistance grounded system. Overvoltage may occur in resonant grounded system if Petersen coil is resonant with the distributed capacitances. Thus, the restraint...

  8. Single Phase Current-Source Active Rectifier for Traction: Control System Design and Practical Problems

    Directory of Open Access Journals (Sweden)

    Jan Michalik

    2006-01-01

    Full Text Available This research has been motivated by industrial demand for single phase current-source active rectifier dedicated for reconstruction of older types of dc machine locomotives. This paper presents converters control structure design and simulations. The proposed converter control is based on the mathematical model and due to possible interaction with railway signaling and required low switching frequency employs synchronous PWM. The simulation results are verified by experimental tests performed on designed laboratory prototype of power of 7kVA

  9. Reaction kinetics of oxygen on single-phase alloys, oxidation of nickel and niobium alloys

    International Nuclear Information System (INIS)

    Lalauze, Rene

    1973-01-01

    This research thesis first addresses the reaction kinetics of oxygen on alloys. It presents some generalities on heterogeneous reactions (conventional theory, theory of jumps), discusses the core reaction (with the influence of pressure), discusses the influence of metal self-diffusion on metal oxidation kinetics (equilibrium conditions at the interface, hybrid diffusion regime), reports the application of the hybrid diffusion model to the study of selective oxidation of alloys (Wagner model, hybrid diffusion model) and the study of the oxidation kinetics of an alloy forming a solid solution of two oxides. The second part reports the investigation of the oxidation of single phase nickel and niobium alloys (phase α, β and γ)

  10. Dispersed single-phase-step Michelson interferometer for Doppler imaging using sunlight.

    Science.gov (United States)

    Wan, Xiaoke; Ge, Jian

    2012-09-15

    A Michelson interferometer is dispersed with a fiber array-fed spectrograph, providing 59 Doppler sensing channels using sunlight in the 510-570 nm wavelength region. The interferometer operates at a single-phase-step mode, which is particularly advantageous in multiplexing and data processing compared to the phase-stepping mode of other interferometer spectrometer instruments. Spectral templates are prepared using a standard solar spectrum and simulated interferometer modulations, such that the correlation function with a measured 1D spectrum determines the Doppler shift. Doppler imaging of a rotating cylinder is demonstrated. The average Doppler sensitivity is ~12 m/s, with some channels reaching ~5 m/s.

  11. Single-Phase Phase-Locked Loop Based on Derivative Elements

    DEFF Research Database (Denmark)

    Guan, Qingxin; Zhang, Yu; Kang, Yong

    2017-01-01

    High-performance phase-locked loops (PLLs) are critical for power control in grid-connected systems. This paper presents a new method of designing a PLL for single-phase systems based on derivative elements (DEs). The quadrature signal generator (QSG) is constructed by two DEs with the same...... PLL to achieve high performance when the grid frequency changes rapidly. This paper presents the model of the PLL and a theoretical performance analysis with respect to both the frequency-domain and time-domain behavior. The error arising from the discretization process is also compensated, ensuring...

  12. Benchmarking of small-signal dynamics of single-phase PLLs

    DEFF Research Database (Denmark)

    Zhang, Chong; Wang, Xiongfei; Blaabjerg, Frede

    2015-01-01

    Phase-looked Loop (PLL) is a critical component for the control and grid synchronization of grid-connected power converters. This paper presents a benchmarking study on the small-signal dynamics of three commonly used PLLs for single-phase converters, including enhanced PLL, second......-order generalized integrator based PLL, and the inverse-PLL. First, a unified small-signal model of those PLLs is established for comparing their dynamics. Then, a systematic design guideline for parameters tuning of the PLLs is formulated. To confirm the validity of theoretical analysis, nonlinear time...

  13. Control of single-phase islanded PV/battery minigrids based on power-line signaling

    DEFF Research Database (Denmark)

    Quintana, Pablo; Guerrero, Josep M.; Dragicevic, Tomislav

    2014-01-01

    should be utilized as efficiently as possible. This paper proposes a coordinated control strategy based on power-line signaling (PLS), instead of common communications, for a single-phase minigrid in which each unit can operate in different operation modes taking into account the resource limitation...... types of renewable energy sources (RES) and energy storage systems (ESS). Specifically, the recharging process of secondary battery, the most prominent ESS, should be done in a specific manner to preserve its life-time, microgrid line voltage must be kept within the bounds and the energy offered by RES...

  14. Energy efficient power electronic controller for a capacitor-run single-phase induction motor

    International Nuclear Information System (INIS)

    Saravana Ilango, G.; Samidurai, K.; Roykumar, M.; Thanushkodi, K.

    2009-01-01

    At present the speed control of a capacitor-run single-phase induction motor is being achieved by using triac based voltage regulators. This paper proposes a new scheme; an electronic transformer acts as a voltage regulator. Performance comparison is made between these two schemes in this paper. It is found that the proposed scheme has superior operating and performance characteristics. Experimental results show that apart from improvement in performance with respect to power factor and total harmonic distortion an appreciable amount of energy saving is also obtained in the electronic transformer based scheme.

  15. Novel Position and Speed Estimator for PM Single Phase Brushless D.C. Motor Drives

    DEFF Research Database (Denmark)

    Lepure, Liviu I.; Andreescu, Gheorghe-Daniel; Iles, Doris

    2010-01-01

    A novel position and speed estimator for single phase permanent magnet brushless d.c. (PMBLDC) motor drives, based on flux integration and prior knowledge of ΨPM (θ) is proposed here and an adequate correction algorithm is adopted in order to increase the robustness to noise and to reduce...... the sensitivity to accuracy of flux linkage estimation. A speed and current close loop control is employed based on the Hall signal and the motor is controlled at different speeds in order to validate the proposed estimation algorithm with satisfying results. The position correction effect is analyzed...

  16. Improved state observers for sensorless single phase BLDC-PM motor drives

    DEFF Research Database (Denmark)

    Lepure, Liviu L.; Boldea, Ion; Andreescu, Gheorghe Daniel

    2010-01-01

    Two methods of extracting the rotor position and speed for a sensorless single phase BLDC-PM motor drive by measuring only the phase current are presented here. Both methods are based on a generated orthogonal flux system. The first method extracts the position information by using the tan−1...... function and then an improved observer is created by adding a 4th order harmonic term in the estimated position, while the second method uses a phase locked loop structure. The proposed state observers are detailed using simulation results and then validated by experimental results....

  17. Nanocrystalline permanent magnets with enhanced properties

    International Nuclear Information System (INIS)

    Leonowicz, M.

    2002-01-01

    Parameters of permanent magnets result from the combination of intrinsic properties such as saturation magnetization, magnetic exchange, and magnetocrystalline energy, as well as microstructural parameters such as phase structure, grain size, and orientation. Reduction of grain size into nanocrystalline regime (∼ 50 nm) leads to the enhanced remanence which derives from ferromagnetic exchange coupling between highly refined grains. In this study the fundamental phenomena, quantities, and structure parameters, which define nanophase permanent magnets are presented and discussed. The theoretical considerations are confronted with experimental data for nanocrystalline Sm-Fe-N type permanent magnets. (author)

  18. Direct Coating of Nanocrystalline Diamond on Steel

    Science.gov (United States)

    Tsugawa, Kazuo; Kawaki, Shyunsuke; Ishihara, Masatou; Hasegawa, Masataka

    2012-09-01

    Nanocrystalline diamond films have been successfully deposited on stainless steel substrates without any substrate pretreatments to promote diamond nucleation, including the formation of interlayers. A low-temperature growth technique, 400 °C or lower, in microwave plasma chemical vapor deposition using a surface-wave plasma has cleared up problems in diamond growth on ferrous materials, such as the surface graphitization, long incubation time, substrate softening, and poor adhesion. The deposited nanocrystalline diamond films on stainless steel exhibit good adhesion and tribological properties, such as a high wear resistance, a low friction coefficient, and a low aggression strength, at room temperature in air without lubrication.

  19. Design of Controller for Reducing In-Rush Current of Single-Phase Induction Motor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Su Kang; Baek, Hyung Lae; Lee, Sang Il [Chosun University, Kwangju (Korea)

    2001-05-01

    During an AC motor's start-up accelerating period, a large amount of current is required to reach to the rating speed. This is called in-rush current. This peak in-rush current can be more than about several times the operating or steady-state current in the full load rating of the motor. In-rush current is present in both and electronic ballasts. The main area of concern is the tripping of circuit breaker and fuses which can affect electrical system components From this, we can see that the electrical power controllers will be rather concerned, since they have to supply the actual current necessary to start the motor. This paper presents a new method to reducing in-rush current and energy saving of the single-phase induction motor used in air-conditioner. It can be obtained that proposed system is low cost and small size as compared with other controller. Experiments are focused on a capacitor starting single-phase induction motor. The optimal power saving and in-rush current limiting by phase angle control are verified by experimental results. Also, auxiliary winding was controlled by electronic starting switch. (author). 10 refs., 13 figs., 2 tabs.

  20. Common-Ground-Type Transformerless Inverters for Single-Phase Solar Photovoltaic Systems

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; Blaabjerg, Frede

    2018-01-01

    This paper proposes a family of novel flying capacitor transformerless inverters for single-phase photovoltaic (PV) systems. Each of the new topologies proposed is based on a flying capacitor principle and requires only four power switches and/or diodes, one capacitor, and a small filter at the o......This paper proposes a family of novel flying capacitor transformerless inverters for single-phase photovoltaic (PV) systems. Each of the new topologies proposed is based on a flying capacitor principle and requires only four power switches and/or diodes, one capacitor, and a small filter...... at the output stage. A simple unipolar sinusoidal pulse width modulation technique is used to modulate the inverter to minimize the switching loss, output current ripple, and the filter requirements. In general, the main advantages of the new inverter topologies are: 1) the negative polarity of the PV...... description of the operating principle with modulation techniques, design guidelines, and comprehensive comparisons is presented to reveal the properties and limitations of each topology in detail. Finally, experimental results of 1-kVA prototypes are presented to prove the concept and theoretical analysis...

  1. A Standalone Solar Photovoltaic Power Generation using Cuk Converter and Single Phase Inverter

    Science.gov (United States)

    Verma, A. K.; Singh, B.; Kaushika, S. C.

    2013-03-01

    In this paper, a standalone solar photovoltaic (SPV) power generating system is designed and modeled using a Cuk dc-dc converter and a single phase voltage source inverter (VSI). In this system, a dc-dc boost converter boosts a low voltage of a PV array to charge a battery at 24 V using a maximum power point tracking control algorithm. To step up a 24 V battery voltage to 360 V dc, a high frequency transformer based isolated dc-dc Cuk converter is used to reduce size, weight and losses. The dc voltage of 360 V is fed to a single phase VSI with unipolar switching to achieve a 230 Vrms, 50 Hz ac. The main objectives of this investigation are on efficiency improvement, reduction in cost, weight and size of the system and to provide an uninterruptible power to remotely located consumers. The complete SPV system is designed and it is modeled in MATLAB/Simulink. The simulated results are presented to demonstrate its satisfactory performance for validating the proposed design and control algorithm.

  2. Numerical investigation of refrigeration machine compressor operation considering single-phase electric motor dynamic characteristics

    Science.gov (United States)

    Baidak, Y.; Smyk, V.

    2017-08-01

    Using as the base the differential equations system which was presented in relative units for generalized electric motor of hermetic refrigeration compressor, mathematical model of the software for dynamic performance calculation of refrigeration machine compressors drive low-power asynchronous motors was developed. Performed on its ground calculations of the basic model of two-phase electric motor drive of hermetic compressor and the proposed newly developed model of the motor with single-phase stator winding, which is an alternative to the industrial motor winding, have confirmed the benefits of the motor with innovative stator winding over the base engine. Given calculations of the dynamic characteristics of compressor drive motor have permitted to determine the value of electromagnetic torque swinging for coordinating compressor and motor mechanical characteristics, and for taking them into consideration in choosing compressor elements construction materials. Developed and used in the process of investigation of refrigeration compressor drive asynchronous single-phase motor mathematical and software can be considered as an element of computer-aided design system for design of the aggregate of refrigeration compression unit refrigerating machine.

  3. Validation of CATHENA MOD-3.5/Rev0 for single-phase water hammer

    International Nuclear Information System (INIS)

    Beuthe, T.G.

    2000-01-01

    This paper describes work performed to validate the system thermalhydraulics code CATHENA MOD-3.5c/Rev0 for single-phase water hammer. Simulations were performed and are compared quantitatively against numerical tests and experimental results from the Seven Sisters Water Hammer Facility to demonstrate CATHENA can predict the creation and propagation of pressure waves when valves are opened and closed. Simulations were also performed to show CATHENA can model the behaviour of reflected and transmitted pressure waves at area changes, dead ends, tanks, boundary conditions, and orifices in simple and more complex piping systems. The CATHENA results are shown to calculate pressure and wave propagation speeds to within 0.2% and 0.5% respectively for numerical tests and within 3.3% and 5% for experimental results respectively. These results are used to help validate CATHENA for use in single-phase water hammer analysis. They also provide assurance that the fundamental parameters needed to successfully model more complex forms of water hammer are accounted for in the MOD-3.5c/Rev0 version of CATHENA, and represent the first step in the process to validate the code for use in modelling two-phase water hammer and condensation-induced water hammer. (author)

  4. Fabrication and Characterization of Single Phase α-Alumina Membranes with Tunable Pore Diameters

    Science.gov (United States)

    Masuda, Tatsuya; Asoh, Hidetaka; Haraguchi, Satoshi; Ono, Sachiko

    2015-01-01

    Nanoporous and single phase α-alumina membranes with pore diameters tunable over a wide range of approximately 60–350 nm were successfully fabricated by optimizing the conditions for anodizing, subsequent detachment, and heat treatment. The pore diameter increased and the cell diameter shrunk upon crystallization to α-alumina by approximately 20% and 3%, respectively, in accordance with the 23% volume shrinkage resulting from the change in density associated with the transformation from the amorphous state to α-alumina. Nevertheless, flat α-alumina membranes, each with a diameter of 25 mm and a thickness of 50 μm, were obtained without thermal deformation. The α-alumina membranes exhibited high chemical resistance in various concentrated acidic and alkaline solutions as well as when exposed to high temperature steam under pressure. The Young’s modulus and hardness of the single phase α-alumina membranes formed by heat treatment at 1250 °C were notably decreased compared to the corresponding amorphous membranes, presumably because of the nodular crystallite structure of the cell walls and the substantial increase in porosity. Furthermore, when used for filtration, the α-alumina membrane exhibited a level of flux higher than that of the commercial ceramic membrane. PMID:28788005

  5. Fabrication and Characterization of Single Phase α-Alumina Membranes with Tunable Pore Diameters

    Directory of Open Access Journals (Sweden)

    Tatsuya Masuda

    2015-03-01

    Full Text Available Nanoporous and single phase α-alumina membranes with pore diameters tunable over a wide range of approximately 60–350 nm were successfully fabricated by optimizing the conditions for anodizing, subsequent detachment, and heat treatment. The pore diameter increased and the cell diameter shrunk upon crystallization to α-alumina by approximately 20% and 3%, respectively, in accordance with the 23% volume shrinkage resulting from the change in density associated with the transformation from the amorphous state to α-alumina. Nevertheless, flat α-alumina membranes, each with a diameter of 25 mm and a thickness of 50 μm, were obtained without thermal deformation. The α-alumina membranes exhibited high chemical resistance in various concentrated acidic and alkaline solutions as well as when exposed to high temperature steam under pressure. The Young’s modulus and hardness of the single phase α-alumina membranes formed by heat treatment at 1250 °C were notably decreased compared to the corresponding amorphous membranes, presumably because of the nodular crystallite structure of the cell walls and the substantial increase in porosity. Furthermore, when used for filtration, the α-alumina membrane exhibited a level of flux higher than that of the commercial ceramic membrane.

  6. A Nonadaptive Window-Based PLL for Single-Phase Applications

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2018-01-01

    The rectangular window filter, typically known as the moving average filter (MAF), is a quasi-ideal low-pass filter that has found wide application in designing advanced single-phase phase-locked loops (PLLs). Most often, the MAF is employed as an in-loop filter within the control loop of the sin......The rectangular window filter, typically known as the moving average filter (MAF), is a quasi-ideal low-pass filter that has found wide application in designing advanced single-phase phase-locked loops (PLLs). Most often, the MAF is employed as an in-loop filter within the control loop...... response is avoided. Nevertheless, the PLL implementation complexity considerably increases as MAFs are frequency-adaptive and, therefore, they require an additional frequency detector for estimating the grid frequency. To reduce the implementation complexity while maintaining a good performance, using...... a nonadaptive MAF-based QSG with some error compensators is suggested in this letter. The effectiveness of the resultant PLL, which is briefly called the nonadaptive MAF-based PLL, is verified using experimental results....

  7. A note on similarity in single-phase and porous-medium natural convection

    International Nuclear Information System (INIS)

    Lyall, H.G.

    1981-03-01

    The similarity laws for single-phase and porous-medium natural convection are developed. For single-phase flow Nu = Nu(Ra) implies that inertial effects are negligible, while Nu = Nu(Ra.Pr) implies that viscous effects are. The first correlation is adequate for Pr>10, while the second applies for Pr<0.01. For intermediate values of Pr, a more general correlation, Nu = Nu(Ra,Pr) is necessary. For a porous-medium, if inertial effects and dispersion are negligible, Nu* = Nu*(Ra*). However dispersion will only be negligible if the ratio of grain size d to the width of the region L is very small (d/L<< l). If this condition does not hold it is necessary to model d/L. If inertial effects are significant, i.e. the Reynolds number is too large for Darcy's law to apply, a group containing the effective Prandtl number, Pr*, also needs to be modelled for similarity. (author)

  8. Simplified thermal-hydraulic analysis of single phase natural circulation circuit with two heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, Larissa Cunha; Su, Jian, E-mail: larissa@lasme.coppe.ufrj.br, E-mail: sujian@lasme.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenhraria Nuclear; Cotta, Renato Machado, E-mail: cotta@mecanica.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (POLI/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica

    2015-07-01

    Single phase natural circulation circuits composed of two convective heat exchangers and connecting tubes are important for the passive heat removal from spent fuel pools (SFP). To keep the structural integrity of the stored spent fuel assemblies, continuously cooling has to be provided in order to avoid increase at the pool temperature and subsequent uncovering of the fuel and enhanced reaction between water and metal releasing hydrogen. Decay heat can achieve considerably high amounts of energy e.g. in the AP1000, considering the emergency fuel assemblies, the maximum heat decay will reach 13 MW in the 15th day (Westinghouse Electric Company, 2010). A highly efficient alternative to do so is by means of natural circulation, which is cost-effective compared to active cooling systems and is inherently safer since presents less associated devices and no external work is required. Many researchers have investigated safety and stability aspects of natural circulation loops (NCL). However, there is a lack of literature concerning the improvement of NCL through a standard unified methodology, especially for natural circulation circuits with two heat exchangers. In the present study, a simplified thermal-hydraulic analysis of single phase natural circulation circuit with two heat exchanges is presented. Relevant dimensionless key groups were proposed to for the design and safety analysis of a scaled NCL for the cooling of spent fuel storage pool with convective cooling and heating. (author)

  9. Experimental studies in a single-phase parallel channel natural circulation system. Preliminary results

    International Nuclear Information System (INIS)

    Bodkha, Kapil; Pilkhwal, D.S.; Jana, S.S.; Vijayan, P.K.

    2016-01-01

    Natural circulation systems find extensive applications in industrial engineering systems. One of the applications is in nuclear reactor where the decay heat is removed by natural circulation of the fluid under off-normal conditions. The upcoming reactor designs make use of natural circulation in order to remove the heat from core under normal operating conditions also. These reactors employ multiple vertical fuel channels with provision of on-power refueling/defueling. Natural circulation systems are relatively simple, safe and reliable when compared to forced circulation systems. However, natural circulation systems are prone to encounter flow instabilities which are highly undesirable for various reasons. Presence of parallel channels under natural circulation makes the system more complicated. To examine the behavior of parallel channel system, studies were carried out for single-phase natural circulation flow in a multiple vertical channel system. The objective of the present work is to study the flow behavior of the parallel heated channel system under natural circulation for different operating conditions. Steady state and transient studies have been carried out in a parallel channel natural circulation system with three heated channels. The paper brings out the details of the system considered, different cases analyzed and preliminary results of studies carried out on a single-phase parallel channel system.

  10. Experimental study of single-phase pressure drops in coarse particle beds

    Energy Technology Data Exchange (ETDEWEB)

    Clavier, R., E-mail: remi.clavier@irsn.fr [IRSN Cadarache, Saint Paul-lez-Durance (France); Chikhi, N., E-mail: nourdine.chikhi@irsn.fr [IRSN Cadarache, Saint Paul-lez-Durance (France); Fichot, F., E-mail: florian.fichot@irsn.fr [IRSN Cadarache, Saint Paul-lez-Durance (France); Quintard, M., E-mail: Michel.Quintard@imft.fr [Université de Toulouse, Allée Camille Soula, F-31400 Toulouse (France); INPT, UPS, Allée Camille Soula, F-31400 Toulouse (France); IMFT (Institut de Mécanique des Fluides de Toulouse), Allée Camille Soula, F-31400 Toulouse (France); CNRS, F-31400 Toulouse (France)

    2017-02-15

    Motivated by uncertainty reduction in nuclear debris beds coolability, experiments have been conducted on the CALIDE facility in order to investigate single-phase pressure losses in representative debris beds, i.e., high sphericity (>80%) particle beds with small size dispersion (from 1 mm to 10 mm), for which no validated model exists. In this paper, experimental results are presented and analyzed in order to identify a simple correlation for single-phase flow pressure losses generated in this kind of porous media in reflooding flowing conditions, which cover Darcy to weakly turbulent regimes. In the literature, it has been observed that their behavior can be accurately described by a Darcy–Forchheimer law, involving the sum of a linear term and a quadratic non-linear deviation, with respect to the filtration velocity. Expressions for the coefficients of the linear and quadratic terms are determined by assessing the possibility to evaluate equivalent diameters, i.e., characteristic lengths allowing correct predictions of the linear and quadratic terms by the Ergun equation. It has been observed that the Sauter diameter of particles allows a very precise prediction of the linear term, while the quadratic term can be predicted using the product of the Sauter diameter and a sphericity coefficient as an equivalent diameter.

  11. MECHANICAL CHARACTERISTICS OF THREE-PHASE INDUCTION MOTORS WITH SINGLE-PHASE POWER SUPPLY

    Directory of Open Access Journals (Sweden)

    V.S. Malyar

    2016-06-01

    Full Text Available Aim. Development of a method for calculating mechanical characteristics of three-phase induction motors with single-phase power supply. Methods. The developed algorithm is based on the high-adequacy mathematical model of motor and projection method for solving the boundary problem for equations of electrical circuits balance presented in the three-phase coordinate system. As a result of asymmetry of power supply to the stator windings, in steady state, flux-linkage and current change according to the periodic law. They are determined by solving the boundary problem. Results. The developed mathematical model allows determining periodic dependence of coordinates as a function of slip and, based on them, mechanical characteristics of motors. Academic novelty. The developed method relies on a completely new mathematical approach to calculation of stationary modes of nonlinear electromagnetic circuits, which allows obtaining periodic solution in a timeless domain. Practical value. Using the developed calculation algorithm, one can select capacitance required to start an induction motor with single-phase power supply and calculate static mechanical characteristics at a given capacitance.

  12. FUZZY LOGIC BASED OPTIMIZATION OF CAPACITOR VALUE FOR SINGLE PHASE OPEN WELL SUBMERSIBLE INDUCTION MOTOR

    Directory of Open Access Journals (Sweden)

    R. Subramanian

    2011-01-01

    Full Text Available Purpose – The aim of this paper is to optimize the capacitor value of a single phase open well submersible motor operating under extreme voltage conditions using fuzzy logic optimization technique and compared with no-load volt-ampere method. This is done by keeping the displacement angle (a between main winding and auxiliary winding near 90o, phase angle (f between the supply voltage and line current near 0o. The optimization work is carried out by using Fuzzy Logic Toolbox software built on the MATLAB technical computing environment with Simulink software. Findings – The optimum capacitor value obtained is used with a motor and tested for different supply voltage conditions. The vector diagrams obtained from the experimental test results indicates that the performance is improved from the existing value. Originality/value – This method will be highly useful for the practicing design engineers in selecting the optimum capacitance value for single phase induction motors to achieve the best performance for operating at extreme supply voltage conditions.

  13. Synthesis of anatase and rutile TiO{sub 2} nanostructures from natural ilmenite

    Energy Technology Data Exchange (ETDEWEB)

    Wahyuingsih, Sayekti, E-mail: sayekti@mipa.uns.ac.id; Ramelan, Ari Handono; Pramono, Edi; Sulistya, Ariantama Djati; Argawan, Panji Rofa; Dharmawan, Frenandha Dwi; Rinawati, Ludfiaastu; Hanif, Qonita Awliya [Inorganic Materials Research Group, Faculty of Mathematic and Natural Science, Sebelas Maret University (Indonesia); Sulistiyono, Eko; Firdiyono, Florentinus [Metallurgy Extraction Laboratory, Central of Metallurgy Research LIPI, Serpong (Indonesia)

    2016-02-08

    Nanostructure anatase and rutile type TiO{sub 2} were synthesized from dissolution roasted ilmenite from natural ilmenite sand as the starting materials. Anatase TiO{sub 2} and rutile TiO{sub 2} (high crystallinity) with the diameters of 20–100 nm were obtained by calcined soluble ilmenite sand produced by leaching process. Calcinations of the xerogel TiO{sub 2} from liquor products were conducted for 4 hours at temperature of 450 °C. The samples were characterized by XRD (X-ray diffraction), STA (simultant thermal analysis), TEM (Transmission Electron Microscopy), and BET surface area. Titania Anatase-Rutile form as a mixture were produced by titania slag with the hydrolysis product. While, in another route, complete titania anatase phase was produced through hydrolysis and condensation steps of leach liquors. This synthesis methods provide a simple route to fabricate nanostructure TiO{sub 2} from low cost material.

  14. Controlled formation of anatase and rutile TiO2 thin films by reactive magnetron sputtering

    Directory of Open Access Journals (Sweden)

    Damon Rafieian

    2015-09-01

    Full Text Available We discuss the formation of TiO2 thin films via DC reactive magnetron sputtering. The oxygen concentration during sputtering proved to be a crucial parameter with respect to the final film structure and properties. The initial deposition provided amorphous films that crystallise upon annealing to anatase or rutile, depending on the initial sputtering conditions. Substoichiometric films (TiOx<2, obtained by sputtering at relatively low oxygen concentration, formed rutile upon annealing in air, whereas stoichiometric films formed anatase. This route therefore presents a formation route for rutile films via lower (<500 °C temperature pathways. The dynamics of the annealing process were followed by in situ ellipsometry, showing the optical properties transformation. The final crystal structures were identified by XRD. The anatase film obtained by this deposition method displayed high carriers mobility as measured by time-resolved microwave conductance. This also confirms the high photocatalytic activity of the anatase films.

  15. Chemical vapor deposition of nanocrystalline diamond films

    International Nuclear Information System (INIS)

    Vyrovets, I.I.; Gritsyna, V.I.; Dudnik, S.F.; Opalev, O.A.; Reshetnyak, O.M.; Strel'nitskij, V.E.

    2008-01-01

    The brief review of the literature is devoted to synthesis of nanocrystalline diamond films. It is shown that the CVD method is an effective way for deposition of such nanostructures. The basic technological methods that allow limit the size of growing diamond crystallites in the film are studied.

  16. Synthesis and characterization of nanocrystalline zinc ferrite

    DEFF Research Database (Denmark)

    Jiang, J.S.; Yang, X.L.; Gao, L.

    1999-01-01

    Nanocrystalline zinc ferrite powders with a partially inverted spinel structure were synthesized by high-energy ball milling in a closed container at ambient temperature from a mixture of alpha-Fe2O3 and ZnO crystalline powders in equimolar ratio. From low-temperature and in-field Mossbauer...

  17. Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mecartnery, Martha [Univ. of California, Irvine, CA (United States); Graeve, Olivia [Univ. of California, San Diego, CA (United States); Patel, Maulik [Univ. of Liverpool (United Kingdom)

    2017-05-25

    The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity

  18. Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel

    International Nuclear Information System (INIS)

    Mecartnery, Martha; Graeve, Olivia; Patel, Maulik

    2017-01-01

    The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity

  19. Characterization of nanocrystalline silicon germanium film and ...

    African Journals Online (AJOL)

    The nanocrystalline silicon-germanium films (Si/Ge) and Si/Ge nanotubes have low band gaps and high carrier mobility, thus offering appealing potential for absorbing gas molecules. Interaction between hydrogen molecules and bare as well as functionalized Si/Ge nanofilm and nanotube was investigated using Monte ...

  20. The nature of excess electrons in anatase and rutile from hybrid DFT and RPA.

    Science.gov (United States)

    Spreafico, Clelia; VandeVondele, Joost

    2014-12-21

    The behavior of excess electrons in undoped and defect free bulk anatase and rutile TiO2 has been investigated by state-of-the-art electronic structure methods including hybrid density functional theory (DFT) and the random phase approximation (RPA). Consistent with experiment, charge trapping and polaron formation is observed in both anatase and rutile. The difference in the anisotropic shape of the polarons is characterized, confirming for anatase the large polaron picture. For anatase, where polaron formation energies are small, charge trapping is observed also with standard hybrid functionals, provided the simulation cell is sufficiently large (864 atoms) to accommodate the lattice relaxation. Even though hybrid orbitals are required as a starting point for RPA in this system, the obtained polaron formation energies are relatively insensitive to the amount of Hartree-Fock exchange employed. The difference in trapping energy between rutile and anatase can be obtained accurately with both hybrid functionals and RPA. Computed activation energies for polaron hopping and delocalization clearly show that anatase and rutile might have different charge transport mechanisms. In rutile, only hopping is likely, whereas in anatase hopping and delocalization are competing. Delocalization will result in conduction-band-like and thus enhanced transport. Anisotropic conduction, in agreement with experimental data, is observed, and results from the tendency to delocalize in the [001] direction in rutile and the (001) plane in anatase. For future work, our calculations serve as a benchmark and suggest RPA on top on hybrid orbitals (PBE0 with 30% Hartree-Fock exchange), as a suitable method to study the rich chemistry and physics of TiO2.

  1. TiO2-Based Nanomaterials for Gas Sensing-Influence of Anatase and Rutile Contributions.

    Science.gov (United States)

    Zakrzewska, K; Radecka, M

    2017-12-01

    The paper deals with application of three nanomaterial systems: undoped TiO 2 , chromium-doped TiO 2 :Cr and TiO 2 -SnO 2 synthesized by flame spray synthesis (FSS) technique for hydrogen sensing. The emphasis is put on the role of anatase and rutile polymorphic forms of TiO 2 in enhancing sensitivity towards reducing gases. Anatase-to-rutile transformation is achieved by annealing of undoped TiO 2 in air at 700 °C, specific Cr doping and modification with SnO 2 . Undoped TiO 2 and TiO 2 -SnO 2 exhibit n-type behaviour and while TiO 2 : 5 at.% Cr is a p-type semiconductor. X-ray diffraction (XRD) has been applied to determine anatase-to-rutile weight ratio as well as anatase and rutile crystal size. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) have been used to characterize the structure and morphological parameters. Optical reflectometry enabled to find and compare the band gaps E g of anatase and rutile predominated compositions. Electrical properties, i.e. the electrical conductivity and values of constant phase element (CPE), have been established on the basis of impedance spectroscopy. Dynamic responses of the electrical resistance as a function of hydrogen concentration revealed that predominance of rutile in anatase/rutile mixture is beneficial for gas sensing. Partial transformation to rutile in all three material systems under study resulted in an increased sensitivity towards hydrogen. It is proposed that this effect can be explained in a similar way as in photocatalysis, i.e. by specific band alignment and electron transfer from rutile to anatase to facilitate oxygen preadsorption on the surface of anatase grains.

  2. Kinetic model for transformation from nano-sized amorphous $TiO_2$ to anatase

    OpenAIRE

    Madras, Giridhar; McCoy, Benjamin J

    2006-01-01

    We propose a kinetic model for the transformation of nano-sized amorphous $TiO_2$ to anatase with associated coarsening by coalescence. Based on population balance (distribution kinetics) equations for the size distributions, the model applies a first-order rate expression for transformation combined with Smoluchowski coalescence for the coarsening particles. Size distribution moments (number and mass of particles) lead to dynamic expressions for extent of reaction and average anatase particl...

  3. Morphology control of anatase TiO2 for well-defined surface chemistry

    KAUST Repository

    Jeantelot, Gabriel; Ould-Chikh, Samy; Sofack-Kreutzer, Julien; Abou-Hamad, Edy; Anjum, Dalaver H.; Lopatin, Sergei; Harb, Moussab; Cavallo, Luigi; Basset, Jean-Marie

    2018-01-01

    A specific allotrope of titanium dioxide (anatase) was synthesized both with a standard thermodynamic morphology ({101}-anatase) and with a highly anisotropic morphology ({001}-anatase) dominated by the {001} facet (81%). The surface chemistry of both samples after dehydroxylation was studied by 1H NMR and FT-IR. The influence of surface fluorides on the surface chemistry was also studied by 1H NMR, FT-IR and DFT. Full attribution of the IR spectra of anatase with dominant {001} facets could be provided based on experimental data and further confirmed by DFT. Our results showed that chemisorbed H2O molecules are still present on anatase after dehydroxylation at 350 °C, and that the type of surface hydroxyls present on the {001} facet is dependent on the presence of fluorides. They also provided general insight into the nature of the surface species on both fluorinated and fluorine-free anatase. The use of vanadium oxychloride (VOCl3) allowed the determination of the accessibility of the various OH groups spectroscopically observed.

  4. Morphology control of anatase TiO2 for well-defined surface chemistry

    KAUST Repository

    Jeantelot, Gabriel

    2018-05-16

    A specific allotrope of titanium dioxide (anatase) was synthesized both with a standard thermodynamic morphology ({101}-anatase) and with a highly anisotropic morphology ({001}-anatase) dominated by the {001} facet (81%). The surface chemistry of both samples after dehydroxylation was studied by 1H NMR and FT-IR. The influence of surface fluorides on the surface chemistry was also studied by 1H NMR, FT-IR and DFT. Full attribution of the IR spectra of anatase with dominant {001} facets could be provided based on experimental data and further confirmed by DFT. Our results showed that chemisorbed H2O molecules are still present on anatase after dehydroxylation at 350 °C, and that the type of surface hydroxyls present on the {001} facet is dependent on the presence of fluorides. They also provided general insight into the nature of the surface species on both fluorinated and fluorine-free anatase. The use of vanadium oxychloride (VOCl3) allowed the determination of the accessibility of the various OH groups spectroscopically observed.

  5. Excess electrons at anatase TiO2 surfaces and interfaces: insights from first principles simulations

    Science.gov (United States)

    Selçuk, Sencer; Selloni, Annabella

    2017-07-01

    TiO2 is an important technological material with widespread applications in photocatalysis, photovoltaics and self-cleaning surfaces. Excess electrons from intrinsic defects, dopants and photoexcitation play a key role in the properties of TiO2 that are relevant to its energy-related applications. The picture of excess and photoexcited electrons in TiO2 is based on the polaron model, where the electron forms a localized state that is stabilized by an accompanying lattice distortion. Here, we focus on excess and photoexcited electrons in anatase, the TiO2 polymorph most relevant to photocatalysis and solar energy conversion. For anatase, evidence of both small and large electron polarons has been reported in the literature. In addition, several studies have revealed a remarkable dependence of the photocatalytic activity of anatase on the crystal surface. After an overview of experimental studies, we briefly discuss recent progress in the theoretical description of polaronic states in TiO2, and finally present a more detailed account of our computational studies on the trapping and dynamics of excess electrons near the most common anatase surfaces and aqueous interfaces. The results of these studies provide a bridge between surface science experiments under vacuum conditions and observations of crystal-face-dependent photocatalysis on anatase, and support the idea that optimization of the ratio between different anatase facets can help enhance the photocatalytic activity of this material.

  6. Hydrothermal synthesis of highly water-dispersible anatase nanocrystals from transparent aqueous sols of titanate colloids

    International Nuclear Information System (INIS)

    Ban, Takayuki; Tanaka, Yusuke; Ohya, Yutaka

    2011-01-01

    Transparent colloidal aqueous solutions of anatase nanocrystals were hydrothermally synthesized from aqueous transparent sols with tetramethylammonium titanate colloids, the surfaces of which were modified with citric acid, by structural conversion of the titanate to anatase. This modification hindered coalescence of the titanate colloids during the hydrothermal synthesis. Although the amount of citric acid adsorbed on the colloids was reduced during hydrothermal treatment, a small amount of citric acid was adsorbed on the resulting anatase nanocrystals. Moreover, the use of the titanate colloids as a precursor was compared with the use of a citrato Ti complex, tetramethylammonium citratotitanate. The hydrothermal treatment of the transparent aqueous solutions of the Ti complex yielded opaque solutions with large anatase colloids, suggesting that the titanate colloids were useful for preparing transparent anatase colloidal solutions. Because the shape and size of resulting colloids may be dependent on the size and shape of starting colloids, the use of titanate colloids as a precursor may make it easy to control size and shape of anatase colloids.

  7. Preliminary Study of Single-Phase Natural Circulation for Lab-scaled Molten Salt Application

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Yukyung; Kang, Sarah; Kim, In Guk; Seo, Seok Bin; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of); Park, Seong Dae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Advanced reactors such as MSR (FHR), VHTR and AHTR utilized molten salt as a coolant for efficiency and safety which has advantages in higher heat capacity, lower pumping power and scale compared to liquid metal. It becomes more necessary to study on the characteristics of molten salt. However, due to several characteristics such as high operating temperature, large-scale facility and preventing solidification, satisfying that condition for study has difficulties. Thus simulant fluid was used with scaling method for lab-scale experiment. Scaled experiment enables simulant fluid to simulate fluid mechanics and heat transfer behavior of molten salt on lower operating temperature and reduced scale. In this paper, as a proof test of the scaled experiment, simplified single-phase natural circulation loop was designed in a lab-scale and applied to the passive safety system in advanced reactor in which molten salt is considered as a major coolant of the system. For the application of the improved safety system, prototype was based on the primary loop of the test-scale DRACS, the main passive safety system in FHR, developed at the OSU. For preliminary experiment, single-phase natural circulation under low power was performed. DOWTHERM A and DOWTHERM RP were selected as simulant candidates. Then, study of feasibility with simulant was conducted based on the scaling law for heat transfer characteristics and geometric parameters. Additionally, simulation with MARS code and ANSYS-CFX with the same condition of natural circulation was carried out as verification. For the accurate code simulation, thermo-physical properties of DOWTHERM A and RP were developed and implemented into MARS code. In this study, single-phase natural circulation experiment was performed with simulant oil, DOWTHERM RP, based on the passive safety system of FHR. Feasibility of similarity experiment for molten salt with oil simulant was confirmed by scaling method. In addition, simulation with two

  8. Analytical prediction of the electromagnetic torques in single-phase and two-phase ac motors

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, M.

    2004-07-01

    The single-phase and two-phase versions of AC motors can be modelled by means of the two-axis (d-q) theory with sufficient accuracy when the equivalent circuit parameters are correctly estimated. This work attempts to present a unified approach to the analytical prediction of the electromagnetic torque of these machines. Classical d-q axes formulation requires that the reference frame should be fixed on the frame where the asymmetries arise, i.e. the stator and rotor. The asynchronous torques that characterize the induction motors are modelled in a stationary reference frame, where the d-q axes coincide with the physical magnetic axes of the stator windings. For the permanent magnet motors, that may exhibit asymmetries on both stator and rotor, the proposed solution includes: a series of frame transformations, followed by symmetrical components decomposition. As in single-phase and two-phase systems the homopolar component is zero; each symmetrical component - negative and positive - is further analysed using d-q axes theory. The superposition principle is employed to consider the magnets and rotor cage effects. The developed models account for the most important asymmetries of the motor configuration. These are, from the stator point of view, different distribution, conductors' dimensions and number of effective turns, non-orthogonal magnetic axes windings and from the rotor point of view, asymmetrical rotor cage, variable reluctance, and permanent magnets effect. The time and space harmonics effect is ignored. Test data are compared with the computed data in order to observe how the simplifying assumptions affect the level of accuracy. The analytical prediction methods make possible torque computation according to the nature of the torque being computed, namely, induction, reluctance and excitation (permanent magnet). The results are available for quasi steady-state, steady-state (rated or synchronous speed) and dynamic analyses. All the developed

  9. Factors that affect the calibration of turbines in single-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Piper, T. C.

    1977-05-01

    Basic turbine operation in single-phase flow is related. Causes and relative magnitudes of retarding torque are given for two sizes of turbines when used for water flow measurement. An equation for slip caused by retarding torques is given. Evaluation of turbine slip behavior at the turbine low flow region shows that bearing retarding torques, change in flow patterns, or other effects can predominate in the relatively large changes in the calibration ''constant'' that occurs there. Fluid lubricity is singled out as an important fluid property in certain types of bearings and flow. Temperature induced changes in turbine size are shown to cause calibration changes if a turbine is used at a temperature significantly different than that at which it was calibrated.

  10. Single-phase multi-dimensional thermohydraulics direct numerical simulation code DINUS-3. Input data description

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, Toshiharu [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-08-01

    This report explains the numerical methods and the set-up method of input data for a single-phase multi-dimensional thermohydraulics direct numerical simulation code DINUS-3 (Direct Numerical Simulation using a 3rd-order upwind scheme). The code was developed to simulate non-stationary temperature fluctuation phenomena related to thermal striping phenomena, developed at Power Reactor and Nuclear Fuel Development Corporation (PNC). The DINUS-3 code was characterized by the use of a third-order upwind scheme for convection terms in instantaneous Navier-Stokes and energy equations, and an adaptive control system based on the Fuzzy theory to control time step sizes. Author expect this report is very useful to utilize the DINUS-3 code for the evaluation of various non-stationary thermohydraulic phenomena in reactor applications. (author)

  11. POD-Galerkin Model for Incompressible Single-Phase Flow in Porous Media

    KAUST Repository

    Wang, Yi

    2017-01-25

    Fast prediction modeling via proper orthogonal decomposition method combined with Galerkin projection is applied to incompressible single-phase fluid flow in porous media. Cases for different configurations of porous media, boundary conditions and problem scales are designed to examine the fidelity and robustness of the model. High precision (relative deviation 1.0 x 10(-4)% similar to 2.3 x 10(-1)%) and large acceleration (speed-up 880 similar to 98454 times) of POD model are found in these cases. Moreover, the computational time of POD model is quite insensitive to the complexity of problems. These results indicate POD model is especially suitable for large-scale complex problems in engineering.

  12. Condition monitoring of shaft of single-phase induction motor using optical sensor

    Science.gov (United States)

    Fulzele, Asmita G.; Arajpure, V. G.; Holay, P. P.; Patil, N. M.

    2012-05-01

    Transmission type of optical technique is developed to sense the condition of rotating shafts from a distance. A parallel laser beam is passed tangential over the surface of rotating shaft of a single phase induction motor and its flickering shadow is received on a photo sensor. Variations in sensor voltage output are observed on a digital storage oscilloscope. It is demonstrated that this signal carries information about shaft defects like miss alignment, play and impacts in bearings along with surface deformities. Mathematical model of signals corresponding to these shaft defects is developed. During the development and testing of the sensor, effects of reflections are investigated, sensing phenomenon is simulated, frequency response of the sensor is obtained and its performance is compared with conventional accelerometer.

  13. Reactive Power Injection Strategies for Single-Phase Photovoltaic Systems Considering Grid Requirements

    DEFF Research Database (Denmark)

    Yang, Yongheng; Wang, Huai; Blaabjerg, Frede

    2014-01-01

    .g. Germany and Italy. Those advanced features can be provided by next generation PV systems, and will be enhanced in the future to ensure an even efficient and reliable utilization of PV systems. In light of this, Reactive Power Injection (RPI) strategies for single-phase PV systems are explored...... in this paper. The RPI possibilities are: a) constant average active power control, b) constant active current control, c) constant peak current control and d) thermal optimized control strategy. All those strategies comply with the currently active grid codes, but are with different objectives. The proposed...... RPI strategies are demonstrated firstly by simulations and also tested experimentally on a 1 kW singe-phase grid-connected system in LVRT operation mode. Those results show the effectiveness and feasibilities of the proposed strategies with reactive power control during LVRT operation. The design...

  14. Benchmarking of Constant Power Generation Strategies for Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2018-01-01

    strategies based on: 1) a power control method (P-CPG), 2) a current limit method (I-CPG) and 3) the Perturb and Observe algorithm (P&O-CPG). However, the operational mode changes (e.g., from the maximum power point tracking to a CPG operation) will affect the entire system performance. Thus, a benchmarking...... of the presented CPG strategies is also conducted on a 3-kW single-phase grid-connected PV system. Comparisons reveal that either the P-CPG or I-CPG strategies can achieve fast dynamics and satisfactory steady-state performance. In contrast, the P&O-CPG algorithm is the most suitable solution in terms of high...

  15. Internal friction and lattice anomalies of single-phase Hg-1223

    International Nuclear Information System (INIS)

    Zhang, Q.M.; Nanjing Univ.; Shao, H.M.; Nanjing Univ.; Huang, Y.N.; Nanjing Univ.; Shen, H.M.; Nanjing Univ.; Wang, Y.N.; Nanjing Univ.

    1997-01-01

    Internal friction in the kHz range has been performed for single-phase HgBa 2 Ca 2 Cu 3 O 8+δ with the critical temperature T c = 120 K. The results indicate that two peaks of internal friction appear near 150 and 250 K. X-ray diffraction exhibits a lattice parameter stepping at tens of Kelvin above T c . The Grueneisen parameter γ is estimated from the value of thermal expansion coefficients obtained from X-ray diffraction measurements. The discussion suggests that the anomaly at 150 K is caused by lattice instabilities and the other one near 250 K may be associated with a Neel transition. (orig.)

  16. Reliability assessment of single-phase grid-connected PV microinverters considering mission profile and uncertainties

    DEFF Research Database (Denmark)

    Zare, Mohammad Hadi; Mohamadian, Mustafa; Wang, Huai

    2017-01-01

    Microinverters usually connect a PV panel to a Single-phase power grid. In such system, the input power is constant while the output power oscillates twice the line frequency. Thus, the input and output power differences should be stored in a storage component, which is typically an electrolytic ...... irritation of two different places on the micro inverter lifetime is studied....... capacitor. However, electrolytic capacitors are usually blamed for their short lifetime. Recently, some active power decoupling methods are introduced in the literature which can takes advantage of high reliable film capacitors. However, some extra switches and diodes are added to the microinverter which...... can influence the microinverter lifetime. This paper investigates the microinverter reliability according to mission profile where it is installed. To get more accurate results, uncertainties in both lifetime model and manufacturing process are considered. The effect of ambient temperature and solar...

  17. Model Building of Photovoltaic Array with MPPT Function and Research on Single Phase Grid Connected

    Directory of Open Access Journals (Sweden)

    Li Zhengzhou

    2016-01-01

    Full Text Available With the continued development of solar photovoltaic technology, research on distributed grid connected photovoltaic system has become a research focus in the field of photovoltaic grid power plant and the computer simulation technology is an effective technology means in the study. On the basis of the photovoltaic array output characteristic equation, the photovoltaic array maximum power control simulation model based on M function is established by using MATLAB/Simulink and the simulation model of single phase grid connected photovoltaic array is proposed. It overcomes the shortcomings of the process of building the model of the PV array by using Simulink component library and provides the basic guarantee for the realization of system simulation, guiding theory research and system design.

  18. Adaptive Hysteresis Band Current Control for Transformerless Single-Phase PV Inverters

    DEFF Research Database (Denmark)

    Vázquez, Gerardo; Rodriguez, Pedro; Ordoñez, Rafael

    2009-01-01

    Current control based on hysteresis algorithms are widely used in different applications, such as motion control, active filtering or active/reactive power delivery control in distributed generation systems. The hysteresis current control provides to the system a fast and robust dynamic response......, and requires a simple implementation in standard digital signal platforms. On the other hand, the main drawback of classical hysteresis current control lies in the fact that the switching frequency is variable, as the hysteresis band is fixed. In this paper a variable band hysteresis control algorithm...... different single-phase PV inverter topologies, by means of simulations performed with PSIM. In addition, the behavior of the thermal losses when using each control structure in such converters has been studied as well....

  19. Reliable Grid Condition Detection and Control of Single-Phase Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai

    standards addressed to the grid-connected systems will harmonize the combination of the DPGS and the classical power plants. Consequently, the major tasks of this thesis were to develop new grid condition detection techniques and intelligent control in order to allow the DPGS not only to deliver power...... to the utility grid but also to sustain it. This thesis was divided into two main parts, namely "Grid Condition Detection" and "Control of Single-Phase DPGS". In the first part, the main focus was on reliable Phase Locked Loop (PLL) techniques for monitoring the grid voltage and on grid impedance estimation...... techniques. Additionally, a new technique for detecting the islanding mode has been developed and successfully tested. In the second part, the main reported research was concentrated around adaptive current controllers based on the information provided by the grid condition detection techniques. To guarantee...

  20. Rotor Design for an Efficient Single-Phase Induction Motor for Refrigerator Compressors

    Directory of Open Access Journals (Sweden)

    Hyun-Jin Ahn

    2016-03-01

    Full Text Available This article describes a rotor making technology for the production of high-efficiency single-phase induction motors (SPIMs to be used in refrigerator compressors. Rotors can have different aluminum fill factors according to the fabrication method. In order to examine the association between the fill factor and the efficiency of the rotor, we analyzed the distribution of magnetic flux density using the finite element method (FEM. Next, we made prototype rotors by conventional casting methods and by the proposed casting method and compared their fill factors. In addition, SPIMs were made using the rotors, and their efficiencies were measured using a dynamometer. Moreover, the SPIMs were put to use in a compressor, for testing, and for each SPIM the refrigerating capacity of the compressor was measured with a calorimeter. Based on the results of the FEM analysis of the magnetic flux density and the experiments, the reliability and validity of the proposed method were proven.

  1. Compact ASD Topologies for Single-Phase Integrated Motor Drives with Sinusoidal Input Current

    DEFF Research Database (Denmark)

    Klumpner, Christian; Blaabjerg, Frede; Thoegersen, Paul

    2005-01-01

    of the induction motor as a boost inductor for a PFC (Power Factor Correction) stage controlled by the inverter zero-sequence voltage component. By determining how much energy is possible to store in a corner inductor, it is proven that integrating the magnetics into the stator yoke is a feasible solution......, investigating the physical removal of power inductors from the converter enclosure in conjunction with reducing the number of semiconductor active devices. There are two ways to do that: to integrate the inductors in the unused area of the stator yoke of the motor or to use the leakage inductance....... Topologies of single-phase converters that take advantage of the motor leakage inductance are analyzed. The installed power in silicon active devices of these topologies is compared with a standard situation, showing that this will involve higher cost. As the iron core of the inductors is not suitable...

  2. Factors that affect the calibration of turbines in single-phase flow

    International Nuclear Information System (INIS)

    Piper, T.C.

    1977-05-01

    Basic turbine operation in single-phase flow is related. Causes and relative magnitudes of retarding torque are given for two sizes of turbines when used for water flow measurement. An equation for slip caused by retarding torques is given. Evaluation of turbine slip behavior at the turbine low flow region shows that bearing retarding torques, change in flow patterns, or other effects can predominate in the relatively large changes in the calibration ''constant'' that occurs there. Fluid lubricity is singled out as an important fluid property in certain types of bearings and flow. Temperature induced changes in turbine size are shown to cause calibration changes if a turbine is used at a temperature significantly different than that at which it was calibrated

  3. Reversible control of magnetic interactions by electric field in a single-phase material.

    Science.gov (United States)

    Ryan, P J; Kim, J-W; Birol, T; Thompson, P; Lee, J-H; Ke, X; Normile, P S; Karapetrova, E; Schiffer, P; Brown, S D; Fennie, C J; Schlom, D G

    2013-01-01

    Intrinsic magnetoelectric coupling describes the interaction between magnetic and electric polarization through an inherent microscopic mechanism in a single-phase material. This phenomenon has the potential to control the magnetic state of a material with an electric field, an enticing prospect for device engineering. Here, we demonstrate 'giant' magnetoelectric cross-field control in a tetravalent titanate film. In bulk form, EuTiO(3), is antiferromagnetic. However, both anti and ferromagnetic interactions coexist between different nearest europium neighbours. In thin epitaxial films, strain was used to alter the relative strength of the magnetic exchange constants. We not only show that moderate biaxial compression precipitates local magnetic competition, but also demonstrate that the application of an electric field at this strain condition switches the magnetic ground state. Using first-principles density functional theory, we resolve the underlying microscopic mechanism resulting in G-type magnetic order and illustrate how it is responsible for the 'giant' magnetoelectric effect.

  4. Modelling and Simulation of Single-Phase Series Active Compensator for Power Quality Improvement

    Science.gov (United States)

    Verma, Arun Kumar; Mathuria, Kirti; Singh, Bhim; Bhuvaneshwari, G.

    2017-10-01

    A single-phase active series compensator is proposed in this work to reduce harmonic currents at the ac mains and to regulate the dc link voltage of a diode bridge rectifier (DBR) that acts as the front end converter for a voltage source inverter feeding an ac motor. This ac motor drive is used in any of the domestic, commercial or industrial appliances. Under fluctuating ac mains voltages, the dc link voltage of the DBR depicts wide variations and hence the ac motor is used at reduced rating as compared to its name-plate rating. The active series compensator proposed here provides dual functions of improving the power quality at the ac mains and regulating the dc link voltage thus averting the need for derating of the ac motor.

  5. An investigation of subchannel analysis models for single-phase and two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dae Hyun

    1996-01-01

    The governing equations and lateral transport modelings of subchannel analysis code, which is the most widely used tool for the analysis of thermal hydraulics fields in reactor cores, have been thoroughly investigated in this study. The procedure for the derivation of subchannel integral balance equations from the local instantaneous phase equations was investigated by stages. The characteristics of governing equations according to the treatment of phase velocity were studies, and the equations based on the drift-flux equilibrium formulation have been derived. Turbulent mixing and void drift modeling, which affect considerably to the accuracy of subchannel analysis code, have been reviewed. In addition, some representative modelings of single-phase and two-phase turbulent mixing models have been introduced. (author). 5 tabs., 4 figs., 16 refs.

  6. Rapid synthesis of single-phase bismuth ferrite by microwave-assisted hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Wenqian [College of Materials Science and Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, Zhejiang Province (China); Chen, Zhi, E-mail: zchen0@gmail.com [College of Materials Science and Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, Zhejiang Province (China); Gao, Tong; Zhou, Dantong; Leng, Xiaonan; Niu, Feng [College of Materials Science and Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, Zhejiang Province (China); Zhu, Yuxiang [College of Materials Science and Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, Zhejiang Province (China); Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin (China); Qin, Laishun, E-mail: qinlaishun@yeah.net [College of Materials Science and Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, Zhejiang Province (China); Wang, Jiangying; Huang, Yuexiang [College of Materials Science and Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, Zhejiang Province (China)

    2016-06-01

    This paper describes on the fast synthesis of bismuth ferrite by the simple microwave-assisted hydrothermal method. The phase transformation and the preferred growth facets during the synthetic process have been investigated by X-ray diffraction. Bismuth ferrite can be quickly prepared by microwave hydrothermal method by simply controlling the reaction time, which is further confirmed by Fourier Transform infrared spectroscopy and magnetic measurement. - Graphical abstract: Single-phase BiFeO{sub 3} could be realized at a shortest reaction time of 65 min. The reaction time has strong influences on the phase transformation and the preferred growth facets. - Highlights: • Rapid synthesis (65 min) of BiFeO{sub 3} by microwave-assisted hydrothermal method. • Reaction time has influence on the purity and preferred growth facets. • FTIR and magnetic measurement further confirm the pure phase.

  7. Influence of modulation method on using LC-traps with single-phase voltage source converters

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Min, Huang; Bai, Haofeng

    2015-01-01

    The switching-frequency LC-trap filter has recently been employed with high-order passive filters for Voltage Source Inverters (VSIs). This paper investigates the influence of modulation method on using the LC-traps with single-phase VSIs. Two-level (bipolar) and three-level (unipolar) modulations...... that include phase distortion and alternative phase opposition distortion methods are analyzed. Harmonic filtering performances of four LC-trap-based filters with different locations of LC-traps are compared. It is shown that the use of parallel-LC-traps in series with filter inductors, either grid...... or converter side, has a worse harmonic filtering performance than using series-LC-trap in the shunt branch. Simulations and experimental results are presented for verifications....

  8. Flux distribution in single phase, Si-Fe, wound transformer cores

    International Nuclear Information System (INIS)

    Loizos, George; Kefalas, Themistoklis; Kladas, Antonios; Souflaris, Thanassis; Paparigas, Dimitris

    2008-01-01

    This paper shows experimental results of longitudinal flux density and its harmonics at the limb, the yoke and the corner as well as normal flux in the step lap joint of a single phase, Si-Fe, wound transformer core. Results show that the flux density as well as the harmonics content is higher in the inner (window) side of the core and reduces gradually towards the outer side. Variations of flux density distribution between the limb and the corner or the yoke of the core were observed. A full record of normal flux around the step lap region of the model core was also obtained. Longitudinal and normal flux findings will enable the development of more accurate numerical models that describe the magnetic behavior of magnetic cores

  9. Green synthesis of isopropyl myristate in novel single phase medium Part I: Batch optimization studies.

    Science.gov (United States)

    Vadgama, Rajeshkumar N; Odaneth, Annamma A; Lali, Arvind M

    2015-12-01

    Isopropyl myristate finds many applications in food, cosmetic and pharmaceutical industries as an emollient, thickening agent, or lubricant. Using a homogeneous reaction phase, non-specific lipase derived from Candida antartica, marketed as Novozym 435, was determined to be most suitable for the enzymatic synthesis of isopropyl myristate. The high molar ratio of alcohol to acid creates novel single phase medium which overcomes mass transfer effects and facilitates downstream processing. The effect of various reaction parameters was optimized to obtain a high yield of isopropyl myristate. Effect of temperature, agitation speed, organic solvent, biocatalyst loading and batch operational stability of the enzyme was systematically studied. The conversion of 87.65% was obtained when the molar ratio of isopropyl alcohol to myristic acid (15:1) was used with 4% (w/w) catalyst loading and agitation speed of 150 rpm at 60 °C. The enzyme has also shown good batch operational stability under optimized conditions.

  10. Single-phase sodium pump model for LMFBR thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Madni, I.K.; Cazzoli, E.G.; Agrawal, A.K.

    1979-01-01

    A single-phase, homologous pump model has been developed for simulation of safety-related transients in LMFBR systems. Pump characteristics are modeled by homologous head and torque relations encompassing all regimes of operation. These relations were derived from independent model test results with a centrifugal pump of specific speed equal to 35 (SI units) or 1800 (gpm units), and are used to analyze the steady-state and transient behavior of sodium pumps in a number of LMFBR plants. Characteristic coefficients for the polynomials in all operational regimes are provided in a tabular form. The speed and flow dependence of head is included through solutions of the impeller and coolant dynamic equations. Results show the model to yield excellent agreement with experimental data in sodium for the FFTF prototype pump, and with vendor calculations for the CRBR pump. A sample pipe rupture calculation is also performed to demonstrate the necessity for modeling the complete pump characteristics

  11. Zero-voltage ride-through capability of single-phase grid-connected photovoltaic systems

    DEFF Research Database (Denmark)

    Zhang, Zhen; Yang, Yongheng; Ma, Ruiqing

    2017-01-01

    Distributed renewable energy systems play an increasing role in today’s energy paradigm. Thus, intensive research activities have been centered on improving the performance of renewable energy systems, including photovoltaic (PV) systems, which should be of multiple-functionality. That is, the PV...... systems should be more intelligent in the consideration of grid stability, reliability, and fault protection. Therefore, in this paper, the performance of single-phase grid-connected PV systems under an extreme grid fault (i.e., when the grid voltage dips to zero) is explored. It has been revealed...... that combining a fast and accurate synchronization mechanism with appropriate control strategies for the zero-voltage ride-through (ZVRT) operation is mandatory. Accordingly, the representative synchronization techniques (i.e., the phase-locked loop (PLL) methods) in the ZVRT operation are compared in terms...

  12. A self-regulating valve for single-phase liquid cooling of microelectronics

    International Nuclear Information System (INIS)

    Donose, Radu; De Volder, Michaël; Peirs, Jan; Reynaerts, Dominiek

    2011-01-01

    This paper reports on the design, optimization and testing of a self-regulating valve for single-phase liquid cooling of microelectronics. Its purpose is to maintain the integrated circuit (IC) at constant temperature and to reduce power consumption by diminishing flow generated by the pump as a function of the cooling requirements. It uses a thermopneumatic actuation principle that combines the advantages of zero power consumption and small size in combination with a high flow rate and low manufacturing costs. The valve actuation is provided by the thermal expansion of a liquid (actuation fluid) which, at the same time, actuates the valve and provides feed-back sensing. A maximum flow rate of 38 kg h −1 passes through the valve for a heat load up to 500 W. The valve is able to reduce the pumping power by up to 60% and it has the capability to maintain the IC at a more uniform temperature.

  13. Analytical Determining Of The Steinmetz Equivalent Diagram Elements Of Single-Phase Transformer

    Directory of Open Access Journals (Sweden)

    T. Aly Saandy

    2015-08-01

    Full Text Available This article presents to an analytical calculation methodology of the Steinmetz Equivalent Diagram Elements applied to the prediction of Eddy current loss in a single-phase transformer. Based on the electrical circuit theory the active and reactive powers consumed by the core are expressed analytically in function of the electromagnetic parameters as resistivity permeability and the geometrical dimensions of the core. The proposed modeling approach is established with the duality parallel series. The equivalent diagram elements empirically determined by Steinmetz are analytically expressed using the expressions of the no loaded transformer consumptions. To verify the relevance of the model validations both by simulations with different powers and measurements were carried out to determine the resistance and reactance of the core. The obtained results are in good agreement with the theoretical approach and the practical results.

  14. Analytical Modeling Of The Steinmetz Coefficient For Single-Phase Transformer Eddy Current Loss Prediction

    Directory of Open Access Journals (Sweden)

    T. Aly Saandy

    2015-08-01

    Full Text Available Abstract This article presents to an analytical calculation methodology of the Steinmetz coefficient applied to the prediction of Eddy current loss in a single-phase transformer. Based on the electrical circuit theory the active power consumed by the core is expressed analytically in function of the electrical parameters as resistivity and the geometrical dimensions of the core. The proposed modeling approach is established with the duality parallel series. The required coefficient is identified from the empirical Steinmetz data based on the experimented active power expression. To verify the relevance of the model validations both by simulations with two in two different frequencies and measurements were carried out. The obtained results are in good agreement with the theoretical approach and the practical results.

  15. Adaptive nonlinear control of single-phase to three-phase UPS system

    Directory of Open Access Journals (Sweden)

    Kissaoui M.

    2014-01-01

    Full Text Available This work deals with the problems of uninterruptible power supplies (UPS based on the single-phase to three-phase converters built in two stages: an input bridge rectifier and an output three phase inverter. The two blocks are joined by a continuous intermediate bus. The objective of control is threefold: i power factor correction “PFC”, ii generating a symmetrical three-phase system at the output even if the load is unknown, iii regulating the DC bus voltage. The synthesis of controllers has been reached by two nonlinear techniques that are the sliding mode and adaptive backstepping control. The performances of regulators have been validated by numerical simulation in MATLAB / SIMULINK.

  16. Time domain spectral phase encoding/DPSK data modulation using single phase modulator for OCDMA application.

    Science.gov (United States)

    Wang, Xu; Gao, Zhensen; Kataoka, Nobuyuki; Wada, Naoya

    2010-05-10

    A novel scheme using single phase modulator for simultaneous time domain spectral phase encoding (SPE) signal generation and DPSK data modulation is proposed and experimentally demonstrated. Array- Waveguide-Grating and Variable-Bandwidth-Spectrum-Shaper based devices can be used for decoding the signal directly in spectral domain. The effects of fiber dispersion, light pulse width and timing error on the coding performance have been investigated by simulation and verified in experiment. In the experiment, SPE signal with 8-chip, 20GHz/chip optical code patterns has been generated and modulated with 2.5 Gbps DPSK data using single modulator. Transmission of the 2.5 Gbps data over 34km fiber with BEROCDMA) and secure optical communication applications. (c) 2010 Optical Society of America.

  17. Adaptive fuzzy sliding control of single-phase PV grid-connected inverter.

    Science.gov (United States)

    Fei, Juntao; Zhu, Yunkai

    2017-01-01

    In this paper, an adaptive fuzzy sliding mode controller is proposed to control a two-stage single-phase photovoltaic (PV) grid-connected inverter. Two key technologies are discussed in the presented PV system. An incremental conductance method with adaptive step is adopted to track the maximum power point (MPP) by controlling the duty cycle of the controllable power switch of the boost DC-DC converter. An adaptive fuzzy sliding mode controller with an integral sliding surface is developed for the grid-connected inverter where a fuzzy system is used to approach the upper bound of the system nonlinearities. The proposed strategy has strong robustness for the sliding mode control can be designed independently and disturbances can be adaptively compensated. Simulation results of a PV grid-connected system verify the effectiveness of the proposed method, demonstrating the satisfactory robustness and performance.

  18. An LLCL Power Filter for Single-Phase Grid-Tied Inverter

    DEFF Research Database (Denmark)

    Wu, Weimin; He, Yuanbin; Blaabjerg, Frede

    2012-01-01

    This paper presents a new topology of higher order power filter for grid-tied voltage-source inverters, named the LLCL filter, which inserts a small inductor in the branch loop of the capacitor in the traditional LCL filter to compose a series resonant circuit at the switching frequency. Particul......This paper presents a new topology of higher order power filter for grid-tied voltage-source inverters, named the LLCL filter, which inserts a small inductor in the branch loop of the capacitor in the traditional LCL filter to compose a series resonant circuit at the switching frequency...... to the inverter system control. The parameter design criteria of the proposed LLCL filter is also introduced. The comparative analysis and discussions regarding the traditional LCL filter and the proposed LLCL filter have been presented and evaluated through experiment on a 1.8-kW-single-phase grid-tied inverter...

  19. Modelling of the modified-LLCL-filter-based single-phase grid-tied Aalborg inverter

    DEFF Research Database (Denmark)

    Liu, Zifa; Wu, Huiyun; Liu, Yuan

    2017-01-01

    Owing to less conduction and switching power losses, the recently proposed Aalborg inverter has high efficiency within a wide range of input DC voltage for single-phase DC/AC power conversion. In theory, the conduction power losses can be further decreased, if an LLCL-filter is adopted instead...... of an LCL-filter for a voltage source inverter, mainly due to the reduced inductance. The Aalborg inverter shows the characteristic of a current source inverter, when working in the `boost' state. Whether the LLCL-filter can meet the control requirement of this type inverter needs to be further explored....... In this study, the small signal analysis for the modified-LLCL-filter-based Aalborg inverter is addressed. Through the modelling, it can be proven that compared with the LCL-filter, the modified-LLCL-filter causes no extra control challenge for the Aalborg inverter, and therefore more inductance in the power...

  20. Rapid synthesis of single-phase bismuth ferrite by microwave-assisted hydrothermal method

    International Nuclear Information System (INIS)

    Cao, Wenqian; Chen, Zhi; Gao, Tong; Zhou, Dantong; Leng, Xiaonan; Niu, Feng; Zhu, Yuxiang; Qin, Laishun; Wang, Jiangying; Huang, Yuexiang

    2016-01-01

    This paper describes on the fast synthesis of bismuth ferrite by the simple microwave-assisted hydrothermal method. The phase transformation and the preferred growth facets during the synthetic process have been investigated by X-ray diffraction. Bismuth ferrite can be quickly prepared by microwave hydrothermal method by simply controlling the reaction time, which is further confirmed by Fourier Transform infrared spectroscopy and magnetic measurement. - Graphical abstract: Single-phase BiFeO_3 could be realized at a shortest reaction time of 65 min. The reaction time has strong influences on the phase transformation and the preferred growth facets. - Highlights: • Rapid synthesis (65 min) of BiFeO_3 by microwave-assisted hydrothermal method. • Reaction time has influence on the purity and preferred growth facets. • FTIR and magnetic measurement further confirm the pure phase.

  1. A Rotor Flux and Speed Observer for Sensorless Single-Phase Induction Motor Applications

    Directory of Open Access Journals (Sweden)

    Massimo Caruso

    2012-01-01

    Full Text Available It is usual to find single-phase induction motor (SPIM in several house, office, shopping, farm, and industry applications, which are become each time more sophisticated and requiring the development of efficient alternatives to improve the operational performance of this machine. Although the rotor flux and rotational speed are essential variables in order to optimize the operation of a SPIM, the use of conventional sensors to measure them is not a viable option. Thus, the adoption of sensorless strategies is the more reasonable proposal for these cases. This paper presents a rotor flux and rotational speed observer for sensorless applications involving SPIMs. Computer simulations and the experimental results are used to verify the performance of the proposed observer.

  2. Conceptual Design of a Single Phase 33 MVA HTS Transformer with a Tertiary Winding

    International Nuclear Information System (INIS)

    Lee, S. W.; Kim, W. S.; Hahn, S. Y.; Hwang, Y. I.; Choi, K. D.

    2006-01-01

    We have proposed a 3 phase, 100 MVA, 154 kV class HTS transformer substituting for a 60 MVA conventional transformer. The power transformer of 154 kV class has a tertiary winding besides primary and secondary windings. So the HTS transformer should have the 3rd superconducting winding. In this paper, we designed conceptually the structure of the superconducting windings of a single phase 33 MVA transformer. The electrical characteristics of the HTS transformer such as % impedance and AC loss vary with the arrangement of the windings and gaps between windings. We analyzed the effects of the winding parameters, evaluated the cost of each design, and proposed a suitable HTS transformer model for future power distribution system.

  3. Calculation of single phase AC and monopolar DC hybrid corona effects

    International Nuclear Information System (INIS)

    Zhao, T.; Sebo, S.A.; Kasten, D.G.

    1996-01-01

    Operating a hybrid HVac and HVdc line is an option for increasing the efficiency of power transmission and overcoming the difficulties in obtaining a new right-of-way. This paper proposes a new calculation method for the study of hybrid line corona. The proposed method can be used to calculate dc corona losses and corona currents in dc or ac conductors for single phase ac and monopolar dc hybrid lines. Profiles of electric field strength and ion current density at ground level can be estimated. The effects of the presence of an energized ac conductor on dc conductor corona and dc voltage on ac conductor corona are included in the method. Full-scale and reduced-scale experiments were utilized to investigate the hybrid line corona effects. Verification of the proposed calculation method is given

  4. Single-phase pump model for analysis of LMFBR heat transport systems

    International Nuclear Information System (INIS)

    Madni, I.K.; Cazzoli, E.

    1978-05-01

    A single-phase pump model for transient and steady-state analysis of LMFBR heat transport systems is presented. Fundamental equations of the model are angular momentum balance to determine transient impeller speed and mass balance (including thermal expansion effects) to determine the level of sodium in the pump tank. Pump characteristics are modeled by homologous head and torque relations. All regions of pump operation are represented with reverse rotation allowed. The model also includes option for enthalpy rise calculations and pony motor operation. During steady state, the pump operating speed is determined by matching required head with total load in the circuit. Calculated transient results are presented for pump coastdown and double-ended pipe break accidents. The report examines the influence of frictional torque and specific speed on predicted response for the pump coastdown to natural circulation transient. The results for a double-ended pipe break accident indicate the necessity of including all regions of operation for pump characteristics

  5. Harmonics Suppression for Single-Phase Grid-Connected Photovoltaic Systems in Different Operation Modes

    DEFF Research Database (Denmark)

    Yang, Yongheng; Zhou, Keliang; Blaabjerg, Frede

    2013-01-01

    -connected PV inverters may be severely affected in different operation modes. In this paper, a detailed analysis is conducted to reveal the relationship between the harmonics level with the power factor and the current level in the PV systems. A current control solution which employs an Internal Model...... Principle (IMP) is proposed to suppress the harmonic currents injected into the grid. Experiments are carried out to verify the analysis and the performance of the proposed control method. It is demonstrated that the proposed method presents an effective solution to harmonics suppression for single......-phase grid-connected PV systems in different operation modes. Especially, it can remove higher order harmonics effectively leading to a better power quality compared to the Proportional plus Multi-Resonant Controller, and it has less computational burden....

  6. On Thermodynamics Problems in the Single-Phase-Lagging Heat Conduction Model

    Directory of Open Access Journals (Sweden)

    Shu-Nan Li

    2016-11-01

    Full Text Available Thermodynamics problems for the single-phase-lagging (SPL model have not been much studied. In this paper, the violation of the second law of thermodynamics by the SPL model is studied from two perspectives, which are the negative entropy production rate and breaking equilibrium spontaneously. The methods for the SPL model to avoid the negative entropy production rate are proposed, which are extended irreversible thermodynamics and the thermal relaxation time. Modifying the entropy production rate positive or zero is not enough to avoid the violation of the second law of thermodynamics for the SPL model, because the SPL model could cause breaking equilibrium spontaneously in some special circumstances. As comparison, it is shown that Fourier’s law and the CV model cannot break equilibrium spontaneously by analyzing mathematical energy integral.

  7. Effects of rolling on single-phase water forced convective heat transfer characteristics

    International Nuclear Information System (INIS)

    Guo Yanming; Gao Puzhen; Huang Zhen

    2010-01-01

    A series of single-phase forced circulation tests in a vertical tube with rolling motion were performed in order to investigate effects of rolling motion on thermal-hydraulic characteristics. The amplitudes of the rolling motion in the tests were 10 degree, 15 degree and 20 degree. The rolling periods were 7.5 s, 10 s, 15 s and 20 s. The Reynolds number was from 6000 to 15000. Heat transfer in the test tube is bated by the rolling motion. As the test-bed rolling more acutely, the heat transfer coefficient of the test tube becomes smaller when the mass flow rate in the test tube is a constant. The heat transfer coefficient calculated by the formula which is for stable state doesn't fit very well with that from experiments. At last a formula for calculating heat transfer in rolling motion was introduced. (authors)

  8. Numerical simulation of single-phase and multiphase non-Darcy flowin porous and fractured reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yu-Shu

    2000-06-02

    A numerical method as well as a theoretical study of non-Darcy fluid flow of through porous and fractured reservoirs is described. The non-Darcy flow is handled in a three-dimensional, multiphase flow reservoir simulator, while the model formulation incorporates the Forchheimer equation for describing single-phase or multiphase non-Darcy flow and displacement. The numerical scheme has been verified by comparing its results against those of analytical methods. Numerical solutions are used to obtain some insight into the physics of non-Darcy flow and displacement in reservoirs. In addition, several type curves are provided for well-test analyses of non-Darcy flow to demonstrate a methodology for modeling this type of flow in porous and fractured rocks, including flow in geothermal reservoirs.

  9. A Robust DC-Split-Capacitor Power Decoupling Scheme for Single-Phase Converter

    DEFF Research Database (Denmark)

    Yao, Wenli; Loh, Poh Chiang; Tang, Yi

    2017-01-01

    Instead of bulky electrolytic capacitors, active power decoupling circuit can be introduced to a single-phase converter for diverting second harmonic ripple away from its dc source or load. One possible circuit consists of a half-bridge and two capacitors in series for forming a dc-split capacitor......, instead of the usual single dc-link capacitor bank. Methods for regulating this power decoupler have earlier been developed, but almost always with equal capacitances assumed for forming the dc-split capacitor, even though it is not realistic in practice. The assumption should, hence, be evaluated more...... thoroughly, especially when it is shown in the paper that even a slight mismatch can render the power decoupling scheme ineffective and the IEEE 1547 standard to be breached. A more robust compensation scheme is, thus, needed for the dc-split capacitor circuit, as proposed and tested experimentally...

  10. Mechanochemical preparation of nanocrystalline TiO2 powders and their behavior at high temperatures

    International Nuclear Information System (INIS)

    Gajovic, A.; Furic, K.; Tomasic, N.; Popovic, S.; Skoko, Z.; Music, S.

    2005-01-01

    Nanocrystalline TiO 2 powders were prepared by high-energy ball-milling using zirconia vial and balls. The changes of microstructure caused by material processing were studied using Raman spectroscopy, X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). The milling of the starting TiO 2 powder (anatase + rutile in traces) induced phase transitions to high-pressure polymorph, TiO 2 II, and rutile. We found that the phase transition to TiO 2 II was initiated at the surface of the small particles, while transition to rutile started in their center. Changes in crystallite size during milling process were obtained by the Scherrer method, while the particle size changes were monitored by TEM. The kinetics of phase changes, a decrease in crystallite/particle size, as well as zirconia contamination depended on the powder-to-ball weight ratio. The starting powder and some selected ball-milled samples were investigated in situ by Raman spectroscopy and XRD at high temperatures (up to 1300 deg. C) to examine their behavior during the sintering process. A difference in the results obtained by these two techniques was explained in frame of basic physical properties characterizing both methods. The morphology of the final sinters was monitored by scanning electron microscopy (SEM)

  11. Synthesis and photocatalytic activity of mesoporous nanocrystalline Fe-doped titanium dioxide

    KAUST Repository

    Qamar, Mohd

    2014-07-01

    Synthesis of mesoporous nanocrystalline iron-doped titania following the sol-gel method is presented in this work. Samples with various molar ratios (0.1, 0.25, 0.5, 1.0, 2.5, 5.0, 10 and 20%) of Fe to Ti were prepared. The particle size was found to be in the range of ∼12 nm while mesopores were approximately near to ∼5.5 nm. The effect of Fe as doping element on titania properties, such as crystallite size, surface area, pore size, pore volume and d-spacing was investigated. Moreover, distribution of Fe in TiO2 matrix was determined by elemental mapping whereas change in absorption properties was evaluated by diffuse reflectance spectroscopy. It was observed that as the Fe content was increased, a partial phase transformation from anatase to rutile and pseudorutile took place. Effect of ultraviolet, ultraviolet-visible and visible radiations on the photocatalytic activity of these catalysts was studied by removal of Methyl Orange as model pollutant. As results, it was found that the photocatalytic activity of such catalysts depends strongly on Fe amount and type of radiation. © 2013 Elsevier B.V.

  12. Low-Temperature Reverse Microemulsion Synthesis, Characterization, and Photocatalytic Performance of Nanocrystalline Titanium Dioxide

    Directory of Open Access Journals (Sweden)

    Zhang Liu

    2012-01-01

    Full Text Available Nanocrystalline titanium dioxide (TiO2 was synthesized in microemulsions by using cetyltrimethylammonium bromide (CTAB as surfactant. In order to investigate the crystal transformation and photoactivity at low temperature, the as-prepared precipitates were aged at 65°C or calcined at various temperatures. Analyses using powder X-ray diffraction (XRD and Fourier transform infrared microscopy (FT-IR showed that precursors without aging or calcination were noncrystal and adsorbed by surfactant. After aging for 6 h, the amorphous TiO2 began to change into anatase. The obtained catalysts, which were synthesized in microemulsions with weight ratios of n-hexanol/CTAB/water as 6 : 3 : 1 and calcined at 500°C, presented the highest photocatalytic degradation rate on methyl orange (MO, while the catalysts, which were aged at 65°C for 90 h, also exhibited an outstanding photocatalytic performance and a little higher than that of the commercial titania photocatalyst Degussa P25.

  13. Effects of rolling on characteristics of single-phase water flow in narrow rectangular ducts

    International Nuclear Information System (INIS)

    Xing Dianchuan; Yan Changqi; Sun Licheng; Xu Chao

    2012-01-01

    Highlights: ► Mass flow rate and friction pressure drop with different pressure head are compared. ► The effect of pressure head on flow fluctuation is considered theoretically. ► Time-mean and real-time friction pressure drop in different rolling motion are studied. ► Rolling motion influences the fluctuation of friction pressure drop in two aspects. ► New correlation for frictional coefficient in rolling motion is achieved. - Abstract: Experimental and theoretical studies of rolling effects on characteristics of single-phase water flow in narrow rectangular ducts are performed under ambient temperature and pressure. Two types of pressure head are supplied by elevate water tank and pump respectively. The results show that the frictional pressure drop under rolling condition fluctuates periodically, with its amplitude decaying as mean Reynolds number increase and the rolling amplitude decrease, while the amplitude is nearly invariable with rolling period. Rolling motion influences the fluctuation amplitude of frictional pressure drop in two aspects, on the one hand, rolling reduced periodical pulsing flow leads to the fluctuation of the frictional pressure drop, on the other hand, additional force acting on fluid near the wall due to the rolling motion makes local frictional resistance oscillate periodically. The mass flow rate oscillates periodically in rolling motion with the pressure head supplied by water tank, while its fluctuation is so weak that could be neglected for the case of the pressure head supplied by pump. An empirical correlation for the frictional coefficient under rolling condition is achieved, and the experimental data is well correlated. A mathematical model is also developed to study the effect of pressure head on mass flow rate fluctuation in rolling motion. The fluctuation amplitude of the mass flow rate decreases rapidly with a higher pressure head. Comparing with the vertical condition, rolling motion nearly has no effects on

  14. Multi-scale Modeling of Compressible Single-phase Flow in Porous Media using Molecular Simulation

    KAUST Repository

    Saad, Ahmed Mohamed

    2016-05-01

    In this study, an efficient coupling between Monte Carlo (MC) molecular simulation and Darcy-scale flow in porous media is presented. The cell-centered finite difference method with a non-uniform rectangular mesh were used to discretize the simulation domain and solve the governing equations. To speed up the MC simulations, we implemented a recently developed scheme that quickly generates MC Markov chains out of pre-computed ones, based on the reweighting and reconstruction algorithm. This method astonishingly reduces the required computational time by MC simulations from hours to seconds. In addition, the reweighting and reconstruction scheme, which was originally designed to work with the LJ potential model, is extended to work with a potential model that accounts for the molecular quadrupole moment of fluids with non-spherical molecules such as CO2. The potential model was used to simulate the thermodynamic equilibrium properties for single-phase and two-phase systems using the canonical ensemble and the Gibbs ensemble, respectively. Comparing the simulation results with the experimental data showed that the implemented model has an excellent fit outperforming the standard LJ model. To demonstrate the strength of the proposed coupling in terms of computational time efficiency and numerical accuracy in fluid properties, various numerical experiments covering different compressible single-phase flow scenarios were conducted. The novelty in the introduced scheme is in allowing an efficient coupling of the molecular scale and Darcy scale in reservoir simulators. This leads to an accurate description of the thermodynamic behavior of the simulated reservoir fluids; consequently enhancing the confidence in the flow predictions in porous media.

  15. Single-phase dual-energy CT urography in the evaluation of haematuria.

    Science.gov (United States)

    Ascenti, G; Mileto, A; Gaeta, M; Blandino, A; Mazziotti, S; Scribano, E

    2013-02-01

    To assess the value of a single-phase dual-energy computed tomography (DECT) urography protocol with synchronous nephrographic-excretory phase enhancement and to calculate the potential dose reduction by omitting the unenhanced scan. Eighty-four patients referred for haematuria underwent CT urography using a protocol that included single-energy unenhanced and dual-energy contrast-enhanced with synchronous nephrographic-excretory phase scans. DECT-based images [virtual unenhanced (VUE), weighted average, and colour-coded iodine overlay] were reconstructed. Opacification degree by contrast media of the upper urinary tract, and image quality of virtual unenhanced images were independently evaluated using a four-point scale. The diagnostic accuracy in detecting urothelial tumours on DECT-based images was determined. The dose of a theoretical dual-phase single-energy protocol was obtained by multiplying the effective dose of the unenhanced single-energy acquisition by two. Radiation dose saving by omitting the unenhanced scan was calculated. The degree of opacification was scored as optimal or good in 86.9% of cases (k = 0.72); VUE image quality was excellent or good in 83.3% of cases (k = 0.82). Sensitivity, specificity, positive predictive value, and negative predictive value for urothelial tumours detection were 85.7, 98.6, 92.3, and 97.1%. Omission of the unenhanced scan led to a mean dose reduction of 42.7 ± 5%. Single-phase DECT urography with synchronous nephrographic-excretory phase enhancement represents an accurate "all-in-one'' approach with a radiation dose saving up to 45% compared with a standard dual-phase protocol. Copyright © 2012 The Royal College of Radiologists. All rights reserved.

  16. Single-phase dual-energy CT urography in the evaluation of haematuria

    International Nuclear Information System (INIS)

    Ascenti, G.; Mileto, A.; Gaeta, M.; Blandino, A.; Mazziotti, S.; Scribano, E.

    2013-01-01

    Aim: To assess the value of a single-phase dual-energy computed tomography (DECT) urography protocol with synchronous nephrographic–excretory phase enhancement and to calculate the potential dose reduction by omitting the unenhanced scan. Materials and methods: Eighty-four patients referred for haematuria underwent CT urography using a protocol that included single-energy unenhanced and dual-energy contrast-enhanced with synchronous nephrographic–excretory phase scans. DECT-based images [virtual unenhanced (VUE), weighted average, and colour-coded iodine overlay] were reconstructed. Opacification degree by contrast media of the upper urinary tract, and image quality of virtual unenhanced images were independently evaluated using a four-point scale. The diagnostic accuracy in detecting urothelial tumours on DECT-based images was determined. The dose of a theoretical dual-phase single-energy protocol was obtained by multiplying the effective dose of the unenhanced single-energy acquisition by two. Radiation dose saving by omitting the unenhanced scan was calculated. Results: The degree of opacification was scored as optimal or good in 86.9% of cases (k = 0.72); VUE image quality was excellent or good in 83.3% of cases (k = 0.82). Sensitivity, specificity, positive predictive value, and negative predictive value for urothelial tumours detection were 85.7, 98.6, 92.3, and 97.1%. Omission of the unenhanced scan led to a mean dose reduction of 42.7 ± 5%. Conclusion: Single-phase DECT urography with synchronous nephrographic–excretory phase enhancement represents an accurate “all-in-one’’ approach with a radiation dose saving up to 45% compared with a standard dual-phase protocol.

  17. Synthesis and characterization of single-phase Mn-doped ZnO

    Science.gov (United States)

    Chattopadhyay, S.; Dutta, S.; Banerjee, A.; Jana, D.; Bandyopadhyay, S.; Chattopadhyay, S.; Sarkar, A.

    2009-05-01

    Different samples of Zn 1-xMn xO series have been prepared using conventional solid-state sintering method. We identified up to what extent doping will enable us to synthesize single-phase polycrystalline Mn-doped ZnO sample, which is one of the prerequisites for dilute magnetic semiconductor, and we have analyzed its some other physical aspects. In synthesizing the samples, proportion of Mn varies from 1 to 5 at%. However, the milling time varied (6, 12, 24, 48 and 96 h) only for 2 at% Mn-doped samples while for other samples (1, 3, 4 and 5 at% Mn doped) the milling time has been fixed to 96 h. Room-temperature X-ray diffraction (XRD) data reveal that all of the prepared samples up to 3 at% of Mn doping exhibit wurtzite-type structure, and no segregation of Mn and/or its oxides has been found. The 4 at% Mn-doped samples show a weak peak of ZnMn 2O 4 apart from the other usual peaks of ZnO and the intensity of this impurity peak has been further increased for 5 at% of Mn doping. So beyond 3 at% doping, single-phase behavior is destroyed. Band gap for all the 2 at% Mn-doped samples has been estimated to be between 3.21 and 3.19 eV and the reason for this low band gap values has been explained through the grain boundary trapping model. The room-temperature resistivity measurement shows an increase of resistivity up to 48 h of milling and with further milling it saturates. The defect state of these samples has been investigated using the positron annihilation lifetime (PAL) spectroscopy technique. Here all the relevant lifetime parameters of positron i.e. free annihilation ( τ1) at defect site ( τ2) and average ( τav) increases with milling time.

  18. Synthesis and characterization of single-phase Mn-doped ZnO

    International Nuclear Information System (INIS)

    Chattopadhyay, S.; Dutta, S.; Banerjee, A.; Jana, D.; Bandyopadhyay, S.; Chattopadhyay, S.; Sarkar, A.

    2009-01-01

    Different samples of Zn 1-x Mn x O series have been prepared using conventional solid-state sintering method. We identified up to what extent doping will enable us to synthesize single-phase polycrystalline Mn-doped ZnO sample, which is one of the prerequisites for dilute magnetic semiconductor, and we have analyzed its some other physical aspects. In synthesizing the samples, proportion of Mn varies from 1 to 5 at%. However, the milling time varied (6, 12, 24, 48 and 96 h) only for 2 at% Mn-doped samples while for other samples (1, 3, 4 and 5 at% Mn doped) the milling time has been fixed to 96 h. Room-temperature X-ray diffraction (XRD) data reveal that all of the prepared samples up to 3 at% of Mn doping exhibit wurtzite-type structure, and no segregation of Mn and/or its oxides has been found. The 4 at% Mn-doped samples show a weak peak of ZnMn 2 O 4 apart from the other usual peaks of ZnO and the intensity of this impurity peak has been further increased for 5 at% of Mn doping. So beyond 3 at% doping, single-phase behavior is destroyed. Band gap for all the 2 at% Mn-doped samples has been estimated to be between 3.21 and 3.19 eV and the reason for this low band gap values has been explained through the grain boundary trapping model. The room-temperature resistivity measurement shows an increase of resistivity up to 48 h of milling and with further milling it saturates. The defect state of these samples has been investigated using the positron annihilation lifetime (PAL) spectroscopy technique. Here all the relevant lifetime parameters of positron i.e. free annihilation (τ 1 ) at defect site (τ 2 ) and average (τ av ) increases with milling time.

  19. Computational simulation of flow and heat transfer in single-phase natural circulation loops

    International Nuclear Information System (INIS)

    Pinheiro, Larissa Cunha

    2017-01-01

    Passive decay heat removal systems based on natural circulation are essential assets for the new Gen III+ nuclear power reactors and nuclear spent fuel pools. The aim of the present work is to study both laminar and turbulent flow and heat transfer in single-phase natural circulation systems through computational fluid dynamics simulations. The working fluid is considered to be incompressible with constant properties. In the way, the Boussinesq Natural Convection Hypothesis was applied. The model chosen for the turbulence closure problem was the k -- εThe commercial computational fluid dynamics code ANSYS CFX 15.0 was used to obtain the numerical solution of the governing equations. Two single-phase natural circulation circuits were studied, a 2D toroidal loop and a 3D rectangular loop, both with the same boundary conditions of: prescribed heat flux at the heater and fixed wall temperature at the cooler. The validation and verification was performed with the numerical data provided by DESRAYAUD et al. [1] and the experimental data provided by MISALE et al. [2] and KUMAR et al. [3]. An excellent agreement between the Reynolds number (Re) and the modified Grashof number (Gr_m), independently of Prandtl Pr number was observed. However, the convergence interval was observed to be variable with Pr, thus indicating that Pr is a stability governing parameter for natural circulation. Multiple steady states was obtained for Pr = 0,7. Finally, the effect of inclination was studied for the 3D circuit, both in-plane and out-of-plane inclinations were verified for the steady state laminar regime. As a conclusion, the Re for the out-of-plane inclination was in perfect agreement with the correlation found for the zero inclination system, while for the in-plane inclined system the results differ from that of the corresponding vertical loop. (author)

  20. An equivalent ground thermal test method for single-phase fluid loop space radiator

    Directory of Open Access Journals (Sweden)

    Xianwen Ning

    2015-02-01

    Full Text Available Thermal vacuum test is widely used for the ground validation of spacecraft thermal control system. However, the conduction and convection can be simulated in normal ground pressure environment completely. By the employment of pumped fluid loops’ thermal control technology on spacecraft, conduction and convection become the main heat transfer behavior between radiator and inside cabin. As long as the heat transfer behavior between radiator and outer space can be equivalently simulated in normal pressure, the thermal vacuum test can be substituted by the normal ground pressure thermal test. In this paper, an equivalent normal pressure thermal test method for the spacecraft single-phase fluid loop radiator is proposed. The heat radiation between radiator and outer space has been equivalently simulated by combination of a group of refrigerators and thermal electrical cooler (TEC array. By adjusting the heat rejection of each device, the relationship between heat flux and surface temperature of the radiator can be maintained. To verify this method, a validating system has been built up and the experiments have been carried out. The results indicate that the proposed equivalent ground thermal test method can simulate the heat rejection performance of radiator correctly and the temperature error between in-orbit theory value and experiment result of the radiator is less than 0.5 °C, except for the equipment startup period. This provides a potential method for the thermal test of space systems especially for extra-large spacecraft which employs single-phase fluid loop radiator as thermal control approach.

  1. Enhanced visible-light activities for PEC water reduction of CuO nanoplates by coupling with anatase TiO2 and mechanism

    International Nuclear Information System (INIS)

    Li, Zhijun; Qu, Yang; He, Guangwen; Humayun, Muhammad; Chen, Shuangying; Jing, Liqiang

    2015-01-01

    Graphical abstract: - Highlights: • CuO nanoplates were successfully prepared as photocathodes for PEC water reduction. • Visible-light activity for PEC water reduction is improved after coupling with TiO 2 . • Improved PEC performance is attributed to the enhanced visible-excited charge separation. • Enhanced charge separation results from high-energy electron transfer from CuO to TiO 2 . - Abstract: CuO nanoplates were prepared by a feasible hydrothermal method, and then utilized as photocathodes for photoelectrochemical (PEC) water reduction in a neutral medium under visible-light irradiation. It is clearly demonstrated that the visible-light activities of the resulting nanoplates for PEC water reduction could be greatly improved after coupling with a proper amount of nanocrystalline anatase TiO 2 . This is attributed to the enhanced charge separation in the fabricated TiO 2 /CuO nanoplate composites mainly based on the atmosphere-controlled steady-state surface photovoltage spectra. Moreover, it is suggested that the enhanced charge separation resulted from the transfer of visible-light-excited high-energy electrons from CuO to TiO 2 as confirmed from the single-wavelength PEC behavior

  2. Atomic layer deposition of epitaxial layers of anatase on strontium titanate single crystals: Morphological and photoelectrochemical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Theodore J.; Nepomnyashchii, Alexander B.; Parkinson, B. A., E-mail: bparkin1@uwyo.edu [Department of Chemistry, School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071 (United States)

    2015-01-15

    Atomic layer deposition was used to grow epitaxial layers of anatase (001) TiO{sub 2} on the surface of SrTiO{sub 3} (100) crystals with a 3% lattice mismatch. The epilayers grow as anatase (001) as confirmed by x-ray diffraction. Atomic force microscope images of deposited films showed epitaxial layer-by-layer growth up to about 10 nm, whereas thicker films, of up to 32 nm, revealed the formation of 2–5 nm anatase nanocrystallites oriented in the (001) direction. The anatase epilayers were used as substrates for dye sensitization. The as received strontium titanate crystal was not sensitized with a ruthenium-based dye (N3) or a thiacyanine dye (G15); however, photocurrent from excited state electron injection from these dyes was observed when adsorbed on the anatase epilayers. These results show that highly ordered anatase surfaces can be grown on an easily obtained substrate crystal.

  3. Radiation influence on properties of nanocrystalline alloy

    International Nuclear Information System (INIS)

    Holkova, D.; Sitek, J.; Novak, P.; Dekan, J.

    2016-01-01

    Our work is focused on the studied of structural changes amorphous and nanocrystalline alloys after irradiation with electrons. For the analysis of these alloy we use two spectroscopic methods: Moessbauer spectroscopy and XRD. Measurements of nanocrystalline (Fe 3 Ni 1 ) 81 Nb 7 B 12 samples before and after electrons irradiation by means of Moessbauer spectroscopy and XRD showed that the electrons causes changes in magnetic structure which is reflected changes of direction of net magnetic moment. Structural changes occurs in the frame of error indicated by both spectroscopic methods. We can confirm that this kind alloys a resistive again electrons irradiation up to doses of 4 MGy. We observed in this frame only beginning of the radiation damage. (authors)

  4. Ultrafast Terahertz Conductivity of Photoexcited Nanocrystalline Silicon

    DEFF Research Database (Denmark)

    Cooke, David; MacDonald, A. Nicole; Hryciw, Aaron

    2007-01-01

    The ultrafast transient ac conductivity of nanocrystalline silicon films is investigated using time-resolved terahertz spectroscopy. While epitaxial silicon on sapphire exhibits a free carrier Drude response, silicon nanocrystals embedded in glass show a response that is best described by a class...... in the silicon nanocrystal films is dominated by trapping at the Si/SiO2 interface states, occurring on a 1–100 ps time scale depending on particle size and hydrogen passivation......The ultrafast transient ac conductivity of nanocrystalline silicon films is investigated using time-resolved terahertz spectroscopy. While epitaxial silicon on sapphire exhibits a free carrier Drude response, silicon nanocrystals embedded in glass show a response that is best described...

  5. Solubility of Carbon in Nanocrystalline -Iron

    OpenAIRE

    Alexander Kirchner; Bernd Kieback

    2012-01-01

    A thermodynamic model for nanocrystalline interstitial alloys is presented. The equilibrium solid solubility of carbon in -iron is calculated for given grain size. Inside the strained nanograins local variation of the carbon content is predicted. Due to the nonlinear relation between strain and solubility, the averaged solubility in the grain interior increases with decreasing grain size. The majority of the global solubility enhancement is due to grain boundary enrichment however. Therefor...

  6. Quantification of rutile in anatase by X-ray diffraction

    International Nuclear Information System (INIS)

    Chavez R, A.

    2001-01-01

    Nowadays the discovering of new and better materials required in all areas of the industry has been lead to the human being to introduce him to this small and great world. The crystalline materials, have properties markedly directional. When it is necessary to realize a quantitative analysis to these materials the task is not easy. The main objective of this work is the research of a real problem, its solution and perfecting of a technique involving the theoretical and experimental principles which allow the quantification of crystalline phases. The chapter 1 treats about the study of crystalline state during the last century, by means of the X-ray diffraction technique. The chapter 2 studies the nature and production of X-rays, the chapter 3 expounds the principles of the diffraction technique which to carry out when it is satisfied the Bragg law studying the powder diffraction method and its applications. In the chapter 4 it is explained how the intensities of the beams diffracted are determined by the atoms positions inside of the elemental cell of the crystal. The properties of the crystalline samples of anatase and rutile are described in the chapter 5. The results of this last analysis are the information which will be processed by means of the auxiliary software: Diffrac AT, Axum and Peakfit as well as the TAFOR and CUANTI software describing this part with more detail in the chapters 6 and 7 where it is mentioned step by step the function of each software until to reach the quantification of crystalline phases, objective of this work. Finally, in the chapter 8 there are a results analysis and conclusions. The contribution of this work is for those learned institutions of limited resources which can tackle in this way the characterization of materials. (Author)

  7. Characterization of amorphous and nanocrystalline carbon films

    International Nuclear Information System (INIS)

    Chu, Paul K.; Li Liuhe

    2006-01-01

    Amorphous and nanocrystalline carbon films possess special chemical and physical properties such as high chemical inertness, diamond-like properties, and favorable tribological proprieties. The materials usually consist of graphite and diamond microstructures and thus possess properties that lie between the two. Amorphous and nanocrystalline carbon films can exist in different kinds of matrices and are usually doped with a large amount of hydrogen. Thus, carbon films can be classified as polymer-like, diamond-like, or graphite-like based on the main binding framework. In order to characterize the structure, either direct bonding characterization methods or the indirect bonding characterization methods are employed. Examples of techniques utilized to identify the chemical bonds and microstructure of amorphous and nanocrystalline carbon films include optical characterization methods such as Raman spectroscopy, Ultra-violet (UV) Raman spectroscopy, and infrared spectroscopy, electron spectroscopic and microscopic methods such as scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy, transmission electron microscopy, and electron energy loss spectroscopy, surface morphology characterization techniques such as scanning probe microscopy (SPM) as well as other characterization methods such as X-ray reflectivity and nuclear magnetic resonance. In this review, the structures of various types of amorphous carbon films and common characterization techniques are described

  8. Synthesis and characterization of single-phase Mn-doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, S.; Dutta, S.; Banerjee, A.; Jana, D. [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009, West Bengal (India); Bandyopadhyay, S., E-mail: sbaphy@caluniv.ac.i [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009, West Bengal (India); Chattopadhyay, S. [Department of Physics, Taki Government College, Taki 743 429, West Bengal (India); Sarkar, A. [Department of Physics, Bangabasi Morning College, 19 Rajkumar Chakraborty Sarani, Kolkata 700 009, West Bengal (India)

    2009-05-01

    Different samples of Zn{sub 1-x}Mn{sub x}O series have been prepared using conventional solid-state sintering method. We identified up to what extent doping will enable us to synthesize single-phase polycrystalline Mn-doped ZnO sample, which is one of the prerequisites for dilute magnetic semiconductor, and we have analyzed its some other physical aspects. In synthesizing the samples, proportion of Mn varies from 1 to 5 at%. However, the milling time varied (6, 12, 24, 48 and 96 h) only for 2 at% Mn-doped samples while for other samples (1, 3, 4 and 5 at% Mn doped) the milling time has been fixed to 96 h. Room-temperature X-ray diffraction (XRD) data reveal that all of the prepared samples up to 3 at% of Mn doping exhibit wurtzite-type structure, and no segregation of Mn and/or its oxides has been found. The 4 at% Mn-doped samples show a weak peak of ZnMn{sub 2}O{sub 4} apart from the other usual peaks of ZnO and the intensity of this impurity peak has been further increased for 5 at% of Mn doping. So beyond 3 at% doping, single-phase behavior is destroyed. Band gap for all the 2 at% Mn-doped samples has been estimated to be between 3.21 and 3.19 eV and the reason for this low band gap values has been explained through the grain boundary trapping model. The room-temperature resistivity measurement shows an increase of resistivity up to 48 h of milling and with further milling it saturates. The defect state of these samples has been investigated using the positron annihilation lifetime (PAL) spectroscopy technique. Here all the relevant lifetime parameters of positron i.e. free annihilation (tau{sub 1}) at defect site (tau{sub 2}) and average (tau{sub av}) increases with milling time.

  9. Nanocrystalline (U0.5Ce0.5)O2±x solid solutions through citrate gel-combustion

    Science.gov (United States)

    Maji, D.; Ananthasivan, K.; Venkata Krishnan, R.; Balakrishnan, S.; Amirthapandian, S.; Joseph, Kitheri; Dasgupta, Arup

    2018-04-01

    Nanocrystalline powders of (U0.5Ce0.5)O2±x solid solutions were synthesized in bulk (100-200 g) through the citrate gel combustion. The fuel (citric acid) to oxidant (nitrate) mole ratio (R) was varied from 0.1 to 1.0. Two independent lots of the products obtained through the gel-combustion were calcined at 973 K in air and in a mixture of argon containing 8% H2 respectively. All these powders were characterized for their bulk density, X-ray crystallite size, specific surface area, size distribution of the particles, porosity as well as residual carbon. The morphology and microstructures of these powders were studied by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) respectively. Nanocrystalline single phase fluorite solid solutions having a typical crystallite size of about (7-15 nm) were obtained. These powders were highly porous comprising cuboidal flaky agglomerates. The combustion mixture with an 'R' value of 0.25 was found to undergo volume combustion and was found to yield a product that was distinctly different. The systematic investigation on synthesis and characterization of nanocrystalline UCeO2 is reported for the first time.

  10. First-principles study of Mn-S codoped anatase TiO2

    Science.gov (United States)

    Li, Senlin; Huang, Jinliang; Ning, Xiangmei; Chen, Yongcha; Shi, Qingkui

    2018-04-01

    In this work, the CASTEP program in Materials Studio 2017 software package was applied to calculate the electronic structures and optical properties of pure anatase TiO2, S-doped, Mn-doped and Mn-S co-doped anatase TiO2 by GGA + U methods based on the density function theory (DFT). The results indicate that the lattice is distorted and the lattice constant is reduce due to doping. The doping also introduces impurity energy levels into the forbidden band. After substitution of Mn for Ti atom, band gap narrowing of anatase TiO2 is caused by the impurity energy levels appearance in the near Fermi surface, which are contributed by Mn-3d orbital, Ti-3d orbital and O-2p orbital hybridization. After substitution of S for O atom, band gap narrowing is creited with the shallow accepter level under the conduction hand of S-3p orbital. The Mn-S co-doped anatase TiO2 could be a potential candidate for a photocatalyst because of tis enhanced absorption ability of visible light. The results can well explain the immanent cause of a band gap narrowing as well as a red shift in the spectrum for doped anatase TiO2.

  11. High-Temperature Stable Anatase Titanium Oxide Nanofibers for Lithium-Ion Battery Anodes.

    Science.gov (United States)

    Lee, Sangkyu; Eom, Wonsik; Park, Hun; Han, Tae Hee

    2017-08-02

    Control of the crystal structure of electrochemically active materials is an important approach to fabricating high-performance electrodes for lithium-ion batteries (LIBs). Here, we report a methodology for controlling the crystal structure of TiO 2 nanofibers by adding aluminum isopropoxide to a common sol-gel precursor solution utilized to create TiO 2 nanofibers. The introduction of aluminum cations impedes the phase transformation of electrospun TiO 2 nanofibers from the anatase to the rutile phase, which inevitably occurs in the typical annealing process utilized for the formation of TiO 2 crystals. As a result, high-temperature stable anatase TiO 2 nanofibers were created in which the crystal structure was well-maintained even at high annealing temperatures of up to 700 °C. Finally, the resulting anatase TiO 2 nanofibers were utilized to prepare LIB anodes, and their electrochemical performance was compared to pristine TiO 2 nanofibers that contain both anatase and rutile phases. Compared to the electrode prepared with pristine TiO 2 nanofibers, the electrode prepared with anatase TiO 2 nanofibers exhibited excellent electrochemical performances such as an initial Coulombic efficiency of 83.9%, a capacity retention of 89.5% after 100 cycles, and a rate capability of 48.5% at a current density of 10 C (1 C = 200 mA g -1 ).

  12. Biocompatible nanocrystalline natural bonelike carbonated hydroxyapatite synthesized by mechanical alloying in a record minimum time

    Energy Technology Data Exchange (ETDEWEB)

    Lala, S. [Materials Science Division, Department of Physics, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal (India); Brahmachari, S.; Das, P.K. [Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700 032 (India); Das, D. [UGC-DAE Consortium for Scientific Research, Kolkata-700098 (India); Kar, T. [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032 (India); Pradhan, S.K., E-mail: skp_bu@yahoo.com [Materials Science Division, Department of Physics, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal (India)

    2014-09-01

    Single phase nanocrystalline biocompatible A-type carbonated hydroxyapatite (A-cHAp) powder has been synthesized by mechanical alloying the stoichiometric mixture of CaCO{sub 3} and CaHPO{sub 4}.2H{sub 2}O powders in open air at room temperature within 2 h of milling. The A-type carbonation in HAp is confirmed by FTIR analysis. Structural and microstructure parameters of as-milled powders are obtained from both Rietveld's powder structure refinement analysis and transmission electron microscopy. Size and lattice strain of nanocrystalline HAp particles are found to be anisotropic in nature. Mechanical alloying causes amorphization of a part of crystalline A-cHAp which is analogous to native bone mineral. Some primary bond lengths of as-milled samples are critically measured. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay test reveals high percentage of cell viability and hence confirms the biocompatibility of the sample. The overall results indicate that the processed A-cHAp has a chemical composition very close to that of biological apatite. - Graphical abstract: Biocompatible A-Type Carbonated Hydroxyapatite (A-cHAp) has been synthesized by mechanical alloying in polycrystalline form within 2 h of milling. The shape and position of CO channel have been shown. - Highlights: • A-cHAp phase is completed within 2 h of milling. • FTIR analysis confirms A-type carbonation in HAp. • Amorphization of a part of crystalline A-cHAp. • Particle size and strain are anaisotropic in nature. • High cell viability under MTT assay.

  13. Prediction of effective friction factors for single-phase flow in horizontal microfin tubes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H S; Rose, J W [University of London (United Kingdom). Queen Mary, Department of Engineering

    2004-12-01

    An experimental database, covering a wide range of tube and fin geometric dimensions, Reynolds number and including data for water, R11, and ethylene glycol has been compiled for friction factor for single-phase flow in spirally grooved, horizontal microfin tubes. The tubes (21 in all) had inside diameter at the fin root between 6.46 and 24.13 mm, fin height between 0.13 and 0.47 mm, fin pitch between 0.32 and 1.15 mm, and helix angle between 17 and 45 degrees. The Reynolds number ranged from 2.0x10{sup 3} to 1.63x10{sup 5}. Six earlier friction factor correlations, each based on restricted data sets, have been compared with the database as a whole. None was found to be in good agreement with all of the data. The Jensen and Vlakancic correlation was found to be the best and represents the database within {+-}21%. (author)

  14. Paramagnetism and antiferromagnetic interactions in single-phase Fe-implanted ZnO

    CERN Document Server

    Pereira, Lino Miguel da Costa; Correia, João Guilherme; Van Bael, M J; Temst, Kristiaan; Vantomme, André; Araújo, João Pedro

    2013-01-01

    As the intrinsic origin of the high temperature ferromagnetism often observed in wide-gap dilute magnetic semiconductors becomes increasingly debated, there is a growing need for comprehensive studies on the single-phase region of the phase diagram of these materials. Here we report on the magnetic and structural properties of Fe-doped ZnO prepared by ion implantation of ZnO single crystals. A detailed structural characterization shows that the Fe impurities substitute for Zn in ZnO in a wurtzite Zn$_{1−x}$Fe$_{x}$O phase which is coherent with the ZnO host. In addition, the density of beam-induced defects is progressively decreased by thermal annealing up to 900$^{\\circ}$C, from highly disordered after implantation to highly crystalline upon subsequent annealing. Based on a detailed analysis of the magnetometry data, we demonstrate that isolated Fe impurities occupying Zn substitutional sites behave as localized paramagnetic moments down to 2$^{\\circ}$K, irrespective of the Fe concentration and the density...

  15. A control strategy for induction motors fed from single phase supply

    DEFF Research Database (Denmark)

    Søndergård, Lars Møller

    1993-01-01

    It is often required that a three-phased asynchronous motor can run at variable speed, which makes it necessary to use a three-phase inverter driven from a DC-source. Today, most inverters are driven from the network using a simple diode bridge and an electrolytic capacitor. The problem with the ......It is often required that a three-phased asynchronous motor can run at variable speed, which makes it necessary to use a three-phase inverter driven from a DC-source. Today, most inverters are driven from the network using a simple diode bridge and an electrolytic capacitor. The problem...... with the simple diode bridge and the electrolytic capacitor is that current is only drawn for short periods, which gives rise to harmonic currents in the network. For small drive systems (motor+inverter), i.e. less than 1.5 kW, a single phase network outlet is often used. The author describes a method whereby...

  16. Green synthesis of isopropyl myristate in novel single phase medium Part I: Batch optimization studies

    Directory of Open Access Journals (Sweden)

    Rajeshkumar N. Vadgama

    2015-12-01

    Full Text Available Isopropyl myristate finds many applications in food, cosmetic and pharmaceutical industries as an emollient, thickening agent, or lubricant. Using a homogeneous reaction phase, non-specific lipase derived from Candida antartica, marketed as Novozym 435, was determined to be most suitable for the enzymatic synthesis of isopropyl myristate. The high molar ratio of alcohol to acid creates novel single phase medium which overcomes mass transfer effects and facilitates downstream processing. The effect of various reaction parameters was optimized to obtain a high yield of isopropyl myristate. Effect of temperature, agitation speed, organic solvent, biocatalyst loading and batch operational stability of the enzyme was systematically studied. The conversion of 87.65% was obtained when the molar ratio of isopropyl alcohol to myristic acid (15:1 was used with 4% (w/w catalyst loading and agitation speed of 150 rpm at 60 °C. The enzyme has also shown good batch operational stability under optimized conditions.

  17. Single Phase Passive Rectification Versus Active Rectification Applied to High Power Stirling Engines

    Science.gov (United States)

    Santiago, Walter; Birchenough, Arthur G.

    2006-01-01

    Stirling engine converters are being considered as potential candidates for high power energy conversion systems required by future NASA explorations missions. These types of engines typically contain two major moving parts, the displacer and the piston, in which a linear alternator is attached to the piston to produce a single phase sinusoidal waveform at a specific electric frequency. Since all Stirling engines perform at low electrical frequencies (less or equal to 100 Hz), space explorations missions that will employ these engines will be required to use DC power management and distribution (PMAD) system instead of an AC PMAD system to save on space and weight. Therefore, to supply such DC power an AC to DC converter is connected to the Stirling engine. There are two types of AC to DC converters that can be employed, a passive full bridge diode rectifier and an active switching full bridge rectifier. Due to the inherent line inductance of the Stirling Engine-Linear Alternator (SE-LA), their sinusoidal voltage and current will be phase shifted producing a power factor below 1. In order to keep power the factor close to unity, both AC to DC converters topologies will implement power factor correction. This paper discusses these power factor correction methods as well as their impact on overall mass for exploration applications. Simulation results on both AC to DC converters topologies with power factor correction as a function of output power and SE-LA line inductance impedance are presented and compared.

  18. Radiation-induced segregation on defect clusters in single-phase concentrated solid-solution alloys

    International Nuclear Information System (INIS)

    Lu, Chenyang; Yang, Taini; Jin, Ke; Gao, Ning; Xiu, Pengyuan; Zhang, Yanwen; Gao, Fei; Bei, Hongbin; Weber, William J.; Sun, Kai; Dong, Yan; Wang, Lumin

    2017-01-01

    A group of single-phase concentrated solid-solution alloys (SP-CSAs), including NiFe, NiCoFe, NiCoFeCr, as well as a high entropy alloy NiCoFeCrMn, was irradiated with 3 MeV Ni"2"+ ions at 773 K to a fluence of 5 × 10"1"6 ions/cm"2 for the study of radiation response with increasing compositional complexity. Advanced transmission electron microscopy (TEM) with electron energy loss spectroscopy (EELS) was used to characterize the dislocation loop distribution and radiation-induced segregation (RIS) on defect clusters in the SP-CSAs. The results show that a higher fraction of faulted loops exists in the more compositionally complex alloys, which indicate that increasing compositional complexity can extend the incubation period and delay loop growth. The RIS behaviors of each element in the SP-CSAs were observed as follows: Ni and Co tend to enrich, but Cr, Fe and Mn prefer to deplete near the defect clusters. RIS level can be significantly suppressed by increasing compositional complexity due to the sluggish atom diffusion. According to molecular static (MS) simulations, “disk” like segregations may form near the faulted dislocation loops in the SP-CSAs. Segregated elements tend to distribute around the whole faulted loop as a disk rather than only around the edge of the loop.

  19. Improved Reliability of Single-Phase PV Inverters by Limiting the Maximum Feed-in Power

    DEFF Research Database (Denmark)

    Yang, Yongheng; Wang, Huai; Blaabjerg, Frede

    2014-01-01

    Grid operation experiences have revealed the necessity to limit the maximum feed-in power from PV inverter systems under a high penetration scenario in order to avoid voltage and frequency instability issues. A Constant Power Generation (CPG) control method has been proposed at the inverter level...... devices, allowing a quantitative prediction of the power device lifetime. A study case on a 3 kW single-phase PV inverter has demonstrated the advantages of the CPG control in terms of improved reliability.......Grid operation experiences have revealed the necessity to limit the maximum feed-in power from PV inverter systems under a high penetration scenario in order to avoid voltage and frequency instability issues. A Constant Power Generation (CPG) control method has been proposed at the inverter level....... The CPG control strategy is activated only when the DC input power from PV panels exceeds a specific power limit. It enables to limit the maximum feed-in power to the electric grids and also to improve the utilization of PV inverters. As a further study, this paper investigates the reliability performance...

  20. Single-phase heat transfer enhancement in micro/minichannels using nanofluids: Theory and applications

    International Nuclear Information System (INIS)

    Hussien, Ahmed A.; Abdullah, Mohd Z.; Al-Nimr, Moh’d A.

    2016-01-01

    Highlights: • Review recent experimental and numerical studies on heat transfer in micro/minichannels and nanofluids. • Display the new applications of using nanofluids and micro/minichannels to enhance thermal performance. • Explain the factors affecting the thermal conductivity enhancement ratio of nanofluids. • The challenges of using the mini/microchannels and nanofluids. - Abstract: New cooling techniques are being explored for the dissipation of heat fluxes. Many recent studies on heat transfer in micro/minichannels (M/MCs) with nanofluids have focused on combining the advantages of both, for the purpose of obtaining higher single-phase enhancement of heat transfer. Developing of many applications such as cooling electronic device, solar cell, and automotive technology is highly demanded now a day to obtain high efficiency and reduce the operating cost. This review article summarizes recent studies, with a focus on two main topics: The first part contains the main concepts such as scaling effects of M/MCs, physical properties and convective heat transfer. The second part displays the main recent applications of M/MCs with nanofluids with the challenges to be widely used. The purpose of this article to provide exhaustive and comprehensive review of updated works published in this new area, with general conclusions.

  1. Modified Dual Three-Pulse Modulation technique for single-phase inverter topology

    Science.gov (United States)

    Sree Harsha, N. R.; Anitha, G. S.; Sreedevi, A.

    2016-01-01

    In a recent paper, a new modulation technique called Dual Three Pulse Modulation (DTPM) was proposed to improve the efficiency of the power converters of the Electric/Hybrid/Fuel-cell vehicles. It was simulated in PSIM 9.0.4 and uses analog multiplexers to generate the modulating signals for the DC/DC converter and inverter. The circuit used is complex and many other simulation softwares do not support the analog multiplexers as well. Also, the DTPM technique produces modulating signals for the converter, which are essentially needed to produce the modulating signals for the inverter. Hence, it cannot be used efficiently to switch the valves of a stand-alone inverter. We propose a new method to generate the modulating signals to switch MOSFETs of a single phase Dual-Three pulse Modulation based stand-alone inverter. The circuits proposed are simulated in Multisim 12.0. We also show an alternate way to switch a DC/DC converter in a way depicted by DTPM technique both in simulation (MATLAB/Simulink) and hardware. The circuitry is relatively simple and can be used for the further investigations of DTPM technique.

  2. Single-phase and two phase bubbly flow in a T connection: theoretical and experimental study

    International Nuclear Information System (INIS)

    Hervieu, Eric

    1988-01-01

    The objective of this research thesis is to highlight the driving factors of the separation of phases of a bubbly flow in a T junction, and to develop a prediction model. In a first part, the author reports the rigorous formulation of equations averaged on the T volume. He shows that it's not possible to solve globally the problem with these equations. Then, he reports a bibliographical study on the modelling of a bubbly flow, and, based upon this study, highlights intrinsic characteristics of the flow, and explains its dynamic mechanisms. He reports the development of the theoretical model, and describes the experimental installation used to validate it. In the third part, he reports the study of the liquid-gas interaction, and presents the adopted approach: study of the behaviour of an isolated bubble within a single-phase flow. Experimentation is used to check theoretical predictions. Results are used to compute phase separation. The obtained results are again compared with experimental results to validate the global relevance of the model [fr

  3. Inertial piezoelectric linear motor driven by a single-phase harmonic wave with automatic clamping mechanism

    Science.gov (United States)

    He, Liangguo; Chu, Yuheng; Hao, Sai; Zhao, Xiaoyong; Dong, Yuge; Wang, Yong

    2018-05-01

    A novel, single-phase, harmonic-driven, inertial piezoelectric linear motor using an automatic clamping mechanism was designed, fabricated, and tested to reduce the sliding friction and simplify the drive mechanism and power supply control of the inertial motor. A piezoelectric bimorph and a flexible hinge were connected in series to form the automatic clamping mechanism. The automatic clamping mechanism was used as the driving and clamping elements. A dynamic simulation by Simulink was performed to prove the feasibility of the motor. The finite element method software COMSOL was used to design the structure of the motor. An experimental setup was built to validate the working principle and evaluate the performance of the motor. The prototype motor outputted a no-load velocity of 3.178 mm/s at a voltage of 220 Vp-p and a maximum traction force of 4.25 N under a preload force of 8 N. The minimum resolution of 1.14 μm was achieved at a driving frequency of 74 Hz, a driving voltage of 50 Vp-p, and a preload force of 0 N.

  4. Description of turbulent velocity and temperature fields of single phase flow through tight rod bundles

    International Nuclear Information System (INIS)

    Monir, C.

    1991-02-01

    A two-dimensional procedure, VANTACY-II, describing the turbulent velocity and temperature fields for single phase flow in tight lattices is presented and validated. The flow is assumed to be steady, incrompressible and hydraulic and thermal fully developed. First, the state of art of turbulent momentum and heat transport in tight lattices is documented. It is shown that there is a necessity for experimental investigations in the field of turbulent heat transport. The presented new procedure is based on the turbulence model VELASCO-TUBS by NEELEN. The numerical solution of the balance equations is done by the finite element method code VANTACY by KAISER. The validation of the new procedure VANTACY-II is done by comparing the numerically calculated data for the velocity and temperature fields and for natural mixing with the experimental data of SEALE. The comparison shows a good agreement of experimental and numerically computed data. The observed differences can be mainly attributed to the model of the turbulent PRANDTL number used in the new procedure. (orig.) [de

  5. ASSERT validation against the Stern Laboratories' single-phase pressure drop tests

    International Nuclear Information System (INIS)

    Waddington, G.M.; Kiteley, J.C.; Carver, M.B.

    1995-01-01

    This paper describes the preliminary validation of ASSERT-IV against the single-phase pressure drop tests from the 37-element CHF (critical heat flux) experiments conducted at Stern Laboratories, and shows how this study fits into the overall ASSERT validation plan. The effects on the pressure drop of several friction and form loss models are evaluated, including the geometry-based K-factor model. The choice of friction factor has a small effect on the predicted channel pressure drop, compared to the form loss model choice. Using the uniform K-factors of Hameed, the computed pressure drops are in excellent agreement with the experimental results from the nominal pressure tube tests. For future ASSERT applications, either Hameed's uniform K-factors or the geometry-based model using Idelchik's thick-edged orifice equation are recommended, as are the friction factor correlations of Colebrook-White, Selander, and Aly and Groeneveld. More analysis of the geometry-based K-factor model is required. (author). 23 refs., 4 tabs., 9 figs

  6. Development of a single-phase 30 m HTS power cable

    Science.gov (United States)

    Cho, Jeonwook; Bae, Joon-Han; Kim, Hae-Jong; Sim, Ki-Deok; Kim, Seokho; Jang, Hyun-Man; Lee, Chang-Young; Kim, Dong-Wook

    2006-05-01

    HTS power transmission cables appear to be the replacement and retrofitting of underground cables in urban areas and HTS power transmission cable offers a number of technical and economic merits compared to the normal conductor cable system. A 30 m long, single-phase 22.9 kV class HTS power transmission cable system has been developed by Korea Electrotechnology Research Institute (KERI), LS Cable Ltd., and Korea Institute of Machinery and Materials (KIMM), which is one of the 21st century frontier project in Korea since 2001. The HTS power cable has been developed, cooled down and tested to obtain realistic thermal and electrical data on HTS power cable system. The evaluation results clarified such good performance of HTS cable that DC critical current of the HTS cable was 3.6 kA and AC loss was 0.98 W/m at 1260 Arms and shield current was 1000 Arms. These results proved the basic properties for 22.9 kV HTS power cable. As a next step, we have been developing a 30 m, three-phase 22.9 kV, 50 MV A HTS power cable system and long term evaluation is in progress now.

  7. Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors

    International Nuclear Information System (INIS)

    Liao, Xiaofeng; Zhu, Shuangyan; Zhong, Delai; Zhu, Jingping; Liao, Li

    2014-01-01

    Highlights: • Anaerobic co-digestion strategy for food waste treatment at OLR 41.8 g VS/L. • A certain amount of raw leachate effectively relieved acidic inhibition. • The study showed that food waste was completely degraded. - Abstract: In order to investigate the effect of raw leachate on anaerobic digestion of food waste, co-digestions of food waste with raw leachate were carried out. A series of single-phase batch mesophilic (35 ± 1 °C) anaerobic digestions were performed at a food waste concentration of 41.8 g VS/L. The results showed that inhibition of biogas production by volatile fatty acids (VFA) occurred without raw leachate addition. A certain amount of raw leachate in the reactors effectively relieved acidic inhibition caused by VFA accumulation, and the system maintained stable with methane yield of 369–466 mL/g VS. Total ammonia nitrogen introduced into the digestion systems with initial 2000–3000 mgNH 4 –N/L not only replenished nitrogen for bacterial growth, but also formed a buffer system with VFA to maintain a delicate biochemical balance between the acidogenic and methanogenic microorganisms. UV spectroscopy and fluorescence excitation–emission matrix spectroscopy data showed that food waste was completely degraded. We concluded that using raw leachate for supplement water addition and pH modifier on anaerobic digestion of food waste was effective. An appropriate fraction of leachate could stimulate methanogenic activity and enhance biogas production

  8. Nonlinear Dynamic Model of Power Plants with Single-Phase Coolant Reactors

    International Nuclear Information System (INIS)

    Vollmer, H.

    1968-12-01

    The traditional way of developing dynamic models for a specific nuclear power plant and for specific purpose seems rather uneconomical, as much of the information often can not be utilized if the plant design or the required accuracy of the calculation is desired to be changed. It is therefore suggested that the model development may be made more systematic, general and flexible by - applying the 'box of bricks' system, where the main components of a nuclear power plant are treated separately and combined afterwards according to a given flow scheme, - a dynamic determination of the components which is as general as possible without taking into account those details which have a minor influence on the overall dynamics, - providing approximations of the more rigorous solution sufficient to meet the user s requirements on accuracy, - proper use of computers. A dynamic model for single-phase coolant reactor plants is established along these lines. By separation of the nonlinear and linear parts of the system, application of Laplace transformation and proper approximations, and the use of a hybrid computer it seems possible to determine the (nonlinear) dynamic behaviour of such a plant for perturbations which are not so large that phase changes of physical parameters occur, e. g. fuel does not melt. The model is applied to a steam cooled fast reactor power plant

  9. Single-phased Fault Location on Transmission Lines Using Unsynchronized Voltages

    Directory of Open Access Journals (Sweden)

    ISTRATE, M.

    2009-10-01

    Full Text Available The increased accuracy into the fault's detection and location makes it easier for maintenance, this being the reason to develop new possibilities for a precise estimation of the fault location. In the field literature, many methods for fault location using voltages and currents measurements at one or both terminals of power grids' lines are presented. The double-end synchronized data algorithms are very precise, but the current transformers can limit the accuracy of these estimations. The paper presents an algorithm to estimate the location of the single-phased faults which uses only voltage measurements at both terminals of the transmission lines by eliminating the error due to current transformers and without introducing the restriction of perfect data synchronization. In such conditions, the algorithm can be used with the actual equipment of the most power grids, the installation of phasor measurement units with GPS system synchronized timer not being compulsory. Only the positive sequence of line parameters and sources are used, thus, eliminating the incertitude in zero sequence parameter estimation. The algorithm is tested using the results of EMTP-ATP simulations, after the validation of the ATP models on the basis of registered results in a real power grid.

  10. Cost Optimal Design of a Single-Phase Dry Power Transformer

    Directory of Open Access Journals (Sweden)

    Raju Basak

    2015-08-01

    Full Text Available The Dry type transformers are preferred to their oil-immersed counterparts for various reasons, particularly because their operation is hazardless. The application of dry transformers was limited to small ratings in the earlier days. But now these are being used for considerably higher ratings.  Therefore, their cost-optimal design has gained importance. This paper deals with the design procedure for achieving cost optimal design of a dry type single-phase power transformer of small rating, subject to usual design constraints on efficiency and voltage regulation. The selling cost for the transformer has been taken as the objective function. Only two key variables have been chosen, the turns/volt and the height: width ratio of window, which affects the cost function to high degrees. Other variables have been chosen on the basis of designers’ experience. Copper has been used as conductor material and CRGOS as core material to achieve higher efficiency, lower running cost and compact design. The electrical and magnetic loadings have been kept at their maximum values without violating the design constraints. The optimal solution has been obtained by the method of exhaustive search using nested loops.

  11. Oxidation kinetics of a Pb-64 at.% In single-phase alloy

    International Nuclear Information System (INIS)

    Zhang, M.X.; Chang, Y.A.; Marcotte, V.C.

    1991-01-01

    The solid-state oxidation kinetics of a Pb-64 at.% IN(50 wt.%) single-phase alloy were studied from room temperature to 150C using AES (Auger Electron Spectroscopy) depth profiling technique. The general oxidation behavior of this alloy is different from that of a Pb-3 at.% In alloy but similar to that of a Pb-30 at.% In alloy. The oxide formed on this alloy is almost pure In oxide (In 2 O 3 ) with the possible existence of some In suboxide near the oxide/alloy interface. At room temperature, oxidation of the alloy follows a direct logarithmic law, and the results can be described by the model proposed previously by Zhang, Chang, and Marcotte. At temperatures higher than 75C, rapid oxidation occurred initially followed by a slower parabolic oxidation at longer time. These data were described quantitatively by the model which assumes the existence of short-circuit diffusion in addition to lattice diffusion in the oxide as proposed by Smeltzer, Haering, and Kirkaldy. The effects of alloy composition in the oxidation kinetics of (pb, In) alloy are also examined by comparing the data for Pb-3, 30, and 64 at.% In alloys

  12. A single-phase embedded Z-source DC-AC inverter.

    Science.gov (United States)

    Kim, Se-Jin; Lim, Young-Cheol

    2014-01-01

    In the conventional DC-AC inverter consisting of two DC-DC converters with unipolar output capacitors, the output capacitor voltages of the DC-DC converters must be higher than the DC input voltage. To overcome this weakness, this paper proposes a single-phase DC-AC inverter consisting of two embedded Z-source converters with bipolar output capacitors. The proposed inverter is composed of two embedded Z-source converters with a common DC source and output AC load. Though the output capacitor voltages of the converters are relatively low compared to those of a conventional inverter, an equivalent level of AC output voltages can be obtained. Moreover, by controlling the output capacitor voltages asymmetrically, the AC output voltage of the proposed inverter can be higher than the DC input voltage. To verify the validity of the proposed inverter, experiments were performed with a DC source voltage of 38 V. By controlling the output capacitor voltages of the converters symmetrically or asymmetrically, the proposed inverter can produce sinusoidal AC output voltages. The experiments show that efficiencies of up to 95% and 97% can be achieved with the proposed inverter using symmetric and asymmetric control, respectively.

  13. The structure of single-phase turbulent flows through closely spaced rod arrays

    International Nuclear Information System (INIS)

    Hooper, J.D.; Rehme, K.

    1983-02-01

    The axial and azimuthal turbulence intensity in the rod gap region has been shown, for developed single-phase turbulent flow through parallel rod arrays, to strongly increase with decreasing rod spacing. Two array geometries are reported, one constructed from a rectangular cross-section duct containing four rods and spaced at five p/d or w/d ratios. The second test section, constructed from six rods set in a regular square-pitch array, represented the interior flow region of a large array. The mean axial velocity, wall shear stress variation and axial pressure distribution were measured, together with hot-wire anemometer measurements of the Reynolds stresses. No significant non-zero secondary flow components were detected, using techniques capable of resolving secondary flow velocities to 1% of the local axial velocity. For the lowest p/d ratio of 1.036, cross-correlation measurements showed the presence of an energetic periodic azimuthal turbulent velocity component, correlated over a significant part of the flow area. The negligible contribution of secondary flows to the axial momentum balance, and the large azimuthal turbulent velocity component in the rod gap area, suggest a different mechanism than Reynolds stress gradient driven secondary flows for the turbulent transport process in the rod gap. (orig.) [de

  14. The single-phase multiferroic oxides: from bulk to thin film

    International Nuclear Information System (INIS)

    Prellier, W; Singh, M P; Murugavel, P

    2005-01-01

    Complex perovskite oxides exhibit a rich spectrum of properties, including magnetism, ferroelectricity, strongly correlated electron behaviour, superconductivity and magnetoresistance, which have been research areas of great interest among the scientific and technological community for decades. There exist very few materials which exhibit multiple functional properties; one such class of materials is called the multiferroics. Multiferroics are interesting because they exhibit simultaneously ferromagnetic and ferroelectric polarizations and a coupling between them. Due to the nontrivial lattice coupling between the magnetic and electronic domains (the magnetoelectric effect), the magnetic polarization can be switched by applying an electric field; likewise the ferroelectric polarization can be switched by applying a magnetic field. As a consequence, multiferroics offer rich physics and novel devices concepts, which have recently become of great interest to researchers. In this review article the recent experimental status, for both the bulk single phase and the thin film form, has been presented. Current studies on the ceramic compounds in the bulk form including Bi(Fe,Mn)O 3 , REMnO 3 and the series of REMn 2 O 5 single crystals (RE = rare earth) are discussed in the first section and a detailed overview on multiferroic thin films grown artificially (multilayers and nanocomposites) is presented in the second section. (topical review)

  15. Low-temperature synthesis of single-phase Co7Sb2O12

    International Nuclear Information System (INIS)

    Brito, M.S.L.; Escote, M.T.; Santos, C.O.P.; Lisboa-Filho, P.N.; Leite, E.R.; Oliveira, J.B.L.; Gama, L.; Longo, E.

    2004-01-01

    Polycrystalline Co 7 Sb 2 O 12 compounds have been synthesized by a chemical route, which is based on a modified polymeric precursor method. In order to study the physical properties of the samples, X-ray diffraction (XRD), thermal analyses (TG and DSC), infrared spectroscopy (IR), specific surface area (BET), and magnetization measurements were performed on these materials. Characterization through XRD revealed that the samples are single-phase after a heat-treatment at 1100 deg. C for 2 h, while the X-ray patterns of the samples heat-treated at lower temperatures revealed the presence of additional Bragg reflections belonging to the Co 6 Sb 2 O 6 phase. These data were analyzed by means of Rietveld refinement and further analyze showed that Co 7 Sb 2 O 12 displays an inverse spinel crystalline structure. In this structure, the Co 2+ ions occupy the eight tetrahedral positions, and the sixteen octahedral positions are randomly occupied by the Sb 5+ and Co 2+ ions. IR studies disclosed two strong absorption bands, ν 1 and ν 2 , in the expected spectral range for a spinel-type binary oxide with space group Fd3m. Exploratory studies concerning the magnetic properties indicated that this sample presents a spin-glass transition at T f ∼ 64 K

  16. Even distribution/dividing of single-phase fluids by symmetric bifurcation of flow channels

    International Nuclear Information System (INIS)

    Liu, Hong; Li, Peiwen

    2013-01-01

    Highlights: ► We addressed an issue of distributing a flow to a number of flow channels uniformly. ► The flow distribution is accomplished through bifurcation of channels. ► Some key parameters to the flow distribution uniformity have been identified. ► Flow uniformity was studied for several versions of flow distributor designs. ► A novel fluid packaging device of high efficiency was provided. -- Abstract: This study addresses a fundamental issue of distributing a single-phase fluid flow into a number of flow channels uniformly. A basic mechanism of flow distribution is accomplished through bifurcation of channels that symmetrically split one flow channel into two downstream channels. Applying the basic mechanism, cascades flow distributions are designed to split one flow into a large number of downstream flows uniformly. Some key parameters decisive to the flow distribution uniformity in such a system have been identified, and the flow distribution uniformity of air was studied for several versions of flow distributor designs using CFD analysis. The effect of the key parameters of the flow channel designs to the flow distribution uniformity was investigated. As an example of industrial application, a novel fluid packaging device of high efficiency was proposed and some CFD analysis results for the device were provided. The optimized flow distributor makes a very good uniform flow distribution which will significantly improve the efficiency of fluid packaging. The technology is expected to be of great significance to many industrial devices that require high uniformity of flow distribution

  17. Study of a new static mixer for two-phase and single-phase flows

    International Nuclear Information System (INIS)

    Foucrier, Michel

    1996-01-01

    The subject of this work is the study of OptimiX, a new static mixer, which is fully designed using an inverse method taking the final product features as input and based on the physical properties of the fluid to mix. The work began with the construction of an experimental loop which allowed us to qualify the mixer in two-phase and single-phase flow conditions. Next, a chemical method using a new test reaction and a micro-mixing model have been used to further characterise the mixer. This test reaction and the micro-mixing model have been developed by the 'Laboratoire des Sciences du Genie Chimique' of Nancy. The mixer OptimiX has proved to be an excellent device for both macro- and micro-mixing. The capability of this mixer to foster rapid reactions was also demonstrated. The well organised flow pattern of OptimiX, which results from its design, provides it with the unusual feature of being fully calculable. This work emphasizes the internal hydrodynamics of this mixer, justifies the universality of the design procedures, which validation is supported by the completed qualification work. (author) [fr

  18. Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Xiaofeng; Zhu, Shuangyan; Zhong, Delai; Zhu, Jingping, E-mail: jpzhuhust@163.com; Liao, Li, E-mail: liaoli2003@126.com

    2014-11-15

    Highlights: • Anaerobic co-digestion strategy for food waste treatment at OLR 41.8 g VS/L. • A certain amount of raw leachate effectively relieved acidic inhibition. • The study showed that food waste was completely degraded. - Abstract: In order to investigate the effect of raw leachate on anaerobic digestion of food waste, co-digestions of food waste with raw leachate were carried out. A series of single-phase batch mesophilic (35 ± 1 °C) anaerobic digestions were performed at a food waste concentration of 41.8 g VS/L. The results showed that inhibition of biogas production by volatile fatty acids (VFA) occurred without raw leachate addition. A certain amount of raw leachate in the reactors effectively relieved acidic inhibition caused by VFA accumulation, and the system maintained stable with methane yield of 369–466 mL/g VS. Total ammonia nitrogen introduced into the digestion systems with initial 2000–3000 mgNH{sub 4}–N/L not only replenished nitrogen for bacterial growth, but also formed a buffer system with VFA to maintain a delicate biochemical balance between the acidogenic and methanogenic microorganisms. UV spectroscopy and fluorescence excitation–emission matrix spectroscopy data showed that food waste was completely degraded. We concluded that using raw leachate for supplement water addition and pH modifier on anaerobic digestion of food waste was effective. An appropriate fraction of leachate could stimulate methanogenic activity and enhance biogas production.

  19. A single-phase model for liquid-feed DMFCs with non-Tafel kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Vera, Marcos [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganes (Spain)

    2007-09-27

    An isothermal single-phase 3D/1D model for liquid-feed direct methanol fuel cells (DMFC) is presented. Three-dimensional (3D) mass, momentum and species transport in the anode channels and gas diffusion layer is modeled using a commercial, finite-volume based, computational fluid dynamics (CFD) software complemented with user supplied subroutines. The 3D model is locally coupled to a one-dimensional (1D) model accounting for the electrochemical reactions in both the anode and the cathode, which provides a physically sound boundary condition for the velocity and methanol concentration fields at the anode gas diffusion layer/catalyst interface. The 1D model - comprising the membrane-electrode assembly, cathode gas diffusion layer, and cathode channel - assumes non-Tafel kinetics to describe the complex kinetics of the multi-step methanol oxidation reaction at the anode, and accounts for the mixed potential associated with methanol crossover, induced both by diffusion and electro-osmotic drag. Polarization curves computed for various methanol feed concentrations, temperatures, and methanol feed velocities show good agreement with recent experimental results. The spatial distribution of methanol in the anode channels, together with the distributions of current density, methanol crossover and fuel utilization at the anode catalyst layer, are also presented for different opperating conditions. (author)

  20. Synthesis of single phase of CuTl-1234 thin films

    CERN Document Server

    Khan, N A; Ishida, K; Tateai, F; Kojima, T; Terada, N; Ihara, H

    1999-01-01

    Thin films of CuTl-1234 superconductor have been prepared for the first time using an amorphous phase epitaxy method (APE). In this method, an amorphous phase is sputtered from a target of stoichiometric composition CuBa/sub 2/Ca/sub 3/Cu/sub 4/O/sub x/. Thin films on the SrTiO/sub 3/ substrate after the thallium treatment are biaxially oriented. The XRD reflected a predominant single phase with c-axis 18.7 AA and pole figure measurements of (103) reflections showed a-axis oriented films with Delta phi =0.8 degrees . Resistivity measurements showed T/sub c/=113 K and preliminary J/sub c/ measurements manifested a current density of 1.0*10/sup 6/ A/cm (77 K, 0 T). The composition of films after EDX measurements is Cu /sub 0.3/Tl/sub 0.7/CuBa/sub 2/Ca/sub 3/Cu/sub 4/O/sub 12-y/. (8 refs).

  1. Design And Development Of An Automatic Single Phase Protective Device Using Ssr

    Directory of Open Access Journals (Sweden)

    Michael E.

    2017-10-01

    Full Text Available Since the discovery of energy safety has been a paramount subject matter. This we can see in todays electrical systems where protective devices such as fuse and circuit breakers are used to prevent fire hazards resulting from overload overvoltage and short circuits. However with all the revolution in technology these options may be considered less smart since the fuse made with wire strands calculated for specific current capacity faults permanently when the specified current rating is exceeded. While the circuit breaker which is made up of mechanical switch fails as a result of carbon forming and the wearing away of the contacts because of arcing. As a means of improvement this paper presents the design and development of an automatic single phase protective device using solid state relay SSR. This study is to ensure automatic cut off from power supply in cases of overvoltage above 240 V AC or when overload and short circuit current above 8amps is detected without permanent damage of a fuse placed along current path. Also the design will ensure that there is an automatic close circuit whenever the trigger switch is momentary switch is closed. The system is achieved via the use of PIC micro-controller current sensor and other discrete components. The system is tested and works well inhibiting the frequent faulting of fuses. It also helps to prevent hazard as a result of overvoltage overload and short circuit and ensures a close circuit when the trigger switch is closed.

  2. Nonlinear Dynamic Model of Power Plants with Single-Phase Coolant Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Vollmer, H

    1968-12-15

    The traditional way of developing dynamic models for a specific nuclear power plant and for specific purpose seems rather uneconomical, as much of the information often can not be utilized if the plant design or the required accuracy of the calculation is desired to be changed. It is therefore suggested that the model development may be made more systematic, general and flexible by - applying the 'box of bricks' system, where the main components of a nuclear power plant are treated separately and combined afterwards according to a given flow scheme, - a dynamic determination of the components which is as general as possible without taking into account those details which have a minor influence on the overall dynamics, - providing approximations of the more rigorous solution sufficient to meet the user s requirements on accuracy, - proper use of computers. A dynamic model for single-phase coolant reactor plants is established along these lines. By separation of the nonlinear and linear parts of the system, application of Laplace transformation and proper approximations, and the use of a hybrid computer it seems possible to determine the (nonlinear) dynamic behaviour of such a plant for perturbations which are not so large that phase changes of physical parameters occur, e. g. fuel does not melt. The model is applied to a steam cooled fast reactor power plant.

  3. Hexagonal close packed to face centered cubic polymorphic transformation in nanocrystalline titanium-zirconium system by mechanical alloying

    International Nuclear Information System (INIS)

    Bera, S.; Manna, I.

    2006-01-01

    The present study reports a reversible hexagonal close packed (hcp) to face centered cubic (fcc) polymorphic phase transformation in four different nanocrystalline titanium-zirconium binary alloys in the course of mechanical alloying in a planetary ball mill. This transformation is monitored at appropriate stages by X-ray diffraction and high-resolution transmission electron microscopy. Lattice parameter of the nanocrystalline fcc phase is a function of the alloy composition. For a given alloy, the lattice parameter and hence volume per atom increase with increase in milling time under comparable conditions. On the other hand, crystallite size, measured from X-ray peak broadening, significantly decreases with the progress of milling. It is suggested that structural instability due to plastic strain, increasing lattice expansion, and negative (from core to boundary) hydrostatic pressure is responsible for this hcp → fcc polymorphic transformation. The said transformation seems reversible as isothermal annealing at 1000 deg. C for 1 h or melting the powder mass leads to partial or complete transformation of the milled product from single phase fcc to hcp

  4. Photoacoustic study of nanocrystalline silicon produced by mechanical grinding

    Energy Technology Data Exchange (ETDEWEB)

    Poffo, C.M. [Departamento de Engenharia Mecanica, Universidade Federal de Santa Catarina, Campus Universitario Trindade, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Lima, J.C. de, E-mail: fsc1jcd@fisica.ufsc.b [Departamento de Fisica, Universidade Federal de Santa Catarina, Campus Trindade, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Souza, S.M.; Triches, D.M. [Departamento de Engenharia Mecanica, Universidade Federal de Santa Catarina, Campus Universitario Trindade, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Grandi, T.A. [Departamento de Fisica, Universidade Federal de Santa Catarina, Campus Trindade, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Biasi, R.S. de [Secao de Engenharia Mecanica e de Materiais, Instituto Militar de Engenharia, 22290-270 Rio de Janeiro, RJ (Brazil)

    2011-04-01

    Mechanical grinding (MG) was used to produce nanocrystalline silicon and its thermal and transport properties were investigated by photoacoustic absorption spectroscopy (PAS). The experimental results suggest that in as-milled nanocrystalline silicon for 10 h the heat transfer through the crystalline and interfacial components is similar, and after annealed at 470 {sup o}C the heat transfer is controlled by crystalline component.

  5. Photoacoustic study of nanocrystalline silicon produced by mechanical grinding

    International Nuclear Information System (INIS)

    Poffo, C.M.; Lima, J.C. de; Souza, S.M.; Triches, D.M.; Grandi, T.A.; Biasi, R.S. de

    2011-01-01

    Mechanical grinding (MG) was used to produce nanocrystalline silicon and its thermal and transport properties were investigated by photoacoustic absorption spectroscopy (PAS). The experimental results suggest that in as-milled nanocrystalline silicon for 10 h the heat transfer through the crystalline and interfacial components is similar, and after annealed at 470 o C the heat transfer is controlled by crystalline component.

  6. Solid state consolidation nanocrystalline copper-tungsten using cold spray

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Aaron Christopher [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sarobol, Pylin [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Argibay, Nicolas [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Clark, Blythe [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Diantonio, Christopher [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    It is well known that nanostructured metals can exhibit significantly improved properties compared to metals with conventional grain size. Unfortunately, nanocrystalline metals typically are not thermodynamically stable and exhibit rapid grain growth at moderate temperatures. This severely limits their processing and use, making them impractical for most engineering applications. Recent work has shown that a number of thermodynamically stable nanocrystalline metal alloys exist. These alloys have been prepared as powders using severe plastic deformation (e.g. ball milling) processes. Consolidation of these powders without compromise of their nanocrystalline microstructure is a critical step to enabling their use as engineering materials. We demonstrate solid-state consolidation of ball milled copper-tantalum nanocrystalline metal powder using cold spray. Unfortunately, the nanocrystalline copper-tantalum powder that was consolidated did not contain the thermodynamically stable copper-tantalum nanostructure. Nevertheless, this does this demonstrates a pathway to preparation of bulk thermodynamically stable nanocrystalline copper-tantalum. Furthermore, it demonstrates a pathway to additive manufacturing (3D printing) of nanocrystalline copper-tantalum. Additive manufacturing of thermodynamically stable nanocrystalline metals is attractive because it enables maximum flexibility and efficiency in the use of these unique materials.

  7. Simultaneous synthesis of anatase colloidal and multiple-branched rutile TiO{sub 2} nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Trong Tung; Duong, Ngoc Huyen [School of Engineering Physics, Hanoi University of Science and Technology, Hanoi (Viet Nam); Mai, Xuan Dung [Dept. of Chemistry, Hanoi Pedagogical University No2, Vinh Phuc (Viet Nam)

    2017-03-15

    Facile synthesis of titanium dioxide (TiO{sub 2} ) nanostructures with controllability over their cystallinity, dimensions, and shape is in demand for diverse optoelectronic applications. Anatase colloidal particles and precipitates of rutile bundles were synthesized simultaneously using HCl catalyzed sol–gel process with titanium tetrachloride as Ti precursor. The crystallinity and the morphology of these two separable TiO{sub 2} phases were studied by X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. The results show that by varying HCl concentration during synthesis, dimensions of colloidal anatase can be tuned from spherical particles with a diameter of 2–5 nm to nanorods of dimension of 4 nm (width) × 14 nm (length). The rutile bundles whose size increased with aging time consisted of multiple branches with elongation along c-axis. Both anatase nanorods and rutile bundles can be applied as highly efficient photocatalysts or electron conduits.

  8. Preparation of anatase TiO2 thin films by vacuum arc plasma evaporation

    International Nuclear Information System (INIS)

    Miyata, Toshihiro; Tsukada, Satoshi; Minami, Tadatsugu

    2006-01-01

    Anatase titanium dioxide (TiO 2 ) thin films with high photocatalytic activity have been prepared with deposition rates as high as 16 nm/min by a newly developed vacuum arc plasma evaporation (VAPE) method using sintered TiO 2 pellets as the source material. Highly transparent TiO 2 thin films prepared at substrate temperatures from room temperature to 400 deg. C exhibited photocatalytic activity, regardless whether oxygen (O 2 ) gas was introduced during the VAPE deposition. The highest photocatalytic activity and photo-induced hydrophilicity were obtained in anatase TiO 2 thin films prepared at 300 deg. C, which correlated to the best crystallinity of the films, as evidenced from X-ray diffraction. In addition, a transparent and conductive anatase TiO 2 thin film with a resistivity of 2.6 x 10 -1 Ω cm was prepared at a substrate temperature of 400 deg. C without the introduction of O 2 gas

  9. Research on High Efficient Single-Phase Multi-Stage Interleaved Bridgeless PFC Frontend for Class-D Amplifiers

    DEFF Research Database (Denmark)

    Li, Qingnan; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2012-01-01

    In this paper, a 3.5kW single-phase high efficient interleaved Bridgeless PFC (IBPFC) is proposed for class-D amplifiers. This topology achieves a relatively higher efficiency in a wide output power range, which helps to reduce the energy consuming of the whole system. In addition, a detailed...

  10. Performance Evaluation of the Single-Phase Split-Source Inverter Using an Alternative DC-AC Configuration

    DEFF Research Database (Denmark)

    Abdelhakim, Ahmed; Mattavelli, Paolo; Davari, Pooya

    2018-01-01

    This paper investigates and evaluates the performance of a single-phase split-source inverter (SSI), where an alternative unidirectional dc-ac configuration is used. Such configuration is utilized in order to use two common-cathode diodes in a single-device instead of using two separate diodes, r...

  11. High Performance Harmonic Isolation By Means of The Single-phase Series Active Filter Employing The Waveform Reconstruction Method

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Hava, Ahmet M.

    2009-01-01

    current sampling delay reduction method (SDRM), a single-phase SAF compensated system provides higher harmonic isolation performance and higher stability margins compared to the system using conventional synchronous reference frame based methods. The analytical, simulation, and experimental studies of a 2...

  12. A Novel Neural Network Vector Control for Single-Phase Grid-Connected Converters with L, LC and LCL Filters

    Directory of Open Access Journals (Sweden)

    Xingang Fu

    2016-04-01

    Full Text Available This paper investigates a novel recurrent neural network (NN-based vector control approach for single-phase grid-connected converters (GCCs with L (inductor, LC (inductor-capacitor and LCL (inductor-capacitor-inductor filters and provides their comparison study with the conventional standard vector control method. A single neural network controller replaces two current-loop PI controllers, and the NN training approximates the optimal control for the single-phase GCC system. The Levenberg–Marquardt (LM algorithm was used to train the NN controller based on the complete system equations without any decoupling policies. The proposed NN approach can solve the decoupling problem associated with the conventional vector control methods for L, LC and LCL-filter-based single-phase GCCs. Both simulation study and hardware experiments demonstrate that the neural network vector controller shows much more improved performance than that of conventional vector controllers, including faster response speed and lower overshoot. Especially, NN vector control could achieve very good performance using low switch frequency. More importantly, the neural network vector controller is a damping free controller, which is generally required by a conventional vector controller for an LCL-filter-based single-phase grid-connected converter and, therefore, can overcome the inefficiency problem caused by damping policies.

  13. Control strategy for Single-phase Transformerless Three-leg Unified Power Quality Conditioner Based on Space Vector Modulation

    DEFF Research Database (Denmark)

    Lu, Yong; Xiao, Guochun; Wang, Xiongfei

    2016-01-01

    The unified power quality conditioner (UPQC) is known as an effective compensation device to improve PQ for sensitive end-users. This paper investigates the operation and control of a single-phase three-leg UPQC (TL-UPQC), where a novel space vector modulation method is proposed for naturally...

  14. A Single-Phase Voltage-Controlled Grid-Connected Photovoltaic System With Power Quality Conditioner Functionality

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Liserre, Marco; Mastromauro, R. A.

    2009-01-01

    Future ancillary services provided by photovoltaic (PV) systems could facilitate their penetration in power systems. Also low power PV systems can be designed to improve the power quality. This paper presents a single-phase photovoltaic system that provides grid voltage support and compensation o...

  15. Analysis and MPPT control of a wind-driven three-phase induction generator feeding single-phase utility grid

    Directory of Open Access Journals (Sweden)

    Krishnan Arthishri

    2017-05-01

    Full Text Available In this study, a three-phase diode bridge rectifier and a single-phase voltage source inverter topology has been proposed for feeding single-phase utility grid employing a three-phase induction generator fed from wind energy. A self-excited induction generator configuration has been chosen for wide speed operation of wind turbine system, which gives the scope for extracting maximum power available in the wind. In addition to maximum power point tracking (MPPT, the generator can be loaded to its rated capacity for feeding single-phase utility grid using a three-phase induction machine, whereas it is not possible with existing configurations because of the absence of power converters. For the proposed system, MPPT algorithm has been devised by continuously monitoring the grid current and a proportional resonant controller has been employed for grid synchronisation of voltage source inverter with single-phase grid. A MATLAB/Simulink model of the proposed system has been developed to ascertain its successful working by predetermining the overall performance characteristics. The present proposal has also been tested with sag, swell and distortion in the grid voltage. The control strategy has been implemented using field programmable gate array (FPGA controller with modularised programming approach. The efficacy of the system has been demonstrated with the results obtained from an experimental set-up in the laboratory.

  16. Low-Complexity Model Predictive Control of Single-Phase Three-Level Rectifiers with Unbalanced Load

    DEFF Research Database (Denmark)

    Ma, Junpeng; Song, Wensheng; Wang, Xiongfei

    2018-01-01

    The fluctuation of the neutral-point potential in single-phase three-level rectifiers leads to coupling between the line current regulation and dc-link voltage balancing, deteriorating the quality of line current. For addressing this issue, this paper proposes a low-complexity model predictive...

  17. Adjusting output impedance using a PI controller to improve the stability of a single-phase inverter under weak grid

    Directory of Open Access Journals (Sweden)

    Jiao Jiao

    2016-11-01

    Full Text Available Explored in this paper is the grid impedance effect on the stability of a single-phase grid connected inverter with an LC filter based on an analysis of the inverter output impedance. For a single-phase grid connected inverter, a PI controller is often used to regulate the current injected into the grid. However, the control performance can be influenced when the inverter is connected to a weak grid. Also, the utility grid has background harmonic noise, which can make the injected current distorted. Therefore, analysis of the output impedance of a single-phase grid connected inverter is important for the robustness and stability of the system. By modeling the output impedance of inverter, it can be determined that the proportional gain and integral gain of the controller have an effect on the output impedance. Analytical results show that by adjusting the PI controller parameters, the ability for harmonic reduction and stability of the system can be improved. Simulation and experiments using a 1 kW single-phase grid connected inverter verify the effectiveness of the theoretical analysis.

  18. Three-dimensional numerical modeling of turbulent single-phase and two-phase flow in curved pipes

    International Nuclear Information System (INIS)

    Xin, R.C.; Dong, Z.F.; Ebadian, M.A.

    1996-01-01

    In this study, three-dimensional single-phase and two-phase flows in curved pipes have been investigated numerically. Two different pipe configurations were computed. When the results of the single-phase flow simulation were compared with the experimental data, a fairly good agreement was achieved. A flow-developing process has been suggested in single-phase flow, in which the turbulence is stronger near the outer tube wall than near the inner tube wall. For two-phase flow, the Eulerian multiphase model was used to simulate the phase distribution of a three-dimensional gas-liquid bubble flow in curved pipe. The RNG/κ-ε turbulence model was used to determine the turbulence field. An inlet gas void fraction of 5 percent was simulated. The gas phase effects on the liquid phase flow velocity have been examined by comparing the results of single-phase flow and two-phase flow. The findings show that for the downward flow in the U bend, the gas concentrates at the inner portion of the cross section at φ = π/18 - π/6 in most cases. The results of the phase distribution simulation are compared to experimental observations qualitatively and topologically

  19. Design and Tuning of a Modified Power-Based PLL for Single-Phase Grid-Connected Power Conditioning Systems

    DEFF Research Database (Denmark)

    Golestan, Saeed; Monfared, Mohammad; D. Freijedo, Francisco

    2012-01-01

    One of the most important aspects for the proper operation of the single-phase grid-tied power-conditioning systems is the synchronization with the utility grid. Among various synchronization techniques, phase locked loop (PLL) based algorithms have found a lot of interest for the advantages...

  20. High performance control strategy for single-phase three-level neutral-point-clamped traction four-quadrant converters

    DEFF Research Database (Denmark)

    Kejian, Song; Konstantinou, Georgios; Jing, Li

    2017-01-01

    Operational data from Chinese railways indicate a number of challenges for traction four-quadrant converter (4QC) control including low-order voltage and current harmonics and reference tracking. A control strategy for a single-phase three-level neutral-point-clamped 4QC employed in the electric...

  1. A Hybrid Estimator for Active/Reactive Power Control of Single-Phase Distributed Generation Systems with Energy Storage

    DEFF Research Database (Denmark)

    Pahlevani, Majid; Eren, Suzan; Guerrero, Josep M.

    2016-01-01

    This paper presents a new active/reactive power closed-loop control system for a hybrid renewable energy generation system used for single-phase residential/commercial applications. The proposed active/reactive control method includes a hybrid estimator, which is able to quickly and accurately es...

  2. A Synchronization Scheme for Single-Phase Grid-Tied Inverters Under Harmonic Distortion and Grid Disturbances

    DEFF Research Database (Denmark)

    Hadjidemetriou, Lenos; Kyriakides, Elias; Yang, Yongheng

    2016-01-01

    Synchronization is a crucial aspect in grid-tied systems, including single-phase photovoltaic inverters, and it can affect the overall performance of the system. Among prior-art synchronization schemes, the Multi Harmonic Decoupling Cell Phase-Locked Loop (MHDC-PLL) presents a fast response under...

  3. An Islanding Detection Method by Using Frequency Positive Feedback Based on FLL for Single-Phase Microgrid

    DEFF Research Database (Denmark)

    Sun, Qinfei; Guerrero, Josep M.; Jing, Tianjun

    2017-01-01

    An active islanding detection method based on Frequency-Locked Loop (FLL) for constant power controlled inverter in single-phase microgrid is proposed. This method generates a phase shift comparing the instantaneous frequency obtained from FLL unit with the nominal frequency to modify the reference...

  4. Structural dependence of threshold displacement energies in rutile, anatase and brookite TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, M., E-mail: marc.robinson@curtin.edu.au [Nanochemistry Research Institute, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia); Marks, N.A. [Discipline of Physics and Astronomy, Curtin University, Perth, WA 6845 (Australia); Lumpkin, G.R. [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia)

    2014-09-15

    Systematic molecular dynamics simulations of low energy cascades have been performed to examine how threshold displacement events are effected by changes in crystal structure. Exploiting the structural proximity of the rutile, anatase and brookite polymorphs of TiO{sub 2}, a quantitative examination of defect production has been carried out including detailed defect analysis and the determination of values of the threshold displacement energy (E{sub d}). Across all polymorphs comparable values of E{sub d} are reported for oxygen at around 20 eV, with the value for Ti in rutile (73 ± 2 eV) significantly higher than that in brookite (34 ± 1 eV) and anatase (39 ± 1 eV). Quantifying defect formation probability as a function of Primary Knock-on Atom (PKA) energy, simulations in rutile indicate a consistent reduction in defect formation at energies higher than E{sub d} relative to anatase and brookite. Defect cluster analysis reveals a significant proportion of di-Frenkel pairs in anatase at Ti PKA energies around E{sub d}. These clusters, which are stabilised by the localisation of two Frenkel pairs, are associated with a recombination barrier of approximately 0.19 eV. As such, annihilation is likely under typical experimental conditions which suggests an expected increase in the measured Ti value of E{sub d}. Identical O defect populations produced at the threshold by the O PKA in both rutile and anatase explain the comparable values of E{sub d}. At higher O PKA energies, the commencement of defect production on both sublattices in anatase is observed in contrast to the confinement of defects to the O sublattice in rutile. The overall trends reported are consistent with in-situ irradiation experiments and thermal spike simulations, suggesting the contrasting radiation response of the polymorphs of TiO{sub 2} is apparent during the initial stages of defect production. - Highlights: • Systematic calculation of threshold displacement energies (E{sub d

  5. One-Step Hydrothermal-Electrochemical Route to Carbon-Stabilized Anatase Powders

    Science.gov (United States)

    Tao, Ying; Yi, Danqing; Zhu, Baojun

    2013-04-01

    Black carbon-stabilized anatase particles were prepared by a simple one-step hydrothermal-electrochemical method using glucose and titanium citrate as the carbon and titanium source, respectively. Morphological, chemical, structural, and electrochemical characterizations of these powders were carried out by Raman spectroscopy, Fourier-transform infrared spectroscopy, x-ray diffraction, scanning electron microscopy, and cyclic voltammetry. It was revealed that 200-nm carbon/anatase TiO2 was homogeneously dispersed, and the powders exhibited excellent cyclic performance at high current rates of 0.05 V/s. The powders are interesting potential materials that could be used as anodes for lithium-ion batteries.

  6. Individual and binary toxicity of anatase and rutile nanoparticles towards Ceriodaphnia dubia

    International Nuclear Information System (INIS)

    Iswarya, V.; Bhuvaneshwari, M.; Chandrasekaran, N.; Mukherjee, Amitava

    2016-01-01

    Highlights: • Individual, binary toxicity of anatase and rutile NPs studied on Ceriodaphnia dubia. • Anatase and rutile phases showed differential effect upon variation in irradiation. • Mixture induced antagonistic at visible and additive effect at UV-A irradiation. • Marking-Dawson model fitted more appropriately than Abbott model. • Agglomeration played a major role in the toxicity induced by the mixture. - Abstract: Increasing usage of engineered nanoparticles, especially Titanium dioxide (TiO_2) in various commercial products has necessitated their toxicity evaluation and risk assessment, especially in the aquatic ecosystem. In the present study, a comprehensive toxicity assessment of anatase and rutile NPs (individual as well as a binary mixture) has been carried out in a freshwater matrix on Ceriodaphnia dubia under different irradiation conditions viz., visible and UV-A. Anatase and rutile NPs produced an LC_5_0 of about 37.04 and 48 mg/L, respectively, under visible irradiation. However, lesser LC_5_0 values of about 22.56 (anatase) and 23.76 (rutile) mg/L were noted under UV-A irradiation. A toxic unit (TU) approach was followed to determine the concentrations of binary mixtures of anatase and rutile. The binary mixture resulted in an antagonistic and additive effect under visible and UV-A irradiation, respectively. Among the two different modeling approaches used in the study, Marking-Dawson model was noted to be a more appropriate model than Abbott model for the toxicity evaluation of binary mixtures. The agglomeration of NPs played a significant role in the induction of antagonistic and additive effects by the mixture based on the irradiation applied. TEM and zeta potential analysis confirmed the surface interactions between anatase and rutile NPs in the mixture. Maximum uptake was noticed at 0.25 total TU of the binary mixture under visible irradiation and 1 TU of anatase NPs for UV-A irradiation. Individual NPs showed highest uptake under

  7. Peroxy-Titanium Complex-based inks for low temperature compliant anatase thin films.

    Science.gov (United States)

    Shabanov, N S; Asvarov, A Sh; Chiolerio, A; Rabadanov, K Sh; Isaev, A B; Orudzhev, F F; Makhmudov, S Sh

    2017-07-15

    Stable highly crystalline titanium dioxide colloids are of paramount importance for the establishment of a solution-processable library of materials that could help in bringing the advantages of digital printing to the world of photocatalysis and solar energy conversion. Nano-sized titanium dioxide in the anatase phase was synthesized by means of hydrothermal methods and treated with hydrogen peroxide to form Peroxy-Titanium Complexes (PTCs). The influence of hydrogen peroxide on the structural, optical and rheological properties of titanium dioxide and its colloidal solutions were assessed and a practical demonstration of a low temperature compliant digitally printed anatase thin film given. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. One-component solution system to prepare nanometric anatase TiO2

    International Nuclear Information System (INIS)

    Trung, Tran; Ha, Chang-Sik

    2004-01-01

    A novel one-pot synthesis route was proposed to prepare nanometric anatase TiO 2 using trichloroethylene as reaction medium, which may have great advantage over multicomponent solution systems when TiO 2 is used as a reinforcing filler for polymers dissolved in trichloroethylene. The anatase TiO 2 nanoparticles were characterized using X-ray diffraction (XRD), scanning electron microscopy and small-angle X-ray scattering (SAXS). It was found that the diameters of TiO 2 nanoparticles are in the range from 5 to 13 nm

  9. Individual and binary toxicity of anatase and rutile nanoparticles towards Ceriodaphnia dubia

    Energy Technology Data Exchange (ETDEWEB)

    Iswarya, V.; Bhuvaneshwari, M.; Chandrasekaran, N.; Mukherjee, Amitava, E-mail: amit.mookerjea@gmail.com

    2016-09-15

    Highlights: • Individual, binary toxicity of anatase and rutile NPs studied on Ceriodaphnia dubia. • Anatase and rutile phases showed differential effect upon variation in irradiation. • Mixture induced antagonistic at visible and additive effect at UV-A irradiation. • Marking-Dawson model fitted more appropriately than Abbott model. • Agglomeration played a major role in the toxicity induced by the mixture. - Abstract: Increasing usage of engineered nanoparticles, especially Titanium dioxide (TiO{sub 2}) in various commercial products has necessitated their toxicity evaluation and risk assessment, especially in the aquatic ecosystem. In the present study, a comprehensive toxicity assessment of anatase and rutile NPs (individual as well as a binary mixture) has been carried out in a freshwater matrix on Ceriodaphnia dubia under different irradiation conditions viz., visible and UV-A. Anatase and rutile NPs produced an LC{sub 50} of about 37.04 and 48 mg/L, respectively, under visible irradiation. However, lesser LC{sub 50} values of about 22.56 (anatase) and 23.76 (rutile) mg/L were noted under UV-A irradiation. A toxic unit (TU) approach was followed to determine the concentrations of binary mixtures of anatase and rutile. The binary mixture resulted in an antagonistic and additive effect under visible and UV-A irradiation, respectively. Among the two different modeling approaches used in the study, Marking-Dawson model was noted to be a more appropriate model than Abbott model for the toxicity evaluation of binary mixtures. The agglomeration of NPs played a significant role in the induction of antagonistic and additive effects by the mixture based on the irradiation applied. TEM and zeta potential analysis confirmed the surface interactions between anatase and rutile NPs in the mixture. Maximum uptake was noticed at 0.25 total TU of the binary mixture under visible irradiation and 1 TU of anatase NPs for UV-A irradiation. Individual NPs showed highest

  10. Steady state RANS simulations of temperature fluctuations in single phase turbulent mixing

    International Nuclear Information System (INIS)

    Kickhofel, J.; Fokken, J.; Kapulla, R.; Prasser, H. M.

    2012-01-01

    Single phase turbulent mixing in nuclear power plant circuits where a strong temperature gradient is present is known to precipitate pipe failure due to thermal fatigue. Experiments in a square mixing channel offer the opportunity to study the phenomenon under simple and easily reproducible boundary conditions. Measurements of this kind have been performed extensively at the Paul Scherrer Inst. in Switzerland with a high density of instrumentation in the Generic Mixing Experiment (GEMIX). As a fundamental mixing phenomena study closely related to the thermal fatigue problem, the experimental results from GEMIX are valuable for the validation of CFD codes striving to accurately simulate both the temperature and velocity fields in single phase turbulent mixing. In the experiments two iso-kinetic streams meet at a shallow angle of 3 degrees and mix in a straight channel of square cross-section under various degrees of density, temperature, and viscosity stratification over a range of Reynolds numbers ranging from 5*10 3 to 1*10 5 . Conductivity measurements, using wire-mesh and wall sensors, as well as optical measurements, using particle image velocimetry, were conducted with high temporal and spatial resolutions (up to 2.5 kHz and 1 mm in the case of the wire mesh sensor) in the mixing zone, downstream of a splitter plate. The present paper communicates the results of RANS modeling of selected GEMIX tests. Steady-state CFD calculations using a RANS turbulence model represent an inexpensive method for analyzing large and complex components in commercial nuclear reactors, such as the downcomer and reactor pressure vessel heads. Crucial to real world applicability, however, is the ability to model turbulent heat fluctuations in the flow; the Turbulent Heat Flux Transport model developed by ANSYS CFX is capable, by implementation of a transport equation for turbulent heat fluxes, of readily modeling these values. Furthermore, the closure of the turbulent heat flux

  11. Multilevel markov chain monte carlo method for high-contrast single-phase flow problems

    KAUST Repository

    Efendiev, Yalchin R.

    2014-12-19

    In this paper we propose a general framework for the uncertainty quantification of quantities of interest for high-contrast single-phase flow problems. It is based on the generalized multiscale finite element method (GMsFEM) and multilevel Monte Carlo (MLMC) methods. The former provides a hierarchy of approximations of different resolution, whereas the latter gives an efficient way to estimate quantities of interest using samples on different levels. The number of basis functions in the online GMsFEM stage can be varied to determine the solution resolution and the computational cost, and to efficiently generate samples at different levels. In particular, it is cheap to generate samples on coarse grids but with low resolution, and it is expensive to generate samples on fine grids with high accuracy. By suitably choosing the number of samples at different levels, one can leverage the expensive computation in larger fine-grid spaces toward smaller coarse-grid spaces, while retaining the accuracy of the final Monte Carlo estimate. Further, we describe a multilevel Markov chain Monte Carlo method, which sequentially screens the proposal with different levels of approximations and reduces the number of evaluations required on fine grids, while combining the samples at different levels to arrive at an accurate estimate. The framework seamlessly integrates the multiscale features of the GMsFEM with the multilevel feature of the MLMC methods following the work in [26], and our numerical experiments illustrate its efficiency and accuracy in comparison with standard Monte Carlo estimates. © Global Science Press Limited 2015.

  12. ESTABLISHED MODES AND STATIC CHARACTERISTICS OF THREE-PHASE ASYNCHRONOUS MOTOR POWERED WITH SINGLE PHASE NETWORK

    Directory of Open Access Journals (Sweden)

    V. S. Malyar

    2016-01-01

    Full Text Available A mathematical model is developed to study the operation of three-phase asynchronous motor with squirrel-cage rotor when the stator winding is powered from a single phase network. To create a rotating magnetic field one of the phases is fed through the capacitor. Due to the asymmetry of power feed not only transients, but the steady-state regimes are dynamic, so they are described by differential equations in any coordinate system. Their study cannot be carried out with sufficient adequacy on the basis of known equivalent circuits and require the use of dynamic parameters. In the mathematical model the state equations of the circuits of the stator and rotor are composed in the stationary three phase coordinate system. Calculation of the established mode is performed by solving the boundary problem that makes it possible to obtain the coordinate dependences over the period, without calculation of the transient process. In order to perform it, the original nonlinear differential equations are algebraized by approximating the variables with the use of cubic splines. The resulting nonlinear system of algebraic equations is a discrete analogue of the initial system of differential equations. It is solved by parameter continuation method. To calculate the static characteristics as a function of a certain variable, the system is analytically differentiated, and then numerically integrated over this variable. In the process of integration, Newton's refinement is performed at each step or at every few steps, making it possible to implement the integration in just a few steps using Euler's method. Jacobi matrices in both cases are the same. To account for the current displacement in the rods of the squirrel-cage rotor, each of them, along with the squirrel-cage rings, is divided in height into several elements. This results in several squirrel-cage rotor windings which are represented by three-phase windings with magnetic coupling between them.

  13. A Single-Phase Multilevel PV Generation System with an Improved Ripple Correlation Control MPPT Algorithm

    Directory of Open Access Journals (Sweden)

    Manel Hammami

    2017-12-01

    Full Text Available The implementation of maximum power point tracking (MPPT schemes by the ripple correlation control (RCC algorithm is presented in this paper. A reference is made to single-phase single-stage multilevel photovoltaic (PV generation systems, when the inverter input variables (PV voltage and PV current have multiple low-frequency (ripple harmonics. The harmonic analysis is carried out with reference to a multilevel configuration consisting of an H-bridge inverter and level doubling network (LDN cell, leading to the multilevel inverter having double the output voltage levels as compared to the basic H-bridge inverter topology (i.e., five levels vs. three levels. The LDN cell is basically a half-bridge fed by a floating capacitor, with self-balancing voltage capability. The multilevel configuration introduces additional PV voltage and current low-frequency harmonics, perturbing the basic implementation of the RCC scheme (based on the second harmonic component, leading to malfunctioning. The proposed RCC algorithm employs the PV current and voltage harmonics at a specific frequency for the estimation of the voltage derivative of power dP/dV (or dI/dV, driving the PV operating point toward the maximum power point (MPP in a faster and more precise manner. The steady-state and transient performances of the proposed RCC-MPPT schemes have been preliminarily tested and compared using MATLAB/Simulink. Results have been verified by experimental tests considering the whole multilevel PV generation system, including real PV modules, multilevel insulated-gate bipolar transistor (IGBT inverters, and utility grids.

  14. Single phase flow pressure drop and heat transfer in rectangular metallic microchannels

    International Nuclear Information System (INIS)

    Sahar, Amirah M.; Özdemir, Mehmed R.; Fayyadh, Ekhlas M.; Wissink, Jan; Mahmoud, Mohamed M.; Karayiannis, Tassos G.

    2016-01-01

    Numerical simulations were performed using Fluent 14.5 to investigate single phase flow and conjugate heat transfer in copper rectangular microchannels. Two different configurations were simulated: (1) single channel with hydraulic diameter of 0.561 mm and (2) multichannel configuration consisting of inlet and outlet manifolds and 25 channels with hydraulic diameter of 0.409 mm. In the single channel configuration, four numerical models were investigated namely, 2D thin-wall, 3D thin-wall (heated from the bottom), 3D thin-wall (three side heated) and 3D full conjugate models. In the multichannel configuration, only 3D full conjugate model was used. The simulation results of the single channel configuration were validated using experimental data of water as a test fluid while the results of the multichannel configuration were validated using experimental data of R134a refrigerant. In the multichannel configuration, flow distribution among the channels was also investigated. The 3D thin-wall model simulation was conducted at thermal boundary conditions similar to those assumed in the experimental data reduction (uniform heat flux) and showed excellent agreement with the experimental data. However, the results of the 3D full conjugate model demonstrated that there is a significant conjugate effect and the heat flux is not uniformly distributed along the channel resulting in significant deviation compared to the experimental data (more than 50%). Also, the results demonstrated that there is a significant difference between the 3D thin-wall and full conjugate models. The simulation of the multichannel configuration with an inlet manifold having gradual decrease in cross sectional area achieved very reasonable uniform flow distribution among the channels which will provide uniform heat transfer rates across the base of the microchannels.

  15. Natural circulation in single-phase and two-phase flow

    International Nuclear Information System (INIS)

    Cheung, F.B.; El-Genk, M.S.

    1989-01-01

    Natural circulation usually arises in a closed loop between a heat source and a heat sink were the fluid motion is driven by density difference. It may also occur in enclosures or cavities where the flow is induced primarily by temperature or concentration gradients within the fluid. The subject has recently received special attention by the heat transfer and nuclear reactor safety communities because of it importance to the areas of energy extraction, decay, heat removal in nuclear reactors, solar and geothermal heating, and cooling of electronic equipment. Although many new results and physical insights have been gained of the various natural circulation phenomena, a number of critical issues remain unresolved. These include, for example, transition from laminar to turbulent flow, buoyancy-induced turbulent flow modeling, change of flow regimes, flow field visualization, variable property effects, and flow instability. This symposium volume contains papers presented in the Natural Circulation in Single-Phase and Two-Phase Flow session at the 1989 Winter Annual Meeting of ASME, by authors from different countries including the United States, Japan, Canada, and Brazil. The papers deal with experimental and theoretical studies as well as state-of-the-art reviews, covering a broad spectrum of topics in natural circulation including: variable-conductance thermosyphons, microelectronic chip cooling, natural circulation in anisotropic porous media and in cavities, heat transfer in flat plat solar collectors, shutdown heat removal in fast reactors, cooling of light-water and heavy-water reactors. The breadth of papers contained in this volume clearly reflect the importance of the current interest in natural circulation as a means for passive cooling and heating

  16. White light emitting device based on single-phase CdS quantum dots

    Science.gov (United States)

    Li, Feng; Nie, Chao; You, Lai; Jin, Xiao; Zhang, Qin; Qin, Yuancheng; Zhao, Feng; Song, Yinglin; Chen, Zhongping; Li, Qinghua

    2018-05-01

    White light emitting diodes (WLEDs) based on quantum dots (QDs) are emerging as robust candidates for white light sources, however they are suffering from the problem of energy loss resulting from the re-absorption and self-absorption among the employed QDs of different peak wavelengths. It still remains a challenging task to construct WLEDs based on single-phase QD emitters. Here, CdS QDs with short synthesis times are introduced to the fabrication of WLEDs. With a short synthesis time, on one hand, CdS QDs with a small diameter with blue emission can be obtained. On the other hand, surface reconstruction barely has time to occur, and the surface is likely defect-ridden, which enables the existence of a broad emission covering the range of green, yellow and red regions. This is essential for the white light emission of CdS QDs, and is very important for WLED applications. The temporal evolution of the PL spectra for CdS QDs was obtained to investigate the influence of growth time on the luminescent properties. The CdS QDs with a growth time of 0.5 min exhibited a colour rendering index (CRI) of 79.5 and a correlated colour temperature (CCT) of 6238 K. With increasing reaction time, the colour coordinates of the CdS QDs will move away from the white light region in the CIE 1931 chromaticity diagram. By integrating the as prepared white light emission CdS QDs with a violet GaN chip, WLEDs were fabricated. The fabricated WLEDs exhibited a CRI of 87.9 and a CCT of 4619 K, which satisfy the demand of general illumination. The luminous flux and the luminous efficiency of the fabricated WLEDs, being less advanced than current commercial white light sources, can be further improved, meaning there is a need for much more in-depth studies on white light emission CdS QDs.

  17. Single-phase cross-mixing measurements in a 4 x 4 rod bundle

    International Nuclear Information System (INIS)

    Yloenen, Arto; Bissels, Wilhelm-Martin; Prasser, Horst-Michael

    2011-01-01

    Highlights: → The wire-mesh sensor technique has been successfully introduced into a fuel rod bundle geometry. → Quantitative information on the turbulent dispersion of the fluid was obtained. → In full spatial and temporal resolution, the data is interesting for the unsteady CFD validation. - Abstract: The wire-mesh sensor technique has been successfully introduced into a fuel rod bundle geometry for the first time. In this context, a dedicated test facility (SUBFLOW) has been designed and constructed at Paul Scherrer Institut (PSI) in a co-operation with the Swiss Federal Institute of Technology (ETH Zuerich). Two wire-mesh sensors designed and built in-house were installed in the upper part of the vertical test section of SUBFLOW, and single-phase experiments on the turbulent mass exchange between neighboring sub-channels were performed. For this purpose, salt tracer was injected locally in one of the sub-channels and conductivity distributions in the bundle measured by the wire-mesh sensor. Both flow rate and distance from the injection point were varied. The latter was achieved by using injection nozzles at different heights. In this way, the sensor located in the upper part of the channel could be used to characterize the progress of the mixing along the flow direction, and the degree of cross-mixing assessed using the quantity of tracer arriving in the neighboring sub-channels. Fluctuations of the tracer concentration in time were used for statistical evaluations, such as the calculation of standard deviations and two-point correlations.

  18. Magnetic behavior of nanocrystalline nickel ferrite

    International Nuclear Information System (INIS)

    Nathani, H.; Gubbala, S.; Misra, R.D.K.

    2005-01-01

    In the previous papers [R.D.K. Misra, A. Kale, R.S. Srivatsava, O. Senkov, Mater. Sci. Technol. 19 (2003) 826; R.D.K. Misra, A. Kale, B. Hooi, J.Th. DeHosson, Mater. Sci. Technol. 19 (2003) 1617; A. Kale, S. Gubbala, R.D.K. Misra, J. Magn. Magn. Mater. 277 (2004) 350; S. Gubbala, H. Nathani, K. Koizol, R.D.K. Misra, Phys. B 348 (2004) 317; R.D.K. Misra, S. Gubbala, A. Kale, W.F. Egelhoff, Mater. Sci. Eng. B. 111 (2004) 164], we reported the synthesis, structural characterization and magnetic behavior of nanocrystalline ferrites of inverse and mixed spinel structure made by reverse micelle technique that enabled a narrow particle size distribution to be obtained. In the present paper, the reverse micelle approach has been extended to synthesize nanocrystalline ferrites with varying surface roughness of 8-18 A (the surface roughness was measured by atomic force microscopy) and the magnetic behavior studied by SQUID magnetometer. Two different kinds of measurement were performed: (a) zero-field cooling (ZFC) and field cooling (FC) magnetization versus temperature measurements and (b) magnetization as a function of applied field. The analysis of magnetic measurement suggests significant influence of surface roughness of particles on the magnetic behavior. While the superparamagnetic behavior is retained by the nanocrystalline ferrites of different surface roughness at 300 K, the hysteresis loop at 2 K becomes non-squared and the coercivity increases with increase in surface roughness. This behavior is discussed in terms of broken bonds and degree of surface spin disorder

  19. Transparent nanocrystalline diamond coatings and devices

    Science.gov (United States)

    Sumant, Anirudha V.; Khan, Adam

    2017-08-22

    A method for coating a substrate comprises producing a plasma ball using a microwave plasma source in the presence of a mixture of gases. The plasma ball has a diameter. The plasma ball is disposed at a first distance from the substrate and the substrate is maintained at a first temperature. The plasma ball is maintained at the first distance from the substrate, and a diamond coating is deposited on the substrate. The diamond coating has a thickness. Furthermore, the diamond coating has an optical transparency of greater than about 80%. The diamond coating can include nanocrystalline diamond. The microwave plasma source can have a frequency of about 915 MHz.

  20. Simulations of intergranular fracture in nanocrystalline molybdenum

    DEFF Research Database (Denmark)

    Frederiksen, Søren Lund; Jacobsen, Karsten Wedel; Schiøtz, Jakob

    2004-01-01

    Using molecular dynamics simulations we investigate the plastic deformation of nanocrystalline molybdenum with a grain size of 12 nm at high strain rates. The simulations are performed with an interatomic potential which is obtained through matching of atomic forces to a database generated...... with density-functional calculations. The simulations show the plastic deformation to involve both grain boundary processes and dislocation migration which in some cases lead to twin boundary formation. A large component of the strain is accommodated through the formation of cracks in the grain boundaries...

  1. Evaluation of structural, morphological and magnetic properties of CuZnNi (Cu_xZn_0_._5_−_xNi_0_._5Fe_2O_4) nanocrystalline ferrites for core, switching and MLCI’s applications

    International Nuclear Information System (INIS)

    Akhtar, Majid Niaz; Khan, Muhammad Azhar; Ahmad, Mukhtar; Nazir, M.S.; Imran, M.; Ali, A.; Sattar, A.; Murtaza, G.

    2017-01-01

    The influence of Cu substitution on the structural and morphological characteristics of Ni–Zn nanocrystalline ferrites have been discussed in this work. The detailed and systematic magnetic characterizations were also done for Cu substituted Ni–Zn nanoferrites. The nanocrystalline ferrites of Cu substituted Cu_xZn_0_._5_−_xNi_0_._5Fe_2O_4 ferrites (x=0, 0.1, 0.2, 0.3, 0.4 and 0.5) were synthesized using sol gel self-combustion hybrid method. X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Transmission electron microscope (TEM) and Vibrating sample magnetometer (VSM) were used to investigate the properties of Cu substituted nanocrystalline ferrites. Single phase structure of Cu substituted in Ni–Zn nanocrystalline ferrites were investigated for all the samples. Crystallite size, lattice constant and volume of the cell were found to increase by increasing Cu contents in spinel structure. The better morphology with well-organized nanocrystals of Cu–Zn–Ni ferrites at x=0 and 0.5 were observed from both FESEM and TEM analysis. The average grain size was 35–46 nm for all prepared nanocrystalline samples. Magnetic properties such as coercivity, saturation, remanence, magnetic squareness, magneto crystalline anisotropy constant (K) and Bohr magneton were measured from the recorded M–H loops. The magnetic saturation and remanence were increased by the incorporation of Cu contents. However, coercivity follow the Stoner-Wolforth model except for x=0.3 which may be due to the site occupancy and replacement of Cu contents from octahedral site. The squareness ratio confirmed the super paramgnetic behaviour of the Cu substituted in Ni–Zn nanocrystalline ferrites. Furthermore, Cu substituted Ni–Zn nanocrystalline ferrites may be suitable for many industrial and domestic applications such as components of transformers, core, switching, and MLCI’s due to variety of the soft magnetic characteristics. - Highlights: • Cu substituted

  2. Scaling Analysis of the Single-Phase Natural Circulation: the Hydraulic Similarity

    International Nuclear Information System (INIS)

    Yu, Xin-Guo; Choi, Ki-Yong

    2015-01-01

    These passive safety systems all rely on the natural circulation to cool down the reactor cores during an accident. Thus, a robust and accurate scaling methodology must be developed and employed to both assist in the design of a scaled-down test facility and guide the tests in order to mimic the natural circulation flow of its prototype. The natural circulation system generally consists of a heat source, the connecting pipes and several heat sinks. Although many applauding scaling methodologies have been proposed during last several decades, few works have been dedicated to systematically analyze and exactly preserve the hydraulic similarity. In the present study, the hydraulic similarity analyses are performed at both system and local level. By this mean, the scaling criteria for the exact hydraulic similarity in a full-pressure model have been sought. In other words, not only the system-level but also the local-level hydraulic similarities are pursued. As the hydraulic characteristics of a fluid system is governed by the momentum equation, the scaling analysis starts with it. A dimensionless integral loop momentum equation is derived to obtain the dimensionless numbers. In the dimensionless momentum equation, two dimensionless numbers, the dimensionless flow resistance number and the dimensionless gravitational force number, are identified along with a unique hydraulic time scale, characterizing the system hydraulic response. A full-height full-pressure model is also made to see which model among the full-height model and reduced-height model can preserve the hydraulic behavior of the prototype. From the dimensionless integral momentum equation, a unique hydraulic time scale, which characterizes the hydraulic response of a single-phase natural circulation system, is identified along with two dimensionless parameters: the dimensionless flow resistance number and the dimensionless gravitational force number. By satisfying the equality of both dimensionless numbers

  3. On the prediction of single-phase forced convection heat transfer in narrow rectangular channels

    International Nuclear Information System (INIS)

    Ghione, Alberto; Noel, Brigitte; Vinai, Paolo; Demazière, Christophe

    2014-01-01

    In this paper, selected heat transfer correlations for single-phase forced convection are assessed for the case of narrow rectangular channels. The work is of interest in the thermal-hydraulic analysis of the Jules Horowitz Reactor (JHR), which is a research reactor under construction at CEA-Cadarache (France). In order to evaluate the validity of the correlations, about 300 tests from the SULTAN-JHR database were used. The SULTAN-JHR program was carried out at CEA-Grenoble and it includes different kinds of tests for two different vertical rectangular channels with height of 600 mm and gap of 1.51 and 2.16 mm. The experimental conditions range between 2 - 9 bar for the pressure; 0.5 - 18 m/s for the coolant velocity and 0.5 - 7.5 MW/m 2 for the heat flux (whose axial distribution is uniform). Forty-two thermocouples and eight pressure taps were placed at several axial locations, measuring wall temperature and pressure respectively. The analysis focused on turbulent flow with Reynolds numbers between 5.5 x 10 3 - 2.4 x 10 5 and Prandtl numbers between 1.5 - 6. It was shown that standard correlations as the Dittus-Boelter and Seider-Tate significantly under-estimate the heat transfer coefficient, especially at high Reynolds number. Other correlations specifically designed for narrow rectangular channels were also taken into account and compared. The correlation of Popov-Petukhov in the form suggested by Siman-Tov still under-estimates the heat transfer coefficient, even if slight improvements could be seen. A better agreement for the tests with gap equal to 2.16 mm could be found with the correlation of Ma and the one of Liang. However the heat transfer coefficient when the gap is equal to 1.51 mm could not be predicted accurately. Furthermore these correlations were based on data at low Reynolds numbers (up to 13000) and low heat flux, so the use of them for SULTAN-JHR may be questionable. According to the authors’ knowledge, existing models of heat transfer

  4. Single phase and two phase erosion corrosion in broilers of gas-cooled reactors

    International Nuclear Information System (INIS)

    Harrison, G.S.; Fountain, M.J.

    1988-01-01

    Erosion-corrosion is a phenomenon causing metal wastage in a variety of locations in water and water-steam circuits throughout the power generation industry. Erosion-corrosion can occur in a number of regions of the once-through boiler designs used in the later Magnox and AGR type of gas cooled nuclear reactor. This paper will consider two cases of erosion-corrosion damage (single and two phase) in once through boilers of gas cooled reactors and will describe the solutions that have been developed. The single phase problem is associated with erosion-corrosion damage of mild steel downstream of a boiler inlet flow control orifice. With metal loss rates of up to 1 mm/year at 150 deg. C and pH in the range 9.0-9.4 it was found that 5 μg/kg oxygen was sufficient to reduce erosion-corrosion rates to less than 0.02 mm/year. A combined oxygen-ammonia-hydrazine feedwater regime was developed and validated to eliminate oxygen carryover and hence give protection from stress corrosion in the austenitic section of the AGR once through boiler whilst still providing erosion-corrosion control. Two phase erosion-corrosion tube failures have occurred in the evaporator of the mild steel once through boilers of the later Magnox reactors operating at pressures in the range 35-40 bar. Rig studies have shown that amines dosed in the feedwater can provide a significant reduction in metal loss rates and a tube lifetime assessment technique has been developed to predict potential tube failure profiles in a fully operational boiler. The solutions identified for both problems have been successfully implemented and the experience obtained following implementation including any problems or other benefits arising from the introduction of the new regimes will be presented. Methods for monitoring and evaluating the efficiency of the solutions have been developed and the results from these exercises will also be discussed. Consideration will also be given to the similarities in the metal loss

  5. Single phase and two phase erosion corrosion in broilers of gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, G S; Fountain, M J [Operational Engineering Division (Northern Area), Central Electricity Generating Board, Manchester (United Kingdom)

    1988-07-01

    Erosion-corrosion is a phenomenon causing metal wastage in a variety of locations in water and water-steam circuits throughout the power generation industry. Erosion-corrosion can occur in a number of regions of the once-through boiler designs used in the later Magnox and AGR type of gas cooled nuclear reactor. This paper will consider two cases of erosion-corrosion damage (single and two phase) in once through boilers of gas cooled reactors and will describe the solutions that have been developed. The single phase problem is associated with erosion-corrosion damage of mild steel downstream of a boiler inlet flow control orifice. With metal loss rates of up to 1 mm/year at 150 deg. C and pH in the range 9.0-9.4 it was found that 5 {mu}g/kg oxygen was sufficient to reduce erosion-corrosion rates to less than 0.02 mm/year. A combined oxygen-ammonia-hydrazine feedwater regime was developed and validated to eliminate oxygen carryover and hence give protection from stress corrosion in the austenitic section of the AGR once through boiler whilst still providing erosion-corrosion control. Two phase erosion-corrosion tube failures have occurred in the evaporator of the mild steel once through boilers of the later Magnox reactors operating at pressures in the range 35-40 bar. Rig studies have shown that amines dosed in the feedwater can provide a significant reduction in metal loss rates and a tube lifetime assessment technique has been developed to predict potential tube failure profiles in a fully operational boiler. The solutions identified for both problems have been successfully implemented and the experience obtained following implementation including any problems or other benefits arising from the introduction of the new regimes will be presented. Methods for monitoring and evaluating the efficiency of the solutions have been developed and the results from these exercises will also be discussed. Consideration will also be given to the similarities in the metal loss

  6. Scaling Analysis of the Single-Phase Natural Circulation: the Hydraulic Similarity

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xin-Guo; Choi, Ki-Yong [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    These passive safety systems all rely on the natural circulation to cool down the reactor cores during an accident. Thus, a robust and accurate scaling methodology must be developed and employed to both assist in the design of a scaled-down test facility and guide the tests in order to mimic the natural circulation flow of its prototype. The natural circulation system generally consists of a heat source, the connecting pipes and several heat sinks. Although many applauding scaling methodologies have been proposed during last several decades, few works have been dedicated to systematically analyze and exactly preserve the hydraulic similarity. In the present study, the hydraulic similarity analyses are performed at both system and local level. By this mean, the scaling criteria for the exact hydraulic similarity in a full-pressure model have been sought. In other words, not only the system-level but also the local-level hydraulic similarities are pursued. As the hydraulic characteristics of a fluid system is governed by the momentum equation, the scaling analysis starts with it. A dimensionless integral loop momentum equation is derived to obtain the dimensionless numbers. In the dimensionless momentum equation, two dimensionless numbers, the dimensionless flow resistance number and the dimensionless gravitational force number, are identified along with a unique hydraulic time scale, characterizing the system hydraulic response. A full-height full-pressure model is also made to see which model among the full-height model and reduced-height model can preserve the hydraulic behavior of the prototype. From the dimensionless integral momentum equation, a unique hydraulic time scale, which characterizes the hydraulic response of a single-phase natural circulation system, is identified along with two dimensionless parameters: the dimensionless flow resistance number and the dimensionless gravitational force number. By satisfying the equality of both dimensionless numbers

  7. Multifunctional response of anatase nanostructures based on 25 nm mesocrystal-like porous assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Tartaj, Pedro; Amarilla, Jose M. [Instituto de Ciencia de Materiales de Madrid (CSIC), Campus Universitario de Cantoblanco, Madrid (Spain)

    2011-11-09

    Ultrasmall porous anatase mesocrystals show good electrochemical performance and good capabilities for enzyme immobilization and photocatalytic degradation of contaminants. These materials are potential candidates for energy storage devices, photocatalysis, enzyme immobilization, and, when properly functionalized, could be used for photoelectrochemistry and healthcare applications. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Association of anatase (TiO2) and microbes: unusual fossilization effect or a potential biosignature?

    Science.gov (United States)

    Glamoclija, Mihaela; Andrew Steele,; Marc Fries,; Juergen Schieber,; Voytek, Mary A.; Charles S. Cockell,

    2015-01-01

    We combined microbial paleontology and molecular biology methods to study the Eyreville B drill core from the 35.3-Ma-old Chesapeake Bay impact structure,Virginia, USA. The investigated sample is a pyrite vein collected from the 1353.81-1353.89 m depth interval, located within a section of biotite granite. The granite is a pre-impact rock that was disrupted by the impact event. A search for inorganic (mineral) biosignatures revealed the presence of micron-size rod morphologies of anatase (TiO2) embedded in chlorite coatings on pyrite grains. Neither the Acridine Orange microbial probe nor deoxyribonucleic acid (DNA) extraction followed by polymerase chain reaction (PCR) amplifi cation showed the presence of DNA or ribonucleic acid (RNA) at the location of anatase rods, implying the absence of viable cells in the investigated area. A Nile Red microbial probe revealed the presence of lipids in the rods. Because most of the lipids are resistant over geologic time spans, they are good biomarkers, and they are an indicator of biogenicity for these possibly 35-Ma-old microbial fossils. The mineral assemblage suggests that rod morphologies are associated with low-temperature (<100 °C) hydrothermal alteration that involved aqueous fl uids. The temporal constraints on the anatase fossils are still uncertain because pre-impact alteration of the granite and postimpact heating may have provided identical conditions for anatase precipitation and microbial preservation.

  9. Soft-Template Synthesis of Mesoporous Anatase TiO2 Nanospheres and Its Enhanced Photoactivity

    Directory of Open Access Journals (Sweden)

    Xiaojia Li

    2017-11-01

    Full Text Available Highly crystalline mesoporous anatase TiO2 nanospheres with high surface area (higher than P25 and anatase TiO2 are prepared by a soft-template method. Despite the high specific surface area, these samples have three times lower equilibrium adsorption (<2% than Degussa P25. The rate constant of the mesoporous anatase TiO2 (0.024 min−1 reported here is 364% higher than that of P25 (0.0066 min−1, for the same catalytic loading. The results of oxidation-extraction photometry using several reactive oxygen species (ROS scavengers indicated that mesoporous anatase TiO2 generates more ROS than P25 under UV-light irradiation. This significant improvement in the photocatalytic performance of mesoporous spherical TiO2 arises from the following synergistic effects in the reported sample: (i high surface area; (ii improved crystallinity; (iii narrow pore wall thicknesses (ensuring the rapid migration of photogenerated carriers to the surface of the material; and (iv greater ROS generation under UV-light.

  10. Soft-Template Synthesis of Mesoporous Anatase TiO₂ Nanospheres and Its Enhanced Photoactivity.

    Science.gov (United States)

    Li, Xiaojia; Zou, Mingming; Wang, Yang

    2017-11-10

    Highly crystalline mesoporous anatase TiO₂ nanospheres with high surface area (higher than P25 and anatase TiO₂) are prepared by a soft-template method. Despite the high specific surface area, these samples have three times lower equilibrium adsorption (<2%) than Degussa P25. The rate constant of the mesoporous anatase TiO₂ (0.024 min -1 ) reported here is 364% higher than that of P25 (0.0066 min -1 ), for the same catalytic loading. The results of oxidation-extraction photometry using several reactive oxygen species (ROS) scavengers indicated that mesoporous anatase TiO₂ generates more ROS than P25 under UV-light irradiation. This significant improvement in the photocatalytic performance of mesoporous spherical TiO₂ arises from the following synergistic effects in the reported sample: (i) high surface area; (ii) improved crystallinity; (iii) narrow pore wall thicknesses (ensuring the rapid migration of photogenerated carriers to the surface of the material); and (iv) greater ROS generation under UV-light.

  11. Effect of anatase nanoparticles (TiO2) on parsley seed germination (Petroselinum crispum) in vitro.

    Science.gov (United States)

    Dehkourdi, Elahe Hashemi; Mosavi, Mousa

    2013-11-01

    Nano priming is a new method for the increase of seedling vigor and improvement of germination percentage and seedling growth. The experiments to evaluate the effect of different concentrations of nano-anatase on germination parameters of parsley as a completely randomized design with five replications were performed in a tissue culture laboratory of the Department of Horticulture, Shahid Chamran University of Ahvaz. In addition, nano-anatase at four concentrations (10, 20, 30, and 40 mg/ml) was added to the Murashige and Skoog medium. At the end of the experiment, the percentage of germination, germination rate index, root and shoot length, fresh weight of seedlings, vigor index, and chlorophyll content were evaluated. The results showed that an increase in the concentration of nano-anatase caused a significant increase in the percentage of germination, germination rate index, root and shoot length, fresh weight, vigor index, and chlorophyll content of seedlings. The best concentration of nano-anatase was 30 mg/ml.

  12. Multiple-diffusion flame synthesis of pure anatase and carbon-coated titanium dioxide nanoparticles

    KAUST Repository

    Memon, Nasir; Anjum, Dalaver H.; Chung, Suk-Ho

    2013-01-01

    A multi-element diffusion flame burner (MEDB) is useful in the study of flame synthesis of nanomaterials. Here, the growth of pure anatase and carbon-coated titanium dioxide (TiO2) using an MEDB is demonstrated. Hydrogen (H2), oxygen (O2), and argon

  13. Effect of oxygen vacancies on Li-storage of anatase TiO2 (001 ...

    Indian Academy of Sciences (India)

    2018-03-29

    Mar 29, 2018 ... (a–d) Top and side views of the optimum structure of anatase TiO2 (001) surfaces adsorbing a single Li .... Rate capability is an important requirement for a promis- .... tific Research Foundation of Hunan Provincial Education.

  14. Controlled formation of anatase and rutile TiO2 thin films by reactive magnetron sputtering

    OpenAIRE

    Rafieian Boroujeni, Damon; Ogieglo, Wojciech; Savenije, Tom; Lammertink, Rob G.H.

    2015-01-01

    We discuss the formation of TiO2 thin films via DC reactive magnetron sputtering. The oxygen concentration during sputtering proved to be a crucial parameter with respect to the final film structure and properties. The initial deposition provided amorphous films that crystallise upon annealing to anatase or rutile, depending on the initial sputtering conditions. Substoichiometric films (TiOx

  15. Cyclohexane selective photocatalytic oxidation by anatase TiO2: influence of particle size and crystallinity

    NARCIS (Netherlands)

    Carneiro, J.T.; Carneiro, Joana T.; Almeida, A.R.; Almeida, Ana R.; Moulijn, Jacob A.; Mul, Guido

    2010-01-01

    A systematic study is presented on the effect of crystallite size of Anatase (Hombikat, Sachtleben), varied by calcination at different temperatures up to 800 °C, on photocatalytic activity in cyclohexane selective oxidation. Two different reactors were used to test the materials: a top illumination

  16. How Gold Deposition Affects Anatase Performance in the Photo-catalytic Oxidation of Cyclohexane

    NARCIS (Netherlands)

    Carneiro, J.T.; Carneiro, Joana T.; Yang, Chieh-Chao; Moma, John A.; Moulijn, Jacob A.; Mul, Guido

    2009-01-01

    Gold deposition on Hombikat UV100 was found to negatively affect the activity of this Anatase catalyst in selective photo-oxidation of cyclohexane. By ammonia TPD and DRIFT spectroscopy it was determined that the Au deposition procedure leads to a significant decrease in OH-group density (mol m−2

  17. Experimental evidence for electron localization on Au upon photo-activation of Au/anatase catalysts

    NARCIS (Netherlands)

    Carneiro, J.T.; Carneiro, Joana T.; Savenije, Tom J.; Mul, Guido

    2009-01-01

    Time resolved microwave conductivity (TRMC) measurements show that the presence of Au on anatase Hombikat UV100 significantly reduces the lifetime of mobile electrons formed by photo-excitation of this photocatalyst at 300 nm, providing evidence for the widely acclaimed electron localization effect

  18. Surface preparation of TiO2 anatase (101): Pitfalls and how to avoid them

    Czech Academy of Sciences Publication Activity Database

    Setvín, M.; Daniel, B.; Mansfeldová, Věra; Kavan, Ladislav; Scheiber, P.; Fidler, M.; Schmid, M.; Diebold, U.

    2014-01-01

    Roč. 626, AUG 2014 (2014), s. 61-67 ISSN 0039-6028 R&D Projects: GA ČR GA13-07724S Grant - others: COST (XE) CM1104 Institutional support: RVO:61388955 Keywords : TiO2 * anatase * sample preparation Subject RIV: CG - Electrochemistry Impact factor: 1.925, year: 2014

  19. Highly photoactive anatase foams prepared from lyophilized aqueous colloids of peroxo-polytitanic acid

    Czech Academy of Sciences Publication Activity Database

    Pližingrová, Eva; Volfová, Lenka; Svora, Petr; Labhsetwar, N.; Klementová, Mariana; Szatmáry, Lórant; Šubrt, Jan

    2015-01-01

    Roč. 240, FEB (2015), s. 107-113 ISSN 0920-5861 R&D Projects: GA ČR(CZ) GA14-20744S Institutional support: RVO:61388980 Keywords : Anatase * Lyophilization * Photocatalysis * Hydroxyl radical * Peroxo-polytitanic acid foams Subject RIV: CA - Inorganic Chemistry Impact factor: 4.312, year: 2015

  20. Gel–sol synthesis and aging effect on highly crystalline anatase ...

    Indian Academy of Sciences (India)

    Gel–sol synthesis and aging effect on highly crystalline anatase nanopowder .... −1 in static air. To identify the gel-phase, it was mixed with D2O to form sample solution ... Ti(OH)4 chemical composition is produced this way: Ti3. [. (OC2H4)3 N. ].

  1. Presence of glassy state and large exchange bias in nanocrystalline BiFeO3

    Science.gov (United States)

    Srivastav, Simant Kumar; Johari, Anima; Patel, S. K. S.; Gajbhiye, N. S.

    2017-11-01

    We investigated the static and dynamic aspects of the magnetic properties for single phase nanocrystalline BiFeO3 with average crystallite size of 35 nm. The frequency dependence of the peak is observed in the real part of ac susceptibility χ‧ac vs T measurement and described well by the Vogel-Fulcher law as well as the power law. These analyses indicated the existence of cluster glass state with significant interaction among the spin clusters and results in cluster-glass like cooperative freezing at low temperature. The influence of temperature and magnetic field cooling on the exchange bias effect is investigated. A training effect is also observed. We have reported a significantly high ZFC & FC exchange bias of 200 Oe & 450 Oe at 300 K and 900 Oe & 2100 Oe at 5 K. The obtained results are interpreted in the framework of core-shell model, where the core of the BFO nanoparticles shows antiferromagnetic behavior and surrounded by CG-like ferromagnetic (FM) shell associated to uncompensated surface spins.

  2. Structure and magnetic properties of highly textured nanocrystalline Mn–Zn ferrite thin film

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Jaison, E-mail: jaisonjosephp@gmail.com [Department of Physics, Goverment College, Khandola, Goa 403107 India (India); Tangsali, R.B. [Department of Physics, Goa University, Taleigao Plateau, Goa 403206 India (India); Pillai, V.P. Mahadevan [Department of Optoelectronics, University of Kerala,Thiruvananthapuram, Kerala 695581 India (India); Choudhary, R.J.; Phase, D.M.; Ganeshan, V. [UGC-DAE-CSR Indore, Madhya Pradesh 452017 India. (India)

    2015-01-01

    Nanoparticles of Mn{sub 0.2}Zn{sub 0.8}Fe{sub 2}O{sub 4} were chemically synthesized by co-precipitating the metal ions in aqueous solutions in a suitable alkaline medium. The identified XRD peaks confirm single phase spinal formation. The nanoparticle size authentication is carried out from XRD data using Debye Scherrer equation. Thin film fabricated from this nanomaterial by pulse laser deposition technique on quartz substrate was characterized using XRD and Raman spectroscopic techniques. XRD results revealed the formation of high degree of texture in the film. AFM analysis confirms nanogranular morphology and preferred directional growth. A high deposition pressure and the use of a laser plume confined to a small area for transportation of the target species created certain level of porosity in the deposited thin film. Magnetic property measurement of this highly textured nanocrystalline Mn–Zn ferrite thin film revealed enhancement in properties, which are explained on the basis of texture and surface features originated from film growth mechanism.

  3. Microhardness studies of nanocrystalline lead molybdate

    International Nuclear Information System (INIS)

    Anandakumar, V.M.; Abdul Khadar, M.

    2009-01-01

    Nanocrystalline lead molybdate (PbMoO 4 ) of four different grain sizes were synthesized through chemical precipitation technique and the grain sizes and crystal structure are determined using the broadening of X-ray diffraction patterns and transmission electron microscopy. The microhardness of nanocrystalline lead molybdate (PbMoO 4 ) with different grain sizes were measured using a Vicker's microhardness tester for various applied loads ranging from 0.049 to 1.96 N. The microhardness values showed significant indentation size effect at low indentation loads. The proportional specimen resistance model put forward by Li and Bradt and energy balance model put forward by Gong and Li were used to analyze the behaviour of measured microhardness values under different indentation loads. The microhardness data obtained for samples of different grain sizes showed grain size dependent strengthening obeying normal Hall-Petch relation. The dependence of compacting pressure and annealing temperature on microhardness of the nanostructured sample with grain size of ∼18 nm were also studied. The samples showed significant increase in microhardness values as the compacting pressure and annealing time were increased. The variation of microhardness of the material with pressure of pelletization and annealing time are discussed in the light of change of pore size distribution of the samples.

  4. Grain growth studies on nanocrystalline Ni powder

    International Nuclear Information System (INIS)

    Rane, G.K.; Welzel, U.; Mittemeijer, E.J.

    2012-01-01

    The microstructure of nanocrystalline Ni powder produced by ball-milling and its thermal stability were investigated by applying different methods of X-ray diffraction line-profile analysis: single-line analysis, whole powder-pattern modelling and the (modified) Warren–Averbach method were employed. The kinetics of grain growth were investigated by both ex-situ and in-situ X-ray diffraction measurements. With increasing milling time, the grain-size reduction is accompanied by a considerable narrowing of the size distribution and an increase in the microstrain. Upon annealing, initial, rapid grain growth occurs, accompanied by the (almost complete) annihilation of microstrain. For longer annealing times, the grain-growth kinetics depend on the initial microstructure: a smaller microstrain with a broad grain-size distribution leads to linear grain growth, followed by parabolic grain growth, whereas a larger microstrain with a narrow grain-size distribution leads to incessant linear grain growth. These effects have been shown to be incompatible with grain-boundary curvature driven growth. The observed kinetics are ascribed to the role of excess free volume at the grain boundaries of nanocrystalline material and the prevalence of an “abnormal grain-growth” mechanism.

  5. Solution equilibrium behind the room-temperature synthesis of nanocrystalline titanium dioxide

    Science.gov (United States)

    Seisenbaeva, Gulaim A.; Daniel, Geoffrey; Nedelec, Jean-Marie; Kessler, Vadim G.

    2013-03-01

    Formation of nanocrystalline and monodisperse TiO2 from a water soluble and stable precursor, ammonium oxo-lactato-titanate, (NH4)8Ti4O4(Lactate)8.4H2O, often referred to as TiBALDH or TALH, is demonstrated to be due to a coordination equilibrium. This compound, individual in the solid state, exists in solution in equilibrium with ammonium tris-lactato-titanate, (NH4)2Ti(Lactate)3 and uniform crystalline TiO2 nanoparticles (anatase) stabilized by surface-capping with lactate ligands. This equilibrium can be shifted towards nano-TiO2via application of a less polar solvent like methanol or ethanol, dilution of the solution, introduction of salts or raising the temperature, and reverted on addition of polar and strongly solvating media such as dimethyl sulfoxide, according to NMR. Aggregation and precipitation of the particles were followed by DLS and could be achieved by a decrease in their surface charge by adsorption of strongly hydrogen-bonding cations, e.g. in solutions of ammonia, ethanolamine or amino acid arginine or by addition of ethanol. The observed equilibrium may be involved in formation of nano-titania on the surface of plant roots exerting chelating organic carboxylate ligands and thus potentially influencing plant interactions.Formation of nanocrystalline and monodisperse TiO2 from a water soluble and stable precursor, ammonium oxo-lactato-titanate, (NH4)8Ti4O4(Lactate)8.4H2O, often referred to as TiBALDH or TALH, is demonstrated to be due to a coordination equilibrium. This compound, individual in the solid state, exists in solution in equilibrium with ammonium tris-lactato-titanate, (NH4)2Ti(Lactate)3 and uniform crystalline TiO2 nanoparticles (anatase) stabilized by surface-capping with lactate ligands. This equilibrium can be shifted towards nano-TiO2via application of a less polar solvent like methanol or ethanol, dilution of the solution, introduction of salts or raising the temperature, and reverted on addition of polar and strongly solvating

  6. A novel single-phase flux-switching permanent magnet linear generator used for free-piston Stirling engine

    Science.gov (United States)

    Zheng, Ping; Sui, Yi; Tong, Chengde; Bai, Jingang; Yu, Bin; Lin, Fei

    2014-05-01

    This paper investigates a novel single-phase flux-switching permanent-magnet (PM) linear machine used for free-piston Stirling engines. The machine topology and operating principle are studied. A flux-switching PM linear machine is designed based on the quasi-sinusoidal speed characteristic of the resonant piston. Considering the performance of back electromotive force and thrust capability, some leading structural parameters, including the air gap length, the PM thickness, the ratio of the outer radius of mover to that of stator, the mover tooth width, the stator tooth width, etc., are optimized by finite element analysis. Compared with conventional three-phase moving-magnet linear machine, the proposed single-phase flux-switching topology shows advantages in less PM use, lighter mover, and higher volume power density.

  7. Theoretical modelling and experimental investigation of single-phase and two-phase flow division at a tee-junction

    International Nuclear Information System (INIS)

    Lemonnier, H.; Hervieu, E.

    1991-01-01

    Phase separation in a tee-junction is modelled in the particular case of bubbly-flow. The model is based on a two-dimensional approach and hence, uses local equations. The first step consists in modelling the single-phase flow in the tee-junction. The free streamline theory is used to predict the flow of the continuous phase. The two recirculation zones which are presented in this case are predicted by the model. The second step consists in predicting the gas bubble paths as a result of the actions of the single-phase flow. Finally, the trajectories of gas bubbles are used to predict the separation characteristics of the tee-junction. Each step of the modelling procedure has been carefully tested by an in-depth experimental investigation. Excellent quantitative agreement is obtained between experimental results and model predictions. Moreover, the phase separation phenomenon is found to be clearly described by the model. (orig.)

  8. Impact of Intragranular Substructure Parameters on the Forming Limit Diagrams of Single-Phase B.C.C. Steels

    Directory of Open Access Journals (Sweden)

    Gérald Franz

    2013-11-01

    Full Text Available An advanced elastic-plastic self-consistent polycrystalline model, accounting for intragranular microstructure development and evolution, is coupled with a bifurcation-based localization criterion and applied to the numerical investigation of the impact of microstructural patterns on ductility of single-phase steels. The proposed multiscale model, taking into account essential microstructural aspects, such as initial and induced textures, dislocation densities, and softening mechanisms, allows us to emphasize the relationship between intragranular microstructure of B.C.C. steels and their ductility. A qualitative study in terms of forming limit diagrams for various dislocation networks, during monotonic loading tests, is conducted in order to analyze the impact of intragranular substructure parameters on the formability of single-phase B.C.C. steels.

  9. Power Based Phase-Locked Loop Under Adverse Conditions with Moving Average Filter for Single-Phase System

    Directory of Open Access Journals (Sweden)

    Menxi Xie

    2017-06-01

    Full Text Available High performance synchronization methord is citical for grid connected power converter. For single-phase system, power based phase-locked loop(pPLL uses a multiplier as phase detector(PD. As single-phase grid voltage is distorted, the phase error information contains ac disturbances oscillating at integer multiples of fundamental frequency which lead to detection error. This paper presents a new scheme based on moving average filter(MAF applied in-loop of pPLL. The signal characteristic of phase error is dissussed in detail. A predictive rule is adopted to compensate the delay induced by MAF, thus achieving fast dynamic response. In the case of frequency deviate from nomimal, estimated frequency is fed back to adjust the filter window length of MAF and buffer size of predictive rule. Simulation and experimental results show that proposed PLL achieves good performance under adverse grid conditions.

  10. Space Vector Pulse Width Modulation Strategy for Single-Phase Three-Level CIC T-source Inverter

    DEFF Research Database (Denmark)

    Shults, Tatiana E.; Husev, Oleksandr O.; Blaabjerg, Frede

    2016-01-01

    This paper presents a novel space vector pulse-width modulation strategy for a single-phase three-level buck-boost inverter based on an impedance-source network. The case study system is based on T-source inverter with continuous input current. To demonstrate the improved performance of the inver......This paper presents a novel space vector pulse-width modulation strategy for a single-phase three-level buck-boost inverter based on an impedance-source network. The case study system is based on T-source inverter with continuous input current. To demonstrate the improved performance...... of the inverter, the strategy was compared the traditional pulse-width modulation. It is shown that the approach proposed has fewer switching states and does not suffer from neutral point misbalance....

  11. Improving Performance of LVRT Capability in Single-phase Grid-tied PV Inverters by a Model Predictive Controller

    DEFF Research Database (Denmark)

    Zangeneh Bighash, Esmaeil; Sadeghzadeh, Seyed Mohammad; Ebrahimzadeh, Esmaeil

    2018-01-01

    dynamic response and stability. To fill in this gap, this paper presents a fast and robust current controller based on a Model-Predictive Control (MPC) for single-phase PV inverters in other to deal with the LVRT operation. In order to confirm the effectiveness of the proposed controller, results...... the voltage sag period is short, a fast dynamic performance along with a soft behavior of the controller is the most important issue in the LVRT duration. Recently, some methods like Proportional Resonant (PR) controllers, have been presented to control the single phase PV systems in LVRT mode. However......, these methods have had uncertainties in respect their contribution in LVRT mode. In PR controllers, a fast dynamic response can be obtained by tuning the gains of PR controllers for a high bandwidth, but typically the phase margin is decreased. Therefore, the design of PR controllers needs a tradeoff between...

  12. Comparison of numerical results with experimental data for single-phase natural convection in an experimental sodium loop

    International Nuclear Information System (INIS)

    Ribando, R.J.

    1979-01-01

    A comparison is made between computed results and experimental data for single-phase natural convection in an experimental sodium loop. The tests were conducted in the Thermal-Hydraulic Out-of-Reactor Safety (THORS) Facility, an engineering-scale high temperature sodium facility at the Oak Ridge National Laboratory used for thermal-hydraulic testing of simulated LMFBR subassemblies at normal and off-normal operating conditions. Heat generation in the 19 pin assembly during these tests was typical of decay heat levels. Tests were conducted both with zero initial forced flow and with a small initial forced flow. The bypass line was closed in most tests, but open in one. The computer code used to analyze these tests [LONAC (LOw flow and NAtural Convection)] is an ORNL-developed, fast running, one-dimensional, single-phase finite difference model for simulating forced and free convection transients in the THORS loop

  13. Green synthesis of isopropyl myristate in novel single phase medium Part II: Packed bed reactor (PBR) studies.

    Science.gov (United States)

    Vadgama, Rajeshkumar N; Odaneth, Annamma A; Lali, Arvind M

    2015-12-01

    Isopropyl myristate is a useful functional molecule responding to the requirements of numerous fields of application in cosmetic, pharmaceutical and food industry. In the present work, lipase-catalyzed production of isopropyl myristate by esterification of myristic acid with isopropyl alcohol (molar ratio of 1:15) in the homogenous reaction medium was performed on a bench-scale packed bed reactors, in order to obtain suitable reaction performance data for upscaling. An immobilized lipase B from Candida antartica was used as the biocatalyst based on our previous study. The process intensification resulted in a clean and green synthesis process comprising a series of packed bed reactors of immobilized enzyme and water dehydrant. In addition, use of the single phase reaction system facilitates efficient recovery of the product with no effluent generated and recyclability of unreacted substrates. The single phase reaction system coupled with a continuous operating bioreactor ensures a stable operational life for the enzyme.

  14. Green synthesis of isopropyl myristate in novel single phase medium Part II: Packed bed reactor (PBR studies

    Directory of Open Access Journals (Sweden)

    Rajeshkumar N. Vadgama

    2015-12-01

    Full Text Available Isopropyl myristate is a useful functional molecule responding to the requirements of numerous fields of application in cosmetic, pharmaceutical and food industry. In the present work, lipase-catalyzed production of isopropyl myristate by esterification of myristic acid with isopropyl alcohol (molar ratio of 1:15 in the homogenous reaction medium was performed on a bench-scale packed bed reactors, in order to obtain suitable reaction performance data for upscaling. An immobilized lipase B from Candida antartica was used as the biocatalyst based on our previous study. The process intensification resulted in a clean and green synthesis process comprising a series of packed bed reactors of immobilized enzyme and water dehydrant. In addition, use of the single phase reaction system facilitates efficient recovery of the product with no effluent generated and recyclability of unreacted substrates. The single phase reaction system coupled with a continuous operating bioreactor ensures a stable operational life for the enzyme.

  15. Challenges to Grid Synchronization of Single-Phase Grid-Connected Inverters in Zero-Voltage Ride-Through Operation

    DEFF Research Database (Denmark)

    Zhang, Zhen; Yang, Yongheng; Blaabjerg, Frede

    2016-01-01

    With the fast development in Photovoltaic (PV) technology, the relevant grid-connection requirements/standards are continuously being updated, and more challenges have been imposed on both single-phase and three-phase grid-connected PV systems. For instance, PV systems are currently required...... to remain connected under grid voltage sags (even zero voltage condition). In this case, much attention should be paid to the grid synchronization in such a way to properly ride-through grid faults. Thus, in this paper, the most commonly-used and recently-developed Phase Locked Loop (PLL) synchronization...... methods have been evaluated for single-phase grid-connected PV systems in the case of Zero-Voltage Ride-Through (ZVRT) operation. The performances of the prior-art PLL methods in response to zero voltage faults in terms of detection precision and dynamic response are assessed in this paper. Simulation...

  16. Analysis, Design, and Experimental Verification of A Synchronous Reference Frame Voltage Control for Single-Phase Inverters

    DEFF Research Database (Denmark)

    Monfared, Mohammad; Golestan, Saeed; Guerrero, Josep M.

    2014-01-01

    Control of three-phase power converters in the synchronous reference frame is now a mature and well developed research topic. However, for single-phase converters, it is not as well-established as three-phase applications. This paper deals with the design of a synchronous reference frame multi-lo...... on a frequency response approach is presented. Finally, the theoretical achievements are supported by experimental results.......-loop control strategy for single phase inverter-based islanded distributed generation (DG) systems. The proposed controller uses a synchronous reference frame PI (SRFPI) controller to regulate the instantaneous output voltage, a capacitor current shaping loop in the stationary reference frame to provide active...

  17. Small-Signal Modeling, Stability Analysis and Design Optimization of Single-Phase Delay-Based PLLs

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.; Vidal, Ana

    2016-01-01

    Generally speaking, designing single-phase phaselocked loops (PLLs) is more complicated than three-phase ones, as their implementation often involves the generation of a fictitious orthogonal signal for the frame transformation. In recent years, many approaches to generate the orthogonal signal...... these issues and explore new methods to enhance their performance. The stability analysis, control design guidelines and performance comparison with the state-of-the-art PLLs are presented as well....

  18. Safe-commutation principle for direct single-phase AC-AC converters for use in audio power amplification

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.; Andersen, Michael A.E.

    2005-07-01

    This paper presents an alternative safe commutation principle for a single phase bidirectional bridge, for use in the new generation of direct single-stage AC-AC audio power amplifiers. As compared with the bridge commutation with load current or source voltage sensing, in this approach it is not required to do any measurements, thus making it more reliable. Initial testing made on the prototype prove the feasibility of the approach. (au)

  19. Novel Family of Single-Phase Modified Impedance-Source Buck-Boost Multilevel Inverters with Reduced Switch Count

    DEFF Research Database (Denmark)

    Husev, Oleksandr; Strzelecki, Ryszard; Blaabjerg, Frede

    2016-01-01

    This paper describes novel single-phase solutions with increased inverter voltage levels derived by means of a nonstandard inverter configuration and impedance source networks. Operation principles based on special modulation techniques are presented. Detailed component design guidelines along wi...... with simulation and experimental verification are also provided. Possible application fields are discussed, as well as advantages and disadvantages. Finally, future studies are addressed for the new solutions....

  20. A single-phase PWM controlled AC to DC converter based on control of unity displacement power factor

    OpenAIRE

    Funabiki, Shigeyuki

    1990-01-01

    A modified pulse-width modulation (PWM) technique that improves the displacement power factor and the input power factor of a single-phase AC to DC converter is discussed. The modified converter is shown to have a high input power factor and allows the of DC voltage from zero to more than the maximum value of the source voltage. The displacement power factor is unity, and the input power factor is almost unity in the wide range of current command

  1. Experimental study on the convective heat transfer enhancement in single-phase steam flow by a support grid

    International Nuclear Information System (INIS)

    Kim, Byoung Jae; Kim, Kihwan; Kim, Dong-Eok; Youn, Young-Jung; Park, Jong-Kuk; Moon, Sang-Ki; Song, Chul-Hwa

    2014-01-01

    Highlights: • The convective heat transfer enhancement by support grids is investigated. • Experiments were performed in a square array 2 × 2 rod bundle. • The enhancement was affected not only by the blockage ratio also by the Reynolds number. • For low Reynolds numbers, the enhancement depends on the Reynolds number (Re). • For high Reynolds numbers, the enhancement is nearly independent of Re. - Abstract: Single-phase flow occurs in the fuel rod bundle of a pressurized water reactor, during the normal operation period or at the early stage of the reflood phase in a loss-of-coolant accident scenario. In the former period, the flow is single-phase water flow, but in the latter case, the flow is single-phase steam flow. Support grids are required to maintain a proper geometry configuration of fuel rods within nuclear fuel assemblies. This study was conducted to elucidate the effects of support grids on the convective heat transfer in single-phase steam flow. Experiments were made in a square array 2 × 2 rod bundle. The four electrically-heating rods were maintained by support grids with mixing vanes creating a swirl flow. Two types of support grids were considered in this study. The two types are geometrically similar except the blockage ratio by different mixing vane angles. For all test runs, 2 kW power was supplied to each rod. The working fluid was superheated steam with Re = 2,301–39,594. The axial profile of the rod surface temperatures was measured, and the convective heat transfer enhancement by the presence of the support grids was examined. The peak heat transfer enhancement was a function of not only the blockage ratio but also the Reynolds number. Given the same blockage ratio, the heat transfer enhancement was sensitive to the Reynolds number in laminar flow, whereas it was nearly independent of the Reynolds number in turbulent flow

  2. Experimental Implementation of a Low-Cost Single Phase Five-Level Inverter for Autonomous PV System Applications Without Batteries

    OpenAIRE

    Nouaiti, Ayoub; Saad, Abdallah; Mesbahi, Abdelouahed; Khafallah, Mohamed

    2018-01-01

    This paper presents the design and the implementation of a low-cost single phase five-level inverter for photovoltaic applications. The proposed multilevel inverter is composed of a simple boost converter, a switched-capacitor converter, and an H-bridge converter. An efficient control method which associates a closed-loop regulation method with a simple maximum power point tracking (MPPT) method is applied in order to allow the proposed multilevel inverter to transfer power energy from solar ...

  3. Theoretical Verification of Photoelectrochemical Water Oxidation Using Nanocrystalline TiO2 Electrodes

    Directory of Open Access Journals (Sweden)

    Shozo Yanagida

    2015-05-01

    Full Text Available Mesoscopic anatase nanocrystalline TiO2 (nc-TiO2 electrodes play effective and efficient catalytic roles in photoelectrochemical (PEC H2O oxidation under short circuit energy gap excitation conditions. Interfacial molecular orbital structures of (H2O3 &OH(TiO29H as a stationary model under neutral conditions and the radical-cation model of [(H2O3&OH(TiO29H]+ as a working nc-TiO2 model are simulated employing a cluster model OH(TiO29H (Yamashita/Jono’s model and a H2O cluster model of (H2O3 to examine excellent H2O oxidation on nc-TiO2 electrodes in PEC cells. The stationary model, (H2O3&OH(TiO29H reveals that the model surface provides catalytic H2O binding sites through hydrogen bonding, van der Waals and Coulombic interactions. The working model, [(H2O3&OH(TiO29H]+ discloses to have a very narrow energy gap (0.3 eV between HOMO and LUMO potentials, proving that PEC nc-TiO2 electrodes become conductive at photo-irradiated working conditions. DFT-simulation of stepwise oxidation of a hydroxide ion cluster model of OH−(H2O3, proves that successive two-electron oxidation leads to hydroxyl radical clusters, which should give hydrogen peroxide as a precursor of oxygen molecules. Under working bias conditions of PEC cells, nc-TiO2 electrodes are now verified to become conductive by energy gap photo-excitation and the electrode surface provides powerful oxidizing sites for successive H2O oxidation to oxygen via hydrogen peroxide.

  4. Analysis of free-surface flows through energy considerations: Single-phase versus two-phase modeling.

    Science.gov (United States)

    Marrone, Salvatore; Colagrossi, Andrea; Di Mascio, Andrea; Le Touzé, David

    2016-05-01

    The study of energetic free-surface flows is challenging because of the large range of interface scales involved due to multiple fragmentations and reconnections of the air-water interface with the formation of drops and bubbles. Because of their complexity the investigation of such phenomena through numerical simulation largely increased during recent years. Actually, in the last decades different numerical models have been developed to study these flows, especially in the context of particle methods. In the latter a single-phase approximation is usually adopted to reduce the computational costs and the model complexity. While it is well known that the role of air largely affects the local flow evolution, it is still not clear whether this single-phase approximation is able to predict global flow features like the evolution of the global mechanical energy dissipation. The present work is dedicated to this topic through the study of a selected problem simulated with both single-phase and two-phase models. It is shown that, interestingly, even though flow evolutions are different, energy evolutions can be similar when including or not the presence of air. This is remarkable since, in the problem considered, with the two-phase model about half of the energy is lost in the air phase while in the one-phase model the energy is mainly dissipated by cavity collapses.

  5. Some developments and applications of LES of single phase turbulent flows for nuclear industry

    International Nuclear Information System (INIS)

    Frederic Ducros; Valerie Barthel; Ulrich Bieder; Alexandre Chatelain; Younes Benarafa; Olivier Cioni; Gauthier Fauchet; Philippe Emonot; Patrick Quemere; Bernard Menant; Nicolas Tauveron; Simone Vandroux; Christophe Calvin

    2005-01-01

    Full text of publication follows: The turbulence modelling is an important issue concerning the predictive capability of the CFD codes applied to nuclear reactor safety (NRS), in particular for single-phase flows. Common features of these unsteady high Reynolds number turbulent flows are various regimes (laminar, transitional, fully turbulent) developing in arbitrary complex geometries involving a large extend of standard flow configurations (attached and detached boundary layers, mixing layers, jets in cavity, in cross flows, jet impingement) eventually submitted to buoyancy forces, to dilatation effects and leading to mixing of constituents and temperatures. NRS issues are most of the time related to the eventual knowledge of parietal quantities such as temperature (mean and fluctuating), leading to consider the wall region as a crucial one and to deal with coupled problems. All these features can lead to consider different approaches for turbulence modelling: more or less standard 'Reynolds Average Navier-Stokes equations' closures, Large Eddy Simulations, both of them considered with or without wall functions, with or without large implicit time stepping etc. The development and industrialization of LES as a target of providing 'reference simulations' for NRS are parts of the Trio-U project, developed at CEA for several years [1]. First, the paper presents the current status of LES implementation and some insights on the R and D effort concerning the turbulence modelling. The R and D strategy will be introduced as a result of both the extra-nuclear community know-how on LES and several years of applications of LES for nuclear issues at CEA. It will be shown that LES can be considered as a good candidate to deal with the previous mentioned issues. A large emphasis will be devoted to the R and D on approximate wall conditions, including first the checking of the consistency of standard and advanced wall conditions with LES approach, second specific works dealing

  6. Qualification of code-Saturne for thermal-hydraulics single phase nuclear applications

    International Nuclear Information System (INIS)

    Archambeau, F.; Bechaud, C.; Gest, B.; Martin, A.; Sakiz, M.

    2003-01-01

    Code-Saturne is a general finite volume CFD (computational fluid dynamics) code developed by Electricite de France (EDF) under quality assurance for 2- and 3-dimensional simulations, laminar and turbulent flows, conjugate heat transfer (coupling with thermal code SYRTHES), including combustion modelling and a Lagrangian module. A very large range of meshes can be used. The solver relies on a finite volume method on arbitrary meshes (hybrid, with hanging nodes, any type of element). All variables are located at the cell centres. The solver is time marching, with a predictor-corrector scheme for Navier-Stokes equations. Standard Reynolds Average Navier-Stokes modelling (RANS) is included (k-epsilon, RSM). Code-Saturne is used by EDF in various industrial fields such as process engineering, aeraulics, combustion and nuclear applications. The present paper describes the qualification phase carried out during 2001 for single-phase nuclear applications. Indeed, once an industrial product has been released and validated, it is of major importance, especially in this particular field related to safety matters, to demonstrate the ability of the code to help engineers produce satisfactory conclusions to industrial problems. In coherence with analyses and best practice guidelines such as those published by the ERCOFTAC Special Interest Group, it seemed important to base the qualification phase on well defined and documented experimental facilities, sufficiently complex to be representative of industrial studies. Much attention has been devoted to evaluating sensitivity to numerical parameters such as grid refinement, time step... Moreover, the qualification studies have been carried out in real-life conditions, that is in limited time, with industrial limitations on the number of grid cells, and by the teams usually producing such studies, so as to integrate a real industrial process in the qualification phase. Two test cases chosen to assess certain types of flows in PWR

  7. RBS analysis of substoichiometric TiO{sub 2}-anatase thin films for visible-light photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Ager, F.J. [Depto. Fisica Aplicada I, Escuela Universitaria Politecnica, Universidad de Sevilla, C. Virgen de Africa 7, E-41011 Sevilla (Spain) and Centro Nacional de Aceleradores, Av. Thomas A. Edison, E-41092 Sevilla (Spain)]. E-mail: fjager@us.es; Justicia, I. [ICMAB/CSIC, Campus UAB, 08193 Bellaterra (Spain); Gerbasi, R. [Istituto di Chimica Inorganica e delle Superficie, Corso Stati Uniti 4, I-35127 Padova (Italy); Battiston, G.A. [Istituto di Chimica Inorganica e delle Superficie, Corso Stati Uniti 4, I-35127 Padova (Italy); McSporran, N. [ICMAB/CSIC, Campus UAB, 08193 Bellaterra (Spain); Figueras, A. [ICMAB/CSIC, Campus UAB, 08193 Bellaterra (Spain); CFATA-UNAM, Juriquilla, Queretaro, C.P. 76230 Queretaro (Mexico)

    2006-08-15

    The anatase phase of TiO{sub 2} is the most promising photocatalyst for organic pollutants degradation. However, due to the large anatase band gap energy the possibility of using visible sunlight as energy source for the photocalatysis activation is ruled out and ultraviolet (UV) radiation with a wave length below the critical limit is thus required. Inducing defects in the anatase crystalline structure in the form of oxygen substoichiometry may theoretically reduce this large band gap energy. This paper focuses on the determination of the stoichiometry of TiO{sub 2} thin films and its influence on the photodegradation properties.

  8. Electrochemical passivation behaviour of nanocrystalline Fe80Si20 ...

    Indian Academy of Sciences (India)

    Abstract. Passivation behaviour of nanocrystalline coating (Fe80Si20) obtained by in situ mechanical alloying route .... is controlled by the iron oxide film in case of alloys with ..... the surface is covered, thus, producing effective protection of.

  9. Optimization of nanocrystalline γ-alumina coating for direct spray ...

    Indian Academy of Sciences (India)

    Modifications of the partial gas percentage influences the optical properties and composition ... O2 flow in the Ar ambient and substrate temperature on struc- ture and properties of ..... nism to explain mechanical behaviour of nanocrystalline.

  10. Tailoring and patterning the grain size of nanocrystalline alloys

    International Nuclear Information System (INIS)

    Detor, Andrew J.; Schuh, Christopher A.

    2007-01-01

    Nanocrystalline alloys that exhibit grain boundary segregation can access thermodynamically stable or metastable states with the average grain size dictated by the alloying addition. Here we consider nanocrystalline Ni-W alloys and demonstrate that the W content controls the grain size over a very broad range: ∼2-140 nm as compared with ∼2-20 nm in previous work on strongly segregating systems. This trend is attributed to a relatively weak tendency for W segregation to the grain boundaries. Based upon this observation, we introduce a new synthesis technique allowing for precise composition control during the electrodeposition of Ni-W alloys, which, in turn, leads to precise control of the nanocrystalline grain size. This technique offers new possibilities for understanding the structure-property relationships of nanocrystalline solids, such as the breakdown of Hall-Petch strength scaling, and also opens the door to a new class of customizable materials incorporating patterned nanostructures

  11. Amorphous and nanocrystalline materials preparation, properties, and applications

    CERN Document Server

    Inoue, A

    2001-01-01

    Amorphous and nanocrystalline materials are a class of their own. Their properties are quite different to those of the corresponding crystalline materials. This book gives systematic insight into their physical properties, structure, behaviour, and design for special advanced applications.

  12. Protein-modified nanocrystalline diamond thin films for biosensor applications.

    Science.gov (United States)

    Härtl, Andreas; Schmich, Evelyn; Garrido, Jose A; Hernando, Jorge; Catharino, Silvia C R; Walter, Stefan; Feulner, Peter; Kromka, Alexander; Steinmüller, Doris; Stutzmann, Martin

    2004-10-01

    Diamond exhibits several special properties, for example good biocompatibility and a large electrochemical potential window, that make it particularly suitable for biofunctionalization and biosensing. Here we show that proteins can be attached covalently to nanocrystalline diamond thin films. Moreover, we show that, although the biomolecules are immobilized at the surface, they are still fully functional and active. Hydrogen-terminated nanocrystalline diamond films were modified by using a photochemical process to generate a surface layer of amino groups, to which proteins were covalently attached. We used green fluorescent protein to reveal the successful coupling directly. After functionalization of nanocrystalline diamond electrodes with the enzyme catalase, a direct electron transfer between the enzyme's redox centre and the diamond electrode was detected. Moreover, the modified electrode was found to be sensitive to hydrogen peroxide. Because of its dual role as a substrate for biofunctionalization and as an electrode, nanocrystalline diamond is a very promising candidate for future biosensor applications.

  13. Effect of nanocrystalline surface of substrate on microstructure and ...

    Indian Academy of Sciences (India)

    surface layers or bulk nanocrystalline metals and alloys more effectively. ... severe plastic deformation on surface layers of bulk met- als at high strains and strain rates. .... scanning electron microscopy (SEM) (Zeiss, model: Sigma. VP), energy ...

  14. Study on defect properties of nanocrystalline TiO2 during phase transition by positron annihilation lifetime

    Science.gov (United States)

    Zheng, F.; Liu, Y.; Liu, Z.; Dai, Y.-Q.; Fang, P.-F.; Wang, S.-J.

    2012-08-01

    The defect properties of nanocrystalline TiO2 were investigated by positron annihilation lifetime spectroscopy (PALS) and X-ray diffraction (XRD) as a function of annealed temperature that ranged from 300 to 850 °C. Below 500 °C, the measured positron lifetimes of τ1 (200-206 ps) and τ2 (378-402 ps) revealed the existence of mono-vacancy and vacancy-clusters at grain surface and in the micro-void of intergranular region. Between 500 and 750 °C, the phase transition from anatase to rutile was probed by the variations of positron lifetime and XRD pattern. With the increasing temperature from 500 to 850 °C, the positron lifetime τ1, τ2 and its intensity I2 sharply decreased from 200 ps, 378 ps, and 60% to 135 ps, 274 ps, and 33%, respectively. The results clearly indicate that the mono-vacancy or vacancy-clusters at grain surface and micro-voids between the grains were annealed out during the phase transition.

  15. Low-temperature fabrication of TiO2 nanocrystalline film electrodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Shan, G.; Lee, K.E.; Charboneau, C.; Demopoulos, G.P.; Gauvin, R. [McGill Univ., Montreal, PQ (Canada). Dept. of Materials Engineering; Savadogo, O. [Ecole Polytechnique de Montreal, PQ (Canada). Dept. de Genie Chimique

    2008-07-01

    Dye-sensitized solar cells (DSSCs) have the potential to render solar energy widely accessible. The deposition of titania nano-crystalline powders on a substrate is an important step in the manufacture of the DSSC. The deposition forms a mesoporous thin film that is followed by thermal treatment and sensitization. Usually titania films are deposited on glass by screen printing and then annealed at temperatures as high as 530 degrees C to provide a good electrical contact between the semiconductor particles and crystallization of the anatase phase. Several research and development efforts have focused on the deposition of titania film on flexible plastic substrates that will simplify the whole manufacturing process in terms of flexibility, weight, application and cost. Lower temperature processing is needed for the preparation of plastic-based titania film electrodes, but this has proven to be counterproductive when it comes to the cell's conversion efficiency. This paper presented a comprehensive evaluation of the different coating and annealing techniques at low temperature as well as important processing factors for improvement. To date, these techniques include pressing, hydrothermal process, electrodeposition, electrophoretic deposition, microwave or UV irradiation, and lift-off technique.

  16. Surface properties of nanocrystalline TiO2 coatings in relation to the in vitro plasma protein adsorption

    International Nuclear Information System (INIS)

    Lorenzetti, M; Kobe, S; Novak, S; Bernardini, G; Santucci, A; Luxbacher, T

    2015-01-01

    This study reports on the selective adsorption of whole plasma proteins on hydrothermally (HT) grown TiO 2 -anatase coatings and its dependence on the three main surface properties: surface charge, wettability and roughness. The influence of the photo-activation of TiO 2 by UV irradiation was also evaluated. Even though the protein adhesion onto Ti-based substrates was only moderate, better adsorption of any protein (at pH = 7.4) occurred for the most negatively charged and hydrophobic substrate (Ti non-treated) and for the most nanorough and hydrophilic surface (HT Ti3), indicating that the mutual action of the surface characteristics is responsible for the attraction and adhesion of the proteins. The HT coatings showed a higher adsorption of certain proteins (albumin ‘passivation’ layer, apolipoproteins, vitamin D-binding protein, ceruloplasmin, α-2-HS-glycoprotein) and higher ratios of albumin to fibrinogen and albumin to immunoglobulin γ-chains. The UV pre-irradiation affected the surface properties and strongly reduced the adsorption of the proteins. These results provide in-depth knowledge about the characterization of nanocrystalline TiO 2 coatings for body implants and provide a basis for future studies on the hemocompatibility and biocompatibility of such surfaces. (paper)

  17. Nanocrystalline Ni-Co Alloy Synthesis by High Speed Electrodeposition

    OpenAIRE

    Idris, Jamaliah; Christian, Chukwuekezie; Gaius, Eyu

    2013-01-01

    Electrodeposition of nanocrystals is economically and technologically viable production path for the synthesis of pure metals and alloys both in coatings and bulk form. The study presents nanocrystalline Ni-Co alloy synthesis by high speed electrodeposition. Nanocrystalline Ni-Co alloys coatings were prepared by direct current (DC) and deposited directly on steel and aluminum substrates without any pretreatment, using high speed electrodeposition method. The influence of the electrolysis par...

  18. Electrochemistry of Inorganic Nanocrystalline Electrode Materials for Lithium Batteries

    Directory of Open Access Journals (Sweden)

    C. W. Kwon

    2003-01-01

    much different from that of traditional crystalline ones because of their significant ‘surface effects’. In connection with that, the nanocrystalline cathode materials are reported to have an enhanced electrochemical activity when the first significative electrochemical step is insertion of Li ions (discharge process. The “electrochemical grafting” concept will be given as a plausible explanation. As illustrative examples, electrochemical behaviors of nanocrystalline manganese oxydes are presented.

  19. Reversal of exchange bias in nanocrystalline antiferromagnetic-ferromagnetic bilayers

    International Nuclear Information System (INIS)

    Prados, C; Pina, E; Hernando, A; Montone, A

    2002-01-01

    The sign of the exchange bias in field cooled nanocrystalline antiferromagnetic-ferromagnetic bilayers (Co-O and Ni-O/permalloy) is reversed at temperatures approaching the antiferromagnetic (AFM) blocking temperature. A similar phenomenon is observed after magnetic training processes at similar temperatures. These effects can be explained assuming that the boundaries of nanocrystalline grains in AFM layers exhibit lower transition temperatures than grain cores

  20. Size dependence of elastic mechanical properties of nanocrystalline aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wenwu; Dávila, Lilian P., E-mail: ldavila@ucmerced.edu

    2017-04-24

    The effect of grain size on the elastic mechanical properties of nanocrystalline pure metal Al is quantified by molecular dynamics simulation method. In this work, the largest nanocrystalline Al sample has a mean grain size of 29.6 nm and contains over 100 millions atoms in the modeling system. The simulation results show that the elastic properties including elastic modulus and ultimate tensile strength of nanocrystalline Al are relatively insensitive to the variation of mean grain size above 13 nm yet they become distinctly grain size dependent below 13 nm. Moreover, at a grain size <13 nm, the elastic modulus decreases monotonically with decreasing grain size while the ultimate tensile strength of nanocrystalline Al initially decreases with the decrease of the grain size down to 9 nm and then increases with further reduction of grain size. The increase of ultimate tensile strength below 9 nm is believed to be a result of an extended elasticity in the ultrafine grain size nanocrystalline Al. This study can facilitate the prediction of varied mechanical properties for similar nanocrystalline materials and even guide testing and fabrication schemes of such materials.

  1. Completely oriented anatase TiO2 nanoarrays: topotactic growth and orientation-related efficient photocatalysis

    Science.gov (United States)

    Yang, Jingling; Wu, Qili; He, Shiman; Yan, Jing; Shi, Jianying; Chen, Jian; Wu, Mingmei; Yang, Xianfeng

    2015-08-01

    A TiO2 film has been facilely grown on a Ti foil via a general and simple acid vapor oxidation (AVO) strategy. Based on detailed characterization by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), we found that the TiO2 film was composed of anatase nanoarrays highly oriented along their direction, resulting in a large exposed {001} top surface on the film. The growth mechanism based on a topotactic transformation was proposed according to a careful study of time-dependent experimental results. Resulting from the evaluation of photocatalytic performance compared with a commercial TiO2 photocatalyst (Degussa P25), the as-prepared oriented anatase TiO2 film showed higher efficiency for degradation of atrazine and acid orange II (AOII). The performance of photocatalysis is highly relevant to the preferential orientation. The efficient photocatalysis could be attributed to the highly reactive {001} facets on the anatase nanoarrays with super-hydrophilicity.A TiO2 film has been facilely grown on a Ti foil via a general and simple acid vapor oxidation (AVO) strategy. Based on detailed characterization by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), we found that the TiO2 film was composed of anatase nanoarrays highly oriented along their direction, resulting in a large exposed {001} top surface on the film. The growth mechanism based on a topotactic transformation was proposed according to a careful study of time-dependent experimental results. Resulting from the evaluation of photocatalytic performance compared with a commercial TiO2 photocatalyst (Degussa P25), the as-prepared oriented anatase TiO2 film showed higher efficiency for degradation of atrazine and acid orange II (AOII). The performance of photocatalysis is highly relevant to the preferential orientation. The efficient photocatalysis could be attributed to the highly reactive {001

  2. Nanocrystalline Steels’ Resistance to Hydrogen Embrittlement

    Directory of Open Access Journals (Sweden)

    Skołek E.

    2015-04-01

    Full Text Available The aim of this study is to determine the susceptibility to hydrogen embrittlement in X37CrMoV5-1 steel with two different microstructures: a nanocrystalline carbide-free bainite and tempered martensite. The nanobainitic structure was obtained by austempering at the bainitic transformation zone. It was found, that after hydrogen charging, both kinds of microstructure exhibit increased yield strength and strong decrease in ductility. It has been however shown that the resistance to hydrogen embrittlement of X37CrMoV5-1 steel with nanobainitic structure is higher as compared to the tempered martensite. After hydrogen charging the ductility of austempered steel is slightly higher than in case of quenched and tempered (Q&T steel. This effect was interpreted as a result of phase composition formed after different heat treatments.

  3. Limitation of biocompatibility of hydrated nanocrystalline hydroxyapatite

    Science.gov (United States)

    Minaychev, V. V.; Teleshev, A. T.; Gorshenev, V. N.; Yakovleva, M. A.; Fomichev, V. A.; Pankratov, A. S.; Menshikh, K. A.; Fadeev, R. S.; Fadeeva, I. S.; Senotov, A. S.; Kobyakova, M. I.; Yurasova, Yu B.; Akatov, V. S.

    2018-04-01

    Nanostructured hydroxyapatite (HA) in the form of hydrated paste is considered to be a promising material for a minor-invasive surgical curing of bone tissue injure. However questions about adhesion of cells on this material and its biocompatibility still remain. In this study biocompatibility of paste-formed nanosized HA (nano-HA) by in vitro methods is investigated. Nano-HA (particles sized about 20 nm) was synthesized under conditions of mechano-acoustic activation of an aqueous reaction mixture of ammonium hydrophosphate and calcium nitrate. It was ascertained that nanocrystalline paste was not cytotoxic although limitation of adhesion, spreading and growth of the cells on its surface was revealed. The results obtained point on the need of modification of hydrated nano-HA in the aims of increasing its biocompatibility and osteoplastic potential.

  4. Stability of nanocrystalline electrochemically deposited layers

    DEFF Research Database (Denmark)

    Pantleon, Karen; Somers, Marcel A. J.

    2009-01-01

    have different microstructure and properties compared to bulk materials and the thermodynamic non-equilibrium state of as-deposited layers frequently results in changes of the microstructure as a function of time and/or temperature. The evolving microstructure affects the functionality and reliability......The technological demand for manufacturing components with complex geometries of micrometer or sub-micrometer dimensions and ambitions for ongoing miniaturization have attracted particular attention to electrochemical deposition methods. Thin layers of electrochemically deposited metals and alloys...... of electrodeposited components, which can be beneficial, as for the electrical conductivity of copper interconnect lines, or detrimental, as for reduced strength of nickel in MEMS applications. The present work reports on in-situ studies of the microstructure stability of as-deposited nanocrystalline Cu-, Ag- and Ni...

  5. Application Potential of Nanocrystalline Ribbons Still Pending

    Science.gov (United States)

    Butvin, Pavol; Butvinová, Beata; Švec, Peter; Sitek, Jozef

    2010-09-01

    Nanocrystalline soft-magnetic ribbons promised a wide-spread practical use when introduced at the beginning of nineties. After 20 years of extensive research there are still unclear material problems which are thought to be the principal reason why these materials show but marginal use. Poorly controllable magnetic anisotropy due to spontaneous intrinsic macroscopic stress that comes from an inevitable heterogeneity of the ribbon materials is pointed to in this work. Certain stress-based mechanisms are shown to induce the unintended anisotropy in the already familiar Finemets as well as in the newer Hitperms. Hysteresis loops, domain structure and power loss is used to reveal the anisotropy consequences and particular connected but still unanswered questions are pinpointed.

  6. Reinforced plastics and aerogels by nanocrystalline cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Alfred C. W.; Lam, Edmond; Chong, Jonathan; Hrapovic, Sabahudin; Luong, John H. T., E-mail: john.luong@cnrc-nrc.gc.ca [National Research Council Canada (Canada)

    2013-05-15

    Nanocrystalline cellulose (NCC), a rigid rod-like nanoscale material, can be produced from cellulosic biomass in powder, liquid, or gel forms by acid and chemical hydrolysis. Owing to its unique and exceptional physicochemical properties, the incorporation of a small amount of NCC into plastic enhances the mechanical strength of the latter by several orders of magnitudes. Carbohydrate-based NCC poses no serious environmental concerns, providing further impetus for the development and applications of this green and renewable biomaterial to fabricate lightweight and biodegradable composites and aerogels. Surface functionalization of NCC remains the main focus of NCC research to tailor its properties for dispersion in hydrophilic or hydrophobic media. It is of uttermost importance to develop tools and protocols for imaging of NCC in a complex matrix and quantify its reinforcement effect.

  7. Nanocrystalline diamond coatings for mechanical seals applications.

    Science.gov (United States)

    Santos, J A; Neto, V F; Ruch, D; Grácio, J

    2012-08-01

    A mechanical seal is a type of seal used in rotating equipment, such as pumps and compressors. It consists of a mechanism that assists the connection of the rotating shaft to the housings of the equipments, preventing leakage or avoiding contamination. A common cause of failure of these devices is end face wear out, thus the use of a hard, smooth and wear resistant coating such as nanocrystalline diamond would be of great importance to improve their working performance and increase their lifetime. In this paper, different diamond coatings were deposited by the HFCVD process, using different deposition conditions. Additionally, the as-grown films were characterized for, quality, morphology and microstructure using scanning electron microscopy (SEM) and Raman spectroscopy. The topography and the roughness of the films were characterized by atomic force microscopy (AFM).

  8. Arsenic removal by magnetic nanocrystalline barium hexaferrite

    International Nuclear Information System (INIS)

    Patel, Hasmukh A.; Byun, Jeehye; Yavuz, Cafer T.

    2012-01-01

    Nanoscale magnetite (Fe 3 O 4 ) ( 12 O 19 , BHF) is a well-known permanent magnet (i.e., fridge magnets) and attractive due to its low cost in making large quantities. BHF offers a viable alternative to magnetite nanocrystals for arsenic removal since it features surfaces similar to iron oxides but with much enhanced magnetism. Herein, we employ BHF nanocrystalline materials for the first time in arsenic removal from wastewater. Our results show better (75 %) arsenic removal than magnetite of the similar sizes. The BHF nanoparticles, 6.06 ± 0.52 nm synthesized by thermolysis method at 320 °C do not show hexagonal phase, however, subsequent annealing at 750 °C produced pure hexagonal BHF in >200 nm assemblies. By using BHF, we demonstrate that nanoparticle removal is more efficient and fixed bed type cartridge applications are more possible.

  9. Functionalization of nanocrystalline diamond films with phthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Petkov, Christo [Institute of Nanostructure Technologies and Analytics (INA), Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel (Germany); Reintanz, Philipp M. [Institute of Chemistry, Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel (Germany); Kulisch, Wilhelm [Institute of Nanostructure Technologies and Analytics (INA), Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel (Germany); Degenhardt, Anna Katharina [Institute of Chemistry, Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel (Germany); Weidner, Tobias [Max Planck Institute for Polymer Research, Mainz (Germany); Baio, Joe E. [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR (United States); Merz, Rolf; Kopnarski, Michael [Institut für Oberflächen- und Schichtanalytik (IFOS), Kaiserslautern (Germany); Siemeling, Ulrich [Institute of Chemistry, Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel (Germany); Reithmaier, Johann Peter [Institute of Nanostructure Technologies and Analytics (INA), Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel (Germany); Popov, Cyril, E-mail: popov@ina.uni-kassel.de [Institute of Nanostructure Technologies and Analytics (INA), Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel (Germany)

    2016-08-30

    Highlights: • Grafting of phthalocyanines on nanocrystalline diamond films with different terminations. • Pc with different central atoms and side chains synthesized and characterized. • Attachment of Pc on H- and O-terminated NCD studied by XPS and NEXAFS spectroscopy. • Orientation order of phthalocyanine molecules on NCD surface. - Abstract: Phthalocyanine (Pc) derivatives containing different central metal atoms (Mn, Cu, Ti) and different peripheral chains were synthesized and comprehensively characterized. Their interaction with nanocrystalline diamond (NCD) films, as-grown by hot-filament chemical vapor deposition or after their modification with oxygen plasma to exchange the hydrogen termination with oxygen-containing groups, was studied by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The elemental composition as determined by XPS showed that the Pc were grafted on both as-grown and O-terminated NCD. Mn, Cu and Ti were detected together with N stemming from the Pc ring and S in case of the Ti-Pc from the peripheral ligands. The results for the elemental surface composition and the detailed study of the N 1s, S 2p and O 1s core spectra revealed that Ti-Pc grafted better on as-grown NCD but Cu-Pc and Mn-Pc on O-terminated films. Samples of Mn-Pc on as-grown and O-terminated NCD were further investigated by NEXAFS spectroscopy. The results showed ordering of the grafted molecules, laying flat on the H-terminated NCD surface while only the macrocycles were oriented parallel to the O-terminated surface with the peripheral chains perpendicular to it.

  10. Comparative studies of photoelectrochemical behaviours of rutile and anatase electrodes prepared by OMCVD technique

    Energy Technology Data Exchange (ETDEWEB)

    Minoura, H; Nasu, M; Takahashi, Y

    1985-10-01

    Photoelectrochemical behaviours of two kinds of polymorphic form of TiO2, rutile and anatase, prepared by the organometallic chemical vapour deposition from isopropyl titanate have been comparatively studied. Photoelectrochemical characteristics of these TiO2 electrodes depend strongly upon the crystal structure and the deposition temperature. Their bandgap energies have been determined to be 3.0 eV and 3.2 eV, respectively, by the analysis of the photocurrent action spectra. The conduction band-edge and the valence band-edge of the anatase electrode, which have been estimated from photocurrent-potential curves, locate at the energy level about 0.1 eV higher and lower, respectively, than those of the rutile electrode. (orig.).

  11. GW quasiparticle bandgaps of anatase TiO2 starting from DFT + U.

    Science.gov (United States)

    Patrick, Christopher E; Giustino, Feliciano

    2012-05-23

    We investigate the quasiparticle band structure of anatase TiO(2), a wide gap semiconductor widely employed in photovoltaics and photocatalysis. We obtain GW quasiparticle energies starting from density-functional theory (DFT) calculations including Hubbard U corrections. Using a simple iterative procedure we determine the value of the Hubbard parameter yielding a vanishing quasiparticle correction to the fundamental bandgap of anatase TiO(2). The bandgap (3.3 eV) calculated using this optimal Hubbard parameter is smaller than the value obtained by applying many-body perturbation theory to standard DFT eigenstates and eigenvalues (3.7 eV). We extend our analysis to the rutile polymorph of TiO(2) and reach similar conclusions. Our work highlights the role of the starting non-interacting Hamiltonian in the calculation of GW quasiparticle energies in TiO(2) and suggests an optimal Hubbard parameter for future calculations.

  12. Single-crystalline self-branched anatase titania nanowires for dye-sensitized solar cells

    Science.gov (United States)

    Li, Zhenquan; Yang, Huang; Wu, Fei; Fu, Jianxun; Wang, Linjun; Yang, Weiguang

    2017-03-01

    The morphology of the anatase titania plays an important role in improving the photovoltaic performance in dye-sensitized solar cells. In this work, single-crystalline self-branched anatase TiO2 nanowires have been synthesized by hydrothermal method using TBAH and CTAB as morphology controlling agents. The obtained self-branched TiO2 nanowires dominated by a large percentage of (010) facets. The photovoltaic conversion efficiency (6.37%) of dye-sensitized solar cell (DSSC) based on the self-branched TiO2 nanowires shows a significant improvement (26.6%) compared to that of P25 TiO2 (5.03%). The enhanced performance of the self-branched TiO2 nanowires-based DSSC is due to heir large percent of exposed (010) facets which have strong dye adsorption capacity and effective charge transport of the self-branched 1D nanostructures.

  13. Photocatalysis in the visible range of sub-stoichiometric anatase films prepared by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Justicia, I. [ICMAB/CSIC, Campus UAB, 08193 Bellaterra (Spain); Garcia, G. [ICMAB/CSIC, Campus UAB, 08193 Bellaterra (Spain)]. E-mail: gemma@icmab.es; Battiston, G.A. [ICIS/CNR, Corso Stati Uniti 4, 35127 Padova (Italy); Gerbasi, R. [ICIS/CNR, Corso Stati Uniti 4, 35127 Padova (Italy); Ager, F. [CNA/CSIC Parque Tecnologico Cartuja 93, Avda Thomas A, Edison, 41092 Sevilla (Spain); Guerra, M. [IIQAB/CSIC Jordi Girona, 18 08034 Barcelona (Spain); Caixach, J. [IIQAB/CSIC Jordi Girona, 18 08034 Barcelona (Spain); Pardo, J.A. [ICMAB/CSIC, Campus UAB, 08193 Bellaterra (Spain); Rivera, J. [IIQAB/CSIC Jordi Girona, 18 08034 Barcelona (Spain); Figueras, A. [ICMAB/CSIC, Campus UAB, 08193 Bellaterra (Spain); Instituto de Fisica, UNAM, Campus UNAM Juriquilla, 76230 Queretaro (Mexico)

    2005-08-25

    Anatase phase of titanium oxide is the most promising photocatalyst material for organic pollutant degradation. However, due to its large band gap energy (3.2 eV) it is not viable to use sunlight as an energy source for the photocatalysis activation, and so, ultraviolet (UV) radiation below the wavelength of 380 nm is required. This paper focuses on the experimental demonstration of the reduction of this large band gap energy by inducing defects in the anatase structure under the form of oxygen sub-stoichiometry. TiO{sub 2} thin films were prepared in a metal organic chemical vapour deposition (MOCVD) reactor. The samples stoichiometry was measured by the Rutherford backscattering spectrometry (RBS) technique. Optical characterisation was also performed and the photodegradation activity in the visible range was tested using nonylphenol, which is one of the most harmful pollutants present in waste waters.

  14. Photocatalytic polymerization induced by a transparent anatase titania aqueous sol and fabrication of polymer composites

    Directory of Open Access Journals (Sweden)

    2010-06-01

    Full Text Available The surface modification of the anatase titania nanoparticles prepared via a controlled nonhydrolytic sol-gel process is achieved by the formation of the bidentate coordination between titania and methacrylic acid (MAA molecules. The in situ photocatalytic polymerization of methyl methacrylate (MMA monomer is initiated by surface modified anatase titania nanoparticles under Xe lamp irradiation. A variety of techniques including differential scanning calorimetry (DSC, thermo-gravimetric analysis (TGA and scanning electron microscopy (SEM are employed to characterize the resulting materials. The glass transition temperatures and the thermal stabilities of polymethyl methacrylate (PMMA composite materials prepared via photocatalytic polymerization are enhanced compared with pure polymer. The partial aggregation of titania nanoparticles in PMMA composite films is derived from the surface polymerization of MMA, which makes the inorganic particles hydrophobic and drives them to the water/oil interfaces.

  15. Bio-camouflage of anatase nanoparticles explored by in situ high-resolution electron microscopy.

    Science.gov (United States)

    Ribeiro, Ana R; Mukherjee, Arijita; Hu, Xuan; Shafien, Shayan; Ghodsi, Reza; He, Kun; Gemini-Piperni, Sara; Wang, Canhui; Klie, Robert F; Shokuhfar, Tolou; Shahbazian-Yassar, Reza; Borojevic, Radovan; Rocha, Luis A; Granjeiro, José M

    2017-08-03

    While titanium is the metal of choice for most prosthetics and inner body devices due to its superior biocompatibility, the discovery of Ti-containing species in the adjacent tissue as a result of wear and corrosion has been associated with autoimmune diseases and premature implant failures. Here, we utilize the in situ liquid cell transmission electron microscopy (TEM) in a liquid flow holder and graphene liquid cells (GLCs) to investigate, for the first time, the in situ nano-bio interactions between titanium dioxide nanoparticles and biological medium. This imaging and spectroscopy methodology showed the process of formation of an ionic and proteic bio-camouflage surrounding Ti dioxide (anatase) nanoparticles that facilitates their internalization by bone cells. The in situ understanding of the mechanisms of the formation of the bio-camouflage of anatase nanoparticles may contribute to the definition of strategies aimed at the manipulation of these NPs for bone regenerative purposes.

  16. Excess electrons in reduced rutile and anatase TiO2

    Science.gov (United States)

    Yin, Wen-Jin; Wen, Bo; Zhou, Chuanyao; Selloni, Annabella; Liu, Li-Min

    2018-05-01

    As a prototypical photocatalyst, TiO2 is a material of scientific and technological interest. In photocatalysis and other applications, TiO2 is often reduced, behaving as an n-type semiconductor with unique physico-chemical properties. In this review, we summarize recent advances in the understanding of the fundamental properties and applications of excess electrons in reduced, undoped TiO2. We discuss the characteristics of excess electrons in the bulk and at the surface of rutile and anatase TiO2 focusing on their localization, spatial distribution, energy levels, and dynamical properties. We examine specific features of the electronic states for photoexcited TiO2, for intrinsic oxygen vacancy and Ti interstitial defects, and for surface hydroxyls. We discuss similarities and differences in the behaviors of excess electrons in the rutile and anatase phases. Finally, we consider the effect of excess electrons on the reactivity, focusing on the interaction between excess electrons and adsorbates.

  17. Influence of concentration of H2O2 on the phase stability of TiO2-anatase

    International Nuclear Information System (INIS)

    Montanhera, M.A.; Pereira, E.A.; Paula, F.R.; Spada, E.R.; Faria, R.M.

    2014-01-01

    Titanium dioxide (TiO 2 ) is a semiconductor what has attracted increasing attention because of its physical and chemical properties. In this work, we report the preparation of TiO 2 nanoparticles by dissolving of titanium oxysulfate (TiOSO 4 ) in aqueous solution containing hydrogen peroxide (H 2 O 2 ) and subsequent thermal treatment of the precipitated complex. The results of X-ray diffractometry showed that the first stage of heat treatment at 600°C generates the anatase phase at all concentrations of H 2 O 2 investigated. On the other hand, when treated at 825 deg C, prepared samples with lower concentrations of H 2 O 2 (0.009 and 0.017 mol/L) showed only the rutile phase and for concentrations starting from 0.088 mol/L, is obtained only anatase phase. When the heat treatment is performed at 900°C, phase-pure anatase is obtained only for concentrations higher than 0.122 mol/L. The stability of the phase anatase is related to the crystallite size obtained of the first stage of heat treatment. When the heat treatment is performed at 900°C, phase-pure anatase is obtained only at higher concentrations than 0.122 mol/L. The stability of the phase anatase is related to the crystallite sizes obtained in the first step of heat treatment. (author)

  18. A phenomenological variational multiscale constitutive model for intergranular failure in nanocrystalline materials

    KAUST Repository

    Siddiq, A.; El Sayed, Tamer S.

    2013-01-01

    We present a variational multiscale constitutive model that accounts for intergranular failure in nanocrystalline fcc metals due to void growth and coalescence in the grain boundary region. Following previous work by the authors, a nanocrystalline

  19. Photocatalytic and magnetic properties of anatase doped with V.theoretical study swig DFT

    International Nuclear Information System (INIS)

    Cabeza, Gabriela F; Castellani, Norberto J

    2008-01-01

    The electronic properties and the presence of ferromagnetism in TiO 2 (anatase) doped with vanadium are investigated using calculations of first principles based on the theory of functional density. This work has a double purpose. First, to establish a relationship between the chemical nature of the doping element and the catalytic properties of the volume. Many studies state that anatase is an excellent photocatalytic semiconductor with possible applications in environmental purification and in the photodegradation of organic components. Anatase has a band width of ∼ 3eV, which can be excited only in the presence of ultraviolet light. Doping with transition metals will reduce this and facilitate excitation with visible light. Second, the effect of doping with V on the presence of magnetism in the substrate is clarified. The magnetic moment for an atom isolated from V is known to be 3 mB, while a volume of V is paramagnetic. Studies show that anatase doped with V displays ferromagnetism at room temperature, converting it into a potential diluted magnetic semiconductor (DMS) that may be used in spintronic instruments. The results obtained show that the presence of V produces a narrowing of 27% in the width of the gap favoring the adsorption at greater wave longitudes. Based on an analysis of the states density, the Fermi level does not cross any state indicating that it is an insulant. There are 3d states of the V located in the band width. The spin-up states are next to the Fermi level and the spin-down states are close to the conduction band. The imbalance between both states implies the presence of ferromagnetism. The magnetic moment found is ∼ 1 mB according to the experimental results obtained from the literature

  20. PVA assisted low temperature anatase to rutile phase transformation (ART) and properties of titania nanoparticles

    International Nuclear Information System (INIS)

    Mondal, Shrabani; Madhuri, Rashmi; Sharma, Prashant K.

    2015-01-01

    Anatase to rutile phase transformation (ART) of titania nanoparticles is observed at very low temperature (180 °C) just by introducing polyvinyl alcohol (PVA) during co-precipitation followed by hydrothermal synthesis. The detailed investigations pertaining to the structural, optical and electrochemical properties of the nanosized titania and titania/PVA nanohybrid has been carried out. The crystallite size and crystal structure is confirmed using X-ray diffraction (XRD). Transmission electron microscopic (TEM) image reveals formation of spherical NPs in both the cases. Identification of functional groups is done using Fourier transform infrared spectroscopy (FTIR). The photoluminescence studies showed that emission slightly shifts towards higher wavelength side with remarkable decrease in intensity for TiO 2 /PVA nanocomposite (rutile samples). The remarkable decrease in PL intensity in TiO 2 /PVA nanocomposite (rutile samples) is explained considering the surface passivation during growth process. Ion transportation is monitored via Cyclic voltammetric (CV) and Electrochemical Impedance Spectroscopy (EIS) measurements. A significant enhancement of peak cathodic current in case of nanocomposite modified electrode is observed. It is assumed that TiO 2 /PVA (rutile) nanoparticles provided the conducting path for the electrons and hence enhanced the electrochemical reaction. - Graphical abstract: Present work reports anatase to rutile phase transformation (ART) of titania nanoparticles at very low temperature (180 °C) just by introducing polyvinyl alcohol (PVA) during co-precipitation followed by hydrothermal synthesis. - Highlights: • Low temperature phase transformation of TiO 2 nanoparticles from anatase to rutile. • Role of PVA in phase transformation. • Synthesis of spherical shaped uniformly distributed PVA capped TiO 2 NPs. • Explained the charge transfer process among anatase to rutile phase transformation via luminescence studies. • Enhanced

  1. Seed-assisted sol-gel synthesis and characterization of nanoparticular V2O5/anatase

    DEFF Research Database (Denmark)

    Kunov-Kruse, Andreas Jonas; Kristensen, Steffen Buus; Riisager, Anders

    2009-01-01

    -ray powder diffraction, transmission electron microscopy and nitrogen physisorption. The synthesized high-surface area anatase particles allowed a loading of up to 15 wt.% vanadia without exceeding monolayer coverage of V2O5 in contrast to typical analogous industrial catalysts which only can accommodate 3......-5 wt.% vanadia. These materials are promising candidates for improved catalysts for, e.g., oxidation reactions and selective catalytic reduction of NO (X) in flue gases....

  2. Anatase-rutile phase transformation of titanium dioxide bulk material: a DFT + U approach

    International Nuclear Information System (INIS)

    Vu, Nam H; Le, Hieu V; Cao, Thi M; Pham, Viet V; Le, Hung M; Nguyen-Manh, Duc

    2012-01-01

    The anatase-rutile phase transformation of TiO 2 bulk material is investigated using a density functional theory (DFT) approach in this study. According to the calculations employing the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional with the Vanderbilt ultrasoft pseudopotential, it is suggested that the anatase phase is more energetically stable than rutile, which is in variance with the experimental observations. Consequently, the DFT + U method is employed in order to predict the correct structural stability in titania from electronic-structure-based total energy calculations. The Hubbard U term is determined by examining the band structure of rutile with various values of U from 3 to 10 eV. At U = 5 eV, a theoretical bandgap for rutile is obtained as 3.12 eV, which is in very good agreement with the reported experimental bandgap. Hence, we choose the DFT + U method (with U = 5 eV) to investigate the transformation pathway using the newly-developed solid-state nudged elastic band (ss-NEB) method, and consequently obtain an intermediate transition structure that is 9.794 eV per four-TiO 2 above the anatase phase. When the Ti-O bonds in the transition state are examined using charge density analysis, seven Ti-O bonds (out of 24 bonds in the anatase unit cell) are broken, and this result is in excellent agreement with a previous experimental study (Penn and Banfield 1999 Am. Miner. 84 871-6).

  3. A review of modern advances in analyses and applications of single-phase natural circulation loop in nuclear thermal hydraulics

    International Nuclear Information System (INIS)

    Basu, Dipankar N.; Bhattacharyya, Souvik; Das, P.K.

    2014-01-01

    Highlights: • Comprehensive review of state-of-the-art on single-phase natural circulation loops. • Detailed discussion on growth in solar thermal system and nuclear thermal hydraulics. • Systematic development in scaling methodologies for fabrication of test facilities. • Importance of numerical modeling schemes for stability assessment using 1-D codes. • Appraisal of current trend of research and possible future directions. - Abstract: A comprehensive review of single-phase natural circulation loop (NCL) is presented here. Relevant literature reported since the later part of 1980s has been meticulously surveyed, with occasional obligatory reference to a few pioneering studies originating prior to that period, summarizing the key observations and the present trend of research. Development in the concept of buoyancy-induced flow is discussed, with introduction to flow initiation in an NCL due to instability. Detailed discussion on modern advancement in important application areas like solar thermal systems and nuclear thermal hydraulics are presented, with separate analysis for various reactor designs working on natural circulation. Identification of scaling criteria for designing lab-scale experimental facilities has gone through a series of modification. A systematic analysis of the same is presented, considering the state-of-the-art knowledge base. Different approaches have been followed for modeling single-phase NCLs, including simplified Lorenz system mostly for toroidal loops, 1-D computational modeling for both steady-state and stability characterization and 3-D commercial system codes to have a better flow visualization. Methodical review of the relevant studies is presented following a systematic approach, to assess the gradual progression in understanding of the practical system. Brief appraisal of current research interest is reported, including the use of nanofluids for fluid property augmentation, marine reactors subjected to rolling waves

  4. A review of modern advances in analyses and applications of single-phase natural circulation loop in nuclear thermal hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Dipankar N., E-mail: dipankar.n.basu@gmail.com [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Bhattacharyya, Souvik; Das, P.K. [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2014-12-15

    Highlights: • Comprehensive review of state-of-the-art on single-phase natural circulation loops. • Detailed discussion on growth in solar thermal system and nuclear thermal hydraulics. • Systematic development in scaling methodologies for fabrication of test facilities. • Importance of numerical modeling schemes for stability assessment using 1-D codes. • Appraisal of current trend of research and possible future directions. - Abstract: A comprehensive review of single-phase natural circulation loop (NCL) is presented here. Relevant literature reported since the later part of 1980s has been meticulously surveyed, with occasional obligatory reference to a few pioneering studies originating prior to that period, summarizing the key observations and the present trend of research. Development in the concept of buoyancy-induced flow is discussed, with introduction to flow initiation in an NCL due to instability. Detailed discussion on modern advancement in important application areas like solar thermal systems and nuclear thermal hydraulics are presented, with separate analysis for various reactor designs working on natural circulation. Identification of scaling criteria for designing lab-scale experimental facilities has gone through a series of modification. A systematic analysis of the same is presented, considering the state-of-the-art knowledge base. Different approaches have been followed for modeling single-phase NCLs, including simplified Lorenz system mostly for toroidal loops, 1-D computational modeling for both steady-state and stability characterization and 3-D commercial system codes to have a better flow visualization. Methodical review of the relevant studies is presented following a systematic approach, to assess the gradual progression in understanding of the practical system. Brief appraisal of current research interest is reported, including the use of nanofluids for fluid property augmentation, marine reactors subjected to rolling waves

  5. Reduction of waveform distortion in grid-injection current from single-phase utility interactive PV-inverter

    International Nuclear Information System (INIS)

    Hamid, Muhammad Imran; Jusoh, Awang

    2014-01-01

    Highlights: • A reduction scheme for harmonics from utility interactive PV-inverter is proposed. • Single-phase conditioner with 3-phase expandability structure is used. • The single-phase conditioner in 3-phase structure work independently. • The scheme works effectively within overall operation range of the PV-inverter. • Conditioner in the scheme also improves the PV-inverter and plant’s utility factor. - Abstract: As the natural behavior of energy source and design characteristic, the current generated by a grid-interactive PV-inverter may contain harmonics. This distortion component will be carried on from the PV-inverter during injection power into the grid. Excessive harmonics in a grid will lead to a variety of power quality problems. This paper presents a distortion reduction scheme, utilizing a fed forward single-phase, generation-side power conditioner with a structure that can be expanded for use in a three-phase system and can work independently under imbalanced condition. Conditioner is placed in parallel with the photovoltaic plant and it functions to compensate the plant’s output current distortion, so that the total current flow to the grid is sinusoidal. This method also includes the implementation of a simpler control system for the conditioner, which consists of a combination of distortion current extraction, synchronization and a current control system, and realized through a TMS320F28335: a 150 MHz floating point DSP controller. Testing of the conditioner prototype, which was conducted on a real operation of a PV plant, showed that the scheme worked effectively within the overall operation range of the PV plant. This paper also discusses the potential of utility factor improvement of the PV-inverter and plant due to implementation of conditioner in the scheme

  6. Synthesis and reactivity of single-phase Be{sub 17}Ti{sub 2} intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Hwan, E-mail: kim.jaehwan@jaea.go.jp [Breeding Functional Materials Development Group, Sector of Fusion Research and Development, Japan Atomic Energy Agency (Japan); Iwakiri, Hirotomo; Furugen, Tatsuaki [Faculty of Education Elementary and Secondary School Teacher Training Program, University of the Ryukyus, Okinawa (Japan); Nakamichi, Masaru [Breeding Functional Materials Development Group, Sector of Fusion Research and Development, Japan Atomic Energy Agency (Japan)

    2016-01-15

    Highlights: • Preliminary synthesis of single-phase Be{sub 17}Ti{sub 2} was succeeded. • Reactivity difference between beryllium and beryllides may be caused by a lattice strain. • Oxidation of Be{sub 17}Ti{sub 2} at high temperatures results in the formation of TiO{sub 2}. • Simulation results reveal that a stable site for hydrogen at the center of tetrahedron exists. - Abstract: To investigate feasibility for application of Be{sub 17}Ti{sub 2} as a neutron multiplier as well as a refractory material, single-phase Be{sub 17}Ti{sub 2} intermetallic compounds were synthesized using an annealing heat treatment of the starting powder and a plasma sintering method. Scanning electron microscopic observations and X-ray diffraction measurements reveal that the single-phase Be{sub 17}Ti{sub 2} compounds were successfully synthesized. We examined the reactivity of Be{sub 17}Ti{sub 2} with 1% H{sub 2}O and discovered that a larger stoichiometric amount of Ti resulted in the formation of TiO{sub 2} on the surface at high temperatures. This oxidation may also contribute to an increase in both weight gain and generation of H{sub 2}. This suggests that the formation of the Ti-depleted Be{sub 17}Ti{sub 2−x} layer as a result of oxidation facilitates an increased reactivity with H{sub 2}O. To evaluate the safety aspects of Be{sub 17}Ti{sub 2}, we also investigated the hydrogen positions and solution energies based on the first principle. The calculations reveal that there are 10 theoretical sites, where 9 of these sites have hydrogen solution energies with a positive value (endothermic) and 1 site located at the center of a tetrahedron comprising two Be and two Ti atoms gives a negative value (exothermic).

  7. Sol-gel synthesis and characterization of single-phase Ni ferrite nanoparticles dispersed in SiO2 matrix

    International Nuclear Information System (INIS)

    Nadeem, K.; Traussnig, T.; Letofsky-Papst, I.; Krenn, H.; Brossmann, U.; Wuerschum, R.

    2010-01-01

    Nanoparticles of NiFe 2 O 4 dispersed in SiO 2 (25 wt%) matrix were synthesized by sol-gel method using tetraethyl orthosilicate (TEOS), as a precursor for SiO 2 . The sol-gel method for nanocomposites normally provides multi-phase nanoparticles. We investigated by a synopsis of different analysis methods, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and SQUID-magnetometry, how the various chemical phases are transformed to a single-phase spinel structure during the various stages of annealing from 300 to 900 o C. We have developed a full phase diagram of chemical phases as a function of annealing temperature. The average particle size lies in the range 16-27 nm. The chemical phases formed below 900 o C are NiFe, NiO, γ-Fe 2 O 3 , α-Fe 2 O 3 , and NiFe 2 O 4 , respectively. The role of the TEOS prepared SiO 2 matrix is to restrict the particle size in a small range in order to rule out particle size effects. In the mid-infrared, a shift of the vibrational Fe-O bond is observed from 568 to 586 cm -1 for annealing between 500 and 700 o C which indicates an increasing NiFe 2 O 4 phase formation. A systematic study of coercivity field (ranging from 32 to 200 Oe) and saturation magnetic moment (ranging from 12.2 to 32.1 emu/g) for differently annealed samples supports our findings about the evolution of single-phase NiFe 2 O 4 at 900 o C. The opposite trend of saturation magnetic moment and coercivity with respect to annealing temperature clearly separates the different phases of metallic, antiferromagnetic, and finally single-phase spinel NiFe 2 O 4 .

  8. Performance enhancement of the single-phase series active filter by employing the load voltage waveform reconstruction and line current sampling delay reduction methods

    DEFF Research Database (Denmark)

    Senturk, O.S.; Hava, A.M.

    2011-01-01

    This paper proposes the waveform reconstruction method (WRM), which is utilized in the single-phase series active filter's (SAF's) control algorithm, in order to extract the load harmonic voltage component of voltage harmonic type single-phase diode rectifier loads. Employing WRM and the line...... current sampling delay reduction method, a single-phase SAF compensated system provides higher harmonic isolation performance and higher stability margins compared to the system using conventional synchronous-reference-frame-based methods. The analytical, simulation, and experimental studies of a 2.5 k...

  9. XAFS Study of Epitaxial CoxTi1-xO2-x Anatase

    International Nuclear Information System (INIS)

    Heald, S.M.; Chambers, S.A.; Droubay, T.

    2009-01-01

    Co doped TiO 2 -anatase is a promising candidate for a room-temperature ferromagnetic semiconductor. XAFS measurements have been used to investigate the local Co environment and Co valence for several Co-anatase films. The samples were grown on LaAlO 3 (001) by oxygen plasma assisted molecular beam epitaxy and on SrTiO 3 by atomic oxygen assisted MBE. Co concentrations were about 5%. The measurements were made at the PNC-CAT bending magnet and undulator beamlines at the Advanced Photon Source. For the films on LaAlO 3 , the near edge clearly shows the presence of only Co(2+), and no evidence for metallic Co, while the films on SrTiO 3 showed significant metallic Co. Analysis of the extended fine structure for the LaAlO 3 films finds that the Co substitutes for Ti with some distortion of the lattice. Both in-plane and out-of-plane Co-O bonds are expanded from the Ti-O bonds in anatase. The in-plane bonds are expanded approximately twice as much. A deficit in the oxygen coordination number suggests a correlation of oxygen vacancies with Co sites.

  10. Preparation of anatase TiO{sub 2} thin films by vacuum arc plasma evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Toshihiro [Optoelectronic Device System R and D Center, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi, Ishikawa 921-8501 (Japan)]. E-mail: tmiyata@neptune.kanazawa-it.ac.jp; Tsukada, Satoshi [Optoelectronic Device System R and D Center, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi, Ishikawa 921-8501 (Japan); Minami, Tadatsugu [Optoelectronic Device System R and D Center, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi, Ishikawa 921-8501 (Japan)

    2006-02-01

    Anatase titanium dioxide (TiO{sub 2}) thin films with high photocatalytic activity have been prepared with deposition rates as high as 16 nm/min by a newly developed vacuum arc plasma evaporation (VAPE) method using sintered TiO{sub 2} pellets as the source material. Highly transparent TiO{sub 2} thin films prepared at substrate temperatures from room temperature to 400 deg. C exhibited photocatalytic activity, regardless whether oxygen (O{sub 2}) gas was introduced during the VAPE deposition. The highest photocatalytic activity and photo-induced hydrophilicity were obtained in anatase TiO{sub 2} thin films prepared at 300 deg. C, which correlated to the best crystallinity of the films, as evidenced from X-ray diffraction. In addition, a transparent and conductive anatase TiO{sub 2} thin film with a resistivity of 2.6 x 10{sup -1} {omega} cm was prepared at a substrate temperature of 400 deg. C without the introduction of O{sub 2} gas.

  11. Trojan-Like Internalization of Anatase Titanium Dioxide Nanoparticles by Human Osteoblast Cells.

    Science.gov (United States)

    Ribeiro, A R; Gemini-Piperni, S; Travassos, R; Lemgruber, L; Silva, R C; Rossi, A L; Farina, M; Anselme, K; Shokuhfar, T; Shahbazian-Yassar, R; Borojevic, R; Rocha, L A; Werckmann, J; Granjeiro, J M

    2016-03-29

    Dentistry and orthopedics are undergoing a revolution in order to provide more reliable, comfortable and long-lasting implants to patients. Titanium (Ti) and titanium alloys have been used in dental implants and total hip arthroplasty due to their excellent biocompatibility. However, Ti-based implants in human body suffer surface degradation (corrosion and wear) resulting in the release of metallic ions and solid wear debris (mainly titanium dioxide) leading to peri-implant inflammatory reactions. Unfortunately, our current understanding of the biological interactions with titanium dioxide nanoparticles is still very limited. Taking this into consideration, this study focuses on the internalization of titanium dioxide nanoparticles on primary bone cells, exploring the events occurring at the nano-bio interface. For the first time, we report the selective binding of calcium (Ca), phosphorous (P) and proteins from cell culture medium to anatase nanoparticles that are extremely important for nanoparticle internalization and bone cells survival. In the intricate biological environment, anatase nanoparticles form bio-complexes (mixture of proteins and ions) which act as a kind of 'Trojan-horse' internalization by cells. Furthermore, anatase nanoparticles-induced modifications on cell behavior (viability and internalization) could be understand in detail. The results presented in this report can inspire new strategies for the use of titanium dioxide nanoparticles in several regeneration therapies.

  12. Synthesis and photocatalytic activity of anatase TiO2 nanoparticles for degradation of methyl orange

    Science.gov (United States)

    Singh, Manmeet; Duklan, Neha; Singh, Pritpal; Sharma, Jeewan

    2018-05-01

    In present study, TiO2 nanoparticles, in anatase form, were successfully synthesized using TiCl4 as precursor. These nanoparticles were synthesized by sol-gel method at room temperature (298 K). As prepared samples were characterized for phase structure, optical absorption and surface properties using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Raman spectroscopy and UV-Visible spectroscopy. The synthesized TiO2 nanoparticles sample was compared with one of the most efficient commercial photocatalyst Degussa TiO2 also known as P(25). The effect of phase composition of anatase TiO2 nanoparticles, as compared to P(25), on photocatalytic decomposition of organic dye, methyl orange (MO) was studies under UV light illumination. An enhanced degradation of hazardous dye was observed in the presence of anatase TiO2 nanoparticles as compared to P(25) due to slow recombination rate. Other possible reasons for this enhancement have also been discussed.

  13. Construction of anatase/rutile TiO2 hollow boxes for highly efficient photocatalytic performance

    Science.gov (United States)

    Jia, Changchao; Zhang, Xiao; Yang, Ping

    2018-02-01

    Hollow TiO2 hierarchical boxes with suitable anatase and rutile ratios were designed for photocatalysis. The unique hierarchical structure was fabricated via a Topotactic synthetic method. CaTiO3 cubes were acted as the sacrificial templates to create TiO2 hollow hierarchical boxes with well-defined phase distribution. The phase composition of the hollow TiO2 hierarchical boxes is similar to that of TiO2 P25 nanoparticles (∼80% anatase, and 20% rutile). Compared with nanaoparticles, TiO2 hollow boxes with hierarchical structures exhibited an excellent performance in the photocatalytic degradation of methylene blue organic pollutant. Quantificationally, the degradation rate of the hollow boxes is higher than that of TiO2 P25 nanoparticles by a factor of 2.7. This is ascribed that hollow structure provide an opportunity for using incident light more efficiently. The surface hierarchical and well-organized porous structures are beneficial to supply more active sites and enough transport channels for reactant molecules. The boxes consist of single crystal anatase and rutile combined well with each other, which gives photon-generated carriers transfer efficiently.

  14. Production and Characterization of (004) Oriented Single Anatase TiO2 Films

    Science.gov (United States)

    Atay, Ferhunde; Akyuz, Idris; Cergel, Muge Soyleyici; Erdogan, Banu

    2018-02-01

    Highly (004) oriented anatase TiO2 films have been successfully obtained by an inexpensive ultrasonic spray pyrolysis technique at low substrate temperatures and without additional annealing. X-ray diffraction analysis, ultraviolet-visible spectroscopy and field emission scanning electron microscopy were used to analyze the structural, optical and surface properties of the films. By using the less reported TiCl4 solution, the optical band gap values falling into the visible region (between 2.70 eV and 2.92 eV) have been obtained for all films. Spectroscopic ellipsometry technique has been used to determine the dispersive refractive index and extinction coefficient of TiO2 films. Possible electrical conduction mechanisms in TiO2 films have been examined using temperature dependent conductivity measurements in the temperature range of 78-300 K. At room temperature, electrical resistivity values of TiO2 films change between 1.68 × 104 Ω cm and 5.88 × 104 Ω cm. Considering the analyzed parameters with respect to substrate temperature, this work refers to the properties of anatase TiO2 films that are strongly correlated to the growth direction, namely (004). As a result, (004) oriented anatase TiO2 films with appropriate optical band gap values are promising materials for technological applications, especially for photocatalysts.

  15. Effect of annealing temperature on the anatase and rutile TiO2 nano tubes formation

    International Nuclear Information System (INIS)

    Zainovia Lockman; Kit, C.H.; Srimala Sreekantan

    2009-01-01

    Herein, we report on the optimum condition for TiO 2 titania nano tubes formation and the effect of annealing on the formation of anatse and rutile titania. Anodic oxidation was carried out in two electrodes bath consisting of 5 wt % NH 4 F ions. The anode was a 0.1 mm thick Ti foil and the cathode was Pt electrode. Anodization was conducted at 20 V. The anodised foils were subjected to morphological and structural characterizations. As-anodised foil was found to be amorphous or weakly crystalline. When the oxide was heat treated, x-ray diffraction analysis revealed the presence of (101) anatase at annealing temperature from 400 - 500 degree Celsius. This indicates that the transformation occurs at this range of temperatures. Raman spectroscopy analysis showed the diminishing of anatase peaks for samples annealed at 500 degree Celsius. At above 600 degree Celsius, x-ray diffraction pattern shows a peak belonging to the rutile peak. Transformation from anatase to rutile is thought to occur at about 500 degree Celsius with a more complete transformation at higher temperature. Annealing at higher than 600 degree Celsius induces thickening of the nano tubes wall and at above 700 degree Celsius, the nano tubes structure has completely disappeared. (author)

  16. Synthesis of single-phase L10-FeNi magnet powder by nitrogen insertion and topotactic extraction

    OpenAIRE

    Goto, Sho; Kura, Hiroaki; Watanabe, Eiji; Hayashi, Yasushi; Yanagihara, Hideto; Shimada, Yusuke; Mizuguchi, Masaki; Takanashi, Koki; Kita, Eiji

    2017-01-01

    Tetrataenite (L10-FeNi) is a promising candidate for use as a permanent magnet free of rare-earth elements because of its favorable properties. In this study, single-phase L10-FeNi powder with a high degree of order was synthesized through a new method, nitrogen insertion and topotactic extraction (NITE). In the method, FeNiN, which has the same ordered arrangement as L10-FeNi, is formed by nitriding A1-FeNi powder with ammonia gas. Subsequently, FeNiN is denitrided by topotactic reaction to ...

  17. Impact of SSSC on Measured Impedance in Single Phase to Ground Fault Condition on 220 kV Transmission Line

    Directory of Open Access Journals (Sweden)

    Mohamed ZELLAGUI

    2012-08-01

    Full Text Available This paper presents and compares the impact of SSSC on measured impedance for single phase to ground fault condition. The presence of Static Synchronous SSSC on a transmission line has a great influence on the ZRelay in distance protection. The protection of the high voltage 220 kV single circuit transmission line in eastern Algerian electrical transmission networks is affected in the case with resistance fault RF. The paper investigate the effect of Static Synchronous Series Compensator (SSSC on the measured impedance (Relay taking into account the distance fault point (n and fault resistance (RF. The resultants simulation is performed in MATLAB software environment.

  18. A Simple and Consistent Equation of State for Sodium in the Single Phase and Two Phase Regions

    International Nuclear Information System (INIS)

    Breton, J.P.

    1976-01-01

    An equation of state valid over an extended temperature and density range has been derived. Then, the following properties have been deduced: coefficient of thermal expansion, isothermal coefficient of bulk compressibility, thermal pressure coefficient, heat capacity at constant pressure, at constant volume, along the saturation curve for liquid, for vapor, heat of vaporization, speed of sound, and finally the Mollier diagram and the entropy diagram. All the obtained properties are thermodynamically consistent and satisfy the basic relations of thermodynamics for both single phase and two-phase regions. Experimental results were always used when available

  19. Design and analysis of linear oscillatory single-phase permanent magnet generator for free-piston stirling engine systems

    Science.gov (United States)

    Kim, Jeong-Man; Choi, Jang-Young; Lee, Kyu-Seok; Lee, Sung-Ho

    2017-05-01

    This study focuses on the design and analysis of a linear oscillatory single-phase permanent magnet generator for free-piston stirling engine (FPSE) systems. In order to implement the design of linear oscillatory generator (LOG) for suitable FPSEs, we conducted electromagnetic analysis of LOGs with varying design parameters. Then, detent force analysis was conducted using assisted PM. Using the assisted PM gave us the advantage of using mechanical strength by detent force. To improve the efficiency, we conducted characteristic analysis of eddy-current loss with respect to the PM segment. Finally, the experimental result was analyzed to confirm the prediction of the FEA.

  20. Design and analysis of linear oscillatory single-phase permanent magnet generator for free-piston stirling engine systems

    Directory of Open Access Journals (Sweden)

    Jeong-Man Kim

    2017-05-01

    Full Text Available This study focuses on the design and analysis of a linear oscillatory single-phase permanent magnet generator for free-piston stirling engine (FPSE systems. In order to implement the design of linear oscillatory generator (LOG for suitable FPSEs, we conducted electromagnetic analysis of LOGs with varying design parameters. Then, detent force analysis was conducted using assisted PM. Using the assisted PM gave us the advantage of using mechanical strength by detent force. To improve the efficiency, we conducted characteristic analysis of eddy-current loss with respect to the PM segment. Finally, the experimental result was analyzed to confirm the prediction of the FEA.

  1. X-ray quality increasing system controlled by single-chip microcomputer in single phase fluoroscopy unit

    International Nuclear Information System (INIS)

    Wang Qiaolin; Gu Hongmei

    2004-01-01

    Objective: To decrease the amount of radiation that doctor and patient receives by increasing X-ray quality. Methods: Using Single-chip Microcomputer technology, test and modulate AC(Alternating Current) from high voltage generator by IGBT. X-ray tube generates X-rays only at high energy area. Thus the amount of radiation decreases. Results: The tube current decreases remarkably and the amount of radiation that doctor and patient receives decreases effectively. Conclusion: the system can effectively decrease the amount of radiation and is widely applicable to the upgrade of all kinds of single phase X-ray units. (authors)

  2. A Single Phase to Three Phase PFC Half-Bridge Converter Using BLDC Drive with SPWM Technique.

    OpenAIRE

    Srinu Duvvada; Manmadha Kumar B

    2014-01-01

    In this paper, a buck half-bridge DC-DC converter is used as a single-stage power factor correction (PFC) converter for feeding a voltage source inverter (VSI) based permanent magnet brushless DC motor (BLDC) drive. The front end of this PFC converter is a diode bridge rectifier (DBR) fed from single-phase AC mains. The BLDC is used to drive a compressor load of an air conditioner through a three-phase VSI fed from a controlled DC link voltage. The speed of the compressor is controlled to ach...

  3. General Unified Integral Controller with Zero Steady-State Error for Single-Phase Grid-Connected Inverters

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Guerrero, Josep M.

    2016-01-01

    Current regulation is crucial for operating single-phase grid-connected inverters. The challenge of the current controller is how to fast and precisely tracks the current with zero steady-state error. This paper proposes a novel feedback mechanism for the conventional PI controller. It allows...... done indicates that the widely used PR (P+Resonant) control is just a special case of the proposed control solution. The time-domain simulation in Matlab/Simulink and experimental results from a TMS320F2812 DSP based laboratory prototypes are in good agreement, which verify the effectiveness...

  4. Performance Evaluation of Low/Zero Voltage Ride-Through Operations for Single-Stage Single-Phase Photovoltaic Inverters

    DEFF Research Database (Denmark)

    Zhang, Zhen; Yang, Yongheng; Blaabjerg, Frede

    2017-01-01

    With the fast development of distributed power generations, stability and security have attracted extensive attention in the recent years. As a representative of clean energies, Photovoltaic (PV) systems have been installed extensively worldwide. This drives grid-connected requirements...... to be continuously updated. In current active grid requirements/codes, PV systems should be more intelligent in the considerations of the grid stability, reliability and fault protection. In this paper, two control strategies (i.e., the single-phase PQ control and power phase-angle control) are evaluated for grid...

  5. A Comparison between Boundary and Continuous Conduction Modes in Single Phase PFC Using 600V Range Devices

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos; Petersen, Lars Press; Andersen, Michael A. E.

    2015-01-01

    This paper presents an analysis and comparison of boundary conduction mode (BCM) and continuous conduction mode (CCM) in single phase power factor correction (PFC) applications. The comparison is based on double pulse tester (DPT) characterization results of state-of-the-art superjunction devices...... in the 600V range. The measured switching energy is used to evaluate the devices performance in a conventional PFC. This data is used together with a mathematical model for prediction of the conducted electromagnetic interference (EMI). This allows comparing the different devices in BCM and CCM operation...

  6. A simple and consistent equation of state for sodium in the single phase and two phase regions

    International Nuclear Information System (INIS)

    Breton, J.P.

    1976-01-01

    An equation of state valid over an extended temperature and density range has been derived. Then, the following properties have been deduced : coefficient of thermal expansion, isothermal coefficient of bulk compressibility, thermal pressure coefficient, heat capacity at constant pressure, at constant volume, along the saturation curve for liquid, for vapor, heat of vaporization, speed of sound, and finally the Mollier diagram and the entropy diagram. All the obtained properties are thermodynamically consistent and satisfy the basic relations of thermodynamics for both single phase and two-phase regions. Experimental results were always used when available. (auth.)

  7. Single-Phase Full-Wave Rectifier as an Effective Example to Teach Normalization, Conduction Modes, and Circuit Analysis Methods

    Directory of Open Access Journals (Sweden)

    Predrag Pejovic

    2013-12-01

    Full Text Available Application of a single phase rectifier as an example in teaching circuit modeling, normalization, operating modes of nonlinear circuits, and circuit analysis methods is proposed.The rectifier supplied from a voltage source by an inductive impedance is analyzed in the discontinuous as well as in the continuous conduction mode. Completely analytical solution for the continuous conduction mode is derived. Appropriate numerical methods are proposed to obtain the circuit waveforms in both of the operating modes, and to compute the performance parameters. Source code of the program that performs such computation is provided.

  8. A modified P&O MPPT algorithm for single-phase PV systems based on deadbeat control

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2012-01-01

    A modified perturb and observe (P&O) algorithm is presented to improve maximum power point tracking (MPPT) performance of photovoltaic (PV) systems. This modified algorithm is applied to a single-phase PV system based on deadbeat control in order to test the tracking accuracy and its impact...... on the reliability of the whole system. Both simulations and experimental results show that the proposed algorithm offers a fast response as well as smaller steady-state oscillations even under low irradiance condition compared with classical methods....

  9. Synthesizing single-phase β-FeSi2 via ion beam irradiations of Fe/Si bilayers

    International Nuclear Information System (INIS)

    Milosavljevic, M.; Dhar, S.; Schaaf, P.; Bibic, N.; Lieb, K.P.

    2001-01-01

    This paper presents results on the direct synthesis of the β-FeSi 2 phase by ion beam mixing of Fe/Si bilayers with Xe ions. The influence of the substrate temperature, ion fluence and energy on the growth of this phase was investigated using Rutherford backscattering (RBS), X-ray diffraction (XRD) and conversion electron Moessbauer spectroscopy (CEMS). Complete growth of single-phase β-FeSi 2 was achieved by 205 keV Xe ion irradiation to a fluence of 2x10 16 ions/cm 2 at 600 deg. C. We propose a two-step reaction mechanism involving thermal and ion beam energy deposition

  10. An experimental and numerical study of developed single phase axial turbulent flow in a smooth rod bundle

    International Nuclear Information System (INIS)

    Hooper, J.D.

    1977-01-01

    A combined experimental and numerical model of a turbulent single phase coolant, flowing axially along the fuel pins of a nuclear reactor, was developed. The experimental rig represented two interconnected subchannels of a square array at a pitch/diameter ratio of 1.193. Air was the working fluid, and measurements were made of the mean radial velocity profiles, wall shear stress variation, turbulence velocity spectra and intensities. The numerically predicted wall shear distribution and mean velocity profiles, obtained using an empirical two-dimensional mixing length and eddy diffusivity concept to represent fluid turbulence, showed good agreement with the experimental results. (Author)

  11. Advanced Control Strategies to Enable a More Wide-Scale Adoption of Single-Phase Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng

    , a thorough evaluation of those topologies in terms of e.g. efficiency, reliability, leakage current mitigation ability, and reactive power injection capability has been presented in Chapter 3, where a multidisciplinary assessment approach with characterized features of energy production estimation...... and lifetime prediction based on mission profiles (e.g. solar irradiance level and ambient temperature) has been proposed. Grid detection and synchronization techniques have also been discussed in Chapter 2, since they are of importance in the control of single-phase systems both in normal operation mode...

  12. Hybrid I-f starting and observer-based Ssnsorless control of single-phase BLDC-PM motor drives

    DEFF Research Database (Denmark)

    Iepure, Liviu Ioan; Boldea, Ion; Blaabjerg, Frede

    2012-01-01

    A motion sensorless control for single-phase permanent magnet brushless dc motor based on an I-f starting sequence and a real-time permanent magnet flux estimation is proposed here. The special calculation for extracting the position and speed used here implies the generating of an orthogonal flux...... system, the atan2 trigonometric function, and a phase-locked loop observer. The influence of the permanent magnet flux harmonic content is presented by analytical expressions and digital simulations. The proposed sensorless control is validated by complete experimental results on a commercial small high......-speed blower-motor (40 W, 10 krpm, 12 Vdc)....

  13. HRTEM analysis on nanocrystalline BaTiO3 and PbTiO3: size effects on ferroelectric phase transition temperature

    International Nuclear Information System (INIS)

    Bursill, L.A.; Jiang, B.; Peng, J.L.; Zhong, W.L.; Zhang, P.L.

    1997-01-01

    High-Resolution Transmission Electron Microscopic studies of nanocrystaline particles of BaTiO 3 and PbTiO 3 are reported. There are characteristic differences observed for BaTiO 3 prepared using sol gel (SG) and steric acid gel (SAG) methods. The former exhibit a critical size below which there is no paraelectric/ferroelectric phase transition, whereas BaTiO 3 prepared via the SAG route remained cubic for all conditions. The SAG preparations always showed chemical intergrowth defects whereas the SG preparations were single phase. Atomic resolution images of both varieties showed interesting surface steps and surface relaxations/reconstructions of some facets. Nanocrystalline PbTiO 3 prepared by the SG route remains tetragonal, albeit with decreasing c/a ratio, down to 25nm diameter. HRTEM observations of nanocrystalline PbTiO 3 are also presented. X-ray diffraction, dielectric and Raman scattering measurements also demonstrate pronounced size effects. The relationship between the observed nanostructures and size effects on the physical properties is discussed. 6 refs., 1 tab., 6 figs

  14. Preparation of thermally stable anatase TiO2 photocatalyst from TiOF2 precursor and its photocatalytic activity

    International Nuclear Information System (INIS)

    Lv Kangle; Yu Jiaguo; Cui Longzhe; Chen Shulin; Li Mei

    2011-01-01

    Graphical abstract: The prepared anatase TiO 2 from TiOF 2 shows very high thermal stability (up to 1000 o C) and the 700 o C-calcined sample showed the highest photocatalytic activity. Display Omitted Research highlights: → TiOF 2 was prepared by a simple microwave assisted hydrothermal rout. → Anatase TiO 2 prepared by calcination of TiOF 2 shows high thermal stability. → F - play an important role in the improvement thermal stability of anatase TiO 2 . → The 700 o C-calcined sample shows the highest photocatalytic activity. - Abstract: Preparation of anatase TiO 2 with high themal stability is of great importance for its environmental application. In this work, TiOF 2 was first synthesized by a simple microwave-assisted hydrothermal route using tetrabutyl titanate and hydrofluoric acid as precursors at 200 o C for 20 min. Then the resulted precipitates were calcined at different temperatures (300-1000 o C) for 2 h. The as-prepared samples were characterized by X-ray diffraction, Raman spectrum, scanning electron microscopy, N 2 adsorption-desorption isotherms and X-ray photoelectron spectroscopy. The photocatalytic activity was evaluated using Brilliant Red X3B, an anionic azo dye, as the target organic molecule under UV light irradiation. The results showed that the prepared TiOF 2 exhibited weak or no photocatalytic activity. The phase transformation of TiOF 2 to anatase TiO 2 occurred at about 300 o C. The prepared anatase TiO 2 from TiOF 2 showed very high thermal stability and the anatase-to-rutile phase transformation temperature was up to 1000 o C. Fluoride ions played an important role in the improvement of thermal stability of anatase TiO 2 by strongly adsorbing on the crystal planes of anatase to stabilize the anatase structure. The 700 o C-calcined sample showed the highest photocatalytic activity due to its relative good crystallization and high specific surface areas.

  15. Design and testing of an integrated electronically controlled capacitor for integral and fractional horse power single phase induction motor

    International Nuclear Information System (INIS)

    Faiz, Jawad; Kasebi, F.; Pillay, P.

    2004-01-01

    This paper addresses a problem that occurs in many small appliances. As such, it is an important problem of energy utilization. To improve the performance of a single phase capacitor start/run induction motor, FET type power transistors could be used to replace a SCR H bridge. Such a configuration can lead to a simpler and more inexpensive circuit for the electronically controlled capacitor. In this paper, ICs and an OP-AMP are used to design an electronically controlled capacitor for a single phase induction motor. The design can compensate for the input voltage fluctuations that are present in the normal operation of the motor. In addition, an improvement in its performance can be obtained. At present, the use of a tachometer can be considered a disadvantage of the proposed scheme. Thus, a configuration that enables removal of the tachometer, while maintaining reasonable cost, is desirable. In addition, replacing the ac capacitor with one rated for dc can lead to a system reduction, in addition to a considerable reduction in the size of the circuit due to the use of integrated circuits

  16. Synthesis of single-phase L10-FeNi magnet powder by nitrogen insertion and topotactic extraction.

    Science.gov (United States)

    Goto, Sho; Kura, Hiroaki; Watanabe, Eiji; Hayashi, Yasushi; Yanagihara, Hideto; Shimada, Yusuke; Mizuguchi, Masaki; Takanashi, Koki; Kita, Eiji

    2017-10-16

    Tetrataenite (L1 0 -FeNi) is a promising candidate for use as a permanent magnet free of rare-earth elements because of its favorable properties. In this study, single-phase L1 0 -FeNi powder with a high degree of order was synthesized through a new method, nitrogen insertion and topotactic extraction (NITE). In the method, FeNiN, which has the same ordered arrangement as L1 0 -FeNi, is formed by nitriding A1-FeNi powder with ammonia gas. Subsequently, FeNiN is denitrided by topotactic reaction to derive single-phase L1 0 -FeNi with an order parameter of 0.71. The transformation of disordered-phase FeNi into the L1 0 phase increased the coercive force from 14.5 kA/m to 142 kA/m. The proposed method not only significantly accelerates the development of magnets using L1 0 -FeNi but also offers a new synthesis route to obtain ordered alloys in non-equilibrium states.

  17. Research on Single-Phase PWM Converter with Reverse Conducting IGBT Based on Loss Threshold Desaturation Control

    Directory of Open Access Journals (Sweden)

    Xianjin Huang

    2017-11-01

    Full Text Available In the application of vehicle power supply and distributed power generation, there are strict requirements for the pulse width modulation (PWM converter regarding power density and reliability. When compared with the conventional insulated gate bipolar transistor (IGBT module, the Reverse Conducting-Insulated Gate Bipolar Transistor (RC-IGBT with the same package has a lower thermal resistance and higher current tolerance. By applying the gate desaturation control, the reverse recovery loss of the RC-IGBT diode may be reduced. In this paper, a loss threshold desaturation control method is studied to improve the output characteristics of the single-phase PWM converter with a low switching frequency. The gate desaturation control characteristics of the RC-IGBT’s diode are studied. A proper current limit is set to avoid the ineffective infliction of the desaturation pulse, while the bridge arm current crosses zero. The expectation of optimized loss decrease is obtained, and the better performance for the RC-IGBTs of the single-phase PWM converter is achieved through the optimized desaturation pulse distribution. Finally, the improved predictive current control algorithm that is applied to the PWM converter with RC-IGBTs is simulated, and is operated and tested on the scaled reduced power platform. The results prove that the gate desaturation control with the improved predictive current algorithm may effectively improve the RC-IGBT’s characteristics, and realize the stable output of the PWM converter.

  18. A single-phase axially-magnetized permanent-magnet oscillating machine for miniature aerospace power sources

    Directory of Open Access Journals (Sweden)

    Yi Sui

    2017-05-01

    Full Text Available A single-phase axially-magnetized permanent-magnet (PM oscillating machine which can be integrated with a free-piston Stirling engine to generate electric power, is investigated for miniature aerospace power sources. Machine structure, operating principle and detent force characteristic are elaborately studied. With the sinusoidal speed characteristic of the mover considered, the proposed machine is designed by 2D finite-element analysis (FEA, and some main structural parameters such as air gap diameter, dimensions of PMs, pole pitches of both stator and mover, and the pole-pitch combinations, etc., are optimized to improve both the power density and force capability. Compared with the three-phase PM linear machines, the proposed single-phase machine features less PM use, simple control and low controller cost. The power density of the proposed machine is higher than that of the three-phase radially-magnetized PM linear machine, but lower than the three-phase axially-magnetized PM linear machine.

  19. Single-Phase Single-Stage Grid Tied Solar PV System with Active Power Filtering Using Power Balance Theory

    Science.gov (United States)

    Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar

    2018-03-01

    In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.

  20. Lifetime Estimation of DC-link Capacitors in a Single-phase Converter with an Integrated Active Power Decoupling Module

    DEFF Research Database (Denmark)

    Ma, Siyuan; Wang, Haoran; Tang, Junchaojie

    2016-01-01

    In single-phase inverters, DC-link capacitors are installed at the DC-link to buffer the ripple power between the AC side and DC side. Active decoupling methods introduce additional circuits at the DC side or AC side to partially or fully supply the ripple power. So that the demanded DC-link capa......In single-phase inverters, DC-link capacitors are installed at the DC-link to buffer the ripple power between the AC side and DC side. Active decoupling methods introduce additional circuits at the DC side or AC side to partially or fully supply the ripple power. So that the demanded DC......-link capacitor capacitance can be decreased. However, few research is about the effect of DC side and AC side decoupling on the DC-link capacitor reliability considering its electro-thermal stresses. This paper presents a quantitative analysis on the lifetime of capacitors with power decoupling circuits...... at the DC side and AC side, respectively. The ripple current spectrum of the capacitors is obtained by double Fourier analysis of a H-bridge inverter with natural sampling PWM modulation. A study case is demonstrated by a 2,000 W H-bridge inverter with 400 V DC-link voltage....