WorldWideScience

Sample records for single-pass airborne radar

  1. High-Accuracy Elevation Data at Large Scales from Airborne Single-Pass SAR Interferometry

    Directory of Open Access Journals (Sweden)

    Guy Jean-Pierre Schumann

    2016-01-01

    Full Text Available Digital elevation models (DEMs are essential data sets for disaster risk management and humanitarian relief services as well as many environmental process models. At present, on the hand, globally available DEMs only meet the basic requirements and for many services and modeling studies are not of high enough spatial resolution and lack accuracy in the vertical. On the other hand, LiDAR-DEMs are of very high spatial resolution and great vertical accuracy but acquisition operations can be very costly for spatial scales larger than a couple of hundred square km and also have severe limitations in wetland areas and under cloudy and rainy conditions. The ideal situation would thus be to have a DEM technology that allows larger spatial coverage than LiDAR but without compromising resolution and vertical accuracy and still performing under some adverse weather conditions and at a reasonable cost. In this paper, we present a novel single pass In-SAR technology for airborne vehicles that is cost-effective and can generate DEMs with a vertical error of around 0.3 m for an average spatial resolution of 3 m. To demonstrate this capability, we compare a sample single-pass In-SAR Ka-band DEM of the California Central Valley from the NASA/JPL airborne GLISTIN-A to a high-resolution LiDAR DEM. We also perform a simple sensitivity analysis to floodplain inundation. Based on the findings of our analysis, we argue that this type of technology can and should be used to replace large regions of globally available lower resolution DEMs, particularly in coastal, delta and floodplain areas where a high number of assets, habitats and lives are at risk from natural disasters. We conclude with a discussion on requirements, advantages and caveats in terms of instrument and data processing.

  2. Single-pass Airborne InSAR for Wide-swath, High-Resolution Cryospheric Surface Topography Mapping

    Science.gov (United States)

    Moller, D.; Hensley, S.; Wu, X.; Muellerschoen, R.

    2014-12-01

    In May 2009 a mm-wave single-pass interferometric synthetic aperture radar (InSAR) for the first time demonstrated ice surface topography swath-mapping in Greenland. This was achieved with the airborne Glacier and Ice Surface Topography Interferometer (GLISTIN-A). Ka-band (35.6GHz) was chosen for high-precision topographic mapping from a compact sensor with minimal surface penetration. In recent years, the system was comprehensively upgraded for improved performance, stability and calibration. In April 2013, after completing the upgrades, GLISTIN-A flew a brief campaign to Alaska. The primary purpose was to demonstrate the InSAR's ability to generate high-precision, high resolution maps of ice surface topography with swaths in excess of 10km. Comparison of GLISTIN-A's elevations over glacial ice with lidar verified the precision requirements and established elevation accuracies to within 2 m without tie points. Feature tracking of crevasses on Columbia Glacier using data acquired with a 3-day separation exhibit an impressive velocity mapping capability. Furthermore, GLISTIN-A flew over the Beaufort sea to determine if we could not only map sea ice, but also measure freeboard. Initial analysis has established we can measure sea-ice freeboard using height differences from the top of the sea-ice and the sea surface in open leads. In the future, a campaign with lidar is desired for a quantitative validation. Another proof-of-concept collection mapped snow-basins for hydrology. Snow depth measurements using summer and winter collections in the Sierras were compared with lidar measurements. Unsurprisingly when present, trees complicate the interpretation, but additional filtering and processing is in work. For each application, knowledge of the interferometric penetration is important for scientific interpretation. We present analytical predictions and experimental data to upper bound the elevation bias of the InSAR measurements over snow and snow-covered ice.

  3. Realization of a scalable airborne radar

    NARCIS (Netherlands)

    Otten, M.P.G.; Vermeulen, B.C.B.; Liempt, L.J. van; Halsema, D. van; Jongh, R.V. de; Es, J. van

    2008-01-01

    Modern airborne ground surveillance radar systems are increasingly based on Active Electronically Scanned Array (AESA) antennas. Efficient use of array technology and the need for radar solutions for various airborne platforms, manned and unmanned, leads to the design of scalable radar systems. The

  4. CLPX-Airborne: Airborne Synthetic Aperture Radar (AIRSAR) Imagery

    Data.gov (United States)

    National Aeronautics and Space Administration — Airborne Synthetic Aperture Radar (AIRSAR) is a side-looking imaging radar that is able to collect data irrespective of daylight or cloud cover. The AIRSAR...

  5. Airborne Radar Search for Diesel Submarines (ARSDS)

    National Research Council Canada - National Science Library

    Pilnick, Steven E; Landa, Jose

    2005-01-01

    .... In this research, a detection rate model is developed to analyze the effectiveness of an airborne radar search for a diesel submarine assumed to be intermittently operating with periscopes or masts...

  6. Airborne Radar Search for Diesel Submarines

    National Research Council Canada - National Science Library

    Pilnick, Steven E; Landa, Jose

    2005-01-01

    .... In this research, a detection rate model is developed to analyze the effectiveness of airborne radar search for a diesel submarine assumed to be intermittently operating with periscopes or masts...

  7. CLPX-Airborne: Airborne GPS Bistatic Radar

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of measurements of GPS signals reflected from the Earth's surface and collected on an airborne platform. A modified GPS Delay Mapping Receiver...

  8. NAMMA SECOND GENERATION AIRBORNE PRECIPITATION RADAR (APR-2) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NAMMA Second Generation Airborne Precipitation Radar (APR-2) dataset was collected by using the Second Generation Airborne Precipitation Radar (APR-2), which is...

  9. GRIP AIRBORNE SECOND GENERATION PRECIPITATION RADAR (APR-2) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GRIP Airborne Second Generation Precipitation Radar (APR-2) dataset was collected from the Second Generation Airborne Precipitation Radar (APR-2), which is a...

  10. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  11. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a... conditions that can be detected with airborne weather radar equipment, may reasonably be expected along the...

  12. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  13. EMISAR single pass topographic SAR interferometer modes

    DEFF Research Database (Denmark)

    Madsen, Søren Nørvang; Skou, Niels; Woelders, Kim

    1996-01-01

    The Danish Center for Remote Sensing (DCRS) has augmented its dual-frequency polarimetric synthetic aperture radar system (EMISAR) with single pass across-track interferometric (XTI) modes. This paper describes the system configuration, specifications and the operating modes. Analysis of data acq...

  14. Airborne Differential Doppler Weather Radar

    Science.gov (United States)

    Meneghini, R.; Bidwell, S.; Liao, L.; Rincon, R.; Heymsfield, G.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    The Precipitation Radar aboard the Tropical Rain Measuring Mission (TRMM) Satellite has shown the potential for spaceborne sensing of snow and rain by means of an incoherent pulsed radar operating at 13.8 GHz. The primary advantage of radar relative to passive instruments arises from the fact that the radar can image the 3-dimensional structure of storms. As a consequence, the radar data can be used to determine the vertical rain structure, rain type (convective/stratiform) effective storm height, and location of the melting layer. The radar, moreover, can be used to detect snow and improve the estimation of rain rate over land. To move toward spaceborne weather radars that can be deployed routinely as part of an instrument set consisting of passive and active sensors will require the development of less expensive, lighter-weight radars that consume less power. At the same time, the addition of a second frequency and an upgrade to Doppler capability are features that are needed to retrieve information on the characteristics of the drop size distribution, vertical air motion and storm dynamics. One approach to the problem is to use a single broad-band transmitter-receiver and antenna where two narrow-band frequencies are spaced apart by 5% to 10% of the center frequency. Use of Ka-band frequencies (26.5 GHz - 40 GHz) affords two advantages: adequate spatial resolution can be attained with a relatively small antenna and the differential reflectivity and mean Doppler signals are directly related to the median mass diameter of the snow and raindrop size distributions. The differential mean Doppler signal has the additional property that this quantity depends only on that part of the radial speed of the hydrometeors that is drop-size dependent. In principle, the mean and differential mean Doppler from a near-nadir viewing radar can be used to retrieve vertical air motion as well as the total mean radial velocity. In the paper, we present theoretical calculations for the

  15. GRIP AIRBORNE SECOND GENERATION PRECIPITATION RADAR (APR-2) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Second Generation Airborne Precipitation Radar (APR-2) is a dual-frequency (13 GHz and 35 GHz), Doppler, dual-polarization radar system. It has a downward...

  16. Airborne Cloud Radar (ACR) Reflectivity, Wakasa Bay, Japan

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes 94 GHz co- and cross-polarized radar reflectivity. The Airborne Cloud Radar (ACR) sensor was mounted to a NASA P-3 aircraft flown over the Sea...

  17. Moving Target Indication for Multi-channel Airborne Radar Systems

    NARCIS (Netherlands)

    Lidicky, L.

    2010-01-01

    Moving target indication (MTI) using radar is of great interest in civil and military applications. Its uses include airborne or space-borne surveillance of ground moving vehicles (cars, trains) or ships at sea, for instance. Airborne (space-borne) radar offers several advantages when compared to

  18. SMEX02 Airborne Synthetic Aperture Radar (AIRSAR) Data, Iowa

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains radar backscatter measurments taken over the Soil Moisture Experiments 2002 (SMEX02) Walnut Creek Watershed area in Iowa, USA. The Airborne...

  19. APR-2 Dual-frequency Airborne Radar Observations, Wakasa Bay

    Data.gov (United States)

    National Aeronautics and Space Administration — In January and February 2003, the Airborne Second Generation Precipitation Radar (APR-2) collected data in the Wakasa Bay AMSR-E validation campaign over the sea of...

  20. Simulation of a weather radar display for over-water airborne radar approaches

    Science.gov (United States)

    Clary, G. R.

    1983-01-01

    Airborne radar approach (ARA) concepts are being investigated as a part of NASA's Rotorcraft All-Weather Operations Research Program on advanced guidance and navigation methods. This research is being conducted using both piloted simulations and flight test evaluations. For the piloted simulations, a mathematical model of the airborne radar was developed for over-water ARAs to offshore platforms. This simulated flight scenario requires radar simulation of point targets, such as oil rigs and ships, distributed sea clutter, and transponder beacon replies. Radar theory, weather radar characteristics, and empirical data derived from in-flight radar photographs are combined to model a civil weather/mapping radar typical of those used in offshore rotorcraft operations. The resulting radar simulation is realistic and provides the needed simulation capability for ongoing ARA research.

  1. Identification of human motion signature using airborne radar data

    Science.gov (United States)

    McDonald, Michael; Damini, Anthony

    2013-09-01

    Data containing the radar signature of amoving person on the groundwere collected at ranges of up to 30 kmfroma moving airborne platform using the DRDC Ottawa X-bandWideband Experimental Airborne Radar (XWEAR). The human target radar echo returns were found to possess a characteristic amplitude modulated (AM) and frequency modulated (FM) signature which could be usefully characterized in terms of conventional AM and FM modulation parameters. Human detection performance after space time adaptive processing is frequently limited by false alarms arising from incomplete cancellation of large radar cross-section discretes during the whitening step. However, the clutter discretes possess different modulation characteristics from the human targets discussed above. The ability of pattern classification techniques to use this parameter measurement space to distinguish between human targets and clutter discretes is explored and preliminary results presented.

  2. SMEX03 Airborne GPS Bistatic Radar Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains measurements of Global Positioning System (GPS) signals reflected from the Earth’s surface and collected on an airborne platform. The...

  3. Phased-array radar for airborne systems

    Science.gov (United States)

    Tahim, Raghbir S.; Foshee, James J.; Chang, Kai

    2003-09-01

    Phased array antenna systems, which support high pulse rates and high transmit power, are well suited for radar and large-scale surveillance. Sensors and communication systems can function as the eyes and ears for ballistic missile defense applications, providing early warning of attack, target detection and identification, target tracking, and countermeasure decision. In such applications, active array radar systems that contain solid-state transmitter sources and low-noise preamplifiers for transmission and reception are preferred over the conventional radar antennas, because the phased array radar offers the advantages of power management and efficiency, reliability, signal reception, beam steering target detection. The current phased array radar designs are very large, complex and expensive and less efficient because of high RF losses in the phase control circuits used for beam scan. Several thousands of phase shifters and drivers may be required for a single system thus making the system very complex and expensive. This paper describes the phased array radar system based on high power T/R modules, wide-band radiating planar antenna elements and very low loss wide-band phase control circuits (requiring reduced power levels) for beam scan. The phase shifter design is based on micro-strip feed lines perturbed by the proximity of voltage controlled piezoelectric transducer (PET). Measured results have shown an added insertion loss of less than 1 dB for a phase shift of 450 degrees from 2 to 20 GHz. The new wideband phased array radar design provides significant reduction in size cost and weight. Compared to the conventional phased array systems, the cost saving is more than 15 to 1.

  4. Airborne radar sounder for temperate ice: initial results from Patagonia

    Science.gov (United States)

    Zamora, Rodrigo; Ulloa, David; Garcia, Gonzalo; Mella, Ronald; Uribe, José; Wendt, Jens; Rivera, Andrés; Gacitúa, Guisella; Casassa, Gino

    We describe the development of a low-frequency airborne radar specifically designed for the sounding of temperate ice. The system operates at a central frequency of 1 MHz and consists of an impulse transmitter with an output voltage up to 5000 V and a digital receiver with a maximum gain of 80 dB. The radar was deployed on board a CASA 212 aircraft, which also carries a laser altimeter, an inertial navigation system, a digital camera and a GPS receiver. A description of the radar system is provided, as well as preliminary results obtained at Glaciar Tyndall, Campo de Hielo Sur (Southern Patagonia Icefield), where an ice depth of 670 m was reached.

  5. Multimode/Multifrequency Low Frequency Airborne Radar Design

    Directory of Open Access Journals (Sweden)

    Sandra Costanzo

    2013-01-01

    Full Text Available This work deals with the design of multimode/multifrequency airborne radar suitable for imaging and subsurface sounding. The system operates at relatively low frequencies in the band ranging from VHF to UHF. It is able to work in two different modalities: (i nadir-looking sounder in the VHF band (163 MHz and (ii side-looking imager (SAR in the UHF band with two channels at 450 MHz and 860 MHz. The radar has been completely designed by CO.Ri.S.T.A. for what concerns the RF and the electronic aspect, and by the University of Calabria for what concerns the design, realization, and test of SAR antennas. The radar has been installed on a civil helicopter and its operation has been validated in flight in both sounder and imager modality. Preliminary surveys have been carried out over different areas of Campania region, South Italy.

  6. Advances in the testing and evaluation of airborne radar through realtime simulation of synthetic clutter

    CSIR Research Space (South Africa)

    Strydom, JJ

    2011-11-01

    Full Text Available Clutter Simulation ? CSIR 2011 Slide 20 From: G. Morris and L. Harkness, Airborne Pulsed Doppler Radar Synthetic Clutter Simulation Recorded Data Airborne Range Doppler map ? CSIR 2011 Slide 21 Data from: Synthetic Clutter Simulation Building...

  7. GPM GROUND VALIDATION AIRBORNE SECOND GENERATION PRECIPITATION RADAR (APR-2) GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Second Generation Airborne Precipitation Radar (APR-2) is a dual-frequency (13 GHz and 35 GHz), Doppler, dual-polarization radar system. It has a downward...

  8. Single Pass Albumin Dialysis in Hepatorenal Syndrome

    Directory of Open Access Journals (Sweden)

    Rahman Ebadur

    2008-01-01

    Full Text Available Hepatorenal syndrome (HRS is the most appalling complication of acute or chronic liver disease with 90% mortality rate. Single pass albumin dialysis (SPAD can be considered as a noble liver support technique in HRS. Here, we present a case of a young healthy patient who developed hyperacute fulminant liver failure that progressed to HRS. The patient was offered SPAD as a bridge to liver transplantation, however, it resulted in an excellent recovery.

  9. GPM Ground Validation Airborne Precipitation Radar 3rd Generation (APR-3) OLYMPEX V2.3

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Airborne Precipitation Radar 3rd Generation (APR-3) OLYMPEX dataset was collected from November 12, 2015 to December 19, 2015 during the...

  10. GPM GROUND VALIDATION AIRBORNE SECOND GENERATION PRECIPITATION RADAR (APR-2) GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Airborne Second Generation Precipitation Radar (APR-2) GCPEx dataset was collected during the GPM Cold-season Precipitation Experiment...

  11. Development of an Airborne Ka-band FMCW Synthetic Aperture Radar

    NARCIS (Netherlands)

    De Wit, J.J.M.

    2005-01-01

    In the field of airborne earth observation there is a special interest in lightweight, low cost imaging radars of high resolution. Such radar systems could play an essential role in small-scale earth observation applications such as the monitoring of dikes, watercourses or areas in which gas pipes

  12. Processing of High Resolution, Multiparametric Radar Data for the Airborne Dual-Frequency Precipitation Radar APR-2

    Science.gov (United States)

    Tanelli, Simone; Meagher, Jonathan P.; Durden, Stephen L.; Im, Eastwood

    2004-01-01

    Following the successful Precipitation Radar (PR) of the Tropical Rainfall Measuring Mission, a new airborne, 14/35 GHz rain profiling radar, known as Airborne Precipitation Radar - 2 (APR-2), has been developed as a prototype for an advanced, dual-frequency spaceborne radar for a future spaceborne precipitation measurement mission. . This airborne instrument is capable of making simultaneous measurements of rainfall parameters, including co-pol and cross-pol rain reflectivities and vertical Doppler velocities, at 14 and 35 GHz. furthermore, it also features several advanced technologies for performance improvement, including real-time data processing, low-sidelobe dual-frequency pulse compression, and dual-frequency scanning antenna. Since August 2001, APR-2 has been deployed on the NASA P3 and DC8 aircrafts in four experiments including CAMEX-4 and the Wakasa Bay Experiment. Raw radar data are first processed to obtain reflectivity, LDR (linear depolarization ratio), and Doppler velocity measurements. The dataset is then processed iteratively to accurately estimate the true aircraft navigation parameters and to classify the surface return. These intermediate products are then used to refine reflectivity and LDR calibrations (by analyzing clear air ocean surface returns), and to correct Doppler measurements for the aircraft motion. Finally, the the melting layer of precipitation is detected and its boundaries and characteristics are identifIed at the APR-2 range resolution of 30m. The resulting 3D dataset will be used for validation of other airborne and spaceborne instruments, development of multiparametric rain/snow retrieval algorithms and melting layer characterization and statistics.

  13. The internal layering of Pine Island Glacier, West Antarctica, from airborne radar-sounding data

    DEFF Research Database (Denmark)

    Karlsson, Nanna Bjørnholt; Rippin, David; Vaughan, David

    2010-01-01

    This paper presents an overview of internal layering across Pine Island Glacier, West Antarctica, as measured from airborne-radar data acquired during a survey conducted by the British Antarctic Survey and the University of Texas in the 2004/05 season. Internal layering is classified according to...

  14. Design of a Small, Low Cost, P-Band Airborne Polarimetric Synthetic Aperture Radar

    NARCIS (Netherlands)

    Figueras i Ventura, J.; Hoogeboom, P.

    2004-01-01

    A preliminary study of the design of a small, low cost, P-band airborne, polarimetric Synthetic Aperture Radar desired by the Wageningen University and the Borneo Orangutan Survival Foundation (BOS) to carry out forest biomass monitoring in Indonesia is presented. The requirements of the application

  15. Reconfigurable Weather Radar for Airborne Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Intelligent Automation, Inc (IAI) and its university partner, University of Oklahoma (OU), Norman, propose a forward-looking airborne environment sensor based on...

  16. SMEX02 Airborne GPS Bistatic Radar Data, Iowa

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains measurements of Global Positioning System (GPS) signals reflected from the Earth’s surface and collected on an airborne platform. The...

  17. Electromagnetic Model Reliably Predicts Radar Scattering Characteristics of Airborne Organisms

    Science.gov (United States)

    Mirkovic, Djordje; Stepanian, Phillip M.; Kelly, Jeffrey F.; Chilson, Phillip B.

    2016-10-01

    The radar scattering characteristics of aerial animals are typically obtained from controlled laboratory measurements of a freshly harvested specimen. These measurements are tedious to perform, difficult to replicate, and typically yield only a small subset of the full azimuthal, elevational, and polarimetric radio scattering data. As an alternative, biological applications of radar often assume that the radar cross sections of flying animals are isotropic, since sophisticated computer models are required to estimate the 3D scattering properties of objects having complex shapes. Using the method of moments implemented in the WIPL-D software package, we show for the first time that such electromagnetic modeling techniques (typically applied to man-made objects) can accurately predict organismal radio scattering characteristics from an anatomical model: here the Brazilian free-tailed bat (Tadarida brasiliensis). The simulated scattering properties of the bat agree with controlled measurements and radar observations made during a field study of bats in flight. This numerical technique can produce the full angular set of quantitative polarimetric scattering characteristics, while eliminating many practical difficulties associated with physical measurements. Such a modeling framework can be applied for bird, bat, and insect species, and will help drive a shift in radar biology from a largely qualitative and phenomenological science toward quantitative estimation of animal densities and taxonomic identification.

  18. Range profiling of the rain rate by an airborne weather radar

    Science.gov (United States)

    Meneghini, Robert; Nakamura, Kenji

    1990-01-01

    A class of methods based on a measure of path attenuation that is used to constrain the Hitschfeld-Bordan solution is investigated. Such methods are investigated for lidar, radar, and combined radar-radiometer applications. Their function is to allocate the attenuation in proportion to the strength of the measured reflectivity. A description is provided of four estimates of rain rate that have been tested using data from a dual-wavelength airborne radar at 10 GHz and 35 GHz. It is concluded, that when attenuation is significant, the estimates are generally more accurate than those without attenuation correction. Thus, such methodologies can be utilized to extend the effective dynamic range of the radar to higher rain rates.

  19. Preprocessing of side-looking airborne radar data.

    NARCIS (Netherlands)

    Hoogeboom, P.

    1983-01-01

    Studies on microwave surface scattering in The Netherlands have indicated the need for accurate radar systems for applications in remote sensing. An SLAR system with digital recording was developed and is now being used for several programmes. This system was designed with special attention to

  20. On construction method of shipborne and airborne radar intelligence and related equipment knowledge graph

    Science.gov (United States)

    Hao, Ruizhe; Huang, Jian

    2017-08-01

    Knowledge graph construction in military intelligence domain is sprouting but technically immature. This paper presents a method to construct the heterogeneous knowledge graph in the field of shipborne and airborne radar and equipment. Based on the expert knowledge and the up-to-date Internet open source information, we construct the knowledge graph of radar characteristic information and the equipment respectively, and establish relationships between two graphs, providing the pipeline and method for the intelligence organization and management in the context of the crowding battlefields big data.

  1. Axioms for behavioural congruence of single-pass instruction sequences

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2017-01-01

    In program algebra, an algebraic theory of single-pass instruction sequences, three congruences on instruction sequences are paid attention to: instruction sequence congruence, structural congruence, and behavioural congruence. Sound and complete axiom systems for the first two congruences were

  2. Remote Sensing of Precipitation from Airborne and Spaceborne Radar. Chapter 13

    Science.gov (United States)

    Munchak, S. Joseph

    2017-01-01

    Weather radar measurements from airborne or satellite platforms can be an effective remote sensing tool for examining the three-dimensional structures of clouds and precipitation. This chapter describes some fundamental properties of radar measurements and their dependence on the particle size distribution (PSD) and radar frequency. The inverse problem of solving for the vertical profile of PSD from a profile of measured reflectivity is stated as an optimal estimation problem for single- and multi-frequency measurements. Phenomena that can change the measured reflectivity Z(sub m) from its intrinsic value Z(sub e), namely attenuation, non-uniform beam filling, and multiple scattering, are described and mitigation of these effects in the context of the optimal estimation framework is discussed. Finally, some techniques involving the use of passive microwave measurements to further constrain the retrieval of the PSD are presented.

  3. ESA'S POLarimetric Airborne Radar Ice Sounder (POLARIS): design and first results

    DEFF Research Database (Denmark)

    Dall, Jørgen; Kristensen, Steen Savstrup; Krozer, Viktor

    2010-01-01

    -of-concept campaign was conducted in Greenland. This study outlines the design and implementation of the system, and based on first results it is concluded that in the central dry snow zone of Greenland, POLARIS can resolve shallow and deep internal ice layers, penetrate the thickest ice encountered and detect......The Technical University of Denmark has developed and tested a P-band ice sounding radar for European Space Agency (ESA). With the recent by the International Telecommunication Union (ITU) allocation of a radar band at 435 MHz, increased interest in space-based sounding of the Earth s ice caps has...... been encountered. ESA s POLarimetric Airborne Radar Ice Sounder (POLARIS) is intended to provide a better understanding of P-band scattering and propagation through ice sheets and to verify novel surface clutter suppression techniques in preparation for a potential space-based ice sounding mission...

  4. Investigation of Advanced Radar Techniques for Atmospheric Hazard Detection with Airborne Weather Radar

    Science.gov (United States)

    Pazmany, Andrew L.

    2014-01-01

    In 2013 ProSensing Inc. conducted a study to investigate the hazard detection potential of aircraft weather radars with new measurement capabilities, such as multi-frequency, polarimetric and radiometric modes. Various radar designs and features were evaluated for sensitivity, measurement range and for detecting and quantifying atmospheric hazards in wide range of weather conditions. Projected size, weight, power consumption and cost of the various designs were also considered. Various cloud and precipitation conditions were modeled and used to conduct an analytic evaluation of the design options. This report provides an overview of the study and summarizes the conclusions and recommendations.

  5. Airborne polarimetric Doppler weather radar: trade-offs between various engineering specifications

    Science.gov (United States)

    Vivekanandan, Jothiram; Loew, Eric

    2018-01-01

    NCAR EOL is investigating potential configurations for the next-generation airborne phased array radar (APAR) that is capable of retrieving dynamic and microphysical characteristics of clouds and precipitation. The APAR will operate at C band. The APAR will use the electronic scanning (e-scan) feature to acquire the optimal number of independent samples for recording research-quality measurements. Since the airborne radar has only a limited time for collecting measurements over a specified region (moving aircraft platform ˜ 100 m s-1), beam multiplexing will significantly enhance its ability to collect high-resolution, research-quality measurements. Beam multiplexing reduces errors in radar measurements while providing rapid updates of scan volumes. Beamwidth depends on the size of the antenna aperture. Beamwidth and directivity of elliptical, circular, and rectangular antenna apertures are compared and radar sensitivity is evaluated for various polarimetric configurations and transmit-receive (T/R) elements. In the case of polarimetric measurements, alternate transmit with alternate receive (single-channel receiver) and simultaneous reception (dual-channel receiver) is compared. From an overall architecture perspective, element-level digitization of T/R module versus digital sub-array is considered with regard to flexibility in adaptive beamforming, polarimetric performance, calibration, and data quality. Methodologies for calibration of the radar and removing bias in polarimetric measurements are outlined. The above-mentioned engineering options are evaluated for realizing an optimal APAR system suitable for measuring the high temporal and spatial resolutions of Doppler and polarimetric measurements of precipitation and clouds.

  6. Current Development in Airborne Repeat-pass Interferometric Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Zhong Xue-lian

    2013-09-01

    Full Text Available Due to its agility, flexibility and accuracy, airborne repeat-pass Interferometric Synthetic Aperture Radar (InSAR is capable of overcoming the disadvantages of long revisit time and low resolution in space-borne SAR interferometry, and play an irreplaceable role in monitoring the deformation of landslides, volcanoes, earthquakes, etc. In this paper, the history and status in the world wide about the technology of airborne repeat-pass SAR interferometry are reviewed detailedly. Then after the accuracy of this technology is analyzed, its key problems in practice are presented, and the related researches in this field are also introduced comprehensively. The development trend and the prospect of this technology are also described in this paper. Finally, it is pointed that several problems still need to be studied further for accurate parameter inversion.

  7. Surface Clutter Removal in Airborne Radar Sounding Data from the Dry Valleys, Antarctica

    Science.gov (United States)

    Holt, J. W.; Blankenship, D. D.; Morse, D. L.; Peters, M. E.; Kempf, S. D.

    2005-01-01

    We have collected roughly 1,000 line-km of airborne radar sounding data over glaciers, rock/ice glaciers, permafrost, subsurface ice bodies, ice-covered saline lakes, and glacial deposits in Taylor and Beacon Valley. These data are being analyzed in order to develop techniques for discriminating between subsurface and off-nadir echoes and for detecting and characterizing subsurface interfaces. The identification of features on Mars exhibiting morphologies consistent with ice/rock mixtures, near-surface ice bodies and near-surface liquid water, and the importance of such features to the search for water on Mars, highlights the need for appropriate terrestrial analogs and analysis techniques in order to prepare for radar sounder missions to Mars. Climatic, hydrological, and geological conditions in the Dry Valleys of Antarctica are analogous in many ways to those on Mars. A crucial first step in the data analysis process is the discrimination of echo sources in the radar data. The goal is to identify all returns from the surface of off-nadir topography in order to positively identify subsurface echoes. This process will also be critical for radar data that will be collected in areas of Mars exhibiting significant topography, so that subsurface echoes are identified unambiguously. The positive detection and characterization of subsurface (including sub-ice) water is a primary goal of NASA's Mars exploration program. Our data over the Dry Valleys provides an opportunity to implement techniques we are developing to accomplish these goals.

  8. Improved rain rate and drop size retrievals from airborne Doppler radar

    Science.gov (United States)

    Mason, Shannon L.; Chiu, J. Christine; Hogan, Robin J.; Tian, Lin

    2017-09-01

    Satellite remote sensing of rain is important for quantifying the hydrological cycle, atmospheric energy budget, and cloud and precipitation processes; however, radar retrievals of rain rate are sensitive to assumptions about the raindrop size distribution. The upcoming EarthCARE satellite will feature a 94 GHz Doppler radar alongside lidar and radiometer instruments, presenting opportunities for enhanced retrievals of the raindrop size distribution. airborne 94 GHz Doppler radar measurements using CAPTIVATE, the variational retrieval algorithm developed for EarthCARE. For a range of rain regimes observed during the Tropical Composition, Cloud and Climate Coupling field campaign, we explore the contributions of mean Doppler velocity and path-integrated attenuation (PIA) measurements to the retrieval of rain rate, and the retrievals are evaluated against independent measurements from an independent 9.6 GHz Doppler radar. The retrieved drop number concentrations vary over 5 orders of magnitude between very light rain from melting ice and warm rain from liquid clouds. In light rain conditions mean Doppler velocity facilitates estimates of rain rate without PIA, suggesting the possibility of EarthCARE rain rate estimates over land; in moderate warm rain, drop number concentration can be retrieved without mean Doppler velocity, with possible applications to CloudSat.

  9. Single-Pass Clustering Algorithm Based on Storm

    Science.gov (United States)

    Fang, LI; Longlong, DAI; Zhiying, JIANG; Shunzi, LI

    2017-02-01

    The dramatically increasing volume of data makes the computational complexity of traditional clustering algorithm rise rapidly accordingly, which leads to the longer time. So as to improve the efficiency of the stream data clustering, a distributed real-time clustering algorithm (S-Single-Pass) based on the classic Single-Pass [1] algorithm and Storm [2] computation framework was designed in this paper. By employing this kind of method in the Topic Detection and Tracking (TDT) [3], the real-time performance of topic detection arises effectively. The proposed method splits the clustering process into two parts: one part is to form clusters for the multi-thread parallel clustering, the other part is to merge the generated clusters in the previous process and update the global clusters. Through the experimental results, the conclusion can be drawn that the proposed method have the nearly same clustering accuracy as the traditional Single-Pass algorithm and the clustering accuracy remains steady, computing rate increases linearly when increasing the number of cluster machines and nodes (processing threads).

  10. Wind Retrieval Algorithms for the IWRAP and HIWRAP Airborne Doppler Radars with Applications to Hurricanes

    Science.gov (United States)

    Guimond, Stephen Richard; Tian, Lin; Heymsfield, Gerald M.; Frasier, Stephen J.

    2013-01-01

    Algorithms for the retrieval of atmospheric winds in precipitating systems from downward-pointing, conically-scanning airborne Doppler radars are presented. The focus in the paper is on two radars: the Imaging Wind and Rain Airborne Profiler(IWRAP) and the High-altitude IWRAP (HIWRAP). The IWRAP is a dual-frequency (Cand Ku band), multi-beam (incidence angles of 30 50) system that flies on the NOAAWP-3D aircraft at altitudes of 2-4 km. The HIWRAP is a dual-frequency (Ku and Kaband), dual-beam (incidence angles of 30 and 40) system that flies on the NASA Global Hawk aircraft at altitudes of 18-20 km. Retrievals of the three Cartesian wind components over the entire radar sampling volume are described, which can be determined using either a traditional least squares or variational solution procedure. The random errors in the retrievals are evaluated using both an error propagation analysis and a numerical simulation of a hurricane. These analyses show that the vertical and along-track wind errors have strong across-track dependence with values of 0.25 m s-1 at nadir to 2.0 m s-1 and 1.0 m s-1 at the swath edges, respectively. The across-track wind errors also have across-track structure and are on average, 3.0 3.5 m s-1 or 10 of the hurricane wind speed. For typical rotated figure four flight patterns through hurricanes, the zonal and meridional wind speed errors are 2 3 m s-1.Examples of measured data retrievals from IWRAP during an eyewall replacement cycle in Hurricane Isabel (2003) and from HIWRAP during the development of Tropical Storm Matthew (2010) are shown.

  11. Hyperspectral and Radar Airborne Imagery over Controlled Release of Oil at Sea

    Directory of Open Access Journals (Sweden)

    Sébastien Angelliaume

    2017-08-01

    Full Text Available Remote sensing techniques are commonly used by Oil and Gas companies to monitor hydrocarbon on the ocean surface. The interest lies not only in exploration but also in the monitoring of the maritime environment. Occurrence of natural seeps on the sea surface is a key indicator of the presence of mature source rock in the subsurface. These natural seeps, as well as the oil slicks, are commonly detected using radar sensors but the addition of optical imagery can deliver extra information such as thickness and composition of the detected oil, which is critical for both exploration purposes and efficient cleanup operations. Today, state-of-the-art approaches combine multiple data collected by optical and radar sensors embedded on-board different airborne and spaceborne platforms, to ensure wide spatial coverage and high frequency revisit time. Multi-wavelength imaging system may create a breakthrough in remote sensing applications, but it requires adapted processing techniques that need to be developed. To explore performances offered by multi-wavelength radar and optical sensors for oil slick monitoring, remote sensing data have been collected by SETHI (Système Expérimental de Télédection Hyperfréquence Imageur, the airborne system developed by ONERA (the French Aerospace Lab, during an oil spill cleanup exercise carried out in 2015 in the North Sea, Europe. The uniqueness of this dataset lies in its high spatial resolution, low noise level and quasi-simultaneous acquisitions of different part of the EM spectrum. Specific processing techniques have been developed to extract meaningful information associated with oil-covered sea surface. Analysis of this unique and rich dataset demonstrates that remote sensing imagery, collected in both optical and microwave domains, allows estimating slick surface properties such as the age of the emulsion released at sea, the spatial abundance of oil and the relative concentration of hydrocarbons remaining on

  12. Hyperspectral and Radar Airborne Imagery over Controlled Release of Oil at Sea.

    Science.gov (United States)

    Angelliaume, Sébastien; Ceamanos, Xavier; Viallefont-Robinet, Françoise; Baqué, Rémi; Déliot, Philippe; Miegebielle, Véronique

    2017-08-02

    Remote sensing techniques are commonly used by Oil and Gas companies to monitor hydrocarbon on the ocean surface. The interest lies not only in exploration but also in the monitoring of the maritime environment. Occurrence of natural seeps on the sea surface is a key indicator of the presence of mature source rock in the subsurface. These natural seeps, as well as the oil slicks, are commonly detected using radar sensors but the addition of optical imagery can deliver extra information such as thickness and composition of the detected oil, which is critical for both exploration purposes and efficient cleanup operations. Today, state-of-the-art approaches combine multiple data collected by optical and radar sensors embedded on-board different airborne and spaceborne platforms, to ensure wide spatial coverage and high frequency revisit time. Multi-wavelength imaging system may create a breakthrough in remote sensing applications, but it requires adapted processing techniques that need to be developed. To explore performances offered by multi-wavelength radar and optical sensors for oil slick monitoring, remote sensing data have been collected by SETHI (Système Expérimental de Télédection Hyperfréquence Imageur), the airborne system developed by ONERA (the French Aerospace Lab), during an oil spill cleanup exercise carried out in 2015 in the North Sea, Europe. The uniqueness of this dataset lies in its high spatial resolution, low noise level and quasi-simultaneous acquisitions of different part of the EM spectrum. Specific processing techniques have been developed to extract meaningful information associated with oil-covered sea surface. Analysis of this unique and rich dataset demonstrates that remote sensing imagery, collected in both optical and microwave domains, allows estimating slick surface properties such as the age of the emulsion released at sea, the spatial abundance of oil and the relative concentration of hydrocarbons remaining on the sea surface.

  13. Segmentation of Oil Spills on Side-Looking Airborne Radar Imagery with Autoencoders.

    Science.gov (United States)

    Gallego, Antonio-Javier; Gil, Pablo; Pertusa, Antonio; Fisher, Robert B

    2018-03-06

    In this work, we use deep neural autoencoders to segment oil spills from Side-Looking Airborne Radar (SLAR) imagery. Synthetic Aperture Radar (SAR) has been much exploited for ocean surface monitoring, especially for oil pollution detection, but few approaches in the literature use SLAR. Our sensor consists of two SAR antennas mounted on an aircraft, enabling a quicker response than satellite sensors for emergency services when an oil spill occurs. Experiments on TERMA radar were carried out to detect oil spills on Spanish coasts using deep selectional autoencoders and RED-nets (very deep Residual Encoder-Decoder Networks). Different configurations of these networks were evaluated and the best topology significantly outperformed previous approaches, correctly detecting 100% of the spills and obtaining an F 1 score of 93.01% at the pixel level. The proposed autoencoders perform accurately in SLAR imagery that has artifacts and noise caused by the aircraft maneuvers, in different weather conditions and with the presence of look-alikes due to natural phenomena such as shoals of fish and seaweed.

  14. Monte Carlo Simulation of the Echo Signals from Low-Flying Targets for Airborne Radar

    Directory of Open Access Journals (Sweden)

    Mingyuan Man

    2014-01-01

    Full Text Available A demonstrated hybrid method based on the combination of half-space physical optics method (PO, graphical-electromagnetic computing (GRECO, and Monte Carlo method on echo signals from low-flying targets based on actual environment for airborne radar is presented in this paper. The half-space physical optics method , combined with the graphical-electromagnetic computing (GRECO method to eliminate the shadow regions quickly and rebuild the target automatically, is employed to calculate the radar cross section (RCS of the conductive targets in half space fast and accurately. The direct echo is computed based on the radar equation. The reflected paths from sea or ground surface cause multipath effects. In order to accurately obtain the echo signals, the phase factors are modified for fluctuations in multipath, and the statistical average value of the echo signals is obtained using the Monte Carlo method. A typical simulation is performed, and the numerical results show the accuracy of the proposed method.

  15. Segmentation of Oil Spills on Side-Looking Airborne Radar Imagery with Autoencoders

    Directory of Open Access Journals (Sweden)

    Antonio-Javier Gallego

    2018-03-01

    Full Text Available In this work, we use deep neural autoencoders to segment oil spills from Side-Looking Airborne Radar (SLAR imagery. Synthetic Aperture Radar (SAR has been much exploited for ocean surface monitoring, especially for oil pollution detection, but few approaches in the literature use SLAR. Our sensor consists of two SAR antennas mounted on an aircraft, enabling a quicker response than satellite sensors for emergency services when an oil spill occurs. Experiments on TERMA radar were carried out to detect oil spills on Spanish coasts using deep selectional autoencoders and RED-nets (very deep Residual Encoder-Decoder Networks. Different configurations of these networks were evaluated and the best topology significantly outperformed previous approaches, correctly detecting 100% of the spills and obtaining an F 1 score of 93.01% at the pixel level. The proposed autoencoders perform accurately in SLAR imagery that has artifacts and noise caused by the aircraft maneuvers, in different weather conditions and with the presence of look-alikes due to natural phenomena such as shoals of fish and seaweed.

  16. Operations Manager Tim Miller checks out software for the Airborne Synthetic Aperature Radar (AIRSAR

    Science.gov (United States)

    1998-01-01

    Tim Miller checks out software for the Airborne Synthetic Aperture Radar (AIRSAR). He was the AIRSAR operations manager for NASA's Jet Propulsion Laboratory. The AIRSAR produces imaging data for a range of studies conducted by the DC-8. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  17. Mapping Forest Cover and Forest Cover Change with Airborne S-Band Radar

    Directory of Open Access Journals (Sweden)

    Ramesh K. Ningthoujam

    2016-07-01

    Full Text Available Assessments of forest cover, forest carbon stocks and carbon emissions from deforestation and degradation are increasingly important components of sustainable resource management, for combating biodiversity loss and in climate mitigation policies. Satellite remote sensing provides the only means for mapping global forest cover regularly. However, forest classification with optical data is limited by its insensitivity to three-dimensional canopy structure and cloud cover obscuring many forest regions. Synthetic Aperture Radar (SAR sensors are increasingly being used to mitigate these problems, mainly in the L-, C- and X-band domains of the electromagnetic spectrum. S-band has not been systematically studied for this purpose. In anticipation of the British built NovaSAR-S satellite mission, this study evaluates the benefits of polarimetric S-band SAR for forest characterisation. The Michigan Microwave Canopy Scattering (MIMICS-I radiative transfer model is utilised to understand the scattering mechanisms in forest canopies at S-band. The MIMICS-I model reveals strong S-band backscatter sensitivity to the forest canopy in comparison to soil characteristics across all polarisations and incidence angles. Airborne S-band SAR imagery over the temperate mixed forest of Savernake Forest in southern England is analysed for its information content. Based on the modelling results, S-band HH- and VV-polarisation radar backscatter and the Radar Forest Degradation Index (RFDI are used in a forest/non-forest Maximum Likelihood classification at a spatial resolution of 6 m (70% overall accuracy, κ = 0.41 and 20 m (63% overall accuracy, κ = 0.27. The conclusion is that S-band SAR such as from NovaSAR-S is likely to be suitable for monitoring forest cover and its changes.

  18. Analysis of airborne Doppler lidar, Doppler radar and tall tower measurements of atmospheric flows in quiescent and stormy weather

    Science.gov (United States)

    Bluestein, H. B.; Doviak, R. J.; Eilts, M. D.; Mccaul, E. W.; Rabin, R.; Sundara-Rajan, A.; Zrnic, D. S.

    1986-01-01

    The first experiment to combine airborne Doppler Lidar and ground-based dual Doppler Radar measurements of wind to detail the lower tropospheric flows in quiescent and stormy weather was conducted in central Oklahoma during four days in June-July 1981. Data from these unique remote sensing instruments, coupled with data from conventional in-situ facilities, i.e., 500-m meteorological tower, rawinsonde, and surface based sensors, were analyzed to enhance understanding of wind, waves and turbulence. The purposes of the study were to: (1) compare winds mapped by ground-based dual Doppler radars, airborne Doppler lidar, and anemometers on a tower; (2) compare measured atmospheric boundary layer flow with flows predicted by theoretical models; (3) investigate the kinematic structure of air mass boundaries that precede the development of severe storms; and (4) study the kinematic structure of thunderstorm phenomena (downdrafts, gust fronts, etc.) that produce wind shear and turbulence hazardous to aircraft operations. The report consists of three parts: Part 1, Intercomparison of Wind Data from Airborne Lidar, Ground-Based Radars and Instrumented 444 m Tower; Part 2, The Structure of the Convective Atmospheric Boundary Layer as Revealed by Lidar and Doppler Radars; and Part 3, Doppler Lidar Observations in Thunderstorm Environments.

  19. Comparison of space borne radar altimetry and airborne laser altimetry over sea ice in the Fram Strait

    DEFF Research Database (Denmark)

    Giles, K.A.; Hvidegaard, Sine Munk

    2006-01-01

    This paper describes the first comparison of satellite radar and airborne laser altimetry over sea ice. In order to investigate the differences between measurements from the two different instruments we explore the statistical properties of the data and determine reasonable scales in space and time...... at which to examine them. The resulting differences between the data sets show that the laser and the radar are reflecting from different surfaces and that the magnitude of the difference decreases with increasing surface air temperature. This suggests that the penetration depth of the radar signal......, into the snow, varies with temperature. The results also show the potential for computing Arctic wide snow depth maps by combining measurements from laser and radar altimeters....

  20. Airborne derivation of microburst alerts from ground-based Terminal Doppler Weather Radar information: A flight evaluation

    Science.gov (United States)

    Hinton, David A.

    1993-01-01

    An element of the NASA/FAA windshear program is the integration of ground-based microburst information on the flight deck, to support airborne windshear alerting and microburst avoidance. NASA conducted a windshear flight test program in the summer of 1991 during which airborne processing of Terminal Doppler Weather Radar (TDWR) data was used to derive microburst alerts. Microburst information was extracted from TDWR, transmitted to a NASA Boeing 737 in flight via data link, and processed to estimate the windshear hazard level (F-factor) that would be experienced by the aircraft in each microburst. The microburst location and F-factor were used to derive a situation display and alerts. The situation display was successfully used to maneuver the aircraft for microburst penetrations, during which atmospheric 'truth' measurements were made. A total of 19 penetrations were made of TDWR-reported microburst locations, resulting in 18 airborne microburst alerts from the TDWR data and two microburst alerts from the airborne reactive windshear detection system. The primary factors affecting alerting performance were spatial offset of the flight path from the region of strongest shear, differences in TDWR measurement altitude and airplane penetration altitude, and variations in microburst outflow profiles. Predicted and measured F-factors agreed well in penetrations near microburst cores. Although improvements in airborne and ground processing of the TDWR measurements would be required to support an airborne executive-level alerting protocol, the practicality of airborne utilization of TDWR data link data has been demonstrated.

  1. Milestone experiments for single pass UV/X-ray FELs

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    1994-01-01

    In the past decade, significant advances have been made in the theory and technology of high brightness electron beams and single pass FELS. These developments facilitate the construction of practical UV and X-ray FELs and has prompted proposals to the DOE for the construction of such facilities. There are several important experiments to be performed before committing to the construction of dedicated user facilities. Two experiments are under construction in the IR, the UCLA Self Amplified Spontaneous Emission experiment and the BNL laser seeded Harmonic Generation experiment. A multi-institution collaboration is being organized about a 210 MeV electron linac available at BNL and the 10 meter tong NISUS wiggler. This experiment will be done in the UV and will test various experimental aspects of electron beam dynamics, FEL exponential regime with gain guiding, start up from noise, seeding and harmonic generation. These experiments will advance the state of FEL research and lead towards future dedicated users' facilities

  2. The pulse-pair algorithm as a robust estimator of turbulent weather spectral parameters using airborne pulse Doppler radar

    Science.gov (United States)

    Baxa, Ernest G., Jr.; Lee, Jonggil

    1991-01-01

    The pulse pair method for spectrum parameter estimation is commonly used in pulse Doppler weather radar signal processing since it is economical to implement and can be shown to be a maximum likelihood estimator. With the use of airborne weather radar for windshear detection, the turbulent weather and strong ground clutter return spectrum differs from that assumed in its derivation, so the performance robustness of the pulse pair technique must be understood. Here, the effect of radar system pulse to pulse phase jitter and signal spectrum skew on the pulse pair algorithm performance is discussed. Phase jitter effect may be significant when the weather return signal to clutter ratio is very low and clutter rejection filtering is attempted. The analysis can be used to develop design specifications for airborne radar system phase stability. It is also shown that the weather return spectrum skew can cause a significant bias in the pulse pair mean windspeed estimates, and that the poly pulse pair algorithm can reduce this bias. It is suggested that use of a spectrum mode estimator may be more appropriate in characterizing the windspeed within a radar range resolution cell for detection of hazardous windspeed gradients.

  3. A Methodology for Determining Statistical Performance Compliance for Airborne Doppler Radar with Forward-Looking Turbulence Detection Capability

    Science.gov (United States)

    Bowles, Roland L.; Buck, Bill K.

    2009-01-01

    The objective of the research developed and presented in this document was to statistically assess turbulence hazard detection performance employing airborne pulse Doppler radar systems. The FAA certification methodology for forward looking airborne turbulence radars will require estimating the probabilities of missed and false hazard indications under operational conditions. Analytical approaches must be used due to the near impossibility of obtaining sufficient statistics experimentally. This report describes an end-to-end analytical technique for estimating these probabilities for Enhanced Turbulence (E-Turb) Radar systems under noise-limited conditions, for a variety of aircraft types, as defined in FAA TSO-C134. This technique provides for one means, but not the only means, by which an applicant can demonstrate compliance to the FAA directed ATDS Working Group performance requirements. Turbulence hazard algorithms were developed that derived predictive estimates of aircraft hazards from basic radar observables. These algorithms were designed to prevent false turbulence indications while accurately predicting areas of elevated turbulence risks to aircraft, passengers, and crew; and were successfully flight tested on a NASA B757-200 and a Delta Air Lines B737-800. Application of this defined methodology for calculating the probability of missed and false hazard indications taking into account the effect of the various algorithms used, is demonstrated for representative transport aircraft and radar performance characteristics.

  4. Unified Theoretical Frame of a Joint Transmitter-Receiver Reduced Dimensional STAP Method for an Airborne MIMO Radar

    Directory of Open Access Journals (Sweden)

    Guo Yiduo

    2016-10-01

    Full Text Available The unified theoretical frame of a joint transmitter-receiver reduced dimensional Space-Time Adaptive Processing (STAP method is studied for an airborne Multiple-Input Multiple-Output (MIMO radar. First, based on the transmitted waveform diverse characteristics of the transmitted waveform of the airborne MIMO radar, a uniform theoretical frame structure for the reduced dimensional joint adaptive STAP is constructed. Based on it, three reduced dimensional STAP fixed structures are established. Finally, three reduced rank STAP algorithms, which are suitable for a MIMO system, are presented corresponding to the three reduced dimensional STAP fixed structures. The simulations indicate that the joint adaptive algorithms have preferable clutter suppression and anti-interference performance.

  5. Error Analysis for High Resolution Topography with Bi-Static Single-Pass SAR Interferometry

    Science.gov (United States)

    Muellerschoen, Ronald J.; Chen, Curtis W.; Hensley, Scott; Rodriguez, Ernesto

    2006-01-01

    We present a flow down error analysis from the radar system to topographic height errors for bi-static single pass SAR interferometry for a satellite tandem pair. Because of orbital dynamics the baseline length and baseline orientation evolve spatially and temporally, the height accuracy of the system is modeled as a function of the spacecraft position and ground location. Vector sensitivity equations of height and the planar error components due to metrology, media effects, and radar system errors are derived and evaluated globally for a baseline mission. Included in the model are terrain effects that contribute to layover and shadow and slope effects on height errors. The analysis also accounts for nonoverlapping spectra and the non-overlapping bandwidth due to differences between the two platforms' viewing geometries. The model is applied to a 514 km altitude 97.4 degree inclination tandem satellite mission with a 300 m baseline separation and X-band SAR. Results from our model indicate that global DTED level 3 can be achieved.

  6. The accuracy of satellite radar altimeter data over the Greenland ice sheet determined from airborne laser data

    DEFF Research Database (Denmark)

    Bamber, J.L.; Ekholm, Simon; Krabill, W.

    1998-01-01

    The 336 days of the geodetic phase of ERS-1 provides dense coverage, by satellite radar altimetry, of the whole of the Greenland ice sheet. These data have been used to produce a digital elevation model of the ice sheet. The errors present in the altimeter data were investigated via a comparison ......, to 10.3 m +/- 8.4 m for a slope of 0.7 degrees ( the half power beam-width of the ERS-1 radar altimeter). An explanation for the behaviour of the difference as a function of surface slope is given in terms of the pattern of surface roughness on the ice sheet....... with airborne laser altimeter data an absolute accuracy typically in the range 2-10 cm +/- 10 cm. Comparison of differences between the radar and laser derived elevations, showed a correlation with surface slope. The difference between the two data sets ranged from 84 cm +/- 79 cm for slopes below 0.1 degrees...

  7. Milestone experiments for single pass UV/X-ray FELs

    Science.gov (United States)

    Ben-Zvi, Ilan

    1995-04-01

    In the past decade, significant advances have been made in the theory and technology of high brightness electron beams and single pass FELs. These developments facilitate the construction of practical UV and X-ray FELs and has prompted proposals to the DOE for the construction of such facilities. There are several important experiments to be performed before committing to the construction of dedicated user facilities. Two experiments are under construction in the IR, the UCLA self-amplified spontaneous emission experiment and the BNL laser seeded harmonic generation experiment. A multi-institution collaboration is being organized about a 210 MeV electron linac available at BNL and the 10 m long NISUS wiggler. This experiment will be done in the UV and will test various experimental aspects of electron beam dynamics, FEL exponential regime with gain guiding, start-up from noise, seeding and harmonic generation. These experiments will advance the state of FEL research and lead towards future dedicated users' facilities.

  8. UAVSAR - A New Airborne L-Band Radar for Repeat Pass Interferometry

    Science.gov (United States)

    Mace, Thomas H.; Lou, Yunling

    2009-01-01

    NASA/JPL has developed a new airborne Synthetic Aperture Radar (SAR) which has become available for use by the scientific community in January, 2009. Pod mounted, the UAVSAR was designed to be portable among a variety of aircraft, including unmanned aerial systems (UAS). The instrument operates in the L-Band, has a resolution under 2m from a GPS altitude of 12Km and a swath width of approximately 20Km. UAVSAR currently flies on a modified Gulfstream-III aircraft, operated by NASA s Dryden Flight Research Center at Edwards, California. The G-III platform enables repeat-pass interferometric measurements, by using a modified autopilot and precise kinematic differential GPS to repeatedly fly the aircraft within a specified 10m tube. The antenna is electronically steered along track to assure that the antenna beam can be directed independently, regardless of speed and wind direction. The instrument can be controlled remotely, AS AN OPTION, using the Research Environment for Vehicle Embedded Analysis on Linux (REVEAL). This allows simulation of the telepresence environment necessary for flight on UAS. Potential earth science research and applications include surface deformation, volcano studies, ice sheet dynamics, and vegetation structure.

  9. Designing clutter rejection filters with complex coefficients for airborne pulsed Doppler weather radar

    Science.gov (United States)

    Jamora, Dennis A.

    1993-01-01

    Ground clutter interference is a major problem for airborne pulse Doppler radar operating at low altitudes in a look-down mode. With Doppler zero set at the aircraft ground speed, ground clutter rejection filtering is typically accomplished using a high-pass filter with real valued coefficients and a stopband notch centered at zero Doppler. Clutter spectra from the NASA Wind Shear Flight Experiments of l991-1992 show that the dominant clutter mode can be located away from zero Doppler, particularly at short ranges dominated by sidelobe returns. Use of digital notch filters with complex valued coefficients so that the stopband notch can be located at any Doppler frequency is investigated. Several clutter mode tracking algorithms are considered to estimate the Doppler frequency location of the dominant clutter mode. From the examination of night data, when a dominant clutter mode away from zero Doppler is present, complex filtering is able to significantly increase clutter rejection over use of a notch filter centered at zero Doppler.

  10. The design and development of signal-processing algorithms for an airborne x-band Doppler weather radar

    Science.gov (United States)

    Nicholson, Shaun R.

    1994-01-01

    Improved measurements of precipitation will aid our understanding of the role of latent heating on global circulations. Spaceborne meteorological sensors such as the planned precipitation radar and microwave radiometers on the Tropical Rainfall Measurement Mission (TRMM) provide for the first time a comprehensive means of making these global measurements. Pre-TRMM activities include development of precipitation algorithms using existing satellite data, computer simulations, and measurements from limited aircraft campaigns. Since the TRMM radar will be the first spaceborne precipitation radar, there is limited experience with such measurements, and only recently have airborne radars become available that can attempt to address the issue of the limitations of a spaceborne radar. There are many questions regarding how much attenuation occurs in various cloud types and the effect of cloud vertical motions on the estimation of precipitation rates. The EDOP program being developed by NASA GSFC will provide data useful for testing both rain-retrieval algorithms and the importance of vertical motions on the rain measurements. The purpose of this report is to describe the design and development of real-time embedded parallel algorithms used by EDOP to extract reflectivity and Doppler products (velocity, spectrum width, and signal-to-noise ratio) as the first step in the aforementioned goals.

  11. Airborne In Situ and Ground-based Polarimetric Radar Measurements of Tropical Convection in Support of CRYSTAL-FACE

    Science.gov (United States)

    Poellot, Michael R.; Kucera, Paul A.

    2004-01-01

    This report describes the work performed by the University of North Dakota (UND) under NASA Grant NAG5-11509, titled Airborne In Situ and Ground-based Polarimetric Radar Measurements of Tropical Convection in Support of CRYSTAL-FACE. This work focused on the collection of data by two key platforms: the UND Citation II research aircraft and the NASA NPOL radar system. The CRYSTAL-FACE (C-F) mission addresses several key issues from the NASA Earth System Enterprise, including the variability of water in the atmosphere, the forcing provided by tropical cirrus and the response of the Earth system to this forcing. In situ measurements and radar observations of tropical convection, cirrus clouds and their environment are core elements of C-F. One of the primary issues that C-F is addressing is the relationship of tropical cirrus anvils to precipitating deep convection. The in situ measurements from C-F are being used to validate remote sensing of Earth-Atmosphere properties, increase our knowledge of upper tropospheric water vapor and its distribution, and increase our knowledge of tropical cirrus cloud morphology and composition. Radar measurements, especially polarimetric diversity observations available fiom the NASA NPOL radar, are providing essential information about the initiation, modulation, and dissipation of convective cores and the generation of associated anvils in tropical convection. Specifically, NPOL radar measurements contain information about convective intensity and its vertical structure for comparison with thermodynamic and kinematic environmental measurements observed from soundings. Because of the polarimetric diversity of MOL, statistics on bulk microphysical properties can be retrieved and compared to the other characteristics of convection and associated cirrus anvils. In summary, the central objectives of this proposal were to deploy the UND Citation research aircraft as an in situ sensing platform for this mission and to provide collaborative

  12. The Single Pass RF Driver: Final beam compression

    International Nuclear Information System (INIS)

    Burke, Robert

    2014-01-01

    The Single Pass RF Driver (SPRFD) compacts the beam from the linac without storage rings by manipulations that take advantage of the multiplicity of isotopes (16), the preserved µbunch structure, and increased total linac current. Magnetic switches on a first set of delay lines rearrange the internal structure of the various isotopic beams. A second set of delay lines sets the relative timing of the 16 isotopic beam sections so they will telescope at the pellet, in one of multiple fusion chambers, e.g. 10. Shortening each isotopic beam section uses preservation of the µbunch structure up to the final ∼2 km drift before final focus. Just before the final drift, differential acceleration of the µbunches in each isotopic beam section (128 total) launches an axial collapse, referred to as the “Slick”. The µbunches interpenetrate as their centers of mass move toward each other and individual µbunches lengthen due to their momentum spread. In longitudinal phase space they slide over one another as they lengthen in time and slim down in instantaneous energy spread. The permissible amount of µbunch lengthening is set by the design pulse shape at the pellet, which varies for different groups of isotopes. In narrow bands of ranges according to the role for each isotope group in the pellet, the ranges extend from 1 to 10 g/cm 2 to drive the cylinder barrel and thin hemispherical end caps, to heat the ∼0.5 g/cm 2 ρR fast ignition zone, and to improve the quasi-sphericity of the compression of the fast ignition zones at the pellet's ends. Because the µbunch–µbunch momentum differences are correlated, time-ramped beamline transport elements close after the differential accelerator are used to correct the associated shifts of focal point. Beam neutralization is needed after the differential acceleration until adjacent bunches begin to overlap. Concurrent collapse of each isotope and telescoping of the 16 isotopes cause the current in each beamline to rise

  13. The need for separate operational and engineering user interfaces for command and control of airborne synthetic aperture radar systems

    Science.gov (United States)

    Klein, Laura M.; McNamara, Laura A.

    2017-05-01

    In this paper, we address the needed components to create usable engineering and operational user interfaces (UIs) for airborne Synthetic Aperture Radar (SAR) systems. As airborne SAR technology gains wider acceptance in the remote sensing and Intelligence, Surveillance, and Reconnaissance (ISR) communities, the need for effective and appropriate UIs to command and control these sensors has also increased. However, despite the growing demand for SAR in operational environments, the technology still faces an adoption roadblock, in large part due to the lack of effective UIs. It is common to find operational interfaces that have barely grown beyond the disparate tools engineers and technologists developed to demonstrate an initial concept or system. While sensor usability and utility are common requirements to engineers and operators, their objectives for interacting with the sensor are different. As such, the amount and type of information presented ought to be tailored to the specific application.

  14. A potential method for the estimation of drop size distribution from a dual-wavelength airborne radar

    Science.gov (United States)

    Meneghini, R.; Kozu, T.

    1991-01-01

    In order to investigate the role of the drop size distribution (DSD) from a dual-wavelength airborne radar and to recover profiled rain rates, a procedure is described for the purpose of estimating the DSD. The method differs from previous approaches in that it provides 2n + 1 parameters of the profiled DSD (where n is the number of range gates) and it uses a recursive procedure beginning at the range gate near the surface progressing backwards toward the storm top. The method is argued to be useful both as a diagnostic tool and as a means by which more detailed information on the vertical structure of the precipitation can be obtained.

  15. Signal processing for airborne doppler radar detection of hazardous wind shear as applied to NASA 1991 radar flight experiment data

    Science.gov (United States)

    Baxa, Ernest G., Jr.

    1992-01-01

    Radar data collected during the 1991 NASA flight tests have been selectively analyzed to support research directed at developing both improved as well as new algorithms for detecting hazardous low-altitude windshear. Analysis of aircraft attitude data from several flights indicated that platform stability bandwidths were small compared to the data rate bandwidths which should support an assumption that radar returns can be treated as short time stationary. Various approaches at detection of weather returns in the presence of ground clutter are being investigated. Non-coventional clutter rejection through spectrum mode tracking and classification algorithms is a subject of continuing research. Based upon autoregressive modeling of the radar return time sequence, this approach may offer an alternative to overcome errors in conventional pulse-pair estimates. Adaptive filtering is being evaluated as a means of rejecting clutter with emphasis on low signal-to-clutter ratio situations, particularly in the presence of discrete clutter interference. An analysis of out-of-range clutter returns is included to illustrate effects of ground clutter interference due to range aliasing for aircraft on final approach. Data are presented to indicate how aircraft groundspeed might be corrected from the radar data as well as point to an observed problem of groundspeed estimate bias variation with radar antenna scan angle. A description of how recorded clutter return data are mixed with simulated weather returns is included. This enables the researcher to run controlled experiments to test signal processing algorithms. In the summary research efforts involving improved modelling of radar ground clutter returns and a Bayesian approach at hazard factor estimation are mentioned.

  16. The use of airborne laser data to calibrate satellite radar altimetry data over ice sheets

    DEFF Research Database (Denmark)

    Ekholm, Simon; Bamber, J.L.; Krabill, W.B.

    2002-01-01

    -precision airborne laser profiling data from the so-called Arctic Ice Mapping project as a tool to determine that bias and to calibrate the satellite altimetry. This is achieved by a simple statistical analysis of the airborne laser profiles, which defines the mean amplitude of the local surface undulations...

  17. Overview of Space-Time Adaptive Processing for Airborne Multiple-Input Multiple-Output Radar

    Directory of Open Access Journals (Sweden)

    Wang Ting

    2015-04-01

    Full Text Available Multiple-Input Multiple-Output (MIMO radar is an emerging radar system that is of great interest to military and academic organizations due to its advantages and extensive applications. The main purpose of Space-Time Adaptive Processing (STAP is to suppress ground clutter and realize Ground Moving Target Indication (GMTI. Nowadays, STAP technology has been extended to MIMO radar systems, and MIMO radar STAP has quickly become a hot research topic in international radar fields. This paper provides a detailed description of the extension and significant meaning of MIMO-STAP, and gives an overview of the current research status of clutter modeling, analysis of clutter Degree Of Freedom (DOF, reduced-dimension (reduced-rank processing, simultaneous suppression of clutter plus jamming, non-homogeneous environment processing, and so on. The future perspective for the development of MIMO-STAP technology is also discussed.

  18. Airborne laser scan data: a valuable tool with which to infer weather radar partial beam blockage in urban environments

    Science.gov (United States)

    Cremonini, Roberto; Moisseev, Dmitri; Chandrasekar, Venkatachalam

    2016-10-01

    High-spatial-resolution weather radar observations are of primary relevance for hydrological applications in urban areas. However, when weather radars are located within metropolitan areas, partial beam blockages and clutter by buildings can seriously affect the observations. Standard simulations with simple beam propagation models and digital elevation models (DEMs) are usually not able to evaluate buildings' contribution to partial beam blockages. In recent years airborne laser scanners (ALSs) have evolved to the state-of-the-art technique for topographic data acquisition. Providing small footprint diameters (10-30 cm), ALS data allow accurate reconstruction of buildings and forest canopy heights. Analyzing the three weather C-band radars located in the metropolitan area of Helsinki, Finland, the present study investigates the benefits of using ALS data for quantitative estimations of partial beam blockages. The results obtained applying beam standard propagation models are compared with stratiform 24 h rainfall accumulation to evaluate the effects of partial beam blockages due to constructions and trees. To provide a physical interpretation of the results, the detailed analysis of beam occultations is achieved by open spatial data sets and open-source geographic information systems.

  19. Airborne-radar and ice-core observations of annual snow accumulation over Thwaites Glacier, West Antarctica confirm the spatiotemporal variability of global and regional atmospheric models

    NARCIS (Netherlands)

    Medley, B.; Joughin, I.; Das, S.B.; Steig, E. J.; Conway, H.; Gogineni, S.; Criscitiello, A.S.; McConnell, J.R.; Smith, B.E.; van den Broeke, M.R.; Lenaerts, J.T.M.; Bromwich, D.H.; Nicolas, J.P.

    2013-01-01

    We use an airborne-radar method, verified with ice-core accumulation records, to determine the spatiotemporal variations of snow accumulation over Thwaites Glacier, West Antarctica between 1980 and 2009. We also present a regional evaluation of modeled accumulation in Antarctica. Comparisons between

  20. Model for Estimation of Thermal History Produced by a Single Pass Underwater Wet Weld

    National Research Council Canada - National Science Library

    Dill, Jay

    1997-01-01

    Thermal history calculations for single pass underwater wet weldments were made by solving the appropriate beat transfer equations using the three-dimensional Crank-Nicholson finite difference method...

  1. Oil Spill Detection in Terma-Side-Looking Airborne Radar Images Using Image Features and Region Segmentation

    Science.gov (United States)

    Alacid, Beatriz

    2018-01-01

    This work presents a method for oil-spill detection on Spanish coasts using aerial Side-Looking Airborne Radar (SLAR) images, which are captured using a Terma sensor. The proposed method uses grayscale image processing techniques to identify the dark spots that represent oil slicks on the sea. The approach is based on two steps. First, the noise regions caused by aircraft movements are detected and labeled in order to avoid the detection of false-positives. Second, a segmentation process guided by a map saliency technique is used to detect image regions that represent oil slicks. The results show that the proposed method is an improvement on the previous approaches for this task when employing SLAR images. PMID:29316716

  2. Oil Spill Detection in Terma-Side-Looking Airborne Radar Images Using Image Features and Region Segmentation

    Directory of Open Access Journals (Sweden)

    Pablo Gil

    2018-01-01

    Full Text Available This work presents a method for oil-spill detection on Spanish coasts using aerial Side-Looking Airborne Radar (SLAR images, which are captured using a Terma sensor. The proposed method uses grayscale image processing techniques to identify the dark spots that represent oil slicks on the sea. The approach is based on two steps. First, the noise regions caused by aircraft movements are detected and labeled in order to avoid the detection of false-positives. Second, a segmentation process guided by a map saliency technique is used to detect image regions that represent oil slicks. The results show that the proposed method is an improvement on the previous approaches for this task when employing SLAR images.

  3. Accuracy of Flight Altitude Measured with Low-Cost GNSS, Radar and Barometer Sensors: Implications for Airborne Radiometric Surveys

    Science.gov (United States)

    Baldoncini, Marica; Chiarelli, Enrico; Fiorentini, Giovanni; Raptis, Kassandra Giulia Cristina; Realini, Eugenio; Reguzzoni, Mirko; Rossi, Lorenzo; Sampietro, Daniele; Strati, Virginia

    2017-01-01

    Flight height is a fundamental parameter for correcting the gamma signal produced by terrestrial radionuclides measured during airborne surveys. The frontiers of radiometric measurements with UAV require light and accurate altimeters flying at some 10 m from the ground. We equipped an aircraft with seven altimetric sensors (three low-cost GNSS receivers, one inertial measurement unit, one radar altimeter and two barometers) and analyzed ~3 h of data collected over the sea in the (35–2194) m altitude range. At low altitudes (H 80 m in terms of both altitude median standard deviation and agreement between the reconstructed and measured GPS antennas distances. Flying at 100 m the estimated uncertainty on the ground total activity due to the uncertainty on the flight height is of the order of 2%. PMID:28813023

  4. Adaptive clutter rejection filters for airborne Doppler weather radar applied to the detection of low altitude windshear

    Science.gov (United States)

    Keel, Byron M.

    1989-01-01

    An optimum adaptive clutter rejection filter for use with airborne Doppler weather radar is presented. The radar system is being designed to operate at low-altitudes for the detection of windshear in an airport terminal area where ground clutter returns may mask the weather return. The coefficients of the adaptive clutter rejection filter are obtained using a complex form of a square root normalized recursive least squares lattice estimation algorithm which models the clutter return data as an autoregressive process. The normalized lattice structure implementation of the adaptive modeling process for determining the filter coefficients assures that the resulting coefficients will yield a stable filter and offers possible fixed point implementation. A 10th order FIR clutter rejection filter indexed by geographical location is designed through autoregressive modeling of simulated clutter data. Filtered data, containing simulated dry microburst and clutter return, are analyzed using pulse-pair estimation techniques. To measure the ability of the clutter rejection filters to remove the clutter, results are compared to pulse-pair estimates of windspeed within a simulated dry microburst without clutter. In the filter evaluation process, post-filtered pulse-pair width estimates and power levels are also used to measure the effectiveness of the filters. The results support the use of an adaptive clutter rejection filter for reducing the clutter induced bias in pulse-pair estimates of windspeed.

  5. The use of airborne laser data to calibrate satellite radar altimetry data over ice sheets

    DEFF Research Database (Denmark)

    Ekholm, Simon; Bamber, J.L.; Krabill, W.B.

    2002-01-01

    Satellite radar altimetry is the most important data source for ice sheet elevation modeling but it is well established that the accuracy of such data from satellite borne radar altimeters degrade seriously with increasing surface slope and level of roughness. A significant fraction of the slope......-correlated noise can be effectively removed by the so-called relocation error correction method. The adjustment, however, produces a different spatial sampling of the data, which introduces a non-negligible slope related bias to the computation of digital elevation models. In this paper we incorporate high...

  6. CBSIT 2009: Airborne Validation of Envisat Radar Altimetry and In Situ Ice Camp Measurements Over Arctic Sea Ice

    Science.gov (United States)

    Connor, Laurence; Farrell, Sinead; McAdoo, David; Krabill, William; Laxon, Seymour; Richter-Menge, Jacqueline; Markus, Thorsten

    2010-01-01

    The past few years have seen the emergence of satellite altimetry as valuable tool for taking quantitative sea ice monitoring beyond the traditional surface extent measurements and into estimates of sea ice thickness and volume, parameters that arc fundamental to improved understanding of polar dynamics and climate modeling. Several studies have now demonstrated the use of both microwave (ERS, Envisat/RA-2) and laser (ICESat/GLAS) satellite altimeters for determining sea ice thickness. The complexity of polar environments, however, continues to make sea ice thickness determination a complicated remote sensing task and validation studies remain essential for successful monitoring of sea ice hy satellites. One such validation effort, the Arctic Aircraft Altimeter (AAA) campaign of2006. included underflights of Envisat and ICESat north of the Canadian Archipelago using NASA's P-3 aircraft. This campaign compared Envisat and ICESat sea ice elevation measurements with high-resolution airborne elevation measurements, revealing the impact of refrozen leads on radar altimetry and ice drift on laser altimetry. Continuing this research and validation effort, the Canada Basin Sea Ice Thickness (CBSIT) experiment was completed in April 2009. CBSIT was conducted by NOAA. and NASA as part of NASA's Operation Ice Bridge, a gap-filling mission intended to supplement sea and land ice monitoring until the launch of NASA's ICESat-2 mission. CBIST was flown on the NASA P-3, which was equipped with a scanning laser altimeter, a Ku-band snow radar, and un updated nadir looking photo-imaging system. The CB5IT campaign consisted of two flights: an under flight of Envisat along a 1000 km track similar to that flown in 2006, and a flight through the Nares Strait up to the Lincoln Sea that included an overflight of the Danish GreenArc Ice Camp off the coast of northern Greenland. We present an examination of data collected during this campaign, comparing airborne laser altimeter measurements

  7. Airborn Ku-band polarimetric radar remote sensing of terrestrial snow cover

    Science.gov (United States)

    Simon H. Yueh; Steve J. Dinardo; Ahmed Akgiray; Richard West; Donald W. Cline; Kelly Elder

    2009-01-01

    Characteristics of the Ku-band polarimetric scatterometer (POLSCAT) data acquired from five sets of aircraft flights in the winter months of 2006-2008 for the second Cold Land Processes Experiment (CLPX-II) in Colorado are described in this paper. The data showed the response of the Ku-band radar echoes to snowpack changes for various types of background vegetation in...

  8. The PHARUS Project; Real Time Digital Processing of Airborne Polarimetric Radar Signals

    NARCIS (Netherlands)

    Pouwels, H.; Hoogeboom, P.; Koomen, P.J.; Snoeij, P.

    1992-01-01

    The Dutch PHARUS project aims for the developrlenÈ of a polarimetric C-band aircraft SAR, to be finalized in 1994. The PHARUS systen consists of three subsystens: the radar, the subsystem for the onboard data processing and recording and the ground-based subsystem for SAR processing. PHARUS is a

  9. Doppler Compensation for Airborne Non-Side-Looking Phased-Array Radar

    Science.gov (United States)

    2015-09-01

    frequency (Hz) C lu tte r s pe ct ra (d B ) Figure 14: Channel-based N Doppler spectra of the simulated clutter data for a radar operating in the...30 -20 -10 0 10 20 30 40 Doppler frequency (Hz) C lu tte r s pe ct ra (d B ) Figure 16: Channel-based N Doppler spectra of the simulated clutter

  10. Sea ice local surface topography from single-pass satellite InSAR measurements: a feasibility study

    Directory of Open Access Journals (Sweden)

    W. Dierking

    2017-08-01

    Full Text Available Quantitative parameters characterizing the sea ice surface topography are needed in geophysical investigations such as studies on atmosphere–ice interactions or sea ice mechanics. Recently, the use of space-borne single-pass interferometric synthetic aperture radar (InSAR for retrieving the ice surface topography has attracted notice among geophysicists. In this paper the potential of InSAR measurements is examined for several satellite configurations and radar frequencies, considering statistics of heights and widths of ice ridges as well as possible magnitudes of ice drift. It is shown that, theoretically, surface height variations can be retrieved with relative errors  ≤  0.5 m. In practice, however, the sea ice drift and open water leads may contribute significantly to the measured interferometric phase. Another essential factor is the dependence of the achievable interferometric baseline on the satellite orbit configurations. Possibilities to assess the influence of different factors on the measurement accuracy are demonstrated: signal-to-noise ratio, presence of a snow layer, and the penetration depth into the ice. Practical examples of sea surface height retrievals from bistatic SAR images collected during the TanDEM-X Science Phase are presented.

  11. Airborne Ku-Band Polarimetric Radar Remote Sensing of Terrestrial Snow Cover

    Science.gov (United States)

    Yueh, Simon; Cline, Donald; Elder, Kelly

    2008-01-01

    Preliminary analyses of the POLSCAT data acquired from the CLPX-II in winter 2006-2007 are described in this paper. The data showed the response of the Ku-band radarechoes to snowpack changes for various types of background vegetation. We observed about 0.2 to 0.4 dB increases in backscatter for every 1 cm SWE accumulation for sage brush and agricultural fields. The co-polarized VV and HH radar resposnes are similar, while the corss-polarized (VH or HV) echoes showedgreater resposne to the change of SWE. The data also showed the impact of surface hoar growth and freeze/thaw cycles, whichcreated large snow grain sizes and ice lenses, respectively, and consequently increased the radar signals by a few dBs.

  12. Highly efficient single-pass sum frequency generation by cascaded nonlinear crystals

    DEFF Research Database (Denmark)

    Hansen, Anders Kragh; Andersen, Peter E.; Jensen, Ole Bjarlin

    2015-01-01

    The cascading of nonlinear crystals has been established as a simple method to greatly increase the conversion efficiency of single-pass second-harmonic generation compared to a single-crystal scheme. Here, we show for the first time that the technique can be extended to sum frequency generation......, despite differences in the phase relations of the involved fields. An unprecedented 5.5 W of continuous-wave diffraction-limited green light is generated from the single-pass sum frequency mixing of two diode lasers in two periodically poled nonlinear crystals (conversion efficiency 50%). The technique...

  13. Airborne Lidar and Radar Measurments In and Around Greenland CryoVEx 2006

    DEFF Research Database (Denmark)

    Stenseng, Lars; Hvidegaard, Sine Munk; Skourup, Henriette

    Air Greenland. The main purpose was to collect coincident ASIRAS and laser data at validation sites placed on land ice and sea ice in the Arctic area and offer logistic support to ground teams. The data collected will be important for the understanding of CryoSat-2 radar signals. A number...... at DNSC and the Alfred Wegener Institute (AWI). Since then an intensive collaboration between ESA, AWI and DNSC have ensured a solid processing of data where many minor and major problems have been identified and solved. Different investigations of the ASIRAS datation have also been performed...

  14. Echo Source Discrimination in Airborne Radar Sounding Data for Mars Analog Studies, Dry Valleys, Antarctica

    Science.gov (United States)

    Holt, J. W.; Blankenship, D. D.; Peters, M. E.; Kempf, S. D.; Morse, D. L.; Williams, B. J.

    2003-01-01

    The recent identification of features on Mars exhibiting morphologies consistent with ice/rock mixtures, near-surface ice bodies and near-surface liquid water [1,2], and the importance of such features to the search for water on Mars, highlights the need for appropriate terrestrial analogs in order to prepare for upcoming radar missions targeting these and other water-related features. Climatic, hydrological, and geological conditions in the McMurdo Dry Valleys of Antarctica are analogous in many ways to those on Mars, and a number of ice-related features in the Dry Valleys may have direct morphologic and compositional counterparts on Mars.

  15. Fuel-element failures in Hanford single-pass reactors 1944--1971

    Energy Technology Data Exchange (ETDEWEB)

    Gydesen, S.P.

    1993-07-01

    The primary objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of emissions since 1944 from the US Department of Energy`s (DOE) Hanford Site near Richland, Washington. To estimate the doses, the staff of the Source Terms Task use operating information from historical documents to approximate the radioactive emissions. One source of radioactive emissions to the Columbia River came from leaks in the aluminum cladding of the uranium metal fuel elements in single-pass reactors. The purpose of this letter report is to provide photocopies of the documents that recorded these failures. The data from these documents will be used by the Source Terms Task to determine the contribution of single-pass reactor fuel-element failures to the radioactivity of the reactor effluent from 1944 through 1971. Each referenced fuel-element failure occurring in the Hanford single-pass reactors is addressed. The first recorded failure was in 1948, the last in 1970. No records of fuel-element failures were found in documents prior to 1948. Data on the approximately 2000 failures which occurred during the 28 years (1944--1971) of Hanford single-pass reactor operations are provided in this report.

  16. Fuel-element failures in Hanford single-pass reactors 1944--1971

    International Nuclear Information System (INIS)

    Gydesen, S.P.

    1993-07-01

    The primary objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of emissions since 1944 from the US Department of Energy's (DOE) Hanford Site near Richland, Washington. To estimate the doses, the staff of the Source Terms Task use operating information from historical documents to approximate the radioactive emissions. One source of radioactive emissions to the Columbia River came from leaks in the aluminum cladding of the uranium metal fuel elements in single-pass reactors. The purpose of this letter report is to provide photocopies of the documents that recorded these failures. The data from these documents will be used by the Source Terms Task to determine the contribution of single-pass reactor fuel-element failures to the radioactivity of the reactor effluent from 1944 through 1971. Each referenced fuel-element failure occurring in the Hanford single-pass reactors is addressed. The first recorded failure was in 1948, the last in 1970. No records of fuel-element failures were found in documents prior to 1948. Data on the approximately 2000 failures which occurred during the 28 years (1944--1971) of Hanford single-pass reactor operations are provided in this report

  17. A data assimilation experiment of RASTA airborne cloud radar data during HyMeX IOP16

    Science.gov (United States)

    Saussereau, Gaël; Caumont, Olivier; Delanoë, Julien

    2015-04-01

    The main goal of HyMeX first special observing period (SOP1), which took place from 5 September to 5 November 2012, was to document the heavy precipitation events and flash floods that regularly affect the north-western Mediterranean coastal areas. In the two-month campaign, around twenty rainfall events were documented in France, Italy, and Spain. Among the instrumental platforms that were deployed during SOP1, the Falcon 20 of the Safire unit (http://www.safire.fr/) made numerous flights in storm systems so as to document their thermodynamic, microphysical, and dynamical properties. In particular, the RASTA cloud radar (http://rali.projet.latmos.ipsl.fr/) was aboard this aircraft. This radar measures vertical profiles of reflectivity and Doppler velocity above and below the aircraft. This unique instrument thus allows us to document the microphysical properties and the speed of wind and hydrometeors in the clouds, quasi-continuously in time and at a 60-m vertical resolution. For this field campaign, a special version of the numerical weather prediction (NWP) Arome system was developed to cover the whole north-western Mediterranean basin. This version, called Arome-WMed, ran in real time during the SOP in order to, notably, schedule the airborne operations, especially in storm systems. Like the operational version, Arome-WMed delivers forecasts at a horizontal resolution of 2.5 km with a one-moment microphysical scheme that predicts the evolution of six water species: water vapour, cloud liquid water, rainwater, pristine ice, snow, and graupel. Its three-dimensional variational (3DVar) data assimilation (DA) system ingests every three hours (at 00 UTC, 03 UTC, etc.) numerous observations (radiosoundings, ground automatic weather stations, radar, satellite, GPS, etc.). In order to provide improved initial conditions to Arome-WMed, especially for heavy precipitation events, RASTA data were assimilated in Arome-WMed 3DVar DA system for IOP16 (26 October 2012), to

  18. Accuracy of Flight Altitude Measured with Low-Cost GNSS, Radar and Barometer Sensors: Implications for Airborne Radiometric Surveys.

    Science.gov (United States)

    Albéri, Matteo; Baldoncini, Marica; Bottardi, Carlo; Chiarelli, Enrico; Fiorentini, Giovanni; Raptis, Kassandra Giulia Cristina; Realini, Eugenio; Reguzzoni, Mirko; Rossi, Lorenzo; Sampietro, Daniele; Strati, Virginia; Mantovani, Fabio

    2017-08-16

    Flight height is a fundamental parameter for correcting the gamma signal produced by terrestrial radionuclides measured during airborne surveys. The frontiers of radiometric measurements with UAV require light and accurate altimeters flying at some 10 m from the ground. We equipped an aircraft with seven altimetric sensors (three low-cost GNSS receivers, one inertial measurement unit, one radar altimeter and two barometers) and analyzed ~3 h of data collected over the sea in the (35-2194) m altitude range. At low altitudes (H GNSS data are used only for barometer calibration as they are affected by a large noise due to the multipath from the sea. The ~1 m median standard deviation at 50 m altitude affects the estimation of the ground radioisotope abundances with an uncertainty less than 1.3%. The GNSS double-difference post-processing enhanced significantly the data quality for H > 80 m in terms of both altitude median standard deviation and agreement between the reconstructed and measured GPS antennas distances. Flying at 100 m the estimated uncertainty on the ground total activity due to the uncertainty on the flight height is of the order of 2%.

  19. Antarctic Firn Compaction Rates from Repeat-Track Airborne Radar Data: I. Methods

    Science.gov (United States)

    Medley, B.; Ligtenberg, S. R. M.; Joughin, I.; Van Den Broeke, M. R.; Gogineni, S.; Nowicki, S.

    2015-01-01

    While measurements of ice-sheet surface elevation change are increasingly used to assess mass change, the processes that control the elevation fluctuations not related to ice-flow dynamics (e.g. firn compaction and accumulation) remain difficult to measure. Here we use radar data from the Thwaites Glacier (West Antarctica) catchment to measure the rate of thickness change between horizons of constant age over different time intervals: 2009-10, 2010-11 and 2009-11. The average compaction rate to approximately 25m depth is 0.33ma(exp -1), with largest compaction rates near the surface. Our measurements indicate that the accumulation rate controls much of the spatio-temporal variations in the compaction rate while the role of temperature is unclear due to a lack of measurements. Based on a semi-empirical, steady-state densification model, we find that surveying older firn horizons minimizes the potential bias resulting from the variable depth of the constant age horizon. Our results suggest that the spatiotemporal variations in the firn compaction rate are an important consideration when converting surface elevation change to ice mass change. Compaction rates varied by up to 0.12ma(exp -1) over distances less than 6km and were on average greater than 20% larger during the 2010-11 interval than during 2009-10.

  20. A 3D Reconstruction Strategy of Vehicle Outline Based on Single-Pass Single-Polarization CSAR Data.

    Science.gov (United States)

    Leping Chen; Daoxiang An; Xiaotao Huang; Zhimin Zhou

    2017-11-01

    In the last few years, interest in circular synthetic aperture radar (CSAR) acquisitions has arisen as a consequence of the potential achievement of 3D reconstructions over 360° azimuth angle variation. In real-world scenarios, full 3D reconstructions of arbitrary targets need multi-pass data, which makes the processing complex, money-consuming, and time expending. In this paper, we propose a processing strategy for the 3D reconstruction of vehicle, which can avoid using multi-pass data by introducing a priori information of vehicle's shape. Besides, the proposed strategy just needs the single-pass single-polarization CSAR data to perform vehicle's 3D reconstruction, which makes the processing much more economic and efficient. First, an analysis of the distribution of attributed scattering centers from vehicle facet model is presented. And the analysis results show that a smooth and continuous basic outline of vehicle could be extracted from the peak curve of a noncoherent processing image. Second, the 3D location of vehicle roofline is inferred from layover with empirical insets of the basic outline. At last, the basic line and roofline of the vehicle are used to estimate the vehicle's 3D information and constitute the vehicle's 3D outline. The simulated and measured data processing results prove the correctness and effectiveness of our proposed strategy.

  1. Quantitative Estimation of Above Ground Crop Biomass using Ground-based, Airborne and Spaceborne Low Frequency Polarimetric Synthetic Aperture Radar

    Science.gov (United States)

    Koyama, C.; Watanabe, M.; Shimada, M.

    2016-12-01

    Estimation of crop biomass is one of the important challenges in environmental remote sensing related to agricultural as well as hydrological and meteorological applications. Usually passive optical data (photographs, spectral data) operating in the visible and near-infrared bands is used for such purposes. The virtue of optical remote sensing for yield estimation, however, is rather limited as the visible light can only provide information about the chemical characteristics of the canopy surface. Low frequency microwave signals with wavelength longer 20 cm have the potential to penetrate through the canopy and provide information about the whole vertical structure of vegetation from the top of the canopy down to the very soil surface. This phenomenon has been well known and exploited to detect targets under vegetation in the military radar application known as FOPEN (foliage penetration). With the availability of polarimetric interferometric SAR data the use PolInSAR techniques to retrieve vertical vegetation structures has become an attractive tool. However, PolInSAR is still highly experimental and suitable data is not yet widely available. In this study we focus on the use of operational dual-polarization L-band (1.27 GHz) SAR which is since the launch of Japan's Advanced Land Observing Satellite (ALOS, 2006-2011) available worldwide. Since 2014 ALOS-2 continues to deliver such kind of partial polarimetric data for the entire land surface. In addition to these spaceborne data sets we use airborne L-band SAR data acquired by the Japanese Pi-SAR-L2 as well as ultra-wideband (UWB) ground based SAR data operating in the frequency range from 1-4 GHz. By exploiting the complex dual-polarization [C2] Covariance matrix information, the scattering contributions from the canopy can be well separated from the ground reflections allowing for the establishment of semi-empirical relationships between measured radar reflectivity and the amount of fresh-weight above

  2. Power line characterization from an airborne data collection with a millimeter wave radar

    Science.gov (United States)

    Goshi, Darren S.; Bui, Long Q.

    2014-05-01

    Enhancing the operational safety of small, maneuverable rotorcraft has been a critical consideration in the development of next generation situational awareness sensor suites. From landing assistance to target detection and obstacle avoidance, millimeter wave radars have become the leading candidate for such solutions due to their ability to operate in degraded visual environments, whether it is weather, induced debris, or night conditions that must be dealt with. Power lines pose arguably the largest safety risk for helicopter operation due to their difficulty in detection and proper identification to support avoidance maneuvering, where even under perfect conditions they can be nearly invisible to the naked eye. The backscatter phenomenology from braided power lines has been well-studied and formulated in previous literature, albeit mainly in controlled laboratory settings or limited field trials. Subsequently, the ability to simply detect power lines at operational distances up to around 2 km has been demonstrated. In this work, an analysis is performed on the measureable characteristics of power lines captured in a representative operational environment for helicopters. The test location included a diverse set of power line configurations with surrounding ground and tower clutter, representing a realistic scenario. A radiometrically calibrated w-band real-beam FMCW sensor allows the study and estimation of target RCS, as well as evaluation against the developed theory. All analysis is performed on dynamically captured data from a helicopter, where platform dynamics and system stability also play a significant role in a processed result. Results from this work will aid the effective development of next generation situational awareness systems.

  3. Marsh dieback, loss, and recovery mapped with satellite optical, airborne polarimetric radar, and field data

    Science.gov (United States)

    Ramsey, Elijah W.; Rangoonwala, Amina; Chi, Zhaohui; Jones, Cathleen E.; Bannister, Terri

    2014-01-01

    Landsat Thematic Mapper and Satellite Pour l'Observation de la Terre (SPOT) satellite based optical sensors, NASA Uninhabited Aerial Vehicle synthetic aperture radar (UAVSAR) polarimetric SAR (PolSAR), and field data captured the occurrence and the recovery of an undetected dieback that occurred between the summers of 2010, 2011, and 2012 in the Spartina alterniflora marshes of coastal Louisiana. Field measurements recorded the dramatic biomass decrease from 2010 to 2011 and a biomass recovery in 2012 dominated by a decrease of live biomass, and the loss of marsh as part of the dieback event. Based on an established relationship, the near-infrared/red vegetation index (VI) and site-specific measurements delineated a contiguous expanse of marsh dieback encompassing 6649.9 ha of 18,292.3 ha of S. alterniflora marshes within the study region. PolSAR data were transformed to variables used in biophysical mapping, and of this variable suite, the cross-polarization HV (horizontal send and vertical receive) backscatter was the best single indicator of marsh dieback and recovery. HV backscatter exhibited substantial and significant changes over the dieback and recovery period, tracked measured biomass changes, and significantly correlated with the live/dead biomass ratio. Within the context of regional trends, both HV and VI indicators started higher in pre-dieback marshes and exhibited substantially and statistically higher variability from year to year than that exhibited in the non-dieback marshes. That distinct difference allowed the capturing of the S. alterniflora marsh dieback and recovery; however, these changes were incorporated in a regional trend exhibiting similar but more subtle biomass composition changes.

  4. High-resolution digital elevation models from single-pass TanDEM-X interferometry over mountainous regions: A case study of Inylchek Glacier, Central Asia

    Science.gov (United States)

    Neelmeijer, Julia; Motagh, Mahdi; Bookhagen, Bodo

    2017-08-01

    This study demonstrates the potential of using single-pass TanDEM-X (TDX) radar imagery to analyse inter- and intra-annual glacier changes in mountainous terrain. Based on SAR images acquired in February 2012, March 2013 and November 2013 over the Inylchek Glacier, Kyrgyzstan, we discuss in detail the processing steps required to generate three reliable digital elevation models (DEMs) with a spatial resolution of 10 m that can be used for glacial mass balance studies. We describe the interferometric processing steps and the influence of a priori elevation information that is required to model long-wavelength topographic effects. We also focus on DEM alignment to allow optimal DEM comparisons and on the effects of radar signal penetration on ice and snow surface elevations. We finally compare glacier elevation changes between the three TDX DEMs and the C-band shuttle radar topography mission (SRTM) DEM from February 2000. We introduce a new approach for glacier elevation change calculations that depends on the elevation and slope of the terrain. We highlight the superior quality of the TDX DEMs compared to the SRTM DEM, describe remaining DEM uncertainties and discuss the limitations that arise due to the side-looking nature of the radar sensor.

  5. High-aspect-ratio grooves fabricated in silicon by a single pass of femtosecond laser pulses

    International Nuclear Information System (INIS)

    Ma Yuncan; Shi Haitao; Si Jinhai; Ren Hai; Chen Tao; Chen Feng; Hou Xun

    2012-01-01

    High-aspect-ratio grooves have been fabricated in silicon by a single pass of femtosecond laser pulses in water and ambient air. Scanning electron microscopy and energy dispersive x-ray spectroscopy were employed to image for the morphology of the photoinduced grooves and analyze the chemical composition in the surrounding of the grooves. It was observed that the sidewall of the grooves fabricated in water was much smoother than that in ambient air, and there were homogeneous nano-scale protrusions on the sidewall of the grooves fabricated in water. Meanwhile, oxygen species, which was incorporated into the grooves fabricated in air, was not observed in those in water.

  6. A Unified Algorithm for Channel Imbalance and Antenna Phase Center Position Calibration of a Single-Pass Multi-Baseline TomoSAR System

    Directory of Open Access Journals (Sweden)

    Yuncheng Bu

    2018-03-01

    Full Text Available The multi-baseline synthetic aperture radar (SAR tomography (TomoSAR system is employed in such applications as disaster remote sensing, urban 3-D reconstruction, and forest carbon storage estimation. This is because of its 3-D imaging capability in a single-pass platform. However, a high 3-D resolution of TomoSAR is based on the premise that the channel imbalance and antenna phase center (APC position are precisely known. If this is not the case, the 3-D resolution performance will be seriously degraded. In this paper, a unified algorithm for channel imbalance and APC position calibration of a single-pass multi-baseline TomoSAR system is proposed. Based on the maximum likelihood method, as well as the least squares and the damped Newton method, we can calibrate the channel imbalance and APC position. The algorithm is suitable for near-field conditions, and no phase unwrapping operation is required. The effectiveness of the proposed algorithm has been verified by simulation and experimental results.

  7. Generic, network schema agnostic sparse tensor factorization for single-pass clustering of heterogeneous information networks.

    Directory of Open Access Journals (Sweden)

    Jibing Wu

    Full Text Available Heterogeneous information networks (e.g. bibliographic networks and social media networks that consist of multiple interconnected objects are ubiquitous. Clustering analysis is an effective method to understand the semantic information and interpretable structure of the heterogeneous information networks, and it has attracted the attention of many researchers in recent years. However, most studies assume that heterogeneous information networks usually follow some simple schemas, such as bi-typed networks or star network schema, and they can only cluster one type of object in the network each time. In this paper, a novel clustering framework is proposed based on sparse tensor factorization for heterogeneous information networks, which can cluster multiple types of objects simultaneously in a single pass without any network schema information. The types of objects and the relations between them in the heterogeneous information networks are modeled as a sparse tensor. The clustering issue is modeled as an optimization problem, which is similar to the well-known Tucker decomposition. Then, an Alternating Least Squares (ALS algorithm and a feasible initialization method are proposed to solve the optimization problem. Based on the tensor factorization, we simultaneously partition different types of objects into different clusters. The experimental results on both synthetic and real-world datasets have demonstrated that our proposed clustering framework, STFClus, can model heterogeneous information networks efficiently and can outperform state-of-the-art clustering algorithms as a generally applicable single-pass clustering method for heterogeneous network which is network schema agnostic.

  8. Experimental and simulation studies on a single pass, double duct solar air heater

    Energy Technology Data Exchange (ETDEWEB)

    Forson, F.K. [Kwame Nkrumah Univ. of Science and Technology, Dept. of Mechanical Engineering, Kumasi (Ghana); Rajakaruna, H. [De Montfort Univ., School of Engineering and Technology, Leicester (United Kingdom)

    2003-05-01

    A mathematical model of a single pass, double duct solar air heater (SPDDSAH) is described. The model provides a design tool capable of predicting: incident solar radiation, heat transfer coefficients, mean air flow rates, mean air temperature and relative humidity at the exit. Results from the simulation are presented and compared with experimental ones obtained on a full scale air heater and a small scale laboratory one. Reasonable agreement between the predicted and measured values is demonstrated. Predicted results from a parametric study are also presented. It is shown that significant improvement in the SPDDSAH performance can be obtained with an appropriate choice of the collector parameters and the top to bottom channel depth ratio of the two ducts. The air mass flow rate is shown to be the dominant factor in determining the overall efficiency of the heater. (Author)

  9. Characterization of the solid, airborne materials created when UF6 reacts with moist air flowing in single-pass mode

    International Nuclear Information System (INIS)

    Pickrell, P.W.

    1985-10-01

    A series of experiments has been performed in which UF 6 was released into flowing air in order to characterize the solid particulate material produced under non-static conditions. In two of the experiments, the aerosol was allowed to stagnate in a static chamber after release and examined further but in the other experiments characterization was done only on material collected a few seconds after release. Transmission electron microscopy and mass measurement by cascaded impactor were used to characterize the aerosol particles which were usually single spheroids with little agglomeration in evidence. The goal of the work is to determine the chemistry and physics of the UF 6 -atmospheric moisture reaction under a variety of conditions so that information about resulting species and product morphologies is available for containment and removal (knockdown) studies as well as for dispersion plume modeling and toxicology studies. This report completes the milestone for reporting the information obtained from releases of UF 6 into flowing rather than static air. 26 figs., 3 tabs

  10. Evaluation of a single-pass continuous whole-body 16-MDCT protocol for patients with polytrauma.

    Science.gov (United States)

    Nguyen, Duy; Platon, Alexandra; Shanmuganathan, Kathirkamanathan; Mirvis, Stuart E; Becker, Christoph D; Poletti, Pierre-Alexandre

    2009-01-01

    The purpose of this study was to compare a conventional multiregional MDCT protocol with two continuous single-pass whole-body MDCT protocols in imaging of patients with polytrauma. Ninety patients with polytrauma underwent whole-body 16-MDCT with a conventional (n=30) or one of two single-pass (n=60) protocols. The conventional protocol included unenhanced scans of the head and cervical spine and contrast-enhanced helical scans (140 mL, 4 mL/s, 300 mg I/mL) of the thorax and abdomen. The single-pass protocols consisted of unenhanced scans of the head followed by one-sweep acquisition from the circle of Willis through the pubic symphysis with a biphasic (150 mL, 6 and 4 mL/s, 300 mg I/mL) or monophasic (110 mL, 4 mL/s, 400 mg I/mL) injection. Acquisition times and interval delays between head, chest, and abdominal scans were recorded. Contrast enhancement was measured in the aortic arch, liver, spleen, and kidney. Diagnostic image quality in the same areas was assessed on a 4-point scale. Median acquisition times for the single-pass protocols were significantly shorter (-42.5%) than the acquisition time for the conventional protocol. No significant differences were found in mean enhancement values in the aorta, liver, spleen, and kidney for the three protocols. The image quality with both single-pass protocols was better than that with the conventional protocol in assessment of the mediastinum and cervical spine (p<0.05). There was no significant difference between the single-pass protocols. Use of single-pass continuous whole-body MDCT protocols can significantly decrease examination time for patients with polytrauma and improve image quality compared with a conventional serial scan protocol. Monophasic injection with highly concentrated contrast medium can reduce injection flow rate and should therefore be preferred to a biphasic injection technique.

  11. AGARD Flight Test Techniques Series. Volume 16. Introduction to Airborne Early Warning Radar Flight Test. (Introduction aux essais en vol des Radars Aeroportes d’Alerte Lointaine)

    Science.gov (United States)

    1999-11-01

    on CD-ROM. Replacement CD-ROMs, containing the corrections for all three publications, are enclosed for them. -Zý George Hart /• Information Policy...meilleure gestion du champ de bataille offertes par les radars a~roport~s d’ alerte lointaine (AEW), repr~sentent un exemnple de ces «< multiplicateurs...dans la poursuite d’une connaissance de la situation des forces qui permettrait de dominer le champ de bataille . Malheureusement, peu ou point de

  12. Safety and efficacy of high fluence CO2 laser skin resurfacing with a single pass.

    Science.gov (United States)

    Khosh, M M; Larrabee, W F; Smoller, B

    1999-01-01

    Carbon dioxide (CO2) laser skin resurfacing has nearly replaced more traditional methods of superficial skin rejuvenation. Post-treatment erythema is the most common side effect of this method of skin resurfacing. Sublethal thermal damage to the dermis has been proposed as an etiology for post laser erythema. Recent developments in laser resurfacing technology have aimed at minimizing thermal damage to the dermis. To determine depth of skin ablation, extent of thermal injury, and ideal laser parameters for the FeatherTouch laser system. To assess the safety and efficacy of laser resurfacing at high energy fluences with a single pass. Laser resurfacing was performed in the preauricular skin of five patients undergoing rhytidectomy. A total of 60 sites were tested with fluences of 7 to 17 Joules/cm2. Histologic evaluation of excised skin showed maximal thermal injury to be restricted to 60 microns in the papillary dermis. The reticular dermis showed no evidence of injury. Based on these findings, laser resurfacing at 17 J/cm2 (70 watts) was performed on 30 patients (in the periorbital area, a maximum of 9 J/cm2 or 36 watts was used). Follow up ranged between 12 and 18 months. Based on histologic comparison of average and high fluence laser resurfacing, high fluence laser resurfacing did not cause added thermal damage to the reticular dermis. In the clinical group, no major complications such as scarring, scleral show, infection or ectropion were encountered. Transient hyperpigmentation was noted in three patients. Overall patient satisfaction was good to excellent. Post-treatment erythema lasted an average of 4 weeks. We conclude that CO2 laser resurfacing of the face (excluding the periorbital region) can be performed safely and effectively, with the FeatherTouch laser, at 17 J/cm2 with one pass. In our group of patients, laser resurfacing with a single pass at 17 J/cm2 caused less post-operative erythema than two or more passes at 9 J/cm2.

  13. Effects of surface roughness on sea ice freeboard retrieval with an Airborne Ku-Band SAR radar altimeter

    DEFF Research Database (Denmark)

    Hendricks, Stefan; Stenseng, Lars; Helm, Veit

    2010-01-01

    Results from two years of the CryoSat Validation Experiment (CryoVEx) over sea ice in the western Arctic Ocean are presented. The estimation of freeboard, the height of sea ice floating above the water level, is one the main goals of the CryoSat-2 mission of the European Space Agency (ESA) in order...... to investigate sea ice volume changes on an Arctic wide scale. Freeboard retrieval requires precise radar range measurements to the ice surface, therefore we investigate the penetration of the Ku-Band radar waves into the overlying snow cover as well as the effects of sub-footprint-scale surface roughness using...

  14. The accuracy of satellite radar altimeter data over the Greenland ice sheet determined from airborne laser data

    DEFF Research Database (Denmark)

    Bamber, J.L.; Ekholm, Simon; Krabill, W.

    1998-01-01

    The 336 days of the geodetic phase of ERS-1 provides dense coverage, by satellite radar altimetry, of the whole of the Greenland ice sheet. These data have been used to produce a digital elevation model of the ice sheet. The errors present in the altimeter data were investigated via a comparison......, to 10.3 m +/- 8.4 m for a slope of 0.7 degrees ( the half power beam-width of the ERS-1 radar altimeter). An explanation for the behaviour of the difference as a function of surface slope is given in terms of the pattern of surface roughness on the ice sheet....

  15. Integration of airborne altimetry and in situ radar measurements to estimate marine ice thickness beneath the Larsen C ice shelf, Antarctic Peninsula

    Science.gov (United States)

    McGrath, D.; Steffen, K.; Rodriguez Lagos, J.

    2010-12-01

    Observed atmospheric and oceanic warming is driving significant retreat and / or collapse of ice shelves along the Antarctic Peninsula totaling over 25,000 km2 in the past five decades. Basal melting of meteoric ice can occur near the grounding line of deep glacier inflows if the ocean water is above the pressure melting point. Buoyant meltwater will develop thermohaline circulation, rising beneath the ice shelf, where it may become supercooled and subsequently refreeze in ice draft minima. Marine ice, due to its warm and thus relatively viscous nature, is hypothesized to suture parallel flow bands, increasing ice shelf stability by arresting fracture propagation and controlling iceberg calving dimensions. Thus efforts to model ice shelf stability require accurate estimates of marine ice location and thickness. Ice thickness of a floating ice shelf can be determined in two manners: (1) from measurements of ice elevation above sea level and the calculation of ice thickness from assumptions of hydrostatic equilibrium, and (2) from radar echo measurements of the ice-water interface. Marine ice can confound the latter because its high dielectric constant and strong absorptive properties attenuate the radar energy, often preventing a return signal from the bottom of the ice shelf. These two methods are complementary for determining the marine ice component though because positive anomalies in (1) relative to (2) suggest regions of marine ice accretion. Nearly 350 km of ice penetrating radar (25 MHz) surveys were collected on the Larsen C ice shelf, in conjunction with kinematic GPS measurements and collocated with surface elevation data from the NASA Airborne Topographic Mapper (ATM) as part of the ICE Bridge mission in 2009. Basal ice topography and total ice thickness is accurately mapped along the survey lines and compared with calculated ice thickness from both the kinematic GPS and ATM elevation data. Positive anomalies are discussed in light of visible imagery and

  16. Parametric analysis of plastic strain and force distribution in single pass metal spinning

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Shashank, E-mail: shashankbit08@gmail.com, E-mail: mohantejesh93@gmail.com, E-mail: regalla@hyderabad.bits-pilani.ac.in, E-mail: ksuresh@hyderabad.bits-pilani.ac.in; Tejesh, Chiruvolu Mohan, E-mail: shashankbit08@gmail.com, E-mail: mohantejesh93@gmail.com, E-mail: regalla@hyderabad.bits-pilani.ac.in, E-mail: ksuresh@hyderabad.bits-pilani.ac.in; Regalla, Srinivasa Prakash, E-mail: shashankbit08@gmail.com, E-mail: mohantejesh93@gmail.com, E-mail: regalla@hyderabad.bits-pilani.ac.in, E-mail: ksuresh@hyderabad.bits-pilani.ac.in; Suresh, Kurra, E-mail: shashankbit08@gmail.com, E-mail: mohantejesh93@gmail.com, E-mail: regalla@hyderabad.bits-pilani.ac.in, E-mail: ksuresh@hyderabad.bits-pilani.ac.in [Department of Mechanical Engineering, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, Andhra Pradesh (India)

    2013-12-16

    Metal spinning also known as spin forming is one of the sheet metal working processes by which an axis-symmetric part can be formed from a flat sheet metal blank. Parts are produced by pressing a blunt edged tool or roller on to the blank which in turn is mounted on a rotating mandrel. This paper discusses about the setting up a 3-D finite element simulation of single pass metal spinning in LS-Dyna. Four parameters were considered namely blank thickness, roller nose radius, feed ratio and mandrel speed and the variation in forces and plastic strain were analysed using the full-factorial design of experiments (DOE) method of simulation experiments. For some of these DOE runs, physical experiments on extra deep drawing (EDD) sheet metal were carried out using En31 tool on a lathe machine. Simulation results are able to predict the zone of unsafe thinning in the sheet and high forming forces that are hint to the necessity for less-expensive and semi-automated machine tools to help the household and small scale spinning workers widely prevalent in India.

  17. Capacitive deionization of arsenic-contaminated groundwater in a single-pass mode.

    Science.gov (United States)

    Fan, Chen-Shiuan; Liou, Sofia Ya Hsuan; Hou, Chia-Hung

    2017-10-01

    A single-pass-mode capacitive deionization (CDI) reactor was used to remove arsenic from groundwater in the presence of multiple ions. The CDI reactor involved an applied voltage of 1.2 V and six cell pairs of activated carbon electrodes, each of which was 20 × 30 cm 2 . The results indicate that this method achieved an effluent arsenic concentration of 0.03 mg L -1 , which is lower than the arsenic concentration standard for drinking water and irrigation sources in Taiwan, during the charging stage. Additionally, the ability of the CDI to remove other coexisting ions was studied. The presence of other ions has a significant influence on the removal of arsenic from groundwater. From the analysis of the electrosorption selectivity, the preference for anion removal could be ordered as follows: NO 3 -  > SO 4 2-  > F -  > Cl - >As. The electrosorption selectivity for cations could be ordered as follows: Ca 2+  > Mg 2+  > Na +  ∼ K + . Moreover, monovalent cations can be replaced by divalent cations at the electrode surface in the later period of the electrosorption stage. Consequently, activated carbon-based capacitive deionization is demonstrated to be a high-potential technology for remediation of arsenic-contaminated groundwater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Low energy dark current collimation system in single-pass linacs

    Science.gov (United States)

    Bettoni, S.; Craievich, P.; Pedrozzi, M.; Schaer, M.; Stingelin, L.

    2018-02-01

    The dark current emitted from a surface of a radio frequency cavity may be a severe issue for the activation and the protection of the components of linear accelerators, if this current is lost in an uncontrolled manner. For a single-pass linac based on a photo-injector, we studied the possibility of using a collimator installed at low energy (below 10 MeV) to dump the maximum fraction of the dark current before it is transported along the linac. We developed and experimentally verified an emission and tracking model that we used to study and optimize the dark current mitigation at SwissFEL test facility. We optimized a collimator, which is expected to reduce by two orders of magnitude the transport of the dark current to the first compressor. We have also verified the effects of wakefield excited by the beam itself passing through the collimator at such a low energy, comparing the results of beam-based measurements with an analytical model.

  19. Uranium Release from Acidic Weathered Hanford Sediments: Single-Pass Flow-Through and Column Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guohui [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Um, Wooyong [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Pohang University of Science and Technology (POSTECH), Pohang, South Korea; Wang, Zheming [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Reinoso-Maset, Estela [Sierra; Washton, Nancy M. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Mueller, Karl T. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Perdrial, Nicolas [Department; Department; O’Day, Peggy A. [Sierra; Chorover, Jon [Department

    2017-09-21

    The reaction of acidic radioactive waste with sediments can induce mineral transformation reactions that, in turn, control contaminant fate. Here, sediment weathering by synthetic uranium-containing acid solutions was investigated using bench-scale experiments to simulate waste disposal conditions at Hanford’s cribs, USA. During acid weathering, the presence of phosphate exerted a strong influence over uranium mineralogy and a rapidly precipitated, crystalline uranium phosphate phase (meta-ankoleite [K(UO2)(PO4)·3H2O]) was identified using spectroscopic and diffraction-based techniques. In phosphate-free system, uranium oxyhydroxide minerals such as K-compreignacite [K2(UO2)6O4(OH)6·7H2O] were formed. Single-pass flow-through (SPFT) and column leaching experiments using synthetic Hanford pore water showed that uranium precipitated as meta-ankoleite during acid weathering was strongly retained in the sediments, with an average release rate of 2.67E-12 mol g-1 s-1. In the absence of phosphate, uranium release was controlled by dissolution of uranium oxyhydroxide (compreignacite-type) mineral with a release rate of 1.05-2.42E-10 mol g-1 s-1. The uranium mineralogy and release rates determined for both systems in this study support the development of accurate U-release models for prediction of contaminant transport. These results suggest that phosphate minerals may be a good candidate for uranium remediation approaches at contaminated sites.

  20. Non-destructive single-pass low-noise detection of ions in a beamline

    Science.gov (United States)

    Schmidt, Stefan; Murböck, Tobias; Andelkovic, Zoran; Birkl, Gerhard; Nörtershäuser, Wilfried; Stahl, Stefan; Vogel, Manuel

    2015-11-01

    We have conceived, built, and operated a device for the non-destructive single-pass detection of charged particles in a beamline. The detector is based on the non-resonant pick-up and subsequent low-noise amplification of the image charges induced in a cylindrical electrode surrounding the particles' beam path. The first stage of the amplification electronics is designed to be operated from room temperature down to liquid helium temperature. The device represents a non-destructive charge counter as well as a sensitive timing circuit. We present the concept and design details of the device. We have characterized its performance and show measurements with low-energy highly charged ions (such as Ar13+) passing through one of the electrodes of a cylindrical Penning trap. This work demonstrates a novel approach of non-destructive, low noise detection of charged particles which is, depending on the bunch structure, suitable, e.g., for ion traps, low-energy beamlines or accelerator transfer sections.

  1. NASA airborne radar wind shear detection algorithm and the detection of wet microbursts in the vicinity of Orlando, Florida

    Science.gov (United States)

    Britt, Charles L.; Bracalente, Emedio M.

    1992-01-01

    The algorithms used in the NASA experimental wind shear radar system for detection, characterization, and determination of windshear hazard are discussed. The performance of the algorithms in the detection of wet microbursts near Orlando is presented. Various suggested algorithms that are currently being evaluated using the flight test results from Denver and Orlando are reviewed.

  2. Evaluation of regional pulmonary blood flow in mitral valvular heart disease using single-pass radionuclide angiocardiography

    International Nuclear Information System (INIS)

    Chang-Soon Koh; Byung Tae Kim; Myung Chul Lee; Bo Yeon Cho

    1982-01-01

    Pulmonary hypertension in mitral valvular cardiac disease has been evaluated in 122 patients by a modified upper lung/lower count ratio using single-pass radionuclide angiocardiography. The mean upper lung/lower lung radio correlates well with pulmonary artery mean (r=0.483) and wedge pressure (r=0.804). After correction surgery of the cardiac valve, the ratio decreases and returns to normal range in patients judged clinically to have good surgical benifit. This modified method using single-pass technique provides additional simple, reproducible and nontraumatic results of regional pulmonary blood flow and appears to be correlated with the degree of pulmonary hypertension in mitral heart disease

  3. Exploring the Recovery Lakes region and interior Dronning Maud Land, East Antarctica, with airborne gravity, magnetic and radar measurements

    DEFF Research Database (Denmark)

    Forsberg, René; Olesen, Arne Vestergaard; Ferraccioli, Fausto

    2017-01-01

    for major Dronning Maud Land ice stream systems, from the grounding lines up to the Recovery Lakes drainage basin, and filled in major data voids in Antarctic data compilations, such as AntGP for gravity data, ADMAP for magnetic data and BEDMAP2 for ice thickness data and the sub-ice topography. We present...... and Belgrano II stations, as well as a remote field camp located at the Recovery subglacial Lake B site. Gravity measurements were the primary driver for the survey, with two airborne gravimeters (Lacoste and Romberg and Chekan-AM) providing measurements at an accuracy level of around 2 mGal r.......m.s., supplementing GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) satellite data and confirming an excellent sub-milligal agreement between satellite and airborne data at longer wavelengths....

  4. FY2016 ILAW Glass Corrosion Testing with the Single-Pass Flow-Through Method

    Energy Technology Data Exchange (ETDEWEB)

    Neeway, James J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Asmussen, Robert M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Parruzot, Benjamin PG [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cordova, Elsa [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, Benjamin D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Leavy, Ian I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stephenson, John R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McElroy, Erin M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-04-21

    The inventory of immobilized low-activity waste (ILAW) produced at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) will be disposed of at the near-surface, on-site Integrated Disposal Facility (IDF). When groundwater comes into contact with the waste form, the glass will corrode and radionuclides will be released into the near-field environment. Because the release of the radionuclides is dependent on the dissolution rate of the glass, it is important that the performance assessment (PA) model accounts for the dissolution rate of the glass as a function of various chemical conditions. To accomplish this, an IDF PA model based on Transition State Theory (TST) can be employed. The model is able to account for changes in temperature, exposed surface area, and pH of the contacting solution as well as the effect of silicon concentrations in solution, specifically the activity of orthosilicic acid (H4SiO4), whose concentration is directly linked to the glass dissolution rate. In addition, the IDF PA model accounts for the alkali-ion exchange process as sodium is leached from the glass and into solution. The effect of temperature, pH, H4SiO4 activity, and the rate of ion-exchange can be parameterized and implemented directly into the PA rate law model. The rate law parameters are derived from laboratory tests with the single-pass flow-through (SPFT) method. To date, rate law parameters have been determined for seven ILAW glass compositions, thus additional rate law parameters on a wider range of compositions will supplement the existing body of data for PA maintenance activities. The data provided in this report can be used by ILAW glass scientists to further the understanding of ILAW glass behavior, by IDF PA modelers to use the rate law parameters in PA modeling efforts, and by Department of Energy (DOE) contractors and decision makers as they assess the IDF PA program.

  5. Narrow conductive structures with high aspect ratios through single-pass inkjet printing and evaporation-induced dewetting

    NARCIS (Netherlands)

    Abbel, R.; Teunissen, P.; Michels, J.; Groen, W.A.

    2015-01-01

    Inkjet printed silver lines contract to widths below 20-μm during drying on an organic planarization coating. Aspect ratios previously unprecedented with single pass inkjet printing on isotropic homogeneous substrates are obtained. This effect is caused by the subsequent evaporation of solvents from

  6. Maximum-likelihood spectral estimation and adaptive filtering techniques with application to airborne Doppler weather radar. Thesis Technical Report No. 20

    Science.gov (United States)

    Lai, Jonathan Y.

    1994-01-01

    This dissertation focuses on the signal processing problems associated with the detection of hazardous windshears using airborne Doppler radar when weak weather returns are in the presence of strong clutter returns. In light of the frequent inadequacy of spectral-processing oriented clutter suppression methods, we model a clutter signal as multiple sinusoids plus Gaussian noise, and propose adaptive filtering approaches that better capture the temporal characteristics of the signal process. This idea leads to two research topics in signal processing: (1) signal modeling and parameter estimation, and (2) adaptive filtering in this particular signal environment. A high-resolution, low SNR threshold maximum likelihood (ML) frequency estimation and signal modeling algorithm is devised and proves capable of delineating both the spectral and temporal nature of the clutter return. Furthermore, the Least Mean Square (LMS) -based adaptive filter's performance for the proposed signal model is investigated, and promising simulation results have testified to its potential for clutter rejection leading to more accurate estimation of windspeed thus obtaining a better assessment of the windshear hazard.

  7. Pulse Doppler radar

    CERN Document Server

    Alabaster, Clive

    2012-01-01

    This book is a practitioner's guide to all aspects of pulse Doppler radar. It concentrates on airborne military radar systems since they are the most used, most complex, and most interesting of the pulse Doppler radars; however, ground-based and non-military systems are also included. It covers the fundamental science, signal processing, hardware issues, systems design and case studies of typical systems. It will be a useful resource for engineers of all types (hardware, software and systems), academics, post-graduate students, scientists in radar and radar electronic warfare sectors and milit

  8. Modelling forest canopy height by integrating airborne LiDAR samples with satellite Radar and multispectral imagery

    Science.gov (United States)

    García, Mariano; Saatchi, Sassan; Ustin, Susan; Balzter, Heiko

    2018-04-01

    Spatially-explicit information on forest structure is paramount to estimating aboveground carbon stocks for designing sustainable forest management strategies and mitigating greenhouse gas emissions from deforestation and forest degradation. LiDAR measurements provide samples of forest structure that must be integrated with satellite imagery to predict and to map landscape scale variations of forest structure. Here we evaluate the capability of existing satellite synthetic aperture radar (SAR) with multispectral data to estimate forest canopy height over five study sites across two biomes in North America, namely temperate broadleaf and mixed forests and temperate coniferous forests. Pixel size affected the modelling results, with an improvement in model performance as pixel resolution coarsened from 25 m to 100 m. Likewise, the sample size was an important factor in the uncertainty of height prediction using the Support Vector Machine modelling approach. Larger sample size yielded better results but the improvement stabilised when the sample size reached approximately 10% of the study area. We also evaluated the impact of surface moisture (soil and vegetation moisture) on the modelling approach. Whereas the impact of surface moisture had a moderate effect on the proportion of the variance explained by the model (up to 14%), its impact was more evident in the bias of the models with bias reaching values up to 4 m. Averaging the incidence angle corrected radar backscatter coefficient (γ°) reduced the impact of surface moisture on the models and improved their performance at all study sites, with R2 ranging between 0.61 and 0.82, RMSE between 2.02 and 5.64 and bias between 0.02 and -0.06, respectively, at 100 m spatial resolution. An evaluation of the relative importance of the variables in the model performance showed that for the study sites located within the temperate broadleaf and mixed forests biome ALOS-PALSAR HV polarised backscatter was the most important

  9. Thermo-Mechanical Analysis of a Single-Pass Weld Overlay and Girth Welding in Lined Pipe

    Science.gov (United States)

    Obeid, Obeid; Alfano, Giulio; Bahai, Hamid

    2017-08-01

    The paper presents a nonlinear heat-transfer and mechanical finite-element (FE) analyses of a two-pass welding process of two segments of lined pipe made of a SUS304 stainless steel liner and a C-Mn steel pipe. The two passes consist of the single-pass overlay welding (inner lap weld) of the liner with the C-Mn steel pipe for each segment and the single-pass girth welding (outer butt weld) of the two segments. A distributed power density of the moving welding torch and a nonlinear heat-transfer coefficient accounting for both radiation and convection have been used in the analysis and implemented in user subroutines for the FE code ABAQUS. The modeling procedure has been validated against previously published experimental results for stainless steel and carbon steel welding separately. The model has been then used to determine the isotherms induced by the weld overlay and the girth welding and to clarify their influence on the transient temperature field and residual stress in the lined pipe. Furthermore, the influence of the cooling time between weld overlay and girth welding and of the welding speed have been examined thermally and mechanically as they are key factors that can affect the quality of lined pipe welding.

  10. Single Pass Laser Welding with Multiple Spots to Join Four Sheets in a Butt-joint Configuration

    Science.gov (United States)

    Kristiansen, Morten; Hansen, Klaus Schütt; Langbak, Andreas; Johansen, Sebastian Blegebrønd; Krempin, Simon Borup; Hornum, Mattias Døssing

    Laser keyhole welding is widely used in industry due to its large welding depth and low heat input. For some industrial cases it is necessary to widen the beam to cover the joint configuration, which instead results in a lower intensity and surface conduction welds. The introduction of the high-power single mode fiber laser makes it possible to deal with this problem, because the beam can be shaped into a pre-defined pattern of multiple spots shaped to the actual joint configuration. The intensity of each spot is sufficient to make a keyhole. A case with four sheets in a butt-joint configuration is used to demonstrate the principle of how to design a spot pattern which ensures weld quality in case of a single pass laser weld.

  11. Lucretia A Matlab-Based Toolbox for the Modeling and Simulation of Single-Pass Electron Beam Transport Systems

    CERN Document Server

    Tenenbaum, P G

    2005-01-01

    We report on Lucretia, a new simulation tool for the study of single-pass electron beam transport systems. Lucretia supports a combination of analytic and tracking techniques to model the tuning and operation of bunch compressors, linear accelerators, and beam delivery systems of linear colliders and linac-driven Free Electron Laser (FEL) facilities. Extensive use of Matlab scripting, graphics, and numerical capabilities maximize the flexibility of the system, and emphasis has been placed on representing and preserving the fixed relationships between elements (common girders, power supplies, etc.) which must be respected in the design of tuning algorithms. An overview of the code organization, some simple examples, and plans for future development are discussed.

  12. Testing the single-pass VOC removal efficiency of an active green wall using methyl ethyl ketone (MEK).

    Science.gov (United States)

    Torpy, Fraser; Clements, Nicholas; Pollinger, Max; Dengel, Andy; Mulvihill, Isaac; He, Chuan; Irga, Peter

    2018-01-01

    In recent years, research into the efficacy of indoor air biofiltration mechanisms, notably living green walls, has become more prevalent. Whilst green walls are often utilised within the built environment for their biophilic effects, there is little evidence demonstrating the efficacy of active green wall biofiltration for the removal of volatile organic compounds (VOCs) at concentrations found within an interior environment. The current work describes a novel approach to quantifying the VOC removal effectiveness by an active living green wall, which uses a mechanical system to force air through the substrate and plant foliage. After developing a single-pass efficiency protocol to understand the immediate effects of the system, the active green wall was installed into a 30-m 3 chamber representative of a single room and presented with the contaminant 2-butanone (methyl ethyl ketone; MEK), a VOC commonly found in interior environments through its use in textile and plastic manufacture. Chamber inlet levels of MEK remained steady at 33.91 ± 0.541 ppbv. Utilising a forced-air system to draw the contaminated air through a green wall based on a soil-less growing medium containing activated carbon, the combined effects of substrate media and botanical component within the biofiltration system showed statistically significant VOC reduction, averaging 57% single-pass removal efficiency over multiple test procedures. These results indicate a high level of VOC removal efficiency for the active green wall biofilter tested and provide evidence that active biofiltration may aid in reducing exposure to VOCs in the indoor environment.

  13. TELAER: a multi-mode/multi-antenna interferometric airborne SAR system

    Science.gov (United States)

    Perna, Stefano; Amaral, Tiago; Berardino, Paolo; Esposito, Carmen; Jackson, Giuseppe; Pauciullo, Antonio; Vaz Junior, Eurico; Wimmer, Christian; Lanari, Riccardo

    2014-05-01

    The present contribution is aimed at showing the capabilities of the TELAER airborne Synthetic Aperture Radar (SAR) system recently upgraded to the interferometric mode [1]. TELAER is an Italian airborne X-Band SAR system, mounted onboard a LearJet 35A aircraft. Originally equipped with a single TX/RX antenna, it now operates in single-pass interferometric mode thanks to a system upgrading [1] funded by the Italian National Research Council (CNR), via the Italian Ministry of Education, Universities and Research (MIUR), in the framework of a cooperation between CNR and the Italian Agency for Agriculture Subsidy Payments (AGEA). In the frame of such cooperation, CNR has entrusted the Institute for Electromagnetic Sensing of the Environment (IREA) for managing all the activities, included the final flight tests, related to the system upgrading. According to such an upgrading, two additional receiving X-band antennas have been installed in order to allow, simultaneously, single-pass Across-Track and Along-Track interferometry [1]. More specifically, the three antennas are now installed in such a way to produce three different across-track baselines and two different along-track baselines. Moreover, in the frame of the same system upgrading, it has been mounted onboard the Learjet an accurate embedded Global Navigation Satellite System and Inertial Measurement Unit equipment. This allows precise measurement of the tracks described by the SAR antennas during the flight, in order to accurately implement Motion Compensation (MOCO) algorithms [2] during the image formation (focusing) step. It is worth remarking that the TELAER system upgraded to the interferometric mode is very flexible, since the user can set different operational modes characterized by different geometric resolutions and range swaths. In particular, it is possible to reach up to 0.5 m of resolution with a range swath of 2km; conversely, it is possible to enlarge the range swath up to 10 km at expenses of

  14. Multifunction Radar for Airborne Applications.

    Science.gov (United States)

    1986-07-01

    shown o Fiso of A1 %uba t array elements is selected for adaptation elements k n k nd k3 i iI. > apa - receivers are required for the main array output and...Tiefeunyproduct - 0. Time-frequenlcy product - 0. Time-frequency Product too,0 Iomlie repetitio tim - . Nrai eeiion time I Norma loa reptit.I. tme I Oftus...Iiton time - I Norma lie reeito tim i Nomlie reeito tme - # of pulse repeti tioms " of pulse repetitions IS 0 ofepulse rspetitiont Conmtdnt delay - 0

  15. Imaging with Synthetic Aperture Radar

    CERN Document Server

    Massonnet, Didier

    2008-01-01

    Describing a field that has been transformed by the recent availability of data from a new generation of space and airborne systems, the authors offer a synthetic geometrical approach to the description of synthetic aperture radar, one that addresses physicists, radar specialists, as well as experts in image processing.  

  16. Air and spaceborne radar systems an introduction

    CERN Document Server

    Lacomme, Philippe; Hardange, Jean-Philippe; Normant, Eric

    2001-01-01

    A practical tool on radar systems that will be of major help to technicians, student engineers and engineers working in industry and in radar research and development. The many users of radar as well as systems engineers and designers will also find it highly useful. Also of interest to pilots and flight engineers and military command personnel and military contractors. """"This introduction to the field of radar is intended for actual users of radar. It focuses on the history, main principles, functions, modes, properties and specific nature of modern airborne radar. The book examines radar's

  17. 77 FR 37470 - Technical Standard Order (TSO)-C65a, Airborne Doppler Radar Ground Speed and/or Drift Angle...

    Science.gov (United States)

    2012-06-21

    ... radar ground speed and/or drift angle measuring equipment (for air carrier aircraft). The effect of the... are manufacturing, advertising, or selling TSO-C65a compliant equipment. Given the obsolescence of the...

  18. Standard practice for measurement of the glass dissolution rate using the single-pass flow-through test method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice describes a single-pass flow-through (SPFT) test method that can be used to measure the dissolution rate of a homogeneous silicate glass, including nuclear waste glasses, in various test solutions at temperatures less than 100°C. Tests may be conducted under conditions in which the effects from dissolved species on the dissolution rate are minimized to measure the forward dissolution rate at specific values of temperature and pH, or to measure the dependence of the dissolution rate on the concentrations of various solute species. 1.2 Tests are conducted by pumping solutions in either a continuous or pulsed flow mode through a reaction cell that contains the test specimen. Tests must be conducted at several solution flow rates to evaluate the effect of the flow rate on the glass dissolution rate. 1.3 This practice excludes static test methods in which flow is simulated by manually removing solution from the reaction cell and replacing it with fresh solution. 1.4 Tests may be conducted wit...

  19. [Intestinal absorption of different combinations of active compounds from Gegenqinlian decoction by rat single pass intestinal perfusion in situ].

    Science.gov (United States)

    An, Rui; Zhang, Hua; Zhang, Yi-Zhu; Xu, Ran-Chi; Wang, Xin-Hong

    2012-12-01

    The aim is to study the intestinal absorption of different combinations of active compounds out of Gegenqinlian decoction. Rat single pass intestinal perfusion model with jugular vein cannulated was used. Samples were obtained continuously from the outlet perfusate and the mesenteric vein. The levels of puerarin, daidzin, liquilitin, baicalin, wogonoside, jatrorrhizine, berberine and palmatine were determined by LC-MS/MS and their permeability coefficients were calculated. The results showed that Glycyrrhiza could promote the absorption of the active ingredients in Pueraria which is the monarch herb; meanwhile, Pueraria also played a role in promoting the absorption of liquilitin. Based on the Gegenqinlian decoction and the different combinations experiments, the results concerning the absorption of baicalin and wogonoside were as follows. For baicalin, Pueraria and Glycyrrhiza could promote its absorption and the effect of Pueraria was more obvious. For wogonoside, Pueraria could also promote its absorption, while Glycyrrhiza played a opposite role. Pueraria and Glycyrrhiza both played a part in promoting the absorption of jateorhizine, berberine and palmatine, the effective compounds in Coptis.

  20. Absorption characteristics of the total alkaloids from Mahonia bealei in an in situ single-pass intestinal perfusion assay.

    Science.gov (United States)

    Sun, Yu-He; He, Xin; Yang, Xiao-Lin; Dong, Cui-Lan; Zhang, Chun-Feng; Song, Zi-Jing; Lu, Ming-Xing; Yang, Zhong-Lin; Li, Ping

    2014-07-01

    To investigate the absorption characteristics of the total alkaloids from Mahoniae Caulis (TAMC) through the administration of monterpene absorption enhancers or protein inhibitors. The absorption behavior was investigated in an in situ single-pass intestinal perfusion (SPIP) assay in rats. The intestinal absorption of TAMC was much more than that of a single compound or a mixture of compounds (jatrorrhizine, palmatine, and berberine). Promotion of absorption by the bicyclic monoterpenoids (borneol or camphor) was higher than by the monocyclic monoterpenes (menthol or menthone), and promotion by compounds with a hydroxyl group (borneol or menthol) was higher than those with a carbonyl group (camphor or menthone). The apparent permeability coefficient (Papp) of TAMC was increased to 1.8-fold by verapamil, while it was reduced to one half by thiamine. The absorption rate constant (Ka) and Papp of TAMC were unchanged by probenecid and pantoprazole. The intestinal absorption characteristics of TAMC might be passive transport, and the intestinum tenue was the best absorptive site. In addition, TAMC might be likely a substrate of P-glycoprotein (P-gp) and organic cation transporters (OCT), rather than multidrug resistance protein (MRP) and breast cancer resistance protein (BCRP). Compared with a single compound and a mixture of compounds, TAMC was able to be absorbed in the blood circulation effectively. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  1. {open_quotes}Optical guiding{close_quotes} limits on extraction efficiencies of single-pass, tapered wiggler amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Fawley, W.M. [Lawrence Berkeley Lab., CA (United States)

    1995-12-31

    Single-pass, tapered wiggler amplifiers have an attractive feature of being able, in theory at least, of extracting a large portion of the electron beam energy into light. In circumstances where an optical FEL`s wiggler length is significantly longer than the Rayleigh length Z{sub R} corresponding to the electron beam radius, diffraction losses must be controlled via the phenomenon of {open_quotes}optical guiding{close_quotes}. Since the strength of the guiding depends upon the effective refractive index {eta}{sub r} exceeding one, and since ({eta}{sub r}-1) is inversely proportional to the optical electric field, there is a natural {open_quotes}limiting{close_quotes} mechanism to the on-axis field strength and thus the rate at which energy may be extracted from the electron beam. In particular, the extraction efficiency for a prebunched beam asymptotically grows linearly with z rather than quadratically. We present analytical and numerical simulation results concerning this behavior and discuss its applicability to various FEL designs including oscillator/amplifier-radiator configurations.

  2. Single-Pass Percutaneous Liver Biopsy for Diffuse Liver Disease Using an Automated Device: Experience in 154 Procedures

    International Nuclear Information System (INIS)

    Rivera-Sanfeliz, Gerant; Kinney, Thomas B.; Rose, Steven C.; Agha, Ayad K.M.; Valji, Karim; Miller, Franklin J.; Roberts, Anne C.

    2005-01-01

    Purpose: To describe our experience with ultrasound (US)-guided percutaneous liver biopsies using the INRAD 18G Express core needle biopsy system.Methods: One hundred and fifty-four consecutive percutaneous core liver biopsy procedures were performed in 153 men in a single institution over 37 months. The medical charts, pathology reports, and radiology files were retrospectively reviewed. The number of needle passes, type of guidance, change in hematocrit level, and adequacy of specimens for histologic analysis were evaluated.Results: All biopsies were performed for histologic staging of chronic liver diseases. The majority of patients had hepatitis C (134/153, 90.2%). All patients were discharged to home after 4 hr of postprocedural observation. In 145 of 154 (94%) biopsies, a single needle pass was sufficient for diagnosis. US guidance was utilized in all but one of the procedures (153/154, 99.4%). The mean hematocrit decrease was 1.2% (44.1-42.9%). Pain requiring narcotic analgesia, the most frequent complication, occurred in 28 of 154 procedures (18.2%). No major complications occurred. The specimens were diagnostic in 152 of 154 procedures (98.7%).Conclusions: Single-pass percutaneous US-guided liver biopsy with the INRAD 18G Express core needle biopsy system is safe and provides definitive pathologic diagnosis of chronic liver disease. It can be performed on an outpatient basis. Routine post-biopsy monitoring of hematocrit level in stable, asymptomatic patients is probably not warranted

  3. Evaluation of the single-pass flow-through test to support a low-activity waste specification

    International Nuclear Information System (INIS)

    McGrail, B.P.; Peeler, D.K.

    1995-09-01

    A series of single-pass flow-through (SPFT) tests was performed on five reference low-activity waste glasses and a reference glass from the National Institute of Standards and Technology to support a product specification for low-activity waste (LAW) forms. The results showed that the SPFT test provides a means to quantitatively distinguish among LAW glass forms in terms of their forward reaction rate at a given temperature and solution pH. Two of the test glasses were also subjected to SPFT testing at Argonne National Laboratory (ANL). Forward reaction rate constants calculated from the ANL test data were 100 to over 1,000 times larger than the values obtained from the SPFT tests conducted at PNL. An analysis of the ANL results showed that they were inconsistent with independent measurements done on glasses of similar composition, the known pH-dependence of the forward rate, and with the results from low surface-area-to-volume, short duration product consistency tests. Because the data set obtained from the SPFT tests done at PNL was consistent with each of these same factors, a detailed examination of the test procedures used at both laboratories was performed to determine the cause(s) of the discrepancy. The omission of background subtraction in the data analysis procedure and the short-duration (on the order of hours) of the ANL tests are factors that may have significantly affected the calculated rates

  4. W-band Solid State Transceiver for Cloud Radar

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposed effort seeks to develop a solid state power amplifier (SSPA)-based W-band cloud radar transceiver and demonstrate it on the GSFC airborne Cloud Radar...

  5. Single-frequency blue light generation by single-pass sum-frequency generation in a coupled ring cavity tapered laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2013-01-01

    A generic approach for generation of tunable single frequency light is presented. 340 mW of near diffraction limited, single-frequency, and tunable blue light around 459 nm is generated by sum-frequency generation (SFG) between two tunable tapered diode lasers. One diode laser is operated in a ring...... cavity and another tapered diode laser is single-passed through a nonlinear crystal which is contained in the coupled ring cavity. Using this method, the single-pass conversion efficiency is more than 25%. In contrast to SFG in an external cavity, the system is entirely self-stabilized with no electronic...

  6. Foliage penetration radar detection and characterization of objects under trees

    CERN Document Server

    Davis, Mark

    2011-01-01

    This book covers all aspects of foliage penetration (FOPEN) radar, concentrating on both airborne military radar systems as well as earth resource mapping radars. It is the first concise and thorough treatment of FOPEN, covering the results of a decade-long investment by DARPA in characterizing foliage and earth surface with ultrawideband UHF and VHF synthetic aperture radar (SAR).

  7. Balancing Radiation and Contrast Media Dose in Single-Pass Abdominal Multidetector CT: Prospective Evaluation of Image Quality.

    Science.gov (United States)

    Camera, Luigi; Romano, Federica; Liccardo, Immacolata; Liuzzi, Raffaele; Imbriaco, Massimo; Mainenti, Pier Paolo; Pizzuti, Laura Micol; Segreto, Sabrina; Maurea, Simone; Brunetti, Arturo

    2015-11-01

    As both contrast and radiation dose affect the quality of CT images, a constant image quality in abdominal contrast-enhanced multidetector computed tomography (CE-MDCT) could be obtained balancing radiation and contrast media dose according to the age of the patients. Seventy-two (38 Men; 34 women; aged 20-83 years) patients underwent a single-pass abdominal CE-MDCT. Patients were divided into three different age groups: A (20-44 years); B (45-65 years); and C (>65 years). For each group, a different noise index (NI) and contrast media dose (370 mgI/mL) was selected as follows: A (NI, 15; 2.5 mL/kg), B (NI, 12.5; 2 mL/kg), and C (NI, 10; 1.5 mL/kg). Radiation exposure was reported as dose-length product (DLP) in mGy × cm. For quantitative analysis, signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were calculated for both the liver (L) and the abdominal aorta (A). Statistical analysis was performed with a one-way analysis of variance. Standard imaging criteria were used for qualitative analysis. Although peak hepatic enhancement was 152 ± 16, 128 ± 12, and 101 ± 14 Hounsfield units (P contrast media dose (mL) administered were 476 ± 147 and 155 ± 27 for group A, 926 ± 291 and 130 ± 16 for group B, and 1981 ± 451 and 106 ± 15 for group C, respectively (P contrast media dose administered to patients of different age. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  8. Single Pass Albumin Dialysis-A Dose-Finding Study to Define Optimal Albumin Concentration and Dialysate Flow.

    Science.gov (United States)

    Schmuck, Rosa Bianca; Nawrot, Gesa-Henrike; Fikatas, Panagiotis; Reutzel-Selke, Anja; Pratschke, Johann; Sauer, Igor Maximilian

    2017-02-01

    Several artificial liver support concepts have been evaluated both in vitro and clinically. Single pass albumin dialysis (SPAD) has shown to be one of the most simple approaches for removing albumin-bound toxins and water-soluble substances. Being faced with acute liver failure (ALF) in everyday practice encouraged our attempt to define the optimal conditions for SPAD more precisely in a standardized experimental setup. Albumin concentration was adjusted to either 1%, 2%, 3%, or 4%, while the flow rate of the dialysate was kept constant at a speed of 700 mL/h. The flow rate of the dialysate was altered between 350, 500, 700, and 1000 mL/h, whereas the albumin concentration was continuously kept at 3%. This study revealed that the detoxification of albumin-bound substances could be improved by increasing the concentration of albumin in the dialysate with an optimum at 3%. A further increase of the albumin concentration to 4% did not lead to a significant increase in detoxification. Furthermore, we observed a gradual increase of the detoxification efficiency for albumin-bound substances, from 350 mL/h to 700 mL/h (for bilirubin) or 1000 mL/h (for bile acids) of dialysate flow. Water-soluble toxins (ammonia, creatinine, urea, uric acid) were removed almost completely, regardless of albumin concentration or flow rate. In conclusion, this study confirmed that SPAD is effective in eliminating albumin-bound as well as water-soluble toxins using a simulation of ALF. Furthermore, this project was successful in evaluating the most effective combination of albumin concentration (3%) and dialysate flow (700 mL/h-1000 mL/h) in SPAD for the first time. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  9. Simultaneous observations of structure function parameter of refractive index using a high-resolution radar and the DataHawk small airborne measurement system

    Science.gov (United States)

    Scipión, Danny E.; Lawrence, Dale A.; Milla, Marco A.; Woodman, Ronald F.; Lume, Diego A.; Balsley, Ben B.

    2016-09-01

    The SOUSY (SOUnding SYstem) radar was relocated to the Jicamarca Radio Observatory (JRO) near Lima, Peru, in 2000, where the radar controller and acquisition system were upgraded with state-of-the-art parts to take full advantage of its potential for high-resolution atmospheric sounding. Due to its broad bandwidth (4 MHz), it is able to characterize clear-air backscattering with high range resolution (37.5 m). A campaign conducted at JRO in July 2014 aimed to characterize the lower troposphere with a high temporal resolution (8.1 Hz) using the DataHawk (DH) small unmanned aircraft system, which provides in situ atmospheric measurements at scales as small as 1 m in the lower troposphere and can be GPS-guided to obtain measurements within the beam of the radar. This was a unique opportunity to make coincident observations by both systems and to directly compare their in situ and remotely sensed parameters. Because SOUSY only points vertically, it is only possible to retrieve vertical radar profiles caused by changes in the refractive index within the resolution volume. Turbulent variations due to scattering are described by the structure function parameter of refractive index Cn2. Profiles of Cn2 from the DH are obtained by combining pressure, temperature, and relative humidity measurements along the helical trajectory and integrated at the same scale as the radar range resolution. Excellent agreement is observed between the Cn2 estimates obtained from the DH and SOUSY in the overlapping measurement regime from 1200 m up to 4200 m above sea level, and this correspondence provides the first accurate calibration of the SOUSY radar for measuring Cn2.

  10. Simultaneous observations of structure function parameter of refractive index using a high-resolution radar and the DataHawk small airborne measurement system

    Directory of Open Access Journals (Sweden)

    D. E. Scipión

    2016-09-01

    Full Text Available The SOUSY (SOUnding SYstem radar was relocated to the Jicamarca Radio Observatory (JRO near Lima, Peru, in 2000, where the radar controller and acquisition system were upgraded with state-of-the-art parts to take full advantage of its potential for high-resolution atmospheric sounding. Due to its broad bandwidth (4 MHz, it is able to characterize clear-air backscattering with high range resolution (37.5 m. A campaign conducted at JRO in July 2014 aimed to characterize the lower troposphere with a high temporal resolution (8.1 Hz using the DataHawk (DH small unmanned aircraft system, which provides in situ atmospheric measurements at scales as small as 1 m in the lower troposphere and can be GPS-guided to obtain measurements within the beam of the radar. This was a unique opportunity to make coincident observations by both systems and to directly compare their in situ and remotely sensed parameters. Because SOUSY only points vertically, it is only possible to retrieve vertical radar profiles caused by changes in the refractive index within the resolution volume. Turbulent variations due to scattering are described by the structure function parameter of refractive index Cn2. Profiles of Cn2 from the DH are obtained by combining pressure, temperature, and relative humidity measurements along the helical trajectory and integrated at the same scale as the radar range resolution. Excellent agreement is observed between the Cn2 estimates obtained from the DH and SOUSY in the overlapping measurement regime from 1200 m up to 4200 m above sea level, and this correspondence provides the first accurate calibration of the SOUSY radar for measuring Cn2.

  11. Double Pass 595?nm pulsed dye laser at a 6 minute interval for the treatment of port-wine stains is not more effective than single pass

    NARCIS (Netherlands)

    Peters, M. A. D.; van Drooge, A. M.; Wolkerstorfer, A.; van Gemert, M. J. C.; van der Veen, J. P. W.; Bos, J. D.; Beek, J. F.

    2012-01-01

    Background Pulsed dye laser (PDL) is the first choice for treatment of port wine stains (PWS). However, outcome is highly variable and only a few patients achieve complete clearance. The objective of the study was to compare efficacy and safety of single pass PDL with double pass PDL at a 6 minute

  12. Atrial electrogram quality in single-pass defibrillator leads with floating atrial bipole in patients with permanent atrial fibrillation and cardiac resynchronization therapy.

    Science.gov (United States)

    Sticherling, Christian; Müller, Dirk; Schaer, Beat A; Krüger, Silke; Kolb, Christof

    2018-03-27

    Many patients receiving cardiac resynchronization therapy (CRT) suffer from permanent atrial fibrillation (AF). Knowledge of the atrial rhythm is important to direct pharmacological or interventional treatment as well as maintaining AV-synchronous biventricular pacing if sinus rhythm can be restored. A single pass single-coil defibrillator lead with a floating atrial bipole has been shown to obtain reliable information about the atrial rhythm but has never been employed in a CRT-system. The purpose of this study was to assess the feasibility of implanting a single coil right ventricular ICD lead with a floating atrial bipole and the signal quality of atrial electrograms (AEGM) in CRT-defibrillator recipients with permanent AF. Seventeen patients (16 males, mean age 73 ± 6 years, mean EF 25 ± 5%) with permanent AF and an indication for CRT-defibrillator placement were implanted with a designated CRT-D system comprising a single pass defibrillator lead with a atrial floating bipole. They were followed-up for 103 ± 22 days using remote monitoring for AEGM transmission. All patients had at last one AEGM suitable for atrial rhythm diagnosis and of 100 AEGM 99% were suitable for visual atrial rhythm assessment. Four patients were discharged in sinus rhythm and one reverted to AF during follow-up. Atrial electrograms retrieved from a single-pass defibrillator lead with a floating atrial bipole can be reliably used for atrial rhythm diagnosis in CRT recipients with permanent AF. Hence, a single pass ventricular defibrillator lead with a floating bipole can be considered in this population. Copyright © 2018 Indian Heart Rhythm Society. Production and hosting by Elsevier B.V. All rights reserved.

  13. Synthetic aperture radar capabilities in development

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.

  14. Identification of central Kenyan Rift Valley Fever virus vector habitats with Landsat TM and evaluation of their flooding status with airborne imaging radar

    Science.gov (United States)

    Pope, K. O.; Sheffner, E. J.; Linthicum, K. J.; Bailey, C. L.; Logan, T. M.; Kasischke, E. S.; Birney, K.; Njogu, A. R.; Roberts, C. R.

    1992-01-01

    Rift Valley Fever (RVF) is a mosquito-borne virus that affects livestock and humans in Africa. Landsat TM data are shown to be effective in identifying dambos, intermittently flooded areas that are potential mosquite breeding sites, in an area north of Nairobi, Kenya. Positive results were obtained from a limited test of flood detection in dambos with airborne high resolution L, C, and X band multipolarization SAR imagery. L and C bands were effective in detecting flooded dambos, but LHH was by far the best channel for discrimination between flooded and nonflooded sites in both sedge and short-grass environments. This study demonstrates the feasibility of a combined passive and active remote sensing program for monitoring the location and condition of RVF vector habitats, thus making future control of the disease more promising.

  15. An investigation of using a phase-change material to improve the heat transfer in a small electronic module for an airborne radar application

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, K.W.

    1990-10-01

    Finding new and improved means of cooling small electronic packages are of great importance to today's electronic packaging engineer. Thermal absorption through the use of a material which changes phase is an attractive alternative. Taking advantage of the heat capacity of a material's latent heat of fusion is shown to absorb heat away from the electronics, thus decreasing the overall temperature rise of the system. The energy equation is formulated in terms of enthalpy and discretized using a finite-difference method. A FORTRAN program to solve the discretized equations is presented which can be used to analyze heat conduction in a rectangular region undergoing an isothermal phase change. An analysis of heat transfer through a miniature radar electronic module cooled by a phase-change reservoir is presented, illustrating the method's advantages over conventional heat sinks. 41 refs., 11 figs., 2 tabs.

  16. Absorption Properties of Luteolin and Apigenin in Genkwa Flos Using In Situ Single-Pass Intestinal Perfusion System in the Rat.

    Science.gov (United States)

    He, Xin; Song, Zi-Jing; Jiang, Cui-Ping; Zhang, Chun-Feng

    2017-01-01

    The flower bud of Daphne genkwa (Genkwa Flos) is a commonly used herbal medicine in Asian countries. Luteolin and apigenin are two recognized active flavonoids in Genkwa Flos. The aim of this study was to investigate the intestinal absorption mechanisms of Genkwa Flos flavonoids using in situ single-pass intestinal perfusion rat model. Using HPLC, we determined its major effective flavonoids luteolin, apigenin, as well as, hydroxygenkwanin and genkwanin in biological samples. The intestinal absorption mechanisms of the total flavonoids in Genkwa Flos (TFG) were investigated using in situ single-pass intestinal perfusion rat model. Comparing the TFG absorption rate in different intestinal segments, data showed that the small intestine absorption was significantly higher than that of the colon ([Formula: see text]). Compared with duodenum and ileum, the jejunum was the best small intestinal site for TFG absorption. The high TFG concentration (61.48[Formula: see text][Formula: see text]g/ml) yielded the highest permeability ([Formula: see text]). Subsequently, three membrane protein inhibitors (verapamil, pantoprazole and probenecid) were used to explore the TFG absorption pathways. Data showed probenecid, a multidrug resistance protein (or MRP) inhibitor, effectively enhanced the TFG absorption ([Formula: see text]). Furthermore, by comparing commonly used natural absorption enhancers on TFG, it was observed that camphor was the most effective. In Situ single-pass intestinal perfusion experiment shows that TFG absorption is much higher in the small intestine than in the colon, and the TFG is absorbed mainly via an active transport pathway with MRP-mediated efflux mechanism. Camphor obviously enhanced the TFG absorption, and this could be an effective TFG formulation preparation method to increase clinical effectiveness after Genkwa Flos administration. Our study elucidated the TFG absorption mechanisms, and provided new information for its formulation preparation.

  17. Reconfigurable L-Band Radar

    Science.gov (United States)

    Rincon, Rafael F.

    2008-01-01

    The reconfigurable L-Band radar is an ongoing development at NASA/GSFC that exploits the capability inherently in phased array radar systems with a state-of-the-art data acquisition and real-time processor in order to enable multi-mode measurement techniques in a single radar architecture. The development leverages on the L-Band Imaging Scatterometer, a radar system designed for the development and testing of new radar techniques; and the custom-built DBSAR processor, a highly reconfigurable, high speed data acquisition and processing system. The radar modes currently implemented include scatterometer, synthetic aperture radar, and altimetry; and plans to add new modes such as radiometry and bi-static GNSS signals are being formulated. This development is aimed at enhancing the radar remote sensing capabilities for airborne and spaceborne applications in support of Earth Science and planetary exploration This paper describes the design of the radar and processor systems, explains the operational modes, and discusses preliminary measurements and future plans.

  18. Investigating drug absorption from the colon: Single-pass vs. Doluisio approaches to in-situ rat large-intestinal perfusion.

    Science.gov (United States)

    Lozoya-Agullo, Isabel; Zur, Moran; Fine-Shamir, Noa; Markovic, Milica; Cohen, Yael; Porat, Daniel; González-Álvarez, Isabel; González-Álvarez, Marta; Merino-Sanjuán, Matilde; Bermejo, Marival; Dahan, Arik

    2017-07-15

    Traditionally, the colon is considered a secondary intestinal segment in the drug absorption process. However, in many cases the role of colonic drug permeability cannot be overlooked. The purpose of this research was to compare colon permeability data obtained using two different rat perfusion methods the single-pass intestinal perfusion (SPIP) approach and the closed-loop (Doluisio) perfusion model. A list of 14 structurally diverse model drugs was constructed, and their rat colon permeability was studied using the two methods. The two sets of results were compared to each other, and were evaluated vs. in-vitro, ex-vivo, and in-vivo literature values. The SPIP and the Doluisio results exhibited good correlation between them (R 2 =0.81). The best correlation of both sets was obtained with transport studies across Caco-2 monolayers (R 2 ∼0.9), as well as the sigmoidal fit vs. human fraction of dose absorbed (F abs ) data. On the other hand, Ussing chambers data, as well as lipophilicity (Log P) data, resulted in weak correlation to the in-situ results. In conclusion, the single-pass intestinal perfusion (SPIP) and the Doluisio (closed-loop) perfusion models were found to be equally convenient and useful for obtaining validated colon permeability values, although more human colonic F abs data are needed for a better understanding of colonic drug permeability and absorption. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Regional brain blood flow in mouse: quantitative measurement using a single-pass radio-tracer method and a mathematical algorithm.

    Science.gov (United States)

    Xu, K; Radhakrishnan, K; Serhal, A; Allen, F; Lamanna, J C; Puchowicz, M A

    2011-01-01

    We have developed a reliable experimental method for measuring local regional cerebral blood flows in anesthetized mice. This method is an extension of the well-established single-pass dual-label indicator method for simultaneously measuring blood flow and glucose influx in rat brains. C57BL6J mice (n = 10) were anesthetized and regional blood flows (ml/min/g) were measured using the radio-tracer method. To test the sensitivity of this method we used a mathematical algorithm to predict the blood flows and compared the two sets of results.Measured regional blood flows between 0.7 and 1.7 ml/min/g were similar to those we have previously reported in the rat. The predicted blood flows using an assumed linearly increasing arterial tracer concentration-versus-time profile (that is, a ramp) were similar to the values measured in the physiological experiments (R(2) 0.99; slope 0.91). Thus,measurements of local regional cerebral blood flow in anesthetized mice using a single-pass radio-tracer method appear to be reliable.

  20. Combined Use of Airborne Lidar and DBInSAR Data to Estimate LAI in Temperate Mixed Forests

    Science.gov (United States)

    Peduzzi, Alicia; Wynne, Randolph Hamilton; Thomas, Valerie A.; Nelson, Ross F.; Reis, James J.; Sanford, Mark

    2012-01-01

    The objective of this study was to determine whether leaf area index (LAI) in temperate mixed forests is best estimated using multiple-return airborne laser scanning (lidar) data or dual-band, single-pass interferometric synthetic aperture radar data (from GeoSAR) alone, or both in combination. In situ measurements of LAI were made using the LiCor LAI-2000 Plant Canopy Analyzer on 61 plots (21 hardwood, 36 pine, 4 mixed pine hardwood; stand age ranging from 12-164 years; mean height ranging from 0.4 to 41.2 m) in the Appomattox-Buckingham State Forest, Virginia, USA. Lidar distributional metrics were calculated for all returns and for ten one meter deep crown density slices (a new metric), five above and five below the mode of the vegetation returns for each plot. GeoSAR metrics were calculated from the X-band backscatter coefficients (four looks) as well as both X- and P-band interferometric heights and magnitudes for each plot. Lidar metrics alone explained 69% of the variability in LAI, while GeoSAR metrics alone explained 52%. However, combining the lidar and GeoSAR metrics increased the R2 to 0.77 with a CV-RMSE of 0.42. This study indicates the clear potential for X-band backscatter and interferometric height (both now available from spaceborne sensors), when combined with small-footprint lidar data, to improve LAI estimation in temperate mixed forests.

  1. Radar activities of the DFVLR Institute for Radio Frequency Technology

    Science.gov (United States)

    Keydel, W.

    1983-01-01

    Aerospace research and the respective applications microwave tasks with respect to remote sensing, position finding and communication are discussed. The radar activities are directed at point targets, area targets and volume targets; they center around signature research for earth and ocean remote sensing, target recognition, reconnaissance and camouflage and imaging and area observation radar techniques (SAR and SLAR). The radar activities cover a frequency range from 1 GHz up to 94 GHz. The radar program is oriented to four possible application levels: ground, air, shuttle orbits and satellite orbits. Ground based studies and measurements, airborne scatterometers and imaging radars, a space shuttle radar, the MRSE, and follow on experiments are considered.

  2. Quantum radar

    CERN Document Server

    Lanzagorta, Marco

    2011-01-01

    This book offers a concise review of quantum radar theory. Our approach is pedagogical, making emphasis on the physics behind the operation of a hypothetical quantum radar. We concentrate our discussion on the two major models proposed to date: interferometric quantum radar and quantum illumination. In addition, this book offers some new results, including an analytical study of quantum interferometry in the X-band radar region with a variety of atmospheric conditions, a derivation of a quantum radar equation, and a discussion of quantum radar jamming.This book assumes the reader is familiar w

  3. Topography and Penetration of the Greenland Ice Sheet Measured with Airborne SAR Interferometry

    DEFF Research Database (Denmark)

    Dall, Jørgen; Madsen, Søren Nørvang; Keller, K.

    2001-01-01

    A digital elevation model (DEM) of the Geikie ice sap in East Greenland has been generated from interferometric C-band synthetic aperture radar (SAR) data acquired with the airborne EMISAR system. GPS surveyed radar reflectors and an airborne laser altimeter supplemented the experiment. The accur...

  4. Radar Chart

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Radar Chart collection is an archived product of summarized radar data. The geographic coverage is the 48 contiguous states of the United States. These hourly...

  5. UAVSAR: An Airborne Window on Earth Surface Deformation

    Science.gov (United States)

    Hensley, Scott

    2011-01-01

    This study demonstrates that UAVSAR's precision autopilot and electronic steering have allowed for the reliable collection of airborne repeat pass radar interferometric data for deformation mapping. Deformation maps from temporal scales ranging from hours to months over a variety of signals of geophysical interest illustrate the utility of UAVSAR airborne repeat pass interferometry to these studies.

  6. Single Pass Optical Profile Monitoring

    CERN Document Server

    Jung, R; Hutchins, Stephen

    2003-01-01

    Beam profiles are acquired in transfer lines to monitor extracted beams and compute their emittance. Measurements performed on the first revolutions of a ring will evaluate the matching of a chain of accelerators. Depending on the particle type and energy, these measurements are in general performed with screens, making either use of Luminescence or Optical Transition Radiation [OTR], and the generated beam images are acquired with sensors of various types. Sometimes the beam position is also measured this way. The principle, advantages and disadvantages of both families of screens will be discussed in relation with the detectors used. Test results with beam and a possible evaluation method for luminescent screens will be presented. Finally other optical methods used will be mentioned for completeness.

  7. Enhanced Weather Radar (EWxR) System

    Science.gov (United States)

    Kronfeld, Kevin M. (Technical Monitor)

    2003-01-01

    An airborne weather radar system, the Enhanced Weather Radar (EWxR), with enhanced on-board weather radar data processing was developed and tested. The system features additional weather data that is uplinked from ground-based sources, specialized data processing, and limited automatic radar control to search for hazardous weather. National Weather Service (NWS) ground-based Next Generation Radar (NEXRAD) information is used by the EWxR system to augment the on-board weather radar information. The system will simultaneously display NEXRAD and on-board weather radar information in a split-view format. The on-board weather radar includes an automated or hands-free storm-finding feature that optimizes the radar returns by automatically adjusting the tilt and range settings for the current altitude above the terrain and searches for storm cells near the atmospheric 0-degree isotherm. A rule-based decision aid was developed to automatically characterize cells as hazardous, possibly-hazardous, or non-hazardous based upon attributes of that cell. Cell attributes are determined based on data from the on-board radar and from ground-based radars. A flight path impact prediction algorithm was developed to help pilots to avoid hazardous weather along their flight plan and their mission. During development the system was tested on the NASA B757 aircraft and final tests were conducted on the Rockwell Collins Sabreliner.

  8. Radar equations for modern radar

    CERN Document Server

    Barton, David K

    2012-01-01

    Based on the classic Radar Range-Performance Analysis from 1980, this practical volume extends that work to ensure applicability of radar equations to the design and analysis of modern radars. This unique book helps you identify what information on the radar and its environment is needed to predict detection range. Moreover, it provides equations and data to improve the accuracy of range calculations. You find detailed information on propagation effects, methods of range calculation in environments that include clutter, jamming and thermal noise, as well as loss factors that reduce radar perfo

  9. Airborne FM-CW SAR and Integrated Navigation System Data Fusion

    NARCIS (Netherlands)

    Lorga, J.F.M.; Meta, A.; Wit, J.J.M. de; Mulder, J.A.

    2005-01-01

    The combination of compact FM-CW radar technology and high resolution SAR pro- cessing techniques should pave the way for the development of a small and cost e®ective imaging radar with high resolution. However, airborne SAR is a very novel application for FM-CW radars. In order to investigate the

  10. Development of a High Resolution Airborne Millimeter Wave FM-CW SAR

    NARCIS (Netherlands)

    Meta, A.; Wit, J.J.M. de; Hoogeboom, P.

    2004-01-01

    The combination of compact FM-CW radar technology and high resolution SAR processing techniques should pave the way for the development of a small, lightweight and cost effective imaging radar. In the field of airborne earth observation, SAR is however a novel application for FM-CW radars. At IRCTR

  11. Airborne campaigns for CryoSat prelaunch calibration and validation

    DEFF Research Database (Denmark)

    Skourup, Henriette; Hanson, Susanne; Hvidegaard, Sine Munk

    2011-01-01

    After the successful launch of CryoSat-2 in April 2010, the first direct validation campaign of the satellite is planned for spring 2011. DTU Space has been involved in ESA’s CryoSat Validation Experiment (CryoVEx) with airborne activities since 2003. To validate the prelaunch performance...... of the CryoSat radar altimeter (SIRAL), an airborne version of the SIRAL altimeter (ASIRAS) has been flown together with a laser scanner in 2006 and 2008. Of particular interest is to study the penetration depth of the radar altimeter over both land- and sea ice. This can be done by comparing the radar...

  12. Airborne ground penetrating radar: practical field experiments

    CSIR Research Space (South Africa)

    Van Schoor, Michael

    2013-10-01

    Full Text Available application of the technique are often challenged. The reasons for experimenting with non-traditional applications may vary, but common themes are productivity and logistics: Ways of overcoming logistical obstacles (for example, survey sites... that are difficult to access on foot) and of acquiring data more productively (for example, where large survey areas need to be covered) are often sought. One way of increasing GPR productivity is to employ multiple sensors simultaneously. Another way...

  13. Absorption characteristic of paeoniflorin-6'-O-benzene sulfonate (CP-25) in in situ single-pass intestinal perfusion in rats.

    Science.gov (United States)

    Yang, Xiao-Dan; Wang, Chun; Zhou, Peng; Yu, Jun; Asenso, James; Ma, Yong; Wei, Wei

    2016-09-01

    1. Paeoniflorin-6'-O-benzene sulfonate (CP-25) was synthesized to improve the poor oral absorption of paeoniflorin (Pae). 2. This study was performed to investigate the absorptive behavior and mechanism of CP-25 in in situ single-pass intestinal perfusion in rats, using Pae as a control. 3. The results showed that intestinal absorption of CP-25 was neither segmental nor sex dependent. However, the main segment of intestine that absorbed Pae was the duodenum. Furthermore, passive transport was confirmed to be the main absorption pattern of CP-25. More importantly, the absorption of CP-25 was much higher than Pae in the small intestine. 4. Among the ABC transporter inhibitors, the absorption rate of Pae increased in the presence of P-gp inhibitors verapamil and GF120918, which indicated that Pae was a substrate of P-glycoprotein (P-gp), however, such was not observed in the presence of breast cancer resistance protein and multidrug resistance-associated protein 2. Finally, the ABC transporter inhibitors did not have any significant impact on CP-25 as demonstrated in the parallel studies. 5. CP-25 could improve the poor absorption of Pae, which may be attributed to both the lipid solubility enhancement and its resistance to P-gp-mediated efflux.

  14. Double Pass 595 nm Pulsed Dye Laser Does Not Enhance the Efficacy of Port Wine Stains Compared with Single Pass: A Randomized Comparison with Histological Examination.

    Science.gov (United States)

    Yu, Wenxin; Zhu, Jiafang; Wang, Lizhen; Qiu, Yajing; Chen, Yijie; Yang, Xi; Chang, Lei; Ma, Gang; Lin, Xiaoxi

    2018-03-27

    To compare the efficacy and safety of double-pass pulsed dye laser (DWL) and single-pass PDL (SWL) in treating virgin port wine stain (PWS). The increase in the extent of vascular damage attributed to the use of double-pass techniques for PWS remains inconclusive. A prospective, side-by-side comparison with a histological study for virgin PWS is still lacking. Twenty-one patients (11 flat PWS, 10 hypertrophic PWS) with untreated PWS underwent 3 treatments at 2-month intervals. Each PWS was divided into three treatment sites: SWL, DWL, and untreated control. Chromametric and visual evaluation of the efficacy and evaluation of side effects were conducted 3 months after final treatment. Biopsies were taken at the treated sites immediately posttreatment. Chromametric and visual evaluation suggested that DWL sites showed no significant improvement compared with SWL (p > 0.05) in treating PWS. The mean depth of photothermal damage to the vessels was limited to a maximum of 0.36-0.41 mm in both SWL and DWL sides. Permanent side effects were not observed in any patients. Double-pass PDL does not enhance PWS clearance. To improve the clearance of PWS lesions, either the depth of laser penetration should be increased or greater photothermal damage to vessels should be generated.

  15. Segmental-dependent membrane permeability along the intestine following oral drug administration: Evaluation of a triple single-pass intestinal perfusion (TSPIP) approach in the rat.

    Science.gov (United States)

    Dahan, Arik; West, Brady T; Amidon, Gordon L

    2009-02-15

    In this paper we evaluate a modified approach to the traditional single-pass intestinal perfusion (SPIP) rat model in investigating segmental-dependent permeability along the intestine following oral drug administration. Whereas in the traditional model one single segment of the intestine is perfused, we have simultaneously perfused three individual segments of each rat intestine: proximal jejunum, mid-small intestine and distal ileum, enabling to obtain tripled data from each rat compared to the traditional model. Three drugs, with different permeabilities, were utilized to evaluate the model: metoprolol, propranolol and cimetidine. Data was evaluated in comparison to the traditional method. Metoprolol and propranolol showed similar P(eff) values in the modified model in all segments. Segmental-dependent permeability was obtained for cimetidine, with lower P(eff) in the distal parts. Similar P(eff) values for all drugs were obtained in the traditional method, illustrating that the modified model is as accurate as the traditional, throughout a wide range of permeability characteristics, whether the permeability is constant or segment-dependent along the intestine. Three-fold higher statistical power to detect segmental-dependency was obtained in the modified approach, as each subject serves as his own control. In conclusion, the Triple SPIP model can reduce the number of animals utilized in segmental-dependent permeability research without compromising the quality of the data obtained.

  16. P-band radar ice sounding in Antarctica

    DEFF Research Database (Denmark)

    Dall, Jørgen; Kusk, Anders; Kristensen, Steen Savstrup

    2012-01-01

    In February 2011, the Polarimetric Airborne Radar Ice Sounder (POLARIS) was flown in Antarctica in order to assess the feasibility of a potential space-based radar ice sounding mission. The campaign has demonstrated that the basal return is detectable in areas with up to 3 km thick cold ice, in a...

  17. Fly eye radar or micro-radar sensor technology

    Science.gov (United States)

    Molchanov, Pavlo; Asmolova, Olga

    2014-05-01

    To compensate for its eye's inability to point its eye at a target, the fly's eye consists of multiple angularly spaced sensors giving the fly the wide-area visual coverage it needs to detect and avoid the threats around him. Based on a similar concept a revolutionary new micro-radar sensor technology is proposed for detecting and tracking ground and/or airborne low profile low altitude targets in harsh urban environments. Distributed along a border or around a protected object (military facility and buildings, camp, stadium) small size, low power unattended radar sensors can be used for target detection and tracking, threat warning, pre-shot sniper protection and provides effective support for homeland security. In addition it can provide 3D recognition and targets classification due to its use of five orders more pulses than any scanning radar to each space point, by using few points of view, diversity signals and intelligent processing. The application of an array of directional antennas eliminates the need for a mechanical scanning antenna or phase processor. It radically decreases radar size and increases bearing accuracy several folds. The proposed micro-radar sensors can be easy connected to one or several operators by point-to-point invisible protected communication. The directional antennas have higher gain, can be multi-frequency and connected to a multi-functional network. Fly eye micro-radars are inexpensive, can be expendable and will reduce cost of defense.

  18. Surface return direction-of-arrival analysis for radar ice sounding surface clutter suppression

    DEFF Research Database (Denmark)

    Nielsen, Ulrik; Dall, Jørgen

    2015-01-01

    Airborne radar ice sounding is challenged by surface clutter masking the depth signal of interest. Surface clutter may even be prohibitive for potential space-based ice sounding radars. To some extent the radar antenna suppresses the surface clutter, and a multi-phase-center antenna in combination...

  19. 77 FR 53962 - Technical Standard Order (TSO)-C68a, Airborne Automatic Dead Reckoning Computer Equipment...

    Science.gov (United States)

    2012-09-04

    ... Federal Aviation Administration Technical Standard Order (TSO)-C68a, Airborne Automatic Dead Reckoning... Technical Standard Order (TSO)-C68a, Airborne Automatic Dead Reckoning Computer Equipment Utilizing Aircraft... Doppler radar is a semiautomatic self-contained dead reckoning navigation system (radar sensor plus...

  20. Closed-Loop Doluisio (Colon, Small Intestine) and Single-Pass Intestinal Perfusion (Colon, Jejunum) in Rat-Biophysical Model and Predictions Based on Caco-2.

    Science.gov (United States)

    Lozoya-Agullo, Isabel; Gonzalez-Alvarez, Isabel; Zur, Moran; Fine-Shamir, Noa; Cohen, Yael; Markovic, Milica; Garrigues, Teresa M; Dahan, Arik; Gonzalez-Alvarez, Marta; Merino-Sanjuán, Matilde; Bermejo, Marival; Avdeef, Alex

    2017-12-29

    The effective rat intestinal permeability (P eff ) was deconvolved using a biophysical model based on parameterized paracellular, aqueous boundary layer, transcellular permeabilities, and the villus-fold surface area expansion factor. Four types of rat intestinal perfusion data were considered: single-pass intestinal perfusion (SPIP) in the jejunum (n = 40), and colon (n = 15), closed-loop (Doluisio type) in the small intestine (n = 78), and colon (n = 74). Moreover, in vitro Caco-2 permeability values were used to predict rat in vivo values in the rat data studied. Comparable number of molecules permeate via paracellular water channels as by the lipoidal transcellular route in the SPIP method, although in the closed-loop method, the paracellular route appears dominant in the colon. The aqueous boundary layer thickness in the small intestine is comparable to that found in unstirred in vitro monolayer assays; it is thinner in the colon. The mucosal surface area in anaesthetized rats is 0.96-1.4 times the smooth cylinder calculated value in the colon, and it is 3.1-3.6 times in the small intestine. The paracellular permeability of the intestine appeared to be greater in rat than human, with the colon showing more leakiness (higher P para ) than the small intestine. Based on log intrinsic permeability values, the correlations between the in vitro and in vivo models ranged from r 2 0.82 to 0.92. The SPIP-Doluisio method comparison indicated identical log permeability selectivity trend with negligible bias.

  1. Detecting and mitigating wind turbine clutter for airspace radar systems.

    Science.gov (United States)

    Wang, Wen-Qin

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results.

  2. A Dual-Wavelength Radar Technique to Detect Hydrometeor Phases

    Science.gov (United States)

    Liao, Liang; Meneghini, Robert

    2016-01-01

    This study is aimed at investigating the feasibility of a Ku- and Ka-band space/air-borne dual wavelength radar algorithm to discriminate various phase states of precipitating hydrometeors. A phase-state classification algorithm has been developed from the radar measurements of snow, mixed-phase and rain obtained from stratiform storms. The algorithm, presented in the form of the look-up table that links the Ku-band radar reflectivities and dual-frequency ratio (DFR) to the phase states of hydrometeors, is checked by applying it to the measurements of the Jet Propulsion Laboratory, California Institute of Technology, Airborne Precipitation Radar Second Generation (APR-2). In creating the statistically-based phase look-up table, the attenuation corrected (or true) radar reflectivity factors are employed, leading to better accuracy in determining the hydrometeor phase. In practice, however, the true radar reflectivities are not always available before the phase states of the hydrometeors are determined. Therefore, it is desirable to make use of the measured radar reflectivities in classifying the phase states. To do this, a phase-identification procedure is proposed that uses only measured radar reflectivities. The procedure is then tested using APR-2 airborne radar data. Analysis of the classification results in stratiform rain indicates that the regions of snow, mixed-phase and rain derived from the phase-identification algorithm coincide reasonably well with those determined from the measured radar reflectivities and linear depolarization ratio (LDR).

  3. Radar research at University of Oklahoma (Conference Presentation)

    Science.gov (United States)

    Zhang, Yan R.; Weber, Mark E.

    2017-05-01

    This abstract is for the academic institution profiles session This presentation will focus on radar research programs at the University of Oklahoma, the radar research in OU has more than 50 years history of collaboration with NOAA, and has been through tremendous growth since early 2000. Before 2010, the focus was weather radar and weather surveillance, and since the Defense, Security and Intelligence (DSI) initiative in 2011, there have many new efforts on the defense and military radar applications. This presentation will focus on the following information: (1) The history, facilities and instrumentations of Advanced Radar Research Center, (2) Focus area of polarimetric phased array systems, (3) Focus area of airborne and spaceborne radars, (4) Intelligent radar information processing, (5) Innovative antenna and components.

  4. Airborne Measurements of Rain and the Ocean Surface Backscatter Response at C- and Ku-band

    National Research Council Canada - National Science Library

    Fernandez, Daniel E; Chang, Paul S; Carswell, James R; Contreras, Robert F; Frasier, Stephen J

    2005-01-01

    ...) and the Simultaneous Frequency Microwave Radiometer (SFMR). IWRAP is a dual-band (C- and Ku), dual-polarized pencilbeam airborne radar that profiles the volume backscatter and Doppler velocity from rain and that also measures the ocean backscatter response...

  5. GPM Ground Validation High Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) OLYMPEX V1a

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Altitude Wind and Rain Airborne Profiler (HIWRAP) instrument is a Doppler radar designed to measure tropospheric winds through deriving Doppler profiles...

  6. Weather Radar Stations

    Data.gov (United States)

    Department of Homeland Security — These data represent Next-Generation Radar (NEXRAD) and Terminal Doppler Weather Radar (TDWR) weather radar stations within the US. The NEXRAD radar stations are...

  7. External calibration technique of millimeter-wave cloud radar

    Science.gov (United States)

    Wen, Tao; Zhao, Zeng-Liang; Yao, Zhi-Gang; Han, Zhi-Gang; Guo, Lin-Da

    2016-10-01

    The millimeter-wave cloud radar can provide a large number of fine and reliable information for the inversion of cloud macro and micro parameters. A key link of using the millimeter-wave cloud radar to detect the cloud is that the radar must be calibrated. Due to the precision components and severe environment of millimeter-wave cloud radar, subtle changes may take place in the operation process of cloud radar, unless the cloud radar is calibrated regularly. Although the calibration system inside the cloud radar can track and monitor the main working parameters and correct the detection results, it fails to consider the characteristics of the antenna and the mutual influence among different components of cloud radar. Therefore, the external calibration for cloud radar system is very important. Combined with the actual situation of cloud radar under domestic onboard platform, this paper builds a complete external calibration technique process of cloud radar based on the calm sea, providing the theoretical support for the external calibration experiments of the airborne and even satellite-borne millimeter-wave cloud radar developed by our country.

  8. Bistatic radar

    CERN Document Server

    Willis, Nick

    2004-01-01

    Annotation his book is a major extension of a chapter on bistatic radar written by the author for the Radar Handbook, 2nd edition, edited by Merrill Skolnik. It provides a history of bistatic systems that points out to potential designers the applications that have worked and the dead-ends not worth pursuing. The text reviews the basic concepts and definitions, and explains the mathematical development of relationships, such as geometry, Ovals of Cassini, dynamic range, isorange and isodoppler contours, target doppler, and clutter doppler spread.Key Features * All development and analysis are

  9. Microwave Dielectric Properties of Soil and Vegetation and Their Estimation From Spaceborne Radar

    Science.gov (United States)

    Dobson, M. Craig; McDonald, Kyle C.

    1996-01-01

    This paper is largely tutorial in nature and provides an overview of the microwave dielectric properties of certain natural terrestrial media (soils and vegetation) and recent results in estimating these properties remotely from airborne and orbital synthetic aperture radar (SAR).

  10. Partly cloudy with a chance of migration: Weather, radars, and aeroecology

    Science.gov (United States)

    Chilson, Phillip B.; Frick, Winifred F.; Kelly, Jeffrey F.; Howard, Kenneth W.; Larkin, Ronald P.; Diehl, Robert H.; Westbrook, John K.; Kelly, T. Adam; Kunz, Thomas H.

    2012-01-01

    Aeroecology is an emerging scientific discipline that integrates atmospheric science, Earth science, geography, ecology, computer science, computational biology, and engineering to further the understanding of biological patterns and processes. The unifying concept underlying this new transdisciplinary field of study is a focus on the planetary boundary layer and lower free atmosphere (i.e., the aerosphere), and the diversity of airborne organisms that inhabit and depend on the aerosphere for their existence. Here, we focus on the role of radars and radar networks in aeroecological studies. Radar systems scanning the atmosphere are primarily used to monitor weather conditions and track the location and movements of aircraft. However, radar echoes regularly contain signals from other sources, such as airborne birds, bats, and arthropods. We briefly discuss how radar observations can be and have been used to study a variety of airborne organisms and examine some of the many potential benefits likely to arise from radar aeroecology for meteorological and biological research over a wide range of spatial and temporal scales. Radar systems are becoming increasingly sophisticated with the advent of innovative signal processing and dual-polarimetric capabilities. These capabilities should be better harnessed to promote both meteorological and aeroecological research and to explore the interface between these two broad disciplines. We strongly encourage close collaboration among meteorologists, radar scientists, biologists, and others toward developing radar products that will contribute to a better understanding of airborne fauna.

  11. Using Airborne SAR Interferometry to Measure the Elevation of a Greenland Ice Cap

    DEFF Research Database (Denmark)

    Dall, Jørgen; Keller, K.; Madsen, S.N.

    2000-01-01

    A digital elevation model (DEM) of an ice cap in Greenland has been generated from airborne SAR interferometry data, calibrated with a new algorithm, and compared with airborne laser altimetry profiles and carrier-phase differential GPS measurements of radar reflectors deployed on the ice cap...

  12. Radar systems for a polar mission, volume 1

    Science.gov (United States)

    Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Komen, M. J.; Mccauley, J.; Mcmillan, S. B.; Parashar, S. K.

    1977-01-01

    The application of synthetic aperture radar (SAR) in monitoring and managing earth resources is examined. Synthetic aperture radars form a class of side-looking airborne radar, often referred to as coherent SLAR, which permits fine-resolution radar imagery to be generated at long operating ranges by the use of signal processing techniques. By orienting the antenna beam orthogonal to the motion of the spacecraft carrying the radar, a one-dimensional imagery ray system is converted into a two-dimensional or terrain imaging system. The radar's ability to distinguish - or resolve - closely spaced transverse objects is determined by the length of the pulse. The transmitter components receivers, and the mixer are described in details.

  13. Motion Compensation for a High Resolution Ka-Band Airborne FM-CW SAR

    NARCIS (Netherlands)

    Meta, A; Lorga, J.F.M.; Wit, J.J.M. de; Hoogeboom, P.

    2005-01-01

    Airborne synthetic aperture radar is a promising new application for FM-CW radars. At the IRCTR, an operational demonstrator system has been developed in order to investigate the practicability of FM-CW SAR and to prove that an FM-CW SAR system can be operated in an efficient manner from a small

  14. Waveform design and diversity for advanced radar systems

    CERN Document Server

    Gini, Fulvio

    2012-01-01

    In recent years, various algorithms for radar signal design, that rely heavily upon complicated processing and/or antenna architectures, have been suggested. These techniques owe their genesis to several factors, including revolutionary technological advances (new flexible waveform generators, high speed signal processing hardware, digital array radar technology, etc.) and the stressing performance requirements, often imposed by defence applications in areas such as airborne early warning and homeland security.Increasingly complex operating scenarios calls for sophisticated algorithms with the

  15. Social Radar

    Science.gov (United States)

    2012-01-01

    development and exploration of courses of action. Recent events suggest the great potential of social media as an important input for this 21st century...unrestricted data domain consisting of open source English and foreign language data of varying types, including social media  Engineering to process and...Ideology identification in multiple languages  Emotion analysis of social media for instability monitoring Social Radar RTA HFM-201/RSM

  16. Efficient Fourier based Algorithm Development for Airborne Moving Target Indication

    NARCIS (Netherlands)

    Lidicky, L.; Hoogeboom, P.

    2009-01-01

    This paper shows how the signal model that is commonly used as a starting point in multi-channel Space Time Adaptive Processing (STAP) for airborne Moving Target Indication (MTI) formally corresponds to a model that can be derived from a bi-static Synthetic Aperture Radar (SAR) model extended for

  17. Modified Range-Doppler Processing for FM-CW Synthetic Aperture Radar

    NARCIS (Netherlands)

    Wit, J.J.M. de; Meta, A.; Hoogeboom, P.

    2006-01-01

    The combination of compact frequency-modulated continuous-wave (FM-CW) technology and high-resolution synthetic aperture radar (SAR) processing techniques should pave the way for the development of a lightweight, cost-effective, high-resolution, airborne imaging radar. Regarding FM-CW SAR signal

  18. Bistatic synthetic aperture radar

    Science.gov (United States)

    Yates, Gillian

    Synthetic aperture radar (SAR) allows all-weather, day and night, surface surveillance and has the ability to detect, classify and geolocate objects at long stand-off ranges. Bistatic SAR, where the transmitter and the receiver are on separate platforms, is seen as a potential means of countering the vulnerability of conventional monostatic SAR to electronic countermeasures, particularly directional jamming, and avoiding physical attack of the imaging platform. As the receiving platform can be totally passive, it does not advertise its position by RF emissions. The transmitter is not susceptible to jamming and can, for example, operate at long stand-off ranges to reduce its vulnerability to physical attack. This thesis examines some of the complications involved in producing high-resolution bistatic SAR imagery. The effect of bistatic operation on resolution is examined from a theoretical viewpoint and analytical expressions for resolution are developed. These expressions are verified by simulation work using a simple 'point by point' processor. This work is extended to look at using modern practical processing engines for bistatic geometries. Adaptations of the polar format algorithm and range migration algorithm are considered. The principal achievement of this work is a fully airborne demonstration of bistatic SAR. The route taken in reaching this is given, along with some results. The bistatic SAR imagery is analysed and compared to the monostatic imagery collected at the same time. Demonstrating high-resolution bistatic SAR imagery using two airborne platforms represents what I believe to be a European first and is likely to be the first time that this has been achieved outside the US (the UK has very little insight into US work on this topic). Bistatic target characteristics are examined through the use of simulations. This also compares bistatic imagery with monostatic and gives further insight into the utility of bistatic SAR.

  19. Advances in bistatic radar

    CERN Document Server

    Willis, Nick

    2007-01-01

    Advances in Bistatic Radar updates and extends bistatic and multistatic radar developments since publication of Willis' Bistatic Radar in 1991. New and recently declassified military applications are documented. Civil applications are detailed including commercial and scientific systems. Leading radar engineers provide expertise to each of these applications. Advances in Bistatic Radar consists of two major sections: Bistatic/Multistatic Radar Systems and Bistatic Clutter and Signal Processing. Starting with a history update, the first section documents the early and now declassified military

  20. The Ecosystems SAR (EcoSAR) an Airborne P-band Polarimetric InSAR for the Measurement of Vegetation Structure, Biomass and Permafrost

    Science.gov (United States)

    Rincon, Rafael F.; Fatoyinbo, Temilola; Ranson, K. Jon; Osmanoglu, Batuhan; Sun, Guoqing; Deshpande, Manohar D.; Perrine, Martin L.; Du Toit, Cornelis F.; Bonds, Quenton; Beck, Jaclyn; hide

    2014-01-01

    EcoSAR is a new synthetic aperture radar (SAR) instrument being developed at the NASA/ Goddard Space Flight Center (GSFC) for the polarimetric and interferometric measurements of ecosystem structure and biomass. The instrument uses a phased-array beamforming architecture and supports full polarimetric measurements and single pass interferometry. This Instrument development is part of NASA's Earth Science Technology Office Instrument Incubator Program (ESTO IIP).

  1. Operation of a Radar Altimeter over the Greenland Ice Sheet

    Science.gov (United States)

    Grund, Matthew D.

    1996-01-01

    This thesis presents documentation for the Advanced Application Flight Experiment (AAFE) pulse compression radar altimeter and its role in the NASA Multisensor Airborne Altimetry Experiment over Greenland in 1993. The AAFE Altimeter is a Ku-band microwave radar which has demonstrated 14 centimeter range precision in operation over arctic ice. Recent repairs and improvements were required to make the Greenland missions possible. Transmitter, receiver and software modifications, as well as the integration of a GPS receiver are thoroughly documented. Procedures for installation, and operation of the radar are described. Finally, suggestions are made for further system improvements.

  2. Coherent Doppler Laser Radar: Technology Development and Applications

    Science.gov (United States)

    Kavaya, Michael J.; Arnold, James E. (Technical Monitor)

    2000-01-01

    NASA's Marshall Space Flight Center has been investigating, developing, and applying coherent Doppler laser radar technology for over 30 years. These efforts have included the first wind measurement in 1967, the first airborne flights in 1972, the first airborne wind field mapping in 1981, and the first measurement of hurricane eyewall winds in 1998. A parallel effort at MSFC since 1982 has been the study, modeling and technology development for a space-based global wind measurement system. These endeavors to date have resulted in compact, robust, eyesafe lidars at 2 micron wavelength based on solid-state laser technology; in a factor of 6 volume reduction in near diffraction limited, space-qualifiable telescopes; in sophisticated airborne scanners with full platform motion subtraction; in local oscillator lasers capable of rapid tuning of 25 GHz for removal of relative laser radar to target velocities over a 25 km/s range; in performance prediction theory and simulations that have been validated experimentally; and in extensive field campaign experience. We have also begun efforts to dramatically improve the fundamental photon efficiency of the laser radar, to demonstrate advanced lower mass laser radar telescopes and scanners; to develop laser and laser radar system alignment maintenance technologies; and to greatly improve the electrical efficiency, cooling technique, and robustness of the pulsed laser. This coherent Doppler laser radar technology is suitable for high resolution, high accuracy wind mapping; for aerosol and cloud measurement; for Differential Absorption Lidar (DIAL) measurements of atmospheric and trace gases; for hard target range and velocity measurement; and for hard target vibration spectra measurement. It is also suitable for a number of aircraft operations applications such as clear air turbulence (CAT) detection; dangerous wind shear (microburst) detection; airspeed, angle of attack, and sideslip measurement; and fuel savings through

  3. Optical Airborne Tracker System

    Data.gov (United States)

    National Aeronautics and Space Administration — The Optical Airborne Tracker System (OATS) is an airborne dual-axis optical tracking system capable of pointing at any sky location or ground target.  The objectives...

  4. Fine resolution topographic mapping of the Jovian moons: a Ka-band high resolution topographic mapping interferometric synthetic aperture radar

    Science.gov (United States)

    Madsen, Soren N.; Carsey, Frank D.; Turtle, Elizabeth P.

    2003-01-01

    The topographic data set obtained by MOLA has provided an unprecedented level of information about Mars' geologic features. The proposed flight of JIMO provides an opportunity to accomplish a similar mapping of and comparable scientific discovery for the Jovian moons through us of an interferometric imaging radar analogous to the Shuttle radar that recently generated a new topographic map of Earth. A Ka-band single pass across-track synthetic aperture radar (SAR) interferometer can provide very high resolution surface elevation maps. The concept would use two antennas mounted at the ends of a deployable boom (similar to the Shuttle Radar Topographic Mapper) extended orthogonal to the direction of flight. Assuming an orbit altitude of approximately 100 km and a ground velocity of approximately 1.5 km/sec, horizontal resolutions at the 10 meter level and vertical resolutions at the sub-meter level are possible.

  5. Target Detection Based on EBPSK Satellite Passive Radar

    Directory of Open Access Journals (Sweden)

    Lu Zeyuan

    2015-05-01

    Full Text Available Passive radar is a topic anti stealth technology with simple structure, and low cost. Radiation source model, signal transmission model, and target detection are the key points of passive radar technology research. The paper analyzes the characteristics of EBPSK signal modulation and target detection method aspect of spaceborne radiant source. By comparison with other satellite navigation and positioning system, the characteristics of EBPSK satellite passive radar system are analyzed. It is proved that the maximum detection range of EBPSK satellite signal can satisfy the needs of the proposed model. In the passive radar model, sparse representation is used to achieve high resolution DOA detection. The comparison with the real target track by simulation demonstrates that effective detection of airborne target using EBPSK satellite passive radar system based on sparse representation is efficient.

  6. Multispectral microwave imaging radar for remote sensing applications

    Science.gov (United States)

    Larson, R. W.; Rawson, R.; Ausherman, D.; Bryan, L.; Porcello, L.

    1974-01-01

    A multispectral airborne microwave radar imaging system, capable of obtaining four images simultaneously is described. The system has been successfully demonstrated in several experiments and one example of results obtained, fresh water ice, is given. Consideration of the digitization of the imagery is given and an image digitizing system described briefly. Preliminary results of digitization experiments are included.

  7. Optical synthetic aperture radar

    Science.gov (United States)

    Ilovitsh, Asaf; Zach, Shlomo; Zalevsky, Zeev

    2013-06-01

    A method is proposed for increasing the resolution of an object and overcoming the diffraction limit of an optical system installed on top of a moving imaging system, such as an airborne platform or satellite. The resolution improvement is obtained via a two-step process. First, three low resolution differently defocused images are captured and the optical phase is retrieved using an improved iterative Gershberg-Saxton based algorithm. The phase retrieval allows numerical back propagation of the field to the aperture plane. Second, the imaging system is shifted and the first step is repeated. The obtained optical fields at the aperture plane are combined and a synthetically increased lens aperture is generated along the direction of movement, yielding higher imaging resolution. The method resembles a well-known approach from the microwave regime called the synthetic aperture radar in which the antenna size is synthetically increased along the platform propagation direction. The proposed method is demonstrated via Matlab simulation as well as through laboratory experiment.

  8. EMISAR: A Dual-frequency, Polarimetric Airborne SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Christensen, Erik Lintz

    2002-01-01

    . The SAR is operated at high altitudes on a Gulfstream G-3 jet aircraft. The system is very well calibrated and has low sidelobes and low cross-polar contamination. Digital technology has been utilized to realize a flexible and highly stable radar with variable resolution, swath width, and imaging geometry....... Thermal control and several calibration loops have been built into the system to ensure system stability and absolute calibration. Accurately measured antenna gains and radiation patterns are included in the calibration. The processing system is developed to support data calibration, which is the key......EMISAR is a fully polarimetric, dual frequency (L- and C-band) SAR system designed for remote sensing applications. The data are usually processed to 2×2 m resolution. The system has the capability of C-band cross-track single-pass interferometry and fully polarimetric repeat-pass interferometry...

  9. Reducing windshear risk through airborne systems technology

    Science.gov (United States)

    Bowles, Roland L.

    1990-01-01

    A preliminary set of performance criteria for predictive windshear detection and warning systems is defined. Candidate airborne remote sensor technologies based on microwave Doppler radar, Doppler lidar, and IR radiometric techniques are examined from the viewpoint of overall system requirements, and the performance of each sensor is evaluated for representative microburst environments and ground clutter conditions. Preliminary simulation results indicate that all three sensors have potential for detecting windshear, and provide adequate warning time to permit flight crews to avoid the affected area or escape from the encounter.

  10. POLCAL - POLARIMETRIC RADAR CALIBRATION

    Science.gov (United States)

    Vanzyl, J.

    1994-01-01

    Calibration of polarimetric radar systems is a field of research in which great progress has been made over the last few years. POLCAL (Polarimetric Radar Calibration) is a software tool intended to assist in the calibration of Synthetic Aperture Radar (SAR) systems. In particular, POLCAL calibrates Stokes matrix format data produced as the standard product by the NASA/Jet Propulsion Laboratory (JPL) airborne imaging synthetic aperture radar (AIRSAR). POLCAL was designed to be used in conjunction with data collected by the NASA/JPL AIRSAR system. AIRSAR is a multifrequency (6 cm, 24 cm, and 68 cm wavelength), fully polarimetric SAR system which produces 12 x 12 km imagery at 10 m resolution. AIRSTAR was designed as a testbed for NASA's Spaceborne Imaging Radar program. While the images produced after 1991 are thought to be calibrated (phase calibrated, cross-talk removed, channel imbalance removed, and absolutely calibrated), POLCAL can and should still be used to check the accuracy of the calibration and to correct it if necessary. Version 4.0 of POLCAL is an upgrade of POLCAL version 2.0 released to AIRSAR investigators in June, 1990. New options in version 4.0 include automatic absolute calibration of 89/90 data, distributed target analysis, calibration of nearby scenes with calibration parameters from a scene with corner reflectors, altitude or roll angle corrections, and calibration of errors introduced by known topography. Many sources of error can lead to false conclusions about the nature of scatterers on the surface. Errors in the phase relationship between polarization channels result in incorrect synthesis of polarization states. Cross-talk, caused by imperfections in the radar antenna itself, can also lead to error. POLCAL reduces cross-talk and corrects phase calibration without the use of ground calibration equipment. Removing the antenna patterns during SAR processing also forms a very important part of the calibration of SAR data. Errors in the

  11. The proposed flatland radar

    Science.gov (United States)

    Green, J. L.; Gage, K. S.; Vanzandt, T. E.; Nastrom, G. D.

    1986-01-01

    A flexible very high frequency (VHF) stratosphere-troposphere (ST) radar configured for meteorological research is to be constructed near Urbana, Illinois. Measurement of small vertical velocities associated with synoptic-scale meteorology can be performed. A large Doppler microwave radar (CHILL) is located a few km from the site of the proposed ST radar. Since the microwave radar can measure the location and velocity of hydrometeors and the VHF ST radar can measure clear (or cloudy) air velocities, simultaneous observations by these two radars of stratiform or convective weather systems would provide valuable meteorological information.

  12. Adaptive radar resource management

    CERN Document Server

    Moo, Peter

    2015-01-01

    Radar Resource Management (RRM) is vital for optimizing the performance of modern phased array radars, which are the primary sensor for aircraft, ships, and land platforms. Adaptive Radar Resource Management gives an introduction to radar resource management (RRM), presenting a clear overview of different approaches and techniques, making it very suitable for radar practitioners and researchers in industry and universities. Coverage includes: RRM's role in optimizing the performance of modern phased array radars The advantages of adaptivity in implementing RRMThe role that modelling and

  13. Radar and ARPA manual

    CERN Document Server

    Bole, A G

    2013-01-01

    Radar and ARPA Manual focuses on the theoretical and practical aspects of electronic navigation. The manual first discusses basic radar principles, including principles of range and bearing measurements and picture orientation and presentation. The text then looks at the operational principles of radar systems. Function of units; aerial, receiver, and display principles; transmitter principles; and sitting of units on board ships are discussed. The book also describes target detection, Automatic Radar Plotting Aids (ARPA), and operational controls of radar systems, and then discusses radar plo

  14. Airborne geoid determination

    DEFF Research Database (Denmark)

    Forsberg, René; Olesen, Arne Vestergaard; Bastos, L.

    2000-01-01

    Airborne geoid mapping techniques may provide the opportunity to improve the geoid over vast areas of the Earth, such as polar areas, tropical jungles and mountainous areas, and provide an accurate "seam-less" geoid model across most coastal regions. Determination of the geoid by airborne methods......-suited for geoid determination, with high-frequency survey and downward continuation noise being offset by the low-pass gravity to geoid filtering operation. In the paper the basic principles of airborne geoid determination are outlined, and examples of results of recent airborne gravity and geoid surveys...

  15. Novel radar techniques and applications

    CERN Document Server

    Klemm, Richard; Lombardo, Pierfrancesco; Nickel, Ulrich

    2017-01-01

    Novel Radar Techniques and Applications presents the state-of-the-art in advanced radar, with emphasis on ongoing novel research and development and contributions from an international team of leading radar experts. This volume covers: Real aperture array radar; Imaging radar and Passive and multistatic radar.

  16. Principles of modern radar systems

    CERN Document Server

    Carpentier, Michel H

    1988-01-01

    Introduction to random functions ; signal and noise : the ideal receiver ; performance of radar systems equipped with ideal receivers ; analysis of the operating principles of some types of radar ; behavior of real targets, fluctuation of targets ; angle measurement using radar ; data processing of radar information, radar coverage ; applications to electronic scanning antennas to radar ; introduction to Hilbert spaces.

  17. Weather Radar Impact Zones

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent an inventory of the national impacts of wind turbine interference with NEXRAD radar stations. This inventory was developed by the NOAA Radar...

  18. Radar Weather Observation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radar Weather Observation is a set of archived historical manuscripts stored on microfiche. The primary source of these radar weather observations manuscript records...

  19. Noise Radar Technology Basics

    National Research Council Canada - National Science Library

    Thayaparan, T; Wernik, C

    2006-01-01

    .... In this report, the basic theory of noise radar design is treated. The theory supports the use of noise waveforms for radar detection and imaging in such applications as covert military surveillance and reconnaissance...

  20. An Online Multisensor Data Fusion Framework for Radar Emitter Classification

    Directory of Open Access Journals (Sweden)

    Dongqing Zhou

    2016-01-01

    Full Text Available Radar emitter classification is a special application of data clustering for classifying unknown radar emitters in airborne electronic support system. In this paper, a novel online multisensor data fusion framework is proposed for radar emitter classification under the background of network centric warfare. The framework is composed of local processing and multisensor fusion processing, from which the rough and precise classification results are obtained, respectively. What is more, the proposed algorithm does not need prior knowledge and training process; it can dynamically update the number of the clusters and the cluster centers when new pulses arrive. At last, the experimental results show that the proposed framework is an efficacious way to solve radar emitter classification problem in networked warfare.

  1. Network radar countermeasure systems integrating radar and radar countermeasures

    CERN Document Server

    Jiang, Qiuxi

    2016-01-01

    This is the very first book to present the network radar countermeasure system. It explains in detail the systematic concept of combining radar and radar countermeasures from the perspective of the information acquisition of target location, the optimization of the reconnaissance and detection, the integrated attack of the signals and facilities, and technological and legal developments concerning the networked system. It achieves the integration of the initiative and passivity, detection and jamming. The book explains how the system locates targets, completes target identification, tracks targets and compiles the data.

  2. Airborne laser sensors and integrated systems

    Science.gov (United States)

    Sabatini, Roberto; Richardson, Mark A.; Gardi, Alessandro; Ramasamy, Subramanian

    2015-11-01

    The underlying principles and technologies enabling the design and operation of airborne laser sensors are introduced and a detailed review of state-of-the-art avionic systems for civil and military applications is presented. Airborne lasers including Light Detection and Ranging (LIDAR), Laser Range Finders (LRF), and Laser Weapon Systems (LWS) are extensively used today and new promising technologies are being explored. Most laser systems are active devices that operate in a manner very similar to microwave radars but at much higher frequencies (e.g., LIDAR and LRF). Other devices (e.g., laser target designators and beam-riders) are used to precisely direct Laser Guided Weapons (LGW) against ground targets. The integration of both functions is often encountered in modern military avionics navigation-attack systems. The beneficial effects of airborne lasers including the use of smaller components and remarkable angular resolution have resulted in a host of manned and unmanned aircraft applications. On the other hand, laser sensors performance are much more sensitive to the vagaries of the atmosphere and are thus generally restricted to shorter ranges than microwave systems. Hence it is of paramount importance to analyse the performance of laser sensors and systems in various weather and environmental conditions. Additionally, it is important to define airborne laser safety criteria, since several systems currently in service operate in the near infrared with considerable risk for the naked human eye. Therefore, appropriate methods for predicting and evaluating the performance of infrared laser sensors/systems are presented, taking into account laser safety issues. For aircraft experimental activities with laser systems, it is essential to define test requirements taking into account the specific conditions for operational employment of the systems in the intended scenarios and to verify the performance in realistic environments at the test ranges. To support the

  3. Airborne geoid determination

    DEFF Research Database (Denmark)

    Forsberg, René; Olesen, Arne Vestergaard; Bastos, L.

    2000-01-01

    Airborne geoid mapping techniques may provide the opportunity to improve the geoid over vast areas of the Earth, such as polar areas, tropical jungles and mountainous areas, and provide an accurate "seam-less" geoid model across most coastal regions. Determination of the geoid by airborne methods...

  4. Applications of airborne remote sensing in atmospheric sciences research

    Science.gov (United States)

    Serafin, R. J.; Szejwach, G.; Phillips, B. B.

    1984-01-01

    This paper explores the potential for airborne remote sensing for atmospheric sciences research. Passive and active techniques from the microwave to visible bands are discussed. It is concluded that technology has progressed sufficiently in several areas that the time is right to develop and operate new remote sensing instruments for use by the community of atmospheric scientists as general purpose tools. Promising candidates include Doppler radar and lidar, infrared short range radiometry, and microwave radiometry.

  5. Wear resistance studies of an austempered ductile iron with the aid of a single pass grooving pendulum; Estudo do comportamento em desgate de um ferro fundido nodular austemperado atraves da tecnica da tecnica de esclerometria pendular

    Energy Technology Data Exchange (ETDEWEB)

    Velez, J.M.; Tschiptschin, A.P. [Sao Paulo Univ., SP (Brazil). Escola Politecnica

    1995-12-31

    The abrasive wear resistance of an austempered ductile iron was studied with the aid of a single pass grooving pendulum. Specimens were austenitized at 860 deg C and austempered at 370 deg C for 30, 60, 90, 180 and 240 min. Austenite transformation kinetics was measured by quantitative metallography. Specimens for pendulum tests were gridded as squared based prisms (50 mm x 10 mm x 10 mm) and one of the faces submitted to metallographic polishing before the test. A hard metal cutting tool was used as abrasive. The absorbed energy as well as the loss of matter were measured. Scanning Electron Microscopy was used to analyze the surface topography of the scratched specimen. It was observed a maximum in the absorbed specific energy for the specimen treated for 60 min. with a microstructure of bainite ferrite plus plus 42% volume fraction of retained austenite. All other structures (ferrite plus carbides, ferrite plus lower contents of austenite and martensite plus austenite) gave lower values of absorbed specific energy. Observation of scratches and chips formed on the surface of the specimen can explain the above mentioned behaviour 12 refs., 11 figs., 2 tabs.

  6. Understanding radar systems

    CERN Document Server

    Kingsley, Simon

    1999-01-01

    What is radar? What systems are currently in use? How do they work? This book provides engineers and scientists with answers to these critical questions, focusing on actual radar systems in use today. It is a perfect resource for those just entering the field, or as a quick refresher for experienced practitioners. The book leads readers through the specialized language and calculations that comprise the complex world of radar engineering as seen in dozens of state-of-the-art radar systems. An easy to read, wide ranging guide to the world of modern radar systems.

  7. Spaceborne radar for geoscientific applications in North China

    Science.gov (United States)

    Guo, Hua-Dong; Wu, Guo-Xiang; Wang, Zhen-Song

    1993-01-01

    The Shuttle Imaging Radar-A and -B (SIR-A and SIR-B) carried on the Space Shuttle Columbia in Nov. 1981 and the Challenger in Oct. 1984 acquired images of test sites of North China. The Russian ALMAZ SAR also acquired imagery of part of this test site in Sep. 1992. In Nov. 1990, the airborne SAR developed by the Chinese Academy of Sciences (CAS/SAR) covered this area for the purpose of Chinese spaceborne radar development. By studying and analyzing these SAR data, positive results in geoscientific applications were achieved.

  8. A fast autofocus algorithm for synthetic aperture radar processing

    DEFF Research Database (Denmark)

    Dall, Jørgen

    1992-01-01

    High-resolution synthetic aperture radar (SAR) imaging requires the motion of the radar platform to be known very accurately. Otherwise, phase errors are induced in the processing of the raw SAR data, and bad focusing results. In particular, a constant error in the measured along-track velocity o...... of magnitude lower than that of other algorithms providing comparable accuracies is presented. The algorithm has been tested on data from the Danish Airborne SAR, and the performance is compared with that of the traditional map drift algorithm...

  9. Airborne Tactical Free-Electron Laser

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, Roy; Neil, George

    2007-02-01

    The goal of 100 kilowatts (kW) of directed energy from an airborne tactical platform has proved challenging due to the size and weight of most of the options that have been considered. However, recent advances in Free-Electron Lasers appear to offer a solution along with significant tactical advantages: a nearly unlimited magazine, time structures for periods from milliseconds to hours, radar like functionality, and the choice of the wavelength of light that best meets mission requirements. For an Airborne Tactical Free-Electron Laser (ATFEL) on a platforms such as a Lockheed C-130J-30 and airships, the two most challenging requirements, weight and size, can be met by generating the light at a higher harmonic, aggressively managing magnet weights, managing cryogenic heat loads using recent SRF R&D results, and using FEL super compact design concepts that greatly reduce the number of components. The initial R&D roadmap for achieving an ATFEL is provided in this paper. Performing this R&D is expected to further reduce the weight, size and power requirements for the FELs the Navy is currently developing for shipboard applications, as well as providing performance enhancements for the strategic airborne MW class FELs. The 100 kW ATFEL with its tactical advantages may prove sufficiently attractive for early advancement in the queue of deployed FELs.

  10. Parametric estimation of time varying baselines in airborne interferometric SAR

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Madsen, Søren Nørvang

    1996-01-01

    A method for estimation of time varying spatial baselines in airborne interferometric synthetic aperture radar (SAR) is described. The range and azimuth distortions between two images acquired with a non-linear baseline are derived. A parametric model of the baseline is then, in a least square...... sense, estimated from image shifts obtained by cross correlation of numerous small patches throughout the image. The method has been applied to airborne EMISAR imagery from the 1995 campaign over the Storstrommen Glacier in North East Greenland conducted by the Danish Center for Remote Sensing. This has...... reduced the baseline uncertainties from several meters to the centimeter level in a 36 km scene. Though developed for airborne SAR the method can easily be adopted to satellite data...

  11. Application of Radar Data to Remote Sensing and Geographical Information Systems

    Science.gov (United States)

    vanZyl, Jakob J.

    2000-01-01

    The field of synthetic aperture radar changed dramatically over the past decade with the operational introduction of advance radar techniques such as polarimetry and interferometry. Radar polarimetry became an operational research tool with the introduction of the NASA/JPL AIRSAR system in the early 1980's, and reached a climax with the two SIR-C/X-SAR flights on board the space shuttle Endeavour in April and October 1994. Radar interferometry received a tremendous boost when the airborne TOPSAR system was introduced in 1991 by NASA/JPL, and further when data from the European Space Agency ERS-1 radar satellite became routinely available in 1991. Several airborne interferometric SAR systems are either currently operational, or are about to be introduced. Radar interferometry is a technique that allows one to map the topography of an area automatically under all weather conditions, day or night. The real power of radar interferometry is that the images and digital elevation models are automatically geometrically resampled, and could be imported into GIS systems directly after suitable reformatting. When combined with polarimetry, a technique that uses polarization diversity to gather more information about the geophysical properties of the terrain, a very rich multi-layer data set is available to the remote sensing scientist. This talk will discuss the principles of radar interferometry and polarimetry with specific application to the automatic categorization of land cover. Examples will include images acquired with the NASA/JPL AIRSAR/TOPSAR system in Australia and elsewhere.

  12. Airborne Power Supply Unit

    Data.gov (United States)

    National Aeronautics and Space Administration — The Airborne Power Supply Unit (APSU) is a programmable DC/DC converter that can supply multiple constant voltage or constant current outputs in a small enclosure,...

  13. Airborne Test Bed Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory operates the main hangar on the Hanscom Air Force Base flight line. This very large building (~93,000sqft) accommodates the Laboratory's airborne test...

  14. Airborne Magnetic Trackline Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA National Centers for Environmental Information (formerly National Geophysical Data Center) receive airborne magnetic survey data from US and non-US...

  15. Waterberg coalfield airborne geophysics

    CSIR Research Space (South Africa)

    Fourie, S

    2009-07-01

    Full Text Available Airborne Geophysics Project Number: 1.5.5 Sub Committee: Geology and Geophysics Presenter: Dr. Stoffel Fourie Co-Workers: Dr. George Henry & Me. Leonie Marè Collaborators: Coaltech & CSIR Project Objectives Major Objectives: circle5 Initiate Semi...-Regional Exploration of the Waterberg Coalfield to the benefit of the Industry. circle5 Generate a good quality Airborne Geophysical Dataset. circle5 Generate a basic lineament and surface geology interpretation of the Ellisras Basin. circle5 Generate a basic...

  16. Phased-array radar design application of radar fundamentals

    CERN Document Server

    Jeffrey, Thomas

    2009-01-01

    Phased-Array Radar Design is a text-reference designed for electrical engineering graduate students in colleges and universities as well as for corporate in-house training programs for radar design engineers, especially systems engineers and analysts who would like to gain hands-on, practical knowledge and skills in radar design fundamentals, advanced radar concepts, trade-offs for radar design and radar performance analysis.

  17. SMEX03 Airborne Synthetic Aperture Radar (AIRSAR) Data: Oklahoma

    Data.gov (United States)

    National Aeronautics and Space Administration — Notice to Data Users: The documentation for this data set was provided solely by the Principal Investigator(s) and was not further developed, thoroughly reviewed, or...

  18. Development of an airborne ice sounding radar front-end

    DEFF Research Database (Denmark)

    Krozer, Viktor; Hernandez, C C; Vazquez Roy, J L

    2007-01-01

    a relative bandwidth of 20% at a center frequency of 435 MHz, and a digital signal generation and acquisition unit. Furthermore, we demonstrate broadband performance of our left-handed/right-handed out-of-phase power dividers. In 2008 the first data acquisition campaign will take place in Greenland....

  19. Design of an airborne P-band ice sounding radar

    DEFF Research Database (Denmark)

    Dall, Jørgen; Skou, Niels; Kusk, Anders

    2006-01-01

    is to test new ice sounding techniques, e.g. polarimetry, synthetic aperture processing, and coherent clutter suppression. A system analysis involving ice scattering models confirms that it is feasible to detect the bedrock through 4 km of ice and to detect deep ice layers. The ice sounder design features...

  20. Doppler radar physiological sensing

    CERN Document Server

    Lubecke, Victor M; Droitcour, Amy D; Park, Byung-Kwon; Singh, Aditya

    2016-01-01

    Presents a comprehensive description of the theory and practical implementation of Doppler radar-based physiological monitoring. This book includes an overview of current physiological monitoring techniques and explains the fundamental technology used in remote non-contact monitoring methods. Basic radio wave propagation and radar principles are introduced along with the fundamentals of physiological motion and measurement. Specific design and implementation considerations for physiological monitoring radar systems are then discussed in detail. The authors address current research and commercial development of Doppler radar based physiological monitoring for healthcare and other applications.

  1. Radar Signature Calculation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: The calculation, analysis, and visualization of the spatially extended radar signatures of complex objects such as ships in a sea multipath environment and...

  2. CryoVEx 2011-12 Airborne Campaigns for CryoSat Validation

    DEFF Research Database (Denmark)

    Skourup, Henriette; Hvidegaard, Sine Munk; Forsberg, René

    2013-01-01

    2003. To validate the performance of the CryoSat-2 radar altimeter (SIRAL), the aircraft is equipped with an airborne version of the SIRAL altimeter (ASIRAS) together with a laser scanner. Of particular interest is to study the penetration depth of SIRAL into both land- and sea ice. This can be done...

  3. Mapping of elements at risk for landslides in the tropics using airborne laser scanning

    NARCIS (Netherlands)

    Razak, Khamarrul Azahari; van Westen, C.J.; Straatsma, Menno; ... [et al.],

    2011-01-01

    Mapping elements at risk for landslides in the tropics pose as a challenging task. Aerial-photograph, satellite imagery, and synthetic perture radar images are less effective to accurately provide physical presence of objects in a relatively short time. In this paper, we utilized an airborne laser

  4. the relevance of an airborne capability for south africa from a special

    African Journals Online (AJOL)

    FASTRAT

    1998-10-21

    Oct 21, 1998 ... reference to the post-Cold War era, Harclerode argues that the concept of airborne operations against sophisticated opponents should change significantly. 20. Considering modern air defence systems, he argues that in future, paratroopers have to be dropped below radar at low altitude (approximately ...

  5. Radar Plan Position Indicator Scope

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radar Plan Position Indicator Scope is the collection of weather radar imagery for the period prior to the beginning of the Next Generation Radar (NEXRAD) system...

  6. Combined radar and telemetry system

    Energy Technology Data Exchange (ETDEWEB)

    Rodenbeck, Christopher T.; Young, Derek; Chou, Tina; Hsieh, Lung-Hwa; Conover, Kurt; Heintzleman, Richard

    2017-08-01

    A combined radar and telemetry system is described. The combined radar and telemetry system includes a processing unit that executes instructions, where the instructions define a radar waveform and a telemetry waveform. The processor outputs a digital baseband signal based upon the instructions, where the digital baseband signal is based upon the radar waveform and the telemetry waveform. A radar and telemetry circuit transmits, simultaneously, a radar signal and telemetry signal based upon the digital baseband signal.

  7. Multiband radar characterization of forest biomes

    Science.gov (United States)

    Dobson, M. Craig; Ulaby, Fawwaz T.

    1990-01-01

    The utility of airborne and orbital SAR in classification, assessment, and monitoring of forest biomes is investigated through analysis of orbital synthetic aperature radar (SAR) and multifrequency and multipolarized airborne SAR imagery relying on image tone and texture. Preliminary airborne SAR experiments and truck-mounted scatterometer observations demonstrated that the three dimensional structural complexity of a forest, and the various scales of temporal dynamics in the microwave dielectric properties of both trees and the underlying substrate would severely limit empirical or semi-empirical approaches. As a consequence, it became necessary to develop a more profound understanding of the electromagnetic properties of a forest scene and their temporal dynamics through controlled experimentation coupled with theoretical development and verification. The concatenation of various models into a physically-based composite model treating the entire forest scene became the major objective of the study as this is the key to development of a series of robust retrieval algorithms for forest biophysical properties. In order to verify the performance of the component elements of the composite model, a series of controlled laboratory and field experiments were undertaken to: (1) develop techniques to measure the microwave dielectric properties of vegetation; (2) relate the microwave dielectric properties of vegetation to more readily measured characteristics such as density and moisture content; (3) calculate the radar cross-section of leaves, and cylinders; (4) improve backscatter models for rough surfaces; and (5) relate attenuation and phase delays during propagation through canopies to canopy properties. These modeling efforts, as validated by the measurements, were incorporated within a larger model known as the Michigan Microwave Canopy Scattering (MIMICS) Model.

  8. Reconfigurable signal processor designs for advanced digital array radar systems

    Science.gov (United States)

    Suarez, Hernan; Zhang, Yan (Rockee); Yu, Xining

    2017-05-01

    The new challenges originated from Digital Array Radar (DAR) demands a new generation of reconfigurable backend processor in the system. The new FPGA devices can support much higher speed, more bandwidth and processing capabilities for the need of digital Line Replaceable Unit (LRU). This study focuses on using the latest Altera and Xilinx devices in an adaptive beamforming processor. The field reprogrammable RF devices from Analog Devices are used as analog front end transceivers. Different from other existing Software-Defined Radio transceivers on the market, this processor is designed for distributed adaptive beamforming in a networked environment. The following aspects of the novel radar processor will be presented: (1) A new system-on-chip architecture based on Altera's devices and adaptive processing module, especially for the adaptive beamforming and pulse compression, will be introduced, (2) Successful implementation of generation 2 serial RapidIO data links on FPGA, which supports VITA-49 radio packet format for large distributed DAR processing. (3) Demonstration of the feasibility and capabilities of the processor in a Micro-TCA based, SRIO switching backplane to support multichannel beamforming in real-time. (4) Application of this processor in ongoing radar system development projects, including OU's dual-polarized digital array radar, the planned new cylindrical array radars, and future airborne radars.

  9. Development of NASA's Next Generation L-Band Digital Beamforming Synthetic Aperture Radar (DBSAR-2)

    Science.gov (United States)

    Rincon, Rafael; Fatoyinbo, Temilola; Osmanoglu, Batuhan; Lee, Seung-Kuk; Ranson, K. Jon; Marrero, Victor; Yeary, Mark

    2014-01-01

    NASA's Next generation Digital Beamforming SAR (DBSAR-2) is a state-of-the-art airborne L-band radar developed at the NASA Goddard Space Flight Center (GSFC). The instrument builds upon the advanced architectures in NASA's DBSAR-1 and EcoSAR instruments. The new instrument employs a 16-channel radar architecture characterized by multi-mode operation, software defined waveform generation, digital beamforming, and configurable radar parameters. The instrument has been design to support several disciplines in Earth and Planetary sciences. The instrument was recently completed, and tested and calibrated in a anechoic chamber.

  10. Synthetic Aperture Radar Data Processing on an FPGA Multi-Core System

    DEFF Research Database (Denmark)

    Schleuniger, Pascal; Kusk, Anders; Dall, Jørgen

    2013-01-01

    Synthetic aperture radar, SAR, is a high resolution imaging radar. The direct back-projection algorithm allows for a precise SAR output image reconstruction and can compensate for deviations in the flight track of airborne radars. Often graphic processing units, GPUs are used for data processing...... as the back-projection algorithm is computationally expensive and highly parallel. However, GPUs may not be an appropriate solution for applications with strictly constrained space and power requirements. In this paper, we describe how we map a SAR direct back-projection application to a multi-core system...

  11. UAV-Borne Profiling Radar for Forest Research

    Directory of Open Access Journals (Sweden)

    Yuwei Chen

    2017-01-01

    Full Text Available Microwave Radar is an attractive solution for forest mapping and inventories because microwave signals penetrates into the forest canopy and the backscattering signal can provide information regarding the whole forest structure. Satellite-borne and airborne imaging radars have been used in forest resources mapping for many decades. However, their accuracy with respect to the main forest inventory attributes substantially varies depending on the wavelength and techniques used in the estimation. Systems providing canopy backscatter as a function of canopy height are, practically speaking, missing. Therefore, there is a need for a radar system that would enable the scientific community to better understand the radar backscatter response from the forest canopy. Consequently, we undertook a research study to develop an unmanned aerial vehicle (UAV-borne profiling (i.e., waveform radar that could be used to improve the understanding of the radar backscatter response for forestry mapping and inventories. A frequency modulation continuous waveform (FMCW profiling radar, termed FGI-Tomoradar, was introduced, designed and tested. One goal is the total weight of the whole system is less than 7 kg, including the radar system and georeferencing system, with centimetre-level positioning accuracy. Achieving this weight goal would enable the FGI-Tomoradar system to be installed on the Mini-UAV platform. The prototype system had all four linear polarization measuring capabilities, with bistatic configuration in Ku-band. In system performance tests in this study, FGI-Tomoradar was mounted on a manned helicopter together with a Riegl VQ-480-U laser scanner and tested in several flight campaigns performed at the Evo site, Finland. Airborne laser scanning data was simultaneously collected to investigate the differences and similarities of the outputs for the same target area for better understanding the penetration of the microwave signal into the forest canopy

  12. Integrating Radar Image Data with Google Maps

    Science.gov (United States)

    Chapman, Bruce D.; Gibas, Sarah

    2010-01-01

    A public Web site has been developed as a method for displaying the multitude of radar imagery collected by NASA s Airborne Synthetic Aperture Radar (AIRSAR) instrument during its 16-year mission. Utilizing NASA s internal AIRSAR site, the new Web site features more sophisticated visualization tools that enable the general public to have access to these images. The site was originally maintained at NASA on six computers: one that held the Oracle database, two that took care of the software for the interactive map, and three that were for the Web site itself. Several tasks were involved in moving this complicated setup to just one computer. First, the AIRSAR database was migrated from Oracle to MySQL. Then the back-end of the AIRSAR Web site was updated in order to access the MySQL database. To do this, a few of the scripts needed to be modified; specifically three Perl scripts that query that database. The database connections were then updated from Oracle to MySQL, numerous syntax errors were corrected, and a query was implemented that replaced one of the stored Oracle procedures. Lastly, the interactive map was designed, implemented, and tested so that users could easily browse and access the radar imagery through the Google Maps interface.

  13. Java Radar Analysis Tool

    Science.gov (United States)

    Zaczek, Mariusz P.

    2005-01-01

    Java Radar Analysis Tool (JRAT) is a computer program for analyzing two-dimensional (2D) scatter plots derived from radar returns showing pieces of the disintegrating Space Shuttle Columbia. JRAT can also be applied to similar plots representing radar returns showing aviation accidents, and to scatter plots in general. The 2D scatter plots include overhead map views and side altitude views. The superposition of points in these views makes searching difficult. JRAT enables three-dimensional (3D) viewing: by use of a mouse and keyboard, the user can rotate to any desired viewing angle. The 3D view can include overlaid trajectories and search footprints to enhance situational awareness in searching for pieces. JRAT also enables playback: time-tagged radar-return data can be displayed in time order and an animated 3D model can be moved through the scene to show the locations of the Columbia (or other vehicle) at the times of the corresponding radar events. The combination of overlays and playback enables the user to correlate a radar return with a position of the vehicle to determine whether the return is valid. JRAT can optionally filter single radar returns, enabling the user to selectively hide or highlight a desired radar return.

  14. Determination of radar MTF

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The ultimate goal of the Current Meter Array (CMA) is to be able to compare the current patterns detected with the array with radar images of the water surface. The internal wave current patterns modulate the waves on the water surface giving a detectable modulation of the radar cross-section (RCS). The function relating the RCS modulations to the current patterns is the Modulation Transfer Function (MTF). By comparing radar images directly with co-located CMA measurements the MTF can be determined. In this talk radar images and CMA measurements from a recent experiment at Loch Linnhe, Scotland, will be used to make the first direct determination of MTF for an X and S band radar at low grazing angles. The technical problems associated with comparing radar images to CMA data will be explained and the solution method discussed. The results suggest the both current and strain rate contribute equally to the radar modulation for X band. For S band, the strain rate contributes more than the current. The magnitude of the MTF and the RCS modulations are consistent with previous estimates when the wind is blowing perpendicular to the radar look direction.

  15. MWR, Meteor Wind Radars

    Science.gov (United States)

    Roper, R. G.

    1984-01-01

    The requirements of a state of the art meteor wind radar, and acceptable comprises in the interests of economy, are detailed. Design consideration of some existing and proposed radars are discussed. The need for international cooperation in mesopause level wind measurement, such as that being fostered by the MAP GLOBMET (Global Meteor Observations System) project, is emphasized.

  16. Quantum synthetic aperture radar

    Science.gov (United States)

    Lanzagorta, Marco; Jitrik, Oliverio; Uhlmann, Jeffrey; Venegas-Andraca, Salvador E.

    2017-05-01

    Synthetic aperture radar (SAR) uses sensor motion to generate finer spatial resolution of a given target area. In this paper we explore the theoretical potential of quantum synthetic aperture quantum radar (QSAR). We provide theoretical analysis and simulation results which suggest that QSAR can provide improved detection performance over classical SAR in the high-noise low-brightness regime.

  17. Aspects of Radar Polarimetry

    OpenAIRE

    LÜNEBURG, Ernst

    2002-01-01

    This contribution is a tutorial introduction to the phenomenological theory of radar polarimetry for the coherent scatter case emphasizing monostatic backscattering and forward scattering (transmission). Characteristic similarities and differences between radar polarimetry and optical polarimetry and the role of linear and antilinear operators (time-reversal) are pointed out and typical polarimetric invariants are identified.

  18. Essential Climate Variables for the Ice Sheets from Space and Airborne measurements

    DEFF Research Database (Denmark)

    Fredenslund Levinsen, Joanna

    The Greenland Ice Sheet is the largest ice mass in the northern hemisphere.Over the past decade, it has undergone substantial changes in e.g. mass balance,surface velocity, and ice thickness. The latter is reflected by surfaceelevation changes, which are detectable with altimetry. Therefore......, this studyexploits the advantages of radar and laser altimetry to analyze surface elevationchanges and build a Digital Elevation Model of the ice sheet. Selected advantagesare radar data’s continuity in time and laser data’s higher horizontal andvertical accuracy. Therefore, ESA Envisat and CryoSat-2 radar altimetry...... dataare used in conjunction with laser data from NASA’s ICESat and airborneATM and LVIS instruments, and from ESA’s airborne CryoVEx campaign.The study is part of the ESA Ice Sheets CCI project. With the release ofREAPER data, one goal is to use the more than two decades of ESA radaraltimetry to develop...

  19. Equatorial MU Radar project

    Science.gov (United States)

    Yamamoto, Mamoru; Hashiguchi, H.; Tsuda, Toshitaka; Yamamoto, Masayuki

    Research Institute for Sustainable Humanosphere, Kyoto University (RISH) has been studying the atmosphere by using radars. The first big facility was the MU (Middle and Upper atmosphere) radar installed in Shiga, Japan in 1984. This is one of the most powerful and multi-functional radar, and is successful of revealing importance of atmospheric waves for the dynamical vertical coupling processes. The next big radar was the Equatorial Atmosphere Radar (EAR) installed at Kototabang, West Sumatra, Indonesia in 2001. The EAR was operated under close collaboration with LAPAN (Indonesia National Institute for Aeronautics and Space), and conducted the long-term continuous observations of the equatorial atmosphere/ionosphere for more than 10 years. The MU radar and the EAR are both utilized for inter-university and international collaborative research program for long time. National Institute for Polar Research (NIPR) joined EISCAT Scientific Association together with Nagoya University, and developed the PANSY radar at Syowa base in Antarctica as a joint project with University of Tokyo. These are the efforts of radar study of the atmosphere/ionosphere in the polar region. Now we can find that Japan holds a global network of big atmospheric/ionospheric radars. The EAR has the limitation of lower sensitivity compared with the other big radars shown above. RISH now proposes a plan of Equatorial MU Radar (EMU) that is to establish the MU-radar class radar next to the EAR. The EMU will have an active phased array antenna with the 163m diameter and 1055 cross-element Yagis. Total output power of the EMU will be more than 500kW. The EMU can detect turbulent echoes from the mesosphere (60-80km). In the ionosphere incoherent-scatter observations of plasma density, drift, and temperature would be possible. Multi-channel receivers will realize radar-imaging observations. The EMU is one of the key facilities in the project "Study of coupling processes in the solar-terrestrial system

  20. Spaceborne weather radar

    Science.gov (United States)

    Meneghini, Robert; Kozu, Toshiaki

    1990-01-01

    The present work on the development status of spaceborne weather radar systems and services discusses radar instrument complementarities, the current forms of equations for the characterization of such aspects of weather radar performance as surface and mirror-image returns, polarimetry, and Doppler considerations, and such essential factors in spaceborne weather radar design as frequency selection, scanning modes, and the application of SAR to rain detection. Attention is then given to radar signal absorption by the various atmospheric gases, rain drop size distribution and wind velocity determinations, and the characteristics of clouds, as well as the range of available estimation methods for backscattering, single- and dual-wavelength attenuation, and polarimetric and climatological characteristics.

  1. Intelligent radar data processing

    Science.gov (United States)

    Holzbaur, Ulrich D.

    The application of artificial intelligence principles to the processing of radar signals is considered theoretically. The main capabilities required are learning and adaptation in a changing environment, processing and modeling information (especially dynamics and uncertainty), and decision-making based on all available information (taking its reliability into account). For the application to combat-aircraft radar systems, the tasks include the combination of data from different types of sensors, reacting to electronic counter-countermeasures, evaluation of how much data should be acquired (energy and radiation management), control of the radar, tracking, and identification. Also discussed are related uses such as monitoring the avionics systems, supporting pilot decisions with respect to the radar system, and general applications in radar-system R&D.

  2. Principles of modern radar radar applications

    CERN Document Server

    Scheer, James A

    2013-01-01

    Principles of Modern Radar: Radar Applications is the third of the three-volume seriesof what was originally designed to be accomplished in one volume. As the final volumeof the set, it finishes the original vision of a complete yet bounded reference for radartechnology. This volume describes fifteen different system applications or class ofapplications in more detail than can be found in Volumes I or II.As different as the applications described, there is a difference in how these topicsare treated by the authors. Whereas in Volumes I and II there is strict adherence tochapter format and leve

  3. Detection and Identification of Multipath Jamming Method for Polarized Radar Seeker

    Directory of Open Access Journals (Sweden)

    Dai Huanyao

    2016-04-01

    Full Text Available Multipath jamming is an effective self-defense jamming mode used to counter airborne fire-control radar or radar seekers. Multipath jamming has a deceptive jamming effect on the range, velocity, and angle of radar, making it difficult to identify and suppress. In this study, a polarized radar seeker structure is proposed. Based on the mechanism of the multipath jamming effect on radar, orthogonal polarization signal models of jamming and direct arrived signal are established. Next, a method to detect multipath jamming based on statistical property differences of polarization phases is proposed. The physical connotation of this method is clear and easy to realize. This method can be used to determine the presence of a jamming signal and identify the signal pattern and polarization types. The feasibility of this method has been verified via a simulation experiment, thereby demonstrating that the method serves as a useful reference for effectively countering multipath jamming.

  4. State of the Art Satellite and Airborne Marine Oil Spill Remote Sensing: Application to the BP Deepwater Horizon Oil Spill

    Science.gov (United States)

    2012-01-01

    kelp beds, natural organics, pollen, plankton blooms, cloud shadows, jellyfish , algae, and guano washing off rocks have all been reported as oil by...susceptible to misidentification, as they appear similar to non-oil bio- logical slicks. In fact , the sea surface’s upper 1 mm is well described as a gelatinous...Airborne and spaceborne synthetic aperture radar Airborne SAR can map areas of interest at high spatial resolution (b10 m), with faster repeat times than

  5. Space Radar Image of Chernobyl

    Science.gov (United States)

    1994-01-01

    This is an image of the Chernobyl nuclear power plant and its surroundings, centered at 51.17 north latitude and 30.15 west longitude. The image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 16th orbit on October 1, 1994. The area is located on the northern border of the Ukraine Republic and was produced by using the L-band (horizontally transmitted and received) polarization. The differences in the intensity are due to differences in vegetation cover, with brighter areas being indicative of more vegetation. These data were acquired as part of a collaboration between NASA and the National Space Agency of Ukraine in Remote Sensing and Earth Sciences. NASA has included several sites provided by the Ukrainian space agency as targets of opportunity during the second flight of SIR-C/X-SAR. The Ukrainian space agency also plans to conduct airborne surveys of these sites during the mission. The Chernobyl nuclear power plant is located toward the top of the image near the Pripyat River. The 12-kilometer (7.44-mile)-long cooling pond is easily distinguishable as an elongated dark shape in the center near the top of the image. The reactor complex is visible as the bright area to the extreme left of the cooling pond and the city of Chernobyl is the bright area just below the cooling pond next to the Pripyat River. The large dark area in the bottom right of the image is the Kiev Reservoir just north of Kiev. Also visible is the Dnieper River, which feeds into the Kiev Reservoir from the top of the image. The Soviet government evacuated 116,000 people within 30 kilometers (18.6 miles) of the Chernobyl reactor after the explosion and fire on April 26, 1986. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight

  6. Direction-of-Arrival Estimation for Radar Ice Sounding Surface Clutter Suppression

    DEFF Research Database (Denmark)

    Nielsen, Ulrik; Dall, Jørgen

    2015-01-01

    Ice sounding radars are able to measure ice sheets by profiling their glaciological features from the surface to the bedrock. The current airborne and, in particular, future space-based systems are suffering from off-nadir surface clutter, which can mask the depth signal of interest. The most...

  7. Experimental studies on removal of airborne haloanisoles by non-thermal plasma air purifiers

    DEFF Research Database (Denmark)

    Fang, Lei; Hallam, David; Bermúdez, Raúl

    2016-01-01

    was collected by Tenax tubes and the concentration of TCA and TBA were analyzed by thermal desorption GC–MS. The results showed that the plasma air purifier was effective on removing TCA and TBA with a single pass efficiency of better than 82%. The effect was further validated in a wine cellar under a realistic......A laboratory study was conducted to test the performance of non-thermal plasma air purifiers on its removal effectiveness of two haloanisoles – 2,4,6-trichloroanisole (TCA) and 2,4,6-Tribromoanisole (TBA). TCA and TBA are the two major compounds found in wine cellars that can contaminate wine...... condition. The concentrations of TCA and TBA in the wine cellar decreased 94% and 50% respectively after running two plasma air purifiers for 5 days. The non-thermal plasma air purification technology may be used in wine cellar to remove the two airborne contaminants and prevent the wine from being...

  8. Temperate Ice Depth-Sounding Radar

    Science.gov (United States)

    Jara-Olivares, V. A.; Player, K.; Rodriguez-Morales, F.; Gogineni, P.

    2008-12-01

    . It also digitizes the output signal from the receiver and stores the data in binary format using a portable computer. The RF-section consists of a high- power transmitter and a low-noise receiver with digitally controlled variable gain. The antenna is time-shared between the transmitter and receiver by means of a transmit/receive (T/R) switch. In regards to the antenna, we have made a survey study of various electrically small antennas (ESA) to choose the most suitable radiating structure for this application. Among the different alternatives that provide a good trade-off between electrical performance and small size, we have adopted an ESA dipole configuration for airborne platforms and a half-wavelength radiator for the surface-based version. The airborne antenna solution is given after studying the geometry of the aerial vehicle and its fuselage contribution to the antenna radiation pattern. Dipoles are made of 11.6 mm diameter cables (AWG 0000) or printed patches embedded into the aircraft fuselage, wings, or both. The system is currently being integrated and tested. TIDSoR is expected to be deployed during the spring 2008 either in Alaska or Greenland for surface based observations. In this paper, we will discuss our design considerations and current progress towards the development of this radar system. [1] Center for Remote Sensing of Ice Sheets (Cresis), Sept 2008, [Online]. Available: http://www.cresis.ku.edu

  9. Novel radar techniques and applications

    CERN Document Server

    Klemm, Richard; Koch, Wolfgang

    2017-01-01

    Novel Radar Techniques and Applications presents the state-of-the-art in advanced radar, with emphasis on ongoing novel research and development and contributions from an international team of leading radar experts. This volume covers: Waveform diversity and cognitive radar and Target tracking and data fusion.

  10. Radar and electronic navigation

    CERN Document Server

    Sonnenberg, G J

    2013-01-01

    Radar and Electronic Navigation, Sixth Edition discusses radar in marine navigation, underwater navigational aids, direction finding, the Decca navigator system, and the Omega system. The book also describes the Loran system for position fixing, the navy navigation satellite system, and the global positioning system (GPS). It reviews the principles, operation, presentations, specifications, and uses of radar. It also describes GPS, a real time position-fixing system in three dimensions (longitude, latitude, altitude), plus velocity information with Universal Time Coordinated (UTC). It is accur

  11. Radar cross section

    CERN Document Server

    Knott, Gene; Tuley, Michael

    2004-01-01

    This is the second edition of the first and foremost book on this subject for self-study, training, and course work. Radar cross section (RCS) is a comparison of two radar signal strengths. One is the strength of the radar beam sweeping over a target, the other is the strength of the reflected echo sensed by the receiver. This book shows how the RCS ?gauge? can be predicted for theoretical objects and how it can be measured for real targets. Predicting RCS is not easy, even for simple objects like spheres or cylinders, but this book explains the two ?exact? forms of theory so well that even a

  12. Study of Absorption Characteristics of the Total Saponins from Radix Ilicis Pubescentis in an In Situ Single-Pass Intestinal Perfusion (SPIP Rat Model by Using Ultra Performance Liquid Chromatography (UPLC

    Directory of Open Access Journals (Sweden)

    Guojun Kuang

    2017-11-01

    Full Text Available In contrast to the extensively reported therapeutic activities, far less attention has been paid to the intestinal absorption of the total saponins from Radix Ilicis Pubescentis (in Chinese Mao-Dong-Qing, MDQ. This study aimed to investigate the intestinal absorption characteristics of ilexgenin A (C1, ilexsaponin A1 (C2, ilexsaponin B1 (C3, ilexsaponin B2 (C4, ilexsaponin B3 (DC1, and ilexoside O (DC2 when administrated with the total saponins from MDQ (MDQ-TS. An UPLC method for simultaneous determination of C1, C2, C3, C4, DC1, and DC2 in intestinal outflow perfusate was developed and validated. The absorption characteristics of MDQ-TS were investigated by evaluating the effects of intestinal segments, drug concentration, P-glycoprotein (P-gp inhibitor (verapomil, endocytosis inhibitor (amantadine and ethylene diamine tetraacetic acid (EDTA, tight junction modulator on the intestinal transportation of MDQ-TS by using a single-pass intestinal perfusion (SPIP rat model, and the influence of co-existing components on the intestinal transport of the six saponins was discussed. The results showed that effective apparent permeability (Papp of C1, C2, C3, C4, and DC2 administrated in MDQ-TS form had no segment-dependent changes at low and middle dosage levels. C1, C2, C3, D4, DC1, and DC2 administrated in MDQ-TS form all exhibited excellent transmembrane permeability with Papp > 0.12 × 10−2 cm·min−1. Meanwhile, Papp and effective absorption rate constant (Ka values for the most saponins showed concentration dependence and saturation characteristics. After combining with P-gp inhibitor of verapamil, Papp of C2, C3, and DC1 in MDQ-TS group was significantly increased up to about 2.3-fold, 1.4-fold, and 3.4-fold, respectively in comparison to that of non-verapamil added group. Verapamil was found to improve the absorption of C2, C3, and DC1, indicating the involvement of an active transport mechanism in the absorption process. Compared with the

  13. Correction of Sampling Errors in Ocean Surface Cross-Sectional Estimates from Nadir-Looking Weather Radar

    Science.gov (United States)

    Caylor, I. Jeff; Meneghini, R.; Miller, L. S.; Heymsfield, G. M.

    1997-01-01

    The return from the ocean surface has a number of uses for airborne meteorological radar. The normalized surface cross section has been used for radar system calibration, estimation of surface winds, and in algorithms for estimating the path-integrated attenuation in rain. However, meteorological radars are normally optimized for observation of distributed targets that fill the resolution volume, and so a point target such as the surface can be poorly sampled, particularly at near-nadir look angles. Sampling the nadir surface return at an insufficient rate results in a negative bias of the estimated cross section. This error is found to be as large as 4 dB using observations from a high-altitude airborne radar. An algorithm for mitigating the error is developed that is based upon the shape of the surface echo and uses the returned signal at the three range gates nearest the peak surface echo.

  14. Mammalian airborne allergens

    NARCIS (Netherlands)

    Aalberse, Rob C.

    2014-01-01

    Historically, horse dandruff was a favorite allergen source material. Today, however, allergic symptoms due to airborne mammalian allergens are mostly a result of indoor exposure, be it at home, at work or even at school. The relevance of mammalian allergens in relation to the allergenic activity of

  15. Airborne Power Supply Study,

    Science.gov (United States)

    The airborne power supply study considers the conversion of 400 cycle aircraft power to regulated DC voltages. Topics include the review of present...power conversion techniques, monolithic IC and hybrid series voltage regulators, power supply problem areas, trade-off considerations and power system

  16. Integrated Data Processing Methodology for Airborne Repeat-pass Differential SAR Interferometry

    Science.gov (United States)

    Dou, C.; Guo, H.; Han, C.; Yue, X.; Zhao, Y.

    2014-11-01

    Short temporal baseline and multiple ground deformation information can be derived from the airborne differential synthetic aperture radar Interforemetry (D-InSAR). However, affected by the turbulence of the air, the aircraft would deviate from the designed flight path with high frequent vibrations and changes both in the flight trajectory and attitude. Restricted by the accuracy of the position and orientation system (POS), these high frequent deviations can not be accurately reported, which would pose great challenges in motion compensation and interferometric process. Thus, these challenges constrain its wider applications. The objective of this paper is to investigate the accurate estimation and compensation of the residual motion errors in the airborne SAR imagery and time-varying baseline errors between the diffirent data acquirations, furthermore, to explore the integration data processing theory for the airborne D-InSAR system, and thus help to accomplish the correct derivation of the ground deformation by using the airborne D-InSAR measurements.

  17. Multispectral imaging radar

    Science.gov (United States)

    Porcello, L. J.; Rendleman, R. A.

    1972-01-01

    A side-looking radar, installed in a C-46 aircraft, was modified to provide it with an initial multispectral imaging capability. The radar is capable of radiating at either of two wavelengths, these being approximately 3 cm and 30 cm, with either horizontal or vertical polarization on each wavelength. Both the horizontally- and vertically-polarized components of the reflected signal can be observed for each wavelength/polarization transmitter configuration. At present, two-wavelength observation of a terrain region can be accomplished within the same day, but not with truly simultaneous observation on both wavelengths. A multiplex circuit to permit this simultaneous observation has been designed. A brief description of the modified radar system and its operating parameters is presented. Emphasis is then placed on initial flight test data and preliminary interpretation. Some considerations pertinent to the calibration of such radars are presented in passing.

  18. Cognitive Nonlinear Radar

    Science.gov (United States)

    2013-01-01

    filter, Bayesian decision theory, Generalized Likelihood Ratio Test (GLRT), and constant false alarm rate ( CFAR ) processing (31). Once the...Abbreviations, and Acronyms CFAR constant false alarm rate CNR cognitive nonlinear radar EM electromagnetic FCC Federal Communications Comission

  19. Telescience Data Collection Radar

    National Research Council Canada - National Science Library

    Beckner, Frederick

    2000-01-01

    Report developed under SBIR contract for topic AF99-258. The feasibility of developing a telescience data collection radar to reduce the cost of gathering aircraft signature data for noncooperative identification programs is investigated...

  20. Imaging Radar Polarimetry

    Science.gov (United States)

    vanZyl, J. J.; Zebker, H. A.

    1993-01-01

    In this paper, we review the state of the art in imaging radar polarimetry, examine current developments in sensor technology and implementation for recording polarimetric measurements, and describe techniques and areas of application for the new remote sensing data.

  1. Wind Profiling Radar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Clutter present in radar return signals as used for wind profiling is substantially removed by carrying out a Daubechies wavelet transformation on a time series of...

  2. SAR Experiments Using a Conformal Antenna Array Radar Demonstrator

    Directory of Open Access Journals (Sweden)

    Peter Knott

    2012-01-01

    Full Text Available Conformal antenna arrays have been studied for several years but only few examples of applications in modern radar or communication systems may be found up to date due to technological difficulties. The objective of the “Electronic Radar with Conformal Array Antenna” (ERAKO demonstrator system which has been developed at the Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR is to demonstrate the feasibility of an active electronically scanned antenna for conformal integration into small and medium sized airborne platforms. For practical trials the antenna has been adapted for operation with the Phased Array Multifunctional Imaging Radar (PAMIR system developed at the institute. The antenna in combination with the PAMIR front-end needed to undergo a special calibration procedure for beam forming and imaging post-processing. The present paper describes the design and development of the conformal antenna array of the demonstrator system, its connection to the PAMIR system and results of recently conducted synthetic aperture radar (SAR experiments.

  3. Phased-array radars

    Science.gov (United States)

    Brookner, E.

    1985-02-01

    The operating principles, technology, and applications of phased-array radars are reviewed and illustrated with diagrams and photographs. Consideration is given to the antenna elements, circuitry for time delays, phase shifters, pulse coding and compression, and hybrid radars combining phased arrays with lenses to alter the beam characteristics. The capabilities and typical hardware of phased arrays are shown using the US military systems COBRA DANE and PAVE PAWS as examples.

  4. Research on Airborne SAR Imaging Based on Esc Algorithm

    Science.gov (United States)

    Dong, X. T.; Yue, X. J.; Zhao, Y. H.; Han, C. M.

    2017-09-01

    Due to the ability of flexible, accurate, and fast obtaining abundant information, airborne SAR is significant in the field of Earth Observation and many other applications. Optimally the flight paths are straight lines, but in reality it is not the case since some portion of deviation from the ideal path is impossible to avoid. A small disturbance from the ideal line will have a major effect on the signal phase, dramatically deteriorating the quality of SAR images and data. Therefore, to get accurate echo information and radar images, it is essential to measure and compensate for nonlinear motion of antenna trajectories. By means of compensating each flying trajectory to its reference track, MOCO method corrects linear phase error and quadratic phase error caused by nonlinear antenna trajectories. Position and Orientation System (POS) data is applied to acquiring accuracy motion attitudes and spatial positions of antenna phase centre (APC). In this paper, extend chirp scaling algorithm (ECS) is used to deal with echo data of airborne SAR. An experiment is done using VV-Polarization raw data of C-band airborne SAR. The quality evaluations of compensated SAR images and uncompensated SAR images are done in the experiment. The former always performs better than the latter. After MOCO processing, azimuth ambiguity is declined, peak side lobe ratio (PSLR) effectively improves and the resolution of images is improved obviously. The result shows the validity and operability of the imaging process for airborne SAR.

  5. RESEARCH ON AIRBORNE SAR IMAGING BASED ON ESC ALGORITHM

    Directory of Open Access Journals (Sweden)

    X. T. Dong

    2017-09-01

    Full Text Available Due to the ability of flexible, accurate, and fast obtaining abundant information, airborne SAR is significant in the field of Earth Observation and many other applications. Optimally the flight paths are straight lines, but in reality it is not the case since some portion of deviation from the ideal path is impossible to avoid. A small disturbance from the ideal line will have a major effect on the signal phase, dramatically deteriorating the quality of SAR images and data. Therefore, to get accurate echo information and radar images, it is essential to measure and compensate for nonlinear motion of antenna trajectories. By means of compensating each flying trajectory to its reference track, MOCO method corrects linear phase error and quadratic phase error caused by nonlinear antenna trajectories. Position and Orientation System (POS data is applied to acquiring accuracy motion attitudes and spatial positions of antenna phase centre (APC. In this paper, extend chirp scaling algorithm (ECS is used to deal with echo data of airborne SAR. An experiment is done using VV-Polarization raw data of C-band airborne SAR. The quality evaluations of compensated SAR images and uncompensated SAR images are done in the experiment. The former always performs better than the latter. After MOCO processing, azimuth ambiguity is declined, peak side lobe ratio (PSLR effectively improves and the resolution of images is improved obviously. The result shows the validity and operability of the imaging process for airborne SAR.

  6. Initial assessment of an airborne Ku-band polarimetric SAR.

    Energy Technology Data Exchange (ETDEWEB)

    Raynal, Ann Marie; Doerry, Armin Walter

    2013-02-01

    Polarimetric synthetic aperture radar (SAR) has been used for a variety of dual-use research applications since the 1940s. By measuring the direction of the electric field vector from radar echoes, polarimetry may enhance an analysts understanding of scattering effects for both earth monitoring and tactical surveillance missions. Polarimetry may provide insight into surface types, materials, or orientations for natural and man-made targets. Polarimetric measurements may also be used to enhance the contrast between scattering surfaces such as man-made objects and their surroundings. This report represents an initial assessment of the utility of, and applications for, polarimetric SAR at Ku-band for airborne or unmanned aerial systems.

  7. GEOS-3 ocean current investigation using radar altimeter profiling. [Gulf Stream surface topography

    Science.gov (United States)

    Leitao, C. D.; Huang, N. E.; Parra, C. G.

    1978-01-01

    Both quasi-stationary and dynamic departures from the marine geoid were successfully detected using altitude measurements from the GEOS-3 radar altimeter. The quasi-stationary departures are observed either as elevation changes in single pass profiles across the Gulf Stream or at the crowding of contour lines at the western and northern areas of topographic maps generated using altimeter data spanning one month or longer. Dynamic features such as current meandering and spawned eddies can be monitored by comparing monthly mean maps. Comparison of altimeter inferred eddies with IR detected thermal rings indicates agreement of the two techniques. Estimates of current velocity are made using derived slope estimates in conjunction with the geostrophic equation.

  8. The airborne supercomputer

    Science.gov (United States)

    Rhea, John

    1990-05-01

    A new class of airborne supercomputer designated RH-32 is being developed at USAF research facilities, capable of performing the critical battle management function for any future antiballistic missile system that emerges from the SDI. This research is also aimed at applications for future tactical aircraft and retrofit into the supercomputers of the ATF. The computers are based on a system architecture known as multi-interlock pipe stages, developed by the DARPA. Fiber-optic data buses appear to be the only communications media that are likely to match the speed of the processors and they have the added advantage of being inherently radiation resistant. The RH-32 itself, being the product of a basic research effort, may never see operational use. However, the technologies that emerge from this major R&D program will set the standards for airborne computers well into the next century.

  9. SLAPex Freeze/Thaw 2015: The First Dedicated Soil Freeze/Thaw Airborne Campaign

    Science.gov (United States)

    Kim, Edward; Wu, Albert; DeMarco, Eugenia; Powers, Jarrett; Berg, Aaron; Rowlandson, Tracy; Freeman, Jacqueline; Gottfried, Kurt; Toose, Peter; Roy, Alexandre; hide

    2016-01-01

    Soil freezing and thawing is an important process in the terrestrial water, energy, and carbon cycles, marking the change between two very different hydraulic, thermal, and biological regimes. NASA's Soil Moisture Active/Passive (SMAP) mission includes a binary freeze/thaw data product. While there have been ground-based remote sensing field measurements observing soil freeze/thaw at the point scale, and airborne campaigns that observed some frozen soil areas (e.g., BOREAS), the recently-completed SLAPex Freeze/Thaw (F/T) campaign is the first airborne campaign dedicated solely to observing frozen/thawed soil with both passive and active microwave sensors and dedicated ground truth, in order to enable detailed process-level exploration of the remote sensing signatures and in situ soil conditions. SLAPex F/T utilized the Scanning L-band Active/Passive (SLAP) instrument, an airborne simulator of SMAP developed at NASA's Goddard Space Flight Center, and was conducted near Winnipeg, Manitoba, Canada, in October/November, 2015. Future soil moisture missions are also expected to include soil freeze/thaw products, and the loss of the radar on SMAP means that airborne radar-radiometer observations like those that SLAP provides are unique assets for freeze/thaw algorithm development. This paper will present an overview of SLAPex F/T, including descriptions of the site, airborne and ground-based remote sensing, ground truth, as well as preliminary results.

  10. Airborne wireless communication systems, airborne communication methods, and communication methods

    Science.gov (United States)

    Deaton, Juan D [Menan, ID; Schmitt, Michael J [Idaho Falls, ID; Jones, Warren F [Idaho Falls, ID

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  11. CAMEX-4 TOGA RADAR V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The TOGA radar dataset consists of browse and radar data collected from the TOGA radar during the CAMEX-4 experiment. TOGA is a C-band linear polarized doppler radar...

  12. Raw Data-Based Motion Compensation for High-Resolution Sliding Spotlight Synthetic Aperture Radar.

    Science.gov (United States)

    Li, Ning; Niu, Shilin; Guo, Zhengwei; Liu, Yabo; Chen, Jiaqi

    2018-03-12

    For accurate motion compensation (MOCO) in airborne synthetic aperture radar (SAR) imaging, a high-precision inertial navigation system (INS) is required. However, an INS is not always precise enough or is sometimes not even included in airborne SAR systems. In this paper, a new, raw, data-based range-invariant motion compensation approach, which can effectively extract the displacements in the line-of-sight (LOS) direction, is proposed for high-resolution sliding spotlight SAR mode. In this approach, the sub-aperture radial accelerations of the airborne platform are estimated via a well-developed weighted total least square (WTLS) method considering the time-varying beam direction. The effectiveness of the proposed approach is validated by two airborne sliding spotlight C band SAR raw datasets containing different types of terrain, with a high spatial resolution of about 0.15 m in azimuth.

  13. Three-dimensional surface velocities of Storstrømmen glacier, Greenland, derived from radar interferometry and ice-sounding radar measurements

    DEFF Research Database (Denmark)

    Reeh, Niels; Mohr, Johan Jacob; Madsen, Søren Nørvang

    2003-01-01

    in substantial errors (up to 20%) also on the south-north component of horizontal velocities derived by satellite synthetic aperture radar interferometry (InSAR) measurements. In many glacier environments, the steady-state vertical velocity component required to balance the annual ablation rate is 5-10 m a(-1...... tracks with airborne ice-sounding radar measurement of ice thickness. The results are compared to InSAR velocities previously derived by using the SPF assumption, and to velocities obtained by in situ global positioning system (GPS) measurements. The velocities derived by using the MC principle...

  14. On the potential of long wavelength imaging radars for mapping vegetation types and woody biomass in tropical rain forests

    Science.gov (United States)

    Rignot, Eric J.; Zimmermann, Reiner; Oren, Ram

    1995-01-01

    In the tropical rain forests of Manu, in Peru, where forest biomass ranges from 4 kg/sq m in young forest succession up to 100 kg/sq m in old, undisturbed floodplain stands, the P-band polarimetric radar data gathered in June of 1993 by the AIRSAR (Airborne Synthetic Aperture Radar) instrument separate most major vegetation formations and also perform better than expected in estimating woody biomass. The worldwide need for large scale, updated biomass estimates, achieved with a uniformly applied method, as well as reliable maps of land cover, justifies a more in-depth exploration of long wavelength imaging radar applications for tropical forests inventories.

  15. Synthetic aperture radar processing with tiered subapertures

    Science.gov (United States)

    Doerry, A. W.

    1994-06-01

    Synthetic aperture radar (SAR) is used to form images that are maps of radar reflectivity of some scene of interest, from range soundings taken over some spatial aperture. Additionally, the range soundings are typically synthesized from a sampled frequency aperture. Efficient processing of the collected data necessitates using efficient digital signal processing techniques such as vector multiplies and fast implementations of the discrete fourier transform. Inherent in image formation algorithms that use these is a trade-off between the size of the scene that can be acceptably imaged and the resolution with which the image can be made. These limits arise from migration errors and spatially variant phase errors, and different algorithms mitigate these to varying degrees. Two fairly successful algorithms for airborne SARs are polar format processing and overlapped subaperture (OSA) processing. This report introduces and summarizes the analysis of generalized tiered subaperture (TSA) techniques that are a superset of both polar format processing and OSA processing. It is shown how tiers of subapertures in both azimuth and range can effectively mitigate both migration errors and spatially variant phase errors to allow virtually arbitrary scene sizes, even in a dynamic motion environment.

  16. Assessing a multilayered dynamic firn-compaction model for Greenland with ASIRAS radar measurements

    DEFF Research Database (Denmark)

    Simonsen, Sebastian Bjerregaard; Stenseng, Lars; Adalgeirsdottir, G.

    2013-01-01

    A method to assess firn compaction using data collected with the Airborne SAR (Synthetic Aperture Radar)/Interferometric Radar Altimeter System (ASIRAS) is developed. For this, we develop a dynamical firn-compaction model that includes meltwater retention. Based on the ASIRAS data, which show...... internal layers as annual horizons in the uppermost firn, the method relies on inferring the age/ depth (internal layers) information from the radar data using a Monte Carlo inversion technique to tune in parallel both the firn model and the atmospheric forcing parameters (temperature and accumulation...... climate model using only age/depth information in the inversion step. The layers traced by the ASIRAS data are modeled with a root-mean-square error of 9 cm, which is within the estimated error of the layer tracing. This gives us confidence in applying observed annual layering from firn radar data...

  17. Radar for tracer particles

    Science.gov (United States)

    Ott, Felix; Herminghaus, Stephan; Huang, Kai

    2017-05-01

    We introduce a radar system capable of tracking a 5 mm spherical target continuously in three dimensions. The 10 GHz (X-band) radar system has a transmission power of 1 W and operates in the near field of the horn antennae. By comparing the phase shift of the electromagnetic wave traveling through the free space with an IQ-mixer, we obtain the relative movement of the target with respect to the antennae. From the azimuth and inclination angles of the receiving antennae obtained in the calibration, we reconstruct the target trajectory in a three-dimensional Cartesian system. Finally, we test the tracking algorithm with target moving in circular as well as in pendulum motions and discuss the capability of the radar system.

  18. Radar Scan Methods in Modern Multifunctional Radars

    Directory of Open Access Journals (Sweden)

    V. N. Skosyrev

    2014-01-01

    Full Text Available Considered urgent task of organizing the review space in modern multifunctional radar systems shall review the space in a wide range of elevation angles from minus 5 to 60-80 degrees and 360 degrees azimuth. MfRLS this type should provide an overview of the zone for a limited time (2-3 sec, detecting a wide range of subtle high and low-flying targets. The latter circumstance requires the organization to select targets against the background of reflections from the underlying surface and local objects (MP. When providing an overview of the space taken into account the need to increase not only the noise immunity, and survivability.Two variants of the review of space in the elevation plane in the solid-state AESA radar. In the first case the overview space narrow beam by one beam. In the second - the transfer of DNA is formed, covering the whole sector of responsibility in elevation and at the reception beam is formed in spetsvychislitele (CB as a result of the signal processing of digitized after emitters antenna web. The estimations of the parameters specific to the multifunction radar SAM air and missile defense. It is shown that in a number of practically important cases, preference should be given clearly one of the methods described review of space.The functional scheme with AESA radar for both variants of the review. Necessary to analyze their differences. Contains the problem of increasing the cost of MfRLS with digital beamforming DNA with increasing bandwidth probing signal being processed.Noted drawbacks of MfRLS with digital beamforming beam. Including: reduced accuracy of the coordinates at low elevation angles, the complexity of the organization of thermal regime of the solid element base using quasi-continuous signal with a low duty cycle. Shows their fundamentally unavoidable in the steppe and desert areas with uneven terrain (Kazakhstan, China, the Middle East.It is shown that for MfRLS working in strong clutter, more preferably

  19. Comet Radar Explorer

    Science.gov (United States)

    Asphaug, Erik; CORE Science Team

    2010-10-01

    Comet Radar Explorer (CORE) is a low cost mission that uses sounding radar to image the 3D internal structure of the nucleus of Jupiter-family comet (JFC) Tempel 2. Believed to originate in the Kuiper Belt, JFCs are among the most primitive bodies in the inner solar system. CORE operates a 5 and 15 MHz Radar Reflection Imager from close orbit about the nucleus of Tempel 2, obtaining a dense network of echoes that are used to map its interior dielectric contrasts to high resolution (ង m) and resolve the dielectric constants to  m throughout the 16x8x9 km nucleus. The resulting clear images of internal structure and composition reveal how the nucleus was formed and how it has evolved. Radiometric tracking of the spacecraft orbit results in an interior mass distribution that constrains the radar-based models of interior composition. High-resolution visible and infrared color images provide the surface and exterior boundary conditions for interior models and hypotheses. They present the geology and morphology of the nucleus surface at meter-scales, and also the time-evolving activity, structure and composition of the inner coma. By making deep connections from interior to exterior, the data CORE provides will answer fundamental questions about the earliest stages of planetesimal evolution and planet formation, and lay the foundation for a comet nucleus sample return mission. CORE is led by Prof. Erik Asphaug of the University of California, Santa Cruz and is managed by JPL. It benefits from key scientific and payload contributions by ASI and CNES. The international science team has been assembled on the basis of their key involvement in past and ongoing missions to comets, and in Mars radar missions, and for their expertise in radar data analysis.

  20. Ground penetrating radar

    CERN Document Server

    Daniels, David J

    2004-01-01

    Ground-penetrating radar has come to public attention in recent criminal investigations, but has actually been a developing and maturing remote sensing field for some time. In the light of recent expansion of the technique to a wide range of applications, the need for an up-to-date reference has become pressing. This fully revised and expanded edition of the best-selling Surface-Penetrating Radar (IEE, 1996) presents, for the non-specialist user or engineer, all the key elements of this technique, which span several disciplines including electromagnetics, geophysics and signal processing. The

  1. Spaceborne Imaging Radar Symposium

    Science.gov (United States)

    Elachi, C.

    1983-01-01

    An overview of the present state of the art in the different scientific and technological fields related to spaceborne imaging radars was presented. The data acquired with the SEASAT SAR (1978) and Shuttle Imaging Radar, SIR-A (1981) clearly demonstrated the important emphasis in the 80's is going to be on in-depth research investigations conducted with the more flexible and sophisticated SIR series instruments and on long term monitoring of geophysical phenomena conducted from free-flying platforms such as ERS-1 and RADARSAT.

  2. Systems and Methods for Radar Data Communication

    Science.gov (United States)

    Bunch, Brian (Inventor); Szeto, Roland (Inventor); Miller, Brad (Inventor)

    2013-01-01

    A radar information processing system is operable to process high bandwidth radar information received from a radar system into low bandwidth radar information that may be communicated to a low bandwidth connection coupled to an electronic flight bag (EFB). An exemplary embodiment receives radar information from a radar system, the radar information communicated from the radar system at a first bandwidth; processes the received radar information into processed radar information, the processed radar information configured for communication over a connection operable at a second bandwidth, the second bandwidth lower than the first bandwidth; and communicates the radar information from a radar system, the radar information communicated from the radar system at a first bandwidth.

  3. Status Of Imaging Radar Polarimetry

    Science.gov (United States)

    Van Zyl, Jakob J.; Zebker, Howard A.

    1991-01-01

    Report pulls together information on imaging radar polarimetry from a variety of sources. Topics include theory, equipment, and experimental data. Reviews state of the art, examines current applicable developments in radar equipment, describes recording and processing of radar polarimetric measurements, and discusses interpretation and application of resulting polarimetric images.

  4. Alternative analysis of airborne laser data collected within conventional multi-parameter airborne geophysical surveys

    Science.gov (United States)

    Ahl, Andreas; Supper, R.; Motschka, K.; Schattauer, I.

    2010-05-01

    For the interpretation of airborne gamma-ray spectrometry as well as airborne electromagnetics it is of great importance to determine the distance between the geophysical sensor and the ground surface. Since radar altimeters do not penetrate vegetation, laser altimeters became popular in airborne geophysics over the past years. Currently the airborne geophysical platform of the Geological Survey of Austria (GBA) is equipped with a Riegl LD90-3800VHS-FLP high resolution laser altimeter, measuring the distances according to the first and the last reflected pulse. The goal of the presented study was to explore the possibilities of deriving additional information about the survey area from the laser data and to determine the accuracy of such results. On one hand the difference between the arrival time of the first and the last reflected pulse can be used to determine the height of the vegetation. This parameter is for example important for the correction of damping effects on airborne gamma-ray measurements caused by vegetation. Moreover especially for groundwater studies at catchment scale, this parameter can also be applied to support the spatial assessment of evapotranspiration. In combination with the altitude above geoid, determined by a GPS receiver, a rough digital elevation model of the survey area can be derived from the laser altimetry. Based on a data set from a survey area in the northern part of Austria, close to the border with the Czech Republic, the reliability of such a digital elevation model and the calculated vegetation height was tested. In this study a mean deviation of -1.4m, with a standard deviation of ±3.4m, between the digital elevation model from Upper Austria (25m spatial resolution) and the determined elevation model was determined. We also found an obvious correlation between the calculated vegetation heights greater 15m and the mapped forest published by the ‘Department of Forest Inventory' of the ‘Federal Forest Office' of Austria

  5. Airborne Laser Polarization Sensor

    Science.gov (United States)

    Kalshoven, James, Jr.; Dabney, Philip

    1991-01-01

    Instrument measures polarization characteristics of Earth at three wavelengths. Airborne Laser Polarization Sensor (ALPS) measures optical polarization characteristics of land surface. Designed to be flown at altitudes of approximately 300 m to minimize any polarizing or depolarizing effects of intervening atmosphere and to look along nadir to minimize any effects depending on look angle. Data from measurements used in conjunction with data from ground surveys and aircraft-mounted video recorders to refine mathematical models used in interpretation of higher-altitude polarimetric measurements of reflected sunlight.

  6. Compressive CFAR Radar Processing

    NARCIS (Netherlands)

    Anitori, L.; Rossum, W.L. van; Otten, M.P.G.; Maleki, A.; Baraniuk, R.

    2013-01-01

    In this paper we investigate the performance of a combined Compressive Sensing (CS) Constant False Alarm Rate (CFAR) radar processor under different interference scenarios using both the Cell Averaging (CA) and Order Statistic (OS) CFAR detectors. Using the properties of the Complex Approximate

  7. Compressive CFAR radar detection

    NARCIS (Netherlands)

    Anitori, L.; Otten, M.P.G.; Rossum, W.L. van; Maleki, A.; Baraniuk, R.

    2012-01-01

    In this paper we develop the first Compressive Sensing (CS) adaptive radar detector. We propose three novel architectures and demonstrate how a classical Constant False Alarm Rate (CFAR) detector can be combined with ℓ1-norm minimization. Using asymptotic arguments and the Complex Approximate

  8. Metamaterial for Radar Frequencies

    Science.gov (United States)

    2012-09-01

    capacitive coupling with adjacent patches, as shown in Figure 3. The via provides inductance to ground. Figure 3. (a) Planar LH distributed periodic...After [20]). The capacitance in the structure balances out the inductance present when the cylinder is placed in a square array. The metallic... RADAR FREQUENCIES by Szu Hau Tan September 2012 Thesis Advisor: David C. Jenn Second Reader: James Calusdian

  9. Accuracy of three-dimensional glacier surface volocities derived from radar interfeometry and ice-soundin radar measurements

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Reeh, Niels; Madsen, Søren Nørvang

    2003-01-01

    sources considered include phase noise, atmospheric distortions, baseline calibration errors, a dry snow layer, and the stationary-flow assumption used in differential interferometry. The additional error sources in the analysis of FD errors are noise, bias and unknown variations of the ice thickness...... dataset with ascending- and descending-orbit data covering Storstrommen glacier, northeast Greenland, are assessed. The FD error assessment is carried out on airborne 60 MHz ice-sounding radar data from the same area. A simple model of an interferometric radar system is developed and analyzed. The error......, and approximations of the ice-flow model. The example glacier is now building up following a surge. The analysis shows that in the case study presented the errors are small enough to justify the use of both the estimated surface-parallel flow term of the vertical velocity and the estimated FD term of the vertical...

  10. Airborne monitoring system

    International Nuclear Information System (INIS)

    Kadmon, Y.; Gabovitch, A.; Tirosh, D.; Ellenbogen, M.; Mazor, T.; Barak, D.

    1997-01-01

    A complete system for tracking, mapping, and performing a composition analysis of a radioactive plume and contaminated area was developed at the NRCN. The system includes two major units : An airborne unit for monitoring and a ground station for analyzing. The airborne unit is mounted on a helicopter and includes file following. Four radiation sensor, two 2'' x 2'' Nal (Tl) sensors horizontally separated by lead shield for mapping and spectroscopy, and two Geiger Mueller (GM) tubes as part of the safety system. A multichannel analyzer card is used for spectroscopy. A navigation system, based on GPS and a barometric altitude meter, is used to locate the plume or ground data. The telemetry system, consisting of a transceiver and a modem, transfers all the data in real time to the ground station. An industrial PC (Field Works) runs a dedicated C++ Windows application to manage the acquired data. An independent microprocessor based backup system includes a recorder, display, and key pad. The ground station is based on an industrial PC, a telemetry system, a color printer and a modem to communicate with automatic meteorology stations in the relevant area. A special software controls the ground station. Measurement results are analyzed in the ground station to estimate plume parameters including motion, location, size, velocity, and perform risk assessment. (authors)

  11. Airborne Downward Looking Sparse Linear Array 3-D SAR Heterogeneous Parallel Simulation

    OpenAIRE

    Yirong Wu; Weixian Tan; Xueming Peng; Wen Hong; Yanping Wang

    2013-01-01

    The airborne downward looking sparse linear array three dimensional synthetic aperture radar (DLSLA 3-D SAR) operates nadir observation with the along-track synthetic aperture formulated by platform movement and the cross-track synthetic aperture formulated by physical sparse linear array. Considering the lack of DLSLA 3-D SAR data in the current preliminary study stage, it is very important and essential to develop DLSLA 3-D SAR simulation (echo generation simulation and image reconstruction...

  12. Dual-polarization, wideband microstrip antenna array for airborne C-band SAR

    DEFF Research Database (Denmark)

    Granholm, Johan; Skou, Niels

    2000-01-01

    The paper describes the development of a C-band, dual linear polarization wideband antenna array, for use in the next-generation of the Danish airborne polarimetric synthetic aperture radar (SAR) system. The array is made of probe-fed, stacked microstrip patches. The design and performance...... of the basic stacked patch element, operating from 4.9 GHz to 5.7 GHz, and a 2×2 element test array of these, are described....

  13. Modeling for Airborne Contamination

    Energy Technology Data Exchange (ETDEWEB)

    F.R. Faillace; Y. Yuan

    2000-08-31

    The objective of Modeling for Airborne Contamination (referred to from now on as ''this report'') is to provide a documented methodology, along with supporting information, for estimating the release, transport, and assessment of dose to workers from airborne radioactive contaminants within the Monitored Geologic Repository (MGR) subsurface during the pre-closure period. Specifically, this report provides engineers and scientists with methodologies for estimating how concentrations of contaminants might be distributed in the air and on the drift surfaces if released from waste packages inside the repository. This report also provides dose conversion factors for inhalation, air submersion, and ground exposure pathways used to derive doses to potentially exposed subsurface workers. The scope of this report is limited to radiological contaminants (particulate, volatile and gaseous) resulting from waste package leaks (if any) and surface contamination and their transport processes. Neutron activation of air, dust in the air and the rock walls of the drift during the preclosure time is not considered within the scope of this report. Any neutrons causing such activation are not themselves considered to be ''contaminants'' released from the waste package. This report: (1) Documents mathematical models and model parameters for evaluating airborne contaminant transport within the MGR subsurface; and (2) Provides tables of dose conversion factors for inhalation, air submersion, and ground exposure pathways for important radionuclides. The dose conversion factors for air submersion and ground exposure pathways are further limited to drift diameters of 7.62 m and 5.5 m, corresponding to the main and emplacement drifts, respectively. If the final repository design significantly deviates from these drift dimensions, the results in this report may require revision. The dose conversion factors are further derived by using concrete of

  14. Airborne campaigns for CryoSat pre-launch calibration and validation

    DEFF Research Database (Denmark)

    Hvidegaard, Sine Munk; Forsberg, René; Skourup, Henriette

    2010-01-01

    From 2003 to 2008 DTU Space together with ESA and several international partners carried out airborne and ground field campaigns in preparation for CryoSat validation; called CryoVEx: CryoSat Validation Experiments covering the main ice caps in Greenland, Canada and Svalbard and sea ice in the Ar......From 2003 to 2008 DTU Space together with ESA and several international partners carried out airborne and ground field campaigns in preparation for CryoSat validation; called CryoVEx: CryoSat Validation Experiments covering the main ice caps in Greenland, Canada and Svalbard and sea ice...... in the Arctic Ocean. The main goal of the airborne surveys was to acquire coincident scanning laser and CryoSat type radar elevation measurements of the surface; either sea ice or land ice. Selected lines have been surveyed along with detailed mapping of validation sites coordinated with insitu field work...

  15. Airborne Cloud Computing Environment (ACCE)

    Science.gov (United States)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  16. Applications of airborne remote sensing in atmospheric sciences research

    Science.gov (United States)

    Serafin, Robert J.; Szejwach, Gerard; Phillips, Byron B.

    1986-02-01

    The potential for airborne remote sensing for atmospheric sciences research and in particular for research over the oceans is explored. Passive and active techniques from the microwave to visible bands are discussed. It is concluded that technology has progressed sufficiently in several areas that the time is right to develop and operate new remote sensing instruments for use by the community of atmospheric scientists as general purpose tools. There exists promising candidates of both active and passive types in the electromagnetic spectrum from microwave to visible wavelengths. Short-range, rapid response measurements of temperature, water vapor, winds, and turbulence are all possible using infrared radiometry and Doppler lidar velocimetry. Pulsed Doppler radar for measurements of the three-dimensional structures of winds and hydrometeors in precipitating systems has been clearly established. Pulsed Doppler lidar is less well developed in comparison to Doppler radar but promises to be an important complement to radar observations by providing wind measurements in the nonprecipitating and cloud free atmosphere. It is possible now to equip a single aircraft or several aircraft with a variety of remote sensing instruments that together form a powerful, highly mobile atmospheric observing system for measurement of fundamental meteorological variables in three dimensions on a variety of spatial scales. This capability is of major importance to the study of mesoscale systems, particularly to those over the ocean, where the deployment of surface based sensors is exceedingly difficult, if not impossible, and costly.

  17. CLPX Airborne: Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of apparent surface reflectance, subpixel snow-covered area and grain size inferred from data acquired by the Airborne Visible/Infrared...

  18. Compressive CFAR Radar Processing

    OpenAIRE

    Anitori, Laura; Baraniuk, Richard; Maleki, Arian; Otten, Matern; van Rossum, Wim

    2013-01-01

    In this paper we investigate the performance of a combined Compressive Sensing (CS) Constant False Alarm Rate (CFAR) radar processor under different interference scenarios using both the Cell Averaging (CA) and Order Statistic (OS) CFAR detectors. Using the properties of the Complex Approximate Message Passing (CAMP) algorithm, we demonstrate that the behavior of the CFAR processor is independent of the combination with the non-linear recovery and therefore its performance can be predicted us...

  19. Comet radar explorer

    Science.gov (United States)

    Farnham, Tony; Asphaug, Erik; Barucci, Antonella; Belton, Mike; Bockelee-Morvan, Dominique; Brownlee, Donald; Capria, Maria Teresa; Carter, Lynn; Chesley, Steve; Farnham, Tony; Gaskell, Robert; Gim, Young; Heggy, Essam; Herique, Alain; Klaasen, Ken; Kofman, Wlodek; Kreslavsky, Misha; Lisse, Casey; Orosei, Roberto; Plaut, Jeff; Scheeres, Dan

    The Comet Radar Explorer (CORE) is designed to perform a comprehensive and detailed exploration of the interior, surface, and inner coma structures of a scientifically impor-tant Jupiter family comet. These structures will be used to investigate the origins of cometary nuclei, their physical and geological evolution, and the mechanisms driving their spectacular activity. CORE is a high heritage spacecraft, injected by solar electric propulsion into orbit around a comet. It is capable of coherent deep radar imaging at decameter wavelengths, high resolution stereo color imaging, and near-IR imaging spectroscopy. Its primary objective is to obtain a high-resolution map of the interior structure of a comet nucleus at a resolution of ¿100 elements across the diameter. This structure shall be related to the surface geology and morphology, and to the structural details of the coma proximal to the nucleus. This is an ideal complement to the science from recent comet missions, providing insight into how comets work. Knowing the structure of the interior of a comet-what's inside-and how cometary activity works, is required before we can understand the requirements for a cryogenic sample return mission. But more than that, CORE is fundamental to understanding the origin of comets and their evolution in time. The mission is made feasible at low cost by the use of now-standard MARSIS-SHARAD reflec-tion radar imaging hardware and data processing, together with proven flight heritage of solar electric propulsion. Radar flight heritage has been demonstrated by the MARSIS radar on Mars Express (Picardi et al., Science 2005; Plaut et al., Science 2007), the SHARAD radar onboard the Mars Reconnaissance Orbiter (Seu et al., JGR 2007), and the LRS radar onboard Kaguya (Ono et al, EPS 2007). These instruments have discovered detailed subsurface structure to depths of several kilometers in a variety of terrains on Mars and the Moon. A reflection radar deployed in orbit about a comet

  20. Radar gun hazards

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-20

    Radar guns - hand-held units used by the law to nail speeders - have been in use since the early '60s. Now they've been accused of causing cancer. Police officers in several states have so far filed eight suits against the manufacturer, claiming that they have contracted rare forms of cancer, such as of the eyelid and the testicle, from frequent proximity to the devices. Spurred by concerns expressed by police groups, researchers at the Rochester Institute of Technology are conducting what they believe to be the first research of its kind in the nation. Last month psychologist John Violanti, an expert in policy psychology and health, sent out a one-page survey to 6,000 active and retired police officers in New York State, asking them about their health and their use of radar guns. Violanti says melanoma, leukemia, and lymph node cancer may be linked to these as well as other electromagnetic devices. The Food and Drug Administration earlier this year issued a warning about radar guns, telling users not to operate them closer than 6 inches from the body. But this may not be a sufficient safeguard since the instruments can give off crisscrossing wave emissions within a police vehicle. The survey will be used to help determine if it would be safer to mount the guns, which are currently either hand-held or mounted on dashboards, outside troopers' cars.

  1. Synthetic aperture radar images of ocean waves, theories of imaging physics and experimental tests

    Science.gov (United States)

    Vesecky, J. F.; Durden, S. L.; Smith, M. P.; Napolitano, D. A.

    1984-01-01

    The physical mechanism for the synthetic Aperture Radar (SAR) imaging of ocean waves is investigated through the use of analytical models. The models are tested by comparison with data sets from the SEASAT mission and airborne SAR's. Dominant ocean wavelengths from SAR estimates are biased towards longer wavelengths. The quasispecular scattering mechanism agrees with experimental data. The Doppler shift for ship wakes is that of the mean sea surface.

  2. Detection of Weather Radar Clutter

    DEFF Research Database (Denmark)

    Bøvith, Thomas

    2008-01-01

    Weather radars provide valuable information on precipitation in the atmosphere but due to the way radars work, not only precipitation is observed by the weather radar. Weather radar clutter, echoes from non-precipitating targets, occur frequently in the data, resulting in lowered data quality....... Especially in the application of weather radar data in quantitative precipitation estimation and forecasting a high data quality is important. Clutter detection is one of the key components in achieving this goal. This thesis presents three methods for detection of clutter. The methods use supervised...... and precipitating and non-precipitating clouds. Another method uses the difference in the motion field of clutter and precipitation measured between two radar images. Furthermore, the direction of the wind field extracted from a weather model is used. The third method uses information about the refractive index...

  3. A review of array radars

    Science.gov (United States)

    Brookner, E.

    1981-10-01

    Achievements in the area of array radars are illustrated by such activities as the operational deployment of the large high-power, high-range-resolution Cobra Dane; the operational deployment of two all-solid-state high-power, large UHF Pave Paws radars; and the development of the SAM multifunction Patriot radar. This paper reviews the following topics: array radars steered in azimuth and elevation by phase shifting (phase-phase steered arrays); arrays steered + or - 60 deg, limited scan arrays, hemispherical coverage, and omnidirectional coverage arrays; array radars steering electronically in only one dimension, either by frequency or by phase steering; and array radar antennas which use no electronic scanning but instead use array antennas for achieving low antenna sidelobes.

  4. Radar Image, Hokkaido, Japan

    Science.gov (United States)

    2000-01-01

    The southeast part of the island of Hokkaido, Japan, is an area dominated by volcanoes and volcanic caldera. The active Usu Volcano is at the lower right edge of the circular Lake Toya-Ko and near the center of the image. The prominent cone above and to the left of the lake is Yotei Volcano with its summit crater. The city of Sapporo lies at the base of the mountains at the top of the image and the town of Yoichi -- the hometown of SRTM astronaut Mamoru Mohri -- is at the upper left edge. The bay of Uchiura-Wan takes up the lower center of the image. In this image, color represents elevation, from blue at the lowest elevations to white at the highest. The radar image has been overlaid to provide more details of the terrain. Due to a processing problem, an island in the center of this crater lake is missing and will be properly placed when further SRTM swaths are processed. The horizontal banding in this image is a processing artifact that will be removed when the navigation information collected by SRTM is fully calibrated. This image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC. Size: 100 by 150 kilometers (62

  5. Radar studies of bird migration

    Science.gov (United States)

    Williams, T. C.; Williams, J. M.

    1974-01-01

    Observations of bird migration with NASA radars were made at Wallops Island, Va. Simultaneous observations were made at a number of radar sites in the North Atlantic Ocean in an effort to discover what happened to those birds that were observed leaving the coast of North America headed toward Bermuda, the Caribbean and South America. Transatlantic migration, utilizing observations from a large number of radars is discussed. Detailed studies of bird movements at Wallops Island are presented.

  6. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter

    2013-01-01

    Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud

  7. Remote monitoring by impulse radar

    OpenAIRE

    Taghimohammadi, Ensieh

    2015-01-01

    This master thesis is centered on development of signal processing algorithms for an Ultra - Wideband (UWB) Radar system. The goal of signal processing algorithms is to identify components of radar received signal. Moreover, implementing algorithms for checking both static and moving objects, estimating the distance from an object, and tracking the moving object. In this thesis we use a new type of Novelda UWB radar for indoor applications. It consists of two compact directional UWB antennas ...

  8. Photonic based marine radar demonstrator

    OpenAIRE

    Laghezza, Francesco; Scotti, Filippo; Ghelfi, Paolo; Bogoni, Antonella; Banchi, Luca; Malaspina, Vincenzo; Serafino, Giovanni

    2015-01-01

    This paper presents the results obtained during the field trial experiments of the first photonic-based radar system demonstrator, in a real maritime environment. The developed demonstrator exploits photonic technologies for both the generation and the detection of radar RF signals, allowing increased performance even in term of system flexibility. The photonic radar performance have been compared with a state of the art commercial system for maritime applications provide...

  9. Integrating a Microwave Radiometer into Radar Hardware for Simultaneous Data Collection Between the Instruments

    Science.gov (United States)

    McLinden, Matthew; Piepmeier, Jeffrey

    2013-01-01

    The conventional method for integrating a radiometer into radar hardware is to share the RF front end between the instruments, and to have separate IF receivers that take data at separate times. Alternatively, the radar and radiometer could share the antenna through the use of a diplexer, but have completely independent receivers. This novel method shares the radar's RF electronics and digital receiver with the radiometer, while allowing for simultaneous operation of the radar and radiometer. Radars and radiometers, while often having near-identical RF receivers, generally have substantially different IF and baseband receivers. Operation of the two instruments simultaneously is difficult, since airborne radars will pulse at a rate of hundreds of microseconds. Radiometer integration time is typically 10s or 100s of milliseconds. The bandwidth of radar may be 1 to 25 MHz, while a radiometer will have an RF bandwidth of up to a GHz. As such, the conventional method of integrating radar and radiometer hardware is to share the highfrequency RF receiver, but to have separate IF subsystems and digitizers. To avoid corruption of the radiometer data, the radar is turned off during the radiometer dwell time. This method utilizes a modern radar digital receiver to allow simultaneous operation of a radiometer and radar with a shared RF front end and digital receiver. The radiometer signal is coupled out after the first down-conversion stage. From there, the radar transmit frequencies are heavily filtered, and the bands outside the transmit filter are amplified and passed to a detector diode. This diode produces a DC output proportional to the input power. For a conventional radiometer, this level would be digitized. By taking this DC output and mixing it with a system oscillator at 10 MHz, the signal can instead be digitized by a second channel on the radar digital receiver (which typically do not accept DC inputs), and can be down-converted to a DC level again digitally. This

  10. Airborne Particulate Threat Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  11. Monitoring Groundwater Contaminant Plumes Using Airborne Geophysical Data

    Science.gov (United States)

    Robinson, Martin; Oftendinger, Ulrich; Ruffell, Alastair; Cowan, Marie; Cassidy, Rachel; Comte, Jean-Christophe; Wilson, Christopher; Desissa, Mohammednur

    2013-04-01

    Under the European Union Water Framework Directive, Member States are required to assess water quality across both surface water and groundwater bodies. Subsurface pollution plumes, originating from a variety of sources, pose a significant direct risk to water quality. The monitoring and characterisation of groundwater contaminant plumes is generally invasive, time consuming and expensive. In particular, adequately capturing the contaminant plume with monitoring installations, when the extent of the feature is unknown and the presence of contamination is only evident from indirect observations, can be prohibitively expensive. This research aims to identify the extent and nature of subsurface contaminant plumes using airborne geophysical survey data. This data was collected across parts of the island of Ireland within the scope of the original Tellus and subsequent Tellus Border projects. The rapid assessment of the airborne electro-magnetic (AEM) data allowed the identification of several sites containing possible contaminant plumes. These AEM anomalies were assessed through the analysis of existing site data and field site inspections, with areas of interest being examined for metallic structures that could affect the AEM data. Electrical resistivity tomography (ERT), ground penetrating radar (GPR) and ground-based electro-magnetic (EM) surveys were performed to ground-truth existing airborne data and to confirm the extent and nature of the affected area identified using the airborne data. Groundwater and surface water quality were assessed using existing field site information. Initial results collected from a landfill site underlain by basalt have indicated that the AEM data, coupled with ERT and GPR, can successfully be used to locate possible plumes and help delineate their extent. The analysis of a range of case study sites exhibiting different geological and environmental settings will allow for the development of a consistent methodology for examining the

  12. The NRL 2011 Airborne Sea-Ice Thickness Campaign

    Science.gov (United States)

    Brozena, J. M.; Gardner, J. M.; Liang, R.; Ball, D.; Richter-Menge, J.

    2011-12-01

    In March of 2011, the US Naval Research Laboratory (NRL) performed a study focused on the estimation of sea-ice thickness from airborne radar, laser and photogrammetric sensors. The study was funded by ONR to take advantage of the Navy's ICEX2011 ice-camp /submarine exercise, and to serve as a lead-in year for NRL's five year basic research program on the measurement and modeling of sea-ice scheduled to take place from 2012-2017. Researchers from the Army Cold Regions Research and Engineering Laboratory (CRREL) and NRL worked with the Navy Arctic Submarine Lab (ASL) to emplace a 9 km-long ground-truth line near the ice-camp (see Richter-Menge et al., this session) along which ice and snow thickness were directly measured. Additionally, US Navy submarines collected ice draft measurements under the groundtruth line. Repeat passes directly over the ground-truth line were flown and a grid surrounding the line was also flown to collect altimeter, LiDAR and Photogrammetry data. Five CRYOSAT-2 satellite tracks were underflown, as well, coincident with satellite passage. Estimates of sea ice thickness are calculated assuming local hydrostatic balance, and require the densities of water, ice and snow, snow depth, and freeboard (defined as the elevation of sea ice, plus accumulated snow, above local sea level). Snow thickness is estimated from the difference between LiDAR and radar altimeter profiles, the latter of which is assumed to penetrate any snow cover. The concepts we used to estimate ice thickness are similar to those employed in NASA ICEBRIDGE sea-ice thickness estimation. Airborne sensors used for our experiment were a Reigl Q-560 scanning topographic LiDAR, a pulse-limited (2 nS), 10 GHz radar altimeter and an Applanix DSS-439 digital photogrammetric camera (for lead identification). Flights were conducted on a Twin Otter aircraft from Pt. Barrow, AK, and averaged ~ 5 hours in duration. It is challenging to directly compare results from the swath LiDAR with the

  13. Broadview Radar Altimetry Toolbox

    Science.gov (United States)

    Garcia-Mondejar, Albert; Escolà, Roger; Moyano, Gorka; Roca, Mònica; Terra-Homem, Miguel; Friaças, Ana; Martinho, Fernando; Schrama, Ernst; Naeije, Marc; Ambrózio, Américo; Restano, Marco; Benveniste, Jérôme

    2017-04-01

    The universal altimetry toolbox, BRAT (Broadview Radar Altimetry Toolbox) which can read all previous and current altimetry missions' data, incorporates now the capability to read the upcoming Sentinel3 L1 and L2 products. ESA endeavoured to develop and supply this capability to support the users of the future Sentinel3 SAR Altimetry Mission. BRAT is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2005 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Etudes Spatiales), and it is freely available at http://earth.esa.int/brat. The tools enable users to interact with the most common altimetry data formats. The BratGUI is the frontend for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with MATLAB/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the dataformatting hassle. BRAT can be used simply to visualise data quickly, or to translate the data into other formats such as NetCDF, ASCII text files, KML (Google Earth) and raster images (JPEG, PNG, etc.). Several kinds of computations can be done within BRAT involving combinations of data fields that the user can save for posterior reuse or using the already embedded formulas that include the standard oceanographic altimetry formulas. The Radar Altimeter Tutorial, that contains a strong introduction to altimetry, shows its applications in different fields such as Oceanography, Cryosphere, Geodesy, Hydrology among others. Included are also "use cases", with step-by-step examples, on how to use the toolbox in the different contexts. The Sentinel3 SAR Altimetry Toolbox shall benefit from the current BRAT version. While developing the toolbox we will revamp of the Graphical User Interface and provide, among other enhancements, support for reading the upcoming S3 datasets and specific

  14. Karoo airborne geophysical survey

    International Nuclear Information System (INIS)

    Cole, D.J.; Stettler, E.H.

    1984-01-01

    Thirty four uranium anomalies were selected for ground follow-up from the analogue spectrometer records of Block 4 of the Karoo Airborne Geophysical Survey. The anomalies were plotted on 1:50 000 scale topographic maps and to 1:250 000 scale maps which are included in this report. The anomaly co-ordinates are tabulated together with the farms on which they occur. Results of the ground follow-up of the aerial anomalies are described. Twenty two anomalies are related to uranium mineralisation of which seventeen occur over baked mudstone adjacent to a dolerite intrusion. Five are located over fluvial channel sandstone of the Beaufort Group and subsurface mineralised sandstone may be present. The other twelve anomalies are spurious. Of the anomalies located over baked mudstone, fifteen emanate from ferruginous mudstone of the Whitehill Formation west of longitude 21 degrees 15 minutes. One of the two remaining anomalies over baked mudstone occurs over the Prince Albert Formation and the other anomaly is over baked mudstone and calcareous nodules of the Beaufort Group. The general low uranium values (less than 355 ppm eU3O8) render the occurrences uneconomic

  15. Radar foundations for imaging and advanced concepts

    CERN Document Server

    Sullivan, Roger

    2004-01-01

    Through courses internally taught at IDA, Dr. Roger Sullivan has devised a book that brings readers fully up to speed on the most essential quantitave aspects of general radar in order to introduce study of the most exciting and relevant applications to radar imaging and advanced concepts: Synthetic Aperture Radar (4 chapters), Space-time Adaptive Processing, moving target indication (MTI), bistatic radar, low probability of intercept (LPI) radar, weather radar, and ground-penetrating radar. Whether you're a radar novice or experienced professional, this is an essential refer

  16. Three-dimensional radar imaging of buildings based on computer models

    Science.gov (United States)

    Dogaru, Traian; Liao, DaHan; Le, Calvin

    2013-05-01

    This paper describes the study of a through-the-wall radar system for three-dimensional (3-D) building imaging, based on computer simulations. Two possible configurations are considered, corresponding to an airborne spotlight and a ground-based strip-map geometry. The paper details all the steps involved in this analysis: creating the computational meshes, calculating the radar signals scattered by the target, forming the radar images, and processing the images for visualization and interpretation. Particular attention is given to the scattering phenomenology and its dependence on the system geometry. The images are created via the backprojection algorithm and further processed using a constant falsealarm rate (CFAR) detector. We discuss methods of 3-D image visualization and interpretation of the results.

  17. Experimenting level set-based snakes for contour segmentation in radar imagery

    Science.gov (United States)

    Lesage, Frederic; Gagnon, Langis

    2000-06-01

    The aim of this work is to explore the applicability of a relatively new snakes formulation called geometric snakes, for robust contour segmentation in radar images. In particular, we are looking for clear experimental indicators regarding the usefulness of such tool for radar imagery. In this work, we mainly concentrate on various contour segmentation problems in airborne and spaceborne SAR images (swatch and inverse mode). As an example, we study the segmentation of coastlines and ship targets. We observe that the dynamical and adaptive properties of geometric contours is better suited to determine the morphological properties of the contours. For high-resolution radar images of ships, the underlying motivation is that these properties could help providing robust extraction of ship structures for automatic ship classification.

  18. Comparison of Shuttle Imaging Radar-B ocean wave image spectra with linear model predictions based on aircraft measurements

    Science.gov (United States)

    Monaldo, Frank M.; Lyzenga, David R.

    1988-01-01

    During October 1984, coincident Shuttle Imaging Radar-B synthetic aperture radar (SAR) imagery and wave measurements from airborne instrumentation were acquired. The two-dimensional wave spectrum was measured by both a radar ocean-wave spectrometer and a surface-contour radar aboard the aircraft. In this paper, two-dimensional SAR image intensity variance spectra are compared with these independent measures of ocean wave spectra to verify previously proposed models of the relationship between such SAR image spectra and ocean wave spectra. The results illustrate both the functional relationship between SAR image spectra and ocean wave spectra and the limitations imposed on the imaging of short-wavelength, azimuth-traveling waves.

  19. Measuring human behaviour with radar

    NARCIS (Netherlands)

    Dorp, Ph. van

    2001-01-01

    The paper presents human motion measurements with the experimental Frequency Modulated Continuous Wave(FMCW) radar at TNO-FEL. The aim of these measurements is to analyse the Doppler velocity spectrum of humans. These analysis give insight in measuring human behaviour with radar for security

  20. Performance indicators modern surveillance radar

    NARCIS (Netherlands)

    Nooij, P.N.C.; Theil, A.

    2014-01-01

    Blake chart computations are widely employed to rank detection coverage capabilities of competitive search radar systems. Developed for comparable 2D radar systems with a mechanically rotating reflector antenna, it was not necessary to regard update rate and plot quality in Blake's chart. To

  1. Behavior Subtraction applied to radar

    NARCIS (Netherlands)

    Rossum, W.L. van; Caro Cuenca, M.

    2014-01-01

    An algorithm developed for optical images has been applied to radar data. The algorithm, Behavior Subtraction, is based on capturing the dynamics of a scene and detecting anomalous behavior. The radar application is the detection of small surface targets at sea. The sea surface yields the expected

  2. Millimeter radar improves target identification

    Science.gov (United States)

    McAulay, Alastair D.

    2011-06-01

    Recently developed millimeter wave radar has advantages for target identification over conventional microwave radar which typically use lower frequencies. We describe the pertinent features involved in the construction of the new millimeter wave radar, the pseudo-optical cavity source and the quasi-optical duplexer. The long wavelength relative to light allows the radar beam to penetrate through most weather because the wavelength is larger than the particle size for dust, drizzle rain, fog. Further the mm wave beam passes through an atmospheric transmission window that provides a dip in attenuation. The higher frequency than conventional radar provides higher Doppler frequencies, for example, than X-band radar. We show by simulation that small characteristic vibrations and slow turns of an aircraft become visible so that the Doppler signature improves identification. The higher frequency also reduces beam width, which increases transmit and receive antenna gains. For the same power the transmit beam extends to farther range and the increase in receive antenna gain increases signal to noise ratio for improved detection and identification. The narrower beam can also reduce clutter and reject other noise more readily. We show by simulation that the radar can be used at lower elevations over the sea than conventional radar.

  3. Radar Image with Color as Height, Ancharn Kuy, Cambodia

    Science.gov (United States)

    2002-01-01

    This image of Ancharn Kuy, Cambodia, was taken by NASA's Airborne Synthetic Aperture Radar (AIRSAR). The image depicts an area northwest of Angkor Wat. The radar has highlighted a number of circular village mounds in this region, many of which have a circular pattern of rice fields surrounding the slightly elevated site. Most of them have evidence of what seems to be pre-Angkor occupation, such as stone tools and potsherds. Most of them also have a group of five spirit posts, a pattern not found in other parts of Cambodia. The shape of the mound, the location in the midst of a ring of rice fields, the stone tools and the current practice of spirit veneration have revealed themselves through a unique 'marriage' of radar imaging, archaeological investigation, and anthropology.Ancharn Kuy is a small village adjacent to the road, with just this combination of features. The region gets slowly higher in elevation, something seen in the shift of color from yellow to blue as you move to the top of the image.The small dark rectangles are typical of the smaller water control devices employed in this area. While many of these in the center of Angkor are linked to temples of the 9th to 14th Century A.D., we cannot be sure of the construction date of these small village tanks. They may pre-date the temple complex, or they may have just been dug ten years ago!The image dimensions are approximately 4.75 by 4.3 kilometers (3 by 2.7 miles) with a pixel spacing of 5 meters (16.4 feet). North is at top. Image brightness is from the C-band (5.6 centimeters, or 2.2 inches) wavelength radar backscatter, which is a measure of how much energy the surface reflects back toward the radar. Color is used to represent elevation contours. One cycle of color; that is going from blue to red to yellow to green and back to blue again; corresponds to 10 meters (32.8 feet) of elevation change.AIRSAR flies aboard a NASA DC-8 based at NASA's Dryden Flight Research Center, Edwards, Calif. In the TOPSAR

  4. 100 years of radar

    CERN Document Server

    Galati, Gaspare

    2016-01-01

    This book offers fascinating insights into the key technical and scientific developments in the history of radar, from the first patent, taken out by Hülsmeyer in 1904, through to the present day. Landmark events are highlighted and fascinating insights provided into the exceptional people who made possible the progress in the field, including the scientists and technologists who worked independently and under strict secrecy in various countries across the world in the 1930s and the big businessmen who played an important role after World War II. The book encourages multiple levels of reading. The author is a leading radar researcher who is ideally placed to offer a technical/scientific perspective as well as a historical one. He has taken care to structure and write the book in such a way as to appeal to both non-specialists and experts. The book is not sponsored by any company or body, either formally or informally, and is therefore entirely unbiased. The text is enriched by approximately three hundred ima...

  5. Producing Science-Ready Radar Datasets for the Retrieval of Forest Structure Parameters from Backscatter: Correcting for Terrain Topography and Changes in Vegetation Reflectivity

    Science.gov (United States)

    Simard, M.; Riel, Bryan; Hensley, S.; Lavalle, Marco

    2011-01-01

    Radar backscatter data contain both geometric and radiometric distortions due to underlying topography and the radar viewing geometry. Our objective is to develop a radiometric correction algorithm specific to the UAVSAR system configuration that would improve retrieval of forest structure parameters. UAVSAR is an airborne Lband radar capable of repeat?pass interferometry producing images with a spatial resolution of 5m. It is characterized by an electronically steerable antenna to compensate for aircraft attitude. Thus, the computation of viewing angles (i.e. look, incidence and projection) must include aircraft attitude angles (i.e. yaw, pitch and roll) in addition to the antenna steering angle. In this presentation, we address two components of radiometric correction: area projection and vegetation reflectivity. The first correction is applied by normalization of the radar backscatter by the local ground area illuminated by the radar beam. The second is a correction due to changes in vegetation reflectivity with viewing geometry.

  6. The use of radar for bathymetry assessment

    NARCIS (Netherlands)

    Aardoom, J.H.; Greidanus, H.S.F.

    1998-01-01

    The bottom topography in shallow seas can be observed by air- and spaceborne imaging radar. Bathymetric information derived from radar data is limited in accuracy, but radar has a good spatial coverage. The accuracy can be increased by assimilating the radar imagery into existing or insitu gathered

  7. Status and Prospects of Radar Polarimetry Techniques

    OpenAIRE

    Wang Xuesong

    2016-01-01

    Radar polarimetry is an applied fundamental science field that is focused on understanding interaction processes between radar waves and targets and disclosing their mechanisms. Radar polarimetry has significant application prospects in the fields of microwave remote sensing, earth observation, meteorological measurement, battlefield reconnaissance, anti-interference, target recognition, and so on. This study briefly reviews the development history of radar polarization theory and technology....

  8. Radar signal analysis and processing using Matlab

    CERN Document Server

    Mahafza, Bassem R

    2008-01-01

    Offering radar-related software for the analysis and design of radar waveform and signal processing, this book provides comprehensive coverage of radar signals and signal processing techniques and algorithms. It contains numerous graphical plots, common radar-related functions, table format outputs, and end-of-chapter problems. The complete set of MATLAB[registered] functions and routines are available for download online.

  9. Digital Beamforming Synthetic Aperture Radar (DBSAR): Performance Analysis During the Eco-3D 2011 and Summer 2012 Flight Campaigns

    Science.gov (United States)

    Rincon, Rafael F.; Fatoyinbo, Temilola; Carter, Lynn; Ranson, K. Jon; Vega, Manuel; Osmanoglu, Batuhan; Lee, SeungKuk; Sun, Guoqing

    2014-01-01

    The Digital Beamforming Synthetic Aperture radar (DBSAR) is a state-of-the-art airborne radar developed at NASA/Goddard for the implementation, and testing of digital beamforming techniques applicable to Earth and planetary sciences. The DBSAR measurements have been employed to study: The estimation of vegetation biomass and structure - critical parameters in the study of the carbon cycle; The measurement of geological features - to explore its applicability to planetary science by measuring planetary analogue targets. The instrument flew two test campaigns over the East coast of the United States in 2011, and 2012. During the campaigns the instrument operated in full polarimetric mode collecting data from vegetation and topography features.

  10. Microwave remote sensing: Active and passive. Volume 2 - Radar remote sensing and surface scattering and emission theory

    Science.gov (United States)

    Ulaby, F. T.; Moore, R. K.; Fung, A. K.

    1982-01-01

    The fundamental principles of radar backscattering measurements are presented, including measurement statistics, Doppler and pulse discrimination techniques, and associated ambiguity functions. The operation of real and synthetic aperture sidelooking airborne radar systems is described, along with the internal and external calibration techniques employed in scattering measurements. Attention is given to the physical mechanisms responsible for the scattering emission behavior of homogeneous and inhomogeneous media, through a discussion of surface roughness, dielectric properties and inhomogeneity, and penetration depth. Simple semiempirical models are presented. Theoretical models involving greater mathematical sophistication are also given for extended ocean and bare soil surfaces, and the more general case of a vegetation canopy over a rough surface.

  11. Under the Radar

    CERN Document Server

    Goss, WM

    2010-01-01

    This is the biography of Ruby Payne-Scott (1912 to 1981). As the first female radio astronomer (and one of the first people in the world to consider radio astronomy), she made classic contributions to solar radio physics. She also played a major role in the design of the Australian government's Council for Scientific and Industrial Research radars, which were in turn of vital importance in the Southwest Pacific Theatre in World War II and were used by Australian, US and New Zealand personnel. From a sociological perspective, her career also offers many examples of the perils of being a female academic in the first half of the 20th century. Written in an engaging style and complemented by many historical photographs this book gives a fascinating insight into the beginning of radio astronomy and the role of a pioneering woman in astronomy.

  12. Signal processing in noise waveform radar

    CERN Document Server

    Kulpa, Krzysztof

    2013-01-01

    This book is devoted to the emerging technology of noise waveform radar and its signal processing aspects. It is a new kind of radar, which use noise-like waveform to illuminate the target. The book includes an introduction to basic radar theory, starting from classical pulse radar, signal compression, and wave radar. The book then discusses the properties, difficulties and potential of noise radar systems, primarily for low-power and short-range civil applications. The contribution of modern signal processing techniques to making noise radar practical are emphasized, and application examples

  13. Single-pass multi-view volume rendering

    OpenAIRE

    Hübner, T; Pajarola, R

    2007-01-01

    In this paper, we introduce a new direct volume rendering (DVR) algorithm for multi-view auto-stereoscopic displays. Common multi-view methods perform multi-pass rendering (one pass for each view) and subsequent image compositing and masking for generating multiple views. The rendering time increases therefore linearly with the number of views, but sufficient frame-rates are achieved by sub-resolution rendering, at the expense of degraded image quality. To overcome these disadvantages for DVR...

  14. Single pass kernel k-means clustering method

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Department of Computer Science and Engineering, Srinivasa Ramanujan Institute of Technology, Anantapur 515701, India; Department of Computer Science and Engineering, Rajeev Gandhi Memorial College of Engineering and Technology, Nandyal 518501, India; Department of Computer Science and ...

  15. Single pass kernel k-means clustering method

    Indian Academy of Sciences (India)

    In unsupervised classification, kernel -means clustering method has been shown to perform better than conventional -means clustering method in ... 518501, India; Department of Computer Science and Engineering, Jawaharlal Nehru Technological University, Anantapur College of Engineering, Anantapur 515002, India ...

  16. Single pass kernel k-means clustering method

    Indian Academy of Sciences (India)

    easily implemented and is suitable for large data sets, like those in data mining appli- cations. Experimental results show that, with a small loss of quality, the proposed method can significantly reduce the time taken than the conventional kernel k-means cluster- ing method. The proposed method is also compared with other ...

  17. Single pass kernel k-means clustering method

    Indian Academy of Sciences (India)

    This approach has reduced both time complexity and memory requirements. However, the clustering result of this method will be very much deviated form that obtained using the conventional kernel k-means method. This is because of the fact that pseudo cluster centers in the input space may not represent the exact cluster ...

  18. Single Pass Collider Memo: Gradient Perturbations of the SLC arc

    Energy Technology Data Exchange (ETDEWEB)

    Weng, W.T.; Sands, M.; /SLAC

    2016-12-16

    As the beam passes through the arcs, the gradient it encounters at each magnet differs from the design value. This deviation may be in part random and in part systematic. In this note we make estimates of the effects to be expected from both kinds of errors.

  19. Active Sensing Air Pressure Using Differential Absorption Barometric Radar

    Science.gov (United States)

    Lin, B.

    2016-12-01

    Tropical storms and other severe weathers cause huge life losses and property damages and have major impacts on public safety and national security. Their observations and predictions need to be significantly improved. This effort tries to develop a feasible active microwave approach that measures surface air pressure, especially over open seas, from space using a Differential-absorption BArometric Radar (DiBAR) operating at 50-55 GHz O2 absorption band in order to constrain assimilated dynamic fields of numerical weather Prediction (NWP) models close to actual conditions. Air pressure is the most important variable that drives atmospheric dynamics, and currently can only be measured by limited in-situ observations over oceans. Even over land there is no uniform coverage of surface air pressure measurements. Analyses show that with the proposed space radar the errors in instantaneous (averaged) pressure estimates can be as low as 4mb ( 1mb) under all weather conditions. NASA Langley research team has made substantial progresses in advancing the DiBAR concept. The feasibility assessment clearly shows the potential of surface barometry using existing radar technologies. The team has also developed a DiBAR system design, fabricated a Prototype-DiBAR (P-DiBAR) for proof-of-concept, conducted laboratory, ground and airborne P-DiBAR tests. The flight test results are consistent with the instrumentation goals. The precision and accuracy of radar surface pressure measurements are within the range of the theoretical analysis of the DiBAR concept. Observational system simulation experiments for space DiBAR performance based on the existing DiBAR technology and capability show substantial improvements in tropical storm predictions, not only for the hurricane track and position but also for the hurricane intensity. DiBAR measurements will provide us an unprecedented level of the prediction and knowledge on global extreme weather and climate conditions.

  20. Incoherent Scatter Radar User Workshop

    Science.gov (United States)

    Richmond, A. D.

    1984-04-01

    The incoherent scatter radar technique has developed over the years into one of the most powerful tools for investigating physical processes in the upper atmosphere. The National Science Foundation (NSF) now supports a chain of four incoherent scatter facilities at Sondrestromfjord (Greenland), Millstone Hill (Massachusetts), Arecibo (Puerto Rico), and Jicamarca (PERU). Six European nations support the EISCAT facility in northern Scandinavia, and France also has a radar at St. Santin. Recently, the organizations reponsible for each of the six radars agreed to participate in a centralized data base being established at the National Center for Atmospheric Research (NCAR) to make their data more readily accessible to the scientific community at large.

  1. Introduction to radar target recognition

    CERN Document Server

    Tait, P

    2006-01-01

    This new text provides an overview of the radar target recognition process and covers the key techniques being developed for operational systems. It is based on the fundamental scientific principles of high resolution radar, and explains how the techniques can be used in real systems, taking into account the characteristics of practical radar system designs and component limitations. It also addresses operational aspects, such as how high resolution modes would fit in with other functions such as detection and tracking. Mathematics is kept to a minimum and the complex techniques and issues are

  2. Environment-Adaptive Radar Techniques.

    Science.gov (United States)

    1981-02-01

    as the mathematics and computer pro - grams are concer.ned we can now develop the design by considering one antenna searching a 2w/3 azimuth sector...Griffis Air Force am*, Now York 13441 8140-6 102 15~ VhAS xpg IAS bed XOWANO 00 the .WAC aU* Affsftz OffU. (PA) an4 to *elesseb). to 00e matsa b"oals uoaf...no@sesp Uast fdSRIIIV by bloti nobi Radar Automated Radar Design Adaptive Radar Environmental Sensor Blind Speed Avoidance S. AVISTRACT ’CauM....o

  3. Gyroklystron-Powered WARLOC Radar

    Science.gov (United States)

    Danly, B. G.; Cheung, W. J.; Gregers-Hansen, V.; Linde, G.; Ngo, M.

    2003-12-01

    A high-power, coherent, W-band (94 GHz) millimeter-wave radar has been developed at the Naval Research Laboratory. This radar, named WARLOC, employs a 100 kW peak power, 10 kW average power gyro-klystron as the final power amplifier, an overmoded transmission line system, and a quasi-optical duplexer, together with a high gain antenna, four-channel receiver, and state-of-the-art signal processing. The gyro-amplifiers and the implementation in the WARLOC radar will be described.

  4. Material integrity verification radar

    International Nuclear Information System (INIS)

    Koppenjan, S.K.

    1999-01-01

    The International Atomic Energy Agency (IAEA) has the need for verification of 'as-built' spent fuel-dry storage containers and other concrete structures. The IAEA has tasked the Special Technologies Laboratory (STL) to fabricate, test, and deploy a stepped-frequency Material Integrity Verification Radar (MIVR) system to nondestructively verify the internal construction of these containers. The MIVR system is based on previously deployed high-frequency, ground penetrating radar (GPR) systems that have been developed by STL for the U.S. Department of Energy (DOE). Whereas GPR technology utilizes microwave radio frequency energy to create subsurface images, MTVR is a variation for which the medium is concrete instead of soil. The purpose is to nondestructively verify the placement of concrete-reinforcing materials, pipes, inner liners, and other attributes of the internal construction. The MIVR system underwent an initial field test on CANDU reactor spent fuel storage canisters at Atomic Energy of Canada Limited (AECL), Chalk River Laboratories, Ontario, Canada, in October 1995. A second field test at the Embalse Nuclear Power Plant in Embalse, Argentina, was completed in May 1996. The DOE GPR also was demonstrated at the site. Data collection and analysis were performed for the Argentine National Board of Nuclear Regulation (ENREN). IAEA and the Brazilian-Argentine Agency for the Control and Accounting of Nuclear Material (ABACC) personnel were present as observers during the test. Reinforcing materials were evident in the color, two-dimensional images produced by the MIVR system. A continuous pattern of reinforcing bars was evident and accurate estimates on the spacing, depth, and size were made. The potential uses for safeguard applications were jointly discussed. The MIVR system, as successfully demonstrated in the two field tests, can be used as a design verification tool for IAEA safeguards. A deployment of MIVR for Design Information Questionnaire (DIQ

  5. An airborne interferometric SAR system for high-performance 3D mapping

    Science.gov (United States)

    Lange, Martin; Gill, Paul

    2009-05-01

    With a vertical accuracy better than 1 m and collection rates up to 7000 km2/h, airborne interferometric synthetic aperture radars (InSAR) bridge the gap between space borne radar sensors and airborne optical LIDARs. This paper presents the latest generation of X-band InSAR sensors, developed by Intermap TechnologiesTM, which are operated on our four aircrafts. The sensors collect data for the NEXTMap(R) program - a digital elevation model (DEM) with 1 m vertical accuracy for the contiguous U.S., Hawaii, and most of Western Europe. For a successful operation, challenges like reduction of multipath reflections, very high interferometric phase stability, and a precise system calibration had to be mastered. Recent advances in sensor design, comprehensive system automation and diagnostics have increased the sensor reliability to a level where no radar operator is required onboard. Advanced flight planning significantly improved aircraft utilization and acquisition throughput, while reducing operational costs. Highly efficient data acquisition with straight flight lines up to 1200 km is daily routine meanwhile. The collected data pass though our automated processing cluster and finally are edited to our terrain model products. Extensive and rigorous quality control at every step of the workflow are key to maintain stable vertical accuracies of 1 m and horizontal accuracies of 2 m for our 3D maps. The combination of technical and operational advances presented in this paper enabled Intermap to survey two continents, producing 11 million km2 of uniform and accurate 3D terrain data.

  6. Development of the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP)

    Science.gov (United States)

    Heymsfield, G. M.; Carswell, J. R.; Li, L.; Schaubert, D.; Heymsfield, J. C.

    2006-12-01

    A dual-wavelength (Ku and Ka band) High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) is under development for measuring tropospheric winds within precipitation regions and ocean surface winds in rain-free to light rain regions. This instrument is being designed for operation on high-altitude manned aircraft and the Global Hawk UAV. Proposed lidar-based systems provide measurements in cloud-free regions globally. Since many of the weather systems are in disturbed regions that contain precipitation and clouds, microwave based techniques are more suitable in these regions. Airborne radars at NASA and elsewhere have shown the ability to measure winds in precipitation and clouds. These radars have not generally been suitable for deriving the full horizontal wind from above cloud systems (high-altitude or space) that would require conical scan. HIWRAP is conical scan radar that uses new technologies that utilize solid state rather than tube based transmitters. The presentation will discuss the motivation for the instrument, key system level technologies, status, and planned flight testing of the prototype sensor on the high-altitude WB-57 aircraft to demonstrate the system level performance of the instrument.

  7. Bistatic radar system analysis and software development

    OpenAIRE

    Teo, Ching Leong

    2003-01-01

    Approved for public release, distribution is unlimited Bistatic radar has some properties that are distinctly different from monostatic radar. Recently bistatic radar has received attention for its potential to detect stealth targets due to enhanced target forward scatter. Furthermore, the feasibility of hitchhiker radar has been demonstrated, which allows passive radar receivers to detect and track targets. This thesis developed a software simulation package in Matlab that provides a conv...

  8. Radar Image with Color as Height, Sman Teng, Temple, Cambodia

    Science.gov (United States)

    2002-01-01

    This image of Cambodia's Angkor region, taken by NASA's Airborne Synthetic Aperture Radar (AIRSAR), reveals a temple (upper-right) not depicted on early 19th Century French archeological survey maps and American topographic maps. The temple, known as 'Sman Teng,' was known to the local Khmer people, but had remained unknown to historians due to the remoteness of its location. The temple is thought to date to the 11th Century: the heyday of Angkor. It is an important indicator of the strategic and natural resource contributions of the area northwest of the capitol, to the urban center of Angkor. Sman Teng, the name designating one of the many types of rice enjoyed by the Khmer, was 'discovered' by a scientist at NASA's Jet Propulsion Laboratory, Pasadena, Calif., working in collaboration with an archaeological expert on the Angkor region. Analysis of this remote area was a true collaboration of archaeology and technology. Locating the temple of Sman Teng required the skills of scientists trained to spot the types of topographic anomalies that only radar can reveal.This image, with a pixel spacing of 5 meters (16.4 feet), depicts an area of approximately 5 by 4.7 kilometers (3.1 by 2.9 miles). North is at top. Image brightness is from the P-band (68 centimeters, or 26.8 inches) wavelength radar backscatter, a measure of how much energy the surface reflects back toward the radar. Color is used to represent elevation contours. One cycle of color represents 25 meters (82 feet) of elevation change, so going from blue to red to yellow to green and back to blue again corresponds to 25 meters (82 feet) of elevation change.AIRSAR flies aboard a NASA DC-8 based at NASA's Dryden Flight Research Center, Edwards, Calif. In the TOPSAR mode, AIRSAR collects radar interferometry data from two spatially separated antennas (2.6 meters, or 8.5 feet). Information from the two antennas is used to form radar backscatter imagery and to generate highly accurate elevation data. Built

  9. Radar Image with Color as Height, Nokor Pheas Trapeng, Cambodia

    Science.gov (United States)

    2002-01-01

    Nokor Pheas Trapeng is the name of the large black rectangular feature in the center-bottom of this image, acquired by NASA's Airborne Synthetic Aperture Radar (AIRSAR). Its Khmer name translates as 'Tank of the City of Refuge'. The immense tank is a typical structure built by the Khmer for water storage and control, but its size is unusually large. This suggests, as does 'city' in its name, that in ancient times this area was far more prosperous than today.A visit to this remote, inaccessible site was made in December 1998. The huge water tank was hardly visible. From the radar data we knew that the tank stretched some 500 meters (1,640 feet) from east to west. However, between all the plants growing on the surface of the water and the trees and other vegetation in the area, the water tank blended with the surrounding topography. Among the vegetation, on the northeast of the tank, were remains of an ancient temple and a spirit shrine. So although far from the temples of Angkor, to the southeast, the ancient water structure is still venerated by the local people.The image covers an area approximately 9.5 by 8.7 kilometers (5.9 by 5.4 miles) with a pixel spacing of 5 meters (16.4 feet). North is at top. Image brightness is from the C-band (5.6 centimeters, or 2.2 inches) wavelength radar backscatter, which is a measure of how much energy the surface reflects back toward the radar. Color is used to represent elevation contours. One cycle of color represents 20 meters (65.6 feet) of elevation change; that is, going from blue to red to yellow to green and back to blue again corresponds to 20 meters (65.6 feet) of elevation change.AIRSAR flies aboard a NASA DC-8 based at NASA's Dryden Flight Research Center, Edwards, Calif. In the TOPSAR mode, AIRSAR collects radar interferometry data from two spatially separated antennas (2.6 meters, or 8.5 feet). Information from the two antennas is used to form radar backscatter imagery and to generate highly accurate elevation data

  10. GLORIA: an airborne imaging FTS

    Science.gov (United States)

    Sha, Mahesh K.

    2017-11-01

    The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) is an imaging Fourier Transform Spectrometer (FTS) which is capable of operating on various airborne platforms. The main scientific focus is on the dynamics and chemistry of the Upper Troposphere and Lower Stratosphere (UTLS) region.

  11. Airborne gamma-ray spectrometry

    DEFF Research Database (Denmark)

    Hovgaard, Jens

    A new method - Noise Adjusted Singular Value Decomposition, NASVD - for processing gamma-ray spectra has been developed as part of a Ph.D. project. By using this technique one is able to decompose a large set of data - for example from airborne gamma-ray surveys - into a few spectral components. ...

  12. Air Defense Radar Operations Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Facility consists of laboratories, experimental test equipment including state-of-theart test bed radar, and test ranges. The facilities are used to design, develop,...

  13. MIMO Radar - Diversity Means Superiority

    National Research Council Canada - National Science Library

    Li, Jian

    2007-01-01

    We consider a multiple-input multiple-output (MIMO) radar system where both the transmitter and receiver have multiple well-separated subarrays with each subarray containing closely-spaced antennas...

  14. Radar Methods in Urban Environments

    Science.gov (United States)

    2016-10-26

    Jointly optimal design for MIMO radar frequency-hopping waveforms using game theory,” IEEE Trans. on Aerospace and Electronic Systems, Vol. 52...appear in IEEE Trans. on Signal Processing. J9. J. Li and A. Nehorai, “Distributed particle filtering via optimal fusion of Gaussian mixtures ,” in...scatterers," IEEE Trans. Antennas Propag., Vol. 64, pp. 988-997, Mar. 2016. 28. K. Han and A. Nehorai, "Jointly optimal design for MIMO radar frequency

  15. Radar interferometry persistent scatterer technique

    CERN Document Server

    Kampes, Bert M

    2014-01-01

    This volume is devoted to the Persistent Scatterer Technique, the latest development in radar interferometric data processing. It is the only book on Permanent Scatterer (PS) technique of radar interferometry, and it details a newly developed stochastic model and estimator algorithm to cope with possible problems for the application of the PS technique. The STUN (spatio-temporal unwrapping network) algorithm, developed to cope with these issues in a robust way, is presented and applied to two test sites.

  16. Characterizing vertical heterogeneity of permafrost soils in support of ABoVE radar retrievals

    Science.gov (United States)

    Tabatabaeenejad, A.; Chen, R. H.; Silva, A.; Schaefer, K. M.; Moghaddam, M.

    2017-12-01

    Permafrost-affected soils, including the top active layer and underlying permafrost, have unique seasonal variations in terms of soil temperature, soil moisture, and freeze/thaw-state profiles. The presence of a perennially frozen and impermeable substrate maintains the required temperature gradient for the descending thawing front, and causes meltwater to accumulate and form the saturated zone in the active layer. Radar backscattering measurements are sensitive to dielectric properties of subsurface soils, which are strongly correlated with unfrozen water content and soil texture/composition. To enable accurate radar retrievals, we need to properly characterize soil profile heterogeneity, which can be modeled with layered soil or depth-dependent functions. To this end, we first cross compare the measured radar backscatter and model-predicted radar backscatter using in-situ dielectric profile measurements as well as mathematical or hydrologic-based profile functions. Since radar signal's backscatter has limited penetration, to fully capture the true heterogeneity profile, we determine the optimal profile function by minimizing the error between predicted and measured radar backscatter signals as well as between in-situ and fitted profiles. The in-situ soil profile data (temperature, dielectric constant, unfrozen water content, organic/mineral soils) are collected from the Soil Moisture Sensing Controller And oPtimal Estimator (SoilSCAPE) sensor networks and from the Arctic-Boreal Vulnerability Experiment (ABoVE) field campaign in August 2017 (concurrent with the ABoVE August flights over Alaska North Slope) while the radar data are acquired by NASA's P-band AirMOSS and L-band UAVSAR as part of the ABoVE airborne campaign. The retrieval results using our new heterogeneity model will be compared with the results from retrievals that model soil as a layered medium. This analysis can advance the accuracy of retrieval of active layer properties using low-frequency SAR

  17. Research and technology developments in aeronautics, atmospheric and oceanographic measurements, radar applications, and remote sensing of insects using radar

    Science.gov (United States)

    Oberholtzer, J. D. (Editor)

    1980-01-01

    Highlights of the year's activities and accomplishments are reported in the areas of aircraft safety, scientific ballooning, mid-air payload retrieval, and the design of a microwave power reception and conversion system for on use on a high altitude powered platform. The development and application of an agro-environmental system to provide crop management advisory information to Virginia farmers, and the radar tracking of insects are described. Aircraft systems, developed for measuring atmospheric ozone and nitric acid were used to sample emissions from Mount St. Helens. Investigations of the reliability and precision of the U.S. standard meteorological rocketsonde, applications of the microwave altimeter and airborne lidar system in oceanography, and the development of a multibeam altimeter concept are also summarized.

  18. Regional-scale airborne electromagnetic surveying of the Yucatan karst aquifer (Mexico): geological and hydrogeological interpretation

    DEFF Research Database (Denmark)

    Gondwe, Bibi Ruth Neuman; Ottowitz, David; Supper, Robert

    2012-01-01

    Geometry and connectivity of high-permeability zones determine groundwater flow in karst aquifers. Efficient management of karst aquifers requires regional mapping of preferential flow paths. Remote-sensing technology provides tools to efficiently map the subsurface at such scales. Multi......-spectral remote sensing imagery, shuttle radar topography data and frequency-domain airborne electromagnetic (AEM) survey data were used to map karst-aquifer structure on the Yucatan Peninsula, Mexico. Anomalous AEM responses correlated with topographic features and anomalous spectral reflectance of the terrain...... with remote-sensing data analysis provide a potentially powerful multi-scale methodology for structural mapping in karst aquifers on the Yucatan Peninsula and beyond....

  19. Radar Mosaic of Africa

    Science.gov (United States)

    1999-01-01

    This is an image of equatorial Africa, centered on the equator at longitude 15degrees east. This image is a mosaic of almost 4,000 separate images obtained in 1996 by the L-band imaging radar onboard the Japanese Earth Resources Satellite. Using radar to penetrate the persistent clouds prevalent in tropical forests, the Japanese Earth Resources Satellite was able for the first time to image at high resolution this continental scale region during single flooding seasons. The area shown covers about 7.4 million square kilometers (2.8 million square miles) of land surface, spans more than 5,000 kilometers(3,100 miles) east and west and some 2,000 kilometers (1,240 miles) north and south. North is up in this image. At the full resolution of the mosaic (100 meters or 330 feet), this image is more than 500 megabytes in size, and was processed from imagery totaling more than 60 gigabytes.Central Africa was imaged twice in 1996, once between January and March, which is the major low-flood season in the Congo Basin, and once between October and November, which is the major high-flood season in the Congo Basin. The red color corresponds to the data from the low-flood season, the green to the high-flood season, and the blue to the 'texture' of the low-flood data. The forests appear green as a result, the flooded and palm forests, as well as urban areas, appear yellow, the ocean and lakes appear black, and savanna areas appear blue, black or green, depending on the savanna type, surface topography and other factors. The areas of the image that are black and white were mapped only between January and March 1996. In these areas, the black areas are savanna or open water, the gray are forests, and the white areas are flooded forests or urban areas. The Congo River dominates the middle of the image, where the nearby forests that are periodically flooded by the Congo and its tributaries stand out as yellow. The Nile River flows north from Lake Victoria in the middle right of the

  20. Radar rainfall image repair techniques

    Directory of Open Access Journals (Sweden)

    Stephen M. Wesson

    2004-01-01

    Full Text Available There are various quality problems associated with radar rainfall data viewed in images that include ground clutter, beam blocking and anomalous propagation, to name a few. To obtain the best rainfall estimate possible, techniques for removing ground clutter (non-meteorological echoes that influence radar data quality on 2-D radar rainfall image data sets are presented here. These techniques concentrate on repairing the images in both a computationally fast and accurate manner, and are nearest neighbour techniques of two sub-types: Individual Target and Border Tracing. The contaminated data is estimated through Kriging, considered the optimal technique for the spatial interpolation of Gaussian data, where the 'screening effect' that occurs with the Kriging weighting distribution around target points is exploited to ensure computational efficiency. Matrix rank reduction techniques in combination with Singular Value Decomposition (SVD are also suggested for finding an efficient solution to the Kriging Equations which can cope with near singular systems. Rainfall estimation at ground level from radar rainfall volume scan data is of interest and importance in earth bound applications such as hydrology and agriculture. As an extension of the above, Ordinary Kriging is applied to three-dimensional radar rainfall data to estimate rainfall rate at ground level. Keywords: ground clutter, data infilling, Ordinary Kriging, nearest neighbours, Singular Value Decomposition, border tracing, computation time, ground level rainfall estimation

  1. Airborne microorganisms from waste containers.

    Science.gov (United States)

    Jedlicka, Sabrina S; Stravitz, David M; Lyman, Charles E

    2012-01-01

    In physician's offices and biomedical labs, biological waste is handled every day. This waste is disposed of in waste containers designed for holding red autoclave bags. The containers used in these environments are closed hands-free containers, often with a step pedal. While these containers protect the user from surface-borne microorganisms, the containers may allow airborne microorganisms to escape via the open/close mechanism because of the air current produced upon open/close cycles. In this study, the air current was shown to be sufficient to allow airborne escape of microorganisms held in the container, including Aspergillus niger. However, bacterial cultures, such as Escherichia coli and Lactococcus lactis did not escape. This may be due to the choice of bacterial cultures and the absence of solid waste, such as dust or other particulate matter in the waste containers, that such strains of bacteria could travel on during aerosolization. We compared these results to those obtained using a re-designed receptacle, which mimimizes air currents, and detected no escaping microorganisms. This study highlights one potential source of airborne contamination in labs, hospitals, and other environments that dispose of biological waste.

  2. Radar Image with Color as Height, Old Khmer Road, Cambodia

    Science.gov (United States)

    2002-01-01

    This image shows the Old Khmer Road (Inrdratataka-Bakheng causeway) in Cambodia extending from the 9th Century A.D. capitol city of Hariharalaya in the lower right portion of the image to the later 10th Century AD capital of Yasodharapura. This was located in the vicinity of Phnom Bakheng (not shown in image). The Old Road is believed to be more than 1000 years old. Its precise role and destination within the 'new' city at Angkor is still being studied by archeologists. But wherever it ended, it not only offered an immense processional way for the King to move between old and new capitols, it also linked the two areas, widening the territorial base of the Khmer King. Finally, in the past and today, the Old Road managed the waters of the floodplain. It acted as a long barrage or dam for not only the natural streams of the area but also for the changes brought to the local hydrology by Khmer population growth.The image was acquired by NASA's Airborne Synthetic Aperture Radar (AIRSAR). Image brightness is from the P-band (68 cm wavelength) radar backscatter, which is a measure of how much energy the surface reflects back towards the radar. Color is used to represent elevation contours. One cycle of color represents 20 m of elevation change, that is going from blue to red to yellow to green and back to blue again corresponds to 20 m of elevation change. Image dimensions are approximately 3.4 km by 3.5 km with a pixel spacing of 5 m. North is at top.AIRSAR flies aboard a NASA DC-8 based at NASA's Dryden Flight Research Center, Edwards, Calif. In the TOPSAR mode, AIRSAR collects radar interferometry data from two spatially separated antennas (2.6 meters, or 8.5 feet). Information from the two antennas is used to form radar backscatter imagery and to generate highly accurate elevation data. Built, operated and managed by JPL, AIRSAR is part of NASA's Earth Science Enterprise program. JPL is a division of the California Institute of Technology in Pasadena.

  3. Three-dimensional subsurface imaging synthetic aperture radar

    International Nuclear Information System (INIS)

    Moussally, G.J.

    1995-01-01

    The objective of this applied research and development project is to develop a system known as '3-D SISAR'. This system consists of a ground penetrating radar with software algorithms designed for the detection, location, and identification of buried objects in the underground hazardous waste environments found at DOE storage sites. Three-dimensional maps of the object locations will be produced which can assist the development of remediation strategies and the characterization of the digface during remediation operations. It is expected that the 3-D SISAR will also prove useful for monitoring hydrocarbon based contaminant migration after remediation. The underground imaging technique being developed under this contract utilizes a spotlight mode Synthetic Aperture Radar (SAR) approach which, due to its inherent stand-off capability, will permit the rapid survey of a site and achieve a high degree of productivity over large areas. When deployed from an airborne platform, the stand-off techniques is also seen as a way to overcome practical survey limitations encountered at vegetated sites

  4. Monitoring and evaluation techniques for airborne contamination

    International Nuclear Information System (INIS)

    Xia Yihua

    1997-01-01

    Monitoring and evaluation of airborne contamination are of great importance for the purpose of protection of health and safety of workers in nuclear installations. Because airborne contamination is one of the key sources to cause exposure to individuals by inhalation and digestion, and to cause diffusion of contaminants in the environment. The main objectives of monitoring and evaluation of airborne contamination are: to detect promptly a loss of control of airborne material, to help identify those individuals and predict exposure levels, to assess the intake and dose commitment to the individuals, and to provide sufficient documentation of airborne radioactivity. From the viewpoint of radiation protection, the radioactive contaminants in air can be classified into the following types: airborne aerosol, gas and noble gas, and volatile gas. In this paper, the following items are described: sampling methods and techniques, measurement and evaluation, and particle size analysis. (G.K.)

  5. Monitoring and evaluation techniques for airborne contamination

    Energy Technology Data Exchange (ETDEWEB)

    Xia Yihua [China Inst. of Atomic Energy, Beijing (China)

    1997-06-01

    Monitoring and evaluation of airborne contamination are of great importance for the purpose of protection of health and safety of workers in nuclear installations. Because airborne contamination is one of the key sources to cause exposure to individuals by inhalation and digestion, and to cause diffusion of contaminants in the environment. The main objectives of monitoring and evaluation of airborne contamination are: to detect promptly a loss of control of airborne material, to help identify those individuals and predict exposure levels, to assess the intake and dose commitment to the individuals, and to provide sufficient documentation of airborne radioactivity. From the viewpoint of radiation protection, the radioactive contaminants in air can be classified into the following types: airborne aerosol, gas and noble gas, and volatile gas. In this paper, the following items are described: sampling methods and techniques, measurement and evaluation, and particle size analysis. (G.K.)

  6. NAMMA TOGA RADAR DATA V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NAMMA TOGA Radar Data dataset consists of a collection of products derived from the NASA TOGA radar observations that were collected in the Republic of Cape...

  7. Extended Target Recognition in Cognitive Radar Networks

    Directory of Open Access Journals (Sweden)

    Xiqin Wang

    2010-11-01

    Full Text Available We address the problem of adaptive waveform design for extended target recognition in cognitive radar networks. A closed-loop active target recognition radar system is extended to the case of a centralized cognitive radar network, in which a generalized likelihood ratio (GLR based sequential hypothesis testing (SHT framework is employed. Using Doppler velocities measured by multiple radars, the target aspect angle for each radar is calculated. The joint probability of each target hypothesis is then updated using observations from different radar line of sights (LOS. Based on these probabilities, a minimum correlation algorithm is proposed to adaptively design the transmit waveform for each radar in an amplitude fluctuation situation. Simulation results demonstrate performance improvements due to the cognitive radar network and adaptive waveform design. Our minimum correlation algorithm outperforms the eigen-waveform solution and other non-cognitive waveform design approaches.

  8. Weather radar rainfall data in urban hydrology

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Einfalt, Thomas; Willems, Patrick

    2017-01-01

    Application of weather radar data in urban hydrological applications has evolved significantly during the past decade as an alternative to traditional rainfall observations with rain gauges. Advances in radar hardware, data processing, numerical models, and emerging fields within urban hydrology...

  9. ASTEROID RADAR V18.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is intended to include all published groundbased asteroid radar detections. The file is based on the collection of asteroid radar detections...

  10. ASTEROID RADAR V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset is intended to include all asteroid radar detections. An entry for each detection reports radar cross-section and circular polarization, if known, as...

  11. ASTEROID RADAR V17.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is intended to include all published groundbased asteroid radar detections. The file is based on the collection of asteroid radar detections...

  12. ASTEROID RADAR V15.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is intended to include all published groundbased asteroid radar detections. The file is based on the collection of asteroid radar detections...

  13. ASTEROID RADAR V16.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is intended to include all published groundbased asteroid radar detections. The file is based on the collection of asteroid radar detections...

  14. NOAA NEXt-Generation RADar (NEXRAD) Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of Level III weather radar products collected from Next-Generation Radar (NEXRAD) stations located in the contiguous United States, Alaska,...

  15. Meteor detection on ST (MST) radars

    International Nuclear Information System (INIS)

    Avery, S.K.

    1987-01-01

    The ability to detect radar echoes from backscatter due to turbulent irregularities of the radio refractive index in the clear atmosphere has lead to an increasing number of established mesosphere - stratosphere - troposphere (MST or ST) radars. Humidity and temperature variations are responsible for the echo in the troposphere and stratosphere and turbulence acting on electron density gradients provides the echo in the mesosphere. The MST radar and its smaller version, the ST radar, are pulsed Doppler radars operating in the VHF - UHF frequency range. These echoes can be used to determine upper atmosphere winds at little extra cost to the ST radar configuration. In addition, the meteor echoes can supplement mesospheric data from an MST radar. The detection techniques required on the ST radar for delineating meteor echo returns are described

  16. Design of multi-frequency CW radars

    CERN Document Server

    Jankiraman, Mohinder

    2007-01-01

    This book deals with the basic theory for design and analysis of Low Probability of Intercept (LPI) radar systems. The design of one such multi-frequency high resolution LPI radar, PANDORA, is covered.

  17. Radar Observation of Insects - Mosquitoes

    Science.gov (United States)

    Frost, E.; Downing, J.

    1979-01-01

    Tests were conducted at several sites over the coastal lowlands of New Jersey and over a region of high plains and low mountains in Oklahoma. In one area, a salt marsh in New Jersey, extensive ground tests were combined with laboratory data on expected insect backscatter to arrive at an extremely convincing model of the insect origin of most Dot Angels. A great deal of insight was studied from radar on the buildup and dispersal of insect swarms, since radar can follow where other means of trapping and observation cannot. Data on large-scale behavior as a function of wind and topography are presented. Displayed techniques which show individual or small swarm motion within some larger cloud or mass, or which can show the overall motion over great distances were developed. The influence of wind and terrain on insect motion and dispersal is determined from radar data.

  18. ZPR-9 airborne plutonium monitoring system

    International Nuclear Information System (INIS)

    Rusch, G.K.; McDowell, W.P.; Knapp, W.G.

    1975-01-01

    An airborne plutonium monitoring system which is installed in the ZPR-9 (Zero Power Reactor No. 9) facility at Argonne National Laboratory is described. The design and operational experience are discussed. This monitoring system utilizes particle size and density discrimination, alpha particle energy discrimination, and a background-subtraction techique operating in cascade to separate airborne-plutonium activity from other, naturally occurring, airborne activity. Relatively high sensitivity and reliability are achieved

  19. Microwave emissions from police radar.

    Science.gov (United States)

    Fink, J M; Wagner, J P; Congleton, J J; Rock, J C

    1999-01-01

    This study evaluated police officers' exposures to microwaves emitted by traffic radar units. Exposure measurements were taken at approximated ocular and testicular levels of officers seated in patrol vehicles. Comparisons were made of the radar manufacturers' published maximum power density specifications and actual measured power densities taken at the antenna faces of those units. Four speed-enforcement agencies and one transportation research institute provided 54 radar units for evaluation; 17 different models, encompassing 4 frequency bands and 3 antenna configurations, were included. Four of the 986 measurements taken exceeded the 5 mW/cm2 limit accepted by the International Radiation Protection Association and the National Council on Radiation Protection and Measurement, though none exceeded the American Conference of Governmental Industrial Hygienists, American National Standards Institute, Institute of Electrical and Electronic Engineers, or Occupational Safety and Health Administration standard of 10 mW/cm2. The four high measurements were maximum power density readings taken directly in front of the radar. Of the 812 measurements taken at the officers' seated ocular and testicular positions, none exceeded 0.04 mW/cm2; the highest of these (0.034 mW/cm2) was less than 1% of the most conservative current safety standards. High exposures in the limited region directly in front of the radar aperture are easily avoided with proper training. Results of this study indicate that police officer exposure to microwave radiation is apparently minimal. However, because of uncertainty in the medical and scientific communities concerning nonionizing radiation, it is recommended that law enforcement agencies implement a policy of prudent avoidance, including purchasing units with the lowest published maximum power densities, purchasing dash/rear deck-mounted units with antennae mounted outside the patrol vehicle, and training police officers to use the "stand-by" mode

  20. Radar mutual information and communication channel capacity of integrated radar-communication system using MIMO

    Directory of Open Access Journals (Sweden)

    Renhui Xu

    2015-12-01

    Full Text Available Integrated radar-communication system based on multiple input and multiple output (MIMO shares the hardware resource and spectrum to fulfill radar and communication functions, simultaneously. The baseband signal models of the MIMO radar and the integrated radar-communication system are set up. Then, the radar mutual information and the communication channel capacity are derived accordingly. Radar mutual information is used to evaluate the radar performance; communication channel capacity is one of the methods used to measure the communication capability. The influences of signal-to-noise ratio and the number of antennas, on the mutual information and channel capacity are presented through simulations.

  1. Radar research at The Pennsylvania State University Radar and Communications Laboratory

    Science.gov (United States)

    Narayanan, Ram M.

    2017-05-01

    The Radar and Communications Laboratory (RCL) at The Pennsylvania State University is at the forefront of radar technology and is engaged in cutting edge research in all aspects of radar, including modeling and simulation studies of novel radar paradigms, design and development of new types of radar architectures, and extensive field measurements in realistic scenarios. This paper summarizes the research at The Pennsylvania State University's Radar and Communications Laboratory and relevant collaborative research with several groups over the past 15 years in the field of radar and related technologies, including communications, radio frequency identification (RFID), and spectrum sensing.

  2. Goldstone solar system radar signal processing

    Science.gov (United States)

    Jurgens, R. F.; Satorius, E.; Sanchez, O.

    1992-01-01

    A performance analysis of the planetary radar data acquisition system is presented. These results extend previous computer simulation analysis and are facilitated by the development of a simple analytical model that predicts radar system performance over a wide range of operational parameters. The results of this study are useful to both the radar systems designer and the science investigator in establishing operational radar data acquisition parameters which result in the best systems performance for a given set of input conditions.

  3. Fmcw Mmw Radar For Automotive Longitudinal Control

    OpenAIRE

    David, William

    1997-01-01

    This report presents information on millimeter wave (MMW) radar for automotive longitudinal control. It addresses the fundamental capabilities and limitations of millimeter waves for ranging and contrasts their operation with that of conventional microwave radar. The report analyzes pulsed and FMCW radar configurations, and provides detailed treatment of FMCW radar operating at MMW frequency, its advantages and disadvantages as they relate to range and velocity measurements.

  4. Radar operation in a hostile electromagnetic environment

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2014-03-01

    Radar ISR does not always involve cooperative or even friendly targets. An adversary has numerous techniques available to him to counter the effectiveness of a radar ISR sensor. These generally fall under the banner of jamming, spoofing, or otherwise interfering with the EM signals required by the radar sensor. Consequently mitigation techniques are prudent to retain efficacy of the radar sensor. We discuss in general terms a number of mitigation techniques.

  5. Detection and identification of human targets in radar data

    Science.gov (United States)

    Gürbüz, Sevgi Z.; Melvin, William L.; Williams, Douglas B.

    2007-04-01

    Radar offers unique advantages over other sensors, such as visual or seismic sensors, for human target detection. Many situations, especially military applications, prevent the placement of video cameras or implantment seismic sensors in the area being observed, because of security or other threats. However, radar can operate far away from potential targets, and functions during daytime as well as nighttime, in virtually all weather conditions. In this paper, we examine the problem of human target detection and identification using single-channel, airborne, synthetic aperture radar (SAR). Human targets are differentiated from other detected slow-moving targets by analyzing the spectrogram of each potential target. Human spectrograms are unique, and can be used not just to identify targets as human, but also to determine features about the human target being observed, such as size, gender, action, and speed. A 12-point human model, together with kinematic equations of motion for each body part, is used to calculate the expected target return and spectrogram. A MATLAB simulation environment is developed including ground clutter, human and non-human targets for the testing of spectrogram-based detection and identification algorithms. Simulations show that spectrograms have some ability to detect and identify human targets in low noise. An example gender discrimination system correctly detected 83.97% of males and 91.11% of females. The problems and limitations of spectrogram-based methods in high clutter environments are discussed. The SNR loss inherent to spectrogram-based methods is quantified. An alternate detection and identification method that will be used as a basis for future work is proposed.

  6. Electrospray Collection of Airborne Contaminants, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In stark contrast to current stagnation-based methods for capturing airborne particulates and biological aerosols, our demonstrated, cost-effective electrospray...

  7. Electrospray Collection of Airborne Contaminants, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In stark contrast to current stagnation-based methods for capturing airborne particulates and biological aerosols, our demonstrated, cost-effective electrospray...

  8. Wind Turbine Radar Cross Section

    Directory of Open Access Journals (Sweden)

    David Jenn

    2012-01-01

    Full Text Available The radar cross section (RCS of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axis helical design, are shown. The unique electromagnetic scattering features, the effect of materials, and methods of mitigating wind turbine clutter are also discussed.

  9. Compressive sensing for urban radar

    CERN Document Server

    Amin, Moeness

    2014-01-01

    With the emergence of compressive sensing and sparse signal reconstruction, approaches to urban radar have shifted toward relaxed constraints on signal sampling schemes in time and space, and to effectively address logistic difficulties in data acquisition. Traditionally, these challenges have hindered high resolution imaging by restricting both bandwidth and aperture, and by imposing uniformity and bounds on sampling rates.Compressive Sensing for Urban Radar is the first book to focus on a hybrid of two key areas: compressive sensing and urban sensing. It explains how reliable imaging, tracki

  10. Multifrequency radar imagery and characterization of hazardous and noxious substances at sea

    Science.gov (United States)

    Angelliaume, S.; Minchew, B.; Chataing, S.; Martineau, Ph.; Miegebielle, V.

    2017-10-01

    Maritime pollution by chemical products occurs at much lower frequency than spills of oil, however the consequences of a chemical spill can be more wide-reaching than those of oil. While detection and characterization of hydrocarbons have been the subject of numerous studies, detection of other chemical products at sea using remote sensing has been little studied and is still an open subject of research. To address this knowledge gap, an experiment was conducted in May 2015 over the Mediterranean Sea during which controlled releases of hazardous and noxious substances were imaged by an airborne SAR sensor at X- and L-band simultaneously. In this paper we discuss the experimental procedure and report the main results from the airborne radar imaging campaign.

  11. Compressed sensing: Radar signal detection and parameter measurement for EW applications

    Science.gov (United States)

    Rao, M. Sreenivasa; Naik, K. Krishna; Reddy, K. Maheshwara

    2016-09-01

    State of the art system development is very much required for UAVs (Unmanned Aerial Vehicle) and other airborne applications, where miniature, lightweight and low-power specifications are essential. Currently, the airborne Electronic Warfare (EW) systems are developed with digital receiver technology using Nyquist sampling. The detection of radar signals and parameter measurement is a necessary requirement in EW digital receivers. The Random Modulator Pre-Integrator (RMPI) can be used for matched detection of signals using smashed filter. RMPI hardware eliminates the high sampling rate analog to digital computer and reduces the number of samples using random sampling and detection of sparse orthonormal basis vectors. RMPI explore the structural and geometrical properties of the signal apart from traditional time and frequency domain analysis for improved detection. The concept has been proved with the help of MATLAB and LabVIEW simulations.

  12. Tracking radar studies of bird migration

    Science.gov (United States)

    Williams, T. C.; Williams, J. M.; Teal, J. M.; Kanwisher, J. W.

    1972-01-01

    The application of tracking radar for determining the flight paths of migratory birds is discussed. The effects produced by various meteorological parameters are described. Samples of radar scope presentations obtained during tracking studies are presented. The characteristics of the radars and their limitations are examined.

  13. Comparison of radar data versus rainfall data.

    Science.gov (United States)

    Espinosa, B; Hromadka, T V; Perez, R

    2015-01-01

    Doppler radar data are increasingly used in rainfall-runoff synthesis studies, perhaps due to radar data availability, among other factors. However, the veracity of the radar data are often a topic of concern. In this paper, three Doppler radar outcomes developed by the United States National Weather Service at three radar sites are examined and compared to actual rain gage data for two separate severe storm events in order to assess accuracy in the published radar estimates of rainfall. Because the subject storms were very intense rainfall events lasting approximately one hour in duration, direct comparisons between the three radar gages themselves can be made, as well as a comparison to rain gage data at a rain gage location subjected to the same storm cells. It is shown that topographic interference with the radar outcomes can be a significant factor leading to differences between radar and rain gage readings, and that care is needed in calibrating radar outcomes using available rain gage data in order to interpolate rainfall estimates between rain gages using the spatial variation observed in the radar readings. The paper establishes and describes•the need for "ground-truthing" of radar data, and•possible errors due to topographic interference.

  14. Comparison of mimo radar concepts: Detection performance

    NARCIS (Netherlands)

    Rossum, W.L. van; Huizing, A.G.

    2007-01-01

    In this paper, four different array radar concepts are compared: pencil beam, floodlight, monostatic MIMO, and multistatic MIMO. The array radar concepts show an increase in complexity accompanied by an increase in diversity. The comparison between the radar concepts is made by investigating the

  15. Efficient Ways to Learn Weather Radar Polarimetry

    Science.gov (United States)

    Cao, Qing; Yeary, M. B.; Zhang, Guifu

    2012-01-01

    The U.S. weather radar network is currently being upgraded with dual-polarization capability. Weather radar polarimetry is an interdisciplinary area of engineering and meteorology. This paper presents efficient ways to learn weather radar polarimetry through several basic and practical topics. These topics include: 1) hydrometeor scattering model…

  16. Principles of modern radar advanced techniques

    CERN Document Server

    Melvin, William

    2012-01-01

    Principles of Modern Radar: Advanced Techniques is a professional reference for practicing engineers that provides a stepping stone to advanced practice with in-depth discussions of the most commonly used advanced techniques for radar design. It will also serve advanced radar academic and training courses with a complete set of problems for students as well as solutions for instructors.

  17. Development and flight test of a weather radar precision approach concept

    Science.gov (United States)

    Clary, G. R.; Anderson, D. J.; Chisholm, J. P.

    1984-01-01

    In order to make full use of the helicopter's unique capability of remote-site, off-airport landings, it would be desirable to employ a self-contained navigation system requiring minimum groundable-based equipment. For this reason, research is being conducted with the aim to develop the use of airborne weather radar as a primary navigation aid for helicopter approach and landing in instrument flight rules (IFR) conditions. Anderson et al. (1982) have reported about the first phase of this effort, taking into account the detection of passive ground-based corner reflectors with the aid of an 'echo processor'. The technology of passive-reflector detection in the overland environment provides the pilot with the range and bearing to the landing site. The present investigation is concerned with a second research phase, which was undertaken with the objective to develop and demonstrate the feasibility of a weather radar-based precision approach concept. Preliminary flight test results are considered.

  18. Forecast of muddy floods using high-resolution radar precipitation forcasting data and erosion modelling

    Science.gov (United States)

    Hänsel, Phoebe; Schindewolf, Marcus; Schmidt, Jürgen

    2016-04-01

    In the federal province of Saxony, Eastern Germany, almost 60 % of the agricultural land is endangered by erosion processes, mainly caused by heavy rainfall events. Beside the primary impact of soil loss and decreasing soil fertility, erosion can cause significant effects if transported sediments are entering downslope settlements, infrastructure or traffic routes. Available radar precipitation data are closing the gap between the conventional rainfall point measurements and enable the nationwide rainfall distribution with high spatial and temporal resolution. By means of the radar precipitation data of the German Weather Service (DWD), high-resolution radar-based rainfall data totals up to 5 minute time steps are possible. The radar data are visualised in a grid-based hourly precipitation map. In particular, the daily and hourly precipitation maps help to identify regions with heavy rainfall and possible erosion events. In case of an erosion event on agricultural land, these areas are mapped with an unmanned airborne vehicle (UAV). The camera-equipped UAV delivers high-resolution images of the erosion event, that allow the generation of high-resolution orthophotos. By the application of the high-resolution radar precipitation data as an input for the process-based soil loss and deposition model EROSION 3D, these images are for validation purposes. Future research is focused on large scale soil erosion modelling with the help of the radar forecasting product and an automatic identification of sediment pass over points. The study will end up with an user friendly muddy flood warning tool, which allows the local authorities to initiate immediate measures in order to prevent severe damages in settlements, infrastructure or traffic routes.

  19. Knitted radar absorbing materials (RAM) based on nickel–cobalt magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Teber, Ahmet, E-mail: aht10003@engr.uconn.edu [Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT 06269 (United States); Unver, Ibrahim, E-mail: iunver@gtu.edu.tr [Department of Physics, Gebze Technical University, Kocaeli 41400 (Turkey); Kavas, Huseyin, E-mail: huseyin.kavas@medeniyet.edu.tr [Department of Physics, Istanbul Medeniyet University, Istanbul 34000 (Turkey); Aktas, Bekir, E-mail: aktas@gtu.edu.tr [Department of Physics, Gebze Technical University, Kocaeli 41400 (Turkey); Bansal, Rajeev, E-mail: rajeev@engr.uconn.edu [Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT 06269 (United States)

    2016-05-15

    There has been a long-standing interest in the development of flexible, lightweight, thin, and reconfigurable radar absorbing materials (RAM) for military applications such as camouflaging ground-based hardware against airborne radar observation. The use of polymeric Polyacrylonitrile (PAN) fabrics as a host matrix for magnetic metal nano-particles (either at the yarn-stage or after weaving the fabric) for shielding and absorbing applications has been described in the literature. In our experimental investigation, the relative concentrations of Nickel and Cobalt as well as the coating time are varied with a view to optimizing the microwave absorption characteristics of the resulting PAN-based composite material in the radar-frequency bands (X, K{sub u}, and K). It is found that the PAN samples with the shortest coating time have the best return losses (under −20 dB return loss over a moderate bandwidth). - Graphical abstract: Here, we added the graphical abstract that provides summary the contents of the article in a concise pictorial form. - Highlights: • Flexible lightweight, thin, reconfigurable radar absorbing materials are proposed. • Polyacrylonitrile (PAN) fabrics are coated with nickel, cobalt magnetic materials. • The coating times affects microwave constitutive parameters and absorption. • Microwave absorption measurements were done via transmission line technique. • Microwave absorption is due to dielectric losses rather than magnetic losses.

  20. Detection of Digital Elevation Model Errors Using X-band Weather Radar

    Science.gov (United States)

    Young, Steven D.; deHaag, Maatren Uijt

    2007-01-01

    Flight in Instrument Meteorological Conditions requires pilots to manipulate flight controls while referring to a Primary Flight Display. The Primary Flight Display indicates aircraft attitude along with, in some cases, many other state variables such as altitude, speed, and guidance cues. Synthetic Vision Systems have been proposed that overlay the traditional information provided on Primary Flight Displays onto a scene depicting the location of terrain and other geo-spatial features.Terrain models used by these displays must have sufficient quality to avoid providing misleading information. This paper describes how X-band radar measurements can be used as part of a monitor, and/or maintenance system, to quantify the integrity of terrain models that are used by systems such as Synthetic Vision. Terrain shadowing effects, as seen by the radar, are compared in a statistical manner against estimated shadow feature elements extracted from the stored terrain model from the perspective of the airborne observer. A test statistic is defined that enables detection of errors as small as the range resolution of the radar. Experimental results obtained from two aircraft platforms hosting certified commercial-off-the-shelf X-band radars test the premise and illustrate its potential.

  1. Chemical Microsensor Instrument for UAV Airborne Atmospheric Measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering, Inc. (MEI) proposes to develop a miniaturized Airborne Chemical Microsensor Instrument (ACMI) suitable for real-time, airborne measurements of...

  2. FMWC Radar for Breath Detection

    DEFF Research Database (Denmark)

    Suhr, Lau Frejstrup; Tafur Monroy, Idelfonso; Vegas Olmos, Juan José

    breathing through walls. Other remote breath tracking systems has been presented that are based on the Ultra-wideband radar technique. However, these systems have two drawbacks. Firstly, they penetrate walls. It is therefore harder to contain the emitted radiation and they could be used for unsolicited...

  3. Fractal radar scattering from soil

    Science.gov (United States)

    Oleschko, Klaudia; Korvin, Gabor; Figueroa, Benjamin; Vuelvas, Marco Antonio; Balankin, Alexander S.; Flores, Lourdes; Carreón, Dora

    2003-04-01

    A general technique is developed to retrieve the fractal dimension of self-similar soils through microwave (radar) scattering. The technique is based on a mathematical model relating the fractal dimensions of the georadargram to that of the scattering structure. Clear and different fractal signatures have been observed over four geosystems (soils and sediments) compared in this work.

  4. Future of synthetic aperture radar

    Science.gov (United States)

    Barath, F. T.

    1978-01-01

    The present status of the applications of Synthetic Aperture Radars (SARs) is reviewed, and the technology state-of-the art as represented by the Seasat-A and SIR-A SARs examined. The potential of SAR applications, and the near- and longer-term technology trends are assessed.

  5. UWB radar multipath propagation effects

    Czech Academy of Sciences Publication Activity Database

    Čermák, D.; Schejbal, V.; NĚMEC, Z.; Bezoušek, P.; Fišer, Ondřej

    2005-01-01

    Roč. 11, - (2005), --- ISSN 1211-6610 R&D Projects: GA MPO FT-TA2/030 Institutional research plan: CEZ:AV0Z30420517 Keywords : UWB radar * multipath propagation Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  6. Research relative to weather radar measurement techniques

    Science.gov (United States)

    Smith, Paul L.

    1992-01-01

    Research relative to weather radar measurement techniques, which involves some investigations related to measurement techniques applicable to meteorological radar systems in Thailand, is reported. A major part of the activity was devoted to instruction and discussion with Thai radar engineers, technicians, and meteorologists concerning the basic principles of radar meteorology and applications to specific problems, including measurement of rainfall and detection of wind shear/microburst hazards. Weather radar calibration techniques were also considered during this project. Most of the activity took place during two visits to Thailand, in December 1990 and February 1992.

  7. The MU radar now partly in operation

    Science.gov (United States)

    Kato, S.; Ogawa, T.; Tsuda, T.; Sato, T.; Kimura, I.; Fukao, S.

    1984-01-01

    The MU radar (middle- and upper-atmosphere radar) of RASC (Radio Atmospheric Science Center, Kyoto University) is now partly in operation, although the facility will be completed in 1985. The active array system of the radar makes it possible to steer the radar beam as fast as in each interpulse period. Various sophisticated experiments are expected to be performed by the system. A preliminary observation was successful to elucidate atmospheric motions during Typhoon No. 5 which approached the radar site in August, 1983.

  8. Source terms for airborne effluents

    International Nuclear Information System (INIS)

    Blomeke, J.O.; Perona, J.J.

    1976-01-01

    The origin and nature of fuel cycle wastes are discussed with regard to high-level wastes, cladding, noble gases, iodine, tritium, 14 C, low-level and intermediate-level transuranic wastes, non-transuranic wastes, and ore tailings. The current practice for gaseous effluent treatment is described for light water reactors and high-temperature gas-cooled reactors. Other topics discussed are projections of nuclear power generation; projected accumulation of gaseous wastes; the impact of nuclear fuel cycle centers; and global buildup of airborne effluents

  9. Compositae dermatitis from airborne parthenolide

    DEFF Research Database (Denmark)

    Paulsen, E; Christensen, Lars Porskjær; Andersen, Klaus Ejner

    2007-01-01

    suspected of causing airborne contact allergy, and its most important allergen is the sesquiterpene lactone (SQL) parthenolide (PHL). OBJECTIVES: The aims of this study were to (i) assess the allergenicity of feverfew-derived monoterpenes and sesquiterpenes and their oxidized products in feverfew......, obtained by fractionation of ether extracts, dynamic headspace and high-volume air sampler (HIVAS) technique, respectively. RESULTS: Among 12 feverfew-allergic patients, eight had positive patch-test reactions to a HIVAS filter extract, while two tested positive to a headspace extract. Subsequent analysis...

  10. Geophex airborne unmanned survey system

    International Nuclear Information System (INIS)

    Won, I.J.; Taylor, D.W.A.

    1995-01-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This nonintrusive system will provide open-quotes stand-offclose quotes capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits two operators to rapidly conduct geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance, of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak anomalies can be detected

  11. Planetary Radars Operating Centre PROC

    Science.gov (United States)

    Catallo, C.; Flamini, E.; Seu, R.; Alberti, G.

    2007-12-01

    Planetary exploration by means of radar systems, mainly using Ground Penetrating Radars (GPR) plays an important role in Italy. Numerous scientific international space programs are currently carried out jointly with ESA and NASA by Italian Space Agency, the scientific community and the industry. Three important experiments under Italian leadership ( designed and manufactured by the Italian industry), provided by ASI either as contribution to ESA programs either within a NASA/ASI joint venture framework, are now operating: MARSIS on-board Mars Express, SHARAD on-board Mars Reconnaissance Orbiter and CASSINI Radar on-board Cassini spacecraft. In order to support all the scientific communities, institutional customers and experiment teams operation three Italian dedicated operational centers have been realized, namely SHOC, (Sharad Operating Centre), MOC (Marsis Operating Center) and CASSINI PAD ( Processing Altimetry Data). Each center is dedicated to a single instrument management and control, data processing and distribution. Although they had been conceived to operate autonomously and independently one from each other, synergies and overlaps have been envisaged leading to the suggestion of a unified center, the Planetary Radar Processing Center (PROC). PROC is conceived in order to include the three operational centers, namely SHOC, MOC and CASSINI PAD, either from logistics point of view and from HW/SW capabilities point of view. The Planetary Radar Processing Center shall be conceived as the Italian support facility to the scientific community for on-going and future Italian planetary exploration programs. Therefore, scalability, easy use and management shall be the design drivers. The paper describes how PROC is designed and developed, to allow SHOC, MOC and CASSINI PAD to operate as before, and to offer improved functionalities to increase capabilities, mainly in terms of data exchange, comparison, interpretation and exploitation. Furthermore, in the frame of

  12. Airborne Lidar Surface Topography (LIST) Simulator

    Science.gov (United States)

    Yu, Anthony W.; Krainak, Michael A.; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis; Winkert, Tom; Plants, Michael; hide

    2011-01-01

    In this paper we will discuss our development effort of an airborne instrument as a pathfinder for the Lidar Surface Technology (LIST) mission. This paper will discuss the system approach, enabling technologies, instrument concept and performance of the Airborne LIST Simulator (A-LISTS).

  13. Resuscitation effects of catalase on airborne bacteria.

    OpenAIRE

    Marthi, B; Shaffer, B T; Lighthart, B; Ganio, L

    1991-01-01

    Catalase incorporation into enumeration media caused a significant increase (greater than 63%) in the colony-forming abilities of airborne bacteria. Incubation for 30 to 60 min of airborne bacteria in collection fluid containing catalase caused a greater than 95% increase in colony-forming ability. However, catalase did not have any effects on enumeration at high relative humidities (80 to 90%).

  14. Geronimo: Planning Considerations for Employing Airborne Forces

    Science.gov (United States)

    2017-05-25

    risk mitigation measure in crisis response scenarios, correlates to successful operations . In fact, operations undertaken without 100 or more days...22 4 Planning Time Allotted for Airborne Selected Airborne Operation ............................. 29 5 Summary Risk ...considerations. The doctrinal and service requirements provide a planner with a toolkit for mitigating risk prior to execution of an operation . First, a

  15. Airborne Oceanographic Lidar (AOL) (Global Carbon Cycle)

    Science.gov (United States)

    2003-01-01

    This bimonthly contractor progress report covers the operation, maintenance and data management of the Airborne Oceanographic Lidar and the Airborne Topographic Mapper. Monthly activities included: mission planning, sensor operation and calibration, data processing, data analysis, network development and maintenance and instrument maintenance engineering and fabrication.

  16. Digital airborne camera introduction and technology

    CERN Document Server

    Sandau, Rainer

    2014-01-01

    The last decade has seen great innovations on the airborne camera. This book is the first ever written on the topic and describes all components of a digital airborne camera ranging from the object to be imaged to the mass memory device.

  17. Status and Prospects of Radar Polarimetry Techniques

    Directory of Open Access Journals (Sweden)

    Wang Xuesong

    2016-04-01

    Full Text Available Radar polarimetry is an applied fundamental science field that is focused on understanding interaction processes between radar waves and targets and disclosing their mechanisms. Radar polarimetry has significant application prospects in the fields of microwave remote sensing, earth observation, meteorological measurement, battlefield reconnaissance, anti-interference, target recognition, and so on. This study briefly reviews the development history of radar polarization theory and technology. Next, the state of the art of several key technologies within radar polarimetry, including the precise acquisition of radar polarization information, polarization-sensitive array signal processing, target polarization characteristics, polarization antiinterference, and target polarization classification and recognition, is summarized. Finally, the future developments of radar polarization technology are considered.

  18. Radar research at the University of Kansas

    Science.gov (United States)

    Blunt, Shannon D.; Allen, Christopher; Arnold, Emily; Hale, Richard; Hui, Rongqing; Keshmiri, Shahriar; Leuschen, Carlton; Li, Jilu; Paden, John; Rodriguez-Morales, Fernando; Salandrino, Alessandro; Stiles, James

    2017-05-01

    Radar research has been synonymous with the University of Kansas (KU) for over half a century. As part of this special session organized to highlight significant radar programs in academia, this paper surveys recent and ongoing work at KU. This work encompasses a wide breadth of sensing applications including the remote sensing of ice sheets, autonomous navigation methods for unmanned aerial vehicles (UAVs), novel laser radar capabilities, detection of highenergy cosmic rays using bistatic radar, different forms of waveform diversity such as MIMO radar and pulse agility, and various radar-embedded communication methods. The results of these efforts impact our understanding of the changing nature of the environment, address the proliferation of unmanned systems in the US airspace, realize new sensing modalities enabled by the joint consideration of electromagnetics and signal processing, and greater facilitate radar operation in an increasingly congested and contested spectrum.

  19. Mapping of a Hydrological Ice Sheet Drainage Basin on the West Greenland Ice Sheet Margin from ERS-1/2 SAR Interferometry, Ice-Radar Measurement, and Modelling

    DEFF Research Database (Denmark)

    Ahlstrøm, Andreas P.; Bøggild, C.E.; Stenseng, L.

    2002-01-01

    -track interferometric synthetic aperture radar (SAR) and a bedrock topography derived from an airborne 60 MHz ice-penetrating radar. The extent of the delineation was calculated from a water-pressure potential as a function of the ice-sheet surface and bedrock elevations and a hydraulic factor κ describing the relative......The hydrological ice-sheet basin draining into the Tasersiaq lake, West Greenland (66°13'N, 50°30'W), was delineated, First using standard digital elevation models (DEMs) for ice-sheet surface and bedrock, and subsequently using a new high-resolution dataset, with a surface DEM derived from repeat...

  20. Geophex Airborne Unmanned Survey System

    International Nuclear Information System (INIS)

    Won, I.L.; Keiswetter, D.

    1995-01-01

    Ground-based surveys place personnel at risk due to the proximity of buried unexploded ordnance (UXO) items or by exposure to radioactive materials and hazardous chemicals. The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide stand-off capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected. The Geophex Airborne Unmanned Survey System (GAUSS) is designed to detect and locate small-scale anomalies at hazardous sites using magnetic and electromagnetic survey techniques. The system consists of a remotely-piloted, radio-controlled, model helicopter (RCH) with flight computer, light-weight geophysical sensors, an electronic positioning system, a data telemetry system, and a computer base-station. The report describes GAUSS and its test results

  1. Using the VAHIRR Radar Algorithm to Investigate Lightning Cessation

    Science.gov (United States)

    Stano, Geoffrey T.; Schultz, Elise V.; Petersen, Walter A.

    2012-01-01

    Accurately determining the threat posed by lightning is a major area for improved operational forecasts. Most efforts have focused on the initiation of lightning within a storm, with far less effort spent investigating lightning cessation. Understanding both components, initiation and cessation, are vital to improving lightning safety. Few organizations actively forecast lightning onset or cessation. One such organization is the 45th Weather Squadron (45WS) for the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The 45WS has identified that charged anvil clouds remain a major threat of continued lightning and can greatly extend the window of a potential lightning strike. Furthermore, no discernable trend of total lightning activity has been observed consistently for all storms. This highlights the need for more research to find a robust method of knowing when a storm will cease producing lightning. Previous lightning cessation work has primarily focused on forecasting the cessation of cloud-to -ground lightning only. A more recent, statistical study involved total lightning (both cloud-to-ground and intracloud). Each of these previous works has helped the 45WS take steps forward in creating improved and ultimately safer lightning cessation forecasts. Each study has either relied on radar data or recommended increased use of radar data to improve cessation forecasts. The reasoning is that radar data is able to either directly or by proxy infer more about dynamical environment leading to cloud electrification and eventually lightning cessation. The authors of this project are focusing on a two ]step approach to better incorporate radar data and total lightning to improve cessation forecasts. This project will utilize the Volume Averaged Height Integrated Radar Reflectivity (VAHIRR) algorithm originally developed during the Airborne Field Mill II (ABFM II) research project. During the project, the VAHIRR product showed a trend of increasing

  2. Radar Image with Color as Height, Lovea, Cambodia

    Science.gov (United States)

    2002-01-01

    This image of Lovea, Cambodia, was acquired by NASA's Airborne Synthetic Aperture Radar (AIRSAR). Lovea, the roughly circular feature in the middle-right of the image, rises some 5 meters (16.4 feet) above the surrounding terrain. Lovea is larger than many of the other mound sites with a diameter of greater than 300 meters (984.3 feet). However, it is one of a number highlighted by the radar imagery. The present-day village of Lovea does not occupy all of the elevated area. However, at the center of the mound is an ancient spirit post honoring the legendary founder of the village. The mound is surrounded by earthworks and has vestiges of additional curvilinear features. Today, as in the past, these harnessed water during the rainy season, and conserved it during the long dry months of the year.The village of Lovea located on the mound was established in pre-Khmer times, probably before 500 A.D. In the lower left portion of the image is a large trapeng and square moat. These are good examples of construction during the historical 9th to 14th Century A.D. Khmer period; construction that honored and protected earlier circular villages. This suggests a cultural and technical continuity between prehistoric circular villages and the immense urban site of Angkor. This connection is one of the significant finds generated by NASA's radar imaging of Angkor. It shows that the city of Angkor was a particularly Khmer construction. The temple forms and water management structures of Angkor were the result of pre-existing Khmer beliefs and methods of water management.Image dimensions are approximately 6.3 by 4.7 kilometers (3.9 by 2.9 miles). North is at top. Image brightness is from the C-band (5.6 centimeters, or 2.2 inches wavelength) radar backscatter, which is a measure of how much energy the surface reflects back toward the radar. Color is used to represent elevation contours. One cycle of color represents 20 meters (65.6 feet) of elevation change; that is, going from blue

  3. Retrieving current and wind vectors from ATI SAR data: airborne evidence and inversion strategy

    Science.gov (United States)

    Martin, Adrien; Gommenginger, Christine; Chapron, Bertrand; Marquez, José; Doody, Sam

    2017-04-01

    Conventional and along-track interferometric (ATI) Synthetic Aperture Radar (SAR) sense the motion of the ocean surface by measuring the Doppler shift of reflected signals. Together with the water displacement associated with ocean currents, the SAR measurements are also affected by a Wind-wave induced Artefact Surface Velocity (WASV) caused by the velocity of Bragg scatterers and the orbital velocity of ocean surface gravity waves. The WASV has been modelled theoretically in past studies but has been estimated empirically only once using Envisat ASAR. Here we propose, firstly, to evaluate this WASV from airborne ATI SAR data, secondly, to validate the airborne retrieved surface current after correction of the WASV against HF radar measurements and thirdly to examine the best inversion strategy for a an Ocean Surface Current (OSC) satellite mission to retrieve accurately both the ocean surface current vector (OSCV) and the wind vector in the frame of an OSC satellite mission. The airborne ATI SAR data were acquired in the tidally dominated Irish Sea using a Wavemill-type dual-beam SAR interferometer. A comprehensive collection of airborne Wavemill data acquired in a star pattern over a well-instrumented site made it possible to estimate the magnitude and dependence on azimuth and incidence angle of the WASV. The airborne results compare favourably with those reported for Envisat ASAR, empirical model, which has been used to correct for it. Validation of the current retrieval capabilities of the proof-of-concept has been conducted against HF radar giving a precisions typically better than 0.1 m/s for surface current speed and 7° for direction. Comparisons with POLCOMS (1.8 km) indicate that the model reproduces well the overall temporal evolution but does not capture the high spatial variability of ocean surface currents at the maximum ebb flow. Airborne retrieved currents highlight a short-scale spatial variability up to 100m related to bathymetry channels, which

  4. Study of Geological Analogues for Understanding the Radar Sounder Response of the RIME Targets

    Science.gov (United States)

    Thakur, S.; Bruzzone, L.

    2017-12-01

    Radar for Icy Moon Exploration (RIME), the radar sounder onboard the Jupiter Icy Moons Explorer (JUICE), is aimed at characterizing the ice shells of the Jovian moons - Ganymede, Europa and Callisto. RIME is optimized to operate at 9 MHz central frequency with bandwidth of 1 MHz and 2.7 MHz to achieve a penetration depth up to 9 km through ice. We have developed an approach to the definition of a database of simulated RIME radargrams by leveraging the data available from airborne and orbital radar sounder acquisitions over geological analogues of the expected icy moon features. These simulated radargrams are obtained by merging real radar sounder data with models of the subsurface of the Jupiter icy moons. They will be useful for geological interpretation of the RIME radargrams and for better predicting the performance of RIME. The database will also be useful in developing pre-processing and automatic feature extraction algorithms to support data analysis during the mission phase of RIME. Prior to the JUICE mission exploring the Jovian satellites with RIME, there exist radar sounders such as SHARAD (onboard MRO) and MARSIS (onboard MEX) probing Mars, the LRS (onboard SELENE) probing the Moon, and many airborne sounders probing the polar regions of Earth. Analogues have been identified in these places based on similarity in geo-morphological expression. Moreover, other analogues have been identified on the Earth for possible dedicated acquisition campaigns before the RIME operations. By assuming that the subsurface structure of the RIME targets is approximately represented in the analogue radargrams, the difference in composition is accounted for by imposing different dielectric and subsurface attenuation models. The RIME radargrams are simulated from the analogue radargrams using the radar equation and the RIME processing chain and accounting for different possible scenarios in terms of subsurface structure, dielectric properties and instrument parameters. For

  5. Penn State Radar Systems: Implementation and Observations

    Science.gov (United States)

    Urbina, J. V.; Seal, R.; Sorbello, R.; Kuyeng, K.; Dyrud, L. P.

    2014-12-01

    Software Defined Radio/Radar (SDR) platforms have become increasingly popular as researchers, hobbyists, and military seek more efficient and cost-effective means for radar construction and operation. SDR platforms, by definition, utilize a software-based interface for configuration in contrast to traditional, hard-wired platforms. In an effort to provide new and improved radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future radars, with primary objectives of making such instruments more capable, portable, and more cost effective. This paper will describe the design and implementation of two low-cost radar systems and their deployment in ionospheric research at both low and mid-latitudes. One radar has been installed near Penn State campus, University Park, Pennsylvania (77.97°W, 40.70°N), to make continuous meteor observations and mid-latitude plasma irregularities. The second radar is being installed in Huancayo (12.05°S, -75.33°E), Peru, which is capable of detecting E and F region plasma irregularities as well as meteor reflections. In this paper, we examine and compare the diurnal and seasonal variability of specular, non- specular, and head-echoes collected with these two new radar systems and discuss sampling biases of each meteor observation technique. We report our current efforts to validate and calibrate these radar systems with other VHF radars such as Jicamarca and SOUSY. We also present the general characteristics of continuous measurements of E-region and F-region coherent echoes using these modern radar systems and compare them with coherent radar events observed at other geographic mid-latitude radar stations.

  6. Block adjustment of airborne InSAR based on interferogram phase and POS data

    Science.gov (United States)

    Yue, Xijuan; Zhao, Yinghui; Han, Chunming; Dou, Changyong

    2015-12-01

    High-precision surface elevation information in large scale can be obtained efficiently by airborne Interferomatric Synthetic Aperture Radar (InSAR) system, which is recently becoming an important tool to acquire remote sensing data and perform mapping applications in the area where surveying and mapping is difficult to be accomplished by spaceborne satellite or field working. . Based on the study of the three-dimensional (3D) positioning model using interferogram phase and Position and Orientation System (POS) data and block adjustment error model, a block adjustment method to produce seamless wide-area mosaic product generated from airborne InSAR data is proposed in this paper. The effect of 6 parameters, including trajectory and attitude of the aircraft, baseline length and incline angle, slant range, and interferometric phase, on the 3D positioning accuracy is quantitatively analyzed. Using the data acquired in the field campaign conducted in Mianyang county Sichuan province, China in June 2011, a mosaic seamless Digital Elevation Model (DEM) product was generated from 76 images in 4 flight strips by the proposed block adjustment model. The residuals of ground control points (GCPs), the absolute positioning accuracy of check points (CPs) and the relative positioning accuracy of tie points (TPs) both in same and adjacent strips were assessed. The experimental results suggest that the DEM and Digital Orthophoto Map (DOM) product generated by the airborne InSAR data with sparse GCPs can meet mapping accuracy requirement at scale of 1:10 000.

  7. CryoVEx 2011-12 Airborne Campaigns for CryoSat Validation

    DEFF Research Database (Denmark)

    Skourup, Henriette; Hvidegaard, Sine Munk; Forsberg, René

    2013-01-01

    After the successful launch of CryoSat-2 in April 2010, the first direct validation campaign of the satellite was carried out in the April-May 2011. Part of this was repeated in Spring 2012. DTU Space has been involved in ESA’s CryoSat Validation Experiment (CryoVEx) with airborne activities since...... 2003. To validate the performance of the CryoSat-2 radar altimeter (SIRAL), the aircraft is equipped with an airborne version of the SIRAL altimeter (ASIRAS) together with a laser scanner. Of particular interest is to study the penetration depth of SIRAL into both land- and sea ice. This can be done...... of Alert and sea ice around Svalbard in the Fram Strait. Selected tracks were planned to match CryoSat-2 passes and a few of them were flown in formation flight with the AlfredWegener Institute (AWI) Polar- 5 carrying an EM induction sounder. The paper presents an overview of the 2011-12 airborne campaigns...

  8. Detecting and classifying low probability of intercept radar

    CERN Document Server

    Pace, Philip E

    2008-01-01

    This revised and expanded second edition brings you to the cutting edge with new chapters on LPI radar design, including over-the-horizon radar, random noise radar, and netted LPI radar. You also discover critical LPI detection techniques, parameter extraction signal processing techniques, and anti-radiation missile design strategies to counter LPI radar.

  9. Radar based autonomous sensor module

    Science.gov (United States)

    Styles, Tim

    2016-10-01

    Most surveillance systems combine camera sensors with other detection sensors that trigger an alert to a human operator when an object is detected. The detection sensors typically require careful installation and configuration for each application and there is a significant burden on the operator to react to each alert by viewing camera video feeds. A demonstration system known as Sensing for Asset Protection with Integrated Electronic Networked Technology (SAPIENT) has been developed to address these issues using Autonomous Sensor Modules (ASM) and a central High Level Decision Making Module (HLDMM) that can fuse the detections from multiple sensors. This paper describes the 24 GHz radar based ASM, which provides an all-weather, low power and license exempt solution to the problem of wide area surveillance. The radar module autonomously configures itself in response to tasks provided by the HLDMM, steering the transmit beam and setting range resolution and power levels for optimum performance. The results show the detection and classification performance for pedestrians and vehicles in an area of interest, which can be modified by the HLDMM without physical adjustment. The module uses range-Doppler processing for reliable detection of moving objects and combines Radar Cross Section and micro-Doppler characteristics for object classification. Objects are classified as pedestrian or vehicle, with vehicle sub classes based on size. Detections are reported only if the object is detected in a task coverage area and it is classified as an object of interest. The system was shown in a perimeter protection scenario using multiple radar ASMs, laser scanners, thermal cameras and visible band cameras. This combination of sensors enabled the HLDMM to generate reliable alerts with improved discrimination of objects and behaviours of interest.

  10. Terahertz radar cross section measurements

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional rad...... information and also allows for identification of scattering points such as weaponry attached to the aircraft. The shapes of the models and positions of reflecting parts are retrieved by the filtered back projection algorithm....

  11. Radar-based hail detection

    Czech Academy of Sciences Publication Activity Database

    Skripniková, Kateřina; Řezáčová, Daniela

    2014-01-01

    Roč. 144, č. 1 (2014), s. 175-185 ISSN 0169-8095 R&D Projects: GA ČR(CZ) GAP209/11/2045; GA MŠk LD11044 Institutional support: RVO:68378289 Keywords : hail detection * weather radar * hail damage risk Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.844, year: 2014 http://www.sciencedirect.com/science/article/pii/S0169809513001804

  12. Radar channel balancing with commutation

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2014-02-01

    When multiple channels are employed in a pulse-Doppler radar, achieving and maintaining balance between the channels is problematic. In some circumstances the channels may be commutated to achieve adequate balance. Commutation is the switching, trading, toggling, or multiplexing of the channels between signal paths. Commutation allows modulating the imbalance energy away from the balanced energy in Doppler, where it can be mitigated with filtering.

  13. Radar imaging using statistical orthogonality

    Science.gov (United States)

    Falconer, David G.

    2000-08-01

    Statistical orthogonality provides a mathematical basis for imaging scattering data with an inversion algorithm that is both robust and economic. The statistical technique is based on the approximate orthogonality of vectors whose elements are exponential functions with imaginary arguments and random phase angles. This orthogonality allows one to image radar data without first inverting a matrix whose dimensionality equals or exceeds the number of pixels or voxels in the algorithmic image. Additionally, statistical-based methods are applicable to data sets collected under a wide range of operational conditions, e.g., the random flight paths of the curvilinear SAR, the frequency-hopping emissions of ultra- wideband radar, or the narrowband data collected with a bistatic radar. The statistical approach also avoids the often-challenging and computationally intensive task of converting the collected measurements to a data format that is appropriate for imaging with a fast Fourier transform (FFT) or fast tomography algorithm (FTA), e.g., interpolating from polar to rectangular coordinates, or conversely.

  14. X-Band Radar for Studies of Tropical Storms from High Altitude UAV Platform

    Science.gov (United States)

    Rodriquez, Shannon; Heymsfield, Gerald; Li, Lihua; Bradley, Damon

    2007-01-01

    The increased role of unmanned aerial vehicles (UAV) in NASA's suborbital program has created a strong interest in the development of instruments with new capabilities, more compact sizes and reduced weights than the instruments currently operated on manned aircrafts. There is a strong demand and tremendous potential for using high altitude UAV (HUAV) to carry weather radars for measurements of reflectivity and wind fields from tropical storms. Tropical storm genesis frequently occurs in ocean regions that are inaccessible to piloted aircraft due to the long off shore range and the required periods of time to gather significant data. Important factors of interest for the study of hurricane genesis include surface winds, profiled winds, sea surface temperatures, precipitation, and boundary layer conditions. Current satellite precipitation and surface wind sensors have resolutions that are too large and revisit times that are too infrequent to study this problem. Furthermore, none of the spaceborne sensors measure winds within the storm itself. A dual beam X-band Doppler radar, UAV Radar (URAD), is under development at the NASA Goddard Space Flight Center for the study of tropical storms from HUAV platforms, such as a Global Hawk. X-band is the most desirable frequency for airborne weather radars since these can be built in a relatively compact size using off-the-shelf components which cost significantly less than other higher frequency radars. Furthermore, X-band radars provide good sensitivity with tolerable attenuation in storms. The low-cost and light-weight URAD will provide new capabilities for studying hurricane genesis by analyzing the vertical structure of tropical cyclones as well as 3D reflectivity and wind fields in clouds. It will enable us to measure both the 3D precipitation structure and surface winds by using two antenna beams: fixed nadir and conical scanning each produced by its associated subsystem. The nadir subsystem is a magnetron based radar

  15. Airborne gamma ray spectrometer surveying

    International Nuclear Information System (INIS)

    1991-01-01

    The International Atomic Energy Agency (IAEA) in its role as collector and disseminator of information on nuclear techniques has long had an interest in gamma ray spectrometer methods and has published a number of Technical Reports on various aspects of the subject. At an Advisory Group Meeting held in Vienna in November 1986 to review appropriate activities the IAEA could take following the Chernobyl accident, it was recommended that preparation begin on a new Technical Report on airborne gamma ray spectrometer surveying, taking into account the use of the technique for environmental monitoring as well as for nuclear emergency response requirements. Shortly thereafter the IAEA became the lead organization in the Radioelement Geochemical Mapping section of the International Geological Correlation Programme/United Nations Educational, Scientific and Cultural Organization (UNESCO) Project on International Geochemical Mapping. These two factors led to the preparation of the present Technical Report. 18 figs, 4 tabs

  16. Airborne remote sensing of forest biomes

    Science.gov (United States)

    Sader, Steven A.

    1987-01-01

    Airborne sensor data of forest biomes obtained using an SAR, a laser profiler, an IR MSS, and a TM simulator are presented and examined. The SAR was utilized to investigate forest canopy structures in Mississippi and Costa Rica; the IR MSS measured forest canopy temperatures in Oregon and Puerto Rico; the TM simulator was employed in a tropical forest in Puerto Rico; and the laser profiler studied forest canopy characteristics in Costa Rica. The advantages and disadvantages of airborne systems are discussed. It is noted that the airborne sensors provide measurements applicable to forest monitoring programs.

  17. The Orlando TDWR testbed and airborne wind shear date comparison results

    Science.gov (United States)

    Campbell, Steven; Berke, Anthony; Matthews, Michael

    1992-01-01

    The focus of this talk is on comparing terminal Doppler Weather Radar (TDWR) and airborne wind shear data in computing a microburst hazard index called the F factor. The TDWR is a ground-based system for detecting wind shear hazards to aviation in the terminal area. The Federal Aviation Administration will begin deploying TDWR units near 45 airports in late 1992. As part of this development effort, M.I.T. Lincoln Laboratory operates under F.A.A. support a TDWR testbed radar in Orlando, FL. During the past two years, a series of flight tests has been conducted with instrumented aircraft penetrating microburst events while under testbed radar surveillance. These tests were carried out with a Cessna Citation 2 aircraft operated by the University of North Dakota (UND) Center for Aerospace Sciences in 1990, and a Boeing 737 operated by NASA Langley Research Center in 1991. A large data base of approximately 60 instrumented microburst penetrations has been obtained from these flights.

  18. UAVSAR: A New NASA Airborne SAR System for Science and Technology Research

    Science.gov (United States)

    Rosen, Paul A.; Hensley, Scott; Wheeler, Kevin; Sadowy, Greg; Miller, Tim; Shaffer, Scott; Muellerschoen, Ron; Jones, Cathleen; Zebker, Howard; Madsen, Soren

    2006-01-01

    NASA's Jet Propulsion Laboratory is currently building a reconfigurable, polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track SAR data for differential interferometric measurements. Differentian interferometry can provide key deformation measurements, important for studies of earthquakes, volcanoes and other dynamically changing phenomena. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The expected performance of the flight control system will constrain the flight path to be within a 10 m diameter tube about the desired flight track. The radar will be designed to be operable on a UAV (Unpiloted Aria1 Vehicle) but will initially be demonstrated on a NASA Gulfstream III. The radar will be fully polarimetric, with a range bandwidth of 80 MHz (2 m range resolution), and will support a 16 km range swath. The antenna will be electronically steered along track to assure that the antenna beam can be directed independently, regardless of the wind direction and speed. Other features supported by the antenna include elevation monopulse and pulse-to-pulse re-steering capabilities that will enable some novel modes of operation. The system will nominally operate at 45,000 ft (13800 m). The program began as an Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).

  19. IceBridge Snow Radar L1B Geolocated Radar Echo Strength Profiles V002

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains radar echograms taken from the Center for Remote Sensing of Ice Sheets (CReSIS) ultra wide-band snow radar over land and sea ice in the Arctic...

  20. IceBridge Accumulation Radar L1B Geolocated Radar Echo Strength Profiles

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains radar echograms taken over Greenland and Antarctica using the Center for Remote Sensing of Ice Sheets (CReSIS) Accumulation Radar instrument....

  1. Improving Weather Radar Precipitation Estimates by Combining two Types of Radars

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ellerbæk; Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2014-01-01

    This paper presents a demonstration of how Local Area Weather Radar (LAWR) X-band measurements can be combined with meteorological C–band measurements into a single radar product. For this purpose, a blending method has been developed which combines the strengths of the two radar systems. Combining...... the two radar types achieves a radar product with both long range and high temporal resolution. It is validated that the blended radar product performs better than the individual radars based on ground observations from laser disdrometers. However, the data combination is challenged by lower performance...... of the LAWR. Although both radars benefits from the data combination, it is also found that advection based temporal interpolation is a more favourable method for increasing the temporal resolution of meteorological C–band measurements....

  2. IceBridge Snow Radar L1B Geolocated Radar Echo Strength Profiles

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains radar echograms taken from the Center for Remote Sensing of Ice Sheets (CReSIS) ultra wide-band snow radar over land and sea ice in the Arctic...

  3. IceBridge Accumulation Radar L1B Geolocated Radar Echo Strength Profiles

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains radar echograms taken over Greenland using the Center for Remote Sensing of Ice Sheets (CReSIS) Accumulation Radar instrument. The data were...

  4. Automotive Radar Sensors in Silicon Technologies

    CERN Document Server

    Jain, Vipul

    2013-01-01

    This book presents architectures and design techniques for mm-wave automotive radar transceivers. Several fully-integrated transceivers and receivers operating at 22-29 GHz and 77-81 GHz are demonstrated in both CMOS and SiGe BiCMOS technologies. Excellent performance is achieved indicating the suitability of silicon technologies for automotive radar sensors.  This book bridges an existing gap between information available on dependable system/architecture design and circuit design.  It provides the background of the field and detailed description of recent research and development of silicon-based radar sensors.  System-level requirements and circuit topologies for radar transceivers are described in detail. Holistic approaches towards designing radar sensors are validated with several examples of highly-integrated radar ICs in silicon technologies. Circuit techniques to design millimeter-wave circuits in silicon technologies are discussed in depth.  Describes concepts and fundamentals of automotive rada...

  5. The Comet Radar Explorer Mission

    Science.gov (United States)

    Asphaug, Erik; Belton, Mike; Bockelee-Morvan, Dominique; Chesley, Steve; Delbo, Marco; Farnham, Tony; Gim, Yonggyu; Grimm, Robert; Herique, Alain; Kofman, Wlodek; Oberst, Juergen; Orosei, Roberto; Piqueux, Sylvain; Plaut, Jeff; Robinson, Mark; Sava, Paul; Heggy, Essam; Kurth, William; Scheeres, Dan; Denevi, Brett; Turtle, Elizabeth; Weissman, Paul

    2014-11-01

    Missions to cometary nuclei have revealed major geological surprises: (1) Global scale layers - do these persist through to the interior? Are they a record of primary accretion? (2) Smooth regions - are they landslides originating on the surface? Are they cryovolcanic? (3) Pits - are they impact craters or sublimation pits, or rooted in the interior? Unambiguous answers to these and other questions can be obtained by high definition 3D radar reflection imaging (RRI) of internal structure. RRI can answer many of the great unknowns in planetary science: How do primitive bodies accrete? Are cometary nuclei mostly ice? What drives their spectacular activity and evolution? The Comet Radar Explorer (CORE) mission will image the detailed internal structure of the nucleus of 10P/Tempel 2. This ~16 x 8 x 7 km Jupiter Family Comet (JFC), or its parent body, originated in the outer planets region possibly millions of years before planet formation. CORE arrives post-perihelion and observes the comet’s waning activity from safe distance. Once the nucleus is largely dormant, the spacecraft enters a ~20-km dedicated Radar Mapping Orbit (RMO). The exacting design of the RRI experiment and the precise navigation of RMO will achieve a highly focused 3D radar reflection image of internal structure, to tens of meters resolution, and tomographic images of velocity and attenuation to hundreds of meters resolution, tied to the gravity model and shape. Visible imagers will produce maps of the surface morphology, albedo, color, texture, and photometric response, and images for navigation and shape determination. The cameras will also monitor the structure and dynamics of the coma, and its dusty jets, allowing their correlation in 3D with deep interior structures and surface features. Repeated global high-resolution thermal images will probe the near-surface layers heated by the Sun. Derived maps of thermal inertia will be correlated with the radar boundary response, and photometry and

  6. Radar range measurements in the atmosphere.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2013-02-01

    The earths atmosphere affects the velocity of propagation of microwave signals. This imparts a range error to radar range measurements that assume the typical simplistic model for propagation velocity. This range error is a function of atmospheric constituents, such as water vapor, as well as the geometry of the radar data collection, notably altitude and range. Models are presented for calculating atmospheric effects on radar range measurements, and compared against more elaborate atmospheric models.

  7. Reduction of Stationary Clutter in Radar,

    Science.gov (United States)

    1980-10-30

    coded passive interference (which consists of indivi- dual dipole packets dropped at certain intervals [2.30] and other stationary clutter present in...1958. 2.9. Cliquot, R. The band L radars of "type Orly". L’Onde Electrique , May 1961. 2.10. Decca Air Surveillance Radar DASR-! (Company catalogue...artificial obstacles in the form of a cloud of dipoles tuned 104 to the radar wavelength. As in the previous paragraph we will limit ourselves to a brief

  8. Spectrum Sharing Radar: Coexistence via Xampling

    OpenAIRE

    Cohen, Deborah; Mishra, Kumar Vijay; Eldar, Yonina C.

    2016-01-01

    This paper presents a spectrum sharing technology enabling interference-free operation of a surveillance radar and communication transmissions over a common spectrum. A cognitive radio receiver senses the spectrum using low sampling and processing rates. The radar is a cognitive system that employs a Xampling-based receiver and transmits in several narrow bands. Our main contribution is the alliance of two previous ideas, CRo and cognitive radar (CRr), and their adaptation to solve the spectr...

  9. Estimation filters for missile tracking with airborne laser

    Science.gov (United States)

    Clemons, T. M., III; Chang, K. C.

    2006-05-01

    This paper examines the use of various estimation filters on the highly non-linear problem of tracking a ballistic missile during boost phase from a moving airborne platform. The aircraft receives passive bearing data from an IR sensor and range data from a laser rangefinder. The aircraft is assumed to have a laser weapon system that requires highly accurate bearing information in order to keep the laser on target from a distance of 100-200 km. The tracking problem is made more difficult due to the changing acceleration of the missile, especially during stage drop-off and ignition. The Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), 'bootstrap' Particle Filter (PF), and the Gaussian Sum Particle Filter (GSPF) are explored using different values for sensor accuracy in bearing and range, and various degrees of uncertainty of the target and platform dynamic. Scenarios were created using Satellite Toolkit © for trajectories from a Southeast Asia launch with associated sensor observations. MATLAB © code modified from the ReBEL Toolkit © was used to run the EKF, UKF, PF, and GSPF sensor track filters. Mean Square Error results are given for tracking during the period when the target is in view of the radar and IR sensors. This paper provides insight into the accuracy requirements of the sensors and the suitability of the given estimators.

  10. Radar Image with Color as Height, Hariharalaya, Cambodia

    Science.gov (United States)

    2002-01-01

    Hariharalaya, the ancient 9th Century A.D. capitol of the Khmer in Cambodia, is shown in the upper center portion of this NASA Airborne Synthetic Aperture Radar (AIRSAR) image. The image was acquired during the 1996 PACRIM mission with AIRSAR operating in the TOPSAR mode. At the center of the image is the terraced sandstone temple mountain of the King Indravarman, the Bakong. The smaller enclosed rectangular feature just to the north is Preah Ko. Further to the south are more rectangular features, temples and water reservoirs attributed to other kings in the earlier part of the 9th Century A.D. and maybe even earlier. Just visible at the top on the image is a long linear feature that forms the southern border of the immense water reservoir, at the center of which is the Lolei temple. The city was the first capitol of the Khmer after the 802 A.D. ceremony consecrating the king as 'Devaraja'. This usually translated as 'god who was king' or 'king who was god'. In the next century, the center of power shifted to the northwest, to the area known today as Angkor.Thus this early capital is unique both in being the first after the historical 'founding' of the Khmer Empire, and for being inhabited for a relatively short time. Although kings returned from Angkor in the 11th and 12th Centuries A.D. to build the temple known as the Lolei and to construct the tower in the center of Bakong, the city of Hariharalaya remained on the perimeter of royal power. It was revered, however, as part of a longstanding and important custom of ancestral veneration. This manifested itself in a complex set of rituals honoring one's forebears--also ensuring legitimacy for one's claim to the throne. So behind this seemingly simple patterning of rectangles on the radar image lies many layers of history, ritual and meaning for the Khmer people, past and present.Image dimensions are approximately 6 by 4.8 kilometers (3.7 by 3 miles) with a pixel spacing of 5 meters (16.4 feet). North is at top

  11. Radar reflection off extensive air showers

    Directory of Open Access Journals (Sweden)

    Werner F.

    2013-06-01

    Full Text Available We investigate the possibility of detecting extensive air showers by the radar technique. Considering a bistatic radar system and different shower geometries, we simulate reflection of radio waves off the static plasma produced by the shower in the air. Using the Thomson cross-section for radio wave reflection, we obtain the time evolution of the signal received by the antennas. The frequency upshift of the radar echo and the power received are studied to verify the feasibility of the radar detection technique.

  12. Resonance and aspect matched adaptive radar (RAMAR)

    CERN Document Server

    Barrett, Terence William

    2012-01-01

    The book describes a new form of radar for which the target response is frequency, i.e., resonance-dependent. The book provides both prototype designs and empirical results collected from a variety of targets. The new form of radar, called RAMAR (Resonance and Aspect Matched Adaptive Radar) advances radar - mere ranging and detection - to the level of RF spectroscopy, and permits an advance of spectroscopic methods from optical, through infra-red and into the RF spectral range. The book will describe how a target's response can be a function of frequency components in the transmitted signal's

  13. Robust Sparse Sensing Using Weather Radar

    Science.gov (United States)

    Mishra, K. V.; Kruger, A.; Krajewski, W. F.; Xu, W.

    2014-12-01

    The ability of a weather radar to detect weak echoes is limited by the presence of noise or unwanted echoes. Some of these unwanted signals originate externally to the radar system, such as cosmic noise, radome reflections, interference from co-located radars, and power transmission lines. The internal source of noise in microwave radar receiver is mainly thermal. The thermal noise from various microwave devices in the radar receiver tends to lower the signal-to-noise ratio, thereby masking the weaker signals. Recently, the compressed sensing (CS) technique has emerged as a novel signal sampling paradigm that allows perfect reconstruction of signals sampled at frequencies lower than the Nyquist rate. Many radar and remote sensing applications require efficient and rapid data acquisition. The application of CS to weather radars may allow for faster target update rates without compromising the accuracy of target information. In our previous work, we demonstrated recovery of an entire precipitation scene from its compressed-sensed version by using the matrix completion approach. In this study, we characterize the performance of such a CS-based weather radar in the presence of additive noise. We use a signal model where the precipitation signals form a low-rank matrix that is corrupted with (bounded) noise. Using recent advances in algorithms for matrix completion from few noisy observations, we reconstruct the precipitation scene with reasonable accuracy. We test and demonstrate our approach using the data collected by Iowa X-band Polarimetric (XPOL) weather radars.

  14. Ground Penetrating Radar : Ultra-wideband radars for improvised explosive devices and landmine detection

    NARCIS (Netherlands)

    Yarovoy, A.

    2008-01-01

    For last two decades Ultra-Wideband Ground Penetrating Radars seemed to be a useful tool for detection and classification of landmines and improvised explosive devices (IEDs). However limitations of radar technology considerably limited operational use of these radars. Recent research at TU Delft

  15. Radar Spectrum Engineering and Management (Ingenierie et gestion du spectre radar)

    Science.gov (United States)

    2017-04-01

    industry, and academic experts in various facets of radar technology is needed to address the spectrum problems facing current (legacy) and future radar...Radar Applications”, IEEE International RF and Microwave Conference 2013, pp. 258-262, Penang, Malaysia , 9-11 December 2013. [88] A.A. Salah, R.S.A

  16. Radar network communication through sensing of frequency hopping

    Science.gov (United States)

    Dowla, Farid; Nekoogar, Faranak

    2013-05-28

    In one embodiment, a radar communication system includes a plurality of radars having a communication range and being capable of operating at a sensing frequency and a reporting frequency, wherein the reporting frequency is different than the sensing frequency, each radar is adapted for operating at the sensing frequency until an event is detected, each radar in the plurality of radars has an identification/location frequency for reporting information different from the sensing frequency, a first radar of the radars which senses the event sends a reporting frequency corresponding to its identification/location frequency when the event is detected, and all other radars in the plurality of radars switch their reporting frequencies to match the reporting frequency of the first radar upon detecting the reporting frequency switch of a radar within the communication range. In another embodiment, a method is presented for communicating information in a radar system.

  17. Airborne Multi-Gas Sensor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Mesa Photonics has developed laser-based gas sensor technology compatible with UAV deployment. Our Airborne MUlti-Gas Sensor (AMUGS) technology is based upon...

  18. Airborne radioactive contamination following aerosol ventilation studies

    International Nuclear Information System (INIS)

    Mackie, A.; Hart, G.C.; Ibbett, D.A.; Whitehead, R.J.S.

    1994-01-01

    Lung aerosol ventilation studies may be accompanied by airborne contamination, with subsequent surface contamination. Airborne contamination has been measured prior to, during and following 59 consecutive 99 Tc m -diethylenetriamine pentaacetate (DTPA) aerosol studies using a personal air sampler. Airborne contamination ranging between 0 and 20 330 kBq m -3 has been measured. Airborne contamination increases with degree of patient breathing difficulty. The effective dose equivalent (EDE) to staff from ingested activity has been calculated to be 0.3 μSv per study. This figure is supported by data from gamma camera images of a contaminated staff member. However, surface contamination measurements reveal that 60% of studies exceed maximum permissible contamination limits for the hands; 16% of studies exceed limits for controlled area surfaces. (author)

  19. Airborne Laser (ABL): Issues for Congress

    National Research Council Canada - National Science Library

    Bolkcom, Christopher; Hildreth, Steven A

    2007-01-01

    Funding for the Airborne Laser (ABL) program began in FY1994, but the technologies supporting the ABL effort has evolved over 25 years of research and development concerning laser power concepts, pointing and tracking, and adaptive optics...

  20. Airborne Multi-Gas Sensor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Mesa Photonics proposes to develop an Airborne Multi-Gas Sensor (AMUGS) based upon two-tone, frequency modulation spectroscopy (TT-FMS). Mesa Photonics has developed...

  1. Miniaturized Airborne Imaging Central Server System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a miniaturized airborne imaging central server system (MAICSS). MAICSS is designed as a high-performance-computer-based electronic backend that...

  2. Miniaturized Airborne Imaging Central Server System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a miniaturized airborne imaging central server system (MAICSS). MAICSS is designed as a high-performance computer-based electronic backend that...

  3. Regenerable Lunar Airborne Dust Filter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Effective methods are needed to control pervasive Lunar Dust within spacecraft and surface habitations. Once inside, airborne transmission is the primary mode of...

  4. Voxel inversion of airborne EM data

    DEFF Research Database (Denmark)

    Fiandaca, Gianluca G.; Auken, Esben; Christiansen, Anders Vest C A.V.C.

    2013-01-01

    of prior information. Inversion of geophysical data usually refers to a model space being linked to the actual observation points. For airborne surveys the spatial discretization of the model space reflects the flight lines. Often airborne surveys are carried out in areas where other ground-based...... geophysical data are available. The model space of geophysical inversions is usually referred to the positions of the measurements, and ground-based model positions do not generally coincide with the airborne model positions. Consequently, a model space based on the measuring points is not well suited...... for jointly inverting airborne and ground-based geophysical data. Furthermore, geological and groundwater models most often refer to a regular voxel grid not correlated to the geophysical model space, and incorporating the geophysical data into the geological/hydrological modelling grids is problematic. We...

  5. POLARIS: ESA's airborne ice sounding radar front-end design, performance assessment and first results

    DEFF Research Database (Denmark)

    Hernández, Carlos Cilla; Krozer, Viktor; Vidkjær, Jens

    2009-01-01

    B noise figure, 160 ns receiver recovery time and -46 dBc 3rd order IMD products. The system comprises also, a digital front-end, a digital signal generator, a microstrip antenna array and a control unit. All the subsystems were integrated, certified and functionally tested, and in May 2008 a successful...

  6. 77 FR 21834 - Airborne Radar Altimeter Equipment (For Air Carrier Aircraft)

    Science.gov (United States)

    2012-04-11

    ... Air Carrier Aircraft). The effect of the cancelled TSO will result in no new TSO-C67 design or..., advertising, or selling TSO-C67 compliant equipment. Therefore, given the obsolescence of the equipment, and...

  7. 77 FR 3323 - Airborne Radar Altimeter Equipment (For Air Carrier Aircraft)

    Science.gov (United States)

    2012-01-23

    ... Equipment (For Air Carrier Aircraft). The effect of the cancelled TSO will result in no new TSO-C67 design... manufacturers currently manufacturing, advertising, or selling TSO-C67 compliant equipment. Therefore, given the...

  8. Determining Snow Depth Using Airborne Multi-Pass Interferometric Synthetic Aperture Radar

    Science.gov (United States)

    2013-09-01

    Then, in regions without surface reports, SSMI /S algorithms are used to detect snow. If no snow was previously detected, a value of 0.1m of snow...be representative of the region that SNODEP is trying to describe. To make up for this poor coverage of in- situ observations the SSMIS passive...microwave satellite is used to determine the snow depth everywhere else. SSMIS does this by using a correlation coefficient between the microwave

  9. Design and performance Assessment of an Airborne Ice Sounding Radar Front-End

    DEFF Research Database (Denmark)

    Hernández, Carlos Cilla; Krozer, Viktor; Vidkjær, Jens

    2008-01-01

    -phase and out-of-phase power dividers with a relative bandwidth of 20% and more than 75W CW power handling, high power SPDT PIN switch with 90W CW power handling and a 70W CW High efficiency LDMOS power amplifier with ≫60% power-added efficiency. The system comprises also a digital signal generator, a digital...

  10. Airborne Warning and Control Radar Career Ladder, AFSC 328X2.

    Science.gov (United States)

    1984-11-01

    ATC/TTQL 2 1 HQ ATC/TTY 21 H{Q TAC/DOT 11 HQ TAC/DPAT 3 3 HQ TAC/DPLATC 1 1 *HQ USAF/LEYM 1 1 HQ USAF/ MPPT 1 1 HQ USAFE/DPAT 3 3 HQ USAFE/DPATC 1 1...AND ANALOG-TO-DIGITAL CONVERTERS 86 95 CABLE FABRICATION 60 10 INPUT/ OUTPUT (PERIPHERAL) DEVICES 83 62 PHOTO SENSITIVE DEVICES 10 10 COMPUTERS...1404 PERFORM IFF RACK TURN-OFF PROCEDURES 100 S1413 PERFORM MANUAL TROUBLE ANALYSIS OF INTERROGATOR SET UNITS BY VOLTAGE CHECKS 100 1403 PERFORM

  11. Full Chain Benchmarking for Open Architecture Airborne ISR Systems: A Case Study for GMTI Radar Applications

    Science.gov (United States)

    2015-09-15

    complexity has led to pronounced system lifecycle challenges, including the constant threat of technology obsolescence and unsustainable maintenance...significant issue when it comes to the acquisition and sustainment of systems throughout their lifecycle . At the same time, recent developments in...handheld and desktop platforms have led to increased programmability through maturing heterogeneous application programming interfaces ( APIs ) and

  12. Research Progress of Space-Time Adaptive Detection for Airborne Radar

    Directory of Open Access Journals (Sweden)

    Wang Yong-liang

    2014-04-01

    Full Text Available Compared with Space-Time Adaptive Processing (STAP, Space-Time Adaptive Detection (STAD employs the data in the cell under test and those in the training to form reasonable detection statistics and consequently decides whether the target exists or not. The STAD has concise processing procedure and flexible design. Furthermore, the detection statistics usually possess the Constant False Alarm Rate (CFAR property, and hence it needs no additional CFAR processing. More importantly, the STAD usually exhibits improved detection performance than that of the conventional processing, which first suppresses the clutter then adopts other detection strategy. In this paper, we first summarize the key strongpoint of the STAD, then make a classification for the STAD, and finally give some future research tracks.

  13. P-sounder: an airborne P-band ice sounding radar

    DEFF Research Database (Denmark)

    Dall, Jørgen; Skou, Niels; Kusk, Anders

    2007-01-01

    is to test new ice sounding techniques, e.g. polarimetry, synthetic aperture processing, and coherent clutter suppression. A system analysis involving ice scattering models confirms that it is feasible to detect the bedrock through 4 km of ice and to detect deep ice layers. The ice sounder design features...

  14. King George Island ice cap geometry updated with airborne GPR measurements

    Directory of Open Access Journals (Sweden)

    M. Rückamp

    2012-07-01

    Full Text Available Ice geometry is a mandatory requirement for numerical modelling purposes. In this paper we present a consistent data set for the ice thickness, the bedrock topography and the ice surface topography of the King George Island ice cap (Arctowski icefield and the adjacent central part. The new data set is composed of ground based and airborne ground penetrating radar (GPR and differential GPS (DGPS measurements, obtained during several field campaigns. Blindow et al. (2010 already provided a comprehensive overview of the ground based measurements carried out in the safely accessible area of the ice cap. The updated data set incorporates airborne measurements in the heavily crevassed coastal areas. Therefore, in this paper special attention is paid to the airborne measurements by addressing the instrument used, survey procedure, and data processing in more detail. In particular, the inclusion of airborne GPR measurements with the 30 MHz BGR-P30-System developed at the Institute of Geophysics (University of Münster completes the picture of the ice geometry substantially. The compiled digital elevation model of the bedrock shows a rough, highly variable topography with pronounced valleys, ridges, and troughs. Mean ice thickness is 240 ± 6 m, with a maximum value of 422 ± 10 m in the surveyed area. Noticeable are bounded areas in the bedrock topography below sea level where marine based ice exists. The provided data set is required as a basis for future monitoring attempts or as input for numerical modelling experiments. The data set is available from the PANGAEA database at http://dx.doi.org/10.1594/PANGAEA.770567.

  15. Challenges and Opportunities of Airborne Metagenomics

    KAUST Repository

    Behzad, H.

    2015-05-06

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles.

  16. Airborne infections and modern building technology

    Energy Technology Data Exchange (ETDEWEB)

    LaForce, F.M.

    1986-01-01

    Over the last 30 yr an increased appreciation of the importance of airborne infection has evolved. The concept of droplet nuclei, infectious particles from 0.5 to 3 ..mu.. which stay suspended in air for long periods of time, has been accepted as an important determinant of infectivity. Important airborne pathogens in modern buildings include legionella pneumophila, Aspergillus sp., thermophilic actinomycetes, Mycobacterium tuberculosis, measles, varicella and rubella. Perhaps, the most important microbiologic threat to most buildings is L. pneumophila. This organism can multiply in water cooling systems and contaminate effluent air which can be drawn into a building and efficiently circulated throughout by existing ventilation systems. Hospitals are a special problem because of the concentration of immunosuppressed patients who are uniquely susceptible to airborne diseases such as aspergillosis, and the likelihood that patients ill from diseases that can be spread via the airborne route will be concentrated. Humidifiers are yet another problem and have been shown to be important in several outbreaks of allergic alveolitis and legionellosis. Control of airborne infections is largely an effort at identifying and controlling reservoirs of infection. This includes regular biocide treatment of cooling towers and evaporative condensers and identification and isolation of patients with diseases that may be spread via the airborne route.

  17. A Parallel, High-Fidelity Radar Model

    Science.gov (United States)

    Horsley, M.; Fasenfest, B.

    2010-09-01

    Accurate modeling of Space Surveillance sensors is necessary for a variety of applications. Accurate models can be used to perform trade studies on sensor designs, locations, and scheduling. In addition, they can be used to predict system-level performance of the Space Surveillance Network to a collision or satellite break-up event. A high fidelity physics-based radar simulator has been developed for Space Surveillance applications. This simulator is designed in a modular fashion, where each module describes a particular physical process or radar function (radio wave propagation & scattering, waveform generation, noise sources, etc.) involved in simulating the radar and its environment. For each of these modules, multiple versions are available in order to meet the end-users needs and requirements. For instance, the radar simulator supports different atmospheric models in order to facilitate different methods of simulating refraction of the radar beam. The radar model also has the capability to use highly accurate radar cross sections generated by the method of moments, accelerated by the fast multipole method. To accelerate this computationally expensive model, it is parallelized using MPI. As a testing framework for the radar model, it is incorporated into the Testbed Environment for Space Situational Awareness (TESSA). TESSA is based on a flexible, scalable architecture, designed to exploit high-performance computing resources and allow physics-based simulation of the SSA enterprise. In addition to the radar models, TESSA includes hydrodynamic models of satellite intercept and debris generation, orbital propagation algorithms, optical brightness calculations, optical system models, object detection algorithms, orbit determination algorithms, simulation analysis and visualization tools. Within this framework, observations and tracks generated by the new radar model are compared to results from a phenomenological radar model. In particular, the new model will be

  18. Differential Absorption Radar: An Emerging Technology for Remote Sounding of Water Vapor Within Clouds

    Science.gov (United States)

    Lebsock, M. D.; Millan Valle, L. F.; Cooper, K. B.; Siles, J.; Monje, R.

    2017-12-01

    We present the results of our efforts to build and demonstrate the first Differential Absorption Radar (DAR), which will provide unique capabilities to remotely sound for water vapor within cloudy and precipitating atmospheres. The approach leverages multiple radar channels located near the 183 GHz water vapor absorption feature to simultaneously derive microphysical and water vapor profiles. The DAR technique has the potential to neatly complement existing water vapor sounding techniques such as infrared and microwave sounding and GPS radio occultation. These precisions rival those of existing water vapor remote sensing instruments. The approach works best from above clouds because the water vapor burden and line width increases towards the Earth surface allowing increased sampling from the top-down compared with bottom-up. From an airborne or satellite platform channels can be selected that target either upper-tropospheric or lower-tropospheric clouds. Our theoretical studies suggest that the water vapor concentration can be retrieved to within 1-3 gm-3 and the column integrated water vapor can be retrieved to within 1 kgm-2. The high-frequency radar is only recently enabled by technological advances that have allowed us to demonstrate 0.5 W of continuous power near 183 GHz. We are currently developing an airborne DAR using a Frequency Modulated Continuous Wave (FMCW) architecture with a quasi-optical duplexer providing 80 dB of transmit/receive isolation. A prototype of this instrument recently made the first ever range resolved DAR measurements of humidity out to several hundred meters during a light rain event at JPL. The spectral dependence of the attenuation was in excellent agreement with the predicted attenuation based on nearby weather stations, proving for the first time the feasibility of the concept. A major impediment to implementing DAR is the international regulation of radio-frequency transmissions below 300 GHz. The major roadblocks and potential

  19. Array-Based Ultrawideband through-Wall Radar: Prediction and Assessment of Real Radar Abilities

    Directory of Open Access Journals (Sweden)

    Nadia Maaref

    2013-01-01

    Full Text Available This paper deals with a new through-the-wall (TTW radar demonstrator for the detection and the localisation of people in a room (in a noncooperative way with the radar situated outside but in the vicinity of the first wall. After modelling the propagation through various walls and quantifying the backscattering by the human body, an analysis of the technical considerations which aims at defining the radar design is presented. Finally, an ultrawideband (UWB frequency modulated continuous wave (FMCW radar is proposed, designed, and implemented. Some representative trials show that this radar is able to localise and track moving people behind a wall in real time.

  20. GPM Ground Validation Cloud Radar System (CRS) OLYMPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Cloud Radar System (CRS) OLYMPEX dataset provides radar reflectivity and Doppler velocity data collected during the Olympic Mountain...