WorldWideScience

Sample records for single-pass radar interferometer

  1. EMISAR single pass topographic SAR interferometer modes

    DEFF Research Database (Denmark)

    Madsen, Søren Nørvang; Skou, Niels; Woelders, Kim

    1996-01-01

    The Danish Center for Remote Sensing (DCRS) has augmented its dual-frequency polarimetric synthetic aperture radar system (EMISAR) with single pass across-track interferometric (XTI) modes. This paper describes the system configuration, specifications and the operating modes. Analysis of data acq...

  2. Dynamic displacement monitoring of long-span bridges with a microwave radar interferometer

    Science.gov (United States)

    Zhang, Bochen; Ding, Xiaoli; Werner, Charles; Tan, Kai; Zhang, Bin; Jiang, Mi; Zhao, Jingwen; Xu, Youlin

    2018-04-01

    Structural health monitoring of long-span bridges is a critical process in ensuring the operational safety of the structures. In this paper, we present experimental results of monitoring the displacements of two long-span bridges in Hong Kong Ting Kau Bridge (TKB) and Tsing Ma Bridge (TMB) with a terrestrial microwave radar interferometer named the GAMMA Portable Radar Interferometer (GPRI). A technique for fusing the measurements from two receiving antennas of the radar instrument is proposed. In addition, a two-step phase unwrapping approach is also tested. The results reveal the bridge dynamic responses under different loading conditions, including winds, vehicle traffic, and passing trains. The results also show that the terrestrial microwave radar interferometer can be used to monitor the dynamics of long-span bridges with unprecedented spatial and temporal resolutions.

  3. Single Pass Albumin Dialysis in Hepatorenal Syndrome

    Directory of Open Access Journals (Sweden)

    Rahman Ebadur

    2008-01-01

    Full Text Available Hepatorenal syndrome (HRS is the most appalling complication of acute or chronic liver disease with 90% mortality rate. Single pass albumin dialysis (SPAD can be considered as a noble liver support technique in HRS. Here, we present a case of a young healthy patient who developed hyperacute fulminant liver failure that progressed to HRS. The patient was offered SPAD as a bridge to liver transplantation, however, it resulted in an excellent recovery.

  4. Onboard Interferometric SAR Processor for the Ka-Band Radar Interferometer (KaRIn)

    Science.gov (United States)

    Esteban-Fernandez, Daniel; Rodriquez, Ernesto; Peral, Eva; Clark, Duane I.; Wu, Xiaoqing

    2011-01-01

    An interferometric synthetic aperture radar (SAR) onboard processor concept and algorithm has been developed for the Ka-band radar interferometer (KaRIn) instrument on the Surface and Ocean Topography (SWOT) mission. This is a mission- critical subsystem that will perform interferometric SAR processing and multi-look averaging over the oceans to decrease the data rate by three orders of magnitude, and therefore enable the downlink of the radar data to the ground. The onboard processor performs demodulation, range compression, coregistration, and re-sampling, and forms nine azimuth squinted beams. For each of them, an interferogram is generated, including common-band spectral filtering to improve correlation, followed by averaging to the final 1 1-km ground resolution pixel. The onboard processor has been prototyped on a custom FPGA-based cPCI board, which will be part of the radar s digital subsystem. The level of complexity of this technology, dictated by the implementation of interferometric SAR processing at high resolution, the extremely tight level of accuracy required, and its implementation on FPGAs are unprecedented at the time of this reporting for an onboard processor for flight applications.

  5. Axioms for behavioural congruence of single-pass instruction sequences

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2017-01-01

    In program algebra, an algebraic theory of single-pass instruction sequences, three congruences on instruction sequences are paid attention to: instruction sequence congruence, structural congruence, and behavioural congruence. Sound and complete axiom systems for the first two congruences were

  6. Single-pass Airborne InSAR for Wide-swath, High-Resolution Cryospheric Surface Topography Mapping

    Science.gov (United States)

    Moller, D.; Hensley, S.; Wu, X.; Muellerschoen, R.

    2014-12-01

    In May 2009 a mm-wave single-pass interferometric synthetic aperture radar (InSAR) for the first time demonstrated ice surface topography swath-mapping in Greenland. This was achieved with the airborne Glacier and Ice Surface Topography Interferometer (GLISTIN-A). Ka-band (35.6GHz) was chosen for high-precision topographic mapping from a compact sensor with minimal surface penetration. In recent years, the system was comprehensively upgraded for improved performance, stability and calibration. In April 2013, after completing the upgrades, GLISTIN-A flew a brief campaign to Alaska. The primary purpose was to demonstrate the InSAR's ability to generate high-precision, high resolution maps of ice surface topography with swaths in excess of 10km. Comparison of GLISTIN-A's elevations over glacial ice with lidar verified the precision requirements and established elevation accuracies to within 2 m without tie points. Feature tracking of crevasses on Columbia Glacier using data acquired with a 3-day separation exhibit an impressive velocity mapping capability. Furthermore, GLISTIN-A flew over the Beaufort sea to determine if we could not only map sea ice, but also measure freeboard. Initial analysis has established we can measure sea-ice freeboard using height differences from the top of the sea-ice and the sea surface in open leads. In the future, a campaign with lidar is desired for a quantitative validation. Another proof-of-concept collection mapped snow-basins for hydrology. Snow depth measurements using summer and winter collections in the Sierras were compared with lidar measurements. Unsurprisingly when present, trees complicate the interpretation, but additional filtering and processing is in work. For each application, knowledge of the interferometric penetration is important for scientific interpretation. We present analytical predictions and experimental data to upper bound the elevation bias of the InSAR measurements over snow and snow-covered ice.

  7. Single-Pass Clustering Algorithm Based on Storm

    Science.gov (United States)

    Fang, LI; Longlong, DAI; Zhiying, JIANG; Shunzi, LI

    2017-02-01

    The dramatically increasing volume of data makes the computational complexity of traditional clustering algorithm rise rapidly accordingly, which leads to the longer time. So as to improve the efficiency of the stream data clustering, a distributed real-time clustering algorithm (S-Single-Pass) based on the classic Single-Pass [1] algorithm and Storm [2] computation framework was designed in this paper. By employing this kind of method in the Topic Detection and Tracking (TDT) [3], the real-time performance of topic detection arises effectively. The proposed method splits the clustering process into two parts: one part is to form clusters for the multi-thread parallel clustering, the other part is to merge the generated clusters in the previous process and update the global clusters. Through the experimental results, the conclusion can be drawn that the proposed method have the nearly same clustering accuracy as the traditional Single-Pass algorithm and the clustering accuracy remains steady, computing rate increases linearly when increasing the number of cluster machines and nodes (processing threads).

  8. Observations of meteor-head echoes using the Jicamarca 50MHz radar in interferometer mode

    Directory of Open Access Journals (Sweden)

    J. L. Chau

    2004-01-01

    Full Text Available We present results of recent observations of meteor-head echoes obtained with the high-power large-aperture Jicamarca 50MHz radar (11.95°S, 76.87°W in an interferometric mode. The large power-aperture of the system allows us to record more than 3000 meteors per hour in the small volume subtended by the 1° antenna beam, albeit when the cluttering equatorial electrojet (EEJ echoes are not present or are very weak. The interferometry arrangement allows the determination of the radiant (trajectory and speed of each meteor. It is found that the radiant distribution of all detected meteors is concentrated in relative small angles centered around the Earth's Apex as it transits over the Jicamarca sky, i.e. around the corresponding Earth heading for the particular observational day and time, for all seasons observed so far. The dispersion around the Apex is ~18° in a direction transverse to the Ecliptic plane and only 8.5° in heliocentric longitude in the Ecliptic plane both in the Earth inertial frame of reference. No appreciable interannual variability has been observed. Moreover, no population related to the optical (larger meteors Leonid showers of 1998-2002 is found, in agreement with other large power-aperture radar observations. A novel cross-correlation detection technique (adaptive match-filtering is used in combination with a 13 baud Barker phase-code. The technique allows us to get good range resolution (0.75km without any sensitivity deterioration for the same average power, compared to the non-coded long pulse scheme used at other radars. The matching Doppler shift provides an estimation of the velocity within a pulse with the same accuracy as if a non-coded pulse of the same length had been used. The velocity distribution of the meteors is relatively narrow and centered around 60kms-1. Therefore most of the meteors have an almost circular retrograde orbit around the Sun. Less than 8% of the velocities correspond to interstellar orbits

  9. Milestone experiments for single pass UV/X-ray FELs

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    1994-01-01

    In the past decade, significant advances have been made in the theory and technology of high brightness electron beams and single pass FELS. These developments facilitate the construction of practical UV and X-ray FELs and has prompted proposals to the DOE for the construction of such facilities. There are several important experiments to be performed before committing to the construction of dedicated user facilities. Two experiments are under construction in the IR, the UCLA Self Amplified Spontaneous Emission experiment and the BNL laser seeded Harmonic Generation experiment. A multi-institution collaboration is being organized about a 210 MeV electron linac available at BNL and the 10 meter tong NISUS wiggler. This experiment will be done in the UV and will test various experimental aspects of electron beam dynamics, FEL exponential regime with gain guiding, start up from noise, seeding and harmonic generation. These experiments will advance the state of FEL research and lead towards future dedicated users' facilities

  10. Error Analysis for High Resolution Topography with Bi-Static Single-Pass SAR Interferometry

    Science.gov (United States)

    Muellerschoen, Ronald J.; Chen, Curtis W.; Hensley, Scott; Rodriguez, Ernesto

    2006-01-01

    We present a flow down error analysis from the radar system to topographic height errors for bi-static single pass SAR interferometry for a satellite tandem pair. Because of orbital dynamics the baseline length and baseline orientation evolve spatially and temporally, the height accuracy of the system is modeled as a function of the spacecraft position and ground location. Vector sensitivity equations of height and the planar error components due to metrology, media effects, and radar system errors are derived and evaluated globally for a baseline mission. Included in the model are terrain effects that contribute to layover and shadow and slope effects on height errors. The analysis also accounts for nonoverlapping spectra and the non-overlapping bandwidth due to differences between the two platforms' viewing geometries. The model is applied to a 514 km altitude 97.4 degree inclination tandem satellite mission with a 300 m baseline separation and X-band SAR. Results from our model indicate that global DTED level 3 can be achieved.

  11. Milestone experiments for single pass UV/X-ray FELs

    Science.gov (United States)

    Ben-Zvi, Ilan

    1995-04-01

    In the past decade, significant advances have been made in the theory and technology of high brightness electron beams and single pass FELs. These developments facilitate the construction of practical UV and X-ray FELs and has prompted proposals to the DOE for the construction of such facilities. There are several important experiments to be performed before committing to the construction of dedicated user facilities. Two experiments are under construction in the IR, the UCLA self-amplified spontaneous emission experiment and the BNL laser seeded harmonic generation experiment. A multi-institution collaboration is being organized about a 210 MeV electron linac available at BNL and the 10 m long NISUS wiggler. This experiment will be done in the UV and will test various experimental aspects of electron beam dynamics, FEL exponential regime with gain guiding, start-up from noise, seeding and harmonic generation. These experiments will advance the state of FEL research and lead towards future dedicated users' facilities.

  12. The Single Pass RF Driver: Final beam compression

    International Nuclear Information System (INIS)

    Burke, Robert

    2014-01-01

    The Single Pass RF Driver (SPRFD) compacts the beam from the linac without storage rings by manipulations that take advantage of the multiplicity of isotopes (16), the preserved µbunch structure, and increased total linac current. Magnetic switches on a first set of delay lines rearrange the internal structure of the various isotopic beams. A second set of delay lines sets the relative timing of the 16 isotopic beam sections so they will telescope at the pellet, in one of multiple fusion chambers, e.g. 10. Shortening each isotopic beam section uses preservation of the µbunch structure up to the final ∼2 km drift before final focus. Just before the final drift, differential acceleration of the µbunches in each isotopic beam section (128 total) launches an axial collapse, referred to as the “Slick”. The µbunches interpenetrate as their centers of mass move toward each other and individual µbunches lengthen due to their momentum spread. In longitudinal phase space they slide over one another as they lengthen in time and slim down in instantaneous energy spread. The permissible amount of µbunch lengthening is set by the design pulse shape at the pellet, which varies for different groups of isotopes. In narrow bands of ranges according to the role for each isotope group in the pellet, the ranges extend from 1 to 10 g/cm 2 to drive the cylinder barrel and thin hemispherical end caps, to heat the ∼0.5 g/cm 2 ρR fast ignition zone, and to improve the quasi-sphericity of the compression of the fast ignition zones at the pellet's ends. Because the µbunch–µbunch momentum differences are correlated, time-ramped beamline transport elements close after the differential accelerator are used to correct the associated shifts of focal point. Beam neutralization is needed after the differential acceleration until adjacent bunches begin to overlap. Concurrent collapse of each isotope and telescoping of the 16 isotopes cause the current in each beamline to rise

  13. Fine resolution topographic mapping of the Jovian moons: a Ka-band high resolution topographic mapping interferometric synthetic aperture radar

    Science.gov (United States)

    Madsen, Soren N.; Carsey, Frank D.; Turtle, Elizabeth P.

    2003-01-01

    The topographic data set obtained by MOLA has provided an unprecedented level of information about Mars' geologic features. The proposed flight of JIMO provides an opportunity to accomplish a similar mapping of and comparable scientific discovery for the Jovian moons through us of an interferometric imaging radar analogous to the Shuttle radar that recently generated a new topographic map of Earth. A Ka-band single pass across-track synthetic aperture radar (SAR) interferometer can provide very high resolution surface elevation maps. The concept would use two antennas mounted at the ends of a deployable boom (similar to the Shuttle Radar Topographic Mapper) extended orthogonal to the direction of flight. Assuming an orbit altitude of approximately 100 km and a ground velocity of approximately 1.5 km/sec, horizontal resolutions at the 10 meter level and vertical resolutions at the sub-meter level are possible.

  14. Model for Estimation of Thermal History Produced by a Single Pass Underwater Wet Weld

    National Research Council Canada - National Science Library

    Dill, Jay

    1997-01-01

    Thermal history calculations for single pass underwater wet weldments were made by solving the appropriate beat transfer equations using the three-dimensional Crank-Nicholson finite difference method...

  15. Sea ice local surface topography from single-pass satellite InSAR measurements: a feasibility study

    Directory of Open Access Journals (Sweden)

    W. Dierking

    2017-08-01

    Full Text Available Quantitative parameters characterizing the sea ice surface topography are needed in geophysical investigations such as studies on atmosphere–ice interactions or sea ice mechanics. Recently, the use of space-borne single-pass interferometric synthetic aperture radar (InSAR for retrieving the ice surface topography has attracted notice among geophysicists. In this paper the potential of InSAR measurements is examined for several satellite configurations and radar frequencies, considering statistics of heights and widths of ice ridges as well as possible magnitudes of ice drift. It is shown that, theoretically, surface height variations can be retrieved with relative errors  ≤  0.5 m. In practice, however, the sea ice drift and open water leads may contribute significantly to the measured interferometric phase. Another essential factor is the dependence of the achievable interferometric baseline on the satellite orbit configurations. Possibilities to assess the influence of different factors on the measurement accuracy are demonstrated: signal-to-noise ratio, presence of a snow layer, and the penetration depth into the ice. Practical examples of sea surface height retrievals from bistatic SAR images collected during the TanDEM-X Science Phase are presented.

  16. Laser doppler and radar interferometer for contactless measurements on unaccessible tie-rods on monumental buildings: Santa Maria della Consolazione Temple in Todi

    International Nuclear Information System (INIS)

    Gioffré, M; Cavalagli, N; Pepi, C; Trequattrini, M

    2017-01-01

    Non-contact measurements can be effectively used in civil engineering to assess the variation of structural performance with time. In the last decades this approach has received considerable interests from researchers working in the field of structural health monitoring (SHM). Indeed, non-contact measurements are very attractive because it is possible to perform non intrusive and non destructive investigations even being at a significant distance from the targets. Within this context, contactless measurements of the tie-rod vibrations in the Santa Maria della Consolazione Temple in Todi (Italy) are presented in this paper. In particular, laser vibrometer and radar interferometer measurements are used to estimate natural frequencies and mode shapes. This information is crucial to obtain the tensile axial force in the tie-rods, which can be used as an indicator of structural integrity or possible failure. Furthermore, a novel approach is proposed where drones (Unmanned Aerial Vehicles) can be successfully used to improve the effectiveness and the accuracy of the experimental activities. (paper)

  17. Highly efficient single-pass sum frequency generation by cascaded nonlinear crystals

    DEFF Research Database (Denmark)

    Hansen, Anders Kragh; Andersen, Peter E.; Jensen, Ole Bjarlin

    2015-01-01

    The cascading of nonlinear crystals has been established as a simple method to greatly increase the conversion efficiency of single-pass second-harmonic generation compared to a single-crystal scheme. Here, we show for the first time that the technique can be extended to sum frequency generation......, despite differences in the phase relations of the involved fields. An unprecedented 5.5 W of continuous-wave diffraction-limited green light is generated from the single-pass sum frequency mixing of two diode lasers in two periodically poled nonlinear crystals (conversion efficiency 50%). The technique...

  18. KARIN: The Ka-Band Radar Interferometer for the Proposed Surface Water and Ocean Topography (SWOT) Mission

    Science.gov (United States)

    Esteban-Fernandez, Daniel; Peral, Eva; McWatters, Dalia; Pollard, Brian; Rodriguez, Ernesto; Hughes, Richard

    2013-01-01

    Over the last two decades, several nadir profiling radar altimeters have provided our first global look at the ocean basin-scale circulation and the ocean mesoscale at wavelengths longer than 100 km. Due to sampling limitations, nadir altimetry is unable to resolve the small wavelength ocean mesoscale and sub-mesoscale that are responsible for the vertical mixing of ocean heat and gases and the dissipation of kinetic energy from large to small scales. The proposed Surface Water and Ocean Topography (SWOT) mission would be a partnership between NASA, CNES (Centre National d'Etudes Spaciales) and the Canadian Space Agency, and would have as one of its main goals the measurement of ocean topography with kilometer-scale spatial resolution and centimeter scale accuracy. In this paper, we provide an overview of all ocean error sources that would contribute to the SWOT mission.

  19. Fuel-element failures in Hanford single-pass reactors 1944--1971

    Energy Technology Data Exchange (ETDEWEB)

    Gydesen, S.P.

    1993-07-01

    The primary objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of emissions since 1944 from the US Department of Energy`s (DOE) Hanford Site near Richland, Washington. To estimate the doses, the staff of the Source Terms Task use operating information from historical documents to approximate the radioactive emissions. One source of radioactive emissions to the Columbia River came from leaks in the aluminum cladding of the uranium metal fuel elements in single-pass reactors. The purpose of this letter report is to provide photocopies of the documents that recorded these failures. The data from these documents will be used by the Source Terms Task to determine the contribution of single-pass reactor fuel-element failures to the radioactivity of the reactor effluent from 1944 through 1971. Each referenced fuel-element failure occurring in the Hanford single-pass reactors is addressed. The first recorded failure was in 1948, the last in 1970. No records of fuel-element failures were found in documents prior to 1948. Data on the approximately 2000 failures which occurred during the 28 years (1944--1971) of Hanford single-pass reactor operations are provided in this report.

  20. Fuel-element failures in Hanford single-pass reactors 1944--1971

    International Nuclear Information System (INIS)

    Gydesen, S.P.

    1993-07-01

    The primary objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of emissions since 1944 from the US Department of Energy's (DOE) Hanford Site near Richland, Washington. To estimate the doses, the staff of the Source Terms Task use operating information from historical documents to approximate the radioactive emissions. One source of radioactive emissions to the Columbia River came from leaks in the aluminum cladding of the uranium metal fuel elements in single-pass reactors. The purpose of this letter report is to provide photocopies of the documents that recorded these failures. The data from these documents will be used by the Source Terms Task to determine the contribution of single-pass reactor fuel-element failures to the radioactivity of the reactor effluent from 1944 through 1971. Each referenced fuel-element failure occurring in the Hanford single-pass reactors is addressed. The first recorded failure was in 1948, the last in 1970. No records of fuel-element failures were found in documents prior to 1948. Data on the approximately 2000 failures which occurred during the 28 years (1944--1971) of Hanford single-pass reactor operations are provided in this report

  1. A 3D Reconstruction Strategy of Vehicle Outline Based on Single-Pass Single-Polarization CSAR Data.

    Science.gov (United States)

    Leping Chen; Daoxiang An; Xiaotao Huang; Zhimin Zhou

    2017-11-01

    In the last few years, interest in circular synthetic aperture radar (CSAR) acquisitions has arisen as a consequence of the potential achievement of 3D reconstructions over 360° azimuth angle variation. In real-world scenarios, full 3D reconstructions of arbitrary targets need multi-pass data, which makes the processing complex, money-consuming, and time expending. In this paper, we propose a processing strategy for the 3D reconstruction of vehicle, which can avoid using multi-pass data by introducing a priori information of vehicle's shape. Besides, the proposed strategy just needs the single-pass single-polarization CSAR data to perform vehicle's 3D reconstruction, which makes the processing much more economic and efficient. First, an analysis of the distribution of attributed scattering centers from vehicle facet model is presented. And the analysis results show that a smooth and continuous basic outline of vehicle could be extracted from the peak curve of a noncoherent processing image. Second, the 3D location of vehicle roofline is inferred from layover with empirical insets of the basic outline. At last, the basic line and roofline of the vehicle are used to estimate the vehicle's 3D information and constitute the vehicle's 3D outline. The simulated and measured data processing results prove the correctness and effectiveness of our proposed strategy.

  2. High-resolution digital elevation models from single-pass TanDEM-X interferometry over mountainous regions: A case study of Inylchek Glacier, Central Asia

    Science.gov (United States)

    Neelmeijer, Julia; Motagh, Mahdi; Bookhagen, Bodo

    2017-08-01

    This study demonstrates the potential of using single-pass TanDEM-X (TDX) radar imagery to analyse inter- and intra-annual glacier changes in mountainous terrain. Based on SAR images acquired in February 2012, March 2013 and November 2013 over the Inylchek Glacier, Kyrgyzstan, we discuss in detail the processing steps required to generate three reliable digital elevation models (DEMs) with a spatial resolution of 10 m that can be used for glacial mass balance studies. We describe the interferometric processing steps and the influence of a priori elevation information that is required to model long-wavelength topographic effects. We also focus on DEM alignment to allow optimal DEM comparisons and on the effects of radar signal penetration on ice and snow surface elevations. We finally compare glacier elevation changes between the three TDX DEMs and the C-band shuttle radar topography mission (SRTM) DEM from February 2000. We introduce a new approach for glacier elevation change calculations that depends on the elevation and slope of the terrain. We highlight the superior quality of the TDX DEMs compared to the SRTM DEM, describe remaining DEM uncertainties and discuss the limitations that arise due to the side-looking nature of the radar sensor.

  3. High-aspect-ratio grooves fabricated in silicon by a single pass of femtosecond laser pulses

    International Nuclear Information System (INIS)

    Ma Yuncan; Shi Haitao; Si Jinhai; Ren Hai; Chen Tao; Chen Feng; Hou Xun

    2012-01-01

    High-aspect-ratio grooves have been fabricated in silicon by a single pass of femtosecond laser pulses in water and ambient air. Scanning electron microscopy and energy dispersive x-ray spectroscopy were employed to image for the morphology of the photoinduced grooves and analyze the chemical composition in the surrounding of the grooves. It was observed that the sidewall of the grooves fabricated in water was much smoother than that in ambient air, and there were homogeneous nano-scale protrusions on the sidewall of the grooves fabricated in water. Meanwhile, oxygen species, which was incorporated into the grooves fabricated in air, was not observed in those in water.

  4. A Unified Algorithm for Channel Imbalance and Antenna Phase Center Position Calibration of a Single-Pass Multi-Baseline TomoSAR System

    Directory of Open Access Journals (Sweden)

    Yuncheng Bu

    2018-03-01

    Full Text Available The multi-baseline synthetic aperture radar (SAR tomography (TomoSAR system is employed in such applications as disaster remote sensing, urban 3-D reconstruction, and forest carbon storage estimation. This is because of its 3-D imaging capability in a single-pass platform. However, a high 3-D resolution of TomoSAR is based on the premise that the channel imbalance and antenna phase center (APC position are precisely known. If this is not the case, the 3-D resolution performance will be seriously degraded. In this paper, a unified algorithm for channel imbalance and APC position calibration of a single-pass multi-baseline TomoSAR system is proposed. Based on the maximum likelihood method, as well as the least squares and the damped Newton method, we can calibrate the channel imbalance and APC position. The algorithm is suitable for near-field conditions, and no phase unwrapping operation is required. The effectiveness of the proposed algorithm has been verified by simulation and experimental results.

  5. Generic, network schema agnostic sparse tensor factorization for single-pass clustering of heterogeneous information networks.

    Directory of Open Access Journals (Sweden)

    Jibing Wu

    Full Text Available Heterogeneous information networks (e.g. bibliographic networks and social media networks that consist of multiple interconnected objects are ubiquitous. Clustering analysis is an effective method to understand the semantic information and interpretable structure of the heterogeneous information networks, and it has attracted the attention of many researchers in recent years. However, most studies assume that heterogeneous information networks usually follow some simple schemas, such as bi-typed networks or star network schema, and they can only cluster one type of object in the network each time. In this paper, a novel clustering framework is proposed based on sparse tensor factorization for heterogeneous information networks, which can cluster multiple types of objects simultaneously in a single pass without any network schema information. The types of objects and the relations between them in the heterogeneous information networks are modeled as a sparse tensor. The clustering issue is modeled as an optimization problem, which is similar to the well-known Tucker decomposition. Then, an Alternating Least Squares (ALS algorithm and a feasible initialization method are proposed to solve the optimization problem. Based on the tensor factorization, we simultaneously partition different types of objects into different clusters. The experimental results on both synthetic and real-world datasets have demonstrated that our proposed clustering framework, STFClus, can model heterogeneous information networks efficiently and can outperform state-of-the-art clustering algorithms as a generally applicable single-pass clustering method for heterogeneous network which is network schema agnostic.

  6. Experimental and simulation studies on a single pass, double duct solar air heater

    Energy Technology Data Exchange (ETDEWEB)

    Forson, F.K. [Kwame Nkrumah Univ. of Science and Technology, Dept. of Mechanical Engineering, Kumasi (Ghana); Rajakaruna, H. [De Montfort Univ., School of Engineering and Technology, Leicester (United Kingdom)

    2003-05-01

    A mathematical model of a single pass, double duct solar air heater (SPDDSAH) is described. The model provides a design tool capable of predicting: incident solar radiation, heat transfer coefficients, mean air flow rates, mean air temperature and relative humidity at the exit. Results from the simulation are presented and compared with experimental ones obtained on a full scale air heater and a small scale laboratory one. Reasonable agreement between the predicted and measured values is demonstrated. Predicted results from a parametric study are also presented. It is shown that significant improvement in the SPDDSAH performance can be obtained with an appropriate choice of the collector parameters and the top to bottom channel depth ratio of the two ducts. The air mass flow rate is shown to be the dominant factor in determining the overall efficiency of the heater. (Author)

  7. High-Accuracy Elevation Data at Large Scales from Airborne Single-Pass SAR Interferometry

    Directory of Open Access Journals (Sweden)

    Guy Jean-Pierre Schumann

    2016-01-01

    Full Text Available Digital elevation models (DEMs are essential data sets for disaster risk management and humanitarian relief services as well as many environmental process models. At present, on the hand, globally available DEMs only meet the basic requirements and for many services and modeling studies are not of high enough spatial resolution and lack accuracy in the vertical. On the other hand, LiDAR-DEMs are of very high spatial resolution and great vertical accuracy but acquisition operations can be very costly for spatial scales larger than a couple of hundred square km and also have severe limitations in wetland areas and under cloudy and rainy conditions. The ideal situation would thus be to have a DEM technology that allows larger spatial coverage than LiDAR but without compromising resolution and vertical accuracy and still performing under some adverse weather conditions and at a reasonable cost. In this paper, we present a novel single pass In-SAR technology for airborne vehicles that is cost-effective and can generate DEMs with a vertical error of around 0.3 m for an average spatial resolution of 3 m. To demonstrate this capability, we compare a sample single-pass In-SAR Ka-band DEM of the California Central Valley from the NASA/JPL airborne GLISTIN-A to a high-resolution LiDAR DEM. We also perform a simple sensitivity analysis to floodplain inundation. Based on the findings of our analysis, we argue that this type of technology can and should be used to replace large regions of globally available lower resolution DEMs, particularly in coastal, delta and floodplain areas where a high number of assets, habitats and lives are at risk from natural disasters. We conclude with a discussion on requirements, advantages and caveats in terms of instrument and data processing.

  8. Evaluation of a single-pass continuous whole-body 16-MDCT protocol for patients with polytrauma.

    Science.gov (United States)

    Nguyen, Duy; Platon, Alexandra; Shanmuganathan, Kathirkamanathan; Mirvis, Stuart E; Becker, Christoph D; Poletti, Pierre-Alexandre

    2009-01-01

    The purpose of this study was to compare a conventional multiregional MDCT protocol with two continuous single-pass whole-body MDCT protocols in imaging of patients with polytrauma. Ninety patients with polytrauma underwent whole-body 16-MDCT with a conventional (n=30) or one of two single-pass (n=60) protocols. The conventional protocol included unenhanced scans of the head and cervical spine and contrast-enhanced helical scans (140 mL, 4 mL/s, 300 mg I/mL) of the thorax and abdomen. The single-pass protocols consisted of unenhanced scans of the head followed by one-sweep acquisition from the circle of Willis through the pubic symphysis with a biphasic (150 mL, 6 and 4 mL/s, 300 mg I/mL) or monophasic (110 mL, 4 mL/s, 400 mg I/mL) injection. Acquisition times and interval delays between head, chest, and abdominal scans were recorded. Contrast enhancement was measured in the aortic arch, liver, spleen, and kidney. Diagnostic image quality in the same areas was assessed on a 4-point scale. Median acquisition times for the single-pass protocols were significantly shorter (-42.5%) than the acquisition time for the conventional protocol. No significant differences were found in mean enhancement values in the aorta, liver, spleen, and kidney for the three protocols. The image quality with both single-pass protocols was better than that with the conventional protocol in assessment of the mediastinum and cervical spine (p<0.05). There was no significant difference between the single-pass protocols. Use of single-pass continuous whole-body MDCT protocols can significantly decrease examination time for patients with polytrauma and improve image quality compared with a conventional serial scan protocol. Monophasic injection with highly concentrated contrast medium can reduce injection flow rate and should therefore be preferred to a biphasic injection technique.

  9. Safety and efficacy of high fluence CO2 laser skin resurfacing with a single pass.

    Science.gov (United States)

    Khosh, M M; Larrabee, W F; Smoller, B

    1999-01-01

    Carbon dioxide (CO2) laser skin resurfacing has nearly replaced more traditional methods of superficial skin rejuvenation. Post-treatment erythema is the most common side effect of this method of skin resurfacing. Sublethal thermal damage to the dermis has been proposed as an etiology for post laser erythema. Recent developments in laser resurfacing technology have aimed at minimizing thermal damage to the dermis. To determine depth of skin ablation, extent of thermal injury, and ideal laser parameters for the FeatherTouch laser system. To assess the safety and efficacy of laser resurfacing at high energy fluences with a single pass. Laser resurfacing was performed in the preauricular skin of five patients undergoing rhytidectomy. A total of 60 sites were tested with fluences of 7 to 17 Joules/cm2. Histologic evaluation of excised skin showed maximal thermal injury to be restricted to 60 microns in the papillary dermis. The reticular dermis showed no evidence of injury. Based on these findings, laser resurfacing at 17 J/cm2 (70 watts) was performed on 30 patients (in the periorbital area, a maximum of 9 J/cm2 or 36 watts was used). Follow up ranged between 12 and 18 months. Based on histologic comparison of average and high fluence laser resurfacing, high fluence laser resurfacing did not cause added thermal damage to the reticular dermis. In the clinical group, no major complications such as scarring, scleral show, infection or ectropion were encountered. Transient hyperpigmentation was noted in three patients. Overall patient satisfaction was good to excellent. Post-treatment erythema lasted an average of 4 weeks. We conclude that CO2 laser resurfacing of the face (excluding the periorbital region) can be performed safely and effectively, with the FeatherTouch laser, at 17 J/cm2 with one pass. In our group of patients, laser resurfacing with a single pass at 17 J/cm2 caused less post-operative erythema than two or more passes at 9 J/cm2.

  10. Parametric analysis of plastic strain and force distribution in single pass metal spinning

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Shashank, E-mail: shashankbit08@gmail.com, E-mail: mohantejesh93@gmail.com, E-mail: regalla@hyderabad.bits-pilani.ac.in, E-mail: ksuresh@hyderabad.bits-pilani.ac.in; Tejesh, Chiruvolu Mohan, E-mail: shashankbit08@gmail.com, E-mail: mohantejesh93@gmail.com, E-mail: regalla@hyderabad.bits-pilani.ac.in, E-mail: ksuresh@hyderabad.bits-pilani.ac.in; Regalla, Srinivasa Prakash, E-mail: shashankbit08@gmail.com, E-mail: mohantejesh93@gmail.com, E-mail: regalla@hyderabad.bits-pilani.ac.in, E-mail: ksuresh@hyderabad.bits-pilani.ac.in; Suresh, Kurra, E-mail: shashankbit08@gmail.com, E-mail: mohantejesh93@gmail.com, E-mail: regalla@hyderabad.bits-pilani.ac.in, E-mail: ksuresh@hyderabad.bits-pilani.ac.in [Department of Mechanical Engineering, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, Andhra Pradesh (India)

    2013-12-16

    Metal spinning also known as spin forming is one of the sheet metal working processes by which an axis-symmetric part can be formed from a flat sheet metal blank. Parts are produced by pressing a blunt edged tool or roller on to the blank which in turn is mounted on a rotating mandrel. This paper discusses about the setting up a 3-D finite element simulation of single pass metal spinning in LS-Dyna. Four parameters were considered namely blank thickness, roller nose radius, feed ratio and mandrel speed and the variation in forces and plastic strain were analysed using the full-factorial design of experiments (DOE) method of simulation experiments. For some of these DOE runs, physical experiments on extra deep drawing (EDD) sheet metal were carried out using En31 tool on a lathe machine. Simulation results are able to predict the zone of unsafe thinning in the sheet and high forming forces that are hint to the necessity for less-expensive and semi-automated machine tools to help the household and small scale spinning workers widely prevalent in India.

  11. Capacitive deionization of arsenic-contaminated groundwater in a single-pass mode.

    Science.gov (United States)

    Fan, Chen-Shiuan; Liou, Sofia Ya Hsuan; Hou, Chia-Hung

    2017-10-01

    A single-pass-mode capacitive deionization (CDI) reactor was used to remove arsenic from groundwater in the presence of multiple ions. The CDI reactor involved an applied voltage of 1.2 V and six cell pairs of activated carbon electrodes, each of which was 20 × 30 cm 2 . The results indicate that this method achieved an effluent arsenic concentration of 0.03 mg L -1 , which is lower than the arsenic concentration standard for drinking water and irrigation sources in Taiwan, during the charging stage. Additionally, the ability of the CDI to remove other coexisting ions was studied. The presence of other ions has a significant influence on the removal of arsenic from groundwater. From the analysis of the electrosorption selectivity, the preference for anion removal could be ordered as follows: NO 3 -  > SO 4 2-  > F -  > Cl - >As. The electrosorption selectivity for cations could be ordered as follows: Ca 2+  > Mg 2+  > Na +  ∼ K + . Moreover, monovalent cations can be replaced by divalent cations at the electrode surface in the later period of the electrosorption stage. Consequently, activated carbon-based capacitive deionization is demonstrated to be a high-potential technology for remediation of arsenic-contaminated groundwater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Low energy dark current collimation system in single-pass linacs

    Science.gov (United States)

    Bettoni, S.; Craievich, P.; Pedrozzi, M.; Schaer, M.; Stingelin, L.

    2018-02-01

    The dark current emitted from a surface of a radio frequency cavity may be a severe issue for the activation and the protection of the components of linear accelerators, if this current is lost in an uncontrolled manner. For a single-pass linac based on a photo-injector, we studied the possibility of using a collimator installed at low energy (below 10 MeV) to dump the maximum fraction of the dark current before it is transported along the linac. We developed and experimentally verified an emission and tracking model that we used to study and optimize the dark current mitigation at SwissFEL test facility. We optimized a collimator, which is expected to reduce by two orders of magnitude the transport of the dark current to the first compressor. We have also verified the effects of wakefield excited by the beam itself passing through the collimator at such a low energy, comparing the results of beam-based measurements with an analytical model.

  13. Uranium Release from Acidic Weathered Hanford Sediments: Single-Pass Flow-Through and Column Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guohui [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Um, Wooyong [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Pohang University of Science and Technology (POSTECH), Pohang, South Korea; Wang, Zheming [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Reinoso-Maset, Estela [Sierra; Washton, Nancy M. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Mueller, Karl T. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Perdrial, Nicolas [Department; Department; O’Day, Peggy A. [Sierra; Chorover, Jon [Department

    2017-09-21

    The reaction of acidic radioactive waste with sediments can induce mineral transformation reactions that, in turn, control contaminant fate. Here, sediment weathering by synthetic uranium-containing acid solutions was investigated using bench-scale experiments to simulate waste disposal conditions at Hanford’s cribs, USA. During acid weathering, the presence of phosphate exerted a strong influence over uranium mineralogy and a rapidly precipitated, crystalline uranium phosphate phase (meta-ankoleite [K(UO2)(PO4)·3H2O]) was identified using spectroscopic and diffraction-based techniques. In phosphate-free system, uranium oxyhydroxide minerals such as K-compreignacite [K2(UO2)6O4(OH)6·7H2O] were formed. Single-pass flow-through (SPFT) and column leaching experiments using synthetic Hanford pore water showed that uranium precipitated as meta-ankoleite during acid weathering was strongly retained in the sediments, with an average release rate of 2.67E-12 mol g-1 s-1. In the absence of phosphate, uranium release was controlled by dissolution of uranium oxyhydroxide (compreignacite-type) mineral with a release rate of 1.05-2.42E-10 mol g-1 s-1. The uranium mineralogy and release rates determined for both systems in this study support the development of accurate U-release models for prediction of contaminant transport. These results suggest that phosphate minerals may be a good candidate for uranium remediation approaches at contaminated sites.

  14. Non-destructive single-pass low-noise detection of ions in a beamline

    Science.gov (United States)

    Schmidt, Stefan; Murböck, Tobias; Andelkovic, Zoran; Birkl, Gerhard; Nörtershäuser, Wilfried; Stahl, Stefan; Vogel, Manuel

    2015-11-01

    We have conceived, built, and operated a device for the non-destructive single-pass detection of charged particles in a beamline. The detector is based on the non-resonant pick-up and subsequent low-noise amplification of the image charges induced in a cylindrical electrode surrounding the particles' beam path. The first stage of the amplification electronics is designed to be operated from room temperature down to liquid helium temperature. The device represents a non-destructive charge counter as well as a sensitive timing circuit. We present the concept and design details of the device. We have characterized its performance and show measurements with low-energy highly charged ions (such as Ar13+) passing through one of the electrodes of a cylindrical Penning trap. This work demonstrates a novel approach of non-destructive, low noise detection of charged particles which is, depending on the bunch structure, suitable, e.g., for ion traps, low-energy beamlines or accelerator transfer sections.

  15. Evaluation of regional pulmonary blood flow in mitral valvular heart disease using single-pass radionuclide angiocardiography

    International Nuclear Information System (INIS)

    Chang-Soon Koh; Byung Tae Kim; Myung Chul Lee; Bo Yeon Cho

    1982-01-01

    Pulmonary hypertension in mitral valvular cardiac disease has been evaluated in 122 patients by a modified upper lung/lower count ratio using single-pass radionuclide angiocardiography. The mean upper lung/lower lung radio correlates well with pulmonary artery mean (r=0.483) and wedge pressure (r=0.804). After correction surgery of the cardiac valve, the ratio decreases and returns to normal range in patients judged clinically to have good surgical benifit. This modified method using single-pass technique provides additional simple, reproducible and nontraumatic results of regional pulmonary blood flow and appears to be correlated with the degree of pulmonary hypertension in mitral heart disease

  16. FY2016 ILAW Glass Corrosion Testing with the Single-Pass Flow-Through Method

    Energy Technology Data Exchange (ETDEWEB)

    Neeway, James J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Asmussen, Robert M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Parruzot, Benjamin PG [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cordova, Elsa [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, Benjamin D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Leavy, Ian I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stephenson, John R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McElroy, Erin M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-04-21

    The inventory of immobilized low-activity waste (ILAW) produced at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) will be disposed of at the near-surface, on-site Integrated Disposal Facility (IDF). When groundwater comes into contact with the waste form, the glass will corrode and radionuclides will be released into the near-field environment. Because the release of the radionuclides is dependent on the dissolution rate of the glass, it is important that the performance assessment (PA) model accounts for the dissolution rate of the glass as a function of various chemical conditions. To accomplish this, an IDF PA model based on Transition State Theory (TST) can be employed. The model is able to account for changes in temperature, exposed surface area, and pH of the contacting solution as well as the effect of silicon concentrations in solution, specifically the activity of orthosilicic acid (H4SiO4), whose concentration is directly linked to the glass dissolution rate. In addition, the IDF PA model accounts for the alkali-ion exchange process as sodium is leached from the glass and into solution. The effect of temperature, pH, H4SiO4 activity, and the rate of ion-exchange can be parameterized and implemented directly into the PA rate law model. The rate law parameters are derived from laboratory tests with the single-pass flow-through (SPFT) method. To date, rate law parameters have been determined for seven ILAW glass compositions, thus additional rate law parameters on a wider range of compositions will supplement the existing body of data for PA maintenance activities. The data provided in this report can be used by ILAW glass scientists to further the understanding of ILAW glass behavior, by IDF PA modelers to use the rate law parameters in PA modeling efforts, and by Department of Energy (DOE) contractors and decision makers as they assess the IDF PA program.

  17. Narrow conductive structures with high aspect ratios through single-pass inkjet printing and evaporation-induced dewetting

    NARCIS (Netherlands)

    Abbel, R.; Teunissen, P.; Michels, J.; Groen, W.A.

    2015-01-01

    Inkjet printed silver lines contract to widths below 20-μm during drying on an organic planarization coating. Aspect ratios previously unprecedented with single pass inkjet printing on isotropic homogeneous substrates are obtained. This effect is caused by the subsequent evaporation of solvents from

  18. Michelson Interferometer

    Science.gov (United States)

    Rogers, Ryan

    2007-01-01

    The Michelson Interferometer is a device used in many applications, but here it was used to measure small differences in distance, in the milli-inch range, specifically for defects in the Orbiter windows. In this paper, the method of using the Michelson Interferometer for measuring small distances is explained as well as the mathematics of the system. The coherence length of several light sources was calculated in order to see just how small a defect could be measured. Since white light is a very broadband source, its coherence length is very short and thus can be used to measure small defects in glass. After finding the front and back reflections from a very thin glass slide with ease and calculating the thickness of it very accurately, it was concluded that this system could find and measure small defects on the Orbiter windows. This report also discusses a failed attempt for another use of this technology as well as describes an area of promise for further analysis. The latter of these areas has applications for finding possible defects in Orbiter windows without moving parts.

  19. Thermo-Mechanical Analysis of a Single-Pass Weld Overlay and Girth Welding in Lined Pipe

    Science.gov (United States)

    Obeid, Obeid; Alfano, Giulio; Bahai, Hamid

    2017-08-01

    The paper presents a nonlinear heat-transfer and mechanical finite-element (FE) analyses of a two-pass welding process of two segments of lined pipe made of a SUS304 stainless steel liner and a C-Mn steel pipe. The two passes consist of the single-pass overlay welding (inner lap weld) of the liner with the C-Mn steel pipe for each segment and the single-pass girth welding (outer butt weld) of the two segments. A distributed power density of the moving welding torch and a nonlinear heat-transfer coefficient accounting for both radiation and convection have been used in the analysis and implemented in user subroutines for the FE code ABAQUS. The modeling procedure has been validated against previously published experimental results for stainless steel and carbon steel welding separately. The model has been then used to determine the isotherms induced by the weld overlay and the girth welding and to clarify their influence on the transient temperature field and residual stress in the lined pipe. Furthermore, the influence of the cooling time between weld overlay and girth welding and of the welding speed have been examined thermally and mechanically as they are key factors that can affect the quality of lined pipe welding.

  20. Single Pass Laser Welding with Multiple Spots to Join Four Sheets in a Butt-joint Configuration

    Science.gov (United States)

    Kristiansen, Morten; Hansen, Klaus Schütt; Langbak, Andreas; Johansen, Sebastian Blegebrønd; Krempin, Simon Borup; Hornum, Mattias Døssing

    Laser keyhole welding is widely used in industry due to its large welding depth and low heat input. For some industrial cases it is necessary to widen the beam to cover the joint configuration, which instead results in a lower intensity and surface conduction welds. The introduction of the high-power single mode fiber laser makes it possible to deal with this problem, because the beam can be shaped into a pre-defined pattern of multiple spots shaped to the actual joint configuration. The intensity of each spot is sufficient to make a keyhole. A case with four sheets in a butt-joint configuration is used to demonstrate the principle of how to design a spot pattern which ensures weld quality in case of a single pass laser weld.

  1. Lucretia A Matlab-Based Toolbox for the Modeling and Simulation of Single-Pass Electron Beam Transport Systems

    CERN Document Server

    Tenenbaum, P G

    2005-01-01

    We report on Lucretia, a new simulation tool for the study of single-pass electron beam transport systems. Lucretia supports a combination of analytic and tracking techniques to model the tuning and operation of bunch compressors, linear accelerators, and beam delivery systems of linear colliders and linac-driven Free Electron Laser (FEL) facilities. Extensive use of Matlab scripting, graphics, and numerical capabilities maximize the flexibility of the system, and emphasis has been placed on representing and preserving the fixed relationships between elements (common girders, power supplies, etc.) which must be respected in the design of tuning algorithms. An overview of the code organization, some simple examples, and plans for future development are discussed.

  2. Testing the single-pass VOC removal efficiency of an active green wall using methyl ethyl ketone (MEK).

    Science.gov (United States)

    Torpy, Fraser; Clements, Nicholas; Pollinger, Max; Dengel, Andy; Mulvihill, Isaac; He, Chuan; Irga, Peter

    2018-01-01

    In recent years, research into the efficacy of indoor air biofiltration mechanisms, notably living green walls, has become more prevalent. Whilst green walls are often utilised within the built environment for their biophilic effects, there is little evidence demonstrating the efficacy of active green wall biofiltration for the removal of volatile organic compounds (VOCs) at concentrations found within an interior environment. The current work describes a novel approach to quantifying the VOC removal effectiveness by an active living green wall, which uses a mechanical system to force air through the substrate and plant foliage. After developing a single-pass efficiency protocol to understand the immediate effects of the system, the active green wall was installed into a 30-m 3 chamber representative of a single room and presented with the contaminant 2-butanone (methyl ethyl ketone; MEK), a VOC commonly found in interior environments through its use in textile and plastic manufacture. Chamber inlet levels of MEK remained steady at 33.91 ± 0.541 ppbv. Utilising a forced-air system to draw the contaminated air through a green wall based on a soil-less growing medium containing activated carbon, the combined effects of substrate media and botanical component within the biofiltration system showed statistically significant VOC reduction, averaging 57% single-pass removal efficiency over multiple test procedures. These results indicate a high level of VOC removal efficiency for the active green wall biofilter tested and provide evidence that active biofiltration may aid in reducing exposure to VOCs in the indoor environment.

  3. Special relativity and interferometers

    Science.gov (United States)

    Han, D.; Kim, Y. S.

    1988-01-01

    A new generation of gravitational wave detectors is expected to be based on interferometers. Yurke et al. (1986) introduced a class of interferometers characterized by SU(1,1) which can in principle achieve a phase sensitivity approaching 1/N, where N is thte total number of photons entering the interferometer. It is shown here that the SU(1,1) interferometer can serve as an analog computer for Wigner's little group of the Poincare\\'| group.

  4. Standard practice for measurement of the glass dissolution rate using the single-pass flow-through test method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice describes a single-pass flow-through (SPFT) test method that can be used to measure the dissolution rate of a homogeneous silicate glass, including nuclear waste glasses, in various test solutions at temperatures less than 100°C. Tests may be conducted under conditions in which the effects from dissolved species on the dissolution rate are minimized to measure the forward dissolution rate at specific values of temperature and pH, or to measure the dependence of the dissolution rate on the concentrations of various solute species. 1.2 Tests are conducted by pumping solutions in either a continuous or pulsed flow mode through a reaction cell that contains the test specimen. Tests must be conducted at several solution flow rates to evaluate the effect of the flow rate on the glass dissolution rate. 1.3 This practice excludes static test methods in which flow is simulated by manually removing solution from the reaction cell and replacing it with fresh solution. 1.4 Tests may be conducted wit...

  5. [Intestinal absorption of different combinations of active compounds from Gegenqinlian decoction by rat single pass intestinal perfusion in situ].

    Science.gov (United States)

    An, Rui; Zhang, Hua; Zhang, Yi-Zhu; Xu, Ran-Chi; Wang, Xin-Hong

    2012-12-01

    The aim is to study the intestinal absorption of different combinations of active compounds out of Gegenqinlian decoction. Rat single pass intestinal perfusion model with jugular vein cannulated was used. Samples were obtained continuously from the outlet perfusate and the mesenteric vein. The levels of puerarin, daidzin, liquilitin, baicalin, wogonoside, jatrorrhizine, berberine and palmatine were determined by LC-MS/MS and their permeability coefficients were calculated. The results showed that Glycyrrhiza could promote the absorption of the active ingredients in Pueraria which is the monarch herb; meanwhile, Pueraria also played a role in promoting the absorption of liquilitin. Based on the Gegenqinlian decoction and the different combinations experiments, the results concerning the absorption of baicalin and wogonoside were as follows. For baicalin, Pueraria and Glycyrrhiza could promote its absorption and the effect of Pueraria was more obvious. For wogonoside, Pueraria could also promote its absorption, while Glycyrrhiza played a opposite role. Pueraria and Glycyrrhiza both played a part in promoting the absorption of jateorhizine, berberine and palmatine, the effective compounds in Coptis.

  6. Absorption characteristics of the total alkaloids from Mahonia bealei in an in situ single-pass intestinal perfusion assay.

    Science.gov (United States)

    Sun, Yu-He; He, Xin; Yang, Xiao-Lin; Dong, Cui-Lan; Zhang, Chun-Feng; Song, Zi-Jing; Lu, Ming-Xing; Yang, Zhong-Lin; Li, Ping

    2014-07-01

    To investigate the absorption characteristics of the total alkaloids from Mahoniae Caulis (TAMC) through the administration of monterpene absorption enhancers or protein inhibitors. The absorption behavior was investigated in an in situ single-pass intestinal perfusion (SPIP) assay in rats. The intestinal absorption of TAMC was much more than that of a single compound or a mixture of compounds (jatrorrhizine, palmatine, and berberine). Promotion of absorption by the bicyclic monoterpenoids (borneol or camphor) was higher than by the monocyclic monoterpenes (menthol or menthone), and promotion by compounds with a hydroxyl group (borneol or menthol) was higher than those with a carbonyl group (camphor or menthone). The apparent permeability coefficient (Papp) of TAMC was increased to 1.8-fold by verapamil, while it was reduced to one half by thiamine. The absorption rate constant (Ka) and Papp of TAMC were unchanged by probenecid and pantoprazole. The intestinal absorption characteristics of TAMC might be passive transport, and the intestinum tenue was the best absorptive site. In addition, TAMC might be likely a substrate of P-glycoprotein (P-gp) and organic cation transporters (OCT), rather than multidrug resistance protein (MRP) and breast cancer resistance protein (BCRP). Compared with a single compound and a mixture of compounds, TAMC was able to be absorbed in the blood circulation effectively. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  7. {open_quotes}Optical guiding{close_quotes} limits on extraction efficiencies of single-pass, tapered wiggler amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Fawley, W.M. [Lawrence Berkeley Lab., CA (United States)

    1995-12-31

    Single-pass, tapered wiggler amplifiers have an attractive feature of being able, in theory at least, of extracting a large portion of the electron beam energy into light. In circumstances where an optical FEL`s wiggler length is significantly longer than the Rayleigh length Z{sub R} corresponding to the electron beam radius, diffraction losses must be controlled via the phenomenon of {open_quotes}optical guiding{close_quotes}. Since the strength of the guiding depends upon the effective refractive index {eta}{sub r} exceeding one, and since ({eta}{sub r}-1) is inversely proportional to the optical electric field, there is a natural {open_quotes}limiting{close_quotes} mechanism to the on-axis field strength and thus the rate at which energy may be extracted from the electron beam. In particular, the extraction efficiency for a prebunched beam asymptotically grows linearly with z rather than quadratically. We present analytical and numerical simulation results concerning this behavior and discuss its applicability to various FEL designs including oscillator/amplifier-radiator configurations.

  8. Single-Pass Percutaneous Liver Biopsy for Diffuse Liver Disease Using an Automated Device: Experience in 154 Procedures

    International Nuclear Information System (INIS)

    Rivera-Sanfeliz, Gerant; Kinney, Thomas B.; Rose, Steven C.; Agha, Ayad K.M.; Valji, Karim; Miller, Franklin J.; Roberts, Anne C.

    2005-01-01

    Purpose: To describe our experience with ultrasound (US)-guided percutaneous liver biopsies using the INRAD 18G Express core needle biopsy system.Methods: One hundred and fifty-four consecutive percutaneous core liver biopsy procedures were performed in 153 men in a single institution over 37 months. The medical charts, pathology reports, and radiology files were retrospectively reviewed. The number of needle passes, type of guidance, change in hematocrit level, and adequacy of specimens for histologic analysis were evaluated.Results: All biopsies were performed for histologic staging of chronic liver diseases. The majority of patients had hepatitis C (134/153, 90.2%). All patients were discharged to home after 4 hr of postprocedural observation. In 145 of 154 (94%) biopsies, a single needle pass was sufficient for diagnosis. US guidance was utilized in all but one of the procedures (153/154, 99.4%). The mean hematocrit decrease was 1.2% (44.1-42.9%). Pain requiring narcotic analgesia, the most frequent complication, occurred in 28 of 154 procedures (18.2%). No major complications occurred. The specimens were diagnostic in 152 of 154 procedures (98.7%).Conclusions: Single-pass percutaneous US-guided liver biopsy with the INRAD 18G Express core needle biopsy system is safe and provides definitive pathologic diagnosis of chronic liver disease. It can be performed on an outpatient basis. Routine post-biopsy monitoring of hematocrit level in stable, asymptomatic patients is probably not warranted

  9. Evaluation of the single-pass flow-through test to support a low-activity waste specification

    International Nuclear Information System (INIS)

    McGrail, B.P.; Peeler, D.K.

    1995-09-01

    A series of single-pass flow-through (SPFT) tests was performed on five reference low-activity waste glasses and a reference glass from the National Institute of Standards and Technology to support a product specification for low-activity waste (LAW) forms. The results showed that the SPFT test provides a means to quantitatively distinguish among LAW glass forms in terms of their forward reaction rate at a given temperature and solution pH. Two of the test glasses were also subjected to SPFT testing at Argonne National Laboratory (ANL). Forward reaction rate constants calculated from the ANL test data were 100 to over 1,000 times larger than the values obtained from the SPFT tests conducted at PNL. An analysis of the ANL results showed that they were inconsistent with independent measurements done on glasses of similar composition, the known pH-dependence of the forward rate, and with the results from low surface-area-to-volume, short duration product consistency tests. Because the data set obtained from the SPFT tests done at PNL was consistent with each of these same factors, a detailed examination of the test procedures used at both laboratories was performed to determine the cause(s) of the discrepancy. The omission of background subtraction in the data analysis procedure and the short-duration (on the order of hours) of the ANL tests are factors that may have significantly affected the calculated rates

  10. Single-frequency blue light generation by single-pass sum-frequency generation in a coupled ring cavity tapered laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2013-01-01

    A generic approach for generation of tunable single frequency light is presented. 340 mW of near diffraction limited, single-frequency, and tunable blue light around 459 nm is generated by sum-frequency generation (SFG) between two tunable tapered diode lasers. One diode laser is operated in a ring...... cavity and another tapered diode laser is single-passed through a nonlinear crystal which is contained in the coupled ring cavity. Using this method, the single-pass conversion efficiency is more than 25%. In contrast to SFG in an external cavity, the system is entirely self-stabilized with no electronic...

  11. Stable fiber interferometer

    International Nuclear Information System (INIS)

    Izmajlov, G.N.; Nikolaev, F.A.; Ozolin, V.V.; Grigor'yants, V.V.; Chamorovskij, Yu.K.

    1989-01-01

    The problem of construction the long-base Michelson interferometer for gravitational wave detection is discussed. Possible sources of noise and instability are considered. It is shown that evacuation of fiber interferometer, the winding of its arms on the glass ceramic bases, stabilization of radiation source frequency and seismic isolation of the base allow one to reduce its instability to the level, typical of mirror interferometer with the comparable optical base. 10 refs.; 2 figs

  12. Navigation with Atom Interferometers

    Science.gov (United States)

    2017-03-20

    Navigation with Atom Interferometers Mary F. Locke and Frank A. Narducci Avionics Department Naval Air Systems Command Patuxent River, Md...20670 Abstract: In this article, we review the basic physics of an atom interferometer. We highlight the usefulness of atom interferometers for...inertial navigation due to their high phase sensitivity to both linear acceleration and angular rotation, but also the drawback that a single atom

  13. Variations of interferometer types

    International Nuclear Information System (INIS)

    Graeff, W.

    1978-01-01

    The search for other interferometer configurations than the LLL interferometer that has been proved to work satisfactorily, has two reasons: first some disadvantages of the LLL interferometer like the smearins of the beams over the Borrmann fan or the loss of half of the intensity in the Laue case mirror may be overcome by changing the geometry. Secondly, problems of neutron optics like details of wave propagation in perfect and nearly perfect crystals coherence etc. can be investigated by varying the properties of the interferometer components. The discussion is restricted to those inteferometer types where Bragg diffracting single crystals are used for beam handling

  14. Atom Wave Interferometers

    National Research Council Canada - National Science Library

    Pritchard, David

    1999-01-01

    Matter wave interferometers, in which de Broglie waves are coherently split and then recombined to produce interference fringes, have opened exciting new possibilities for precision and fundamental...

  15. Balancing Radiation and Contrast Media Dose in Single-Pass Abdominal Multidetector CT: Prospective Evaluation of Image Quality.

    Science.gov (United States)

    Camera, Luigi; Romano, Federica; Liccardo, Immacolata; Liuzzi, Raffaele; Imbriaco, Massimo; Mainenti, Pier Paolo; Pizzuti, Laura Micol; Segreto, Sabrina; Maurea, Simone; Brunetti, Arturo

    2015-11-01

    As both contrast and radiation dose affect the quality of CT images, a constant image quality in abdominal contrast-enhanced multidetector computed tomography (CE-MDCT) could be obtained balancing radiation and contrast media dose according to the age of the patients. Seventy-two (38 Men; 34 women; aged 20-83 years) patients underwent a single-pass abdominal CE-MDCT. Patients were divided into three different age groups: A (20-44 years); B (45-65 years); and C (>65 years). For each group, a different noise index (NI) and contrast media dose (370 mgI/mL) was selected as follows: A (NI, 15; 2.5 mL/kg), B (NI, 12.5; 2 mL/kg), and C (NI, 10; 1.5 mL/kg). Radiation exposure was reported as dose-length product (DLP) in mGy × cm. For quantitative analysis, signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were calculated for both the liver (L) and the abdominal aorta (A). Statistical analysis was performed with a one-way analysis of variance. Standard imaging criteria were used for qualitative analysis. Although peak hepatic enhancement was 152 ± 16, 128 ± 12, and 101 ± 14 Hounsfield units (P contrast media dose (mL) administered were 476 ± 147 and 155 ± 27 for group A, 926 ± 291 and 130 ± 16 for group B, and 1981 ± 451 and 106 ± 15 for group C, respectively (P contrast media dose administered to patients of different age. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  16. Single Pass Albumin Dialysis-A Dose-Finding Study to Define Optimal Albumin Concentration and Dialysate Flow.

    Science.gov (United States)

    Schmuck, Rosa Bianca; Nawrot, Gesa-Henrike; Fikatas, Panagiotis; Reutzel-Selke, Anja; Pratschke, Johann; Sauer, Igor Maximilian

    2017-02-01

    Several artificial liver support concepts have been evaluated both in vitro and clinically. Single pass albumin dialysis (SPAD) has shown to be one of the most simple approaches for removing albumin-bound toxins and water-soluble substances. Being faced with acute liver failure (ALF) in everyday practice encouraged our attempt to define the optimal conditions for SPAD more precisely in a standardized experimental setup. Albumin concentration was adjusted to either 1%, 2%, 3%, or 4%, while the flow rate of the dialysate was kept constant at a speed of 700 mL/h. The flow rate of the dialysate was altered between 350, 500, 700, and 1000 mL/h, whereas the albumin concentration was continuously kept at 3%. This study revealed that the detoxification of albumin-bound substances could be improved by increasing the concentration of albumin in the dialysate with an optimum at 3%. A further increase of the albumin concentration to 4% did not lead to a significant increase in detoxification. Furthermore, we observed a gradual increase of the detoxification efficiency for albumin-bound substances, from 350 mL/h to 700 mL/h (for bilirubin) or 1000 mL/h (for bile acids) of dialysate flow. Water-soluble toxins (ammonia, creatinine, urea, uric acid) were removed almost completely, regardless of albumin concentration or flow rate. In conclusion, this study confirmed that SPAD is effective in eliminating albumin-bound as well as water-soluble toxins using a simulation of ALF. Furthermore, this project was successful in evaluating the most effective combination of albumin concentration (3%) and dialysate flow (700 mL/h-1000 mL/h) in SPAD for the first time. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  17. Double Pass 595?nm pulsed dye laser at a 6 minute interval for the treatment of port-wine stains is not more effective than single pass

    NARCIS (Netherlands)

    Peters, M. A. D.; van Drooge, A. M.; Wolkerstorfer, A.; van Gemert, M. J. C.; van der Veen, J. P. W.; Bos, J. D.; Beek, J. F.

    2012-01-01

    Background Pulsed dye laser (PDL) is the first choice for treatment of port wine stains (PWS). However, outcome is highly variable and only a few patients achieve complete clearance. The objective of the study was to compare efficacy and safety of single pass PDL with double pass PDL at a 6 minute

  18. Warm Vapor Atom Interferometer

    Science.gov (United States)

    Biedermann, Grant; Wheeler, David; Jau, Yuan-Yu; McGuinness, Hayden

    2014-05-01

    We present a light pulse atom interferometer using room temperature rubidium vapor. Doppler sensitive stimulated Raman transitions forming the atom optical elements inherently select a cold velocity group for the interferometer. The interferometer is configured to be sensitive to accelerations. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. Self-calibrating interferometer

    International Nuclear Information System (INIS)

    Nussmeier, T.A.

    1982-01-01

    A self-calibrating interferometer is disclosed which forms therein a pair of Michelson interferometers with one beam length of each Michelson interferometer being controlled by a common phase shifter. The transfer function measured from the phase shifter to either of a pair of detectors is sinusoidal with a full cycle for each half wavelength of phase shifter travel. The phase difference between these two sinusoidal detector outputs represents the optical phase difference between a path of known distance and a path of unknown distance

  20. Simulation tools for future interferometers

    OpenAIRE

    Yamamoto, H.; Barton, M.; Bhawal, B.; Evans, M.; Yoshida, S.

    2006-01-01

    For the design and commissioning of the LIGO interferometer, simulation tools have been used explicitly and implicitly. The requirement of the advanced LIGO interferometer is much more demanding than the first generation interferometer. Development of revised simulation tools for future interferometers are underway in the LIGO Laboratory. The outline of those simulation tools and applications are discussed.

  1. Atrial electrogram quality in single-pass defibrillator leads with floating atrial bipole in patients with permanent atrial fibrillation and cardiac resynchronization therapy.

    Science.gov (United States)

    Sticherling, Christian; Müller, Dirk; Schaer, Beat A; Krüger, Silke; Kolb, Christof

    2018-03-27

    Many patients receiving cardiac resynchronization therapy (CRT) suffer from permanent atrial fibrillation (AF). Knowledge of the atrial rhythm is important to direct pharmacological or interventional treatment as well as maintaining AV-synchronous biventricular pacing if sinus rhythm can be restored. A single pass single-coil defibrillator lead with a floating atrial bipole has been shown to obtain reliable information about the atrial rhythm but has never been employed in a CRT-system. The purpose of this study was to assess the feasibility of implanting a single coil right ventricular ICD lead with a floating atrial bipole and the signal quality of atrial electrograms (AEGM) in CRT-defibrillator recipients with permanent AF. Seventeen patients (16 males, mean age 73 ± 6 years, mean EF 25 ± 5%) with permanent AF and an indication for CRT-defibrillator placement were implanted with a designated CRT-D system comprising a single pass defibrillator lead with a atrial floating bipole. They were followed-up for 103 ± 22 days using remote monitoring for AEGM transmission. All patients had at last one AEGM suitable for atrial rhythm diagnosis and of 100 AEGM 99% were suitable for visual atrial rhythm assessment. Four patients were discharged in sinus rhythm and one reverted to AF during follow-up. Atrial electrograms retrieved from a single-pass defibrillator lead with a floating atrial bipole can be reliably used for atrial rhythm diagnosis in CRT recipients with permanent AF. Hence, a single pass ventricular defibrillator lead with a floating bipole can be considered in this population. Copyright © 2018 Indian Heart Rhythm Society. Production and hosting by Elsevier B.V. All rights reserved.

  2. Fizeau plasma interferometer

    International Nuclear Information System (INIS)

    Frank, A.M.

    1980-01-01

    This paper describes a technique by which the sensitivity of plasma interferometers can be increased. Stabilization and fractional fringe measurement techniques have improved to the point where additional optical sensitivity could be useful

  3. Atom Wave Interferometers

    National Research Council Canada - National Science Library

    Pritchard, David

    2000-01-01

    Long-term research objective: Matter wave interferometers, in which de Broglie waves are coherently split and then recombined to produce interference fringes, have opened exciting new possibilities for precision and fundamental...

  4. Michelson and His Interferometer

    Science.gov (United States)

    Shankland, Robert S.

    1974-01-01

    Presents a brief historical account of Michelson's invention of his interferometer with some subsequent ingenious applications of its capabilities for precise measurement discussed in details, including the experiment on detrmination of the diameters for heavenly bodies. (CC)

  5. Mariner 9 Michelson interferometer.

    Science.gov (United States)

    Hanel, R.; Schlachman, B.; Rodgers, D.; Breihan, E.; Bywaters, R.; Chapman, F.; Rhodes, M.; Vanous, D.

    1972-01-01

    The Michelson interferometer on Mariner 9 measures the thermal emission spectrum of Mars between 200 and 2000 per cm (between 5 and 50 microns) with a spectral resolution of 2.4 per cm in the apodized mode. A noise equivalent radiance of 0.5 x 10 to the minus 7th W/sq cm/ster/cm is deduced from data recorded in orbit around Mars. The Mariner interferometer deviates in design from the Nimbus 3 and 4 interferometers in several areas, notably, by a cesium iodide beam splitter and certain aspects of the digital information processing. Special attention has been given to the problem of external vibration. The instrument performance is demonstrated by calibration data and samples of Mars spectra.

  6. Absorption Properties of Luteolin and Apigenin in Genkwa Flos Using In Situ Single-Pass Intestinal Perfusion System in the Rat.

    Science.gov (United States)

    He, Xin; Song, Zi-Jing; Jiang, Cui-Ping; Zhang, Chun-Feng

    2017-01-01

    The flower bud of Daphne genkwa (Genkwa Flos) is a commonly used herbal medicine in Asian countries. Luteolin and apigenin are two recognized active flavonoids in Genkwa Flos. The aim of this study was to investigate the intestinal absorption mechanisms of Genkwa Flos flavonoids using in situ single-pass intestinal perfusion rat model. Using HPLC, we determined its major effective flavonoids luteolin, apigenin, as well as, hydroxygenkwanin and genkwanin in biological samples. The intestinal absorption mechanisms of the total flavonoids in Genkwa Flos (TFG) were investigated using in situ single-pass intestinal perfusion rat model. Comparing the TFG absorption rate in different intestinal segments, data showed that the small intestine absorption was significantly higher than that of the colon ([Formula: see text]). Compared with duodenum and ileum, the jejunum was the best small intestinal site for TFG absorption. The high TFG concentration (61.48[Formula: see text][Formula: see text]g/ml) yielded the highest permeability ([Formula: see text]). Subsequently, three membrane protein inhibitors (verapamil, pantoprazole and probenecid) were used to explore the TFG absorption pathways. Data showed probenecid, a multidrug resistance protein (or MRP) inhibitor, effectively enhanced the TFG absorption ([Formula: see text]). Furthermore, by comparing commonly used natural absorption enhancers on TFG, it was observed that camphor was the most effective. In Situ single-pass intestinal perfusion experiment shows that TFG absorption is much higher in the small intestine than in the colon, and the TFG is absorbed mainly via an active transport pathway with MRP-mediated efflux mechanism. Camphor obviously enhanced the TFG absorption, and this could be an effective TFG formulation preparation method to increase clinical effectiveness after Genkwa Flos administration. Our study elucidated the TFG absorption mechanisms, and provided new information for its formulation preparation.

  7. Multispectral infrared imaging interferometer

    Science.gov (United States)

    Potter, A. E., Jr.

    1971-01-01

    Device permitting simultaneous viewing of infrared images at different wavelengths consists of imaging lens, Michelson interferometer, array of infrared detectors, data processing equipment for Fourier transformation of detector signal, and image display unit. Invention is useful in earth resources applications, nondestructive testing, and medical diagnoses.

  8. Investigating drug absorption from the colon: Single-pass vs. Doluisio approaches to in-situ rat large-intestinal perfusion.

    Science.gov (United States)

    Lozoya-Agullo, Isabel; Zur, Moran; Fine-Shamir, Noa; Markovic, Milica; Cohen, Yael; Porat, Daniel; González-Álvarez, Isabel; González-Álvarez, Marta; Merino-Sanjuán, Matilde; Bermejo, Marival; Dahan, Arik

    2017-07-15

    Traditionally, the colon is considered a secondary intestinal segment in the drug absorption process. However, in many cases the role of colonic drug permeability cannot be overlooked. The purpose of this research was to compare colon permeability data obtained using two different rat perfusion methods the single-pass intestinal perfusion (SPIP) approach and the closed-loop (Doluisio) perfusion model. A list of 14 structurally diverse model drugs was constructed, and their rat colon permeability was studied using the two methods. The two sets of results were compared to each other, and were evaluated vs. in-vitro, ex-vivo, and in-vivo literature values. The SPIP and the Doluisio results exhibited good correlation between them (R 2 =0.81). The best correlation of both sets was obtained with transport studies across Caco-2 monolayers (R 2 ∼0.9), as well as the sigmoidal fit vs. human fraction of dose absorbed (F abs ) data. On the other hand, Ussing chambers data, as well as lipophilicity (Log P) data, resulted in weak correlation to the in-situ results. In conclusion, the single-pass intestinal perfusion (SPIP) and the Doluisio (closed-loop) perfusion models were found to be equally convenient and useful for obtaining validated colon permeability values, although more human colonic F abs data are needed for a better understanding of colonic drug permeability and absorption. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Regional brain blood flow in mouse: quantitative measurement using a single-pass radio-tracer method and a mathematical algorithm.

    Science.gov (United States)

    Xu, K; Radhakrishnan, K; Serhal, A; Allen, F; Lamanna, J C; Puchowicz, M A

    2011-01-01

    We have developed a reliable experimental method for measuring local regional cerebral blood flows in anesthetized mice. This method is an extension of the well-established single-pass dual-label indicator method for simultaneously measuring blood flow and glucose influx in rat brains. C57BL6J mice (n = 10) were anesthetized and regional blood flows (ml/min/g) were measured using the radio-tracer method. To test the sensitivity of this method we used a mathematical algorithm to predict the blood flows and compared the two sets of results.Measured regional blood flows between 0.7 and 1.7 ml/min/g were similar to those we have previously reported in the rat. The predicted blood flows using an assumed linearly increasing arterial tracer concentration-versus-time profile (that is, a ramp) were similar to the values measured in the physiological experiments (R(2) 0.99; slope 0.91). Thus,measurements of local regional cerebral blood flow in anesthetized mice using a single-pass radio-tracer method appear to be reliable.

  10. Japanese large-scale interferometers

    CERN Document Server

    Kuroda, K; Miyoki, S; Ishizuka, H; Taylor, C T; Yamamoto, K; Miyakawa, O; Fujimoto, M K; Kawamura, S; Takahashi, R; Yamazaki, T; Arai, K; Tatsumi, D; Ueda, A; Fukushima, M; Sato, S; Shintomi, T; Yamamoto, A; Suzuki, T; Saitô, Y; Haruyama, T; Sato, N; Higashi, Y; Uchiyama, T; Tomaru, T; Tsubono, K; Ando, M; Takamori, A; Numata, K; Ueda, K I; Yoneda, H; Nakagawa, K; Musha, M; Mio, N; Moriwaki, S; Somiya, K; Araya, A; Kanda, N; Telada, S; Sasaki, M; Tagoshi, H; Nakamura, T; Tanaka, T; Ohara, K

    2002-01-01

    The objective of the TAMA 300 interferometer was to develop advanced technologies for kilometre scale interferometers and to observe gravitational wave events in nearby galaxies. It was designed as a power-recycled Fabry-Perot-Michelson interferometer and was intended as a step towards a final interferometer in Japan. The present successful status of TAMA is presented. TAMA forms a basis for LCGT (large-scale cryogenic gravitational wave telescope), a 3 km scale cryogenic interferometer to be built in the Kamioka mine in Japan, implementing cryogenic mirror techniques. The plan of LCGT is schematically described along with its associated R and D.

  11. Quantum radar

    CERN Document Server

    Lanzagorta, Marco

    2011-01-01

    This book offers a concise review of quantum radar theory. Our approach is pedagogical, making emphasis on the physics behind the operation of a hypothetical quantum radar. We concentrate our discussion on the two major models proposed to date: interferometric quantum radar and quantum illumination. In addition, this book offers some new results, including an analytical study of quantum interferometry in the X-band radar region with a variety of atmospheric conditions, a derivation of a quantum radar equation, and a discussion of quantum radar jamming.This book assumes the reader is familiar w

  12. Multiple Josephson contact interferometer

    International Nuclear Information System (INIS)

    Zappe, H.H.

    1978-01-01

    The interferometer (quantum interference between two parallel contacts) displays a mid connector and contacts of the same size, or contacts at which the middle one is twice the size as the other two, or a double connector and three contacts by which the middle contact carries twice the current as the other two. Also there can be provided interferometers with three and four contacts as well as with symmetrical double current connectors and the same largest Josephson current through all contacts. Because all contacts display the same phase state in the voltage free switching state, the amplification property can be increased and current dissipation can be decreased in a way that logic circuits with high integration degree and high switching velocities can be designed. (DG) [de

  13. Radar Chart

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Radar Chart collection is an archived product of summarized radar data. The geographic coverage is the 48 contiguous states of the United States. These hourly...

  14. Absolute metrology for space interferometers

    Science.gov (United States)

    Salvadé, Yves; Courteville, Alain; Dändliker, René

    2017-11-01

    The crucial issue of space-based interferometers is the laser interferometric metrology systems to monitor with very high accuracy optical path differences. Although classical high-resolution laser interferometers using a single wavelength are well developed, this type of incremental interferometer has a severe drawback: any interruption of the interferometer signal results in the loss of the zero reference, which requires a new calibration, starting at zero optical path difference. We propose in this paper an absolute metrology system based on multiplewavelength interferometry.

  15. The Glacier and Land Ice Surface Topography Interferometer (GLISTIN): A Novel Ka-band Digitally Beamformed Interferometer

    Science.gov (United States)

    Moller, Delwyn K.; Heavey, Brandon; Hodges, Richard; Rengarajan, Sembiam; Rignot, Eric; Rogez, Francois; Sadowy, Gregory; Simard, Marc; Zawadzki, Mark

    2006-01-01

    The estimation of the mass balance of ice sheets and glaciers on Earth is a problem of considerable scientific and societal importance. A key measurement to understanding, monitoring and forecasting these changes is ice-surface topography, both for ice-sheet and glacial regions. As such NASA identified 'ice topographic mapping instruments capable of providing precise elevation and detailed imagery data for measurements on glacial scales for detailed monitoring of ice sheet, and glacier changes' as a science priority for the most recent Instrument Incubator Program (IIP) opportunities. Funded under this opportunity is the technological development for a Ka-Band (35GHz) single-pass digitally beamformed interferometric synthetic aperture radar (InSAR). Unique to this concept is the ability to map a significant swath impervious of cloud cover with measurement accuracies comparable to laser altimeters but with variable resolution as appropriate to the differing scales-of-interest over ice-sheets and glaciers.

  16. Single Pass Optical Profile Monitoring

    CERN Document Server

    Jung, R; Hutchins, Stephen

    2003-01-01

    Beam profiles are acquired in transfer lines to monitor extracted beams and compute their emittance. Measurements performed on the first revolutions of a ring will evaluate the matching of a chain of accelerators. Depending on the particle type and energy, these measurements are in general performed with screens, making either use of Luminescence or Optical Transition Radiation [OTR], and the generated beam images are acquired with sensors of various types. Sometimes the beam position is also measured this way. The principle, advantages and disadvantages of both families of screens will be discussed in relation with the detectors used. Test results with beam and a possible evaluation method for luminescent screens will be presented. Finally other optical methods used will be mentioned for completeness.

  17. Radar equations for modern radar

    CERN Document Server

    Barton, David K

    2012-01-01

    Based on the classic Radar Range-Performance Analysis from 1980, this practical volume extends that work to ensure applicability of radar equations to the design and analysis of modern radars. This unique book helps you identify what information on the radar and its environment is needed to predict detection range. Moreover, it provides equations and data to improve the accuracy of range calculations. You find detailed information on propagation effects, methods of range calculation in environments that include clutter, jamming and thermal noise, as well as loss factors that reduce radar perfo

  18. AMI: Augmented Michelson Interferometer

    Science.gov (United States)

    Furió, David; Hachet, Martin; Guillet, Jean-Paul; Bousquet, Bruno; Fleck, Stéphanie; Reuter, Patrick; Canioni, Lionel

    2015-10-01

    Experiments in optics are essential for learning and understanding physical phenomena. The problem with these experiments is that they are generally time consuming for both their construction and their maintenance, potentially dangerous through the use of laser sources, and often expensive due to high technology optical components. We propose to simulate such experiments by way of hybrid systems that exploit both spatial augmented reality and tangible interaction. In particular, we focus on one of the most popular optical experiments: the Michelson interferometer. In our approach, we target a highly interactive system where students are able to interact in real time with the Augmented Michelson Interferometer (AMI) to observe, test hypotheses and then to enhance their comprehension. Compared to a fully digital simulation, we are investigating an approach that benefits from both physical and virtual elements, and where the students experiment by manipulating 3D-printed physical replicas of optical components (e.g. lenses and mirrors). Our objective is twofold. First, we want to ensure that the students will learn with our simulator the same concepts and skills that they learn with traditional methods. Second, we hypothesis that such a system opens new opportunities to teach optics in a way that was not possible before, by manipulating concepts beyond the limits of observable physical phenomena. To reach this goal, we have built a complementary team composed of experts in the field of optics, human-computer interaction, computer graphics, sensors and actuators, and education science.

  19. Lukewarm lithium recoil interferometer

    Science.gov (United States)

    Copenhaver, Eric; Cassella, Kayleigh; Estey, Brian; Feng, Yanying; Lai, Chen; Holger, Müller

    2017-04-01

    We demonstrate recoil-sensitive atom interferometry with laser-cooled lithium-7 at 50 times the recoil temperature. The large bandwidth of 160-ns beam-splitter pulses drives conjugate interferometers simultaneously with nearly equal contrast. Two-photon Raman transitions spectrally resolve the outputs, which thermally expand too quickly to be spatially resolved. Two images captured during a single exposure of a camera with slow readout detects both output ports. Optical pumping to a magnetically insensitive state using the well-resolved D1 line suppresses magnetic dephasing and extends coherence time. Sensitivity comparable to interferometers utilizing large momentum transfer pulses is attainable at interrogation times on the order of 10 ms due to lithium's high recoil frequency and the increased available atom number. Vibration noise is mitigated at this time scale and is converted to amplitude noise in our detection scheme, isolating the recoil frequency from what is conventionally phase noise. These techniques relax requirements for cooling in recoil-sensitive interferometry, broadening the choice of species to particles that remain difficult to trap and cool, like electrons.

  20. Diffraction-grating neutron interferometers

    International Nuclear Information System (INIS)

    Ioffe, A.I.

    1988-01-01

    Aberration distortions of wavefronts in a very cold neutron interferometer using diffraction gratings are analyzed. Aberrations that considerably reduce the efficiency of a two-grating interferometer are shown to be fully compensable by adding a third diffraction grating, which also permits the interferometer to operate with a non-collimated and non-monochromatized illuminating beam thereby raising its efficiency. A fourth diffraction grating additionally permits compensation of effects of the terrestrial rotation that affect performance of a large interferometer in which the spatial separation of beams can be of the order of a few meters. It is demonstrated to be practically possible to implement an interferometer for neutrons having a wavelength λ = 20 A and to use it in experiments aimed at finding the electric charge of the neutron at the level of 10 -23 to 10 -22 of the electronic charge. (orig.)

  1. Neutron interferometers with diffraction gratings

    International Nuclear Information System (INIS)

    Ioffe, A.I.

    1983-01-01

    A neutron interferometer is described in which the amplitude coherent division of the wave fronts is realized by means of neutron diffraction gratings. Photolithographic gratings on glass with a rectangular surface relief profile with a 58 Ni sprayed layer 2000 A thick are used as gratings. In contrast to perfect-crystal neutron interferometers the designed interferometer is capable of operating in the longwave neutron spectrum region. Variation of the value of spatial division of the interfering beams (up to 50 cm) and rather a high efficiency of the amergent beam together with the elemination of neutron beam passage through the interferometer coherent divosor material in such an interferometer permit to use it for solving problems of the solid-state physics and nuclear physics, for example, foA searching for the Yang Mills long-range field

  2. Absorption characteristic of paeoniflorin-6'-O-benzene sulfonate (CP-25) in in situ single-pass intestinal perfusion in rats.

    Science.gov (United States)

    Yang, Xiao-Dan; Wang, Chun; Zhou, Peng; Yu, Jun; Asenso, James; Ma, Yong; Wei, Wei

    2016-09-01

    1. Paeoniflorin-6'-O-benzene sulfonate (CP-25) was synthesized to improve the poor oral absorption of paeoniflorin (Pae). 2. This study was performed to investigate the absorptive behavior and mechanism of CP-25 in in situ single-pass intestinal perfusion in rats, using Pae as a control. 3. The results showed that intestinal absorption of CP-25 was neither segmental nor sex dependent. However, the main segment of intestine that absorbed Pae was the duodenum. Furthermore, passive transport was confirmed to be the main absorption pattern of CP-25. More importantly, the absorption of CP-25 was much higher than Pae in the small intestine. 4. Among the ABC transporter inhibitors, the absorption rate of Pae increased in the presence of P-gp inhibitors verapamil and GF120918, which indicated that Pae was a substrate of P-glycoprotein (P-gp), however, such was not observed in the presence of breast cancer resistance protein and multidrug resistance-associated protein 2. Finally, the ABC transporter inhibitors did not have any significant impact on CP-25 as demonstrated in the parallel studies. 5. CP-25 could improve the poor absorption of Pae, which may be attributed to both the lipid solubility enhancement and its resistance to P-gp-mediated efflux.

  3. Double Pass 595 nm Pulsed Dye Laser Does Not Enhance the Efficacy of Port Wine Stains Compared with Single Pass: A Randomized Comparison with Histological Examination.

    Science.gov (United States)

    Yu, Wenxin; Zhu, Jiafang; Wang, Lizhen; Qiu, Yajing; Chen, Yijie; Yang, Xi; Chang, Lei; Ma, Gang; Lin, Xiaoxi

    2018-03-27

    To compare the efficacy and safety of double-pass pulsed dye laser (DWL) and single-pass PDL (SWL) in treating virgin port wine stain (PWS). The increase in the extent of vascular damage attributed to the use of double-pass techniques for PWS remains inconclusive. A prospective, side-by-side comparison with a histological study for virgin PWS is still lacking. Twenty-one patients (11 flat PWS, 10 hypertrophic PWS) with untreated PWS underwent 3 treatments at 2-month intervals. Each PWS was divided into three treatment sites: SWL, DWL, and untreated control. Chromametric and visual evaluation of the efficacy and evaluation of side effects were conducted 3 months after final treatment. Biopsies were taken at the treated sites immediately posttreatment. Chromametric and visual evaluation suggested that DWL sites showed no significant improvement compared with SWL (p > 0.05) in treating PWS. The mean depth of photothermal damage to the vessels was limited to a maximum of 0.36-0.41 mm in both SWL and DWL sides. Permanent side effects were not observed in any patients. Double-pass PDL does not enhance PWS clearance. To improve the clearance of PWS lesions, either the depth of laser penetration should be increased or greater photothermal damage to vessels should be generated.

  4. Segmental-dependent membrane permeability along the intestine following oral drug administration: Evaluation of a triple single-pass intestinal perfusion (TSPIP) approach in the rat.

    Science.gov (United States)

    Dahan, Arik; West, Brady T; Amidon, Gordon L

    2009-02-15

    In this paper we evaluate a modified approach to the traditional single-pass intestinal perfusion (SPIP) rat model in investigating segmental-dependent permeability along the intestine following oral drug administration. Whereas in the traditional model one single segment of the intestine is perfused, we have simultaneously perfused three individual segments of each rat intestine: proximal jejunum, mid-small intestine and distal ileum, enabling to obtain tripled data from each rat compared to the traditional model. Three drugs, with different permeabilities, were utilized to evaluate the model: metoprolol, propranolol and cimetidine. Data was evaluated in comparison to the traditional method. Metoprolol and propranolol showed similar P(eff) values in the modified model in all segments. Segmental-dependent permeability was obtained for cimetidine, with lower P(eff) in the distal parts. Similar P(eff) values for all drugs were obtained in the traditional method, illustrating that the modified model is as accurate as the traditional, throughout a wide range of permeability characteristics, whether the permeability is constant or segment-dependent along the intestine. Three-fold higher statistical power to detect segmental-dependency was obtained in the modified approach, as each subject serves as his own control. In conclusion, the Triple SPIP model can reduce the number of animals utilized in segmental-dependent permeability research without compromising the quality of the data obtained.

  5. The Fizeau Interferometer Testbed

    Science.gov (United States)

    Zhang, Xiaolei; Carpenter, Kenneth G.; Lyon, Richard G,; Huet, Hubert; Marzouk, Joe; Solyar, Gregory

    2003-01-01

    The Fizeau Interferometer Testbed (FIT) is a collaborative effort between NASA's Goddard Space Flight Center, the Naval Research Laboratory, Sigma Space Corporation, and the University of Maryland. The testbed will be used to explore the principles of and the requirements for the full, as well as the pathfinder, Stellar Imager mission concept. It has a long term goal of demonstrating closed-loop control of a sparse array of numerous articulated mirrors to keep optical beams in phase and optimize interferometric synthesis imaging. In this paper we present the optical and data acquisition system design of the testbed, and discuss the wavefront sensing and control algorithms to be used. Currently we have completed the initial design and hardware procurement for the FIT. The assembly and testing of the Testbed will be underway at Goddard's Instrument Development Lab in the coming months.

  6. Guided magnonic Michelson interferometer.

    Science.gov (United States)

    Ahmed, Muhammad H; Jeske, Jan; Greentree, Andrew D

    2017-01-30

    Magnonics is an emerging field with potential applications in classical and quantum information processing. Freely propagating magnons in two-dimensional media are subject to dispersion, which limits their effective range and utility as information carriers. We show the design of a confining magnonic waveguide created by two surface current carrying wires placed above a spin-sheet, which can be used as a primitive for reconfigurable magnonic circuitry. We theoretically demonstrate the ability of such guides to counter the transverse dispersion of the magnon in a spin-sheet, thus extending the range of the magnon. A design of a magnonic directional coupler and controllable Michelson interferometer is shown, demonstrating its utility for information processing tasks.

  7. Closed-Loop Doluisio (Colon, Small Intestine) and Single-Pass Intestinal Perfusion (Colon, Jejunum) in Rat-Biophysical Model and Predictions Based on Caco-2.

    Science.gov (United States)

    Lozoya-Agullo, Isabel; Gonzalez-Alvarez, Isabel; Zur, Moran; Fine-Shamir, Noa; Cohen, Yael; Markovic, Milica; Garrigues, Teresa M; Dahan, Arik; Gonzalez-Alvarez, Marta; Merino-Sanjuán, Matilde; Bermejo, Marival; Avdeef, Alex

    2017-12-29

    The effective rat intestinal permeability (P eff ) was deconvolved using a biophysical model based on parameterized paracellular, aqueous boundary layer, transcellular permeabilities, and the villus-fold surface area expansion factor. Four types of rat intestinal perfusion data were considered: single-pass intestinal perfusion (SPIP) in the jejunum (n = 40), and colon (n = 15), closed-loop (Doluisio type) in the small intestine (n = 78), and colon (n = 74). Moreover, in vitro Caco-2 permeability values were used to predict rat in vivo values in the rat data studied. Comparable number of molecules permeate via paracellular water channels as by the lipoidal transcellular route in the SPIP method, although in the closed-loop method, the paracellular route appears dominant in the colon. The aqueous boundary layer thickness in the small intestine is comparable to that found in unstirred in vitro monolayer assays; it is thinner in the colon. The mucosal surface area in anaesthetized rats is 0.96-1.4 times the smooth cylinder calculated value in the colon, and it is 3.1-3.6 times in the small intestine. The paracellular permeability of the intestine appeared to be greater in rat than human, with the colon showing more leakiness (higher P para ) than the small intestine. Based on log intrinsic permeability values, the correlations between the in vitro and in vivo models ranged from r 2 0.82 to 0.92. The SPIP-Doluisio method comparison indicated identical log permeability selectivity trend with negligible bias.

  8. Michelson interferometer for measuring temperature

    OpenAIRE

    Xie, Dong; Xu, Chunling; wang, Anmin

    2016-01-01

    We investigate that temperature can be measured by a modified Michelson interferometer, where at least one reflected mirror is replaced by a thermalized sample. Both of two mirrors replaced by the corresponding two thermalized samples can help to approximatively improve the resolution of temperature up to twice than only one mirror replaced by a thermalized sample. For further improving the precision, a nonlinear medium can be employed. The Michelson interferometer is embedded in a gas displa...

  9. Surface profiling interferometer

    Science.gov (United States)

    Takacs, Peter Z.; Qian, Shi-Nan

    1989-01-01

    The design of a long-trace surface profiler for the non-contact measurement of surface profile, slope error and curvature on cylindrical synchrotron radiation (SR) mirrors. The optical system is based upon the concept of a pencil-beam interferometer with an inherent large depth-of-field. The key feature of the optical system is the zero-path-difference beam splitter, which separates the laser beam into two colinear, variable-separation probe beams. A linear array detector is used to record the interference fringe in the image, and analysis of the fringe location as a function of scan position allows one to reconstruct the surface profile. The optical head is mounted on an air bearing slide with the capability to measure long aspheric optics, typical of those encountered in SR applications. A novel feature of the optical system is the use of a transverse "outrigger" beam which provides information on the relative alignment of the scan axis to the cylinder optic symmetry axis.

  10. Michelson Interferometer (MINT)

    Science.gov (United States)

    Lacis, Andrew; Carlson, Barbara

    1993-01-01

    MINT is a Michelson interferometer designed to measure the thermal emission from the earth at high spectral resolution (2/cm) over a broad spectral range (250-1700/cm, 6-40 mu m) with contiguous 3-pixel wide (12 mrad, 8 km field of view) along-track sampling. MINT is particularly well suited for monitoring cloud properties (cloud cover, effective temperature, optical thickness, ice/water phase, and effective particle size) both day and night, as well as tropospheric water vapor, ozone, and temperature. The key instrument characteristics that make MINT ideally suited for decadal monitoring purposes are: high wavelength to wavelength precision across the full IR spectrum with high spectral resolution; space-proven long-term durability and calibration stability; and small size, low cost, low risk instrument incorporating the latest detector and electronics technology. MINT also incorporates simplicity in design and operation by utilizing passively cooled DTGS detectors and nadir viewing geometry (with target motion compensation). MINT measurement objectives, instrument characteristics, and key advantages are summarized in this paper.

  11. Michelson interferometer for measuring temperature

    Science.gov (United States)

    Xie, Dong; Xu, Chunling; Wang, An Min

    2017-09-01

    We investigate that temperature can be measured by a modified Michelson interferometer, where at least one reflected mirror is replaced by a thermalized sample. Both of two mirrors replaced by the corresponding two thermalized samples can help to approximatively improve the resolution of temperature up to twice than only one mirror replaced by a thermalized sample. For further improving the precision, a nonlinear medium can be employed. The Michelson interferometer is embedded in a gas displaying Kerr nonlinearity. We obtain the analytical equations and numerically calculate the precision with parameters within the reach of current technology, proving that the precision of temperature can be greatly enhanced by using a nonlinear medium. Our results show that one can create an accurate thermometer by measuring the photons in the Michelson interferometer, with no need to directly measure the population of thermalized sample.

  12. Weather Radar Stations

    Data.gov (United States)

    Department of Homeland Security — These data represent Next-Generation Radar (NEXRAD) and Terminal Doppler Weather Radar (TDWR) weather radar stations within the US. The NEXRAD radar stations are...

  13. Liquid-helium-cooled Michelson interferometer

    Science.gov (United States)

    Augason, G. C.; Young, N.

    1972-01-01

    Interferometer serves as a rocket-flight spectrometer for examination of the far infrared emission spectra of astronomical objects. The double beam interferometer is readily adapted to make spectral scans and for use as a detector of discrete line emissions.

  14. Standing waves in fiber-optic interferometers

    NARCIS (Netherlands)

    De Haan, V.; Santbergen, R.; Tijssen, M.; Zeman, M.

    2011-01-01

    A study is presented giving the response of three types of fiber-optic interferometers by which a standing wave through an object is investigated. The three types are a Sagnac, Mach–Zehnder and Michelson–Morley interferometer. The response of the Mach–Zehnder interferometer is similar to the Sagnac

  15. Bistatic radar

    CERN Document Server

    Willis, Nick

    2004-01-01

    Annotation his book is a major extension of a chapter on bistatic radar written by the author for the Radar Handbook, 2nd edition, edited by Merrill Skolnik. It provides a history of bistatic systems that points out to potential designers the applications that have worked and the dead-ends not worth pursuing. The text reviews the basic concepts and definitions, and explains the mathematical development of relationships, such as geometry, Ovals of Cassini, dynamic range, isorange and isodoppler contours, target doppler, and clutter doppler spread.Key Features * All development and analysis are

  16. The TEXT upgrade vertical interferometer

    International Nuclear Information System (INIS)

    Hallock, G.A.; Gartman, M.L.; Li, W.; Chiang, K.; Shin, S.; Castles, R.L.; Chatterjee, R.; Rahman, A.S.

    1992-01-01

    A far-infrared interferometer has been installed on TEXT upgrade to obtain electron density profiles. The primary system views the plasma vertically through a set of large (60-cm radialx7.62-cm toroidal) diagnostic ports. A 1-cm channel spacing (59 channels total) and fast electronic time response is used, to provide high resolution for radial profiles and perturbation experiments. Initial operation of the vertical system was obtained late in 1991, with six operating channels

  17. Stellar Interferometer Technology Experiment (SITE)

    Science.gov (United States)

    Crawley, Edward F.; Miller, David; Laskin, Robert; Shao, Michael

    1995-01-01

    The MIT Space Engineering Research Center and the Jet Propulsion Laboratory stand ready to advance science sensor technology for discrete-aperture astronomical instruments such as space-based optical interferometers. The objective of the Stellar Interferometer Technology Experiment (SITE) is to demonstrate system-level functionality of a space-based stellar interferometer through the use of enabling and enhancing Controlled-Structures Technologies (CST). SITE mounts to the Mission Peculiar Experiment Support System inside the Shuttle payload bay. Starlight, entering through two apertures, is steered to a combining plate where it is interferred. Interference requires 27 nanometer pathlength (phasing) and 0.29 archsecond wavefront-tilt (pointing) control. The resulting 15 milli-archsecond angular resolution exceeds that of current earth-orbiting telescopes while maintaining low cost by exploiting active optics and structural control technologies. With these technologies, unforeseen and time-varying disturbances can be rejected while relaxing reliance on ground alignment and calibration. SITE will reduce the risk and cost of advanced optical space systems by validating critical technologies in their operational environment. Moreover, these technologies are directly applicable to commercially driven applications such as precision matching, optical scanning, and vibration and noise control systems for the aerospace, medical, and automotive sectors. The SITE team consists of experienced university, government, and industry researchers, scientists, and engineers with extensive expertise in optical interferometry, nano-precision opto-mechanical control and spaceflight experimentation. The experience exists and the technology is mature. SITE will validate these technologies on a functioning interferometer science sensor in order to confirm definitely their readiness to be baselined for future science missions.

  18. Social Radar

    Science.gov (United States)

    2012-01-01

    development and exploration of courses of action. Recent events suggest the great potential of social media as an important input for this 21st century...unrestricted data domain consisting of open source English and foreign language data of varying types, including social media  Engineering to process and...Ideology identification in multiple languages  Emotion analysis of social media for instability monitoring Social Radar RTA HFM-201/RSM

  19. Unequal-Arms Michelson Interferometers

    Science.gov (United States)

    Tinto, Massimo; Armstrong, J. W.

    2000-01-01

    Michelson interferometers allow phase measurements many orders of magnitude below the phase stability of the laser light injected into their two almost equal-length arms. If, however, the two arms are unequal, the laser fluctuations can not be removed by simply recombining the two beams. This is because the laser jitters experience different time delays in the two arms, and therefore can not cancel at the photo detector. We present here a method for achieving exact laser noise cancellation, even in an unequal-arm interferometer. The method presented in this paper requires a separate readout of the relative phase in each arm, made by interfering the returning beam in each arm with a fraction of the outgoing beam. By linearly combining the two data sets with themselves, after they have been properly time shifted, we show that it is possible to construct a new data set that is free of laser fluctuations. An application of this technique to future planned space-based laser interferometer detector3 of gravitational radiation is discussed.

  20. Phase conjugate Michelson interferometer for optical logic

    Science.gov (United States)

    Khoury, Jed

    2017-05-01

    The interference theory is developed for of the phase conjugate Michelson interferometer in which its ordinary mirrors are replaced by a single externally pumped phase conjugate mirror. According to the theory, it was found that for an interferometer with two equal arms, the path length difference depends solely on the initial alignment of the two input beams, and the vertical alignment readout. Small vertical misalignments in the readout beam by mrad causes a huge change in the phase difference in the phase between the two interferometer arms beam. The phase difference is proportional to the interferometer arm lengths. The overlap between the phase conjugate beams is not affected by the interferometer beam alignment. The interferometer is proposed for nondestructive testing and the design all optical logic and associated fuzzy logic for ultrafast optical pattern recognition.

  1. Advances in bistatic radar

    CERN Document Server

    Willis, Nick

    2007-01-01

    Advances in Bistatic Radar updates and extends bistatic and multistatic radar developments since publication of Willis' Bistatic Radar in 1991. New and recently declassified military applications are documented. Civil applications are detailed including commercial and scientific systems. Leading radar engineers provide expertise to each of these applications. Advances in Bistatic Radar consists of two major sections: Bistatic/Multistatic Radar Systems and Bistatic Clutter and Signal Processing. Starting with a history update, the first section documents the early and now declassified military

  2. Stabilization of a Fabry-Perot interferometer using a suspension-point interferometer

    International Nuclear Information System (INIS)

    Aso, Y.; Ando, M.; Kawabe, K.; Otsuka, S.; Tsubono, K.

    2004-01-01

    A suspension-point interferometer (SPI) is an auxiliary interferometer for active vibration isolation, implemented at the suspension points of the mirrors of an interferometric gravitational wave detector. We constructed a prototype Fabry-Perot interferometer equipped with an SPI and observed vibration isolation in both the spectrum and transfer function. The noise spectrum of the main interferometer was reduced by 40 dB below 1 Hz. Transfer function measurements showed that the SPI also produced good vibration suppression above 1 Hz. These results indicate that SPI can improve both the sensitivity and the stability of the interferometer

  3. Heterodyne displacement interferometer, insensitive for input polarization

    NARCIS (Netherlands)

    Meskers, A.J.H.; Spronck, J.W.; Munnig Schmidt, R.H.

    2014-01-01

    Periodic nonlinearity (PNL) in displacement interferometers is a systematic error source that limits measurement accuracy. The PNL of coaxial heterodyne interferometers is highly influenced by the polarization state and orientation of the source frequencies. In this Letter, we investigate this error

  4. A Michelson interferometer for ultracold neutrons

    International Nuclear Information System (INIS)

    Steyerl, A.; Malik, S.S.; Steinhauser, K.A.; Berger, L.

    1979-01-01

    We propose a neutron Michelson Interferometer installed within a focussing 'gravity diffractometer' for ultracold neutrons. In this arrangement the expected interference pattern depends only on the well-defined vertical component of neutron wavevector. Possible applications of such an interferometer are discussed. (orig.)

  5. Algorithms for Unequal-Arm Michelson Interferometers

    Science.gov (United States)

    Giampieri, Giacomo; Hellings, Ronald W.; Tinto, Massimo; Bender, Peter L.; Faller, James E.

    1994-01-01

    A method of data acquisition and data analysis is described in which the performance of Michelson-type interferometers with unequal arms can be made nearly the same as interferometers with equal arms. The method requires a separate readout of the relative phase in each arm, made by interfering the returning beam in each arm with a fraction of the outgoing beam.

  6. In-fiber integrated Michelson interferometer.

    Science.gov (United States)

    Yuan, Libo; Yang, Jun; Liu, Zhihai; Sun, Jiaxing

    2006-09-15

    A novel fiber-optic in-fiber integrated Michelson interferometer has been proposed and demonstrated. It consists of a segment of two-core fiber with a mirrored fiber end. The sensing characteristics based on the two-core fiber bending, corresponding to the shift of the phase of the two-core in-fiber integrated Michelson interferometer, are investigated.

  7. Interferometer techniques for gravitational-wave detection.

    Science.gov (United States)

    Bond, Charlotte; Brown, Daniel; Freise, Andreas; Strain, Kenneth A

    2016-01-01

    Several km-scale gravitational-wave detectors have been constructed worldwide. These instruments combine a number of advanced technologies to push the limits of precision length measurement. The core devices are laser interferometers of a new kind; developed from the classical Michelson topology these interferometers integrate additional optical elements, which significantly change the properties of the optical system. Much of the design and analysis of these laser interferometers can be performed using well-known classical optical techniques; however, the complex optical layouts provide a new challenge. In this review, we give a textbook-style introduction to the optical science required for the understanding of modern gravitational wave detectors, as well as other high-precision laser interferometers. In addition, we provide a number of examples for a freely available interferometer simulation software and encourage the reader to use these examples to gain hands-on experience with the discussed optical methods.

  8. The LTP interferometer and phasemeter

    International Nuclear Information System (INIS)

    Heinzel, G; Wand, V; GarcIa, A; Jennrich, O; Braxmaier, C; Robertson, D; Middleton, K; Hoyland, D; Ruediger, A; Schilling, R; Johann, U; Danzmann, K

    2004-01-01

    The LISA Technology Package (LTP), to be launched by ESA in 2006/2007, is a technology demonstration mission in preparation for the LISA space-borne gravitational wave detector. A central part of the LTP is the optical metrology package (heterodyne interferometer with phasemeter) which monitors the distance between two test masses with a noise level of 10 pm Hz -1/2 between 3 mHz and 30 mHz. It has a dynamic range of >100 μm without any actuators for the pathlength. In addition to the longitudinal measurements, it provides alignment measurements with an expected noise level of -1/2 . While the basic design has been described previously by Heinzel et al (2003 Class. Quantum Grav. 20 S153-61), this paper gives new details on the laser stabilization, the phasemeter and recent prototype results

  9. Pneumatic probe with laser interferometer

    International Nuclear Information System (INIS)

    Wilkens, P.H.

    1978-01-01

    Improvements to upgrade the accuracy of Rotacon probes by a complete redesign of probe to include a Michelson interferometer to replace the existing long-range capacity transducer are described. This has resulted in a compact and interchangeable probe cartridge with a 3 μin. resolution and accuracy; the cartridge can be installed and replaced in the Rotacon gauge with the minimum of realignment, which should reduce our dependence on operator skill. In addition, the stylus contact force can be reduced to 750 mg for the contacting types, but an alternative feature, which we are still developing, will use a gas jet cushion in place of the stylus to provide a noncontacting version of the same basic probe cartridge. This device is very sensitive to external vibration effects because it is virtually frictionless

  10. Multiple spacecraft Michelson stellar interferometer

    Science.gov (United States)

    Stachnik, R. V.; Arnold, D.; Melroy, P.; Mccormack, E. F.; Gezari, D. Y.

    1984-01-01

    Results of an orbital analysis and performance assessment of SAMSI (Spacecraft Array for Michelson Spatial Interferometry) are presented. The device considered includes two one-meter telescopes in orbits which are identical except for slightly different inclinations; the telescopes achieve separations as large as 10 km and relay starlight to a central station which has a one-meter optical delay line in one interferometer arm. It is shown that a 1000-km altitude, zero mean inclination orbit affords natural scanning of the 10-km baseline with departures from optical pathlength equality which are well within the corrective capacity of the optical delay line. Electric propulsion is completely adequate to provide the required spacecraft motions, principally those needed for repointing. Resolution of 0.00001 arcsec and magnitude limits of 15 to 20 are achievable.

  11. Dispersion cancellation in a triple Laue interferometer

    International Nuclear Information System (INIS)

    Lemmel, Hartmut

    2014-01-01

    The concept of dispersion cancellation has been established in light optics to improve the resolution of interferometric measurements on dispersive media. Odd order dispersion cancellation allows to measure phase shifts without defocusing the interferometer due to wave packet displacements, while even order dispersion cancellation allows to measure time lags without losing resolution due to wave packet spreading. We report that either type of dispersion cancellation can be realized very easily in a triple Laue interferometer. Such interferometers are Mach–Zehnder interferometers based on Bragg diffraction, and are commonly used for neutrons and x-rays. Although the first x-ray interferometer was built nearly five decades ago, the feature of dispersion cancellation hasn't been recognized so far because the concept was hardly known in the neutron and x-ray community. However, it explains right away the surprising decoupling of phase shift and spatial displacement that we have discovered recently in neutron interferometry (Lemmel and Wagh 2010 Phys. Rev. A 82 033626). Furthermore, this article might inspire the light optics community to consider whether a triple Laue interferometer for laser light would be useful and feasible. We explain how dispersion cancellation works in neutron interferometry, and we describe the setup rigorously by solving the Schrödinger equation and by calculating the path integral. We point out, that the latter has to be evaluated with special care since in our setup the beam trajectory moves with respect to the crystal lattice of the interferometer. (paper)

  12. Comparative Sensitivities of Gravitational Wave Detectors Based on Atom Interferometers and Light Interferometers

    Science.gov (United States)

    Baker, John G.; Thorpe, J. I.

    2012-01-01

    We consider a class of proposed gravitational wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe. Whether this potential advantage outweighs the additional complexity associated with including atom interferometers will require further study.

  13. The proposed flatland radar

    Science.gov (United States)

    Green, J. L.; Gage, K. S.; Vanzandt, T. E.; Nastrom, G. D.

    1986-01-01

    A flexible very high frequency (VHF) stratosphere-troposphere (ST) radar configured for meteorological research is to be constructed near Urbana, Illinois. Measurement of small vertical velocities associated with synoptic-scale meteorology can be performed. A large Doppler microwave radar (CHILL) is located a few km from the site of the proposed ST radar. Since the microwave radar can measure the location and velocity of hydrometeors and the VHF ST radar can measure clear (or cloudy) air velocities, simultaneous observations by these two radars of stratiform or convective weather systems would provide valuable meteorological information.

  14. Adaptive radar resource management

    CERN Document Server

    Moo, Peter

    2015-01-01

    Radar Resource Management (RRM) is vital for optimizing the performance of modern phased array radars, which are the primary sensor for aircraft, ships, and land platforms. Adaptive Radar Resource Management gives an introduction to radar resource management (RRM), presenting a clear overview of different approaches and techniques, making it very suitable for radar practitioners and researchers in industry and universities. Coverage includes: RRM's role in optimizing the performance of modern phased array radars The advantages of adaptivity in implementing RRMThe role that modelling and

  15. Radar and ARPA manual

    CERN Document Server

    Bole, A G

    2013-01-01

    Radar and ARPA Manual focuses on the theoretical and practical aspects of electronic navigation. The manual first discusses basic radar principles, including principles of range and bearing measurements and picture orientation and presentation. The text then looks at the operational principles of radar systems. Function of units; aerial, receiver, and display principles; transmitter principles; and sitting of units on board ships are discussed. The book also describes target detection, Automatic Radar Plotting Aids (ARPA), and operational controls of radar systems, and then discusses radar plo

  16. Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI): Monolithic Interferometer Design and Test

    Science.gov (United States)

    Harlander, John M.; Englert, Christoph R.; Brown, Charles M.; Marr, Kenneth D.; Miller, Ian J.; Zastera, Vaz; Bach, Bernhard W.; Mende, Stephen B.

    2017-10-01

    The design and laboratory tests of the interferometers for the Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument which measures thermospheric wind and temperature for the NASA-sponsored Ionospheric Connection (ICON) Explorer mission are described. The monolithic interferometers use the Doppler Asymmetric Spatial Heterodyne (DASH) Spectroscopy technique for wind measurements and a multi-element photometer approach to measure thermospheric temperatures. The DASH technique and overall optical design of the MIGHTI instrument are described in an overview followed by details on the design, element fabrication, assembly, laboratory tests and thermal control of the interferometers that are the heart of MIGHTI.

  17. Double-grating interferometer with a one-to-one correspondence with a Michelson interferometer.

    Science.gov (United States)

    Xu, Yande; Sasaki, Osami; Suzuki, Takamasa

    2003-10-01

    We describe a double-grating interferometer that has a one-to-one correspondence with a Michelson interferometer. The half spatial periods of the gratings are equivalent to the wavelengths of the interferometer. The widths of the interference fringes can be changed easily. The intensity distribution of the interference pattern is independent of the wavelength of the light source used. The surface profile of an object can be measured because two interference beams can coincide precisely on the image plane of the object. The measuring range is much larger than that of a Michelson interferometer.

  18. The CryoSat Interferometer after 6 years in orbit: calibration and achievable performance

    Science.gov (United States)

    Scagliola, Michele; Fornari, Marco; De Bartolomei, Maurizio; Bouffard, Jerome; Parrinello, Tommaso

    2016-04-01

    The main payload of CryoSat is a Ku-band pulse width limited radar altimeter, called SIRAL (Synthetic interferometric radar altimeter). When commanded in SARIn (synthetic aperture radar interferometry) mode, through coherent along-track processing of the returns received from two antennas, the interferometric phase related to the first arrival of the echo is used to retrieve the angle of arrival of the scattering in the across-track direction. In fact, the across-track echo direction can be derived by exploiting the precise knowledge of the baseline vector (i.e. the vector between the two antennas centers of phase) and simple geometry. The end-to-end calibration strategy for the CryoSat interferometer consists on in-orbit calibration campaigns following the approach described in [1]. From the beginning of the CryoSat mission, about once a year the interferometer calibration campaigns have been periodically performed by rolling left and right the spacecraft of about ±0.4 deg. This abstract is aimed at presenting our analysis of the calibration parameters and of the achievable performance of the CryoSat interferometer over the 6 years of mission. Additionally, some further studies have been performed to assess the accuracy of the roll angle computed on ground as function of the aberration (the apparent displacement of a celestial object from its true position, caused by the relative motion of the observer and the object) correction applied to the attitude quaternions, provided by the Star Tracker mounted on-board. In fact, being the roll information crucial to obtain an accurate estimate of the angle of arrival, the data from interferometer calibration campaigns have been used to verify how the application of the aberration correction affects the roll information and, in turns, the measured angle of arrival. [1] Galin, N.; Wingham, D.J.; Cullen, R.; Fornari, M.; Smith, W.H.F.; Abdalla, S., "Calibration of the CryoSat-2 Interferometer and Measurement of Across

  19. Turbulence-Free Double-slit Interferometer

    Science.gov (United States)

    Smith, Thomas A.; Shih, Yanhua

    2018-02-01

    Optical turbulence can be detrimental for optical observations. For instance, atmospheric turbulence may reduce the visibility or completely blur out the interference produced by an interferometer in open air. However, a simple two-photon interference theory based on Einstein's granularity picture of light makes a turbulence-free interferometer possible; i.e., any refraction index, length, or phase variations along the optical paths of the interferometer do not have any effect on its interference. Applying this mechanism, the reported experiment demonstrates a two-photon double-slit interference that is insensitive to atmospheric turbulence. The turbulence-free mechanism and especially the turbulence-free interferometer would be helpful in optical observations that require high sensitivity and stability such as for gravitational-wave detection.

  20. Turbulence-Free Double-slit Interferometer.

    Science.gov (United States)

    Smith, Thomas A; Shih, Yanhua

    2018-02-09

    Optical turbulence can be detrimental for optical observations. For instance, atmospheric turbulence may reduce the visibility or completely blur out the interference produced by an interferometer in open air. However, a simple two-photon interference theory based on Einstein's granularity picture of light makes a turbulence-free interferometer possible; i.e., any refraction index, length, or phase variations along the optical paths of the interferometer do not have any effect on its interference. Applying this mechanism, the reported experiment demonstrates a two-photon double-slit interference that is insensitive to atmospheric turbulence. The turbulence-free mechanism and especially the turbulence-free interferometer would be helpful in optical observations that require high sensitivity and stability such as for gravitational-wave detection.

  1. Improved double-pass michelson interferometer

    Science.gov (United States)

    Schindler, R. A.

    1978-01-01

    Interferometer design separates beams by offsetting centerlines of cat's-eye retroreflectors vertically rather than horizontally. Since beam splitter is insensitive to minimum-thickness condition in this geometry, relatively-low-cost, optically flat plate can be used.

  2. Naturally stable Sagnac-Michelson nonlinear interferometer.

    Science.gov (United States)

    Lukens, Joseph M; Peters, Nicholas A; Pooser, Raphael C

    2016-12-01

    Interferometers measure a wide variety of dynamic processes by converting a phase change into an intensity change. Nonlinear interferometers, making use of nonlinear media in lieu of beamsplitters, promise substantial improvement in the quest to reach the ultimate sensitivity limits. Here we demonstrate a new nonlinear interferometer utilizing a single parametric amplifier for mode mixing-conceptually, a nonlinear version of the conventional Michelson interferometer with its arms collapsed together. We observe up to 99.9% interference visibility and find evidence for noise reduction based on phase-sensitive gain. Our configuration utilizes fewer components than previous demonstrations and requires no active stabilization, offering new capabilities for practical nonlinear interferometric-based sensors.

  3. Interferometer Designs for the Terrestrial Planet Finder

    Science.gov (United States)

    Lawson, P. R.; Dumont, P. J.; Colavita, M. M.

    2000-01-01

    The Terrestrial Planet Finder (TPF) is a space-based infrared interferometer that will combine high sensitivity and spatial resolution to detect and characterize planetary systems within 15 pc of our sun. TPF is a key element in NASA's Origins Program and is currently un- der study in its Pre-Project Phase. We review some of the interferometer designs that have been considered for starlight nulling, with particular attention to the architecture and subsystems of the central beam-combiner.

  4. Nonlinear Michelson interferometer for improved quantum metrology

    OpenAIRE

    Luis, Alfredo; Rivas, Ángel

    2015-01-01

    We examine quantum detection via a Michelson interferometer embedded in a gas with Kerr nonlinearity. This nonlinear interferometer is illuminated by pulses of classical light. This strategy combines the robustness against practical imperfections of classical light with the improvement provided by nonlinear processes. Regarding ultimate quantum limits, we stress that, as a difference with linear schemes, the nonlinearity introduces pulse duration as a new variable into play along with the ene...

  5. Novel radar techniques and applications

    CERN Document Server

    Klemm, Richard; Lombardo, Pierfrancesco; Nickel, Ulrich

    2017-01-01

    Novel Radar Techniques and Applications presents the state-of-the-art in advanced radar, with emphasis on ongoing novel research and development and contributions from an international team of leading radar experts. This volume covers: Real aperture array radar; Imaging radar and Passive and multistatic radar.

  6. Principles of modern radar systems

    CERN Document Server

    Carpentier, Michel H

    1988-01-01

    Introduction to random functions ; signal and noise : the ideal receiver ; performance of radar systems equipped with ideal receivers ; analysis of the operating principles of some types of radar ; behavior of real targets, fluctuation of targets ; angle measurement using radar ; data processing of radar information, radar coverage ; applications to electronic scanning antennas to radar ; introduction to Hilbert spaces.

  7. Weather Radar Impact Zones

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent an inventory of the national impacts of wind turbine interference with NEXRAD radar stations. This inventory was developed by the NOAA Radar...

  8. Radar Weather Observation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radar Weather Observation is a set of archived historical manuscripts stored on microfiche. The primary source of these radar weather observations manuscript records...

  9. Noise Radar Technology Basics

    National Research Council Canada - National Science Library

    Thayaparan, T; Wernik, C

    2006-01-01

    .... In this report, the basic theory of noise radar design is treated. The theory supports the use of noise waveforms for radar detection and imaging in such applications as covert military surveillance and reconnaissance...

  10. Network radar countermeasure systems integrating radar and radar countermeasures

    CERN Document Server

    Jiang, Qiuxi

    2016-01-01

    This is the very first book to present the network radar countermeasure system. It explains in detail the systematic concept of combining radar and radar countermeasures from the perspective of the information acquisition of target location, the optimization of the reconnaissance and detection, the integrated attack of the signals and facilities, and technological and legal developments concerning the networked system. It achieves the integration of the initiative and passivity, detection and jamming. The book explains how the system locates targets, completes target identification, tracks targets and compiles the data.

  11. Wear resistance studies of an austempered ductile iron with the aid of a single pass grooving pendulum; Estudo do comportamento em desgate de um ferro fundido nodular austemperado atraves da tecnica da tecnica de esclerometria pendular

    Energy Technology Data Exchange (ETDEWEB)

    Velez, J.M.; Tschiptschin, A.P. [Sao Paulo Univ., SP (Brazil). Escola Politecnica

    1995-12-31

    The abrasive wear resistance of an austempered ductile iron was studied with the aid of a single pass grooving pendulum. Specimens were austenitized at 860 deg C and austempered at 370 deg C for 30, 60, 90, 180 and 240 min. Austenite transformation kinetics was measured by quantitative metallography. Specimens for pendulum tests were gridded as squared based prisms (50 mm x 10 mm x 10 mm) and one of the faces submitted to metallographic polishing before the test. A hard metal cutting tool was used as abrasive. The absorbed energy as well as the loss of matter were measured. Scanning Electron Microscopy was used to analyze the surface topography of the scratched specimen. It was observed a maximum in the absorbed specific energy for the specimen treated for 60 min. with a microstructure of bainite ferrite plus plus 42% volume fraction of retained austenite. All other structures (ferrite plus carbides, ferrite plus lower contents of austenite and martensite plus austenite) gave lower values of absorbed specific energy. Observation of scratches and chips formed on the surface of the specimen can explain the above mentioned behaviour 12 refs., 11 figs., 2 tabs.

  12. Comparison of Atom Interferometers and Light Interferometers as Space-Based Gravitational Wave Detectors

    Science.gov (United States)

    Baker, John G.

    2012-01-01

    We consider a class of proposed gravitational wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe.

  13. Pulse Doppler radar

    CERN Document Server

    Alabaster, Clive

    2012-01-01

    This book is a practitioner's guide to all aspects of pulse Doppler radar. It concentrates on airborne military radar systems since they are the most used, most complex, and most interesting of the pulse Doppler radars; however, ground-based and non-military systems are also included. It covers the fundamental science, signal processing, hardware issues, systems design and case studies of typical systems. It will be a useful resource for engineers of all types (hardware, software and systems), academics, post-graduate students, scientists in radar and radar electronic warfare sectors and milit

  14. Understanding radar systems

    CERN Document Server

    Kingsley, Simon

    1999-01-01

    What is radar? What systems are currently in use? How do they work? This book provides engineers and scientists with answers to these critical questions, focusing on actual radar systems in use today. It is a perfect resource for those just entering the field, or as a quick refresher for experienced practitioners. The book leads readers through the specialized language and calculations that comprise the complex world of radar engineering as seen in dozens of state-of-the-art radar systems. An easy to read, wide ranging guide to the world of modern radar systems.

  15. Process control system using polarizing interferometer

    Science.gov (United States)

    Schultz, T.J.; Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.

    1994-02-15

    A system for nondestructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figures.

  16. Perfect crystal interferometer and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Yuji [Atominstitut der Oesterreichischen Universitaeten, Vienna (Austria)

    1996-08-01

    The interferometry with angstrom scale wavelength has developed steadily, and various types of interferometers have been investigated. Among them, LLL interferometers are widely used. The first neutron interferometry was achieved in 1962 by Maier-Leibnitz et al. A new type of neutron interferometers was constructed with a perfect crystal, and experimentally performed in 1974 by Rauch et al. The precise measurements with LLL neutron interferometers were performed on scattering length, gravitational effect, coherence, Fizeau effects, spin superposition, complementarity, and post-selection effects. Since the early stage of quantum physics, the double-slit experiment has served as the example of the epistemologically strange features of quantum phenomena, and its course of study is described. The time-delayed interferometry with nuclear resonant scattering of synchrotron radiation and phase transfer in time-delayed interferometry with nuclear resonant scattering were experimented, and are briefly reported. A geometric phase factor was derived for a split beam experiment as an example of cyclic evolution. The geometric phase was observed with a two-loop neutron interferometer. All the experimental results showed complete agreement with the theoretical treatment. (K.I.)

  17. Process control system using polarizing interferometer

    Science.gov (United States)

    Schultz, Thomas J.; Kotidis, Petros A.; Woodroffe, Jaime A.; Rostler, Peter S.

    1994-01-01

    A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.

  18. Michelson interferometer based spatial phase shift shearography.

    Science.gov (United States)

    Xie, Xin; Yang, Lianxiang; Xu, Nan; Chen, Xu

    2013-06-10

    This paper presents a simple spatial phase shift shearography based on the Michelson interferometer. The Michelson interferometer based shearographic system has been widely utilized in industry as a practical nondestructive test tool. In the system, the Michelson interferometer is used as a shearing device to generate a shearing distance by tilting a small angle in one of the two mirrors. In fact, tilting the mirror in the Michelson interferometer also generates spatial frequency shift. Based on this feature, we introduce a simple Michelson interferometer based spatial phase shift shearography. The Fourier transform (FT) method is applied to separate the spectrum on the spatial frequency domain. The phase change due to the loading can be evaluated using a properly selected windowed inverse-FT. This system can generate a phase map of shearography by using only a single image. The effects of shearing angle, spatial resolution of couple charge device camera, and filter methods are discussed in detail. The theory and the experimental results are presented.

  19. Fourier Transform Fabry-Perot Interferometer

    Science.gov (United States)

    Snell, Hilary E.; Hays, Paul B.

    1992-01-01

    We are developing a compact, rugged, high-resolution remote sensing instrument with wide spectral scanning capabilities. This relatively new type of instrument, which we have chosen to call the Fourier-Transform Fabry-Perot Interferometer (FT-FPI), is accomplished by mechanically scanning the etalon plates of a Fabry-Perot interferometer (FPI) through a large optical distance while examining the concomitant signal with a Fourier-transform analysis technique similar to that employed by the Michelson interferometer. The FT-FPI will be used initially as a ground-based instrument to study near-infrared atmospheric absorption lines of trace gases using the techniques of solar absorption spectroscopy. Future plans include modifications to allow for measurements of trace gases in the stratosphere using spectral lines at terahertz frequencies.

  20. Modeling the Laser Interferometer Space Antenna Optics

    Science.gov (United States)

    Waluschka, Eugene; Pedersen, Tracy R.; McNamara, paul

    2005-01-01

    The Laser Interferometer Space Antenna (LISA), shown below, will detect gravitational waves produced by objects such as binary black holes or objects falling into black holes (extreme mass ratio inspirals) over a frequency range of l0(exp -4) to 0.1 Hz. Within the conceptual frame work of Newtonian physics, a gravitational wave produces a strain, (Delta)l/l, with magnitudes of the order of Earth based gravitational wave detectors, such as the Laser Interferometer Gravitational-Wave Observatory (LIGO) project, use Michelson interferometers with arm lengths l = 4 km to detect these strains. Earth induced seismic noise limits ground-based instruments detecting gravitational waves with frequencies lower than approx. 1 Hz.

  1. Wide Angle Michelson Doppler Imaging Interferometer (WAMDII)

    Science.gov (United States)

    Roberts, B.

    1986-01-01

    The wide angle Michelson Doppler imaging interferometer (WAMDII) is a specialized type of optical Michelson interferometer working at sufficiently long path difference to measure Doppler shifts and to infer Doppler line widths of naturally occurring upper atmospheric Gaussian line emissions. The instrument is intended to measure vertical profiles of atmospheric winds and temperatures within the altitude range of 85 km to 300 km. The WAMDII consists of a Michelson interferometer followed by a camera lens and an 85 x 106 charge coupled device photodiode array. Narrow band filters in a filter wheel are used to isolate individual line emissions and the lens forms an image of the emitting region on the charge coupled device array.

  2. A heterodyne interferometer for angle metrology

    International Nuclear Information System (INIS)

    Hahn, Inseob; Weilert, M.; Wang, X.; Goullioud, R.

    2010-01-01

    We have developed a compact, high-resolution, angle measurement instrument based on a heterodyne interferometer. Common-path heterodyne interferometer metrology is used to measure displacements of a reflective target surface. In the interferometer set up, an optical mask is used to sample the laser beam reflecting back from four areas on a target surface. From the relative displacement measurements of the target surface areas, we can simultaneously determine angular rotations around two orthogonal axes in a plane perpendicular to the measurement beam propagation direction. The device is used in a testbed for a tracking telescope system where pitch and yaw angle measurements of a flat mirror are performed. Angle noise measurement of the device shows 0.1 nrad/√(Hz) at 1 Hz, at a working distance of 1 m. The operation range and nonlinearity of the device when used with a flat mirror is approximately ±0.15 mrad, and 3 μrad rms, respectively.

  3. Dynamic investigation of a suspension footbridge using accelerometers and microwave interferometer

    Directory of Open Access Journals (Sweden)

    Gentile Carmelo

    2015-01-01

    Full Text Available The paper presents the main results of the serviceability assessment of a lively suspension footbridge. An ambient vibration test was firstly developed on July 2012 using conventional accelerometers with the objective of identifying the baseline dynamic characteristics of the structure; subsequently, groups of volunteers (up to 32 adults simulated normal walking and running at different step rates along the deck and the human-induced vibrations were simultaneously measured by accelerometers and microwave interferometer. The deflection responses recorded by the microwave interferometer suggested the exceeding of comfort criteria threshold and this result was confirmed by the acceleration levels directly measured by accelerometers or derived from the (radar displacement data. Furthermore, a second ambient vibration test was performed in Autumn 2012 using only the microwave interferometer: the natural frequencies of the footbridge generally exhibited not negligible variations, that were conceivably associated to the change of suspension forces induced by temperature, so that special care is suggested in the design of the devices aimed at mitigating the excess of human induced vibrations observed in the footbridge.

  4. Meteor radar signal processing and error analysis

    Science.gov (United States)

    Kang, Chunmei

    discarded due to the potential of producing a biased estimate. The precision of the estimated parameters can then be computed using their CRB values as a proxy for the estimated variance. These errors propagate to form the instrumental errors on the height and horizontal wind measurements. Thirdly, the interferometer configuration of interferometric meteor radar system is studied. The interferometer uses the phase differences measured at different sensor pairs to determine the DOA of the meteor trail. Typically Jones cross is used in most of current meteor radar systems, such as MEDAC and SKYiMet. We have evaluated this configuration with other array geometries,such as 'T', 'L' and circular array to examine their performance on the precision of the DOA estimates. The results show that 'T' array has an overall better CRB than other geometries, while with the yagi antenna pattern as a course determination of the DOA range, the circular array performs the best with the lowest sidelobes on the spatial spectral. A Matlab based planar array design package designed for determination and visualization of the DOA estimation performance for a user designed antenna array was developed. Fourthly, based on the special configuration of the South Pole COBRA system, a low cost computational phase calibration method is proposed. Accurate knowledge of the receiver phase ofsets is another factor that can affect system performance. Lastly, the postprocessing results of the meteor echoes collected during 2005 from the South Pole COBRA system are presented. This radar system is shown to have a precision of 2m/s in the horizontal winds, an azimuth precision of 1o, and an elevation precision of 3o. Preliminary scientific results are presented to verify the effectiveness of our processing scheme, and include the seasonal variation of meteor rates as a function of height, and the vertical structure of large semidiurnal tide observed over the South Pole austral summer. The processing schemes and

  5. Digital holographic Michelson interferometer for nanometrology

    Science.gov (United States)

    Sevrygin, Alexander A.; Korotkov, V. I.; Pulkin, S. A.; Tursunov, I. M.; Venediktov, D. V.; Venediktov, V. Yu.; Volkov, O. V.

    2014-11-01

    The paper considers the dynamic holographic interferometry schemes with amplification (multiplication) of holographic fringes and with correction for distortions, imposed by the interferometer scheme elements. The use of digital microscope and of the matrix light modulator with direct addressing provides the completely digital closed-loop performance of the overall system for real-time evaluation of nano-scale objects size. Considered schemes were verified in the laboratory experiment, using the Michelson micro-interferometer, equipped by the USB-microscope and digital holography stage, equipped by the Holoeye spatial light modulator.

  6. Streak camera recording of interferometer fringes

    International Nuclear Information System (INIS)

    Parker, N.L.; Chau, H.H.

    1977-01-01

    The use of an electronic high-speed camera in the streaking mode to record interference fringe motion from a velocity interferometer is discussed. Advantages of this method over the photomultiplier tube-oscilloscope approach are delineated. Performance testing and data for the electronic streak camera are discussed. The velocity profile of a mylar flyer accelerated by an electrically exploded bridge, and the jump-off velocity of metal targets struck by these mylar flyers are measured in the camera tests. Advantages of the streak camera include portability, low cost, ease of operation and maintenance, simplified interferometer optics, and rapid data analysis

  7. Superconducting on-chip microwave interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, Edwin P.; Fischer, Michael; Schneider, Christian; Baust, Alexander; Eder, Peter; Goetz, Jan; Haeberlein, Max; Schwarz, Manuel; Wulschner, Karl Friedrich; Xie, Edwar; Zhong, Ling; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Marx, Achim; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany)

    2015-07-01

    In the realm of all-microwave quantum computation, information is encoded in itinerant microwave photons propagating along transmission lines. In such a system unitary operations are implemented by linear elements such as beam splitters or interferometers. However, for two-qubit operations non-linear gates, e.g., c-phase gates are required. In this work, we investigate superconducting interferometers as a building block of a c-phase gate. We experimentally characterize their scattering properties and compare them to simulation results. Finally, we discuss our progress towards the realization of a c-phase gate.

  8. Quantum Spin Transport in Mesoscopic Interferometer

    Directory of Open Access Journals (Sweden)

    Zein W. A.

    2007-10-01

    Full Text Available Spin-dependent conductance of ballistic mesoscopic interferometer is investigated. The quantum interferometer is in the form of ring, in which a quantum dot is embedded in one arm. This quantum dot is connected to one lead via tunnel barrier. Both Aharonov- Casher and Aharonov-Bohm e ects are studied. Our results confirm the interplay of spin-orbit coupling and quantum interference e ects in such confined quantum systems. This investigation is valuable for spintronics application, for example, quantum information processing.

  9. Multiple reflection Michelson interferometer with picometer resolution.

    Science.gov (United States)

    Pisani, Marco

    2008-12-22

    A Michelson interferometer based on an optical set-up allowing multiple reflection between two plane mirrors performs the multiplication of the optical path by a factor N, proportionally increasing the resolution of the measurement. A multiplication factor of almost two orders of magnitude has been demonstrated with a simple set-up. The technique can be applied to any interferometric measurement where the classical interferometer limits due to fringe nonlinearities and quantum noise are an issue. Applications in precision engineering, vibration analysis, nanometrology, and spectroscopy are foreseen.

  10. The Hanbury Brown-Twiss interferometer: A 46-year perspective

    International Nuclear Information System (INIS)

    Chantler, C.T.

    2002-01-01

    Full text: Robert Hanbury Brown is synonymous with the pioneering of radar and the development of radio astronomy. Some key points in the debate over the visible light intensity interferometer, initiated by Hanbury Brown and Twiss's 1956 papers in Nature and their 1957 papers in the Royal Society Proceedings are discussed. In these papers they produced a value for the angular diameter of Sirius in agreement with present-day measurements, provided one of the first tests of quantum mechanics, and considerably stimulated the further development of quantum mechanics. More recent laser interferometry has raised related questions and will be briefly discussed. Finally, we examine the role to be played by the intensity interferometry in the shorter-wavelength regimes. This paper is dedicated in memory of Professor Robert Hanbury Brown, who died aged 85 on January, 16 2002. He is one of six life members of the Australian Optical Society. This is also dedicated in memory of Peter Goodman of the University of Melbourne (and earlier CSIRO) who worked in this area just before he passed away on 26 March 1999

  11. Phased-array radar design application of radar fundamentals

    CERN Document Server

    Jeffrey, Thomas

    2009-01-01

    Phased-Array Radar Design is a text-reference designed for electrical engineering graduate students in colleges and universities as well as for corporate in-house training programs for radar design engineers, especially systems engineers and analysts who would like to gain hands-on, practical knowledge and skills in radar design fundamentals, advanced radar concepts, trade-offs for radar design and radar performance analysis.

  12. Doppler radar physiological sensing

    CERN Document Server

    Lubecke, Victor M; Droitcour, Amy D; Park, Byung-Kwon; Singh, Aditya

    2016-01-01

    Presents a comprehensive description of the theory and practical implementation of Doppler radar-based physiological monitoring. This book includes an overview of current physiological monitoring techniques and explains the fundamental technology used in remote non-contact monitoring methods. Basic radio wave propagation and radar principles are introduced along with the fundamentals of physiological motion and measurement. Specific design and implementation considerations for physiological monitoring radar systems are then discussed in detail. The authors address current research and commercial development of Doppler radar based physiological monitoring for healthcare and other applications.

  13. Radar Signature Calculation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: The calculation, analysis, and visualization of the spatially extended radar signatures of complex objects such as ships in a sea multipath environment and...

  14. Radar Plan Position Indicator Scope

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radar Plan Position Indicator Scope is the collection of weather radar imagery for the period prior to the beginning of the Next Generation Radar (NEXRAD) system...

  15. Method and device for aligning and interferometer

    NARCIS (Netherlands)

    Somers, P.A.A.

    2005-01-01

    Method and device for the alignment of an interferometer arrangement, which comprises an object beam part (4), a beam splitting part (5) and a beam combination part (6). A detector unit (2) is arranged to detect an interference pattern for two beams that can be differentiated, via each of n optical

  16. Background reduction in a young interferometer biosensor

    NARCIS (Netherlands)

    Mulder, H. K P; Subramaniam, V.; Kanger, J. S.

    2014-01-01

    Integrated optical Young interferometer (IOYI) biosensors are among the most sensitive label-free biosensors. Detection limits are in the range of 20 fg/mm2. The applicability of these sensors is however strongly hampered by the large background that originates from both bulk refractive index

  17. Smart photogalvanic running-grating interferometer

    DEFF Research Database (Denmark)

    Kukhtarev, N. V.; Kukhtareva, T.; Edwards, M. E.

    2005-01-01

    Photogalvanic effect produces actuation of periodic motion of macroscopic LiNbO3 crystal. This effect was applied to the development of an all-optical moving-grating interferometer usable for optical trapping and transport of algae chlorella microorganisms diluted in water with a concentration...

  18. Plasmonic interferometers: From physics to biosensing applications

    Science.gov (United States)

    Zeng, Xie

    Optical interferometry has a long history and wide range of applications. In recent years, plasmonic interferometer arouses great interest due to its compact size and enhanced light-matter interaction. They have demonstrated attractive applications in biomolecule sensing, optical modulation/switching, and material characterization, etc. In this work, we first propose a practical far-field method to extract the intrinsic phase dispersion, revealing important phase information during interactions among free-space light, nanostructure, and SPs. The proposed approach is confirmed by both simulation and experiment. Then we design novel plasmonic interferometer structure for sensitive optical sensing applications. To overcome two major limitations suffered by previously reported double-slit plasmonic Mach-Zehnder interferometer (PMZI), two new schemes are proposed and investigated. (1) A PMZI based on end-fire coupling improves the SP coupling efficiency and enhance the interference contrast more than 50 times. (2) In another design, a multi-layered metal-insulator-metal PMZI releases the requirement for single-slit illumination, which enables sensitive, high-throughput sensing applications based on intensity modulation. We develop a sensitive, low-cost and high-throughput biosensing platform based on intensity modulation using ring-hole plasmonic interferometers. This biosensor is then integrated with cell-phone-based microscope, which is promising to develop a portable sensor for point-of-care diagnostics, epidemic disease control and food safety monitoring.

  19. Absolute distance metrology for space interferometers

    NARCIS (Netherlands)

    Swinkels, B.L.; Latoui, A.; Bhattacharya, N.; Wielders, A.A.; Braat, J.J.M.

    2005-01-01

    Future space missions, among which the Darwin Space Interferometer, will consist of several free flying satellites. A complex metrology system is required to have all the components fly accurately in formation and have it operate as a single instrument. Our work focuses on a possible implementation

  20. Thermoluminescence spectra measured with a Michelson interferometer

    International Nuclear Information System (INIS)

    Haschberger, P.

    1991-01-01

    A Michelson interferometer was redesigned to prove its capabilities in the measurement of short-lived, low-intensity thermoluminescence spectra. Interferograms are collected during heating up the thermoluminescent probe in a heater plate. A personal computer controls the data acquisition and processes the Fourier transform. As the results show, even a comparatively simple and limited setup leads to relevant and reproducible spectra. (author)

  1. The effect of rotations on Michelson interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Maraner, Paolo, E-mail: pmaraner@unibz.it

    2014-11-15

    In the contest of the special theory of relativity, it is shown that uniform rotations induce a phase shift in Michelson interferometers. The effect is second order in the ratio of the interferometer’s speed to the speed of light, further suppressed by the ratio of the interferometer’s arms length to the radius of rotation and depends on the interferometer’s position in the co-rotating frame. The magnitude of the phase shift is just beyond the sensitivity of turntable rotated optical resonators used in present tests of Lorentz invariance. It grows significantly large in Earth’s rotated kilometer-scale Fabry–Perot enhanced interferometric gravitational-wave detectors where it appears as a constant bias. The effect can provide the means of sensing center and radius of rotations. - Highlights: • Rotations induce a phase shift in Michelson interferometers. • Earth’s rotation induces a constant bias in Michelson interferometers. • Michelson interferometers can be used to sense center and radius of rotations.

  2. The effect of rotations on Michelson interferometers

    International Nuclear Information System (INIS)

    Maraner, Paolo

    2014-01-01

    In the contest of the special theory of relativity, it is shown that uniform rotations induce a phase shift in Michelson interferometers. The effect is second order in the ratio of the interferometer’s speed to the speed of light, further suppressed by the ratio of the interferometer’s arms length to the radius of rotation and depends on the interferometer’s position in the co-rotating frame. The magnitude of the phase shift is just beyond the sensitivity of turntable rotated optical resonators used in present tests of Lorentz invariance. It grows significantly large in Earth’s rotated kilometer-scale Fabry–Perot enhanced interferometric gravitational-wave detectors where it appears as a constant bias. The effect can provide the means of sensing center and radius of rotations. - Highlights: • Rotations induce a phase shift in Michelson interferometers. • Earth’s rotation induces a constant bias in Michelson interferometers. • Michelson interferometers can be used to sense center and radius of rotations

  3. Combined radar and telemetry system

    Energy Technology Data Exchange (ETDEWEB)

    Rodenbeck, Christopher T.; Young, Derek; Chou, Tina; Hsieh, Lung-Hwa; Conover, Kurt; Heintzleman, Richard

    2017-08-01

    A combined radar and telemetry system is described. The combined radar and telemetry system includes a processing unit that executes instructions, where the instructions define a radar waveform and a telemetry waveform. The processor outputs a digital baseband signal based upon the instructions, where the digital baseband signal is based upon the radar waveform and the telemetry waveform. A radar and telemetry circuit transmits, simultaneously, a radar signal and telemetry signal based upon the digital baseband signal.

  4. Thermal Noise in the Initial LIGO Interferometers

    Science.gov (United States)

    Gillespie, Aaron D.

    1995-01-01

    Gravitational wave detectors capable of detecting broadband gravitational wave bursts with a strain amplitude sensitivity near 10^{-21} at frequencies around 100 Hz are currently under construction by the LIGO (Laser Interferometer Gravitational-wave Observatory) and VIRGO groups. One challenge facing these groups is how to detect the motion of the center of an inertial mass to a precision of 10^{-18} m when the mass consists of atoms each of which individually moves much more than that due to thermal energy. The uncertainty in the interferometer's measurement due to these thermal motions is called thermal noise. This thesis describes the thermal noise of the initial LIGO detectors. The thermal noise was analyzed by modelling the normal modes of the test mass suspension system as harmonic oscillators with dissipation and applying the fluctuation dissipation theorem. The dissipation of all modes which contribute significant thermal noise to the interferometer was measured and from these measurements the total thermal noise was estimated. The frequency dependence of the dissipation of the pendulum mode was characterized from measurements of the violin modes. A steel music wire suspension system was found to meet the goals of the initial LIGO detectors. A mathematical technique was developed which relates the energy in each vibrational mode to the motion of the mirror surface measured by the interferometer. Modes with acoustic wavelengths greater than the laser beam spot size can contribute significant thermal noise to the interferometer measurements. The dissipation of the test masses of LIGO's 40 -m interferometer at Caltech was investigated, and a technique for suspending and controlling the test masses which lowered the dissipation and met the thermal noise goals of the initial LIGO detector was developed. New test masses were installed in the 40-m interferometer resulting in improved noise performance. The implications of thermal noise to detecting gravitational

  5. The millimeter-wave bolometric interferometer

    Science.gov (United States)

    Gault, Amanda Charlotte

    The Millimeter-wave Bolometric Interferometer (MBI) is a technology demonstrator for future searches for the B-mode polarization of the Cosmic Microwave Background (CMB). If observed, B-modes would be a direct probe of the energy scale of inflation, an energy scale that is impossible to reach with even the most sophisticated particle accelerators. In this thesis, I outline the technology differences between MBI and conventional interferometers, including the Faraday effect phase modulators (FPM) used both to control systematic effects and to allow for phase sensitive detection of signals. MBI is a four element adding interferometer with a Fizeau optical beam combiner. This allows simple scaling of the instrument to a large numbers of baselines without requiring complicated pair-wise correlations of signals. Interferometers have an advantage over imaging telescopes when measuring the CMB power spectrum as each baseline is sensitive to a single Fourier mode (angular scale) on the sky. Recovering individual baseline information with this combination scheme requires phase modulating the signal from each antenna. MBI performs this modulation with Faraday effect phase modulators. In these novel cryogenic devices a modulated magnetic field switches the phase of a millimeter-wave RF signal by +/- 90 degrees at frequencies up to a few Hertz. MBI's second season of observations occurred in the winter of 2009 at Pine Bluff Observatory a few miles west of Madsion, WI. We successfully observed interference fringes of a microwave test source located in the far field of the instrument that agree well with those expected from simulations. MBI has inspired a second generation bolometric interferometer, QUBIC, which will have hundreds of antennas and thousands of detectors. When it deploys in 2015, it will be sensitive enough to search for B-mode signals from the CMB.

  6. A generalized, periodic nonlinearity-reduced interferometer for straightness measurements

    International Nuclear Information System (INIS)

    Wu Chienming

    2008-01-01

    Periodic nonlinearity is a systematic error limiting the accuracy of displacement measurements at the nanometer level. However, an interferometer with a displacement measurement accuracy of less than 1 nm is required in nanometrology and in fundamental scientific research. To meet this requirement, a generalized, periodic nonlinearity-reduced interferometer, based on three construction principles has been developed for straightness measurements. These three construction principles have resulted in an interferometer with a highly stable design with reduced periodic nonlinearity. Verifications by a straightness interferometer have demonstrated that the periodic nonlinearity was less than 40 pm. The results also demonstrate that the interferometer design is capable of subnanometer accuracy and is useful in nanometrology

  7. State-labeling Wannier-Stark atomic interferometers

    Science.gov (United States)

    Pelle, B.; Hilico, A.; Tackmann, G.; Beaufils, Q.; Pereira dos Santos, F.

    2013-02-01

    Using cold 87Rb atoms trapped in a one-dimensional (1D)-optical lattice, atomic interferometers involving coherent superpositions between different Wannier-Stark atomic states are realized. Two different kinds of trapped interferometer schemes are presented: a Ramsey-type interferometer sensitive both to clock frequency and external forces, and a symmetric accordion-type interferometer, sensitive to external forces only. We evaluate the limits in terms of sensitivity and accuracy of those schemes and discuss their application as force sensors. As a first step, we apply these interferometers to the measurement of the Bloch frequency and the demonstration of a compact gravimeter.

  8. Java Radar Analysis Tool

    Science.gov (United States)

    Zaczek, Mariusz P.

    2005-01-01

    Java Radar Analysis Tool (JRAT) is a computer program for analyzing two-dimensional (2D) scatter plots derived from radar returns showing pieces of the disintegrating Space Shuttle Columbia. JRAT can also be applied to similar plots representing radar returns showing aviation accidents, and to scatter plots in general. The 2D scatter plots include overhead map views and side altitude views. The superposition of points in these views makes searching difficult. JRAT enables three-dimensional (3D) viewing: by use of a mouse and keyboard, the user can rotate to any desired viewing angle. The 3D view can include overlaid trajectories and search footprints to enhance situational awareness in searching for pieces. JRAT also enables playback: time-tagged radar-return data can be displayed in time order and an animated 3D model can be moved through the scene to show the locations of the Columbia (or other vehicle) at the times of the corresponding radar events. The combination of overlays and playback enables the user to correlate a radar return with a position of the vehicle to determine whether the return is valid. JRAT can optionally filter single radar returns, enabling the user to selectively hide or highlight a desired radar return.

  9. Determination of radar MTF

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The ultimate goal of the Current Meter Array (CMA) is to be able to compare the current patterns detected with the array with radar images of the water surface. The internal wave current patterns modulate the waves on the water surface giving a detectable modulation of the radar cross-section (RCS). The function relating the RCS modulations to the current patterns is the Modulation Transfer Function (MTF). By comparing radar images directly with co-located CMA measurements the MTF can be determined. In this talk radar images and CMA measurements from a recent experiment at Loch Linnhe, Scotland, will be used to make the first direct determination of MTF for an X and S band radar at low grazing angles. The technical problems associated with comparing radar images to CMA data will be explained and the solution method discussed. The results suggest the both current and strain rate contribute equally to the radar modulation for X band. For S band, the strain rate contributes more than the current. The magnitude of the MTF and the RCS modulations are consistent with previous estimates when the wind is blowing perpendicular to the radar look direction.

  10. MWR, Meteor Wind Radars

    Science.gov (United States)

    Roper, R. G.

    1984-01-01

    The requirements of a state of the art meteor wind radar, and acceptable comprises in the interests of economy, are detailed. Design consideration of some existing and proposed radars are discussed. The need for international cooperation in mesopause level wind measurement, such as that being fostered by the MAP GLOBMET (Global Meteor Observations System) project, is emphasized.

  11. Quantum synthetic aperture radar

    Science.gov (United States)

    Lanzagorta, Marco; Jitrik, Oliverio; Uhlmann, Jeffrey; Venegas-Andraca, Salvador E.

    2017-05-01

    Synthetic aperture radar (SAR) uses sensor motion to generate finer spatial resolution of a given target area. In this paper we explore the theoretical potential of quantum synthetic aperture quantum radar (QSAR). We provide theoretical analysis and simulation results which suggest that QSAR can provide improved detection performance over classical SAR in the high-noise low-brightness regime.

  12. Aspects of Radar Polarimetry

    OpenAIRE

    LÜNEBURG, Ernst

    2002-01-01

    This contribution is a tutorial introduction to the phenomenological theory of radar polarimetry for the coherent scatter case emphasizing monostatic backscattering and forward scattering (transmission). Characteristic similarities and differences between radar polarimetry and optical polarimetry and the role of linear and antilinear operators (time-reversal) are pointed out and typical polarimetric invariants are identified.

  13. Equatorial MU Radar project

    Science.gov (United States)

    Yamamoto, Mamoru; Hashiguchi, H.; Tsuda, Toshitaka; Yamamoto, Masayuki

    Research Institute for Sustainable Humanosphere, Kyoto University (RISH) has been studying the atmosphere by using radars. The first big facility was the MU (Middle and Upper atmosphere) radar installed in Shiga, Japan in 1984. This is one of the most powerful and multi-functional radar, and is successful of revealing importance of atmospheric waves for the dynamical vertical coupling processes. The next big radar was the Equatorial Atmosphere Radar (EAR) installed at Kototabang, West Sumatra, Indonesia in 2001. The EAR was operated under close collaboration with LAPAN (Indonesia National Institute for Aeronautics and Space), and conducted the long-term continuous observations of the equatorial atmosphere/ionosphere for more than 10 years. The MU radar and the EAR are both utilized for inter-university and international collaborative research program for long time. National Institute for Polar Research (NIPR) joined EISCAT Scientific Association together with Nagoya University, and developed the PANSY radar at Syowa base in Antarctica as a joint project with University of Tokyo. These are the efforts of radar study of the atmosphere/ionosphere in the polar region. Now we can find that Japan holds a global network of big atmospheric/ionospheric radars. The EAR has the limitation of lower sensitivity compared with the other big radars shown above. RISH now proposes a plan of Equatorial MU Radar (EMU) that is to establish the MU-radar class radar next to the EAR. The EMU will have an active phased array antenna with the 163m diameter and 1055 cross-element Yagis. Total output power of the EMU will be more than 500kW. The EMU can detect turbulent echoes from the mesosphere (60-80km). In the ionosphere incoherent-scatter observations of plasma density, drift, and temperature would be possible. Multi-channel receivers will realize radar-imaging observations. The EMU is one of the key facilities in the project "Study of coupling processes in the solar-terrestrial system

  14. Spaceborne weather radar

    Science.gov (United States)

    Meneghini, Robert; Kozu, Toshiaki

    1990-01-01

    The present work on the development status of spaceborne weather radar systems and services discusses radar instrument complementarities, the current forms of equations for the characterization of such aspects of weather radar performance as surface and mirror-image returns, polarimetry, and Doppler considerations, and such essential factors in spaceborne weather radar design as frequency selection, scanning modes, and the application of SAR to rain detection. Attention is then given to radar signal absorption by the various atmospheric gases, rain drop size distribution and wind velocity determinations, and the characteristics of clouds, as well as the range of available estimation methods for backscattering, single- and dual-wavelength attenuation, and polarimetric and climatological characteristics.

  15. Intelligent radar data processing

    Science.gov (United States)

    Holzbaur, Ulrich D.

    The application of artificial intelligence principles to the processing of radar signals is considered theoretically. The main capabilities required are learning and adaptation in a changing environment, processing and modeling information (especially dynamics and uncertainty), and decision-making based on all available information (taking its reliability into account). For the application to combat-aircraft radar systems, the tasks include the combination of data from different types of sensors, reacting to electronic counter-countermeasures, evaluation of how much data should be acquired (energy and radiation management), control of the radar, tracking, and identification. Also discussed are related uses such as monitoring the avionics systems, supporting pilot decisions with respect to the radar system, and general applications in radar-system R&D.

  16. Principles of modern radar radar applications

    CERN Document Server

    Scheer, James A

    2013-01-01

    Principles of Modern Radar: Radar Applications is the third of the three-volume seriesof what was originally designed to be accomplished in one volume. As the final volumeof the set, it finishes the original vision of a complete yet bounded reference for radartechnology. This volume describes fifteen different system applications or class ofapplications in more detail than can be found in Volumes I or II.As different as the applications described, there is a difference in how these topicsare treated by the authors. Whereas in Volumes I and II there is strict adherence tochapter format and leve

  17. Novel radar techniques and applications

    CERN Document Server

    Klemm, Richard; Koch, Wolfgang

    2017-01-01

    Novel Radar Techniques and Applications presents the state-of-the-art in advanced radar, with emphasis on ongoing novel research and development and contributions from an international team of leading radar experts. This volume covers: Waveform diversity and cognitive radar and Target tracking and data fusion.

  18. Direct-reading type microwave interferometer

    International Nuclear Information System (INIS)

    Matsuura, Kiyokata; Fujita, Junji; Ogata, Atsushi; Haba, Kiichiro.

    1977-10-01

    A new microwave interferometer has been developed and applied to the electron density measurement on JIPP T-II plasma device. The interferometer generates an output voltage proportional to the number of fringe shifts and also output pulses which indicate the change of electron density for the convenience of data processing, where the resolution is a quarter of fringe shift. The principle is based on the digitization of fringe shifts utilizing the phase detection of microwave signals with two-level modulation of source frequency. With this system and 70 GHz microwave source, a change of electron density as rapid as about 2 x 10 13 cm -3 in 1 ms has been measured at the tokamak operation of JIPP T-II. (auth.)

  19. Adaptive DFT-based Interferometer Fringe Tracking

    Science.gov (United States)

    Wilson, Edward; Pedretti, Ettore; Bregman, Jesse; Mah, Robert W.; Traub, Wesley A.

    2004-01-01

    An automatic interferometer fringe tracking system has been developed, implemented, and tested at the Infrared Optical Telescope Array (IOTA) observatory at Mt. Hopkins, Arizona. The system can minimize the optical path differences (OPDs) for all three baselines of the Michelson stellar interferometer at IOTA. Based on sliding window discrete Fourier transform (DFT) calculations that were optimized for computational efficiency and robustness to atmospheric disturbances, the algorithm has also been tested extensively on off-line data. Implemented in ANSI C on the 266 MHz PowerPC processor running the VxWorks real-time operating system, the algorithm runs in approximately 2.0 milliseconds per scan (including all three interferograms), using the science camera and piezo scanners to measure and correct the OPDs. The adaptive DFT-based tracking algorithm should be applicable to other systems where there is a need to detect or track a signal with an approximately constant-frequency carrier pulse.

  20. Dynamics of pi-junction interferometer circuits

    DEFF Research Database (Denmark)

    Kornkev, V.K.; Mozhaev, P.B.; Borisenko, I.V.

    2002-01-01

    The pi-junction superconducting circuit dynamics was studied by means of numerical simulation technique. Parallel arrays consisting of Josephson junctions of both 0- and pi-type were studied as a model of high-T-c grain-boundary Josephson junction. The array dynamics and the critical current...... dependence on magnetic field are discussed. Experimental results for dc interferometers with 0 and pi high-T-c bi-crystal Josephson junctions are reported and discussed in comparison with numerical simulation....

  1. Radar and electronic navigation

    CERN Document Server

    Sonnenberg, G J

    2013-01-01

    Radar and Electronic Navigation, Sixth Edition discusses radar in marine navigation, underwater navigational aids, direction finding, the Decca navigator system, and the Omega system. The book also describes the Loran system for position fixing, the navy navigation satellite system, and the global positioning system (GPS). It reviews the principles, operation, presentations, specifications, and uses of radar. It also describes GPS, a real time position-fixing system in three dimensions (longitude, latitude, altitude), plus velocity information with Universal Time Coordinated (UTC). It is accur

  2. Radar cross section

    CERN Document Server

    Knott, Gene; Tuley, Michael

    2004-01-01

    This is the second edition of the first and foremost book on this subject for self-study, training, and course work. Radar cross section (RCS) is a comparison of two radar signal strengths. One is the strength of the radar beam sweeping over a target, the other is the strength of the reflected echo sensed by the receiver. This book shows how the RCS ?gauge? can be predicted for theoretical objects and how it can be measured for real targets. Predicting RCS is not easy, even for simple objects like spheres or cylinders, but this book explains the two ?exact? forms of theory so well that even a

  3. Model-based phase-shifting interferometer

    Science.gov (United States)

    Liu, Dong; Zhang, Lei; Shi, Tu; Yang, Yongying; Chong, Shiyao; Miao, Liang; Huang, Wei; Shen, Yibing; Bai, Jian

    2015-10-01

    A model-based phase-shifting interferometer (MPI) is developed, in which a novel calculation technique is proposed instead of the traditional complicated system structure, to achieve versatile, high precision and quantitative surface tests. In the MPI, the partial null lens (PNL) is employed to implement the non-null test. With some alternative PNLs, similar as the transmission spheres in ZYGO interferometers, the MPI provides a flexible test for general spherical and aspherical surfaces. Based on modern computer modeling technique, a reverse iterative optimizing construction (ROR) method is employed for the retrace error correction of non-null test, as well as figure error reconstruction. A self-compiled ray-tracing program is set up for the accurate system modeling and reverse ray tracing. The surface figure error then can be easily extracted from the wavefront data in forms of Zernike polynomials by the ROR method. Experiments of the spherical and aspherical tests are presented to validate the flexibility and accuracy. The test results are compared with those of Zygo interferometer (null tests), which demonstrates the high accuracy of the MPI. With such accuracy and flexibility, the MPI would possess large potential in modern optical shop testing.

  4. Fine art of computing nulling interferometer maps

    Science.gov (United States)

    Hénault, F.

    2008-07-01

    Spaceborne nulling interferometers are often characterized by means of their nulling ratio, which is defined as the deepest possible extinction of one target star supposed to harbor an extra-solar system. Herein is shown that another parameter, which is the transmitting efficiency of nearby bright fringes, is also of prime importance. More generally, "nulling maps" formed by the whole destructive and constructive fringe pattern projected on-sky, are found to be very sensitive on the design of some subsystems constituting the interferometer. In particular, we consider Spatial Filtering (SF) and Achromatic Phase Shifter (APS) devices, both required achieving planet detection and characterization. Consequences of the SF choice (pinhole or single-mode optical fiber) and APS properties (with or without induced pupil-flip) are discussed, for both monochromatic and polychromatic cases. Examples of numerical simulations are provided for single Bracewell interferometer, Angel cross and X-array configurations, demonstrating noticeable differences in the aspect of resulting nulling maps. It is concluded that both FS and APS designs exhibit variable capacities for serendipitous planet discovery.

  5. Study of Absorption Characteristics of the Total Saponins from Radix Ilicis Pubescentis in an In Situ Single-Pass Intestinal Perfusion (SPIP Rat Model by Using Ultra Performance Liquid Chromatography (UPLC

    Directory of Open Access Journals (Sweden)

    Guojun Kuang

    2017-11-01

    Full Text Available In contrast to the extensively reported therapeutic activities, far less attention has been paid to the intestinal absorption of the total saponins from Radix Ilicis Pubescentis (in Chinese Mao-Dong-Qing, MDQ. This study aimed to investigate the intestinal absorption characteristics of ilexgenin A (C1, ilexsaponin A1 (C2, ilexsaponin B1 (C3, ilexsaponin B2 (C4, ilexsaponin B3 (DC1, and ilexoside O (DC2 when administrated with the total saponins from MDQ (MDQ-TS. An UPLC method for simultaneous determination of C1, C2, C3, C4, DC1, and DC2 in intestinal outflow perfusate was developed and validated. The absorption characteristics of MDQ-TS were investigated by evaluating the effects of intestinal segments, drug concentration, P-glycoprotein (P-gp inhibitor (verapomil, endocytosis inhibitor (amantadine and ethylene diamine tetraacetic acid (EDTA, tight junction modulator on the intestinal transportation of MDQ-TS by using a single-pass intestinal perfusion (SPIP rat model, and the influence of co-existing components on the intestinal transport of the six saponins was discussed. The results showed that effective apparent permeability (Papp of C1, C2, C3, C4, and DC2 administrated in MDQ-TS form had no segment-dependent changes at low and middle dosage levels. C1, C2, C3, D4, DC1, and DC2 administrated in MDQ-TS form all exhibited excellent transmembrane permeability with Papp > 0.12 × 10−2 cm·min−1. Meanwhile, Papp and effective absorption rate constant (Ka values for the most saponins showed concentration dependence and saturation characteristics. After combining with P-gp inhibitor of verapamil, Papp of C2, C3, and DC1 in MDQ-TS group was significantly increased up to about 2.3-fold, 1.4-fold, and 3.4-fold, respectively in comparison to that of non-verapamil added group. Verapamil was found to improve the absorption of C2, C3, and DC1, indicating the involvement of an active transport mechanism in the absorption process. Compared with the

  6. Multispectral imaging radar

    Science.gov (United States)

    Porcello, L. J.; Rendleman, R. A.

    1972-01-01

    A side-looking radar, installed in a C-46 aircraft, was modified to provide it with an initial multispectral imaging capability. The radar is capable of radiating at either of two wavelengths, these being approximately 3 cm and 30 cm, with either horizontal or vertical polarization on each wavelength. Both the horizontally- and vertically-polarized components of the reflected signal can be observed for each wavelength/polarization transmitter configuration. At present, two-wavelength observation of a terrain region can be accomplished within the same day, but not with truly simultaneous observation on both wavelengths. A multiplex circuit to permit this simultaneous observation has been designed. A brief description of the modified radar system and its operating parameters is presented. Emphasis is then placed on initial flight test data and preliminary interpretation. Some considerations pertinent to the calibration of such radars are presented in passing.

  7. Cognitive Nonlinear Radar

    Science.gov (United States)

    2013-01-01

    filter, Bayesian decision theory, Generalized Likelihood Ratio Test (GLRT), and constant false alarm rate ( CFAR ) processing (31). Once the...Abbreviations, and Acronyms CFAR constant false alarm rate CNR cognitive nonlinear radar EM electromagnetic FCC Federal Communications Comission

  8. Telescience Data Collection Radar

    National Research Council Canada - National Science Library

    Beckner, Frederick

    2000-01-01

    Report developed under SBIR contract for topic AF99-258. The feasibility of developing a telescience data collection radar to reduce the cost of gathering aircraft signature data for noncooperative identification programs is investigated...

  9. Imaging Radar Polarimetry

    Science.gov (United States)

    vanZyl, J. J.; Zebker, H. A.

    1993-01-01

    In this paper, we review the state of the art in imaging radar polarimetry, examine current developments in sensor technology and implementation for recording polarimetric measurements, and describe techniques and areas of application for the new remote sensing data.

  10. Wind Profiling Radar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Clutter present in radar return signals as used for wind profiling is substantially removed by carrying out a Daubechies wavelet transformation on a time series of...

  11. Interferometer angle-of-arrival determination using precalculated phases

    Science.gov (United States)

    Younger, J. P.; Reid, I. M.

    2017-09-01

    A method has been developed to determine the angle of arrival (AoA) of incident radiation using precomputed lookup tables. The phase difference between two receiving antennas can be used to infer AoA as measured from the pair baseline, but there will be more than one possible solution for antenna spacings greater than or equal to half a wavelength. Larger spacings are preferable to minimize mutual coupling of elements in the receive array and to decrease the relative uncertainty in measured phase difference. We present a solution that uses all unique antenna pairs to determine probabilities for all possible azimuth and zenith values. Prior to analysis, the expected phase differences for all AoAs are calculated for each antenna pair. For a received signal, histograms of possible AoAs for each antenna pair phase difference are extracted and added to produce a two-dimensional probability density array that will maximize at the true value of the AoA. A benefit of this method is that all possible antenna pairs are utilized rather than the restriction to specific pairs along baselines used by some interferometer algorithms. Numerical simulations indicate that performance of the suggested algorithm exceeds that of existing methods, with the benefit of additional flexibility in antenna placement. Meteor radar data have been used to test this method against existing methods, with excellent agreement between the two approaches. This method of AoA determination will allow the construction of low-cost interferometric direction finding arrays with different layouts, including construction of difficult terrain and three-dimensional antenna arrangements.

  12. Finland HF and Esrange MST radar observations of polar mesosphere summer echoes

    Directory of Open Access Journals (Sweden)

    T. Ogawa

    2003-04-01

    Full Text Available Peculiar near range echoes observed in summer with the SuperDARN HF radar in Finland are presented. The echoes were detected at four frequencies of 9, 11, 13 and 15 MHz at slant ranges of 105–250 km for about 100 min. Interferometer measurements indicate that the echoes are returned from 80–100 km altitudes with elevation angles of 20°–60°. Echo power (< 16 dB, Doppler velocity (between –30 and + 30 ms-1 and spectral width (< 60 ms-1 fluctuate with periods of several to 20 min, perhaps due to short–period atmospheric gravity waves. When the HF radar detected the echoes, a vertical incidence MST radar, located at Esrange in Sweden (650 km north of the HF radar site, observed polar mesosphere summer echoes (PMSE at altitudes of 80–90 km. This fact suggests that the near range HF echoes are PMSE at HF band, although both radars did not probe a common volume. With increasing radar frequency, HF echo ranges are closer to the radar site and echo power becomes weaker. Possible mechanisms to explain these features are discussed.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; thermospheric dynamics; waves and tides; instruments and techniques

  13. Finland HF and Esrange MST radar observations of polar mesosphere summer echoes

    Directory of Open Access Journals (Sweden)

    T. Ogawa

    Full Text Available Peculiar near range echoes observed in summer with the SuperDARN HF radar in Finland are presented. The echoes were detected at four frequencies of 9, 11, 13 and 15 MHz at slant ranges of 105–250 km for about 100 min. Interferometer measurements indicate that the echoes are returned from 80–100 km altitudes with elevation angles of 20°–60°. Echo power (< 16 dB, Doppler velocity (between –30 and + 30 ms-1 and spectral width (< 60 ms-1 fluctuate with periods of several to 20 min, perhaps due to short–period atmospheric gravity waves. When the HF radar detected the echoes, a vertical incidence MST radar, located at Esrange in Sweden (650 km north of the HF radar site, observed polar mesosphere summer echoes (PMSE at altitudes of 80–90 km. This fact suggests that the near range HF echoes are PMSE at HF band, although both radars did not probe a common volume. With increasing radar frequency, HF echo ranges are closer to the radar site and echo power becomes weaker. Possible mechanisms to explain these features are discussed.

    Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; thermospheric dynamics; waves and tides; instruments and techniques

  14. Phased-array radars

    Science.gov (United States)

    Brookner, E.

    1985-02-01

    The operating principles, technology, and applications of phased-array radars are reviewed and illustrated with diagrams and photographs. Consideration is given to the antenna elements, circuitry for time delays, phase shifters, pulse coding and compression, and hybrid radars combining phased arrays with lenses to alter the beam characteristics. The capabilities and typical hardware of phased arrays are shown using the US military systems COBRA DANE and PAVE PAWS as examples.

  15. Three Phase-Grating Moiré Neutron Interferometer for Large Interferometer Area Applications

    Science.gov (United States)

    Sarenac, D.; Pushin, D. A.; Huber, M. G.; Hussey, D. S.; Miao, H.; Arif, M.; Cory, D. G.; Cronin, A. D.; Heacock, B.; Jacobson, D. L.; LaManna, J. M.; Wen, H.

    2018-03-01

    We demonstrate a three phase-grating moiré neutron interferometer in a highly intense neutron beam as a robust candidate for large area interferometry applications and for the characterization of materials. This novel far-field moiré technique allows for broad wavelength acceptance and relaxed requirements related to fabrication and alignment, thus circumventing the main obstacles associated with perfect crystal neutron interferometry. We observed interference fringes with an interferometer length of 4 m and examined the effects of an aluminum 6061 alloy sample on the coherence of the system. Experiments to measure the autocorrelation length of samples and the universal gravitational constant are proposed and discussed.

  16. Gravitational Wave Detection with Single-Laser Atom Interferometers

    Science.gov (United States)

    Yu, Nan; Tinto, Massimo

    2011-01-01

    A new design for a broadband detector of gravitational radiation relies on two atom interferometers separated by a distance L. In this scheme, only one arm and one laser are used for operating the two atom interferometers. The innovation here involves the fact that the atoms in the atom interferometers are not only considered as perfect test masses, but also as highly stable clocks. Atomic coherence is intrinsically stable, and can be many orders of magnitude more stable than a laser.

  17. Analysis of a four-mirror-cavity enhanced Michelson interferometer.

    Science.gov (United States)

    Thüring, André; Lück, Harald; Danzmann, Karsten

    2005-12-01

    We investigate the shot-noise-limited sensitivity of a four-mirror-cavity enhanced Michelson interferometer. The intention of this interferometer topology is the reduction of thermal lensing and the impact of the interferometers contrast although transmissive optics are used with high circulating powers. The analytical expressions describing the light fields and the frequency response are derived. Although the parameter space has 11 dimensions, a detailed analysis of the resonance feature gives boundary conditions allowing systematic parameter studies.

  18. Special topics in infrared interferometry. [Michelson interferometer development

    Science.gov (United States)

    Hanel, R. A.

    1985-01-01

    Topics in IR interferometry related to the development of a Michelson interferometer are treated. The selection and reading of the signal from the detector to the analog to digital converter is explained. The requirements for the Michelson interferometer advance speed are deduced. The effects of intensity modulation on the interferogram are discussed. Wavelength and intensity calibration of the interferometer are explained. Noise sources (Nyquist or Johnson noise, phonon noise), definitions of measuring methods of noise, and noise measurements are presented.

  19. Radar Refractivity Retrieval: Validation and Application to Short-Term Forecasting.

    Science.gov (United States)

    Weckwerth, Tammy M.; Pettet, Crystalyne R.; Fabry, Frédéric; Park, Shinju; Lemone, Margaret A.; Wilson, James W.

    2005-03-01

    This study will validate the S-band dual-polarization Doppler radar (S-Pol) radar refractivity retrieval using measurements from the International H2O Project conducted in the southern Great Plains in May-June 2002. The range of refractivity measurements during this project extended out to 40-60 km from the radar. Comparisons between the radar refractivity field and fixed and mobile mesonet refractivity values within the S-Pol refractivity domain show a strong correlation. Comparisons between the radar refractivity field and low-flying aircraft also show high correlations. Thus, the radar refractivity retrieval provides a good representation of low-level atmospheric refractivity. Numerous instruments that profile the temperature and moisture are also compared with the refractivity field. Radiosonde measurements, Atmospheric Emitted Radiance Interferometers, and a vertical-pointing Raman lidar show good agreement, especially at low levels. Under most daytime summertime conditions, radar refractivity measurements are representative of an 250-m-deep layer. Analyses are also performed on the utility of refractivity for short-term forecasting applications. It is found that the refractivity field may detect low-level boundaries prior to the more traditional radar reflectivity and Doppler velocity fields showing their existence. Data from two days on which convection initiated within S-Pol refractivity range suggest that the refractivity field may exhibit some potential utility in forecasting convection initiation. This study suggests that unprecedented advances in mapping near-surface water vapor and subsequent improvements in predicting convective storms could result from implementing the radar refractivity retrieval on the national network of operational radars.

  20. SHIMS -- A Spatial Heterodyne Interferometer for Methane Sounding, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project develops the Spatial Heterodyne Interferometer for Methane Sounding (SHIMS), a lightweight, compact, robust spectrometer system for remote sensing of...

  1. CAMEX-3 ATMOSPHERIC EMITTED RADIANCE INTERFEROMETER (AERI) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Atmospheric Emitted Radiance Interferometer (AERI) was used to make atmospheric temperature and moisture retrievals. AERI provides absolutely calibrated...

  2. GEOS-3 ocean current investigation using radar altimeter profiling. [Gulf Stream surface topography

    Science.gov (United States)

    Leitao, C. D.; Huang, N. E.; Parra, C. G.

    1978-01-01

    Both quasi-stationary and dynamic departures from the marine geoid were successfully detected using altitude measurements from the GEOS-3 radar altimeter. The quasi-stationary departures are observed either as elevation changes in single pass profiles across the Gulf Stream or at the crowding of contour lines at the western and northern areas of topographic maps generated using altimeter data spanning one month or longer. Dynamic features such as current meandering and spawned eddies can be monitored by comparing monthly mean maps. Comparison of altimeter inferred eddies with IR detected thermal rings indicates agreement of the two techniques. Estimates of current velocity are made using derived slope estimates in conjunction with the geostrophic equation.

  3. X-ray speckle correlation interferometer

    International Nuclear Information System (INIS)

    Eisenhower, Rachel; Materlik, Gerhard

    2000-01-01

    Speckle Pattern Correlation Interferometry (SPCI) is a well-established technique in the visible-light regime for observing surface disturbances. Although not a direct imaging technique, SPCI gives full-field, high-resolution information about an object's motion. Since x-ray synchrotron radiation beamlines with high coherent flux have allowed the observation of x-ray speckle, x-ray SPCI could provide a means to measure strains and other quasi-static motions in disordered systems. This paper therefore examines the feasibility of an x-ray speckle correlation interferometer

  4. Phase-shifting interferometer for surface inspection

    Science.gov (United States)

    Tam, Siu Chung; Low, Beng-Yew; Chua, Hock-Chuan; Ho, Anthony T. S.; Neo, Wah-Peng

    1997-08-01

    A phase-shifting Twyman-Green interferometer has been constructed. Using three consecutively captured interferograms, the phase profile of a reflective surface can be determined. Results using various fringe processing techniques are compared. These methods include uniform averaging, Gaussian mask and spin filtering. For simulated fringes superimposed with random noise and fixed-pattern noise, it has been observed that a combination of weighted averaging and spin filtering could generate the best results. The computerized system has been applied to the measurement of the form errors of a silicon wafer and a cosmetic mirror, respectively. The root-mean-square error of the wafer is determined to be 11.13 nm.

  5. Multichannel far-infrared interferometer/polarimeter

    International Nuclear Information System (INIS)

    Young, P.E.

    1984-01-01

    Studies of the time development of the current density profile in a tokamak plasma have been incomplete due to the lack of adequate, direct measurements of the internal magnetic field. Experimental confirmation of anomalous current penetration during the startup phase of a tokamak discharge and the detailed study of major disruptions and their relation to the presence of tearing modes are needed to complete the understanding of tokamak confinement properties. The major obstacle to studies of the tokamak current density profile has been the lack of a reliable, nonperturbing diagnostic. This dissertation describes a multichannel interferometer/polarimeter that was developed for this purpose

  6. Virgo an interferometer for gravitational wave detection

    International Nuclear Information System (INIS)

    Passaquieti, R.

    2000-01-01

    Gravitational waves propagating from rapidly accelerating star masses can be detected by means of interfer- ometric techniques. The Virgo detector is a Michelson interferometer, with two 3 km long Fabry-Perot cavities, that is going to be built in the countryside of Pisa (Italy). Principles of interferometric gravitational wave detection, and the main noise sources in the Virgo apparatus are treated. The Virgo optical scheme and its main components are also described. Finally, an overview on the status of works at the Virgo site is presented

  7. Asymmetrical transverse structures in nonlinear interferometers

    CERN Document Server

    Romanov, O G

    2003-01-01

    The work presents a novel type of optical instability, which leads to the spontaneous formation of a stationary or pulsating asymmetrical structure in the problem of interaction between two counterpropagating waves in a ring cavity with Kerr-like nonlinearity. Linear stability analysis of interferometer transmission stationary states enabled: (1) to mark out typical bifurcations for this system: self- and cross-modulational instabilities, (2) to determine the range of parameters for which the symmetry breaking of transverse structures and complex temporal behaviour of the light field could be observed. The predictions of linear stability analysis have been verified with numerical modelling of coupled-modes equations.

  8. CAMEX-4 TOGA RADAR V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The TOGA radar dataset consists of browse and radar data collected from the TOGA radar during the CAMEX-4 experiment. TOGA is a C-band linear polarized doppler radar...

  9. A stellar interferometer on the Moon

    Science.gov (United States)

    Porro, Irene

    The work I present in this document has been divided into two main parts, the first one related to the IOTA project and the second one related to the study on the lunar interferometer, and an introduction section. Each section can be read independently from the other, however they are presented following the logical order in which the research work has been developed. As a guide for the reader here I describe the content of each chapter, which represents the original contribution (except when it is specifically declared) to the research accomplished. This section consists in the Introduction itself, with a presentation of the motivations for this research work, and in the chapter Interferometry from the Earth and from the Moon. The first part of this chapter shows the performances which are expected to be reached by ground-based interferometers (Colavita, 1992) by using adaptive optics systems (Beckers, 1993). The evaluation is made separately for the case of high resolution imaging and for high accuracy astrometric measurements. The most optimistic results expected for ground-based instruments determine the level of the performance that has to be required from a space interferometer (both an orbiting and a lunar instrument). In the second part of the chapter I specifically deal with the case of a lunar interferometer, which allows to put together the advantages o ered by a ground-based instrument (very long baseline, a stable platform) and those offered by the space environment (absence of atmospheric turbulence, long integration times, and wavelength range of observation from the ultraviolet to the far infrared). In order to evaluate the limits of the lunar interferometer, I need to consider three subjects with which I did not explicitly dealt for the study on IOTA: the maximum length of the baseline (Tango and Twiss, 1974), the maximum integration time, and the performances obtainable at the minimum temperature of operation (Ridgway, 1990). The chapter ends with

  10. Realization of an optical interferometer based on holographic optics ...

    Indian Academy of Sciences (India)

    The proposed interferometer set-up is quite suitable for performing optical test studies on phase (transparent) objects in real-time. Recording schemes for the formation of holographic optical elements and the related technique for the realization of the interferometer set-up along with the experimental results have been ...

  11. Silicon Carbide Mounts for Fabry-Perot Interferometers

    Science.gov (United States)

    Lindemann, Scott

    2011-01-01

    Etalon mounts for tunable Fabry- Perot interferometers can now be fabricated from reaction-bonded silicon carbide structural components. These mounts are rigid, lightweight, and thermally stable. The fabrication of these mounts involves the exploitation of post-casting capabilities that (1) enable creation of monolithic structures having reduced (in comparison with prior such structures) degrees of material inhomogeneity and (2) reduce the need for fastening hardware and accommodations. Such silicon carbide mounts could be used to make lightweight Fabry-Perot interferometers or could be modified for use as general lightweight optical mounts. Heretofore, tunable Fabry-Perot interferometer structures, including mounting hardware, have been made from the low-thermal-expansion material Invar (a nickel/iron alloy) in order to obtain the thermal stability required for spectroscopic applications for which such interferometers are typically designed. However, the high mass density of Invar structures is disadvantageous in applications in which there are requirements to minimize mass. Silicon carbide etalon mounts have been incorporated into a tunable Fabry-Perot interferometer of a prior design that originally called for Invar structural components. The strength, thermal stability, and survivability of the interferometer as thus modified are similar to those of the interferometer as originally designed, but the mass of the modified interferometer is significantly less than the mass of the original version.

  12. Michelson interferometer based interleaver design using classic IIR filter decomposition.

    Science.gov (United States)

    Cheng, Chi-Hao; Tang, Shasha

    2013-12-16

    An elegant method to design a Michelson interferometer based interleaver using a classic infinite impulse response (IIR) filter such as Butterworth, Chebyshev, and elliptic filters as a starting point are presented. The proposed design method allows engineers to design a Michelson interferometer based interleaver from specifications seamlessly. Simulation results are presented to demonstrate the validity of the proposed design method.

  13. Discrete interferometer with individual trapped atoms

    Science.gov (United States)

    Steffen, Andreas; Alberti, Andrea; Alt, Wolfgang; Belmechri, Noomen; Hild, Sebastian; Karski, Michal; Widera, Artur; Meschede, Dieter; Quantum Technology Team

    2011-05-01

    Coherent control and delocalization of individual atoms is a pivotal challenge in quantum technologies. As a new step on this road, we present an individual atom interferometer that is capable of splitting a trapped Cs atom by up to 10 μm , allowing us to measure potential gradients on the microscale. The atom is confined in a 1D optical lattice, which is capable of performing discrete state-dependent shifts to split the atom by the desired number of sites. We establish a high degree of control, as the initial atom position, vibrational state and spin state can all be prepared with above 95% fidelity. To unravel decoherence effects and phase influences, we have explored several basic interferometer geometries, among other things demonstrating a positional spin echo to cancel background effects. As a test case, an inertial force has been applied and successfully measured using the atomic phase. This will offer us a new tool to investigate the interaction between two atoms in a controlled model system.

  14. Adaptive DFT-Based Interferometer Fringe Tracking

    Directory of Open Access Journals (Sweden)

    Pedretti Ettore

    2005-01-01

    Full Text Available An automatic interferometer fringe tracking system has been developed, implemented, and tested at the Infrared Optical Telescope Array (IOTA Observatory at Mount Hopkins, Arizona. The system can minimize the optical path differences (OPDs for all three baselines of the Michelson stellar interferometer at IOTA. Based on sliding window discrete Fourier-transform (DFT calculations that were optimized for computational efficiency and robustness to atmospheric disturbances, the algorithm has also been tested extensively on offline data. Implemented in ANSI C on the 266 MHz PowerPC processor running the VxWorks real-time operating system, the algorithm runs in approximately milliseconds per scan (including all three interferograms, using the science camera and piezo scanners to measure and correct the OPDs. The adaptive DFT-based tracking algorithm should be applicable to other systems where there is a need to detect or track a signal with an approximately constant-frequency carrier pulse. One example of such an application might be to the field of thin-film measurement by ellipsometry, using a broadband light source and a Fourier-transform spectrometer to detect the resulting fringe patterns.

  15. A prototype imaging second harmonic interferometer

    International Nuclear Information System (INIS)

    Jobes, F.C.; Bretz, N.L.

    1997-01-01

    We have built a prototype imaging second harmonic interferometer, which is intended to test critical elements of a design for a tangential array interferometer on C-Mod 6 . The prototype uses a pulsed, 35 mJ, 10 Hz multimode, Nd:YAG laser, LiB 3 O 5 doublers, a fan beam created by a cylindrical lens, four retroreflector elements, and a CCD camera as a detector. The prototype also uses a polarization scheme in which the interference information is eventually carried by two second harmonic beams with crossed polarization. These are vector summed and differenced, and separated, by a Wollaston prism, to give two spots on the CCD. There is a pair of these spots for each retroreflector used. The phase information is directly available as the ratio of the difference to sum the intensities of the two spots. We have tested a single channel configuration of this prototype, varying the phase by changing the pressure in an air cell, and we have obtained a 5:1 light to dark ratio, and a clear sinusoidal variation of the ratio as a function of pressure change. copyright 1997 American Institute of Physics

  16. An X-ray BBB Michelson interferometer.

    Science.gov (United States)

    Sutter, John P; Ishikawa, Tetsuya; Kuetgens, Ulrich; Materlik, Gerhard; Nishino, Yoshinori; Rostomyan, Armen; Tamasaku, Kenji; Yabashi, Makina

    2004-09-01

    A new X-ray Michelson interferometer based on the BBB interferometer of Bonse and Hart and designed for X-rays of wavelength approximately 1 A was described in a previous paper. Here, a further test carried out at the SPring-8 1 km beamline BL29XUL is reported. One of the BBB's mirrors was displaced by a piezo to introduce the required path-length difference. The resulting variation of intensity with piezo voltage as measured by an avalanche photodiode could be ascribed to the phase variation resulting from the path-length change, with a small additional contribution from the change of the position of the lattice planes of the front mirror relative to the rest of the crystal. This 'Michelson fringe' interpretation is supported by the observed steady movement across the output beam of the interference fringes produced by a refractive wedge when the piezo voltage was ramped. The front-mirror displacement required for one complete fringe at the given wavelength is only 0.675 A; therefore, a quiet environment is vital for operating this device, as previous experiments have shown.

  17. Radar for tracer particles

    Science.gov (United States)

    Ott, Felix; Herminghaus, Stephan; Huang, Kai

    2017-05-01

    We introduce a radar system capable of tracking a 5 mm spherical target continuously in three dimensions. The 10 GHz (X-band) radar system has a transmission power of 1 W and operates in the near field of the horn antennae. By comparing the phase shift of the electromagnetic wave traveling through the free space with an IQ-mixer, we obtain the relative movement of the target with respect to the antennae. From the azimuth and inclination angles of the receiving antennae obtained in the calibration, we reconstruct the target trajectory in a three-dimensional Cartesian system. Finally, we test the tracking algorithm with target moving in circular as well as in pendulum motions and discuss the capability of the radar system.

  18. Radar Scan Methods in Modern Multifunctional Radars

    Directory of Open Access Journals (Sweden)

    V. N. Skosyrev

    2014-01-01

    Full Text Available Considered urgent task of organizing the review space in modern multifunctional radar systems shall review the space in a wide range of elevation angles from minus 5 to 60-80 degrees and 360 degrees azimuth. MfRLS this type should provide an overview of the zone for a limited time (2-3 sec, detecting a wide range of subtle high and low-flying targets. The latter circumstance requires the organization to select targets against the background of reflections from the underlying surface and local objects (MP. When providing an overview of the space taken into account the need to increase not only the noise immunity, and survivability.Two variants of the review of space in the elevation plane in the solid-state AESA radar. In the first case the overview space narrow beam by one beam. In the second - the transfer of DNA is formed, covering the whole sector of responsibility in elevation and at the reception beam is formed in spetsvychislitele (CB as a result of the signal processing of digitized after emitters antenna web. The estimations of the parameters specific to the multifunction radar SAM air and missile defense. It is shown that in a number of practically important cases, preference should be given clearly one of the methods described review of space.The functional scheme with AESA radar for both variants of the review. Necessary to analyze their differences. Contains the problem of increasing the cost of MfRLS with digital beamforming DNA with increasing bandwidth probing signal being processed.Noted drawbacks of MfRLS with digital beamforming beam. Including: reduced accuracy of the coordinates at low elevation angles, the complexity of the organization of thermal regime of the solid element base using quasi-continuous signal with a low duty cycle. Shows their fundamentally unavoidable in the steppe and desert areas with uneven terrain (Kazakhstan, China, the Middle East.It is shown that for MfRLS working in strong clutter, more preferably

  19. Comet Radar Explorer

    Science.gov (United States)

    Asphaug, Erik; CORE Science Team

    2010-10-01

    Comet Radar Explorer (CORE) is a low cost mission that uses sounding radar to image the 3D internal structure of the nucleus of Jupiter-family comet (JFC) Tempel 2. Believed to originate in the Kuiper Belt, JFCs are among the most primitive bodies in the inner solar system. CORE operates a 5 and 15 MHz Radar Reflection Imager from close orbit about the nucleus of Tempel 2, obtaining a dense network of echoes that are used to map its interior dielectric contrasts to high resolution (ង m) and resolve the dielectric constants to  m throughout the 16x8x9 km nucleus. The resulting clear images of internal structure and composition reveal how the nucleus was formed and how it has evolved. Radiometric tracking of the spacecraft orbit results in an interior mass distribution that constrains the radar-based models of interior composition. High-resolution visible and infrared color images provide the surface and exterior boundary conditions for interior models and hypotheses. They present the geology and morphology of the nucleus surface at meter-scales, and also the time-evolving activity, structure and composition of the inner coma. By making deep connections from interior to exterior, the data CORE provides will answer fundamental questions about the earliest stages of planetesimal evolution and planet formation, and lay the foundation for a comet nucleus sample return mission. CORE is led by Prof. Erik Asphaug of the University of California, Santa Cruz and is managed by JPL. It benefits from key scientific and payload contributions by ASI and CNES. The international science team has been assembled on the basis of their key involvement in past and ongoing missions to comets, and in Mars radar missions, and for their expertise in radar data analysis.

  20. Multichannel microwave interferometer for the levitated dipole experiment

    Energy Technology Data Exchange (ETDEWEB)

    Boxer, Alexander C. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Garnier, Darren T.; Mauel, Michael E. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

    2009-04-15

    A four-channel microwave interferometer (center frequency: 60 GHz) has been constructed to measure plasma density profiles in the levitated dipole experiment (LDX). The LDX interferometer has a unique design owing to the unique geometry of LDX. The main design features of the interferometer are: (1) the transmitted beam traverses the plasma entirely in O-mode; (2) the interferometer is a heterodyne system employing two free-running oscillators; (3) four signals of data are received from just on transmitted beam; (4) phase shifts are detected in quadrature. Calibration tests demonstrate that the interferometer measures phase shifts with an uncertainty of approximately 5 deg. Plasma densities in LDX corresponding to phase shifts of up to 5{pi} are routinely and successfully measured.

  1. Ground penetrating radar

    CERN Document Server

    Daniels, David J

    2004-01-01

    Ground-penetrating radar has come to public attention in recent criminal investigations, but has actually been a developing and maturing remote sensing field for some time. In the light of recent expansion of the technique to a wide range of applications, the need for an up-to-date reference has become pressing. This fully revised and expanded edition of the best-selling Surface-Penetrating Radar (IEE, 1996) presents, for the non-specialist user or engineer, all the key elements of this technique, which span several disciplines including electromagnetics, geophysics and signal processing. The

  2. Spaceborne Imaging Radar Symposium

    Science.gov (United States)

    Elachi, C.

    1983-01-01

    An overview of the present state of the art in the different scientific and technological fields related to spaceborne imaging radars was presented. The data acquired with the SEASAT SAR (1978) and Shuttle Imaging Radar, SIR-A (1981) clearly demonstrated the important emphasis in the 80's is going to be on in-depth research investigations conducted with the more flexible and sophisticated SIR series instruments and on long term monitoring of geophysical phenomena conducted from free-flying platforms such as ERS-1 and RADARSAT.

  3. Systems and Methods for Radar Data Communication

    Science.gov (United States)

    Bunch, Brian (Inventor); Szeto, Roland (Inventor); Miller, Brad (Inventor)

    2013-01-01

    A radar information processing system is operable to process high bandwidth radar information received from a radar system into low bandwidth radar information that may be communicated to a low bandwidth connection coupled to an electronic flight bag (EFB). An exemplary embodiment receives radar information from a radar system, the radar information communicated from the radar system at a first bandwidth; processes the received radar information into processed radar information, the processed radar information configured for communication over a connection operable at a second bandwidth, the second bandwidth lower than the first bandwidth; and communicates the radar information from a radar system, the radar information communicated from the radar system at a first bandwidth.

  4. Status Of Imaging Radar Polarimetry

    Science.gov (United States)

    Van Zyl, Jakob J.; Zebker, Howard A.

    1991-01-01

    Report pulls together information on imaging radar polarimetry from a variety of sources. Topics include theory, equipment, and experimental data. Reviews state of the art, examines current applicable developments in radar equipment, describes recording and processing of radar polarimetric measurements, and discusses interpretation and application of resulting polarimetric images.

  5. Compressive CFAR Radar Processing

    NARCIS (Netherlands)

    Anitori, L.; Rossum, W.L. van; Otten, M.P.G.; Maleki, A.; Baraniuk, R.

    2013-01-01

    In this paper we investigate the performance of a combined Compressive Sensing (CS) Constant False Alarm Rate (CFAR) radar processor under different interference scenarios using both the Cell Averaging (CA) and Order Statistic (OS) CFAR detectors. Using the properties of the Complex Approximate

  6. Compressive CFAR radar detection

    NARCIS (Netherlands)

    Anitori, L.; Otten, M.P.G.; Rossum, W.L. van; Maleki, A.; Baraniuk, R.

    2012-01-01

    In this paper we develop the first Compressive Sensing (CS) adaptive radar detector. We propose three novel architectures and demonstrate how a classical Constant False Alarm Rate (CFAR) detector can be combined with ℓ1-norm minimization. Using asymptotic arguments and the Complex Approximate

  7. Metamaterial for Radar Frequencies

    Science.gov (United States)

    2012-09-01

    capacitive coupling with adjacent patches, as shown in Figure 3. The via provides inductance to ground. Figure 3. (a) Planar LH distributed periodic...After [20]). The capacitance in the structure balances out the inductance present when the cylinder is placed in a square array. The metallic... RADAR FREQUENCIES by Szu Hau Tan September 2012 Thesis Advisor: David C. Jenn Second Reader: James Calusdian

  8. Thermal effects in the Input Optics of the Enhanced Laser Interferometer Gravitational-Wave Observatory interferometers.

    Science.gov (United States)

    Dooley, Katherine L; Arain, Muzammil A; Feldbaum, David; Frolov, Valery V; Heintze, Matthew; Hoak, Daniel; Khazanov, Efim A; Lucianetti, Antonio; Martin, Rodica M; Mueller, Guido; Palashov, Oleg; Quetschke, Volker; Reitze, David H; Savage, R L; Tanner, D B; Williams, Luke F; Wu, Wan

    2012-03-01

    We present the design and performance of the LIGO Input Optics subsystem as implemented for the sixth science run of the LIGO interferometers. The Initial LIGO Input Optics experienced thermal side effects when operating with 7 W input power. We designed, built, and implemented improved versions of the Input Optics for Enhanced LIGO, an incremental upgrade to the Initial LIGO interferometers, designed to run with 30 W input power. At four times the power of Initial LIGO, the Enhanced LIGO Input Optics demonstrated improved performance including better optical isolation, less thermal drift, minimal thermal lensing, and higher optical efficiency. The success of the Input Optics design fosters confidence for its ability to perform well in Advanced LIGO.

  9. Gravitational waves interferometer and the VIRGO project

    CERN Document Server

    Gaddi, A

    2002-01-01

    Radio, optical and X-rays telescopes are improving our knowledge of deep space. All these telescopes detect electromagnetic radiation at various frequencies. But a different kind of radiation is generated in the deeper space; it is the gravitational one. Gravitational waves change the space-time metric. As a consequence, GW telescopes should detect an extremely small strain (h < 10/sup -21/) of the geometry of a reference frame; if the frame has a reference dimension (L) of some kilometers, the deformation amplitude ( Delta L = h * L) is limited to 10/sup -16/ meters. Laser interferometers are the most suitable devices to make precise measurements of distances. Their resolution is limited by the laser wavelength ( lambda = 10/sup -6/ meters) and by the light wave-shift detection capability ( Delta Phi = 1 ppb). These theoretical limits are strongly degraded by different noise sources, which reduce the actual resolution by several orders of magnitude. Applied physicists and engineers are working together to...

  10. Projection moire interferometer for research in otology

    Science.gov (United States)

    Dirckx, Joris J.; Decraemer, Willem F.

    1999-02-01

    A moire interferometer is presented which was specially designed for the study of middle ear mechanics. The apparatus is based on phase shift projection moire interferometry, and allows full field quantitative measurement of the shape and deformation of three-dimensional surfaces. Phase shifting and grating noise removal is obtained by piezo-actuated movements of the gratings in the projection and the viewing optical path, respectively. Object shape is then calculated from the recordings of four phase shift moire topograms. The angle between projection and viewing direction is very small, so that observation of the eardrum is possible with minimal shadow problems caused by the bony structures in the vicinity of the eardrum. Measurements obtained on a calibration object and on in-vitro middle ear preparations are presented.

  11. Distributed acoustic sensing with Michelson interferometer demodulation

    Science.gov (United States)

    Liu, Xiaohui; Wang, Chen; Shang, Ying; Wang, Chang; Zhao, Wenan; Peng, Gangding; Wang, Hongzhong

    2017-09-01

    The distributed acoustic sensing (DAS) has been extensively studied and widely used. A distributed acoustic sensing system based on the unbalanced Michelson interferometer with phase generated carrier (PGC) demodulation was designed and tested. The system could directly obtain the phase, amplitude, frequency response, and location information of sound wave at the same time and measurement at all points along the sensing fiber simultaneously. Experiments showed that the system successfully measured the acoustic signals with a phase-pressure sensitivity about-148 dB (re rad/μPa) and frequency response ripple less than 1.5 dB. The further field experiment showed that the system could measure signals at all points along the sensing fiber simultaneously.

  12. FIR interferometer and scattering measurements of ATF

    International Nuclear Information System (INIS)

    Ma, C.H.; Hutchinson, D.P.; Fockedey, Y.; Vander Sluis, K.L.; Bennett, C.A.

    1989-01-01

    A 15-channel far-infrared (FIR) interferometer system has been constructed to measure the electron densities on the ATF plasmas. The system consists of a pair of cw 214-μm difluoromethane (CH 2 F 2 ) lasers, optically pumped by separate CO 2 lasers. The large number of channels is achieved by the use of reflective beam expansion optics to create a beam of 2 cm /times/ 45 cm. After passing through the plasma discharge, the elongated beam produced by the cylindrical mirrors is dissected by an array of 15 off-axis paraboloid reflectors, each of which illuminates a single Schottky-diode detector. The use of the beam expanding optics system reduces the number of optical elements required for the interferometer to approximately 2-3 per channel. The FIR laser beams are transported from the laser room to the experimental area by 25 mm i.d. dielectric waveguides purged with dry nitrogen. The system can also be operated at a wavelength of 119-μm by changing the gas in FIR laser cavities to methanol for high density experiments. Details of the system are described. A study is underway to determine the optimum design of a FIR scattering system for the ATF. This scattering system will be used to investigate density fluctuations with scale lengths from 0.1 cm to the plasma radius. The laser for this scattering system may be operated at wavelengths of 447, 307, 214, 184, and 119 μm with power levels of 100 to 500 mW. A summary of the study is presented. 6 refs., 1 fig

  13. Michelson-type Radio Interferometer for University Education

    Science.gov (United States)

    Koda, Jin; Barrett, J. W.; Hasegawa, T.; Hayashi, M.; Shafto, G.; Slechta, J.

    2013-01-01

    Despite the increasing importance of interferometry in astronomy, the lack of educational interferometers is an obstacle to training the futue generation of astronomers. Students need hands-on experiments to fully understand the basic concepts of interferometry. Professional interferometers are often too complicated for education, and it is difficult to guarantee access for classes in a university course. We have built a simple and affordable radio interferometer for education and used it for an undergraduate and graduate laboratory project. This interferometer's design is based on the Michelson & Peace's stellar optical interferometer, but operates at a radio wavelength using a commercial broadcast satellite dish and receiver. Two side mirrors are surfaced with kitchen aluminum foil and slide on a ladder, providing baseline coverage. This interferometer can resolve and measure the diameter of the Sun, a nice daytime experiment which can be carried out even under a marginal weather (i.e., partial cloud coverage). Commercial broadcast satellites provide convenient point sources. By comparing the Sun and satellites, students can learn how an interferometer works and resolves structures in the sky.

  14. Test of an intensity-compensated Fabry-Perot interferometer

    International Nuclear Information System (INIS)

    Kamiyama, Hiroshi; Okano, Shoichi

    1977-01-01

    In measurement of the heating effect when high-energy charged particles fall into the ultra-high atmosphere, the Doppler width of auroral bright lines was measured with a Fabry-Perot interferometer. To overcome the difficulty in directly measuring auroral temperature with a Fabry-Perot interferometer, in the intensity-compensated type, the quantity aF/I is recorded: I the intensity of small part of the light entering the interferometer, F the detected output, and a constant. The width of the bright lines can be obtained with high accuracy. (Mori, K.)

  15. Using the Talbot_Lau_interferometer_parameters Spreadsheet

    Energy Technology Data Exchange (ETDEWEB)

    Kallman, Jeffrey S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-04

    Talbot-Lau interferometers allow incoherent X-ray sources to be used for phase contrast imaging. A spreadsheet for exploring the parameter space of Talbot and Talbot-Lau interferometers has been assembled. This spreadsheet allows the user to examine the consequences of choosing phase grating pitch, source energy, and source location on the overall geometry of a Talbot or Talbot-Lau X-ray interferometer. For the X-ray energies required to penetrate scanned luggage the spacing between gratings is large enough that the mechanical tolerances for amplitude grating positioning are unlikely to be met.

  16. Lock acquisition of a gravitational-wave interferometer.

    Science.gov (United States)

    Evans, M; Mavalvala, N; Fritschel, P; Bork, R; Bhawal, B; Gustafson, R; Kells, W; Landry, M; Sigg, D; Weiss, R; Whitcomb, S; Yamamoto, H

    2002-04-15

    Interferometric gravitational-wave detectors, such as the Laser Interferometer Gravitational Wave Observatory (LIGO) detectors currently under construction, are based on kilometer-scale Michelson interferometers, with sensitivity that is enhanced by addition of multiple coupled optical resonators. Reducing the relative optic motions to bring the system to the resonant operating point is a significant challenge. We present a new approach to lock acquisition, used to lock a LIGO interferometer, whereby the sensor transformation matrix is dynamically calculated to sequentially bring the cavities into resonance.

  17. EIT Based Gas Detector Design by Using Michelson Interferometer

    International Nuclear Information System (INIS)

    Abbasian, K.; Rostami, A.; Abdollahi, M. H.

    2011-01-01

    Electromagnetically induced transparency (EIT) is one of the interesting phenomena of light-matter interaction which modifies matter properties for propagation of light. In other words, we can change the absorption and refractive index (RI) in neighborhood of the resonant frequency using EIT. In this paper, we have doped 3-level quantum dots in one of the Michelson Interferometer's mirror and used EIT to change its RI. So, a controllable phase difference between lights in two arms of interferometer is created. Long response time is the main drawback of Michelson interferometer based sensor, which is resolved by this technique.

  18. Development of holographic interferometer for non-destructive testing

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Baik, Sung Hoon; Shin, Jang Soo; Cho, Jai Wan; Kim, Duk Hyeon; Hong, Suck Kyoung; Lee, Sang Kil; Kim, Heon Jun; Park, Chang Jin

    1993-02-01

    This project sets the goal at development of holographic interferometer. In this interferometer, fringe localization and imaging of object are considered. And collimated beam and wedge are used for the high-speed recording and formation of carrier fringes, respectively. With this real-time holographic interferometer, not only experiments were conducted on natural convection and flame jet, but also on high speed flow phenomena such as shock wave propagation. Visualization of high-speed flow is recorded in high-speed camera with framing rate ∼ 35000f/s. And to analyze axis symmetric phase object, analysis program was developed. (Author)

  19. Compressive CFAR Radar Processing

    OpenAIRE

    Anitori, Laura; Baraniuk, Richard; Maleki, Arian; Otten, Matern; van Rossum, Wim

    2013-01-01

    In this paper we investigate the performance of a combined Compressive Sensing (CS) Constant False Alarm Rate (CFAR) radar processor under different interference scenarios using both the Cell Averaging (CA) and Order Statistic (OS) CFAR detectors. Using the properties of the Complex Approximate Message Passing (CAMP) algorithm, we demonstrate that the behavior of the CFAR processor is independent of the combination with the non-linear recovery and therefore its performance can be predicted us...

  20. Micromachined Fabry-Perot Interferometer for Motion Detection

    National Research Council Canada - National Science Library

    Waters, Richard L; Aklufi, Monti E

    2002-01-01

    The monolithic integration of a Fabry-Perot interferometer and a (100) silicon photodiode is reported for use as a highly sensitive transduction method in the detection of minute displacements of a proof mass attached to a spring...

  1. Herriott Cell Augmentation of a Quadrature Heterodyne Interferometer

    National Research Council Canada - National Science Library

    Antonsen, Erik

    2002-01-01

    A quadrature heterodyne interferometer is augmented with a Herriott Cell multi-pass reflector to increase instrument resolution and enable a separation of the phase shift due to neutral density from room vibrations...

  2. Slow-Light-Enhanced Spectral Interferometers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We proposoe a research program aimed at developing spectral interferometers with dramatically enhanced performance. A key aspect of our approach is to place a highly...

  3. UARS Wind Imaging Interferometer (WINDII) Level 3AL V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Wind Imaging Interferometer (WINDII) Level 3AL data product consists of daily, 4 degree increment latitude-ordered vertical profiles of meridional and zonal wind...

  4. UARS Wind Imaging Interferometer (WINDII) Level 3AT V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Wind Imaging Interferometer (WINDII) Level 3AT data product consists of daily, 65.536 second interval time-ordered vertical profiles of meridional and zonal wind...

  5. Spatially translatable optical fiber-coupled heterodyne interferometer

    Science.gov (United States)

    Seo, Byonghoon; Bellan, Paul M.

    2017-12-01

    An interferometer is a useful diagnostic tool for measuring line-averaged electron density but is limited in its use because it generally measures at a fixed location. We report here a spatially translatable fiber-coupled interferometer that measures the density of a high-speed MHD-driven plasma jet colliding with a target cloud. The interferometer uses a He-Ne laser coupled to a polarization-maintaining single mode optical fiber having a vacuum feedthrough. The interferometer provides a measure of the spatial-temporal profile of the line-averaged electron density from which the change in jet velocity as a result of its collision with the target cloud can be deduced.

  6. A Michelson interferometer for X-rays and thermal neutrons

    International Nuclear Information System (INIS)

    Appel, A.

    1992-01-01

    The introduced interferometer consists of an LLL interferometer and a phase-displacing Bragg groove component. A part of the radiation path between the Lane mirrors in the Bragg grooves is replaced by a radiation path, whose wave number vector has a slightly different direction compared to the Lane case by the refraction correction. If the angles of incidence in the two grooves are different, then a difference in path is produced between the beams producing interference. This is the first X-ray interferometer which works like an optical Michelson interferometer. As there are no basic limits to resolution by absorption or dispersion, for example, it opens up the possibility of carrying out Fourier spectroscopy in the A wavelength range. (orig.) [de

  7. Performance evaluation of a thermal Doppler Michelson interferometer system.

    Science.gov (United States)

    Mani, Reza; Dobbie, Steven; Scott, Alan; Shepherd, Gordon; Gault, William; Brown, Stephen

    2005-11-20

    The thermal Doppler Michelson interferometer is the primary element of a proposed limb-viewing satellite instrument called SWIFT (Stratospheric Wind Interferometer for Transport studies). SWIFT is intended to measure stratospheric wind velocities in the altitude range of 15-45 km. SWIFT also uses narrowband tandem etalon filters made of germanium to select a line out of the thermal spectrum. The instrument uses the same technique of phase-stepping interferometry employed by the Wind Imaging Interferometer onboard the Upper Atmosphere Research Satellite. A thermal emission line of ozone near 9 microm is used to detect the Doppler shift due to winds. A test bed was set up for this instrument that included the Michelson interferometer and the etalon filters. For the test bed work, we investigate the behavior of individual components and their combination and report the results.

  8. Plasma flow velocity measurements using a modulated Michelson interferometer

    International Nuclear Information System (INIS)

    Howard, J.

    1997-01-01

    This paper discusses the possibility of flow velocity reconstruction using passive spectroscopic techniques. We report some preliminary measurements of the toroidal flow velocity of hydrogen atoms in the RTP tokamak using a phase modulated Michelson interferometer. (orig.)

  9. Comet radar explorer

    Science.gov (United States)

    Farnham, Tony; Asphaug, Erik; Barucci, Antonella; Belton, Mike; Bockelee-Morvan, Dominique; Brownlee, Donald; Capria, Maria Teresa; Carter, Lynn; Chesley, Steve; Farnham, Tony; Gaskell, Robert; Gim, Young; Heggy, Essam; Herique, Alain; Klaasen, Ken; Kofman, Wlodek; Kreslavsky, Misha; Lisse, Casey; Orosei, Roberto; Plaut, Jeff; Scheeres, Dan

    The Comet Radar Explorer (CORE) is designed to perform a comprehensive and detailed exploration of the interior, surface, and inner coma structures of a scientifically impor-tant Jupiter family comet. These structures will be used to investigate the origins of cometary nuclei, their physical and geological evolution, and the mechanisms driving their spectacular activity. CORE is a high heritage spacecraft, injected by solar electric propulsion into orbit around a comet. It is capable of coherent deep radar imaging at decameter wavelengths, high resolution stereo color imaging, and near-IR imaging spectroscopy. Its primary objective is to obtain a high-resolution map of the interior structure of a comet nucleus at a resolution of ¿100 elements across the diameter. This structure shall be related to the surface geology and morphology, and to the structural details of the coma proximal to the nucleus. This is an ideal complement to the science from recent comet missions, providing insight into how comets work. Knowing the structure of the interior of a comet-what's inside-and how cometary activity works, is required before we can understand the requirements for a cryogenic sample return mission. But more than that, CORE is fundamental to understanding the origin of comets and their evolution in time. The mission is made feasible at low cost by the use of now-standard MARSIS-SHARAD reflec-tion radar imaging hardware and data processing, together with proven flight heritage of solar electric propulsion. Radar flight heritage has been demonstrated by the MARSIS radar on Mars Express (Picardi et al., Science 2005; Plaut et al., Science 2007), the SHARAD radar onboard the Mars Reconnaissance Orbiter (Seu et al., JGR 2007), and the LRS radar onboard Kaguya (Ono et al, EPS 2007). These instruments have discovered detailed subsurface structure to depths of several kilometers in a variety of terrains on Mars and the Moon. A reflection radar deployed in orbit about a comet

  10. Radar gun hazards

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-20

    Radar guns - hand-held units used by the law to nail speeders - have been in use since the early '60s. Now they've been accused of causing cancer. Police officers in several states have so far filed eight suits against the manufacturer, claiming that they have contracted rare forms of cancer, such as of the eyelid and the testicle, from frequent proximity to the devices. Spurred by concerns expressed by police groups, researchers at the Rochester Institute of Technology are conducting what they believe to be the first research of its kind in the nation. Last month psychologist John Violanti, an expert in policy psychology and health, sent out a one-page survey to 6,000 active and retired police officers in New York State, asking them about their health and their use of radar guns. Violanti says melanoma, leukemia, and lymph node cancer may be linked to these as well as other electromagnetic devices. The Food and Drug Administration earlier this year issued a warning about radar guns, telling users not to operate them closer than 6 inches from the body. But this may not be a sufficient safeguard since the instruments can give off crisscrossing wave emissions within a police vehicle. The survey will be used to help determine if it would be safer to mount the guns, which are currently either hand-held or mounted on dashboards, outside troopers' cars.

  11. Fast-scanning far-infrared Fabry--Perot interferometer

    International Nuclear Information System (INIS)

    Komm, D.S.; Blanken, R.A.; Brossier, P.

    1975-01-01

    A scanning Fabry--Perot interferometer for use in the far ir (100 μ m less than lambda less than 2 mm) has been developed capable of scanning a free spectral range in a few milliseconds. A commercial loudspeaker was used as a drive, and mirrors were fabricated from electroformed copper mesh. Primary limitations of the instrument were due to vibrations of the interferometer frame. (U.S.)

  12. Fiber Fabry-Perot interferometer with controllable temperature sensitivity.

    Science.gov (United States)

    Zhang, Xinpu; Peng, Wei; Zhang, Yang

    2015-12-01

    We proposed a fiber taper based on the Fabry-Perot (FP) interferometer structure with controllable temperature sensitivity. The FP interferometer is formed by inserting a segment of tapered fiber tip into the capillary and subsequently splicing the other end of the capillary to a single-mode fiber (SMF), the tapered fiber endface, and the spliced face form the FP cavity. Through controlling the inserted tapered fiber length, a series of FP interferometers were made. Because the inserted taper tip has the degree of freedom along the fiber axial, when the FP interferometer is subjected to temperature variation, the thermal expansion of the fiber taper tip will resist the FP cavity length change caused by the evolution of capillary length, and we can control the temperature sensitivity by adjusting the inserted taper length. In this structure, the equivalent thermal expansion coefficient of the FP interferometer can be defined; it was used to evaluate the temperature sensitivity of the FP interferometer, which provides an effective method to eliminate the temperature effect and to enhance other measurement accuracy. We fabricated the FP interferometers and calibrated their temperature characters by measuring the wavelength shift of the resonance dips in the reflection spectrum. In a temperature range of 50°C to 150°C, the corresponding temperature sensitivities can be controlled between 0 and 1.97 pm/°C when the inserted taper is between 75 and 160 μm. Because of its controllable temperature sensitivity, ease of fabrication, and low cost, this FP interferometer can meet different temperature sensitivity requirements in various application areas, especially in the fields which need temperature insensitivity.

  13. Two-photon quantum interference in a Michelson interferometer

    International Nuclear Information System (INIS)

    Odate, Satoru; Wang Haibo; Kobayashi, Takayoshi

    2005-01-01

    We have observed two-photon quantum interference in a Michelson interferometer. For the first time, we experimentally demonstrated two-photon quantum interference patterns, which show the transition from nonsubwavelength interference fringes to the general subwavelength interference. At the same time, a photon bunching effect was also shown by a postselection. The |1, 1> state with a single photon in a mode corresponding to each arm of the interferometer was exclusively postselected by using path difference between two arms

  14. Potentiality of an orbiting interferometer for space-time experiments

    International Nuclear Information System (INIS)

    Grassi Strini, A.M.; Strini, G.; Tagliaferri, G.

    1979-01-01

    It is suggested that by putting a Michelson interferometer aboard a spacecraft orbiting around the earth, very substantial progress could be made in space-time experiments. It is estimated that in measurements of e.g. some anisotropy of the light velocity, a spacecraft-borne interferometer of quite small size (0.1 m arm-length) would reach a sensitivity greater by a factor of approximately 10 8 than the best achievements to date of ground-based devices. (author)

  15. Detection of Weather Radar Clutter

    DEFF Research Database (Denmark)

    Bøvith, Thomas

    2008-01-01

    Weather radars provide valuable information on precipitation in the atmosphere but due to the way radars work, not only precipitation is observed by the weather radar. Weather radar clutter, echoes from non-precipitating targets, occur frequently in the data, resulting in lowered data quality....... Especially in the application of weather radar data in quantitative precipitation estimation and forecasting a high data quality is important. Clutter detection is one of the key components in achieving this goal. This thesis presents three methods for detection of clutter. The methods use supervised...... and precipitating and non-precipitating clouds. Another method uses the difference in the motion field of clutter and precipitation measured between two radar images. Furthermore, the direction of the wind field extracted from a weather model is used. The third method uses information about the refractive index...

  16. A review of array radars

    Science.gov (United States)

    Brookner, E.

    1981-10-01

    Achievements in the area of array radars are illustrated by such activities as the operational deployment of the large high-power, high-range-resolution Cobra Dane; the operational deployment of two all-solid-state high-power, large UHF Pave Paws radars; and the development of the SAM multifunction Patriot radar. This paper reviews the following topics: array radars steered in azimuth and elevation by phase shifting (phase-phase steered arrays); arrays steered + or - 60 deg, limited scan arrays, hemispherical coverage, and omnidirectional coverage arrays; array radars steering electronically in only one dimension, either by frequency or by phase steering; and array radar antennas which use no electronic scanning but instead use array antennas for achieving low antenna sidelobes.

  17. Automatic Alignment of Displacement-Measuring Interferometer

    Science.gov (United States)

    Halverson, Peter; Regehr, Martin; Spero, Robert; Alvarez-Salazar, Oscar; Loya, Frank; Logan, Jennifer

    2006-01-01

    A control system strives to maintain the correct alignment of a laser beam in an interferometer dedicated to measuring the displacement or distance between two fiducial corner-cube reflectors. The correct alignment of the laser beam is parallel to the line between the corner points of the corner-cube reflectors: Any deviation from parallelism changes the length of the optical path between the reflectors, thereby introducing a displacement or distance measurement error. On the basis of the geometrical optics of corner-cube reflectors, the length of the optical path can be shown to be L = L(sub 0)cos theta, where L(sub 0) is the distance between the corner points and theta is the misalignment angle. Therefore, the measurement error is given by DeltaL = L(sub 0)(cos theta - 1). In the usual case in which the misalignment is small, this error can be approximated as DeltaL approximately equal to -L(sub 0)theta sup 2/2. The control system (see figure) is implemented partly in hardware and partly in software. The control system includes three piezoelectric actuators for rapid, fine adjustment of the direction of the laser beam. The voltages applied to the piezoelectric actuators include components designed to scan the beam in a circular pattern so that the beam traces out a narrow cone (60 microradians wide in the initial application) about the direction in which it is nominally aimed. This scan is performed at a frequency (2.5 Hz in the initial application) well below the resonance frequency of any vibration of the interferometer. The laser beam makes a round trip to both corner-cube reflectors and then interferes with the launched beam. The interference is detected on a photodiode. The length of the optical path is measured by a heterodyne technique: A 100- kHz frequency shift between the launched beam and a reference beam imposes, on the detected signal, an interferometric phase shift proportional to the length of the optical path. A phase meter comprising analog

  18. Radar Image, Hokkaido, Japan

    Science.gov (United States)

    2000-01-01

    The southeast part of the island of Hokkaido, Japan, is an area dominated by volcanoes and volcanic caldera. The active Usu Volcano is at the lower right edge of the circular Lake Toya-Ko and near the center of the image. The prominent cone above and to the left of the lake is Yotei Volcano with its summit crater. The city of Sapporo lies at the base of the mountains at the top of the image and the town of Yoichi -- the hometown of SRTM astronaut Mamoru Mohri -- is at the upper left edge. The bay of Uchiura-Wan takes up the lower center of the image. In this image, color represents elevation, from blue at the lowest elevations to white at the highest. The radar image has been overlaid to provide more details of the terrain. Due to a processing problem, an island in the center of this crater lake is missing and will be properly placed when further SRTM swaths are processed. The horizontal banding in this image is a processing artifact that will be removed when the navigation information collected by SRTM is fully calibrated. This image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC. Size: 100 by 150 kilometers (62

  19. Experimental implementation of phase locking in a nonlinear interferometer

    Science.gov (United States)

    Wang, Hailong; Marino, A. M.; Jing, Jietai

    2015-09-01

    Based upon two cascade four-wave mixing processes in two identical hot rubidium vapor cells, a nonlinear interferometer has been experimentally realized [Jing et al., Appl. Phys. Lett. 99, 011110 (2011); Hudelist et al., Nat. Commun. 5, 3049 (2014)]. It has a higher degree of phase sensitivity than a traditional linear interferometer and has many potential applications in quantum metrology. Phase locking of the nonlinear interferometer is needed before it can find its way into applications. In this letter, we investigate the experimental implementation of phase locking of the relative phase between the three beams at different frequencies involved in such a nonlinear interferometer. We have utilized two different methods, namely, beat note locking and coherent modulation locking. We find that coherent modulation locking can achieve much better phase stability than beat note locking in our system. Our results pave the way for real applications of a nonlinear interferometer in precision measurement and quantum manipulation, for example, phase control in phase-sensitive N-wave mixing process, N-port nonlinear interferometer and quantum-enhanced real-time phase tracking.

  20. Development of stable monolithic wide-field Michelson interferometers.

    Science.gov (United States)

    Wan, Xiaoke; Ge, Jian; Chen, Zhiping

    2011-07-20

    Bulk wide-field Michelson interferometers are very useful for high precision applications in remote sensing and astronomy. A stable monolithic Michelson interferometer is a key element in high precision radial velocity (RV) measurements for extrasolar planets searching and studies. Thermal stress analysis shows that matching coefficients of thermal expansion (CTEs) is a critical requirement for ensuring interferometer stability. This requirement leads to a novel design using BK7 and LAK7 materials, such that the monolithic interferometer is free from thermal distortion. The processes of design, fabrication, and testing of interferometers are described in detail. In performance evaluations, the field angle is typically 23.8° and thermal sensitivity is typically -2.6×10(-6)/°C near 550 nm, which corresponds to ∼800 m/s/°C in the RV scale. Low-cost interferometer products have been commissioned in multiple RV instruments, and they are producing high stability performance over long term operations. © 2011 Optical Society of America

  1. Radar studies of bird migration

    Science.gov (United States)

    Williams, T. C.; Williams, J. M.

    1974-01-01

    Observations of bird migration with NASA radars were made at Wallops Island, Va. Simultaneous observations were made at a number of radar sites in the North Atlantic Ocean in an effort to discover what happened to those birds that were observed leaving the coast of North America headed toward Bermuda, the Caribbean and South America. Transatlantic migration, utilizing observations from a large number of radars is discussed. Detailed studies of bird movements at Wallops Island are presented.

  2. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter

    2013-01-01

    Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud

  3. Remote monitoring by impulse radar

    OpenAIRE

    Taghimohammadi, Ensieh

    2015-01-01

    This master thesis is centered on development of signal processing algorithms for an Ultra - Wideband (UWB) Radar system. The goal of signal processing algorithms is to identify components of radar received signal. Moreover, implementing algorithms for checking both static and moving objects, estimating the distance from an object, and tracking the moving object. In this thesis we use a new type of Novelda UWB radar for indoor applications. It consists of two compact directional UWB antennas ...

  4. Photonic based marine radar demonstrator

    OpenAIRE

    Laghezza, Francesco; Scotti, Filippo; Ghelfi, Paolo; Bogoni, Antonella; Banchi, Luca; Malaspina, Vincenzo; Serafino, Giovanni

    2015-01-01

    This paper presents the results obtained during the field trial experiments of the first photonic-based radar system demonstrator, in a real maritime environment. The developed demonstrator exploits photonic technologies for both the generation and the detection of radar RF signals, allowing increased performance even in term of system flexibility. The photonic radar performance have been compared with a state of the art commercial system for maritime applications provide...

  5. Reconfigurable L-Band Radar

    Science.gov (United States)

    Rincon, Rafael F.

    2008-01-01

    The reconfigurable L-Band radar is an ongoing development at NASA/GSFC that exploits the capability inherently in phased array radar systems with a state-of-the-art data acquisition and real-time processor in order to enable multi-mode measurement techniques in a single radar architecture. The development leverages on the L-Band Imaging Scatterometer, a radar system designed for the development and testing of new radar techniques; and the custom-built DBSAR processor, a highly reconfigurable, high speed data acquisition and processing system. The radar modes currently implemented include scatterometer, synthetic aperture radar, and altimetry; and plans to add new modes such as radiometry and bi-static GNSS signals are being formulated. This development is aimed at enhancing the radar remote sensing capabilities for airborne and spaceborne applications in support of Earth Science and planetary exploration This paper describes the design of the radar and processor systems, explains the operational modes, and discusses preliminary measurements and future plans.

  6. A radio frequency interferometer (RIF) system

    International Nuclear Information System (INIS)

    Goldwire, H.C. Jr.

    1993-01-01

    The authors describe a radio frequency interferometer (RFI) system developed and tested by Lawrence Livermore National Laboratory over the last several years. The basic theory of operation, sample data, and analyzed results are presented and compared to results obtained by conventional TDR means (CORRTEX). A typical shock location measurement used for hydro-yield determination or for energy flow diagnostics comprises a coaxial sensing cable extending from the detonation region to a CORRTEX recording instrument. The single digitizer-based RFI system uses an identical sensing cable installation technique. Recording equipment consists of a CAMAC digitizer module, which produces a sinusoidal probing signal (the signal sent downhole) for each sensing channel (cable), while also coherently sampling the phase of the reflected signal. Each channel is recorded using a single digitizer, providing maximal temporal and spatial resolution, but independent of channel gain or quadruture errors inherent to dual digitizer systems. Interpolation software with suitable look-ahead logic permits determination of complete quadruture information using a single digitizer. This RFI system provides several times better spatial resolution and two orders of magnitude better temporal sampling density than does CORRTEX. It also is less susceptible to electromagnetic pulse distortion and provides a direct means for identifying (and rejecting) any data so contaminated

  7. Interferometer observations of cluster formation in Serpens

    Science.gov (United States)

    Williams, Jonathan

    1999-10-01

    One of the primary science goals of the Atacama Large Millimeter Array is to image star forming regions in unprecedented detail and sensitivity. Here, we present BIMA observations of a young embedded stellar group in Serpens that demonstrate some of the issues in this field that ALMA may address in the future. The high resolution of the interferometer enables us to to follow the structure, dynamics, and chemistry of the overall cluster forming cloud down to the scale of individual star forming cores. There is an approximately equal mix of cores with and without continuum sources suggesting that new stars are continually being added to the group. There is evidence for large scale collapse onto the cluster with concentrations toward regions where the velocity dispersion is at a local minimum. There are also significant differences in relative abundances throughout the cluster indicating that molecule formation and depletion timescales are comparable to or less than dynamical timescales for core formation and that chemistry may be used as a signature of their evolution. We discuss a scenario for cluster formation through the condensation and collapse of individual cores via turbulent dissipation and point out a few ways in which ALMA may contribute to future studies.

  8. Broadview Radar Altimetry Toolbox

    Science.gov (United States)

    Garcia-Mondejar, Albert; Escolà, Roger; Moyano, Gorka; Roca, Mònica; Terra-Homem, Miguel; Friaças, Ana; Martinho, Fernando; Schrama, Ernst; Naeije, Marc; Ambrózio, Américo; Restano, Marco; Benveniste, Jérôme

    2017-04-01

    The universal altimetry toolbox, BRAT (Broadview Radar Altimetry Toolbox) which can read all previous and current altimetry missions' data, incorporates now the capability to read the upcoming Sentinel3 L1 and L2 products. ESA endeavoured to develop and supply this capability to support the users of the future Sentinel3 SAR Altimetry Mission. BRAT is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2005 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Etudes Spatiales), and it is freely available at http://earth.esa.int/brat. The tools enable users to interact with the most common altimetry data formats. The BratGUI is the frontend for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with MATLAB/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the dataformatting hassle. BRAT can be used simply to visualise data quickly, or to translate the data into other formats such as NetCDF, ASCII text files, KML (Google Earth) and raster images (JPEG, PNG, etc.). Several kinds of computations can be done within BRAT involving combinations of data fields that the user can save for posterior reuse or using the already embedded formulas that include the standard oceanographic altimetry formulas. The Radar Altimeter Tutorial, that contains a strong introduction to altimetry, shows its applications in different fields such as Oceanography, Cryosphere, Geodesy, Hydrology among others. Included are also "use cases", with step-by-step examples, on how to use the toolbox in the different contexts. The Sentinel3 SAR Altimetry Toolbox shall benefit from the current BRAT version. While developing the toolbox we will revamp of the Graphical User Interface and provide, among other enhancements, support for reading the upcoming S3 datasets and specific

  9. Radar foundations for imaging and advanced concepts

    CERN Document Server

    Sullivan, Roger

    2004-01-01

    Through courses internally taught at IDA, Dr. Roger Sullivan has devised a book that brings readers fully up to speed on the most essential quantitave aspects of general radar in order to introduce study of the most exciting and relevant applications to radar imaging and advanced concepts: Synthetic Aperture Radar (4 chapters), Space-time Adaptive Processing, moving target indication (MTI), bistatic radar, low probability of intercept (LPI) radar, weather radar, and ground-penetrating radar. Whether you're a radar novice or experienced professional, this is an essential refer

  10. "First Light" for the VLT Interferometer

    Science.gov (United States)

    2001-03-01

    Excellent Fringes From Bright Stars Prove VLTI Concept Summary Following the "First Light" for the fourth of the 8.2-m telescopes of the VLT Observatory on Paranal in September 2000, ESO scientists and engineers have just successfully accomplished the next major step of this large project. On March 17, 2001, "First Fringes" were obtained with the VLT Interferometer (VLTI) - this important event corresponds to the "First Light" for an astronomical telescope. At the VLTI, it occurred when the infrared light from the bright star Sirius was captured by two small telescopes and the two beams were successfully combined in the subterranean Interferometric Laboratory to form the typical pattern of dark and bright lines known as " interferometric fringes ". This proves the success of the robust VLTI concept, in particular of the "Delay Line". On the next night, the VLTI was used to perform a scientific measurement of the angular diameter of another comparatively bright star, Alpha Hydrae ( Alphard ); it was found to be 0.00929±0.00017 arcsec . This corresponds to the angular distance between the two headlights of a car as seen from a distance of approx. 35,000 kilometres. The excellent result was obtained during a series of observations, each lasting 2 minutes, and fully confirming the impressive predicted abilities of the VLTI . This first observation with the VLTI is a monumental technological achievement, especially in terms of accuracy and stability . It crucially depends on the proper combination and functioning of a large number of individual opto-mechnical and electronic elements. This includes the test telescopes that capture the starlight, continuous and extremely precise adjustment of the various mirrors that deflect the light beams as well as the automatic positioning and motion of the Delay Line carriages and, not least, the optimal tuning of the VLT INterferometer Commissionning Instrument (VINCI). These initial observations prove the overall concept for the

  11. Measuring human behaviour with radar

    NARCIS (Netherlands)

    Dorp, Ph. van

    2001-01-01

    The paper presents human motion measurements with the experimental Frequency Modulated Continuous Wave(FMCW) radar at TNO-FEL. The aim of these measurements is to analyse the Doppler velocity spectrum of humans. These analysis give insight in measuring human behaviour with radar for security

  12. Performance indicators modern surveillance radar

    NARCIS (Netherlands)

    Nooij, P.N.C.; Theil, A.

    2014-01-01

    Blake chart computations are widely employed to rank detection coverage capabilities of competitive search radar systems. Developed for comparable 2D radar systems with a mechanically rotating reflector antenna, it was not necessary to regard update rate and plot quality in Blake's chart. To

  13. Behavior Subtraction applied to radar

    NARCIS (Netherlands)

    Rossum, W.L. van; Caro Cuenca, M.

    2014-01-01

    An algorithm developed for optical images has been applied to radar data. The algorithm, Behavior Subtraction, is based on capturing the dynamics of a scene and detecting anomalous behavior. The radar application is the detection of small surface targets at sea. The sea surface yields the expected

  14. Imaging with Synthetic Aperture Radar

    CERN Document Server

    Massonnet, Didier

    2008-01-01

    Describing a field that has been transformed by the recent availability of data from a new generation of space and airborne systems, the authors offer a synthetic geometrical approach to the description of synthetic aperture radar, one that addresses physicists, radar specialists, as well as experts in image processing.  

  15. Millimeter radar improves target identification

    Science.gov (United States)

    McAulay, Alastair D.

    2011-06-01

    Recently developed millimeter wave radar has advantages for target identification over conventional microwave radar which typically use lower frequencies. We describe the pertinent features involved in the construction of the new millimeter wave radar, the pseudo-optical cavity source and the quasi-optical duplexer. The long wavelength relative to light allows the radar beam to penetrate through most weather because the wavelength is larger than the particle size for dust, drizzle rain, fog. Further the mm wave beam passes through an atmospheric transmission window that provides a dip in attenuation. The higher frequency than conventional radar provides higher Doppler frequencies, for example, than X-band radar. We show by simulation that small characteristic vibrations and slow turns of an aircraft become visible so that the Doppler signature improves identification. The higher frequency also reduces beam width, which increases transmit and receive antenna gains. For the same power the transmit beam extends to farther range and the increase in receive antenna gain increases signal to noise ratio for improved detection and identification. The narrower beam can also reduce clutter and reject other noise more readily. We show by simulation that the radar can be used at lower elevations over the sea than conventional radar.

  16. 100 years of radar

    CERN Document Server

    Galati, Gaspare

    2016-01-01

    This book offers fascinating insights into the key technical and scientific developments in the history of radar, from the first patent, taken out by Hülsmeyer in 1904, through to the present day. Landmark events are highlighted and fascinating insights provided into the exceptional people who made possible the progress in the field, including the scientists and technologists who worked independently and under strict secrecy in various countries across the world in the 1930s and the big businessmen who played an important role after World War II. The book encourages multiple levels of reading. The author is a leading radar researcher who is ideally placed to offer a technical/scientific perspective as well as a historical one. He has taken care to structure and write the book in such a way as to appeal to both non-specialists and experts. The book is not sponsored by any company or body, either formally or informally, and is therefore entirely unbiased. The text is enriched by approximately three hundred ima...

  17. An imaging interferometry capability for the EISCAT Svalbard Radar

    Directory of Open Access Journals (Sweden)

    T. Grydeland

    2005-01-01

    Full Text Available Interferometric imaging (aperture synthesis imaging is a technique used by radio astronomers to achieve angular resolution that far surpasses what is possible with a single large aperture. A similar technique has been used for radar imaging studies of equatorial ionospheric phenomena at the Jicamarca Radio Observatory. We present plans for adding an interferometric imaging capability to the EISCAT Svalbard Radar (ESR, a capability which will contribute significantly to several areas of active research, including naturally and artificially enhanced ion-acoustic echoes and their detailed relation in space and time to optical phenomena, polar mesospheric summer echoes (PMSE, and meteor studies. Interferometry using the two antennas of the ESR has demonstrated the existence of extremely narrow, field-aligned scattering structures, but having only a single baseline is a severe limitation for such studies. Building additional IS-class antennas at the ESR is not a trivial task. However, the very high scattering levels in enhanced ion-acoustic echoes and PMSE means that a passive receiver antenna of more modest gain should still be capable of detecting these echoes. In this paper we present simulations of what an imaging interferometer will be capable of observing for different antenna configurations and brightness distributions, under ideal conditions, using two different image inversion algorithms. We also discuss different antenna and receiver technologies.

  18. An imaging interferometry capability for the EISCAT Svalbard Radar

    Directory of Open Access Journals (Sweden)

    T. Grydeland

    2005-01-01

    Full Text Available Interferometric imaging (aperture synthesis imaging is a technique used by radio astronomers to achieve angular resolution that far surpasses what is possible with a single large aperture. A similar technique has been used for radar imaging studies of equatorial ionospheric phenomena at the Jicamarca Radio Observatory. We present plans for adding an interferometric imaging capability to the EISCAT Svalbard Radar (ESR, a capability which will contribute significantly to several areas of active research, including naturally and artificially enhanced ion-acoustic echoes and their detailed relation in space and time to optical phenomena, polar mesospheric summer echoes (PMSE, and meteor studies.

    Interferometry using the two antennas of the ESR has demonstrated the existence of extremely narrow, field-aligned scattering structures, but having only a single baseline is a severe limitation for such studies. Building additional IS-class antennas at the ESR is not a trivial task. However, the very high scattering levels in enhanced ion-acoustic echoes and PMSE means that a passive receiver antenna of more modest gain should still be capable of detecting these echoes.

    In this paper we present simulations of what an imaging interferometer will be capable of observing for different antenna configurations and brightness distributions, under ideal conditions, using two different image inversion algorithms. We also discuss different antenna and receiver technologies.

  19. POLCAL - POLARIMETRIC RADAR CALIBRATION

    Science.gov (United States)

    Vanzyl, J.

    1994-01-01

    Calibration of polarimetric radar systems is a field of research in which great progress has been made over the last few years. POLCAL (Polarimetric Radar Calibration) is a software tool intended to assist in the calibration of Synthetic Aperture Radar (SAR) systems. In particular, POLCAL calibrates Stokes matrix format data produced as the standard product by the NASA/Jet Propulsion Laboratory (JPL) airborne imaging synthetic aperture radar (AIRSAR). POLCAL was designed to be used in conjunction with data collected by the NASA/JPL AIRSAR system. AIRSAR is a multifrequency (6 cm, 24 cm, and 68 cm wavelength), fully polarimetric SAR system which produces 12 x 12 km imagery at 10 m resolution. AIRSTAR was designed as a testbed for NASA's Spaceborne Imaging Radar program. While the images produced after 1991 are thought to be calibrated (phase calibrated, cross-talk removed, channel imbalance removed, and absolutely calibrated), POLCAL can and should still be used to check the accuracy of the calibration and to correct it if necessary. Version 4.0 of POLCAL is an upgrade of POLCAL version 2.0 released to AIRSAR investigators in June, 1990. New options in version 4.0 include automatic absolute calibration of 89/90 data, distributed target analysis, calibration of nearby scenes with calibration parameters from a scene with corner reflectors, altitude or roll angle corrections, and calibration of errors introduced by known topography. Many sources of error can lead to false conclusions about the nature of scatterers on the surface. Errors in the phase relationship between polarization channels result in incorrect synthesis of polarization states. Cross-talk, caused by imperfections in the radar antenna itself, can also lead to error. POLCAL reduces cross-talk and corrects phase calibration without the use of ground calibration equipment. Removing the antenna patterns during SAR processing also forms a very important part of the calibration of SAR data. Errors in the

  20. Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics

    Science.gov (United States)

    Kimble, H. J.; Levin, Yuri; Matsko, Andrey B.; Thorne, Kip S.; Vyatchanin, Sergey P.

    2002-01-01

    The LIGO-II gravitational-wave interferometers (ca. 2006-2008) are designed to have sensitivities near the standard quantum limit (SQL) in the vicinity of 100 Hz. This paper describes and analyzes possible designs for subsequent LIGO-III interferometers that can beat the SQL. These designs are identical to a conventional broad band interferometer (without signal recycling), except for new input and/or output optics. Three designs are analyzed: (i) a squeezed-input interferometer (conceived by Unruh based on earlier work of Caves) in which squeezed vacuum with frequency-dependent (FD) squeeze angle is injected into the interferometer's dark port; (ii) a variational-output interferometer (conceived in a different form by Vyatchanin, Matsko and Zubova), in which homodyne detection with FD homodyne phase is performed on the output light; and (iii) a squeezed-variational interferometer with squeezed input and FD-homodyne output. It is shown that the FD squeezed-input light can be produced by sending ordinary squeezed light through two successive Fabry-Pérot filter cavities before injection into the interferometer, and FD-homodyne detection can be achieved by sending the output light through two filter cavities before ordinary homodyne detection. With anticipated technology (power squeeze factor e-2R=0.1 for input squeezed vacuum and net fractional loss of signal power in arm cavities and output optical train ɛ*=0.01) and using an input laser power Io in units of that required to reach the SQL (the planned LIGO-II power, ISQL), the three types of interferometer could beat the amplitude SQL at 100 Hz by the following amounts μ≡(Sh)/(SSQLh) and with the following corresponding increase V=1/μ3 in the volume of the universe that can be searched for a given noncosmological source: Squeezed input-μ~=(e-2R)~=0.3 and V~=1/0.33~=30 using Io/ISQL=1. Variational-output-μ~=ɛ1/4*~=0.3 and V~=30 but only if the optics can handle a ten times larger power: Io/ISQL~=1/(ɛ*)=10

  1. Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics

    International Nuclear Information System (INIS)

    Kimble, H.J.; Levin, Yuri; Thorne, Kip S.; Matsko, Andrey B.; Vyatchanin, Sergey P.

    2002-01-01

    The LIGO-II gravitational-wave interferometers (ca. 2006-2008) are designed to have sensitivities near the standard quantum limit (SQL) in the vicinity of 100 Hz. This paper describes and analyzes possible designs for subsequent LIGO-III interferometers that can beat the SQL. These designs are identical to a conventional broad band interferometer (without signal recycling), except for new input and/or output optics. Three designs are analyzed: (i) a squeezed-input interferometer (conceived by Unruh based on earlier work of Caves) in which squeezed vacuum with frequency-dependent (FD) squeeze angle is injected into the interferometer's dark port; (ii) a variational-output interferometer (conceived in a different form by Vyatchanin, Matsko and Zubova), in which homodyne detection with FD homodyne phase is performed on the output light; and (iii) a squeezed-variational interferometer with squeezed input and FD-homodyne output. It is shown that the FD squeezed-input light can be produced by sending ordinary squeezed light through two successive Fabry-Perot filter cavities before injection into the interferometer, and FD-homodyne detection can be achieved by sending the output light through two filter cavities before ordinary homodyne detection. With anticipated technology (power squeeze factor e -2R =0.1 for input squeezed vacuum and net fractional loss of signal power in arm cavities and output optical train ε * =0.01) and using an input laser power I o in units of that required to reach the SQL (the planned LIGO-II power, I SQL ), the three types of interferometer could beat the amplitude SQL at 100 Hz by the following amounts μ≡√(S h )/√(S h SQL ) and with the following corresponding increase V=1/μ 3 in the volume of the universe that can be searched for a given noncosmological source: Squeezed input--μ≅√(e -2R )≅0.3 and V≅1/0.3 3 ≅30 using I o /I SQL =1. Variational-output--μ≅ε * 1/4 ≅0.3 and V≅30 but only if the optics can handle a ten

  2. Operational Experience with the Navy Prototype Optical Interferometer

    Science.gov (United States)

    White, Nathaniel M.; Mozurkewich, David; Hutter, Donald J.; Benson, James A.; Hummel, Christian A.; Clark, James H., III

    2002-12-01

    A review of operational procedures and requirements evolving at the Navy Prototype Optical Interferometer (NPOI) provides some useful insights for the automation, maintenance and operation of large optical interferometers even as construction and instrument development continues. Automation is essential for efficient, single operator observing. It is important to integrate ease of operation and maintenance into the instrument design from the start. In final form, the Navy Prototype Optical Interferometer, NPOI, will use six portable siderostats for imaging stars and narrow angle astrometry of multiple stars as well as four fixed siderostats designed for all sky astrometry. Currently all four astrometric siderostats and two transportable siderostats are operational. All six beams from the siderostats now in use have been combined coherently to form images of multiple stars at milliseconds of arc resolution.

  3. 30-lens interferometer for high energy x-rays

    International Nuclear Information System (INIS)

    Lyubomirskiy, M.; Snigireva, I.; Vaughan, G.; Kohn, V.; Kuznetsov, S.; Yunkin, V.; Snigirev, A.

    2016-01-01

    We report a hard X-ray multilens interferometer consisting of 30 parallel compound refractive lenses. Under coherent illumination each CRL creates a diffraction limited focal spot - secondary source. An overlapping of coherent beams from these sources resulting in the interference pattern which has a rich longitudinal structure in accordance with the Talbot imaging formalism. The proposed interferometer was experimentally tested at ID11 ESRF beamline for the photon energies 32 keV and 65 keV. The fundamental and fractional Talbot images were recorded with the high resolution CCD camera. An effective source size in the order of 15 µm was determined from the first Talbot image proving that the multilens interferometer can be used as a high resolution beam diagnostic tool.

  4. Micro wishbone interferometer for Fourier transform infrared spectrometry

    International Nuclear Information System (INIS)

    Lee, Young-Min; Toda, Masaya; Ono, Takahito; Esashi, Masayoshi

    2011-01-01

    A miniature wishbone-type Si interferometer with electrically actuated rotary comb drive actuators is designed and fabricated to apply a Fourier transform infrared (FTIR) spectrometer. Corner cube mirrors are mounted on the end of the Si interferometer that is formed on a glass substrate. The total size of the interferometer is approximately 8 mm × 8 mm. The corner cube mirrors with sharp edges with a size of approximately 1 × 1 × 0.5 mm 3 are fabricated using an indentation technique. The rotation angle of rotary comb drive actuators is approximately 11° with an applied voltage of 180 V. Hereby, the maximum optical path difference of approximately 2640 µm is achieved, which corresponds to the highest resolution of ∼4 cm −1 as a spectrometer

  5. Optimum design of a microwave interferometer for plasma density measurement

    International Nuclear Information System (INIS)

    Lindberg, L.; Eriksson, A.

    1980-11-01

    Theoretical and practical problems arising in the application of microwave interferometry to density measurements on transient plasmas are discussed. The conditions for unambiquous measurements in a density range as wide as possible are analyzed. It is shown that the initial zero adjustment of the interferometer bridge recommended in many text books is the worst possible choice of initial condition when the aim is high initial sensitivity at low densities. The analytic expressions needed for unambiquous evaluation of any phase shift from a few degrees to several times π (counting of fringes) are derived. The practical design of the interferometer circuit and its inherent error sources due to reflexions and non-ideal component properties are discussed. The results are applied to an interferometer operating at 80 GHz used on a pulsed plasma experiment. The minimum measurable phase shift is 2deg and the range of linear densities that have been measured is = 1 . 10 16 - 3 . 10 18 m -2

  6. The Virgo gravitational wave interferometer: status and perspectives

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    The first recording of a signal from a binary neutron star system by the Advanced LIGO and Advanced Virgo interferometers, and the observation of its remnants by telescopes in all bands of the electromagnetic spectrum, marked the beginning of multimessenger astronomy with gravitational waves. This followed the detection of gravitational wave signals by the LIGO interferometers in 2015, which started the detailed study of highly curved space time. These achievements come after decades of work spent understanding how to measure the tiny space time strain (h ~ 10-21) carried by gravitational waves. In the future, detectors will able to extract much more precise information from these events, or record signals from fainter sources, providing a new view of the Universe. After a presentation of the Virgo interferometer, the main results obtained from binary black hole and neutron star detection are reviewed. The focus will then shift on the perspective offered by a further reduction of noise in ground based interf...

  7. CO laser interferometer for REB-plasma experiments

    International Nuclear Information System (INIS)

    Burmasov, V.S.; Kruglyakov, E.P.

    1996-01-01

    The Michelson carbon oxide laser interferometer for measuring plasma density in studies on REB-plasma interaction is described. A detail description of the interferometer and CO laser is presented. For a selection of a single wavelength laser operation the CaF 2 prism is applied. A Ge:Au photoconductor at 77 deg K is applied as the detector. The CO laser radiation at λ 5.34 μm coincides with the detector maximum sensitivity (of the order of 1000 V/W). This increases the interferometer sensitivity about ten times with respect to the He-Ne laser (λ = 3.39 μm) used as the source of light. The typical interferogram and time evolution of plasma density obtained at GOL-M device are presented. (author). 3 figs., 5 refs

  8. The POLIS interferometer for ponderomotive squeezed light generation

    Energy Technology Data Exchange (ETDEWEB)

    Calloni, Enrico [Dipartimento di Fisica, Università degli Studi di Napoli “Federico II”, Napoli (Italy); INFN, Sezione di Napoli (Italy); Conte, Andrea [Dipartimento di Fisica, Università di Roma “Sapienza”, Roma (Italy); INFN, Sezione di Roma1 (Italy); De Laurentis, Martina, E-mail: martina.delaurentis@na.infn.it [Dipartimento di Fisica, Università degli Studi di Napoli “Federico II”, Napoli (Italy); INFN, Sezione di Napoli (Italy); Naticchioni, Luca [Dipartimento di Fisica, Università di Roma “Sapienza”, Roma (Italy); INFN, Sezione di Roma1 (Italy); Puppo, Paola [INFN, Sezione di Roma1 (Italy); Ricci, Fulvio [Dipartimento di Fisica, Università di Roma “Sapienza”, Roma (Italy); INFN, Sezione di Roma1 (Italy)

    2016-07-11

    POLIS (POnderomotive LIght Squeezer) is a suspended interferometer, presently under construction, devoted to the generation of ponderomotive squeezed light and to the study of the interaction of non classical quantum states of light and macroscopic objects. The interferometer is a Michelson whose half-meter long arms are constituted by high-finesse cavities, suspended to a seismic isolation chain similar to the Virgo SuperAttenuator. The mass of the suspended cavity mirrors are chosen to be tens of grams: this value is sufficiently high to permit the use of the well-tested Virgo suspension techniques but also sufficiently small to generate the coupling among the two phase quadratures with a limited amount of light in the cavity, of the order of few tens of kW. In this short paper the main features of the interferometer are shown, together with the expected sensitivity and squeezing factor.

  9. The use of radar for bathymetry assessment

    NARCIS (Netherlands)

    Aardoom, J.H.; Greidanus, H.S.F.

    1998-01-01

    The bottom topography in shallow seas can be observed by air- and spaceborne imaging radar. Bathymetric information derived from radar data is limited in accuracy, but radar has a good spatial coverage. The accuracy can be increased by assimilating the radar imagery into existing or insitu gathered

  10. Status and Prospects of Radar Polarimetry Techniques

    OpenAIRE

    Wang Xuesong

    2016-01-01

    Radar polarimetry is an applied fundamental science field that is focused on understanding interaction processes between radar waves and targets and disclosing their mechanisms. Radar polarimetry has significant application prospects in the fields of microwave remote sensing, earth observation, meteorological measurement, battlefield reconnaissance, anti-interference, target recognition, and so on. This study briefly reviews the development history of radar polarization theory and technology....

  11. Radar signal analysis and processing using Matlab

    CERN Document Server

    Mahafza, Bassem R

    2008-01-01

    Offering radar-related software for the analysis and design of radar waveform and signal processing, this book provides comprehensive coverage of radar signals and signal processing techniques and algorithms. It contains numerous graphical plots, common radar-related functions, table format outputs, and end-of-chapter problems. The complete set of MATLAB[registered] functions and routines are available for download online.

  12. The Narrabri Stellar Intensity Interferometer: a 50th birthday tribute

    Science.gov (United States)

    Tuthill, Peter G.

    2014-07-01

    This year marks the 50th anniversary since the first scientific measurements were produced with the Narrabri Stellar Intensity Interferometer, which was constructed in the early 1960's by Robert Hanbury Brown and Richard Twiss. A collaboration between the Universities of Sydney and Manchester, the interferometer was the culmination of a series of experiments which pioneered the technique of intensity interferometry. The immediate controversy surrounding the quantum implications of the technique enveloped some of the most eminent physicists of the day, sparking a debate about nonlocal effects and optical coherence. A full explanation of the workings of the intensity interferometer in a quantum context was finally put forward by Roy Glauber, ultimately earning him the 2005 Nobel Prize in Physics. The intensity interferometer rekindled the field of high resolution stellar imaging, which had been extinguished for a half century (following the failure of Pease's 50-foot beam on Mt Wilson), while delivering the first ever measurements of the sizes of normal stars - establishing an effective temperature scaling relationship which has underpinned stellar astronomy for 50 years. This directly paved the way for the next generation of Michelson Stellar Interferometers. Intensity interferometry itself has found application in several fields (notably particle physics), and plans are in active development for modern reprises within stellar interferometry. However undoubtedly the greatest legacy lies in the Hanbury Brown Twiss (HBT) effect being the foundational experiment for what is now known as Quantum Optics - a field which underpins a huge sector of the technology which enables our modern world. This invited review discuses the development of the interferometer, including the controversy that its underlying principles generated within the contemporary physics community. The core scientific output generated by the instrument is presented, together with the impact of the

  13. Parallel Wavefront Analysis for a 4D Interferometer

    Science.gov (United States)

    Rao, Shanti R.

    2011-01-01

    This software provides a programming interface for automating data collection with a PhaseCam interferometer from 4D Technology, and distributing the image-processing algorithm across a cluster of general-purpose computers. Multiple instances of 4Sight (4D Technology s proprietary software) run on a networked cluster of computers. Each connects to a single server (the controller) and waits for instructions. The controller directs the interferometer to several images, then assigns each image to a different computer for processing. When the image processing is finished, the server directs one of the computers to collate and combine the processed images, saving the resulting measurement in a file on a disk. The available software captures approximately 100 images and analyzes them immediately. This software separates the capture and analysis processes, so that analysis can be done at a different time and faster by running the algorithm in parallel across several processors. The PhaseCam family of interferometers can measure an optical system in milliseconds, but it takes many seconds to process the data so that it is usable. In characterizing an adaptive optics system, like the next generation of astronomical observatories, thousands of measurements are required, and the processing time quickly becomes excessive. A programming interface distributes data processing for a PhaseCam interferometer across a Windows computing cluster. A scriptable controller program coordinates data acquisition from the interferometer, storage on networked hard disks, and parallel processing. Idle time of the interferometer is minimized. This architecture is implemented in Python and JavaScript, and may be altered to fit a customer s needs.

  14. Local readout enhancement for detuned signal-recycling interferometers

    International Nuclear Information System (INIS)

    Rehbein, Henning; Mueller-Ebhardt, Helge; Schnabel, Roman; Danzmann, Karsten; Somiya, Kentaro; Chen Yanbei; Li Chao

    2007-01-01

    High power detuned signal-recycling interferometers currently planned for second-generation interferometric gravitational-wave detectors (for example Advanced LIGO) are characterized by two resonances in the detection band, an optical resonance and an optomechanical resonance which is upshifted from the suspension pendulum frequency due to the so-called optical-spring effect. The detector's sensitivity is enhanced around these two resonances. However, at frequencies below the optomechanical resonance frequency, the sensitivity of such interferometers is significantly lower than non-optical-spring configurations with comparable circulating power; such a drawback can also compromise high-frequency sensitivity, when an optimization is performed on the overall sensitivity of the interferometer to a class of sources. In this paper, we clarify the reason for such a low sensitivity, and propose a way to fix this problem. Motivated by the optical-bar scheme of Braginsky, Gorodetsky, and Khalili, we propose to add a local readout scheme which measures the motion of the arm-cavity front mirror, which at low frequencies moves together with the arm-cavity end mirror, under the influence of gravitational waves. This scheme improves the low-frequency quantum-noise-limited sensitivity of optical-spring interferometers significantly and can be considered as an incorporation of the optical-bar scheme into currently planned second-generation interferometers. On the other hand it can be regarded as an extension of the optical-bar scheme. Taking compact binary inspiral signals as an example, we illustrate how this scheme can be used to improve the sensitivity of the planned Advanced LIGO interferometer, in various scenarios, using a realistic classical-noise budget. We also discuss how this scheme can be implemented in Advanced LIGO with relative ease

  15. Under the Radar

    CERN Document Server

    Goss, WM

    2010-01-01

    This is the biography of Ruby Payne-Scott (1912 to 1981). As the first female radio astronomer (and one of the first people in the world to consider radio astronomy), she made classic contributions to solar radio physics. She also played a major role in the design of the Australian government's Council for Scientific and Industrial Research radars, which were in turn of vital importance in the Southwest Pacific Theatre in World War II and were used by Australian, US and New Zealand personnel. From a sociological perspective, her career also offers many examples of the perils of being a female academic in the first half of the 20th century. Written in an engaging style and complemented by many historical photographs this book gives a fascinating insight into the beginning of radio astronomy and the role of a pioneering woman in astronomy.

  16. Signal processing in noise waveform radar

    CERN Document Server

    Kulpa, Krzysztof

    2013-01-01

    This book is devoted to the emerging technology of noise waveform radar and its signal processing aspects. It is a new kind of radar, which use noise-like waveform to illuminate the target. The book includes an introduction to basic radar theory, starting from classical pulse radar, signal compression, and wave radar. The book then discusses the properties, difficulties and potential of noise radar systems, primarily for low-power and short-range civil applications. The contribution of modern signal processing techniques to making noise radar practical are emphasized, and application examples

  17. Air and spaceborne radar systems an introduction

    CERN Document Server

    Lacomme, Philippe; Hardange, Jean-Philippe; Normant, Eric

    2001-01-01

    A practical tool on radar systems that will be of major help to technicians, student engineers and engineers working in industry and in radar research and development. The many users of radar as well as systems engineers and designers will also find it highly useful. Also of interest to pilots and flight engineers and military command personnel and military contractors. """"This introduction to the field of radar is intended for actual users of radar. It focuses on the history, main principles, functions, modes, properties and specific nature of modern airborne radar. The book examines radar's

  18. Single-pass multi-view volume rendering

    OpenAIRE

    Hübner, T; Pajarola, R

    2007-01-01

    In this paper, we introduce a new direct volume rendering (DVR) algorithm for multi-view auto-stereoscopic displays. Common multi-view methods perform multi-pass rendering (one pass for each view) and subsequent image compositing and masking for generating multiple views. The rendering time increases therefore linearly with the number of views, but sufficient frame-rates are achieved by sub-resolution rendering, at the expense of degraded image quality. To overcome these disadvantages for DVR...

  19. Single pass kernel k-means clustering method

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Department of Computer Science and Engineering, Srinivasa Ramanujan Institute of Technology, Anantapur 515701, India; Department of Computer Science and Engineering, Rajeev Gandhi Memorial College of Engineering and Technology, Nandyal 518501, India; Department of Computer Science and ...

  20. Single pass kernel k-means clustering method

    Indian Academy of Sciences (India)

    In unsupervised classification, kernel -means clustering method has been shown to perform better than conventional -means clustering method in ... 518501, India; Department of Computer Science and Engineering, Jawaharlal Nehru Technological University, Anantapur College of Engineering, Anantapur 515002, India ...

  1. Single pass kernel k-means clustering method

    Indian Academy of Sciences (India)

    easily implemented and is suitable for large data sets, like those in data mining appli- cations. Experimental results show that, with a small loss of quality, the proposed method can significantly reduce the time taken than the conventional kernel k-means cluster- ing method. The proposed method is also compared with other ...

  2. Single pass kernel k-means clustering method

    Indian Academy of Sciences (India)

    This approach has reduced both time complexity and memory requirements. However, the clustering result of this method will be very much deviated form that obtained using the conventional kernel k-means method. This is because of the fact that pseudo cluster centers in the input space may not represent the exact cluster ...

  3. Single Pass Collider Memo: Gradient Perturbations of the SLC arc

    Energy Technology Data Exchange (ETDEWEB)

    Weng, W.T.; Sands, M.; /SLAC

    2016-12-16

    As the beam passes through the arcs, the gradient it encounters at each magnet differs from the design value. This deviation may be in part random and in part systematic. In this note we make estimates of the effects to be expected from both kinds of errors.

  4. Absolute sensitivity of phase measurement in an SU(1,1) type interferometer

    Science.gov (United States)

    Du, Wei; Jia, Jun; Chen, J. F.; Ou, Z. Y.; Zhang, Weiping

    2018-03-01

    Absolute sensitivity is measured for the phase measurement in an SU(1,1) type interferometer and the results are compared to that of a Mach-Zehnder interferometer operated under the condition of the same intra-interferometer intensity. The interferometer is phase locked to a point with the largest quantum noise cancellation, and a simulated phase modulation is added in one arm of SU(1,1) interferometer. Both the signal and noise level are estimated at the same frequency range, and we obtain 3dB improvement in sensitivity for the SU(1,1) interferometer over the Mach-Zehnder interferometer. Our results demonstrate a direct phase estimation, and may pave the way for practical applications of nonlinear interferometer.

  5. Applications of the lateral shearing interferometer in measurement of synchrotron radiation optical elements

    International Nuclear Information System (INIS)

    Liu, Wu-ming; Takacs, P.Z.; Siddons, D.P.

    1987-11-01

    The use of a single plate shearing, or Murty, interferometer for measuring the surface quality of several optical elements is reviewed and several results are given. The principle of the Murty interferometer is also explained

  6. Absolute sensitivity of phase measurement in an SU(1,1) type interferometer.

    Science.gov (United States)

    Du, Wei; Jia, Jun; Chen, J F; Ou, Z Y; Zhang, Weiping

    2018-03-01

    Absolute sensitivity is measured for the phase measurement in an SU(1,1) type interferometer, and the results are compared to that of a Mach-Zehnder interferometer operated under the condition of the same intra-interferometer intensity. The interferometer is phase locked to a point with the largest quantum noise cancellation, and a simulated phase modulation is added in one arm of the SU(1,1) interferometer. Both the signal and noise level are estimated at the same frequency range, and we obtained 3 dB improvement in sensitivity for the SU(1,1) interferometer over the Mach-Zehnder interferometer. Our results demonstrate a direct phase estimation and may pave the way for practical applications of a nonlinear interferometer.

  7. Study on avalanche photodiode influence on heterodyne laser interferometer linearity

    Science.gov (United States)

    Budzyn, Grzegorz; Podzorny, Tomasz

    2016-06-01

    In the paper we analyze factors reducing the possible accuracy of the heterodyne laser interferometers. The analysis is performed for the avalanche-photodiode input stages but is in main points valid also for stages with other type of photodetectors. Instrumental error originating from optical, electronic and digital signal processing factors is taken into consideration. We stress factors which are critical and those which can be neglected at certain accuracy requirements. In the work we prove that it is possible to reduce errors of the laser instrument below 1 nm point for multiaxial APD based interferometers by precise control of incident optical power and the temperature of the photodiode.

  8. An intensity interferometer for soft x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L.; McNulty, I.; Gluskin, E.

    1994-07-15

    We designed and built an intensity interferometer to characterize the spatial coherence of a soft x-ray undulator beam. The beam source size and shape can be determined from the measured coherence function. The instrument is 400 mm long and is mounted on a standard 204-mm diameter flange. This compact design is readily adaptable to other beamlines with sources of sufficient spectral brightness. Details of the interferometer design and performance are presented. We anticipate that when this technique is mature, it will provide a useful diagnostic for high brightness x-ray beams.

  9. Rational choices for the wavelengths of a two color interferometer

    International Nuclear Information System (INIS)

    Jobes, F.C.

    1995-07-01

    If in a two color interferometer for plasma density measurements, the two wavelengths are chosen to have a ratio that is a rational number, and if the signals from each of the wavelengths are multiplied in frequency by the appropriate integer of the rational number and then heterodyned together, the resultant signal will have all effects of component motion nulled out. A phase measurement of this signal will have only plasma density information in it. With CO 2 lasers, it is possible to find suitable wavelength pairs which are close enough to rational numbers to produce an improvement of about 100 in density resolution, compared to standard two color interferometers

  10. Electrooptic modulation in thin film barium titanate plasmonic interferometers.

    Science.gov (United States)

    Dicken, Matthew J; Sweatlock, Luke A; Pacifici, Domenico; Lezec, Henri J; Bhattacharya, Kaushik; Atwater, Harry A

    2008-11-01

    We demonstrate control of the surface plasmon polariton wavevector in an active metal-dielectric plasmonic interferometer by utilizing electrooptic barium titanate as the dielectric layer. Arrays of subwavelength interferometers were fabricated from pairs of parallel slits milled in silver on barium titanate thin films. Plasmon-mediated transmission of incident light through the subwavelength slits is modulated by an external voltage applied across the barium titanate thin film. Transmitted light modulation is ascribed to two effects, electrically induced domain switching and electrooptic modulation of the barium titanate index.

  11. Noise-Immune Conjugate Large-Area Atom Interferometers

    Science.gov (United States)

    Chiow, Sheng-Wey; Herrmann, Sven; Chu, Steven; Müller, Holger

    2009-07-01

    We present a pair of simultaneous conjugate Ramsey-Bordé atom interferometers using large (20ℏk)-momentum transfer beam splitters, where ℏk is the photon momentum. Simultaneous operation allows for common-mode rejection of vibrational noise. This allows us to surpass the enclosed space-time area of previous interferometers with a splitting of 20ℏk by a factor of 2500. Using a splitting of 10ℏk, we demonstrate a 3.4 ppb resolution in the measurement of the fine structure constant. Examples for applications in tests of fundamental laws of physics are given.

  12. An active interferometer-stabilization scheme with linear phase control

    DEFF Research Database (Denmark)

    Vardhan Krishnamachari, Vishnu; Andresen, Esben Ravn; Potma, Eric Olaf

    2006-01-01

    We report a simple and robust computer-based active interferometer stabilization scheme which does not require modulation of the interfering beams and relies on an error signal which is linearly related to the optical path difference. In this setup, a non-collinearly propagating reference laser...... beam stabilizes the interference output of the laser light propagating collinearly through the interferometer. This stabilization scheme enables adjustable phase control with 20 ms switching times in the range from 0.02π radians to 6π radians at 632.8 nm....

  13. Detectability of periodic gravitational waves by initial interferometers

    International Nuclear Information System (INIS)

    Owen, Benjamin J

    2006-01-01

    I review three recent theoretical developments in neutron star physics predicting that rotating neutron stars could be very strong emitters of periodic gravitational waves. These imply a small but nonzero chance that ground-based interferometers could detect their first periodic signal in the next few years rather than after advanced upgrades. They also imply that upper limits will become astrophysically interesting before advanced upgrades. I discuss the implications for near-future searches and for the astrophysical payoffs of proposed small upgrades to initial interferometers

  14. Measurement of quantum states in a neutron interferometer

    International Nuclear Information System (INIS)

    Baron, M.

    2005-03-01

    The characterization of quantum states of neutrons in an interferometer is the main topic of this thesis. All related experiments were performed at the instrument S18 of the Institut Laue Langevin (ILL) in Grenoble, France. This instrument is dedicated to neutron interferometry as well as Ultra Small Angle Neutron Scattering (USANS). In principle, the properties of the quantum states entering the interferometer are mainly affected by the neutron-guide (super mirror guide H25) and the perfect crystal monochromator. A coherence volume can be assigned to these states where phase relations are fixed and interference occurs. The coherence behaviour is strongly anisotropic, since only transversal momentum distribution is influenced by dynamical diffraction. The longitudinal and vertical directions remain unaffected. The neutron interferometer is a unique tool for probing the coherence properties. It allows us to split a neutron beam in two coherent paths, separated by several centimeters and to recombine them afterwards. Due to introduction of a longitudinal or a vertical phase shift, respectively, it was possible to measure the related coherence function, which is determined by the auto-correlation function of the wave-function. By inserting a phase shifter in one of the two beam paths, the initial state is converted to a new state by superposition with the phase shifted state. This causes a change in the momentum distribution, which can be measured behind the interferometer with an additional crystal. With this analyzer-crystal the smoothed out interference properties at high interference orders can be restored behind the interferometer, if proper spectral filtering is applied. To measure the spatial distribution of this newly created state, a 2-loop-interferometer is needed. This kind of interferometer permits to create any state in the first loop and analyze it in the second loop. Therefore, it is possible for the first time to measure the spatial and the momentum

  15. A reconfigurable optofluidic Michelson interferometer using tunable droplet grating.

    Science.gov (United States)

    Chin, L K; Liu, A Q; Soh, Y C; Lim, C S; Lin, C L

    2010-04-21

    This paper presents a novel optofluidic Michelson interferometer based on droplet microfluidics used to create a droplet grating. The droplet grating is formed by a stream of plugs in the microchannel with constant refractive index variation. It has a real-time tunability in the grating period through varying the flow rates of the liquids and index variation via different combinations of liquids. The optofluidic Michelson interferometer is highly sensitive and is suitable for the measurement of biomedical and biochemical buffer solutions. The experimental results show that it has a sensitivity of 66.7 nm per refractive index unit (RIU) and a detection range of 0.086 RIU.

  16. Near-infrared spectral imaging Michelson interferometer for astronomical applications

    Science.gov (United States)

    Wells, C. W.; Potter, A. E.; Morgan, T. H.

    1980-01-01

    The design and operation of an imaging Michelson interferometer-spectrometer used for near-infrared (0.8 micron to 2.5 microns) spectral imaging are reported. The system employs a rapid scan interferometer modified for stable low resolution (250/cm) performance and a 42 element PbS linear detector array. A microcomputer system is described which provides data acquisition, coadding, and Fourier transformation for near real-time presentation of the spectra of all 42 scene elements. The electronic and mechanical designs are discussed and telescope performance data presented.

  17. Incoherent Scatter Radar User Workshop

    Science.gov (United States)

    Richmond, A. D.

    1984-04-01

    The incoherent scatter radar technique has developed over the years into one of the most powerful tools for investigating physical processes in the upper atmosphere. The National Science Foundation (NSF) now supports a chain of four incoherent scatter facilities at Sondrestromfjord (Greenland), Millstone Hill (Massachusetts), Arecibo (Puerto Rico), and Jicamarca (PERU). Six European nations support the EISCAT facility in northern Scandinavia, and France also has a radar at St. Santin. Recently, the organizations reponsible for each of the six radars agreed to participate in a centralized data base being established at the National Center for Atmospheric Research (NCAR) to make their data more readily accessible to the scientific community at large.

  18. Introduction to radar target recognition

    CERN Document Server

    Tait, P

    2006-01-01

    This new text provides an overview of the radar target recognition process and covers the key techniques being developed for operational systems. It is based on the fundamental scientific principles of high resolution radar, and explains how the techniques can be used in real systems, taking into account the characteristics of practical radar system designs and component limitations. It also addresses operational aspects, such as how high resolution modes would fit in with other functions such as detection and tracking. Mathematics is kept to a minimum and the complex techniques and issues are

  19. Environment-Adaptive Radar Techniques.

    Science.gov (United States)

    1981-02-01

    as the mathematics and computer pro - grams are concer.ned we can now develop the design by considering one antenna searching a 2w/3 azimuth sector...Griffis Air Force am*, Now York 13441 8140-6 102 15~ VhAS xpg IAS bed XOWANO 00 the .WAC aU* Affsftz OffU. (PA) an4 to *elesseb). to 00e matsa b"oals uoaf...no@sesp Uast fdSRIIIV by bloti nobi Radar Automated Radar Design Adaptive Radar Environmental Sensor Blind Speed Avoidance S. AVISTRACT ’CauM....o

  20. Gyroklystron-Powered WARLOC Radar

    Science.gov (United States)

    Danly, B. G.; Cheung, W. J.; Gregers-Hansen, V.; Linde, G.; Ngo, M.

    2003-12-01

    A high-power, coherent, W-band (94 GHz) millimeter-wave radar has been developed at the Naval Research Laboratory. This radar, named WARLOC, employs a 100 kW peak power, 10 kW average power gyro-klystron as the final power amplifier, an overmoded transmission line system, and a quasi-optical duplexer, together with a high gain antenna, four-channel receiver, and state-of-the-art signal processing. The gyro-amplifiers and the implementation in the WARLOC radar will be described.

  1. Material integrity verification radar

    International Nuclear Information System (INIS)

    Koppenjan, S.K.

    1999-01-01

    The International Atomic Energy Agency (IAEA) has the need for verification of 'as-built' spent fuel-dry storage containers and other concrete structures. The IAEA has tasked the Special Technologies Laboratory (STL) to fabricate, test, and deploy a stepped-frequency Material Integrity Verification Radar (MIVR) system to nondestructively verify the internal construction of these containers. The MIVR system is based on previously deployed high-frequency, ground penetrating radar (GPR) systems that have been developed by STL for the U.S. Department of Energy (DOE). Whereas GPR technology utilizes microwave radio frequency energy to create subsurface images, MTVR is a variation for which the medium is concrete instead of soil. The purpose is to nondestructively verify the placement of concrete-reinforcing materials, pipes, inner liners, and other attributes of the internal construction. The MIVR system underwent an initial field test on CANDU reactor spent fuel storage canisters at Atomic Energy of Canada Limited (AECL), Chalk River Laboratories, Ontario, Canada, in October 1995. A second field test at the Embalse Nuclear Power Plant in Embalse, Argentina, was completed in May 1996. The DOE GPR also was demonstrated at the site. Data collection and analysis were performed for the Argentine National Board of Nuclear Regulation (ENREN). IAEA and the Brazilian-Argentine Agency for the Control and Accounting of Nuclear Material (ABACC) personnel were present as observers during the test. Reinforcing materials were evident in the color, two-dimensional images produced by the MIVR system. A continuous pattern of reinforcing bars was evident and accurate estimates on the spacing, depth, and size were made. The potential uses for safeguard applications were jointly discussed. The MIVR system, as successfully demonstrated in the two field tests, can be used as a design verification tool for IAEA safeguards. A deployment of MIVR for Design Information Questionnaire (DIQ

  2. Results from a multi aperture Fizeau interferometer ground testbed: demonstrator for a future space-based interferometer

    Science.gov (United States)

    Baccichet, Nicola; Caillat, Amandine; Rakotonimbahy, Eddy; Dohlen, Kjetil; Savini, Giorgio; Marcos, Michel

    2016-08-01

    In the framework of the European FP7-FISICA (Far Infrared Space Interferometer Critical Assessment) program, we developed a miniaturized version of the hyper-telescope to demonstrate multi-aperture interferometry on ground. This setup would be ultimately integrated into a CubeSat platform, therefore providing the first real demonstrator of a multi aperture Fizeau interferometer in space. In this paper, we describe the optical design of the ground testbed and the data processing pipeline implemented to reconstruct the object image from interferometric data. As a scientific application, we measured the Sun diameter by fitting a limb-darkening model to our data. Finally, we present the design of a CubeSat platform carrying this miniature Fizeau interferometer, which could be used to monitor the Sun diameter over a long in-orbit period.

  3. Interferometric evidence for the observation of ground backscatter originating behind the CUTLASS coherent HF radars

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    1997-01-01

    Full Text Available Interferometric techniques allow the SuperDARN coherent HF radars to determine the elevation angles of returned backscatter, giving information on the altitude of the scatter volume, in the case of ionospheric backscatter, or the reflection altitude, in the case of ground backscatter. Assumptions have to be made in the determination of elevation angles, including the direction of arrival, or azimuth, of the returned signals, usually taken to be the forward look-direction (north of the radars, specified by the phasing of the antenna arrays. It is shown that this assumption is not always valid in the case of ground backscatter, and that significant returns can be detected from the backward look-direction of the radars. The response of the interferometer to backscatter from behind the radar is modelled and compared with observations. It is found that ground backscatter from a field-of-view that is the mirror image of the forward-looking field-of-view is a common feature of the observations, and this interpretation successfully explains several anomalies in the received backscatter.

  4. Interferometric evidence for the observation of ground backscatter originating behind the CUTLASS coherent HF radars

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    Full Text Available Interferometric techniques allow the SuperDARN coherent HF radars to determine the elevation angles of returned backscatter, giving information on the altitude of the scatter volume, in the case of ionospheric backscatter, or the reflection altitude, in the case of ground backscatter. Assumptions have to be made in the determination of elevation angles, including the direction of arrival, or azimuth, of the returned signals, usually taken to be the forward look-direction (north of the radars, specified by the phasing of the antenna arrays. It is shown that this assumption is not always valid in the case of ground backscatter, and that significant returns can be detected from the backward look-direction of the radars. The response of the interferometer to backscatter from behind the radar is modelled and compared with observations. It is found that ground backscatter from a field-of-view that is the mirror image of the forward-looking field-of-view is a common feature of the observations, and this interpretation successfully explains several anomalies in the received backscatter.

  5. An interferometric radar for displacement measurement and its application in civil engineering structures

    Science.gov (United States)

    Su, D.; Nagayama, T.; Sun, Z.; Fujino, Y.

    2012-04-01

    Recent progress in radar techniques and systems has led to the development of a microwave interferometer, potentially suitable for non-contact displacement monitoring of civil engineering structures. This paper describes a new interferometric radar system, named IBIS-S, which is possible to measure the static or dynamic displacement at multiple points of structures simultaneously with high accuracy. In this paper, the technical characteristics and specification of the radar system is described. Subsequently, the actual displacement sensitivity of the equipment is illustrated using the laboratory tests with random motion upon a shake table. Finally the applications of the radar system to the measurement on a cable-stayed bridge and a prestressed concrete bridge are presented and discussed. Results show that the new system is an accurate and effective method to measure displacements of multiple targets of structures. It should be noted that the current system can only measure the vibration of the target position along the sensor's line of sight. Hence, proper caution should be taken when designing the sensor posture and prior knowledge of the direction of motion is necessary.

  6. New Techniques for Radar Altimetry of Sea Ice and the Polar Oceans

    Science.gov (United States)

    Armitage, T. W. K.; Kwok, R.; Egido, A.; Smith, W. H. F.; Cullen, R.

    2017-12-01

    Satellite radar altimetry has proven to be a valuable tool for remote sensing of the polar oceans, with techniques for estimating sea ice thickness and sea surface height in the ice-covered ocean advancing to the point of becoming routine, if not operational, products. Here, we explore new techniques in radar altimetry of the polar oceans and the sea ice cover. First, we present results from fully-focused SAR (FFSAR) altimetry; by accounting for the phase evolution of scatterers in the scene, the FFSAR technique applies an inter-burst coherent integration, potentially over the entire duration that a scatterer remains in the altimeter footprint, which can narrow the effective along track resolution to just 0.5m. We discuss the improvement of using interleaved operation over burst-more operation for applying FFSAR processing to data acquired by future missions, such as a potential CryoSat follow-on. Second, we present simulated sea ice retrievals from the Ka-band Radar Interferometer (KaRIn), the instrument that will be launched on the Surface Water and Ocean Topography (SWOT) mission in 2021, that is capable of producing swath images of surface elevation. These techniques offer the opportunity to advance our understanding of the physics of the ice-covered oceans, plus new insight into how we interpret more conventional radar altimetry data in these regions.

  7. Optical diameters of stars measured with the Mt. Wilson Mark III interferometer

    International Nuclear Information System (INIS)

    Simon, R.S.; Mozurkewich, D.; Johnston, K.J.; Gaume, R.; Hutter, D.J.; Bowers, P.F.; Colavita, M.M.; Shao, M.

    1990-01-01

    Reliable stellar angular diameters can now be determined using the Mark III Optical Interferometer located on Mt. Wilson, California. The Mark III is a Michelson Interferometer capable of measuring the interferometric fringe visibility for stars using interferometer baselines varying from 3 to 31.5 meters in length. Angular diameters measured with the Mark III Optical Interferometer are presented for 12 stars at wavelengths of 450 and 800 nm. 10 refs

  8. Optical displacement measurement with GaAs/AlGaAs-based monolithically integrated Michelson interferometers

    OpenAIRE

    Hofstetter, Daniel; Zappe, H. P.; Dändliker, René

    2008-01-01

    Two monolithically integrated optical displacement sensors fabricated in the GaAs/AlGaAs material system are reported. These single-chip microsystems are configured as Michelson interferometers and comprise a distributed Bragg reflector (DBR) laser, photodetectors, phase shifters, and waveguide couplers. While the use of a single Michelson interferometer allows measurement of displacement magnitude only, a double Michelson interferometer with two interferometer signals in phase quadrature als...

  9. Bistatic radar system analysis and software development

    OpenAIRE

    Teo, Ching Leong

    2003-01-01

    Approved for public release, distribution is unlimited Bistatic radar has some properties that are distinctly different from monostatic radar. Recently bistatic radar has received attention for its potential to detect stealth targets due to enhanced target forward scatter. Furthermore, the feasibility of hitchhiker radar has been demonstrated, which allows passive radar receivers to detect and track targets. This thesis developed a software simulation package in Matlab that provides a conv...

  10. Fly eye radar or micro-radar sensor technology

    Science.gov (United States)

    Molchanov, Pavlo; Asmolova, Olga

    2014-05-01

    To compensate for its eye's inability to point its eye at a target, the fly's eye consists of multiple angularly spaced sensors giving the fly the wide-area visual coverage it needs to detect and avoid the threats around him. Based on a similar concept a revolutionary new micro-radar sensor technology is proposed for detecting and tracking ground and/or airborne low profile low altitude targets in harsh urban environments. Distributed along a border or around a protected object (military facility and buildings, camp, stadium) small size, low power unattended radar sensors can be used for target detection and tracking, threat warning, pre-shot sniper protection and provides effective support for homeland security. In addition it can provide 3D recognition and targets classification due to its use of five orders more pulses than any scanning radar to each space point, by using few points of view, diversity signals and intelligent processing. The application of an array of directional antennas eliminates the need for a mechanical scanning antenna or phase processor. It radically decreases radar size and increases bearing accuracy several folds. The proposed micro-radar sensors can be easy connected to one or several operators by point-to-point invisible protected communication. The directional antennas have higher gain, can be multi-frequency and connected to a multi-functional network. Fly eye micro-radars are inexpensive, can be expendable and will reduce cost of defense.

  11. Broadband sensitivity enhancement of detuned dual-recycled Michelson interferometers with EPR entanglement

    Science.gov (United States)

    Brown, Daniel D.; Miao, Haixing; Collins, Chris; Mow-Lowry, Conor; Töyrä, Daniel; Freise, Andreas

    2017-09-01

    We demonstrate the applicability of the EPR entanglement squeezing scheme for enhancing the shot-noise-limited sensitivity of detuned dual-recycled Michelson interferometers. In particular, this scheme is applied to the GEO600 interferometer. The effect of losses throughout the interferometer, arm length asymmetries, and imperfect separation of the signal and idler beams is considered.

  12. Air Defense Radar Operations Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Facility consists of laboratories, experimental test equipment including state-of-theart test bed radar, and test ranges. The facilities are used to design, develop,...

  13. MIMO Radar - Diversity Means Superiority

    National Research Council Canada - National Science Library

    Li, Jian

    2007-01-01

    We consider a multiple-input multiple-output (MIMO) radar system where both the transmitter and receiver have multiple well-separated subarrays with each subarray containing closely-spaced antennas...

  14. Radar Methods in Urban Environments

    Science.gov (United States)

    2016-10-26

    Jointly optimal design for MIMO radar frequency-hopping waveforms using game theory,” IEEE Trans. on Aerospace and Electronic Systems, Vol. 52...appear in IEEE Trans. on Signal Processing. J9. J. Li and A. Nehorai, “Distributed particle filtering via optimal fusion of Gaussian mixtures ,” in...scatterers," IEEE Trans. Antennas Propag., Vol. 64, pp. 988-997, Mar. 2016. 28. K. Han and A. Nehorai, "Jointly optimal design for MIMO radar frequency

  15. Radar interferometry persistent scatterer technique

    CERN Document Server

    Kampes, Bert M

    2014-01-01

    This volume is devoted to the Persistent Scatterer Technique, the latest development in radar interferometric data processing. It is the only book on Permanent Scatterer (PS) technique of radar interferometry, and it details a newly developed stochastic model and estimator algorithm to cope with possible problems for the application of the PS technique. The STUN (spatio-temporal unwrapping network) algorithm, developed to cope with these issues in a robust way, is presented and applied to two test sites.

  16. On open electromagnetic resonators: relation between interferometers and resonators

    International Nuclear Information System (INIS)

    Manenkov, Aleksandr A; Bykov, Vladimir P; Kuleshov, N V

    2010-01-01

    The physical difference between the concepts 'Fabry-Perot interferometer' and 'open resonator' is discussed. It is shown that the use of the term 'Fabry-Perot resonator' for open laser resonators is incorrect both from the historical viewpoint and from the viewpoint of the physical meaning of the processes occurring in these resonators. (laser beams and resonators)

  17. Finite mass beam splitter in high power interferometers

    International Nuclear Information System (INIS)

    Harms, Jan; Schnabel, Roman; Danzmann, Karsten

    2004-01-01

    The beam splitter in high-power interferometers is subject to significant radiation-pressure fluctuations. As a consequence, the phase relations which appear in the beam splitter coupling equations oscillate and phase modulation fields are generated which add to the reflected fields. In this paper, the transfer function of the various input fields impinging on the beam splitter from all four ports onto the output field is presented including radiation-pressure effects. We apply the general solution of the coupling equations to evaluate the input-output relations of the dual-recycled laser-interferometer topology of the gravitational-wave detector GEO 600 and the power-recycling, signal-extraction topology of advanced LIGO. We show that the input-output relation exhibits a bright-port dark-port coupling. This mechanism is responsible for bright port contributions to the noise density of the output field and technical laser noise is expected to decrease the interferometer's sensitivity at low frequencies. It is shown quantitatively that the issue of technical laser noise is unimportant in this context if the interferometer contains arm cavities

  18. Drift correction in a multichannel integrated optical Young interferometer

    NARCIS (Netherlands)

    Ymeti, Aurel; Greve, Jan; Lambeck, Paul; Wijn, Robert Raimond; Heideman, Rene; Kanger, Johannes S.

    2005-01-01

    We demonstrate that in a sensor based on a multichannel Young interferometer, the phase information obtained for different pairs of channels can be used to correct the long-term instability (drift) due to temperature differences between measuring and reference channels, the drift in the alignment of

  19. Quasi-quadrature interferometer for plasma density radial profile measurements

    International Nuclear Information System (INIS)

    Lowenthal, D.D.; Hoffman, A.L.

    1979-01-01

    A cw Mach Zehnder multichannel interferometer has been developed to measure time-dependent fractional fringe shifts with an accuracy of one-fortieth fringe. The design is quasi-quadrature in that known phase shifts, introduced in the reference beam, are time multiplexed with the normal reference beam. This technique requires only one detector per interferometer channel as compared to two detectors for most quadrature designs. The quadrature information makes the sense of density changes unambiguous, it automatically calibrates the instrument during the plasma event, and it makes fringe shift measurements virtually independent of fringe contrast fluctuations caused by plasma refractive and/or absorptive effects. The interferometer optical design is novel in that the electro-optic crystal used to introduce the 90 0 phase shifts is located in the common 2-mm-diam HeNe entrance beam to the interferometer, by exploiting polarization techniques, rather than in the expanded 1--2-cm reference beam itself. This arrangement greatly reduces the size, cost, and high-voltage requirements for the phase modulating crystal

  20. Improving the performances of current optical interferometers & future designs

    Science.gov (United States)

    Arnold, L.; Le Coroller, H.; Surdej, J.

    2014-04-01

    The number of astrophysical studies making use of interferometers has steadily increased during the past 15 years. Nevertheless, the performances of interferometers are still limited: their sensitivity does not exceed magnitude V=12, and their imaging capability could yet be improved by increasing the number of telescopes/sub-apertures. In the context of the ELTs, it is not certain how future interferometry projects will be financed. However, interferometry remains the only way to observe compact astrophysical objects at very high angular resolution (integrated optic, pupil densifier, etc.); fringe tracking systems; laser telemetry applied to interferometry; heterodyne interferometry; progress in heterodyne detection using new technologies (laser comb, time propagation technologies, etc.); progress in image reconstruction techniques; progress in nulling interferometry; and important science cases that could benefit from progress in interferometry (report of observations at the limit of current interferometers). Nearly 50 oral presentations have been delivered, followed by very lively discussions which eventually emerged with the proposition to organize the "Planet Formation Interferometer/Imager" (PFI) project. The present proceedings reflect most of the highlights of this international colloquium.

  1. Switching behaviour of nonlinear Mach–Zehnder interferometer ...

    Indian Academy of Sciences (India)

    Switching behaviour of nonlinear Mach–Zehnder interferometer based on photonic crystal geometry. MAN MOHAN GUPTA and S MEDHEKAR. ∗. Centre for Applied Physics, Central University of Jharkhand, Ranchi 835 205, India. ∗. Corresponding author. E-mail: smedhekarbit@gmail.com. MS received 23 April 2013; ...

  2. Measurements from a novel interferometer for EUVL mirror substrates

    NARCIS (Netherlands)

    Krieg, M.L.; Braat, J.J.M.

    2005-01-01

    A previously reported interferometer without intermediate optics is used to perform measurements on an aspherical extreme ultraviolet lithography mirror substrate. Acousto-optic modulation based phase shifting is used together with a novel phase retrieval algorithm to retrieve the phase distribution

  3. Virgo: a laser interferometer to detect gravitational waves

    NARCIS (Netherlands)

    Accadia, T.; van den Brand, J.F.J.; Bulten, H.J.; Ketel, T.J.; van der Voet, H.; Mul, F.A.; Rabeling, D.S.

    2012-01-01

    This paper presents a complete description of Virgo, the French-Italian gravitational wave detector. The detector, built at Cascina, near Pisa (Italy), is a very large Michelson interferometer, with 3 km-long arms. In this paper, following a presentation of the physics requirements, leading to the

  4. Quantitative Phase Determination by Using a Michelson Interferometer

    Science.gov (United States)

    Pomarico, Juan A.; Molina, Pablo F.; D'Angelo, Cristian

    2007-01-01

    The Michelson interferometer is one of the best established tools for quantitative interferometric measurements. It has been, and is still successfully used, not only for scientific purposes, but it is also introduced in undergraduate courses for qualitative demonstrations as well as for quantitative determination of several properties such as…

  5. Measurement of Refractive Index Using a Michelson Interferometer.

    Science.gov (United States)

    Fendley, J. J.

    1982-01-01

    Describes a novel and simple method of measuring the refractive index of transparent plates using a Michelson interferometer. Since it is necessary to use a computer program when determining the refractive index, undergraduates could be given the opportunity of writing their own programs. (Author/JN)

  6. Correlation functions formed by a femtosecond pulse interferometer

    NARCIS (Netherlands)

    Cui, M.; Bhattacharya, N.; Urbach, H.P.; Van den berg, S.A.

    2008-01-01

    We experimentally demonstrate that a stabilized femtosecond frequency comb can be applied as a tool for distance measurement. The scheme is based on optical interference between individual pulses in a Michelson type interferometer. The cross-correlation functions between individual pulses with a

  7. Plasma flow velocity measurements using a modulated Michelson interferometer

    NARCIS (Netherlands)

    Howard, J.; Meijer, F. G.

    1997-01-01

    This paper discusses the possibility of flow velocity reconstruction using passive spectroscopic techniques. We report some preliminary measurements of the toroidal flow velocity of hydrogen atoms in the RTP tokamak using a phase modulated Michelson interferometer. (C) 1997 Elsevier Science S.A.

  8. Modelling of Extrinsic Fiber Optic Sagnac Ultrasound Interferometer ...

    African Journals Online (AJOL)

    Ultrasonic waves are used extensively in nondestructive testing both for characterization of material properties, in this paper, we describe a fiber optic sensor suitable for detection of ultrasonic waves. This sensor is based on an extrinsic fiber optic sagnac interferometer. The proposed sensor model can act as a conventional ...

  9. Realization of an optical interferometer based on holographic optics ...

    Indian Academy of Sciences (India)

    The paper describes a simple and cost effective method for the realization of an optical interferometer based on holographic optics, which use minimal bulk optical components. The optical arrangement in the proposed method involves a very simple alignment procedure and inexpensive holographic recording material is ...

  10. The Virgo 3 km interferometer for gravitational wave detection

    NARCIS (Netherlands)

    Acernese, F.; Amico, Paolo; Alshourbagy, Mohamed; Antonucci, Federica; Aoudia, S.; Astone, P.; Avino, Saverio; Baggio, L.; Ballardin, G.; Barone, F.; Barsotti, L.; Barsuglia, M.; Bauer, Th. S.; Bigotta, Stefano; Bizouard, M. A.; Boccara, Albert-Claude; Bondu, F.; Bosi, Leone; Bradaschia, C.; van den Brand, J. F. J.; Birindelli, Simona; Braccini, Stefano; Brillet, A.; Brisson, V.; Buskulic, D.; Cagnoli, G.; Calloni, E.; Campagna, Enrico; Carbognani, F.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cesarini, E.; Chassande-Mottin, E.; Clapson, A-C; Cleva, F.; Coccia, E.; Corda, C.; Corsi, A.; Cottone, F.; Coulon, J. -P.; Cuoco, E.; D'Antonio, S.; Dari, A.; Dattilo, V.; Davier, M.; Del Prete, M.; Rosa, R.; Di Fiore, L.; Di Lieto, A.; Di Virgilio, A.; Dujardin, B.; Evans, M.; Fafone, V.; Ferrante, I.; Fidecaro, F.; Fiori, I.; Flaminio, R.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Gammaitoni, L.; Garufi, F.; Genin, E.; Gennai, A.; Giazotto, A.; Giordano, L.; Granata, V.; Greverie, C.; Grosjean, D.; Guidi, G.; Hamdani, S.U.; Hebri, S.; Heitmann, H.; Hello, P.; Huet, D.; Kreckelbergh, S.; La Penna, P.; Laval, M.; Leroy, N.; Letendre, N.; Lopez, B.; Lorenzini, M.; Loriette, V.; Losurdo, G.; Mackowski, J. -M.; Majorana, E.; Man, C. N.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marque, J.; Martelli, F.; Masserot, A.; Menzinger, F.; Milano, L.; Minenkov, Y.; Moins, C.; Moreau, J.; Morgado, N.; Mosca, S.; Mours, B.; Neri, I.; Nocera, F.; Pagliaroli, G.; Pallottino, G. V.; Palomba, C.; Paoletti, F.; Pardi, S.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Piergiovanni, F.; Pinard, L.; Poggiani, R.; Punturo, M.; Puppo, P.; van der Putten, S.; Rapagnani, P.; Regimbau, T.; Reita, V.; Remillieux, A.; Ricci, F.; Ricciardi, I.; Rocchi, A.; Romano, R.; Ruggi, P.; Russo, G.; Solimeno, S.; Spallicci, A.; Tarallo, M.; Terenzi, R.; Tonelli, M.; Toncelli, A.; Tournefier, E.; Travasso, F.; Tremola, C.; Vajente, G.; Verkindt, D.; Vetrano, F.; Vicere, A.; Vinet, J. -Y.; Vocca, H.; Yvert, M.

    Virgo, designed, constructed and developed by the French-Italian VIRGO collaboration located in Cascina (Pisa, Italy) and aiming to detect gravitational waves, is a ground-based power recycled Michelson interferometer, with 3 km long suspended Fabry -Perot cavities. The first Virgo scientific

  11. Astrophysical Adaptation of Points, the Precision Optical Interferometer in Space

    Science.gov (United States)

    Reasenberg, Robert D.; Babcock, Robert W.; Murison, Marc A.; Noecker, M. Charles; Phillips, James D.; Schumaker, Bonny L.; Ulvestad, James S.; McKinley, William; Zielinski, Robert J.; Lillie, Charles F.

    1996-01-01

    POINTS (Precision Optical INTerferometer in Space) would perform microarcsecond optical astrometric measurements from space, yielding submicroarcsecond astrometric results from the mission. It comprises a pair of independent Michelson stellar interferometers and a laser metrology system that measures both the critical starlight paths and the angle between the baselines. The instrument has two baselines of 2 m, each with two subapertures of 35 cm; by articulating the angle between the baselines, it observes targets separated by 87 to 93 deg. POINTS does global astrometry, i.e., it measures widely separated targets, which yields closure calibration, numerous bright reference stars, and absolute parallax. Simplicity, stability, and the mitigation of systematic error are the central design themes. The instrument has only three moving-part mechanisms, and only one of these must move with sub-milliradian precision; the other two can tolerate a precision of several tenths of a degree. Optical surfaces preceding the beamsplitter or its fold flat are interferometrically critical; on each side of the interferometer, there are only three such. Thus, light loss and wavefront distortion are minimized. POINTS represents a minimalistic design developed ab initio for space. Since it is intended for astrometry, and therefore does not require the u-v-plane coverage of an imaging, instrument, each interferometer need have only two subapertures. The design relies on articulation of the angle between the interferometers and body pointing to select targets; the observations are restricted to the 'instrument plane.' That plane, which is fixed in the pointed instrument, is defined by the sensitive direction for the two interferometers. Thus, there is no need for siderostats and moving delay lines, which would have added many precision mechanisms with rolling and sliding parts that would be required to function throughout the mission. Further, there is no need for a third interferometer

  12. Optical synthetic aperture radar

    Science.gov (United States)

    Ilovitsh, Asaf; Zach, Shlomo; Zalevsky, Zeev

    2013-06-01

    A method is proposed for increasing the resolution of an object and overcoming the diffraction limit of an optical system installed on top of a moving imaging system, such as an airborne platform or satellite. The resolution improvement is obtained via a two-step process. First, three low resolution differently defocused images are captured and the optical phase is retrieved using an improved iterative Gershberg-Saxton based algorithm. The phase retrieval allows numerical back propagation of the field to the aperture plane. Second, the imaging system is shifted and the first step is repeated. The obtained optical fields at the aperture plane are combined and a synthetically increased lens aperture is generated along the direction of movement, yielding higher imaging resolution. The method resembles a well-known approach from the microwave regime called the synthetic aperture radar in which the antenna size is synthetically increased along the platform propagation direction. The proposed method is demonstrated via Matlab simulation as well as through laboratory experiment.

  13. Fabry-Perot interferometer utilized for displacement measurement in a large measuring range

    International Nuclear Information System (INIS)

    Wang, Yung-Cheng; Shyu, Lih-Horng; Chang, Chung-Ping

    2010-01-01

    The optical configuration of a Fabry-Perot interferometer is uncomplicated. This has already been applied in different measurement systems. For the displacement measurement with the Fabry-Perot interferometer, the result is significantly influenced by the tilt angles of the measurement mirror in the interferometer. Hence, only for the rather small measuring range, the Fabry-Perot interferometer is available. The goal of this investigation is to enhance the measuring range of Fabry-Perot interferometer by compensating the tilt angles. To verify the measuring characteristic of the self-developed Fabry-Perot interferometer, some comparison measurements with a reference standard have been performed. The maximum deviation of comparison experiments is less than 0.3 μm in the traveling range of 30 mm. The experimental results show that the Fabry-Perot interferometer is highly stable, insensitive to environment effects, and can meet the measuring requirement of the submicrometer order.

  14. Radar Mosaic of Africa

    Science.gov (United States)

    1999-01-01

    This is an image of equatorial Africa, centered on the equator at longitude 15degrees east. This image is a mosaic of almost 4,000 separate images obtained in 1996 by the L-band imaging radar onboard the Japanese Earth Resources Satellite. Using radar to penetrate the persistent clouds prevalent in tropical forests, the Japanese Earth Resources Satellite was able for the first time to image at high resolution this continental scale region during single flooding seasons. The area shown covers about 7.4 million square kilometers (2.8 million square miles) of land surface, spans more than 5,000 kilometers(3,100 miles) east and west and some 2,000 kilometers (1,240 miles) north and south. North is up in this image. At the full resolution of the mosaic (100 meters or 330 feet), this image is more than 500 megabytes in size, and was processed from imagery totaling more than 60 gigabytes.Central Africa was imaged twice in 1996, once between January and March, which is the major low-flood season in the Congo Basin, and once between October and November, which is the major high-flood season in the Congo Basin. The red color corresponds to the data from the low-flood season, the green to the high-flood season, and the blue to the 'texture' of the low-flood data. The forests appear green as a result, the flooded and palm forests, as well as urban areas, appear yellow, the ocean and lakes appear black, and savanna areas appear blue, black or green, depending on the savanna type, surface topography and other factors. The areas of the image that are black and white were mapped only between January and March 1996. In these areas, the black areas are savanna or open water, the gray are forests, and the white areas are flooded forests or urban areas. The Congo River dominates the middle of the image, where the nearby forests that are periodically flooded by the Congo and its tributaries stand out as yellow. The Nile River flows north from Lake Victoria in the middle right of the

  15. Radar rainfall image repair techniques

    Directory of Open Access Journals (Sweden)

    Stephen M. Wesson

    2004-01-01

    Full Text Available There are various quality problems associated with radar rainfall data viewed in images that include ground clutter, beam blocking and anomalous propagation, to name a few. To obtain the best rainfall estimate possible, techniques for removing ground clutter (non-meteorological echoes that influence radar data quality on 2-D radar rainfall image data sets are presented here. These techniques concentrate on repairing the images in both a computationally fast and accurate manner, and are nearest neighbour techniques of two sub-types: Individual Target and Border Tracing. The contaminated data is estimated through Kriging, considered the optimal technique for the spatial interpolation of Gaussian data, where the 'screening effect' that occurs with the Kriging weighting distribution around target points is exploited to ensure computational efficiency. Matrix rank reduction techniques in combination with Singular Value Decomposition (SVD are also suggested for finding an efficient solution to the Kriging Equations which can cope with near singular systems. Rainfall estimation at ground level from radar rainfall volume scan data is of interest and importance in earth bound applications such as hydrology and agriculture. As an extension of the above, Ordinary Kriging is applied to three-dimensional radar rainfall data to estimate rainfall rate at ground level. Keywords: ground clutter, data infilling, Ordinary Kriging, nearest neighbours, Singular Value Decomposition, border tracing, computation time, ground level rainfall estimation

  16. Bistatic synthetic aperture radar

    Science.gov (United States)

    Yates, Gillian

    Synthetic aperture radar (SAR) allows all-weather, day and night, surface surveillance and has the ability to detect, classify and geolocate objects at long stand-off ranges. Bistatic SAR, where the transmitter and the receiver are on separate platforms, is seen as a potential means of countering the vulnerability of conventional monostatic SAR to electronic countermeasures, particularly directional jamming, and avoiding physical attack of the imaging platform. As the receiving platform can be totally passive, it does not advertise its position by RF emissions. The transmitter is not susceptible to jamming and can, for example, operate at long stand-off ranges to reduce its vulnerability to physical attack. This thesis examines some of the complications involved in producing high-resolution bistatic SAR imagery. The effect of bistatic operation on resolution is examined from a theoretical viewpoint and analytical expressions for resolution are developed. These expressions are verified by simulation work using a simple 'point by point' processor. This work is extended to look at using modern practical processing engines for bistatic geometries. Adaptations of the polar format algorithm and range migration algorithm are considered. The principal achievement of this work is a fully airborne demonstration of bistatic SAR. The route taken in reaching this is given, along with some results. The bistatic SAR imagery is analysed and compared to the monostatic imagery collected at the same time. Demonstrating high-resolution bistatic SAR imagery using two airborne platforms represents what I believe to be a European first and is likely to be the first time that this has been achieved outside the US (the UK has very little insight into US work on this topic). Bistatic target characteristics are examined through the use of simulations. This also compares bistatic imagery with monostatic and gives further insight into the utility of bistatic SAR.

  17. NAMMA TOGA RADAR DATA V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NAMMA TOGA Radar Data dataset consists of a collection of products derived from the NASA TOGA radar observations that were collected in the Republic of Cape...

  18. Extended Target Recognition in Cognitive Radar Networks

    Directory of Open Access Journals (Sweden)

    Xiqin Wang

    2010-11-01

    Full Text Available We address the problem of adaptive waveform design for extended target recognition in cognitive radar networks. A closed-loop active target recognition radar system is extended to the case of a centralized cognitive radar network, in which a generalized likelihood ratio (GLR based sequential hypothesis testing (SHT framework is employed. Using Doppler velocities measured by multiple radars, the target aspect angle for each radar is calculated. The joint probability of each target hypothesis is then updated using observations from different radar line of sights (LOS. Based on these probabilities, a minimum correlation algorithm is proposed to adaptively design the transmit waveform for each radar in an amplitude fluctuation situation. Simulation results demonstrate performance improvements due to the cognitive radar network and adaptive waveform design. Our minimum correlation algorithm outperforms the eigen-waveform solution and other non-cognitive waveform design approaches.

  19. Weather radar rainfall data in urban hydrology

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Einfalt, Thomas; Willems, Patrick

    2017-01-01

    Application of weather radar data in urban hydrological applications has evolved significantly during the past decade as an alternative to traditional rainfall observations with rain gauges. Advances in radar hardware, data processing, numerical models, and emerging fields within urban hydrology...

  20. ASTEROID RADAR V18.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is intended to include all published groundbased asteroid radar detections. The file is based on the collection of asteroid radar detections...

  1. ASTEROID RADAR V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset is intended to include all asteroid radar detections. An entry for each detection reports radar cross-section and circular polarization, if known, as...

  2. ASTEROID RADAR V17.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is intended to include all published groundbased asteroid radar detections. The file is based on the collection of asteroid radar detections...

  3. ASTEROID RADAR V15.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is intended to include all published groundbased asteroid radar detections. The file is based on the collection of asteroid radar detections...

  4. ASTEROID RADAR V16.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is intended to include all published groundbased asteroid radar detections. The file is based on the collection of asteroid radar detections...

  5. NOAA NEXt-Generation RADar (NEXRAD) Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of Level III weather radar products collected from Next-Generation Radar (NEXRAD) stations located in the contiguous United States, Alaska,...

  6. Meteor detection on ST (MST) radars

    International Nuclear Information System (INIS)

    Avery, S.K.

    1987-01-01

    The ability to detect radar echoes from backscatter due to turbulent irregularities of the radio refractive index in the clear atmosphere has lead to an increasing number of established mesosphere - stratosphere - troposphere (MST or ST) radars. Humidity and temperature variations are responsible for the echo in the troposphere and stratosphere and turbulence acting on electron density gradients provides the echo in the mesosphere. The MST radar and its smaller version, the ST radar, are pulsed Doppler radars operating in the VHF - UHF frequency range. These echoes can be used to determine upper atmosphere winds at little extra cost to the ST radar configuration. In addition, the meteor echoes can supplement mesospheric data from an MST radar. The detection techniques required on the ST radar for delineating meteor echo returns are described

  7. Design of multi-frequency CW radars

    CERN Document Server

    Jankiraman, Mohinder

    2007-01-01

    This book deals with the basic theory for design and analysis of Low Probability of Intercept (LPI) radar systems. The design of one such multi-frequency high resolution LPI radar, PANDORA, is covered.

  8. Airborne Differential Doppler Weather Radar

    Science.gov (United States)

    Meneghini, R.; Bidwell, S.; Liao, L.; Rincon, R.; Heymsfield, G.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    The Precipitation Radar aboard the Tropical Rain Measuring Mission (TRMM) Satellite has shown the potential for spaceborne sensing of snow and rain by means of an incoherent pulsed radar operating at 13.8 GHz. The primary advantage of radar relative to passive instruments arises from the fact that the radar can image the 3-dimensional structure of storms. As a consequence, the radar data can be used to determine the vertical rain structure, rain type (convective/stratiform) effective storm height, and location of the melting layer. The radar, moreover, can be used to detect snow and improve the estimation of rain rate over land. To move toward spaceborne weather radars that can be deployed routinely as part of an instrument set consisting of passive and active sensors will require the development of less expensive, lighter-weight radars that consume less power. At the same time, the addition of a second frequency and an upgrade to Doppler capability are features that are needed to retrieve information on the characteristics of the drop size distribution, vertical air motion and storm dynamics. One approach to the problem is to use a single broad-band transmitter-receiver and antenna where two narrow-band frequencies are spaced apart by 5% to 10% of the center frequency. Use of Ka-band frequencies (26.5 GHz - 40 GHz) affords two advantages: adequate spatial resolution can be attained with a relatively small antenna and the differential reflectivity and mean Doppler signals are directly related to the median mass diameter of the snow and raindrop size distributions. The differential mean Doppler signal has the additional property that this quantity depends only on that part of the radial speed of the hydrometeors that is drop-size dependent. In principle, the mean and differential mean Doppler from a near-nadir viewing radar can be used to retrieve vertical air motion as well as the total mean radial velocity. In the paper, we present theoretical calculations for the

  9. Radar Observation of Insects - Mosquitoes

    Science.gov (United States)

    Frost, E.; Downing, J.

    1979-01-01

    Tests were conducted at several sites over the coastal lowlands of New Jersey and over a region of high plains and low mountains in Oklahoma. In one area, a salt marsh in New Jersey, extensive ground tests were combined with laboratory data on expected insect backscatter to arrive at an extremely convincing model of the insect origin of most Dot Angels. A great deal of insight was studied from radar on the buildup and dispersal of insect swarms, since radar can follow where other means of trapping and observation cannot. Data on large-scale behavior as a function of wind and topography are presented. Displayed techniques which show individual or small swarm motion within some larger cloud or mass, or which can show the overall motion over great distances were developed. The influence of wind and terrain on insect motion and dispersal is determined from radar data.

  10. Microwave emissions from police radar.

    Science.gov (United States)

    Fink, J M; Wagner, J P; Congleton, J J; Rock, J C

    1999-01-01

    This study evaluated police officers' exposures to microwaves emitted by traffic radar units. Exposure measurements were taken at approximated ocular and testicular levels of officers seated in patrol vehicles. Comparisons were made of the radar manufacturers' published maximum power density specifications and actual measured power densities taken at the antenna faces of those units. Four speed-enforcement agencies and one transportation research institute provided 54 radar units for evaluation; 17 different models, encompassing 4 frequency bands and 3 antenna configurations, were included. Four of the 986 measurements taken exceeded the 5 mW/cm2 limit accepted by the International Radiation Protection Association and the National Council on Radiation Protection and Measurement, though none exceeded the American Conference of Governmental Industrial Hygienists, American National Standards Institute, Institute of Electrical and Electronic Engineers, or Occupational Safety and Health Administration standard of 10 mW/cm2. The four high measurements were maximum power density readings taken directly in front of the radar. Of the 812 measurements taken at the officers' seated ocular and testicular positions, none exceeded 0.04 mW/cm2; the highest of these (0.034 mW/cm2) was less than 1% of the most conservative current safety standards. High exposures in the limited region directly in front of the radar aperture are easily avoided with proper training. Results of this study indicate that police officer exposure to microwave radiation is apparently minimal. However, because of uncertainty in the medical and scientific communities concerning nonionizing radiation, it is recommended that law enforcement agencies implement a policy of prudent avoidance, including purchasing units with the lowest published maximum power densities, purchasing dash/rear deck-mounted units with antennae mounted outside the patrol vehicle, and training police officers to use the "stand-by" mode

  11. Radar mutual information and communication channel capacity of integrated radar-communication system using MIMO

    Directory of Open Access Journals (Sweden)

    Renhui Xu

    2015-12-01

    Full Text Available Integrated radar-communication system based on multiple input and multiple output (MIMO shares the hardware resource and spectrum to fulfill radar and communication functions, simultaneously. The baseband signal models of the MIMO radar and the integrated radar-communication system are set up. Then, the radar mutual information and the communication channel capacity are derived accordingly. Radar mutual information is used to evaluate the radar performance; communication channel capacity is one of the methods used to measure the communication capability. The influences of signal-to-noise ratio and the number of antennas, on the mutual information and channel capacity are presented through simulations.

  12. Radar research at The Pennsylvania State University Radar and Communications Laboratory

    Science.gov (United States)

    Narayanan, Ram M.

    2017-05-01

    The Radar and Communications Laboratory (RCL) at The Pennsylvania State University is at the forefront of radar technology and is engaged in cutting edge research in all aspects of radar, including modeling and simulation studies of novel radar paradigms, design and development of new types of radar architectures, and extensive field measurements in realistic scenarios. This paper summarizes the research at The Pennsylvania State University's Radar and Communications Laboratory and relevant collaborative research with several groups over the past 15 years in the field of radar and related technologies, including communications, radio frequency identification (RFID), and spectrum sensing.

  13. Goldstone solar system radar signal processing

    Science.gov (United States)

    Jurgens, R. F.; Satorius, E.; Sanchez, O.

    1992-01-01

    A performance analysis of the planetary radar data acquisition system is presented. These results extend previous computer simulation analysis and are facilitated by the development of a simple analytical model that predicts radar system performance over a wide range of operational parameters. The results of this study are useful to both the radar systems designer and the science investigator in establishing operational radar data acquisition parameters which result in the best systems performance for a given set of input conditions.

  14. Fmcw Mmw Radar For Automotive Longitudinal Control

    OpenAIRE

    David, William

    1997-01-01

    This report presents information on millimeter wave (MMW) radar for automotive longitudinal control. It addresses the fundamental capabilities and limitations of millimeter waves for ranging and contrasts their operation with that of conventional microwave radar. The report analyzes pulsed and FMCW radar configurations, and provides detailed treatment of FMCW radar operating at MMW frequency, its advantages and disadvantages as they relate to range and velocity measurements.

  15. Radar operation in a hostile electromagnetic environment

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2014-03-01

    Radar ISR does not always involve cooperative or even friendly targets. An adversary has numerous techniques available to him to counter the effectiveness of a radar ISR sensor. These generally fall under the banner of jamming, spoofing, or otherwise interfering with the EM signals required by the radar sensor. Consequently mitigation techniques are prudent to retain efficacy of the radar sensor. We discuss in general terms a number of mitigation techniques.

  16. Processing of Signals from Fiber Bragg Gratings Using Unbalanced Interferometers

    Science.gov (United States)

    Adamovsky, Grigory; Juergens, Jeff; Floyd, Bertram

    2005-01-01

    Fiber Bragg gratings (FBG) have become preferred sensory structures in fiber optic sensing system. High sensitivity, embedability, and multiplexing capabilities make FBGs superior to other sensor configurations. The main feature of FBGs is that they respond in the wavelength domain with the wavelength of the returned signal as the indicator of the measured parameter. The wavelength is then converted to optical intensity by a photodetector to detect corresponding changes in intensity. This wavelength-to-intensity conversion is a crucial part in any FBG-based sensing system. Among the various types of wavelength-to-intensity converters, unbalanced interferometers are especially attractive because of their small weight and volume, lack of moving parts, easy integration, and good stability. In this paper we investigate the applicability of unbalanced interferometers to analyze signals reflected from Bragg gratings. Analytical and experimental data are presented.

  17. Behavior of electronic interferometers in the nonlinear regime.

    Science.gov (United States)

    Neder, I; Ginossar, E

    2008-05-16

    We investigate theoretically the behavior of the current oscillations in an electronic Mach-Zehnder interferometer (MZI) as a function of its source bias. Recently, the MZI visibility data showed an unexplained lobe pattern with a peculiar phase rigidity. Moreover, the effect did not depend on the MZI path length difference. We argue that these effects may be a new many-body manifestation of particle-wave duality in quantum mechanics. When biasing the interferometer sources so much that multiple electrons are on each arm at any instant in time, quantum shot noise (a particle phenomena) must affect the interference pattern of the electrons that create it. A solution to the interaction Hamiltonian presented here shows that the interference visibility has a lobe pattern with applied bias that has a period proportional to the average path length and independent of the path length difference, together with a phase rigidity.

  18. Report on the set-up of a holographic interferometer

    International Nuclear Information System (INIS)

    Koster, J.N.

    1977-10-01

    Holographic interferometry is well suited for visualizing temperature, density, pressure and concentration fields in transparent fluids. The holographic real-time interferometer allows a continuous observation of stationary and instationary flow processes. After the explanation of the measuring technique, the problems arising during the interferometer set-up as well as the necessary adjusting operations are described. For heat transfer problems new possibilities for the application of holographic interferometry are revealed. Convection in boxes, temperature fields around heated or cooled bodies, concentration and diffusion processes in two phase-flows, mixtures and solutions as well as melting and freezing processes may be investigated. On the basis of particular examples some applications are presented. (orig.) [de

  19. Application principle of Sagnac interferometer in optical fiber gyroscopic system

    Directory of Open Access Journals (Sweden)

    Michal Márton

    2016-12-01

    Full Text Available Gyroscopes are widely used in various applications for decades, but the idea to construct a gyroscopic system, able to exploit the properties of the gyroscope and also monitor the status information arose later. The expansion of the optical fiber technology also touch the subject, with the development of such interferometer measuring means to explore a variety of non-optical parameters led to the idea of the application of this knowledge to the already known systems. This optical system has been constructed on a fundamental principle of the gyroscope, but we can’t talk about pure gyroscope, because there is an optical interferometer that uses its features. So it was named as fiber optic gyroscopes. In this article we describe fiber optic gyro system, design and testing experimental measurements with this gyroscope system.

  20. A microwave interferometer for small and tenuous plasma density measurements

    International Nuclear Information System (INIS)

    Tudisco, O.; Falcetta, C.; De Angelis, R.; Florean, M.; Neri, C.; Mazzotta, C.; Pollastrone, F.; Rocchi, G.; Tuccillo, A. A.; Lucca Fabris, A.; Manente, M.; Ferri, F.; Tasinato, L.; Trezzolani, F.; Accatino, L.; Pavarin, D.; Selmo, A.

    2013-01-01

    The non-intrusive density measurement of the thin plasma produced by a mini-helicon space thruster (HPH.com project) is a challenge, due to the broad density range (between 10 16 m −3 and 10 19 m −3 ) and the small size of the plasma source (2 cm of diameter). A microwave interferometer has been developed for this purpose. Due to the small size of plasma, the probing beam wavelength must be small (λ= 4 mm), thus a very high sensitivity interferometer is required in order to observe the lower density values. A low noise digital phase detector with a phase noise of 0.02° has been used, corresponding to a density of 0.5 × 10 16 m −3 .

  1. QUBIC: A Fizeau Interferometer Targeting Primordial B-Modes

    Science.gov (United States)

    Tartari, A.; Aumont, J.; Banfi, S.; Battaglia, P.; Battistelli, E. S.; Baù, A.; Bélier, B.; Bennett, D.; Bergé, L.; Bernard, J. Ph.; Bersanelli, M.; Bigot-Sazy, M. A.; Bleurvacq, N.; Bordier, G.; Brossard, J.; Bunn, E. F.; Buzi, D.; Cammilleri, D.; Cavaliere, F.; Chanial, P.; Chapron, C.; Coppolecchia, A.; D'Alessandro, G.; De Bernardis, P.; Decourcelle, T.; Del Torto, F.; De Petris, M.; Dumoulin, L.; Franceschet, C.; Gault, A.; Gayer, D.; Gervasi, M.; Ghribi, A.; Giard, M.; Giraud-Héraud, Y.; Gradziel, M.; Grandsire, L.; Hamilton, J. Ch.; Haynes, V.; Holtzer, N.; Kaplan, J.; Korotkov, A.; Lande, J.; Lowitz, A.; Maffei, B.; Marnieros, S.; Martino, J.; Masi, S.; McCulloch, M.; Melhuish, S.; Mennella, A.; Montier, L.; Murphy, A.; Néel, D.; Ng, M. W.; O'Sullivan, C.; Pajot, F.; Passerini, A.; Perbost, C.; Piacentini, F.; Piat, M.; Piccirillo, L.; Pisano, G.; Prêle, D.; Rambaud, D.; Rigaut, O.; Salatino, M.; Schillaci, A.; Scully, S.; Stolpovskiy, M. M.; Timbie, P.; Tucker, G.; Viganò, D.; Voisin, F.; Watson, B.; Zannoni, M.

    2016-08-01

    Q and U Bolometric Interferometer for Cosmology (QUBIC) is a Fizeau interferometer sensitive to linear polarisation, to be deployed at the Antarctic station of Dome C. This experiment in its final configuration will be operated at 97, 150 and 220 GHz and is intended to target CMB primordial B-modes in a multipole window 20QUBIC interferometric configuration can be considered equivalent to a pupil-plane filtered imaging system. In this context, we show how our instrument can be self-calibrated. Finally, we conclude by showing an overview of the first dual-band module (150/220 GHz), which will serve also as a demonstrator for the subsequent units, and review the technological choices we made for each subsystem, with particular emphasis on the detection system.

  2. QUBIC: the Q&U Bolometric Interferometer for Cosmology

    Science.gov (United States)

    Piat, M.; Battistelli, E.; Baù, A.; Bennett, D.; Bergé, L.; Bernard, J.-P.; de Bernardis, P.; Bigot-Sazy, M.-A.; Bordier, G.; Bounab, A.; Bréelle, E.; Bunn, E. F.; Calvo, M.; Charlassier, R.; Collin, S.; Cruciani, A.; Curran, G.; Dumoulin, L.; Gault, A.; Gervasi, M.; Ghribi, A.; Giard, M.; Giordano, C.; Giraud-Héraud, Y.; Gradziel, M.; Guglielmi, L.; Hamilton, J.-C.; Haynes, V.; Kaplan, J.; Korotkov, A.; Landé, J.; Maffei, B.; Maiello, M.; Malu, S.; Marnieros, S.; Martino, J.; Masi, S.; Montier, L.; Murphy, A.; Nati, F.; O'Sullivan, C.; Pajot, F.; Parisel, C.; Passerini, A.; Peterzen, S.; Piacentini, F.; Piccirillo, L.; Pisano, G.; Polenta, G.; Prêle, D.; Romano, D.; Rosset, C.; Salatino, M.; Schillaci, A.; Sironi, G.; Sordini, R.; Spinelli, S.; Tartari, A.; Timbie, P.; Tucker, G.; Vibert, L.; Voisin, F.; Watson, R. A.; Zannoni, M.

    2012-06-01

    The primordial B-mode polarisation of the Cosmic Microwave Background is the imprints of the gravitational wave background generated by inflation. Observing the B-mode is up to now the most direct way to constrain the physics of the primordial Universe, especially inflation. To detect these B-modes, high sensitivity is required as well as an exquisite control of systematics effects. To comply with these requirements, we propose a new instrument called QUBIC (Q and U Bolometric Interferometer for Cosmology) based on bolometric interferometry. The control of systematics is obtained with a close-packed interferometer while bolometers cooled to very low temperature allow for high sensitivity. We present the architecture of this new instrument, the status of the project and the self-calibration technique which allows accurate measurement of the instrumental systematic effects.

  3. Towards a FPGA-controlled deep phase modulation interferometer

    Science.gov (United States)

    Terán, M.; Martín, V.; Gesa, Ll; Mateos, I.; Gibert, F.; Karnesis, N.; Ramos-Castro, J.; Schwarze, T. S.; Gerberding, O.; Heinzel, G.; Guzmán, F.; Nofrarias, M.

    2015-05-01

    Deep phase modulation interferometry was proposed as a method to enhance homodyne interferometers to work over many fringes. In this scheme, a sinusoidal phase modulation is applied in one arm while the demodulation takes place as a post-processing step. In this contribution we report on the development to implement this scheme in a fiber coupled interferometer controlled by means of a FPGA, which includes a LEON3 soft-core processor. The latter acts as a CPU and executes a custom made application to communicate with a host PC. In contrast to usual FPGA-based designs, this implementation allows a real-time fine tuning of the parameters involved in the setup, from the control to the post-processing parameters.

  4. A Fiber Interferometer for the Magnetized Shock Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Christian [Los Alamos National Laboratory

    2012-08-30

    The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory requires remote diagnostics of plasma density. Laser interferometry can be used to determine the line-integrated density of the plasma. A multi-chord heterodyne fiber optic Mach-Zehnder interferometer is being assembled and integrated into the experiment. The advantage of the fiber coupling is that many different view chords can be easily obtained by simply moving transmit and receive fiber couplers. Several such fiber sets will be implemented to provide a time history of line-averaged density for several chords at once. The multiple chord data can then be Abel inverted to provide radially resolved spatial profiles of density. We describe the design and execution of this multiple fiber interferometer.

  5. Measurement of Local Gravity via a Cold Atom Interferometer

    International Nuclear Information System (INIS)

    Zhou Lin; Xiong Zong-Yuan; Yang Wei; Tang Biao; Peng Wen-Cui; Wang Yi-Bo; Xu Peng; Wang Jin; Zhan Ming-Sheng

    2011-01-01

    We demonstrate a precision measurement of local gravity acceleration g in Wuhan by a compact cold atom interferometer. The atom interferometer is in vertical Mach—Zehnder configuration realized using a π/2 - π - π/2 Raman pulse sequence. Cold atoms were prepared in a magneto-optical trap, launched upward to form an atom fountain, and then coherently manipulated to interfere by stimulated Raman transition. Population signal vs Raman laser phase was recorded as interference fringes, and the local gravity was deduced from the interference signal. We have obtained a resolution of 7 × 10 −9 g after an integration time of 236s under the best vibrational environment conditions. The absolute g value was derived from the chirp rate with a difference of 1.5 × 10 −7 g compared to the gravity reference value. The tidal phenomenon was observed by continuously monitoring the local gravity over 123 h. (atomic and molecular physics)

  6. Abstract passive interferometers with applications to conservative logic

    Science.gov (United States)

    Qian, Lei; Caulfield, H. John

    2005-08-01

    Interferometers with two complex inputs and two complex outputs can be viewed as state machines over a 4-D hyperspace, where the relationship between outputs and inputs are transition functions. In the simplest case, there is full symmetry between inputs and between outputs. The nonzero inputs, the origin and the outputs define a 2-D plane in the 4-D space. The interferometer rotates the input vectors by [pi]/4 in the hyperspace. Cascading the symmetric units defines a simple Hamiltonian path of length 8 in a 2-D subspace. Breaking symmetry by introducing a relative phase shift in the input leads to more complex Hamiltonian paths that can require all four dimensions to describe. The special symmetry breaking caused by a phase shift in one of the input arms leads to outputs which, upon detection, are recognizable as Boolean and other simple operations on properly encrypted and interpreted inputs!

  7. Parametric Instability in Advanced Laser Interferometer Gravitational Wave Detectors

    International Nuclear Information System (INIS)

    Ju, L; Grass, S; Zhao, C; Degallaix, J; Blair, D G

    2006-01-01

    High frequency parametric instabilities in optical cavities are radiation pressure induced interactions between test mass mechanical modes and cavity optical modes. The parametric gain depends on the cavity power and the quality factor of the test mass internal modes (usually in ultrasonic frequency range), as well as the overlap integral for the mechanical and optical modes. In advanced laser interferometers which require high optical power and very low acoustic loss test masses, parametric instabilities could prevent interferometer operation if not suppressed. Here we review the problem of parametric instabilities in advanced detector configurations for different combinations of sapphire and fused silica test masses, and compare three methods for control or suppression of parametric instabilities-thermal tuning, surface damping and active feedback

  8. Femto-second synchronisation with a waveguide interferometer

    Science.gov (United States)

    Dexter, A. C.; Smith, S. J.; Woolley, B. J.; Grudiev, A.

    2018-03-01

    CERN's compact linear collider CLIC requires crab cavities on opposing linacs to rotate bunches of particles into alignment at the interaction point (IP). These cavities are located approximately 25 metres either side of the IP. The luminosity target requires synchronisation of their RF phases to better than 5 fs r.m.s. This is to be achieved by powering both cavities from one high power RF source, splitting the power and delivering it along two waveguide paths that are controlled to be identical in length to within a micrometre. The waveguide will be operated as an interferometer. A high power phase shifter for adjusting path lengths has been successfully developed and operated in an interferometer. The synchronisation target has been achieved in a low power prototype system.

  9. The Michelson interferometer-how to detect invisible interference patterns

    International Nuclear Information System (INIS)

    Verovnik, Ivo; Likar, Andrej

    2004-01-01

    In a Michelson interferometer, the contrast of the interference pattern fades away due to incoherence of light when the mirrors are not in equidistant positions. We propose an experiment where the distance between the interference fringes can be determined, even when the difference in length of the interferometer arms is far beyond the coherence length of the light, i.e. when the interference pattern disappears completely for the naked eye. We used a semiconductor laser with two photodiodes as sensors, which enabled us to follow the fluctuations of the light intensity on the screen. The distance between invisible interference fringes was determined from periodic changes of the summed fluctuating signal, obtained by changing the distance between the two sensors

  10. Density Measurement of Compact Toroid with Mach-Zehnder Interferometer

    Science.gov (United States)

    Laufman-Wollitzer, Lauren; Endrizzi, Doug; Brookhart, Matt; Flanagan, Ken; Forest, Cary

    2016-10-01

    Utilizing a magnetized coaxial plasma gun (MCPG) built by Tri Alpha Energy, a dense compact toroid (CT) is created and injected at high speed into the Wisconsin Plasma Astrophysics Laboratory (WiPAL) vessel. A modified Mach-Zehnder interferometer from the Line-Tied Reconnection Experiment (LTRX) provides an absolute measurement of electron density. The interferometer is located such that the beam intersects the plasma across the diameter of the MCPG drift region before the CT enters the vessel. This placement ensures that the measurement is taken before the CT expand. Results presented will be used to further analyze characteristics of the CT. Funding provided by DoE, NSF, and WISE Summer Research.

  11. A new dispersion interferometer on HL-2A

    Science.gov (United States)

    Wang, H. X.; Zhou, Y.; Li, Y.; Li, Y. G.; Yi, J.; Deng, Z. C.; Gao, Z.; Wu, T. Y.; Yin, Z. J.; Akiyama, T.

    2017-10-01

    In order to avoid a fringe jump caused by high plasma density and pellet injection [Y. Zhou et al., Rev. Sci. Instrum. 87, 11E107 (2016)], a new CO2 dispersion interferometer is designed and commissioned on HL-2A for average line-density measurement and density feedback control. The second harmonic technology in this system eliminates the phase shift caused by mechanical vibration. Signals are processed by a digital phase comparator and can be monitored in real time. A series of experiments are conducted to study the characteristics of the system such as a second harmonic coefficient and long-term stability. The resolution of density measurement is less than 8 × 1017/m3, and the experiment result on HL-2A demonstrates the interferometer's capability to track plasma density evolution with rapid change. The system also shows good stability against mechanical vibrations.

  12. Development of measurement system for gauge block interferometer

    Science.gov (United States)

    Chomkokard, S.; Jinuntuya, N.; Wongkokua, W.

    2017-09-01

    We developed a measurement system for collecting and analyzing the fringe pattern images from a gauge block interferometer. The system was based on Raspberry Pi which is an open source system with python programming and opencv image manipulation library. The images were recorded by the Raspberry Pi camera with five-megapixel capacity. The noise of images was suppressed for the best result in analyses. The low noise images were processed to find the edge of fringe patterns using the contour technique for the phase shift analyses. We tested our system with the phase shift patterns between a gauge block and a reference plate. The phase shift patterns were measured by a Twyman-Green type of interferometer using the He-Ne laser with the temperature controlled at 20.0 °C. The results of the measurement will be presented and discussed.

  13. Meteor radar measurements of MLT winds near the equatorial electro jet region over Thumba (8.5° N, 77° E: comparison with TIDI observations

    Directory of Open Access Journals (Sweden)

    S. R. John

    2011-07-01

    Full Text Available The All-Sky interferometric meteor (SKYiMET radar (MR derived winds in the vicinity of the equatorial electrojet (EEJ are discussed. As Thumba (8.5° N, 77° E; dip lat. 0.5° N is under the EEJ belt, there has been some debate on the reliability of the meteor radar derived winds near the EEJ height region. In this regard, the composite diurnal variations of zonal wind profiles in the mesosphere-lower thermosphere (MLT region derived from TIMED Doppler Interferometer (TIDI and ground based meteor radar at Thumba are compared. In this study, emphasis is given to verify the meteor radar observations at 98 km height region, especially during the EEJ peaking time (11:00 to 14:00 LT. The composite diurnal cycles of zonal winds over Thumba are constructed during four seasons of the year 2006 using TIDI and meteor radar observations, which showed good agreement especially during the peak EEJ hours, thus assuring the reliability of meteor radar measurements of neutral winds close to the EEJ height region. It is evident from the present study that on seasonal scales, the radar measurements are not biased by the EEJ. The day-time variations of HF radar measured E-region drifts at the EEJ region are also compared with MR measurements to show there are large differences between ionospheric drifts and MR measurements. The significance of the present study lies in validating the meteor radar technique over Thumba located at magnetic equator by comparing with other than the radio technique for the first time.

  14. Wind Turbine Radar Cross Section

    Directory of Open Access Journals (Sweden)

    David Jenn

    2012-01-01

    Full Text Available The radar cross section (RCS of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axis helical design, are shown. The unique electromagnetic scattering features, the effect of materials, and methods of mitigating wind turbine clutter are also discussed.

  15. Compressive sensing for urban radar

    CERN Document Server

    Amin, Moeness

    2014-01-01

    With the emergence of compressive sensing and sparse signal reconstruction, approaches to urban radar have shifted toward relaxed constraints on signal sampling schemes in time and space, and to effectively address logistic difficulties in data acquisition. Traditionally, these challenges have hindered high resolution imaging by restricting both bandwidth and aperture, and by imposing uniformity and bounds on sampling rates.Compressive Sensing for Urban Radar is the first book to focus on a hybrid of two key areas: compressive sensing and urban sensing. It explains how reliable imaging, tracki

  16. Realization of an optical interferometer based on holographic optics ...

    Indian Academy of Sciences (India)

    holograms on H1 and H2. It is to be noted that in order to realise the proposed interferometer set-up, the processed H2 plate is required to be repositioned at the same location at which it was formed. Normally one can accomplish it by perform- ing an in-situ processing of the exposed H2 plate or by employing a tedious and.

  17. Test of multi-object exoplanet search spectral interferometer

    Science.gov (United States)

    Zhang, Kai; Wang, Liang; Jiang, Haijiao; Zhu, Yongtian; Hou, Yonghui; Dai, Songxin; Tang, Jin; Tang, Zhen; Zeng, Yizhong; Chen, Yi; Wang, Lei; Hu, Zhongwen

    2014-07-01

    Exoplanet detection, a highlight in the current astronomy, will be part of puzzle in astronomical and astrophysical future, which contains dark energy, dark matter, early universe, black hole, galactic evolution and so on. At present, most of the detected Exoplanets are confirmed through methods of radial velocity and transit. Guo shoujing Telescope well known as LAMOST is an advanced multi-object spectral survey telescope equipped with 4000 fibers and 16 low resolution fiber spectrographs. To explore its potential in different astronomical activities, a new radial velocity method named Externally Dispersed Interferometry (EDI) is applied to serve Exoplanet detection through combining a fixed-delay interferometer with the existing spectrograph in medium spectral resolution mode (R=5,000-10,000). This new technology has an impressive feature to enhance radial velocity measuring accuracy of the existing spectrograph through installing a fixed-delay interferometer in front of spectrograph. This way produces an interference spectrum with higher sensitivity to Doppler Effect by interference phase and fixed delay. This relative system named Multi-object Exoplanet Search Spectral Interferometer (MESSI) is composed of a few parts, including a pair of multi-fiber coupling sockets, a remote control iodine subsystem, a multi-object fixed delay interferometer and the existing spectrograph. It covers from 500 to 550 nm and simultaneously observes up to 21 stars. Even if it's an experimental instrument at present, it's still well demonstrated in paper that how MESSI does explore an effective way to build its own system under the existing condition of LAMOST and get its expected performance for multi-object Exoplanet detection, especially instrument stability and its special data reduction. As a result of test at lab, inside temperature of its instrumental chamber is stable in a range of +/-0.5degree Celsius within 12 hours, and the direct instrumental stability without further

  18. A Multichannel Submillimeter Wave Interferometer System On Atf

    Science.gov (United States)

    Hutchinson, D. P.; Ma, C. H.; Vander Sluis, K. L.; Bennett, C. A.; Lee, J.

    1988-11-01

    A high resolution multichannel far-infrared interferometer has been constructed for the ATF experiment at Oak Ridge. The system consists of a pair of cw 119-pm methanol lasers, optically pumped by separate CO2 lasers. An external Stark-cell modulation scheme is used to stabilize the frequencies of the CO2 lasers. The system is designed to be operated, monitored, and stabilized by a PC computer.

  19. Evolved Stars: Interferometer Baby Food or Staple Diet?

    Science.gov (United States)

    Tuthill, Peter

    With their extreme red and infrared luminosities and large apparent diameters, evolved stars have nurtured generations of interferometers (beginning with Michelson's work on Betelgeuse) with unique science programs at attainable resolutions. Furthermore, the inflated photosphere and circumstellar material associated with dying stars presents complex targets with asymmetric structure on many scales encoding a wealth of poorly-understood astrophysics. A brief review the major past milestones and future prospects for interferometry's contribution to studies of circumstellar matter in evolved stars is presented.

  20. Phase correction for a Michelson interferometer with misaligned mirrors

    Science.gov (United States)

    Goorvitch, D.

    1975-01-01

    The phase correction for a Michelson interferometer with misaligned mirrors in converging light is shown to give rise to a quadratic phase shift. In general, the calculation of a spectrum from the measured interferogram needs phase correction. Phase corrections have been well worked out for the cases of a linear phase shift and a phase that is slowly varying. The standard procedures for correcting calculated spectra need to be modified, however, to remove any phase errors resulting from misaligned mirrors.

  1. Infrared spectra of lunar soils. [using a Michelson interferometer

    Science.gov (United States)

    Aronson, J. R.; Emslie, A. G.; Smith, E. M.

    1979-01-01

    Measured data obtained by Michelson interferometer spectrometer were stored in a computer file and smoothed by being passed forward and backward through a digital four-pole low pass filter. Infrared spectra of the 10 lunar samples are presented in the format of brightness temperature versus frequency. The mol % of feldspar, pyroxene, olivine, ilmenite and ferromagnetic silicate in each sample is presented in tables. The reflectance spectra of ilmenite and enstatite are shown in graphs.

  2. Fiber inline Michelson interferometer fabricated by a femtosecond laser.

    Science.gov (United States)

    Yuan, Lei; Wei, Tao; Han, Qun; Wang, Hanzheng; Huang, Jie; Jiang, Lan; Xiao, Hai

    2012-11-01

    A fiber inline Michelson interferometer was fabricated by micromachining a step structure at the tip of a single-mode optical fiber using a femtosecond laser. The step structure splits the fiber core into two reflection paths and produces an interference signal. A fringe visibility of 18 dB was achieved. Temperature sensing up to 1000°C was demonstrated using the fabricated assembly-free device.

  3. Tracking radar studies of bird migration

    Science.gov (United States)

    Williams, T. C.; Williams, J. M.; Teal, J. M.; Kanwisher, J. W.

    1972-01-01

    The application of tracking radar for determining the flight paths of migratory birds is discussed. The effects produced by various meteorological parameters are described. Samples of radar scope presentations obtained during tracking studies are presented. The characteristics of the radars and their limitations are examined.

  4. Comparison of radar data versus rainfall data.

    Science.gov (United States)

    Espinosa, B; Hromadka, T V; Perez, R

    2015-01-01

    Doppler radar data are increasingly used in rainfall-runoff synthesis studies, perhaps due to radar data availability, among other factors. However, the veracity of the radar data are often a topic of concern. In this paper, three Doppler radar outcomes developed by the United States National Weather Service at three radar sites are examined and compared to actual rain gage data for two separate severe storm events in order to assess accuracy in the published radar estimates of rainfall. Because the subject storms were very intense rainfall events lasting approximately one hour in duration, direct comparisons between the three radar gages themselves can be made, as well as a comparison to rain gage data at a rain gage location subjected to the same storm cells. It is shown that topographic interference with the radar outcomes can be a significant factor leading to differences between radar and rain gage readings, and that care is needed in calibrating radar outcomes using available rain gage data in order to interpolate rainfall estimates between rain gages using the spatial variation observed in the radar readings. The paper establishes and describes•the need for "ground-truthing" of radar data, and•possible errors due to topographic interference.

  5. Comparison of mimo radar concepts: Detection performance

    NARCIS (Netherlands)

    Rossum, W.L. van; Huizing, A.G.

    2007-01-01

    In this paper, four different array radar concepts are compared: pencil beam, floodlight, monostatic MIMO, and multistatic MIMO. The array radar concepts show an increase in complexity accompanied by an increase in diversity. The comparison between the radar concepts is made by investigating the

  6. Efficient Ways to Learn Weather Radar Polarimetry

    Science.gov (United States)

    Cao, Qing; Yeary, M. B.; Zhang, Guifu

    2012-01-01

    The U.S. weather radar network is currently being upgraded with dual-polarization capability. Weather radar polarimetry is an interdisciplinary area of engineering and meteorology. This paper presents efficient ways to learn weather radar polarimetry through several basic and practical topics. These topics include: 1) hydrometeor scattering model…

  7. Principles of modern radar advanced techniques

    CERN Document Server

    Melvin, William

    2012-01-01

    Principles of Modern Radar: Advanced Techniques is a professional reference for practicing engineers that provides a stepping stone to advanced practice with in-depth discussions of the most commonly used advanced techniques for radar design. It will also serve advanced radar academic and training courses with a complete set of problems for students as well as solutions for instructors.

  8. Realization of a scalable airborne radar

    NARCIS (Netherlands)

    Otten, M.P.G.; Vermeulen, B.C.B.; Liempt, L.J. van; Halsema, D. van; Jongh, R.V. de; Es, J. van

    2008-01-01

    Modern airborne ground surveillance radar systems are increasingly based on Active Electronically Scanned Array (AESA) antennas. Efficient use of array technology and the need for radar solutions for various airborne platforms, manned and unmanned, leads to the design of scalable radar systems. The

  9. Progress on multi-object exoplanet search spectral interferometer

    Science.gov (United States)

    Zhang, Kai; Zhu, Yongtian; Wang, Lei; Yue, Zhongyu; Chen, Yi; Tang, Jin; Hu, Zhongwen

    2012-09-01

    It's a very important point that fully open up power of Gou Shoujing telescope (LAMOST) in exoplanet detection field by developing a multi-exoplanet survey system. But it's an indisputable truth in the present astronomy that a traditional type of multi-object high resolution spectrograph is almost impossible to be developed. External Dispersed Interferometry is an effective way to improve the radial velocity measuring accuracy of medium resolution spectrograph. With the using of this technique, Multi-object Exoplanet Search Spectral Interferometer (MESSI) is an exploratory system with medium measuring accuracy based on LAMOST low resolution spectrograph works in medium-resolution mode (R=5,000 - 10,000). And it's believed that will bring some feasible way in the future development of multi-object medium/high resolution spectrograph. After prototype experiment in 2010, a complete configuration is under the development, including a multi-object fixed-delay Michelson interferometer, an iodine cell with multi-fiber optical coupling system and a multi-terminal switching system in an efficient fiber physical coupling way. By some effective improvement, the interferometer has smaller cross section and more stable interference component. Moreover, based on physical and optical fiber coupling technique, it's possible for the iodine cell and the switching system to simultaneously and identically coupling 25 pairs of fibers. In paper, all of the progress is given in detail.

  10. Operation results of the KSTAR far infrared interferometer

    Science.gov (United States)

    Juhn, June-Woo; Lee, K. C.; Wi, H. M.; Kim, Y. S.; Nam, Y. U.

    2016-11-01

    The 2015 KSTAR experimental campaign was the first year of routine measurement with a far infrared interferometer (FIRI) utilizing 118.87 μm CH3OH lasers at maximum 200 mW CW beam power. By using rtEFIT reconstruction, the path lengths of interferometers can be calculated and so the line-averaged electron densities n ¯ e from the FIRI and a millimeter-wave interferometer were in excellent agreement. In this way, the number of successfully diagnosed discharges is counted: 1003 shots or 83.7% of sustained discharges, defined as shots of plasma current IP ≥ 0.3 MA with pulse lengths tf ≥ 2.0 s, have good-quality FIRI data within a few fringe jump errors. In addition, real-time H-mode density feedback control based on the FIRI was also successfully achieved with supersonic molecular beam injection as an actuator. Both constant density and controlled linear increment with a ramp-up rate of 1.0 × 1019 m-3 s-1 were achieved.

  11. Development of a Spatially-Resolved Microwave Interferometer

    Science.gov (United States)

    Specht, Paul; Cooper, Marcia

    2015-06-01

    The development of a spatially-resolved microwave interferometer (SRMI) for non-invasively measuring the internal transit of a shock, detonation, or reaction front in energetic media is presented. Utilizing the transparency of many energetic materials in the RF regime, current microwave interferometers provide continuum-level tracking of the dielectric discontinuity that occurs across a shock or reaction front. While this continuum-level response can provide bulk shock and detonation velocities, it is insufficient to understand the complex wave and material interactions present in heterogeneous energetic materials. Leveraging interferometry and terahertz spectroscopy techniques, a heterodyne, spatially-resolved microwave interferometer was designed. A theoretical description of its operation and potential impact to current energetic materials research is discussed. Preliminary experimental results, including electro-optic sensing of a Doppler shifted microwave beam, are presented. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-0308A.

  12. The Fizeau Interferometer Testbed (FIT) for Stellar Imager

    Science.gov (United States)

    Carpenter, Kenneth G.; Lyon, Richard G.; Mazzuca, Lisa M.; Solyar, Gregory; Mundy, Lee G.; Armstrong, J. T.; Zhang, Xiaolei; Marzouk, Joe

    2003-01-01

    Goddard Space Flight Center is pursuing the development of space-based, long-baseline (less than 0.5km) UV-optical Fizeau imaging interferometers to enable the next major stride toward very high angular resolution astronomical observations. This effort includes the development and operation of the Fizeau Interferometer Testbed (FIT), in collaboration with the Naval Research Lab/NPOI, Univ. of MD, and Sigma Space Corporation. The FIT will be used to explore the principles of and requirements for the Stellar Imager (SI) mission concept (http://hires.gsfc.nasa.gov/-si) and other such Fizeau Interferometers/Sparse Aperture Telescope missions. The primary FIT goal is to demonstrate closed-loop control of a many-element (7 - 30) system which keeps the optical beams in phase and thus enables high quality imaging. The FIT will also be used to assess various wavefront reconstruction and sensing and image reconstruction algorithms for utility and accuracy by application to real data generated by the Testbed. In this paper, we describe the design and goals of the system, provide a status report on its construction, and note our future plans. The FIT development is supported by NASA-ROSS/SARA grants to GSFC, UMD, and NRL and by internal GSFC R&D funds.

  13. Explosive component acceptance tester using laser interferometer technology

    Science.gov (United States)

    Wickstrom, Richard D.; Tarbell, William W.

    1993-01-01

    Acceptance testing of explosive components requires a reliable and simple to use testing method that can discern less than optimal performance. For hot-wire detonators, traditional techniques use dent blocks or photographic diagnostic methods. More complicated approaches are avoided because of their inherent problems with setup and maintenance. A recently developed tester is based on using a laser interferometer to measure the velocity of flying plates accelerated by explosively actuated detonators. Unlike ordinary interferometers that monitor displacement of the test article, this device measures velocity directly and is commonly used with non-spectral surfaces. Most often referred to as the VISAR technique (Velocity Interferometer System for Any Reflecting Surface), it has become the most widely-accepted choice for accurate measurement of velocity in the range greater than 1 mm/micro-s. Traditional VISAR devices require extensive setup and adjustment and therefore are unacceptable in a production-testing environment. This paper describes a new VISAR approach which requires virtually no adjustments, yet provides data with accuracy comparable to the more complicated systems. The device, termed the Fixed-Cavity VISAR, is currently being developed to serve as a product verification tool for hot-wire detonators and slappers. An extensive data acquisition and analysis computer code was also created to automate the manipulation of raw data into final results.

  14. Phase-modulation interferometer for ICF-target characterization

    International Nuclear Information System (INIS)

    Cooper, D.E.

    1981-01-01

    Characterization requirements for high gain laser fusion targets are severe. We are required to detect defects on the surfaces of opaque and transparent shells with an amplitude resolution of +- 5 nm and a spatial resolution of 1 to 10 μm. To achieve this we have developed a laser-illuminated phase-modulation interferometer. This instrument is based on a photoelastic polarization modulation technique which allows one to convert phase information into an intensity modulation which can be easily and sensitively measured using ac signal processing techniques. This interferometer has detected path length changes as small as 1 nm and the required spatial resolution is assured by using a microscope objective to focus the probe laser beam down to a small (approx. 1 μm) spot on the surface of a microballoon. The interferometer will soon be coupled to an LSI-11 controlled 4π sphere manipulator which will allow us to automatically inspect the entire surface area of a target sphere

  15. Measuring large amplitudes of mechanical vibrations with laser interferometers

    Science.gov (United States)

    Bondarenko, A. N.; Trotsenko, V. P.

    1984-09-01

    Heterodyne methods of laser interferometry are the most promising methods of measuring large mechanical vibrations, their main advantages being that they are contactless and remote operational, and their main features being high accuracy and reproducibility of readings. However, use of a square-law photodetector and a frequency detector with a laser interferometer requires conversion to single-frequency laser radiation to two-frequency one. An attendant problem is to provide a stable and efficient wideband heterodyne with wide dynamic range for a reference signal with a Doppler frequency shift sufficiently large relative to the frequency of the probing signal. One known method of such interferometry which meets these requirements involves use of an oscillograph and an electronic-counter frequency meter. The principle of this method is outlined on the example of one mirror of a two-beam interferometer, assuming that its vibrations are harmonic. The interferometer for this application consists of a light splitter, a reference mirror, and a movable mirror with a Teflon membrane controlled by a sine-wave generator. The light source is an LG-79/1 He-Ne laser. The photodetector is an FD-21 KP photodiode with a time constant of 6 ns. Vibrations are measured with a Ch3-34A frequency meter.

  16. [The error analysis and experimental verification of laser radar spectrum detection and terahertz time domain spectroscopy].

    Science.gov (United States)

    Liu, Wen-Tao; Li, Jing-Wen; Sun, Zhi-Hui

    2010-03-01

    Terahertz waves (THz, T-ray) lie between far-infrared and microwave in electromagnetic spectrum with frequency from 0.1 to 10 THz. Many chemical agent explosives show characteristic spectral features in the terahertz. Compared with conventional methods of detecting a variety of threats, such as weapons and chemical agent, THz radiation is low frequency and non-ionizing, and does not give rise to safety concerns. The present paper summarizes the latest progress in the application of terahertz time domain spectroscopy (THz-TDS) to chemical agent explosives. A kind of device on laser radar detecting and real time spectrum measuring was designed which measures the laser spectrum on the bases of Fourier optics and optical signal processing. Wedge interferometer was used as the beam splitter to wipe off the background light and detect the laser and measure the spectrum. The result indicates that 10 ns laser radar pulse can be detected and many factors affecting experiments are also introduced. The combination of laser radar spectrum detecting, THz-TDS, modern pattern recognition and signal processing technology is the developing trend of remote detection for chemical agent explosives.

  17. FMWC Radar for Breath Detection

    DEFF Research Database (Denmark)

    Suhr, Lau Frejstrup; Tafur Monroy, Idelfonso; Vegas Olmos, Juan José

    breathing through walls. Other remote breath tracking systems has been presented that are based on the Ultra-wideband radar technique. However, these systems have two drawbacks. Firstly, they penetrate walls. It is therefore harder to contain the emitted radiation and they could be used for unsolicited...

  18. Fractal radar scattering from soil

    Science.gov (United States)

    Oleschko, Klaudia; Korvin, Gabor; Figueroa, Benjamin; Vuelvas, Marco Antonio; Balankin, Alexander S.; Flores, Lourdes; Carreón, Dora

    2003-04-01

    A general technique is developed to retrieve the fractal dimension of self-similar soils through microwave (radar) scattering. The technique is based on a mathematical model relating the fractal dimensions of the georadargram to that of the scattering structure. Clear and different fractal signatures have been observed over four geosystems (soils and sediments) compared in this work.

  19. Future of synthetic aperture radar

    Science.gov (United States)

    Barath, F. T.

    1978-01-01

    The present status of the applications of Synthetic Aperture Radars (SARs) is reviewed, and the technology state-of-the art as represented by the Seasat-A and SIR-A SARs examined. The potential of SAR applications, and the near- and longer-term technology trends are assessed.

  20. UWB radar multipath propagation effects

    Czech Academy of Sciences Publication Activity Database

    Čermák, D.; Schejbal, V.; NĚMEC, Z.; Bezoušek, P.; Fišer, Ondřej

    2005-01-01

    Roč. 11, - (2005), --- ISSN 1211-6610 R&D Projects: GA MPO FT-TA2/030 Institutional research plan: CEZ:AV0Z30420517 Keywords : UWB radar * multipath propagation Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  1. Research relative to weather radar measurement techniques

    Science.gov (United States)

    Smith, Paul L.

    1992-01-01

    Research relative to weather radar measurement techniques, which involves some investigations related to measurement techniques applicable to meteorological radar systems in Thailand, is reported. A major part of the activity was devoted to instruction and discussion with Thai radar engineers, technicians, and meteorologists concerning the basic principles of radar meteorology and applications to specific problems, including measurement of rainfall and detection of wind shear/microburst hazards. Weather radar calibration techniques were also considered during this project. Most of the activity took place during two visits to Thailand, in December 1990 and February 1992.

  2. Synthetic aperture radar capabilities in development

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.

  3. The MU radar now partly in operation

    Science.gov (United States)

    Kato, S.; Ogawa, T.; Tsuda, T.; Sato, T.; Kimura, I.; Fukao, S.

    1984-01-01

    The MU radar (middle- and upper-atmosphere radar) of RASC (Radio Atmospheric Science Center, Kyoto University) is now partly in operation, although the facility will be completed in 1985. The active array system of the radar makes it possible to steer the radar beam as fast as in each interpulse period. Various sophisticated experiments are expected to be performed by the system. A preliminary observation was successful to elucidate atmospheric motions during Typhoon No. 5 which approached the radar site in August, 1983.

  4. Planetary Radars Operating Centre PROC

    Science.gov (United States)

    Catallo, C.; Flamini, E.; Seu, R.; Alberti, G.

    2007-12-01

    Planetary exploration by means of radar systems, mainly using Ground Penetrating Radars (GPR) plays an important role in Italy. Numerous scientific international space programs are currently carried out jointly with ESA and NASA by Italian Space Agency, the scientific community and the industry. Three important experiments under Italian leadership ( designed and manufactured by the Italian industry), provided by ASI either as contribution to ESA programs either within a NASA/ASI joint venture framework, are now operating: MARSIS on-board Mars Express, SHARAD on-board Mars Reconnaissance Orbiter and CASSINI Radar on-board Cassini spacecraft. In order to support all the scientific communities, institutional customers and experiment teams operation three Italian dedicated operational centers have been realized, namely SHOC, (Sharad Operating Centre), MOC (Marsis Operating Center) and CASSINI PAD ( Processing Altimetry Data). Each center is dedicated to a single instrument management and control, data processing and distribution. Although they had been conceived to operate autonomously and independently one from each other, synergies and overlaps have been envisaged leading to the suggestion of a unified center, the Planetary Radar Processing Center (PROC). PROC is conceived in order to include the three operational centers, namely SHOC, MOC and CASSINI PAD, either from logistics point of view and from HW/SW capabilities point of view. The Planetary Radar Processing Center shall be conceived as the Italian support facility to the scientific community for on-going and future Italian planetary exploration programs. Therefore, scalability, easy use and management shall be the design drivers. The paper describes how PROC is designed and developed, to allow SHOC, MOC and CASSINI PAD to operate as before, and to offer improved functionalities to increase capabilities, mainly in terms of data exchange, comparison, interpretation and exploitation. Furthermore, in the frame of

  5. A laser interferometer for measuring straightness and its position based on heterodyne interferometry

    International Nuclear Information System (INIS)

    Chen Benyong; Zhang Enzheng; Yan Liping; Li Chaorong; Tang Wuhua; Feng Qibo

    2009-01-01

    Not only the magnitude but also the position of straightness errors are of concern to users. However, current laser interferometers used for measuring straightness seldom give the relative position of the straightness error. To solve this problem, a laser interferometer for measuring straightness and its position based on heterodyne interferometry is proposed. The optical configuration of the interferometer is designed and the measurement principle is analyzed theoretically. Two experiments were carried out. The first experiment verifies the validity and repeatability of the interferometer by measuring a linear stage. Also, the second one for measuring a flexure-hinge stage demonstrates that the interferometer is capable of nanometer measurement accuracy. These results show that this interferometer has advantages of simultaneously measuring straightness error and the relative position with high precision, and a compact structure.

  6. Enhanced Weather Radar (EWxR) System

    Science.gov (United States)

    Kronfeld, Kevin M. (Technical Monitor)

    2003-01-01

    An airborne weather radar system, the Enhanced Weather Radar (EWxR), with enhanced on-board weather radar data processing was developed and tested. The system features additional weather data that is uplinked from ground-based sources, specialized data processing, and limited automatic radar control to search for hazardous weather. National Weather Service (NWS) ground-based Next Generation Radar (NEXRAD) information is used by the EWxR system to augment the on-board weather radar information. The system will simultaneously display NEXRAD and on-board weather radar information in a split-view format. The on-board weather radar includes an automated or hands-free storm-finding feature that optimizes the radar returns by automatically adjusting the tilt and range settings for the current altitude above the terrain and searches for storm cells near the atmospheric 0-degree isotherm. A rule-based decision aid was developed to automatically characterize cells as hazardous, possibly-hazardous, or non-hazardous based upon attributes of that cell. Cell attributes are determined based on data from the on-board radar and from ground-based radars. A flight path impact prediction algorithm was developed to help pilots to avoid hazardous weather along their flight plan and their mission. During development the system was tested on the NASA B757 aircraft and final tests were conducted on the Rockwell Collins Sabreliner.

  7. Status and Prospects of Radar Polarimetry Techniques

    Directory of Open Access Journals (Sweden)

    Wang Xuesong

    2016-04-01

    Full Text Available Radar polarimetry is an applied fundamental science field that is focused on understanding interaction processes between radar waves and targets and disclosing their mechanisms. Radar polarimetry has significant application prospects in the fields of microwave remote sensing, earth observation, meteorological measurement, battlefield reconnaissance, anti-interference, target recognition, and so on. This study briefly reviews the development history of radar polarization theory and technology. Next, the state of the art of several key technologies within radar polarimetry, including the precise acquisition of radar polarization information, polarization-sensitive array signal processing, target polarization characteristics, polarization antiinterference, and target polarization classification and recognition, is summarized. Finally, the future developments of radar polarization technology are considered.

  8. Radar research at the University of Kansas

    Science.gov (United States)

    Blunt, Shannon D.; Allen, Christopher; Arnold, Emily; Hale, Richard; Hui, Rongqing; Keshmiri, Shahriar; Leuschen, Carlton; Li, Jilu; Paden, John; Rodriguez-Morales, Fernando; Salandrino, Alessandro; Stiles, James

    2017-05-01

    Radar research has been synonymous with the University of Kansas (KU) for over half a century. As part of this special session organized to highlight significant radar programs in academia, this paper surveys recent and ongoing work at KU. This work encompasses a wide breadth of sensing applications including the remote sensing of ice sheets, autonomous navigation methods for unmanned aerial vehicles (UAVs), novel laser radar capabilities, detection of highenergy cosmic rays using bistatic radar, different forms of waveform diversity such as MIMO radar and pulse agility, and various radar-embedded communication methods. The results of these efforts impact our understanding of the changing nature of the environment, address the proliferation of unmanned systems in the US airspace, realize new sensing modalities enabled by the joint consideration of electromagnetics and signal processing, and greater facilitate radar operation in an increasingly congested and contested spectrum.

  9. All-silicon thermal independent Mach-Zehnder interferometer with multimode waveguides

    DEFF Research Database (Denmark)

    Guan, Xiaowei; Frandsen, Lars Hagedorn

    2016-01-01

    A novel all-silicon thermal independent Mach-Zehnder interferometer consisting of two multimode waveguide arms having equal lengths and widths but transmitting different modes is proposed and experimentally demonstrated. The interferometer has a temperature sensitivity smaller than 8pm/°C in a wa......A novel all-silicon thermal independent Mach-Zehnder interferometer consisting of two multimode waveguide arms having equal lengths and widths but transmitting different modes is proposed and experimentally demonstrated. The interferometer has a temperature sensitivity smaller than 8pm...

  10. Development of a suspended-mass RSE interferometer using third harmonic demodulation

    International Nuclear Information System (INIS)

    Miyakawa, Osamu; Somiya, Kentaro; Heinzel, Gerhard; Kawamura, Seiji

    2002-01-01

    The most important point of a resonant sideband extraction (RSE) experiment is the signal extraction for control of the interferometer. We proposed a new signal-sensing method for the single modulation scheme. This method uses the third harmonic demodulation (THD) with a particular asymmetry in the interferometer which makes the third-order sidebands vanish at the detecting port. We have successfully locked a suspended-mass RSE interferometer for the first time by the THD method. The transfer function of the interferometer was measured to confirm the RSE effect

  11. Secondary wavelength stabilization of unbalanced Michelson interferometers for the generation of low-jitter pulse trains.

    Science.gov (United States)

    Shalloo, R J; Corner, L

    2016-09-01

    We present a double unbalanced Michelson interferometer producing up to four output pulses from a single input pulse. The interferometer is stabilized with the Hänsch-Couillaud method using an auxiliary low power continuous wave laser injected into the interferometer, allowing the stabilization of the temporal jitter of the output pulses to 0.02 fs. Such stabilized pulse trains would be suitable for driving multi-pulse laser wakefield accelerators, and the technique could be extended to include amplification in the arms of the interferometer.

  12. Dispersed single-phase-step Michelson interferometer for Doppler imaging using sunlight.

    Science.gov (United States)

    Wan, Xiaoke; Ge, Jian

    2012-09-15

    A Michelson interferometer is dispersed with a fiber array-fed spectrograph, providing 59 Doppler sensing channels using sunlight in the 510-570 nm wavelength region. The interferometer operates at a single-phase-step mode, which is particularly advantageous in multiplexing and data processing compared to the phase-stepping mode of other interferometer spectrometer instruments. Spectral templates are prepared using a standard solar spectrum and simulated interferometer modulations, such that the correlation function with a measured 1D spectrum determines the Doppler shift. Doppler imaging of a rotating cylinder is demonstrated. The average Doppler sensitivity is ~12 m/s, with some channels reaching ~5 m/s.

  13. 5.7  W cw single-frequency laser at 671  nm by single-pass second harmonic generation of a 17.2  W injection-locked 1342  nm Nd : YVO4 ring laser using periodically poled MgO : LiNbO3.

    Science.gov (United States)

    Koch, Peter; Ruebel, Felix; Bartschke, Juergen; L'huillier, Johannes A

    2015-11-20

    We demonstrate a continuous wave single-frequency laser at 671.1 nm based on a high-power 888 nm pumped Nd:YVO4 ring laser at 1342.2 nm. Unidirectional operation of the fundamental ring laser is achieved with the injection-locking technique. A Nd:YVO4 microchip laser serves as the injecting seed source, providing a tunable single-frequency power of up to 40 mW. The ring laser emits a single-frequency power of 17.2 W with a Gaussian beam profile and a beam propagation factor of M2beam profile and a beam propagation factor of M2lasers. This work opens possibilities in cold atoms experiments with lithium, allowing the use of larger ensembles in magneto-optical traps or higher diffraction orders in atomic beam interferometers.

  14. ALISEO on MIOSat: an imaging interferometer for earth observation

    Science.gov (United States)

    Barducci, A.; Castagnoli, F.; Castellini, G.; Guzzi, D.; Marcoionni, P.; Pippi, I.

    2017-11-01

    The Italian Space Agency (ASI) decided to perform an low cost Earth observation mission based on a new mini satellite named MIOsat which will carry various technological payloads. Among them an imaging interferometer designed and now ready to be assembled and tested by our Institute. The instrument, named ALISEO (Aerospace Leap-frog Imaging Stationary interferometer for Earth Observation), operates in the common-path Sagnac configuration, and it does not utilize any moving part to scan the phase delays between the two interfering beams. The sensor acquires target images modulated by a pattern of autocorrelation functions of the energy coming from each scene pixel, and the resulting fringe pattern remains spatially fixed with respect to the instrument's field-of-view. The complete interferogram of each target location is retrieved by introducing a relative source-observer motion, which allows any image pixels to be observed under different viewing-angles and experience discrete path differences. The paper describes the main characteristics of the imaging interferometer as well as the overall optical configuration and the electronics layout. Moreover some theoretical issues concerning sampling theory in "common path" imaging interferometry are investigated. The experimental activity performed in laboratory is presented and its outcomes are analysed. Particularly, a set of measurements has been carried out using both standard (certificate) reflectance tiles and natural samples of different volcanic rocks. An algorithm for raw data pre-processing aimed at retrieving the at-sensor radiance spectrum is introduced and its performance is addressed by taking into account various issues such as dark signal subtraction, spectral instrument response compensation, effects of vignetting, and Fourier backtransform. Finally, examples of retrieved absolute reflectance of several samples are sketched at different wavelengths.

  15. Penn State Radar Systems: Implementation and Observations

    Science.gov (United States)

    Urbina, J. V.; Seal, R.; Sorbello, R.; Kuyeng, K.; Dyrud, L. P.

    2014-12-01

    Software Defined Radio/Radar (SDR) platforms have become increasingly popular as researchers, hobbyists, and military seek more efficient and cost-effective means for radar construction and operation. SDR platforms, by definition, utilize a software-based interface for configuration in contrast to traditional, hard-wired platforms. In an effort to provide new and improved radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future radars, with primary objectives of making such instruments more capable, portable, and more cost effective. This paper will describe the design and implementation of two low-cost radar systems and their deployment in ionospheric research at both low and mid-latitudes. One radar has been installed near Penn State campus, University Park, Pennsylvania (77.97°W, 40.70°N), to make continuous meteor observations and mid-latitude plasma irregularities. The second radar is being installed in Huancayo (12.05°S, -75.33°E), Peru, which is capable of detecting E and F region plasma irregularities as well as meteor reflections. In this paper, we examine and compare the diurnal and seasonal variability of specular, non- specular, and head-echoes collected with these two new radar systems and discuss sampling biases of each meteor observation technique. We report our current efforts to validate and calibrate these radar systems with other VHF radars such as Jicamarca and SOUSY. We also present the general characteristics of continuous measurements of E-region and F-region coherent echoes using these modern radar systems and compare them with coherent radar events observed at other geographic mid-latitude radar stations.

  16. Thermospheric gravity waves in Fabry-Perot Interferometer measurements of the 630.0nm OI line

    Directory of Open Access Journals (Sweden)

    E. A. K. Ford

    2006-03-01

    Full Text Available Gravity waves are an important feature of mesosphere - lower thermosphere (MLT dynamics, observed using many techniques and providing an important mechanism for energy transfer between atmospheric regions. It is known that some gravity waves may propagate through the mesopause and reach greater altitudes before eventually "breaking" and depositing energy. The generation, propagation, and breaking of upper thermospheric gravity waves have not been studied directly often. However, their ionospheric counterparts, travelling ionospheric disturbances (TIDs, have been extensively studied in, for example, radar data. At high latitudes, it is believed localised auroral activity may generate gravity waves in-situ. Increases in sensor efficiency of Fabry-Perot Interferometers (FPIs located in northern Scandinavia have provided higher time resolution measurements of the auroral oval and polar cap atomic oxygen red line emission at 630.0 nm. A Lomb-Scargle analysis of this data has shown evidence of gravity wave activity with periods ranging from a few tens of minutes to several hours. Oscillations are seen in the intensity of the line as well as the temperatures and line of sight winds. Instruments are located in Sodankylä, Finland; Kiruna, Sweden; Skibotn, Norway, and Svalbard in the Arctic Ocean. A case study is presented here, where a wave of 1.8 h period has a phase speed of 250 ms-1 with a propagation angle of 302°, and a horizontal wavelength of 1600 km. All the FPIs are co-located with EISCAT radars, as well as being supplemented by a range of other instrumentation. This allows the waves found in the FPI data to be put in context with the ionosphere and atmosphere system. Consequently, the source region of the gravity waves can be determined.

  17. Thermospheric gravity waves in Fabry-Perot Interferometer measurements of the 630.0nm OI line

    Directory of Open Access Journals (Sweden)

    E. A. K. Ford

    2006-03-01

    Full Text Available Gravity waves are an important feature of mesosphere - lower thermosphere (MLT dynamics, observed using many techniques and providing an important mechanism for energy transfer between atmospheric regions. It is known that some gravity waves may propagate through the mesopause and reach greater altitudes before eventually "breaking" and depositing energy. The generation, propagation, and breaking of upper thermospheric gravity waves have not been studied directly often. However, their ionospheric counterparts, travelling ionospheric disturbances (TIDs, have been extensively studied in, for example, radar data. At high latitudes, it is believed localised auroral activity may generate gravity waves in-situ. Increases in sensor efficiency of Fabry-Perot Interferometers (FPIs located in northern Scandinavia have provided higher time resolution measurements of the auroral oval and polar cap atomic oxygen red line emission at 630.0 nm. A Lomb-Scargle analysis of this data has shown evidence of gravity wave activity with periods ranging from a few tens of minutes to several hours. Oscillations are seen in the intensity of the line as well as the temperatures and line of sight winds. Instruments are located in Sodankylä, Finland; Kiruna, Sweden; Skibotn, Norway, and Svalbard in the Arctic Ocean. A case study is presented here, where a wave of 1.8 h period has a phase speed of 250 ms-1 with a propagation angle of 302°, and a horizontal wavelength of 1600 km. All the FPIs are co-located with EISCAT radars, as well as being supplemented by a range of other instrumentation. This allows the waves found in the FPI data to be put in context with the ionosphere and atmosphere system. Consequently, the source region of the gravity waves can be determined.

  18. Improvement of interferometric measurements on FIR polarimeter/interferometer systems

    International Nuclear Information System (INIS)

    Barry, S.; Nieswald, C.; Buehlmann, F.; Prunty, S.L.; Mansfield, H.M.

    1996-03-01

    On many tokamaks the reconstruction of the magnetic field structure in the plasma is supported by polarimetric measurements. Recent proposed and realized methods are based on a far-infrared laser beam with a rotating polarization ellipse. The same instrument usually performs as an interferometer measuring the line integrated plasma density. It has been shown that the rotating polarization ellipse disturbs the interferometric measurements. A method based on the principle of a rotating polarization in which the interferometric measurement is unaffected is proposed. Bench test results are presented which show the feasibility of this method. (author) 4 figs., 13 refs

  19. Nanometer measurement with a dual Fabry-Perot interferometer

    International Nuclear Information System (INIS)

    Chen Benyong; Li Dacheng; Guo Songling; Zhu Ruogu; Wu Zhaotong

    2001-01-01

    On the basis of analyzing sinusoidal phase-modulating Fabry-Perot interferometry, a method, believed to be novel, is proposed for achieving nanometer measurement accuracy by measuring the time interval between equal amplitudes of the two elementary frequency signals of the transmitted intensities of a dual Fabry-Perot interferometer. A nanometer measurement system based on the method was designed and tested. The experimental results show that the displacement resolution of the system is 0.32 nm at a 1-kHz modulating signal

  20. Arm Locking for the Laser Interferometer Space Antenna

    Science.gov (United States)

    Maghami, P. G.; Thorpe, J. I.; Livas, J.

    2009-01-01

    The Laser Interferometer Space Antenna (LISA) mission is a planned gravitational wave detector consisting of three spacecraft in heliocentric orbit. Laser interferometry is used to measure distance fluctuations between test masses aboard each spacecraft to the picometer level over a 5 million kilometer separation. Laser frequency fluctuations must be suppressed in order to meet the measurement requirements. Arm-locking, a technique that uses the constellation of spacecraft as a frequency reference, is a proposed method for stabilizing the laser frequency. We consider the problem of arm-locking using classical optimal control theory and find that our designs satisfy the LISA requirements.

  1. Three dimensional phase imaging using a scanning optical fiber interferometer

    International Nuclear Information System (INIS)

    Walford, J.N.; Nugent, K.A.; Roberts, A.; Scholten, R.E.

    1998-01-01

    A quantitative method for measuring phase in three dimensions using a scanning optical fiber interferometer is described. By exploiting phase modulation in the reference arm, this technique is insensitive to large variations in the intensity of the field being studied, and is therefore highly suitable for measurement of phase within spatially confined optical beams. It uses only a single detector, and is not reliant on lock-in electronics. The technique is applied to the measurement of the near field of a cleaved optical fiber and shown to produce results in good agreement with theory. (authors)

  2. Position coincidence optical identifications using Texas interferometer radio positions

    International Nuclear Information System (INIS)

    Bozyan, E.P.

    1979-01-01

    1048 radio source positions measured with the Texas Interferometer were searched for optical identifications on glass copies of the Palomar Sky Survey E and O plates, resulting in 242 identifications and 806 blank fields. Finding charts are presented for 124 of the 125 new identifications not previously reported in the literature, and for 73 blank fields containing nearby optical objects which may be real identifications. This brings the cumulative number of Texas radio positions searched to 2015, producing 864 optical identifications and 1151 blank fields

  3. Green Bank Lunar Interferometer for Neutrino Transients: GLINT

    Energy Technology Data Exchange (ETDEWEB)

    Langston, Glen I. [NRAO, P.O. Box 2, Green Bank, WV 24944 (United States)], E-mail: glangsto@nrao.edu; Bradley, Rich [NRAO, 520 Edgemont Rd, Charlottesville, VA 22901 (United States); Hankins, Tim [New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801 (United States); Mutel, Bob [University of Iowa, 706 Van Allen Hall, Iowa City, IA 52242 (United States)

    2009-06-01

    The Green Bank Lunar Interferometer for Neutrino Transients (GLINT) project is a wide band (0.3-2.6 GHz) interferometric radio array dedicated to observations of transient events. The target is detection of few bright (>2000Jy) short duration (few nano-second) pulses from the lunar regolith. The GLINT project has three goals: (1) Maximize detection of statistically significant pulses originating from the lunar surface. (2) Unambiguously differentiate neutrino pulses from other sources of interference. (3) Localize the direction of the incoming radio pulse resulting from neutrino interactions.

  4. Ultimate VHF Broadband Interferometer Zen KAWASAKI and Manabu AKITA

    Science.gov (United States)

    Kawasaki, Z.; Akita, M.

    2013-12-01

    Lightning Research Group of Osaka University (LRGOU) has been developing an interferometer for thunderstorm monitoring during these two decades. When LRGOU initiated this project, many related scientists claimed that LRGOU's system was a time of arrival and it must be a sophisticated TOA system. However the key technology of the system were broad band and digital data processing, and it is named the VHF broad band digital interferometer (BDITF), because the phase difference of Fourier components played the very important role. Then the BDITF finally has been realized as a quasi-real time lightning monitoring system, and LRGOU has been operating their BDITFs around Osaka area. Since the BDITF captures the VHF impulses associated with lightning discharges by amplitude triggering, it occasionally misses one of the bi-directional leader progressions because of relatively small amplitude VHF impulses mainly emitted by positive leader tips. All of high density of VHF pulses associated with recoil leaders may not be recorded. Then the ordinary BDITF is able to be accepted as the practical operational system, but from the aspect of science it has been sioriously expected to be improved its performance. To overcome the difficulty New Mexico Institute of Mining and Technology (NMIMT) and LRGOU have started the joint project, and a continuous recording system for digital signals is adopted [M. Stock et al, and M Akita et al,]. The field campaigns have been conducting in New Mexico and in Japan, and successful observations are accomplished. The algorithm to identify individual VHF pulses associated with lightning discharges from back ground noise and/or artificial noise, the dispersion of phase differences for all Fourier components is examined. In case by of small dispersion it is concluded that analyzed VHF pulse has high possibility to be emitted by lightning discharges. This interpretation means that the recorded VHF pulse shape might maintain without deformation during

  5. High precision neutron interferometer setup S18b

    International Nuclear Information System (INIS)

    Hasegawa, Y.; Lemmel, H.

    2011-01-01

    The present setup at S18 is a multi purpose instrument. It is used for both interferometry and a Bonse-Hart camera for USANS (Ultra Small Angle Neutron Scattering) spectroscopy with wide range tunability of wavelength. Some recent measurements demand higher stability of the instrument, which made us to propose a new setup dedicated particularly for neutron interferometer experiments requiring high phase stability. To keep both options available, we suggest building the new setup in addition to the old one. By extending the space of the present setup by 1.5 m to the upstream, both setups can be accommodated side by side. (authors)

  6. Superposition of helical beams by using a Michelson interferometer.

    Science.gov (United States)

    Gao, Chunqing; Qi, Xiaoqing; Liu, Yidong; Weber, Horst

    2010-01-04

    Orbital angular momentum (OAM) of a helical beam is of great interests in the high density optical communication due to its infinite number of eigen-states. In this paper, an experimental setup is realized to the information encoding and decoding on the OAM eigen-states. A hologram designed by the iterative method is used to generate the helical beams, and a Michelson interferometer with two Porro prisms is used for the superposition of two helical beams. The experimental results of the collinear superposition of helical beams and their OAM eigen-states detection are presented.

  7. Modulation depth of Michelson interferometer with Gaussian beam.

    Science.gov (United States)

    Välikylä, Tuomas; Kauppinen, Jyrki

    2011-12-20

    Mirror misalignment or the tilt angle of the Michelson interferometer can be estimated from the modulation depth measured with collimated monochromatic light. The intensity of the light beam is usually assumed to be uniform, but, for example, with gas lasers it generally has a Gaussian distribution, which makes the modulation depth less sensitive to the tilt angle. With this assumption, the tilt angle may be underestimated by about 50%. We have derived a mathematical model for modulation depth with a circular aperture and Gaussian beam. The model reduces the error of the tilt angle estimate to below 1%. The results of the model have been verified experimentally.

  8. Multichannel spectral mode of the ALOHA up-conversion interferometer

    Science.gov (United States)

    Lehmann, L.; Darré, P.; Boulogne, H.; Delage, L.; Grossard, L.; Reynaud, F.

    2018-03-01

    In this paper, we propose a multichannel spectral configuration of the Astronomical Light Optical Hybrid Analysis (ALOHA) instrument dedicated to high resolution imaging. A frequency conversion process is implemented in each arm of an interferometer to transfer the astronomical light to a shorter wavelength domain. Exploiting the spectral selectivity of this non-linear optical process, we propose to use a set of independent pump lasers in order to simultaneously study multiple spectral channels. This principle is experimentally demonstrated with a dual-channel configuration as a proof-of-principle.

  9. The comparison of environmental effects on michelson and fabry-perot interferometers utilized for the displacement measurement.

    Science.gov (United States)

    Wang, Yung-Cheng; Shyu, Lih-Horng; Chang, Chung-Ping

    2010-01-01

    The optical structure of general commercial interferometers, e.g., the Michelson interferometers, is based on a non-common optical path. Such interferometers suffer from environmental effects because of the different phase changes induced in different optical paths and consequently the measurement precision will be significantly influenced by tiny variations of the environmental conditions. Fabry-Perot interferometers, which feature common optical paths, are insensitive to environmental disturbances. That would be advantageous for precision displacement measurements under ordinary environmental conditions. To verify and analyze this influence, displacement measurements with the two types of interferometers, i.e., a self-fabricated Fabry-Perot interferometer and a commercial Michelson interferometer, have been performed and compared under various environmental disturbance scenarios. Under several test conditions, the self-fabricated Fabry-Perot interferometer was obviously less sensitive to environmental disturbances than a commercial Michelson interferometer. Experimental results have shown that induced errors from environmental disturbances in a Fabry-Perot interferometer are one fifth of those in a Michelson interferometer. This has proved that an interferometer with the common optical path structure will be much more independent of environmental disturbances than those with a non-common optical path structure. It would be beneficial for the solution of interferometers utilized for precision displacement measurements in ordinary measurement environments.

  10. Detecting and classifying low probability of intercept radar

    CERN Document Server

    Pace, Philip E

    2008-01-01

    This revised and expanded second edition brings you to the cutting edge with new chapters on LPI radar design, including over-the-horizon radar, random noise radar, and netted LPI radar. You also discover critical LPI detection techniques, parameter extraction signal processing techniques, and anti-radiation missile design strategies to counter LPI radar.

  11. Radar based autonomous sensor module

    Science.gov (United States)

    Styles, Tim

    2016-10-01

    Most surveillance systems combine camera sensors with other detection sensors that trigger an alert to a human operator when an object is detected. The detection sensors typically require careful installation and configuration for each application and there is a significant burden on the operator to react to each alert by viewing camera video feeds. A demonstration system known as Sensing for Asset Protection with Integrated Electronic Networked Technology (SAPIENT) has been developed to address these issues using Autonomous Sensor Modules (ASM) and a central High Level Decision Making Module (HLDMM) that can fuse the detections from multiple sensors. This paper describes the 24 GHz radar based ASM, which provides an all-weather, low power and license exempt solution to the problem of wide area surveillance. The radar module autonomously configures itself in response to tasks provided by the HLDMM, steering the transmit beam and setting range resolution and power levels for optimum performance. The results show the detection and classification performance for pedestrians and vehicles in an area of interest, which can be modified by the HLDMM without physical adjustment. The module uses range-Doppler processing for reliable detection of moving objects and combines Radar Cross Section and micro-Doppler characteristics for object classification. Objects are classified as pedestrian or vehicle, with vehicle sub classes based on size. Detections are reported only if the object is detected in a task coverage area and it is classified as an object of interest. The system was shown in a perimeter protection scenario using multiple radar ASMs, laser scanners, thermal cameras and visible band cameras. This combination of sensors enabled the HLDMM to generate reliable alerts with improved discrimination of objects and behaviours of interest.

  12. Terahertz radar cross section measurements

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional rad...... information and also allows for identification of scattering points such as weaponry attached to the aircraft. The shapes of the models and positions of reflecting parts are retrieved by the filtered back projection algorithm....

  13. Radar-based hail detection

    Czech Academy of Sciences Publication Activity Database

    Skripniková, Kateřina; Řezáčová, Daniela

    2014-01-01

    Roč. 144, č. 1 (2014), s. 175-185 ISSN 0169-8095 R&D Projects: GA ČR(CZ) GAP209/11/2045; GA MŠk LD11044 Institutional support: RVO:68378289 Keywords : hail detection * weather radar * hail damage risk Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.844, year: 2014 http://www.sciencedirect.com/science/article/pii/S0169809513001804

  14. Radar channel balancing with commutation

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2014-02-01

    When multiple channels are employed in a pulse-Doppler radar, achieving and maintaining balance between the channels is problematic. In some circumstances the channels may be commutated to achieve adequate balance. Commutation is the switching, trading, toggling, or multiplexing of the channels between signal paths. Commutation allows modulating the imbalance energy away from the balanced energy in Doppler, where it can be mitigated with filtering.

  15. Interferometric evidence for the observation of ground backscatter originating behind the CUTLASS coherent HF radars

    Science.gov (United States)

    Milan, S. E.; Jones, T. B.; Robinson, T. R.; Thomas, E. C.; Yeoman, T. K.

    1997-01-01

    Interferometric techniques allow the SuperDARN coherent HF radars to determine the elevation angles of returned backscatter, giving information on the altitude of the scatter volume, in the case of ionospheric backscatter, or the reflection altitude, in the case of ground backscatter. Assumptions have to be made in the determination of elevation angles, including the direction of arrival, or azimuth, of the returned signals, usually taken to be the forward look-direction (north) of the radars, specified by the phasing of the antenna arrays. It is shown that this assumption is not always valid in the case of ground backscatter, and that significant returns can be detected from the backward look-direction of the radars. The response of the interferometer to backscatter from behind the radar is modelled and compared with observations. It is found that ground backscatter from a field-of-view that is the mirror image of the forward-looking field-of-view is a common feature of the observations, and this interpretation successfully explains several anomalies in the received backscatter. Acknowledgements. The authors are grateful to Prof. D. J. Southwood (Imperial College, London), J. C. Samson (University of Alberta, Edmonton), L. J. Lanzerotti (AT&T Bell Laboratories), A. Wolfe (New York City Technical College) and to Dr. M. Vellante (University of LÁquila) for helpful discussions. They also thank Dr. A. Meloni (Istituto Nazionale di Geofisica, Roma) who made available geomagnetic field observations from LÁquila Geomagnetic Observatory. This research activity at LÁquila is supported by MURST (40% and 60% contracts) and by GIFCO/CNR. Topical Editor K.-H. Glaßmeier thanks C. Waters and S. Fujita for their help in evaluating this paper.-> Correspondence to :P. Francia->

  16. Radar imaging using statistical orthogonality

    Science.gov (United States)

    Falconer, David G.

    2000-08-01

    Statistical orthogonality provides a mathematical basis for imaging scattering data with an inversion algorithm that is both robust and economic. The statistical technique is based on the approximate orthogonality of vectors whose elements are exponential functions with imaginary arguments and random phase angles. This orthogonality allows one to image radar data without first inverting a matrix whose dimensionality equals or exceeds the number of pixels or voxels in the algorithmic image. Additionally, statistical-based methods are applicable to data sets collected under a wide range of operational conditions, e.g., the random flight paths of the curvilinear SAR, the frequency-hopping emissions of ultra- wideband radar, or the narrowband data collected with a bistatic radar. The statistical approach also avoids the often-challenging and computationally intensive task of converting the collected measurements to a data format that is appropriate for imaging with a fast Fourier transform (FFT) or fast tomography algorithm (FTA), e.g., interpolating from polar to rectangular coordinates, or conversely.

  17. IceBridge Snow Radar L1B Geolocated Radar Echo Strength Profiles V002

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains radar echograms taken from the Center for Remote Sensing of Ice Sheets (CReSIS) ultra wide-band snow radar over land and sea ice in the Arctic...

  18. IceBridge Accumulation Radar L1B Geolocated Radar Echo Strength Profiles

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains radar echograms taken over Greenland and Antarctica using the Center for Remote Sensing of Ice Sheets (CReSIS) Accumulation Radar instrument....

  19. Simulation of a weather radar display for over-water airborne radar approaches

    Science.gov (United States)

    Clary, G. R.

    1983-01-01

    Airborne radar approach (ARA) concepts are being investigated as a part of NASA's Rotorcraft All-Weather Operations Research Program on advanced guidance and navigation methods. This research is being conducted using both piloted simulations and flight test evaluations. For the piloted simulations, a mathematical model of the airborne radar was developed for over-water ARAs to offshore platforms. This simulated flight scenario requires radar simulation of point targets, such as oil rigs and ships, distributed sea clutter, and transponder beacon replies. Radar theory, weather radar characteristics, and empirical data derived from in-flight radar photographs are combined to model a civil weather/mapping radar typical of those used in offshore rotorcraft operations. The resulting radar simulation is realistic and provides the needed simulation capability for ongoing ARA research.

  20. Improving Weather Radar Precipitation Estimates by Combining two Types of Radars

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ellerbæk; Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2014-01-01

    This paper presents a demonstration of how Local Area Weather Radar (LAWR) X-band measurements can be combined with meteorological C–band measurements into a single radar product. For this purpose, a blending method has been developed which combines the strengths of the two radar systems. Combining...... the two radar types achieves a radar product with both long range and high temporal resolution. It is validated that the blended radar product performs better than the individual radars based on ground observations from laser disdrometers. However, the data combination is challenged by lower performance...... of the LAWR. Although both radars benefits from the data combination, it is also found that advection based temporal interpolation is a more favourable method for increasing the temporal resolution of meteorological C–band measurements....

  1. IceBridge Snow Radar L1B Geolocated Radar Echo Strength Profiles

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains radar echograms taken from the Center for Remote Sensing of Ice Sheets (CReSIS) ultra wide-band snow radar over land and sea ice in the Arctic...

  2. IceBridge Accumulation Radar L1B Geolocated Radar Echo Strength Profiles

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains radar echograms taken over Greenland using the Center for Remote Sensing of Ice Sheets (CReSIS) Accumulation Radar instrument. The data were...

  3. Automotive Radar Sensors in Silicon Technologies

    CERN Document Server

    Jain, Vipul

    2013-01-01

    This book presents architectures and design techniques for mm-wave automotive radar transceivers. Several fully-integrated transceivers and receivers operating at 22-29 GHz and 77-81 GHz are demonstrated in both CMOS and SiGe BiCMOS technologies. Excellent performance is achieved indicating the suitability of silicon technologies for automotive radar sensors.  This book bridges an existing gap between information available on dependable system/architecture design and circuit design.  It provides the background of the field and detailed description of recent research and development of silicon-based radar sensors.  System-level requirements and circuit topologies for radar transceivers are described in detail. Holistic approaches towards designing radar sensors are validated with several examples of highly-integrated radar ICs in silicon technologies. Circuit techniques to design millimeter-wave circuits in silicon technologies are discussed in depth.  Describes concepts and fundamentals of automotive rada...

  4. The Comet Radar Explorer Mission

    Science.gov (United States)

    Asphaug, Erik; Belton, Mike; Bockelee-Morvan, Dominique; Chesley, Steve; Delbo, Marco; Farnham, Tony; Gim, Yonggyu; Grimm, Robert; Herique, Alain; Kofman, Wlodek; Oberst, Juergen; Orosei, Roberto; Piqueux, Sylvain; Plaut, Jeff; Robinson, Mark; Sava, Paul; Heggy, Essam; Kurth, William; Scheeres, Dan; Denevi, Brett; Turtle, Elizabeth; Weissman, Paul

    2014-11-01

    Missions to cometary nuclei have revealed major geological surprises: (1) Global scale layers - do these persist through to the interior? Are they a record of primary accretion? (2) Smooth regions - are they landslides originating on the surface? Are they cryovolcanic? (3) Pits - are they impact craters or sublimation pits, or rooted in the interior? Unambiguous answers to these and other questions can be obtained by high definition 3D radar reflection imaging (RRI) of internal structure. RRI can answer many of the great unknowns in planetary science: How do primitive bodies accrete? Are cometary nuclei mostly ice? What drives their spectacular activity and evolution? The Comet Radar Explorer (CORE) mission will image the detailed internal structure of the nucleus of 10P/Tempel 2. This ~16 x 8 x 7 km Jupiter Family Comet (JFC), or its parent body, originated in the outer planets region possibly millions of years before planet formation. CORE arrives post-perihelion and observes the comet’s waning activity from safe distance. Once the nucleus is largely dormant, the spacecraft enters a ~20-km dedicated Radar Mapping Orbit (RMO). The exacting design of the RRI experiment and the precise navigation of RMO will achieve a highly focused 3D radar reflection image of internal structure, to tens of meters resolution, and tomographic images of velocity and attenuation to hundreds of meters resolution, tied to the gravity model and shape. Visible imagers will produce maps of the surface morphology, albedo, color, texture, and photometric response, and images for navigation and shape determination. The cameras will also monitor the structure and dynamics of the coma, and its dusty jets, allowing their correlation in 3D with deep interior structures and surface features. Repeated global high-resolution thermal images will probe the near-surface layers heated by the Sun. Derived maps of thermal inertia will be correlated with the radar boundary response, and photometry and

  5. Refractometric sensor based on all-fiber coaxial Michelson and Mach-Zehnder interferometers for ethanol detection in fuel

    International Nuclear Information System (INIS)

    Mosquera, L; Osorio, Jonas H; Hayashi, Juliano G; Cordeiro, Cristiano M B

    2011-01-01

    A refractometric sensor based on mechanically induced interferometers formed with long period gratings is reported. It is also shown two different setups based on a Michelson and Mach-Zehnder interferometer and its application to measure ethanol concentration in gasoline.

  6. Mirrors used in the LIGO interferometers for first detection of gravitational waves.

    Science.gov (United States)

    Pinard, L; Michel, C; Sassolas, B; Balzarini, L; Degallaix, J; Dolique, V; Flaminio, R; Forest, D; Granata, M; Lagrange, B; Straniero, N; Teillon, J; Cagnoli, G

    2017-02-01

    For the first time, direct detection of gravitational waves occurred in the Laser Interferometer Gravitational-wave Observatory (LIGO) interferometers. These advanced detectors require large fused silica mirrors with optical and mechanical properties and have never been reached until now. This paper details the main achievements of these ion beam sputtering coatings.

  7. Robust interferometer for the routing of light beams carrying orbital angular momentum

    CSIR Research Space (South Africa)

    Lavery, MPJ

    2011-09-01

    Full Text Available The authors have developed an interferometer requiring only minimal angular alignment for the routing of beams carrying orbital angular momentum. The Mach–Zehnder interferometer contains a Dove prism in each arm where each has a mirror plane around...

  8. Digital holographic amplification of interferograms in the Michelson interferometer using the phase-only LCOS modulator

    Science.gov (United States)

    Balbekin, Nikolay; Petrov, Nikolay; Pul'kin, Sergey; Shoev, Vladislav; Sevryugin, Alexander; Tursunov, Ibrohim; Venediktov, Dmitrii; Venediktov, Vladimir

    2017-10-01

    The method of amplification of hologram was applied to the so-called Rozhdestvenskiy hooks, that were obtained in the Rozhdestvenskiy interferometer (Michelson interferometer, combined with a grating spectrograph). In such a device the absorption lines reveal themselves as specific "hooks", whose curvature provides the information about the atomic oscillator force. The holographic amplification "smoothes" the hooks and thus makes their analysis much simpler.

  9. Electron cyclotron emission measurements on JET: Michelson interferometer, new absolute calibration, and determination of electron temperature

    NARCIS (Netherlands)

    Schmuck, S.; Fessey, J.; Gerbaud, T.; Alper, B.; Beurskens, M. N. A.; de la Luna, E.; Sirinelli, A.; Zerbini, M.

    2012-01-01

    At the fusion experiment JET, a Michelson interferometer is used to measure the spectrum of the electron cyclotron emission in the spectral range 70-500 GHz. The interferometer is absolutely calibrated using the hot/cold technique and, in consequence, the spatial profile of the plasma electron

  10. Design of a Michelson Interferometer for Quantitative Refraction Index Profile Measurements

    NARCIS (Netherlands)

    Nijholt, J.L.M.

    1998-01-01

    This book describes the theoretical design of a three camera Michelson interferometer set-up for quantitative refractive index measuerments. Although a two camera system is easier to align and less expensive, a three camera interferometer is preferred because the expected measuring accuracy is much

  11. Radar range measurements in the atmosphere.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2013-02-01

    The earths atmosphere affects the velocity of propagation of microwave signals. This imparts a range error to radar range measurements that assume the typical simplistic model for propagation velocity. This range error is a function of atmospheric constituents, such as water vapor, as well as the geometry of the radar data collection, notably altitude and range. Models are presented for calculating atmospheric effects on radar range measurements, and compared against more elaborate atmospheric models.

  12. Reduction of Stationary Clutter in Radar,

    Science.gov (United States)

    1980-10-30

    coded passive interference (which consists of indivi- dual dipole packets dropped at certain intervals [2.30] and other stationary clutter present in...1958. 2.9. Cliquot, R. The band L radars of "type Orly". L’Onde Electrique , May 1961. 2.10. Decca Air Surveillance Radar DASR-! (Company catalogue...artificial obstacles in the form of a cloud of dipoles tuned 104 to the radar wavelength. As in the previous paragraph we will limit ourselves to a brief

  13. Spectrum Sharing Radar: Coexistence via Xampling

    OpenAIRE

    Cohen, Deborah; Mishra, Kumar Vijay; Eldar, Yonina C.

    2016-01-01

    This paper presents a spectrum sharing technology enabling interference-free operation of a surveillance radar and communication transmissions over a common spectrum. A cognitive radio receiver senses the spectrum using low sampling and processing rates. The radar is a cognitive system that employs a Xampling-based receiver and transmits in several narrow bands. Our main contribution is the alliance of two previous ideas, CRo and cognitive radar (CRr), and their adaptation to solve the spectr...

  14. Analysis of an astrometric Fizeau interferometer for GAIA

    Science.gov (United States)

    Loiseau, Sacha; Shaklan, Stuart

    1995-01-01

    The concepts related to the operation and design of the global astrometric interferometer for astrophysics (GAIA) bring together solutions chosen for the astrometry satellite and interferometric techniques. Like the Hipparcos satellite, GAIA is a continuously scanning instrument for which the integration time on any observed object is limited by the field of view of the detector. If a final astrometric accuracy of 10 microarcsec is aimed at, a field of 1 deg in diameter is needed. A design is presented for the proposed 2.6 m baseline Fizeau interferometer with two 40 cm apertures and overall dimensions compatible with the size of the Ariane 5 payload shroud. It has a 0.9 deg diffraction limited field of view. The response of the optical system to small perturbations on each optical element is given in terms of the fringe visibility, which is shown to be dependent on the sub-aperture spot separation. The robustness of the design to thermal, mechanical and manufacturing errors is discussed. The unavoidable distortion present in wide field optical systems is analyzed in terms of displacement of the interference fringes.

  15. Operational performance of the TIMED Doppler Interferometer (TIDI)

    Science.gov (United States)

    Skinner, Wilbert R.; Niciejewski, Rick J.; Killeen, Timothy L.; Solomon, Stanley C.; Gablehouse, Daniel; Wu, Qian; Ortland, David; Gell, David A.; Marshall, Alan R.; Wolfe, Edwin, Jr.; Cooper, Marie; Kafkalidis, Julie F.

    2003-11-01

    The TIMED Doppler Interferometer (TIDI) is a Fabry-Perot interferometer designed to measure winds in the mesosphere and thermosphere (60-180 km) as part of the TIMED mission. TIDI is a limb viewer and observes emissions from OI 557.7 nm and rotational lines in the O2(0-0) Atmospheric band. Wind measurement accuracies approach 3 ms-1 in the mesosphere and 15 ms-1 in the thermosphere. The TIDI instrument"s performance during the first year and a half of operation is discussed in this paper. Many subsystems are working as designed. The thermal control system is holding the instrument temperatures at their desired set-points. The CCD detector is working as expected with no changes observed in the gain, bias or read noise. The instrument suffers from a light leak that causes the background to be elevated and increases the uncertainty in the wind measurement. Nothing can be done to eliminate this problem but modeling of the background has eliminated any systematic effect. Water outgassing from the spacecraft or instrument has deposited as ice on some part of the optics and reduced the instrument"s sensitivity. This problem has been reduced by two spacecraft rolls which pointed the TIDI radiator to view more of the earth causing the optics to warm up and sublimate much of the ice.

  16. Development of the First Latin-American Radio Interferometer

    Science.gov (United States)

    Cecatto, J. R.; Sawant, H. S.; Fernandes, F. C. R.; Vilas Boas, J. W. S.

    2009-05-01

    First Latin-American radio interferometer is being developed at INPE, Cachoeira Paulista, Brazil, in a collaborative program between several national and international institutions coordinated by a Brazilian team of scientists and engineers. The interferometer is designated as Brazilian Decimetric Array (BDA) and its 5 element prototype of 4 m diameter antennas (Phase-I) was put into operation by November 2004 at Cachoeira Paulista (Longitude: 45° 00' 20'' W and Latitude: 22° 41' 19'' S) for engineering and operational tests with a frequency range of 1.2-1.7 GHz, baselines up to 216 m in the E-W direction, and time resolution of 0.1 second. Observations of the Sun and strong calibration sources (Cygnus-A, Taurus-A) were carried out. Unidimensional solar map at 1.6 GHz was produced with a spatial resolution less than 3 arcminutes. Also, investigation of the solar brightness temperature (T[b]) variation was possible on a day-to-day and hour-to-hour basis. This investigation show for example a steady increase on T[b] starting from 15:00 UT on December 08, 2004. Interpretations of these results will be presented. In 2005, the first phase of development has finished. Now, Phase-II has begun during which the array will have 21 additional antennas and operate with increased frequency range as well as improved spatial resolution. It is planned to finish it by March 2009. Details of this will be presented.

  17. Wavelength calibration of an imaging spectrometer based on Savart interferometer

    Science.gov (United States)

    Li, Qiwei; Zhang, Chunmin; Yan, Tingyu; Quan, Naicheng; Wei, Yutong; Tong, Cuncun

    2017-09-01

    The basic principle of Fourier-transform imaging spectrometer (FTIS) based on Savart interferometer is outlined. The un-identical distribution of the optical path difference which leads to the wavelength drift of each row of the interferogram is analyzed. Two typical methods for wavelength calibration of the presented system are described. The first method unifies different spectral intervals and maximum spectral frequencies of each row by a reference monochromatic light with known wavelength, and the dispersion compensation of Savart interferometer is also involved. The second approach is based on the least square fitting which builds the functional relation between recovered wavelength, row number and calibrated wavelength by concise equations. The effectiveness of the two methods is experimentally demonstrated with monochromatic lights and mixed light source across the detecting band of the system, and the results indicate that the first method has higher precision and the mean root-mean-square error of the recovered wavelengths is significantly reduced from 19.896 nm to 1.353 nm, while the second method is more convenient to implement and also has good precision of 2.709 nm.

  18. Real-time fringe correction algorithm for the JET interferometer

    International Nuclear Information System (INIS)

    Innocente, P.; Mazon, D.; Joffrin, E.; Riva, M.

    2003-01-01

    On the JET facility, the line-integrated electron density is measured by a multichannel far-infrared (FIR) interferometer. The basic source of radiation is a deuterium cyanide laser (λ=195 μm) measuring the density along four vertical and four nearly horizontal (lateral) channels. During high-density discharges the system suffers from fringe jumps that are manually partially corrected by an off-line program. This intermittent phenomenon prevents reliable usage of the measured line-integrated density in a real-time feedback controller. To solve this problem we have developed a method to correct the fringe jumps on the lateral channels in real time. The method uses the additional methyl alcohol laser (λ=118.8 μm) interferometer present on the lateral channels to compensate the vibrations. The method has been successfully tested with off-line test data, before implementation on a VERSA Module Eurocard system for the real-time control of the JET discharges

  19. GALARIO: a GPU Accelerated Library for Analysing Radio Interferometer Observations

    Science.gov (United States)

    Tazzari, Marco; Beaujean, Frederik; Testi, Leonardo

    2018-02-01

    We present GALARIO, a computational library that exploits the power of modern graphical processing units (GPUs) to accelerate the analysis of observations from radio interferometers like ALMA or the VLA. GALARIO speeds up the computation of synthetic visibilities from a generic 2D model image or a radial brightness profile (for axisymmetric sources). On a GPU, GALARIO is 150 faster than standard Python and 10 times faster than serial C++ code on a CPU. Highly modular, easy to use and to adopt in existing code, GALARIO comes as two compiled libraries, one for Nvidia GPUs and one for multicore CPUs, where both have the same functions with identical interfaces. GALARIO comes with Python bindings but can also be directly used in C or C++. The versatility and the speed of GALARIO open new analysis pathways that otherwise would be prohibitively time consuming, e.g. fitting high resolution observations of large number of objects, or entire spectral cubes of molecular gas emission. It is a general tool that can be applied to any field that uses radio interferometer observations. The source code is available online at http://github.com/mtazzari/galario under the open source GNU Lesser General Public License v3.

  20. Development of an Atom Interferometer Gravity Gradiometer for Earth Sciences

    Science.gov (United States)

    Rakholia, A.; Sugarbaker, A.; Black, A.; Kasecivh, M.; Saif, B.; Luthcke, S.; Callahan, L.; Seery, B.; Feinberg, L.; Mather, J.; hide

    2017-01-01

    We report progress towards a prototype atom interferometer gravity gradiometer for Earth science studies from a satellite in low Earth orbit.The terrestrial prototype has a target sensitivity of 8 x 10(exp -2) E/Hz(sup 1/2) and consists of two atom sources running simultaneous interferometers with interrogation time T = 300 ms and 12 hk photon recoils, separated by a baseline of 2 m. By employing Raman side band cooling and magnetic lensing, we will generate atomic ensembles with N = 10(exp 6) atoms at a temperature of 3 nK. The sensitivity extrapolates to 7 x 10(exp -5) E/Hz(sup 1/2) in microgravity on board a satellite. Simulations derived from this sensitivity demonstrate a monthly time-variable gravity accuracy of 1 cm equivalent water height at 200 km resolution, yielding an improvement over GRACE by 1-2 orders of magnitude. A gravity gradiometer with this sensitivity would also benefit future planetary, lunar, and asteroidal missions.

  1. Magdalena Ridge Observatory Interferometer - New Path to First Light

    Science.gov (United States)

    Creech-Eakman, Michelle J.; Payne, Ifan; Haniff, Chris; Buscher, David; Young, John; Romero, Van; Magdalena Ridge Observatory Interferometer Team

    2016-01-01

    The Magdalena Ridge Observatory Interferometer (MROI), a 10-telescope optical/near-IR interferometer with baselines ranging from 7.8 to 343 meters, has been conceived to be the most ambitious optical/NIR interferometric array under construction to date. U.S. Congressional, N.M. State and university funding (from NM Tech and partner funding at the University of Cambridge) attained from 2000-13 provided for a nearly complete system design, installation of a large portion of the physical infrastructure at the Magdalena Ridge, the first telescope, delay line, fringe tracker and many other necessary sub-systems. New funding has recently been obtained under a cooperative agreement between NM Tech and the Air Force Research Lab (AFRL) to bring the facility to three fully operational telescopes and associated hardware such that first fringes and closure phase will be realized within 5 years. The completed facility will be able to provide support for observing geosynchronous satellites as well as many exciting observations of astronomical targets. An update on the MROI status, plans moving forward for the next 5 years, and some examples of observational applications feasible at different phases of the array's completion will be presented.

  2. Laser ranging interferometer for GRACE follow-on

    Science.gov (United States)

    Heinzel, Gerhard; Sheard, Benjmin; Brause, Nils; Danzmann, Karsten; Dehne, Marina; Gerberding, Oliver; Mahrdt, Christoph; Müller, Vitali; Schütze, Daniel; Stede, Gunnar; Klipstein, William; Folkner, William; Spero, Robert; Nicklaus, Kolja; Gath, Peter; Shaddock, Daniel

    2017-11-01

    The Gravity Recovery and Climate Experiment (GRACE) has produced a wealth of data on Earth gravity, hydrology, glaciology and climate research. To continue that data after the imminent end of the GRACE mission, a follow-on mission is planned to be launched in 2017, as a joint USGerman project with a smaller Australian contribution. The satellites will be essentially rebuilt as they were for GRACE using microwave ranging as the primary instrument for measuring changes of the intersatellite distance. In addition and in contrast to the original GRACE mission, a Laser Ranging Interferometer (LRI, previously also called `Laser Ranging Instrument') will be included as a technology demonstrator, which will operate together with the microwave ranging and supply a complimentary set of ranging data with lower noise, and new data on the relative alignment between the spacecraft. The LRI aims for a noise level of 80 nm/√Hz over a distance of up to 270km and will be the first intersatellite laser ranging interferometer. It shares many technologies with LISA-like gravitational wave observatories. This paper describes the optical architecture including the mechanisms to handle pointing jitter, the main noise sources and their mitigation, and initial laboratory breadboard experiments at AEI Hannover.

  3. Achieving resonance in the Advanced LIGO gravitational-wave interferometer

    International Nuclear Information System (INIS)

    Staley, A; Martynov, D; Abbott, R; Adhikari, R X; Arai, K; Brooks, A F; Ballmer, S; Barsotti, L; Evans, M; Fritschel, P; DeRosa, R T; Effler, A; Dwyer, S; Gray, C; Izumi, K; Frolov, V V; Guido, C J; Heintze, M; Gustafson, R; Hoak, D

    2014-01-01

    Interferometric gravitational-wave detectors are complex instruments comprised of a Michelson interferometer enhanced by multiple coupled cavities. Active feedback control is required to operate these instruments and keep the cavities locked on resonance. The optical response is highly nonlinear until a good operating point is reached. The linear operating range is between 0.01% and 1% of a fringe for each degree of freedom. The resonance lock has to be achieved in all five degrees of freedom simultaneously, making the acquisition difficult. Furthermore, the cavity linewidth seen by the laser is only ∼1 Hz, which is four orders of magnitude smaller than the linewidth of the free running laser. The arm length stabilization system is a new technique used for arm cavity locking in Advanced LIGO. Together with a modulation technique utilizing third harmonics to lock the central Michelson interferometer, the Advanced LIGO detector has been successfully locked and brought to an operating point where detecting gravitational-waves becomes feasible. (paper)

  4. Demonstration of a robust magnonic spin wave interferometer

    Science.gov (United States)

    Kanazawa, Naoki; Goto, Taichi; Sekiguchi, Koji; Granovsky, Alexander B.; Ross, Caroline A.; Takagi, Hiroyuki; Nakamura, Yuichi; Inoue, Mitsuteru

    2016-07-01

    Magnonics is an emerging field dealing with ultralow power consumption logic circuits, in which the flow of spin waves, rather than electric charges, transmits and processes information. Waves, including spin waves, excel at encoding information via their phase using interference. This enables a number of inputs to be processed in one device, which offers the promise of multi-input multi-output logic gates. To realize such an integrated device, it is essential to demonstrate spin wave interferometers using spatially isotropic spin waves with high operational stability. However, spin wave reflection at the waveguide edge has previously limited the stability of interfering waves, precluding the use of isotropic spin waves, i.e., forward volume waves. Here, a spin wave absorber is demonstrated comprising a yttrium iron garnet waveguide partially covered by gold. This device is shown experimentally to be a robust spin wave interferometer using the forward volume mode, with a large ON/OFF isolation value of 13.7 dB even in magnetic fields over 30 Oe.

  5. Quantitative phase determination by using a Michelson interferometer

    International Nuclear Information System (INIS)

    Pomarico, Juan A; Molina, Pablo F; Angelo, Cristian D'

    2007-01-01

    The Michelson interferometer is one of the best established tools for quantitative interferometric measurements. It has been, and is still successfully used, not only for scientific purposes, but it is also introduced in undergraduate courses for qualitative demonstrations as well as for quantitative determination of several properties such as refractive index, wavelength, optical thickness, etc. Generally speaking, most of the measurements are carried out by determining phase distortions through the changes in the location and/or shape of the interference fringes. However, the extreme sensitivity of this tool, for which minimum deviations of the conditions of its branches can cause very large modifications in the fringe pattern, makes phase changes difficult to follow and measure. The purpose of this communication is to show that, under certain conditions, the sensitivity of the Michelson interferometer can be 'turned down' allowing the quantitative measurement of phase changes with relative ease. As an example we present how the angle (or, optionally, the refractive index) of a transparent standard optical wedge can be determined. Experimental results are shown and compared with the data provided by the manufacturer showing very good agreement

  6. Surface measurement errors using commercial scanning white light interferometers

    International Nuclear Information System (INIS)

    Gao, F; Petzing, J; Coupland, J M; Leach, R K

    2008-01-01

    This paper examines the performance of commercial scanning white light interferometers in a range of measurement tasks. A step height artefact is used to investigate the response of the instruments at a discontinuity, while gratings with sinusoidal and rectangular profiles are used to investigate the effects of surface gradient and spatial frequency. Results are compared with measurements made with tapping mode atomic force microscopy and discrepancies are discussed with reference to error mechanisms put forward in the published literature. As expected, it is found that most instruments report errors when used in regions close to a discontinuity or those with a surface gradient that is large compared to the acceptance angle of the objective lens. Amongst other findings, however, we report systematic errors that are observed when the surface gradient is considerably smaller. Although these errors are typically less than the mean wavelength, they are significant compared to the vertical resolution of the instrument and indicate that current scanning white light interferometers should be used with some caution if sub-wavelength accuracy is required

  7. Surface measurement errors using commercial scanning white light interferometers

    Science.gov (United States)

    Gao, F.; Leach, R. K.; Petzing, J.; Coupland, J. M.

    2008-01-01

    This paper examines the performance of commercial scanning white light interferometers in a range of measurement tasks. A step height artefact is used to investigate the response of the instruments at a discontinuity, while gratings with sinusoidal and rectangular profiles are used to investigate the effects of surface gradient and spatial frequency. Results are compared with measurements made with tapping mode atomic force microscopy and discrepancies are discussed with reference to error mechanisms put forward in the published literature. As expected, it is found that most instruments report errors when used in regions close to a discontinuity or those with a surface gradient that is large compared to the acceptance angle of the objective lens. Amongst other findings, however, we report systematic errors that are observed when the surface gradient is considerably smaller. Although these errors are typically less than the mean wavelength, they are significant compared to the vertical resolution of the instrument and indicate that current scanning white light interferometers should be used with some caution if sub-wavelength accuracy is required.

  8. Instrument development for atmospheric radiation measurement (ARM): Status of the Atmospheric Emitted Radiance Interferometer - extended Resolution (AERI-X), the Solar Radiance Transmission Interferometer (SORTI), and the Absolute Solar Transmission Inferometer (ASTI)

    Energy Technology Data Exchange (ETDEWEB)

    Murcray, F.; Stephen, T.; Kosters, J. [Univ. of Denver, CO (United States)

    1996-04-01

    This paper describes three instruments currently under developemnt for the Atmospheric Radiation Measurement (ARM) Program at the University of Denver: the AERI-X (Atmospheric Emitted Radiance Interferometer-Extended Resolution) and the SORTI (Solar R adiance Transmission Interferometer), and ASTI (Absolute Solar transmission Interferometer).

  9. Radar reflection off extensive air showers

    Directory of Open Access Journals (Sweden)

    Werner F.

    2013-06-01

    Full Text Available We investigate the possibility of detecting extensive air showers by the radar technique. Considering a bistatic radar system and different shower geometries, we simulate reflection of radio waves off the static plasma produced by the shower in the air. Using the Thomson cross-section for radio wave reflection, we obtain the time evolution of the signal received by the antennas. The frequency upshift of the radar echo and the power received are studied to verify the feasibility of the radar detection technique.

  10. Resonance and aspect matched adaptive radar (RAMAR)

    CERN Document Server

    Barrett, Terence William

    2012-01-01

    The book describes a new form of radar for which the target response is frequency, i.e., resonance-dependent. The book provides both prototype designs and empirical results collected from a variety of targets. The new form of radar, called RAMAR (Resonance and Aspect Matched Adaptive Radar) advances radar - mere ranging and detection - to the level of RF spectroscopy, and permits an advance of spectroscopic methods from optical, through infra-red and into the RF spectral range. The book will describe how a target's response can be a function of frequency components in the transmitted signal's

  11. Robust Sparse Sensing Using Weather Radar

    Science.gov (United States)

    Mishra, K. V.; Kruger, A.; Krajewski, W. F.; Xu, W.

    2014-12-01

    The ability of a weather radar to detect weak echoes is limited by the presence of noise or unwanted echoes. Some of these unwanted signals originate externally to the radar system, such as cosmic noise, radome reflections, interference from co-located radars, and power transmission lines. The internal source of noise in microwave radar receiver is mainly thermal. The thermal noise from various microwave devices in the radar receiver tends to lower the signal-to-noise ratio, thereby masking the weaker signals. Recently, the compressed sensing (CS) technique has emerged as a novel signal sampling paradigm that allows perfect reconstruction of signals sampled at frequencies lower than the Nyquist rate. Many radar and remote sensing applications require efficient and rapid data acquisition. The application of CS to weather radars may allow for faster target update rates without compromising the accuracy of target information. In our previous work, we demonstrated recovery of an entire precipitation scene from its compressed-sensed version by using the matrix completion approach. In this study, we characterize the performance of such a CS-based weather radar in the presence of additive noise. We use a signal model where the precipitation signals form a low-rank matrix that is corrupted with (bounded) noise. Using recent advances in algorithms for matrix completion from few noisy observations, we reconstruct the precipitation scene with reasonable accuracy. We test and demonstrate our approach using the data collected by Iowa X-band Polarimetric (XPOL) weather radars.

  12. Ground Penetrating Radar : Ultra-wideband radars for improvised explosive devices and landmine detection

    NARCIS (Netherlands)

    Yarovoy, A.

    2008-01-01

    For last two decades Ultra-Wideband Ground Penetrating Radars seemed to be a useful tool for detection and classification of landmines and improvised explosive devices (IEDs). However limitations of radar technology considerably limited operational use of these radars. Recent research at TU Delft

  13. Radar Spectrum Engineering and Management (Ingenierie et gestion du spectre radar)

    Science.gov (United States)

    2017-04-01

    industry, and academic experts in various facets of radar technology is needed to address the spectrum problems facing current (legacy) and future radar...Radar Applications”, IEEE International RF and Microwave Conference 2013, pp. 258-262, Penang, Malaysia , 9-11 December 2013. [88] A.A. Salah, R.S.A

  14. Very small beam-size measurement by a reflective synchrotron radiation interferometer

    Directory of Open Access Journals (Sweden)

    T. Naito

    2006-12-01

    Full Text Available A synchrotron radiation (SR interferometer with Herschelian reflective optics has been developed for the measurement of beams of several μm in size. In a conventional refractive SR interferometer, the dispersion effect of the objective lens limits the instrument to a smaller range of beam-size measurements. To avoid this problem, we designed a Herschelian arrangement of reflective optics for the interferometer. The effectiveness of the reflective SR interferometer was confirmed at the KEK Accelerator Test Facility (ATF damping ring. The measured vertical beam size obtained using the reflective SR interferometer was 4.7   μm and the estimated vertical emittance was 0.97×10^{-11}   m.

  15. A hybrid Fabry–Perot/Michelson interferometer sensor using a dual asymmetric core microstructured fiber

    International Nuclear Information System (INIS)

    Frazão, O; Silva, S F; Viegas, J; Baptista, J M; Santos, J L; Roy, P

    2010-01-01

    A hybrid Fabry–Perot/Michelson interferometer sensor using a dual asymmetric core microstructured fiber is demonstrated. The hybrid interferometer presents three waves. Two parallel Fabry–Perot cavities with low finesse are formed between the splice region and the end of a dual-core microstructured fiber. A Michelson configuration is obtained by the two small cores of the microstructured fiber. The spectral response of the hybrid interferometer presents two pattern fringes with different frequencies due to the respective optical path interferometers. The hybrid interferometer was characterized in strain and temperature presenting different sensitivity coefficients for each topology. Due to these characteristics, this novel sensing head is able to measure strain and temperature, simultaneously

  16. Dual-recycled cavity-enhanced Michelson interferometer for gravitational-wave detection.

    Science.gov (United States)

    Müller, Guido; Delker, Tom; Tanner, David B; Reitze, David

    2003-03-01

    The baseline design for an Advanced Laser Interferometer Gravitational-Wave Observatory (Advanced LIGO) is a dual-recycled Michelson interferometer with cavities in each of the Michelson interferometer arms. We describe one possible length-sensing and control scheme for such a dual-recycled, cavity-enhanced Michelson interferometer. We discuss the principles of this scheme and derive the first-order sensing signals. We also present a successful experimental verification of our length-sensing system using a prototype tabletop interferometer. Our results demonstrate the robustness of the scheme against deviations from the idealized design. We also identify potential weaknesses and discuss possible improvements. These results as well as other benchtop experiments that we present form the basis for a sensing and control scheme for Advanced LIGO.

  17. Radar network communication through sensing of frequency hopping

    Science.gov (United States)

    Dowla, Farid; Nekoogar, Faranak

    2013-05-28

    In one embodiment, a radar communication system includes a plurality of radars having a communication range and being capable of operating at a sensing frequency and a reporting frequency, wherein the reporting frequency is different than the sensing frequency, each radar is adapted for operating at the sensing frequency until an event is detected, each radar in the plurality of radars has an identification/location frequency for reporting information different from the sensing frequency, a first radar of the radars which senses the event sends a reporting frequency corresponding to its identification/location frequency when the event is detected, and all other radars in the plurality of radars switch their reporting frequencies to match the reporting frequency of the first radar upon detecting the reporting frequency switch of a radar within the communication range. In another embodiment, a method is presented for communicating information in a radar system.

  18. Steps Toward a Large Space-Based UV/Optical Fizeau Interferometer: The GSFC Fizeau Interferometer Testbed (FIT)

    Science.gov (United States)

    Carpenter, K. G.; Lyon, R. G.; Mazzuca, L. M.; Solyar, G.; Marzouk, J.; Mundy, L. G.; Armstrong, J. T.; Zhang, X.

    2003-01-01

    Goddard Space Flight Center is pursuing the development of space-based, long-baseline (0.5km) UV-optical Fizeau imaging interferometers to enable the next major stride toward very high angular resolution astronomical observations. This effort includes the development and operation of the Fizeau Interferometry Testbed (FIT), in collaboration with the Naval Research Lab/NPOI, Univ. of MD, and Sigma Space Corporation. The FIT will be used to explore the principles of and requirements for the Stellar Imager (SI) mission concept (http://hires.gsfc.nasa.gov/si) and other such Fizeau Interferometers/Sparse Aperture Telescope missions, leading in the end to the Planet Imager (PI), which is the ultimate goal of the current Origins Program. The primary goal of the FIT program is to demonstrate closed-loop control of mirrors (tip, tilt, piston, translation of array elements) and the overall system to keep the optical beams in phase and enable high quality imaging by a many-element (7-30) Fizeau Interferometric System. The FIT will also be used to assess various wave-front reconstruction and sensing and image reconstruction algorithms for utility and accuracy by application to real data generated by the Testbed. In this paper, we describe the design and goals of the system, provide a status report on its construction, and note our future plans.

  19. A Parallel, High-Fidelity Radar Model

    Science.gov (United States)

    Horsley, M.; Fasenfest, B.

    2010-09-01

    Accurate modeling of Space Surveillance sensors is necessary for a variety of applications. Accurate models can be used to perform trade studies on sensor designs, locations, and scheduling. In addition, they can be used to predict system-level performance of the Space Surveillance Network to a collision or satellite break-up event. A high fidelity physics-based radar simulator has been developed for Space Surveillance applications. This simulator is designed in a modular fashion, where each module describes a particular physical process or radar function (radio wave propagation & scattering, waveform generation, noise sources, etc.) involved in simulating the radar and its environment. For each of these modules, multiple versions are available in order to meet the end-users needs and requirements. For instance, the radar simulator supports different atmospheric models in order to facilitate different methods of simulating refraction of the radar beam. The radar model also has the capability to use highly accurate radar cross sections generated by the method of moments, accelerated by the fast multipole method. To accelerate this computationally expensive model, it is parallelized using MPI. As a testing framework for the radar model, it is incorporated into the Testbed Environment for Space Situational Awareness (TESSA). TESSA is based on a flexible, scalable architecture, designed to exploit high-performance computing resources and allow physics-based simulation of the SSA enterprise. In addition to the radar models, TESSA includes hydrodynamic models of satellite intercept and debris generation, orbital propagation algorithms, optical brightness calculations, optical system models, object detection algorithms, orbit determination algorithms, simulation analysis and visualization tools. Within this framework, observations and tracks generated by the new radar model are compared to results from a phenomenological radar model. In particular, the new model will be

  20. Array-Based Ultrawideband through-Wall Radar: Prediction and Assessment of Real Radar Abilities

    Directory of Open Access Journals (Sweden)

    Nadia Maaref

    2013-01-01

    Full Text Available This paper deals with a new through-the-wall (TTW radar demonstrator for the detection and the localisation of people in a room (in a noncooperative way with the radar situated outside but in the vicinity of the first wall. After modelling the propagation through various walls and quantifying the backscattering by the human body, an analysis of the technical considerations which aims at defining the radar design is presented. Finally, an ultrawideband (UWB frequency modulated continuous wave (FMCW radar is proposed, designed, and implemented. Some representative trials show that this radar is able to localise and track moving people behind a wall in real time.