WorldWideScience

Sample records for single-phase multidimensional flow

  1. Critical flow rate in a single phase flow. Blocking concept

    International Nuclear Information System (INIS)

    Giot, Michel

    1978-01-01

    After referring to the phenomena accompanying the appearance of a critical flow rate in a nozzle and presenting equations governing single phase flows, the critical condition is defined. Several particular cases are then examined; the horizontal and vertical isentropic flow, Fanno's flow and Raleigh's and the isothermal flow. The entropy deviation is calculated on either side of a normal impact. To conclude, the link existing between the concepts of critical flow and the propagation rate of small perturbations is demonstrated. To do so, the method of perturbations, that of Prandtl and that of characteristic directions are applied in turn [fr

  2. Single-phase multi-dimensional thermohydraulics direct numerical simulation code DINUS-3. Input data description

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, Toshiharu [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-08-01

    This report explains the numerical methods and the set-up method of input data for a single-phase multi-dimensional thermohydraulics direct numerical simulation code DINUS-3 (Direct Numerical Simulation using a 3rd-order upwind scheme). The code was developed to simulate non-stationary temperature fluctuation phenomena related to thermal striping phenomena, developed at Power Reactor and Nuclear Fuel Development Corporation (PNC). The DINUS-3 code was characterized by the use of a third-order upwind scheme for convection terms in instantaneous Navier-Stokes and energy equations, and an adaptive control system based on the Fuzzy theory to control time step sizes. Author expect this report is very useful to utilize the DINUS-3 code for the evaluation of various non-stationary thermohydraulic phenomena in reactor applications. (author)

  3. Equivalence of two models in single-phase multicomponent flow simulations

    KAUST Repository

    Wu, Yuanqing

    2016-02-28

    In this work, two models to simulate the single-phase multicomponent flow in reservoirs are introduced: single-phase multicomponent flow model and two-phase compositional flow model. Because the single-phase multicomponent flow is a special case of the two-phase compositional flow, the two-phase compositional flow model can also simulate the case. We compare and analyze the two models when simulating the single-phase multicomponent flow, and then demonstrate the equivalence of the two models mathematically. An experiment is also carried out to verify the equivalence of the two models.

  4. Equivalence of two models in single-phase multicomponent flow simulations

    KAUST Repository

    Wu, Yuanqing; Sun, Shuyu

    2016-01-01

    In this work, two models to simulate the single-phase multicomponent flow in reservoirs are introduced: single-phase multicomponent flow model and two-phase compositional flow model. Because the single-phase multicomponent flow is a special case of the two-phase compositional flow, the two-phase compositional flow model can also simulate the case. We compare and analyze the two models when simulating the single-phase multicomponent flow, and then demonstrate the equivalence of the two models mathematically. An experiment is also carried out to verify the equivalence of the two models.

  5. Single-phase flow and flow boiling of water in horizontal rectangular microchannels

    OpenAIRE

    Mirmanto

    2013-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University The current study is part of a long term experimental project devoted to investigating single-phase flow pressure drop and heat transfer, flow boiling pressure drop and heat transfer, flow boiling instability and flow visualization of de-ionized water flow in microchannels. The experimental facility was first designed and constructed by S. Gedupudi (2009) and in the present study; ...

  6. POD-Galerkin Model for Incompressible Single-Phase Flow in Porous Media

    KAUST Repository

    Wang, Yi; Yu, Bo; Sun, Shuyu

    2017-01-01

    Fast prediction modeling via proper orthogonal decomposition method combined with Galerkin projection is applied to incompressible single-phase fluid flow in porous media. Cases for different configurations of porous media, boundary conditions

  7. Cryogenic parallel, single phase flows: an analytical approach

    Science.gov (United States)

    Eichhorn, R.

    2017-02-01

    Managing the cryogenic flows inside a state-of-the-art accelerator cryomodule has become a demanding endeavour: In order to build highly efficient modules, all heat transfers are usually intercepted at various temperatures. For a multi-cavity module, operated at 1.8 K, this requires intercepts at 4 K and at 80 K at different locations with sometimes strongly varying heat loads which for simplicity reasons are operated in parallel. This contribution will describe an analytical approach, based on optimization theories.

  8. Pressure Drop Correlations of Single-Phase and Two-Phase Flow in Rolling Tubes

    International Nuclear Information System (INIS)

    Xia-xin Cao; Chang-qi Yan; Pu-zhen Gao; Zhong-ning Sun

    2006-01-01

    A series of experimental studies of frictional pressure drop for single phase and two-phase bubble flow in smooth rolling tubes were carried out. The tube inside diameters were 15 mm, 25 mm and 34.5 mm respectively, the rolling angles of tubes could be set as 10 deg. and 20 deg., and the rolling periods could be set as 5 s, 10 s and 15 s. Combining with the analysis of single-phase water motion, it was found that the traditional correlations for calculating single-phase frictional coefficient were not suitable for the rolling condition. Based on the experimental data, a new correlation for calculating single-phase frictional coefficient under rolling condition was presented, and the calculations not only agreed well with the experimental data, but also could display the periodically dynamic characteristics of frictional coefficients. Applying the new correlation to homogeneous flow model, two-phase frictional pressure drop of bubble flow in rolling tubes could be calculated, the results showed that the relative error between calculation and experimental data was less than ± 25%. (authors)

  9. Even distribution/dividing of single-phase fluids by symmetric bifurcation of flow channels

    International Nuclear Information System (INIS)

    Liu, Hong; Li, Peiwen

    2013-01-01

    Highlights: ► We addressed an issue of distributing a flow to a number of flow channels uniformly. ► The flow distribution is accomplished through bifurcation of channels. ► Some key parameters to the flow distribution uniformity have been identified. ► Flow uniformity was studied for several versions of flow distributor designs. ► A novel fluid packaging device of high efficiency was provided. -- Abstract: This study addresses a fundamental issue of distributing a single-phase fluid flow into a number of flow channels uniformly. A basic mechanism of flow distribution is accomplished through bifurcation of channels that symmetrically split one flow channel into two downstream channels. Applying the basic mechanism, cascades flow distributions are designed to split one flow into a large number of downstream flows uniformly. Some key parameters decisive to the flow distribution uniformity in such a system have been identified, and the flow distribution uniformity of air was studied for several versions of flow distributor designs using CFD analysis. The effect of the key parameters of the flow channel designs to the flow distribution uniformity was investigated. As an example of industrial application, a novel fluid packaging device of high efficiency was proposed and some CFD analysis results for the device were provided. The optimized flow distributor makes a very good uniform flow distribution which will significantly improve the efficiency of fluid packaging. The technology is expected to be of great significance to many industrial devices that require high uniformity of flow distribution

  10. Single phase and two-phase flow pressure losses through restrictions, expansions and inserts

    International Nuclear Information System (INIS)

    Glenat, P.; Solignac, P.

    1984-11-01

    We give a selection of methods to predict pressure losses through retrictions, expansions and inserts. In single phase flow, we give the classical method based on the one-dimensional momentum and mass balances. In two-phase flow, we propose the method given by Harshe et al. and an empirical approach suggested by Chisholm. We notice the distinction between long and short inserts depends upon wether or not the vena contracta lies within insert. Finally, we propose three correlations to calculate void fraction through the singularities which have been considered [fr

  11. Factors that affect the calibration of turbines in single-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Piper, T. C.

    1977-05-01

    Basic turbine operation in single-phase flow is related. Causes and relative magnitudes of retarding torque are given for two sizes of turbines when used for water flow measurement. An equation for slip caused by retarding torques is given. Evaluation of turbine slip behavior at the turbine low flow region shows that bearing retarding torques, change in flow patterns, or other effects can predominate in the relatively large changes in the calibration ''constant'' that occurs there. Fluid lubricity is singled out as an important fluid property in certain types of bearings and flow. Temperature induced changes in turbine size are shown to cause calibration changes if a turbine is used at a temperature significantly different than that at which it was calibrated.

  12. Factors that affect the calibration of turbines in single-phase flow

    International Nuclear Information System (INIS)

    Piper, T.C.

    1977-05-01

    Basic turbine operation in single-phase flow is related. Causes and relative magnitudes of retarding torque are given for two sizes of turbines when used for water flow measurement. An equation for slip caused by retarding torques is given. Evaluation of turbine slip behavior at the turbine low flow region shows that bearing retarding torques, change in flow patterns, or other effects can predominate in the relatively large changes in the calibration ''constant'' that occurs there. Fluid lubricity is singled out as an important fluid property in certain types of bearings and flow. Temperature induced changes in turbine size are shown to cause calibration changes if a turbine is used at a temperature significantly different than that at which it was calibrated

  13. Effects of rolling on characteristics of single-phase water flow in narrow rectangular ducts

    International Nuclear Information System (INIS)

    Xing Dianchuan; Yan Changqi; Sun Licheng; Xu Chao

    2012-01-01

    Highlights: ► Mass flow rate and friction pressure drop with different pressure head are compared. ► The effect of pressure head on flow fluctuation is considered theoretically. ► Time-mean and real-time friction pressure drop in different rolling motion are studied. ► Rolling motion influences the fluctuation of friction pressure drop in two aspects. ► New correlation for frictional coefficient in rolling motion is achieved. - Abstract: Experimental and theoretical studies of rolling effects on characteristics of single-phase water flow in narrow rectangular ducts are performed under ambient temperature and pressure. Two types of pressure head are supplied by elevate water tank and pump respectively. The results show that the frictional pressure drop under rolling condition fluctuates periodically, with its amplitude decaying as mean Reynolds number increase and the rolling amplitude decrease, while the amplitude is nearly invariable with rolling period. Rolling motion influences the fluctuation amplitude of frictional pressure drop in two aspects, on the one hand, rolling reduced periodical pulsing flow leads to the fluctuation of the frictional pressure drop, on the other hand, additional force acting on fluid near the wall due to the rolling motion makes local frictional resistance oscillate periodically. The mass flow rate oscillates periodically in rolling motion with the pressure head supplied by water tank, while its fluctuation is so weak that could be neglected for the case of the pressure head supplied by pump. An empirical correlation for the frictional coefficient under rolling condition is achieved, and the experimental data is well correlated. A mathematical model is also developed to study the effect of pressure head on mass flow rate fluctuation in rolling motion. The fluctuation amplitude of the mass flow rate decreases rapidly with a higher pressure head. Comparing with the vertical condition, rolling motion nearly has no effects on

  14. Pressure drop and heat transfer of lithium single-phase flow under transverse magnetic field

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Aritomi, Masanori; Inoue, Akira; Matsuzaki, Mitsuo

    1996-01-01

    Pressure drop and heat transfer characteristics of a lithium single-phase flow in a rectangular channel was investigated experimentally in the presence of a magnetic field. Friction loss coefficient under non-magnetic field and skin friction coefficient under magnetic field agreed well with the Blasius formula and a simple analytical expression, respectively. Nusselt number under non-magnetic field was slightly lower than the correlation by Hartnett and Irvine. Heat transfer was enhanced by increasing magnetic field above the Hartmann number of about 200. (author)

  15. The structure of single-phase turbulent flows through closely spaced rod arrays

    International Nuclear Information System (INIS)

    Hooper, J.D.; Rehme, K.

    1983-02-01

    The axial and azimuthal turbulence intensity in the rod gap region has been shown, for developed single-phase turbulent flow through parallel rod arrays, to strongly increase with decreasing rod spacing. Two array geometries are reported, one constructed from a rectangular cross-section duct containing four rods and spaced at five p/d or w/d ratios. The second test section, constructed from six rods set in a regular square-pitch array, represented the interior flow region of a large array. The mean axial velocity, wall shear stress variation and axial pressure distribution were measured, together with hot-wire anemometer measurements of the Reynolds stresses. No significant non-zero secondary flow components were detected, using techniques capable of resolving secondary flow velocities to 1% of the local axial velocity. For the lowest p/d ratio of 1.036, cross-correlation measurements showed the presence of an energetic periodic azimuthal turbulent velocity component, correlated over a significant part of the flow area. The negligible contribution of secondary flows to the axial momentum balance, and the large azimuthal turbulent velocity component in the rod gap area, suggest a different mechanism than Reynolds stress gradient driven secondary flows for the turbulent transport process in the rod gap. (orig.) [de

  16. Multi-scale Modeling of Compressible Single-phase Flow in Porous Media using Molecular Simulation

    KAUST Repository

    Saad, Ahmed Mohamed

    2016-05-01

    In this study, an efficient coupling between Monte Carlo (MC) molecular simulation and Darcy-scale flow in porous media is presented. The cell-centered finite difference method with a non-uniform rectangular mesh were used to discretize the simulation domain and solve the governing equations. To speed up the MC simulations, we implemented a recently developed scheme that quickly generates MC Markov chains out of pre-computed ones, based on the reweighting and reconstruction algorithm. This method astonishingly reduces the required computational time by MC simulations from hours to seconds. In addition, the reweighting and reconstruction scheme, which was originally designed to work with the LJ potential model, is extended to work with a potential model that accounts for the molecular quadrupole moment of fluids with non-spherical molecules such as CO2. The potential model was used to simulate the thermodynamic equilibrium properties for single-phase and two-phase systems using the canonical ensemble and the Gibbs ensemble, respectively. Comparing the simulation results with the experimental data showed that the implemented model has an excellent fit outperforming the standard LJ model. To demonstrate the strength of the proposed coupling in terms of computational time efficiency and numerical accuracy in fluid properties, various numerical experiments covering different compressible single-phase flow scenarios were conducted. The novelty in the introduced scheme is in allowing an efficient coupling of the molecular scale and Darcy scale in reservoir simulators. This leads to an accurate description of the thermodynamic behavior of the simulated reservoir fluids; consequently enhancing the confidence in the flow predictions in porous media.

  17. POD-Galerkin Model for Incompressible Single-Phase Flow in Porous Media

    KAUST Repository

    Wang, Yi

    2017-01-25

    Fast prediction modeling via proper orthogonal decomposition method combined with Galerkin projection is applied to incompressible single-phase fluid flow in porous media. Cases for different configurations of porous media, boundary conditions and problem scales are designed to examine the fidelity and robustness of the model. High precision (relative deviation 1.0 x 10(-4)% similar to 2.3 x 10(-1)%) and large acceleration (speed-up 880 similar to 98454 times) of POD model are found in these cases. Moreover, the computational time of POD model is quite insensitive to the complexity of problems. These results indicate POD model is especially suitable for large-scale complex problems in engineering.

  18. Single-phase and two phase bubbly flow in a T connection: theoretical and experimental study

    International Nuclear Information System (INIS)

    Hervieu, Eric

    1988-01-01

    The objective of this research thesis is to highlight the driving factors of the separation of phases of a bubbly flow in a T junction, and to develop a prediction model. In a first part, the author reports the rigorous formulation of equations averaged on the T volume. He shows that it's not possible to solve globally the problem with these equations. Then, he reports a bibliographical study on the modelling of a bubbly flow, and, based upon this study, highlights intrinsic characteristics of the flow, and explains its dynamic mechanisms. He reports the development of the theoretical model, and describes the experimental installation used to validate it. In the third part, he reports the study of the liquid-gas interaction, and presents the adopted approach: study of the behaviour of an isolated bubble within a single-phase flow. Experimentation is used to check theoretical predictions. Results are used to compute phase separation. The obtained results are again compared with experimental results to validate the global relevance of the model [fr

  19. Three-dimensional numerical modeling of turbulent single-phase and two-phase flow in curved pipes

    International Nuclear Information System (INIS)

    Xin, R.C.; Dong, Z.F.; Ebadian, M.A.

    1996-01-01

    In this study, three-dimensional single-phase and two-phase flows in curved pipes have been investigated numerically. Two different pipe configurations were computed. When the results of the single-phase flow simulation were compared with the experimental data, a fairly good agreement was achieved. A flow-developing process has been suggested in single-phase flow, in which the turbulence is stronger near the outer tube wall than near the inner tube wall. For two-phase flow, the Eulerian multiphase model was used to simulate the phase distribution of a three-dimensional gas-liquid bubble flow in curved pipe. The RNG/κ-ε turbulence model was used to determine the turbulence field. An inlet gas void fraction of 5 percent was simulated. The gas phase effects on the liquid phase flow velocity have been examined by comparing the results of single-phase flow and two-phase flow. The findings show that for the downward flow in the U bend, the gas concentrates at the inner portion of the cross section at φ = π/18 - π/6 in most cases. The results of the phase distribution simulation are compared to experimental observations qualitatively and topologically

  20. Natural circulation in single-phase and two-phase flow

    International Nuclear Information System (INIS)

    Cheung, F.B.; El-Genk, M.S.

    1989-01-01

    Natural circulation usually arises in a closed loop between a heat source and a heat sink were the fluid motion is driven by density difference. It may also occur in enclosures or cavities where the flow is induced primarily by temperature or concentration gradients within the fluid. The subject has recently received special attention by the heat transfer and nuclear reactor safety communities because of it importance to the areas of energy extraction, decay, heat removal in nuclear reactors, solar and geothermal heating, and cooling of electronic equipment. Although many new results and physical insights have been gained of the various natural circulation phenomena, a number of critical issues remain unresolved. These include, for example, transition from laminar to turbulent flow, buoyancy-induced turbulent flow modeling, change of flow regimes, flow field visualization, variable property effects, and flow instability. This symposium volume contains papers presented in the Natural Circulation in Single-Phase and Two-Phase Flow session at the 1989 Winter Annual Meeting of ASME, by authors from different countries including the United States, Japan, Canada, and Brazil. The papers deal with experimental and theoretical studies as well as state-of-the-art reviews, covering a broad spectrum of topics in natural circulation including: variable-conductance thermosyphons, microelectronic chip cooling, natural circulation in anisotropic porous media and in cavities, heat transfer in flat plat solar collectors, shutdown heat removal in fast reactors, cooling of light-water and heavy-water reactors. The breadth of papers contained in this volume clearly reflect the importance of the current interest in natural circulation as a means for passive cooling and heating

  1. Computational simulation of flow and heat transfer in single-phase natural circulation loops

    International Nuclear Information System (INIS)

    Pinheiro, Larissa Cunha

    2017-01-01

    Passive decay heat removal systems based on natural circulation are essential assets for the new Gen III+ nuclear power reactors and nuclear spent fuel pools. The aim of the present work is to study both laminar and turbulent flow and heat transfer in single-phase natural circulation systems through computational fluid dynamics simulations. The working fluid is considered to be incompressible with constant properties. In the way, the Boussinesq Natural Convection Hypothesis was applied. The model chosen for the turbulence closure problem was the k -- εThe commercial computational fluid dynamics code ANSYS CFX 15.0 was used to obtain the numerical solution of the governing equations. Two single-phase natural circulation circuits were studied, a 2D toroidal loop and a 3D rectangular loop, both with the same boundary conditions of: prescribed heat flux at the heater and fixed wall temperature at the cooler. The validation and verification was performed with the numerical data provided by DESRAYAUD et al. [1] and the experimental data provided by MISALE et al. [2] and KUMAR et al. [3]. An excellent agreement between the Reynolds number (Re) and the modified Grashof number (Gr_m), independently of Prandtl Pr number was observed. However, the convergence interval was observed to be variable with Pr, thus indicating that Pr is a stability governing parameter for natural circulation. Multiple steady states was obtained for Pr = 0,7. Finally, the effect of inclination was studied for the 3D circuit, both in-plane and out-of-plane inclinations were verified for the steady state laminar regime. As a conclusion, the Re for the out-of-plane inclination was in perfect agreement with the correlation found for the zero inclination system, while for the in-plane inclined system the results differ from that of the corresponding vertical loop. (author)

  2. Description of turbulent velocity and temperature fields of single phase flow through tight rod bundles

    International Nuclear Information System (INIS)

    Monir, C.

    1991-02-01

    A two-dimensional procedure, VANTACY-II, describing the turbulent velocity and temperature fields for single phase flow in tight lattices is presented and validated. The flow is assumed to be steady, incrompressible and hydraulic and thermal fully developed. First, the state of art of turbulent momentum and heat transport in tight lattices is documented. It is shown that there is a necessity for experimental investigations in the field of turbulent heat transport. The presented new procedure is based on the turbulence model VELASCO-TUBS by NEELEN. The numerical solution of the balance equations is done by the finite element method code VANTACY by KAISER. The validation of the new procedure VANTACY-II is done by comparing the numerically calculated data for the velocity and temperature fields and for natural mixing with the experimental data of SEALE. The comparison shows a good agreement of experimental and numerically computed data. The observed differences can be mainly attributed to the model of the turbulent PRANDTL number used in the new procedure. (orig.) [de

  3. Study of a new static mixer for two-phase and single-phase flows

    International Nuclear Information System (INIS)

    Foucrier, Michel

    1996-01-01

    The subject of this work is the study of OptimiX, a new static mixer, which is fully designed using an inverse method taking the final product features as input and based on the physical properties of the fluid to mix. The work began with the construction of an experimental loop which allowed us to qualify the mixer in two-phase and single-phase flow conditions. Next, a chemical method using a new test reaction and a micro-mixing model have been used to further characterise the mixer. This test reaction and the micro-mixing model have been developed by the 'Laboratoire des Sciences du Genie Chimique' of Nancy. The mixer OptimiX has proved to be an excellent device for both macro- and micro-mixing. The capability of this mixer to foster rapid reactions was also demonstrated. The well organised flow pattern of OptimiX, which results from its design, provides it with the unusual feature of being fully calculable. This work emphasizes the internal hydrodynamics of this mixer, justifies the universality of the design procedures, which validation is supported by the completed qualification work. (author) [fr

  4. The simulation of multidimensional multiphase flows

    International Nuclear Information System (INIS)

    Lahey, Richard T.

    2005-01-01

    This paper presents an assessment of various models which can be used for the multidimensional simulation of multiphase flows, such as may occur in nuclear reactors. In particular, a model appropriate for the direct numerical simulation (DNS) of multiphase flows and a mechanistically based, three-dimensional, four-field, turbulent, two-fluid computational multiphase fluid dynamics (CMFD) model are discussed. A two-fluid bubbly flow model, which was derived using potential flow theory, can be extended to other flow regimes, but this will normally involve ensemble-averaging the results from direct numerical simulations (DNS) of various flow regimes to provide the detailed numerical data necessary for the development of flow-regime-specific interfacial and wall closure laws

  5. Single phase flow pressure drop and heat transfer in rectangular metallic microchannels

    International Nuclear Information System (INIS)

    Sahar, Amirah M.; Özdemir, Mehmed R.; Fayyadh, Ekhlas M.; Wissink, Jan; Mahmoud, Mohamed M.; Karayiannis, Tassos G.

    2016-01-01

    Numerical simulations were performed using Fluent 14.5 to investigate single phase flow and conjugate heat transfer in copper rectangular microchannels. Two different configurations were simulated: (1) single channel with hydraulic diameter of 0.561 mm and (2) multichannel configuration consisting of inlet and outlet manifolds and 25 channels with hydraulic diameter of 0.409 mm. In the single channel configuration, four numerical models were investigated namely, 2D thin-wall, 3D thin-wall (heated from the bottom), 3D thin-wall (three side heated) and 3D full conjugate models. In the multichannel configuration, only 3D full conjugate model was used. The simulation results of the single channel configuration were validated using experimental data of water as a test fluid while the results of the multichannel configuration were validated using experimental data of R134a refrigerant. In the multichannel configuration, flow distribution among the channels was also investigated. The 3D thin-wall model simulation was conducted at thermal boundary conditions similar to those assumed in the experimental data reduction (uniform heat flux) and showed excellent agreement with the experimental data. However, the results of the 3D full conjugate model demonstrated that there is a significant conjugate effect and the heat flux is not uniformly distributed along the channel resulting in significant deviation compared to the experimental data (more than 50%). Also, the results demonstrated that there is a significant difference between the 3D thin-wall and full conjugate models. The simulation of the multichannel configuration with an inlet manifold having gradual decrease in cross sectional area achieved very reasonable uniform flow distribution among the channels which will provide uniform heat transfer rates across the base of the microchannels.

  6. Prediction of effective friction factors for single-phase flow in horizontal microfin tubes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H S; Rose, J W [University of London (United Kingdom). Queen Mary, Department of Engineering

    2004-12-01

    An experimental database, covering a wide range of tube and fin geometric dimensions, Reynolds number and including data for water, R11, and ethylene glycol has been compiled for friction factor for single-phase flow in spirally grooved, horizontal microfin tubes. The tubes (21 in all) had inside diameter at the fin root between 6.46 and 24.13 mm, fin height between 0.13 and 0.47 mm, fin pitch between 0.32 and 1.15 mm, and helix angle between 17 and 45 degrees. The Reynolds number ranged from 2.0x10{sup 3} to 1.63x10{sup 5}. Six earlier friction factor correlations, each based on restricted data sets, have been compared with the database as a whole. None was found to be in good agreement with all of the data. The Jensen and Vlakancic correlation was found to be the best and represents the database within {+-}21%. (author)

  7. Experimental study on the convective heat transfer enhancement in single-phase steam flow by a support grid

    International Nuclear Information System (INIS)

    Kim, Byoung Jae; Kim, Kihwan; Kim, Dong-Eok; Youn, Young-Jung; Park, Jong-Kuk; Moon, Sang-Ki; Song, Chul-Hwa

    2014-01-01

    Highlights: • The convective heat transfer enhancement by support grids is investigated. • Experiments were performed in a square array 2 × 2 rod bundle. • The enhancement was affected not only by the blockage ratio also by the Reynolds number. • For low Reynolds numbers, the enhancement depends on the Reynolds number (Re). • For high Reynolds numbers, the enhancement is nearly independent of Re. - Abstract: Single-phase flow occurs in the fuel rod bundle of a pressurized water reactor, during the normal operation period or at the early stage of the reflood phase in a loss-of-coolant accident scenario. In the former period, the flow is single-phase water flow, but in the latter case, the flow is single-phase steam flow. Support grids are required to maintain a proper geometry configuration of fuel rods within nuclear fuel assemblies. This study was conducted to elucidate the effects of support grids on the convective heat transfer in single-phase steam flow. Experiments were made in a square array 2 × 2 rod bundle. The four electrically-heating rods were maintained by support grids with mixing vanes creating a swirl flow. Two types of support grids were considered in this study. The two types are geometrically similar except the blockage ratio by different mixing vane angles. For all test runs, 2 kW power was supplied to each rod. The working fluid was superheated steam with Re = 2,301–39,594. The axial profile of the rod surface temperatures was measured, and the convective heat transfer enhancement by the presence of the support grids was examined. The peak heat transfer enhancement was a function of not only the blockage ratio but also the Reynolds number. Given the same blockage ratio, the heat transfer enhancement was sensitive to the Reynolds number in laminar flow, whereas it was nearly independent of the Reynolds number in turbulent flow

  8. Theoretical modelling and experimental investigation of single-phase and two-phase flow division at a tee-junction

    International Nuclear Information System (INIS)

    Lemonnier, H.; Hervieu, E.

    1991-01-01

    Phase separation in a tee-junction is modelled in the particular case of bubbly-flow. The model is based on a two-dimensional approach and hence, uses local equations. The first step consists in modelling the single-phase flow in the tee-junction. The free streamline theory is used to predict the flow of the continuous phase. The two recirculation zones which are presented in this case are predicted by the model. The second step consists in predicting the gas bubble paths as a result of the actions of the single-phase flow. Finally, the trajectories of gas bubbles are used to predict the separation characteristics of the tee-junction. Each step of the modelling procedure has been carefully tested by an in-depth experimental investigation. Excellent quantitative agreement is obtained between experimental results and model predictions. Moreover, the phase separation phenomenon is found to be clearly described by the model. (orig.)

  9. Multilevel markov chain monte carlo method for high-contrast single-phase flow problems

    KAUST Repository

    Efendiev, Yalchin R.

    2014-12-19

    In this paper we propose a general framework for the uncertainty quantification of quantities of interest for high-contrast single-phase flow problems. It is based on the generalized multiscale finite element method (GMsFEM) and multilevel Monte Carlo (MLMC) methods. The former provides a hierarchy of approximations of different resolution, whereas the latter gives an efficient way to estimate quantities of interest using samples on different levels. The number of basis functions in the online GMsFEM stage can be varied to determine the solution resolution and the computational cost, and to efficiently generate samples at different levels. In particular, it is cheap to generate samples on coarse grids but with low resolution, and it is expensive to generate samples on fine grids with high accuracy. By suitably choosing the number of samples at different levels, one can leverage the expensive computation in larger fine-grid spaces toward smaller coarse-grid spaces, while retaining the accuracy of the final Monte Carlo estimate. Further, we describe a multilevel Markov chain Monte Carlo method, which sequentially screens the proposal with different levels of approximations and reduces the number of evaluations required on fine grids, while combining the samples at different levels to arrive at an accurate estimate. The framework seamlessly integrates the multiscale features of the GMsFEM with the multilevel feature of the MLMC methods following the work in [26], and our numerical experiments illustrate its efficiency and accuracy in comparison with standard Monte Carlo estimates. © Global Science Press Limited 2015.

  10. Some developments and applications of LES of single phase turbulent flows for nuclear industry

    International Nuclear Information System (INIS)

    Frederic Ducros; Valerie Barthel; Ulrich Bieder; Alexandre Chatelain; Younes Benarafa; Olivier Cioni; Gauthier Fauchet; Philippe Emonot; Patrick Quemere; Bernard Menant; Nicolas Tauveron; Simone Vandroux; Christophe Calvin

    2005-01-01

    Full text of publication follows: The turbulence modelling is an important issue concerning the predictive capability of the CFD codes applied to nuclear reactor safety (NRS), in particular for single-phase flows. Common features of these unsteady high Reynolds number turbulent flows are various regimes (laminar, transitional, fully turbulent) developing in arbitrary complex geometries involving a large extend of standard flow configurations (attached and detached boundary layers, mixing layers, jets in cavity, in cross flows, jet impingement) eventually submitted to buoyancy forces, to dilatation effects and leading to mixing of constituents and temperatures. NRS issues are most of the time related to the eventual knowledge of parietal quantities such as temperature (mean and fluctuating), leading to consider the wall region as a crucial one and to deal with coupled problems. All these features can lead to consider different approaches for turbulence modelling: more or less standard 'Reynolds Average Navier-Stokes equations' closures, Large Eddy Simulations, both of them considered with or without wall functions, with or without large implicit time stepping etc. The development and industrialization of LES as a target of providing 'reference simulations' for NRS are parts of the Trio-U project, developed at CEA for several years [1]. First, the paper presents the current status of LES implementation and some insights on the R and D effort concerning the turbulence modelling. The R and D strategy will be introduced as a result of both the extra-nuclear community know-how on LES and several years of applications of LES for nuclear issues at CEA. It will be shown that LES can be considered as a good candidate to deal with the previous mentioned issues. A large emphasis will be devoted to the R and D on approximate wall conditions, including first the checking of the consistency of standard and advanced wall conditions with LES approach, second specific works dealing

  11. Analysis of free-surface flows through energy considerations: Single-phase versus two-phase modeling.

    Science.gov (United States)

    Marrone, Salvatore; Colagrossi, Andrea; Di Mascio, Andrea; Le Touzé, David

    2016-05-01

    The study of energetic free-surface flows is challenging because of the large range of interface scales involved due to multiple fragmentations and reconnections of the air-water interface with the formation of drops and bubbles. Because of their complexity the investigation of such phenomena through numerical simulation largely increased during recent years. Actually, in the last decades different numerical models have been developed to study these flows, especially in the context of particle methods. In the latter a single-phase approximation is usually adopted to reduce the computational costs and the model complexity. While it is well known that the role of air largely affects the local flow evolution, it is still not clear whether this single-phase approximation is able to predict global flow features like the evolution of the global mechanical energy dissipation. The present work is dedicated to this topic through the study of a selected problem simulated with both single-phase and two-phase models. It is shown that, interestingly, even though flow evolutions are different, energy evolutions can be similar when including or not the presence of air. This is remarkable since, in the problem considered, with the two-phase model about half of the energy is lost in the air phase while in the one-phase model the energy is mainly dissipated by cavity collapses.

  12. Multi-scale Modeling of Compressible Single-phase Flow in Porous Media using Molecular Simulation

    KAUST Repository

    Saad, Ahmed Mohamed

    2016-01-01

    potential model that accounts for the molecular quadrupole moment of fluids with non-spherical molecules such as CO2. The potential model was used to simulate the thermodynamic equilibrium properties for single-phase and two-phase systems using the canonical

  13. RELAP-7 Progress Report: A Mathematical Model for 1-D Compressible, Single-Phase Flow Through a Branching Junction

    Energy Technology Data Exchange (ETDEWEB)

    Berry, R. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-08-14

    In the literature, the abundance of pipe network junction models, as well as inclusion of dissipative losses between connected pipes with loss coefficients, has been treated using the incompressible flow assumption of constant density. This approach is fundamentally, physically wrong for compressible flow with density change. This report introduces a mathematical modeling approach for general junctions in piping network systems for which the transient flows are compressible and single-phase. The junction could be as simple as a 1-pipe input and 1-pipe output with differing pipe cross-sectional areas for which a dissipative loss is necessary, or it could include an active component, between an inlet pipe and an outlet pipe, such as a pump or turbine. In this report, discussion will be limited to the former. A more general branching junction connecting an arbitrary number of pipes with transient, 1-D compressible single-phase flows is also presented. These models will be developed in a manner consistent with the use of a general equation of state like, for example, the recent Spline-Based Table Look-up method [1] for incorporating the IAPWS-95 formulation [2] to give accurate and efficient calculations for properties for water and steam with RELAP-7 [3].

  14. An investigation of subchannel analysis models for single-phase and two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dae Hyun

    1996-01-01

    The governing equations and lateral transport modelings of subchannel analysis code, which is the most widely used tool for the analysis of thermal hydraulics fields in reactor cores, have been thoroughly investigated in this study. The procedure for the derivation of subchannel integral balance equations from the local instantaneous phase equations was investigated by stages. The characteristics of governing equations according to the treatment of phase velocity were studies, and the equations based on the drift-flux equilibrium formulation have been derived. Turbulent mixing and void drift modeling, which affect considerably to the accuracy of subchannel analysis code, have been reviewed. In addition, some representative modelings of single-phase and two-phase turbulent mixing models have been introduced. (author). 5 tabs., 4 figs., 16 refs.

  15. An experimental and numerical study of developed single phase axial turbulent flow in a smooth rod bundle

    International Nuclear Information System (INIS)

    Hooper, J.D.

    1977-01-01

    A combined experimental and numerical model of a turbulent single phase coolant, flowing axially along the fuel pins of a nuclear reactor, was developed. The experimental rig represented two interconnected subchannels of a square array at a pitch/diameter ratio of 1.193. Air was the working fluid, and measurements were made of the mean radial velocity profiles, wall shear stress variation, turbulence velocity spectra and intensities. The numerically predicted wall shear distribution and mean velocity profiles, obtained using an empirical two-dimensional mixing length and eddy diffusivity concept to represent fluid turbulence, showed good agreement with the experimental results. (Author)

  16. Numerical simulation of multi-dimensional two-phase flow based on flux vector splitting

    Energy Technology Data Exchange (ETDEWEB)

    Staedtke, H.; Franchello, G.; Worth, B. [Joint Research Centre - Ispra Establishment (Italy)

    1995-09-01

    This paper describes a new approach to the numerical simulation of transient, multidimensional two-phase flow. The development is based on a fully hyperbolic two-fluid model of two-phase flow using separated conservation equations for the two phases. Features of the new model include the existence of real eigenvalues, and a complete set of independent eigenvectors which can be expressed algebraically in terms of the major dependent flow parameters. This facilitates the application of numerical techniques specifically developed for high speed single-phase gas flows which combine signal propagation along characteristic lines with the conservation property with respect to mass, momentum and energy. Advantages of the new model for the numerical simulation of one- and two- dimensional two-phase flow are discussed.

  17. A generalised correlation for the steady state flow in single-phase natural circulation loops

    International Nuclear Information System (INIS)

    Vijayan, P.K.; Bade, M.H.; Saha, D.; Sinha, R.K.; Venkat Raj, V.

    2000-08-01

    To establish the heat transport capability of natural circulation loops, it is essential to know the flow rate. A generalized correlation for steady state flow valid for uniform and non-uniform diameter loops has been theoretically derived

  18. Experimental investigation of single-phase flow friction in narrow annuli

    International Nuclear Information System (INIS)

    Sun Zhongning; Sun Licheng; Yan Changqi; Huang Weitang

    2004-01-01

    Experimental investigations of water flow friction in horizontal narrow annuli, with gap sizes of 0.57-3.08 mm, were carried out. The tests involved both laminar and turbulent flow regimes. The critical Reynolds number transited from laminar flow to turbulent flow was examed and observed. The friction factors obtained from experiments were compared with conventional correlations evaluated results, and the influences of channel scale and eccentricity on flow friction characteristics were discussed. It was found that fluid friction in turbulent regime could be predicted by conventional correlations with satisfied degree, but both values and varying trend of that vs. r i /r o in laminar regime were obviously departure from theoretically results when the gap sizes were less than 2.0 mm, and the critical Reynolds number was slightly less then 2300 when the gap sizes were less than 1.0 mm

  19. A residual-based a posteriori error estimator for single-phase Darcy flow in fractured porous media

    KAUST Repository

    Chen, Huangxin

    2016-12-09

    In this paper we develop an a posteriori error estimator for a mixed finite element method for single-phase Darcy flow in a two-dimensional fractured porous media. The discrete fracture model is applied to model the fractures by one-dimensional fractures in a two-dimensional domain. We consider Raviart–Thomas mixed finite element method for the approximation of the coupled Darcy flows in the fractures and the surrounding porous media. We derive a robust residual-based a posteriori error estimator for the problem with non-intersecting fractures. The reliability and efficiency of the a posteriori error estimator are established for the error measured in an energy norm. Numerical results verifying the robustness of the proposed a posteriori error estimator are given. Moreover, our numerical results indicate that the a posteriori error estimator also works well for the problem with intersecting fractures.

  20. Flow dynamic study of a single-phase square NCL using recurrence ...

    Indian Academy of Sciences (India)

    Department of Mechanical Engineering, Jadavpur University, Kolkata 700 032, India ... With increase in heater power, a change in loop fluid flow dynamics has been observed. For ... reactor core cooling, solar water heaters, gas turbine.

  1. Numerical modelling of single-phase flow in rough fractures with contacts

    Science.gov (United States)

    Olkiewicz, Piotr; Dabrowski, Marcin

    2017-04-01

    Fracture flow may dominate in rocks with low porosity and it can accompany both industrial and natural processes. Typical examples of such processes are natural flows in crystalline rocks and industrial flows in oil and gas production systems or hydraulic fracturing. Fracture flow provides an important mechanism for transporting mass and energy. The distribution of the apertures of fracture and contact area are the key parameters with regard to the fracture transmissivity. We use the method of correlated random fields [Mourzenko, 1996] to generate synthetic fracture geometry in 3D. The flow of an incompressible Newtonian viscous fluid in geological formation can be approximated by the Stokes, the Stokes-Brinkman or the Reynolds models. We use our own implementation of the finite element method based on MILAMIN [Dabrowski, 2008] to solve governing partial differential equation over domain. We compare the Stokes, the Stokes-Brinkamn and the Reynolds models for fracture flow based on systematic numerical simulations for a wide range of geometric parameters. Mismatch between the Reynolds and the Stokes models becomes significant with increasing fracture roughness or contact area. The Stokes-Brinkman model is more accurate than Reynolds models due to additional Laplacian term, which allows to fulfil no-slip boundary condition. We present condition when the Reynolds and the Stokes-Brinkman models are valid. In the last three decades many authors used the Reynolds equation for studying fracture flow because of its simplicity. We recommend using the Stokes-Brinkman model for fracture flow, which allows to fulfil no-slip boundary condition on asperities boundary and is more accurate for rough fractures than the Reynolds model.

  2. Pressure drop and heat transfer characteristics for single-phase developing flow of water in rectangular microchannels

    International Nuclear Information System (INIS)

    Mirmanto; Kenning, D B R; Lewis, J S; Karayiannis, T G

    2012-01-01

    Experiments were conducted to investigate the pressure drop and heat transfer characteristics of single-phase flow of de-ionized water in single copper microchannels of hydraulic diameters 0.438 mm, 0.561 mm and 0.635 mm. The channel length was 62 mm. The experimental conditions covered a range of mass flux from 500 to 5000 kg/m 2 s in the laminar, transitional and low Reynolds number turbulent regimes. Pressure drop was measured for adiabatic flows with fluid inlet temperatures of 30°C, 60°C and 90°C. In the heat transfer tests, the heat flux ranged from 256 kW/m 2 to 519 kW/m 2 . Friction factors and Nusselt numbers determined from the measurements were higher than for fully-developed conditions, but in reasonable agreement with predictions made using published solutions for hydrodynamically and thermally developing flow. When entrance effects, experimental uncertainties, heat losses, inlet and exit losses, thermal boundary conditions and departure from laminar flow were considered, the results indicate that equations developed for flow and heat transfer in conventional size channels are applicable for water flows in microchannels of these sizes.

  3. Experimental investigation on single-phase pressure losses in nuclear debris beds: Identification of flow regimes and effective diameter

    Energy Technology Data Exchange (ETDEWEB)

    Clavier, R., E-mail: remi.clavier@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN) – PSN-RES/SEREX/LE2M, Cadarache bât. 327, 13115 St Paul-lez-Durance (France); Chikhi, N., E-mail: nourdine.chikhi@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN) – PSN-RES/SEREX/LE2M, Cadarache bât. 327, 13115 St Paul-lez-Durance (France); Fichot, F. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN) – PSN-RES/SAG/LEPC, Cadarache bât. 700, 13115 St Paul-lez-Durance (France); Quintard, M. [Université de Toulouse – INPT – UPS – Institut de Mécanique des Fluides de Toulouse (IMFT), Allée Camille Soula, F-31400 Toulouse (France); CNRS – IMFT, F-31400 Toulouse (France)

    2015-10-15

    Highlights: • Single-phase pressure drops versus flow rates in particle beds are measured. • Conditions are representative of the reflooding of a nuclear fuel debris bed. • Darcy, weak inertial, strong inertial and weak turbulent regimes are observed. • A Darcy–Forchheimer law is found to be a good approximation in this domain. • A predictive correlation is derived from new experimental data. - Abstract: During a severe nuclear power plant accident, the degradation of the reactor core can lead to the formation of debris beds. The main accident management procedure consists in injecting water inside the reactor vessel. Nevertheless, large uncertainties remain regarding the coolability of such debris beds. Motivated by the reduction of these uncertainties, experiments have been conducted on the CALIDE facility in order to investigate single-phase pressure losses in representative debris beds. In this paper, these results are presented and analyzed in order to identify a simple single-phase flow pressure loss correlation for debris-bed-like particle beds in reflooding conditions, which cover Darcean to Weakly Turbulent flow regimes. The first part of this work is dedicated to study macro-scale pressure losses generated by debris-bed-like particle beds, i.e., high sphericity (>80%) particle beds with relatively small size dispersion (from 1 mm to 10 mm). A Darcy–Forchheimer law, involving the sum of a linear term and a quadratic deviation, with respect to filtration velocity, has been found to be relevant to describe this behavior in Darcy, Strong Inertial and Weak Turbulent regimes. It has also been observed that, in a restricted domain (Re = 15 to Re = 30) between Darcy and Weak Inertial regimes, deviation is better described by a cubic term, which corresponds to the so-called Weak Inertial regime. The second part of this work aims at identifying expressions for coefficients of linear and quadratic terms in Darcy–Forchheimer law, in order to obtain a

  4. Effect of completion geometry and phasing on single-phase liquid flow behaviour in horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, H.; Sarica, C.; Brill, P. [Tulsa Unov., OK (United States)

    1998-12-31

    The effects of completion geometries and the phasing and density of injection openings in horizontal wells was studied. A total of 1,257 tests were conducted for no fluid injections, no main flow at the test section inlet, and with fluid injection for Reynolds numbers ranging from 4,000 to 60,000 and for influx to main flow rate ratios ranging from 1/5 to 1/2000. Results demonstrated the dramatic effects of completion geometry, phasing density, Reynolds number and main flow rate on the pressure behaviour and therefore on the production behaviour of the well. A general friction factor expression for horizontal wells with multiple injection openings was developed based on the conservation of mass and momentum and using a commercial Computational Fluid Dynamics (CFD) computer program to determine the length of the flow developing region in a horizontal well. A field example is presented to show the importance of using the proper friction factor correlation to calculate the pressure drop in a horizontal well. 32 refs., 4 tabs., 20 figs.

  5. Unsteady single-phase natural circulation flow mixing prediction using CATHARE three-dimensional capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Salah, Anis Bousbia; Vlassenbroeck, Jacques [Bel V - Subsidiary of the Belgian Federal Agency for Nuclear Contro, Brussels (Belize)

    2017-04-15

    Coolant mixing under natural circulation flow regime constitutes a key parameter that may play a role in the course of an accidental transient in a nuclear pressurized water reactor. This issue has motivated some experimental investigations carried out within the OECD/NEA PKL projects. The aim was to assess the coolant mixing phenomenon in the reactor pressure vessel downcomer and the core lower plenum under several asymmetric steady and unsteady flow conditions, and to provide experimental data for code validations. Former studies addressed the mixing phenomenon using, on the one hand, one-dimensional computational approaches with cross flows that are not fully validated under transient conditions and, on the other hand, expensive computational fluid dynamic tools that are not always justified for large-scale macroscopic phenomena. In the current framework, an unsteady coolant mixing experiment carried out in the Rossendorf coolant mixing test facility is simulated using the three-dimensional porous media capabilities of the thermal–hydraulic system CATHARE code. The current study allows highlighting the current capabilities of these codes and their suitability for reproducing the main phenomena occurring during asymmetric transient natural circulation mixing conditions.

  6. On-line monitoring system development for single-phase flow accelerated corrosion

    International Nuclear Information System (INIS)

    Lee, Na Young; Lee, Seung Gi; Ryu, Kyung Ha; Hwang, Il Soon

    2007-01-01

    Aged nuclear piping has been reported to undergo corrosion-induced accelerated failures, often without giving signatures to current inspection campaigns. Therefore, we need diverse sensors which can cover a wide area in an on-line application. We suggest an integrated approach to monitor the flow accelerated corrosion (FAC) susceptible piping. Since FAC is a combined phenomenon, we need to monitor as many parameters as possible and that cover wide area, since we do not know where the FAC occurs. For this purpose, we introduce the wearing rate model which focuses on the electrochemical parameters. Using this model, we can predict the wearing rate and then compare testing results. Through analysis we identified feasibility and then developed electrochemical sensors for high temperature application; we also introduced a mechanical monitoring system which is still under development. To support the validation of the monitored results, we adopted high temperature ultrasonic transducer (UT), which shows good resolution in the testing environment. As such, all the monitored results can be compared in terms of thickness. Our validation tests demonstrated the feasibility of sensors. To support direct thickness measurement for a wide-area, the direct current potential drop (DCPD) method will be researched to integrate into the developed framework

  7. Investigations on mixing phenomena in single-phase flow in a T-junction geometry

    International Nuclear Information System (INIS)

    Walker, C.; Simiano, M.; Zboray, R.; Prasser, H.-M.

    2009-01-01

    The paper deals with T-junction mixing experiments carried out with wire-mesh sensors. The mixing of coolant streams of different temperature in pipe junctions leads to temperature fluctuations that may cause thermal fatigue in the pipe wall. This is practical background for an increased interest in measuring and predicting the transient flow field and the turbulent mixing pattern downstream of a T-junction. Experiments were carried out at a perpendicular connection of two pipes of 51 mm inner diameter. The straight and the side branches were supplied by water of different electrical conductivity, which replaced the temperature in the thermal mixing process. A set of three wire-mesh sensors with a grid of 16 x 16 measuring points each was used to record conductivity distributions downstream of the T-junction. Besides the measurement of profiles of the time averaged mixing scalar over extended measuring domains, the high resolution in time and space of the mesh sensors allow a statistic characterization of the stochastic fluctuations of the mixing scalar in a wide range of frequencies. Information on the scale of turbulent mixing patterns is obtained by cross-correlating the signal fluctuations recorded at different locations within the measuring plane of a sensor

  8. Single-phase coolant flow CFD simulations inside the CANDU channel for the 37 and the 43 elements bundles

    International Nuclear Information System (INIS)

    Pauna, E.; Olteanu, G.; Catana, A.

    2013-01-01

    In this paper, a Computation Fluid Dynamics (CFD) simulation was performed in order to find the flow conditions in the CANDU Channel for the standard (37 elements) and the new designed bundle (43 elements) using the CFD Code S aturne software. Due to the fact that the code is a single-phase one it was considered an inlet temperature of 250 O C, a flow rate of 24.17 kg/s, an outlet pressure of 10.3 MPa and a linear power of 800 kW/m. The flow conditions were achieved by using a CFD typical chain of steps which was performed starting from preprocessing (geometry, mesh and boundary conditions), through solver and post-processing. Open Source platform (Salome-Meca geometry and mesh modules, the Code S aturne solver, Paraview and Visit for post-processing) were used as computational tool kit and an unsteady state was considered. Some simplifications were considered: the tube creep was not taken into account and all the bundles were considered aligned. The three dimensional thermal-hydraulic distributions of the temperature, pressure and velocity parameters offered information for the geometry comparison and the results were in agreement with some experimental data. CFD analysis results provided valuable data regarding the thermal-hydraulic operating conditions inside the CANDU reactor channel. (authors)

  9. Accurate prediction of complex free surface flow around a high speed craft using a single-phase level set method

    Science.gov (United States)

    Broglia, Riccardo; Durante, Danilo

    2017-11-01

    This paper focuses on the analysis of a challenging free surface flow problem involving a surface vessel moving at high speeds, or planing. The investigation is performed using a general purpose high Reynolds free surface solver developed at CNR-INSEAN. The methodology is based on a second order finite volume discretization of the unsteady Reynolds-averaged Navier-Stokes equations (Di Mascio et al. in A second order Godunov—type scheme for naval hydrodynamics, Kluwer Academic/Plenum Publishers, Dordrecht, pp 253-261, 2001; Proceedings of 16th international offshore and polar engineering conference, San Francisco, CA, USA, 2006; J Mar Sci Technol 14:19-29, 2009); air/water interface dynamics is accurately modeled by a non standard level set approach (Di Mascio et al. in Comput Fluids 36(5):868-886, 2007a), known as the single-phase level set method. In this algorithm the governing equations are solved only in the water phase, whereas the numerical domain in the air phase is used for a suitable extension of the fluid dynamic variables. The level set function is used to track the free surface evolution; dynamic boundary conditions are enforced directly on the interface. This approach allows to accurately predict the evolution of the free surface even in the presence of violent breaking waves phenomena, maintaining the interface sharp, without any need to smear out the fluid properties across the two phases. This paper is aimed at the prediction of the complex free-surface flow field generated by a deep-V planing boat at medium and high Froude numbers (from 0.6 up to 1.2). In the present work, the planing hull is treated as a two-degree-of-freedom rigid object. Flow field is characterized by the presence of thin water sheets, several energetic breaking waves and plungings. The computational results include convergence of the trim angle, sinkage and resistance under grid refinement; high-quality experimental data are used for the purposes of validation, allowing to

  10. General correlations for pressure drop and heat transfer for single-phase turbulent flow in internally ribbed tubes

    International Nuclear Information System (INIS)

    Ravigururajan, T.S.; Bergles, A.E.

    1985-01-01

    General correlations for friction factors and heat transfer coefficients for single-phase turbulent flow in internally ribbed tubes are presented. Data from previous investigations are gathered for a wide range of tube parameters with e/d: 0.01 to 0.2; p/d: 0.1 to 7.0; α/90: 0.3 to 1.0, and flow parameters Re: 5000 to 250,000 and Pr: 0.66 to 37.6. The data were applied to a linear model to get normalized correlations that were then modified to fit tubes with extremely small parametric values. A shape function was included in the friction correlation to account for different rib profiles. The friction correlation predicts 96% of the data base to within +. 50% and 77% of the data base to within +. 20%. Corresponding figures for the heat transfer correlation are 99% and 69%. The present correlations are superior, for this extensive data base, to those presented by other investigators

  11. Multi-dimensional two-fluid flow computation. An overview

    International Nuclear Information System (INIS)

    Carver, M.B.

    1992-01-01

    This paper discusses a repertoire of three-dimensional computer programs developed to perform critical analysis of single-phase, two-phase and multi-fluid flow in reactor components. The basic numerical approach to solving the governing equations common to all the codes is presented and the additional constitutive relationships required for closure are discussed. Particular applications are presented for a number of computer codes. (author). 12 refs

  12. Experimental and numerical study on single-phase flow characteristics of natural circulation system with heated narrow rectangular channel under rolling motion condition

    International Nuclear Information System (INIS)

    Yu, Shengzhi; Wang, Jianjun; Yan, Ming; Yan, Changqi; Cao, Xiaxin

    2017-01-01

    Highlights: • The phasic difference between flow rate and frictional pressure drop is negligible. • Effect mechanism of rolling motion on flow behaviors of NC is interpreted. • The startup model is proposed and verified. • Steady-state correlations are feasible to predict transient resistance. • The in-house code can simulate instantaneous flow behaviors of NC correctly. - Abstract: Effects of rolling motion on flow characteristics in a natural circulation system were investigated experimentally and numerically. The numerical results from validated code were mainly used to provide detailed information for the discussion and analysis of experimental results. The results indicate that under rolling motion condition, the phasic difference between flow rate and frictional pressure drop of narrow rectangular channel is negligible. Angular acceleration is the eigenvalue for the effects of rolling motion on flow rate under single-phase natural circulation condition. When angular acceleration is approximately equal, even though either the angle or the period of rolling motion is different, peak, trough and time-averaged values of flow rate are approximately equal. Under rolling motion and single-phase natural circulation conditions, the phenomenon that dimensionless time-averaged mass flow rate is smaller than that under steady state condition is controlled by the nonlinear relationship between mass flow rate and the resistance of loop. The factor also causes the result that the absolute difference of dimensionless flow rate between peak and steady state is smaller than that between trough and steady state. The startup model which is proposed in present paper can be used to predict the flow characteristics of single-phase natural circulation system at startup stage of rolling motion favorably. The self-developed code can simulate instantaneous flow characteristics of single-phase natural circulation system under rolling motion and steady state conditions

  13. Single-phase liquid flow forced convection under a nearly uniform heat flux boundary condition in microchannels

    KAUST Repository

    Lee, Man; Lee, Yi-Kuen; Zohar, Yitshak

    2012-01-01

    A microchannel heat sink, integrated with pressure and temperature microsensors, is utilized to study single-phase liquid flow forced convection under a uniform heat flux boundary condition. Utilizing a waferbond-and-etch- back technology, the heat source, temperature and pressure sensors are encapsulated in a thin composite membrane capping the microchannels, thus allowing experimentally good control of the thermal boundary conditions. A three-dimensional physical model has been constructed to facilitate numerical simulations of the heat flux distribution. The results indicate that upstream the cold working fluid absorbs heat, while, within the current operating conditions, downstream the warmer working fluid releases heat. The Nusselt number is computed numerically and compared with experimental and analytical results. The wall Nusselt number in a microchannel can be estimated using classical analytical solutions only over a limited range of the Reynolds number, Re: both the top and bottom Nusselt numbers approach 4 for Re < 1, while the top and bottom Nusselt numbers approach 0 and 5.3, respectively, for Re > 100. The experimentally estimated Nusselt number for forced convection is highly sensitive to the location of the temperature measurements used in calculating the Nusselt number. © 2012 IOP Publishing Ltd.

  14. Single-phase liquid flow forced convection under a nearly uniform heat flux boundary condition in microchannels

    KAUST Repository

    Lee, Man

    2012-02-22

    A microchannel heat sink, integrated with pressure and temperature microsensors, is utilized to study single-phase liquid flow forced convection under a uniform heat flux boundary condition. Utilizing a waferbond-and-etch- back technology, the heat source, temperature and pressure sensors are encapsulated in a thin composite membrane capping the microchannels, thus allowing experimentally good control of the thermal boundary conditions. A three-dimensional physical model has been constructed to facilitate numerical simulations of the heat flux distribution. The results indicate that upstream the cold working fluid absorbs heat, while, within the current operating conditions, downstream the warmer working fluid releases heat. The Nusselt number is computed numerically and compared with experimental and analytical results. The wall Nusselt number in a microchannel can be estimated using classical analytical solutions only over a limited range of the Reynolds number, Re: both the top and bottom Nusselt numbers approach 4 for Re < 1, while the top and bottom Nusselt numbers approach 0 and 5.3, respectively, for Re > 100. The experimentally estimated Nusselt number for forced convection is highly sensitive to the location of the temperature measurements used in calculating the Nusselt number. © 2012 IOP Publishing Ltd.

  15. Computational fluid dynamics simulations of single-phase flow in a filter-press flow reactor having a stack of three cells

    International Nuclear Information System (INIS)

    Sandoval, Miguel A.; Fuentes, Rosalba; Walsh, Frank C.; Nava, José L.; Ponce de León, Carlos

    2016-01-01

    Highlights: • Computational fluid dynamic simulations in a filter-press stack of three cells. • The fluid velocity was different in each cell due to local turbulence. • The upper cell link pipe of the filter press cell acts as a fluid mixer. • The fluid behaviour tends towards a continuous mixing flow pattern. • Close agreement between simulations and experimental data was achieved. - Abstract: Computational fluid dynamics (CFD) simulations were carried out for single-phase flow in a pre-pilot filter press flow reactor with a stack of three cells. Velocity profiles and streamlines were obtained by solving the Reynolds-Averaged Navier-Stokes (RANS) equations with a standard k − ε turbulence model. The flow behaviour shows the appearance of jet flow at the entrance to each cell. At lengths from 12 to 15 cm along the cells channels, a plug flow pattern is developed at all mean linear flow rates studied here, 1.2 ≤ u ≤ 2.1 cm s −1 . The magnitude of the velocity profiles in each cell was different, due to the turbulence generated by the change of flow direction in the last fluid manifold. Residence time distribution (RTD) simulations indicated that the fluid behaviour tends towards a continuous mixing flow pattern, owing to flow at the output of each cell across the upper cell link pipe, which acts as a mixer. Close agreement between simulations and experimental RTD was obtained.

  16. On the use of nuclear magnetic resonance to measure velocity and its fluctuations in single-phase and two-phase flows

    International Nuclear Information System (INIS)

    Jullien, Pierre

    2013-01-01

    This work deals with the use of NMR to measure velocity and its fluctuations in single-phase and two-phase flows. PGSE and imaging sequences have been used to determine the velocity distributions in upward turbulent pipe flows. NMR signals have been analysed in detail and the main artifacts have been characterized and suppressed. The measuring technique has been validated by comparison with a reference published data. A first comparison to 'homemade' hot-wire results in single-phase flow of water is presented and is very promising. Preliminary NMR results in two-phase flows emphasize the interest of NMR to benchmark velocity measurements in two-phase flows. Prospects of research have been identified, which will pave the way for the sequel of this research. (author) [fr

  17. Fluid-elastic Instability of Helical Tubes Subjected to Single-Phase External Flow and Two-Phase Internal Flow

    International Nuclear Information System (INIS)

    Jong Chull Jo; Myung Jo Jhung; Woong Sik Kim; Hho Jung Kim

    2004-01-01

    This study investigates the fluid-elastic instability characteristics of steam generator helical type tubes in operating nuclear power plants. The thermal-hydraulic conditions of both tube side and shell side flow fields are predicted by a general purpose computational fluid dynamics code employing the finite volume element modeling. To get the natural frequency, corresponding mode shape and participation factor, modal analyses are performed for helical type tubes with various conditions. Investigated are the effects of the helix angle, the number of supports and the status of the inner fluid on the modal, and fluid-elastic instability characteristics of the tubes, which are expressed in terms of the natural frequency, corresponding mode shape, and stability ratio. (authors)

  18. Pressure drop and heat transfer of a mercury single-phase flow and an air-mercury two-phase flow in a helical tube under a strong magnetic field

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Momozaki, Yoichi

    2000-01-01

    For the reduction of a large magneto-hydrodynamic (MHD) pressure drop of a liquid metal single-phase flow, a liquid metal two-phase flow cooling system has been proposed. As a fundamental study, MHD pressure drops and heat transfer characteristics of a mercury single-phase flow and an air-mercury two-phase flow were experimentally investigated. A strong transverse magnetic field relevant to the fusion reactor conditions was applied to the mercury single-phase flow and the air-mercury two-phase flow in a helically coiled tube that was inserted in the vertical bore of a solenoidal superconducting magnet. It was found that MHD pressure drops of a mercury single-phase flow in the helically coiled tube were nearly equal to those in a straight tube. The Nusselt number at an outside wall was higher than that at an inside wall both in the mercury single-phase flow in the absence and presence of a magnetic field. The Nusselt number of the mercury single-phase flow decreased, increased and again decreased with an increase in the magnetic flux density. MHD pressure drops did not decrease appreciably by injecting air into a mercury flow and changing the mercury flow into the air-mercury two-phase flow. Remarkable heat transfer enhancement did not appear by the air injection. The injection of air into the mercury flow enhanced heat transfer in the ranges of high mercury flow rate and low magnetic flux density, possibly due to the agitation effect of air bubbles. The air injection deteriorated heat transfer in the range of low mercury flow rates possibly because of the occupation of air near heating wall

  19. Microfluidic Manufacturing of Polymeric Nanoparticles: Comparing Flow Control of Multiscale Structure in Single-Phase Staggered Herringbone and Two-Phase Reactors.

    Science.gov (United States)

    Xu, Zheqi; Lu, Changhai; Riordon, Jason; Sinton, David; Moffitt, Matthew G

    2016-12-06

    We compare the microfluidic manufacturing of polycaprolactone-block-poly(ethylene oxide) (PCL-b-PEO) nanoparticles (NPs) in a single-phase staggered herringbone (SHB) mixer and in a two-phase gas-liquid segmented mixer. NPs generated from two different copolymer compositions in both reactors and at three different flow rates, along with NPs generated using a conventional bulk method, are compared with respect to morphologies, dimensions, and internal crystallinities. Our work, the first direct comparison between alternate microfluidic NP synthesis methods, shows three key findings: (i) NP morphologies and dimensions produced in the bulk are different from those produced in a microfluidic mixer, whereas NP crystallinities produced in the bulk and in the SHB mixer are similar; (ii) NP morphologies, dimensions, and crystallinities produced in the single-phase SHB and two-phase mixers at the lowest flow rate are similar; and (iii) NP morphologies, dimensions, and crystallinities change with flow rate in the two-phase mixer but not in the single-phase SHB mixer. These findings provide new insights into the relative roles of mixing and shear in the formation and flow-directed processing of polymeric NPs in microfluidics, informing future reactor designs for manufacturing NPs of low polydispersity and controlled multiscale structure and function.

  20. Experimental data and numerical predictions of a single-phase flow in a batch square stirred tank reactor with a rotating cylinder agitator

    Science.gov (United States)

    Escamilla-Ruíz, I. A.; Sierra-Espinosa, F. Z.; García, J. C.; Valera-Medina, A.; Carrillo, F.

    2017-09-01

    Single-phase flows in stirred tank reactors have useful characteristics for a wide number of industrial applications. Usually, reactors are cylindrical vessels and complex impeller designs, which are often highly energy consuming and produce complicated flow patterns. Therefore, a novel configuration consisting of a square stirred tank reactor is proposed in this study with potential advantages over conventional reactors. In the present work hydrodynamics and turbulence have been studied for a single-phase flow in steady state operating in batch condition. The flow was induced by drag from a rotating cylinder with two diameters. The effects of drag from the stirrer as well as geometrical parameters of the system on the hydrodynamic behavior were investigated using Computational Fluids Dynamics (CFD) and non-intrusive Laser Doppler Anemometry, (LDA). Data obtained from LDA measurements were used for the validation of the CFD simulations, and to detecting the macro-instabilities inside the tank, based on the time series analysis for three rotational speeds N = 180, 1000 and 2000 rpm. The numerical results revealed the formation of flow patterns and macro-vortex structures in the upper part of the tank as consequence of the Reynolds number and the stream discharge emanated from the cylindrical stirrer. Moreover, increasing the cylinder diameter has an impact on the number of recirculation loops as well as the energy consumption of the entire system showing better performance in the presence of turbulent flows.

  1. Single-Phase PLLs

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    Single-phase phase-locked loops (PLLs) are popular for the synchronization and control of single-phase gridconnected converters. They are also widely used for monitoring and diagnostic purposes in the power and energy areas. In recent years, a large number of single-phase PLLs with different stru......-PLLs). The members of each category are then described and their pros and cons are discussed. This work provides a deep insight into characteristics of different single-phase PLLs and, therefore, can be considered as a reference for researchers and engineers....

  2. Strongly coupled single-phase flow problems: Effects of density variation, hydrodynamic dispersion, and first order decay

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, C.M.; Pruess, K. [Lawrence Berkeley Laboratory, Berkeley, CA (United States)

    1995-03-01

    We have developed TOUGH2 modules for strongly coupled flow and transport that include full hydrodynamic dispersion. T2DM models tow-dimensional flow and transport in systems with variable salinity, while T32DMR includes radionuclide transport with first-order decay of a parent-daughter chain of radionuclide components in variable salinity systems. T2DM has been applied to a variety of coupled flow problems including the pure solutal convection problem of Elder and the mixed free and forced convection salt-dome flow problem. In the Elder and salt-dome flow problems, density changes of up to 20% caused by brine concentration variations lead to strong coupling between the velocity and brine concentration fields. T2DM efficiently calculates flow and transport for these problems. We have applied T2DMR to the dispersive transport and decay of radionuclide tracers in flow fields with permeability heterogeneities and recirculating flows. Coupling in these problems occurs by velocity-dependent hydrodynamic dispersion. Our results show that the maximum daughter species concentration may occur fully within a recirculating or low-velocity region. In all of the problems, we observe very efficient handling of the strongly coupled flow and transport processes.

  3. Guidelines for the formulation of Lagrangian stochastic models for particle simulations of single-phase and dispersed two-phase turbulent flows

    Science.gov (United States)

    Minier, Jean-Pierre; Chibbaro, Sergio; Pope, Stephen B.

    2014-11-01

    In this paper, we establish a set of criteria which are applied to discuss various formulations under which Lagrangian stochastic models can be found. These models are used for the simulation of fluid particles in single-phase turbulence as well as for the fluid seen by discrete particles in dispersed turbulent two-phase flows. The purpose of the present work is to provide guidelines, useful for experts and non-experts alike, which are shown to be helpful to clarify issues related to the form of Lagrangian stochastic models. A central issue is to put forward reliable requirements which must be met by Lagrangian stochastic models and a new element brought by the present analysis is to address the single- and two-phase flow situations from a unified point of view. For that purpose, we consider first the single-phase flow case and check whether models are fully consistent with the structure of the Reynolds-stress models. In the two-phase flow situation, coming up with clear-cut criteria is more difficult and the present choice is to require that the single-phase situation be well-retrieved in the fluid-limit case, elementary predictive abilities be respected and that some simple statistical features of homogeneous fluid turbulence be correctly reproduced. This analysis does not address the question of the relative predictive capacities of different models but concentrates on their formulation since advantages and disadvantages of different formulations are not always clear. Indeed, hidden in the changes from one structure to another are some possible pitfalls which can lead to flaws in the construction of practical models and to physically unsound numerical calculations. A first interest of the present approach is illustrated by considering some models proposed in the literature and by showing that these criteria help to assess whether these Lagrangian stochastic models can be regarded as acceptable descriptions. A second interest is to indicate how future

  4. Guidelines for the formulation of Lagrangian stochastic models for particle simulations of single-phase and dispersed two-phase turbulent flows

    International Nuclear Information System (INIS)

    Minier, Jean-Pierre; Chibbaro, Sergio; Pope, Stephen B.

    2014-01-01

    In this paper, we establish a set of criteria which are applied to discuss various formulations under which Lagrangian stochastic models can be found. These models are used for the simulation of fluid particles in single-phase turbulence as well as for the fluid seen by discrete particles in dispersed turbulent two-phase flows. The purpose of the present work is to provide guidelines, useful for experts and non-experts alike, which are shown to be helpful to clarify issues related to the form of Lagrangian stochastic models. A central issue is to put forward reliable requirements which must be met by Lagrangian stochastic models and a new element brought by the present analysis is to address the single- and two-phase flow situations from a unified point of view. For that purpose, we consider first the single-phase flow case and check whether models are fully consistent with the structure of the Reynolds-stress models. In the two-phase flow situation, coming up with clear-cut criteria is more difficult and the present choice is to require that the single-phase situation be well-retrieved in the fluid-limit case, elementary predictive abilities be respected and that some simple statistical features of homogeneous fluid turbulence be correctly reproduced. This analysis does not address the question of the relative predictive capacities of different models but concentrates on their formulation since advantages and disadvantages of different formulations are not always clear. Indeed, hidden in the changes from one structure to another are some possible pitfalls which can lead to flaws in the construction of practical models and to physically unsound numerical calculations. A first interest of the present approach is illustrated by considering some models proposed in the literature and by showing that these criteria help to assess whether these Lagrangian stochastic models can be regarded as acceptable descriptions. A second interest is to indicate how future

  5. Multiphase forces on bend structures – critical gas fraction for transition single phase gas to multiphase flow behaviour

    NARCIS (Netherlands)

    Belfroid, S.P.C.; Nennie, E.D.; Lewis, M.

    2016-01-01

    Piping structures are generally subjected to high dynamic loading due to multiphase forces. In particular subsea structures are very vulnerable as large flexibility is required to cope for instance with thermal stresses. The forces due to multiphase flow are characterized by a broadband spectrum

  6. Experimental Study of Single Phase Flow in a Closed-Loop Cooling System with Integrated Mini-Channel Heat Sink

    Directory of Open Access Journals (Sweden)

    Lei Ma

    2016-06-01

    Full Text Available The flow and heat transfer characteristics of a closed-loop cooling system with a mini-channel heat sink for thermal management of electronics is studied experimentally. The heat sink is designed with corrugated fins to improve its heat dissipation capability. The experiments are performed using variable coolant volumetric flow rates and input heating powers. The experimental results show a high and reliable thermal performance using the heat sink with corrugated fins. The heat transfer capability is improved up to 30 W/cm2 when the base temperature is kept at a stable and acceptable level. Besides the heat transfer capability enhancement, the capability of the system to transfer heat for a long distance is also studied and a fast thermal response time to reach steady state is observed once the input heating power or the volume flow rate are varied. Under different input heat source powers and volumetric flow rates, our results suggest potential applications of the designed mini-channel heat sink in cooling microelectronics.

  7. Pressure drop-flow rate curves for single-phase steam in Combustion Engineering type steam generator U-tubes during severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Fynan, Douglas A.; Ahn, Kwang-Il, E-mail: kiahn@kaeri.re.kr

    2016-12-15

    Highlights: • Pressure drop-flow rate curves for superheated steam in U-tubes were generated. • Forward flow of hot steam is favored in the longer and taller U-tubes. • Reverse flow of cold steam is favored in short U-tubes. • Steam generator U-tube bundle geometry and tube diameter are important. • Need for correlation development for natural convention heat transfer coefficient. - Abstract: Characteristic pressure drop-flow rate curves are generated for all row numbers of the OPR1000 steam generators (SGs), representative of Combustion Engineering (CE) type SGs featuring square bend U-tubes. The pressure drop-flow rate curves are applicable to severe accident natural circulations of single-phase superheated steam during high pressure station blackout sequences with failed auxiliary feedwater and dry secondary side which are closely related to the thermally induced steam generator tube rupture event. The pressure drop-flow rate curves which determine the recirculation rate through the SG tubes are dependent on the tube bundle geometry and hydraulic diameter of the tubes. The larger CE type SGs have greater variation of tube length and height as a function of row number with forward flow of steam favored in the longer and taller high row number tubes and reverse flow favored in the short low row number tubes. Friction loss, natural convection heat transfer coefficients, and temperature differentials from the primary to secondary side are dominant parameters affecting the recirculation rate. The need for correlation development for natural convection heat transfer coefficients for external flow over tube bundles currently not modeled in system codes is discussed.

  8. BACCHUS-3D/SP. A computer programme for the three-dimensional description of sodium single-phase flow in bundle geometry

    International Nuclear Information System (INIS)

    Bottoni, M.; Dorr, B.; Homann, C.; Struwe, D.

    1983-07-01

    The computer programme BACCHUS implemented at KfK includes a steady-state version, a two-dimensional and a three-dimensional transient single-phase flow version describing the thermal-hydraulic behaviour of the coolant (sodium or water) in bundle geometry under nominal or accident conditions. All versions are coupled with a pin model describing the temperature distribution in fuel (or electrical heaters) and cladding. The report describes the programme from the viewpoints of the geometrical model, the mathematical foundations and the numerical treatment of the basic equations. Although emphasis is put on the three-dimensional version, the two-dimensional and the steady state versions are also documented in self-consistent sections. (orig.) [de

  9. Simulating single-phase and two-phase non-Newtonian fluid flow of a digital rock scanned at high resolution

    Science.gov (United States)

    Tembely, Moussa; Alsumaiti, Ali M.; Jouini, Mohamed S.; Rahimov, Khurshed; Dolatabadi, Ali

    2017-11-01

    Most of the digital rock physics (DRP) simulations focus on Newtonian fluids and overlook the detailed description of rock-fluid interaction. A better understanding of multiphase non-Newtonian fluid flow at pore-scale is crucial for optimizing enhanced oil recovery (EOR). The Darcy scale properties of reservoir rocks such as the capillary pressure curves and the relative permeability are controlled by the pore-scale behavior of the multiphase flow. In the present work, a volume of fluid (VOF) method coupled with an adaptive meshing technique is used to perform the pore-scale simulation on a 3D X-ray micro-tomography (CT) images of rock samples. The numerical model is based on the resolution of the Navier-Stokes equations along with a phase fraction equation incorporating the dynamics contact model. The simulations of a single phase flow for the absolute permeability showed a good agreement with the literature benchmark. Subsequently, the code is used to simulate a two-phase flow consisting of a polymer solution, displaying a shear-thinning power law viscosity. The simulations enable to access the impact of the consistency factor (K), the behavior index (n), along with the two contact angles (advancing and receding) on the relative permeability.

  10. On the use of (U)RANS and LES approaches for turbulent incompressible single phase flows in nuclear engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Benhamadouche, Sofiane, E-mail: sofiane.benhamadouche@edf.fr

    2017-02-15

    Highlights: • The paper deals with the use of (U)RANS and LES in nuclear engineering applications. • It gives some ideas and guidelines to run high quality computations. • Some perspectives are drawn concerning the development of (U)RANS and LES approaches in the future. - Abstract: The present paper gives some ideas and guidelines in order to run high quality (U)RANS or LES computations. The paper starts with (U)RANS approaches, advocating the use of Reynolds Stress Models for complex flows and recommending further work on modeling of turbulent heat fluxes, which remains today too basic in industry. The superiority of wall-resolved models vs. wall-modeled in RANS is recalled and the use of adaptive wall treatment is suggested. The concept of Unsteady RANS is finally questioned. Then, important issues around LES are raised. The mesh refinement criteria are recalled for wall-resolved LES and the use of wall models addressed. The production of DNS and wall-resolved LES calculations for flow understanding and RANS validation is encouraged.

  11. Convective heat transfer in single-phase flow in a vertical tube subjected to axial low frequency oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Pendyala, Rajashekhar; Jayanti, Sreenivas; Balakrishnan, A.R. [Indian Institute of Technology Madras, Department of Chemical Engineering, Chennai, Tamil Nadu (India)

    2008-05-15

    The effect of oscillations on the heat transfer in a vertical tube has been studied experimentally. A vertical tube was mounted on a plate and the whole plate was subjected to oscillations in the vertical plane using a mechanical oscillator to provide low frequency oscillations. A section of the tube in the middle is subjected to a constant heat flux. The effect of the oscillations on the heat transfer coefficient has been examined. It was found that the heat transfer coefficient increased with oscillations in the laminar regime. In turbulent flow regime (Re > 2,100) it is found that the effect of oscillations did not show any change. A correlation has been developed for enhancement of the local Nusselt number in terms of the effective acceleration and Reynolds number. Using this, an expression has been proposed to calculate the mean Nusselt number as a function of the tube length. (orig.)

  12. Computational simulation of flow and heat transfer in single-phase natural circulation loops; Simulacao computacional de escoamento e transferencia de calor em circuitos de circulacao natural monofasica

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, Larissa Cunha

    2017-07-01

    Passive decay heat removal systems based on natural circulation are essential assets for the new Gen III+ nuclear power reactors and nuclear spent fuel pools. The aim of the present work is to study both laminar and turbulent flow and heat transfer in single-phase natural circulation systems through computational fluid dynamics simulations. The working fluid is considered to be incompressible with constant properties. In the way, the Boussinesq Natural Convection Hypothesis was applied. The model chosen for the turbulence closure problem was the k -- εThe commercial computational fluid dynamics code ANSYS CFX 15.0 was used to obtain the numerical solution of the governing equations. Two single-phase natural circulation circuits were studied, a 2D toroidal loop and a 3D rectangular loop, both with the same boundary conditions of: prescribed heat flux at the heater and fixed wall temperature at the cooler. The validation and verification was performed with the numerical data provided by DESRAYAUD et al. [1] and the experimental data provided by MISALE et al. [2] and KUMAR et al. [3]. An excellent agreement between the Reynolds number (Re) and the modified Grashof number (Gr{sub m}), independently of Prandtl Pr number was observed. However, the convergence interval was observed to be variable with Pr, thus indicating that Pr is a stability governing parameter for natural circulation. Multiple steady states was obtained for Pr = 0,7. Finally, the effect of inclination was studied for the 3D circuit, both in-plane and out-of-plane inclinations were verified for the steady state laminar regime. As a conclusion, the Re for the out-of-plane inclination was in perfect agreement with the correlation found for the zero inclination system, while for the in-plane inclined system the results differ from that of the corresponding vertical loop. (author)

  13. Simulating of single phase flow in typical centrifugal pumps oil industry; Simulacao do escoamento monofasico em bombas centrifugas tipicas da industria do petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Ana Carla Costa; Silva, Aldrey Luis Morais da; Maitelli, Carla Wilza Souza de Paula [Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil)

    2012-07-01

    With the various techniques applied in production processes and oil exploration, has been using the artificial lift equipment with the aim of promoting an increase in flow in oil wells and gas. Choosing the most appropriate method of elevation depends on certain factors, among them the initial costs of installation, maintenance and conditions in the producing field, resulting in a more precise analysis of the project. Although there are other methods that represent a low cost and easy maintenance, the BCS method (Electrical Submersible Pumping), appears to be quite effective when it is intended to pump more flow of liquids from both terrestrial and marine environments, in conditions adverse temperature, presence of free gas in the mixture and viscous fluids. This method is based in most cases where the vessel pressure was low, and the fluid does not reach the surface without intervention of an artificial means which can lift them. Similar happens at the end of productive life of a resurgence for the well, or even when the flow of it is far below what is expected to produce, requiring a complement of natural energy through artificial lift. By definition, the BCS is a method of artificial lift in which a subsurface electric motor turns electrical energy into mechanical centrifugal pump and a multistage overlapping converts mechanical energy into kinetic energy of the engine bringing the fluid surface. In this study we performed computer simulations using a commercial program ANSYS #Registered Sign# CFX #Registered Sign# dimensions previously obtained by the 3D geometry in CAD format, with the objective of evaluating the single-phase flow inside typical centrifugal pump submerged in the oil industry. The variable measured was the height of elevation and drilling fluids are oil and water.(author)

  14. Study on the stability of a single-phase natural circulation flow in a closed loop. Demonstrative experiments on the higher-mode density wave oscillation

    International Nuclear Information System (INIS)

    Nishihara, Takashi

    1997-01-01

    Single-phase natural circulation loops are very important systems driven by the density variation generated thermally and have various applications in energy systems. Many theoretical and experimental works have been carried out on them and it has been known that the oscillatory instability can occur under some conditions. Most of the works on the oscillatory instability have been limited to specific geometry of the loops and they have paid attention only to the instability of fundamental mode, which has the period approximately equal to the item that the fluid goes round the loop, hereinafter referred to as the typical period. The author had applied the linear stability analysis to the simplified rectangular loop to investigate the basic stability characteristics of a natural circulation flow in a closed loop. The results indicate that various higher-mode oscillatory instabilities can be caused with a period approximately equal to one nth of the typical period according to parameters such as the pressure loss coefficient, the locations of a heat source and a heat sink, and so on. In this report, experimental tests were carried out and it was demonstrated that the higher-mode oscillatory instability can be caused with features as predicted in the analysis. The stability analysis was applied to the geometry of the experimental apparatus. The analytical results and those of experiments were compared with regard to the mode and the region of the parameters to be unstable and they have a good agreement qualitatively. (author)

  15. Measurement of multi-dimensional flow structure for flow boiling in a tube

    International Nuclear Information System (INIS)

    Adachi, Yu; Ito, Daisuke; Saito, Yasushi

    2014-01-01

    With an aim of the measurement of multi-dimensional flow structure of in-tube boiling two-phase flow, the authors built their own wire mesh measurement system based on electrical conductivity measurement, and examined the relationship between the electrical conductivity obtained by the wire mesh sensor and the void fraction. In addition, the authors measured the void fraction using neutron radiography, and compared the result with the measured value using the wire mesh sensor. From the comparison with neutron radiography, it was found that the new method underestimated the void fraction in the flow in the vicinity of the void fraction of 0.2-0.5, similarly to the conventional result. In addition, since the wire mesh sensor cannot measure dispersed droplets, it tends to overestimate the void fraction in the high void fraction region, such as churn flow accompanied by droplet generation. In the electrical conductivity wire-mesh sensor method, it is necessary to correctly take into account the effect of liquid film or droplets. The authors also built a measurement system based on the capacitance wire mesh sensor method using the difference in dielectric constant, performed the confirmation of transmission and reception signals using deionized water as a medium, and showed the validity of the system. As for the dispersed droplets, the capacitance method has a potential to be able to measure them. (A.O.)

  16. Mechanistic multidimensional analysis of horizontal two-phase flows

    International Nuclear Information System (INIS)

    Tselishcheva, Elena A.; Antal, Steven P.; Podowski, Michael Z.

    2010-01-01

    The purpose of this paper is to discuss the results of analysis of two-phase flow in horizontal tubes. Two flow situations have been considered: gas/liquid flow in a long straight pipe, and similar flow conditions in a pipe with 90 deg. elbow. The theoretical approach utilizes a multifield modeling concept. A complete three-dimensional two-phase flow model has been implemented in a state-of-the-art computational multiphase fluid dynamics (CMFD) computer code, NPHASE. The overall model has been tested parametrically. Also, the results of NPHASE simulations have been compared against experimental data for a pipe with 90 deg. elbow.

  17. Fluisd elastic instability and fretting-wear characteristics of steam generator helical tubes subjected to single-phase external flow and two-phase internal flow

    International Nuclear Information System (INIS)

    Jo, Jong Chull; Jhung, Myung Jo; Kim, Woong Sik; Kim, Hho Jung

    2004-01-01

    This study investigates the fluid elastic instability characteristics of steam generator (SG) helical type tubes and the safety assessment of the potential for fretting-wear damages caused by foreign object in operating nuclear power plants. The thermal-hydraulic conditions of both tube side and shell side flow fields are predicted by a general purpose computational fluid dynamics code employing the finite volume element modeling. To get the natural frequency, corresponding mode shape and participation factor, modal analyses are performed for helical type tubes with various conditions. Special emphases are on the effects of coil diameter and the number of turns on the modal and instability characteristics of tubes, which are expressed in terms of the natural frequency, corresponding mode shape and stability ratio. Also, the wear rate of helical type tube caused by foreign object is calculated using the Archard formula and the remaining life of the tube is predicted, and discussed in this study is the effect of the flow velocity and vibration of the tube on the remaining life of the tube. In addition, addressed is the effect of the external pressure on the vibration and fretting wear characteristics of the tube

  18. Effects of bathymetric lidar errors on flow properties predicted with a multi-dimensional hydraulic model

    Science.gov (United States)

    J. McKean; D. Tonina; C. Bohn; C. W. Wright

    2014-01-01

    New remote sensing technologies and improved computer performance now allow numerical flow modeling over large stream domains. However, there has been limited testing of whether channel topography can be remotely mapped with accuracy necessary for such modeling. We assessed the ability of the Experimental Advanced Airborne Research Lidar, to support a multi-dimensional...

  19. An asymptotic preserving multidimensional ALE method for a system of two compressible flows coupled with friction

    Science.gov (United States)

    Del Pino, S.; Labourasse, E.; Morel, G.

    2018-06-01

    We present a multidimensional asymptotic preserving scheme for the approximation of a mixture of compressible flows. Fluids are modelled by two Euler systems of equations coupled with a friction term. The asymptotic preserving property is mandatory for this kind of model, to derive a scheme that behaves well in all regimes (i.e. whatever the friction parameter value is). The method we propose is defined in ALE coordinates, using a Lagrange plus remap approach. This imposes a multidimensional definition and analysis of the scheme.

  20. Practical computation of multidimensional thermal flows in a gas centrifuge

    International Nuclear Information System (INIS)

    Berger, M.H.

    1982-12-01

    A finite-element theory is derived for Onsager's two-dimensional equation approximating the steady, viscous, gas motion in a high-speed centrifuge. A new high-order tensor product element is proposed to make the computations easy. The method of weighted residuals is used to construct the stiffness matrix, associated boundary integrals, and load vectors. Ekman suction conditions along horizontal surfaces are shown to be natural boundary conditions of the weak approximation. A class of pure bounary-value problems are solved for the field variables of interest. We evaluate the effect of Ekman suction on the flow by computing with and without suction. Also, we compute the case of pure two-dimensional flow where the azimuthal velocity perturbation is presumed to vanish. The effect of this simplifying assumption on the end-to-end temperature difference necessary for a given circulation is discussed. Numerical results are presented graphically and we show that the so-called streamfunction must be graphed in physical coordinates for the isolines to be streamlines. Only in this form do the velocity vectors lie tangent to the contours. Also, the radial velocity is redefined for graphical purposes

  1. Development of subchannel void measurement sensor and multidimensional two-phase flow dynamics in rod bundle

    International Nuclear Information System (INIS)

    Arai, T.; Furuya, M.; Kanai, T.; Shirakawa, K.

    2011-01-01

    An accurate subchannel database is crucial for modeling the multidimensional two-phase flow in a rod bundle and for validating subchannel analysis codes. Based on available reference, it can be said that a point-measurement sensor for acquiring void fractions and bubble velocity distributions do not infer interactions of the subchannel flow dynamics, such as a cross flow and flow distribution, etc. In order to acquire multidimensional two-phase flow in a 10×10 rod bundle with an o.d. of 10 mm and 3110 mm length, a new sensor consisting of 11-wire by 11-wire and 10-rod by 10-rod electrodes was developed. Electric potential in the proximity region between two wires creates a void fraction in the center subchannel region, like a so-called wire mesh sensor. A unique aspect of the devised sensor is that the void fraction near the rod surface can be estimated from the electric potential in the proximity region between one wire and one rod. The additional 400 points of void fraction and phasic velocity in 10×10 bundle can therefore be acquired. The devised sensor exhibits the quasi three-dimensional flow structures, i.e. void fraction, phasic velocity and bubble chord length distributions. These quasi three-dimensional structures exhibit the complexity of two-phase flow dynamics, such as coalescence and the breakup of bubbles in transient phasic velocity distributions. (author)

  2. Development and assessment of multi-dimensional flow model in MARS compared with the RPI air-water experiment

    International Nuclear Information System (INIS)

    Lee, Seok Min; Lee, Un Chul; Bae, Sung Won; Chung, Bub Dong

    2004-01-01

    The Multi-Dimensional flow models in system code have been developed during the past many years. RELAP5-3D, CATHARE and TRACE has its specific multi-dimensional flow models and successfully applied it to the system safety analysis. In KAERI, also, MARS(Multi-dimensional Analysis of Reactor Safety) code was developed by integrating RELAP5/MOD3 code and COBRA-TF code. Even though COBRA-TF module can analyze three-dimensional flow models, it has a limitation to apply 3D shear stress dominant phenomena or cylindrical geometry. Therefore, Multi-dimensional analysis models are newly developed by implementing three-dimensional momentum flux and diffusion terms. The multi-dimensional model has been assessed compared with multi-dimensional conceptual problems and CFD code results. Although the assessment results were reasonable, the multi-dimensional model has not been validated to two-phase flow using experimental data. In this paper, the multi-dimensional air-water two-phase flow experiment was simulated and analyzed

  3. A review of solid-fluid selection options for optical-based measurements in single-phase liquid, two-phase liquid-liquid and multiphase solid-liquid flows

    Science.gov (United States)

    Wright, Stuart F.; Zadrazil, Ivan; Markides, Christos N.

    2017-09-01

    Experimental techniques based on optical measurement principles have experienced significant growth in recent decades. They are able to provide detailed information with high-spatiotemporal resolution on important scalar (e.g., temperature, concentration, and phase) and vector (e.g., velocity) fields in single-phase or multiphase flows, as well as interfacial characteristics in the latter, which has been instrumental to step-changes in our fundamental understanding of these flows, and the development and validation of advanced models with ever-improving predictive accuracy and reliability. Relevant techniques rely upon well-established optical methods such as direct photography, laser-induced fluorescence, laser Doppler velocimetry/phase Doppler anemometry, particle image/tracking velocimetry, and variants thereof. The accuracy of the resulting data depends on numerous factors including, importantly, the refractive indices of the solids and liquids used. The best results are obtained when the observational materials have closely matched refractive indices, including test-section walls, liquid phases, and any suspended particles. This paper reviews solid-liquid and solid-liquid-liquid refractive-index-matched systems employed in different fields, e.g., multiphase flows, turbomachinery, bio-fluid flows, with an emphasis on liquid-liquid systems. The refractive indices of various aqueous and organic phases found in the literature span the range 1.330-1.620 and 1.251-1.637, respectively, allowing the identification of appropriate combinations to match selected transparent or translucent plastics/polymers, glasses, or custom materials in single-phase liquid or multiphase liquid-liquid flow systems. In addition, the refractive indices of fluids can be further tuned with the use of additives, which also allows for the matching of important flow similarity parameters such as density and viscosity.

  4. Derivation of a well-posed and multidimensional drift-flux model for boiling flows

    International Nuclear Information System (INIS)

    Gregoire, O.; Martin, M.

    2005-01-01

    In this note, we derive a multidimensional drift-flux model for boiling flows. Within this framework, the distribution parameter is no longer a scalar but a tensor that might account for the medium anisotropy and the flow regime. A new model for the drift-velocity vector is also derived. It intrinsically takes into account the effect of the friction pressure loss on the buoyancy force. On the other hand, we show that most drift-flux models might exhibit a singularity for large void fraction. In order to avoid this singularity, a remedy based on a simplified three field approach is proposed. (authors)

  5. An efficient multi-dimensional implementation of VSIAM3 and its applications to free surface flows

    Science.gov (United States)

    Yokoi, Kensuke; Furuichi, Mikito; Sakai, Mikio

    2017-12-01

    We propose an efficient multidimensional implementation of VSIAM3 (volume/surface integrated average-based multi-moment method). Although VSIAM3 is a highly capable fluid solver based on a multi-moment concept and has been used for a wide variety of fluid problems, VSIAM3 could not simulate some simple benchmark problems well (for instance, lid-driven cavity flows) due to relatively high numerical viscosity. In this paper, we resolve the issue by using the efficient multidimensional approach. The proposed VSIAM3 is shown to capture lid-driven cavity flows of the Reynolds number up to Re = 7500 with a Cartesian grid of 128 × 128, which was not capable for the original VSIAM3. We also tested the proposed framework in free surface flow problems (droplet collision and separation of We = 40 and droplet splashing on a superhydrophobic substrate). The numerical results by the proposed VSIAM3 showed reasonable agreements with these experiments. The proposed VSIAM3 could capture droplet collision and separation of We = 40 with a low numerical resolution (8 meshes for the initial diameter of droplets). We also simulated free surface flows including particles toward non-Newtonian flow applications. These numerical results have showed that the proposed VSIAM3 can robustly simulate interactions among air, particles (solid), and liquid.

  6. Assessment of wall friction model in multi-dimensional component of MARS with air–water cross flow experiment

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jin-Hwa [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Choi, Chi-Jin [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Cho, Hyoung-Kyu, E-mail: chohk@snu.ac.kr [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Euh, Dong-Jin [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Park, Goon-Cherl [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2017-02-15

    Recently, high precision and high accuracy analysis on multi-dimensional thermal hydraulic phenomena in a nuclear power plant has been considered as state-of-the-art issues. System analysis code, MARS, also adopted a multi-dimensional module to simulate them more accurately. Even though it was applied to represent the multi-dimensional phenomena, but implemented models and correlations in that are one-dimensional empirical ones based on one-dimensional pipe experimental results. Prior to the application of the multi-dimensional simulation tools, however, the constitutive models for a two-phase flow need to be carefully validated, such as the wall friction model. Especially, in a Direct Vessel Injection (DVI) system, the injected emergency core coolant (ECC) on the upper part of the downcomer interacts with the lateral steam flow during the reflood phase in the Large-Break Loss-Of-Coolant-Accident (LBLOCA). The interaction between the falling film and lateral steam flow induces a multi-dimensional two-phase flow. The prediction of ECC flow behavior plays a key role in determining the amount of coolant that can be used as core cooling. Therefore, the wall friction model which is implemented to simulate the multi-dimensional phenomena should be assessed by multidimensional experimental results. In this paper, the air–water cross film flow experiments simulating the multi-dimensional phenomenon in upper part of downcomer as a conceptual problem will be introduced. The two-dimensional local liquid film velocity and thickness data were used as benchmark data for code assessment. And then the previous wall friction model of the MARS-MultiD in the annular flow regime was modified. As a result, the modified MARS-MultiD produced improved calculation result than previous one.

  7. The control variable method: a fully implicit numerical method for solving conservation equations for unsteady multidimensional fluid flow

    International Nuclear Information System (INIS)

    Le Coq, G.; Boudsocq, G.; Raymond, P.

    1983-03-01

    The Control Variable Method is extended to multidimensional fluid flow transient computations. In this paper basic principles of the method are given. The method uses a fully implicit space discretization and is based on the decomposition of the momentum flux tensor into scalar, vectorial, and tensorial, terms. Finally some computations about viscous-driven flow and buoyancy-driven flow in cavity are presented

  8. Comparative exploration of multidimensional flow cytometry software: a model approach evaluating T cell polyfunctional behavior.

    Science.gov (United States)

    Spear, Timothy T; Nishimura, Michael I; Simms, Patricia E

    2017-08-01

    Advancement in flow cytometry reagents and instrumentation has allowed for simultaneous analysis of large numbers of lineage/functional immune cell markers. Highly complex datasets generated by polychromatic flow cytometry require proper analytical software to answer investigators' questions. A problem among many investigators and flow cytometry Shared Resource Laboratories (SRLs), including our own, is a lack of access to a flow cytometry-knowledgeable bioinformatics team, making it difficult to learn and choose appropriate analysis tool(s). Here, we comparatively assess various multidimensional flow cytometry software packages for their ability to answer a specific biologic question and provide graphical representation output suitable for publication, as well as their ease of use and cost. We assessed polyfunctional potential of TCR-transduced T cells, serving as a model evaluation, using multidimensional flow cytometry to analyze 6 intracellular cytokines and degranulation on a per-cell basis. Analysis of 7 parameters resulted in 128 possible combinations of positivity/negativity, far too complex for basic flow cytometry software to analyze fully. Various software packages were used, analysis methods used in each described, and representative output displayed. Of the tools investigated, automated classification of cellular expression by nonlinear stochastic embedding (ACCENSE) and coupled analysis in Pestle/simplified presentation of incredibly complex evaluations (SPICE) provided the most user-friendly manipulations and readable output, evaluating effects of altered antigen-specific stimulation on T cell polyfunctionality. This detailed approach may serve as a model for other investigators/SRLs in selecting the most appropriate software to analyze complex flow cytometry datasets. Further development and awareness of available tools will help guide proper data analysis to answer difficult biologic questions arising from incredibly complex datasets. © Society

  9. Development of realistic thermal-hydraulic system analysis codes ; development of thermal hydraulic test requirements for multidimensional flow modeling

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kune Yull; Yoon, Sang Hyuk; Noh, Sang Woo; Lee, Il Suk [Seoul National University, Seoul (Korea)

    2002-03-01

    This study is concerned with developing a multidimensional flow model required for the system analysis code MARS to more mechanistically simulate a variety of thermal hydraulic phenomena in the nuclear stem supply system. The capability of the MARS code as a thermal hydraulic analysis tool for optimized system design can be expanded by improving the current calculational methods and adding new models. In this study the relevant literature was surveyed on the multidimensional flow models that may potentially be applied to the multidimensional analysis code. Research items were critically reviewed and suggested to better predict the multidimensional thermal hydraulic behavior and to identify test requirements. A small-scale preliminary test was performed in the downcomer formed by two vertical plates to analyze multidimensional flow pattern in a simple geometry. The experimental result may be applied to the code for analysis of the fluid impingement to the reactor downcomer wall. Also, data were collected to find out the controlling parameters for the one-dimensional and multidimensional flow behavior. 22 refs., 40 figs., 7 tabs. (Author)

  10. ULTRA-SHARP nonoscillatory convection schemes for high-speed steady multidimensional flow

    Science.gov (United States)

    Leonard, B. P.; Mokhtari, Simin

    1990-01-01

    For convection-dominated flows, classical second-order methods are notoriously oscillatory and often unstable. For this reason, many computational fluid dynamicists have adopted various forms of (inherently stable) first-order upwinding over the past few decades. Although it is now well known that first-order convection schemes suffer from serious inaccuracies attributable to artificial viscosity or numerical diffusion under high convection conditions, these methods continue to enjoy widespread popularity for numerical heat transfer calculations, apparently due to a perceived lack of viable high accuracy alternatives. But alternatives are available. For example, nonoscillatory methods used in gasdynamics, including currently popular TVD schemes, can be easily adapted to multidimensional incompressible flow and convective transport. This, in itself, would be a major advance for numerical convective heat transfer, for example. But, as is shown, second-order TVD schemes form only a small, overly restrictive, subclass of a much more universal, and extremely simple, nonoscillatory flux-limiting strategy which can be applied to convection schemes of arbitrarily high order accuracy, while requiring only a simple tridiagonal ADI line-solver, as used in the majority of general purpose iterative codes for incompressible flow and numerical heat transfer. The new universal limiter and associated solution procedures form the so-called ULTRA-SHARP alternative for high resolution nonoscillatory multidimensional steady state high speed convective modelling.

  11. Simulation of single-phase rod bundle flow. Comparison between CFD-code ESTET, PWR core code THYC and experimental results

    International Nuclear Information System (INIS)

    Mur, J.; Larrauri, D.

    1998-07-01

    Computer simulation of flow in configurations close to pressurized water reactor (PWR) geometry is of great interest for Electricite de France (EDF). Although simulation of the flow through a whole PWR core with an all purpose CFD-code is not yet achievable, such a tool cna be quite useful to perform numerical experiments in order to try and improve the modeling introduced in computer codes devoted to reactor core thermal-hydraulic analysis. Further to simulation in small bare rod bundle configurations, the present study is focused on the simulation, with CFD-code ESTET and PWR core code THYC, of the flow in the experimental configuration VATICAN-1. ESTET simulation results are compared on the one hand to local velocity and concentration measurements, on the other hand with subchannel averaged values calculated by THYC. As far as the comparison with measurements is concerned, ESTET results are quite satisfactory relatively to available experimental data and their uncertainties. The effect of spacer grids and the prediction of the evolution of an unbalanced velocity profile seem to be correctly treated. As far as the comparison with THYC subchannel averaged values is concerned, the difficulty of a direct comparison between subchannel averaged and local values is pointed out. ESTET calculated local values are close to experimental local values. ESTET subchannel averaged values are also close to THYC calculation results. Thus, THYC results are satisfactory whereas their direct comparison to local measurements could show some disagreement. (author)

  12. Validation of a multidimensional computational fluid dynamics model for subcooled flow boiling analysis

    Energy Technology Data Exchange (ETDEWEB)

    Braz Filho, Francisco A.; Caldeira, Alexandre D.; Borges, Eduardo M., E-mail: fbraz@ieav.cta.b, E-mail: alexdc@ieav.cta.b, E-mail: eduardo@ieav.cta.b [Instituto de Estudos Avancados (IEAv/CTA), Sao Jose dos Campos, SP (Brazil). Div. de Energia Nuclear

    2011-07-01

    In a heated vertical channel, the subcooled flow boiling regime occurs when the bulk fluid temperature is lower than the saturation temperature, but the fluid temperature reaches the saturation point near the channel wall. This phenomenon produces a significant increase in heat flux, limited by the critical heat flux. This study is particularly important to the thermal-hydraulics analysis of pressurized water reactors. The purpose of this work is the validation of a multidimensional model to analyze the subcooled flow boiling comparing the results with experimental data found in literature. The computational fluid dynamics code FLUENT was used with Eulerian multiphase model option. The calculated values of wall temperature in the liquid-solid interface presented an excellent agreement when compared to the experimental data. Void fraction calculations presented satisfactory results in relation to the experimental data in pressures of 15, 30 and 45 bars. (author)

  13. Validation of a multidimensional computational fluid dynamics model for subcooled flow boiling analysis

    International Nuclear Information System (INIS)

    Braz Filho, Francisco A.; Caldeira, Alexandre D.; Borges, Eduardo M.

    2011-01-01

    In a heated vertical channel, the subcooled flow boiling regime occurs when the bulk fluid temperature is lower than the saturation temperature, but the fluid temperature reaches the saturation point near the channel wall. This phenomenon produces a significant increase in heat flux, limited by the critical heat flux. This study is particularly important to the thermal-hydraulics analysis of pressurized water reactors. The purpose of this work is the validation of a multidimensional model to analyze the subcooled flow boiling comparing the results with experimental data found in literature. The computational fluid dynamics code FLUENT was used with Eulerian multiphase model option. The calculated values of wall temperature in the liquid-solid interface presented an excellent agreement when compared to the experimental data. Void fraction calculations presented satisfactory results in relation to the experimental data in pressures of 15, 30 and 45 bars. (author)

  14. Minimal disease detection of B-cell lymphoproliferative disorders by flow cytometry: multidimensional cluster analysis.

    Science.gov (United States)

    Duque, Ricardo E

    2012-04-01

    Flow cytometric analysis of cell suspensions involves the sequential 'registration' of intrinsic and extrinsic parameters of thousands of cells in list mode files. Thus, it is almost irresistible to describe phenomena in numerical terms or by 'ratios' that have the appearance of 'accuracy' due to the presence of numbers obtained from thousands of cells. The concepts involved in the detection and characterization of B cell lymphoproliferative processes are revisited in this paper by identifying parameters that, when analyzed appropriately, are both necessary and sufficient. The neoplastic process (cluster) can be visualized easily because the parameters that distinguish it form a cluster in multidimensional space that is unique and distinguishable from neighboring clusters that are not of diagnostic interest but serve to provide a background. For B cell neoplasia it is operationally necessary to identify the multidimensional space occupied by a cluster whose kappa:lambda ratio is 100:0 or 0:100. Thus, the concept of kappa:lambda ratio is without meaning and would not detect B cell neoplasia in an unacceptably high number of cases.

  15. Contribution to the multidimensional modelling of convective high pressure boiling flows for pressurised water reactors

    International Nuclear Information System (INIS)

    Gueguen, J.

    2013-01-01

    This study is a contribution to the modelling of multidimensional high pressure boiling flows relative to PWR. Numerical simulation of such two-phase flows is considered to be an interesting way for the DNB understanding. The first part of this study exposes a two-dimensional steady state two-phase flows model able to predict velocity and temperature profiles in tube. The mixture balanced equations are used with the eddy diffusivity concept to close the turbulent transport terms. The second part is devoted to the development of the model in the general two dimensional case. Contrary to the steady state model, this model is independent of experimental data and implies the use of an original local homogeneous relaxation model (HRM). The results obtained from the comparison with the data bank DEBORA reveals that in a mixture approach two sub models are sufficient to obtain a physical good description of turbulent boiling flows. Some limitations appear at conditions close to DNB conditions. The turbulent closures and the relaxation time in the HRM model have been clearly identified as the most important and sensitive parameters in the model. (author) [fr

  16. Development and assessment of Multi-dimensional flow models in the thermal-hydraulic system analysis code MARS

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B. D.; Bae, S. W.; Jeong, J. J.; Lee, S. M

    2005-04-15

    A new multi-dimensional component has been developed to allow for more flexible 3D capabilities in the system code, MARS. This component can be applied in the Cartesian and cylindrical coordinates. For the development of this model, the 3D convection and diffusion terms are implemented in the momentum and energy equation. And a simple Prandtl's mixing length model is applied for the turbulent viscosity. The developed multi-dimensional component was assessed against five conceptual problems with analytic solution. And some SETs are calculated and compared with experimental data. With this newly developed multi-dimensional flow module, the MARS code can realistic calculate the flow fields in pools such as those occurring in the core, steam generators and IRWST.

  17. Development and assessment of Multi-dimensional flow models in the thermal-hydraulic system analysis code MARS

    International Nuclear Information System (INIS)

    Chung, B. D.; Bae, S. W.; Jeong, J. J.; Lee, S. M.

    2005-04-01

    A new multi-dimensional component has been developed to allow for more flexible 3D capabilities in the system code, MARS. This component can be applied in the Cartesian and cylindrical coordinates. For the development of this model, the 3D convection and diffusion terms are implemented in the momentum and energy equation. And a simple Prandtl's mixing length model is applied for the turbulent viscosity. The developed multi-dimensional component was assessed against five conceptual problems with analytic solution. And some SETs are calculated and compared with experimental data. With this newly developed multi-dimensional flow module, the MARS code can realistic calculate the flow fields in pools such as those occurring in the core, steam generators and IRWST

  18. Shroud leakage flow models and a multi-dimensional coupling CFD (computational fluid dynamics) method for shrouded turbines

    International Nuclear Information System (INIS)

    Zou, Zhengping; Liu, Jingyuan; Zhang, Weihao; Wang, Peng

    2016-01-01

    Multi-dimensional coupling simulation is an effective approach for evaluating the flow and aero-thermal performance of shrouded turbines, which can balance the simulation accuracy and computing cost effectively. In this paper, 1D leakage models are proposed based on classical jet theories and dynamics equations, which can be used to evaluate most of the main features of shroud leakage flow, including the mass flow rate, radial and circumferential momentum, temperature and the jet width. Then, the 1D models are expanded to 2D distributions on the interface by using a multi-dimensional scaling method. Based on the models and multi-dimensional scaling, a multi-dimensional coupling simulation method for shrouded turbines is developed, in which, some boundary source and sink are set on the interface between the shroud and the main flow passage. To verify the precision, some simulations on the design point and off design points of a 1.5 stage turbine are conducted. It is indicated that the models and methods can give predictions with sufficient accuracy for most of the flow field features and will contribute to pursue deeper understanding and better design methods of shrouded axial turbines, which are the important devices in energy engineering. - Highlights: • Free and wall attached jet theories are used to model the leakage flow in shrouds. • Leakage flow rate is modeled by virtual labyrinth number and residual-energy factor. • A scaling method is applied to 1D model to obtain 2D distributions on interfaces. • A multi-dimensional coupling CFD method for shrouded turbines is proposed. • The proposed coupling method can give accurate predictions with low computing cost.

  19. Instability of single-phase natural circulation

    International Nuclear Information System (INIS)

    Xie Heng; Zhang Jinling; Jia Dounan

    1997-01-01

    The author has investigated the instability of single-phase flows in natural circulation loops. The momentum equation and energy equation are made dimensionless according to some definitions, and some important dimensionless parameters are gotten. The authors decomposed the mean mass flowrate and temperature into a steady solution and a small disturbance equations. Through solving the disturbance equations, the authors get the neutral stability curves. The authors have studied the effect of the two parameters which represent the ratio of buoyancy force to the friction loss in the loop on the stability of loops. The authors also have studied the effect of the difference of height between the center of heat source and the heat sink on the stability

  20. Development of multidimensional two-phase flow measurement sensor in rod bundle

    International Nuclear Information System (INIS)

    Arai, Takahiro; Furuya, Masahiro; Shirakawa, Kenetsu; Kanai, Taizo

    2011-01-01

    In order to acquire multidimensional two-phase flow in 10x10 bundle, SubChannel Void Sensor (SCVC) consisting of 11-wire by 11-wire and 10-rod by 10-rod electrodes is developed. A conductance value in a proximity region of one wire and another gives void fraction in the center of subchannel region. A phasic velocity can be estimated by using two layers of wire meshes, like as so-called wire mesh sensor. 121 points (=11x11) of void fraction as well as those of phasic velocity are acquired. It is peculiarity of the devised sensor that void fraction near rod surface can be estimated by a conductance value in a proximity region of one wire and one rod. 400 additional points of void fraction in 10x10 bundle can be, therefore, acquired. The time resolution of measurement is up to 1250 frames (cross sections) per second. We capability in a 10x10 bundle with o.d. 10 mm and 3110 mm long is demonstrated. The devised sensor is installed in 8 height levels to acquire the two-phase flow dynamics along axial direction. A pair of sensor layers is mounted in each level and is placed by 30 mm apart with each other to estimate a phasic velocity distribution on the basis of cross-correlation function of the two layers. Air bubbles are injected through sintered metal nozzles from the bottom end of 10x10 rods. Air flow rate distribution can vary with a controlled valves connected to each nozzle. The devised sensor exhibited the quasi three-dimensional flow structures, i.e. void fraction, phasic velocity and bubble chord length distributions. These quasi three-dimensional structures explorer complexity of two-phase flow dynamics such as coalescence and breakup of bubbles in the transient phasic velocity distributions. (author)

  1. Comparative study of the two-fluid momentum equations for multi-dimensional bubbly flows: Modification of Reynolds stress

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jun; Park, Ik Kyu; Yoon, Han Young [Thermal-Hydraulic Safety Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jae, Byoung [School of Mechanical Engineering, Chungnam National University, Daejeon (Korea, Republic of)

    2017-01-15

    Two-fluid equations are widely used to obtain averaged behaviors of two-phase flows. This study addresses a problem that may arise when the two-fluid equations are used for multi-dimensional bubbly flows. If steady drag is the only accounted force for the interfacial momentum transfer, the disperse-phase velocity would be the same as the continuous-phase velocity when the flow is fully developed without gravity. However, existing momentum equations may show unphysical results in estimating the relative velocity of the disperse phase against the continuous-phase. First, we examine two types of existing momentum equations. One is the standard two-fluid momentum equation in which the disperse-phase is treated as a continuum. The other is the averaged momentum equation derived from a solid/ fluid particle motion. We show that the existing equations are not proper for multi-dimensional bubbly flows. To resolve the problem mentioned above, we modify the form of the Reynolds stress terms in the averaged momentum equation based on the solid/fluid particle motion. The proposed equation shows physically correct results for both multi-dimensional laminar and turbulent flows.

  2. Multi-dimensional two-phase flow measurements in a large-diameter pipe using wire-mesh sensor

    International Nuclear Information System (INIS)

    Kanai, Taizo; Furuya, Masahiro; Arai, Takahiro; Shirakawa, Kenetsu; Nishi, Yoshihisa; Ueda, Nobuyuki

    2011-01-01

    The authors developed a method of measurement to determine the multi-dimensionality of two phase flow. A wire-mesh sensor (WMS) can acquire a void fraction distribution at a high temporal and spatial resolution and also estimate the velocity of a vertical rising flow by investigating the signal time-delay of the upstream WMS relative to downstream. Previously, one-dimensional velocity was estimated by using the same point of each WMS at a temporal resolution of 1.0 - 5.0 s. The authors propose to extend this time series analysis to estimate the multi-dimensional velocity profile via cross-correlation analysis between a point of upstream WMS and multiple points downstream. Bubbles behave in various ways according to size, which is used to classify them into certain groups via wavelet analysis before cross-correlation analysis. This method was verified by air-water straight and swirl flows within a large-diameter vertical pipe. A high-speed camera is used to set the parameter of cross-correlation analysis. The results revealed that for the rising straight and swirl flows, large scale bubbles tend to move to the center, while the small bubble is pushed to the outside or sucked into the space where the large bubbles existed. Moreover, it is found that this method can estimate the rotational component of velocity of the swirl flow as well as measuring the multi-dimensional velocity vector at high temporal resolutions of 0.2 s. (author)

  3. The use of multi-dimensional flow and morphodynamic models for restoration design analysis

    Science.gov (United States)

    McDonald, R.; Nelson, J. M.

    2013-12-01

    River restoration projects with the goal of restoring a wide range of morphologic and ecologic channel processes and functions have become common. The complex interactions between flow and sediment-transport make it challenging to design river channels that are both self-sustaining and improve ecosystem function. The relative immaturity of the field of river restoration and shortcomings in existing methodologies for evaluating channel designs contribute to this problem, often leading to project failures. The call for increased monitoring of constructed channels to evaluate which restoration techniques do and do not work is ubiquitous and may lead to improved channel restoration projects. However, an alternative approach is to detect project flaws before the channels are built by using numerical models to simulate hydraulic and sediment-transport processes and habitat in the proposed channel (Restoration Design Analysis). Multi-dimensional models provide spatially distributed quantities throughout the project domain that may be used to quantitatively evaluate restoration designs for such important metrics as (1) the change in water-surface elevation which can affect the extent and duration of floodplain reconnection, (2) sediment-transport and morphologic change which can affect the channel stability and long-term maintenance of the design; and (3) habitat changes. These models also provide an efficient way to evaluate such quantities over a range of appropriate discharges including low-probability events which often prove the greatest risk to the long-term stability of restored channels. Currently there are many free and open-source modeling frameworks available for such analysis including iRIC, Delft3D, and TELEMAC. In this presentation we give examples of Restoration Design Analysis for each of the metrics above from projects on the Russian River, CA and the Kootenai River, ID. These examples demonstrate how detailed Restoration Design Analysis can be used to

  4. Multidimensional simulations of fuel rod appendage effects on pressure drop and heat transfer in an annulus flow

    International Nuclear Information System (INIS)

    Banas, A.O.; Carver, M.B.; Leung, J.C.H.; Bromley, B.P.

    1992-10-01

    The general purpose computational fluid dynamics code, Harwell-FLOW3D, has been used to simulate the effects of fuel rod obstructions on pressure drop and heat transfer in single phase turbulent flows in a concentric annular channel. The results of two and three dimensional simulations are reported for obstructions approximating the geometry of bearing pads used in 37 element CANDU fuel bundles. Pressure drop penalty and augmentation of heat transfer have been quantified and correlated with the obstruction geometrical parameters and the dimensionless numbers representing operating conditions. The predicted effects on pressure drop have been compared with several experimental correlations, yielding good agreement. The methodology presented offers results that can be used directly as input into thermalhydraulic analyses in subchannel and system codes. (Author) (23 figs., 15 refs.)

  5. Single phase induction motor with starting performance

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, M.; Demeter, E. [Research Institute for Electrical Machines, ICPE-ME, Bucharest (Romania); Navrapescu, V. [University `Politehnica` Bucharest, Electrical Engineering Faculty Splaiul Independentei, Bucharest (Romania)

    1997-12-31

    The paper presents problems related to a special type of single phase induction motor. The main novelty consists in the use of a conducting (aluminium casted) shell distributed on the periferic region of the rotor. As a result the starting performance, as well as the rated ones, is much improved in comparison with the conventional construction. (orig.) 4 refs.

  6. Preparation of single phase molybdenum boride

    International Nuclear Information System (INIS)

    Camurlu, Hasan Erdem

    2011-01-01

    Highlights: → Formation of Mo and a mixture of molybdenum boride phases take place in preparation of molybdenum borides. → It is intricate to prepare single phase molybdenum borides. → Formation of single phase MoB from MoO 3 + B 2 O 3 + Mg mixtures has not been reported previously. → Single phase MoB was successfully prepared through a combination of mechanochemical synthesis and annealing process. - Abstract: The formation of MoB through volume combustion synthesis (VCS), and through mechanochemical synthesis (MCS) followed by annealing has been investigated. MoO 3 , B 2 O 3 and Mg were used as reactants while MgO and NaCl were introduced as diluents. Products were leached in dilute HCl solution and were subjected to X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) examinations. Mo was the major phase component in the VCS products under all the experimental conditions. Mo 2 B, MoB, MoB 2 and Mo 2 B 5 were found as minor phases. Products of MCS contained a mixture of Mo 2 B, MoB, MoB 2 and Mo. After annealing the MCS product at 1400 deg. C for 3 h, single phase α-MoB was obtained.

  7. The analysis of two-phase flow and heat transfer using a multidimensional, four field, two-fluid model

    International Nuclear Information System (INIS)

    Lahey, Richard T.; Drew, Donald A.

    2001-01-01

    This paper reviews the state-of-the-art in the prediction of multidimensional multiphase flow and heat transfer phenomena using a four field, two-fluid model. It is shown that accurate mechanistic computational fluid dynamic (CFD) predictions are possible for a wide variety of adiabatic and diabatic flows using this computational model. In particular, the model is able to predict the bubbly air/water upflow data of Serizawa (Serizawa, A., 1974. Fluid dynamic characteristics of two-phase flow. Ph.D. thesis, (Nuclear Engineering), Kyoto University, Japan), the downflow data of Wang et al. (Wang, S.K., Lee, S.J., Lahey Jr., R.T., Jones, O.C., 1987. 3-D turbulence structure and phase distribution measurements in bubbly two-phase flows. Int. J. Multiphase Flow 13 (3), 327-343), the isosceles triangle upflow data of Lopez de Bertodano et al. (Lopez de Bertodano, M., Lahey Jr., R.T., Jones, O.C., 1994b. Phase distribution in bubbly two-phase flow in vertical ducts. Int. J. Multiphase Flow 20 (5), 805-818), the heated annular R-113 subcooled boiling data of Velidandala, et al. (Velidandla, V., Pulta, S., Roy, P., Kaira, S.P., 1995. Velocity field in turbulent subcooled boiling flow. ASME Preprint HTD-314, 107-123) and the R-113 CHF data of Hino and Ueda (Hino, R., Ueda, T., 1985. Studies on heat transfer and flow characteristics in subcooled boiling-part 2, flow characteristics. Int. J. Multiphase Flow 11, 283-297). It can also predict external two-phase flows, such as those for spreading two-phase jets (Bonetto, F., Lahey Jr., R.T., 1993. An experimental study on air carryunder due to a plunging liquid jet. Int. J. Multiphase Flow 19 (2), 281-294) and multiphase flows around the hull of naval surface ships (Carrica, P.M., Bonetto, F., Drew, D.A., Lahey, R.T., 1999. A polydispersed model for bubbly two-phase flow around a surface ship. Int. J. Multiphase Flow 25 (2), 257-305)

  8. Hydrodynamic prediction of multidimensional single- and two-phase flow in rod arrays. Progress report, January 1-December 31, 1983

    International Nuclear Information System (INIS)

    Ebeling-Koning, D.B.; Robinson, J.T.; Todreas, N.E.

    1984-01-01

    The objective of this research is to develop comprehensive constitutive models for multidimensional two-phase flow in rod arrays. The constitutive parameters are the solid-fluid flow resistance and the gas-liquid interfacial momentum exchange force. This report covers work in four areas: (1) a correlation for flow resistance across banks of tubes which is independent of rod arrangement has been developed. The correlation was developed from data from three rod arrangements covering a Reynolds number range (based on superficial velocity) of 1 to 40,000; (2) complete pressure drop data for water flows in the laminar region in crossflow and 45 0 inclined rod arrays were taken; (3) the development of a model for the interfacial momentum exchange force in bubbly flows has been completed. This model has been validated against single bubble velocity data in inclined rod arrays. The model has been cast in a form suitable for implementation to two-fluid computer codes; and (4) rise velocities of bubbles in 0 0 , 45 0 , and 90 0 inclined rod arrays have been measured. This data should prove useful for the development of a bubble drag coefficient model for rod arrays

  9. Finite-difference methods in multi-dimensional two-phase flow

    International Nuclear Information System (INIS)

    Travis, J.R.

    1977-01-01

    In the summer of 1974, the Theoretical Division of the Los Alamos Scientific Laboratory began several research programs in the area of reactor safety for the United States Nuclear Regulatory Commission. Research efforts were started in the Liquid Metal Fast Breeder (LMFBR) and the Light Water Reactor (LWR) safety programs. The character of the Theoretical Division was to develop computer codes for the safety analysis of these reactor systems. The question of whether or not, during the course of a hypothetical accident sequence in an LMFBR, the core will subside to a coolable configuration without secondary critical bursts has never been resolved. To aid the study of this question, a computer program called SIMMER (S/sub N/, Implicit, Multified, Multicomponent, Eulerian Recriticality) was to be developed to predict the dynamics of extreme hypothetical accident sequences during which extended core motion is expected. This time-dependent computer code called for combining an advanced multidimensional, multiphase fluid dynamic methodology with multidimensional neutron transport theory and improved equation-of-state technology. In the LWR program, the research emphasis was to push forward in two areas: (1) the development of advanced multiphase fluid dynamic methods and computer programs for performing basic research and analyzing areas in thermal hydraulics important to the safety of water reactors, and (2) the development of an advanced ''best estimate'' systems code called TRAC (Transient Reactor Analysis Code) for analyzing loss-of-coolant accidents and anticipated-transients-without-scram in light water reactors

  10. Multidimensional analysis of developing two-phase flows in an ESBWR chimney with and without riser channels

    International Nuclear Information System (INIS)

    Murakawa, H.; Antal, S.P.; Lahey, R T.

    2008-01-01

    The object of this work was to simulate developing multidimensional velocity and void fraction distributions in bubbly and churn turbulent two-phase flows. An advanced Computational Multiphase Fluid Dynamics (CMFD) code, NPHASE, was used to perform three-dimensional, multi-field simulations of the developing phasic velocity and phase distributions in vertical adiabatic conduits. The NPHASE code employed a multi-field two-fluid model, in which, for churn turbulent flow, the vapor phase was divided into small and large, cap bubble fields. In addition, state-of-the-art interfacial area density and field-to-field mass transfer models were used for both the small and large, cap bubbles. In particular, the bubble breakup and coalescence processes were quantified using a two-group interfacial area density transport equation. This allowed the CMFD simulation of developing churn turbulent flows in an ESBWR with and without vertical riser channels in the chimney region above the core. Based on these simulations it was concluded that riser channels have little adverse effect on the induced natural circulation flow through the core and the stability characteristics of an ESBWR. (authors)

  11. Large Break LOCA Analysis with New downcomer Nodalizaion and Multi-Dimensional Model and Effect of Cross flow option in MARS code

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hyung-wook; Lee, Sang-yong; Oh, Seung-jong; Kim, Woong-bae [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2016-10-15

    The phenomena of LOCA have been investigated for long time. The most extensive research project for LOCA was the 2D/3D program experiments. The results of the 2D/3D experiments show flow conditions in the downcomer during end-of-blowdown were highly multi-dimensional at full-scale. In this paper, the authors modified the nodalization of MARS code LBLOCA input deck and performed LBLOCA analysis with new input deck. An LBLOCA analysis for APR1400 with new downcomer input deck was conducted using KREM with MARS-KS 1.4 Version code. Analysis was processed under LBCOCA of 100% break size of cold leg case. The authors developed input deck with new downcomer nodalizaion and Multi-Dimensional downcomer model, then implemented LOCA analysis with new input decks and compared with existing analysis results. PCT from new input and multi-dimensional input deck shows similar PCT trend from original input deck. There occurred more rapid drop of PCT from new and multidimensional input deck than original input deck. PCT from new and multidimensional input deck are satisfied with PCT design limit. It can be concluded that there occurs no acceptance criteria issue even though new and multidimensional input deck are applied to LBLOCA analysis. In future study, comparative analysis with experiment results will be implemented.

  12. A novel hybrid approach with multidimensional-like effects for compressible flow computations

    Science.gov (United States)

    Kalita, Paragmoni; Dass, Anoop K.

    2017-07-01

    A multidimensional scheme achieves good resolution of strong and weak shocks irrespective of whether the discontinuities are aligned with or inclined to the grid. However, these schemes are computationally expensive. This paper achieves similar effects by hybridizing two schemes, namely, AUSM and DRLLF and coupling them through a novel shock switch that operates - unlike existing switches - on the gradient of the Mach number across the cell-interface. The schemes that are hybridized have contrasting properties. The AUSM scheme captures grid-aligned (and strong) shocks crisply but it is not so good for non-grid-aligned weaker shocks, whereas the DRLLF scheme achieves sharp resolution of non-grid-aligned weaker shocks, but is not as good for grid-aligned strong shocks. It is our experience that if conventional shock switches based on variables like density, pressure or Mach number are used to combine the schemes, the desired effect of crisp resolution of grid-aligned and non-grid-aligned discontinuities are not obtained. To circumvent this problem we design a shock switch based - for the first time - on the gradient of the cell-interface Mach number with very impressive results. Thus the strategy of hybridizing two carefully selected schemes together with the innovative design of the shock switch that couples them, affords a method that produces the effects of a multidimensional scheme with a lower computational cost. It is further seen that hybridization of the AUSM scheme with the recently developed DRLLFV scheme using the present shock switch gives another scheme that provides crisp resolution for both shocks and boundary layers. Merits of the scheme are established through a carefully selected set of numerical experiments.

  13. 640-slice DVCT multi-dimensionally and dynamically presents changes in bladder volume and urine flow rate

    Science.gov (United States)

    Su, Yunshan; Fang, Kewei; Mao, Chongwen; Xiang, Shutian; Wang, Jin; Li, Yingwen

    2018-01-01

    The present study aimed to explore the application of 640-slice dynamic volume computed tomography (DVCT) to excretory cystography and urethrography. A total of 70 healthy subjects were included in the study. Excretory cystography and urethrography using 640-slice DVCT was conducted to continuously record the motions of the bladder and the proximal female and male urethra. The patients' voiding process was divided into early, early to middle, middle, middle to late, and late voiding phases. The subjects were analyzed using DVCT and conventional CT. The cross-sectional areas of various sections of the male and female urethra were evaluated, and the average urine flow rate was calculated. The 640-slice DVCT technique was used to dynamically observe the urine flow rate and changes in bladder volume at all voiding phases. The urine volume detected by 640-slice DVCT exhibited no significant difference compared with the actual volume, and no significant difference compared with that determined using conventional CT. Furthermore, no significant difference in the volume of the bladder at each phase of the voiding process was detected between 640-slice DVCT and conventional CT. The results indicate that 640-slice DVCT can accurately evaluate the status of the male posterior urethra and female urethra. In conclusion, 640-slice DVCT is able to multi-dimensionally and dynamically present changes in bladder volume and urine flow rate, and could obtain similar results to conventional CT in detecting urine volume, as well as the status of the male posterior urethra and female urethra. PMID:29467853

  14. Multidimensional spectrometer

    Science.gov (United States)

    Zanni, Martin Thomas; Damrauer, Niels H.

    2010-07-20

    A multidimensional spectrometer for the infrared, visible, and ultraviolet regions of the electromagnetic spectrum, and a method for making multidimensional spectroscopic measurements in the infrared, visible, and ultraviolet regions of the electromagnetic spectrum. The multidimensional spectrometer facilitates measurements of inter- and intra-molecular interactions.

  15. Mechanistic multidimensional analysis of two-phase flow in horizontal tube with 90 deg elbow

    International Nuclear Information System (INIS)

    Tselishcheva, E.A.; Antal, St.P.; Podowski, M.Z.; Marshall, S.

    2007-01-01

    The development of modeling and simulation capabilities of two-phase flow and heat transfer is very important for the design, operation and safety of nuclear reactors. Whereas a significant progress in this field has been made over the recent years, further advancements are clearly needed for new concepts of advanced (Generation-IV in particular) reactors. Difficulties in analyzing gas/liquid flows are due to the fact that such two-phase mixtures can assume several different flow patterns, each characterized by flow-regime specific interfacial phenomena of mass, momentum and energy transfer. The level of difficulty increases even further in the case of a complex tube geometries and spatial orientations. The purpose of this paper is to discuss the results of the analysis of a two-phase flow in a horizontal pipe with a 90-degree elbow. The overall objective of the present work is the development of a 3-dimensional computational model of a two-phase high-Reynolds number turbulent flow. The overall new model has been encoded in the next-generation Computational Multiphase Fluid Dynamics (CMFD) computer code, NPHASE. The model has been tested parametrically and the results of NPHASE calculations have been compared against experimental data. It has been demonstrated that the proposed model is consistent both physically and numerically, the predictions are in a reasonable agreement with the measurements

  16. Load compensation for single phase system using series active filter

    African Journals Online (AJOL)

    user

    Keywords: Active power filter (APF), current source type of harmonic load ... Single phase active filters could attract less attention than three phase due to its low ..... Generalised single-phase p-q theory for active power filtering: simulation and.

  17. A Two-Temperature Open-Source CFD Model for Hypersonic Reacting Flows, Part Two: Multi-Dimensional Analysis †

    Directory of Open Access Journals (Sweden)

    Vincent Casseau

    2016-12-01

    Full Text Available hy2Foam is a newly-coded open-source two-temperature computational fluid dynamics (CFD solver that has previously been validated for zero-dimensional test cases. It aims at (1 giving open-source access to a state-of-the-art hypersonic CFD solver to students and researchers; and (2 providing a foundation for a future hybrid CFD-DSMC (direct simulation Monte Carlo code within the OpenFOAM framework. This paper focuses on the multi-dimensional verification of hy2Foam and firstly describes the different models implemented. In conjunction with employing the coupled vibration-dissociation-vibration (CVDV chemistry–vibration model, novel use is made of the quantum-kinetic (QK rates in a CFD solver. hy2Foam has been shown to produce results in good agreement with previously published data for a Mach 11 nitrogen flow over a blunted cone and with the dsmcFoam code for a Mach 20 cylinder flow for a binary reacting mixture. This latter case scenario provides a useful basis for other codes to compare against.

  18. CFD and system analysis code investigations of the multidimensional flow mixing phenomena in the reactor pressure vessel

    International Nuclear Information System (INIS)

    Ceuca, S.C.; Herb, J.; Schoeffel, P.J.; Hollands, T.; Austregesilo, H.; Hristov, H.V.

    2017-01-01

    The realistic numerical prediction of transient fluid-dynamic scenarios including the complex, three-dimensional flow mixing phenomena occurring in the reactor pressure vessel (RPV) both in normal or abnormal operation are an important issue in today's reactor safety assessment studies. Both Computational Fluid Dynamics (CFD) tools as well as fluid-dynamic system analysis codes, each with its advantages and drawbacks, are commonly used to model such transients. Simulation results obtained with the open-source CFD tool-box OpenFOAM and the German thermal-hydraulic system code ATHLET (Analysis of THermal-hydraulics of LEaks and Transients), the later developed by Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) for the analysis of the whole spectrum of operational transients, design-basis accidents and beyond design basis accidents anticipated for nuclear energy facilities, are compared against experimental data from the ROssendorf Coolant Mixing (ROCOM) test facility. In the case of the OpenFOAM CFD simulations the influence of various turbulence models and numerical schemes has been assessed while in the case of the system analysis code ATHLET a multidimensional nodalization recommended for real power plant applications has been employed. The simulation results show a good agreement with the experimental data, indicating that both OpenFOAM and ATHLET can capture the key flow features of the mixing processes in the Reactor Pressure Vessel (RPV). (author)

  19. Beyond the Child-Langmuir law: A review of recent results on multidimensional space-charge-limited flow

    International Nuclear Information System (INIS)

    Luginsland, J.W.; Lau, Y.Y.; Umstattd, R.J.; Watrous, J.J.

    2002-01-01

    Space-charge-limited (SCL) flows in diodes have been an area of active research since the pioneering work of Child and Langmuir in the early part of the last century. Indeed, the scaling of current density with the voltage to the 3/2's power is one of the best-known limits in the fields of non-neutral plasma physics, accelerator physics, sheath physics, vacuum electronics, and high power microwaves. In the past five years, there has been renewed interest in the physics and characteristics of SCL emission in physically realizable configurations. This research has focused on characterizing the current and current density enhancement possible from two- and three-dimensional geometries, such as field-emitting arrays. In 1996, computational efforts led to the development of a scaling law that described the increased current drawn due to two-dimensional effects. Recently, this scaling has been analytically derived from first principles. In parallel efforts, computational work has characterized the edge enhancement of the current density, leading to a better understanding of the physics of explosive emission cathodes. In this paper, the analytic and computational extensions to the one-dimensional Child-Langmuir law will be reviewed, the accuracy of SCL emission algorithms will be assessed, and the experimental implications of multidimensional SCL flows will be discussed

  20. Multi-dimensional modeling of gas-liquid two-phase flows. Application to the simulation of ascending bubble flows in vertical ducts

    International Nuclear Information System (INIS)

    Morel, Ch.

    1997-01-01

    The aim of this thesis is the 3-D modeling and numerical simulation of liquid/gas (water/vapor or water/air) two-phase flows in cooling circuits of nuclear power plants during normal and accidental situations. The development of a multidimensional dual-fluid model encounters two problems: the statistical effects of turbulence and the interface mass, momentum and energy transfers. The models developed in this study were introduced in the 3-D module of the CATHARE code developed by the CEA and the results were compared to experimental results available in the literature. The first chapter describes the equations of the local dual-fluid model for the 3-D description of two-phase flows. Closing relations adapted to dispersed flows with isothermal bubbles and without phase transformation are proposed and focus on the momentum transfer at the interfaces. The theoretical study of turbulence in the liquid phase of a bubble flow is modelled in chapter 2. Chapter 3 deals with the voluminal interface area used in the interface mass, momentum and energy transfers, and chapters 4 and 5 concern the application of the developed models to concrete situations. Chapter 4 describes in details the 3-D module of the CATHARE code while chapter 5 gives a comparison of numerical results obtained using the CATHARE code with other experimental results obtained at EdF. (J.S.)

  1. Multidimensional flow, thermal, and chemical behavior in solid-oxide fuel cell button cells

    Energy Technology Data Exchange (ETDEWEB)

    Goldin, Graham M. [Ansys Incorporated, 10 Cavendish Ct., Centerra Resource Park, Lebanon, NH 03766 (United States); Zhu, Huayang; Kee, Robert J. [Engineering Division, Colorado School of Mines, Golden, CO 80401 (United States); Bierschenk, David; Barnett, Scott A. [Materials Science, Northwestern University, Evanston, IL 60208 (United States)

    2009-02-01

    The quantitative analysis and interpretation of button-cell experiments usually depends upon assuming isothermal conditions together with uniform and known gas composition within the gas compartments. An objective of the present effort is to develop computational tools to study the validity of such assumptions. A three-dimensional computational fluid dynamics (CFD) model is developed and applied to a particular SOFC button cell, characterizing the fluid flow, chemistry, and thermal transport. Results show that when inlet flow rates are sufficiently high, button-cell data can be interpreted using the commonly used assumptions. However, when flow rates are not sufficient, the assumptions of uniform composition can be significantly violated. Additionally, depending on operating conditions there can be significant temperature variations within the gas compartments and the membrane-electrode assembly. (author)

  2. A GIS-based Computational Tool for Multidimensional Flow Velocity by Acoustic Doppler Current Profilers

    International Nuclear Information System (INIS)

    Kim, D; Winkler, M; Muste, M

    2015-01-01

    Acoustic Doppler Current Profilers (ADCPs) provide efficient and reliable flow measurements compared to other tools for characteristics of the riverine environments. In addition to originally targeted discharge measurements, ADCPs are increasingly utilized to assess river flow characteristics. The newly developed VMS (Velocity Mapping Software) aims at providing an efficient process for quality assurance, mapping velocity vectors for visualization and facilitating comparison with physical and numerical model results. VMS was designed to provide efficient and smooth work flows for processing groups of transects. The software allows the user to select group of files and subsequently to conduct statistical and graphical quality assurance on the files as a group or individually as appropriate. VMS also enables spatial averaging in horizontal and vertical plane for ADCP data in a single or multiple transects over the same or consecutive cross sections. The analysis results are displayed in numerical and graphical formats. (paper)

  3. Domain switching in single-phase multiferroics

    Science.gov (United States)

    Jia, Tingting; Cheng, Zhenxiang; Zhao, Hongyang; Kimura, Hideo

    2018-06-01

    Multiferroics are a time-honoured research subject by reason for their tremendous application potential in the information industry, such as in multi-state information storage devices and new types of sensors. An outburst of studies on multiferroicity has been witnessed in the 21st century, although this field has a long research history since the 19th century. Multiferroicity has now become one of the hottest research topics in condensed matter physics and materials science. Numerous efforts have been made to investigate the cross-coupling phenomena among ferroic orders such as ferroelectricity, (anti-)ferromagnetism, and ferroelasticity, especially the coupling between electric and magnetic orderings that would account for the magnetoelectric (ME) effect in multiferroic materials. The magnetoelectric properties and coupling behavior of single phase multiferroics are dominated by their domain structures. It was also noted that, however, the multiferroic materials exhibit very complicated domain structures. Studies on domain structure characterization and domain switching are a crucial step in the exploration of approaches to the control and manipulation of magnetic (electric) properties using an electric (magnetic) field or other means. In this review, following a concise outline of our current basic knowledge on the magnetoelectric (ME) effect, we summarize some important research activities on domain switching in single-phase multiferroic materials in the form of single crystals and thin films, especially domain switching behavior involving strain and the related physics in the last decade. We also introduce recent developments in characterization techniques for domain structures of ferroelectric or multiferroic materials, which have significantly advanced our understanding of domain switching dynamics and interactions. The effects of a series of issues such as electric field, magnetic field, and stress effects on domain switching are been discussed as well. It

  4. Using travel times to simulate multi-dimensional bioreactive transport in time-periodic flows.

    Science.gov (United States)

    Sanz-Prat, Alicia; Lu, Chuanhe; Finkel, Michael; Cirpka, Olaf A

    2016-04-01

    In travel-time models, the spatially explicit description of reactive transport is replaced by associating reactive-species concentrations with the travel time or groundwater age at all locations. These models have been shown adequate for reactive transport in river-bank filtration under steady-state flow conditions. Dynamic hydrological conditions, however, can lead to fluctuations of infiltration velocities, putting the validity of travel-time models into question. In transient flow, the local travel-time distributions change with time. We show that a modified version of travel-time based reactive transport models is valid if only the magnitude of the velocity fluctuates, whereas its spatial orientation remains constant. We simulate nonlinear, one-dimensional, bioreactive transport involving oxygen, nitrate, dissolved organic carbon, aerobic and denitrifying bacteria, considering periodic fluctuations of velocity. These fluctuations make the bioreactive system pulsate: The aerobic zone decreases at times of low velocity and increases at those of high velocity. For the case of diurnal fluctuations, the biomass concentrations cannot follow the hydrological fluctuations and a transition zone containing both aerobic and obligatory denitrifying bacteria is established, whereas a clear separation of the two types of bacteria prevails in the case of seasonal velocity fluctuations. We map the 1-D results to a heterogeneous, two-dimensional domain by means of the mean groundwater age for steady-state flow in both domains. The mapped results are compared to simulation results of spatially explicit, two-dimensional, advective-dispersive-bioreactive transport subject to the same relative fluctuations of velocity as in the one-dimensional model. The agreement between the mapped 1-D and the explicit 2-D results is excellent. We conclude that travel-time models of nonlinear bioreactive transport are adequate in systems of time-periodic flow if the flow direction does not change

  5. Low-diffusion rotated upwind schemes, multigrid and defect correction for steady, multi-dimensional Euler flows

    NARCIS (Netherlands)

    Koren, B.; Hackbusch, W.; Trottenberg, U.

    1991-01-01

    Two simple, multi-dimensional upwind discretizations for the steady Euler equations are derived, with the emphasis Iying on bath a good accuracy and a good solvability. The multi-dimensional upwinding consists of applying a one-dimensional Riemann solver with a locally rotated left and right state,

  6. Multidimensional flow of radioactive gases through the soil surrounding an underground nuclear power plant

    International Nuclear Information System (INIS)

    Dinkelacker, A.

    1980-01-01

    In connection with the underground siting of nuclear power plants the spreading of radioactive gases that are released into the soil coverage after a hypothetical accident is investigated. A physical model is presented that includes the isothermal one- and two-component flow of ideal gases through an inhomogeneous porous medium on the basis of Darcy's law. Based on this model a computer code has been developed that permits the calculation of transient pressure and concentration distributions in inhomogeneous porous media in one to three dimensions, as well as the determination of retention times. (orig.) [de

  7. Single-phase convective heat transfer in rod bundles

    International Nuclear Information System (INIS)

    Holloway, Mary V.; Beasley, Donald E.; Conner, Michael E.

    2008-01-01

    The convective heat transfer for turbulent flow through rod bundles representative of nuclear fuel rods used in pressurized water reactors is examined. The rod bundles consist of a square array of parallel rods that are held on a constant pitch by support grids spaced axially along the rod bundle. Split-vane pair support grids, which create swirling flow in the rod bundle, as well as disc and standard support grids are investigated. Single-phase convective heat transfer coefficients are measured for flow downstream of support grids in a rod bundle. The rods are heated using direct resistance heating, and a bulk axial flow of air is used to cool the rods in the rod bundle. Air is used as the working fluid instead of water to reduce the power required to heat the rod bundle. Results indicate heat transfer enhancement for up to 10 hydraulic diameters downstream of the support grids. A general correlation is developed to predict the heat transfer development downstream of support grids. In addition, circumferential variations in heat transfer coefficients result in hot streaks that develop on the rods downstream of split-vane pair support grids

  8. Single-phase convective heat transfer in rod bundles

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, Mary V. [Mechanical Engineering Department, United States Naval Academy, 590 Holloway Rd., Annapolis, MD 21402 (United States)], E-mail: holloway@usna.edu; Beasley, Donald E. [Mechanical Engineering Department, Clemson University, Clemson, SC 29634 (United States); Conner, Michael E. [Westinghouse Nuclear Fuel, 5801 Bluff Road, Columbia, SC 29250 (United States)

    2008-04-15

    The convective heat transfer for turbulent flow through rod bundles representative of nuclear fuel rods used in pressurized water reactors is examined. The rod bundles consist of a square array of parallel rods that are held on a constant pitch by support grids spaced axially along the rod bundle. Split-vane pair support grids, which create swirling flow in the rod bundle, as well as disc and standard support grids are investigated. Single-phase convective heat transfer coefficients are measured for flow downstream of support grids in a rod bundle. The rods are heated using direct resistance heating, and a bulk axial flow of air is used to cool the rods in the rod bundle. Air is used as the working fluid instead of water to reduce the power required to heat the rod bundle. Results indicate heat transfer enhancement for up to 10 hydraulic diameters downstream of the support grids. A general correlation is developed to predict the heat transfer development downstream of support grids. In addition, circumferential variations in heat transfer coefficients result in hot streaks that develop on the rods downstream of split-vane pair support grids.

  9. TRUST: A Computer Program for Variably Saturated Flow in Multidimensional, Deformable Media

    Energy Technology Data Exchange (ETDEWEB)

    Reisenauer, A. E.; Key, K. T.; Narasimhan, T. N.; Nelson, R. W.

    1982-01-01

    The computer code, TRUST. provides a versatile tool to solve a wide spectrum of fluid flow problems arising in variably saturated deformable porous media. The governing equations express the conservation of fluid mass in an elemental volume that has a constant volume of solid. Deformation of the skeleton may be nonelastic. Permeability and compressibility coefficients may be nonlinearly related to effective stress. Relationships between permeability and saturation with pore water pressure in the unsaturated zone may include hysteresis. The code developed by T. N. Narasimhan grew out of the original TRUNP code written by A. L. Edwards. The code uses an integrated finite difference algorithm for numerically solving the governing equation. Narching in time is performed by a mixed explicit-implicit numerical procedure in which the time step is internally controlled. The time step control and related feature in the TRUST code provide an effective control of the potential numerical instabilities that can arise in the course of solving this difficult class of nonlinear boundary value problem. This document brings together the equations, theory, and users manual for the code as well as a sample case with input and output.

  10. Experimental observation of a multi-dimensional mixing behavior of steam-water flow in the MIDAS test facility

    International Nuclear Information System (INIS)

    Kweon, T. S.; Yun, B. J.; Ah, D. J.; Ju, I. C.; Song, C. H.; Park, J. K.

    2001-01-01

    Multi-dimensional thermal-hydraulic hehavior, such as ECC (Emergency Core Cooling) bypass, ECC penetration, steam-water condensation and accumulated water level, in an annular downcomer of a PWR (Pressurized Water Reactor) reactor vessel with a DVI(Direct Vessel Injection) injection mode is presented based on the experimental observations in the MIDAS (Multi-dimensional Investigation in Downcomer Annulus Simulation) steam-water facility. From the steady-state tests to similate a late reflood phase of LBLOCA (Large Break Loss-of-Coolant Accidents), major thermal-hydraulic phenomena in the downcomer are quantified under a wide range of test conditions. Especially, isothermal lines show well multi-dimensional phenomena of phase interaction between steam and water in the annulus downcomer. Overall test results show that multi-dimensional thermal-hydraulic behaviors occur in the downcomer annulus region as expected. The MIDAS test facility is a steam-water separate effect test facility, which is 1/4.93 linearly scaled-down of a 1400 MWe PWR type of nuclear reactor, with focusing on understanding multi-dimensional thermal-hydraulic phenomena in annulus downcomer with various types of safety injection location during refill or reflood phase of a LBLOCA in PWR

  11. Experimental research on single phase convection heat transfer in micro-fin tube

    International Nuclear Information System (INIS)

    Fan Guangming; Sun Zhongning; Zhu Sheng

    2011-01-01

    An experimental investigation of heat transfer and flow resistance characteristics of single phase water in three micro-fin tubes with different fin height was conducted. At the same time, the efficiency of micro-fin tubes within the experimental scope was evaluated and the optimal working region was determined. Based on the experimental data in the optimal working region, correlations for predicting the heat transfer and flow resistance were also given by multiple regression method. The result indicates that the micro-fin tubes can greatly enhance the single-phase heat transfer in turbulent flow, and the increase of heat transfer coefficient is higher than the increase of flow resistance. The accuracy of the correlation is very high, of which the deviation from the experimental value is very small. (authors)

  12. Current Harmonics from Single-Phase Grid-Connected Inverters

    DEFF Research Database (Denmark)

    Yang, Yongheng; Zhou, Keliang; Blaabjerg, Frede

    2016-01-01

    Environmental conditions and operational modes may significantly impact the distortion level of the injected current from single-phase grid-connected inverter systems, such as photovoltaic (PV) inverters, which may operate in cloudy days with a maximum power point tracking, in a non-unity power...... factor, or in the low voltage ride through mode with reactive current injection. In this paper, the mechanism of the harmonic current injection from grid-connected single-phase inverter systems is thus explored, and the analysis is conducted on single-phase PV systems. In particular, the analysis...... is focused on the impacts of the power factor and the feed-in grid current level on the quality of the feed-in grid current from single-phase inverters. As a consequence, an internal model principle based high performance current control solution is tailor-made and developed for single-phase grid-connected...

  13. Single-Phase Bundle Flows Including Macroscopic Turbulence Model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jun; Yoon, Han Young [KAERI, Daejeon (Korea, Republic of); Yoon, Seok Jong; Cho, Hyoung Kyu [Seoul National University, Seoul (Korea, Republic of)

    2016-05-15

    To deal with various thermal hydraulic phenomena due to rapid change of fluid properties when an accident happens, securing mechanistic approaches as much as possible may reduce the uncertainty arising from improper applications of the experimental models. In this study, the turbulence mixing model, which is well defined in the subchannel analysis code such as VIPRE, COBRA, and MATRA by experiments, is replaced by a macroscopic k-e turbulence model, which represents the aspect of mathematical derivation. The performance of CUPID with macroscopic turbulence model is validated against several bundle experiments: CNEN 4x4 and PNL 7x7 rod bundle tests. In this study, the macroscopic k-e model has been validated for the application to subchannel analysis. It has been implemented in the CUPID code and validated against CNEN 4x4 and PNL 7x7 rod bundle tests. The results showed that the macroscopic k-e turbulence model can estimate the experiments properly.

  14. Improvement of Torque Production in Single-Phase Induction Motors

    African Journals Online (AJOL)

    OLUWASOGO

    PID controller. Simulation results show the starting torque of the motor increased by 75% under the developed drive .... The model equations of the capacitor-run single phase induction .... process using the MATLAB pidtool command (Control.

  15. A Novel Single Phase Hybrid Switched Reluctance Motor Drive System

    DEFF Research Database (Denmark)

    Liang, Jianing; Xu, Guoqing; Jian, Linni

    2011-01-01

    In this paper, a novel single phase hybrid switched reluctance motor(SRM) drive system is proposed. It integrated a single phase hybrid SRM and a novel single phase boost converter. This motor can reduce the number of phase switch. And the permanent magnet which is used in the motor can improve...... the performance and efficiency of SR motor. However, the inherent characteristic of this motor is that the negative torque is very sensitive with the excitation current near the turn-on angle. The slow excitation current limits the torque generation region and reduces the average torque. Therefore, a novel single...... phase boost converter is applied to improve the performance of this motor. It is easy to generate a double dclink voltage and dc-link voltage and switch both of them. The voltage of boost capacitor is self balance, so the protective circuit is not need to consider. The fast excitation mode helps hybrid...

  16. Load compensation for single phase system using series active filter ...

    African Journals Online (AJOL)

    Load compensation for single phase system using series active filter. ... KK Mishra, R Gupta ... load varies from time to time, the non linear load ranging from voltage source type harmonic load (VSHL) dominant to current source type harmonic ...

  17. Experimental research of inclined-micro-fin flat tube on single phase convection heat transfer

    International Nuclear Information System (INIS)

    Fan Guangming; Sun Zhongning; Wang Meng

    2011-01-01

    The experimental research of heat transfer and flow resistance characteristics of single phase water in four inclined-micro-fin flat tubes with different physical dimensions was conducted. At the same time,suitable criteria were selected to evaluate the efficiency of inclined-micro-fin flat tubes within the experimental scope and the optimal working region was determined. The results indicate that inclined-micro-fin flat tubes can greatly enhance the single-phase heat transfer in turbulent flow and the maximum heat transfer coefficient attains to 5.9 times of that in smooth tube. The quantities of heat transfer for inclined-micro-fin flat tubes are three times higher than that of smooth tube with the same of heat exchange area and pump power. (authors)

  18. Numerical simulation of single-phase and multiphase non-Darcy flowin porous and fractured reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yu-Shu

    2000-06-02

    A numerical method as well as a theoretical study of non-Darcy fluid flow of through porous and fractured reservoirs is described. The non-Darcy flow is handled in a three-dimensional, multiphase flow reservoir simulator, while the model formulation incorporates the Forchheimer equation for describing single-phase or multiphase non-Darcy flow and displacement. The numerical scheme has been verified by comparing its results against those of analytical methods. Numerical solutions are used to obtain some insight into the physics of non-Darcy flow and displacement in reservoirs. In addition, several type curves are provided for well-test analyses of non-Darcy flow to demonstrate a methodology for modeling this type of flow in porous and fractured rocks, including flow in geothermal reservoirs.

  19. A Two-Temperature Open-Source CFD Model for Hypersonic Reacting Flows, Part Two: Multi-Dimensional Analysis †

    OpenAIRE

    Vincent Casseau; Daniel E. R. Espinoza; Thomas J. Scanlon; Richard E. Brown

    2016-01-01

    hy2Foam is a newly-coded open-source two-temperature computational fluid dynamics (CFD) solver that has previously been validated for zero-dimensional test cases. It aims at (1) giving open-source access to a state-of-the-art hypersonic CFD solver to students and researchers; and (2) providing a foundation for a future hybrid CFD-DSMC (direct simulation Monte Carlo) code within the OpenFOAM framework. This paper focuses on the multi-dimensional verification of hy2Foam and firstly describes th...

  20. European developments in single phase turbulence for innovative reactors

    Energy Technology Data Exchange (ETDEWEB)

    Roelofs, F., E-mail: roelofs@nrg.eu [NRG, Petten (Netherlands); Rohde, M. [DUT, Delft (Netherlands); and others

    2011-07-01

    Thermal-hydraulics is recognized as a key scientific subject in the development of different innovative nuclear reactor systems. From the thermal-hydraulic point of view, different innovative reactors are mainly characterized by their coolants (gas, water, liquid metals and molten salt). They result in specific behavior of flow and heat transfer, which requires specific models and advanced analysis tools. However, many common thermal-hydraulic issues are identified among various innovative nuclear systems. In Europe, such cross-cutting thermal-hydraulics topics are the motivation for the THINS (Thermal-Hydraulics of Innovative Nuclear Systems) project which is sponsored by the European Commission from 2010 to 2014. This paper describes the ongoing developments in an important part of this project devoted to single phase turbulence issues. To this respect, the two main issues have been identified: Non-unity Prandtl number turbulence. In case of liquid metals, molten salts or supercritical fluids, the commonly applied constant turbulent Prandtl number concept is not applicable and robust engineering turbulence models are needed. This paper will report on the progress achieved with respect to the development and validation of turbulence models available in commonly used engineering tools. The paper also reports about the supporting experiments and direct numerical simulations; and, Temperature fluctuations possibly leading to thermal fatigue in innovative reactors. The status is described of a fundamental experiment dealing with the mixing of different density gases in a rectangular channel, an experiment in a more complex geometry of a small mixing plenum using a supercritical fluid, and direct numerical simulations of conjugate heat transfer on temperature fluctuations in liquid metal. (author)

  1. European developments in single phase turbulence for innovative reactors

    International Nuclear Information System (INIS)

    Roelofs, F.; Rohde, M.

    2011-01-01

    Thermal-hydraulics is recognized as a key scientific subject in the development of different innovative nuclear reactor systems. From the thermal-hydraulic point of view, different innovative reactors are mainly characterized by their coolants (gas, water, liquid metals and molten salt). They result in specific behavior of flow and heat transfer, which requires specific models and advanced analysis tools. However, many common thermal-hydraulic issues are identified among various innovative nuclear systems. In Europe, such cross-cutting thermal-hydraulics topics are the motivation for the THINS (Thermal-Hydraulics of Innovative Nuclear Systems) project which is sponsored by the European Commission from 2010 to 2014. This paper describes the ongoing developments in an important part of this project devoted to single phase turbulence issues. To this respect, the two main issues have been identified: Non-unity Prandtl number turbulence. In case of liquid metals, molten salts or supercritical fluids, the commonly applied constant turbulent Prandtl number concept is not applicable and robust engineering turbulence models are needed. This paper will report on the progress achieved with respect to the development and validation of turbulence models available in commonly used engineering tools. The paper also reports about the supporting experiments and direct numerical simulations; and, Temperature fluctuations possibly leading to thermal fatigue in innovative reactors. The status is described of a fundamental experiment dealing with the mixing of different density gases in a rectangular channel, an experiment in a more complex geometry of a small mixing plenum using a supercritical fluid, and direct numerical simulations of conjugate heat transfer on temperature fluctuations in liquid metal. (author)

  2. Simulation of the phenomenon of single-phase and two-phase natural circulation

    International Nuclear Information System (INIS)

    Castrillo, Lazara Silveira

    1998-02-01

    Natural convection phenomenon is often used to remove the residual heat from the surfaces of bodies where the heat is generated e.g. during accidents or transients of nuclear power plants. Experimental study of natural circulation can be done in small scale experimental circuits and the results can be extrapolated for larger operational facilities. The numerical analysis of transients can be carried out by using large computational codes that simulate the thermohydraulic behavior in such facilities. The computational code RELAP5/MOD2, (Reactor Excursion and Leak Analysis Program) was developed by U.S. Nuclear Regulatory Commissions's. Division of Reactor Safety Research with the objective of analysis of transients and postulated accidents in the light water reactor (LWR) systems, including small and large ruptures with loss of coolant accidents (LOCA's). The results obtained by the simulation of single-phase and two-phase natural circulation, using the RELAP5/MOD2, are presented in this work. The study was carried out using the experimental circuit built at the 'Departamento de Engenharia Quimica da Escola Politecnica da Universidade de Sao Paulo'. In the circuit, two experiments were carried out with different conditions of power and mass flow, obtaining a single-phase regime with a level of power of 4706 W and flow of 5.10 -5 m 3 /s (3 l/min) and a two-phase regime with a level of power of 6536 W and secondary flow 2,33.10 -5 m 3 /s (1,4 l/min). The study allowed tio evaluate the capacity of the code for representing such phenomena as well as comparing the transients obtained theoretically with the experimental results. The comparative analysis shows that the code represents fairly well the single-phase transient, but the results for two-phase transients, starting from the nodalization and calibration used for the case single-phase transient, did not reproduce faithfully some experimental results. (author)

  3. The Single-Phase ProtoDUNE Technical Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Abi, B. [Univ. of Padova (Italy); et al.

    2017-06-21

    ProtoDUNE-SP is the single-phase DUNE Far Detector prototype that is under construction and will be operated at the CERN Neutrino Platform (NP) starting in 2018. ProtoDUNE-SP, a crucial part of the DUNE effort towards the construction of the first DUNE 10-kt fiducial mass far detector module (17 kt total LAr mass), is a significant experiment in its own right. With a total liquid argon (LAr) mass of 0.77 kt, it represents the largest monolithic single-phase LArTPC detector to be built to date. It's technical design is given in this report.

  4. 100-nm thick single-phase wurtzite BAlN films with boron contents over 10%

    KAUST Repository

    Li, Xiaohang

    2017-01-11

    Growing thicker BAlN films while maintaining single-phase wurtzite structure and boron content over 10% has been challenging. In this study, we report on the growth of 100 nm-thick single-phase wurtzite BAlN films with boron contents up to 14.4% by MOCVD. Flow-modulated epitaxy was employed to increase diffusion length of group-III atoms and reduce parasitic reactions between the metalorganics and NH3. A large growth efficiency of ∼2000 μm mol−1 was achieved as a result. Small B/III ratios up to 17% in conjunction with high temperatures up to 1010 °C were utilized to prevent formation of the cubic phase and maintain wurtzite structure.

  5. 100-nm thick single-phase wurtzite BAlN films with boron contents over 10%

    KAUST Repository

    Li, Xiaohang; Wang, Shuo; Liu, Hanxiao; Ponce, Fernando A.; Detchprohm, Theeradetch; Dupuis, Russell D.

    2017-01-01

    Growing thicker BAlN films while maintaining single-phase wurtzite structure and boron content over 10% has been challenging. In this study, we report on the growth of 100 nm-thick single-phase wurtzite BAlN films with boron contents up to 14.4% by MOCVD. Flow-modulated epitaxy was employed to increase diffusion length of group-III atoms and reduce parasitic reactions between the metalorganics and NH3. A large growth efficiency of ∼2000 μm mol−1 was achieved as a result. Small B/III ratios up to 17% in conjunction with high temperatures up to 1010 °C were utilized to prevent formation of the cubic phase and maintain wurtzite structure.

  6. Stability analysis of single-phase thermosyphon loops by finite difference numerical methods

    International Nuclear Information System (INIS)

    Ambrosini, W.

    1998-01-01

    In this paper, examples of the application of finite difference numerical methods in the analysis of stability of single-phase natural circulation loops are reported. The problem is here addressed for its relevance for thermal-hydraulic system code applications, in the aim to point out the effect of truncation error on stability prediction. The methodology adopted for analysing in a systematic way the effect of various finite difference discretization can be considered the numerical analogue of the usual techniques adopted for PDE stability analysis. Three different single-phase loop configurations are considered involving various kinds of boundary conditions. In one of these cases, an original dimensionless form of the governing equations is proposed, adopting the Reynolds number as a flow variable. This allows for an appropriate consideration of transition between laminar and turbulent regimes, which is not possible with other dimensionless forms, thus enlarging the field of validity of model assumptions. (author). 14 refs., 8 figs

  7. Entropy-based viscous regularization for the multi-dimensional Euler equations in low-Mach and transonic flows

    Energy Technology Data Exchange (ETDEWEB)

    Marc O Delchini; Jean E. Ragusa; Ray A. Berry

    2015-07-01

    We present a new version of the entropy viscosity method, a viscous regularization technique for hyperbolic conservation laws, that is well-suited for low-Mach flows. By means of a low-Mach asymptotic study, new expressions for the entropy viscosity coefficients are derived. These definitions are valid for a wide range of Mach numbers, from subsonic flows (with very low Mach numbers) to supersonic flows, and no longer depend on an analytical expression for the entropy function. In addition, the entropy viscosity method is extended to Euler equations with variable area for nozzle flow problems. The effectiveness of the method is demonstrated using various 1-D and 2-D benchmark tests: flow in a converging–diverging nozzle; Leblanc shock tube; slow moving shock; strong shock for liquid phase; low-Mach flows around a cylinder and over a circular hump; and supersonic flow in a compression corner. Convergence studies are performed for smooth solutions and solutions with shocks present.

  8. A Transformer-less Single Phase Inverter For photovoltaic Systems

    DEFF Research Database (Denmark)

    Mostaan, Ali; Alizadeh, Ebrahim; Qu, Ying

    2017-01-01

    A single phase transformer-less inverter is introduced in this paper. The negative polarities of the input voltage and output terminal have common ground. Therefore, the leakage current problem that is common in PV systems is eliminated naturally. In addition, the proposed inverter has fewer comp...

  9. Dynamics Assessment of Advanced Single-Phase PLL Structures

    DEFF Research Database (Denmark)

    Golestan, Saeed; Monfarad, Mohammad; Freijedo, Francisco D.

    2013-01-01

    Recently, several advanced phase locked loop (PLL) techniques have been proposed for single-phase applications. Among these, the Park-PLL, and the second order generalized integrator (SOGI) based PLL are very attractive, owing to their simple digital implementation, low computational burden...

  10. experimental implementation of single-phase, three-level, sinusoidal

    African Journals Online (AJOL)

    Page 1 ... of many multilevel inverter configurations. This paper presents an experimental report of a simplified topology for single-phase, SPWM, three-level voltage source inverter wit R-L load. To keep the power circuit ... employed in many industrial applications such as variable speed drives, uninterruptible power sup-.

  11. An Asymmetrical Space Vector Method for Single Phase Induction Motor

    DEFF Research Database (Denmark)

    Cui, Yuanhai; Blaabjerg, Frede; Andersen, Gert Karmisholt

    2002-01-01

    Single phase induction motors are the workhorses in low-power applications in the world, and also the variable speed is necessary. Normally it is achieved either by the mechanical method or by controlling the capacitor connected with the auxiliary winding. Any above method has some drawback which...

  12. Solar-Based Boost Differential Single Phase Inverter | Eya | Nigerian ...

    African Journals Online (AJOL)

    Solar-Based Boost Differential Single Phase Inverter. ... Solar-based boost differential inverter is reduced down to 22.37% in closed loop system with the aid of Proportional –integral-Differential (PID) ... The dc power source is photovoltaic cell.

  13. A single phase photovoltaic inverter control for grid connected system

    Indian Academy of Sciences (India)

    This paper presents a control scheme for single phase grid connected photovoltaic (PV) system operating under both grid connected and isolated grid mode. The control techniques include voltage and current control of grid-tie PV inverter. During grid connected mode, grid controls the amplitude and frequency of the PV ...

  14. A simple output voltage control scheme for single phase wavelet ...

    African Journals Online (AJOL)

    DR OKE

    of the wavelet modulated (WM) scheme is that a single synthesis function, derived ... a single-phase H-bridge voltage-source (VS) inverter using MATLAB simulations. ... reconstruction process has been suggested to device a new class of ...

  15. On the development of a grid-enhanced single-phase convective heat transfer correlation

    International Nuclear Information System (INIS)

    Miller, D.J.; Cheung, F.B.; Bajorek, S.M.

    2011-01-01

    A new single-phase convective heat transfer augmentation correlation has been developed using single phase steam cooling experimental data obtained from the Penn State/NRC Rod Bundle Heat Transfer (RBHT) facility. Experimental data obtained from the RBHT single phase steam cooling tests have been evaluated and new findings identified. Previous rod bundle tests showed the importance of spacer grid on the local heat transfer, and that the augmentation in heat transfer downstream of a grid decays exponentially. The RBHT data also shows that the Reynolds number affects the rate at which this augmentation decays. The new correlation includes the strong dependence of heat transfer on both the Reynolds number and the grid blockage ratio. While the effects of both parameters were clearly evident in the RBHT experimental data, existing correlations do not account for the Reynolds number effect. The developed correlation incorporates Reynolds number in the decay curve of heat transfer. The newly developed correlation adequately accounts for the dependence of the heat transfer augmentation decay rate on the local flow Reynolds number. (author)

  16. SINGLE-PHASE AND TWO-PHASE SECONDARY COOLANTS: SIMULATION AND EVALUATION OF THEIR THERMOPHYSICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Pedro Samuel Gomes Medeiros

    2011-09-01

    Full Text Available This paper makes a comparative analysis of the thermophysical properties of ice slurry with conventional single-phase secondary fluids used in thermal storage cooling systems. The ice slurry is a two-phase fluid consisting of water, antifreeze and ice crystals. It is a new technology that has shown great energy potential. In addition to transporting energy as a heat transfer fluid, it has thermal storage properties due to the presence of ice, storing coolness by latent heat of fusion. The single-phase fluids analyzed are water-NaCl and water-propylene glycol solutions, which also operate as carrier fluids in ice slurry. The presence of ice changes the thermophysical properties of aqueous solutions and a number of these properties were determined: density, thermal conductivity and dynamic viscosity. Data were obtained by software simulation. The results show that the presence of 10% by weight of ice provides a significant increase in thermal conductivity and dynamic viscosity, without causing changes in density. The rheological behavior of ice slurries, associated with its high viscosity, requires higher pumping power; however, this was not significant because higher thermal conductivity allows a lower mass flow rate without the use of larger pumps. Thus, the ice slurry ensures its high potential as a secondary fluid in thermal storage cooling systems, proving to be more efficient than single-phase secondary fluids.

  17. MODELO MULTIDIMENSIONAL

    Directory of Open Access Journals (Sweden)

    Alexis Cedeño Trujillo

    2006-04-01

    Full Text Available

    Data Warehousing, es una tecnología para el almacenamiento de grandes volúmenes de datos en una amplia perspectiva de tiempo para el soporte a la toma de decisiones. Debido a su orientación analítica, impone un procesamiento distinto al de los sistemas operacionales y requiere de un diseño de base de datos más cercano a la visión de los usuarios finales, permitiendo que sea más fácil la recuperación de información y la navegación. Este diseño de base de datos se conoce como modelo multidimensional, este artículo, abordará sus características principales.

  18. Overview of Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2017-01-01

    A continuous booming installation of solar photovoltaic (PV) systems has been witnessed worldwide. It is mainly driven by the imperative demand of “clean” power generation from renewables. Grid-connected PV systems will thus become an even more active player in the future mixed power systems, which...... systems. This chapter thus gives an overview of the advancement of power electronics converters in single-phase grid-connected PV systems, being commonly used in residential applications. Demands to single-phase grid-connected PV systems and the general control strategies are also addressed...... are linked together by a vast of power electronics converters and the power grid. In order to achieve a reliable and efficient power generation from PV systems, more stringent demands have been imposed on the entire PV system. It, in return, advances the development of the power converter technology in PV...

  19. Permanent split capacitor single phase electric motor system

    Science.gov (United States)

    Kirschbaum, H.S.

    1984-08-14

    A permanent split capacitor single phase electric motor achieves balanced operation at more than one operating point by adjusting the voltage supplied to the main and auxiliary windings and adjusting the capacitance in the auxiliary winding circuit. An intermediate voltage tap on an autotransformer supplies voltage to the main winding for low speed operation while a capacitive voltage divider is used to adjust the voltage supplied to the auxiliary winding for low speed operation. 4 figs.

  20. Stability characteristics of a single-phase free convection loop

    Science.gov (United States)

    Creveling, H. F.; De Paz, J. F.; Baladi, J. Y.; Schoenhals, R. J.

    1975-01-01

    Experiments investigating the stability characteristics of a single-phase free convection loop are reported. Results of the study confirm the contention made by previous workers that instabilities near the thermodynamic critical point can occur for ordinary fluids as well as those with unusual behavior in the near-critical region. Such a claim runs counter to traditional beliefs, but it is supported by the observation of such instabilities for water at atmospheric pressure and moderate temperatures in the present work.

  1. Single-phase high-entropy alloys. An overview

    Energy Technology Data Exchange (ETDEWEB)

    Kozak, Roksolana; Steurer, Walter [ETH Zurich (Switzerland). Lab. of Crystallography; Sologubenko, Alla [ETH Zurich (Switzerland). Lab. of Nanotechnology

    2015-02-01

    The term 'high-entropy alloys (HEAs)' first appeared about 10 years ago defining alloys composed of n=5-13 principal elements with concentrations of approximately 100/n at.% each. Since then many equiatomic (or near equiatomic) single- and multi-phase multicomponent alloys were developed, which are reported for a combination of tunable properties: high hardness, strength and ductility, oxidation and wear resistance, magnetism, etc. In our paper, we focus on probably single-phase HEAs (solid solutions) out of all HEAs studied so far, discuss ways of their prediction, mechanical properties. In contrast to classical multielement/multiphase alloys, only single-phase multielement alloys (solid solutions) represent the basic concept underlying HEAs as mixing-entropy stabilized homogenous materials. The literature overview is complemented by own studies demonstrating that the alloys CrFeCoNi, CrFeCoNiAl{sub 0.3} and PdFeCoNi homogenized at 1300 and 1100 C, respectively, for 1 week are not single-phase HEAs, but a coherent mixture of two solid solutions.

  2. Multidimensional analysis of collective sidewards flow in Au on Au reactions between 100 and 1050 A MeV

    International Nuclear Information System (INIS)

    Wienold, T.; Fan, Z.G.; Hartnack, C.

    1994-11-01

    An excitation function of the Au on Au reaction from 100 to 1050 A MeV was measured using the FOPI-facility at GSI Darmstadt. Nuclear charge (Z≤15) and velocity of the product were detected with full azimuthal acceptance at laboratory angles 1 ≤Θ lab ≤30 . For the first time an analysis is presented which combines the azimuthally asymmetric part of the transverse flow (sidewards flow), stopping and the associated collision geometry. In comparison to microscopic transport model calculations we demonstrate the relevance of this method for the extraction of the nuclear equation of state. (orig.)

  3. Study of the Riemann problem and construction of multidimensional Godunov-type schemes for two-phase flow models

    International Nuclear Information System (INIS)

    Toumi, I.

    1990-04-01

    This thesis is devoted to the study of the Riemann problem and the construction of Godunov type numerical schemes for one or two dimensional two-phase flow models. In the first part, we study the Riemann problem for the well-known Drift-Flux, model which has been widely used for the analysis of thermal hydraulics transients. Then we use this study to construct approximate Riemann solvers and we describe the corresponding Godunov type schemes for simplified equation of state. For computation of complex two-phase flows, a weak formulation of Roe's approximate Riemann solver, which gives a method to construct a Roe-averaged jacobian matrix with a general equation of state, is proposed. For two-dimensional flows, the developed methods are based upon an approximate solver for a two-dimensional Riemann problem, according to Harten-Lax-Van Leer principles. The numerical results for standard test problems show the good behaviour of these numerical schemes for a wide range of flow conditions [fr

  4. Experimental studies in a single-phase parallel channel natural circulation system. Preliminary results

    International Nuclear Information System (INIS)

    Bodkha, Kapil; Pilkhwal, D.S.; Jana, S.S.; Vijayan, P.K.

    2016-01-01

    Natural circulation systems find extensive applications in industrial engineering systems. One of the applications is in nuclear reactor where the decay heat is removed by natural circulation of the fluid under off-normal conditions. The upcoming reactor designs make use of natural circulation in order to remove the heat from core under normal operating conditions also. These reactors employ multiple vertical fuel channels with provision of on-power refueling/defueling. Natural circulation systems are relatively simple, safe and reliable when compared to forced circulation systems. However, natural circulation systems are prone to encounter flow instabilities which are highly undesirable for various reasons. Presence of parallel channels under natural circulation makes the system more complicated. To examine the behavior of parallel channel system, studies were carried out for single-phase natural circulation flow in a multiple vertical channel system. The objective of the present work is to study the flow behavior of the parallel heated channel system under natural circulation for different operating conditions. Steady state and transient studies have been carried out in a parallel channel natural circulation system with three heated channels. The paper brings out the details of the system considered, different cases analyzed and preliminary results of studies carried out on a single-phase parallel channel system.

  5. An initial investigation of multidimensional flow and transverse mixing characteristics of the Ohio River near Cincinnati, Ohio

    Science.gov (United States)

    Holtschlag, David J.

    2009-01-01

    Two-dimensional hydrodynamic and transport models were applied to a 34-mile reach of the Ohio River from Cincinnati, Ohio, upstream to Meldahl Dam near Neville, Ohio. The hydrodynamic model was based on the generalized finite-element hydrodynamic code RMA2 to simulate depth-averaged velocities and flow depths. The generalized water-quality transport code RMA4 was applied to simulate the transport of vertically mixed, water-soluble constituents that have a density similar to that of water. Boundary conditions for hydrodynamic simulations included water levels at the U.S. Geological Survey water-level gaging station near Cincinnati, Ohio, and flow estimates based on a gate rating at Meldahl Dam. Flows estimated on the basis of the gate rating were adjusted with limited flow-measurement data to more nearly reflect current conditions. An initial calibration of the hydrodynamic model was based on data from acoustic Doppler current profiler surveys and water-level information. These data provided flows, horizontal water velocities, water levels, and flow depths needed to estimate hydrodynamic parameters related to channel resistance to flow and eddy viscosity. Similarly, dye concentration measurements from two dye-injection sites on each side of the river were used to develop initial estimates of transport parameters describing mixing and dye-decay characteristics needed for the transport model. A nonlinear regression-based approach was used to estimate parameters in the hydrodynamic and transport models. Parameters describing channel resistance to flow (Manning’s “n”) were estimated in areas of deep and shallow flows as 0.0234, and 0.0275, respectively. The estimated RMA2 Peclet number, which is used to dynamically compute eddy-viscosity coefficients, was 38.3, which is in the range of 15 to 40 that is typically considered appropriate. Resulting hydrodynamic simulations explained 98.8 percent of the variability in depth-averaged flows, 90.0 percent of the

  6. COMMIX-1A: a three-dimensional transient single-phase computer program for thermal hydraulic analysis of single and multicomponent systems. Volume I: users manual

    International Nuclear Information System (INIS)

    Domanus, H.M.; Schmitt, R.C.; Sha, W.T.; Shah, V.L.

    1983-12-01

    The COMMIX-1A computer program is an updated and improved version of COMMIX-1 designed to analyze steady-state/transient, single-phase, three-dimensional fluid flow with heat transfer in reactor components and multicomponent systems. A new porous-media formulation via local volume averaging has been derived and employed in the COMMIX code. The concepts of volume porosity, directional surface permeability, distributed resistance, and distributed heat source or sink is used in the new porous-media formulation to model a flow domain with stationary structures. The concept of directional surface permeability is new and greatly facilitates modeling of velocity and temperature fields in anisotropic media. The new porous-media formulation represents the first unified approach to thermal-hydraulic analysis. It is now possible to perform a multidimensional thermal-hydraulic simulation of either a single component, such as a rod bundle, reactor plenum, piping system, heat exchanger, etc., or a multicomponent system that is a combination of these components. The conservation equations of mass, momentum, and energy based on the new porous-media formulation are solved as a boundary-value problem in space and an initial-value problem in time. Two other unique features provided in the COMMIX-1A code are (1) two solution procedures - a semi-implicit procedure modified from ICE and a fully-implicit procedure, named SIMPLEST-ANL, similar to the SIMPLE/SIMPLER algorithms - available a user's option and (2) a geometrical package capable of approximating many geometries. This report (Volume I) describes in detail the basic equations, formulations, solution procedures, flow charts, rebalancing scheme for faster convergence, options available to users, models to describe the auxiliary phenomena, input instructions, and two sample problems. The Volume II assembles and summarizes the results of many simulations that have been performed with COMMIX-1A computer program

  7. Multidimensional analysis of fluid flow in the loft cold leg blowdown pipe during a loss-of-coolant experiment

    International Nuclear Information System (INIS)

    Demmie, P.N.; Hofmann, K.R.

    1979-03-01

    A computer analysis of fluid flow in the Loss-of-Fluid Test (LOFT) cold leg blowdown pipe during a loss-of-coolant experiment (LOCE) was performed using the computer program K-FIX/MOD1. The purpose of this analysis was to evaluate the capability of K-FIX/MOD1 to calculate theoretical fluid quantity distributions in the blowdown pipe during a LOCE for possible application to the analysis of LOFT experimental data, the determination of mass flow, or the development of data reduction models. A rectangular section of a portion of the LOFT blowdown pipe containing measurement Station BL-1 was modeled using time-dependent boundary conditions. Fluid quantities were calculated during a simulation of the first 26 s of LOFT LOCE L1-4. Sensitivity studies were made to determine changes in void fractions and velocities resulting from specific changes in the inflow boundary conditions used for this simulation

  8. Investigation on a Novel Discontinuous Pulse-Width Modulation Algorithm for Single-phase Voltage Source Rectifier

    DEFF Research Database (Denmark)

    Qu, Hao; Yang, Xijun; Guo, Yougui

    2014-01-01

    Single-phase voltage source converter (VSC) is an important power electronic converter (PEC), including single-phase voltage source inverter (VSI), single-phase voltage source rectifier (VSR), single-phase active power filter (APF) and single-phase grid-connection inverter (GCI). Single-phase VSC...

  9. A self-regulating valve for single-phase liquid cooling of microelectronics

    International Nuclear Information System (INIS)

    Donose, Radu; De Volder, Michaël; Peirs, Jan; Reynaerts, Dominiek

    2011-01-01

    This paper reports on the design, optimization and testing of a self-regulating valve for single-phase liquid cooling of microelectronics. Its purpose is to maintain the integrated circuit (IC) at constant temperature and to reduce power consumption by diminishing flow generated by the pump as a function of the cooling requirements. It uses a thermopneumatic actuation principle that combines the advantages of zero power consumption and small size in combination with a high flow rate and low manufacturing costs. The valve actuation is provided by the thermal expansion of a liquid (actuation fluid) which, at the same time, actuates the valve and provides feed-back sensing. A maximum flow rate of 38 kg h −1 passes through the valve for a heat load up to 500 W. The valve is able to reduce the pumping power by up to 60% and it has the capability to maintain the IC at a more uniform temperature.

  10. Comparison of numerical results with experimental data for single-phase natural convection in an experimental sodium loop

    International Nuclear Information System (INIS)

    Ribando, R.J.

    1979-01-01

    A comparison is made between computed results and experimental data for single-phase natural convection in an experimental sodium loop. The tests were conducted in the Thermal-Hydraulic Out-of-Reactor Safety (THORS) Facility, an engineering-scale high temperature sodium facility at the Oak Ridge National Laboratory used for thermal-hydraulic testing of simulated LMFBR subassemblies at normal and off-normal operating conditions. Heat generation in the 19 pin assembly during these tests was typical of decay heat levels. Tests were conducted both with zero initial forced flow and with a small initial forced flow. The bypass line was closed in most tests, but open in one. The computer code used to analyze these tests [LONAC (LOw flow and NAtural Convection)] is an ORNL-developed, fast running, one-dimensional, single-phase finite difference model for simulating forced and free convection transients in the THORS loop

  11. Investigation of effect of single phase electrical faults at LOFT

    International Nuclear Information System (INIS)

    Yeates, J.A.

    1978-01-01

    This LTR presents the general basic engineering facts related to an open phase fault in a three phase power system commonly referred to as a single phase condition. It describes the probable results to electrical motors and describes the LOFT system design factors which minimize the likelihood of such a fault occurring at LOFT. It recognizes that the hazard of such a fault is a realistic threat and notes the types of relays designed to provide protection. Recommendations are made to perform a detailed engineering study to determine the most advantageous protective relay design, and to implement such a design by installation of the necessary devices and controls

  12. Ultrafast Switching Superjunction MOSFETs for Single Phase PFC Applications

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos; Petersen, Lars Press; Andersen, Michael A. E.

    2014-01-01

    This paper presents a guide on characterizing state-of-the-art silicon superjunction (SJ) devices in the 600V range for single phase power factor correction (PFC) applications. The characterization procedure is based on a minimally inductive double pulse tester (DPT) with a very low intrusive...... current measurement method, which enables reaching the switching speed limits of these devices. Due to the intrinsic low and non-linear capacitances in vertical SJ MOSFETs, special attention needs to be paid to the gate drive design to minimize oscillations and limit the maximum at turn off. This paper...

  13. Control of Single-Stage Single-Phase PV inverter

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai; Teodorescu, Remus; Blaabjerg, Frede

    2005-01-01

    In this paper the issue of control strategies for single-stage photovoltaic (PV) inverter is addressed. Two different current controllers have been implemented and an experimental comparison between them has been made. A complete control structure for the single-phase PV system is also presented......-forward; - and the grid current controller implemented in two different ways, using the classical proportional integral (PI) and the novel proportional resonant (PR) controllers. The control strategy was tested experimentally on 1.5 kW PV inverter....

  14. Experimental study of single-phase pressure drops in coarse particle beds

    Energy Technology Data Exchange (ETDEWEB)

    Clavier, R., E-mail: remi.clavier@irsn.fr [IRSN Cadarache, Saint Paul-lez-Durance (France); Chikhi, N., E-mail: nourdine.chikhi@irsn.fr [IRSN Cadarache, Saint Paul-lez-Durance (France); Fichot, F., E-mail: florian.fichot@irsn.fr [IRSN Cadarache, Saint Paul-lez-Durance (France); Quintard, M., E-mail: Michel.Quintard@imft.fr [Université de Toulouse, Allée Camille Soula, F-31400 Toulouse (France); INPT, UPS, Allée Camille Soula, F-31400 Toulouse (France); IMFT (Institut de Mécanique des Fluides de Toulouse), Allée Camille Soula, F-31400 Toulouse (France); CNRS, F-31400 Toulouse (France)

    2017-02-15

    Motivated by uncertainty reduction in nuclear debris beds coolability, experiments have been conducted on the CALIDE facility in order to investigate single-phase pressure losses in representative debris beds, i.e., high sphericity (>80%) particle beds with small size dispersion (from 1 mm to 10 mm), for which no validated model exists. In this paper, experimental results are presented and analyzed in order to identify a simple correlation for single-phase flow pressure losses generated in this kind of porous media in reflooding flowing conditions, which cover Darcy to weakly turbulent regimes. In the literature, it has been observed that their behavior can be accurately described by a Darcy–Forchheimer law, involving the sum of a linear term and a quadratic non-linear deviation, with respect to the filtration velocity. Expressions for the coefficients of the linear and quadratic terms are determined by assessing the possibility to evaluate equivalent diameters, i.e., characteristic lengths allowing correct predictions of the linear and quadratic terms by the Ergun equation. It has been observed that the Sauter diameter of particles allows a very precise prediction of the linear term, while the quadratic term can be predicted using the product of the Sauter diameter and a sphericity coefficient as an equivalent diameter.

  15. Modelling a single phase voltage controlled rectifier using Laplace transforms

    Science.gov (United States)

    Kraft, L. Alan; Kankam, M. David

    1992-01-01

    The development of a 20 kHz, AC power system by NASA for large space projects has spurred a need to develop models for the equipment which will be used on these single phase systems. To date, models for the AC source (i.e., inverters) have been developed. It is the intent of this paper to develop a method to model the single phase voltage controlled rectifiers which will be attached to the AC power grid as an interface for connected loads. A modified version of EPRI's HARMFLO program is used as the shell for these models. The results obtained from the model developed in this paper are quite adequate for the analysis of problems such as voltage resonance. The unique technique presented in this paper uses the Laplace transforms to determine the harmonic content of the load current of the rectifier rather than a curve fitting technique. Laplace transforms yield the coefficient of the differential equations which model the line current to the rectifier directly.

  16. Hydrodynamics of single- and two-phase flow in inclined rod arrays

    International Nuclear Information System (INIS)

    Ebeling-Koning, D.B.; Todreas, N.E.

    1983-09-01

    Required inputs for thermal-hydraulic codes are constitutive relations for fluid-solid flow resistance, in single-phase flow, and interfacial momentum exchange (relative phase motion), in two-phase flow. An inclined rod array air-water experiment was constructed to study the hydrodynamics of multidimensional porous medium flow in rod arrays. Velocities, pressures, and bubble distributions were measured in square rod arrays of P/d = 1.5, at 0, 30, 45, and 90 degree inclinations to the vertical flow direction. Constitutive models for single-phase flow resistance are reviewed, new comprehensive models developed, and an assessment with previously published and new data made. The principle of superimposing one-dimensional correlations proves successful for turbulent single-phase inclined flow. For bubbly two-phase incline flow a new flow separation phenomena was observed and modeled. A two-region liquid velocity model is developed to explain the experimentally observed phenomena. Fundamental data for bubbles rising in rod arrays were also taken

  17. 30 CFR 77.806 - Connection of single-phase loads.

    Science.gov (United States)

    2010-07-01

    ... COAL MINES Surface High-Voltage Distribution § 77.806 Connection of single-phase loads. Single-phase loads, such as transformer primaries, shall be connected phase to phase in resistance grounded systems. ...

  18. 30 CFR 77.905 - Connection of single-phase loads.

    Science.gov (United States)

    2010-07-01

    ... COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.905 Connection of single-phase loads. Single-phase loads shall be connected phase-to-phase in resistance grounded systems. ...

  19. Alternative conceptual models and codes for unsaturated flow in fractured tuff: Preliminary assessments for GWTT-95

    International Nuclear Information System (INIS)

    Ho, C.K.; Altman, S.J.; Arnold, B.W.

    1995-09-01

    Groundwater travel time (GWTT) calculations will play an important role in addressing site-suitability criteria for the potential high-level nuclear waste repository at Yucca Mountain,Nevada. In support of these calculations, Preliminary assessments of the candidate codes and models are presented in this report. A series of benchmark studies have been designed to address important aspects of modeling flow through fractured media representative of flow at Yucca Mountain. Three codes (DUAL, FEHMN, and TOUGH 2) are compared in these benchmark studies. DUAL is a single-phase, isothermal, two-dimensional flow simulator based on the dual mixed finite element method. FEHMN is a nonisothermal, multiphase, multidimensional simulator based primarily on the finite element method. TOUGH2 is anon isothermal, multiphase, multidimensional simulator based on the integral finite difference method. Alternative conceptual models of fracture flow consisting of the equivalent continuum model (ECM) and the dual permeability (DK) model are used in the different codes

  20. Multidimensional Heat Conduction

    DEFF Research Database (Denmark)

    Rode, Carsten

    1998-01-01

    Analytical theory of multidimensional heat conduction. General heat conduction equation in three dimensions. Steay state, analytical solutions. The Laplace equation. Method of separation of variables. Principle of superposition. Shape factors. Transient, multidimensional heat conduction....

  1. Structure and single-phase regime of boron carbides

    International Nuclear Information System (INIS)

    Emin, D.

    1988-01-01

    The boron carbides are composed of twelve-atom icosahedral clusters which are linked by direct covalent bonds and through three-atom intericosahedral chains. The boron carbides are known to exist as a single phase with carbon concentrations from about 8 to about 20 at. %. This range of carbon concentrations is made possible by the substitution of boron and carbon atoms for one another within both the icosahedra and intericosahedral chains. The most widely accepted structural model for B 4 C (the boron carbide with nominally 20% carbon) has B/sub 11/C icosahedra with C-B-C intericosahedral chains. Here, the free energy of the boron carbides is studied as a function of carbon concentration by considering the effects of replacing carbon atoms within B 4 C with boron atoms. It is concluded that entropic and energetic considerations both favor the replacement of carbon atoms with boron atoms within the intericosahedral chains, C-B-C→C-B-B. Once the carbon concentration is so low that the vast majority of the chains are C-B-B chains, near B/sub 13/C 2 , subsequent substitutions of carbon atoms with boron atoms occur within the icosahedra, B/sub 11/C→B/sub 12/. Maxima of the free energy occur at the most ordered compositions: B 4 C,B/sub 13/C 2 ,B/sub 14/C. This structural model, determined by studying the free energy, agrees with that previously suggested by analysis of electronic and thermal transport data. These considerations also provide an explanation for the wide single-phase regime found for boron carbides

  2. A note on similarity in single-phase and porous-medium natural convection

    International Nuclear Information System (INIS)

    Lyall, H.G.

    1981-03-01

    The similarity laws for single-phase and porous-medium natural convection are developed. For single-phase flow Nu = Nu(Ra) implies that inertial effects are negligible, while Nu = Nu(Ra.Pr) implies that viscous effects are. The first correlation is adequate for Pr>10, while the second applies for Pr<0.01. For intermediate values of Pr, a more general correlation, Nu = Nu(Ra,Pr) is necessary. For a porous-medium, if inertial effects and dispersion are negligible, Nu* = Nu*(Ra*). However dispersion will only be negligible if the ratio of grain size d to the width of the region L is very small (d/L<< l). If this condition does not hold it is necessary to model d/L. If inertial effects are significant, i.e. the Reynolds number is too large for Darcy's law to apply, a group containing the effective Prandtl number, Pr*, also needs to be modelled for similarity. (author)

  3. Single-phase sodium pump model for LMFBR thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Madni, I.K.; Cazzoli, E.G.; Agrawal, A.K.

    1979-01-01

    A single-phase, homologous pump model has been developed for simulation of safety-related transients in LMFBR systems. Pump characteristics are modeled by homologous head and torque relations encompassing all regimes of operation. These relations were derived from independent model test results with a centrifugal pump of specific speed equal to 35 (SI units) or 1800 (gpm units), and are used to analyze the steady-state and transient behavior of sodium pumps in a number of LMFBR plants. Characteristic coefficients for the polynomials in all operational regimes are provided in a tabular form. The speed and flow dependence of head is included through solutions of the impeller and coolant dynamic equations. Results show the model to yield excellent agreement with experimental data in sodium for the FFTF prototype pump, and with vendor calculations for the CRBR pump. A sample pipe rupture calculation is also performed to demonstrate the necessity for modeling the complete pump characteristics

  4. Effects of rolling on single-phase water forced convective heat transfer characteristics

    International Nuclear Information System (INIS)

    Guo Yanming; Gao Puzhen; Huang Zhen

    2010-01-01

    A series of single-phase forced circulation tests in a vertical tube with rolling motion were performed in order to investigate effects of rolling motion on thermal-hydraulic characteristics. The amplitudes of the rolling motion in the tests were 10 degree, 15 degree and 20 degree. The rolling periods were 7.5 s, 10 s, 15 s and 20 s. The Reynolds number was from 6000 to 15000. Heat transfer in the test tube is bated by the rolling motion. As the test-bed rolling more acutely, the heat transfer coefficient of the test tube becomes smaller when the mass flow rate in the test tube is a constant. The heat transfer coefficient calculated by the formula which is for stable state doesn't fit very well with that from experiments. At last a formula for calculating heat transfer in rolling motion was introduced. (authors)

  5. A grid-connected single-phase photovoltaic micro inverter

    Science.gov (United States)

    Wen, X. Y.; Lin, P. J.; Chen, Z. C.; Wu, L. J.; Cheng, S. Y.

    2017-11-01

    In this paper, the topology of a single-phase grid-connected photovoltaic (PV) micro-inverter is proposed. The PV micro-inverter consists of DC-DC stage with high voltage gain boost and DC-AC conversion stage. In the first stage, we apply the active clamp circuit and two voltage multipliers to achieve soft switching technology and high voltage gain. In addition, the flower pollination algorithm (FPA) is employed for the maximum power point tracking (MPPT) in the PV module in this stage. The second stage cascades a H-bridge inverter and LCL filter. To feed high quality sinusoidal power into the grid, the software phase lock, outer voltage loop and inner current loop control method are adopted as the control strategy. The performance of the proposed topology is tested by Matlab/Simulink. A PV module with maximum power 300W and maximum power point voltage 40V is applied as the input source. The simulation results indicate that the proposed topology and the control strategy are feasible.

  6. Self-assembled single-phase perovskite nanocomposite thin films.

    Science.gov (United States)

    Kim, Hyun-Suk; Bi, Lei; Paik, Hanjong; Yang, Dae-Jin; Park, Yun Chang; Dionne, Gerald F; Ross, Caroline A

    2010-02-10

    Thin films of perovskite-structured oxides with general formula ABO(3) have great potential in electronic devices because of their unique properties, which include the high dielectric constant of titanates, (1) high-T(C) superconductivity in cuprates, (2) and colossal magnetoresistance in manganites. (3) These properties are intimately dependent on, and can therefore be tailored by, the microstructure, orientation, and strain state of the film. Here, we demonstrate the growth of cubic Sr(Ti,Fe)O(3) (STF) films with an unusual self-assembled nanocomposite microstructure consisting of (100) and (110)-oriented crystals, both of which grow epitaxially with respect to the Si substrate and which are therefore homoepitaxial with each other. These structures differ from previously reported self-assembled oxide nanocomposites, which consist either of two different materials (4-7) or of single-phase distorted-cubic materials that exhibit two or more variants. (8-12) Moreover, an epitaxial nanocomposite SrTiO(3) overlayer can be grown on the STF, extending the range of compositions over which this microstructure can be formed. This offers the potential for the implementation of self-organized optical/ferromagnetic or ferromagnetic/ferroelectric hybrid nanostructures integrated on technologically important Si substrates with applications in magnetooptical or spintronic devices.

  7. Multi-dimensional Mixing Behavior of Steam-Water Flow in a Downcomer Annulus during LBLOCA Reflood Phase with a DVI Injection Mode

    International Nuclear Information System (INIS)

    Kwon, T.S.; Yun, B.J.; Euh, D.J.; Chu, I.C.; Song, C.H.

    2002-01-01

    Multi-dimensional thermal-hydraulic behavior in the downcomer annulus of a pressurized water reactor vessel with a Direct Vessel Injection (DVI) mode is presented based on the experimental observation in the MIDAS (Multi-dimensional Investigation in Downcomer Annulus Simulation) steam-water test facility. From the steady-state test results to simulate the late reflood phase of a Large Break Loss-of-Coolant Accidents(LBLOCA), isothermal lines show the multidimensional phenomena of a phasic interaction between steam and water in the downcomer annulus very well. MIDAS is a steam-water separate effect test facility, which is 1/4.93 linearly scaled-down of 1400 MWe PWR type of a nuclear reactor, focused on understanding multi-dimensional thermalhydraulic phenomena in downcomer annulus with various types of safety injection during the refill or reflood phase of a LBLOCA. The initial and the boundary conditions are scaled from the pre-test analysis based on the preliminary calculation using the TRAC code. The superheated steam with a superheating degree of 80 K at a given downcomer pressure of 180 kPa is injected equally through three intact cold legs into the downcomer. (authors)

  8. Measurement system of bubbly flow using ultrasonic velocity profile monitor and video data processing unit. 2. Flow characteristics of bubbly countercurrent flow

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Zhou, Shirong; Nakajima, Makoto; Takeda, Yasushi; Mori, Michitsugu.

    1997-01-01

    The authors have developed a measurement system which is composed of an ultrasonic velocity profile monitor and a video data processing unit in order to clarify its multi-dimensional flow characteristics in bubbly flows and to offer a data base to validate numerical codes for multi-dimensional two-phase flow. In this paper, the measurement system was applied for bubbly countercurrent flows in a vertical rectangular channel. At first, both bubble and water velocity profiles and void fraction profiles in the channel were investigated statistically. Next, turbulence intensity in a continuous liquid phase was defined as a standard deviation of velocity fluctuation, and the two-phase multiplier profile of turbulence intensity in the channel was clarified as a ratio of the standard deviation of flow fluctuation in a bubbly countercurrent flow to that in a water single phase flow. Finally, the distribution parameter and drift velocity used in the drift flux model for bubbly countercurrent flows were calculated from the obtained velocity profiles of both phases and void fraction profile, and were compared with the correlation proposed for bubbly countercurrent flows. (author)

  9. CFD Simulations of a Single-phase Mixing Experiment

    International Nuclear Information System (INIS)

    Bertolotto, Davide; Chawla, Rakesh; Manera, Annalisa; Prasser, Horst-Michael

    2008-01-01

    The current paper reports on an investigation of the capabilities of CFD codes to model multidimensional mixing phenomena in a loop. For the purpose, a test facility consisting of two loops connected by a double T-junction has been built at the Paul Scherrer Institut (PSI). Experiments were carried out, in which a tracer was injected in one loop and the tracer distribution before and after the T-junction was measured by means of wire-mesh sensors located at the outlets of the junction. The tracer distribution after the T-junction is strongly dependent on 3D mixing phenomena, which are dominant due to the particular geometry of the set-up. For the CFD analysis, a 3D model of the double T-junction was created, and different simulations were performed with ANSYS-CFX to study the sensitivity of the results with respect to parameters such as mesh refinement, integration time step, turbulence model, profiles for inlet velocity and injected tracer concentration. Thereafter, these results were compared with the experimental data. The comparisons have clearly pointed out that 3D modelling is able to reproduce (at least qualitatively) the experimental results. Moreover, it has been found that the CFD results are strongly influenced by the velocity profile assumptions at the inlets of the double T-junction. (authors)

  10. Similarity analysis and scaling criteria for LWRs under single-phase and two-phase natural circulation

    International Nuclear Information System (INIS)

    Ishii, M.; Kataoka, I.

    1983-03-01

    Scaling criteria for a natural circulation loop under single phase and two-phase flow conditions have been derived. For a single phase case the continuity, integral momentum, and energy equations in one-dimensional area average forms have been used. From this, the geometrical similarity groups, friction number, Richardson number, characteristic time constant ratio, Biot number, and heat source number are obtained. The Biot number involves the heat transfer coefficient which may cause some difficulties in simulating the turbulent flow regime. For a two-phase flow case, the similarity groups obtained from a perturbation analysis based on the one-dimensional drift-flux model have been used. The physical significance of the phase change number, subcooling number, drift-flux number, friction number are discussed and conditions imposed by these groups are evaluated. In the two-phase flow case, the critical heat flux is one of the most important transients which should be simulated in a scale model. The above results are applied to the LOFT facility in case of a natural circulation simulation. Some preliminary conclusions on the feasibility of the facility have been obtained

  11. Similarity analysis and scaling criteria for LWRs under single-phase and two-phase natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, M.; Kataoka, I.

    1983-03-01

    Scaling criteria for a natural circulation loop under single phase and two-phase flow conditions have been derived. For a single phase case the continuity, integral momentum, and energy equations in one-dimensional area average forms have been used. From this, the geometrical similarity groups, friction number, Richardson number, characteristic time constant ratio, Biot number, and heat source number are obtained. The Biot number involves the heat transfer coefficient which may cause some difficulties in simulating the turbulent flow regime. For a two-phase flow case, the similarity groups obtained from a perturbation analysis based on the one-dimensional drift-flux model have been used. The physical significance of the phase change number, subcooling number, drift-flux number, friction number are discussed and conditions imposed by these groups are evaluated. In the two-phase flow case, the critical heat flux is one of the most important transients which should be simulated in a scale model. The above results are applied to the LOFT facility in case of a natural circulation simulation. Some preliminary conclusions on the feasibility of the facility have been obtained.

  12. SQL and Multidimensional Data

    Directory of Open Access Journals (Sweden)

    Mihaela MUNTEAN

    2006-01-01

    Full Text Available Using SQL you can manipulate multidimensional data and extract that data into a relational table. There are many PL/SQL packages that you can use directly in SQL*Plus or indirectly in Analytic Workspace Manager and OLAP Worksheet. In this article I discussed about some methods that you can use for manipulating and extracting multidimensional data.

  13. Single-phase and two-phase gas-liquid turbulent mixing between subchannels in a simulated rod bundle

    International Nuclear Information System (INIS)

    Sadatomi, Michio; Kawahara, Akimaro; Sato, Yoshifusa; Tomino, Takayoshi.

    1996-01-01

    This study is concerned with turbulent mixing which is one of the three mechanisms of cross flows between subchannels in a nuclear fuel rod bundle. The channel used in this experiments was a vertical simulated rod bundle having two subchannels connected through 1 to 3 gaps between two rods and/or rod and channel wall. The number of the gaps was changed to investigate the effect of the number on the turbulent mixing. Turbulent mixing rates of air and water and fluctuations of pressure difference between the subchannels were measured for single-phase and two-phase gas-liquid flows under hydrodynamic equilibrium flow conditions. It has been confirmed that the turbulent mixing rate is affected strongly by the fluctuations especially for liquid phase in two-phase slug or churn flow. (author)

  14. Multidimensional high harmonic spectroscopy

    International Nuclear Information System (INIS)

    Bruner, Barry D; Soifer, Hadas; Shafir, Dror; Dudovich, Nirit; Serbinenko, Valeria; Smirnova, Olga

    2015-01-01

    High harmonic generation (HHG) has opened up a new frontier in ultrafast science where attosecond time resolution and Angstrom spatial resolution are accessible in a single measurement. However, reconstructing the dynamics under study is limited by the multiple degrees of freedom involved in strong field interactions. In this paper we describe a new class of measurement schemes for resolving attosecond dynamics, integrating perturbative nonlinear optics with strong-field physics. These approaches serve as a basis for multidimensional high harmonic spectroscopy. Specifically, we show that multidimensional high harmonic spectroscopy can measure tunnel ionization dynamics with high precision, and resolves the interference between multiple ionization channels. In addition, we show how multidimensional HHG can function as a type of lock-in amplifier measurement. Similar to multi-dimensional approaches in nonlinear optical spectroscopy that have resolved correlated femtosecond dynamics, multi-dimensional high harmonic spectroscopy reveals the underlying complex dynamics behind attosecond scale phenomena. (paper)

  15. new topology for single-phase, three-level, spwm vsi with lc filter

    African Journals Online (AJOL)

    level PWM inverter. However, this is not the case with single-phase PWM inverters. In these days, the popular single-phase inverters adopt the full-bridge type using approximate sinusoidal modulation technique. The output voltage in them has two values: zero and pos- itive supply dc voltage levels in the positive half cycle.

  16. Torque Analysis With Saturation Effects for Non-Salient Single-Phase Permanent-Magnet Machines

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Ritchie, Ewen

    2011-01-01

    The effects of saturation on torque production for non-salient, single-phase, permanent-magnet machines are studied in this paper. An analytical torque equation is proposed to predict the instantaneous torque with saturation effects. Compared to the existing methods, it is computationally faster......-element results, and experimental results obtained on a prototype single-phase permanent-magnet machine....

  17. A review of modern advances in analyses and applications of single-phase natural circulation loop in nuclear thermal hydraulics

    International Nuclear Information System (INIS)

    Basu, Dipankar N.; Bhattacharyya, Souvik; Das, P.K.

    2014-01-01

    Highlights: • Comprehensive review of state-of-the-art on single-phase natural circulation loops. • Detailed discussion on growth in solar thermal system and nuclear thermal hydraulics. • Systematic development in scaling methodologies for fabrication of test facilities. • Importance of numerical modeling schemes for stability assessment using 1-D codes. • Appraisal of current trend of research and possible future directions. - Abstract: A comprehensive review of single-phase natural circulation loop (NCL) is presented here. Relevant literature reported since the later part of 1980s has been meticulously surveyed, with occasional obligatory reference to a few pioneering studies originating prior to that period, summarizing the key observations and the present trend of research. Development in the concept of buoyancy-induced flow is discussed, with introduction to flow initiation in an NCL due to instability. Detailed discussion on modern advancement in important application areas like solar thermal systems and nuclear thermal hydraulics are presented, with separate analysis for various reactor designs working on natural circulation. Identification of scaling criteria for designing lab-scale experimental facilities has gone through a series of modification. A systematic analysis of the same is presented, considering the state-of-the-art knowledge base. Different approaches have been followed for modeling single-phase NCLs, including simplified Lorenz system mostly for toroidal loops, 1-D computational modeling for both steady-state and stability characterization and 3-D commercial system codes to have a better flow visualization. Methodical review of the relevant studies is presented following a systematic approach, to assess the gradual progression in understanding of the practical system. Brief appraisal of current research interest is reported, including the use of nanofluids for fluid property augmentation, marine reactors subjected to rolling waves

  18. A review of modern advances in analyses and applications of single-phase natural circulation loop in nuclear thermal hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Dipankar N., E-mail: dipankar.n.basu@gmail.com [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Bhattacharyya, Souvik; Das, P.K. [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2014-12-15

    Highlights: • Comprehensive review of state-of-the-art on single-phase natural circulation loops. • Detailed discussion on growth in solar thermal system and nuclear thermal hydraulics. • Systematic development in scaling methodologies for fabrication of test facilities. • Importance of numerical modeling schemes for stability assessment using 1-D codes. • Appraisal of current trend of research and possible future directions. - Abstract: A comprehensive review of single-phase natural circulation loop (NCL) is presented here. Relevant literature reported since the later part of 1980s has been meticulously surveyed, with occasional obligatory reference to a few pioneering studies originating prior to that period, summarizing the key observations and the present trend of research. Development in the concept of buoyancy-induced flow is discussed, with introduction to flow initiation in an NCL due to instability. Detailed discussion on modern advancement in important application areas like solar thermal systems and nuclear thermal hydraulics are presented, with separate analysis for various reactor designs working on natural circulation. Identification of scaling criteria for designing lab-scale experimental facilities has gone through a series of modification. A systematic analysis of the same is presented, considering the state-of-the-art knowledge base. Different approaches have been followed for modeling single-phase NCLs, including simplified Lorenz system mostly for toroidal loops, 1-D computational modeling for both steady-state and stability characterization and 3-D commercial system codes to have a better flow visualization. Methodical review of the relevant studies is presented following a systematic approach, to assess the gradual progression in understanding of the practical system. Brief appraisal of current research interest is reported, including the use of nanofluids for fluid property augmentation, marine reactors subjected to rolling waves

  19. Investigation of Steam Flow Behavior During Horizontal Injection into Vertical Annulus

    International Nuclear Information System (INIS)

    Yoon, Sang H.; Kim, Won J.; Ku, Ja H.; Suh, Kune Y.; Song, Chul H.

    2004-01-01

    Qualification of uncertainty margins for accidents, which are classified as the design basis accidents, requires thermal hydraulic codes and related code models with an enhanced level of sophistication. In a cold leg break accident, the flow in downcomer is multidimensional and the velocity distribution of the steam flow in downcomer serves as a good example. For observation of the flow behavior near the break, experiments are performed to measure the velocity of the steam flow in a vessel scaled down from the APR1400 (Advanced Power Reactor 1400 MWe). In this case, the steam has a quality approaching unity and thus is dealt with as a single-phase gas. The velocity of the steam flow is measured by micro-Pitot tubes arranged horizontally and vertically around the outer shell of the 1/20 scaled-down test vessel OMEGA (Optimized Multidimensional Experiment Geometric Apparatus). A commercial computational fluid dynamics code yields analytic results of multidimensional flow motion in the complex annular passage with flow obstacles. CFX is run with well-defined boundary conditions to obtain velocity profiles of the steam flow in the annular downcomer. Results of CFX shed light on the experimental setup as to fixing the location and angle of the micro-Pitot tubes, and correcting the sensitivity of the micro- Pitot tubes, for instance. This study aims to improve the multidimensional capability of the MARS code, which is based on RELAP5 and COBRA-IV, in predicting the multiphase flow behavior in the reactor downcomer. MARS is currently based on one- and two-dimensional flow analyses, which tends to distort total flow due to misrepresentation of the local phenomena. It is thus necessary to scrutinize the steam flow path and mechanistically model the momentum variation. These experimental and analytical results can locally be applied to developing the models of specific forms and essential phenomena treated in MARS. (authors)

  20. Hydrodynamics of single- and two-phase flow in inclined rod arrays

    International Nuclear Information System (INIS)

    Todreas, N.E.

    1984-01-01

    Required inputs for thermal-hydraulic codes are constitutive relations for fluid-solid flow resistance, in single-phase flow, and interfacial momentum exchange (relative phase motion), in two-phase flow. An inclined rod array air-water experiment was constructed to study the hydrodynamics of multidimensional porous medium flow in rod arrays. Velocities, pressures, bubble distributions, and void fractions were measured in inline and rotational square rod arrays of P/d = 1.5, at 0, 30, 45, and 90 degree inclinations to the vertical flow direction. Constitutive models for single-phase flow resistance are reviewed, new comprehensive models developed, and an assessment with previously published and new data made. The principle of superimposing one-dimensional correlations proves successful for turbulent single-phase inclined flow. For bubbly two-phase yawed flow through incline rod arrays a new flow separation phenomena was observed and modeled. Bubbles of diameters significantly smaller than the rod diameter travel along the rod axis, while larger diameter bubbles move through the rod array gaps. The outcome is a flow separation not predictable with current interfacial momentum exchange models. This phenomenon was not observed in rotated square rod arrays. Current interfacial momentum exchange models were confirmed for this rod arrangement. Models for the two phase flow resistance multiplier for cross flow were reviewed and compared with data from cross and yawed flow rod arrays. Both drag and lift components of the multiplier were well predicted by the homogenous model. Other models reviewed overpredicted the data by a factor of two

  1. Single-phase CFD applicability for estimating fluid hot-spot locations in a 5 x 5 fuel rod bundle

    International Nuclear Information System (INIS)

    Ikeda, Kazuo; Makino, Yasushi; Hoshi, Masaya

    2006-01-01

    High-thermal performance PWR spacer grids require both of low pressure loss and high critical heat flux (CHF) properties. Therefore, a numerical study using computational fluid dynamics (CFD) was carried out to estimate pressure loss in strap and mixing vane structures. Moreover, a CFD simulation under single-phase flow condition was conducted for one specific condition in a water departure from nucleate boiling (DNB) test to examine the applicability of the CFD model for predicting the CHF rod position. Energy flux around the rod surface in a water DNB test is the sum of the intrinsic energy flux from a rod and the extrinsic energy flux from other rods, and increments of the enthalpy and decrements of flow velocity near the rod surface are assumed to affect CHF performance. CFD makes it possible to model the complicated flow field consisting of a spacer grid and a rod bundle and evaluate the local velocity and enthalpy distribution around the rod surface, which are assumed to determine the initial conditions for the two-phase structure. The results of this study indicate that single-phase CFD can play a significant role in designing PWR spacer grids for improved CHF performance

  2. Preliminary Single-Phase Mixing Test using Wire Mesh System in a wire-wrapped 37-rod Bundle

    International Nuclear Information System (INIS)

    Bae, Hwang; Kim, Hyungmo; Lee, Dong Won; Choi, Hae Seob; Choi, Sun Rock; Chang, Seokkyu; Kim, Seok; Euh, Dongjin; Lee, Hyeongyeon

    2014-01-01

    In this paper, preliminary tests of the wire-mesh sensor are introduced before measuring of mixing coefficient in the wire-wrapped 37-pin fuel assembly for a sodium-cooled fast reactor. Through this preliminary test, it was confirmed that city water can be used as a tracer for demineralized water as a base. A simple test was performed to evaluate the characteristics of a wire mesh with of a short pipe shape. The conductivity of de-mineralized water and city water is linearly increased for the limited temperature ranges as the temperature is increased. The reliability of the wire mesh sensor was estimated based on the averages and standard deviations of the plane image using the cross points. A wire mesh sensor is suitable to apply to a single-phase flow measurement for a mixture with de-mineralized water and city water. A wire mesh sensor and system have been traditionally used to measure the void fraction of a two-phase flow field with gas and liquid. Recently, Ylonen et al. successfully designed and commissioned a measurement system for a single-phase flow using a wire mesh sensor

  3. Characterization of Single Phase and Two Phase Heat and Momentum Transport in a Spiraling Radial Inow Microchannel Heat Sink

    Science.gov (United States)

    Ruiz, Maritza

    Thermal management of systems under high heat fluxes on the order of hundreds of W/cm2 is important for the safety, performance and lifetime of devices, with innovative cooling technologies leading to improved performance of electronics or concentrating solar photovoltaics. A novel, spiraling radial inflow microchannel heat sink for high flux cooling applications, using a single phase or vaporizing coolant, has demonstrated enhanced heat transfer capabilities. The design of the heat sink provides an inward swirl flow between parallel, coaxial disks that form a microchannel of 1 cm radius and 300 micron channel height with a single inlet and a single outlet. The channel is heated on one side through a conducting copper surface, and is essentially adiabatic on the opposite side to simulate a heat sink scenario for electronics or concentrated photovoltaics cooling. Experimental results on the heat transfer and pressure drop characteristics in the heat sink, using single phase water as a working fluid, revealed heat transfer enhancements due to flow acceleration and induced secondary flows when compared to unidirectional laminar fully developed flow between parallel plates. Additionally, thermal gradients on the surface are small relative to the bulk fluid temperature gain, a beneficial feature for high heat flux cooling applications. Heat flux levels of 113 W/cm2 at a surface temperature of 77 deg C were reached with a ratio of pumping power to heat rate of 0.03%. Analytical models on single phase flow are used to explore the parametric trends of the flow rate and passage geometry on the streamlines and pressure drop through the device. Flow boiling heat transfer and pressure drop characteristics were obtained for this heat sink using water at near atmospheric pressure as the working fluid for inlet subcooling levels ranging from 20 to 80 deg C and mean mass flux levels ranging from 184-716 kg/m. 2s. Flow enhancements similar to singlephase flow were expected, as well

  4. Single-phase liquid jet impingement heat transfer

    International Nuclear Information System (INIS)

    Webb, B.W.; Ma, C.F.

    1995-01-01

    Impinging liquid jets have been demonstrated to be an effective means of providing high heat/mass transfer rates in industrial transport processes. When a liquid jet strikes a surface, thin hydrodynamic and thermal boundary layers from in the region directly beneath due to the jet deceleration and the resulting increase in pressure. The flow is then forced to accelerate in a direction parallel to the target surface in what is termed the wall jet or parallel flow zone. The thickness of the hydrodynamic and thermal boundary layers in the stagnation region may be of the order of tens of micrometers. Consequently, very high heat/mass transfer coefficients exist in the stagnation zone directly under the jet. Transport coefficients characteristic of parallel flow prevail in the wall jet region. The high heat transfer coefficients make liquid jet impingement an attractive cooling option where high heat fluxes are the norm. Some industrial applications include the thermal treatment of metals, cooling of internal combustion engines, and more recently, thermal control of high-heat-dissipation electronic devices. Both circular and planar liquid jets have attracted research attention. 180 refs., 35 figs., 11 tabs

  5. Nonlinear Dynamic Model of Power Plants with Single-Phase Coolant Reactors

    International Nuclear Information System (INIS)

    Vollmer, H.

    1968-12-01

    The traditional way of developing dynamic models for a specific nuclear power plant and for specific purpose seems rather uneconomical, as much of the information often can not be utilized if the plant design or the required accuracy of the calculation is desired to be changed. It is therefore suggested that the model development may be made more systematic, general and flexible by - applying the 'box of bricks' system, where the main components of a nuclear power plant are treated separately and combined afterwards according to a given flow scheme, - a dynamic determination of the components which is as general as possible without taking into account those details which have a minor influence on the overall dynamics, - providing approximations of the more rigorous solution sufficient to meet the user s requirements on accuracy, - proper use of computers. A dynamic model for single-phase coolant reactor plants is established along these lines. By separation of the nonlinear and linear parts of the system, application of Laplace transformation and proper approximations, and the use of a hybrid computer it seems possible to determine the (nonlinear) dynamic behaviour of such a plant for perturbations which are not so large that phase changes of physical parameters occur, e. g. fuel does not melt. The model is applied to a steam cooled fast reactor power plant

  6. Nonlinear Dynamic Model of Power Plants with Single-Phase Coolant Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Vollmer, H

    1968-12-15

    The traditional way of developing dynamic models for a specific nuclear power plant and for specific purpose seems rather uneconomical, as much of the information often can not be utilized if the plant design or the required accuracy of the calculation is desired to be changed. It is therefore suggested that the model development may be made more systematic, general and flexible by - applying the 'box of bricks' system, where the main components of a nuclear power plant are treated separately and combined afterwards according to a given flow scheme, - a dynamic determination of the components which is as general as possible without taking into account those details which have a minor influence on the overall dynamics, - providing approximations of the more rigorous solution sufficient to meet the user s requirements on accuracy, - proper use of computers. A dynamic model for single-phase coolant reactor plants is established along these lines. By separation of the nonlinear and linear parts of the system, application of Laplace transformation and proper approximations, and the use of a hybrid computer it seems possible to determine the (nonlinear) dynamic behaviour of such a plant for perturbations which are not so large that phase changes of physical parameters occur, e. g. fuel does not melt. The model is applied to a steam cooled fast reactor power plant.

  7. SINGLE PHASE ANALYTICAL MODELS FOR TERRY TURBINE NOZZLE

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haihua; Zhang, Hongbin; Zou, Ling; O' Brien, James

    2016-11-01

    All BWR RCIC (Reactor Core Isolation Cooling) systems and PWR AFW (Auxiliary Feed Water) systems use Terry turbine, which is composed of the wheel with turbine buckets and several groups of fixed nozzles and reversing chambers inside the turbine casing. The inlet steam is accelerated through the turbine nozzle and impacts on the wheel buckets, generating work to drive the RCIC pump. As part of the efforts to understand the unexpected “self-regulating” mode of the RCIC systems in Fukushima accidents and extend BWR RCIC and PWR AFW operational range and flexibility, mechanistic models for the Terry turbine, based on Sandia National Laboratories’ original work, has been developed and implemented in the RELAP-7 code to simulate the RCIC system. RELAP-7 is a new reactor system code currently under development with the funding support from U.S. Department of Energy. The RELAP-7 code is a fully implicit code and the preconditioned Jacobian-free Newton-Krylov (JFNK) method is used to solve the discretized nonlinear system. This paper presents a set of analytical models for simulating the flow through the Terry turbine nozzles when inlet fluid is pure steam. The implementation of the models into RELAP-7 will be briefly discussed. In the Sandia model, the turbine bucket inlet velocity is provided according to a reduced-order model, which was obtained from a large number of CFD simulations. In this work, we propose an alternative method, using an under-expanded jet model to obtain the velocity and thermodynamic conditions for the turbine bucket inlet. The models include both adiabatic expansion process inside the nozzle and free expansion process out of the nozzle to reach the ambient pressure. The combined models are able to predict the steam mass flow rate and supersonic velocity to the Terry turbine bucket entrance, which are the necessary input conditions for the Terry Turbine rotor model. The nozzle analytical models were validated with experimental data and

  8. Comparison of numerical results with experimental data for single-phase natural convection in an experimental sodium loop. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Ribando, R.J.

    1979-01-01

    A comparison is made between computed results and experimental data for a single-phase natural convection test in an experimental sodium loop. The test was conducted in the Thermal-Hydraulic Out-of-Reactor Safety (THORS) facility, an engineering-scale high temperature sodium loop at the Oak Ridge National Laboratory (ORNL) used for thermal-hydraulic testing of simulated Liquid Metal Fast Breeder Reactor (LMFBR) subassemblies at normal and off-normal operating conditions. Heat generation in the 19 pin assembly during the test was typical of decay heat levels. The test chosen for analysis in this paper was one of seven natural convection runs conducted in the facility using a variety of initial conditions and testing parameters. Specifically, in this test the bypass line was open to simulate a parallel heated assembly and the test was begun with a pump coastdown from a small initial forced flow. The computer program used to analyze the test, LONAC (LOw flow and NAtural Convection) is an ORNL-developed, fast-running, one-dimensional, single-phase, finite-difference model used for simulating forced and free convection transients in the THORS loop.

  9. Comparison of numerical results with experimental data for single-phase natural convection in an experimental sodium loop

    International Nuclear Information System (INIS)

    Ribando, R.J.

    1979-01-01

    A comparison is made between computed results and experimental data for a single-phase natural convection test in an experimental sodium loop. The test was conducted in the Thermal-Hydraulic Out-of-Reactor Safety (THORS) facility, an engineering-scale high temperature sodium loop at the Oak Ridge National Laboratory (ORNL) used for thermal-hydraulic testing of simulated Liquid Metal Fast Breeder Reactor (LMFBR) subassemblies at normal and off-normal operating conditions. Heat generation in the 19 pin assembly during the test was typical of decay heat levels. The test chosen for analysis in this paper was one of seven natural convection runs conducted in the facility using a variety of initial conditions and testing parameters. Specifically, in this test the bypass line was open to simulate a parallel heated assembly and the test was begun with a pump coastdown from a small initial forced flow. The computer program used to analyze the test, LONAC (LOw flow and NAtural Convection) is an ORNL-developed, fast-running, one-dimensional, single-phase, finite-difference model used for simulating forced and free convection transients in the THORS loop

  10. Development and application of computer codes for multidimensional thermalhydraulic analyses of nuclear reactor components

    International Nuclear Information System (INIS)

    Carver, M.B.

    1983-01-01

    Components of reactor systems and related equipment are identified in which multidimensional computational thermal hydraulics can be used to advantage to assess and improve design. Models of single- and two-phase flow are reviewed, and the governing equations for multidimensional analysis are discussed. Suitable computational algorithms are introduced, and sample results from the application of particular multidimensional computer codes are given

  11. A Novel Model Predictive Control for Single-Phase Grid-Connected Photovoltaic Inverters

    DEFF Research Database (Denmark)

    Zangeneh Bighash, Esmaeil; Sadeghzadeh, Seyed Mohammad; Ebrahimzadeh, Esmaeil

    2017-01-01

    Single-phase grid-connected inverters with LCL filter are widely used to connect photovoltaic systems to the utility grid. Among the existing control schemes, predictive control methods are faster and more accurate but also more complicated to implement. Recently, the Model Predictive Control (MPC......) algorithm for single-phase inverter has been presented, where the algorithm implementation is straightforward. In the MPC approach, all switching states are considered in each switching period to achieve the control objectives. However, since the number of switching states in single-phase inverters is small......, the inverter output current has a high Total Harmonic Distortions (THD). In order to reduce this, this paper presents an improved MPC for single-phase grid-connected inverters. In the proposed approach, the switching algorithm is changed and the number of the switching states is increased by means of virtual...

  12. Standard Specification for Sampling Single-Phase Geothermal Liquid or Steam for Purposes of Chemical Analysis

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1983-01-01

    1.1 This specification covers the basic requirements for equipment to be used for the collection of uncontaminated and representative samples from single-phase geothermal liquid or steam. Geopressured liquids are included. See Fig 1.

  13. Reducing Electromagnetic Interference in a Grid Tied Single Phase Power Inverter

    Science.gov (United States)

    2016-09-01

    With the growing demand for a reliable electrical grid, backup power supplies and energy management systems are a necessity. Systems such as server...ELECTROMAGNETIC INTERFERENCE IN A GRID TIED SINGLE PHASE POWER INVERTER by Jason Hassan Valiani September 2016 Thesis Advisor: Giovanna Oriti...3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE REDUCING ELECTROMAGNETIC INTERFERENCE IN A GRID TIED SINGLE PHASE POWER

  14. Enhanced power quality based single phase photovoltaic distributed generation system

    Science.gov (United States)

    Panda, Aurobinda; Pathak, M. K.; Srivastava, S. P.

    2016-08-01

    This article presents a novel control strategy for a 1-ϕ 2-level grid-tie photovoltaic (PV) inverter to enhance the power quality (PQ) of a PV distributed generation (PVDG) system. The objective is to obtain the maximum benefits from the grid-tie PV inverter by introducing current harmonics as well as reactive power compensation schemes in its control strategy, thereby controlling the PV inverter to achieve multiple functions in the PVDG system such as: (1) active power flow control between the PV inverter and the grid, (2) reactive power compensation, and (3) grid current harmonics compensation. A PQ enhancement controller (PQEC) has been designed to achieve the aforementioned objectives. The issue of underutilisation of the PV inverter in nighttime has also been addressed in this article and for the optimal use of the system; the PV inverter is used as a shunt active power filter in nighttime. A prototype model of the proposed system is developed in the laboratory, to validate the effectiveness of the control scheme, and is tested with the help of the dSPACE DS1104 platform.

  15. Single-phase cross-mixing measurements in a 4 x 4 rod bundle

    International Nuclear Information System (INIS)

    Yloenen, Arto; Bissels, Wilhelm-Martin; Prasser, Horst-Michael

    2011-01-01

    Highlights: → The wire-mesh sensor technique has been successfully introduced into a fuel rod bundle geometry. → Quantitative information on the turbulent dispersion of the fluid was obtained. → In full spatial and temporal resolution, the data is interesting for the unsteady CFD validation. - Abstract: The wire-mesh sensor technique has been successfully introduced into a fuel rod bundle geometry for the first time. In this context, a dedicated test facility (SUBFLOW) has been designed and constructed at Paul Scherrer Institut (PSI) in a co-operation with the Swiss Federal Institute of Technology (ETH Zuerich). Two wire-mesh sensors designed and built in-house were installed in the upper part of the vertical test section of SUBFLOW, and single-phase experiments on the turbulent mass exchange between neighboring sub-channels were performed. For this purpose, salt tracer was injected locally in one of the sub-channels and conductivity distributions in the bundle measured by the wire-mesh sensor. Both flow rate and distance from the injection point were varied. The latter was achieved by using injection nozzles at different heights. In this way, the sensor located in the upper part of the channel could be used to characterize the progress of the mixing along the flow direction, and the degree of cross-mixing assessed using the quantity of tracer arriving in the neighboring sub-channels. Fluctuations of the tracer concentration in time were used for statistical evaluations, such as the calculation of standard deviations and two-point correlations.

  16. Reduction of waveform distortion in grid-injection current from single-phase utility interactive PV-inverter

    International Nuclear Information System (INIS)

    Hamid, Muhammad Imran; Jusoh, Awang

    2014-01-01

    Highlights: • A reduction scheme for harmonics from utility interactive PV-inverter is proposed. • Single-phase conditioner with 3-phase expandability structure is used. • The single-phase conditioner in 3-phase structure work independently. • The scheme works effectively within overall operation range of the PV-inverter. • Conditioner in the scheme also improves the PV-inverter and plant’s utility factor. - Abstract: As the natural behavior of energy source and design characteristic, the current generated by a grid-interactive PV-inverter may contain harmonics. This distortion component will be carried on from the PV-inverter during injection power into the grid. Excessive harmonics in a grid will lead to a variety of power quality problems. This paper presents a distortion reduction scheme, utilizing a fed forward single-phase, generation-side power conditioner with a structure that can be expanded for use in a three-phase system and can work independently under imbalanced condition. Conditioner is placed in parallel with the photovoltaic plant and it functions to compensate the plant’s output current distortion, so that the total current flow to the grid is sinusoidal. This method also includes the implementation of a simpler control system for the conditioner, which consists of a combination of distortion current extraction, synchronization and a current control system, and realized through a TMS320F28335: a 150 MHz floating point DSP controller. Testing of the conditioner prototype, which was conducted on a real operation of a PV plant, showed that the scheme worked effectively within the overall operation range of the PV plant. This paper also discusses the potential of utility factor improvement of the PV-inverter and plant due to implementation of conditioner in the scheme

  17. Assessment of RELAP5-3D copyright using data from two-dimensional RPI flow tests

    International Nuclear Information System (INIS)

    Davis, C.B.

    1998-01-01

    The capability of the RELAP5-3D copyright computer code to perform multi-dimensional thermal-hydraulic analysis was assessed using data from steady-state flow tests conducted at Rensselaer Polytechnic Institute (RPI). The RPI data were taken in a two-dimensional test section in a low-pressure air/water loop. The test section consisted of a thin vertical channel that simulated a two-dimensional slice through the core of a pressurized water reactor. Single-phase and two-phase flows were supplied to the test section in an asymmetric manner to generate a two-dimensional flow field. A traversing gamma densitometer was used to measure void fraction at many locations in the test section. High speed photographs provided information on the flow patterns and flow regimes. The RPI test section was modeled using the multi-dimensional component in RELAP5-3D Version BF06. Calculations of three RPI experiments were performed. The flow regimes predicted by the base code were in poor agreement with those observed in the tests. The two-phase regions were observed to be in the bubbly and slug flow regimes in the test. However, nearly all of the junctions in the horizontal direction were calculated to be in the stratified flow regime because of the relatively low velocities in that direction. As a result, the void fraction predictions were also in poor agreement with the measured values. Significantly improved results were obtained in sensitivity calculations with a modified version of the code that prevented the horizontal junctions from entering the stratified flow regime. These results indicate that the code's logic in the determination of flow regimes in a multi-dimensional component must be improved. The results of the sensitivity calculations also indicate that RELAP5-3D will provide a significant multi-dimensional hydraulic analysis capability once the flow regime prediction is improved

  18. Applied multidimensional systems theory

    CERN Document Server

    Bose, Nirmal K

    2017-01-01

    Revised and updated, this concise new edition of the pioneering book on multidimensional signal processing is ideal for a new generation of students. Multidimensional systems or m-D systems are the necessary mathematical background for modern digital image processing with applications in biomedicine, X-ray technology and satellite communications. Serving as a firm basis for graduate engineering students and researchers seeking applications in mathematical theories, this edition eschews detailed mathematical theory not useful to students. Presentation of the theory has been revised to make it more readable for students, and introduce some new topics that are emerging as multidimensional DSP topics in the interdisciplinary fields of image processing. New topics include Groebner bases, wavelets, and filter banks.

  19. Physical and numerical modeling of multidimensional liquid-vapor flows advanced two-fluid models, application to upwind finite volume methods

    International Nuclear Information System (INIS)

    Seignole, V.

    2005-01-01

    This report presents the work of thesis realized under the direction of Jean-Michel Ghidaglia (thesis director, ENS-Cachan) and of Anela Kumbaro (tutor, CEA) within the framework of the modeling of two-phase flows with OAP code. The report consists of two parts of unequal size: the first part concentrates on aspects related exclusively to two-phase flows, while the second one is devoted to the study of a numerical problem inherent to the resolution of two-phase flow systems, but whose action has a broader framework. (author)

  20. Multi-dimensional imaging

    CERN Document Server

    Javidi, Bahram; Andres, Pedro

    2014-01-01

    Provides a broad overview of advanced multidimensional imaging systems with contributions from leading researchers in the field Multi-dimensional Imaging takes the reader from the introductory concepts through to the latest applications of these techniques. Split into 3 parts covering 3D image capture, processing, visualization and display, using 1) a Multi-View Approach and 2.) a Holographic Approach, followed by a 3rd part addressing other 3D systems approaches, applications and signal processing for advanced 3D imaging. This book describes recent developments, as well as the prospects and

  1. Single-Phase Single-Stage Grid Tied Solar PV System with Active Power Filtering Using Power Balance Theory

    Science.gov (United States)

    Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar

    2018-03-01

    In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.

  2. Governing equations of transient soil water flow and soil water flux in multi-dimensional fractional anisotropic media and fractional time

    OpenAIRE

    M. L. Kavvas; A. Ercan; J. Polsinelli

    2017-01-01

    In this study dimensionally consistent governing equations of continuity and motion for transient soil water flow and soil water flux in fractional time and in fractional multiple space dimensions in anisotropic media are developed. Due to the anisotropy in the hydraulic conductivities of natural soils, the soil medium within which the soil water flow occurs is essentially anisotropic. Accordingly, in this study the fractional dimensions in two horizontal and one vertical di...

  3. Steady state RANS simulations of temperature fluctuations in single phase turbulent mixing

    International Nuclear Information System (INIS)

    Kickhofel, J.; Fokken, J.; Kapulla, R.; Prasser, H. M.

    2012-01-01

    Single phase turbulent mixing in nuclear power plant circuits where a strong temperature gradient is present is known to precipitate pipe failure due to thermal fatigue. Experiments in a square mixing channel offer the opportunity to study the phenomenon under simple and easily reproducible boundary conditions. Measurements of this kind have been performed extensively at the Paul Scherrer Inst. in Switzerland with a high density of instrumentation in the Generic Mixing Experiment (GEMIX). As a fundamental mixing phenomena study closely related to the thermal fatigue problem, the experimental results from GEMIX are valuable for the validation of CFD codes striving to accurately simulate both the temperature and velocity fields in single phase turbulent mixing. In the experiments two iso-kinetic streams meet at a shallow angle of 3 degrees and mix in a straight channel of square cross-section under various degrees of density, temperature, and viscosity stratification over a range of Reynolds numbers ranging from 5*10 3 to 1*10 5 . Conductivity measurements, using wire-mesh and wall sensors, as well as optical measurements, using particle image velocimetry, were conducted with high temporal and spatial resolutions (up to 2.5 kHz and 1 mm in the case of the wire mesh sensor) in the mixing zone, downstream of a splitter plate. The present paper communicates the results of RANS modeling of selected GEMIX tests. Steady-state CFD calculations using a RANS turbulence model represent an inexpensive method for analyzing large and complex components in commercial nuclear reactors, such as the downcomer and reactor pressure vessel heads. Crucial to real world applicability, however, is the ability to model turbulent heat fluctuations in the flow; the Turbulent Heat Flux Transport model developed by ANSYS CFX is capable, by implementation of a transport equation for turbulent heat fluxes, of readily modeling these values. Furthermore, the closure of the turbulent heat flux

  4. Single-phase ProtoDUNE, the Prototype of a Single-Phase Liquid Argon TPC for DUNE at the CERN Neutrino Platform

    CERN Document Server

    Cavanna, F; Touramanis, C

    2017-01-01

    ProtoDUNE-SP is the single-phase DUNE Far Detector prototype that is under construction and will be operated at the CERN Neutrino Platform (NP) starting in 2018. It was proposed to the CERN SPSC in June 2015 (SPSC-P-351) and was approved in December 2015 as experiment NP04 (ProtoDUNE). ProtoDUNE-SP, a crucial part of the DUNE effort towards the construction of the first DUNE 10-kt fiducial mass far detector module (17 kt total LAr mass), is a significant experiment in its own right. With a total liquid argon (LAr) mass of 0.77 kt, it represents the largest monolithic single phase LArTPC detector to be built to date. It is housed in an extension to the EHN1 hall in the North Area, where the CERN NP is providing a new dedicated charged-particle test beamline. ProtoDUNE-SP aims to take its first beam data before the LHC long shutdown (LS2) at the end of 2018. ProtoDUNE-SP prototypes the designs of most of the single-phase DUNE far detector module (DUNE-SP) components at a 1:1 scale, with an extrapolation of abo...

  5. Scaling Analysis of the Single-Phase Natural Circulation: the Hydraulic Similarity

    International Nuclear Information System (INIS)

    Yu, Xin-Guo; Choi, Ki-Yong

    2015-01-01

    These passive safety systems all rely on the natural circulation to cool down the reactor cores during an accident. Thus, a robust and accurate scaling methodology must be developed and employed to both assist in the design of a scaled-down test facility and guide the tests in order to mimic the natural circulation flow of its prototype. The natural circulation system generally consists of a heat source, the connecting pipes and several heat sinks. Although many applauding scaling methodologies have been proposed during last several decades, few works have been dedicated to systematically analyze and exactly preserve the hydraulic similarity. In the present study, the hydraulic similarity analyses are performed at both system and local level. By this mean, the scaling criteria for the exact hydraulic similarity in a full-pressure model have been sought. In other words, not only the system-level but also the local-level hydraulic similarities are pursued. As the hydraulic characteristics of a fluid system is governed by the momentum equation, the scaling analysis starts with it. A dimensionless integral loop momentum equation is derived to obtain the dimensionless numbers. In the dimensionless momentum equation, two dimensionless numbers, the dimensionless flow resistance number and the dimensionless gravitational force number, are identified along with a unique hydraulic time scale, characterizing the system hydraulic response. A full-height full-pressure model is also made to see which model among the full-height model and reduced-height model can preserve the hydraulic behavior of the prototype. From the dimensionless integral momentum equation, a unique hydraulic time scale, which characterizes the hydraulic response of a single-phase natural circulation system, is identified along with two dimensionless parameters: the dimensionless flow resistance number and the dimensionless gravitational force number. By satisfying the equality of both dimensionless numbers

  6. Scaling Analysis of the Single-Phase Natural Circulation: the Hydraulic Similarity

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xin-Guo; Choi, Ki-Yong [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    These passive safety systems all rely on the natural circulation to cool down the reactor cores during an accident. Thus, a robust and accurate scaling methodology must be developed and employed to both assist in the design of a scaled-down test facility and guide the tests in order to mimic the natural circulation flow of its prototype. The natural circulation system generally consists of a heat source, the connecting pipes and several heat sinks. Although many applauding scaling methodologies have been proposed during last several decades, few works have been dedicated to systematically analyze and exactly preserve the hydraulic similarity. In the present study, the hydraulic similarity analyses are performed at both system and local level. By this mean, the scaling criteria for the exact hydraulic similarity in a full-pressure model have been sought. In other words, not only the system-level but also the local-level hydraulic similarities are pursued. As the hydraulic characteristics of a fluid system is governed by the momentum equation, the scaling analysis starts with it. A dimensionless integral loop momentum equation is derived to obtain the dimensionless numbers. In the dimensionless momentum equation, two dimensionless numbers, the dimensionless flow resistance number and the dimensionless gravitational force number, are identified along with a unique hydraulic time scale, characterizing the system hydraulic response. A full-height full-pressure model is also made to see which model among the full-height model and reduced-height model can preserve the hydraulic behavior of the prototype. From the dimensionless integral momentum equation, a unique hydraulic time scale, which characterizes the hydraulic response of a single-phase natural circulation system, is identified along with two dimensionless parameters: the dimensionless flow resistance number and the dimensionless gravitational force number. By satisfying the equality of both dimensionless numbers

  7. Searching for Next Single-Phase High-Entropy Alloy Compositions

    Directory of Open Access Journals (Sweden)

    David E. Alman

    2013-10-01

    Full Text Available There has been considerable technological interest in high-entropy alloys (HEAs since the initial publications on the topic appeared in 2004. However, only several of the alloys investigated are truly single-phase solid solution compositions. These include the FCC alloys CoCrFeNi and CoCrFeMnNi based on 3d transition metals elements and BCC alloys NbMoTaW, NbMoTaVW, and HfNbTaTiZr based on refractory metals. The search for new single-phase HEAs compositions has been hindered by a lack of an effective scientific strategy for alloy design. This report shows that the chemical interactions and atomic diffusivities predicted from ab initio molecular dynamics simulations which are closely related to primary crystallization during solidification can be used to assist in identifying single phase high-entropy solid solution compositions. Further, combining these simulations with phase diagram calculations via the CALPHAD method and inspection of existing phase diagrams is an effective strategy to accelerate the discovery of new single-phase HEAs. This methodology was used to predict new single-phase HEA compositions. These are FCC alloys comprised of CoFeMnNi, CuNiPdPt and CuNiPdPtRh, and HCP alloys of CoOsReRu.

  8. Coordinated single-phase control scheme for voltage unbalance reduction in low voltage network.

    Science.gov (United States)

    Pullaguram, Deepak; Mishra, Sukumar; Senroy, Nilanjan

    2017-08-13

    Low voltage (LV) distribution systems are typically unbalanced in nature due to unbalanced loading and unsymmetrical line configuration. This situation is further aggravated by single-phase power injections. A coordinated control scheme is proposed for single-phase sources, to reduce voltage unbalance. A consensus-based coordination is achieved using a multi-agent system, where each agent estimates the averaged global voltage and current magnitudes of individual phases in the LV network. These estimated values are used to modify the reference power of individual single-phase sources, to ensure system-wide balanced voltages and proper power sharing among sources connected to the same phase. Further, the high X / R ratio of the filter, used in the inverter of the single-phase source, enables control of reactive power, to minimize voltage unbalance locally. The proposed scheme is validated by simulating a LV distribution network with multiple single-phase sources subjected to various perturbations.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).

  9. Symbolic Multidimensional Scaling

    NARCIS (Netherlands)

    P.J.F. Groenen (Patrick); Y. Terada

    2015-01-01

    markdownabstract__Abstract__ Multidimensional scaling (MDS) is a technique that visualizes dissimilarities between pairs of objects as distances between points in a low dimensional space. In symbolic MDS, a dissimilarity is not just a value but can represent an interval or even a histogram. Here,

  10. Multidimensional flux-limited advection schemes

    International Nuclear Information System (INIS)

    Thuburn, J.

    1996-01-01

    A general method for building multidimensional shape preserving advection schemes using flux limiters is presented. The method works for advected passive scalars in either compressible or incompressible flow and on arbitrary grids. With a minor modification it can be applied to the equation for fluid density. Schemes using the simplest form of the flux limiter can cause distortion of the advected profile, particularly sideways spreading, depending on the orientation of the flow relative to the grid. This is partly because the simple limiter is too restrictive. However, some straightforward refinements lead to a shape-preserving scheme that gives satisfactory results, with negligible grid-flow angle-dependent distortion

  11. CFD simulation on reactor flow mixing phenomena

    International Nuclear Information System (INIS)

    Kwon, T.S.; Kim, K.H.

    2016-01-01

    A pre-test calculation for multi-dimensional flow mixing in a reactor core and downcomer has been studied using a CFD code. To study the effects of Reactor Coolant Pump (RCP) and core zone on the boron mixing behaviors in a lower downcomer and core inlet, a 1/5-scale CFD model of flow mixing test facility for the APR+ reference plant was simulated. The flow paths of the 1/5-scale model were scaled down by the linear scaling method. The aspect ratio (L/D) of all flow paths was preserved to 1. To preserve a dynamic similarity, the ratio of Euler number was also preserved to 1. A single phase water flow at low pressure and temperature conditions was considered in this calculation. The calculation shows that the asymmetric effect driven by RCPs shifted the high velocity field to the failed pump's flow zone. The borated water flow zone at the core inlet was also shifted to the failed RCP side. (author)

  12. Multilevel markov chain monte carlo method for high-contrast single-phase flow problems

    KAUST Repository

    Efendiev, Yalchin R.; Jin, Bangti; Michael, Presho; Tan, Xiaosi

    2014-01-01

    Carlo (MLMC) methods. The former provides a hierarchy of approximations of different resolution, whereas the latter gives an efficient way to estimate quantities of interest using samples on different levels. The number of basis functions in the online

  13. Statistical Inversion of Absolute Permeability in Single-phase Darcy Flow

    KAUST Repository

    Strauss, Thilo

    2015-06-01

    In this paper, we formulate the permeability inverse problem in the Bayesian framework using total variation (TV) and fp (0 < p δ 2) regularization prior. We use the Markov Chain Monte Carlo (MCMC) method for sampling the posterior distribution to solve the ill-posed inverse problem. We present simulations to estimate the distribution for each pixel for the image reconstruction of the absolute permeability.

  14. Statistical Inversion of Absolute Permeability in Single-phase Darcy Flow

    KAUST Repository

    Strauss, Thilo; Fan, Xiaolin; Sun, Shuyu; Khan, Taufiquar

    2015-01-01

    In this paper, we formulate the permeability inverse problem in the Bayesian framework using total variation (TV) and fp (0 < p δ 2) regularization prior. We use the Markov Chain Monte Carlo (MCMC) method for sampling the posterior distribution to solve the ill-posed inverse problem. We present simulations to estimate the distribution for each pixel for the image reconstruction of the absolute permeability.

  15. Reliability Evaluation of a Single-phase H-bridge Inverter with Integrated Active Power Decoupling

    DEFF Research Database (Denmark)

    Tang, Junchaojie; Wang, Haoran; Ma, Siyuan

    2016-01-01

    it with the traditional passive DC-link solution. The converter level reliability is obtained by component level electro-thermal stress modeling, lifetime model, Weibull distribution, and Reliability Block Diagram (RBD) method. The results are demonstrated by a 2 kW single-phase inverter application.......Various power decoupling methods have been proposed recently to replace the DC-link Electrolytic Capacitors (E-caps) in single-phase conversion system, in order to extend the lifetime and improve the reliability of the DC-link. However, it is still an open question whether the converter level...... reliability becomes better or not, since additional components are introduced and the loading of the existing components may be changed. This paper aims to study the converter level reliability of a single-phase full-bridge inverter with two kinds of active power decoupling module and to compare...

  16. High Quality Model Predictive Control for Single Phase Grid Connected Photovoltaic Inverters

    DEFF Research Database (Denmark)

    Zangeneh Bighash, Esmaeil; Sadeghzadeh, Seyed Mohammad; Ebrahimzadeh, Esmaeil

    2018-01-01

    Single phase grid-connected inverters with LCL filter are widely used to connect the photovoltaic systems to the utility grid. Among the presented control schemes, predictive control methods are faster and more accurate but are more complex to implement. Recently, the model-predictive control...... algorithm for single-phase inverter has been presented, where the algorithm implementation is straightforward. In the proposed approach, all switching states are tested in each switching period to achieve the control objectives. However, since the number of the switching states in single-phase inverter...... is low, the inverter output current has a high total harmonic distortions. In order to reduce the total harmonic distortions of the injected current, this paper presents a high-quality model-predictive control for one of the newest structure of the grid connected photovoltaic inverter, i.e., HERIC...

  17. Benchmarking of Grid Fault Modes in Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede; Zou, Zhixiang

    2013-01-01

    Pushed by the booming installations of singlephase photovoltaic (PV) systems, the grid demands regarding the integration of PV systems are expected to be modified. Hence, the future PV systems should become more active with functionalities of Low Voltage Ride-Through (LVRT) and grid support...... phase systems under grid faults. The intent of this paper is to present a benchmarking of grid fault modes that might come in future single-phase PV systems. In order to map future challenges, the relevant synchronization and control strategies are discussed. Some faulty modes are studied experimentally...... and provided at the end of this paper. It is concluded that there are extensive control possibilities in single-phase PV systems under grid faults. The Second Order General Integral based PLL technique might be the most promising candidate for future single-phase PV systems because of its fast adaptive...

  18. SiC MOSFET Based Single Phase Active Boost Rectifier with Power Factor Correction for Wireless Power Transfer Applications

    Energy Technology Data Exchange (ETDEWEB)

    Onar, Omer C [ORNL; Tang, Lixin [ORNL; Chinthavali, Madhu Sudhan [ORNL; Campbell, Steven L [ORNL; Miller (JNJ), John M. [JNJ-Miller PLC

    2014-01-01

    Wireless Power Transfer (WPT) technology is a novel research area in the charging technology that bridges the utility and the automotive industries. There are various solutions that are currently being evaluated by several research teams to find the most efficient way to manage the power flow from the grid to the vehicle energy storage system. There are different control parameters that can be utilized to compensate for the change in the impedance due to variable parameters such as battery state-of-charge, coupling factor, and coil misalignment. This paper presents the implementation of an active front-end rectifier on the grid side for power factor control and voltage boost capability for load power regulation. The proposed SiC MOSFET based single phase active front end rectifier with PFC resulted in >97% efficiency at 137mm air-gap and >95% efficiency at 160mm air-gap.

  19. Synchronization in single-phase grid-connected photovoltaic systems under grid faults

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2012-01-01

    The highly increasing penetration of single-phase photovoltaic (PV) systems pushes the grid requirements related to the integration of PV power systems to be updated. These upcoming regulations are expected to direct the grid-connected renewable generators to support the grid operation and stabil......The highly increasing penetration of single-phase photovoltaic (PV) systems pushes the grid requirements related to the integration of PV power systems to be updated. These upcoming regulations are expected to direct the grid-connected renewable generators to support the grid operation...

  20. Single phase cascaded H5 inverter with leakage current elimination for transformerless photovoltaic system

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Jia, X.; Lu, Z.

    2016-01-01

    Leakage current reduction is one of the important issues for the transformelress PV systems. In this paper, the transformerless single-phase cascaded H-bridge PV inverter is investigated. The common mode model for the cascaded H4 inverter is analyzed. And the reason why the conventional cascade H4...... inverter fails to reduce the leakage current is clarified. In order to solve the problem, a new cascaded H5 inverter is proposed to solve the leakage current issue. Finally, the experimental results are presented to verify the effectiveness of the proposed topology with the leakage current reduction...... for the single-phase transformerless PV systems....

  1. Challenges in thermal design of industrial single-phase power inverter

    Directory of Open Access Journals (Sweden)

    Ninković Predrag

    2016-01-01

    Full Text Available This paper presents the influence of thermal aspects in design process of an industrial single-phase inverter, choice of its topology and components. Stringent design inputs like very high overload level, demand for natural cooling and very wide input voltage range have made conventional circuit topology inappropriate therefore asking for alternative solution. Different power losses calculations in semiconductors are performed and compared, outlining the guidelines how to choose the final topology. Some recommendations in power magnetic components design are given. Based on the final project, a 20kVA single-phase inverter for thermal power plant supervisory and control system is designed and commissioned.

  2. Single-Phase Hybrid Switched Reluctance Motor for Low-Power Low-Cost Applications

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Rasmussen, Peter Omand; Jakobsen, Uffe

    2011-01-01

    This paper presents a new single-phase, Hybrid Switched Reluctance (HSR) motor for low-cost, low-power, pump or fan drive systems. Its single-phase configuration allows use of a simple converter to reduce the system cost. Cheap ferrite magnets are used and arranged in a special flux concentration...... manner to increase effectively the torque density and efficiency of this machine. The efficiency of this machine is comparable to the efficiency of a traditional permanent magnet machine in the similar power range. The cogging torque, due to the existence of the permanent magnetic field, is beneficially...

  3. An Open-Loop Grid Synchronization Approach for Single-Phase Applications

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2018-01-01

    in the presence of frequency drifts. This is particularly true in single-phase applications, where the lack of multiple independent input signals makes the implementation of the synchronization technique difficult. The aim of this paper is to develop an effective OLS technique for single-phase power and energy...... applications. The proposed OLS method benefits from a straightforward implementation, a fast dynamic response (a response time less than two cycles of the nominal frequency), and a complete immunity against the DC component in the grid voltage. In addition, the designed OLS method totally blocks (significantly...

  4. Fractional single-phase-lagging heat conduction model for describing anomalous diffusion

    Directory of Open Access Journals (Sweden)

    T.N. Mishra

    2016-03-01

    Full Text Available The fractional single-phase-lagging (FSPL heat conduction model is obtained by combining scalar time fractional conservation equation to the single-phase-lagging (SPL heat conduction model. Based on the FSPL heat conduction model, anomalous diffusion within a finite thin film is investigated. The effect of different parameters on solution has been observed and studied the asymptotic behavior of the FSPL model. The analytical solution is obtained using Laplace transform method. The whole analysis is presented in dimensionless form. Numerical examples of particular interest have been studied and discussed in details.

  5. Modeling and Stability Assessment of Single-Phase Grid Synchronization Techniques

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.; Vasquez, Juan

    2018-01-01

    (GSTs) is of vital importance. This task is most often based on obtaining a linear time-invariant (LTI) model for the GST and applying standard stability tests to it. Another option is modeling and dynamics/stability assessment of GSTs in the linear time-periodic (LTP) framework, which has received...... a very little attention. In this letter, the procedure of deriving the LTP model for single-phase GSTs is first demonstrated. The accuracy of the LTP model in predicting the GST dynamic behavior and stability is then evaluated and compared with that of the LTI one. Two well-known single-phase GSTs, i...

  6. Numeric invariants from multidimensional persistence

    Energy Technology Data Exchange (ETDEWEB)

    Skryzalin, Jacek [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carlsson, Gunnar [Stanford Univ., Stanford, CA (United States)

    2017-05-19

    In this paper, we analyze the space of multidimensional persistence modules from the perspectives of algebraic geometry. We first build a moduli space of a certain subclass of easily analyzed multidimensional persistence modules, which we construct specifically to capture much of the information which can be gained by using multidimensional persistence over one-dimensional persistence. We argue that the global sections of this space provide interesting numeric invariants when evaluated against our subclass of multidimensional persistence modules. Lastly, we extend these global sections to the space of all multidimensional persistence modules and discuss how the resulting numeric invariants might be used to study data.

  7. Thermal analysis of hybrid single-phase, two-phase and heat pump thermal control system (TCS) for future spacecraft

    International Nuclear Information System (INIS)

    Lee, S.H.; Mudawar, I.; Hasan, Mohammad M.

    2016-01-01

    Highlights: • Hybrid Thermal Control System (H-TCS) is proposed for future spacecraft. • Thermodynamic performance of H-TCS is examined for different space missions. • Operational modes including single-phase, two-phase and heat pump are explored. • R134a is deemed most appropriate working fluid. - Abstract: An urgent need presently exists to develop a new class of versatile spacecraft capable of conducting different types of missions and enduring varying gravitational and temperature environments, including Lunar, Martian and Near Earth Object (NEOs). This study concerns the spacecraft's Thermal Control System (TCS), which tackles heat acquisition, especially from crew and avionics, heat transport, and ultimate heat rejection by radiation. The primary goal of the study is to explore the design and thermal performance of a Hybrid Thermal Control System (H-TCS) that would satisfy the diverse thermal requirements of the different space missions. The H-TCS must endure both ‘cold’ and ‘hot’ environments, reduce weight and size, and enhance thermodynamic performance. Four different operational modes are considered: single-phase, two-phase, basic heat pump and heat pump with liquid-side, suction-side heat exchanger. A thermodynamic trade study is conducted for six different working fluids to assess important performance parameters including mass flow rate of the working fluid, maximum pressure, radiator area, compressor/pump work, and coefficient of performance (COP). R134a is determined to be most suitable based on its ability to provide a balanced compromise between reducing flow rate and maintaining low system pressure, and a moderate coefficient of performance (COP); this fluid is also both nontoxic and nonflammable, and features zero ozone depletion potential (ODP) and low global warming potential (GWP). It is shown how specific mission stages dictate which mode of operation is most suitable, and this information is used to size the radiator for the

  8. Influence of single-phase heat transfer correlations on safety analysis of research reactors with narrow rectangular fuel channels

    International Nuclear Information System (INIS)

    Rawashdeh, A.; Altamimi, R.; Lee, B.; Chung, Y. J.; Park, S.

    2013-01-01

    The influence of different single-phase heat transfer correlations on the fuel temperature and minimum critical heat flux ratio (MCHFR) during a typical accident of a 5 MW research reactor is investigated. A reactor uses plate type fuel, of which the cooling channels have a narrow rectangular shape. RELAP5/MOD3.3 tends to over-predict the Nusselt number (Nu) at a low Reynolds number (Re) region, and therefore the correlation set is modified to properly describe the thermal behavior at that region. To demonstrate the effect of Nu at a low-Re region on an accident analysis, a two-pump failure accident was chosen as a sample problem. In the accident, the downward core flow decreases by a pump coast-down, and then reverses upward by natural convection. During the pump coast-down and flow reversal, the flow undergoes a laminar flow regime which has a different Nu with respect to the correlation sets. Compared to the results by the original RELAP5/MOD3.3, the modified correlation set predicts the fuel temperature to be a little higher than the original value, and the MCHFR to be a little lower than the original value. Although the modified correlation set predicts the fuel temperature and the MCHFR to be less conservative than those calculated from the original correlation of RELAP5/MOD3.3, the maximum fuel temperature and the MCHFR still satisfy the safety acceptance criteria

  9. Multidimensional nonlinear descriptive analysis

    CERN Document Server

    Nishisato, Shizuhiko

    2006-01-01

    Quantification of categorical, or non-numerical, data is a problem that scientists face across a wide range of disciplines. Exploring data analysis in various areas of research, such as the social sciences and biology, Multidimensional Nonlinear Descriptive Analysis presents methods for analyzing categorical data that are not necessarily sampled randomly from a normal population and often involve nonlinear relations. This reference not only provides an overview of multidimensional nonlinear descriptive analysis (MUNDA) of discrete data, it also offers new results in a variety of fields. The first part of the book covers conceptual and technical preliminaries needed to understand the data analysis in subsequent chapters. The next two parts contain applications of MUNDA to diverse data types, with each chapter devoted to one type of categorical data, a brief historical comment, and basic skills peculiar to the data types. The final part examines several problems and then concludes with suggestions for futu...

  10. The multidimensional nucleon structure

    Directory of Open Access Journals (Sweden)

    Pasquini Barbara

    2016-01-01

    Full Text Available We discuss different kinds of parton distributions, which allow one to obtain a multidimensional picture of the internal structure of the nucleon. We use the concept of generalized transverse momentum dependent parton distributions and Wigner distributions, which combine the features of transverse-momentum dependent parton distributions and generalized parton distributions. We show examples of these functions within a phenomenological quark model, with focus on the role of the spin-spin and spin-orbit correlations of quarks.

  11. Multi-dimensional rheology-based two-phase model for sediment transport and applications to sheet flow and pipeline scour

    International Nuclear Information System (INIS)

    Lee, Cheng-Hsien; Low, Ying Min; Chiew, Yee-Meng

    2016-01-01

    Sediment transport is fundamentally a two-phase phenomenon involving fluid and sediments; however, many existing numerical models are one-phase approaches, which are unable to capture the complex fluid-particle and inter-particle interactions. In the last decade, two-phase models have gained traction; however, there are still many limitations in these models. For example, several existing two-phase models are confined to one-dimensional problems; in addition, the existing two-dimensional models simulate only the region outside the sand bed. This paper develops a new three-dimensional two-phase model for simulating sediment transport in the sheet flow condition, incorporating recently published rheological characteristics of sediments. The enduring-contact, inertial, and fluid viscosity effects are considered in determining sediment pressure and stresses, enabling the model to be applicable to a wide range of particle Reynolds number. A k − ε turbulence model is adopted to compute the Reynolds stresses. In addition, a novel numerical scheme is proposed, thus avoiding numerical instability caused by high sediment concentration and allowing the sediment dynamics to be computed both within and outside the sand bed. The present model is applied to two classical problems, namely, sheet flow and scour under a pipeline with favorable results. For sheet flow, the computed velocity is consistent with measured data reported in the literature. For pipeline scour, the computed scour rate beneath the pipeline agrees with previous experimental observations. However, the present model is unable to capture vortex shedding; consequently, the sediment deposition behind the pipeline is overestimated. Sensitivity analyses reveal that model parameters associated with turbulence have strong influence on the computed results.

  12. Single Phase Transformer-less Buck-Boost Inverter with Zero Leakage Current for PV Systems

    DEFF Research Database (Denmark)

    Mostaan, Ali; Abdelhakim, Ahmed; N. Soltani, Mohsen

    2017-01-01

    In this paper, a novel single-stage single-phase transformer-less buck-boost inverter is proposed, in which a reduced number of passive components is used. The proposed inverter combines the conventional buck, boost, and buck-boost converters in one converter in order to obtain a sinusoidal output...

  13. An efficiency improved single-phase PFC converter for electric vehicle charger applications

    DEFF Research Database (Denmark)

    Zhu, Dexuan; Tang, Yi; Jin, Chi

    2013-01-01

    This paper presents an efficiency improved single-phase power factor correction (PFC) converter with its target application to plug-in hybrid electric vehicle (PHEV) charging systems. The proposed PFC converter features sinusoidal input current, three-level output characteristic, and wide range...

  14. Design and Implementation of Wireless Energy Meter System for Monitoring the Single Phase Supply

    OpenAIRE

    U. V, Prashanth B.

    2013-01-01

    Wireless energy meter is a system developed to serve as a basic single-phase energy meter with advanced functionalities such as Peak hour setting, Peak load setting Wireless reading transmission; further the system eliminates the role of a Meter Reader.

  15. Dynamics Assessment of Grid-Synchronization Algorithms for Single-Phase Grid-Connected Converters

    DEFF Research Database (Denmark)

    Han, Yang; Luo, Mingyu; Guerrero, Josep M.

    2015-01-01

    Several advanced phase-lock-loop (PLL) algorithms have been proposed for single-phase power electronic systems. Among these algorithms, the orthogonal signal generators (OSGs) are widely utilized to generate a set of in-quadrature signals, owing to its benefit of simple digital implementation and...

  16. Comparative Performance Evaluation of Orthogonal-Signal-Generators-Based Single-Phase PLL Algorithms

    DEFF Research Database (Denmark)

    Han, Yang; Luo, Mingyu; Zhao, Xin

    2016-01-01

    The orthogonal signal generator based phase-locked loops (OSG-PLLs) are among the most popular single-phase PLLs within the areas of power electronics and power systems, mainly because they are often easy to be implement and offer a robust performance against the grid disturbances. The main aim o...

  17. Novel Motion Sensorless Control of Single Phase Brushless D.C. PM Motor Drive, with experiments

    DEFF Research Database (Denmark)

    Lepure, Liviu Ioan; Boldea, Ion; Andreescu, Gheorghe Daniel

    2010-01-01

    A motion sensorless control for single phase permanent magnet brushless d.c. (PM-BLDC) motor drives, based on flux integration and prior knowledge of the PM flux/position characteristic is proposed here and an adequate correction algorithm is adopted, in order to increase the robustness to noise...

  18. Single-Phase 3L PR Controlled qZS Inverter Connected to the Distorted Grid

    DEFF Research Database (Denmark)

    Makovenko, Elena; Husev, Oleksandr; Roncero-Clemente, Carlos

    2016-01-01

    This paper presents a single-phase three-level NPC qZS inverter connected to a distorted grid using PID and PR regulators. A case study system along with the control strategy are described. Tuning approaches for PID and PR regulators are addressed and validated by means of simulation results...

  19. Potential pitfalls of single phasing operation in a three phase distribution network

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, V S

    1986-07-01

    Finding it difficult to cope with the increased demand for electric power, some electricity boards have resorted to single phasing techniques in distribution system. This practice is harmful to the equipment in the power system. Some of the potential dangers associated with this undesirable practice are briefly discussed.

  20. PI and repetitive control for single phase inverter based on virtual rotating coordinate system

    Science.gov (United States)

    Li, Mengqi; Tong, Yibin; Jiang, Jiuchun; Liang, Jiangang

    2018-03-01

    Microgrid technology developed rapidly and nonlinear loads were connected increasingly. A new control strategy was proposed for single phase inverter when connected nonlinear loads under island condition. PI and repetitive compound controller was realized under synchronous rotating coordinate system and acquired high quality sinusoidal voltage output without voltage spike when loads step changed. Validity and correctness were verified by simulation using MATLAB/Simulink.

  1. 16 channel WDM regeneration in a single phase-sensitive amplifier through optical Fourier transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Da Ros, Francesco; Lillieholm, Mads

    2016-01-01

    We demonstrate simultaneous phase regeneration of 16-WDM DPSK channels using optical Fourier transformation and a single phase-sensitive amplifier. The BERs of 16-WDM×10-Gbit/s phase noise degraded DPSK signals are improved by 0.4-1.3 orders of magnitude...

  2. Forest resources of southeast Alaska, 2000: results of a single-phase systematic sample.

    Science.gov (United States)

    Willem W.S. van Hees

    2003-01-01

    A baseline assessment of forest resources in southeast Alaska was made by using a single-phase, unstratified, systematic-grid sample, with ground plots established at each grid intersection. Ratio-of-means estimators were used to develop population estimates. Forests cover an estimated 48 percent of the 22.9-million-acre southeast Alaska inventory unit. Dominant forest...

  3. Zero-Voltage Ride-Through Capability of Single-Phase Grid-Connected Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2017-03-01

    Full Text Available Distributed renewable energy systems play an increasing role in today’s energy paradigm. Thus, intensive research activities have been centered on improving the performance of renewable energy systems, including photovoltaic (PV systems, which should be of multiple-functionality. That is, the PV systems should be more intelligent in the consideration of grid stability, reliability, and fault protection. Therefore, in this paper, the performance of single-phase grid-connected PV systems under an extreme grid fault (i.e., when the grid voltage dips to zero is explored. It has been revealed that combining a fast and accurate synchronization mechanism with appropriate control strategies for the zero-voltage ride-through (ZVRT operation is mandatory. Accordingly, the representative synchronization techniques (i.e., the phase-locked loop (PLL methods in the ZVRT operation are compared in terms of detection precision and dynamic response. It shows that the second-order generalized integrator (SOGI-PLL is a promising solution for single-phase systems in the case of fault ride-through. A control strategy by modifying the SOGI-PLL scheme is then introduced to single-phase grid-connected PV systems for ZVRT operation. Simulations are performed to verify the discussions. The results have demonstrated that the proposed method can help single-phase PV systems to temporarily ride through zero-voltage faults with good dynamics.

  4. Modeling and Control of a Single-Phase Marine Cooling System

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2013-01-01

    This paper presents two model-based control design approaches for a single-phase marine cooling system. Models are derived from first principles and aim at describing significant system dynamics including nonlinearities and transport delays, while keeping the model complexity low. The two...

  5. Single phase inverter for a three phase power generation and distribution system

    Science.gov (United States)

    Lindena, S. J.

    1976-01-01

    A breadboard design of a single-phase inverter with sinusoidal output voltage for a three-phase power generation and distribution system was developed. The three-phase system consists of three single-phase inverters, whose output voltages are connected in a delta configuration. Upon failure of one inverter the two remaining inverters will continue to deliver three-phase power. Parallel redundancy as offered by two three-phase inverters is substituted by one three-phase inverter assembly with high savings in volume, weight, components count and complexity, and a considerable increase in reliability. The following requirements must be met: (1) Each single-phase, current-fed inverter must be capable of being synchronized to a three-phase reference system such that its output voltage remains phaselocked to its respective reference voltage. (2) Each single-phase, current-fed inverter must be capable of accepting leading and lagging power factors over a range from -0.7 through 1 to +0.7.

  6. protoDUNE-Single Phase and protDUNE-DualPhase

    CERN Multimedia

    Brice, Maximilien

    2016-01-01

    At the EHN1 two big 8m x 8m x8m detector prototypes (protoDUNE-Single Phase and protDUNE-DualPhase) are being constructed. The aim is to test technologies and detector performances for DUNE, a new generation of LBN neutr

  7. Benchmarking of grid fault modes in single-phase grid-connected photovoltaic systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede; Zou, Zhixiang

    2012-01-01

    Pushed by the booming installations of single-phase photovoltaic (PV) systems, the grid demands regarding the integration of PV systems are expected to be modified. Hence, the future PV systems should become more active with functionalities of low voltage ride-through (LVRT) and the grid support...

  8. Frequency Adaptive Repetitive Control of Grid-Tied Single-Phase PV Inverters

    DEFF Research Database (Denmark)

    Zhou, Keliang; Yang, Yongheng; Blaabjerg, Frede

    2015-01-01

    . This paper thus explores a frequency adaptive repetitive control strategy for grid converters, which employs fractional delay filters in order to adapt to the change of the grid frequency. Case studies with experimental results of a single-phase grid-connected PV inverter system are provided to verify...

  9. The Effect of Grain Size on Mechanical Instability in Single-Phase Li-Alloy Anodes

    National Research Council Canada - National Science Library

    Wolfenstine, Jeff

    2000-01-01

    .... The results of this study suggest that decreasing the particle and/or grain size is not a practical approach to solving the mechanical instability problem of single phase Li alloys that are intended to be used as anodes in Li-ion batteries.

  10. Lyapunov-Based Control Scheme for Single-Phase Grid-Connected PV Central Inverters

    NARCIS (Netherlands)

    Meza, C.; Biel, D.; Jeltsema, D.; Scherpen, J. M. A.

    A Lyapunov-based control scheme for single-phase single-stage grid-connected photovoltaic central inverters is presented. Besides rendering the closed-loop system globally stable, the designed controller is able to deal with the system uncertainty that depends on the solar irradiance. A laboratory

  11. Decoupling of fluctuating power in single-phase systems through a symmetrical half-bridge circuit

    DEFF Research Database (Denmark)

    Tang, Yi; Blaabjerg, Frede; Loh, Poh Chiang

    2014-01-01

    Single-phase AC/DC or DC/AC systems inherently subject to harmonic disturbance which is caused by the well-known double line frequency ripple power. This issue can be eased through the installation of bulky electrolytic capacitors in the dc-link, but such passive filtering approach may inevitably...

  12. A Direct Maximum Power Point Tracking Method for Single-Phase Grid Connected PV Inverters

    DEFF Research Database (Denmark)

    EL Aamri, Faicel; Maker, Hattab; Sera, Dezso

    2018-01-01

    in dynamic conditions, especially in low irradiance when the measurement of signals becomes more sensitive to noise. The proposed MPPT is designed for single-phase single-stage grid-connected PV inverters, and is based on estimating the instantaneous PV power and voltage ripples, using second...

  13. Hybrid Control Method for a Single Phase PFC using a Low Cost Microcontroller

    DEFF Research Database (Denmark)

    Jakobsen, Lars Tønnes; Nielsen, Nils; Wolf, Christian

    2005-01-01

    This paper presents a hybrid control method for single phase boost PFCs. The high bandwidth current loop is analog while the voltage loop is implemented in an 8-bit microcontroller. The design focuses on minimizing the number of calculations done in the microcontroller. A 1kW prototype has been...

  14. A Generic Topology Derivation Method for Single-phase Converters with Active Capacitive DC-links

    DEFF Research Database (Denmark)

    Wang, Haoran; Wang, Huai; Zhu, Guorong

    2016-01-01

    capacitive DCDC- link solutions, but important aspects of the topology assess-ment, such as the total energy storage, overall capacitive energy buffer ratio, cost, and reliability are still not available. This paper proposes a generic topology derivation method of single-phase power converters...

  15. Flux Concentration and Pole Shaping in a Single Phase Hybrid Switched Reluctance Motor Drive

    DEFF Research Database (Denmark)

    Jakobsen, Uffe; Lu, Kaiyuan

    2010-01-01

    The single phase hybrid switched reluctance motor (HSRM) may be a good candidate for low-cost drives used for pump applications. This paper presents a new design of the HSRM with improved starting torque achieved by stator pole shaping, and a better arrangement of the embedded stator permanent...

  16. Modelling and simulation of multiple single - phase induction motor in parallel connection

    Directory of Open Access Journals (Sweden)

    Sujitjorn, S.

    2006-11-01

    Full Text Available A mathematical model for parallel connected n-multiple single-phase induction motors in generalized state-space form is proposed in this paper. The motor group draws electric power from one inverter. The model is developed by the dq-frame theory and was tested against four loading scenarios in which satisfactory results were obtained.

  17. Qualification of code-Saturne for thermal-hydraulics single phase nuclear applications

    International Nuclear Information System (INIS)

    Archambeau, F.; Bechaud, C.; Gest, B.; Martin, A.; Sakiz, M.

    2003-01-01

    Code-Saturne is a general finite volume CFD (computational fluid dynamics) code developed by Electricite de France (EDF) under quality assurance for 2- and 3-dimensional simulations, laminar and turbulent flows, conjugate heat transfer (coupling with thermal code SYRTHES), including combustion modelling and a Lagrangian module. A very large range of meshes can be used. The solver relies on a finite volume method on arbitrary meshes (hybrid, with hanging nodes, any type of element). All variables are located at the cell centres. The solver is time marching, with a predictor-corrector scheme for Navier-Stokes equations. Standard Reynolds Average Navier-Stokes modelling (RANS) is included (k-epsilon, RSM). Code-Saturne is used by EDF in various industrial fields such as process engineering, aeraulics, combustion and nuclear applications. The present paper describes the qualification phase carried out during 2001 for single-phase nuclear applications. Indeed, once an industrial product has been released and validated, it is of major importance, especially in this particular field related to safety matters, to demonstrate the ability of the code to help engineers produce satisfactory conclusions to industrial problems. In coherence with analyses and best practice guidelines such as those published by the ERCOFTAC Special Interest Group, it seemed important to base the qualification phase on well defined and documented experimental facilities, sufficiently complex to be representative of industrial studies. Much attention has been devoted to evaluating sensitivity to numerical parameters such as grid refinement, time step... Moreover, the qualification studies have been carried out in real-life conditions, that is in limited time, with industrial limitations on the number of grid cells, and by the teams usually producing such studies, so as to integrate a real industrial process in the qualification phase. Two test cases chosen to assess certain types of flows in PWR

  18. Development of a single-phase thermosiphon for cold collection and storage of radiative cooling

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dongliang; Martini, Christine Elizabeth; Jiang, Siyu; Ma, Yaoguang; Zhai, Yao; Tan, Gang; Yin, Xiaobo; Yang, Ronggui

    2017-11-01

    A single-phase thermosiphon is developed for cold collection and storage of radiative cooling. Compared to the conventional nocturnal radiative cooling systems that use an electric pump to drive the heat transfer fluid, the proposed single-phase thermosiphon uses the buoyancy force to drive heat transfer fluid. This solution does not require electricity, therefore improving the net gain of the radiative cooling system. A single-phase thermosiphon was built, which consists of a flat panel, a cold collection tank, a water return tube, and a water distribution tank. Considering that outdoor radiative cooling flux is constantly changing (i.e. uncontrollable), an indoor testing facility was developed to provide a controllable cooling flux (comparable to a radiative cooling flux of 100 W/m2) for the evaluation of thermosiphon performance. The testing apparatus is a chilled aluminum flat plate that has a controlled air gap separation relative to the flat panel surface of the thermosiphon to emulate radiative cooling. With an average of 105 W/m2 cooling flux, the 18 liters of water in the thermosiphon was cooled to an average temperature of 12.5 degrees C from an initial temperature of 22.2 degrees C in 2 h, with a cold collection efficiency of 96.8%. The results obtained have demonstrated the feasibility of using a single-phase thermosiphon for cold collection and storage of radiative cooling. Additionally, the effects of the thermosiphon operation conditions, such as tilt angle of the flat panel, initial water temperature, and cooling energy flux, on the performance have been experimentally investigated. Modular design of the single-phase thermosiphon gives flexibility for its scalability. A radiative cooling system with multiple thermosiphon modules is expected to play an important role in cooling buildings and power plant condensers.

  19. Effects of Core Cavity on a Flow Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Tae-Soon; Kim, Kihwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The axial pressure drop is removed in the free core condition, But the actual core has lots of fuel bundles and mixing vanes to the flow direction. The axial pressure drop induces flow uniformity. In a uniform flow having no shear stress, the cross flow or cross flow mixing decreases. The mixing factor is important in the reactor safety during a Steam Line Break (SLB) or Main Steam Line Break (MSLB) transients. And the effect of core cavity is needed to evaluate the realistic core mixing factor quantification. The multi-dimensional flow mixing phenomena in a core cavity has been studied using a CFD code. The 1/5-scale model was applied for the reactor flow analysis. A single phase water flow conditions were considered for the 4-cold leg and DVI flows. To quantify the mixing intensity, a boron scalar was introduced to the ECC injection water at cold legs and DVI nozzles. The present CFD pre-study was performed to quantify the effects of core structure on the mixing phenomena. The quantified boron mixing scalar in the core simulator model represented the effect of core cavity on the core mixing phenomena. This simulation results also give the information for sensor resolution to measure the boron concentration in the experiments and response time to detect mixing phenomena at the core and reactor vessel.

  20. On the prediction of single-phase forced convection heat transfer in narrow rectangular channels

    International Nuclear Information System (INIS)

    Ghione, Alberto; Noel, Brigitte; Vinai, Paolo; Demazière, Christophe

    2014-01-01

    In this paper, selected heat transfer correlations for single-phase forced convection are assessed for the case of narrow rectangular channels. The work is of interest in the thermal-hydraulic analysis of the Jules Horowitz Reactor (JHR), which is a research reactor under construction at CEA-Cadarache (France). In order to evaluate the validity of the correlations, about 300 tests from the SULTAN-JHR database were used. The SULTAN-JHR program was carried out at CEA-Grenoble and it includes different kinds of tests for two different vertical rectangular channels with height of 600 mm and gap of 1.51 and 2.16 mm. The experimental conditions range between 2 - 9 bar for the pressure; 0.5 - 18 m/s for the coolant velocity and 0.5 - 7.5 MW/m 2 for the heat flux (whose axial distribution is uniform). Forty-two thermocouples and eight pressure taps were placed at several axial locations, measuring wall temperature and pressure respectively. The analysis focused on turbulent flow with Reynolds numbers between 5.5 x 10 3 - 2.4 x 10 5 and Prandtl numbers between 1.5 - 6. It was shown that standard correlations as the Dittus-Boelter and Seider-Tate significantly under-estimate the heat transfer coefficient, especially at high Reynolds number. Other correlations specifically designed for narrow rectangular channels were also taken into account and compared. The correlation of Popov-Petukhov in the form suggested by Siman-Tov still under-estimates the heat transfer coefficient, even if slight improvements could be seen. A better agreement for the tests with gap equal to 2.16 mm could be found with the correlation of Ma and the one of Liang. However the heat transfer coefficient when the gap is equal to 1.51 mm could not be predicted accurately. Furthermore these correlations were based on data at low Reynolds numbers (up to 13000) and low heat flux, so the use of them for SULTAN-JHR may be questionable. According to the authors’ knowledge, existing models of heat transfer

  1. Single phase and two phase erosion corrosion in broilers of gas-cooled reactors

    International Nuclear Information System (INIS)

    Harrison, G.S.; Fountain, M.J.

    1988-01-01

    Erosion-corrosion is a phenomenon causing metal wastage in a variety of locations in water and water-steam circuits throughout the power generation industry. Erosion-corrosion can occur in a number of regions of the once-through boiler designs used in the later Magnox and AGR type of gas cooled nuclear reactor. This paper will consider two cases of erosion-corrosion damage (single and two phase) in once through boilers of gas cooled reactors and will describe the solutions that have been developed. The single phase problem is associated with erosion-corrosion damage of mild steel downstream of a boiler inlet flow control orifice. With metal loss rates of up to 1 mm/year at 150 deg. C and pH in the range 9.0-9.4 it was found that 5 μg/kg oxygen was sufficient to reduce erosion-corrosion rates to less than 0.02 mm/year. A combined oxygen-ammonia-hydrazine feedwater regime was developed and validated to eliminate oxygen carryover and hence give protection from stress corrosion in the austenitic section of the AGR once through boiler whilst still providing erosion-corrosion control. Two phase erosion-corrosion tube failures have occurred in the evaporator of the mild steel once through boilers of the later Magnox reactors operating at pressures in the range 35-40 bar. Rig studies have shown that amines dosed in the feedwater can provide a significant reduction in metal loss rates and a tube lifetime assessment technique has been developed to predict potential tube failure profiles in a fully operational boiler. The solutions identified for both problems have been successfully implemented and the experience obtained following implementation including any problems or other benefits arising from the introduction of the new regimes will be presented. Methods for monitoring and evaluating the efficiency of the solutions have been developed and the results from these exercises will also be discussed. Consideration will also be given to the similarities in the metal loss

  2. Single phase and two phase erosion corrosion in broilers of gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, G S; Fountain, M J [Operational Engineering Division (Northern Area), Central Electricity Generating Board, Manchester (United Kingdom)

    1988-07-01

    Erosion-corrosion is a phenomenon causing metal wastage in a variety of locations in water and water-steam circuits throughout the power generation industry. Erosion-corrosion can occur in a number of regions of the once-through boiler designs used in the later Magnox and AGR type of gas cooled nuclear reactor. This paper will consider two cases of erosion-corrosion damage (single and two phase) in once through boilers of gas cooled reactors and will describe the solutions that have been developed. The single phase problem is associated with erosion-corrosion damage of mild steel downstream of a boiler inlet flow control orifice. With metal loss rates of up to 1 mm/year at 150 deg. C and pH in the range 9.0-9.4 it was found that 5 {mu}g/kg oxygen was sufficient to reduce erosion-corrosion rates to less than 0.02 mm/year. A combined oxygen-ammonia-hydrazine feedwater regime was developed and validated to eliminate oxygen carryover and hence give protection from stress corrosion in the austenitic section of the AGR once through boiler whilst still providing erosion-corrosion control. Two phase erosion-corrosion tube failures have occurred in the evaporator of the mild steel once through boilers of the later Magnox reactors operating at pressures in the range 35-40 bar. Rig studies have shown that amines dosed in the feedwater can provide a significant reduction in metal loss rates and a tube lifetime assessment technique has been developed to predict potential tube failure profiles in a fully operational boiler. The solutions identified for both problems have been successfully implemented and the experience obtained following implementation including any problems or other benefits arising from the introduction of the new regimes will be presented. Methods for monitoring and evaluating the efficiency of the solutions have been developed and the results from these exercises will also be discussed. Consideration will also be given to the similarities in the metal loss

  3. Multidimensional Models of Information Need

    OpenAIRE

    Yun-jie (Calvin) Xu; Kai Huang (Joseph) Tan

    2009-01-01

    User studies in information science have recognised relevance as a multidimensional construct. An implication of multidimensional relevance is that a user's information need should be modeled by multiple data structures to represent different relevance dimensions. While the extant literature has attempted to model multiple dimensions of a user's information need, the fundamental assumption that a multidimensional model is better than a uni-dimensional model has not been addressed. This study ...

  4. Multidimensional sexual perfectionism.

    Science.gov (United States)

    Stoeber, Joachim; Harvey, Laura N; Almeida, Isabel; Lyons, Emma

    2013-11-01

    Perfectionism is a multidimensional personality characteristic that can affect all areas of life. This article presents the first systematic investigation of multidimensional perfectionism in the domain of sexuality exploring the unique relationships that different forms of sexual perfectionism show with positive and negative aspects of sexuality. A sample of 272 university students (52 male, 220 female) completed measures of four forms of sexual perfectionism: self-oriented, partner-oriented, partner-prescribed, and socially prescribed. In addition, they completed measures of sexual esteem, sexual self-efficacy, sexual optimism, sex life satisfaction (capturing positive aspects of sexuality) and sexual problem self-blame, sexual anxiety, sexual depression, and negative sexual perfectionism cognitions during sex (capturing negative aspects). Results showed unique patterns of relationships for the four forms of sexual perfectionism, suggesting that partner-prescribed and socially prescribed sexual perfectionism are maladaptive forms of sexual perfectionism associated with negative aspects of sexuality whereas self-oriented and partner-oriented sexual perfectionism emerged as ambivalent forms associated with positive and negative aspects.

  5. A New Power Calculation Method for Single-Phase Grid-Connected Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2013-01-01

    A new method to calculate average active power and reactive power for single-phase systems is proposed in this paper. It can be used in different applications where the output active power and reactive power need to be calculated accurately and fast. For example, a grid-connected photovoltaic...... system in low voltage ride through operation mode requires a power feedback for the power control loop. Commonly, a Discrete Fourier Transform (DFT) based power calculation method can be adopted in such systems. However, the DFT method introduces at least a one-cycle time delay. The new power calculation...... method, which is based on the adaptive filtering technique, can achieve a faster response. The performance of the proposed method is verified by experiments and demonstrated in a 1 kW single-phase grid-connected system operating under different conditions.Experimental results show the effectiveness...

  6. Microcontroller Based SPWM Single-Phase Inverter For Wind Power Application

    Directory of Open Access Journals (Sweden)

    Khin Ohmar Lin

    2017-04-01

    Full Text Available In this paper microcontroller based sinusoidal pulse width modulation SPWM single-phase inverter is emphasized to constant frequency conversion scheme for wind power application. The wind-power generator output voltage and frequency are fluctuated due to the variation of wind velocity. Therefore the AC output voltage of wind-generator is converted into DC voltage by using rectifier circuit and this DC voltage is converted back to AC voltage by using inverter circuit. SPWM technique is used in inverter to get nearly sine wave and reduce harmonic content. The rating of inverter is 500W single-phase 220V 50 Hz. The required SPWM timing pulses for the inverter are generated from the PIC16F877A microcontroller. Circuit simulation was done by using Proteus 7 Professional and MATLABR 2008 software. The software for microcontroller is implemented by using MPASM assembler.

  7. Hybrid Three-Phase/Single-Phase Microgrid Architecture with Power Management Capabilities

    DEFF Research Database (Denmark)

    Sun, Qiuye; Zhou, Jianguo; Guerrero, Josep M.

    2015-01-01

    With the fast proliferation of single-phase distributed generation (DG) units and loads integrated into residential microgrids, independent power sharing per phase and full use of the energy generated by DGs have become crucial. To address these issues, this paper proposes a hybrid microgrid...... architecture and its power management strategy. In this microgrid structure, a power sharing unit (PSU), composed of three single-phase back-to-back (SPBTB) converters, is proposed to be installed at the point of common coupling (PCC). The aim of the PSU is mainly to realize the power exchange and coordinated...... control of load power sharing among phases, as well as to allow fully utilization of the energy generated by DGs. Meanwhile, the method combining the modified adaptive backstepping-sliding mode control approach and droop control is also proposed to design the SPBTB system controllers. With the application...

  8. A High Power Density Single-Phase PWM Rectifier With Active Ripple Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruxi [Virginia Polytechnic Institute and State University (Virginia Tech); Wang, Fei [ORNL; Boroyevich, Dushan [Virginia Polytechnic Institute and State University (Virginia Tech); Burgos, Rolando [ABB; Lai, Rixin [General Electric; Ning, Puqi [ORNL; Rajashekara, Kaushik [Rolls Royce

    2011-01-01

    It is well known that single-phase pulse width modulation rectifiers have second-order harmonic currents and corresponding ripple voltages on the dc bus. The low-frequency harmonic current is normally filtered using a bulk capacitor in the bus, which results in low power density. However, pursuing high power density in converter design is a very important goal in the aerospace applications. This paper studies methods for reducing the energy storage capacitor for single-phase rectifiers. The minimum ripple energy storage requirement is derived independently of a specific topology. Based on theminimum ripple energy requirement, the feasibility of the active capacitor s reduction schemes is verified. Then, we propose a bidirectional buck boost converter as the ripple energy storage circuit, which can effectively reduce the energy storage capacitance. The analysis and design are validated by simulation and experimental results.

  9. A Synchronization Method for Single-Phase Grid-Tied Inverters

    DEFF Research Database (Denmark)

    Hadjidemetriou, Lenos; Kyriakides, Elias; Yang, Yongheng

    2016-01-01

    The controllers of single-phase grid-tied inverters require improvements to enable distribution generation systems to meet the grid codes/standards with respect to power quality and the fault ride through capability. In that case, the response of the selected synchronization technique is crucial...... for the performance of the entire grid-tied inverter. In this paper, a new synchronization method with good dynamics and high accuracy under a highly distorted voltage is proposed. This method uses a Multi-Harmonic Decoupling Cell (MHDC), which thus can cancel out the oscillations on the synchronization signals due...... to the harmonic voltage distortion while maintaining the dynamic response of the synchronization. Therefore, the accurate and dynamic response of the proposed MHDC-PLL can be beneficial for the performance of the whole single-phase grid-tied inverter....

  10. Multi-dimensional modeling of gas-liquid two-phase flows. Application to the simulation of ascending bubble flows in vertical ducts; Modelisation multidimensionnelle des ecoulements diphasiques gaz-liquide. Application a la simulation des ecoulements a bulles ascendants en conduite verticale

    Energy Technology Data Exchange (ETDEWEB)

    Morel, Ch

    1997-10-31

    The aim of this thesis is the 3-D modeling and numerical simulation of liquid/gas (water/vapor or water/air) two-phase flows in cooling circuits of nuclear power plants during normal and accidental situations. The development of a multidimensional dual-fluid model encounters two problems: the statistical effects of turbulence and the interface mass, momentum and energy transfers. The models developed in this study were introduced in the 3-D module of the CATHARE code developed by the CEA and the results were compared to experimental results available in the literature. The first chapter describes the equations of the local dual-fluid model for the 3-D description of two-phase flows. Closing relations adapted to dispersed flows with isothermal bubbles and without phase transformation are proposed and focus on the momentum transfer at the interfaces. The theoretical study of turbulence in the liquid phase of a bubble flow is modelled in chapter 2. Chapter 3 deals with the voluminal interface area used in the interface mass, momentum and energy transfers, and chapters 4 and 5 concern the application of the developed models to concrete situations. Chapter 4 describes in details the 3-D module of the CATHARE code while chapter 5 gives a comparison of numerical results obtained using the CATHARE code with other experimental results obtained at EdF. (J.S.) 109 refs.

  11. Removal of Direct Current Link Harmonic Ripple in Single Phase Voltage Source Inverter Systems Using Supercapacitors

    Science.gov (United States)

    2016-09-01

    Khaligh, “Optimization of sizing and battery cycle life in battery/ultracapacitor hybrid energy storage systems for electric vehicle applications...depth cycling operation in photovoltaic system ,” in 22nd International Conference “Mixed Design of Integrated Circuits and Systems ,” Toruń, Poland...CURRENT LINK HARMONIC RIPPLE IN SINGLE-PHASE VOLTAGE SOURCE INVERTER SYSTEMS USING SUPERCAPACITORS by Gabriel D. Hernandez September 2016

  12. Geometric relationships for homogenization in single-phase binary alloy systems

    Science.gov (United States)

    Unnam, J.; Tenney, D. R.; Stein, B. A.

    1978-01-01

    A semiempirical relationship is presented which describes the extent of interaction between constituents in single-phase binary alloy systems having planar, cylindrical, or spherical interfaces. This relationship makes possible a quick estimate of the extent of interaction without lengthy numerical calculations. It includes two parameters which are functions of mean concentration and interface geometry. Experimental data for the copper-nickel system are included to demonstrate the usefulness of this relationship.

  13. Single-phase DECT with VNCT compared with three-phase CTU in patients with haematuria

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Jae; Park, Byung Kwan; Kim, Chan Kyo [Sungkyunkwan University School of Medicine, Department of Radiology, Samsung Medical Center, Seoul (Korea, Republic of)

    2016-10-15

    To retrospectively evaluate the diagnostic performance of single-phase dual-energy CT (DECT) with virtual non-contrast CT (VNCT) compared with three-phase CT urography (CTU) in patients with haematuria. A total of 296 patients underwent three-phase CTU (NCT at 120 kVp; nephrographic phase and excretory phase DECTs at 140 kVp and 80 kVp) owing to haematuria. Diagnostic performances of CT scans were compared for detecting urothelial tumours and urinary stones. Dose-length product (DLP) was compared in relation to single-phase DECT and three-phase CTU Dose-length product (DLP) was compared in relation to single-phase DECT and three-phase CTU. Sensitivity and specificity for tumour were 95 % (19/20) and 98.9 % (273/276) on CTU, 95 % (19/20) and 98.2 % (271/276) on nephrographic phase DECT, and 90 % (18/20) and 98.2 % (271/276) on excretory phase DECT (P > 0.1). Of the 148 stones detected on NCT, 108 (73 %) and 100 (67.6 %) were detected on nephrographic phase and excretory phase VNCTs, respectively. The mean size of stones undetected on nephrographic and excretory VNCTs was measured as 1.5 ± 0.5 mm and 1.6 ± 0.6 mm, respectively. The mean DLPs of three-phase CTU, nephrographic phase DECT and excretory phase DECT were 1076 ± 248 mGy . cm, 410 ± 98 mGy . cm, and 360 ± 87 mGy . cm, respectively (P < 0.001). Single-phase DECT has a potential to replace three-phase CTU for detecting tumours with a lower radiation dose. (orig.)

  14. Influence of microstructure on low cycle fatigue in some single phase and biphasic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Stolarz, J. [Ecole Nationale Superieure des Mines, Centre SMS, URA CNRS 1884, Saint-Etienne (France)

    2004-07-01

    This overview deals with the effects of microstructural parameters in different single phase and biphasic stainless steels on short crack behaviour and on fatigue life in the low cycle regime. The effect of the grain size is investigated in a single phase austenitic stainless steel. Under plastic strain control, the fatigue life increases when the grain size decreases. The results are discussed by analysing the distributions of crack depths as a function of the grain size. The second type of material is a metastable austenitic steel which partially transforms into martensite during LCF at temperatures between -50 C and +120 C. The grain size of the initially single phase austenitic microstructure has a combined influence on the volume fraction of martensite produced during fatigue and on the fatigue life. In this case, the grain size effect is still considerable but totally indirect because all fatigue cracks grow exclusively in the martensite. The cyclic behaviour analysis in biphasic alloys in which two phases undergo plastic deformation during LCF is considerably more complex because the conventional concept of microstructural barriers cannot be applied. The possible damage patterns in a pair of grains with different mechanical properties are discussed on the example of a solution treated and aged superduplex austenitic-ferritic stainless steel (SDSS). The hardening of one phase (ferrite) through ageing at 475 C changes the cyclic behaviour of the initial ''quasi single phase'' microstructure. Consequently, the fatigue life under plastic strain control decreases compared with the solution treated SDSS. The discussion is focussed on LCF damage mechanisms at the microstructure size scale with a particular accent put on the propagation of short cracks in the bulk. All the microstructures exhibit some common features with respect to the behaviour of short cracks. In particular a strong effect of microstructural barriers in the bulk and the

  15. Subchannel Scale Thermal-Hydraulic Analysis of Rod Bundle Geometry under Single-phase Adiabatic Conditions Using CUPID

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Seok Jong; Park, Goon Cherl; Cho, Hyoung Kyu [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In Korea, subchannel analysis code, MATRA has been developed by KAERI (Korea Atomic Energy Research Institute). MATRA has been used for reactor core T/H design and DNBR (Departure from Nucleate Boiling Ratio) calculation. Also, the code has been successfully coupled with neutronics code and fuel analysis code. However, since major concern of the code is not the accident simulation, some features of the code are not optimized for the accident conditions, such as the homogeneous model for two-phase flow and spatial marching method for numerical scheme. For this reason, in the present study, application of CUPID for the subchannel scale T/H analysis in rod bundle geometry was conducted. CUPID is a component scale T/H analysis code which adopts three dimensional two-fluid three-field model developed by KAERI. In this paper, the validation results of the CUPID code for subchannel scale rod bundle analysis at single phase adiabatic conditions were presented. At first, the physical models required for a subchannel scale analysis were implemented to CUPID. In the future, the scope of validation tests will be extended to diabetic and two phase flow conditions and required models will be implemented into CUPID.

  16. Statistical analysis of entropy generation in longitudinally finned tube heat exchanger with shell side nanofluid by a single phase approach

    Directory of Open Access Journals (Sweden)

    Konchada Pavan Kumar

    2016-06-01

    Full Text Available The presence of nanoparticles in heat exchangers ascertained increment in heat transfer. The present work focuses on heat transfer in a longitudinal finned tube heat exchanger. Experimentation is done on longitudinal finned tube heat exchanger with pure water as working fluid and the outcome is compared numerically using computational fluid dynamics (CFD package based on finite volume method for different flow rates. Further 0.8% volume fraction of aluminum oxide (Al2O3 nanofluid is considered on shell side. The simulated nanofluid analysis has been carried out using single phase approach in CFD by updating the user-defined functions and expressions with thermophysical properties of the selected nanofluid. These results are thereafter compared against the results obtained for pure water as shell side fluid. Entropy generated due to heat transfer and fluid flow is calculated for the nanofluid. Analysis of entropy generation is carried out using the Taguchi technique. Analysis of variance (ANOVA results show that the inlet temperature on shell side has more pronounced effect on entropy generation.

  17. [Intraoperative multidimensional visualization].

    Science.gov (United States)

    Sperling, J; Kauffels, A; Grade, M; Alves, F; Kühn, P; Ghadimi, B M

    2016-12-01

    Modern intraoperative techniques of visualization are increasingly being applied in general and visceral surgery. The combination of diverse techniques provides the possibility of multidimensional intraoperative visualization of specific anatomical structures. Thus, it is possible to differentiate between normal tissue and tumor tissue and therefore exactly define tumor margins. The aim of intraoperative visualization of tissue that is to be resected and tissue that should be spared is to lead to a rational balance between oncological and functional results. Moreover, these techniques help to analyze the physiology and integrity of tissues. Using these methods surgeons are able to analyze tissue perfusion and oxygenation. However, to date it is not clear to what extent these imaging techniques are relevant in the clinical routine. The present manuscript reviews the relevant modern visualization techniques focusing on intraoperative computed tomography and magnetic resonance imaging as well as augmented reality, fluorescence imaging and optoacoustic imaging.

  18. Multidimensional HAM-conditions

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place

    Heat, Air and Moisture (HAM) conditions, experimental data are needed. Tests were performed in the large climate simulator at SBi involving full-scale wall elements. The elements were exposed for steady-state conditions, and temperature cycles simulating April and September climate in Denmark....... The effect on the moisture and temperature conditions of the addition of a vapour barrier and an outer cladding on timber frame walls was studied. The report contains comprehensive appendices documenting the full-scale tests. The tests were performed as a part of the project 'Model for Multidimensional Heat......, Air and Moisture Conditions in Building Envelope Components' carried out as a co-project between DTU Byg and SBi....

  19. Simulation of the phenomenon of single-phase and two-phase natural circulation; Simulacao do fenomeno de circulacao natural mono e bifasica

    Energy Technology Data Exchange (ETDEWEB)

    Castrillo, Lazara Silveira

    1998-02-01

    Natural convection phenomenon is often used to remove the residual heat from the surfaces of bodies where the heat is generated e.g. during accidents or transients of nuclear power plants. Experimental study of natural circulation can be done in small scale experimental circuits and the results can be extrapolated for larger operational facilities. The numerical analysis of transients can be carried out by using large computational codes that simulate the thermohydraulic behavior in such facilities. The computational code RELAP5/MOD2, (Reactor Excursion and Leak Analysis Program) was developed by U.S. Nuclear Regulatory Commissions's. Division of Reactor Safety Research with the objective of analysis of transients and postulated accidents in the light water reactor (LWR) systems, including small and large ruptures with loss of coolant accidents (LOCA's). The results obtained by the simulation of single-phase and two-phase natural circulation, using the RELAP5/MOD2, are presented in this work. The study was carried out using the experimental circuit built at the 'Departamento de Engenharia Quimica da Escola Politecnica da Universidade de Sao Paulo'. In the circuit, two experiments were carried out with different conditions of power and mass flow, obtaining a single-phase regime with a level of power of 4706 W and flow of 5.10{sup -5} m{sup 3}/s (3 l/min) and a two-phase regime with a level of power of 6536 W and secondary flow 2,33.10{sup -5} m{sup 3}/s (1,4 l/min). The study allowed tio evaluate the capacity of the code for representing such phenomena as well as comparing the transients obtained theoretically with the experimental results. The comparative analysis shows that the code represents fairly well the single-phase transient, but the results for two-phase transients, starting from the nodalization and calibration used for the case single-phase transient, did not reproduce faithfully some experimental results. (author)

  20. Effect of duration of the pause single-phase auto-reclosing on electro-power transmission capacitance

    Directory of Open Access Journals (Sweden)

    Krasil'nikova Tatyana

    2017-01-01

    Full Text Available This paper discusses the problem associated with accidents in the aerial line (AL ultra-high voltage (UHV due to its big length. In lines with a voltage of 500-1150 kV the overwhelming proportion of trips (98% is caused by single-phase short circuit (SPSC. A substantial portion (70% single-phase short circuits is erratic arc accidents which can be successfully eliminated in a high-speed auto-reclosing (HSAR or single-phase auto-reclosing (SPAR. Success single-phase auto-reclosing (SPAR at liquidation by single-phase short circuit (SPSC, on the one hand, is determined by the characteristics of the secondary arc current, and on the other hand the effectiveness of ways to reduce secondary arc current and recovery voltage development. The minimum dead time, at a HSAR it is usually taken as 0.5 s., at single-phase autoreclosing (SPAR it depends on the current value of the arc support is in the range of 0.5-3.0 s. The article shows high efficiency of use single-phase auto reclosing (SPAR at liquidation SPSC in a single-chain AL voltage of 500 kV, the dependence of the bandwidth of transmission in maintaining the dynamic stability from the length of the pause SPAR.

  1. A highly self-adaptive cold plate for the single-phase mechanically pumped fluid loop for spacecraft thermal management

    International Nuclear Information System (INIS)

    Wang, Ji-Xiang; Li, Yun-Ze; Zhang, Hong-Sheng; Wang, Sheng-Nan; Liang, Yi-Hao; Guo, Wei; Liu, Yang; Tian, Shao-Ping

    2016-01-01

    Highlights: • A highly self-adaptive cold plate integrated with paraffin-based actuator is proposed. • Higher operating economy is attained due to an energy-efficient strategy. • A greater compatibility of the current space control system is obtained. • Model was entrenched theoretically to design the system efficiently. • A strong self-adaptability of the cold plate is observed experimentally. - Abstract: Aiming to improve the conventional single-phase mechanically pumped fluid loop applied in spacecraft thermal control system, a novel actively-pumped loop using distributed thermal control strategy was proposed. The flow control system for each branch consists primarily of a thermal control valve integrated with a paraffin-based actuator residing in the front part of each corresponding cold plate, where both coolant’s flow rate and the cold plate’s heat removal capability are well controlled sensitively according to the heat loaded upon the cold plate due to a conversion between thermal and mechanical energies. The operating economy enhances remarkably owing to no energy consumption in flow control process. Additionally, realizing the integration of the sensor, controller and actuator systems, it simplifies structure of the traditional mechanically pumped fluid loop as well. Revolving this novel scheme, mathematical model regarding design process of the highly specialized cold plate was entrenched theoretically. A validating system as a prototype was established on the basis of the design method and the scheduled objective of the controlled temperature (43 °C). Then temperature control performances of the highly self-adaptive cold plate under various operating conditions were tested experimentally. During almost all experiments, the controlled temperature remains within a range of ±2 °C around the set-point. Conclusions can be drawn that this self-driven control system is stable with sufficient fast transient responses and sufficient small steady

  2. Multidimensional Databases and Data Warehousing

    CERN Document Server

    Jensen, Christian

    2010-01-01

    The present book's subject is multidimensional data models and data modeling concepts as they are applied in real data warehouses. The book aims to present the most important concepts within this subject in a precise and understandable manner. The book's coverage of fundamental concepts includes data cubes and their elements, such as dimensions, facts, and measures and their representation in a relational setting; it includes architecture-related concepts; and it includes the querying of multidimensional databases.The book also covers advanced multidimensional concepts that are considered to b

  3. Total robotic radical rectal resection with da Vinci Xi system: single docking, single phase technique.

    Science.gov (United States)

    Tamhankar, Anup Sunil; Jatal, Sudhir; Saklani, Avanish

    2016-12-01

    This study aims to assess the advantages of Da Vinci Xi system in rectal cancer surgery. It also assesses the initial oncological outcomes after rectal resection with this system from a tertiary cancer center in India. Robotic rectal surgery has distinct advantages over laparoscopy. Total robotic resection is increasing following the evolution of hybrid technology. The latest Da Vinci Xi system (Intuitive Surgical, Sunnyvale, USA) is enabled with newer features to make total robotic resection possible with single docking and single phase. Thirty-six patients underwent total robotic resection in a single phase and single docking. We used newer port positions in a straight line. Median distance from the anal verge was 4.5 cm. Median robotic docking time and robotic procedure time were 9 and 280 min, respectively. Median blood loss was 100 mL. One patient needed conversion to an open approach due to advanced disease. Circumferential resection margin and longitudinal resection margins were uninvolved in all other patients. Median lymph node yield was 10. Median post-operative stay was 7 days. There were no intra-operative adverse events. The latest Da Vinci Xi system has made total robotic rectal surgery feasible in single docking and single phase. With the new system, four arm total robotic rectal surgery may replace the hybrid technique of laparoscopic and robotic surgery for rectal malignancies. The learning curve for the new system appears to be shorter than anticipated. Early perioperative and oncological outcomes of total robotic rectal surgery with the new system are promising. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Fabrication of single phase 2D homologous perovskite microplates by mechanical exfoliation

    Science.gov (United States)

    Li, Junze; Wang, Jun; Zhang, Yingjun; Wang, Haizhen; Lin, Gaoming; Xiong, Xuan; Zhou, Weihang; Luo, Hongmei; Li, Dehui

    2018-04-01

    The two-dimensional (2D) Ruddlesden-Popper type perovskites have attracted intensive interest for their great environmental stability and various potential optoelectronic applications. Fundamental understanding of the photophysical and electronic properties of the 2D perovskites with pure single phase is essential for improving the performance of the optoelectronic devices and designing devices with new architectures. Investigating the optical and electronic properties of these materials with pure single phase is required to obtain pure single phase 2D perovskites. Here, we report on an alternative approach to fabricate (C4H9NH3)2(CH3NH3) n-1Pb n I3n+1 microplates with pure single n-number perovskite phase for n  >  2 by mechanical exfoliation. Micro-photoluminescence and absorption spectroscopy studies reveal that the as-synthesized 2D perovskite plates for n  >  2 are comprised by dominant n-number phase and small inclusions of hybrid perovskite phases with different n values, which is supported by excitation power dependent photoluminescence. By mechanical exfoliation method, 2D perovskite microplates with the thickness of around 20 nm are obtained, which surprisingly have single n-number perovskite phase for n  =  2-5. In addition, we have demonstrated that the exfoliated 2D perovskite microplates can be integrated with other 2D layered materials such as boron nitride, and are able to be transferred to prefabricated electrodes for photodetections. Our studies not only provide a strategy to prepare 2D perovskites with a single n-number perovskite phase allowing us to extract the basic optical and electronic parameters of pure phase perovskites, but also demonstrate the possibility to integrate the 2D perovskites with other 2D layered materials to extend the device’s functionalities.

  5. A PWM strategy for acoustic noise reduction for grid-connected single-phase inverters

    Energy Technology Data Exchange (ETDEWEB)

    Shao, R.; Guo, Z.; Chang, L. [New Brunswick Univ., Fredericton, NB (Canada). Dept. of Electrical and Computer Engineering

    2006-07-01

    This paper presented a newly proposed and improved pulse width modulation (PWM) strategy for grid-connected single-phase inverters. Small distributed generators using energy from renewable resources such as PV and wind systems typically use grid-connected single-phase inverters as voltage source inverters for good acoustic performance. PWM is generally applied in these inverters in order to achieve good waveforms of output current as required by interconnection standards. In routine simultaneous switching PWM methods, the current ripples through the inverter output filter inductor are at the carrier switching frequency, which is one of the major causes for inverter acoustic noise. The new PWM strategy effectively alleviates acoustic noise and improves output power quality. It is based on the principle of evenly splitting the switching of Insulated Gate Bipolar Transistors (IGBT) in each switching cycle among all IGBTs of the full bridge, thereby using a non-simultaneous mode of PWM which doubles the output current ripple frequency. This increases the inductor current ripple frequency to twice the carrier frequency. It is therefore possible to increase the current ripple frequency, or noise frequency into the range of ultrasonic which is inaudible to the human ear, without increasing the inverter's switching frequency to which the inverter's switching loss is proportional. In addition, this new PWM scheme can reduce the output current harmonics distortion and dc link current ripples. As such, lower capacitance in dc link capacitors and lower inductance of output inductor are needed. The improved PWM scheme was verified in a 3 kW grid-connected single-phase inverter. It was shown that the PWM strategy can be readily implemented with a digital signal processing microcontroller. 8 refs., 11 figs.

  6. Reliability-Oriented Design and Analysis of Input Capacitors in Single-Phase Transformer-less Photovoltaic Inverters

    DEFF Research Database (Denmark)

    Wang, Huai; Yang, Yongheng; Blaabjerg, Frede

    2013-01-01

    While 99% efficiency has been reported, the target of 20 years of service time imposes new challenge to cost-effective solutions for grid-connected photovoltaic (PV) inverters. Aluminum electrolytic capacitors are the weak-link in terms of reliability and lifetime in single-phase PV systems....... A reliability-oriented design guideline is proposed in this paper for the input capacitors in single-phase transformer-less PV inverters. The guideline ensures that the service time requirement is to be accomplished under different power levels and ambient temperature profiles. The theoretical analysis has been...... demonstrated by a 1 kW single-phase PV inverter....

  7. Indirect Control of a low power Single-Phase Active Power Filter

    Directory of Open Access Journals (Sweden)

    SILVIU EPURE

    2010-12-01

    Full Text Available This paper deals with a low power, single phase active filter used to compensate nonlinear loads. The filter uses the indirect control method and it is based on a particular connection between filter, polluting load and grid to avoid timeconsuming mathematic operations or signal processing computations and assures good rejection of harmonic currents injected by the nonlinear load into the grid. A scale model was first simulated in Simulink and then physically implemented. The paper presents simulation and experimental results, and highlight problems encountered during experiments.

  8. A Novel Flying Capacitor Transformerless Inverter for Single-Phase Grid Connected Solar Photovoltaic System

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; Blaabjerg, Frede

    2016-01-01

    This paper proposes a new single-phase flying capacitor transformerless PV inverter for grid-connected photovoltaic (PV) systems. The neutral of the grid can be directly connected to the negative terminal of the source (PV). It consists of four power switches, one diode, one capacitor and a small...... and some topologies, which requires two times of the peak ac-voltage magnitude) and, (5) the flying capacitor charges every switching cycle, which reduces the size of the required capacitor with switching frequency. In addition, industry standard half bridge module can be used in the new inverter without...

  9. S4 Grid-Connected Single-Phase Transformerless Inverter for PV Application

    DEFF Research Database (Denmark)

    Ardashir, Jaber Fallah; Siwakoti, Yam Prasad; Sabahi, Mehran

    2016-01-01

    This paper introduces a new single-phase transformerless inverter for grid-connected photovoltaic systems with low leakage current. It consists of four power switches, two diodes, two capacitors and a filter at the output stage. The neutral of the grid is directly connected to the negative terminal...... size, low cost, flexible grounding configuration and higher efficiency. The operating principle and analysis of the proposed circuit are presented in details. Experimental results of a 500 W prototype are demonstrated to validate the proposed topology and the overall concept. The results obtained...... clearly verify the performance of the proposed inverter and its practical application for grid-connected PV systems....

  10. Low voltage ride-through of single-phase transformerless photovoltaic inverters

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede; Wang, Huai

    2013-01-01

    Transformerless photovoltaic (PV) inverters are going to be more widely adopted in order to achieve high efficiency, as the penetration level of PV systems is continuously booming. However, problems may arise in highly PV-integrated distribution systems. For example, a sudden stoppage of all PV...... discussed. The selected inverters are the full-bridge inverter with bipolar modulation, full-bridge inverter with DC bypass and the Highly Efficient and Reliable Inverter Concept (HERIC). A 1 kW single-phase grid-connected PV system is analyzed to verify the discussions. The tests confirmed that, although...

  11. H-Bridge Transformerless Inverter with Common Ground for Single-Phase Solar-Photovoltaic System

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; Blaabjerg, Frede

    2017-01-01

    This paper proposes a new single-phase H-Bridge transformerless inverter with common ground for grid-connected photovoltaic systems (hereafter it is called ‘Siwakoti-H’ inverter). The inverter works on the principle of flying capacitor and consists of only four power switches (two reverse blocking...... IGBT's (RB-IGBT) and two MOSFET's), a capacitor and a small filter at the output stage. The proposed topology share a common ground with the grid and the PV source. A Unipolar Sinusoidal Pulse-Width Modulation (SPWM) technique is used to modulate the inverter to minimize switching loss, output current...

  12. A review of single-phase grid-connected inverters for photovoltaic modules

    DEFF Research Database (Denmark)

    Kjaer, Soren Baekhoej; Pedersen, John Kim; Blaabjerg, Frede

    2005-01-01

    -phase grid; 3) whether they utilizes a transformer (either line or high frequency) or not; and 4) the type of grid-connected power stage. Various inverter topologies are presented, compared, and evaluated against demands, lifetime, component ratings, and cost. Finally, some of the topologies are pointed out......This review focuses on inverter technologies for connecting photovoltaic (PV) modules to a single-phase grid. The inverters are categorized into four classifications: 1) the number of power processing stages in cascade; 2) the type of power decoupling between the PV module(s) and the single...

  13. Fixed switching frequency applied in single-phase boost AC to DC converter

    International Nuclear Information System (INIS)

    Chen, T.-C.; Ren, T.-J.; Ou, J.-C.

    2009-01-01

    The fixed switching frequency control for a single-phase boost AC to DC converter to achieve a sinusoidal line current and unity power factor is proposed in this paper. The relation between the line current error and the fixed switching frequency was developed. For a limit line current error, the minimum switching frequency for a boost AC to DC converter can be achieved. The proposed scheme was implemented using a 32-bit digital signal processor TMS320C32. Simulations and experimental results demonstrate the feasibility and fast dynamic response of the proposed control strategy.

  14. An empirical relationship for homogenization in single-phase binary alloy systems

    Science.gov (United States)

    Unnam, J.; Tenney, D. R.; Stein, B. A.

    1979-01-01

    A semiempirical formula is developed for describing the extent of interaction between constituents in single-phase binary alloy systems with planar, cylindrical, or spherical interfaces. The formula contains two parameters that are functions of mean concentration and interface geometry of the couple. The empirical solution is simple, easy to use, and does not involve sequential calculations, thereby allowing quick estimation of the extent of interactions without lengthy calculations. Results obtained with this formula are in good agreement with those from a finite-difference analysis.

  15. A Study on Energy Saving of Single Phase Induction Motor By Voltage Control

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jong Moon [Pusan College of Information Technolgy, Pusan (Korea); Kim, Joon Hong [Dong Myong College, Pusan (Korea)

    2001-06-01

    This paper describes a simple effective method for energy saving of AC motors having a widely variable load. The proposed method is based on an optimal efficiency control which is operated by voltage-current pattern such as to maintain the maximum efficiency on the efficiency-output characteristics of the motor, TRIAC voltage control characteristics. The parameters of simplified voltage-current pattern can be determined approximately and reliably from the rated voltage and current of the motor. Experiments are focused on a single phase capacitor motor, the optimal energy saving are proved by proposed method. (author). 8 refs., 15 figs.

  16. Power quality improvement of single-phase photovoltaic systems through a robust synchronization method

    DEFF Research Database (Denmark)

    Hadjidemetriou, Lenos; Kyriakides, Elias; Yang, Yongheng

    2014-01-01

    An increasing amount of single-phase photovoltaic (PV) systems on the distribution network requires more advanced synchronization methods in order to meet the grid codes with respect to power quality and fault ride through capability. The response of the synchronization technique selected...... is crucial for the performance of PV inverters. In this paper, a new synchronization method with good dynamics and accurate response under highly distorted voltage is proposed. This method uses a Multi-Harmonic Decoupling Cell (MHDC), which cancels out the oscillations on the synchronization signals due...

  17. DQ reference frame modeling and control of single-phase active power decoupling circuits

    DEFF Research Database (Denmark)

    Tang, Yi; Qin, Zian; Blaabjerg, Frede

    2015-01-01

    . This paper presents the dq synchronous reference frame modeling of single-phase power decoupling circuits and a complete model describing the dynamics of dc-link ripple voltage is presented. The proposed model is universal and valid for both inductive and capacitive decoupling circuits, and the input...... of decoupling circuits can be either dependent or independent of its front-end converters. Based on this model, a dq synchronous reference frame controller is designed which allows the decoupling circuit to operate in two different modes because of the circuit symmetry. Simulation and experimental results...... are presented to verify the effectiveness of the proposed modeling and control method....

  18. A New Synchronous Reference Frame-Based Method for Single-Phase Shunt Active Power Filters

    DEFF Research Database (Denmark)

    Monfared, Mohammad; Golestan, Saeed; Guerrero, Josep M.

    2013-01-01

    This paper deals with the design of a novel method in the synchronous reference frame (SRF) to extract the reference compensating current for single-phase shunt active power filters (APFs). Unlike previous works in the SRF, the proposed method has an innovative feature that it does not need...... the fictitious current signal. Frequency-independent operation, accurate reference current extraction and relatively fast transient response are other key features of the presented strategy. The effectiveness of the proposed method is investigated by means of detailed mathematical analysis. The results confirm...

  19. Control Method of Single-phase Inverter Based Grounding System in Distribution Networks

    DEFF Research Database (Denmark)

    Wang, Wen; Yan, L.; Zeng, X.

    2016-01-01

    of neutral-to-ground voltage is critical for the safety of distribution networks. An active grounding system based on single-phase inverter is proposed to achieve this objective. Relationship between output current of the system and neutral-to-ground voltage is derived to explain the principle of neutral......The asymmetry of the inherent distributed capacitances causes the rise of neutral-to-ground voltage in ungrounded system or high resistance grounded system. Overvoltage may occur in resonant grounded system if Petersen coil is resonant with the distributed capacitances. Thus, the restraint...

  20. Single Phase Current-Source Active Rectifier for Traction: Control System Design and Practical Problems

    Directory of Open Access Journals (Sweden)

    Jan Michalik

    2006-01-01

    Full Text Available This research has been motivated by industrial demand for single phase current-source active rectifier dedicated for reconstruction of older types of dc machine locomotives. This paper presents converters control structure design and simulations. The proposed converter control is based on the mathematical model and due to possible interaction with railway signaling and required low switching frequency employs synchronous PWM. The simulation results are verified by experimental tests performed on designed laboratory prototype of power of 7kVA

  1. Reaction kinetics of oxygen on single-phase alloys, oxidation of nickel and niobium alloys

    International Nuclear Information System (INIS)

    Lalauze, Rene

    1973-01-01

    This research thesis first addresses the reaction kinetics of oxygen on alloys. It presents some generalities on heterogeneous reactions (conventional theory, theory of jumps), discusses the core reaction (with the influence of pressure), discusses the influence of metal self-diffusion on metal oxidation kinetics (equilibrium conditions at the interface, hybrid diffusion regime), reports the application of the hybrid diffusion model to the study of selective oxidation of alloys (Wagner model, hybrid diffusion model) and the study of the oxidation kinetics of an alloy forming a solid solution of two oxides. The second part reports the investigation of the oxidation of single phase nickel and niobium alloys (phase α, β and γ)

  2. Dispersed single-phase-step Michelson interferometer for Doppler imaging using sunlight.

    Science.gov (United States)

    Wan, Xiaoke; Ge, Jian

    2012-09-15

    A Michelson interferometer is dispersed with a fiber array-fed spectrograph, providing 59 Doppler sensing channels using sunlight in the 510-570 nm wavelength region. The interferometer operates at a single-phase-step mode, which is particularly advantageous in multiplexing and data processing compared to the phase-stepping mode of other interferometer spectrometer instruments. Spectral templates are prepared using a standard solar spectrum and simulated interferometer modulations, such that the correlation function with a measured 1D spectrum determines the Doppler shift. Doppler imaging of a rotating cylinder is demonstrated. The average Doppler sensitivity is ~12 m/s, with some channels reaching ~5 m/s.

  3. Single-Phase Phase-Locked Loop Based on Derivative Elements

    DEFF Research Database (Denmark)

    Guan, Qingxin; Zhang, Yu; Kang, Yong

    2017-01-01

    High-performance phase-locked loops (PLLs) are critical for power control in grid-connected systems. This paper presents a new method of designing a PLL for single-phase systems based on derivative elements (DEs). The quadrature signal generator (QSG) is constructed by two DEs with the same...... PLL to achieve high performance when the grid frequency changes rapidly. This paper presents the model of the PLL and a theoretical performance analysis with respect to both the frequency-domain and time-domain behavior. The error arising from the discretization process is also compensated, ensuring...

  4. Benchmarking of small-signal dynamics of single-phase PLLs

    DEFF Research Database (Denmark)

    Zhang, Chong; Wang, Xiongfei; Blaabjerg, Frede

    2015-01-01

    Phase-looked Loop (PLL) is a critical component for the control and grid synchronization of grid-connected power converters. This paper presents a benchmarking study on the small-signal dynamics of three commonly used PLLs for single-phase converters, including enhanced PLL, second......-order generalized integrator based PLL, and the inverse-PLL. First, a unified small-signal model of those PLLs is established for comparing their dynamics. Then, a systematic design guideline for parameters tuning of the PLLs is formulated. To confirm the validity of theoretical analysis, nonlinear time...

  5. Control of single-phase islanded PV/battery minigrids based on power-line signaling

    DEFF Research Database (Denmark)

    Quintana, Pablo; Guerrero, Josep M.; Dragicevic, Tomislav

    2014-01-01

    should be utilized as efficiently as possible. This paper proposes a coordinated control strategy based on power-line signaling (PLS), instead of common communications, for a single-phase minigrid in which each unit can operate in different operation modes taking into account the resource limitation...... types of renewable energy sources (RES) and energy storage systems (ESS). Specifically, the recharging process of secondary battery, the most prominent ESS, should be done in a specific manner to preserve its life-time, microgrid line voltage must be kept within the bounds and the energy offered by RES...

  6. Energy efficient power electronic controller for a capacitor-run single-phase induction motor

    International Nuclear Information System (INIS)

    Saravana Ilango, G.; Samidurai, K.; Roykumar, M.; Thanushkodi, K.

    2009-01-01

    At present the speed control of a capacitor-run single-phase induction motor is being achieved by using triac based voltage regulators. This paper proposes a new scheme; an electronic transformer acts as a voltage regulator. Performance comparison is made between these two schemes in this paper. It is found that the proposed scheme has superior operating and performance characteristics. Experimental results show that apart from improvement in performance with respect to power factor and total harmonic distortion an appreciable amount of energy saving is also obtained in the electronic transformer based scheme.

  7. Novel Position and Speed Estimator for PM Single Phase Brushless D.C. Motor Drives

    DEFF Research Database (Denmark)

    Lepure, Liviu I.; Andreescu, Gheorghe-Daniel; Iles, Doris

    2010-01-01

    A novel position and speed estimator for single phase permanent magnet brushless d.c. (PMBLDC) motor drives, based on flux integration and prior knowledge of ΨPM (θ) is proposed here and an adequate correction algorithm is adopted in order to increase the robustness to noise and to reduce...... the sensitivity to accuracy of flux linkage estimation. A speed and current close loop control is employed based on the Hall signal and the motor is controlled at different speeds in order to validate the proposed estimation algorithm with satisfying results. The position correction effect is analyzed...

  8. Improved state observers for sensorless single phase BLDC-PM motor drives

    DEFF Research Database (Denmark)

    Lepure, Liviu L.; Boldea, Ion; Andreescu, Gheorghe Daniel

    2010-01-01

    Two methods of extracting the rotor position and speed for a sensorless single phase BLDC-PM motor drive by measuring only the phase current are presented here. Both methods are based on a generated orthogonal flux system. The first method extracts the position information by using the tan−1...... function and then an improved observer is created by adding a 4th order harmonic term in the estimated position, while the second method uses a phase locked loop structure. The proposed state observers are detailed using simulation results and then validated by experimental results....

  9. High efficiency H6 single-phase transformerless grid-tied PV inverter with proposed modulation for reactive power generation

    Science.gov (United States)

    Almasoudi, Fahad M.; Alatawi, Khaled S.; Matin, Mohammad

    2017-08-01

    Implementation of transformerless inverters in PV grid-tied system offer great benefits such as high efficiency, light weight, low cost, etc. Most of the proposed transformerless inverters in literature are verified for only real power application. Currently, international standards such as VDE-AR-N 4105 has demanded that PV grid-tied inverters should have the ability of controlling a specific amount of reactive power. Generation of reactive power cannot be accomplished in single phase transformerless inverter topologies because the existing modulation techniques are not adopted for a freewheeling path in the negative power region. This paper enhances a previous high efficiency proposed H6 trnasformerless inverter with SiC MOSFETs and demonstrates new operating modes for the generation of reactive power. A proposed pulse width modulation (PWM) technique is applied to achieve bidirectional current flow through freewheeling state. A comparison of the proposed H6 transformerless inverter using SiC MOSFETs and Si MOSFTEs is presented in terms of power losses and efficiency. The results show that reactive power control is attained without adding any additional active devices or modification to the inverter structure. Also, the proposed modulation maintains a constant common mode voltage (CM) during every operating mode and has low leakage current. The performance of the proposed system verifies its effectiveness in the next generation PV system.

  10. Effect of flow conditions on flow accelerated corrosion in pipe bends

    International Nuclear Information System (INIS)

    Mazhar, H.; Ching, C.Y.

    2015-01-01

    Flow Accelerated Corrosion (FAC) in piping systems is a safety and reliability problem in the nuclear industry. In this study, the pipe wall thinning rates and development of surface roughness in pipe bends are compared for single phase and two phase annular flow conditions. The FAC rates were measured using the dissolution of test sections cast from gypsum in water with a Schmidt number of 1280. The change in location and levels of maximum FAC under single phase and two phase flow conditions are examined. The comparison of the relative roughness indicates a higher effect for the surface roughness in single phase flow than in two phase flow. (author)

  11. Structure of multidimensional patterns

    International Nuclear Information System (INIS)

    Smith, S.P.

    1982-01-01

    The problem of describing the structure of multidimensional data is important in exploratory data analysis, statistical pattern recognition, and image processing. A data set is viewed as a collection of points embedded in a high dimensional space. The primary goal of this research is to determine if the data have any clustering structure; such a structure implies the presence of class information (categories) in the data. A statistical hypothesis is used in the decision making. To this end, data with no structure are defined as data following the uniform distribution over some compact convex set in K-dimensional space, called the sampling window. This thesis defines two new tests for uniformity along with various sampling window estimators. The first test is a volume-based test which captures density changes in the data. The second test compares a uniformly distributed sample to the data by using the minimal spanning tree (MST) of the polled samples. Sampling window estimators are provided for simple sampling windows and use the convex hull of the data as a general sampling window estimator. For both of the tests for uniformity, theoretical results are provided on their size, and study their size and power against clustered alternatives is studied. Simulation is also used to study the efficacy of the sampling window estimators

  12. Design of Controller for Reducing In-Rush Current of Single-Phase Induction Motor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Su Kang; Baek, Hyung Lae; Lee, Sang Il [Chosun University, Kwangju (Korea)

    2001-05-01

    During an AC motor's start-up accelerating period, a large amount of current is required to reach to the rating speed. This is called in-rush current. This peak in-rush current can be more than about several times the operating or steady-state current in the full load rating of the motor. In-rush current is present in both and electronic ballasts. The main area of concern is the tripping of circuit breaker and fuses which can affect electrical system components From this, we can see that the electrical power controllers will be rather concerned, since they have to supply the actual current necessary to start the motor. This paper presents a new method to reducing in-rush current and energy saving of the single-phase induction motor used in air-conditioner. It can be obtained that proposed system is low cost and small size as compared with other controller. Experiments are focused on a capacitor starting single-phase induction motor. The optimal power saving and in-rush current limiting by phase angle control are verified by experimental results. Also, auxiliary winding was controlled by electronic starting switch. (author). 10 refs., 13 figs., 2 tabs.

  13. Common-Ground-Type Transformerless Inverters for Single-Phase Solar Photovoltaic Systems

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; Blaabjerg, Frede

    2018-01-01

    This paper proposes a family of novel flying capacitor transformerless inverters for single-phase photovoltaic (PV) systems. Each of the new topologies proposed is based on a flying capacitor principle and requires only four power switches and/or diodes, one capacitor, and a small filter at the o......This paper proposes a family of novel flying capacitor transformerless inverters for single-phase photovoltaic (PV) systems. Each of the new topologies proposed is based on a flying capacitor principle and requires only four power switches and/or diodes, one capacitor, and a small filter...... at the output stage. A simple unipolar sinusoidal pulse width modulation technique is used to modulate the inverter to minimize the switching loss, output current ripple, and the filter requirements. In general, the main advantages of the new inverter topologies are: 1) the negative polarity of the PV...... description of the operating principle with modulation techniques, design guidelines, and comprehensive comparisons is presented to reveal the properties and limitations of each topology in detail. Finally, experimental results of 1-kVA prototypes are presented to prove the concept and theoretical analysis...

  14. A Standalone Solar Photovoltaic Power Generation using Cuk Converter and Single Phase Inverter

    Science.gov (United States)

    Verma, A. K.; Singh, B.; Kaushika, S. C.

    2013-03-01

    In this paper, a standalone solar photovoltaic (SPV) power generating system is designed and modeled using a Cuk dc-dc converter and a single phase voltage source inverter (VSI). In this system, a dc-dc boost converter boosts a low voltage of a PV array to charge a battery at 24 V using a maximum power point tracking control algorithm. To step up a 24 V battery voltage to 360 V dc, a high frequency transformer based isolated dc-dc Cuk converter is used to reduce size, weight and losses. The dc voltage of 360 V is fed to a single phase VSI with unipolar switching to achieve a 230 Vrms, 50 Hz ac. The main objectives of this investigation are on efficiency improvement, reduction in cost, weight and size of the system and to provide an uninterruptible power to remotely located consumers. The complete SPV system is designed and it is modeled in MATLAB/Simulink. The simulated results are presented to demonstrate its satisfactory performance for validating the proposed design and control algorithm.

  15. Numerical investigation of refrigeration machine compressor operation considering single-phase electric motor dynamic characteristics

    Science.gov (United States)

    Baidak, Y.; Smyk, V.

    2017-08-01

    Using as the base the differential equations system which was presented in relative units for generalized electric motor of hermetic refrigeration compressor, mathematical model of the software for dynamic performance calculation of refrigeration machine compressors drive low-power asynchronous motors was developed. Performed on its ground calculations of the basic model of two-phase electric motor drive of hermetic compressor and the proposed newly developed model of the motor with single-phase stator winding, which is an alternative to the industrial motor winding, have confirmed the benefits of the motor with innovative stator winding over the base engine. Given calculations of the dynamic characteristics of compressor drive motor have permitted to determine the value of electromagnetic torque swinging for coordinating compressor and motor mechanical characteristics, and for taking them into consideration in choosing compressor elements construction materials. Developed and used in the process of investigation of refrigeration compressor drive asynchronous single-phase motor mathematical and software can be considered as an element of computer-aided design system for design of the aggregate of refrigeration compression unit refrigerating machine.

  16. Validation of CATHENA MOD-3.5/Rev0 for single-phase water hammer

    International Nuclear Information System (INIS)

    Beuthe, T.G.

    2000-01-01

    This paper describes work performed to validate the system thermalhydraulics code CATHENA MOD-3.5c/Rev0 for single-phase water hammer. Simulations were performed and are compared quantitatively against numerical tests and experimental results from the Seven Sisters Water Hammer Facility to demonstrate CATHENA can predict the creation and propagation of pressure waves when valves are opened and closed. Simulations were also performed to show CATHENA can model the behaviour of reflected and transmitted pressure waves at area changes, dead ends, tanks, boundary conditions, and orifices in simple and more complex piping systems. The CATHENA results are shown to calculate pressure and wave propagation speeds to within 0.2% and 0.5% respectively for numerical tests and within 3.3% and 5% for experimental results respectively. These results are used to help validate CATHENA for use in single-phase water hammer analysis. They also provide assurance that the fundamental parameters needed to successfully model more complex forms of water hammer are accounted for in the MOD-3.5c/Rev0 version of CATHENA, and represent the first step in the process to validate the code for use in modelling two-phase water hammer and condensation-induced water hammer. (author)

  17. Fabrication and Characterization of Single Phase α-Alumina Membranes with Tunable Pore Diameters

    Science.gov (United States)

    Masuda, Tatsuya; Asoh, Hidetaka; Haraguchi, Satoshi; Ono, Sachiko

    2015-01-01

    Nanoporous and single phase α-alumina membranes with pore diameters tunable over a wide range of approximately 60–350 nm were successfully fabricated by optimizing the conditions for anodizing, subsequent detachment, and heat treatment. The pore diameter increased and the cell diameter shrunk upon crystallization to α-alumina by approximately 20% and 3%, respectively, in accordance with the 23% volume shrinkage resulting from the change in density associated with the transformation from the amorphous state to α-alumina. Nevertheless, flat α-alumina membranes, each with a diameter of 25 mm and a thickness of 50 μm, were obtained without thermal deformation. The α-alumina membranes exhibited high chemical resistance in various concentrated acidic and alkaline solutions as well as when exposed to high temperature steam under pressure. The Young’s modulus and hardness of the single phase α-alumina membranes formed by heat treatment at 1250 °C were notably decreased compared to the corresponding amorphous membranes, presumably because of the nodular crystallite structure of the cell walls and the substantial increase in porosity. Furthermore, when used for filtration, the α-alumina membrane exhibited a level of flux higher than that of the commercial ceramic membrane. PMID:28788005

  18. Fabrication and Characterization of Single Phase α-Alumina Membranes with Tunable Pore Diameters

    Directory of Open Access Journals (Sweden)

    Tatsuya Masuda

    2015-03-01

    Full Text Available Nanoporous and single phase α-alumina membranes with pore diameters tunable over a wide range of approximately 60–350 nm were successfully fabricated by optimizing the conditions for anodizing, subsequent detachment, and heat treatment. The pore diameter increased and the cell diameter shrunk upon crystallization to α-alumina by approximately 20% and 3%, respectively, in accordance with the 23% volume shrinkage resulting from the change in density associated with the transformation from the amorphous state to α-alumina. Nevertheless, flat α-alumina membranes, each with a diameter of 25 mm and a thickness of 50 μm, were obtained without thermal deformation. The α-alumina membranes exhibited high chemical resistance in various concentrated acidic and alkaline solutions as well as when exposed to high temperature steam under pressure. The Young’s modulus and hardness of the single phase α-alumina membranes formed by heat treatment at 1250 °C were notably decreased compared to the corresponding amorphous membranes, presumably because of the nodular crystallite structure of the cell walls and the substantial increase in porosity. Furthermore, when used for filtration, the α-alumina membrane exhibited a level of flux higher than that of the commercial ceramic membrane.

  19. A Nonadaptive Window-Based PLL for Single-Phase Applications

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2018-01-01

    The rectangular window filter, typically known as the moving average filter (MAF), is a quasi-ideal low-pass filter that has found wide application in designing advanced single-phase phase-locked loops (PLLs). Most often, the MAF is employed as an in-loop filter within the control loop of the sin......The rectangular window filter, typically known as the moving average filter (MAF), is a quasi-ideal low-pass filter that has found wide application in designing advanced single-phase phase-locked loops (PLLs). Most often, the MAF is employed as an in-loop filter within the control loop...... response is avoided. Nevertheless, the PLL implementation complexity considerably increases as MAFs are frequency-adaptive and, therefore, they require an additional frequency detector for estimating the grid frequency. To reduce the implementation complexity while maintaining a good performance, using...... a nonadaptive MAF-based QSG with some error compensators is suggested in this letter. The effectiveness of the resultant PLL, which is briefly called the nonadaptive MAF-based PLL, is verified using experimental results....

  20. Simplified thermal-hydraulic analysis of single phase natural circulation circuit with two heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, Larissa Cunha; Su, Jian, E-mail: larissa@lasme.coppe.ufrj.br, E-mail: sujian@lasme.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenhraria Nuclear; Cotta, Renato Machado, E-mail: cotta@mecanica.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (POLI/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica

    2015-07-01

    Single phase natural circulation circuits composed of two convective heat exchangers and connecting tubes are important for the passive heat removal from spent fuel pools (SFP). To keep the structural integrity of the stored spent fuel assemblies, continuously cooling has to be provided in order to avoid increase at the pool temperature and subsequent uncovering of the fuel and enhanced reaction between water and metal releasing hydrogen. Decay heat can achieve considerably high amounts of energy e.g. in the AP1000, considering the emergency fuel assemblies, the maximum heat decay will reach 13 MW in the 15th day (Westinghouse Electric Company, 2010). A highly efficient alternative to do so is by means of natural circulation, which is cost-effective compared to active cooling systems and is inherently safer since presents less associated devices and no external work is required. Many researchers have investigated safety and stability aspects of natural circulation loops (NCL). However, there is a lack of literature concerning the improvement of NCL through a standard unified methodology, especially for natural circulation circuits with two heat exchangers. In the present study, a simplified thermal-hydraulic analysis of single phase natural circulation circuit with two heat exchanges is presented. Relevant dimensionless key groups were proposed to for the design and safety analysis of a scaled NCL for the cooling of spent fuel storage pool with convective cooling and heating. (author)

  1. MECHANICAL CHARACTERISTICS OF THREE-PHASE INDUCTION MOTORS WITH SINGLE-PHASE POWER SUPPLY

    Directory of Open Access Journals (Sweden)

    V.S. Malyar

    2016-06-01

    Full Text Available Aim. Development of a method for calculating mechanical characteristics of three-phase induction motors with single-phase power supply. Methods. The developed algorithm is based on the high-adequacy mathematical model of motor and projection method for solving the boundary problem for equations of electrical circuits balance presented in the three-phase coordinate system. As a result of asymmetry of power supply to the stator windings, in steady state, flux-linkage and current change according to the periodic law. They are determined by solving the boundary problem. Results. The developed mathematical model allows determining periodic dependence of coordinates as a function of slip and, based on them, mechanical characteristics of motors. Academic novelty. The developed method relies on a completely new mathematical approach to calculation of stationary modes of nonlinear electromagnetic circuits, which allows obtaining periodic solution in a timeless domain. Practical value. Using the developed calculation algorithm, one can select capacitance required to start an induction motor with single-phase power supply and calculate static mechanical characteristics at a given capacitance.

  2. FUZZY LOGIC BASED OPTIMIZATION OF CAPACITOR VALUE FOR SINGLE PHASE OPEN WELL SUBMERSIBLE INDUCTION MOTOR

    Directory of Open Access Journals (Sweden)

    R. Subramanian

    2011-01-01

    Full Text Available Purpose – The aim of this paper is to optimize the capacitor value of a single phase open well submersible motor operating under extreme voltage conditions using fuzzy logic optimization technique and compared with no-load volt-ampere method. This is done by keeping the displacement angle (a between main winding and auxiliary winding near 90o, phase angle (f between the supply voltage and line current near 0o. The optimization work is carried out by using Fuzzy Logic Toolbox software built on the MATLAB technical computing environment with Simulink software. Findings – The optimum capacitor value obtained is used with a motor and tested for different supply voltage conditions. The vector diagrams obtained from the experimental test results indicates that the performance is improved from the existing value. Originality/value – This method will be highly useful for the practicing design engineers in selecting the optimum capacitance value for single phase induction motors to achieve the best performance for operating at extreme supply voltage conditions.

  3. Fabrication of single-phase ε-GaSe films on Si(100) substrate by metal organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chia-Chen; Zeng, Jia-Xian; Lan, Shan-Ming [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Uen, Wu-Yih, E-mail: uenwuyih@ms37.hinet.net [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Liao, Sen-Mao [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Yang, Tsun-Neng; Ma, Wei-Yang [Institute of Nuclear Energy Research, P.O. Box 3-11, Lungtan 32500, Taiwan (China); Chang, Kuo-Jen [Chung-Shan Institute of Science and Technology, No.15, Shi Qi Zi, Gaoping Village, Longtan Township, Taoyuan County, Taiwan (China)

    2013-09-02

    Single-phase ε-gallium selenide (GaSe) films were fabricated on Si(100) substrate by metal organic chemical vapor deposition using dual-source precursors: triethylgallium (TEG) and hydrogen selenide (H{sub 2}Se) with the flow ratio of [H{sub 2}Se]/[TEG] being maintained at 1.2. In particular, an arsine (AsH{sub 3}) flow was introduced to the Si substrate before the film deposition to induce an arsenic (As)-passivation effect on the substrate. The crystalline structure of GaSe films prepared was analyzed using X-ray diffraction and the surface morphology of them was characterized by scanning electron microscopy. It was found that the film quality could be improved by the As-passivation effect. The optical properties of the films were studied by temperature dependent photoluminescence (PL) measurements. PL spectra obtained with different distributions and intensities favored for resolving the superior material quality of the films produced on the substrate with As-passivation compared to those produced on the substrate without As-passivation. The former was dominated by the excitonic emissions for the whole temperature range of 20–300 K examined, while the latter was initially dominated by the defect-related emission at 1.907 eV for a low-temperature range ≦ 80 K and then became dominated by the weak excitonic emission band instead. The ε modification of GaSe films prepared was further recognized by the Raman scattering measurements conducted at room temperature. - Highlights: • Gallium selenide (GaSe) layered structures are fabricated on Si(100) substrate. • Metal–organic chemical vapor deposition is used for film fabrication. • Arsenic-passivation effects of Si substrate on the GaSe film quality are analyzed. • Photoluminescence measurements of GaSe polycrystals are reported.

  4. Preliminary Study of Single-Phase Natural Circulation for Lab-scaled Molten Salt Application

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Yukyung; Kang, Sarah; Kim, In Guk; Seo, Seok Bin; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of); Park, Seong Dae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Advanced reactors such as MSR (FHR), VHTR and AHTR utilized molten salt as a coolant for efficiency and safety which has advantages in higher heat capacity, lower pumping power and scale compared to liquid metal. It becomes more necessary to study on the characteristics of molten salt. However, due to several characteristics such as high operating temperature, large-scale facility and preventing solidification, satisfying that condition for study has difficulties. Thus simulant fluid was used with scaling method for lab-scale experiment. Scaled experiment enables simulant fluid to simulate fluid mechanics and heat transfer behavior of molten salt on lower operating temperature and reduced scale. In this paper, as a proof test of the scaled experiment, simplified single-phase natural circulation loop was designed in a lab-scale and applied to the passive safety system in advanced reactor in which molten salt is considered as a major coolant of the system. For the application of the improved safety system, prototype was based on the primary loop of the test-scale DRACS, the main passive safety system in FHR, developed at the OSU. For preliminary experiment, single-phase natural circulation under low power was performed. DOWTHERM A and DOWTHERM RP were selected as simulant candidates. Then, study of feasibility with simulant was conducted based on the scaling law for heat transfer characteristics and geometric parameters. Additionally, simulation with MARS code and ANSYS-CFX with the same condition of natural circulation was carried out as verification. For the accurate code simulation, thermo-physical properties of DOWTHERM A and RP were developed and implemented into MARS code. In this study, single-phase natural circulation experiment was performed with simulant oil, DOWTHERM RP, based on the passive safety system of FHR. Feasibility of similarity experiment for molten salt with oil simulant was confirmed by scaling method. In addition, simulation with two

  5. Analytical prediction of the electromagnetic torques in single-phase and two-phase ac motors

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, M.

    2004-07-01

    The single-phase and two-phase versions of AC motors can be modelled by means of the two-axis (d-q) theory with sufficient accuracy when the equivalent circuit parameters are correctly estimated. This work attempts to present a unified approach to the analytical prediction of the electromagnetic torque of these machines. Classical d-q axes formulation requires that the reference frame should be fixed on the frame where the asymmetries arise, i.e. the stator and rotor. The asynchronous torques that characterize the induction motors are modelled in a stationary reference frame, where the d-q axes coincide with the physical magnetic axes of the stator windings. For the permanent magnet motors, that may exhibit asymmetries on both stator and rotor, the proposed solution includes: a series of frame transformations, followed by symmetrical components decomposition. As in single-phase and two-phase systems the homopolar component is zero; each symmetrical component - negative and positive - is further analysed using d-q axes theory. The superposition principle is employed to consider the magnets and rotor cage effects. The developed models account for the most important asymmetries of the motor configuration. These are, from the stator point of view, different distribution, conductors' dimensions and number of effective turns, non-orthogonal magnetic axes windings and from the rotor point of view, asymmetrical rotor cage, variable reluctance, and permanent magnets effect. The time and space harmonics effect is ignored. Test data are compared with the computed data in order to observe how the simplifying assumptions affect the level of accuracy. The analytical prediction methods make possible torque computation according to the nature of the torque being computed, namely, induction, reluctance and excitation (permanent magnet). The results are available for quasi steady-state, steady-state (rated or synchronous speed) and dynamic analyses. All the developed

  6. Numerical Simulation of a Single-Phase Closed-Loop Thermo-Siphon in LORELEI Test Device

    International Nuclear Information System (INIS)

    Gitelman, D.; Shenha, H.; Gonnier, Ch.; Tarabelli, D.; Sasson, A.; Weiss, Y.; Katz, M.

    2014-01-01

    The LORELEI experimental setup in the Jules Horowitz Reactor (JHR) is dedicated for the study of fuel during a Loss of Coolant Accident (LOCA). The main objective of the LORELEI(2) (Light-Water One-Rod Equipment for LOCA Experimental Investigation) is to study the thermal-mechanical behavior of fuel during such an accident and to produce a short half-life fission products source term. In order to study those phenomena, the fuel sample will experience a transient neutron flux field, which in turn will generate a Linear Heat Generation Rate (LHGR) and determine the temperature of the fuel and its cladding, simulating the behavior of the fuel and the cladding during a LOCA accident. In order to reproduce a LOCA-type transient sequence, the experimental test device will be located on a displacement device. The displacement device moves the test device in the flux field in order to generate a representing LHGR in the fuel or temperature of its cladding. The LOCA-type transient sequence has four major features: „h An adiabatic heating of the fuel up to the ballooning and burst occurrence. „h High temperature plateau which will promote clad oxidation. „h Passive precooling by thermal inertia. „h Water re-flooding and quenching. The challenge in the thermo-hydraulic design of the LORELEI test section is in defining a one closed water capsule design that can operate as a thermo-siphon at re-irradiation phase and also can reproduce all LOCA-type transient sequence phases. This design should be validated and verified to fill all safety and regulation requirements. This work aims to investigate fluid flow behavior of a single-phase thermo-siphon in the LORELEI test device, as part of the conceptual design and optimization study. The complexity of the flow field in the LORELEI test device, as a closed-loop thermo-siphon, is due to the opposing forces in the device - buoyancy forces and natural convection flow generated (mainly) by the fuel power in the hot channel

  7. Condition monitoring of shaft of single-phase induction motor using optical sensor

    Science.gov (United States)

    Fulzele, Asmita G.; Arajpure, V. G.; Holay, P. P.; Patil, N. M.

    2012-05-01

    Transmission type of optical technique is developed to sense the condition of rotating shafts from a distance. A parallel laser beam is passed tangential over the surface of rotating shaft of a single phase induction motor and its flickering shadow is received on a photo sensor. Variations in sensor voltage output are observed on a digital storage oscilloscope. It is demonstrated that this signal carries information about shaft defects like miss alignment, play and impacts in bearings along with surface deformities. Mathematical model of signals corresponding to these shaft defects is developed. During the development and testing of the sensor, effects of reflections are investigated, sensing phenomenon is simulated, frequency response of the sensor is obtained and its performance is compared with conventional accelerometer.

  8. Reactive Power Injection Strategies for Single-Phase Photovoltaic Systems Considering Grid Requirements

    DEFF Research Database (Denmark)

    Yang, Yongheng; Wang, Huai; Blaabjerg, Frede

    2014-01-01

    .g. Germany and Italy. Those advanced features can be provided by next generation PV systems, and will be enhanced in the future to ensure an even efficient and reliable utilization of PV systems. In light of this, Reactive Power Injection (RPI) strategies for single-phase PV systems are explored...... in this paper. The RPI possibilities are: a) constant average active power control, b) constant active current control, c) constant peak current control and d) thermal optimized control strategy. All those strategies comply with the currently active grid codes, but are with different objectives. The proposed...... RPI strategies are demonstrated firstly by simulations and also tested experimentally on a 1 kW singe-phase grid-connected system in LVRT operation mode. Those results show the effectiveness and feasibilities of the proposed strategies with reactive power control during LVRT operation. The design...

  9. Benchmarking of Constant Power Generation Strategies for Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2018-01-01

    strategies based on: 1) a power control method (P-CPG), 2) a current limit method (I-CPG) and 3) the Perturb and Observe algorithm (P&O-CPG). However, the operational mode changes (e.g., from the maximum power point tracking to a CPG operation) will affect the entire system performance. Thus, a benchmarking...... of the presented CPG strategies is also conducted on a 3-kW single-phase grid-connected PV system. Comparisons reveal that either the P-CPG or I-CPG strategies can achieve fast dynamics and satisfactory steady-state performance. In contrast, the P&O-CPG algorithm is the most suitable solution in terms of high...

  10. Internal friction and lattice anomalies of single-phase Hg-1223

    International Nuclear Information System (INIS)

    Zhang, Q.M.; Nanjing Univ.; Shao, H.M.; Nanjing Univ.; Huang, Y.N.; Nanjing Univ.; Shen, H.M.; Nanjing Univ.; Wang, Y.N.; Nanjing Univ.

    1997-01-01

    Internal friction in the kHz range has been performed for single-phase HgBa 2 Ca 2 Cu 3 O 8+δ with the critical temperature T c = 120 K. The results indicate that two peaks of internal friction appear near 150 and 250 K. X-ray diffraction exhibits a lattice parameter stepping at tens of Kelvin above T c . The Grueneisen parameter γ is estimated from the value of thermal expansion coefficients obtained from X-ray diffraction measurements. The discussion suggests that the anomaly at 150 K is caused by lattice instabilities and the other one near 250 K may be associated with a Neel transition. (orig.)

  11. Reliability assessment of single-phase grid-connected PV microinverters considering mission profile and uncertainties

    DEFF Research Database (Denmark)

    Zare, Mohammad Hadi; Mohamadian, Mustafa; Wang, Huai

    2017-01-01

    Microinverters usually connect a PV panel to a Single-phase power grid. In such system, the input power is constant while the output power oscillates twice the line frequency. Thus, the input and output power differences should be stored in a storage component, which is typically an electrolytic ...... irritation of two different places on the micro inverter lifetime is studied....... capacitor. However, electrolytic capacitors are usually blamed for their short lifetime. Recently, some active power decoupling methods are introduced in the literature which can takes advantage of high reliable film capacitors. However, some extra switches and diodes are added to the microinverter which...... can influence the microinverter lifetime. This paper investigates the microinverter reliability according to mission profile where it is installed. To get more accurate results, uncertainties in both lifetime model and manufacturing process are considered. The effect of ambient temperature and solar...

  12. Model Building of Photovoltaic Array with MPPT Function and Research on Single Phase Grid Connected

    Directory of Open Access Journals (Sweden)

    Li Zhengzhou

    2016-01-01

    Full Text Available With the continued development of solar photovoltaic technology, research on distributed grid connected photovoltaic system has become a research focus in the field of photovoltaic grid power plant and the computer simulation technology is an effective technology means in the study. On the basis of the photovoltaic array output characteristic equation, the photovoltaic array maximum power control simulation model based on M function is established by using MATLAB/Simulink and the simulation model of single phase grid connected photovoltaic array is proposed. It overcomes the shortcomings of the process of building the model of the PV array by using Simulink component library and provides the basic guarantee for the realization of system simulation, guiding theory research and system design.

  13. Adaptive Hysteresis Band Current Control for Transformerless Single-Phase PV Inverters

    DEFF Research Database (Denmark)

    Vázquez, Gerardo; Rodriguez, Pedro; Ordoñez, Rafael

    2009-01-01

    Current control based on hysteresis algorithms are widely used in different applications, such as motion control, active filtering or active/reactive power delivery control in distributed generation systems. The hysteresis current control provides to the system a fast and robust dynamic response......, and requires a simple implementation in standard digital signal platforms. On the other hand, the main drawback of classical hysteresis current control lies in the fact that the switching frequency is variable, as the hysteresis band is fixed. In this paper a variable band hysteresis control algorithm...... different single-phase PV inverter topologies, by means of simulations performed with PSIM. In addition, the behavior of the thermal losses when using each control structure in such converters has been studied as well....

  14. Reliable Grid Condition Detection and Control of Single-Phase Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai

    standards addressed to the grid-connected systems will harmonize the combination of the DPGS and the classical power plants. Consequently, the major tasks of this thesis were to develop new grid condition detection techniques and intelligent control in order to allow the DPGS not only to deliver power...... to the utility grid but also to sustain it. This thesis was divided into two main parts, namely "Grid Condition Detection" and "Control of Single-Phase DPGS". In the first part, the main focus was on reliable Phase Locked Loop (PLL) techniques for monitoring the grid voltage and on grid impedance estimation...... techniques. Additionally, a new technique for detecting the islanding mode has been developed and successfully tested. In the second part, the main reported research was concentrated around adaptive current controllers based on the information provided by the grid condition detection techniques. To guarantee...

  15. Rotor Design for an Efficient Single-Phase Induction Motor for Refrigerator Compressors

    Directory of Open Access Journals (Sweden)

    Hyun-Jin Ahn

    2016-03-01

    Full Text Available This article describes a rotor making technology for the production of high-efficiency single-phase induction motors (SPIMs to be used in refrigerator compressors. Rotors can have different aluminum fill factors according to the fabrication method. In order to examine the association between the fill factor and the efficiency of the rotor, we analyzed the distribution of magnetic flux density using the finite element method (FEM. Next, we made prototype rotors by conventional casting methods and by the proposed casting method and compared their fill factors. In addition, SPIMs were made using the rotors, and their efficiencies were measured using a dynamometer. Moreover, the SPIMs were put to use in a compressor, for testing, and for each SPIM the refrigerating capacity of the compressor was measured with a calorimeter. Based on the results of the FEM analysis of the magnetic flux density and the experiments, the reliability and validity of the proposed method were proven.

  16. Compact ASD Topologies for Single-Phase Integrated Motor Drives with Sinusoidal Input Current

    DEFF Research Database (Denmark)

    Klumpner, Christian; Blaabjerg, Frede; Thoegersen, Paul

    2005-01-01

    of the induction motor as a boost inductor for a PFC (Power Factor Correction) stage controlled by the inverter zero-sequence voltage component. By determining how much energy is possible to store in a corner inductor, it is proven that integrating the magnetics into the stator yoke is a feasible solution......, investigating the physical removal of power inductors from the converter enclosure in conjunction with reducing the number of semiconductor active devices. There are two ways to do that: to integrate the inductors in the unused area of the stator yoke of the motor or to use the leakage inductance....... Topologies of single-phase converters that take advantage of the motor leakage inductance are analyzed. The installed power in silicon active devices of these topologies is compared with a standard situation, showing that this will involve higher cost. As the iron core of the inductors is not suitable...

  17. Reversible control of magnetic interactions by electric field in a single-phase material.

    Science.gov (United States)

    Ryan, P J; Kim, J-W; Birol, T; Thompson, P; Lee, J-H; Ke, X; Normile, P S; Karapetrova, E; Schiffer, P; Brown, S D; Fennie, C J; Schlom, D G

    2013-01-01

    Intrinsic magnetoelectric coupling describes the interaction between magnetic and electric polarization through an inherent microscopic mechanism in a single-phase material. This phenomenon has the potential to control the magnetic state of a material with an electric field, an enticing prospect for device engineering. Here, we demonstrate 'giant' magnetoelectric cross-field control in a tetravalent titanate film. In bulk form, EuTiO(3), is antiferromagnetic. However, both anti and ferromagnetic interactions coexist between different nearest europium neighbours. In thin epitaxial films, strain was used to alter the relative strength of the magnetic exchange constants. We not only show that moderate biaxial compression precipitates local magnetic competition, but also demonstrate that the application of an electric field at this strain condition switches the magnetic ground state. Using first-principles density functional theory, we resolve the underlying microscopic mechanism resulting in G-type magnetic order and illustrate how it is responsible for the 'giant' magnetoelectric effect.

  18. Modelling and Simulation of Single-Phase Series Active Compensator for Power Quality Improvement

    Science.gov (United States)

    Verma, Arun Kumar; Mathuria, Kirti; Singh, Bhim; Bhuvaneshwari, G.

    2017-10-01

    A single-phase active series compensator is proposed in this work to reduce harmonic currents at the ac mains and to regulate the dc link voltage of a diode bridge rectifier (DBR) that acts as the front end converter for a voltage source inverter feeding an ac motor. This ac motor drive is used in any of the domestic, commercial or industrial appliances. Under fluctuating ac mains voltages, the dc link voltage of the DBR depicts wide variations and hence the ac motor is used at reduced rating as compared to its name-plate rating. The active series compensator proposed here provides dual functions of improving the power quality at the ac mains and regulating the dc link voltage thus averting the need for derating of the ac motor.

  19. Rapid synthesis of single-phase bismuth ferrite by microwave-assisted hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Wenqian [College of Materials Science and Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, Zhejiang Province (China); Chen, Zhi, E-mail: zchen0@gmail.com [College of Materials Science and Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, Zhejiang Province (China); Gao, Tong; Zhou, Dantong; Leng, Xiaonan; Niu, Feng [College of Materials Science and Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, Zhejiang Province (China); Zhu, Yuxiang [College of Materials Science and Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, Zhejiang Province (China); Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin (China); Qin, Laishun, E-mail: qinlaishun@yeah.net [College of Materials Science and Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, Zhejiang Province (China); Wang, Jiangying; Huang, Yuexiang [College of Materials Science and Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, Zhejiang Province (China)

    2016-06-01

    This paper describes on the fast synthesis of bismuth ferrite by the simple microwave-assisted hydrothermal method. The phase transformation and the preferred growth facets during the synthetic process have been investigated by X-ray diffraction. Bismuth ferrite can be quickly prepared by microwave hydrothermal method by simply controlling the reaction time, which is further confirmed by Fourier Transform infrared spectroscopy and magnetic measurement. - Graphical abstract: Single-phase BiFeO{sub 3} could be realized at a shortest reaction time of 65 min. The reaction time has strong influences on the phase transformation and the preferred growth facets. - Highlights: • Rapid synthesis (65 min) of BiFeO{sub 3} by microwave-assisted hydrothermal method. • Reaction time has influence on the purity and preferred growth facets. • FTIR and magnetic measurement further confirm the pure phase.

  20. Influence of modulation method on using LC-traps with single-phase voltage source converters

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Min, Huang; Bai, Haofeng

    2015-01-01

    The switching-frequency LC-trap filter has recently been employed with high-order passive filters for Voltage Source Inverters (VSIs). This paper investigates the influence of modulation method on using the LC-traps with single-phase VSIs. Two-level (bipolar) and three-level (unipolar) modulations...... that include phase distortion and alternative phase opposition distortion methods are analyzed. Harmonic filtering performances of four LC-trap-based filters with different locations of LC-traps are compared. It is shown that the use of parallel-LC-traps in series with filter inductors, either grid...... or converter side, has a worse harmonic filtering performance than using series-LC-trap in the shunt branch. Simulations and experimental results are presented for verifications....

  1. Flux distribution in single phase, Si-Fe, wound transformer cores

    International Nuclear Information System (INIS)

    Loizos, George; Kefalas, Themistoklis; Kladas, Antonios; Souflaris, Thanassis; Paparigas, Dimitris

    2008-01-01

    This paper shows experimental results of longitudinal flux density and its harmonics at the limb, the yoke and the corner as well as normal flux in the step lap joint of a single phase, Si-Fe, wound transformer core. Results show that the flux density as well as the harmonics content is higher in the inner (window) side of the core and reduces gradually towards the outer side. Variations of flux density distribution between the limb and the corner or the yoke of the core were observed. A full record of normal flux around the step lap region of the model core was also obtained. Longitudinal and normal flux findings will enable the development of more accurate numerical models that describe the magnetic behavior of magnetic cores

  2. Green synthesis of isopropyl myristate in novel single phase medium Part I: Batch optimization studies.

    Science.gov (United States)

    Vadgama, Rajeshkumar N; Odaneth, Annamma A; Lali, Arvind M

    2015-12-01

    Isopropyl myristate finds many applications in food, cosmetic and pharmaceutical industries as an emollient, thickening agent, or lubricant. Using a homogeneous reaction phase, non-specific lipase derived from Candida antartica, marketed as Novozym 435, was determined to be most suitable for the enzymatic synthesis of isopropyl myristate. The high molar ratio of alcohol to acid creates novel single phase medium which overcomes mass transfer effects and facilitates downstream processing. The effect of various reaction parameters was optimized to obtain a high yield of isopropyl myristate. Effect of temperature, agitation speed, organic solvent, biocatalyst loading and batch operational stability of the enzyme was systematically studied. The conversion of 87.65% was obtained when the molar ratio of isopropyl alcohol to myristic acid (15:1) was used with 4% (w/w) catalyst loading and agitation speed of 150 rpm at 60 °C. The enzyme has also shown good batch operational stability under optimized conditions.

  3. Zero-voltage ride-through capability of single-phase grid-connected photovoltaic systems

    DEFF Research Database (Denmark)

    Zhang, Zhen; Yang, Yongheng; Ma, Ruiqing

    2017-01-01

    Distributed renewable energy systems play an increasing role in today’s energy paradigm. Thus, intensive research activities have been centered on improving the performance of renewable energy systems, including photovoltaic (PV) systems, which should be of multiple-functionality. That is, the PV...... systems should be more intelligent in the consideration of grid stability, reliability, and fault protection. Therefore, in this paper, the performance of single-phase grid-connected PV systems under an extreme grid fault (i.e., when the grid voltage dips to zero) is explored. It has been revealed...... that combining a fast and accurate synchronization mechanism with appropriate control strategies for the zero-voltage ride-through (ZVRT) operation is mandatory. Accordingly, the representative synchronization techniques (i.e., the phase-locked loop (PLL) methods) in the ZVRT operation are compared in terms...

  4. Analytical Determining Of The Steinmetz Equivalent Diagram Elements Of Single-Phase Transformer

    Directory of Open Access Journals (Sweden)

    T. Aly Saandy

    2015-08-01

    Full Text Available This article presents to an analytical calculation methodology of the Steinmetz Equivalent Diagram Elements applied to the prediction of Eddy current loss in a single-phase transformer. Based on the electrical circuit theory the active and reactive powers consumed by the core are expressed analytically in function of the electromagnetic parameters as resistivity permeability and the geometrical dimensions of the core. The proposed modeling approach is established with the duality parallel series. The equivalent diagram elements empirically determined by Steinmetz are analytically expressed using the expressions of the no loaded transformer consumptions. To verify the relevance of the model validations both by simulations with different powers and measurements were carried out to determine the resistance and reactance of the core. The obtained results are in good agreement with the theoretical approach and the practical results.

  5. Analytical Modeling Of The Steinmetz Coefficient For Single-Phase Transformer Eddy Current Loss Prediction

    Directory of Open Access Journals (Sweden)

    T. Aly Saandy

    2015-08-01

    Full Text Available Abstract This article presents to an analytical calculation methodology of the Steinmetz coefficient applied to the prediction of Eddy current loss in a single-phase transformer. Based on the electrical circuit theory the active power consumed by the core is expressed analytically in function of the electrical parameters as resistivity and the geometrical dimensions of the core. The proposed modeling approach is established with the duality parallel series. The required coefficient is identified from the empirical Steinmetz data based on the experimented active power expression. To verify the relevance of the model validations both by simulations with two in two different frequencies and measurements were carried out. The obtained results are in good agreement with the theoretical approach and the practical results.

  6. Adaptive nonlinear control of single-phase to three-phase UPS system

    Directory of Open Access Journals (Sweden)

    Kissaoui M.

    2014-01-01

    Full Text Available This work deals with the problems of uninterruptible power supplies (UPS based on the single-phase to three-phase converters built in two stages: an input bridge rectifier and an output three phase inverter. The two blocks are joined by a continuous intermediate bus. The objective of control is threefold: i power factor correction “PFC”, ii generating a symmetrical three-phase system at the output even if the load is unknown, iii regulating the DC bus voltage. The synthesis of controllers has been reached by two nonlinear techniques that are the sliding mode and adaptive backstepping control. The performances of regulators have been validated by numerical simulation in MATLAB / SIMULINK.

  7. Time domain spectral phase encoding/DPSK data modulation using single phase modulator for OCDMA application.

    Science.gov (United States)

    Wang, Xu; Gao, Zhensen; Kataoka, Nobuyuki; Wada, Naoya

    2010-05-10

    A novel scheme using single phase modulator for simultaneous time domain spectral phase encoding (SPE) signal generation and DPSK data modulation is proposed and experimentally demonstrated. Array- Waveguide-Grating and Variable-Bandwidth-Spectrum-Shaper based devices can be used for decoding the signal directly in spectral domain. The effects of fiber dispersion, light pulse width and timing error on the coding performance have been investigated by simulation and verified in experiment. In the experiment, SPE signal with 8-chip, 20GHz/chip optical code patterns has been generated and modulated with 2.5 Gbps DPSK data using single modulator. Transmission of the 2.5 Gbps data over 34km fiber with BEROCDMA) and secure optical communication applications. (c) 2010 Optical Society of America.

  8. Adaptive fuzzy sliding control of single-phase PV grid-connected inverter.

    Science.gov (United States)

    Fei, Juntao; Zhu, Yunkai

    2017-01-01

    In this paper, an adaptive fuzzy sliding mode controller is proposed to control a two-stage single-phase photovoltaic (PV) grid-connected inverter. Two key technologies are discussed in the presented PV system. An incremental conductance method with adaptive step is adopted to track the maximum power point (MPP) by controlling the duty cycle of the controllable power switch of the boost DC-DC converter. An adaptive fuzzy sliding mode controller with an integral sliding surface is developed for the grid-connected inverter where a fuzzy system is used to approach the upper bound of the system nonlinearities. The proposed strategy has strong robustness for the sliding mode control can be designed independently and disturbances can be adaptively compensated. Simulation results of a PV grid-connected system verify the effectiveness of the proposed method, demonstrating the satisfactory robustness and performance.

  9. An LLCL Power Filter for Single-Phase Grid-Tied Inverter

    DEFF Research Database (Denmark)

    Wu, Weimin; He, Yuanbin; Blaabjerg, Frede

    2012-01-01

    This paper presents a new topology of higher order power filter for grid-tied voltage-source inverters, named the LLCL filter, which inserts a small inductor in the branch loop of the capacitor in the traditional LCL filter to compose a series resonant circuit at the switching frequency. Particul......This paper presents a new topology of higher order power filter for grid-tied voltage-source inverters, named the LLCL filter, which inserts a small inductor in the branch loop of the capacitor in the traditional LCL filter to compose a series resonant circuit at the switching frequency...... to the inverter system control. The parameter design criteria of the proposed LLCL filter is also introduced. The comparative analysis and discussions regarding the traditional LCL filter and the proposed LLCL filter have been presented and evaluated through experiment on a 1.8-kW-single-phase grid-tied inverter...

  10. Modelling of the modified-LLCL-filter-based single-phase grid-tied Aalborg inverter

    DEFF Research Database (Denmark)

    Liu, Zifa; Wu, Huiyun; Liu, Yuan

    2017-01-01

    Owing to less conduction and switching power losses, the recently proposed Aalborg inverter has high efficiency within a wide range of input DC voltage for single-phase DC/AC power conversion. In theory, the conduction power losses can be further decreased, if an LLCL-filter is adopted instead...... of an LCL-filter for a voltage source inverter, mainly due to the reduced inductance. The Aalborg inverter shows the characteristic of a current source inverter, when working in the `boost' state. Whether the LLCL-filter can meet the control requirement of this type inverter needs to be further explored....... In this study, the small signal analysis for the modified-LLCL-filter-based Aalborg inverter is addressed. Through the modelling, it can be proven that compared with the LCL-filter, the modified-LLCL-filter causes no extra control challenge for the Aalborg inverter, and therefore more inductance in the power...

  11. Rapid synthesis of single-phase bismuth ferrite by microwave-assisted hydrothermal method

    International Nuclear Information System (INIS)

    Cao, Wenqian; Chen, Zhi; Gao, Tong; Zhou, Dantong; Leng, Xiaonan; Niu, Feng; Zhu, Yuxiang; Qin, Laishun; Wang, Jiangying; Huang, Yuexiang

    2016-01-01

    This paper describes on the fast synthesis of bismuth ferrite by the simple microwave-assisted hydrothermal method. The phase transformation and the preferred growth facets during the synthetic process have been investigated by X-ray diffraction. Bismuth ferrite can be quickly prepared by microwave hydrothermal method by simply controlling the reaction time, which is further confirmed by Fourier Transform infrared spectroscopy and magnetic measurement. - Graphical abstract: Single-phase BiFeO_3 could be realized at a shortest reaction time of 65 min. The reaction time has strong influences on the phase transformation and the preferred growth facets. - Highlights: • Rapid synthesis (65 min) of BiFeO_3 by microwave-assisted hydrothermal method. • Reaction time has influence on the purity and preferred growth facets. • FTIR and magnetic measurement further confirm the pure phase.

  12. A Rotor Flux and Speed Observer for Sensorless Single-Phase Induction Motor Applications

    Directory of Open Access Journals (Sweden)

    Massimo Caruso

    2012-01-01

    Full Text Available It is usual to find single-phase induction motor (SPIM in several house, office, shopping, farm, and industry applications, which are become each time more sophisticated and requiring the development of efficient alternatives to improve the operational performance of this machine. Although the rotor flux and rotational speed are essential variables in order to optimize the operation of a SPIM, the use of conventional sensors to measure them is not a viable option. Thus, the adoption of sensorless strategies is the more reasonable proposal for these cases. This paper presents a rotor flux and rotational speed observer for sensorless applications involving SPIMs. Computer simulations and the experimental results are used to verify the performance of the proposed observer.

  13. Conceptual Design of a Single Phase 33 MVA HTS Transformer with a Tertiary Winding

    International Nuclear Information System (INIS)

    Lee, S. W.; Kim, W. S.; Hahn, S. Y.; Hwang, Y. I.; Choi, K. D.

    2006-01-01

    We have proposed a 3 phase, 100 MVA, 154 kV class HTS transformer substituting for a 60 MVA conventional transformer. The power transformer of 154 kV class has a tertiary winding besides primary and secondary windings. So the HTS transformer should have the 3rd superconducting winding. In this paper, we designed conceptually the structure of the superconducting windings of a single phase 33 MVA transformer. The electrical characteristics of the HTS transformer such as % impedance and AC loss vary with the arrangement of the windings and gaps between windings. We analyzed the effects of the winding parameters, evaluated the cost of each design, and proposed a suitable HTS transformer model for future power distribution system.

  14. Calculation of single phase AC and monopolar DC hybrid corona effects

    International Nuclear Information System (INIS)

    Zhao, T.; Sebo, S.A.; Kasten, D.G.

    1996-01-01

    Operating a hybrid HVac and HVdc line is an option for increasing the efficiency of power transmission and overcoming the difficulties in obtaining a new right-of-way. This paper proposes a new calculation method for the study of hybrid line corona. The proposed method can be used to calculate dc corona losses and corona currents in dc or ac conductors for single phase ac and monopolar dc hybrid lines. Profiles of electric field strength and ion current density at ground level can be estimated. The effects of the presence of an energized ac conductor on dc conductor corona and dc voltage on ac conductor corona are included in the method. Full-scale and reduced-scale experiments were utilized to investigate the hybrid line corona effects. Verification of the proposed calculation method is given

  15. Single-phase pump model for analysis of LMFBR heat transport systems

    International Nuclear Information System (INIS)

    Madni, I.K.; Cazzoli, E.

    1978-05-01

    A single-phase pump model for transient and steady-state analysis of LMFBR heat transport systems is presented. Fundamental equations of the model are angular momentum balance to determine transient impeller speed and mass balance (including thermal expansion effects) to determine the level of sodium in the pump tank. Pump characteristics are modeled by homologous head and torque relations. All regions of pump operation are represented with reverse rotation allowed. The model also includes option for enthalpy rise calculations and pony motor operation. During steady state, the pump operating speed is determined by matching required head with total load in the circuit. Calculated transient results are presented for pump coastdown and double-ended pipe break accidents. The report examines the influence of frictional torque and specific speed on predicted response for the pump coastdown to natural circulation transient. The results for a double-ended pipe break accident indicate the necessity of including all regions of operation for pump characteristics

  16. Harmonics Suppression for Single-Phase Grid-Connected Photovoltaic Systems in Different Operation Modes

    DEFF Research Database (Denmark)

    Yang, Yongheng; Zhou, Keliang; Blaabjerg, Frede

    2013-01-01

    -connected PV inverters may be severely affected in different operation modes. In this paper, a detailed analysis is conducted to reveal the relationship between the harmonics level with the power factor and the current level in the PV systems. A current control solution which employs an Internal Model...... Principle (IMP) is proposed to suppress the harmonic currents injected into the grid. Experiments are carried out to verify the analysis and the performance of the proposed control method. It is demonstrated that the proposed method presents an effective solution to harmonics suppression for single......-phase grid-connected PV systems in different operation modes. Especially, it can remove higher order harmonics effectively leading to a better power quality compared to the Proportional plus Multi-Resonant Controller, and it has less computational burden....

  17. On Thermodynamics Problems in the Single-Phase-Lagging Heat Conduction Model

    Directory of Open Access Journals (Sweden)

    Shu-Nan Li

    2016-11-01

    Full Text Available Thermodynamics problems for the single-phase-lagging (SPL model have not been much studied. In this paper, the violation of the second law of thermodynamics by the SPL model is studied from two perspectives, which are the negative entropy production rate and breaking equilibrium spontaneously. The methods for the SPL model to avoid the negative entropy production rate are proposed, which are extended irreversible thermodynamics and the thermal relaxation time. Modifying the entropy production rate positive or zero is not enough to avoid the violation of the second law of thermodynamics for the SPL model, because the SPL model could cause breaking equilibrium spontaneously in some special circumstances. As comparison, it is shown that Fourier’s law and the CV model cannot break equilibrium spontaneously by analyzing mathematical energy integral.

  18. A Robust DC-Split-Capacitor Power Decoupling Scheme for Single-Phase Converter

    DEFF Research Database (Denmark)

    Yao, Wenli; Loh, Poh Chiang; Tang, Yi

    2017-01-01

    Instead of bulky electrolytic capacitors, active power decoupling circuit can be introduced to a single-phase converter for diverting second harmonic ripple away from its dc source or load. One possible circuit consists of a half-bridge and two capacitors in series for forming a dc-split capacitor......, instead of the usual single dc-link capacitor bank. Methods for regulating this power decoupler have earlier been developed, but almost always with equal capacitances assumed for forming the dc-split capacitor, even though it is not realistic in practice. The assumption should, hence, be evaluated more...... thoroughly, especially when it is shown in the paper that even a slight mismatch can render the power decoupling scheme ineffective and the IEEE 1547 standard to be breached. A more robust compensation scheme is, thus, needed for the dc-split capacitor circuit, as proposed and tested experimentally...

  19. Single-phase dual-energy CT urography in the evaluation of haematuria.

    Science.gov (United States)

    Ascenti, G; Mileto, A; Gaeta, M; Blandino, A; Mazziotti, S; Scribano, E

    2013-02-01

    To assess the value of a single-phase dual-energy computed tomography (DECT) urography protocol with synchronous nephrographic-excretory phase enhancement and to calculate the potential dose reduction by omitting the unenhanced scan. Eighty-four patients referred for haematuria underwent CT urography using a protocol that included single-energy unenhanced and dual-energy contrast-enhanced with synchronous nephrographic-excretory phase scans. DECT-based images [virtual unenhanced (VUE), weighted average, and colour-coded iodine overlay] were reconstructed. Opacification degree by contrast media of the upper urinary tract, and image quality of virtual unenhanced images were independently evaluated using a four-point scale. The diagnostic accuracy in detecting urothelial tumours on DECT-based images was determined. The dose of a theoretical dual-phase single-energy protocol was obtained by multiplying the effective dose of the unenhanced single-energy acquisition by two. Radiation dose saving by omitting the unenhanced scan was calculated. The degree of opacification was scored as optimal or good in 86.9% of cases (k = 0.72); VUE image quality was excellent or good in 83.3% of cases (k = 0.82). Sensitivity, specificity, positive predictive value, and negative predictive value for urothelial tumours detection were 85.7, 98.6, 92.3, and 97.1%. Omission of the unenhanced scan led to a mean dose reduction of 42.7 ± 5%. Single-phase DECT urography with synchronous nephrographic-excretory phase enhancement represents an accurate "all-in-one'' approach with a radiation dose saving up to 45% compared with a standard dual-phase protocol. Copyright © 2012 The Royal College of Radiologists. All rights reserved.

  20. Single-phase dual-energy CT urography in the evaluation of haematuria

    International Nuclear Information System (INIS)

    Ascenti, G.; Mileto, A.; Gaeta, M.; Blandino, A.; Mazziotti, S.; Scribano, E.

    2013-01-01

    Aim: To assess the value of a single-phase dual-energy computed tomography (DECT) urography protocol with synchronous nephrographic–excretory phase enhancement and to calculate the potential dose reduction by omitting the unenhanced scan. Materials and methods: Eighty-four patients referred for haematuria underwent CT urography using a protocol that included single-energy unenhanced and dual-energy contrast-enhanced with synchronous nephrographic–excretory phase scans. DECT-based images [virtual unenhanced (VUE), weighted average, and colour-coded iodine overlay] were reconstructed. Opacification degree by contrast media of the upper urinary tract, and image quality of virtual unenhanced images were independently evaluated using a four-point scale. The diagnostic accuracy in detecting urothelial tumours on DECT-based images was determined. The dose of a theoretical dual-phase single-energy protocol was obtained by multiplying the effective dose of the unenhanced single-energy acquisition by two. Radiation dose saving by omitting the unenhanced scan was calculated. Results: The degree of opacification was scored as optimal or good in 86.9% of cases (k = 0.72); VUE image quality was excellent or good in 83.3% of cases (k = 0.82). Sensitivity, specificity, positive predictive value, and negative predictive value for urothelial tumours detection were 85.7, 98.6, 92.3, and 97.1%. Omission of the unenhanced scan led to a mean dose reduction of 42.7 ± 5%. Conclusion: Single-phase DECT urography with synchronous nephrographic–excretory phase enhancement represents an accurate “all-in-one’’ approach with a radiation dose saving up to 45% compared with a standard dual-phase protocol.

  1. Synthesis and characterization of single-phase Mn-doped ZnO

    Science.gov (United States)

    Chattopadhyay, S.; Dutta, S.; Banerjee, A.; Jana, D.; Bandyopadhyay, S.; Chattopadhyay, S.; Sarkar, A.

    2009-05-01

    Different samples of Zn 1-xMn xO series have been prepared using conventional solid-state sintering method. We identified up to what extent doping will enable us to synthesize single-phase polycrystalline Mn-doped ZnO sample, which is one of the prerequisites for dilute magnetic semiconductor, and we have analyzed its some other physical aspects. In synthesizing the samples, proportion of Mn varies from 1 to 5 at%. However, the milling time varied (6, 12, 24, 48 and 96 h) only for 2 at% Mn-doped samples while for other samples (1, 3, 4 and 5 at% Mn doped) the milling time has been fixed to 96 h. Room-temperature X-ray diffraction (XRD) data reveal that all of the prepared samples up to 3 at% of Mn doping exhibit wurtzite-type structure, and no segregation of Mn and/or its oxides has been found. The 4 at% Mn-doped samples show a weak peak of ZnMn 2O 4 apart from the other usual peaks of ZnO and the intensity of this impurity peak has been further increased for 5 at% of Mn doping. So beyond 3 at% doping, single-phase behavior is destroyed. Band gap for all the 2 at% Mn-doped samples has been estimated to be between 3.21 and 3.19 eV and the reason for this low band gap values has been explained through the grain boundary trapping model. The room-temperature resistivity measurement shows an increase of resistivity up to 48 h of milling and with further milling it saturates. The defect state of these samples has been investigated using the positron annihilation lifetime (PAL) spectroscopy technique. Here all the relevant lifetime parameters of positron i.e. free annihilation ( τ1) at defect site ( τ2) and average ( τav) increases with milling time.

  2. Synthesis and characterization of single-phase Mn-doped ZnO

    International Nuclear Information System (INIS)

    Chattopadhyay, S.; Dutta, S.; Banerjee, A.; Jana, D.; Bandyopadhyay, S.; Chattopadhyay, S.; Sarkar, A.

    2009-01-01

    Different samples of Zn 1-x Mn x O series have been prepared using conventional solid-state sintering method. We identified up to what extent doping will enable us to synthesize single-phase polycrystalline Mn-doped ZnO sample, which is one of the prerequisites for dilute magnetic semiconductor, and we have analyzed its some other physical aspects. In synthesizing the samples, proportion of Mn varies from 1 to 5 at%. However, the milling time varied (6, 12, 24, 48 and 96 h) only for 2 at% Mn-doped samples while for other samples (1, 3, 4 and 5 at% Mn doped) the milling time has been fixed to 96 h. Room-temperature X-ray diffraction (XRD) data reveal that all of the prepared samples up to 3 at% of Mn doping exhibit wurtzite-type structure, and no segregation of Mn and/or its oxides has been found. The 4 at% Mn-doped samples show a weak peak of ZnMn 2 O 4 apart from the other usual peaks of ZnO and the intensity of this impurity peak has been further increased for 5 at% of Mn doping. So beyond 3 at% doping, single-phase behavior is destroyed. Band gap for all the 2 at% Mn-doped samples has been estimated to be between 3.21 and 3.19 eV and the reason for this low band gap values has been explained through the grain boundary trapping model. The room-temperature resistivity measurement shows an increase of resistivity up to 48 h of milling and with further milling it saturates. The defect state of these samples has been investigated using the positron annihilation lifetime (PAL) spectroscopy technique. Here all the relevant lifetime parameters of positron i.e. free annihilation (τ 1 ) at defect site (τ 2 ) and average (τ av ) increases with milling time.

  3. An equivalent ground thermal test method for single-phase fluid loop space radiator

    Directory of Open Access Journals (Sweden)

    Xianwen Ning

    2015-02-01

    Full Text Available Thermal vacuum test is widely used for the ground validation of spacecraft thermal control system. However, the conduction and convection can be simulated in normal ground pressure environment completely. By the employment of pumped fluid loops’ thermal control technology on spacecraft, conduction and convection become the main heat transfer behavior between radiator and inside cabin. As long as the heat transfer behavior between radiator and outer space can be equivalently simulated in normal pressure, the thermal vacuum test can be substituted by the normal ground pressure thermal test. In this paper, an equivalent normal pressure thermal test method for the spacecraft single-phase fluid loop radiator is proposed. The heat radiation between radiator and outer space has been equivalently simulated by combination of a group of refrigerators and thermal electrical cooler (TEC array. By adjusting the heat rejection of each device, the relationship between heat flux and surface temperature of the radiator can be maintained. To verify this method, a validating system has been built up and the experiments have been carried out. The results indicate that the proposed equivalent ground thermal test method can simulate the heat rejection performance of radiator correctly and the temperature error between in-orbit theory value and experiment result of the radiator is less than 0.5 °C, except for the equipment startup period. This provides a potential method for the thermal test of space systems especially for extra-large spacecraft which employs single-phase fluid loop radiator as thermal control approach.

  4. Multidimensional Risk Management for Underground Electricity Networks

    Directory of Open Access Journals (Sweden)

    Garcez Thalles V.

    2014-08-01

    Full Text Available In the paper we consider an electricity provider company that makes decision on allocating resources on electric network maintenance. The investments decrease malfunction rate of network nodes. An accidental event (explosion, fire, etc. or a malfunctioning on underground system can have various consequences and in different perspectives, such as deaths and injuries of pedestrians, fires in nearby locations, disturbances in the flow of vehicular traffic, loss to the company image, operating and financial losses, etc. For this reason it is necessary to apply an approach of the risk management that considers the multidimensional view of the consequences. Furthermore an analysis of decision making should consider network dependencies between the nodes of the electricity distribution system. In the paper we propose the use of the simulation to assess the network effects (such as the increase of the probability of other accidental event and the occurrence of blackouts of the dependent nodes in the multidimensional risk assessment in electricity grid. The analyzed effects include node overloading due to malfunction of adjacent nodes and blackouts that take place where there is temporarily no path in the grid between the power plant and a node. The simulation results show that network effects have crucial role for decisions in the network maintenance – outcomes of decisions to repair a particular node in the network can have significant influence on performance of other nodes. However, those dependencies are non-linear. The effects of network connectivity (number of connections between nodes on its multidimensional performance assessment depend heavily on the overloading effect level. The simulation results do not depend on network type structure (random or small world – however simulation outcomes for random networks have shown higher variance compared to small-world networks.

  5. Contributions to multidimensional quadrature formulas

    International Nuclear Information System (INIS)

    Guenther, C.

    1976-11-01

    The general objective of this paper is to construct multidimensional quadrature formulas similar to the Gaussian Quadrature Formulas in one dimension. The correspondence between these formulas and orthogonal and nonnegative polynomials is established. One part of the paper considers the construction of multidimensional quadrature formulas using only methods of algebraic geometry, on the other part it is tried to obtain results on quadrature formulas with real nodes and, if possible, with positive weights. The results include the existence of quadrature formulas, information on the number resp. on the maximum possible number of points in the formulas for given polynomial degree N and the construction of formulas. (orig.) [de

  6. Multi-Dimensional Path Queries

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    1998-01-01

    to create nested path structures. We present an SQL-like query language that is based on path expressions and we show how to use it to express multi-dimensional path queries that are suited for advanced data analysis in decision support environments like data warehousing environments......We present the path-relationship model that supports multi-dimensional data modeling and querying. A path-relationship database is composed of sets of paths and sets of relationships. A path is a sequence of related elements (atoms, paths, and sets of paths). A relationship is a binary path...

  7. Multidimensional real analysis I differentiation

    CERN Document Server

    Duistermaat, J J; van Braam Houckgeest, J P

    2004-01-01

    Part one of the authors' comprehensive and innovative work on multidimensional real analysis. This book is based on extensive teaching experience at Utrecht University and gives a thorough account of differential analysis in multidimensional Euclidean space. It is an ideal preparation for students who wish to go on to more advanced study. The notation is carefully organized and all proofs are clean, complete and rigorous. The authors have taken care to pay proper attention to all aspects of the theory. In many respects this book presents an original treatment of the subject and it contains man

  8. Benchmarking the Multidimensional Stellar Implicit Code MUSIC

    Science.gov (United States)

    Goffrey, T.; Pratt, J.; Viallet, M.; Baraffe, I.; Popov, M. V.; Walder, R.; Folini, D.; Geroux, C.; Constantino, T.

    2017-04-01

    We present the results of a numerical benchmark study for the MUltidimensional Stellar Implicit Code (MUSIC) based on widely applicable two- and three-dimensional compressible hydrodynamics problems relevant to stellar interiors. MUSIC is an implicit large eddy simulation code that uses implicit time integration, implemented as a Jacobian-free Newton Krylov method. A physics based preconditioning technique which can be adjusted to target varying physics is used to improve the performance of the solver. The problems used for this benchmark study include the Rayleigh-Taylor and Kelvin-Helmholtz instabilities, and the decay of the Taylor-Green vortex. Additionally we show a test of hydrostatic equilibrium, in a stellar environment which is dominated by radiative effects. In this setting the flexibility of the preconditioning technique is demonstrated. This work aims to bridge the gap between the hydrodynamic test problems typically used during development of numerical methods and the complex flows of stellar interiors. A series of multidimensional tests were performed and analysed. Each of these test cases was analysed with a simple, scalar diagnostic, with the aim of enabling direct code comparisons. As the tests performed do not have analytic solutions, we verify MUSIC by comparing it to established codes including ATHENA and the PENCIL code. MUSIC is able to both reproduce behaviour from established and widely-used codes as well as results expected from theoretical predictions. This benchmarking study concludes a series of papers describing the development of the MUSIC code and provides confidence in future applications.

  9. Flow distribution in adjacent subchannels of unequal size

    International Nuclear Information System (INIS)

    Bugg, J.D.

    1985-11-01

    This report describes an experimental and analytic investigation of the single phase flow distribution in subchannel geometries. It was intended as an investigation of fundamental transport mechanisms and therefore concentrated on simple geometries with two interconnected subchannels. The experimental phase consisted of detailed measuremnts of the fluid velocity in a geometry representing two communicating subchannels of different sizes. These measurements were made at three axial locations along the test section. The size of one of the subchannels was varied to give subchannel area ratios of 1.0, 0.68, 0.50 and 0.32. Two Reynolds numbers (108000 and 180000) were investigated. Axial pressure gradient data for all of these cases was also taken. The analytic phase concentrated on applying a three dimensional finite difference fluid flow code to subchannel geomtries. The code was applied to the cases studied in the experiment as well as other investigator's results. It used the two equation K-ε turbulence model. The performance of this model was assessed. Unique features of the subchannel flows were identified and discussed. Conclusions regarding the transport mechanisms involved and the ability of a multidimensional code to predict the flow fields reliably were presented

  10. Synthesis and characterization of single-phase Mn-doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, S.; Dutta, S.; Banerjee, A.; Jana, D. [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009, West Bengal (India); Bandyopadhyay, S., E-mail: sbaphy@caluniv.ac.i [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009, West Bengal (India); Chattopadhyay, S. [Department of Physics, Taki Government College, Taki 743 429, West Bengal (India); Sarkar, A. [Department of Physics, Bangabasi Morning College, 19 Rajkumar Chakraborty Sarani, Kolkata 700 009, West Bengal (India)

    2009-05-01

    Different samples of Zn{sub 1-x}Mn{sub x}O series have been prepared using conventional solid-state sintering method. We identified up to what extent doping will enable us to synthesize single-phase polycrystalline Mn-doped ZnO sample, which is one of the prerequisites for dilute magnetic semiconductor, and we have analyzed its some other physical aspects. In synthesizing the samples, proportion of Mn varies from 1 to 5 at%. However, the milling time varied (6, 12, 24, 48 and 96 h) only for 2 at% Mn-doped samples while for other samples (1, 3, 4 and 5 at% Mn doped) the milling time has been fixed to 96 h. Room-temperature X-ray diffraction (XRD) data reveal that all of the prepared samples up to 3 at% of Mn doping exhibit wurtzite-type structure, and no segregation of Mn and/or its oxides has been found. The 4 at% Mn-doped samples show a weak peak of ZnMn{sub 2}O{sub 4} apart from the other usual peaks of ZnO and the intensity of this impurity peak has been further increased for 5 at% of Mn doping. So beyond 3 at% doping, single-phase behavior is destroyed. Band gap for all the 2 at% Mn-doped samples has been estimated to be between 3.21 and 3.19 eV and the reason for this low band gap values has been explained through the grain boundary trapping model. The room-temperature resistivity measurement shows an increase of resistivity up to 48 h of milling and with further milling it saturates. The defect state of these samples has been investigated using the positron annihilation lifetime (PAL) spectroscopy technique. Here all the relevant lifetime parameters of positron i.e. free annihilation (tau{sub 1}) at defect site (tau{sub 2}) and average (tau{sub av}) increases with milling time.

  11. A Multidimensional Software Engineering Course

    Science.gov (United States)

    Barzilay, O.; Hazzan, O.; Yehudai, A.

    2009-01-01

    Software engineering (SE) is a multidimensional field that involves activities in various areas and disciplines, such as computer science, project management, and system engineering. Though modern SE curricula include designated courses that address these various subjects, an advanced summary course that synthesizes them is still missing. Such a…

  12. Multidimensional Databases and Data Warehousing

    DEFF Research Database (Denmark)

    Jensen, Christian S.; Pedersen, Torben Bach; Thomsen, Christian

    The present book's subject is multidimensional data models and data modeling concepts as they are applied in real data warehouses. The book aims to present the most important concepts within this subject in a precise and understandable manner. The book's coverage of fundamental concepts includes...

  13. Recycling Behavior: A Multidimensional Approach

    Science.gov (United States)

    Meneses, Gonzalo Diaz; Palacio, Asuncion Beerli

    2005-01-01

    This work centers on the study of consumer recycling roles to examine the sociodemographic and psychographic profile of the distribution of recycling tasks and roles within the household. With this aim in mind, an empirical work was carried out, the results of which suggest that recycling behavior is multidimensional and comprises the undertaking…

  14. Investigations on the effect of heater and cooler orientation on the steady state, transient and stability behaviour of single-phase natural circulation in a rectangular loop

    International Nuclear Information System (INIS)

    Vijayan, P.K.; Bhojwani, V.K.; Bade, M.H.; Sharma, M.; Nayak, A.K.; Saha, D.; Sinha, R.K.

    2002-01-01

    An instability demonstration facility has been in operation in the heat transfer laboratory of the Reactor Engineering Div. for the past few years. This report deals with the investigations carried out in this facility so far. The facility is essentially a rectangular loop designed to generate single-phase natural circulation data on the steady state and stability behaviour for different orientations of the heat source and the heat sink. Effect of different heat addition paths (i.e. start-up from rest, power raising from initial stable steady and decay of instability due to power step back) and flow direction on the stability behaviour was also studied. The stability map of the system was generated both by the linear and the nonlinear methods

  15. COMMIX-1AR/P: A three-dimensional transient single-phase computer program for thermal hydraulic analysis of single and multicomponent systems

    Energy Technology Data Exchange (ETDEWEB)

    Garner, P.L.; Blomquist, R.N.; Gelbard, E.M.

    1992-09-01

    The COMMIX-1AR/P computer program is designed for analyzing the steady-state and transient aspects of single-phase fluid flow and heat transfer in three spatial dimensions. This version is an extension of the modeling in COMMIX-1A to include multiple fluids in physically separate regions of the computational domain, modeling descriptions for pumps, radiation heat transfer between surfaces of the solids which are embedded in or surround the fluid, a k-[var epsilon] model for fluid turbulence, and improved numerical techniques. The porous-medium formulation in COMMIX allows the program to be applied to a wide range of problems involving both simple and complex geometrical arrangements. The input preparation and execution procedures are presented for the COMMIX-1AR/P program and several postprocessor programs which produce graphical displays of the calculated results.

  16. COMMIX-1AR/P: A three-dimensional transient single-phase computer program for thermal hydraulic analysis of single and multicomponent systems

    International Nuclear Information System (INIS)

    Garner, P.L.; Blomquist, R.N.; Gelbard, E.M.

    1992-09-01

    The COMMIX-1AR/P computer program is designed for analyzing the steady-state and transient aspects of single-phase fluid flow and heat transfer in three spatial dimensions. This version is an extension of the modeling in COMMIX-1A to include multiple fluids in physically separate regions of the computational domain, modeling descriptions for pumps, radiation heat transfer between surfaces of the solids which are embedded in or surround the fluid, a k-var-epsilon model for fluid turbulence, and improved numerical techniques. The porous-medium formulation in COMMIX allows the program to be applied to a wide range of problems involving both simple and complex geometrical arrangements. The input preparation and execution procedures are presented for the COMMIX-1AR/P program and several postprocessor programs which produce graphical displays of the calculated results

  17. Calcination and solid state reaction of ceramic-forming components to provide single-phase superconducting materials having fine particle size

    Science.gov (United States)

    Balachandran, Uthamalingam; Poeppel, Roger B.; Emerson, James E.; Johnson, Stanley A.

    1992-01-01

    An improved method for the preparation of single phase, fine grained ceramic materials from precursor powder mixtures where at least one of the components of the mixture is an alkali earth carbonate. The process consists of heating the precursor powders in a partial vacuum under flowing oxygen and under conditions where the partial pressure of CO.sub.2 evolved during the calcination is kept to a very low level relative to the oxygen. The process has been found particularly suitable for the preparation of high temperature copper oxide superconducting materials such as YBa.sub.2 Cu.sub.3 O.sub.x "123" and YBa.sub.2 Cu.sub.4 O.sub.8 "124".

  18. RELAP-7 Level 2 Milestone Report: Demonstration of a Steady State Single Phase PWR Simulation with RELAP-7

    International Nuclear Information System (INIS)

    Andrs, David; Berry, Ray; Gaston, Derek; Martineau, Richard; Peterson, John; Zhang, Hongbin; Zhao, Haihua; Zou, Ling

    2012-01-01

    The document contains the simulation results of a steady state model PWR problem with the RELAP-7 code. The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at Idaho National Laboratory (INL). The code is based on INL's modern scientific software development framework - MOOSE (Multi-Physics Object-Oriented Simulation Environment). This report summarizes the initial results of simulating a model steady-state single phase PWR problem using the current version of the RELAP-7 code. The major purpose of this demonstration simulation is to show that RELAP-7 code can be rapidly developed to simulate single-phase reactor problems. RELAP-7 is a new project started on October 1st, 2011. It will become the main reactor systems simulation toolkit for RISMC (Risk Informed Safety Margin Characterization) and the next generation tool in the RELAP reactor safety/systems analysis application series (the replacement for RELAP5). The key to the success of RELAP-7 is the simultaneous advancement of physical models, numerical methods, and software design while maintaining a solid user perspective. Physical models include both PDEs (Partial Differential Equations) and ODEs (Ordinary Differential Equations) and experimental based closure models. RELAP-7 will eventually utilize well posed governing equations for multiphase flow, which can be strictly verified. Closure models used in RELAP5 and newly developed models will be reviewed and selected to reflect the progress made during the past three decades. RELAP-7 uses modern numerical methods, which allow implicit time integration, higher order schemes in both time and space, and strongly coupled multi-physics simulations. RELAP-7 is written with object oriented programming language C++. Its development follows modern software design paradigms. The code is easy to read, develop, maintain, and couple with other codes. Most importantly, the modern software design allows the RELAP-7 code to

  19. Developmental assessment of the multidimensional component in RELAP5 for Savannah River Site thermal hydraulic analysis

    International Nuclear Information System (INIS)

    Hanson, R.G.; Johnson, E.C.; Carlson, K.E.; Chou, C.Y.; Davis, C.B.; Martin, R.P.; Riemke, R.A.; Wagner, R.J.

    1992-07-01

    This report documents ten developmental assessment problems which were used to test the multidimensional component in RELAP5/MOD2.5, Version 3w. The problems chosen were a rigid body rotation problem, a pure radial symmetric flow problem, an r-θ symmetric flow problem, a fall problem, a rest problem, a basic one-dimensional flow test problem, a gravity wave problem, a tank draining problem, a flow through the center problem, and coverage analysis using PIXIE. The multidimensional code calculations are compared to analytical solutions and one-dimensional code calculations. The discussion section of each problem contains information relative to the code's ability to simulate these problems

  20. Paramagnetism and antiferromagnetic interactions in single-phase Fe-implanted ZnO

    CERN Document Server

    Pereira, Lino Miguel da Costa; Correia, João Guilherme; Van Bael, M J; Temst, Kristiaan; Vantomme, André; Araújo, João Pedro

    2013-01-01

    As the intrinsic origin of the high temperature ferromagnetism often observed in wide-gap dilute magnetic semiconductors becomes increasingly debated, there is a growing need for comprehensive studies on the single-phase region of the phase diagram of these materials. Here we report on the magnetic and structural properties of Fe-doped ZnO prepared by ion implantation of ZnO single crystals. A detailed structural characterization shows that the Fe impurities substitute for Zn in ZnO in a wurtzite Zn$_{1−x}$Fe$_{x}$O phase which is coherent with the ZnO host. In addition, the density of beam-induced defects is progressively decreased by thermal annealing up to 900$^{\\circ}$C, from highly disordered after implantation to highly crystalline upon subsequent annealing. Based on a detailed analysis of the magnetometry data, we demonstrate that isolated Fe impurities occupying Zn substitutional sites behave as localized paramagnetic moments down to 2$^{\\circ}$K, irrespective of the Fe concentration and the density...

  1. A control strategy for induction motors fed from single phase supply

    DEFF Research Database (Denmark)

    Søndergård, Lars Møller

    1993-01-01

    It is often required that a three-phased asynchronous motor can run at variable speed, which makes it necessary to use a three-phase inverter driven from a DC-source. Today, most inverters are driven from the network using a simple diode bridge and an electrolytic capacitor. The problem with the ......It is often required that a three-phased asynchronous motor can run at variable speed, which makes it necessary to use a three-phase inverter driven from a DC-source. Today, most inverters are driven from the network using a simple diode bridge and an electrolytic capacitor. The problem...... with the simple diode bridge and the electrolytic capacitor is that current is only drawn for short periods, which gives rise to harmonic currents in the network. For small drive systems (motor+inverter), i.e. less than 1.5 kW, a single phase network outlet is often used. The author describes a method whereby...

  2. Green synthesis of isopropyl myristate in novel single phase medium Part I: Batch optimization studies

    Directory of Open Access Journals (Sweden)

    Rajeshkumar N. Vadgama

    2015-12-01

    Full Text Available Isopropyl myristate finds many applications in food, cosmetic and pharmaceutical industries as an emollient, thickening agent, or lubricant. Using a homogeneous reaction phase, non-specific lipase derived from Candida antartica, marketed as Novozym 435, was determined to be most suitable for the enzymatic synthesis of isopropyl myristate. The high molar ratio of alcohol to acid creates novel single phase medium which overcomes mass transfer effects and facilitates downstream processing. The effect of various reaction parameters was optimized to obtain a high yield of isopropyl myristate. Effect of temperature, agitation speed, organic solvent, biocatalyst loading and batch operational stability of the enzyme was systematically studied. The conversion of 87.65% was obtained when the molar ratio of isopropyl alcohol to myristic acid (15:1 was used with 4% (w/w catalyst loading and agitation speed of 150 rpm at 60 °C. The enzyme has also shown good batch operational stability under optimized conditions.

  3. Single Phase Passive Rectification Versus Active Rectification Applied to High Power Stirling Engines

    Science.gov (United States)

    Santiago, Walter; Birchenough, Arthur G.

    2006-01-01

    Stirling engine converters are being considered as potential candidates for high power energy conversion systems required by future NASA explorations missions. These types of engines typically contain two major moving parts, the displacer and the piston, in which a linear alternator is attached to the piston to produce a single phase sinusoidal waveform at a specific electric frequency. Since all Stirling engines perform at low electrical frequencies (less or equal to 100 Hz), space explorations missions that will employ these engines will be required to use DC power management and distribution (PMAD) system instead of an AC PMAD system to save on space and weight. Therefore, to supply such DC power an AC to DC converter is connected to the Stirling engine. There are two types of AC to DC converters that can be employed, a passive full bridge diode rectifier and an active switching full bridge rectifier. Due to the inherent line inductance of the Stirling Engine-Linear Alternator (SE-LA), their sinusoidal voltage and current will be phase shifted producing a power factor below 1. In order to keep power the factor close to unity, both AC to DC converters topologies will implement power factor correction. This paper discusses these power factor correction methods as well as their impact on overall mass for exploration applications. Simulation results on both AC to DC converters topologies with power factor correction as a function of output power and SE-LA line inductance impedance are presented and compared.

  4. Radiation-induced segregation on defect clusters in single-phase concentrated solid-solution alloys

    International Nuclear Information System (INIS)

    Lu, Chenyang; Yang, Taini; Jin, Ke; Gao, Ning; Xiu, Pengyuan; Zhang, Yanwen; Gao, Fei; Bei, Hongbin; Weber, William J.; Sun, Kai; Dong, Yan; Wang, Lumin

    2017-01-01

    A group of single-phase concentrated solid-solution alloys (SP-CSAs), including NiFe, NiCoFe, NiCoFeCr, as well as a high entropy alloy NiCoFeCrMn, was irradiated with 3 MeV Ni"2"+ ions at 773 K to a fluence of 5 × 10"1"6 ions/cm"2 for the study of radiation response with increasing compositional complexity. Advanced transmission electron microscopy (TEM) with electron energy loss spectroscopy (EELS) was used to characterize the dislocation loop distribution and radiation-induced segregation (RIS) on defect clusters in the SP-CSAs. The results show that a higher fraction of faulted loops exists in the more compositionally complex alloys, which indicate that increasing compositional complexity can extend the incubation period and delay loop growth. The RIS behaviors of each element in the SP-CSAs were observed as follows: Ni and Co tend to enrich, but Cr, Fe and Mn prefer to deplete near the defect clusters. RIS level can be significantly suppressed by increasing compositional complexity due to the sluggish atom diffusion. According to molecular static (MS) simulations, “disk” like segregations may form near the faulted dislocation loops in the SP-CSAs. Segregated elements tend to distribute around the whole faulted loop as a disk rather than only around the edge of the loop.

  5. Improved Reliability of Single-Phase PV Inverters by Limiting the Maximum Feed-in Power

    DEFF Research Database (Denmark)

    Yang, Yongheng; Wang, Huai; Blaabjerg, Frede

    2014-01-01

    Grid operation experiences have revealed the necessity to limit the maximum feed-in power from PV inverter systems under a high penetration scenario in order to avoid voltage and frequency instability issues. A Constant Power Generation (CPG) control method has been proposed at the inverter level...... devices, allowing a quantitative prediction of the power device lifetime. A study case on a 3 kW single-phase PV inverter has demonstrated the advantages of the CPG control in terms of improved reliability.......Grid operation experiences have revealed the necessity to limit the maximum feed-in power from PV inverter systems under a high penetration scenario in order to avoid voltage and frequency instability issues. A Constant Power Generation (CPG) control method has been proposed at the inverter level....... The CPG control strategy is activated only when the DC input power from PV panels exceeds a specific power limit. It enables to limit the maximum feed-in power to the electric grids and also to improve the utilization of PV inverters. As a further study, this paper investigates the reliability performance...

  6. Single-phase heat transfer enhancement in micro/minichannels using nanofluids: Theory and applications

    International Nuclear Information System (INIS)

    Hussien, Ahmed A.; Abdullah, Mohd Z.; Al-Nimr, Moh’d A.

    2016-01-01

    Highlights: • Review recent experimental and numerical studies on heat transfer in micro/minichannels and nanofluids. • Display the new applications of using nanofluids and micro/minichannels to enhance thermal performance. • Explain the factors affecting the thermal conductivity enhancement ratio of nanofluids. • The challenges of using the mini/microchannels and nanofluids. - Abstract: New cooling techniques are being explored for the dissipation of heat fluxes. Many recent studies on heat transfer in micro/minichannels (M/MCs) with nanofluids have focused on combining the advantages of both, for the purpose of obtaining higher single-phase enhancement of heat transfer. Developing of many applications such as cooling electronic device, solar cell, and automotive technology is highly demanded now a day to obtain high efficiency and reduce the operating cost. This review article summarizes recent studies, with a focus on two main topics: The first part contains the main concepts such as scaling effects of M/MCs, physical properties and convective heat transfer. The second part displays the main recent applications of M/MCs with nanofluids with the challenges to be widely used. The purpose of this article to provide exhaustive and comprehensive review of updated works published in this new area, with general conclusions.

  7. Modified Dual Three-Pulse Modulation technique for single-phase inverter topology

    Science.gov (United States)

    Sree Harsha, N. R.; Anitha, G. S.; Sreedevi, A.

    2016-01-01

    In a recent paper, a new modulation technique called Dual Three Pulse Modulation (DTPM) was proposed to improve the efficiency of the power converters of the Electric/Hybrid/Fuel-cell vehicles. It was simulated in PSIM 9.0.4 and uses analog multiplexers to generate the modulating signals for the DC/DC converter and inverter. The circuit used is complex and many other simulation softwares do not support the analog multiplexers as well. Also, the DTPM technique produces modulating signals for the converter, which are essentially needed to produce the modulating signals for the inverter. Hence, it cannot be used efficiently to switch the valves of a stand-alone inverter. We propose a new method to generate the modulating signals to switch MOSFETs of a single phase Dual-Three pulse Modulation based stand-alone inverter. The circuits proposed are simulated in Multisim 12.0. We also show an alternate way to switch a DC/DC converter in a way depicted by DTPM technique both in simulation (MATLAB/Simulink) and hardware. The circuitry is relatively simple and can be used for the further investigations of DTPM technique.

  8. Inertial piezoelectric linear motor driven by a single-phase harmonic wave with automatic clamping mechanism

    Science.gov (United States)

    He, Liangguo; Chu, Yuheng; Hao, Sai; Zhao, Xiaoyong; Dong, Yuge; Wang, Yong

    2018-05-01

    A novel, single-phase, harmonic-driven, inertial piezoelectric linear motor using an automatic clamping mechanism was designed, fabricated, and tested to reduce the sliding friction and simplify the drive mechanism and power supply control of the inertial motor. A piezoelectric bimorph and a flexible hinge were connected in series to form the automatic clamping mechanism. The automatic clamping mechanism was used as the driving and clamping elements. A dynamic simulation by Simulink was performed to prove the feasibility of the motor. The finite element method software COMSOL was used to design the structure of the motor. An experimental setup was built to validate the working principle and evaluate the performance of the motor. The prototype motor outputted a no-load velocity of 3.178 mm/s at a voltage of 220 Vp-p and a maximum traction force of 4.25 N under a preload force of 8 N. The minimum resolution of 1.14 μm was achieved at a driving frequency of 74 Hz, a driving voltage of 50 Vp-p, and a preload force of 0 N.

  9. ASSERT validation against the Stern Laboratories' single-phase pressure drop tests

    International Nuclear Information System (INIS)

    Waddington, G.M.; Kiteley, J.C.; Carver, M.B.

    1995-01-01

    This paper describes the preliminary validation of ASSERT-IV against the single-phase pressure drop tests from the 37-element CHF (critical heat flux) experiments conducted at Stern Laboratories, and shows how this study fits into the overall ASSERT validation plan. The effects on the pressure drop of several friction and form loss models are evaluated, including the geometry-based K-factor model. The choice of friction factor has a small effect on the predicted channel pressure drop, compared to the form loss model choice. Using the uniform K-factors of Hameed, the computed pressure drops are in excellent agreement with the experimental results from the nominal pressure tube tests. For future ASSERT applications, either Hameed's uniform K-factors or the geometry-based model using Idelchik's thick-edged orifice equation are recommended, as are the friction factor correlations of Colebrook-White, Selander, and Aly and Groeneveld. More analysis of the geometry-based K-factor model is required. (author). 23 refs., 4 tabs., 9 figs

  10. Development of a single-phase 30 m HTS power cable

    Science.gov (United States)

    Cho, Jeonwook; Bae, Joon-Han; Kim, Hae-Jong; Sim, Ki-Deok; Kim, Seokho; Jang, Hyun-Man; Lee, Chang-Young; Kim, Dong-Wook

    2006-05-01

    HTS power transmission cables appear to be the replacement and retrofitting of underground cables in urban areas and HTS power transmission cable offers a number of technical and economic merits compared to the normal conductor cable system. A 30 m long, single-phase 22.9 kV class HTS power transmission cable system has been developed by Korea Electrotechnology Research Institute (KERI), LS Cable Ltd., and Korea Institute of Machinery and Materials (KIMM), which is one of the 21st century frontier project in Korea since 2001. The HTS power cable has been developed, cooled down and tested to obtain realistic thermal and electrical data on HTS power cable system. The evaluation results clarified such good performance of HTS cable that DC critical current of the HTS cable was 3.6 kA and AC loss was 0.98 W/m at 1260 Arms and shield current was 1000 Arms. These results proved the basic properties for 22.9 kV HTS power cable. As a next step, we have been developing a 30 m, three-phase 22.9 kV, 50 MV A HTS power cable system and long term evaluation is in progress now.

  11. Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors

    International Nuclear Information System (INIS)

    Liao, Xiaofeng; Zhu, Shuangyan; Zhong, Delai; Zhu, Jingping; Liao, Li

    2014-01-01

    Highlights: • Anaerobic co-digestion strategy for food waste treatment at OLR 41.8 g VS/L. • A certain amount of raw leachate effectively relieved acidic inhibition. • The study showed that food waste was completely degraded. - Abstract: In order to investigate the effect of raw leachate on anaerobic digestion of food waste, co-digestions of food waste with raw leachate were carried out. A series of single-phase batch mesophilic (35 ± 1 °C) anaerobic digestions were performed at a food waste concentration of 41.8 g VS/L. The results showed that inhibition of biogas production by volatile fatty acids (VFA) occurred without raw leachate addition. A certain amount of raw leachate in the reactors effectively relieved acidic inhibition caused by VFA accumulation, and the system maintained stable with methane yield of 369–466 mL/g VS. Total ammonia nitrogen introduced into the digestion systems with initial 2000–3000 mgNH 4 –N/L not only replenished nitrogen for bacterial growth, but also formed a buffer system with VFA to maintain a delicate biochemical balance between the acidogenic and methanogenic microorganisms. UV spectroscopy and fluorescence excitation–emission matrix spectroscopy data showed that food waste was completely degraded. We concluded that using raw leachate for supplement water addition and pH modifier on anaerobic digestion of food waste was effective. An appropriate fraction of leachate could stimulate methanogenic activity and enhance biogas production

  12. Single-phased Fault Location on Transmission Lines Using Unsynchronized Voltages

    Directory of Open Access Journals (Sweden)

    ISTRATE, M.

    2009-10-01

    Full Text Available The increased accuracy into the fault's detection and location makes it easier for maintenance, this being the reason to develop new possibilities for a precise estimation of the fault location. In the field literature, many methods for fault location using voltages and currents measurements at one or both terminals of power grids' lines are presented. The double-end synchronized data algorithms are very precise, but the current transformers can limit the accuracy of these estimations. The paper presents an algorithm to estimate the location of the single-phased faults which uses only voltage measurements at both terminals of the transmission lines by eliminating the error due to current transformers and without introducing the restriction of perfect data synchronization. In such conditions, the algorithm can be used with the actual equipment of the most power grids, the installation of phasor measurement units with GPS system synchronized timer not being compulsory. Only the positive sequence of line parameters and sources are used, thus, eliminating the incertitude in zero sequence parameter estimation. The algorithm is tested using the results of EMTP-ATP simulations, after the validation of the ATP models on the basis of registered results in a real power grid.

  13. Cost Optimal Design of a Single-Phase Dry Power Transformer

    Directory of Open Access Journals (Sweden)

    Raju Basak

    2015-08-01

    Full Text Available The Dry type transformers are preferred to their oil-immersed counterparts for various reasons, particularly because their operation is hazardless. The application of dry transformers was limited to small ratings in the earlier days. But now these are being used for considerably higher ratings.  Therefore, their cost-optimal design has gained importance. This paper deals with the design procedure for achieving cost optimal design of a dry type single-phase power transformer of small rating, subject to usual design constraints on efficiency and voltage regulation. The selling cost for the transformer has been taken as the objective function. Only two key variables have been chosen, the turns/volt and the height: width ratio of window, which affects the cost function to high degrees. Other variables have been chosen on the basis of designers’ experience. Copper has been used as conductor material and CRGOS as core material to achieve higher efficiency, lower running cost and compact design. The electrical and magnetic loadings have been kept at their maximum values without violating the design constraints. The optimal solution has been obtained by the method of exhaustive search using nested loops.

  14. Oxidation kinetics of a Pb-64 at.% In single-phase alloy

    International Nuclear Information System (INIS)

    Zhang, M.X.; Chang, Y.A.; Marcotte, V.C.

    1991-01-01

    The solid-state oxidation kinetics of a Pb-64 at.% IN(50 wt.%) single-phase alloy were studied from room temperature to 150C using AES (Auger Electron Spectroscopy) depth profiling technique. The general oxidation behavior of this alloy is different from that of a Pb-3 at.% In alloy but similar to that of a Pb-30 at.% In alloy. The oxide formed on this alloy is almost pure In oxide (In 2 O 3 ) with the possible existence of some In suboxide near the oxide/alloy interface. At room temperature, oxidation of the alloy follows a direct logarithmic law, and the results can be described by the model proposed previously by Zhang, Chang, and Marcotte. At temperatures higher than 75C, rapid oxidation occurred initially followed by a slower parabolic oxidation at longer time. These data were described quantitatively by the model which assumes the existence of short-circuit diffusion in addition to lattice diffusion in the oxide as proposed by Smeltzer, Haering, and Kirkaldy. The effects of alloy composition in the oxidation kinetics of (pb, In) alloy are also examined by comparing the data for Pb-3, 30, and 64 at.% In alloys

  15. A single-phase embedded Z-source DC-AC inverter.

    Science.gov (United States)

    Kim, Se-Jin; Lim, Young-Cheol

    2014-01-01

    In the conventional DC-AC inverter consisting of two DC-DC converters with unipolar output capacitors, the output capacitor voltages of the DC-DC converters must be higher than the DC input voltage. To overcome this weakness, this paper proposes a single-phase DC-AC inverter consisting of two embedded Z-source converters with bipolar output capacitors. The proposed inverter is composed of two embedded Z-source converters with a common DC source and output AC load. Though the output capacitor voltages of the converters are relatively low compared to those of a conventional inverter, an equivalent level of AC output voltages can be obtained. Moreover, by controlling the output capacitor voltages asymmetrically, the AC output voltage of the proposed inverter can be higher than the DC input voltage. To verify the validity of the proposed inverter, experiments were performed with a DC source voltage of 38 V. By controlling the output capacitor voltages of the converters symmetrically or asymmetrically, the proposed inverter can produce sinusoidal AC output voltages. The experiments show that efficiencies of up to 95% and 97% can be achieved with the proposed inverter using symmetric and asymmetric control, respectively.

  16. The single-phase multiferroic oxides: from bulk to thin film

    International Nuclear Information System (INIS)

    Prellier, W; Singh, M P; Murugavel, P

    2005-01-01

    Complex perovskite oxides exhibit a rich spectrum of properties, including magnetism, ferroelectricity, strongly correlated electron behaviour, superconductivity and magnetoresistance, which have been research areas of great interest among the scientific and technological community for decades. There exist very few materials which exhibit multiple functional properties; one such class of materials is called the multiferroics. Multiferroics are interesting because they exhibit simultaneously ferromagnetic and ferroelectric polarizations and a coupling between them. Due to the nontrivial lattice coupling between the magnetic and electronic domains (the magnetoelectric effect), the magnetic polarization can be switched by applying an electric field; likewise the ferroelectric polarization can be switched by applying a magnetic field. As a consequence, multiferroics offer rich physics and novel devices concepts, which have recently become of great interest to researchers. In this review article the recent experimental status, for both the bulk single phase and the thin film form, has been presented. Current studies on the ceramic compounds in the bulk form including Bi(Fe,Mn)O 3 , REMnO 3 and the series of REMn 2 O 5 single crystals (RE = rare earth) are discussed in the first section and a detailed overview on multiferroic thin films grown artificially (multilayers and nanocomposites) is presented in the second section. (topical review)

  17. Low-temperature synthesis of single-phase Co7Sb2O12

    International Nuclear Information System (INIS)

    Brito, M.S.L.; Escote, M.T.; Santos, C.O.P.; Lisboa-Filho, P.N.; Leite, E.R.; Oliveira, J.B.L.; Gama, L.; Longo, E.

    2004-01-01

    Polycrystalline Co 7 Sb 2 O 12 compounds have been synthesized by a chemical route, which is based on a modified polymeric precursor method. In order to study the physical properties of the samples, X-ray diffraction (XRD), thermal analyses (TG and DSC), infrared spectroscopy (IR), specific surface area (BET), and magnetization measurements were performed on these materials. Characterization through XRD revealed that the samples are single-phase after a heat-treatment at 1100 deg. C for 2 h, while the X-ray patterns of the samples heat-treated at lower temperatures revealed the presence of additional Bragg reflections belonging to the Co 6 Sb 2 O 6 phase. These data were analyzed by means of Rietveld refinement and further analyze showed that Co 7 Sb 2 O 12 displays an inverse spinel crystalline structure. In this structure, the Co 2+ ions occupy the eight tetrahedral positions, and the sixteen octahedral positions are randomly occupied by the Sb 5+ and Co 2+ ions. IR studies disclosed two strong absorption bands, ν 1 and ν 2 , in the expected spectral range for a spinel-type binary oxide with space group Fd3m. Exploratory studies concerning the magnetic properties indicated that this sample presents a spin-glass transition at T f ∼ 64 K

  18. Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Xiaofeng; Zhu, Shuangyan; Zhong, Delai; Zhu, Jingping, E-mail: jpzhuhust@163.com; Liao, Li, E-mail: liaoli2003@126.com

    2014-11-15

    Highlights: • Anaerobic co-digestion strategy for food waste treatment at OLR 41.8 g VS/L. • A certain amount of raw leachate effectively relieved acidic inhibition. • The study showed that food waste was completely degraded. - Abstract: In order to investigate the effect of raw leachate on anaerobic digestion of food waste, co-digestions of food waste with raw leachate were carried out. A series of single-phase batch mesophilic (35 ± 1 °C) anaerobic digestions were performed at a food waste concentration of 41.8 g VS/L. The results showed that inhibition of biogas production by volatile fatty acids (VFA) occurred without raw leachate addition. A certain amount of raw leachate in the reactors effectively relieved acidic inhibition caused by VFA accumulation, and the system maintained stable with methane yield of 369–466 mL/g VS. Total ammonia nitrogen introduced into the digestion systems with initial 2000–3000 mgNH{sub 4}–N/L not only replenished nitrogen for bacterial growth, but also formed a buffer system with VFA to maintain a delicate biochemical balance between the acidogenic and methanogenic microorganisms. UV spectroscopy and fluorescence excitation–emission matrix spectroscopy data showed that food waste was completely degraded. We concluded that using raw leachate for supplement water addition and pH modifier on anaerobic digestion of food waste was effective. An appropriate fraction of leachate could stimulate methanogenic activity and enhance biogas production.

  19. A single-phase model for liquid-feed DMFCs with non-Tafel kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Vera, Marcos [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganes (Spain)

    2007-09-27

    An isothermal single-phase 3D/1D model for liquid-feed direct methanol fuel cells (DMFC) is presented. Three-dimensional (3D) mass, momentum and species transport in the anode channels and gas diffusion layer is modeled using a commercial, finite-volume based, computational fluid dynamics (CFD) software complemented with user supplied subroutines. The 3D model is locally coupled to a one-dimensional (1D) model accounting for the electrochemical reactions in both the anode and the cathode, which provides a physically sound boundary condition for the velocity and methanol concentration fields at the anode gas diffusion layer/catalyst interface. The 1D model - comprising the membrane-electrode assembly, cathode gas diffusion layer, and cathode channel - assumes non-Tafel kinetics to describe the complex kinetics of the multi-step methanol oxidation reaction at the anode, and accounts for the mixed potential associated with methanol crossover, induced both by diffusion and electro-osmotic drag. Polarization curves computed for various methanol feed concentrations, temperatures, and methanol feed velocities show good agreement with recent experimental results. The spatial distribution of methanol in the anode channels, together with the distributions of current density, methanol crossover and fuel utilization at the anode catalyst layer, are also presented for different opperating conditions. (author)

  20. Synthesis of single phase of CuTl-1234 thin films

    CERN Document Server

    Khan, N A; Ishida, K; Tateai, F; Kojima, T; Terada, N; Ihara, H

    1999-01-01

    Thin films of CuTl-1234 superconductor have been prepared for the first time using an amorphous phase epitaxy method (APE). In this method, an amorphous phase is sputtered from a target of stoichiometric composition CuBa/sub 2/Ca/sub 3/Cu/sub 4/O/sub x/. Thin films on the SrTiO/sub 3/ substrate after the thallium treatment are biaxially oriented. The XRD reflected a predominant single phase with c-axis 18.7 AA and pole figure measurements of (103) reflections showed a-axis oriented films with Delta phi =0.8 degrees . Resistivity measurements showed T/sub c/=113 K and preliminary J/sub c/ measurements manifested a current density of 1.0*10/sup 6/ A/cm (77 K, 0 T). The composition of films after EDX measurements is Cu /sub 0.3/Tl/sub 0.7/CuBa/sub 2/Ca/sub 3/Cu/sub 4/O/sub 12-y/. (8 refs).

  1. Design And Development Of An Automatic Single Phase Protective Device Using Ssr

    Directory of Open Access Journals (Sweden)

    Michael E.

    2017-10-01

    Full Text Available Since the discovery of energy safety has been a paramount subject matter. This we can see in todays electrical systems where protective devices such as fuse and circuit breakers are used to prevent fire hazards resulting from overload overvoltage and short circuits. However with all the revolution in technology these options may be considered less smart since the fuse made with wire strands calculated for specific current capacity faults permanently when the specified current rating is exceeded. While the circuit breaker which is made up of mechanical switch fails as a result of carbon forming and the wearing away of the contacts because of arcing. As a means of improvement this paper presents the design and development of an automatic single phase protective device using solid state relay SSR. This study is to ensure automatic cut off from power supply in cases of overvoltage above 240 V AC or when overload and short circuit current above 8amps is detected without permanent damage of a fuse placed along current path. Also the design will ensure that there is an automatic close circuit whenever the trigger switch is momentary switch is closed. The system is achieved via the use of PIC micro-controller current sensor and other discrete components. The system is tested and works well inhibiting the frequent faulting of fuses. It also helps to prevent hazard as a result of overvoltage overload and short circuit and ensures a close circuit when the trigger switch is closed.

  2. Multidimensional evaluation on FR cycle systems

    International Nuclear Information System (INIS)

    Nakai, Ryodai; Fujii, Sumio; Takakuma, Katsuyuki; Katoh, Atsushi; Ono, Kiyoshi; Ohtaki, Akira; Shiotani, Hiroki

    2004-01-01

    This report explains some results of the multidimensional evaluation on various fast reactor cycle system concepts from an interim report of the 2nd phase of ''Feasibility Study on Commercialized FR Cycle System''. This method is designed to give more objective and more quantitative evaluations to clarify commercialized system candidate concepts. Here we brief current evaluation method from the five viewpoints of safety, economy, environment, resource and non-proliferation, with some trial evaluation results for some cycles consist of promising technologies in reactor, core and fuel, reprocessing and fuel manufacture. Moreover, we describe FR cycle deployment scenarios which describe advantages and disadvantages of the cycles from the viewpoints of uranium resource and radioactive waste based on long-term nuclear material mass flow analyses and advantages of the deployment of FR cycle itself from the viewpoints of the comparison with alternative power supplies as well as cost and benefit. (author)

  3. Summary and implications of out-of-pile investigations of local cooling disturbances in LMFBR subassembly geometry under single-phase and boiling conditions

    International Nuclear Information System (INIS)

    Huber, F.; Peppler, W.

    1985-05-01

    The consequences of local cooling disturbances in subassemblies of LMFBRs have been investigated out-of-pile at KfK. Flow and temperature distributions in the disturbed region as well as cooling under boiling conditions up to loss of cooling were investigated. Fission gas release was simulated by gas injection. A total of 16 different blockages in 20 test set-ups were used, four of them under sodium and the rest under water conditions. Mainly planar plates of different sizes and arrangements were used as blockages. In some of the experiments performed in water also porous blockages were investigated. The test sections consisted of electrically heated pin bundles with a thermal-hydraulic characteristic corresponding to that of an SNR 300 subassembly. With different parameter settings the single-phase tests in water furnished a multitude of test results on flow and temperature fields and on the behaviour of gas in the recirculation zone. In the experiments involving boiling two boiling patterns were observed: steady-state boiling and oscillating boiling. With increasing boiling intensity the boiling region grew to some extent, but it remained always confined to the blocked zone because of the relatively cold sodium flow around this zone. In the experiments simulating fission gas release it was found that under certain conditions gas accumulates in the reverse flow region behind a blockage and leads to loss of cooling. (orig./GL) [de

  4. Research on High Efficient Single-Phase Multi-Stage Interleaved Bridgeless PFC Frontend for Class-D Amplifiers

    DEFF Research Database (Denmark)

    Li, Qingnan; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2012-01-01

    In this paper, a 3.5kW single-phase high efficient interleaved Bridgeless PFC (IBPFC) is proposed for class-D amplifiers. This topology achieves a relatively higher efficiency in a wide output power range, which helps to reduce the energy consuming of the whole system. In addition, a detailed...

  5. Performance Evaluation of the Single-Phase Split-Source Inverter Using an Alternative DC-AC Configuration

    DEFF Research Database (Denmark)

    Abdelhakim, Ahmed; Mattavelli, Paolo; Davari, Pooya

    2018-01-01

    This paper investigates and evaluates the performance of a single-phase split-source inverter (SSI), where an alternative unidirectional dc-ac configuration is used. Such configuration is utilized in order to use two common-cathode diodes in a single-device instead of using two separate diodes, r...

  6. High Performance Harmonic Isolation By Means of The Single-phase Series Active Filter Employing The Waveform Reconstruction Method

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Hava, Ahmet M.

    2009-01-01

    current sampling delay reduction method (SDRM), a single-phase SAF compensated system provides higher harmonic isolation performance and higher stability margins compared to the system using conventional synchronous reference frame based methods. The analytical, simulation, and experimental studies of a 2...

  7. A Novel Neural Network Vector Control for Single-Phase Grid-Connected Converters with L, LC and LCL Filters

    Directory of Open Access Journals (Sweden)

    Xingang Fu

    2016-04-01

    Full Text Available This paper investigates a novel recurrent neural network (NN-based vector control approach for single-phase grid-connected converters (GCCs with L (inductor, LC (inductor-capacitor and LCL (inductor-capacitor-inductor filters and provides their comparison study with the conventional standard vector control method. A single neural network controller replaces two current-loop PI controllers, and the NN training approximates the optimal control for the single-phase GCC system. The Levenberg–Marquardt (LM algorithm was used to train the NN controller based on the complete system equations without any decoupling policies. The proposed NN approach can solve the decoupling problem associated with the conventional vector control methods for L, LC and LCL-filter-based single-phase GCCs. Both simulation study and hardware experiments demonstrate that the neural network vector controller shows much more improved performance than that of conventional vector controllers, including faster response speed and lower overshoot. Especially, NN vector control could achieve very good performance using low switch frequency. More importantly, the neural network vector controller is a damping free controller, which is generally required by a conventional vector controller for an LCL-filter-based single-phase grid-connected converter and, therefore, can overcome the inefficiency problem caused by damping policies.

  8. Control strategy for Single-phase Transformerless Three-leg Unified Power Quality Conditioner Based on Space Vector Modulation

    DEFF Research Database (Denmark)

    Lu, Yong; Xiao, Guochun; Wang, Xiongfei

    2016-01-01

    The unified power quality conditioner (UPQC) is known as an effective compensation device to improve PQ for sensitive end-users. This paper investigates the operation and control of a single-phase three-leg UPQC (TL-UPQC), where a novel space vector modulation method is proposed for naturally...

  9. A Single-Phase Voltage-Controlled Grid-Connected Photovoltaic System With Power Quality Conditioner Functionality

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Liserre, Marco; Mastromauro, R. A.

    2009-01-01

    Future ancillary services provided by photovoltaic (PV) systems could facilitate their penetration in power systems. Also low power PV systems can be designed to improve the power quality. This paper presents a single-phase photovoltaic system that provides grid voltage support and compensation o...

  10. Analysis and MPPT control of a wind-driven three-phase induction generator feeding single-phase utility grid

    Directory of Open Access Journals (Sweden)

    Krishnan Arthishri

    2017-05-01

    Full Text Available In this study, a three-phase diode bridge rectifier and a single-phase voltage source inverter topology has been proposed for feeding single-phase utility grid employing a three-phase induction generator fed from wind energy. A self-excited induction generator configuration has been chosen for wide speed operation of wind turbine system, which gives the scope for extracting maximum power available in the wind. In addition to maximum power point tracking (MPPT, the generator can be loaded to its rated capacity for feeding single-phase utility grid using a three-phase induction machine, whereas it is not possible with existing configurations because of the absence of power converters. For the proposed system, MPPT algorithm has been devised by continuously monitoring the grid current and a proportional resonant controller has been employed for grid synchronisation of voltage source inverter with single-phase grid. A MATLAB/Simulink model of the proposed system has been developed to ascertain its successful working by predetermining the overall performance characteristics. The present proposal has also been tested with sag, swell and distortion in the grid voltage. The control strategy has been implemented using field programmable gate array (FPGA controller with modularised programming approach. The efficacy of the system has been demonstrated with the results obtained from an experimental set-up in the laboratory.

  11. Low-Complexity Model Predictive Control of Single-Phase Three-Level Rectifiers with Unbalanced Load

    DEFF Research Database (Denmark)

    Ma, Junpeng; Song, Wensheng; Wang, Xiongfei

    2018-01-01

    The fluctuation of the neutral-point potential in single-phase three-level rectifiers leads to coupling between the line current regulation and dc-link voltage balancing, deteriorating the quality of line current. For addressing this issue, this paper proposes a low-complexity model predictive...

  12. Adjusting output impedance using a PI controller to improve the stability of a single-phase inverter under weak grid

    Directory of Open Access Journals (Sweden)

    Jiao Jiao

    2016-11-01

    Full Text Available Explored in this paper is the grid impedance effect on the stability of a single-phase grid connected inverter with an LC filter based on an analysis of the inverter output impedance. For a single-phase grid connected inverter, a PI controller is often used to regulate the current injected into the grid. However, the control performance can be influenced when the inverter is connected to a weak grid. Also, the utility grid has background harmonic noise, which can make the injected current distorted. Therefore, analysis of the output impedance of a single-phase grid connected inverter is important for the robustness and stability of the system. By modeling the output impedance of inverter, it can be determined that the proportional gain and integral gain of the controller have an effect on the output impedance. Analytical results show that by adjusting the PI controller parameters, the ability for harmonic reduction and stability of the system can be improved. Simulation and experiments using a 1 kW single-phase grid connected inverter verify the effectiveness of the theoretical analysis.

  13. Design and Tuning of a Modified Power-Based PLL for Single-Phase Grid-Connected Power Conditioning Systems

    DEFF Research Database (Denmark)

    Golestan, Saeed; Monfared, Mohammad; D. Freijedo, Francisco

    2012-01-01

    One of the most important aspects for the proper operation of the single-phase grid-tied power-conditioning systems is the synchronization with the utility grid. Among various synchronization techniques, phase locked loop (PLL) based algorithms have found a lot of interest for the advantages...

  14. High performance control strategy for single-phase three-level neutral-point-clamped traction four-quadrant converters

    DEFF Research Database (Denmark)

    Kejian, Song; Konstantinou, Georgios; Jing, Li

    2017-01-01

    Operational data from Chinese railways indicate a number of challenges for traction four-quadrant converter (4QC) control including low-order voltage and current harmonics and reference tracking. A control strategy for a single-phase three-level neutral-point-clamped 4QC employed in the electric...

  15. A Hybrid Estimator for Active/Reactive Power Control of Single-Phase Distributed Generation Systems with Energy Storage

    DEFF Research Database (Denmark)

    Pahlevani, Majid; Eren, Suzan; Guerrero, Josep M.

    2016-01-01

    This paper presents a new active/reactive power closed-loop control system for a hybrid renewable energy generation system used for single-phase residential/commercial applications. The proposed active/reactive control method includes a hybrid estimator, which is able to quickly and accurately es...

  16. A Synchronization Scheme for Single-Phase Grid-Tied Inverters Under Harmonic Distortion and Grid Disturbances

    DEFF Research Database (Denmark)

    Hadjidemetriou, Lenos; Kyriakides, Elias; Yang, Yongheng

    2016-01-01

    Synchronization is a crucial aspect in grid-tied systems, including single-phase photovoltaic inverters, and it can affect the overall performance of the system. Among prior-art synchronization schemes, the Multi Harmonic Decoupling Cell Phase-Locked Loop (MHDC-PLL) presents a fast response under...

  17. An Islanding Detection Method by Using Frequency Positive Feedback Based on FLL for Single-Phase Microgrid

    DEFF Research Database (Denmark)

    Sun, Qinfei; Guerrero, Josep M.; Jing, Tianjun

    2017-01-01

    An active islanding detection method based on Frequency-Locked Loop (FLL) for constant power controlled inverter in single-phase microgrid is proposed. This method generates a phase shift comparing the instantaneous frequency obtained from FLL unit with the nominal frequency to modify the reference...

  18. Multi-dimensional Fuzzy Euler Approximation

    Directory of Open Access Journals (Sweden)

    Yangyang Hao

    2017-05-01

    Full Text Available Multi-dimensional Fuzzy differential equations driven by multi-dimen-sional Liu process, have been intensively applied in many fields. However, we can not obtain the analytic solution of every multi-dimensional fuzzy differential equation. Then, it is necessary for us to discuss the numerical results in most situations. This paper focuses on the numerical method of multi-dimensional fuzzy differential equations. The multi-dimensional fuzzy Taylor expansion is given, based on this expansion, a numerical method which is designed for giving the solution of multi-dimensional fuzzy differential equation via multi-dimensional Euler method will be presented, and its local convergence also will be discussed.

  19. Executive Information Systems' Multidimensional Models

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available Executive Information Systems are design to improve the quality of strategic level of management in organization through a new type of technology and several techniques for extracting, transforming, processing, integrating and presenting data in such a way that the organizational knowledge filters can easily associate with this data and turn it into information for the organization. These technologies are known as Business Intelligence Tools. But in order to build analytic reports for Executive Information Systems (EIS in an organization we need to design a multidimensional model based on the business model from the organization. This paper presents some multidimensional models that can be used in EIS development and propose a new model that is suitable for strategic business requests.

  20. ESTABLISHED MODES AND STATIC CHARACTERISTICS OF THREE-PHASE ASYNCHRONOUS MOTOR POWERED WITH SINGLE PHASE NETWORK

    Directory of Open Access Journals (Sweden)

    V. S. Malyar

    2016-01-01

    Full Text Available A mathematical model is developed to study the operation of three-phase asynchronous motor with squirrel-cage rotor when the stator winding is powered from a single phase network. To create a rotating magnetic field one of the phases is fed through the capacitor. Due to the asymmetry of power feed not only transients, but the steady-state regimes are dynamic, so they are described by differential equations in any coordinate system. Their study cannot be carried out with sufficient adequacy on the basis of known equivalent circuits and require the use of dynamic parameters. In the mathematical model the state equations of the circuits of the stator and rotor are composed in the stationary three phase coordinate system. Calculation of the established mode is performed by solving the boundary problem that makes it possible to obtain the coordinate dependences over the period, without calculation of the transient process. In order to perform it, the original nonlinear differential equations are algebraized by approximating the variables with the use of cubic splines. The resulting nonlinear system of algebraic equations is a discrete analogue of the initial system of differential equations. It is solved by parameter continuation method. To calculate the static characteristics as a function of a certain variable, the system is analytically differentiated, and then numerically integrated over this variable. In the process of integration, Newton's refinement is performed at each step or at every few steps, making it possible to implement the integration in just a few steps using Euler's method. Jacobi matrices in both cases are the same. To account for the current displacement in the rods of the squirrel-cage rotor, each of them, along with the squirrel-cage rings, is divided in height into several elements. This results in several squirrel-cage rotor windings which are represented by three-phase windings with magnetic coupling between them.

  1. A Single-Phase Multilevel PV Generation System with an Improved Ripple Correlation Control MPPT Algorithm

    Directory of Open Access Journals (Sweden)

    Manel Hammami

    2017-12-01

    Full Text Available The implementation of maximum power point tracking (MPPT schemes by the ripple correlation control (RCC algorithm is presented in this paper. A reference is made to single-phase single-stage multilevel photovoltaic (PV generation systems, when the inverter input variables (PV voltage and PV current have multiple low-frequency (ripple harmonics. The harmonic analysis is carried out with reference to a multilevel configuration consisting of an H-bridge inverter and level doubling network (LDN cell, leading to the multilevel inverter having double the output voltage levels as compared to the basic H-bridge inverter topology (i.e., five levels vs. three levels. The LDN cell is basically a half-bridge fed by a floating capacitor, with self-balancing voltage capability. The multilevel configuration introduces additional PV voltage and current low-frequency harmonics, perturbing the basic implementation of the RCC scheme (based on the second harmonic component, leading to malfunctioning. The proposed RCC algorithm employs the PV current and voltage harmonics at a specific frequency for the estimation of the voltage derivative of power dP/dV (or dI/dV, driving the PV operating point toward the maximum power point (MPP in a faster and more precise manner. The steady-state and transient performances of the proposed RCC-MPPT schemes have been preliminarily tested and compared using MATLAB/Simulink. Results have been verified by experimental tests considering the whole multilevel PV generation system, including real PV modules, multilevel insulated-gate bipolar transistor (IGBT inverters, and utility grids.

  2. White light emitting device based on single-phase CdS quantum dots

    Science.gov (United States)

    Li, Feng; Nie, Chao; You, Lai; Jin, Xiao; Zhang, Qin; Qin, Yuancheng; Zhao, Feng; Song, Yinglin; Chen, Zhongping; Li, Qinghua

    2018-05-01

    White light emitting diodes (WLEDs) based on quantum dots (QDs) are emerging as robust candidates for white light sources, however they are suffering from the problem of energy loss resulting from the re-absorption and self-absorption among the employed QDs of different peak wavelengths. It still remains a challenging task to construct WLEDs based on single-phase QD emitters. Here, CdS QDs with short synthesis times are introduced to the fabrication of WLEDs. With a short synthesis time, on one hand, CdS QDs with a small diameter with blue emission can be obtained. On the other hand, surface reconstruction barely has time to occur, and the surface is likely defect-ridden, which enables the existence of a broad emission covering the range of green, yellow and red regions. This is essential for the white light emission of CdS QDs, and is very important for WLED applications. The temporal evolution of the PL spectra for CdS QDs was obtained to investigate the influence of growth time on the luminescent properties. The CdS QDs with a growth time of 0.5 min exhibited a colour rendering index (CRI) of 79.5 and a correlated colour temperature (CCT) of 6238 K. With increasing reaction time, the colour coordinates of the CdS QDs will move away from the white light region in the CIE 1931 chromaticity diagram. By integrating the as prepared white light emission CdS QDs with a violet GaN chip, WLEDs were fabricated. The fabricated WLEDs exhibited a CRI of 87.9 and a CCT of 4619 K, which satisfy the demand of general illumination. The luminous flux and the luminous efficiency of the fabricated WLEDs, being less advanced than current commercial white light sources, can be further improved, meaning there is a need for much more in-depth studies on white light emission CdS QDs.

  3. Lagrangian multiforms and multidimensional consistency

    Energy Technology Data Exchange (ETDEWEB)

    Lobb, Sarah; Nijhoff, Frank [Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2009-10-30

    We show that well-chosen Lagrangians for a class of two-dimensional integrable lattice equations obey a closure relation when embedded in a higher dimensional lattice. On the basis of this property we formulate a Lagrangian description for such systems in terms of Lagrangian multiforms. We discuss the connection of this formalism with the notion of multidimensional consistency, and the role of the lattice from the point of view of the relevant variational principle.

  4. Cuba: Multidimensional numerical integration library

    Science.gov (United States)

    Hahn, Thomas

    2016-08-01

    The Cuba library offers four independent routines for multidimensional numerical integration: Vegas, Suave, Divonne, and Cuhre. The four algorithms work by very different methods, and can integrate vector integrands and have very similar Fortran, C/C++, and Mathematica interfaces. Their invocation is very similar, making it easy to cross-check by substituting one method by another. For further safeguarding, the output is supplemented by a chi-square probability which quantifies the reliability of the error estimate.

  5. Single-Phase Crossflow Mixing in a Vertical Tube Bundle Geometry : An Experimental Study

    NARCIS (Netherlands)

    Mahmood, A.

    2011-01-01

    The vertical rod/tube bundle geometry has a wide variety of industrial applications. Typical examples are the core of light water nuclear reactors (LWR) and vertical tube steam generators. In the core of a LWR, primarily coolant flows upward but their also exist a flow in lateral direction, called

  6. Verification of RELAP5/MOD3 with theoretical and numerical stability results on single-phase, natural circulation in a simple loop

    International Nuclear Information System (INIS)

    Ferreri, Juan C.; Ambrosini, Walter

    1998-01-01

    The theoretical results given by Pierre Welander are used to test the capability of the RELAP5 series of codes to predict instabilities in single-phase flow. These results are related to the natural circulation in a loop formed by two parallel adiabatic tubes with a point heat sink at the top and a point heat source at the bottom. A stability curve may be defined for laminar flow and was extended to consider turbulent flow. By a suitable selection of the ratio of the total buoyancy force in the loop to the friction resistance, the flow may show instabilities. The solution was useful to test two basic numerical properties of the RELAP5 code, namely: a) convergence to steady state flow-rate using a 'lumped parameter' approximation to both the heat source and sink and; b) the effect of nodalization to numerically damp the instabilities. It was shown that, using a single volume to lump the heat source and sink, it was not possible to reach convergence to steady state flow rate when the heated (cooled) length was diminished and the heat transfer coefficient increased to keep constant the total heat transferred to (and removed from) the fluid. An algebraic justification of these results is presented, showing that it is a limitation inherent to the numerical scheme adopted. Concerning the effect of nodalization on the damping of instabilities, it was shown that a 'reasonably fine' discretization led, as expected, to the damping of the solution. However, the search for convergence of numerical and theoretical results was successful, showing the expected nearly chaotic behavior. This search lead to very refined nodalization. The results obtained have also been verified by the use of simple, ad hoc codes. A procedure to assess the effects of nodalization on the prediction of instabilities threshold is outlined in this report. It is based on the experience gained with aforementioned simpler codes. (author)

  7. A residual-based a posteriori error estimator for single-phase Darcy flow in fractured porous media

    KAUST Repository

    Chen, Huangxin; Sun, Shuyu

    2016-01-01

    for the problem with non-intersecting fractures. The reliability and efficiency of the a posteriori error estimator are established for the error measured in an energy norm. Numerical results verifying the robustness of the proposed a posteriori error estimator

  8. Heaters to simulate fuel pins for heat transfer tests in single-phase liquid-metal-flow

    International Nuclear Information System (INIS)

    Casal, V.; Graf, E.; Hartmann, W.

    1976-09-01

    The development of heaters for thermal simulation of the fuel elements of liquid metal cooled fast breeder reactors (SNR) is reported. Beginning with the experimental demands various heating methods are discussed for thermodynamic investigations of the heat transfer in liquid metals. Then a preferred heater rod is derived to simulate the fuel pins of a SNR. Finally it is reported on the fabrication and the operation practice. (orig.) [de

  9. Shell-side single-phase flows and heat transfer in shell-and-tube heat exchangers, 4

    International Nuclear Information System (INIS)

    Matsushita, Hitoshi; Nakayama, Wataru; Yanagida, Takehiko; Kudo, Akio.

    1987-01-01

    Refering to the results of our previous works, a procedure for estimating the distribution of heat flux in shell-and-tube heat exchangers is proposed. The steam generator used in a high temperature reactor plant is taken up as the subject of analysis. Particular attention is paid to critical conditions for burnout and the strength of material in high temperature conditions. It is found that the distribution of heat transfer coefficient on the shell-side is crucial to the occurrence of burnout in the tubes. The use of a relatively large inlet nozzle (the ratio of its diameter to the shell is roughly half) is recommended. A low level of thermal stress on heat transfer tubes can be realized by the adoption of a relatively thin 2.25 Cr-1 Mo Steel tube wall of 1.24 mm thickness. (author)

  10. Stability of single-phase natural circulation with inverted U-tube steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, J.

    1988-08-01

    For natural circulation it is shown that parallel flow in the tubes of an inverted U-tube stream generator can be, at certain power levels, unstable. A mathematical model, based on one-dimensional Oberbeck-Boussinesq equations, shows that stability can be attained if in some tubes the water flows backward, opposite to the normal flow direction. The results are compared to measurements obtained from the natural circulation test A2-77A in the LOBI-MOD2 integral system test facility.

  11. Measures for a multidimensional multiverse

    Science.gov (United States)

    Chung, Hyeyoun

    2015-04-01

    We explore the phenomenological implications of generalizing the causal patch and fat geodesic measures to a multidimensional multiverse, where the vacua can have differing numbers of large dimensions. We consider a simple model in which the vacua are nucleated from a D -dimensional parent spacetime through dynamical compactification of the extra dimensions, and compute the geometric contribution to the probability distribution of observations within the multiverse for each measure. We then study how the shape of this probability distribution depends on the time scales for the existence of observers, for vacuum domination, and for curvature domination (tobs,tΛ , and tc, respectively.) In this work we restrict ourselves to bubbles with positive cosmological constant, Λ . We find that in the case of the causal patch cutoff, when the bubble universes have p +1 large spatial dimensions with p ≥2 , the shape of the probability distribution is such that we obtain the coincidence of time scales tobs˜tΛ˜tc . Moreover, the size of the cosmological constant is related to the size of the landscape. However, the exact shape of the probability distribution is different in the case p =2 , compared to p ≥3 . In the case of the fat geodesic measure, the result is even more robust: the shape of the probability distribution is the same for all p ≥2 , and we once again obtain the coincidence tobs˜tΛ˜tc . These results require only very mild conditions on the prior probability of the distribution of vacua in the landscape. Our work shows that the observed double coincidence of time scales is a robust prediction even when the multiverse is generalized to be multidimensional; that this coincidence is not a consequence of our particular Universe being (3 +1 )-dimensional; and that this observable cannot be used to preferentially select one measure over another in a multidimensional multiverse.

  12. A novel single-phase flux-switching permanent magnet linear generator used for free-piston Stirling engine

    Science.gov (United States)

    Zheng, Ping; Sui, Yi; Tong, Chengde; Bai, Jingang; Yu, Bin; Lin, Fei

    2014-05-01

    This paper investigates a novel single-phase flux-switching permanent-magnet (PM) linear machine used for free-piston Stirling engines. The machine topology and operating principle are studied. A flux-switching PM linear machine is designed based on the quasi-sinusoidal speed characteristic of the resonant piston. Considering the performance of back electromotive force and thrust capability, some leading structural parameters, including the air gap length, the PM thickness, the ratio of the outer radius of mover to that of stator, the mover tooth width, the stator tooth width, etc., are optimized by finite element analysis. Compared with conventional three-phase moving-magnet linear machine, the proposed single-phase flux-switching topology shows advantages in less PM use, lighter mover, and higher volume power density.

  13. Impact of Intragranular Substructure Parameters on the Forming Limit Diagrams of Single-Phase B.C.C. Steels

    Directory of Open Access Journals (Sweden)

    Gérald Franz

    2013-11-01

    Full Text Available An advanced elastic-plastic self-consistent polycrystalline model, accounting for intragranular microstructure development and evolution, is coupled with a bifurcation-based localization criterion and applied to the numerical investigation of the impact of microstructural patterns on ductility of single-phase steels. The proposed multiscale model, taking into account essential microstructural aspects, such as initial and induced textures, dislocation densities, and softening mechanisms, allows us to emphasize the relationship between intragranular microstructure of B.C.C. steels and their ductility. A qualitative study in terms of forming limit diagrams for various dislocation networks, during monotonic loading tests, is conducted in order to analyze the impact of intragranular substructure parameters on the formability of single-phase B.C.C. steels.

  14. Power Based Phase-Locked Loop Under Adverse Conditions with Moving Average Filter for Single-Phase System

    Directory of Open Access Journals (Sweden)

    Menxi Xie

    2017-06-01

    Full Text Available High performance synchronization methord is citical for grid connected power converter. For single-phase system, power based phase-locked loop(pPLL uses a multiplier as phase detector(PD. As single-phase grid voltage is distorted, the phase error information contains ac disturbances oscillating at integer multiples of fundamental frequency which lead to detection error. This paper presents a new scheme based on moving average filter(MAF applied in-loop of pPLL. The signal characteristic of phase error is dissussed in detail. A predictive rule is adopted to compensate the delay induced by MAF, thus achieving fast dynamic response. In the case of frequency deviate from nomimal, estimated frequency is fed back to adjust the filter window length of MAF and buffer size of predictive rule. Simulation and experimental results show that proposed PLL achieves good performance under adverse grid conditions.

  15. Space Vector Pulse Width Modulation Strategy for Single-Phase Three-Level CIC T-source Inverter

    DEFF Research Database (Denmark)

    Shults, Tatiana E.; Husev, Oleksandr O.; Blaabjerg, Frede

    2016-01-01

    This paper presents a novel space vector pulse-width modulation strategy for a single-phase three-level buck-boost inverter based on an impedance-source network. The case study system is based on T-source inverter with continuous input current. To demonstrate the improved performance of the inver......This paper presents a novel space vector pulse-width modulation strategy for a single-phase three-level buck-boost inverter based on an impedance-source network. The case study system is based on T-source inverter with continuous input current. To demonstrate the improved performance...... of the inverter, the strategy was compared the traditional pulse-width modulation. It is shown that the approach proposed has fewer switching states and does not suffer from neutral point misbalance....

  16. Improving Performance of LVRT Capability in Single-phase Grid-tied PV Inverters by a Model Predictive Controller

    DEFF Research Database (Denmark)

    Zangeneh Bighash, Esmaeil; Sadeghzadeh, Seyed Mohammad; Ebrahimzadeh, Esmaeil

    2018-01-01

    dynamic response and stability. To fill in this gap, this paper presents a fast and robust current controller based on a Model-Predictive Control (MPC) for single-phase PV inverters in other to deal with the LVRT operation. In order to confirm the effectiveness of the proposed controller, results...... the voltage sag period is short, a fast dynamic performance along with a soft behavior of the controller is the most important issue in the LVRT duration. Recently, some methods like Proportional Resonant (PR) controllers, have been presented to control the single phase PV systems in LVRT mode. However......, these methods have had uncertainties in respect their contribution in LVRT mode. In PR controllers, a fast dynamic response can be obtained by tuning the gains of PR controllers for a high bandwidth, but typically the phase margin is decreased. Therefore, the design of PR controllers needs a tradeoff between...

  17. Green synthesis of isopropyl myristate in novel single phase medium Part II: Packed bed reactor (PBR) studies.

    Science.gov (United States)

    Vadgama, Rajeshkumar N; Odaneth, Annamma A; Lali, Arvind M

    2015-12-01

    Isopropyl myristate is a useful functional molecule responding to the requirements of numerous fields of application in cosmetic, pharmaceutical and food industry. In the present work, lipase-catalyzed production of isopropyl myristate by esterification of myristic acid with isopropyl alcohol (molar ratio of 1:15) in the homogenous reaction medium was performed on a bench-scale packed bed reactors, in order to obtain suitable reaction performance data for upscaling. An immobilized lipase B from Candida antartica was used as the biocatalyst based on our previous study. The process intensification resulted in a clean and green synthesis process comprising a series of packed bed reactors of immobilized enzyme and water dehydrant. In addition, use of the single phase reaction system facilitates efficient recovery of the product with no effluent generated and recyclability of unreacted substrates. The single phase reaction system coupled with a continuous operating bioreactor ensures a stable operational life for the enzyme.

  18. Green synthesis of isopropyl myristate in novel single phase medium Part II: Packed bed reactor (PBR studies

    Directory of Open Access Journals (Sweden)

    Rajeshkumar N. Vadgama

    2015-12-01

    Full Text Available Isopropyl myristate is a useful functional molecule responding to the requirements of numerous fields of application in cosmetic, pharmaceutical and food industry. In the present work, lipase-catalyzed production of isopropyl myristate by esterification of myristic acid with isopropyl alcohol (molar ratio of 1:15 in the homogenous reaction medium was performed on a bench-scale packed bed reactors, in order to obtain suitable reaction performance data for upscaling. An immobilized lipase B from Candida antartica was used as the biocatalyst based on our previous study. The process intensification resulted in a clean and green synthesis process comprising a series of packed bed reactors of immobilized enzyme and water dehydrant. In addition, use of the single phase reaction system facilitates efficient recovery of the product with no effluent generated and recyclability of unreacted substrates. The single phase reaction system coupled with a continuous operating bioreactor ensures a stable operational life for the enzyme.

  19. Challenges to Grid Synchronization of Single-Phase Grid-Connected Inverters in Zero-Voltage Ride-Through Operation

    DEFF Research Database (Denmark)

    Zhang, Zhen; Yang, Yongheng; Blaabjerg, Frede

    2016-01-01

    With the fast development in Photovoltaic (PV) technology, the relevant grid-connection requirements/standards are continuously being updated, and more challenges have been imposed on both single-phase and three-phase grid-connected PV systems. For instance, PV systems are currently required...... to remain connected under grid voltage sags (even zero voltage condition). In this case, much attention should be paid to the grid synchronization in such a way to properly ride-through grid faults. Thus, in this paper, the most commonly-used and recently-developed Phase Locked Loop (PLL) synchronization...... methods have been evaluated for single-phase grid-connected PV systems in the case of Zero-Voltage Ride-Through (ZVRT) operation. The performances of the prior-art PLL methods in response to zero voltage faults in terms of detection precision and dynamic response are assessed in this paper. Simulation...

  20. Analysis, Design, and Experimental Verification of A Synchronous Reference Frame Voltage Control for Single-Phase Inverters

    DEFF Research Database (Denmark)

    Monfared, Mohammad; Golestan, Saeed; Guerrero, Josep M.

    2014-01-01

    Control of three-phase power converters in the synchronous reference frame is now a mature and well developed research topic. However, for single-phase converters, it is not as well-established as three-phase applications. This paper deals with the design of a synchronous reference frame multi-lo...... on a frequency response approach is presented. Finally, the theoretical achievements are supported by experimental results.......-loop control strategy for single phase inverter-based islanded distributed generation (DG) systems. The proposed controller uses a synchronous reference frame PI (SRFPI) controller to regulate the instantaneous output voltage, a capacitor current shaping loop in the stationary reference frame to provide active...

  1. Ordinal Comparison of Multidimensional Deprivation

    DEFF Research Database (Denmark)

    Sonne-Schmidt, Christoffer Scavenius; Tarp, Finn; Østerdal, Lars Peter

    This paper develops an ordinal method of comparison of multidimensional inequality. In our model, population distribution g is more unequal than f when the distributions have common median and can be obtained from f  by one or more shifts in population density that increase inequality. For our be...... benchmark 2x2 case (i.e. the case of two binary outcome variables), we derive an empirical method for making inequality comparisons. As an illustration, we apply the model to childhood poverty in Mozambique....

  2. Small-Signal Modeling, Stability Analysis and Design Optimization of Single-Phase Delay-Based PLLs

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.; Vidal, Ana

    2016-01-01

    Generally speaking, designing single-phase phaselocked loops (PLLs) is more complicated than three-phase ones, as their implementation often involves the generation of a fictitious orthogonal signal for the frame transformation. In recent years, many approaches to generate the orthogonal signal...... these issues and explore new methods to enhance their performance. The stability analysis, control design guidelines and performance comparison with the state-of-the-art PLLs are presented as well....

  3. Safe-commutation principle for direct single-phase AC-AC converters for use in audio power amplification

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.; Andersen, Michael A.E.

    2005-07-01

    This paper presents an alternative safe commutation principle for a single phase bidirectional bridge, for use in the new generation of direct single-stage AC-AC audio power amplifiers. As compared with the bridge commutation with load current or source voltage sensing, in this approach it is not required to do any measurements, thus making it more reliable. Initial testing made on the prototype prove the feasibility of the approach. (au)

  4. Novel Family of Single-Phase Modified Impedance-Source Buck-Boost Multilevel Inverters with Reduced Switch Count

    DEFF Research Database (Denmark)

    Husev, Oleksandr; Strzelecki, Ryszard; Blaabjerg, Frede

    2016-01-01

    This paper describes novel single-phase solutions with increased inverter voltage levels derived by means of a nonstandard inverter configuration and impedance source networks. Operation principles based on special modulation techniques are presented. Detailed component design guidelines along wi...... with simulation and experimental verification are also provided. Possible application fields are discussed, as well as advantages and disadvantages. Finally, future studies are addressed for the new solutions....

  5. A single-phase PWM controlled AC to DC converter based on control of unity displacement power factor

    OpenAIRE

    Funabiki, Shigeyuki

    1990-01-01

    A modified pulse-width modulation (PWM) technique that improves the displacement power factor and the input power factor of a single-phase AC to DC converter is discussed. The modified converter is shown to have a high input power factor and allows the of DC voltage from zero to more than the maximum value of the source voltage. The displacement power factor is unity, and the input power factor is almost unity in the wide range of current command

  6. Experimental Implementation of a Low-Cost Single Phase Five-Level Inverter for Autonomous PV System Applications Without Batteries

    OpenAIRE

    Nouaiti, Ayoub; Saad, Abdallah; Mesbahi, Abdelouahed; Khafallah, Mohamed

    2018-01-01

    This paper presents the design and the implementation of a low-cost single phase five-level inverter for photovoltaic applications. The proposed multilevel inverter is composed of a simple boost converter, a switched-capacitor converter, and an H-bridge converter. An efficient control method which associates a closed-loop regulation method with a simple maximum power point tracking (MPPT) method is applied in order to allow the proposed multilevel inverter to transfer power energy from solar ...

  7. Perceptual Salience and Children's Multidimensional Problem Solving

    Science.gov (United States)

    Odom, Richard D.; Corbin, David W.

    1973-01-01

    Uni- and multidimensional processing of 6- to 9-year olds was studied using recall tasks in which an array of stimuli was reconstructed to match a model array. Results indicated that both age groups were able to solve multidimensional problems, but that solution rate was retarded by the unidimensional processing of highly salient dimensions.…

  8. Multidimensional fatigue and its correlates in hospitalised advanced cancer patients.

    NARCIS (Netherlands)

    Echteld, M.A.; Passchier, J.; Teunissen, S.; Claessen, S.; Wit, R. de; Rijt, C.C.D. van der

    2007-01-01

    Although fatigue is a multidimensional concept, multidimensional fatigue is rarely investigated in hospitalised cancer patients. We determined the levels and correlates of multidimensional fatigue in 100 advanced cancer patients admitted for symptom control. Fatigue dimensions were general fatigue

  9. Single-Phase Active Boost Rectifier with Power Factor Correction for Wireless Power Transfer Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chinthavali, Madhu Sudhan [ORNL; Onar, Omer C [ORNL; Miller, John M [ORNL; Tang, Lixin [ORNL

    2013-01-01

    Wireless Power Transfer (WPT) technology is a novel research area in the charging technology that bridges utility and the automotive industries. There are various solutions that are currently being evaluated by several research teams to find the most efficient way to manage the power flow from the grid to the vehicle energy storage system. There are different control parameters that can be utilized to compensate for the change in the impedance. To understand the power flow through the system this paper presents a novel approach to the system model and the impact of different control parameters on the load power. The implementation of an active front-end rectifier on the grid side for power factor control and voltage boost capability for load power regulation is also discussed.

  10. SUSTAINABLE DEVELOPMENT, A MULTIDIMENSIONAL CONCEPT

    Directory of Open Access Journals (Sweden)

    TEODORESCU ANA MARIA

    2015-06-01

    Full Text Available Sustainable development imposed itself as a corollary of economic term "development". Sustainable development is meant to be the summation of economic, environmental and social considerations for the present and especially for the future. The concept of sustainable development plays an important role in european and global meetings since 1972, the year it has been set for the first time. Strategies necessary to achieve the objectives of sustainable development have been developed, indicators meant to indicate the result of the implementation of policies have been created, national plans were oriented towards achieving the proposed targets. I wanted to highlight the multidimensional character of the concept of sustainable development. Thus, using specialized national and international literature, I have revealed different approaches of one pillar to the detriment of another pillar depending on the specific field. In the different concepts of sustainable development, the consensus is undoubtedly agreed on its components: economic, social, environmental. Based on this fact, the concept of sustainability has different connotations depending on the specific content of each discipline: biology, economics, sociology, environmental ethics. The multidimensional valence of sustainable development consists of three pillars ability to act together for the benefit of present and future generations. Being a multidimensional concept, importance attached to a pillar over another is directed according to the particularities of each field: in economy profit prevails, in ecology care of natural resources is the most important, the social aims improving human living conditions. The challenge of sustainable development is to combine all the economic, environmental and social benefits and the present generation to come. Ecological approach is reflected in acceptance of limited natural resources by preserving natural capital. In terms of the importance of

  11. A dual voltage control strategy for single-phase PWM converters with power decoupling function

    DEFF Research Database (Denmark)

    Tang, Yi; Qin, Zian; Blaabjerg, Frede

    2015-01-01

    converter topology based on a symmetrical half bridge circuit is proposed to decouple the ripple power so that balanced instantaneous power flow is assured between source and load, and the required dc-link capacitance can be dramatically reduced. For proper closed-loop regulation, the small signal modeling...... is therefore very sensitive to step load changes. Comprehensive simulation results and experimental results are presented to show the effectiveness of the proposed circuit and control algorithm....

  12. Heuristics for Multidimensional Packing Problems

    DEFF Research Database (Denmark)

    Egeblad, Jens

    for a minimum height container required for the items. The main contributions of the thesis are three new heuristics for strip-packing and knapsack packing problems where items are both rectangular and irregular. In the two first papers we describe a heuristic for the multidimensional strip-packing problem...... that is based on a relaxed placement principle. The heuristic starts with a random overlapping placement of items and large container dimensions. From the overlapping placement overlap is reduced iteratively until a non-overlapping placement is found and a new problem is solved with a smaller container size...... of this heuristic are among the best published in the literature both for two- and three-dimensional strip-packing problems for irregular shapes. In the third paper, we introduce a heuristic for two- and three-dimensional rectangular knapsack packing problems. The two-dimensional heuristic uses the sequence pair...

  13. Applied multidimensional scaling and unfolding

    CERN Document Server

    Borg, Ingwer; Mair, Patrick

    2018-01-01

    This book introduces multidimensional scaling (MDS) and unfolding as data analysis techniques for applied researchers. MDS is used for the analysis of proximity data on a set of objects, representing the data as distances between points in a geometric space (usually of two dimensions). Unfolding is a related method that maps preference data (typically evaluative ratings of different persons on a set of objects) as distances between two sets of points (representing the persons and the objects, resp.). This second edition has been completely revised to reflect new developments and the coverage of unfolding has also been substantially expanded. Intended for applied researchers whose main interests are in using these methods as tools for building substantive theories, it discusses numerous applications (classical and recent), highlights practical issues (such as evaluating model fit), presents ways to enforce theoretical expectations for the scaling solutions, and addresses the typical mistakes that MDS/unfoldin...

  14. Minimal models of multidimensional computations.

    Directory of Open Access Journals (Sweden)

    Jeffrey D Fitzgerald

    2011-03-01

    Full Text Available The multidimensional computations performed by many biological systems are often characterized with limited information about the correlations between inputs and outputs. Given this limitation, our approach is to construct the maximum noise entropy response function of the system, leading to a closed-form and minimally biased model consistent with a given set of constraints on the input/output moments; the result is equivalent to conditional random field models from machine learning. For systems with binary outputs, such as neurons encoding sensory stimuli, the maximum noise entropy models are logistic functions whose arguments depend on the constraints. A constraint on the average output turns the binary maximum noise entropy models into minimum mutual information models, allowing for the calculation of the information content of the constraints and an information theoretic characterization of the system's computations. We use this approach to analyze the nonlinear input/output functions in macaque retina and thalamus; although these systems have been previously shown to be responsive to two input dimensions, the functional form of the response function in this reduced space had not been unambiguously identified. A second order model based on the logistic function is found to be both necessary and sufficient to accurately describe the neural responses to naturalistic stimuli, accounting for an average of 93% of the mutual information with a small number of parameters. Thus, despite the fact that the stimulus is highly non-Gaussian, the vast majority of the information in the neural responses is related to first and second order correlations. Our results suggest a principled and unbiased way to model multidimensional computations and determine the statistics of the inputs that are being encoded in the outputs.

  15. An experimental study on single phase convection heat transfer and pressure drop in two brazed plate heat exchangers with different chevron shapes and hydraulic diameters

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Man Bae; Park, Chang Yong [Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2017-05-15

    An experimental study on heat transfer and pressure drop characteristics was performed at single phase flow in two Brazed plate heat exchangers (BPHEs) with different geometries. The corrugation density of one of the BPHE (Type II) was two times as high as that of the other BPHE (Type I). The hydraulic diameter of the type II BPHE was 2.13 mm, which was 38 % smaller than that of the type I BPHE. Also, the cross section shape of the flow channels for the type II BPHE was different from that for conventional BPHEs due to the unusual corrugation patterns and brazing points. The experimental conditions for temperatures were varied from 4.6 °C to 49.1 °C, and for mass flow rates were changed from 0.07 kg/s to 1.24 kg/s. The measured results showed that pressure drop in the type II BPHE was about 110 % higher than that in the type I BPHE. Nu of the type II was higher than that of the type I BPHE and the enhancement became larger with the increase of Re at the ranges above 800. New correlations for fF and Nu were proposed by this study and their prediction accuracy could be improved by considering the surface enlargement factor in the correlations. The performance evaluation of the two BPHEs was performed by (j/f{sub F}1{sup /3}) which represented the ratio of heat transfer and pressure drop performance. Also, a new parameter, the capacity compactness of PHE, was proposed and it presented the PHE capacity per unit volume and unit log mean temperature difference. The comparison showed that the two BPHEs had similar values of the (j/f{sub F}1{sup /3}), whereas they had significantly different values of the capacity compactness. The capacity compactness of the type II BPHE was 1.5 times higher than that for the type I BPHE.

  16. An experimental study on single phase convection heat transfer and pressure drop in two brazed plate heat exchangers with different chevron shapes and hydraulic diameters

    International Nuclear Information System (INIS)

    Kim, Man Bae; Park, Chang Yong

    2017-01-01

    An experimental study on heat transfer and pressure drop characteristics was performed at single phase flow in two Brazed plate heat exchangers (BPHEs) with different geometries. The corrugation density of one of the BPHE (Type II) was two times as high as that of the other BPHE (Type I). The hydraulic diameter of the type II BPHE was 2.13 mm, which was 38 % smaller than that of the type I BPHE. Also, the cross section shape of the flow channels for the type II BPHE was different from that for conventional BPHEs due to the unusual corrugation patterns and brazing points. The experimental conditions for temperatures were varied from 4.6 °C to 49.1 °C, and for mass flow rates were changed from 0.07 kg/s to 1.24 kg/s. The measured results showed that pressure drop in the type II BPHE was about 110 % higher than that in the type I BPHE. Nu of the type II was higher than that of the type I BPHE and the enhancement became larger with the increase of Re at the ranges above 800. New correlations for fF and Nu were proposed by this study and their prediction accuracy could be improved by considering the surface enlargement factor in the correlations. The performance evaluation of the two BPHEs was performed by (j/f F 1 /3 ) which represented the ratio of heat transfer and pressure drop performance. Also, a new parameter, the capacity compactness of PHE, was proposed and it presented the PHE capacity per unit volume and unit log mean temperature difference. The comparison showed that the two BPHEs had similar values of the (j/f F 1 /3 ), whereas they had significantly different values of the capacity compactness. The capacity compactness of the type II BPHE was 1.5 times higher than that for the type I BPHE.

  17. SAGE - MULTIDIMENSIONAL SELF-ADAPTIVE GRID CODE

    Science.gov (United States)

    Davies, C. B.

    1994-01-01

    SAGE, Self Adaptive Grid codE, is a flexible tool for adapting and restructuring both 2D and 3D grids. Solution-adaptive grid methods are useful tools for efficient and accurate flow predictions. In supersonic and hypersonic flows, strong gradient regions such as shocks, contact discontinuities, shear layers, etc., require careful distribution of grid points to minimize grid error and produce accurate flow-field predictions. SAGE helps the user obtain more accurate solutions by intelligently redistributing (i.e. adapting) the original grid points based on an initial or interim flow-field solution. The user then computes a new solution using the adapted grid as input to the flow solver. The adaptive-grid methodology poses the problem in an algebraic, unidirectional manner for multi-dimensional adaptations. The procedure is analogous to applying tension and torsion spring forces proportional to the local flow gradient at every grid point and finding the equilibrium position of the resulting system of grid points. The multi-dimensional problem of grid adaption is split into a series of one-dimensional problems along the computational coordinate lines. The reduced one dimensional problem then requires a tridiagonal solver to find the location of grid points along a coordinate line. Multi-directional adaption is achieved by the sequential application of the method in each coordinate direction. The tension forces direct the redistribution of points to the strong gradient region. To maintain smoothness and a measure of orthogonality of grid lines, torsional forces are introduced that relate information between the family of lines adjacent to one another. The smoothness and orthogonality constraints are direction-dependent, since they relate only the coordinate lines that are being adapted to the neighboring lines that have already been adapted. Therefore the solutions are non-unique and depend on the order and direction of adaption. Non-uniqueness of the adapted grid is

  18. Numerical simulation of complex multi-dimensional two-phase flows in nuclear power plant coolant circuits by means of the best-estimate thermal-hydraulic code BAGIRA

    International Nuclear Information System (INIS)

    Kalinichenko, S.D.; Kroshilin, A.E.; Kroshilin, V.E.; Smirnov, A.V.

    2009-01-01

    Recent results are exposed, obtained by applying the best-estimate thermal hydraulic code BAGIRA for three-dimensional modeling complex two-phase flow dynamics inside the vessel of the horizontal steam generator PGV-1000 used in reactor units with VVER-1000. Spatial volumetric void fraction and velocity distributions are calculated and compared with available experimental data. (author)

  19. A dual voltage control strategy for single-phase PWM converters with power decoupling function

    DEFF Research Database (Denmark)

    Tang, Yi; Qin, Zian; Blaabjerg, Frede

    2014-01-01

    on a symmetrical half bridge circuit is proposed to decouple the ripple power so that balanced instantaneous power flow is assured between source and load, and the required dc-link capacitance can be dramatically reduced. For proper closed-loop regulation, the small signal modeling of the proposed system...... of voltage control loop because the variation of dc-link voltage should be kept within an acceptable range during load transients. This is particularly important for systems with reduced dc-link capacitance because they are of lower energy capacity and very sensitive to step load changes. Simulation results...

  20. Synthesis and reactivity of single-phase Be{sub 17}Ti{sub 2} intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Hwan, E-mail: kim.jaehwan@jaea.go.jp [Breeding Functional Materials Development Group, Sector of Fusion Research and Development, Japan Atomic Energy Agency (Japan); Iwakiri, Hirotomo; Furugen, Tatsuaki [Faculty of Education Elementary and Secondary School Teacher Training Program, University of the Ryukyus, Okinawa (Japan); Nakamichi, Masaru [Breeding Functional Materials Development Group, Sector of Fusion Research and Development, Japan Atomic Energy Agency (Japan)

    2016-01-15

    Highlights: • Preliminary synthesis of single-phase Be{sub 17}Ti{sub 2} was succeeded. • Reactivity difference between beryllium and beryllides may be caused by a lattice strain. • Oxidation of Be{sub 17}Ti{sub 2} at high temperatures results in the formation of TiO{sub 2}. • Simulation results reveal that a stable site for hydrogen at the center of tetrahedron exists. - Abstract: To investigate feasibility for application of Be{sub 17}Ti{sub 2} as a neutron multiplier as well as a refractory material, single-phase Be{sub 17}Ti{sub 2} intermetallic compounds were synthesized using an annealing heat treatment of the starting powder and a plasma sintering method. Scanning electron microscopic observations and X-ray diffraction measurements reveal that the single-phase Be{sub 17}Ti{sub 2} compounds were successfully synthesized. We examined the reactivity of Be{sub 17}Ti{sub 2} with 1% H{sub 2}O and discovered that a larger stoichiometric amount of Ti resulted in the formation of TiO{sub 2} on the surface at high temperatures. This oxidation may also contribute to an increase in both weight gain and generation of H{sub 2}. This suggests that the formation of the Ti-depleted Be{sub 17}Ti{sub 2−x} layer as a result of oxidation facilitates an increased reactivity with H{sub 2}O. To evaluate the safety aspects of Be{sub 17}Ti{sub 2}, we also investigated the hydrogen positions and solution energies based on the first principle. The calculations reveal that there are 10 theoretical sites, where 9 of these sites have hydrogen solution energies with a positive value (endothermic) and 1 site located at the center of a tetrahedron comprising two Be and two Ti atoms gives a negative value (exothermic).

  1. Sol-gel synthesis and characterization of single-phase Ni ferrite nanoparticles dispersed in SiO2 matrix

    International Nuclear Information System (INIS)

    Nadeem, K.; Traussnig, T.; Letofsky-Papst, I.; Krenn, H.; Brossmann, U.; Wuerschum, R.

    2010-01-01

    Nanoparticles of NiFe 2 O 4 dispersed in SiO 2 (25 wt%) matrix were synthesized by sol-gel method using tetraethyl orthosilicate (TEOS), as a precursor for SiO 2 . The sol-gel method for nanocomposites normally provides multi-phase nanoparticles. We investigated by a synopsis of different analysis methods, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and SQUID-magnetometry, how the various chemical phases are transformed to a single-phase spinel structure during the various stages of annealing from 300 to 900 o C. We have developed a full phase diagram of chemical phases as a function of annealing temperature. The average particle size lies in the range 16-27 nm. The chemical phases formed below 900 o C are NiFe, NiO, γ-Fe 2 O 3 , α-Fe 2 O 3 , and NiFe 2 O 4 , respectively. The role of the TEOS prepared SiO 2 matrix is to restrict the particle size in a small range in order to rule out particle size effects. In the mid-infrared, a shift of the vibrational Fe-O bond is observed from 568 to 586 cm -1 for annealing between 500 and 700 o C which indicates an increasing NiFe 2 O 4 phase formation. A systematic study of coercivity field (ranging from 32 to 200 Oe) and saturation magnetic moment (ranging from 12.2 to 32.1 emu/g) for differently annealed samples supports our findings about the evolution of single-phase NiFe 2 O 4 at 900 o C. The opposite trend of saturation magnetic moment and coercivity with respect to annealing temperature clearly separates the different phases of metallic, antiferromagnetic, and finally single-phase spinel NiFe 2 O 4 .

  2. Performance enhancement of the single-phase series active filter by employing the load voltage waveform reconstruction and line current sampling delay reduction methods

    DEFF Research Database (Denmark)

    Senturk, O.S.; Hava, A.M.

    2011-01-01

    This paper proposes the waveform reconstruction method (WRM), which is utilized in the single-phase series active filter's (SAF's) control algorithm, in order to extract the load harmonic voltage component of voltage harmonic type single-phase diode rectifier loads. Employing WRM and the line...... current sampling delay reduction method, a single-phase SAF compensated system provides higher harmonic isolation performance and higher stability margins compared to the system using conventional synchronous-reference-frame-based methods. The analytical, simulation, and experimental studies of a 2.5 k...

  3. Thermal-hydraulic calculation methods for transients and accidents of the reactor cooling system under special consideration of multi-dimensional flows (ATHLET, FLUBOX, CFX). Final report; Thermohydraulische Rechenmethoden zu Transienten und Stoerfaellen im Reaktorkuehlkreislauf unter besonderer Beruecksichtigung mehrdimensionaler Stroemungen (ATHLET, FLUBOX, CFX). Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Glaeser, H.; Graf, U.; Herb, J.; and others

    2012-02-15

    The project RS1184 „Thermal-hydraulic Calculation Methods for Transients and Accidents of the Reactor Cooling System Under Special Consideration of Multi-Dimensional Flows (ATHLET, FLUBOX, CFX)'' consists of four work packages: 1. Further development of the computer code ATHLET 2. Termination of FLUBOX development and development of an ATHLET-internal 3D module 3. Coupling of ATHLET and CFD code ANSYS CFX as well as CFX model development to simulate three-dimensional flows in the reactor coolant system 4. Prediction capability of computer code ATHLET. One of the superior objectives of the project is to improve the prediction capability of the thermal-hydraulic system code ATHLET, including the simulation of multi-dimensional flow in the reactor vessel. The constitutive equations in ATHLET, especially the momentum equations in ATHLET, are written in one-dimensional form. It was planned to develop the 2D/3D module FLUBOX further and couple it with ATHLET. Due to reasons given in chapter 3, the FLUBOX development was terminated. Instead, the decision was made to develop a fast running internal ATHLET-module. The 2D/3D equations for ATHLET have been derived and were implemented. That strategy allows using all ATHLET models and the ATHLET code structure. An additional advantage is that different numerical schemes of different codes, and consequently a loss of efficiency, will be avoided. A second possibility is the coupling of ATHLET with the CFD code ANSYS CFX. Such a coupled code system will be used in those cases when a part of the simulation area is needed to be calculated with high resolution. Such a detailed modelling cannot be provided by ATHLET-3D. A complete representation of the cooling system by a CFD code cannot be performed due to calculation time. In order to calculate the complete system behavior still with ATHLET, that part to be investigated in more detail, will be replaced by a CFX model. Several new models and improvements of existing

  4. Computational fluid dynamics simulations of light water reactor flows

    International Nuclear Information System (INIS)

    Tzanos, C.P.; Weber, D.P.

    1999-01-01

    Advances in computational fluid dynamics (CFD), turbulence simulation, and parallel computing have made feasible the development of three-dimensional (3-D) single-phase and two-phase flow CFD codes that can simulate fluid flow and heat transfer in realistic reactor geometries with significantly reduced reliance, especially in single phase, on empirical correlations. The objective of this work was to assess the predictive power and computational efficiency of a CFD code in the analysis of a challenging single-phase light water reactor problem, as well as to identify areas where further improvements are needed

  5. Synthesis of single-phase L10-FeNi magnet powder by nitrogen insertion and topotactic extraction

    OpenAIRE

    Goto, Sho; Kura, Hiroaki; Watanabe, Eiji; Hayashi, Yasushi; Yanagihara, Hideto; Shimada, Yusuke; Mizuguchi, Masaki; Takanashi, Koki; Kita, Eiji

    2017-01-01

    Tetrataenite (L10-FeNi) is a promising candidate for use as a permanent magnet free of rare-earth elements because of its favorable properties. In this study, single-phase L10-FeNi powder with a high degree of order was synthesized through a new method, nitrogen insertion and topotactic extraction (NITE). In the method, FeNiN, which has the same ordered arrangement as L10-FeNi, is formed by nitriding A1-FeNi powder with ammonia gas. Subsequently, FeNiN is denitrided by topotactic reaction to ...

  6. Impact of SSSC on Measured Impedance in Single Phase to Ground Fault Condition on 220 kV Transmission Line

    Directory of Open Access Journals (Sweden)

    Mohamed ZELLAGUI

    2012-08-01

    Full Text Available This paper presents and compares the impact of SSSC on measured impedance for single phase to ground fault condition. The presence of Static Synchronous SSSC on a transmission line has a great influence on the ZRelay in distance protection. The protection of the high voltage 220 kV single circuit transmission line in eastern Algerian electrical transmission networks is affected in the case with resistance fault RF. The paper investigate the effect of Static Synchronous Series Compensator (SSSC on the measured impedance (Relay taking into account the distance fault point (n and fault resistance (RF. The resultants simulation is performed in MATLAB software environment.

  7. A Simple and Consistent Equation of State for Sodium in the Single Phase and Two Phase Regions

    International Nuclear Information System (INIS)

    Breton, J.P.

    1976-01-01

    An equation of state valid over an extended temperature and density range has been derived. Then, the following properties have been deduced: coefficient of thermal expansion, isothermal coefficient of bulk compressibility, thermal pressure coefficient, heat capacity at constant pressure, at constant volume, along the saturation curve for liquid, for vapor, heat of vaporization, speed of sound, and finally the Mollier diagram and the entropy diagram. All the obtained properties are thermodynamically consistent and satisfy the basic relations of thermodynamics for both single phase and two-phase regions. Experimental results were always used when available

  8. Design and analysis of linear oscillatory single-phase permanent magnet generator for free-piston stirling engine systems

    Science.gov (United States)

    Kim, Jeong-Man; Choi, Jang-Young; Lee, Kyu-Seok; Lee, Sung-Ho

    2017-05-01

    This study focuses on the design and analysis of a linear oscillatory single-phase permanent magnet generator for free-piston stirling engine (FPSE) systems. In order to implement the design of linear oscillatory generator (LOG) for suitable FPSEs, we conducted electromagnetic analysis of LOGs with varying design parameters. Then, detent force analysis was conducted using assisted PM. Using the assisted PM gave us the advantage of using mechanical strength by detent force. To improve the efficiency, we conducted characteristic analysis of eddy-current loss with respect to the PM segment. Finally, the experimental result was analyzed to confirm the prediction of the FEA.

  9. Design and analysis of linear oscillatory single-phase permanent magnet generator for free-piston stirling engine systems

    Directory of Open Access Journals (Sweden)

    Jeong-Man Kim

    2017-05-01

    Full Text Available This study focuses on the design and analysis of a linear oscillatory single-phase permanent magnet generator for free-piston stirling engine (FPSE systems. In order to implement the design of linear oscillatory generator (LOG for suitable FPSEs, we conducted electromagnetic analysis of LOGs with varying design parameters. Then, detent force analysis was conducted using assisted PM. Using the assisted PM gave us the advantage of using mechanical strength by detent force. To improve the efficiency, we conducted characteristic analysis of eddy-current loss with respect to the PM segment. Finally, the experimental result was analyzed to confirm the prediction of the FEA.

  10. X-ray quality increasing system controlled by single-chip microcomputer in single phase fluoroscopy unit

    International Nuclear Information System (INIS)

    Wang Qiaolin; Gu Hongmei

    2004-01-01

    Objective: To decrease the amount of radiation that doctor and patient receives by increasing X-ray quality. Methods: Using Single-chip Microcomputer technology, test and modulate AC(Alternating Current) from high voltage generator by IGBT. X-ray tube generates X-rays only at high energy area. Thus the amount of radiation decreases. Results: The tube current decreases remarkably and the amount of radiation that doctor and patient receives decreases effectively. Conclusion: the system can effectively decrease the amount of radiation and is widely applicable to the upgrade of all kinds of single phase X-ray units. (authors)

  11. A Single Phase to Three Phase PFC Half-Bridge Converter Using BLDC Drive with SPWM Technique.

    OpenAIRE

    Srinu Duvvada; Manmadha Kumar B

    2014-01-01

    In this paper, a buck half-bridge DC-DC converter is used as a single-stage power factor correction (PFC) converter for feeding a voltage source inverter (VSI) based permanent magnet brushless DC motor (BLDC) drive. The front end of this PFC converter is a diode bridge rectifier (DBR) fed from single-phase AC mains. The BLDC is used to drive a compressor load of an air conditioner through a three-phase VSI fed from a controlled DC link voltage. The speed of the compressor is controlled to ach...

  12. General Unified Integral Controller with Zero Steady-State Error for Single-Phase Grid-Connected Inverters

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Guerrero, Josep M.

    2016-01-01

    Current regulation is crucial for operating single-phase grid-connected inverters. The challenge of the current controller is how to fast and precisely tracks the current with zero steady-state error. This paper proposes a novel feedback mechanism for the conventional PI controller. It allows...... done indicates that the widely used PR (P+Resonant) control is just a special case of the proposed control solution. The time-domain simulation in Matlab/Simulink and experimental results from a TMS320F2812 DSP based laboratory prototypes are in good agreement, which verify the effectiveness...

  13. Performance Evaluation of Low/Zero Voltage Ride-Through Operations for Single-Stage Single-Phase Photovoltaic Inverters

    DEFF Research Database (Denmark)

    Zhang, Zhen; Yang, Yongheng; Blaabjerg, Frede

    2017-01-01

    With the fast development of distributed power generations, stability and security have attracted extensive attention in the recent years. As a representative of clean energies, Photovoltaic (PV) systems have been installed extensively worldwide. This drives grid-connected requirements...... to be continuously updated. In current active grid requirements/codes, PV systems should be more intelligent in the considerations of the grid stability, reliability and fault protection. In this paper, two control strategies (i.e., the single-phase PQ control and power phase-angle control) are evaluated for grid...

  14. A Comparison between Boundary and Continuous Conduction Modes in Single Phase PFC Using 600V Range Devices

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos; Petersen, Lars Press; Andersen, Michael A. E.

    2015-01-01

    This paper presents an analysis and comparison of boundary conduction mode (BCM) and continuous conduction mode (CCM) in single phase power factor correction (PFC) applications. The comparison is based on double pulse tester (DPT) characterization results of state-of-the-art superjunction devices...... in the 600V range. The measured switching energy is used to evaluate the devices performance in a conventional PFC. This data is used together with a mathematical model for prediction of the conducted electromagnetic interference (EMI). This allows comparing the different devices in BCM and CCM operation...

  15. A simple and consistent equation of state for sodium in the single phase and two phase regions

    International Nuclear Information System (INIS)

    Breton, J.P.

    1976-01-01

    An equation of state valid over an extended temperature and density range has been derived. Then, the following properties have been deduced : coefficient of thermal expansion, isothermal coefficient of bulk compressibility, thermal pressure coefficient, heat capacity at constant pressure, at constant volume, along the saturation curve for liquid, for vapor, heat of vaporization, speed of sound, and finally the Mollier diagram and the entropy diagram. All the obtained properties are thermodynamically consistent and satisfy the basic relations of thermodynamics for both single phase and two-phase regions. Experimental results were always used when available. (auth.)

  16. Single-Phase Full-Wave Rectifier as an Effective Example to Teach Normalization, Conduction Modes, and Circuit Analysis Methods

    Directory of Open Access Journals (Sweden)

    Predrag Pejovic

    2013-12-01

    Full Text Available Application of a single phase rectifier as an example in teaching circuit modeling, normalization, operating modes of nonlinear circuits, and circuit analysis methods is proposed.The rectifier supplied from a voltage source by an inductive impedance is analyzed in the discontinuous as well as in the continuous conduction mode. Completely analytical solution for the continuous conduction mode is derived. Appropriate numerical methods are proposed to obtain the circuit waveforms in both of the operating modes, and to compute the performance parameters. Source code of the program that performs such computation is provided.

  17. A modified P&O MPPT algorithm for single-phase PV systems based on deadbeat control

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2012-01-01

    A modified perturb and observe (P&O) algorithm is presented to improve maximum power point tracking (MPPT) performance of photovoltaic (PV) systems. This modified algorithm is applied to a single-phase PV system based on deadbeat control in order to test the tracking accuracy and its impact...... on the reliability of the whole system. Both simulations and experimental results show that the proposed algorithm offers a fast response as well as smaller steady-state oscillations even under low irradiance condition compared with classical methods....

  18. Synthesizing single-phase β-FeSi2 via ion beam irradiations of Fe/Si bilayers

    International Nuclear Information System (INIS)

    Milosavljevic, M.; Dhar, S.; Schaaf, P.; Bibic, N.; Lieb, K.P.

    2001-01-01

    This paper presents results on the direct synthesis of the β-FeSi 2 phase by ion beam mixing of Fe/Si bilayers with Xe ions. The influence of the substrate temperature, ion fluence and energy on the growth of this phase was investigated using Rutherford backscattering (RBS), X-ray diffraction (XRD) and conversion electron Moessbauer spectroscopy (CEMS). Complete growth of single-phase β-FeSi 2 was achieved by 205 keV Xe ion irradiation to a fluence of 2x10 16 ions/cm 2 at 600 deg. C. We propose a two-step reaction mechanism involving thermal and ion beam energy deposition

  19. Advanced Control Strategies to Enable a More Wide-Scale Adoption of Single-Phase Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng

    , a thorough evaluation of those topologies in terms of e.g. efficiency, reliability, leakage current mitigation ability, and reactive power injection capability has been presented in Chapter 3, where a multidisciplinary assessment approach with characterized features of energy production estimation...... and lifetime prediction based on mission profiles (e.g. solar irradiance level and ambient temperature) has been proposed. Grid detection and synchronization techniques have also been discussed in Chapter 2, since they are of importance in the control of single-phase systems both in normal operation mode...

  20. Hybrid I-f starting and observer-based Ssnsorless control of single-phase BLDC-PM motor drives

    DEFF Research Database (Denmark)

    Iepure, Liviu Ioan; Boldea, Ion; Blaabjerg, Frede

    2012-01-01

    A motion sensorless control for single-phase permanent magnet brushless dc motor based on an I-f starting sequence and a real-time permanent magnet flux estimation is proposed here. The special calculation for extracting the position and speed used here implies the generating of an orthogonal flux...... system, the atan2 trigonometric function, and a phase-locked loop observer. The influence of the permanent magnet flux harmonic content is presented by analytical expressions and digital simulations. The proposed sensorless control is validated by complete experimental results on a commercial small high......-speed blower-motor (40 W, 10 krpm, 12 Vdc)....