WorldWideScience

Sample records for single-particle density matrix

  1. Single-particle density matrix of liquid 4He

    International Nuclear Information System (INIS)

    Vakarchuk, I.A.

    2008-01-01

    The density single-particle matrix in the coordinate notation was calculated based on the expression for the interacting Bose-particle N system density matrix. Under the low temperatures the mentioned matrix in the first approximation enables to reproduce the Bogoliubov theory results. In the classical terms the mentioned theory enables to reproduce the results of the theory of the classical fluids in the approximation of the chaotic phases. On the basis of the density single-particle matrix one managed to obtain the function of the pulse distribution of the particles, the Bose-liquid average kinetic energy, and to study the Bose-Einstein condensation phenomenon [ru

  2. Single-particle spectral density of the Hubbard model

    NARCIS (Netherlands)

    Mehlig, B.; Eskes, H.; Hayn, R.; Meinders, M.B.J.

    1995-01-01

    We calculate the single-particle spectral function for the Hubbard model within the framework of a projection technique equivalent to the two-pole approximation. We show that the two-pole approximation can be well understood as an average characterization of the upper and the lower Hubbard bands,

  3. SINGLE-PARTICLE SPECTRAL DENSITY OF THE HUBBARD-MODEL

    NARCIS (Netherlands)

    MEHLIG, B; ESKES, H; HAYN, R; MEINDERS, MBJ

    1995-01-01

    We calculate the single-particle spectral function for the Hubbard model within the framework of a projection technique equivalent to the two-pole approximation. We show that the two-pole approximation can be well understood as an average characterization of the upper and the lower Hubbard bands,

  4. Pairing in the BCS and LN approximations using continuum single particle level density

    Energy Technology Data Exchange (ETDEWEB)

    Id Betan, R.M., E-mail: idbetan@ifir-conicet.gov.ar [Instituto de Física Rosario (CONICET-UNR), Bv. 27 de Febrero 210 bis, S2000EZP Rosario (Argentina); Facultad de Ciencias Exactas, Ingeniería y Agrimensura (UNR), Av. Pellegrini 250, S2000BTP Rosario (Argentina); Instituto de Estudios Nucleares y Radiaciones Ionizantes (UNR), Riobamba y Berutti, S2000EKA Rosario (Argentina); Repetto, C.E. [Instituto de Física Rosario (CONICET-UNR), Bv. 27 de Febrero 210 bis, S2000EZP Rosario (Argentina); Facultad de Ciencias Exactas, Ingeniería y Agrimensura (UNR), Av. Pellegrini 250, S2000BTP Rosario (Argentina)

    2017-04-15

    Understanding the properties of drip line nuclei requires to take into account the correlations with the continuum spectrum of energy of the system. This paper has the purpose to show that the continuum single particle level density is a convenient way to consider the pairing correlation in the continuum. Isospin mean-field and isospin pairing strength are used to find the Bardeen–Cooper–Schrieffer (BCS) and Lipkin–Nogami (LN) approximate solutions of the pairing Hamiltonian. Several physical properties of the whole chain of the Tin isotope, as gap parameter, Fermi level, binding energy, and one- and two-neutron separation energies, were calculated and compared with other methods and with experimental data when they exist. It is shown that the use of the continuum single particle level density is an economical way to include explicitly the correlations with the continuum spectrum of energy in large scale mass calculation. It is also shown that the computed properties are in good agreement with experimental data and with more sophisticated treatment of the pairing interaction.

  5. Stereoscopy of dust density waves under microgravity: Velocity distributions and phase-resolved single-particle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Himpel, Michael, E-mail: himpel@physik.uni-greifswald.de; Killer, Carsten; Melzer, André [Institute of Physics, Ernst-Moritz-Arndt-University, 17489 Greifswald (Germany); Bockwoldt, Tim; Piel, Alexander [IEAP, Christian-Albrechts-Universität Kiel, D-24098 Kiel (Germany); Ole Menzel, Kristoffer [ABB Switzerland Ltd, Corporate Research Center, 5405 Dättwil (Switzerland)

    2014-03-15

    Experiments on dust-density waves have been performed in dusty plasmas under the microgravity conditions of parabolic flights. Three-dimensional measurements of a dust density wave on a single particle level are presented. The dust particles have been tracked for many oscillation periods. A Hilbert analysis is applied to obtain trajectory parameters such as oscillation amplitude and three-dimensional velocity amplitude. While the transverse motion is found to be thermal, the velocity distribution in wave propagation direction can be explained by harmonic oscillations with added Gaussian (thermal) noise. Additionally, it is shown that the wave properties can be reconstructed by means of a pseudo-stroboscopic approach. Finally, the energy dissipation mechanism from the kinetic oscillation energy to thermal motion is discussed and presented using phase-resolved analysis.

  6. Single Particle Entropy in Heated Nuclei

    International Nuclear Information System (INIS)

    Guttormsen, M.; Chankova, R.; Hjorth-Jensen, M.; Rekstad, J.; Siem, S.; Sunde, A. C.; Syed, N. U. H.; Agvaanluvsan, U.; Schiller, A.; Voinov, A.

    2006-01-01

    The thermal motion of single particles represents the largest contribution to level density (or entropy) in atomic nuclei. The concept of single particle entropy is presented and shown to be an approximate extensive (additive) quantity for mid-shell nuclei. A few applications of single particle entropy are demonstrated

  7. Evaluation of Aerosol Mixing State Classes in the GISS Modele-matrix Climate Model Using Single-particle Mass Spectrometry Measurements

    Science.gov (United States)

    Bauer, Susanne E.; Ault, Andrew; Prather, Kimberly A.

    2013-01-01

    Aerosol particles in the atmosphere are composed of multiple chemical species. The aerosol mixing state, which describes how chemical species are mixed at the single-particle level, provides critical information on microphysical characteristics that determine the interaction of aerosols with the climate system. The evaluation of mixing state has become the next challenge. This study uses aerosol time-of-flight mass spectrometry (ATOFMS) data and compares the results to those of the Goddard Institute for Space Studies modelE-MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) model, a global climate model that includes a detailed aerosol microphysical scheme. We use data from field campaigns that examine a variety of air mass regimens (urban, rural, and maritime). At all locations, polluted areas in California (Riverside, La Jolla, and Long Beach), a remote location in the Sierra Nevada Mountains (Sugar Pine) and observations from Jeju (South Korea), the majority of aerosol species are internally mixed. Coarse aerosol particles, those above 1 micron, are typically aged, such as coated dust or reacted sea-salt particles. Particles below 1 micron contain large fractions of organic material, internally-mixed with sulfate and black carbon, and few external mixtures. We conclude that observations taken over multiple weeks characterize typical air mass types at a given location well; however, due to the instrumentation, we could not evaluate mass budgets. These results represent the first detailed comparison of single-particle mixing states in a global climate model with real-time single-particle mass spectrometry data, an important step in improving the representation of mixing state in global climate models.

  8. The single-particle density of states, bound states, phase-shift flip, and a resonance in the presence of an Aharonov-Bohm potential

    International Nuclear Information System (INIS)

    Moroz, A.

    1994-01-01

    Both the nonrelativistic scattering and the spectrum in the presence of the Aharonov-Bohm potential are analyzed, and the single-particle density of states for different self-adjoint extensions is calculated, which is shown to be a symmetric and periodic function of the flux depending only on the distance from the nearest integer. The Aharonov-Casher theorem on the number of zero modes is corrected for the singular field configuration. The Hall resistivity is calculated in the dilute vortex limit. The magnetic moment coupling and not the spin is shown to be the primary source for the phase-shift flip that may occur even in its absence. The total energy of the system consisting of particles and field is discussed. (author) 65 refs.; 5 figs.; 1 tab

  9. Decay of autoionizing states in time-dependent density functional and reduced density matrix functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, Varun; Brics, Martins; Bauer, Dieter [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany)

    2013-07-01

    Autoionizing states are inaccessible to time-dependent density functional theory (TDDFT) using known, adiabatic Kohn-Sham (KS) potentials. We determine the exact KS potential for a numerically exactly solvable model Helium atom interacting with a laser field that is populating an autoionizing state. The exact single-particle density of the population in the autoionizing state corresponds to that of the energetically lowest quasi-stationary state in the exact KS potential. We describe how this exact potential controls the decay by a barrier whose height and width allows for the density to tunnel out and decay with the same rate as in the ab initio time-dependent Schroedinger calculation. However, devising a useful exchange-correlation potential that is capable of governing such a scenario in general and in more complex systems is hopeless. As an improvement over TDDFT, time-dependent reduced density matrix functional theory has been proposed. We are able to obtain for the above described autoionization process the exact time-dependent natural orbitals (i.e., the eigenfunctions of the exact, time-dependent one-body reduced density matrix) and study the potentials that appear in the equations of motion for the natural orbitals and the structure of the two-body density matrix expanded in them.

  10. Hartree--Fock density matrix equation

    International Nuclear Information System (INIS)

    Cohen, L.; Frishberg, C.

    1976-01-01

    An equation for the Hartree--Fock density matrix is discussed and the possibility of solving this equation directly for the density matrix instead of solving the Hartree--Fock equation for orbitals is considered. Toward that end the density matrix is expanded in a finite basis to obtain the matrix representative equation. The closed shell case is considered. Two numerical schemes are developed and applied to a number of examples. One example is given where the standard orbital method does not converge while the method presented here does

  11. "Depth-profiling" and quantitative characterization of the size, composition, shape, density, and morphology of fine particles with SPLAT, a single-particle mass spectrometer.

    Science.gov (United States)

    Zelenyuk, Alla; Yang, Juan; Song, Chen; Zaveri, Rahul A; Imre, Dan

    2008-01-31

    A significant fraction of atmospheric particles are composed of inorganic substances that are mixed or coated with organic compounds. The properties and behavior of these particles depend on the internal composition and arrangement of the specific constituents in each particle. It is important to know which constituent is on the surface and whether it covers the particle surface partially or entirely. We demonstrate here an instrument consisting of an ultrasensitive single-particle mass spectrometer coupled with a differential mobility analyzer to quantitatively measure in real time individual particle composition, size, density, and shape and to determine which substance is on the surface and whether it entirely covers the particle. For this study, we use NaCl particles completely coated with liquid dioctyl phthalate to generate spherical particles, and NaCl particles partially coated with pyrene, a solid poly aromatic hydrocarbon, to produce aspherical particles with pyrene nodules and an exposed NaCl core. We show that the behavior of the mass spectral intensities as a function of laser fluence yields information that can be used to determine the morphological distribution of individual particle constituents.

  12. Density matrix technique for groundstate calculations

    NARCIS (Netherlands)

    Croo de Jongh, du M.S.L.; Doumen, J.M.; Leeuwen, van J.M.J.

    1999-01-01

    The density matrix approach is a technique to calculate the lowest eigenvalue of a large matrix such as occurring in quantum mechanical systems. So far the method works very well for systems with a linear structure. The limitations for a planar structure, from critical correlations and from

  13. The real part of the refractive indices and effective densities for chemically segregated ambient aerosols in Guangzhou measured by a single-particle aerosol mass spectrometer

    Directory of Open Access Journals (Sweden)

    G. Zhang

    2016-03-01

    Full Text Available Knowledge on the microphysical properties of atmospheric aerosols is essential to better evaluate their radiative forcing. This paper presents an estimate of the real part of the refractive indices (n and effective densities (ρeff of chemically segregated atmospheric aerosols in Guangzhou, China. Vacuum aerodynamic diameter, chemical compositions, and light-scattering intensities of individual particles were simultaneously measured by a single-particle aerosol mass spectrometer (SPAMS during the fall of 2012. On the basis of Mie theory, n at a wavelength of 532 nm and ρeff were estimated for 17 particle types in four categories: organics (OC, elemental carbon (EC, internally mixed EC and OC (ECOC, and Metal-rich. The results indicate the presence of spherical or nearly spherical shapes for the majority of particle types, whose partial scattering cross-section versus sizes were well fitted to Mie theoretical modeling results. While sharing n in a narrow range (1.47–1.53, majority of particle types exhibited a wide range of ρeff (0.87–1.51 g cm−3. The OC group is associated with the lowest ρeff (0.87–1.07 g cm−3, and the Metal-rich group with the highest ones (1.29–1.51 g cm−3. It is noteworthy that a specific EC type exhibits a complex scattering curve versus size due to the presence of both compact and irregularly shaped particles. Overall, the results on the detailed relationship between physical and chemical properties benefits future research on the impact of aerosols on visibility and climate.

  14. Single particle ICP-MS as a tool for determining the stability of silver nanoparticles in aquatic matrixes under various environmental conditions, including treatment by ozonation.

    Science.gov (United States)

    Telgmann, Lena; Nguyen, Michael Thanh Khoa; Shen, Li; Yargeau, Viviane; Hintelmann, Holger; Metcalfe, Chris D

    2016-07-01

    Silver nanoparticles (AgNPs) are used in a large number of consumer products due to their antimicrobial and antifungal properties, and these materials may be discharged into municipal wastewater. Wastewater treatment, including advanced oxidation processes (AOPs), may modify the forms of silver in wastewater before they are discharged into surface waters. In addition, little is known about the changes in AgNPs that occur in natural waters under different environmental conditions. In this project, we utilized single particle ICP-MS (spICP-MS) and dynamic light scattering (DLS) analytical techniques to evaluate changes in the number and size of AgNPs in laboratory experiments with milliQ water under different environmental conditions, as well as during ozonation. Changes in the number and size of AgNPs determined by spICP-MS were evidence of altered stability of the nanoparticles. Increased rates of dissolution occurred under extremes of pH. Lower temperature decreased the rate of dissolution of AgNP relative to the dissolution in treatments at room temperature. The addition of chloride resulted in the loss of AgNPs from suspension due to agglomeration and precipitation. Ozonation led to a rapid decline in the number and size of AgNPs, as indicated by both spICP-MS and DLS analysis. An increase in the concentration of dissolved silver in the ozone treatments was evidence that changes in particle size were a result of oxidative dissolution of AgNPs to silver ion. Graphical abstract Single particle ICP-MS is used to evaluate dissolution of silver nanoparticles under different environmental conditions, including water treatment by ozonation.

  15. Alternative dimensional reduction via the density matrix

    Science.gov (United States)

    de Carvalho, C. A.; Cornwall, J. M.; da Silva, A. J.

    2001-07-01

    We give graphical rules, based on earlier work for the functional Schrödinger equation, for constructing the density matrix for scalar and gauge fields in equilibrium at finite temperature T. More useful is a dimensionally reduced effective action (DREA) constructed from the density matrix by further functional integration over the arguments of the density matrix coupled to a source. The DREA is an effective action in one less dimension which may be computed order by order in perturbation theory or by dressed-loop expansions; it encodes all thermal matrix elements. We term the DREA procedure alternative dimensional reduction, to distinguish it from the conventional dimensionally reduced field theory (DRFT) which applies at infinite T. The DREA is useful because it gives a dimensionally reduced theory usable at any T including infinity, where it yields the DRFT, and because it does not and cannot have certain spurious infinities which sometimes occur in the density matrix itself or the conventional DRFT; these come from ln T factors at infinite temperature. The DREA can be constructed to all orders (in principle) and the only regularizations needed are those which control the ultraviolet behavior of the zero-T theory. An example of spurious divergences in the DRFT occurs in d=2+1φ4 theory dimensionally reduced to d=2. We study this theory and show that the rules for the DREA replace these ``wrong'' divergences in physical parameters by calculable powers of ln T; we also compute the phase transition temperature of this φ4 theory in one-loop order. Our density-matrix construction is equivalent to a construction of the Landau-Ginzburg ``coarse-grained free energy'' from a microscopic Hamiltonian.

  16. Density Matrix Renormalization Group for Dummies

    OpenAIRE

    De Chiara, G.; Rizzi, M.; Rossini, D.; Montangero, S.

    2006-01-01

    We describe the Density Matrix Renormalization Group algorithms for time dependent and time independent Hamiltonians. This paper is a brief but comprehensive introduction to the subject for anyone willing to enter in the field or write the program source code from scratch.

  17. Corrections to the free-nucleon values of the single-particle matrix elements of the M1 and Gamow-Teller operators, from a comparison of shell-model predictions with sd-shell data

    International Nuclear Information System (INIS)

    Brown, B.A.; Wildenthal, B.H.

    1983-01-01

    The magnetic dipole moments of states in mirror pairs of the sd-shell nuclei and the strengths of the Gamow-Teller beta decays which connect them are compared with predictions based on mixed-configuration shell-model wave functions. From this analysis we extract the average effective values of the single-particle matrix elements of the l, s, and [Y/sup( 2 )xs]/sup( 1 ) components of the M1 and Gamow-Teller operators acting on nucleons in the 0d/sub 5/2/, 1s/sub 1/2/, and 0d/sub 3/2/ orbits. These results are compared with the recent calculations by Towner and Khanna of the corrections to the free-nucleon values of these matrix elements which arise from the effects of isobar currents, mesonic-exchange currents, and mixing with configurations outside the sd shell

  18. The probe rules in single particle tracking

    DEFF Research Database (Denmark)

    Clausen, Mathias P.; Lagerholm, B. Christoffer

    2011-01-01

    Single particle tracking (SPT) enables light microscopy at a sub-diffraction limited spatial resolution by a combination of imaging at low molecular labeling densities and computational image processing. SPT and related single molecule imaging techniques have found a rapidly expanded use within...

  19. Dual color single particle tracking via nanobodies

    International Nuclear Information System (INIS)

    Albrecht, David; Winterflood, Christian M; Ewers, Helge

    2015-01-01

    Single particle tracking is a powerful tool to investigate the function of biological molecules by following their motion in space. However, the simultaneous tracking of two different species of molecules is still difficult to realize without compromising the length or density of trajectories, the localization accuracy or the simplicity of the assay. Here, we demonstrate a simple dual color single particle tracking assay using small, bright, high-affinity labeling via nanobodies of accessible targets with widely available instrumentation. We furthermore apply a ratiometric step-size analysis method to visualize differences in apparent membrane viscosity. (paper)

  20. A single particle energies

    Energy Technology Data Exchange (ETDEWEB)

    Bodmer, A.R. [Illinois Univ., Chicago, IL (United States). Dept. of Physics]|[Argonne National Lab., IL (United States); Usmani, Q.N.; Sami, M. [Jamia Millia Islamia, New Delhi (India). Dept. of Physics

    1993-09-01

    We consider the binding energies of {Lambda} hypernuclei (HN), in particular the single-particle (s.p.) energy data, which have been obtained for a wide range of HN with mass numbers A {le} 89 and for orbital angular momenta {ell}{sub {Lambda}} {le} 4. We briefly review some of the relevant properties of A hypernuclei. These are nuclei {sub {Lambda}}{sup A}Z with baryon number A in which a single {Lambda} hyperon (baryon number = 1) is bound to an ordinary nucleus {sup A}Z consisting of A - 1 nucleons = Z protons + N neutrons. The {Lambda} hyperon is neutral, has spin 1/2, strangeness S = {minus}1, isospin I = O and a mass M{sub {Lambda}} = 1116 MeV/c{sup 2}. Although the {Lambda} interacts with a nucleon, its interaction is only about half as strong as that between two nucleons, and thus very roughly V{sub {Lambda}N} {approx} 0.5 V{sub NN}. As a result, the two-body {Lambda}N system is unbound, and the lightest bound HN is the three-body hypertriton {sub {Lambda}}{sup 3}H in which the {Lambda} is bound to a deuteron with the {Lambda}-d separation energy being only {approx} 0.1 MeV corresponding to an exponential tail of radius {approx} 15 fm! In strong interactions the strangeness S is of course conserved, and the {Lambda} is distinct from the nucleons. In a HN strangeness changes only in the weak decays of the {Lambda} which can decay either via ``free`` pionic decay {Lambda} {yields} N + {pi} or via induced decay {Lambda} + N {yields} N + N which is only possible in the presence of nucleons. Because of the small energy release the pionic decay is strongly suppressed in all but the lightest HN and the induced decay dominates. However, the weak decay lifetime {approx} 10{sup {minus}10}s is in fact close to the lifetime of a free {Lambda}. Since this is much longer than the strong interaction time {approx} 10{sup {minus}22}s we can ignore the weak interactions when considering the binding of HN, just as for ordinary nuclei.

  1. A single particle energies

    International Nuclear Information System (INIS)

    Bodmer, A.R.; Usmani, Q.N.; Sami, M.

    1993-01-01

    We consider the binding energies of Λ hypernuclei (HN), in particular the single-particle (s.p.) energy data, which have been obtained for a wide range of HN with mass numbers A ≤ 89 and for orbital angular momenta ell Λ ≤ 4. We briefly review some of the relevant properties of A hypernuclei. These are nuclei Λ A Z with baryon number A in which a single Λ hyperon (baryon number = 1) is bound to an ordinary nucleus A Z consisting of A - 1 nucleons = Z protons + N neutrons. The Λ hyperon is neutral, has spin 1/2, strangeness S = -1, isospin I = O and a mass M Λ = 1116 MeV/c 2 . Although the Λ interacts with a nucleon, its interaction is only about half as strong as that between two nucleons, and thus very roughly V ΛN ∼ 0.5 V NN . As a result, the two-body ΛN system is unbound, and the lightest bound HN is the three-body hypertriton Λ 3 H in which the Λ is bound to a deuteron with the Λ-d separation energy being only ∼ 0.1 MeV corresponding to an exponential tail of radius ∼ 15 fm exclamation point In strong interactions the strangeness S is of course conserved, and the Λ is distinct from the nucleons. In a HN strangeness changes only in the weak decays of the Λ which can decay either via ''free'' pionic decay Λ → N + π or via induced decay Λ + N → N + N which is only possible in the presence of nucleons. Because of the small energy release the pionic decay is strongly suppressed in all but the lightest HN and the induced decay dominates. However, the weak decay lifetime ∼ 10 -10 s is in fact close to the lifetime of a free Λ. Since this is much longer than the strong interaction time ∼ 10 -22 s we can ignore the weak interactions when considering the binding of HN, just as for ordinary nuclei

  2. Microorganism characterization by single particle mass spectrometry.

    Science.gov (United States)

    Russell, Scott C

    2009-01-01

    In recent years a major effort by several groups has been undertaken to identify bacteria by mass spectrometry at the single cell level. The intent of this review is to highlight the recent progress made in the application of single particle mass spectrometry to the analysis of microorganisms. A large portion of the review highlights improvements in the ionization and mass analysis of bio-aerosols, or particles that contain biologically relevant molecules such as peptides or proteins. While these are not direct applications to bacteria, the results have been central to a progression toward single cell mass spectrometry. Developments in single particle matrix-assisted laser desorption/ionization (MALDI) are summarized. Recent applications of aerosol laser desorption/ionization (LDI) to the analysis of single microorganisms are highlighted. Successful applications of off-line and on-the-fly aerosol MALDI to microorganism detection are discussed. Limitations to current approaches and necessary future achievements are also addressed. (c) 2009 Wiley Periodicals, Inc.

  3. A J matrix engine for density functional theory calculations

    International Nuclear Information System (INIS)

    White, C.A.; Head-Gordon, M.

    1996-01-01

    We introduce a new method for the formation of the J matrix (Coulomb interaction matrix) within a basis of Cartesian Gaussian functions, as needed in density functional theory and Hartree endash Fock calculations. By summing the density matrix into the underlying Gaussian integral formulas, we have developed a J matrix open-quote open-quote engine close-quote close-quote which forms the exact J matrix without explicitly forming the full set of two electron integral intermediates. Several precomputable quantities have been identified, substantially reducing the number of floating point operations and memory accesses needed in a J matrix calculation. Initial timings indicate a speedup of greater than four times for the (pp parallel pp) class of integrals with speedups increasing to over ten times for (ff parallel ff) integrals. copyright 1996 American Institute of Physics

  4. Self-consistent embedding of density-matrix renormalization group wavefunctions in a density functional environment.

    Science.gov (United States)

    Dresselhaus, Thomas; Neugebauer, Johannes; Knecht, Stefan; Keller, Sebastian; Ma, Yingjin; Reiher, Markus

    2015-01-28

    We present the first implementation of a density matrix renormalization group algorithm embedded in an environment described by density functional theory. The frozen density embedding scheme is used with a freeze-and-thaw strategy for a self-consistent polarization of the orbital-optimized wavefunction and the environmental densities with respect to each other.

  5. Evolution of single-particle structure of silicon isotopes

    Science.gov (United States)

    Bespalova, O. V.; Fedorov, N. A.; Klimochkina, A. A.; Markova, M. L.; Spasskaya, T. I.; Tretyakova, T. Yu.

    2018-01-01

    New data on proton and neutron single-particle energies E_{nlj} of Si isotopes with neutron number N from 12 to 28 as well as occupation probabilities N_{nlj} of single-particle states of stable isotopes 28, 30Si near the Fermi energy were obtained by the joint evaluation of the stripping and pick-up reaction data and excited state decay schemes of neighboring nuclei. The evaluated data indicate the following features of single-particle structure evolution: persistence of Z = 14 subshell closure with N increase, the new magicity of the number N = 16, and the conservation of the magic properties of the number N = 20 in Si isotopic chain. The features were described by the dispersive optical model. The calculation also predicts the weakening of N = 28 shell closure and demonstrates evolution of a bubble-like structure of the proton density distributions in neutron-rich Si isotopes.

  6. QUANTUM SIMULATION OF REACTION DYNAMICS BY DENSITY-MATRIX EVOLUTION

    NARCIS (Netherlands)

    BERENDSEN, HJC; MAVRI, J

    1993-01-01

    A density matrix evolution(DME) method to simulate the dynamics of quantum systems embedded in a classical environment is presented. The method is applicable when the quantum dynamical degrees of freedom can be described in a Hilbert space of limited dimensionality. The method is applied to the case

  7. Auxiliary Density Matrix Methods for Hartree-Fock Exchange Calculations.

    Science.gov (United States)

    Guidon, Manuel; Hutter, Jürg; VandeVondele, Joost

    2010-08-10

    The calculation of Hartree-Fock exchange (HFX) is computationally demanding for large systems described with high-quality basis sets. In this work, we show that excellent performance and good accuracy can nevertheless be obtained if an auxiliary density matrix is employed for the HFX calculation. Several schemes to derive an auxiliary density matrix from a high-quality density matrix are discussed. Key to the accuracy of the auxiliary density matrix methods (ADMM) is the use of a correction based on standard generalized gradient approximations for HFX. ADMM integrates seamlessly in existing HFX codes and, in particular, can be employed in linear scaling implementations. Demonstrating the performance of the method, the effect of HFX on the structure of liquid water is investigated in detail using Born-Oppenheimer molecular dynamics simulations (300 ps) of a system of 64 molecules. Representative for large systems are calculations on a solvated protein (Rubredoxin), for which ADMM outperforms the corresponding standard HFX implementation by approximately a factor 20.

  8. Magnesium Matrix Composite Foams—Density, Mechanical Properties, and Applications

    Directory of Open Access Journals (Sweden)

    Kyu Cho

    2012-07-01

    Full Text Available Potential of widespread industrial applications of magnesium has been realized in recent years. A variety of magnesium alloy matrix composites are now being studied for mechanical properties. Since magnesium is the lightest structural metal, it can replace aluminum in existing applications for further weight savings. This review presents an overview of hollow particle filled magnesium matrix syntactic composite foams. Fly ash cenospheres are the most commonly used hollow particles for such applications. Fly ash cenospheres primarily have alumino-silicate composition and contain a large number of trace elements, which makes it challenging to study the interfacial reactions and microstructure in these composites. Microstructures of commonly studied AZ and ZC series magnesium alloys and their syntactic foams are discussed. Although only a few studies are available on these materials because of the nascent stage of this field, a comparison with similar aluminum matrix syntactic foams has provided insight into the properties and weight saving potential of magnesium matrix composites. Analysis shows that the magnesium matrix syntactic foams have higher yield strength at the same level of density compared to most other metal matrix syntactic foams. The comparison can guide future work and set goals that need to be achieved through materials selection and processing method development.

  9. The tensor hypercontracted parametric reduced density matrix algorithm: coupled-cluster accuracy with O(r(4)) scaling.

    Science.gov (United States)

    Shenvi, Neil; van Aggelen, Helen; Yang, Yang; Yang, Weitao; Schwerdtfeger, Christine; Mazziotti, David

    2013-08-07

    Tensor hypercontraction is a method that allows the representation of a high-rank tensor as a product of lower-rank tensors. In this paper, we show how tensor hypercontraction can be applied to both the electron repulsion integral tensor and the two-particle excitation amplitudes used in the parametric 2-electron reduced density matrix (p2RDM) algorithm. Because only O(r) auxiliary functions are needed in both of these approximations, our overall algorithm can be shown to scale as O(r(4)), where r is the number of single-particle basis functions. We apply our algorithm to several small molecules, hydrogen chains, and alkanes to demonstrate its low formal scaling and practical utility. Provided we use enough auxiliary functions, we obtain accuracy similar to that of the standard p2RDM algorithm, somewhere between that of CCSD and CCSD(T).

  10. Estimating the spectrum of a density matrix with LOCC

    International Nuclear Information System (INIS)

    Ballester, Manuel A

    2006-01-01

    The problem of estimating the spectrum of a density matrix is considered. Other problems, such as bipartite pure state entanglement, can be reduced to spectrum estimation. A local operations and classical communication (LOCC) measurement strategy is shown which is asymptotically optimal. This means that, for a very large number of copies, it becomes unnecessary to perform collective measurements which should be more difficult to implement in practice

  11. Single-particle dispersion in compressible turbulence

    Science.gov (United States)

    Zhang, Qingqing; Xiao, Zuoli

    2018-04-01

    Single-particle dispersion statistics in compressible box turbulence are studied using direct numerical simulation. Focus is placed on the detailed discussion of effects of the particle Stokes number and turbulent Mach number, as well as the forcing type. When solenoidal forcing is adopted, it is found that the single-particle dispersion undergoes a transition from the ballistic regime at short times to the diffusive regime at long times, in agreement with Taylor's particle dispersion argument. The strongest dispersion of heavy particles is announced when the Stokes number is of order 1, which is similar to the scenario in incompressible turbulence. The dispersion tends to be suppressed as the Mach number increases. When hybrid solenoidal and compressive forcing at a ratio of 1/2 is employed, the flow field shows apparent anisotropic property, characterized by the appearance of large shock wave structures. Accordingly, the single-particle dispersion shows extremely different behavior from the solenoidal forcing case.

  12. Excitation energies from range-separated time-dependent density and density matrix functional theory.

    Science.gov (United States)

    Pernal, Katarzyna

    2012-05-14

    Time-dependent density functional theory (TD-DFT) in the adiabatic formulation exhibits known failures when applied to predicting excitation energies. One of them is the lack of the doubly excited configurations. On the other hand, the time-dependent theory based on a one-electron reduced density matrix functional (time-dependent density matrix functional theory, TD-DMFT) has proven accurate in determining single and double excitations of H(2) molecule if the exact functional is employed in the adiabatic approximation. We propose a new approach for computing excited state energies that relies on functionals of electron density and one-electron reduced density matrix, where the latter is applied in the long-range region of electron-electron interactions. A similar approach has been recently successfully employed in predicting ground state potential energy curves of diatomic molecules even in the dissociation limit, where static correlation effects are dominating. In the paper, a time-dependent functional theory based on the range-separation of electronic interaction operator is rigorously formulated. To turn the approach into a practical scheme the adiabatic approximation is proposed for the short- and long-range components of the coupling matrix present in the linear response equations. In the end, the problem of finding excitation energies is turned into an eigenproblem for a symmetric matrix. Assignment of obtained excitations is discussed and it is shown how to identify double excitations from the analysis of approximate transition density matrix elements. The proposed method used with the short-range local density approximation (srLDA) and the long-range Buijse-Baerends density matrix functional (lrBB) is applied to H(2) molecule (at equilibrium geometry and in the dissociation limit) and to Be atom. The method accounts for double excitations in the investigated systems but, unfortunately, the accuracy of some of them is poor. The quality of the other

  13. The density matrix renormalization group and nuclear structure

    Energy Technology Data Exchange (ETDEWEB)

    Pittel, S.; Thakur, B. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States); Sandulescu, N. [Institute of Physics and Nuclear Engineering, 76900 Bucharest (Romania)

    2007-12-15

    We briefly review the Density Matrix Renormalization Group (DMRG) method and its potential use in large-scale nuclear shell-model calculations. We propose the use of angular-momentum-conserving variant of the method (the JDMRG) and report the first test results of such an approach for the nucleus {sup 48}Cr The positive results of these calculations have motivated us to search for an even more efficient means of implementing the DMRG strategy and the status of these efforts is also described. (Author)

  14. Projection operator treatment of single particle resonances

    International Nuclear Information System (INIS)

    Lev, A.; Beres, W.P.

    1976-01-01

    A projection operator method is used to obtain the energy and width of a single particle resonance. The resonance energy is found without scanning. An example of the first g/sub 9/2/ neutron resonance in 40 Ca is given and compared with the traditional phase shift method. The results of both approaches are quite similar. 4 figures

  15. Density matrix embedding in an antisymmetrized geminal power bath

    International Nuclear Information System (INIS)

    Tsuchimochi, Takashi; Welborn, Matthew; Van Voorhis, Troy

    2015-01-01

    Density matrix embedding theory (DMET) has emerged as a powerful tool for performing wave function-in-wave function embedding for strongly correlated systems. In traditional DMET, an accurate calculation is performed on a small impurity embedded in a mean field bath. Here, we extend the original DMET equations to account for correlation in the bath via an antisymmetrized geminal power (AGP) wave function. The resulting formalism has a number of advantages. First, it allows one to properly treat the weak correlation limit of independent pairs, which DMET is unable to do with a mean-field bath. Second, it associates a size extensive correlation energy with a given density matrix (for the models tested), which AGP by itself is incapable of providing. Third, it provides a reasonable description of charge redistribution in strongly correlated but non-periodic systems. Thus, AGP-DMET appears to be a good starting point for describing electron correlation in molecules, which are aperiodic and possess both strong and weak electron correlation

  16. Correlation density matrices for one-dimensional quantum chains based on the density matrix renormalization group

    International Nuclear Information System (INIS)

    Muender, W; Weichselbaum, A; Holzner, A; Delft, Jan von; Henley, C L

    2010-01-01

    A useful concept for finding numerically the dominant correlations of a given ground state in an interacting quantum lattice system in an unbiased way is the correlation density matrix (CDM). For two disjoint, separated clusters, it is defined to be the density matrix of their union minus the direct product of their individual density matrices and contains all the correlations between the two clusters. We show how to extract from the CDM a survey of the relative strengths of the system's correlations in different symmetry sectors and the nature of their decay with distance (power law or exponential), as well as detailed information on the operators carrying long-range correlations and the spatial dependence of their correlation functions. To achieve this goal, we introduce a new method of analysing the CDM, termed the dominant operator basis (DOB) method, which identifies in an unbiased fashion a small set of operators for each cluster that serve as a basis for the dominant correlations of the system. We illustrate this method by analysing the CDM for a spinless extended Hubbard model that features a competition between charge density correlations and pairing correlations, and show that the DOB method successfully identifies their relative strengths and dominant correlators. To calculate the ground state of this model, we use the density matrix renormalization group, formulated in terms of a variational matrix product state (MPS) approach within which subsequent determination of the CDM is very straightforward. In an extended appendix, we give a detailed tutorial introduction to our variational MPS approach for ground state calculations for one-dimensional quantum chain models. We present in detail how MPSs overcome the problem of large Hilbert space dimensions in these models and describe all the techniques needed for handling them in practice.

  17. Reduced density matrix functional theory at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Baldsiefen, Tim

    2012-10-15

    Density functional theory (DFT) is highly successful in many fields of research. There are, however, areas in which its performance is rather limited. An important example is the description of thermodynamical variables of a quantum system in thermodynamical equilibrium. Although the finite-temperature version of DFT (FT-DFT) rests on a firm theoretical basis and is only one year younger than its brother, groundstate DFT, it has been successfully applied to only a few problems. Because FT-DFT, like DFT, is in principle exact, these shortcomings can be attributed to the difficulties of deriving valuable functionals for FT-DFT. In this thesis, we are going to present an alternative theoretical description of quantum systems in thermal equilibrium. It is based on the 1-reduced density matrix (1RDM) of the system, rather than on its density and will rather cumbersomly be called finite-temperature reduced density matrix functional theory (FT-RDMFT). Its zero-temperature counterpart (RDMFT) proved to be successful in several fields, formerly difficult to address via DFT. These fields include, for example, the calculation of dissociation energies or the calculation of the fundamental gap, also for Mott insulators. This success is mainly due to the fact that the 1RDM carries more directly accessible ''manybody'' information than the density alone, leading for example to an exact description of the kinetic energy functional. This sparks the hope that a description of thermodynamical systems employing the 1RDM via FT-RDMFT can yield an improvement over FT-DFT. Giving a short review of RDMFT and pointing out difficulties when describing spin-polarized systems initiates our work. We then lay the theoretical framework for FT-RDMFT by proving the required Hohenberg-Kohn-like theorems, investigating and determining the domain of FT-RDMFT functionals and by deriving several properties of the exact functional. Subsequently, we present a perturbative method to

  18. Reduced density matrix functional theory at finite temperature

    International Nuclear Information System (INIS)

    Baldsiefen, Tim

    2012-10-01

    Density functional theory (DFT) is highly successful in many fields of research. There are, however, areas in which its performance is rather limited. An important example is the description of thermodynamical variables of a quantum system in thermodynamical equilibrium. Although the finite-temperature version of DFT (FT-DFT) rests on a firm theoretical basis and is only one year younger than its brother, groundstate DFT, it has been successfully applied to only a few problems. Because FT-DFT, like DFT, is in principle exact, these shortcomings can be attributed to the difficulties of deriving valuable functionals for FT-DFT. In this thesis, we are going to present an alternative theoretical description of quantum systems in thermal equilibrium. It is based on the 1-reduced density matrix (1RDM) of the system, rather than on its density and will rather cumbersomly be called finite-temperature reduced density matrix functional theory (FT-RDMFT). Its zero-temperature counterpart (RDMFT) proved to be successful in several fields, formerly difficult to address via DFT. These fields include, for example, the calculation of dissociation energies or the calculation of the fundamental gap, also for Mott insulators. This success is mainly due to the fact that the 1RDM carries more directly accessible ''manybody'' information than the density alone, leading for example to an exact description of the kinetic energy functional. This sparks the hope that a description of thermodynamical systems employing the 1RDM via FT-RDMFT can yield an improvement over FT-DFT. Giving a short review of RDMFT and pointing out difficulties when describing spin-polarized systems initiates our work. We then lay the theoretical framework for FT-RDMFT by proving the required Hohenberg-Kohn-like theorems, investigating and determining the domain of FT-RDMFT functionals and by deriving several properties of the exact functional. Subsequently, we present a perturbative method to iteratively construct

  19. Many-particle nucleon-nucleon forces from nuclear single-particle states

    OpenAIRE

    Birbrair, B. L.; Ryazanov, V. I.

    1999-01-01

    As follows from the energies of single-particle states in ^{40}Ca, ^{90}Zr and ^{208}Pb nuclei the contribution of many-particle NN forces to the nuclear single-particle potential is at least the sum of repulsive and attractive parts resulting from three-particle and four-particle forces respectively. In addition the specified nucleon density distributions in the above nuclei are determined from both the 1 GeV proton-nucleus elastic scattering and the single-particle energies.

  20. Single-particle Schroedinger fluid. I. Formulation

    International Nuclear Information System (INIS)

    Kan, K.K.; Griffin, J.J.

    1976-01-01

    The problem of a single quantal particle moving in a time-dependent external potential well is formulated specifically to emphasize and develop the fluid dynamical aspects of the matter flow. This idealized problem, the single-particle Schroedinger fluid, is shown to exhibit already a remarkably rich variety of fluid dynamical features, including compressible flow and line vortices. It provides also a sufficient framework to encompass simultaneously various simplified fluidic models for nuclei which have earlier been postulated on an ad hoc basis, and to illuminate their underlying restrictions. Explicit solutions of the single-particle Schroedinger fluid problem are studied in the adiabatic limit for their mathematical and physical implications (especially regarding the collective kinetic energy). The basic generalizations for extension of the treatment to the many-body Schroedinger fluid are set forth

  1. Single particle closed orbits in Yukawa potential

    Science.gov (United States)

    Mukherjee, R.; Sounda, S.

    2018-02-01

    Orbit of a single particle moving under the Yukawa potential is studied and there exists precessing ellipse type orbits. The amount of precession can be tuned through the coupling parameter α. With a suitable choice of the coupling parameter; we get a closed bound orbit. In some cases few petals are observed which is possessed of a closed bound nature for suitably chosen coupling parameter. Threshold energy has also been calculated for bound orbits.

  2. Meaning and magnitude of the reduced density matrix cumulants

    Science.gov (United States)

    Hanauer, Matthias; Köhn, Andreas

    2012-06-01

    Within the framework of a generalized normal ordering (GNO), invented by Mukherjee [1], the reduced density matrix cumulants of the (multiconfigurational) reference wave function play a central role, as they arise directly from the contraction rules. The extended Wick theorem allows contractions of an arbitrary number of active annihilators and creators through a cumulant of corresponding rank. Because the cumulant rank truncates naturally only at the number of active spin orbitals, practical applications of the GNO concept seem to rely on a fast convergence of the cumulant series, allowing one to neglect cumulants with high rank. By computing cumulant norms for selected systems (and up to rank 16), we demonstrate that the cumulants decay approximately exponentially with increasing rank for single reference cases, while the convergence is generally slower for multireference cases. When strong left-right correlation is present as in the singlet state of a dissociated N2 molecule, even the cumulant with maximum rank, λ12 ≈ -1.5 for a CAS(6, 6), is not negligible per se. Besides reporting numerical results, the authors reformulate the theory of reduced density matrices and their cumulants using a notation that is particularly easy to handle, highlighting the close connection to conventional statistics. From this statistical approach, a simple interpretation of reduced density matrices and cumulants follows, according to which an n-body cumulant is a measure for the correlation between the occupation numbers of n spin orbitals. This interpretation is also valid for cumulants with ranks exceeding the number of electrons in the system.

  3. Single-Particle States in $^{133}$Sn

    CERN Multimedia

    Huck, A

    2002-01-01

    % IS338 \\\\ \\\\ It is suggested to investigate the $\\beta^- $-decay of $^{133}$In and $^{134}$In in order to determine the single-particle states in $^{133}$Sn, which are so far unknown and needed for the shell-model description of the region close to $^{132}$Sn. Large hyper-pure Ge-detectors will be used for the $\\gamma$-ray spectroscopy. In the experiments with $^{134}$In, delayed neutrons in coincidence with $\\gamma$-rays from excited states in $^{133}$Sn provide the opportunity for a very selective detection of the states in question.

  4. Single-particle excitations in disordered Weyl fluids

    Science.gov (United States)

    Pixley, J. H.; Chou, Yang-Zhi; Goswami, Pallab; Huse, David A.; Nandkishore, Rahul; Radzihovsky, Leo; Das Sarma, S.

    2017-06-01

    We theoretically study the single-particle Green function of a three-dimensional disordered Weyl semimetal using a combination of techniques. These include analytic T -matrix and renormalization group methods with complementary regimes of validity and an exact numerical approach based on the kernel polynomial technique. We show that at any nonzero disorder, Weyl excitations are not ballistic: They instead have a nonzero linewidth that for weak short-range disorder arises from nonperturbative resonant impurity scattering. Perturbative approaches find a quantum critical point between a semimetal and a metal at a finite disorder strength, but this transition is avoided due to nonperturbative effects. At moderate disorder strength and intermediate energies the avoided quantum critical point renormalizes the scaling of single-particle properties. In this regime we compute numerically the anomalous dimension of the fermion field and find η =0.13 ±0.04 , which agrees well with a renormalization group analysis (η =0.125 ). Our predictions can be directly tested by ARPES and STM measurements in samples dominated by neutral impurities.

  5. Nanoscale three-dimensional single particle tracking.

    Science.gov (United States)

    Dupont, Aurélie; Lamb, Don C

    2011-11-01

    Single particle tracking (SPT) in biological systems is a quickly growing field. Many new technologies are being developed providing new tracking capabilities, which also lead to higher demands and expectations for SPT. Following a single biomolecule as it performs its function provides quantitative mechanistic information that cannot be obtained in classical ensemble methods. From the 3D trajectory, information is available over the diffusional behavior of the particle and precise position information can also be used to elucidate interactions of the tracked particle with its surroundings. Thus, three-dimensional (3D) SPT is a very valuable tool for investigating cellular processes. This review presents recent progress in 3D SPT, from image-based techniques toward more sophisticated feedback approaches. We focus mainly on the feedback technique known as orbital tracking. We present here a modified version of the original orbital tracking in which the intensities from two z-planes are simultaneously measured allowing a concomitant wide-field imaging. The system can track single particles with a precision down to 5 nm in the x-y plane and 7 nm in the axial direction. The capabilities of the system are demonstrated using single virus tracing to follow the infection pathway of Prototype Foamy Virus in living cells.

  6. Single particle tomography in EMAN2.

    Science.gov (United States)

    Galaz-Montoya, Jesús G; Flanagan, John; Schmid, Michael F; Ludtke, Steven J

    2015-06-01

    Single particle tomography (SPT or subtomogram averaging) offers a powerful alternative to traditional 2-D single particle reconstruction for studying conformationally or compositionally heterogeneous macromolecules. It can also provide direct observation (without labeling or staining) of complexes inside cells at nanometer resolution. The development of computational methods and tools for SPT remains an area of active research. Here we present the EMAN2.1 SPT toolbox, which offers a full SPT processing pipeline, from particle picking to post-alignment analysis of subtomogram averages, automating most steps. Different algorithm combinations can be applied at each step, providing versatility and allowing for procedural cross-testing and specimen-specific strategies. Alignment methods include all-vs-all, binary tree, iterative single-model refinement, multiple-model refinement, and self-symmetry alignment. An efficient angular search, Graphic Processing Unit (GPU) acceleration and both threaded and distributed parallelism are provided to speed up processing. Finally, automated simulations, per particle reconstruction of subtiltseries, and per-particle Contrast Transfer Function (CTF) correction have been implemented. Processing examples using both real and simulated data are shown for several structures. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Role of single-particle and pair condensates in Bose systems with arbitrary intensity of interaction

    Directory of Open Access Journals (Sweden)

    A.S. Peletminskii

    2013-03-01

    Full Text Available We study a superfluid Bose system with single-particle and pair condensates on the basis of a half-phenomenological theory of a Bose liquid not involving the weakness of interparticle interaction. The coupled equations describing the equilibrium state of such system are derived from the variational principle for entropy. These equations are analyzed at zero temperature both analytically and numerically. It is shown that the fraction of particles in the single-particle and pair condensates essentially depends on the total density of the system. At densities attainable in condensates of alkali-metal atoms, almost all particles are in the single-particle condensate. The pair condensate fraction grows with increasing total density and becomes dominant. It is shown that at density of liquid helium, the single-particle condensate fraction is less than 10% that agrees with experimental data on inelastic neutron scattering, Monte Carlo calculations and other theoretical predictions. The ground state energy, pressure, and compressibility are found for the system under consideration. The spectrum of single-particle excitations is also analyzed.

  8. Reduced density-matrix functional theory: Correlation and spectroscopy.

    Science.gov (United States)

    Di Sabatino, S; Berger, J A; Reining, L; Romaniello, P

    2015-07-14

    In this work, we explore the performance of approximations to electron correlation in reduced density-matrix functional theory (RDMFT) and of approximations to the observables calculated within this theory. Our analysis focuses on the calculation of total energies, occupation numbers, removal/addition energies, and spectral functions. We use the exactly solvable Hubbard dimer at 1/4 and 1/2 fillings as test systems. This allows us to analyze the underlying physics and to elucidate the origin of the observed trends. For comparison, we also report the results of the GW approximation, where the self-energy functional is approximated, but no further hypothesis is made concerning the approximations of the observables. In particular, we focus on the atomic limit, where the two sites of the dimer are pulled apart and electrons localize on either site with equal probability, unless a small perturbation is present: this is the regime of strong electron correlation. In this limit, using the Hubbard dimer at 1/2 filling with or without a spin-symmetry-broken ground state allows us to explore how degeneracies and spin-symmetry breaking are treated in RDMFT. We find that, within the used approximations, neither in RDMFT nor in GW, the signature of strong correlation is present, when looking at the removal/addition energies and spectral function from the spin-singlet ground state, whereas both give the exact result for the spin-symmetry broken case. Moreover, we show how the spectroscopic properties change from one spin structure to the other.

  9. Reduced density-matrix functional theory: Correlation and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Di Sabatino, S.; Romaniello, P. [Laboratoire de Physique Théorique, CNRS, IRSAMC, Université Toulouse III–Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex, France and ETSF (France); Berger, J. A. [Laboratoire de Chimie et Physique Quantiques, IRSAMC, Université Toulouse III–Paul Sabatier, CNRS, 118 Route de Narbonne, 31062 Toulouse Cedex, France and ETSF (France); Reining, L. [Laboratoire des Solides Irradiés, École Polytechnique, CNRS, CEA-DSM, 91128 Palaiseau, France and ETSF (France)

    2015-07-14

    In this work, we explore the performance of approximations to electron correlation in reduced density-matrix functional theory (RDMFT) and of approximations to the observables calculated within this theory. Our analysis focuses on the calculation of total energies, occupation numbers, removal/addition energies, and spectral functions. We use the exactly solvable Hubbard dimer at 1/4 and 1/2 fillings as test systems. This allows us to analyze the underlying physics and to elucidate the origin of the observed trends. For comparison, we also report the results of the GW approximation, where the self-energy functional is approximated, but no further hypothesis is made concerning the approximations of the observables. In particular, we focus on the atomic limit, where the two sites of the dimer are pulled apart and electrons localize on either site with equal probability, unless a small perturbation is present: this is the regime of strong electron correlation. In this limit, using the Hubbard dimer at 1/2 filling with or without a spin-symmetry-broken ground state allows us to explore how degeneracies and spin-symmetry breaking are treated in RDMFT. We find that, within the used approximations, neither in RDMFT nor in GW, the signature of strong correlation is present, when looking at the removal/addition energies and spectral function from the spin-singlet ground state, whereas both give the exact result for the spin-symmetry broken case. Moreover, we show how the spectroscopic properties change from one spin structure to the other.

  10. Damping of unbound single-particle modes

    International Nuclear Information System (INIS)

    Fortier, S.; Beaumel, D.; Gales, S.; Guillot, J.; Langevin-Joliot, H.; Laurent, H.; Maison, J.M.; Bordewijk, J.; Brandenburg, S.; Krasznahorkay, A.; Crawley, G.M.; Massolo, C.P.; Renteria, M.; Khendriche, A.

    1995-01-01

    The (α, 3 He-n) reaction has been investigated at 120 MeV incident energy on 64 Ni, 90 Zr, and 120 Sn target nuclei. Neutrons in coincidence with 3 He particles emitted at 0 degree were detected using the multidetector array EDEN, in order to get information about the decay of single-particle states embedded in the (α, 3 He) continuum. Neutron angular correlations, multiplicity values, and branching ratios to low-lying states of the final nuclei have been compared with the predictions of the statistical decay model. Evidence for a significant nonstatistical decay branch has been observed in the three nuclei below about 15 MeV excitation energy. Direct branching ratios in 91 Zr deduced from this analysis are compared with the predictions of two nuclear structure models. At higher excitation energy, the decay characteristics of the (α, 3 He) continuum are shown to be mainly statistical

  11. Multiplex single particle analysis in microfluidics.

    Science.gov (United States)

    Dannhauser, D; Romeo, G; Causa, F; De Santo, I; Netti, P A

    2014-10-21

    A straightforward way to measure separated micrometric sized particles in microfluidic flow is reported. The light scattering profile (LSP) of each single particle is fully characterized by using a CMOS-camera based small angle light scattering (SALS) apparatus, ranging from 2° up to 30°. To ensure controlled particle passage through the incident laser, a viscoelastic 3D alignment effect by viscoelastic induced particle migration has been implemented in a simple and cost-effective microfluidic device. Different polystyrene particle sizes are measured in microfluidic flows and the obtained scattering signatures are matched with the Lorenz-Mie based scattering theory. The results confirm the possibility of using this apparatus for real multiplex particle analyses in microfluidic particle flows.

  12. The finite temperature density matrix and two-point correlations in the antiferromagnetic XXZ chain

    Science.gov (United States)

    Göhmann, Frank; Hasenclever, Nils P.; Seel, Alexander

    2005-10-01

    We derive finite temperature versions of integral formulae for the two-point correlation functions in the antiferromagnetic XXZ chain. The derivation is based on the summation of density matrix elements characterizing a finite chain segment of length m. On this occasion we also supply a proof of the basic integral formula for the density matrix presented in an earlier publication.

  13. Centroids of effective interactions from measured single-particle energies: An application

    International Nuclear Information System (INIS)

    Cole, B.J.

    1990-01-01

    Centroids of the effective nucleon-nucleon interaction for the mass region A=28--64 are extracted directly from experimental single-particle spectra, by comparing single-particle energies relative to different cores. Uncertainties in the centroids are estimated at approximately 100 keV, except in cases of exceptional fragmentation of the single-particle strength. The use of a large number of inert cores allows the dependence of the interaction on mass or model space to be investigated. The method permits accurate empirical modifications to be made to realistic interactions calculated from bare nucleon-nucleon potentials, which are known to possess defective centroids in many cases. In addition, the centroids can be used as input to the more sophisticated fitting procedures that are employed to produce matrix elements of the effective interaction

  14. Two-body density matrix for closed s-d shell nuclei

    International Nuclear Information System (INIS)

    Dimitrova, S.S.; Kadrev, D.N.; Antonov, A.N.; Stoitsov, M.V.

    2000-01-01

    The two-body density matrix for 4 He, 16 O and 40 Ca within the Low-order approximation of the Jastrow correlation method is considered. Closed analytical expressions for the two-body density matrix, the center of mass and relative local densities and momentum distributions are presented. The effects of the short-range correlations on the two-body nuclear characteristics are investigated. (orig.)

  15. Orbital functionals in density-matrix- and current-density-functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Helbig, N.

    2006-05-15

    Density-Functional Theory (DFT), although widely used and very successful in the calculation of several observables, fails to correctly describe strongly correlated materials. In the first part of this work we, therefore, introduce reduced-densitymatrix- functional theory (RDMFT) which is one possible way to treat electron correlation beyond DFT. Within this theory the one-body reduced density matrix (1- RDM) is used as the basic variable. Our main interest is the calculation of the fundamental gap which proves very problematic within DFT. In order to calculate the fundamental gap we generalize RDMFT to fractional particle numbers M by describing the system as an ensemble of an N and an N+1 particle system (with N{<=}M{<=}N+1). For each fixed particle number, M, the total energy is minimized with respect to the natural orbitals and their occupation numbers. This leads to the total energy as a function of M. The derivative of this function with respect to the particle number has a discontinuity at integer particle number which is identical to the gap. In addition, we investigate the necessary and sufficient conditions for the 1- RDM of a system with fractional particle number to be N-representable. Numerical results are presented for alkali atoms, small molecules, and periodic systems. Another problem within DFT is the description of non-relativistic many-electron systems in the presence of magnetic fields. It requires the paramagnetic current density and the spin magnetization to be used as basic variables besides the electron density. However, electron-gas-based functionals of current-spin-density-functional Theory (CSDFT) exhibit derivative discontinuities as a function of the magnetic field whenever a new Landau level is occupied, which makes them difficult to use in practice. Since the appearance of Landau levels is, intrinsically, an orbital effect it is appealing to use orbital-dependent functionals. We have developed a CSDFT version of the optimized

  16. Damping of unbound single-particle modes

    Energy Technology Data Exchange (ETDEWEB)

    Fortier, S.; Beaumel, D.; Gales, S.; Guillot, J.; Langevin-Joliot, H.; Laurent, H.; Maison, J.M.; Bordewijk, J.; Brandenburg, S.; Krasznahorkay, A.; Crawley, G.M.; Massolo, C.P.; Renteria, M.; Khendriche, A. [Institut de Physique Nucleaire, IN2P3-CNRS, 91406 Orsay Cedex (France)]|[Kernfysisch Versneller Instituut, 9747 AA Groningen (Netherlands)]|[Nuclear Research Institute, Debrecen P.O. Box 51, H-4001 (Hungary)]|[NSCL, Michigan State University, East Lansing, Michigan 48824 (United States)]|[Dep. Fisica, Fac. Cs. Exactas, UNLP, CC Nio 67, 1900 La Plata (Argentina)]|[Institut de Sciences Exactes,Universite de Tizi-Ouzou, 15000 Tizi-Ouzou (Algeria)

    1995-11-01

    The ({alpha},{sup 3}He-{ital n}) reaction has been investigated at 120 MeV incident energy on {sup 64}Ni, {sup 90}Zr, and {sup 120}Sn target nuclei. Neutrons in coincidence with {sup 3}He particles emitted at 0{degree} were detected using the multidetector array EDEN, in order to get information about the decay of single-particle states embedded in the ({alpha},{sup 3}He) continuum. Neutron angular correlations, multiplicity values, and branching ratios to low-lying states of the final nuclei have been compared with the predictions of the statistical decay model. Evidence for a significant nonstatistical decay branch has been observed in the three nuclei below about 15 MeV excitation energy. Direct branching ratios in {sup 91}Zr deduced from this analysis are compared with the predictions of two nuclear structure models. At higher excitation energy, the decay characteristics of the ({alpha},{sup 3}He) continuum are shown to be mainly statistical.

  17. Single particle raster image analysis of diffusion.

    Science.gov (United States)

    Longfils, M; Schuster, E; Lorén, N; Särkkä, A; Rudemo, M

    2017-04-01

    As a complement to the standard RICS method of analysing Raster Image Correlation Spectroscopy images with estimation of the image correlation function, we introduce the method SPRIA, Single Particle Raster Image Analysis. Here, we start by identifying individual particles and estimate the diffusion coefficient for each particle by a maximum likelihood method. Averaging over the particles gives a diffusion coefficient estimate for the whole image. In examples both with simulated and experimental data, we show that the new method gives accurate estimates. It also gives directly standard error estimates. The method should be possible to extend to study heterogeneous materials and systems of particles with varying diffusion coefficient, as demonstrated in a simple simulation example. A requirement for applying the SPRIA method is that the particle concentration is low enough so that we can identify the individual particles. We also describe a bootstrap method for estimating the standard error of standard RICS. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  18. Single particle level scheme for alpha decay

    International Nuclear Information System (INIS)

    Mirea, M.

    1998-01-01

    The fine structure phenomenon in alpha decay was evidenced by Rosenblum. In this process the kinetic energy of the emitted particle has several determined values related to the structure of the parent and the daughter nucleus. The probability to find the daughter in a low lying state was considered strongly dependent on the spectroscopic factor defined as the square of overlap between the wave function of the parent in the ground state and the wave functions of the specific excited states of the daughter. This treatment provides a qualitative agreement with the experimental results if the variations of the penetrability between different excited states are neglected. Based on single particle structure during fission, a new formalism explained quantitatively the fine structure of the cluster decay. It was suggested that this formalism can be applied also to alpha decay. For this purpose, the first step is to construct the level scheme of this type of decay. Such a scheme, obtained with the super-asymmetric two-center potential, is plotted for the alpha decay of 223 Ra. It is interesting to note that, diabatically, the level with spin 3/2 emerging from 1i 11/2 (ground state of the parent) reaches an excited state of the daughter in agreement with the experiment. (author)

  19. Structure, single-particle and many-particle coefficients of Lennard ...

    Indian Academy of Sciences (India)

    We investigate the effects of temperature and density on the single-particle and many-particle coefficients as well as on the structures of homogenous systems in which the particles are assumed to interact via a continuous soft sphere potential in the microcanonical ensemble. The pair distribution function and therefore the ...

  20. Single-particle potential of the Λ hyperon in nuclear matter with chiral effective field theory NLO interactions including effects of Y N N three-baryon interactions

    Science.gov (United States)

    Kohno, M.

    2018-03-01

    Adopting hyperon-nucleon and hyperon-nucleon-nucleon interactions parametrized in chiral effective field theory, single-particle potentials of the Λ and Σ hyperons are evaluated in symmetric nuclear matter and in pure neutron matter within the framework of lowest-order Bruckner theory. The chiral NLO interaction bears strong Λ N -Σ N coupling. Although the Λ potential is repulsive if the coupling is switched off, the Λ N -Σ N correlation brings about the attraction consistent with empirical data. The Σ potential is repulsive, which is also consistent with empirical information. The interesting result is that the Λ potential becomes shallower beyond normal density. This provides the possibility of solving the hyperon puzzle without introducing ad hoc assumptions. The effects of the Λ N N -Λ N N and Λ N N -Σ N N three-baryon forces are considered. These three-baryon forces are first reduced to normal-ordered effective two-baryon interactions in nuclear matter and then incorporated in the G -matrix equation. The repulsion from the Λ N N -Λ N N interaction is of the order of 5 MeV at normal density and becomes larger with increasing density. The effects of the Λ N N -Σ N N coupling compensate the repulsion at normal density. The net effect of the three-baryon interactions on the Λ single-particle potential is repulsive at higher densities.

  1. Ultra-Low-Density (ULD) Polymer Matrix Composites (PMCs), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA Phase I SBIR proposal seeks to demonstrate a new class of ultra-low-density (ULD) polymer matrix composites of high specific modulus and specific strength...

  2. Development of edge effects around experimental ecosystem hotspots is affected by edge density and matrix type

    Science.gov (United States)

    Ecological edge effects are sensitive to landscape context. In particular, edge effects can be altered by matrix type and by the presence of other nearby edges. We experimentally altered patch configurations in an African savanna to determine how edge density and matrix type influence edge effect de...

  3. Microprocessor-based single particle calibration of scintillation counter

    Science.gov (United States)

    Mazumdar, G. K. D.; Pathak, K. M.

    1985-01-01

    A microprocessor-base set-up is fabricated and tested for the single particle calibration of the plastic scintillator. The single particle response of the scintillator is digitized by an A/D converter, and a 8085 A based microprocessor stores the pulse heights. The digitized information is printed. Facilities for CRT display and cassette storing and recalling are also made available.

  4. Automated data collection in single particle electron microscopy

    Science.gov (United States)

    Tan, Yong Zi; Cheng, Anchi; Potter, Clinton S.; Carragher, Bridget

    2016-01-01

    Automated data collection is an integral part of modern workflows in single particle electron microscopy (EM) research. This review surveys the software packages available for automated single particle EM data collection. The degree of automation at each stage of data collection is evaluated, and the capabilities of the software packages are described. Finally, future trends in automation are discussed. PMID:26671944

  5. A new seniority scheme for non-degenerate single particle orbits

    International Nuclear Information System (INIS)

    Otsuka, T.; Arima, A.

    1978-01-01

    A new method is proposed in the treatment of the seniority scheme. The method enables one to evaluate analytically the contribution from J = 0 Cooper pairs in non-degenerate single-particle orbits to many-body matrix elements. It includes the SU(2) quasi-spin and the BCS approximation as two extreme limits. The effect of particle number conservation is properly taken into account. (Auth.)

  6. Detection of Matrix Crack Density of CFRP using an Electrical Potential Change Method with Multiple Probes

    Science.gov (United States)

    Todoroki, Akira; Omagari, Kazuomi

    Carbon Fiber Reinforced Plastic (CFRP) laminates are adopted for fuel tank structures of next generation space rockets or automobiles. Matrix cracks may cause fuel leak or trigger fatigue damage. A monitoring system of the matrix crack density is required. The authors have developed an electrical resistance change method for the monitoring of delamination cracks in CFRP laminates. Reinforcement fibers are used as a self-sensing system. In the present study, the electric potential method is adopted for matrix crack density monitoring. Finite element analysis (FEA) was performed to investigate the possibility of monitoring matrix crack density using multiple electrodes mounted on a single surface of a specimen. The FEA reveals the matrix crack density increases electrical resistance for a target segment between electrodes. Experimental confirmation was also performed using cross-ply laminates. Eight electrodes were mounted on a single surface of a specimen using silver paste after polishing of the specimen surface with sandpaper. The two outermost electrodes applied electrical current, and the inner electrodes measured electric voltage changes. The slope of electrical resistance during reloading is revealed to be an appropriate index for the detection of matrix crack density.

  7. Links between matrix bulk density, macropore characteristics and hydraulic behavior of soils

    DEFF Research Database (Denmark)

    Katuwal, Sheela; Møldrup, Per; Lamandé, Mathieu

    2013-01-01

    various macropore. In Silstrup soils, in which the macroporosity and matrix bulk density were well correlated, variation in air permeability and 5% tracer arrival time, a measure of preferential flow through soils, could be explained by macroporosity and the interconnectivity of macropores in soils....... However, in Faardrup soils macroporosity and matrix bulk density were weakly correlated. Though macroporosity and interconnectivity of macropores could explain some variation in the hydraulic behavior of a few samples from Faardrup, the preferential flow behavior was observed to be primarily influenced...... resolution X-ray CT and linked them with laboratory measurements of air permeability and leaching experiment. In addition to macropore characteristics, we also quantified the CT-number of the matrix as a measure of the bulk density of the matrix, i.e., excluding macropores in the soil. Soils from the two...

  8. Density matrix renormalization group with efficient dynamical electron correlation through range separation

    DEFF Research Database (Denmark)

    Hedegård, Erik D.; Knecht, Stefan; Kielberg, Jesper Skau

    2015-01-01

    We present a new hybrid multiconfigurational method based on the concept of range-separation that combines the density matrix renormalization group approach with density functional theory. This new method is designed for the simultaneous description of dynamical and static electroncorrelation...... effects in multiconfigurational electronic structure problems....

  9. A new single-particle basis for nuclear many-body calculations

    Science.gov (United States)

    Puddu, G.

    2017-10-01

    Predominantly, harmonic oscillator single-particle wave functions are the preferred choice for a basis in ab initio nuclear many-body calculations. These wave-functions, although very convenient in order to evaluate the matrix elements of the interaction in the laboratory frame, have too fast a fall-off at large distances. In the past, as an alternative to the harmonic oscillator, other single-particle wave functions have been proposed. In this work, we propose a new single-particle basis, directly linked to nucleon-nucleon interaction. This new basis is orthonormal and complete, has the proper asymptotic behavior at large distances and does not contain the continuum which would pose severe convergence problems in nuclear many body calculations. We consider the newly proposed NNLO-opt nucleon-nucleon interaction, without any renormalization. We show that, unlike other bases, this single-particle representation has a computational cost similar to the harmonic oscillator basis with the same space truncation and it gives lower energies for 6He and 6Li.

  10. Matrix density effects on the mechanical properties of SiC fiber-reinforced silicon nitride matrix properties

    Science.gov (United States)

    Bhatt, Ramakrishna T.; Kiser, Lames D.

    1990-01-01

    The room temperature mechanical properties were measured for SiC fiber reinforced reaction-bonded silicon nitride composites (SiC/RBSN) of different densities. The composites consisted of approx. 30 vol percent uniaxially aligned 142 micron diameter SiC fibers (Textron SCS-6) in a reaction-bonded Si3N4 matrix. The composite density was varied by changing the consolidation pressure during RBSN processing and by hot isostatically pressing the SiC/RBSN composites. Results indicate that as the consolidation pressure was increased from 27 to 138 MPa, the average pore size of the nitrided composites decreased from 0.04 to 0.02 microns and the composite density increased from 2.07 to 2.45 gm/cc. Nonetheless, these improvements resulted in only small increases in the first matrix cracking stress, primary elastic modulus, and ultimate tensile strength values of the composites. In contrast, HIP consolidation of SiC/RBSN resulted in a fully dense material whose first matrix cracking stress and elastic modulus were approx. 15 and 50 percent higher, respectively, and ultimate tensile strength values were approx. 40 percent lower than those for unHIPed SiC/RBSN composites. The modulus behavior for all specimens can be explained by simple rule-of-mixture theory. Also, the loss in ultimate strength for the HIPed composites appears to be related to a degradation in fiber strength at the HIP temperature. However, the density effect on matrix fracture strength was much less than would be expected based on typical monolithic Si3N4 behavior, suggesting that composite theory is indeed operating. Possible practical implications of these observations are discussed.

  11. Exact many-body dynamics with stochastic one-body density matrix evolution

    International Nuclear Information System (INIS)

    Lacroix, D.

    2004-05-01

    In this article, we discuss some properties of the exact treatment of the many-body problem with stochastic Schroedinger equation (SSE). Starting from the SSE theory, an equivalent reformulation is proposed in terms of quantum jumps in the density matrix space. The technical details of the derivation a stochastic version of the Liouville von Neumann equation are given. It is shown that the exact Many-Body problem could be replaced by an ensemble of one-body density evolution, where each density matrix evolves according to its own mean-field augmented by a one-body noise. (author)

  12. Bond index: relation to second-order density matrix and charge fluctuations

    International Nuclear Information System (INIS)

    Giambiagi, M.S. de; Giambiagi, M.; Jorge, F.E.

    1985-01-01

    It is shown that, in the same way as the atomic charge is an invariant built from the first-order density matrix, the closed-shell generalized bond index is an invariant associated with the second-order reduced density matrix. The active charge of an atom (sum of bond indices) is shown to be the sum of all density correlation functions between it and the other atoms in the molecule; similarly, the self-charge is the fluctuation of its total charge. (Author) [pt

  13. Truncation scheme of time-dependent density-matrix approach II

    Energy Technology Data Exchange (ETDEWEB)

    Tohyama, Mitsuru [Kyorin University School of Medicine, Mitaka, Tokyo (Japan); Schuck, Peter [Institut de Physique Nucleaire, IN2P3-CNRS, Universite Paris-Sud, Orsay (France); Laboratoire de Physique et de Modelisation des Milieux Condenses, CNRS et Universite Joseph Fourier, Grenoble (France)

    2017-09-15

    A truncation scheme of the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy for reduced density matrices, where a three-body density matrix is approximated by two-body density matrices, is improved to take into account a normalization effect. The truncation scheme is tested for the Lipkin model. It is shown that the obtained results are in good agreement with the exact solutions. (orig.)

  14. Nanofiber density determines endothelial cell behavior on hydrogel matrix

    Energy Technology Data Exchange (ETDEWEB)

    Berti, Fernanda V., E-mail: fernanda@intelab.ufsc.br [Department of Chemical and Food Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Rambo, Carlos R. [Department of Electrical Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Dias, Paulo F. [Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Porto, Luismar M. [Department of Chemical and Food Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, SC (Brazil)

    2013-12-01

    When cultured under static conditions, bacterial cellulose pellicles, by the nature of the polymer synthesis that involves molecular oxygen, are characterized by two distinct surface sides. The upper surface is denser in fibers (entangled) than the lower surface that shows greater surface porosity. Human umbilical vein endothelial cells (HUVECs) were used to exploit how the microarchitecture (i.e., surface porosity, fiber network structure, surface topology, and fiber density) of bacterial cellulose pellicle surfaces influence cell–biomaterial interaction and therefore cell behavior. Adhesion, cell ingrowth, proliferation, viability and cell death mechanisms were evaluated on the two pellicle surface sides. Cell behavior, including secondary necrosis, is influenced only by the microarchitecture of the surface, since the biomaterial is extremely pure (constituted of cellulose and water only). Cell–cellulose fiber interaction is the determinant signal in the cell–biomaterial responses, isolated from other frequently present interferences such as protein and other chemical traces usually present in cell culture matrices. Our results suggest that microarchitecture of hydrogel materials might determine the performance of biomedical products, such as bacterial cellulose tissue engineering constructs (BCTECs). - Highlights: • Topography of BC pellicle is relevant to determine endothelial cells' fate. • Cell–biomaterial response is affected by the topography of BC-pellicle surface. • Endothelial cells exhibit different behavior depending on the BC topography. • Apoptosis and necrosis of endothelial cells were affected by the BC topography.

  15. Nanofiber density determines endothelial cell behavior on hydrogel matrix

    International Nuclear Information System (INIS)

    Berti, Fernanda V.; Rambo, Carlos R.; Dias, Paulo F.; Porto, Luismar M.

    2013-01-01

    When cultured under static conditions, bacterial cellulose pellicles, by the nature of the polymer synthesis that involves molecular oxygen, are characterized by two distinct surface sides. The upper surface is denser in fibers (entangled) than the lower surface that shows greater surface porosity. Human umbilical vein endothelial cells (HUVECs) were used to exploit how the microarchitecture (i.e., surface porosity, fiber network structure, surface topology, and fiber density) of bacterial cellulose pellicle surfaces influence cell–biomaterial interaction and therefore cell behavior. Adhesion, cell ingrowth, proliferation, viability and cell death mechanisms were evaluated on the two pellicle surface sides. Cell behavior, including secondary necrosis, is influenced only by the microarchitecture of the surface, since the biomaterial is extremely pure (constituted of cellulose and water only). Cell–cellulose fiber interaction is the determinant signal in the cell–biomaterial responses, isolated from other frequently present interferences such as protein and other chemical traces usually present in cell culture matrices. Our results suggest that microarchitecture of hydrogel materials might determine the performance of biomedical products, such as bacterial cellulose tissue engineering constructs (BCTECs). - Highlights: • Topography of BC pellicle is relevant to determine endothelial cells' fate. • Cell–biomaterial response is affected by the topography of BC-pellicle surface. • Endothelial cells exhibit different behavior depending on the BC topography. • Apoptosis and necrosis of endothelial cells were affected by the BC topography

  16. Single particle orbitals of the heaviest known actinide nuclei

    International Nuclear Information System (INIS)

    Ahmad, I.

    1992-01-01

    Single particle states in the actinide nuclei have been well characterized by decay scheme, (n, γ) and one nucleon transfer reaction studies. The energies of the single particle states are used to calculate the shell corrections which may give rise to stable superheavy elements. Large shell corrections for the superheavy elements arise from the gaps in the proton single-particle spectrum at Z = 114 and in the neutron single-particle spectrum at N = 184. The gap at Z = 114 is determined by the splitting of the f 7/2 and f 5/2 orbitals and the gap at N = 184 is determined by the locations of the h 11/2 , k 17/2 and j 13/2 spherical orbitals. Many of these states have been identified in very heavy actinide nuclei. Experiments identifying these states and the relation of the observed energies to the stability of superheavy elements are discussed

  17. The Negele-Vautherin Density Matrix Expansion Applied to the Gogny Force

    Energy Technology Data Exchange (ETDEWEB)

    Dobaczewski, J. [Warsaw University; Carlsson, B. G. [University of Jyvaskyla; Kortelainen, Erno M [ORNL

    2010-01-01

    We use the Negele-Vautherin density matrix expansion to derive local density approximation for the interaction composed of arbitrary finite-range central, spin-orbit, and tensor components. Terms that are absent in the original Negele-Vautherin approach owing to the angle averaging of the density matrix are fixed by requiring gauge invariance of the energy density. We obtain the Kohn-Sham interaction energies in all spin-isospin channels, including the exchange terms, expressed as functions of the local densities and their derivatives up to second (next to leading) order. We illustrate the method by determining the coupling constants of the Skyrme functional or Skyrme force that correspond to the finite-range Gogny central force. The resulting self-consistent solutions reproduce the Gogny-force binding energies and radii within the precision of 1-2%.

  18. Correlation Matrix Renormalization Theory: Improving Accuracy with Two-Electron Density-Matrix Sum Rules.

    Science.gov (United States)

    Liu, C; Liu, J; Yao, Y X; Wu, P; Wang, C Z; Ho, K M

    2016-10-11

    We recently proposed the correlation matrix renormalization (CMR) theory to treat the electronic correlation effects [Phys. Rev. B 2014, 89, 045131 and Sci. Rep. 2015, 5, 13478] in ground state total energy calculations of molecular systems using the Gutzwiller variational wave function (GWF). By adopting a number of approximations, the computational effort of the CMR can be reduced to a level similar to Hartree-Fock calculations. This paper reports our recent progress in minimizing the error originating from some of these approximations. We introduce a novel sum-rule correction to obtain a more accurate description of the intersite electron correlation effects in total energy calculations. Benchmark calculations are performed on a set of molecules to show the reasonable accuracy of the method.

  19. Explicit treatment of N-body correlations within a density-matrix formalism

    International Nuclear Information System (INIS)

    Shun-Jin, W.; Cassing, W.

    1985-01-01

    The nuclear many-body problem is reformulated in the density-matrix approach such that n-body correlations are separated out from the reduced density matrix rho/sub n/. A set of equations for the time evolution of the n-body correlations c/sub n/ is derived which allows for physically transparent truncations with respect to the order of correlations. In the stationary limit (c/sub n/ = 0) a restriction to two-body correlations yields a generalized Bethe-Goldstone equation a restriction to body correlations yields generalized Faddeev equations in the density-matrix formulation. Furthermore it can be shown that any truncation of the set of equations (c/sub n/ = 0, n>m) is compatible with conservation laws, a quality which in general is not fulfilled if higher order correlations are treated perturbatively

  20. Time-dependent density-functional and reduced density-matrix methods for few electrons: Exact versus adiabatic approximations

    International Nuclear Information System (INIS)

    Helbig, N.; Fuks, J.I.; Tokatly, I.V.; Appel, H.; Gross, E.K.U.; Rubio, A.

    2011-01-01

    Graphical abstract: We solve a 1D N-electron system, with N small, by mapping it onto an N-dimensional one-electron problem. We compare the exact solutions to the results from adiabatic density and density matrix functionals for different physical situations. Highlights: ► Static and dynamical correlations. ► Memory dependence of exchange-correlation functionals in TDDFT. ► Linear and non-linear response. ► Laser-induced population control. - Abstract: To address the impact of electron correlations in the linear and non-linear response regimes of interacting many-electron systems exposed to time-dependent external fields, we study one-dimensional (1D) systems where the interacting problem is solved exactly by exploiting the mapping of the 1D N-electron problem onto an N-dimensional single electron problem. We analyze the performance of the recently derived 1D local density approximation as well as the exact-exchange orbital functional for those systems. We show that the interaction with an external resonant laser field shows Rabi oscillations which are detuned due to the lack of memory in adiabatic approximations. To investigate situations where static correlations play a role, we consider the time-evolution of the natural occupation numbers associated to the reduced one-body density matrix. Those studies shed light on the non-locality and time-dependence of the exchange and correlation functionals in time-dependent density and density-matrix functional theories.

  1. Reduced one-body density matrix of Tonks–Girardeau gas at finite temperature

    International Nuclear Information System (INIS)

    Fu Xiao-Chen; Hao Ya-Jiang

    2015-01-01

    With thermal Bose–Fermi mapping method, we investigate the Tonks–Girardeau gas at finite temperature. It is shown that at low temperature, the Tonks gas displays the Fermi-like density profiles, and with the increase in temperature, the Tonks gas distributes in wider region. The reduced one-body density matrix is diagonal dominant in the whole temperature region, and the off-diagonal elements shall vanish rapidly with the deviation from the diagonal part at high temperature. (paper)

  2. Collagen Matrix Density Drives the Metabolic Shift in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Brett A. Morris

    2016-11-01

    Full Text Available Increased breast density attributed to collagen I deposition is associated with a 4–6 fold increased risk of developing breast cancer. Here, we assessed cellular metabolic reprogramming of mammary carcinoma cells in response to increased collagen matrix density using an in vitro 3D model. Our initial observations demonstrated changes in functional metabolism in both normal mammary epithelial cells and mammary carcinoma cells in response to changes in matrix density. Further, mammary carcinoma cells grown in high density collagen matrices displayed decreased oxygen consumption and glucose metabolism via the tricarboxylic acid (TCA cycle compared to cells cultured in low density matrices. Despite decreased glucose entry into the TCA cycle, levels of glucose uptake, cell viability, and ROS were not different between high and low density matrices. Interestingly, under high density conditions the contribution of glutamine as a fuel source to drive the TCA cycle was significantly enhanced. These alterations in functional metabolism mirrored significant changes in the expression of metabolic genes involved in glycolysis, oxidative phosphorylation, and the serine synthesis pathway. This study highlights the broad importance of the collagen microenvironment to cellular expression profiles, and shows that changes in density of the collagen microenvironment can modulate metabolic shifts of cancer cells.

  3. Brightness calibrates particle size in single particle fluorescence imaging.

    Science.gov (United States)

    Liu, Zhihe; Sun, Zezhou; Di, Weihua; Qin, Weiping; Yuan, Zhen; Wu, Changfeng

    2015-04-01

    This Letter provides a novel approach to quantify the particle sizes of highly bright semiconductor polymer dots (Pdots) for single-particle imaging and photobleaching studies. A quadratic dependence of single-particle brightness on particle size was determined by single-particle fluorescence imaging and intensity statistics. In terms of the same imaging conditions, the particle diameter can be quantified by comparing the individual brightness intensity with associated calibration curve. Based on this sizing method, photobleaching trajectories and overall photon counts emitted by single particles were analyzed. It is found that photobleaching rate constants of different sized Pdots are not strongly dependent on particle diameter except the sparsely occurring fluorescence blinking in certain dim particles and the rapid photobleaching component in some bright particles. The overall photon counts increase with increasing particle diameter. However, those larger than 30 nm deviate away from the increasing tendency. These results reveal the significance of selecting appropriate Pdots (≤30  nm) for single-particle imaging and tracking applications.

  4. Harmonic oscillator thermal density matrix: First-order differential equations for the position representation

    Science.gov (United States)

    Barragán-Gil, L. F.; Walser, R.

    2018-01-01

    A first-order partial differential equation is derived whose solution enables us to find straightforwardly the off-diagonal matrix elements in the position representation of the harmonic oscillator density operator. This approach constitutes an alternative to techniques that require advanced knowledge of mathematical and quantum mechanical results.

  5. A density matrix renormalization group study of low-lying excitations ...

    Indian Academy of Sciences (India)

    Symmetrized density-matrix-renormalization-group calculations have been carried out, within Pariser-Parr-Pople Hamiltonian, to explore the nature of the ground and low-lying excited states of long polythiophene oligomers. We have exploited 2 symmetry and spin parity of the system to obtain excited states of ...

  6. Response calculations with an independent particle system with an exact one-particle density matrix

    NARCIS (Netherlands)

    Giesbertz, K.J.H.; Gritsenko, O.V.; Baerends, E.J.

    2010-01-01

    We use the natural orbitals to define an independent particle system, from which the exact one-particle density matrix can be obtained with an ensemble of degenerate determinantal ground states. Also defining explicit phases for the orbitals, and admitting functionals that are dependent on those

  7. TREATMENT OF NONADIABATIC TRANSITIONS BY DENSITY-MATRIX EVOLUTION AND MOLECULAR-DYNAMICS SIMULATIONS

    NARCIS (Netherlands)

    MAVRI, J; BERENDSEN, HJC

    1994-01-01

    A density matrix evolution (DME) method (H.J.C. Berendsen and J. Mavri, J. Phys. Chem., 97 (1993) 13469) to simulate the dynamics of quantum systems embedded in a classical environment is presented. The DME method allows treatment of nonadiabatic transitions. As numerical examples the collinear

  8. Variational density matrix method for warm, condensed matter: Application to dense hydrogen

    International Nuclear Information System (INIS)

    Militzer, Burkhard; Pollock, E. L.

    2000-01-01

    A variational principle for optimizing thermal density matrices is introduced. As a first application, the variational many-body density matrix is written as a determinant of one-body density matrices, which are approximated by Gaussians with the mean, width, and amplitude as variational parameters. The method is illustrated for the particle in an external field problem, the hydrogen molecule and dense hydrogen where the molecular, the dissociated, and the plasma regime are described. Structural and thermodynamic properties (energy, equation of state, and shock Hugoniot) are presented. (c) 2000 The American Physical Society

  9. Response calculations with an independent particle system with an exact one-particle density matrix.

    Science.gov (United States)

    Giesbertz, K J H; Gritsenko, O V; Baerends, E J

    2010-07-02

    We use the natural orbitals to define an independent particle system, from which the exact one-particle density matrix can be obtained with an ensemble of degenerate determinantal ground states. Also defining explicit phases for the orbitals, and admitting functionals that are dependent on those phases, time-dependent equations for the orbitals and occupation numbers are obtained from an action principle. The wrong polarizability and lack of double excitations of straightforward adiabatic time-dependent density matrix functional theory are then corrected, and the important symmetry χ(ω)=χ{*}(-ω), lost in previous ad hoc improvements, is restored. The extension of the response calculations beyond the occupied-virtual pairs, which are the only ones admitted in time-dependent density functional theory, leads to greatly improved response properties.

  10. Contraction relations for Grassmann products of reduced density matrices and implications for density matrix reconstruction

    International Nuclear Information System (INIS)

    Herbert, John M.; Harriman, John E.

    2002-01-01

    We consider, for systems of indistinguishable fermions, approximate reconstruction of the three- and four-particle reduced density matrices (RDMs) from the one- and two-particle RDMs, γ and Γ. Our ansatz for reconstructing the four-particle RDM is the linear combination a(Γ and Γ)+b(γ and γ and Γ)+c(γ and γ and γ and γ), where '' and '' denotes the antisymmetrized (Grassmann) product. This is a generalization of reconstruction functionals employed recently to perform direct RDM calculations without wave functions via the contracted Schroedinger equation. Here we consider relationships between the parameters a, b, and c that are required in order for the reconstruction functionals to respect the hierarchy of contraction relations between RDMs. To this end we establish several general theorems concerning contractions of antisymmetrized tensor products of γ, Γ, and various products thereof. The accuracy of proposed reconstruction functionals is evaluated using accurate density matrices for the ground state of Be

  11. Single particle labeling of RNA virus in live cells.

    Science.gov (United States)

    Liu, Xiaohui; Ouyang, Ting; Ouyang, Hongsheng; Ren, Linzhu

    2017-06-02

    Real-time and visual tracking of viral infection is crucial for elucidating the infectious and pathogenesis mechanisms. To track the virus successfully, an efficient labeling method is necessary. In this review, we first discuss the practical labeling techniques for virus tracking in live cells. We then describe the current knowledge of interactions between RNA viruses (especially influenza viruses, immunodeficiency viruses, and Flaviviruses) and host cellular structures, obtained using single particle labeling techniques combined with real-time fluorescence microscopy. Single particle labeling provides an easy system for understanding the RNA virus life cycle. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Exploring Electronic Structure and Order in Polymers via Single-Particle Microresonator Spectroscopy.

    Science.gov (United States)

    Horak, Erik H; Rea, Morgan T; Heylman, Kevin D; Gelbwaser-Klimovsky, David; Saikin, Semion K; Thompson, Blaise J; Kohler, Daniel D; Knapper, Kassandra A; Wei, Wei; Pan, Feng; Gopalan, Padma; Wright, John C; Aspuru-Guzik, Alán; Goldsmith, Randall H

    2018-02-08

    PSS, a transparent electrically conductive polymer, finds widespread use in electronic devices. While empirical efforts have increased conductivity, a detailed understanding of the coupled electronic and morphological landscapes in PEDOT:PSS has lagged due to substantial structural heterogeneity on multiple length-scales. We use an optical microresonator-based absorption spectrometer to perform single-particle measurements, providing a bottom-up examination of electronic structure and morphology ranging from single PEDOT:PSS polymers to nascent films. Using single-particle spectroscopy with complementary theoretical calculations and ultrafast spectroscopy, we demonstrate that PEDOT:PSS displays bulk-like optical response even in single polymers. We find highly ordered PEDOT assemblies with long-range ordering mediated by the insulating PSS matrix and reveal a preferential surface orientation of PEDOT nanocrystallites absent in bulk films with implications for interfacial electronic communication. Our single-particle perspective provides a unique window into the microscopic structure and electronic properties of PEDOT:PSS.

  13. Single-Particle Time-of-Flight Mass Spectrometry Utilizing a Femtosecond Desorption and Ionization Laser.

    Science.gov (United States)

    Zawadowicz, Maria A; Abdelmonem, Ahmed; Mohr, Claudia; Saathoff, Harald; Froyd, Karl D; Murphy, Daniel M; Leisner, Thomas; Cziczo, Daniel J

    2015-12-15

    Single-particle time-of-flight mass spectrometry has now been used since the 1990s to determine particle-to-particle variability and internal mixing state. Instruments commonly use 193 nm excimer or 266 nm frequency-quadrupled Nd:YAG lasers to ablate and ionize particles in a single step. We describe the use of a femtosecond laser system (800 nm wavelength, 100 fs pulse duration) in combination with an existing single-particle time-of-flight mass spectrometer. The goal of this project was to determine the suitability of a femtosecond laser for single-particle studies via direct comparison to the excimer laser (193 nm wavelength, ∼10 ns pulse duration) usually used with the instrument. Laser power, frequency, and polarization were varied to determine the effect on mass spectra. Atmospherically relevant materials that are often used in laboratory studies, ammonium nitrate and sodium chloride, were used for the aerosol. Detection of trace amounts of a heavy metal, lead, in an ammonium nitrate matrix was also investigated. The femtosecond ionization had a large air background not present with the 193 nm excimer and produced more multiply charged ions. Overall, we find that femtosecond laser ablation and ionization of aerosol particles is not radically different than that provided by a 193 nm excimer.

  14. Three-dimensional single particle tracking in dense dust clouds by stereoscopy of fluorescent particles

    Science.gov (United States)

    Himpel, Michael; Killer, Carsten; Buttenschön, Birger; Melzer, André

    2012-12-01

    In dense dust clouds of a dusty plasma single particle trajectories are impossible to follow due to occlusion of particles and ambiguities in particle correspondences. By stereoscopic imaging of fluorescent tracer particles, we were able to reconstruct 3D single particle trajectories within dense dust clouds. Several measurements are shown that justify to regard the tracer particles as suitable representatives for the whole dust system. A first analysis of dust density waves in dense clouds already shows that these waves exhibit three-dimensional dynamics at larger wave amplitudes that cannot be resolved by 2D imaging techniques: a broad velocity distribution perpendicular to the oscillation plane due to dust-dust collisions is seen, while the velocity distribution in the oscillation direction is bimodal and shifted due to the bulk wave propagation.

  15. Three-dimensional single particle tracking in dense dust clouds by stereoscopy of fluorescent particles

    Energy Technology Data Exchange (ETDEWEB)

    Himpel, Michael; Killer, Carsten; Buttenschoen, Birger; Melzer, Andre [Ernst-Moritz-Arndt-University, 17489 Greifswald (Germany)

    2012-12-15

    In dense dust clouds of a dusty plasma single particle trajectories are impossible to follow due to occlusion of particles and ambiguities in particle correspondences. By stereoscopic imaging of fluorescent tracer particles, we were able to reconstruct 3D single particle trajectories within dense dust clouds. Several measurements are shown that justify to regard the tracer particles as suitable representatives for the whole dust system. A first analysis of dust density waves in dense clouds already shows that these waves exhibit three-dimensional dynamics at larger wave amplitudes that cannot be resolved by 2D imaging techniques: a broad velocity distribution perpendicular to the oscillation plane due to dust-dust collisions is seen, while the velocity distribution in the oscillation direction is bimodal and shifted due to the bulk wave propagation.

  16. Reduced scattering-matrix algorithm for high-density plasmonic structures.

    Science.gov (United States)

    Bouchon, Patrick; Pardo, Fabrice; Haïdar, Riad; Vincent, Grégory; Pelouard, Jean-Luc

    2010-10-01

    We describe a method to compute S-matrix interface terms using a selection of eigenmodes. When solving the modal equation, the computation of left and right eigenvectors leads to rectangular eigenmodes matrices. Expressions of S-matrix interface terms are then expressed so as to allow for a significant reduction of the computation cost. The reduction is even further decreased in the case of the B-spline modal method, which deals with sparse matrices. Its convergence is illustrated on a high-density plasmonic structure and compared to a full modal method.

  17. The density matrix renormalization group method. Application to the EPP model of a cyclic polyene chain

    International Nuclear Information System (INIS)

    Fano, G.; Ortolani, F.; Ziosi, L.

    1997-10-01

    The density matrix renormalization group (DMRG) method introduced by White for the study of strongly interacting electron systems is reviewed; the method is variational and considers a system of localized electrons as the union of two adjacent fragments A,B. A density matrix ρ is introduced, whose eigenvectors corresponding to the largest eigenvalues are the most significant, the most probable states of A in the presence of B; these states are retained, while states corresponding to small eigenvalues of ρ are neglected. It is conjectured that the decreasing behaviour of the eigenvalues is gaussian. The DMRG method is tested on the Pariser-Parr-Pople Hamiltonian of a cyclic polyene (CH) N up to N = 34. A Hilbert space of dimension 5. x 10 18 is explored. The ground state energy is 10 -3 eV within the full Cl value in the case N = 18. The DMRG method compares favourably also with coupled cluster approximations. The unrestricted Hartree-Fock solution (which presents spin density waves) is briefly reviewed, and a comparison is made with the DMRG energy values. Finally, the spin-spin and density-density correlation functions are computed; the results suggest that the antiferromagnetic order of the exact solution does not extend up to large distances but exists locally. No charge density waves are present. (author)

  18. Decay properties of high-lying single-particles modes

    NARCIS (Netherlands)

    Beaumel, D; Fortier, S; Gales, S; Guillot, J; LangevinJoliot, H; Laurent, H; Maison, JM; Vernotte, J; Bordewijck, J; Brandenburg, S; Krasznahorkay, A; Crawley, GM; Massolo, CP; Renteria, M; Khendriche, A

    1996-01-01

    The neutron decay of high-lying single-particle states in Ni-64, Zr-90, Sn-120 and (208)pb excited by means of the (alpha,He-3) reaction has been investigated at 120 MeV incident energy using the multidetector EDEN. The characteristics of this reaction are studied using inclusive spectra and angular

  19. Ergodicity of a single particle confined in a nanopore

    DEFF Research Database (Denmark)

    Bernardi, S.; Hansen, Jesper Schmidt; Frascolli, F.

    2012-01-01

    -ergodic component of the phase space for energy levels typical of experiments, is surprisingly small, i.e. we conclude that the ergodic hypothesis is a reasonable approximation even for a single particle trapped in a nanopore. Due to the numerical scope of this work, our focus will be the onset of ergodic behavior...

  20. Calibration of single particle sizing velocimeters using photomask reticles

    Science.gov (United States)

    Hirleman, E. D.; Holve, D. J.; Hovenac, E. A.

    1988-01-01

    The development of photomask reticle calibration standards for single particle instruments is discussed. The calibration method studied involves the use of photomask reticles where the particle artifacts are actually disks of chrome thin film in the clear field reticles produced by photolithography and etching processes. Consideration is given to various aspects of theory, design, and performance.

  1. Single particle degrees of freedom in the interacting boson model

    NARCIS (Netherlands)

    Scholten, O.

    1985-01-01

    An overview is given of different aspects of the Interacting Boson Fermion Model, the extension of the interacting Boson Model to odd mass nuclei. The microscopic model for the coupling of single-particle degrees of freedom to the system of bosons is outlined and the interaction between the bosons

  2. Influence of Torrefaction on Single Particle Combustion of Wood

    DEFF Research Database (Denmark)

    Lu, Zhimin; Jian, Jie; Jensen, Peter Arendt

    2016-01-01

    This study focuses on the influence of torrefaction on the char reactivity, char yield, and combustion time of 3-5 mm spherical wood particles in a single particle combustion reactor (SPC) operating at a nominal temperature of 1231 °C. The devolatilization times were reduced and the char burnout...

  3. The "JK-only" approximation in density matrix functional and wave function theory.

    Science.gov (United States)

    Kollmar, Christian

    2004-12-15

    Various energy functionals applying the "JK-only" approximation which leads to two-index two-electron integrals instead of four-index two-electron integrals in the electron-electron interaction term of the electronic energy are presented. Numerical results of multiconfiguration self-consistent field calculations for the best possible "JK-only" wave function are compared to those obtained from the pair excitation multiconfiguration self-consistent (PEMCSCF) method and two versions of density matrix functional theory. One of these is derived making explicit use of some necessary conditions for N representability of the second-order density matrix. It is shown that this method models the energy functional based on the best possible "JK-only" wave function with good accuracy. The calculations also indicate that only a minor fraction of the total correlation energy is incorporated by "JK-only" approaches for larger molecules. (c) 2004 American Institute of Physics

  4. Prospects for Brueckner-Hartree-Fock calculations in the Density Matrix Expansion approach

    Science.gov (United States)

    Zhang, Yinu; Dyhdalo, Alex; Bogner, Scott; Furnstahl, Richard

    2017-09-01

    Recently, a microscopically based nuclear energy density functional was derived by applying the Density Matrix Expansion (DME) to the Hartree-Fock energy obtained from chiral effective field theory (χEFT) two- and three-nucleon interactions. The Hartree-Fock approach cannot contain the full many-body correlations. Brueckner-Hartree-Fock (BHF) theory gives an improved definition of the one-body potential U by replacing the interaction by a reaction matrix G. The central result of modern renormalization theory is that a general RG decoupling generates an infinite series of counterterms consistent with the input interaction. Then we can apply the DME at Hartree-Fock level with long-range χEFT interactions and zero-range contact interactions to model BHF correlations. This work was supported in part by the National Science Foundation under Grant No. PHY-1614460 and the NUCLEI SciDAC Collaboration under Department of Energy Grant DE-SC0008533.

  5. Obtaining Hartree-Fock and density functional theory doubly excited states with Car-Parrinello density matrix search

    Science.gov (United States)

    Liang, Wenkel; Isborn, Christine M.; Li, Xiaosong

    2009-11-01

    The calculation of doubly excited states is one of the major problems plaguing the modern day excited state workhorse methodology of linear response time dependent Hartree-Fock (TDHF) and density function theory (TDDFT). We have previously shown that the use of a resonantly tuned field within real-time TDHF and TDDFT is able to simultaneously excite both the α and β electrons to achieve the two-electron excited states of minimal basis H2 and HeH+ [C. M. Isborn and X. Li, J. Chem. Phys. 129, 204107 (2008)]. We now extend this method to many electron systems with the use of our Car-Parrinello density matrix search (CP-DMS) with a first-principles fictitious mass method for wave function optimization [X. Li, C. L. Moss, W. Liang, and Y. Feng, J. Chem. Phys. 130, 234115 (2009)]. Real-time TDHF/TDDFT is used during the application of the laser field perturbation, driving the electron density toward the doubly excited state. The CP-DMS method then converges the density to the nearest stationary state. We present these stationary state doubly excited state energies and properties at the HF and DFT levels for H2, HeH+, lithium hydride, ethylene, and butadiene.

  6. Testing the density matrix expansion against ab initio calculations of trapped neutron drops

    Energy Technology Data Exchange (ETDEWEB)

    Bogner, S. K. [Michigan State University, East Lansing; Hergert, H. [Michigan State University, East Lansing; Furnstahl, R. J. [Ohio State University; Kortelainen, Erno M [ORNL; Stoitsov, M. V. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Maris, Pieter [Iowa State University; Vary, J. P. [Iowa State University

    2011-01-01

    Microscopic input to a universal nuclear energy density functional can be provided through the density matrix expansion (DME), which has recently been revived and improved. Several DME implementation strategies are tested for neutron drop systems in harmonic traps by comparing to Hartree-Fock (HF) and ab initio no-core full configuration (NCFC) calculations with a model interaction (Minnesota potential). The new DME with exact treatment of Hartree contributions is found to best reproduce HF results and supplementing the functional with fit Skyrme-like contact terms shows systematic improvement toward the full NCFC results.

  7. Reduced density matrix embedding. General formalism and inter-domain correlation functional.

    Science.gov (United States)

    Pernal, Katarzyna

    2016-08-03

    An embedding method for a one-electron reduced density matrix (1-RDM) is proposed. It is based on partitioning of 1-RDM into domains and describing each domain in the effective potential of the other ones. To assure N-representability of the total 1-RDM N-representability and strong-orthogonality conditions are imposed on the domains. The total energy is given as a sum of single-domain energies and domain-domain electron interaction contributions. Higher than two-body inter-domain interaction terms are neglected. The two-body correlation terms are approximated by deriving inter-domain correlation from couplings of density fluctuations of two domains at a time. Unlike in most density embedding methods kinetic energy is treated exactly and it is not required that densities pertaining to the domains are only weakly overlapping. We propose to treat each domain by a corrected perfect-pairing functional. On a few examples it is shown that the embedding reduced density matrix functional method (ERDMF) yields excellent results for molecules that are well described by a single Lewis structure even if strong static intra-domain or dynamic inter-domain correlation effects must be accounted for.

  8. Hybrid reconstruction of quantum density matrix: when low-rank meets sparsity

    Science.gov (United States)

    Li, Kezhi; Zheng, Kai; Yang, Jingbei; Cong, Shuang; Liu, Xiaomei; Li, Zhaokai

    2017-12-01

    Both the mathematical theory and experiments have verified that the quantum state tomography based on compressive sensing is an efficient framework for the reconstruction of quantum density states. In recent physical experiments, we found that many unknown density matrices in which people are interested in are low-rank as well as sparse. Bearing this information in mind, in this paper we propose a reconstruction algorithm that combines the low-rank and the sparsity property of density matrices and further theoretically prove that the solution of the optimization function can be, and only be, the true density matrix satisfying the model with overwhelming probability, as long as a necessary number of measurements are allowed. The solver leverages the fixed-point equation technique in which a step-by-step strategy is developed by utilizing an extended soft threshold operator that copes with complex values. Numerical experiments of the density matrix estimation for real nuclear magnetic resonance devices reveal that the proposed method achieves a better accuracy compared to some existing methods. We believe that the proposed method could be leveraged as a generalized approach and widely implemented in the quantum state estimation.

  9. Matrix density effects on the mechanical properties of SiC/RBSN composites

    Science.gov (United States)

    Bhatt, Ramakrishna T.; Kiser, James D.

    1990-01-01

    The room temperature mechanical properties were measured for SiC fiber reinforced reaction-bonded silicon nitride composites (SiC/RBSN) of different densities. The composites consisted of approx. 30 vol percent uniaxially aligned 142 micron diameter SiC fibers (Textron SCS-6) in a reaction-bonded Si3N4 matrix. The composite density was varied by changing the consolidation pressure during RBSN processing and by hot isostatically pressing the SiC/RBSN composites. Results indicate that as the consolidation pressure was increased from 27 to 138 MPa, the average pore size of the nitrided composites decreased from 0.04 to 0.02 microns and the composite density increased from 2.07 to 2.45 gm/cc. Nonetheless, these improvements resulted in only small increases in the first matrix cracking stress, primary elastic modulus, and ultimate tensile strength values of the composites. In contrast, HIP consolidation of SiC/RBSN resulted in a fully dense material whose first matrix cracking stress and elastic modulus were approx. 15 and 50 percent higher, respectively, and ultimate tensile strength values were approx. 40 percent lower than those for unHIPed SiC/RBSN composites. The modulus behavior for all specimens can be explained by simple rule-of-mixture theory. Also, the loss in ultimate strength for the HIPed composites appears to be related to a degradation in fiber strength at the HIP temperature. However, the density effect on matrix fracture strength was much less than would be expected based on typical monolithic Si3N4 behavior, suggesting that composite theory is indeed operating. Possible practical implications of these observations are discussed.

  10. A density matrix renormalization group study of low-lying excitations ...

    Indian Academy of Sciences (India)

    Unknown

    Density-matrix renormalization: A new numerical method in physics (Lecture notes in physics) (Berlin: Springer). 42. Ramasesha S, Pati S K, Krishnamurthy H R, Shuai Z and Brédas J L 1996 Phys. Rev. B54 7598. 43. Ohno K 1964 Theor. Chem. Acta 2 219. 44. Callomon J H, Hirota E, Kuchitsu K, Lafferty W J,. Maki A G and ...

  11. Off-diagonal helicity density matrix elements for vector mesons produced at LEP

    International Nuclear Information System (INIS)

    Anselmino, M.; Bertini, M.; Quintairos, P.

    1997-05-01

    Final state q q-bar interactions may give origin to non zero values of the off-diagonal element ρ 1 of the helicity density matrix of vector mesons produced in e + e - annihilations, as confirmed by recent OPAL data on φ and D * 's. Predictions are given for ρ1,-1 of several mesons produced at large z and small PT, collinear with the parent jet; the values obtained for θ and D * are in agreement with data. (author)

  12. On-the-Fly Computation of Frontal Orbitals in Density Matrix Expansions.

    Science.gov (United States)

    Kruchinina, Anastasia; Rudberg, Elias; Rubensson, Emanuel H

    2018-01-09

    We propose a method for computation of frontal (homo and lumo) orbitals in recursive polynomial expansion algorithms for the density matrix. Such algorithms give a computational cost that increases only linearly with system size for sufficiently sparse systems, but a drawback compared to the traditional diagonalization approach is that molecular orbitals are not readily available. Our method is based on the idea to use the polynomial of the density matrix expansion as an eigenvalue filter giving large separation between eigenvalues around homo and lumo [ Rubensson et al. J. Chem. Phys. 2008 , 128 , 176101 ]. This filter is combined with a shift-and-square (folded spectrum) method to move the desired eigenvalue to the end of the spectrum. In this work we propose a transparent way to select recursive expansion iteration and shift for the eigenvector computation that results in a sharp eigenvalue filter. The filter is obtained as a byproduct of the density matrix expansion, and there is no significant additional cost associated either with its construction or with its application. This gives a clear-cut and efficient eigenvalue solver that can be used to compute homo and lumo orbitals with sufficient accuracy in a small fraction of the total recursive expansion time. Our algorithms make use of recent homo and lumo eigenvalue estimates that can be obtained at negligible cost [ Rubensson et al. SIAM J. Sci. Comput . 2014 , 36 , B147 ]. We illustrate our method by performing self-consistent field calculations for large scale systems.

  13. Microscopically-Based Energy Density Functionals for Nuclei Using the Density Matrix Expansion. I: Implementation and Pre-Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Stoitsov, M. V. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Kortelainen, Erno M [ORNL; Bogner, S. K. [Michigan State University, East Lansing; Duguet, T. [CEA, Saclay, France; Furnstahl, R. J. [Ohio State University; Gebremariam, B. [Michigan State University, East Lansing; Schunck, N. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL)

    2010-01-01

    In a recent series of papers, Gebremariam, Bogner, and Duguet derived a microscopically-based nuclear energy density functional by applying the Density Matrix Expansion (DME) to the Hartree-Fock energy obtained from chiral effective field theory (EFT) two- and three-nucleon interactions. Due to the structure of the chiral interactions, each coupling in the DME functional is given as the sum of a coupling constant arising from zero-range contact interactions and a coupling function of the density arising from the finite-range pion exchanges. Since the contact contributions have essentially the same structure as those entering empirical Skyrme functionals, a microscopically guided Skyrme phenomenology has been suggested in which the contact terms in the DME functional are released for optimization to finite-density observables to capture short-range correlation energy contributions from beyond Hartree-Fock. The present paper is the first attempt to assess the ability of the newly suggested DME functional, which has a much richer set of density dependencies than traditional Skyrme functionals, to generate sensible and stable results for nuclear applications. The results of the first proof-of-principle calculations are given, and numerous practical issues related to the implementation of the new functional in existing Skyrme codes are discussed. Using a restricted singular value decomposition (SVD) optimization procedure, it is found that the new DME functional gives numerically stable results and exhibits a small but systematic reduction in {chi}^{2} compared to standard Skyrme functionals, thus justifying its suitability for future global optimizations and large-scale calculations.

  14. Single-particle response function in finite nuclei

    International Nuclear Information System (INIS)

    Shlomo, S.; Texas A and M Univ., College Station

    1982-01-01

    I derive expressions for the single-particle response (structure) function S(E, q) and its sum rule, (Pauli blocking factor) P(q) = ∫ dE S(E, q), in terms of the Wiqner transforms (WTs) of the single-particle wave functions and the scattering probe sigma(q, r) and discuss the semi-classical phase-space interpretation of the results. For sigma(q, r) = esup(iq x r), I derive simple expressions for S(E, q) and P(q) for finite nuclei within the harmonic-oscillator model and compare the results with the well-known results of the Fermi-gas model. (orig.)

  15. Particle segmentation algorithm for flexible single particle reconstruction.

    Science.gov (United States)

    Zhou, Qiang; Zhou, Niyun; Wang, Hong-Wei

    2017-01-01

    As single particle cryo-electron microscopy has evolved to a new era of atomic resolution, sample heterogeneity still imposes a major limit to the resolution of many macromolecular complexes, especially those with continuous conformational flexibility. Here, we describe a particle segmentation algorithm towards solving structures of molecules composed of several parts that are relatively flexible with each other. In this algorithm, the different parts of a target molecule are segmented from raw images according to their alignment information obtained from a preliminary 3D reconstruction and are subjected to single particle processing in an iterative manner. This algorithm was tested on both simulated and experimental data and showed improvement of 3D reconstruction resolution of each segmented part of the molecule than that of the entire molecule.

  16. Single-particle cryo-electron microscopy of macromolecular complexes.

    Science.gov (United States)

    Skiniotis, Georgios; Southworth, Daniel R

    2016-02-01

    Recent technological breakthroughs in image acquisition have enabled single-particle cryo-electron microscopy (cryo-EM) to achieve near-atomic resolution structural information for biological complexes. The improvements in image quality coupled with powerful computational methods for sorting distinct particle populations now also allow the determination of compositional and conformational ensembles, thereby providing key insights into macromolecular function. However, the inherent instability and dynamic nature of biological assemblies remain a tremendous challenge that often requires tailored approaches for successful implementation of the methodology. Here, we briefly describe the fundamentals of single-particle cryo-EM with an emphasis on covering the breadth of techniques and approaches, including low- and high-resolution methods, aiming to illustrate specific steps that are crucial for obtaining structural information by this method. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Single particle electrochemical sensors and methods of utilization

    Science.gov (United States)

    Schoeniger, Joseph [Oakland, CA; Flounders, Albert W [Berkeley, CA; Hughes, Robert C [Albuquerque, NM; Ricco, Antonio J [Los Gatos, CA; Wally, Karl [Lafayette, CA; Kravitz, Stanley H [Placitas, NM; Janek, Richard P [Oakland, CA

    2006-04-04

    The present invention discloses an electrochemical device for detecting single particles, and methods for using such a device to achieve high sensitivity for detecting particles such as bacteria, viruses, aggregates, immuno-complexes, molecules, or ionic species. The device provides for affinity-based electrochemical detection of particles with single-particle sensitivity. The disclosed device and methods are based on microelectrodes with surface-attached, affinity ligands (e.g., antibodies, combinatorial peptides, glycolipids) that bind selectively to some target particle species. The electrodes electrolyze chemical species present in the particle-containing solution, and particle interaction with a sensor element modulates its electrolytic activity. The devices may be used individually, employed as sensors, used in arrays for a single specific type of particle or for a range of particle types, or configured into arrays of sensors having both these attributes.

  18. Single Particle Orientation and Rotational Tracking (SPORT) in biophysical studies

    Science.gov (United States)

    Gu, Yan; Ha, Ji Won; Augspurger, Ashley E.; Chen, Kuangcai; Zhu, Shaobin; Fang, Ning

    2013-10-01

    The single particle orientation and rotational tracking (SPORT) techniques have seen rapid development in the past 5 years. Recent technical advances have greatly expanded the applicability of SPORT in biophysical studies. In this feature article, we survey the current development of SPORT and discuss its potential applications in biophysics, including cellular membrane processes and intracellular transport.The single particle orientation and rotational tracking (SPORT) techniques have seen rapid development in the past 5 years. Recent technical advances have greatly expanded the applicability of SPORT in biophysical studies. In this feature article, we survey the current development of SPORT and discuss its potential applications in biophysics, including cellular membrane processes and intracellular transport. Electronic supplementary information (ESI) available: Three supplementary movies and an experimental section. See DOI: 10.1039/c3nr02254d

  19. Single Particle Tracking: Analysis Techniques for Live Cell Nanoscopy

    Science.gov (United States)

    Relich, Peter Kristopher, II

    Single molecule experiments are a set of experiments designed specifically to study the properties of individual molecules. It has only been in the last three decades where single molecule experiments have been applied to the life sciences; where they have been successfully implemented in systems biology for probing the behaviors of sub-cellular mechanisms. The advent and growth of super-resolution techniques in single molecule experiments has made the fundamental behaviors of light and the associated nano-probes a necessary concern amongst life scientists wishing to advance the state of human knowledge in biology. This dissertation disseminates some of the practices learned in experimental live cell microscopy. The topic of single particle tracking is addressed here in a format that is designed for the physicist who embarks upon single molecule studies. Specifically, the focus is on the necessary procedures to generate single particle tracking analysis techniques that can be implemented to answer biological questions. These analysis techniques range from designing and testing a particle tracking algorithm to inferring model parameters once an image has been processed. The intellectual contributions of the author include the techniques in diffusion estimation, localization filtering, and trajectory associations for tracking which will all be discussed in detail in later chapters. The author of this thesis has also contributed to the software development of automated gain calibration, live cell particle simulations, and various single particle tracking packages. Future work includes further evaluation of this laboratory's single particle tracking software, entropy based approaches towards hypothesis validations, and the uncertainty quantification of gain calibration.

  20. Spin resonance strength calculation through single particle tracking for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Dutheil, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The strengths of spin resonances for the polarized-proton operation in the Relativistic Heavy Ion Collider are currently calculated with the code DEPOL, which numerically integrates through the ring based on an analytical approximate formula. In this article, we test a new way to calculate the spin resonance strengths by performing Fourier transformation to the actual transverse magnetic fields seen by a single particle traveling through the ring. Comparison of calculated spin resonance strengths is made between this method and DEPOL.

  1. Extending the range of real time density matrix renormalization group simulations

    Science.gov (United States)

    Kennes, D. M.; Karrasch, C.

    2016-03-01

    We discuss a few simple modifications to time-dependent density matrix renormalization group (DMRG) algorithms which allow to access larger time scales. We specifically aim at beginners and present practical aspects of how to implement these modifications within any standard matrix product state (MPS) based formulation of the method. Most importantly, we show how to 'combine' the Schrödinger and Heisenberg time evolutions of arbitrary pure states | ψ 〉 and operators A in the evaluation of 〈A〉ψ(t) = 〈 ψ | A(t) | ψ 〉 . This includes quantum quenches. The generalization to (non-)thermal mixed state dynamics 〈A〉ρ(t) =Tr [ ρA(t) ] induced by an initial density matrix ρ is straightforward. In the context of linear response (ground state or finite temperature T > 0) correlation functions, one can extend the simulation time by a factor of two by 'exploiting time translation invariance', which is efficiently implementable within MPS DMRG. We present a simple analytic argument for why a recently-introduced disentangler succeeds in reducing the effort of time-dependent simulations at T > 0. Finally, we advocate the python programming language as an elegant option for beginners to set up a DMRG code.

  2. Spatially Resolved Sensitivity of Single-Particle Plasmon Sensors.

    Science.gov (United States)

    Beuwer, Michael A; van Hoof, Bas; Zijlstra, Peter

    2018-03-01

    The high sensitivity of localized surface plasmon resonance sensors to the local refractive index allows for the detection of single-molecule binding events. Though binding events of single objects can be detected by their induced plasmon shift, the broad distribution of observed shifts remains poorly understood. Here, we perform a single-particle study wherein single nanospheres bind to a gold nanorod, and relate the observed plasmon shift to the binding location using correlative microscopy. To achieve this we combine atomic force microscopy to determine the binding location, and single-particle spectroscopy to determine the corresponding plasmon shift. As expected, we find a larger plasmon shift for nanospheres binding at the tip of a rod compared to its sides, in good agreement with numerical calculations. However, we also find a broad distribution of shifts even for spheres that were bound at a similar location to the nanorod. Our correlative approach allows us to disentangle effects of nanoparticle dimensions and binding location, and by comparison to numerical calculations we find that the biggest contributor to this observed spread is the dispersion in nanosphere diameter. These experiments provide insight into the spatial sensitivity and signal-heterogeneity of single-particle plasmon sensors and provides a framework for signal interpretation in sensing applications.

  3. Single Particle Nanoplasmonic Sensing in Individual Nanofluidic Channels.

    Science.gov (United States)

    Fritzsche, Joachim; Albinsson, David; Fritzsche, Michael; Antosiewicz, Tomasz J; Westerlund, Fredrik; Langhammer, Christoph

    2016-12-14

    Nanoplasmonics allows label-free optical sensing and spectroscopy at the single nanoparticle level by exploiting plasmonic excitations in metal nanoparticles. Nanofluidics offers exclusive possibilities for applying and controlling fluid flow and mass transport at the nanoscale and toward nanosized objects. Here, we combine these two concepts in a single device, by integrating single particle nanoplasmonic sensing with nanofluidics using advanced nanofabrication. The developed devices enable on-chip referenced parallel single particle nanoplasmonic sensing inside multiple individual nanofluidic channels with dimensions down to the 100 nm range. Beyond detailed discussion of the nanofabrication, general device characterization, and parallelized single particle plasmonic readout concepts, we demonstrate device function on two examples: (i) in situ measurements of local buffer concentrations inside a nanofluidic channel; (ii) real time binding kinetics of alkanethiol molecules to a single plasmonic nanonatenna sensor in a single nanochannel. Our concept thus provides a powerful solution for controlling mass transport to and from individual (plasmonic) nanoparticles, which in a long-term perspective offers unique opportunities for label-free detection of analyte molecules at low concentrations and for fundamental studies of fluids in extreme confinement.

  4. Consolidation of titanium matrix composites to maximum density by different hot pressing techniques

    International Nuclear Information System (INIS)

    Montealegre Melendez, I.; Neubauer, E.; Danninger, H.

    2010-01-01

    In this present work, TiMMCs were manufactured through conventional and inductive hot pressing techniques. The starting materials were two titanium based powders as metal matrices, and two types of reinforcements, carbon nanofibres and nano-micro-boron particles. After several manufacturing runs with varying parameters, especially, optimized hot pressing parameters, the titanium compacts were characterized. Density and hardness measurements, chemical analyses and microstructural studies were conducted. The two objectives of this work were achieved. On one hand the influence, in the properties of TiMMCs, of the starting materials as matrix powder and reinforcements was determined. Higher content of impurities from the starting materials affected the hardness and the microstructure of the composites, independently of the manufacturing process. On another hand, the study of variations of the manufacturing process as temperature of consolidation and soaking time was reported. Higher densification was obtained at higher consolidation temperature; however, reaction between the matrix and the carbonaceous reinforcement was detected.

  5. Comment on "Nonuniqueness of algebraic first-order density-matrix functionals"

    Science.gov (United States)

    Gritsenko, O. V.

    2018-02-01

    Wang and Knowles (WK) [Phys. Rev. A 92, 012520 (2015), 10.1103/PhysRevA.92.012520] have given a counterexample to the conventional in reduced density-matrix functional theory representation of the second-order reduced density matrix (2RDM) Γi j ,k l in the basis of the natural orbitals as a function Γi j ,k l(n ) of the orbital occupation numbers (ONs) ni. The observed nonuniqueness of Γi j ,k l for prototype systems of different symmetry has been interpreted as the inherent inability of ON functions to reproduce the 2RDM, due to the insufficient information contained in the 1RDM spectrum. In this Comment, it is argued that, rather than totally invalidating Γi j ,k l(n ) , the WK example exposes its symmetry dependence which, as well as the previously established analogous dependence in density functional theory, is demonstrated with a general formulation based on the Levy constrained search.

  6. Ab initio calculations of optical absorption spectra: solution of the Bethe-Salpeter equation within density matrix perturbation theory.

    Science.gov (United States)

    Rocca, Dario; Lu, Deyu; Galli, Giulia

    2010-10-28

    We describe an ab initio approach to compute the optical absorption spectra of molecules and solids, which is suitable for the study of large systems and gives access to spectra within a wide energy range. In this approach, the quantum Liouville equation is solved iteratively within first order perturbation theory, with a Hamiltonian containing a static self-energy operator. This procedure is equivalent to solving the statically screened Bethe-Salpeter equation. Explicit calculations of single particle excited states and inversion of dielectric matrices are avoided using techniques based on density functional perturbation theory. In this way, full absorption spectra may be obtained with a computational workload comparable to ground state Hartree-Fock calculations. We present results for small molecules, for the spectra of a 1 nm Si cluster in a wide energy range (20 eV), and for a dipeptide exhibiting charge transfer excitations.

  7. Phase-coexistence simulations of fluid mixtures by the Markov Chain Monte Carlo method using single-particle models

    KAUST Repository

    Li, Jun

    2013-09-01

    We present a single-particle Lennard-Jones (L-J) model for CO2 and N2. Simplified L-J models for other small polyatomic molecules can be obtained following the methodology described herein. The phase-coexistence diagrams of single-component systems computed using the proposed single-particle models for CO2 and N2 agree well with experimental data over a wide range of temperatures. These diagrams are computed using the Markov Chain Monte Carlo method based on the Gibbs-NVT ensemble. This good agreement validates the proposed simplified models. That is, with properly selected parameters, the single-particle models have similar accuracy in predicting gas-phase properties as more complex, state-of-the-art molecular models. To further test these single-particle models, three binary mixtures of CH4, CO2 and N2 are studied using a Gibbs-NPT ensemble. These results are compared against experimental data over a wide range of pressures. The single-particle model has similar accuracy in the gas phase as traditional models although its deviation in the liquid phase is greater. Since the single-particle model reduces the particle number and avoids the time-consuming Ewald summation used to evaluate Coulomb interactions, the proposed model improves the computational efficiency significantly, particularly in the case of high liquid density where the acceptance rate of the particle-swap trial move increases. We compare, at constant temperature and pressure, the Gibbs-NPT and Gibbs-NVT ensembles to analyze their performance differences and results consistency. As theoretically predicted, the agreement between the simulations implies that Gibbs-NVT can be used to validate Gibbs-NPT predictions when experimental data is not available. © 2013 Elsevier Inc.

  8. Large-Scale Single Particle and Cell Trapping based on Rotating Electric Field Induced-Charge Electroosmosis.

    Science.gov (United States)

    Wu, Yupan; Ren, Yukun; Tao, Ye; Hou, Likai; Jiang, Hongyuan

    2016-12-06

    We propose a simple, inexpensive microfluidic chip for large-scale trapping of single particles and cells based on induced-charge electroosmosis in a rotating electric field (ROT-ICEO). A central floating electrode array, was placed in the center of the gap between four driving electrodes with a quadrature configuration and used to immobilize single particles or cells. Cells were trapped on the electrode array by the interaction between ROT-ICEO flow and buoyancy flow. We experimentally optimized the efficiency of trapping single particles by investigating important parameters like particle or cell density and electric potential. Experimental and numerical results showed good agreement. The operation of the chip was verified by trapping single polystyrene (PS) microspheres with diameters of 5 and 20 μm and single yeast cells. The highest single particle occupancy of 73% was obtained using a floating electrode array with a diameter of 20 μm with an amplitude voltage of 5 V and frequency of 10 kHz for PS microbeads with a 5-μm diameter and density of 800 particles/μL. The ROT-ICEO flow could hold cells against fluid flows with a rate of less than 0.45 μL/min. This novel, simple, robust method to trap single cells has enormous potential in genetic and metabolic engineering.

  9. Metal-insulator transition in disordered systems from the one-body density matrix

    DEFF Research Database (Denmark)

    Olsen, Thomas; Resta, Raffaele; Souza, Ivo

    2017-01-01

    systems. In particular, for noninteracting systems the geometrical marker can be obtained from the configurational average of the norm-squared one-body density matrix, which can be calculated within open as well as periodic boundary conditions. This is in sharp contrast to a classification based......The insulating state of matter can be probed by means of a ground state geometrical marker, which is closely related to the modern theory of polarization (based on a Berry phase). In the present work we show that this marker can be applied to determine the metal-insulator transition in disordered...

  10. Spin Density Matrix Elements in exclusive production of ω mesons at Hermes

    Directory of Open Access Journals (Sweden)

    Marianski B.

    2014-03-01

    Full Text Available Spin density matrix elements have been determined for exclusive ω meson production on hydrogen and deuterium targets, in the kinematic region of 1.0 < Q2 < 10.0 GeV2, 3.0 < W < 6.3 GeV and –t' < 0.2 GeV2. The data, from which SDMEs are determined, were accumulated with the HERMES forward spectrometer during the running period of 1996 to 2007 using the 27.6 GeV electron or positron beam of HERA. A sizable contribution of unnatural parity exchange amplitudes is found for exclusive ω meson production.

  11. Charge-constrained auxiliary-density-matrix methods for the Hartree–Fock exchange contribution

    DEFF Research Database (Denmark)

    Merlot, Patrick; Izsak, Robert; Borgoo, Alex

    2014-01-01

    Three new variants of the auxiliary-density-matrix method (ADMM) of Guidon, Hutter, and VandeVondele [J. Chem. Theory Comput. 6, 2348 (2010)] are presented with the common feature thatthey have a simplified constraint compared with the full orthonormality requirement of the earlier ADMM1 method....... All ADMM variants are tested for accuracy and performance in all-electron B3LYP calculations with several commonly used basis sets. The effect of the choice of the exchange functional for the ADMM exchange–correction term is also investigated....

  12. A parton shower based on factorization of the quantum density matrix

    International Nuclear Information System (INIS)

    Nagy, Zoltan; Soper, Davison E.

    2014-01-01

    We present rst results from a new parton shower event generator, DEDUCTOR. Anticipating a need for an improved treatment of parton color and spin, the structure of the generator is based on the quantum density matrix in color and spin space. So far, DEDUCTOR implements only a standard spin-averaged treatment of spin in parton splittings. Although DEDUCTOR implements an improved treatment of color, in this paper we present results in the standard leading color approximation so that we can compare to the generator PYTHIA. The algorithms used incorporate a virtuality based shower ordering parameter and massive initial state bottom and charm quarks.

  13. Fock-Matrix Corrections in Density Functional Theory and Use in Embedded Mean-Field Theory.

    Science.gov (United States)

    Miyamoto, Kaito; Miller, Thomas F; Manby, Frederick R

    2016-12-13

    We introduce Fock-corrected density functional theory (FCDFT), a semiempirical minimal-basis method part way between density-functional tight binding (DFTB) and DFT. FCDFT contains DFTB-like Fock-matrix contributions calculated using simple pairwise formulas and Slater-Koster transformations, but it also contains the full Kohn-Sham treatment of Coulombic electrostatics. The resulting method is better suited than either minimal-basis DFT or DFTB for modeling the low-level subsystem in embedded mean-field theory (EMFT), improving upon the former by correcting for basis-set incompleteness and upon the latter by properly accounting for electrostatics. EMFT calculations using DFT-in-FCDFT have much smaller errors in orbital energies, dipole moments, and reaction energies than our previous DFT-in-DFT calculations.

  14. Local Approximation of the Correlation Energy Functional in the Density Matrix Functional Theory

    Science.gov (United States)

    Yasuda, Koji

    2002-02-01

    A local approximation formula of the correlation energy functional Ec in terms of the first-order reduced density matrix (1-RDM) is presented. With the contracted Schrödinger equation the principal dependence of Ec on the natural occupation numbers ni is identified. Using the effective mass theory, Ec is expressed as a functional of the local density and the local variable, J = Σi(ni(1-ni)) \\|ϕi\\|2, where ϕi are the natural spin orbitals. This local approximation satisfies the homogeneous coordinate scaling relation, gives the exact result for a one-electron system, and is almost free from the exchange energy error. It reproduced about 90% of the correlation energies of atoms and molecules.

  15. Assessment of density matrix methods for linear scaling electronic structure calculations.

    Science.gov (United States)

    Rudberg, Elias; Rubensson, Emanuel H

    2011-02-23

    Purification and minimization methods for linear scaling computation of the one-particle density matrix for a fixed Hamiltonian matrix are compared. This is done by considering the work needed by each method to achieve a given accuracy in terms of the difference from the exact solution. Numerical tests employing orthogonal as well as non-orthogonal versions of the methods are performed using both element magnitude and cutoff radius based truncation approaches. It is investigated how the convergence speed for the different methods depends on the eigenvalue distribution in the Hamiltonian matrix. An expression for the number of iterations required for the minimization methods studied is derived, taking into account the dependence on both the band gap and the chemical potential. This expression is confirmed by numerical tests. The minimization methods are found to perform at their best when the chemical potential is located near the center of the eigenspectrum. The results indicate that purification is considerably more efficient than the minimization methods studied even when a good starting guess for the minimization is available. In test calculations without a starting guess, purification is more than an order of magnitude more efficient than minimization. © 2011 IOP Publishing Ltd

  16. New apparatus of single particle trap system for aerosol visualization

    Science.gov (United States)

    Higashi, Hidenori; Fujioka, Tomomi; Endo, Tetsuo; Kitayama, Chiho; Seto, Takafumi; Otani, Yoshio

    2014-08-01

    Control of transport and deposition of charged aerosol particles is important in various manufacturing processes. Aerosol visualization is an effective method to directly observe light scattering signal from laser-irradiated single aerosol particle trapped in a visualization cell. New single particle trap system triggered by light scattering pulse signal was developed in this study. The performance of the device was evaluated experimentally. Experimental setup consisted of an aerosol generator, a differential mobility analyzer (DMA), an optical particle counter (OPC) and the single particle trap system. Polystylene latex standard (PSL) particles (0.5, 1.0 and 2.0 μm) were generated and classified according to the charge by the DMA. Singly charged 0.5 and 1.0 μm particles and doubly charged 2.0 μm particles were used as test particles. The single particle trap system was composed of a light scattering signal detector and a visualization cell. When the particle passed through the detector, trigger signal with a given delay time sent to the solenoid valves upstream and downstream of the visualization cell for trapping the particle in the visualization cell. The motion of particle in the visualization cell was monitored by CCD camera and the gravitational settling velocity and the electrostatic migration velocity were measured from the video image. The aerodynamic diameter obtained from the settling velocity was in good agreement with Stokes diameter calculated from the electrostatic migration velocity for individual particles. It was also found that the aerodynamic diameter obtained from the settling velocity was a one-to-one function of the scattered light intensity of individual particles. The applicability of this system will be discussed.

  17. Emissions from Ethanol-Gasoline Blends: A Single Particle Perspective

    Directory of Open Access Journals (Sweden)

    Peter H. McMurry

    2011-06-01

    Full Text Available Due to its agricultural origin and function as a fuel oxygenate, ethanol is being promoted as an alternative biomass-based fuel for use in spark ignition engines, with mandates for its use at state and regional levels. While it has been established that the addition of ethanol to a fuel reduces the particulate mass concentration in the exhaust, little attention has been paid to changes in the physicochemical properties of the emitted particles. In this work, a dynamometer-mounted GM Quad-4 spark ignition engine run without aftertreatment at 1,500 RPM and 100% load was used with four different fuel blends, containing 0, 20, 40 and 85 percent ethanol in gasoline. This allowed the effects of the fuel composition to be isolated from other effects. Instrumentation employed included two Aerosol Time-of-Flight Mass Spectrometers covering different size ranges for analysis of single particle composition, an Aethalometer for black carbon, a Scanning Mobility Particle Sizer for particle size distributions, a Photoelectric Aerosol Sensor for particle-bound polycyclic aromatic hydrocarbon (PAH species and gravimetric filter measurements for particulate mass concentrations. It was found that, under the conditions investigated here, additional ethanol content in the fuel changes the particle size distribution, especially in the accumulation mode, and decreases the black carbon and total particulate mass concentrations. The molecular weight distribution of the PAHs was found to decrease with added ethanol. However, PAHs produced from higher ethanol-content fuels are associated with NO2− (m/z—46 in the single-particle mass spectra, indicating the presence of nitro-PAHs. Compounds associated with the gasoline (e.g., sulfur-containing species are diminished due to dilution as ethanol is added to the fuel relative to those associated with the lubricating oil (e.g., calcium, zinc, phosphate in the single particle spectra. These changes have potential

  18. Sodium hydrosulfide prevents myocardial dysfunction through modulation of extracellular matrix accumulation and vascular density.

    Science.gov (United States)

    Pan, Li-Long; Wang, Xian-Li; Wang, Xi-Ling; Zhu, Yi-Zhun

    2014-12-12

    The aim was to examine the role of exogenous hydrogen sulfide (H2S) on cardiac remodeling in post-myocardial infarction (MI) rats. MI was induced in rats by ligation of coronary artery. After treatment with sodium hydrosulfide (NaHS, an exogenous H2S donor, 56 μM/kg·day) for 42 days, the effects of NaHS on left ventricular morphometric features, echocardiographic parameters, heme oxygenase-1 (HO-1), matrix metalloproteinases-9 (MMP-9), type I and type III collagen, vascular endothelial growth factor (VEGF), CD34, and α-smooth muscle actin (α-SMA) in the border zone of infarct area were analyzed to elucidate the protective mechanisms of exogenous H2S on cardiac function and fibrosis. Forty-two days post MI, NaHS-treatment resulted in a decrease in myocardial fibrotic area in association with decreased levels of type I, type III collagen and MMP-9 and improved cardiac function. Meanwhile, NaHS administration significantly increased cystathionine γ-lyase (CSE), HO-1, α-SMA, and VEGF expression. This effect was accompanied by an increase in vascular density in the border zone of infarcted myocardium. Our results provided the strong evidences that exogenous H2S prevented cardiac remodeling, at least in part, through inhibition of extracellular matrix accumulation and increase in vascular density.

  19. Quantum Stochastic Trajectories: The Fokker-Planck-Bohm Equation Driven by the Reduced Density Matrix.

    Science.gov (United States)

    Avanzini, Francesco; Moro, Giorgio J

    2018-03-15

    The quantum molecular trajectory is the deterministic trajectory, arising from the Bohm theory, that describes the instantaneous positions of the nuclei of molecules by assuring the agreement with the predictions of quantum mechanics. Therefore, it provides the suitable framework for representing the geometry and the motions of molecules without neglecting their quantum nature. However, the quantum molecular trajectory is extremely demanding from the computational point of view, and this strongly limits its applications. To overcome such a drawback, we derive a stochastic representation of the quantum molecular trajectory, through projection operator techniques, for the degrees of freedom of an open quantum system. The resulting Fokker-Planck operator is parametrically dependent upon the reduced density matrix of the open system. Because of the pilot role played by the reduced density matrix, this stochastic approach is able to represent accurately the main features of the open system motions both at equilibrium and out of equilibrium with the environment. To verify this procedure, the predictions of the stochastic and deterministic representation are compared for a model system of six interacting harmonic oscillators, where one oscillator is taken as the open quantum system of interest. The undeniable advantage of the stochastic approach is that of providing a simplified and self-contained representation of the dynamics of the open system coordinates. Furthermore, it can be employed to study the out of equilibrium dynamics and the relaxation of quantum molecular motions during photoinduced processes, like photoinduced conformational changes and proton transfers.

  20. Sodium Hydrosulfide Prevents Myocardial Dysfunction through Modulation of Extracellular Matrix Accumulation and Vascular Density

    Directory of Open Access Journals (Sweden)

    Li-Long Pan

    2014-12-01

    Full Text Available The aim was to examine the role of exogenous hydrogen sulfide (H2S on cardiac remodeling in post-myocardial infarction (MI rats. MI was induced in rats by ligation of coronary artery. After treatment with sodium hydrosulfide (NaHS, an exogenous H2S donor, 56 μM/kg·day for 42 days, the effects of NaHS on left ventricular morphometric features, echocardiographic parameters, heme oxygenase-1 (HO-1, matrix metalloproteinases-9 (MMP-9, type I and type III collagen, vascular endothelial growth factor (VEGF, CD34, and α-smooth muscle actin (α-SMA in the border zone of infarct area were analyzed to elucidate the protective mechanisms of exogenous H2S on cardiac function and fibrosis. Forty-two days post MI, NaHS-treatment resulted in a decrease in myocardial fibrotic area in association with decreased levels of type I, type III collagen and MMP-9 and improved cardiac function. Meanwhile, NaHS administration significantly increased cystathionine γ-lyase (CSE, HO-1, α-SMA, and VEGF expression. This effect was accompanied by an increase in vascular density in the border zone of infarcted myocardium. Our results provided the strong evidences that exogenous H2S prevented cardiac remodeling, at least in part, through inhibition of extracellular matrix accumulation and increase in vascular density.

  1. Decay properties of high-lying single-particles modes

    Science.gov (United States)

    Beaumel, D.; Fortier, S.; Galès, S.; Guillot, J.; Langevin-Joliot, H.; Laurent, H.; Maison, J. M.; Vernotte, J.; Bordewijck, J.; Brandenburg, S.; Krasznahorkay, A.; Crawley, G. M.; Massolo, C. P.; Renteria, M.; Khendriche, A.

    1996-02-01

    The neutron decay of high-lying single-particle states in 64Ni, 90Zr, 120Sn and 208Pb excited by means of the (α, 3He) reaction has been investigated at 120 MeV incident energy using the multidetector EDEN. The characteristics of this reaction are studied using inclusive spectra and angular correlation analysis. The structure located between 11 and 15 MeV in 91Zr, and between 8 and 12 MeV excitation energy in 209Pb display large departures from a pure statistical decay. The corresponding non-statistical branching ratios are compared with the results of two theoretical calculations.

  2. Real stabilization method for nuclear single-particle resonances

    International Nuclear Information System (INIS)

    Zhang Li; Zhou Shangui; Meng Jie; Zhao Enguang

    2008-01-01

    We develop the real stabilization method within the framework of the relativistic mean-field (RMF) model. With the self-consistent nuclear potentials from the RMF model, the real stabilization method is used to study single-particle resonant states in spherical nuclei. As examples, the energies, widths, and wave functions of low-lying neutron resonant states in 120 Sn are obtained. These results are compared with those from the scattering phase-shift method and the analytic continuation in the coupling constant approach and satisfactory agreements are found

  3. Single particle tracking and single molecule energy transfer

    CERN Document Server

    Bräuchle, Christoph; Michaelis, Jens

    2009-01-01

    Closing a gap in the literature, this handbook gathers all the information on single particle tracking and single molecule energy transfer. It covers all aspects of this hot and modern topic, from detecting virus entry to membrane diffusion, and from protein folding using spFRET to coupled dye systems, as well recent achievements in the field. Throughout, the first-class editors and top international authors present content of the highest quality, making this a must-have for physical chemists, spectroscopists, molecular physicists and biochemists.

  4. Single-particle cryo-EM at crystallographic resolution

    Science.gov (United States)

    Cheng, Yifan

    2015-01-01

    Until only a few years ago, single-particle electron cryo-microscopy (cryo-EM) was usually not the first choice for many structural biologists due to its limited resolution in the range of nanometer to subnanometer. Now, this method rivals X-ray crystallography in terms of resolution and can be used to determine atomic structures of macromolecules that are either refractory to crystallization or difficult to crystallize in specific functional states. In this review, I discuss the recent breakthroughs in both hardware and software that transformed cryo-microscopy, enabling understanding of complex biomolecules and their functions at atomic level. PMID:25910205

  5. Coupled cluster approach to the single-particle Green's function

    International Nuclear Information System (INIS)

    Nooijen, M.; Snijders, J.G.

    1992-01-01

    Diagrammatic and coupled cluster techniques are used to develop an approach to the single-particle Green's function G which concentrates on G directly rather than first approximating the irreducible self-energy and then solving Dyson's equation. As a consequence the ionization and attachment parts of the Green's function satisfy completely decoupled sets of equations. The proposed coupled cluster Green's function method (CCGF) is intimately connected to both coupled cluster linear response theory (CCLRT) and the normal coupled cluster method (NCCM). These relations are discussed in detail

  6. High resolution single particle refinement in EMAN2.1.

    Science.gov (United States)

    Bell, James M; Chen, Muyuan; Baldwin, Philip R; Ludtke, Steven J

    2016-05-01

    EMAN2.1 is a complete image processing suite for quantitative analysis of grayscale images, with a primary focus on transmission electron microscopy, with complete workflows for performing high resolution single particle reconstruction, 2-D and 3-D heterogeneity analysis, random conical tilt reconstruction and subtomogram averaging, among other tasks. In this manuscript we provide the first detailed description of the high resolution single particle analysis pipeline and the philosophy behind its approach to the reconstruction problem. High resolution refinement is a fully automated process, and involves an advanced set of heuristics to select optimal algorithms for each specific refinement task. A gold standard FSC is produced automatically as part of refinement, providing a robust resolution estimate for the final map, and this is used to optimally filter the final CTF phase and amplitude corrected structure. Additional methods are in-place to reduce model bias during refinement, and to permit cross-validation using other computational methods. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Single-particle absorption spectroscopy by photothermal contrast.

    Science.gov (United States)

    Yorulmaz, Mustafa; Nizzero, Sara; Hoggard, Anneli; Wang, Lin-Yung; Cai, Yi-Yu; Su, Man-Nung; Chang, Wei-Shun; Link, Stephan

    2015-05-13

    Removing effects of sample heterogeneity through single-molecule and single-particle techniques has advanced many fields. While background free luminescence and scattering spectroscopy is widely used, recording the absorption spectrum only is rather difficult. Here we present an approach capable of recording pure absorption spectra of individual nanostructures. We demonstrate the implementation of single-particle absorption spectroscopy on strongly scattering plasmonic nanoparticles by combining photothermal microscopy with a supercontinuum laser and an innovative calibration procedure that accounts for chromatic aberrations and wavelength-dependent excitation powers. Comparison of the absorption spectra to the scattering spectra of the same individual gold nanoparticles reveals the blueshift of the absorption spectra, as predicted by Mie theory but previously not detectable in extinction measurements that measure the sum of absorption and scattering. By covering a wavelength range of 300 nm, we are furthermore able to record absorption spectra of single gold nanorods with different aspect ratios. We find that the spectral shift between absorption and scattering for the longitudinal plasmon resonance decreases as a function of nanorod aspect ratio, which is in agreement with simulations.

  8. A theorem on the single particle energy in a Fermi gas with interaction

    NARCIS (Netherlands)

    Hugenholtz, N.M.; Hove, Léon van

    1958-01-01

    This paper investigates single particle properties in a Fermi gas with interaction at the absolute zero of temperature. In such a system a single particle energy has only a meaning for particles of momentum k close to the Fermi momentum kF. These single particle states are metastable with a

  9. Calculations with off-shell matrix elements, TMD parton densities and TMD parton showers

    Science.gov (United States)

    Bury, Marcin; van Hameren, Andreas; Jung, Hannes; Kutak, Krzysztof; Sapeta, Sebastian; Serino, Mirko

    2018-02-01

    A new calculation using off-shell matrix elements with TMD parton densities supplemented with a newly developed initial state TMD parton shower is described. The calculation is based on the KaTie package for an automated calculation of the partonic process in high-energy factorization, making use of TMD parton densities implemented in TMDlib. The partonic events are stored in an LHE file, similar to the conventional LHE files, but now containing the transverse momenta of the initial partons. The LHE files are read in by the Cascade package for the full TMD parton shower, final state shower and hadronization from Pythia where events in HEPMC format are produced. We have determined a full set of TMD parton densities and developed an initial state TMD parton shower, including all flavors following the TMD distribution. As an example of application we have calculated the azimuthal de-correlation of high p_t dijets as measured at the LHC and found very good agreement with the measurement when including initial state TMD parton showers together with conventional final state parton showers and hadronization.

  10. Calculations with off-shell matrix elements, TMD parton densities and TMD parton showers.

    Science.gov (United States)

    Bury, Marcin; van Hameren, Andreas; Jung, Hannes; Kutak, Krzysztof; Sapeta, Sebastian; Serino, Mirko

    2018-01-01

    A new calculation using off-shell matrix elements with TMD parton densities supplemented with a newly developed initial state TMD parton shower is described. The calculation is based on the KaTie package for an automated calculation of the partonic process in high-energy factorization, making use of TMD parton densities implemented in TMDlib. The partonic events are stored in an LHE file, similar to the conventional LHE files, but now containing the transverse momenta of the initial partons. The LHE files are read in by the Cascade package for the full TMD parton shower, final state shower and hadronization from Pythia where events in HEPMC format are produced. We have determined a full set of TMD parton densities and developed an initial state TMD parton shower, including all flavors following the TMD distribution. As an example of application we have calculated the azimuthal de-correlation of high [Formula: see text] dijets as measured at the LHC and found very good agreement with the measurement when including initial state TMD parton showers together with conventional final state parton showers and hadronization.

  11. Singlet-triplet splittings from the virial theorem and single-particle excitation energies

    Science.gov (United States)

    Becke, Axel D.

    2018-01-01

    The zeroth-order (uncorrelated) singlet-triplet energy difference in single-particle excited configurations is 2Kif, where Kif is the Coulomb self-energy of the product of the transition orbitals. Here we present a non-empirical, virial-theorem argument that the correlated singlet-triplet energy difference should be half of this, namely, Kif. This incredibly simple result gives vertical HOMO-LUMO excitation energies in small-molecule benchmarks as good as the popular TD-B3LYP time-dependent approach to excited states. For linear acenes and nonlinear polycyclic aromatic hydrocarbons, the performance is significantly better than TD-B3LYP. In addition to the virial theorem, the derivation borrows intuitive pair-density concepts from density-functional theory.

  12. Idempotent Dirac density matrix for ten-electron central field inhomogeneous electron liquids in terms of electron- and kinetic energy-densities

    International Nuclear Information System (INIS)

    March, N.H.

    2006-08-01

    A differential equation for the Dirac density matrix γ(r, r'), given ground-state electron- and kinetic energy-densities, has been derived by March and Suhai for one- and two-level occupancy. For ten-electron spin-compensated spherical systems, it is shown here that γ ≡ γ[ρ, t g ] where ρ and t g are electron- and kinetic energy-densities. The philosophy of March and Suhai is confirmed beyond two-level filling. An important byproduct of the present approach is an explicit expression for the one-body potential of DFT in terms of the p-shell electron density. (author)

  13. Self-consistent RPA and the time-dependent density matrix approach

    Energy Technology Data Exchange (ETDEWEB)

    Schuck, P. [Institut de Physique Nucleaire, Orsay (France); CNRS et Universite Joseph Fourier, Laboratoire de Physique et Modelisation des Milieux Condenses, Grenoble (France); Tohyama, M. [Kyorin University School of Medicine, Mitaka, Tokyo (Japan)

    2016-10-15

    The time-dependent density matrix (TDDM) or BBGKY (Bogoliubov, Born, Green, Kirkwood, Yvon) approach is decoupled and closed at the three-body level in finding a natural representation of the latter in terms of a quadratic form of two-body correlation functions. In the small amplitude limit an extended RPA coupled to an also extended second RPA is obtained. Since including two-body correlations means that the ground state cannot be a Hartree-Fock state, naturally the corresponding RPA is upgraded to Self-Consistent RPA (SCRPA) which was introduced independently earlier and which is built on a correlated ground state. SCRPA conserves all the properties of standard RPA. Applications to the exactly solvable Lipkin and the 1D Hubbard models show good performances of SCRPA and TDDM. (orig.)

  14. Lectures on light nonlinear and quantum optics using the density matrix

    CERN Document Server

    Rand, Stephen C.

    2016-01-01

    This book bridges the gap between introductory quantum mechanics and the research front of modern optics and scientific fields that make use of light. While suitable as a reference for the specialist in quantum optics, it also targets non-specialists from other disciplines who need to understand light and its uses in research. It introduces a single analytic tool, the density matrix, to analyze complex optical phenomena encountered in traditional as well as cross-disciplinary research. It moves swiftly in a tight sequence from elementary to sophisticated topics in quantum optics, including optical tweezers, laser cooling, coherent population transfer, optical magnetism, electromagnetically induced transparency, squeezed light, and cavity quantum electrodynamics. A systematic approach starts with the simplest systems—stationary two-level atoms—then introduces atomic motion, adds more energy levels, and moves on to discuss first-, second-, and third-order coherence effects that are the basis for analyzing n...

  15. Active-space N-representability constraints for variational two-particle reduced density matrix calculations.

    Science.gov (United States)

    Shenvi, Neil; Izmaylov, Artur F

    2010-11-19

    The ground-state energy of a system of fermions can be calculated by minimizing a linear functional of the two-particle reduced density matrix (2-RDM) if an accurate set of N-representability conditions is applied. In this Letter we introduce a class of linear N-representability conditions based on exact calculations on a reduced active space. Unlike wave-function-based approaches, the 2-RDM methodology allows us to combine information from calculations on different active spaces. By adding active-space constraints, we can iteratively improve our estimate for the ground-state energy. Applying our methodology to a 1D Hubbard model yields a significant improvement over traditional 2-positivity constraints with the same computational scaling.

  16. Quantum phase transition by employing trace distance along with the density matrix renormalization group

    International Nuclear Information System (INIS)

    Luo, Da-Wei; Xu, Jing-Bo

    2015-01-01

    We use an alternative method to investigate the quantum criticality at zero and finite temperature using trace distance along with the density matrix renormalization group. It is shown that the average correlation measured by the trace distance between the system block and environment block in a DMRG sweep is able to detect the critical points of quantum phase transitions at finite temperature. As illustrative examples, we study spin-1 XXZ chains with uniaxial single-ion-type anisotropy and the Heisenberg spin chain with staggered coupling and external magnetic field. It is found that the trace distance shows discontinuity at the critical points of quantum phase transition and can be used as an indicator of QPTs

  17. Density-matrix simulation of small surface codes under current and projected experimental noise

    Science.gov (United States)

    O'Brien, T. E.; Tarasinski, B.; DiCarlo, L.

    2017-09-01

    We present a density-matrix simulation of the quantum memory and computing performance of the distance-3 logical qubit Surface-17, following a recently proposed quantum circuit and using experimental error parameters for transmon qubits in a planar circuit QED architecture. We use this simulation to optimize components of the QEC scheme (e.g., trading off stabilizer measurement infidelity for reduced cycle time) and to investigate the benefits of feedback harnessing the fundamental asymmetry of relaxation-dominated error in the constituent transmons. A lower-order approximate calculation extends these predictions to the distance-5 Surface-49. These results clearly indicate error rates below the fault-tolerance threshold of the surface code, and the potential for Surface-17 to perform beyond the break-even point of quantum memory. However, Surface-49 is required to surpass the break-even point of computation at state-of-the-art qubit relaxation times and readout speeds.

  18. Density-matrix renormalization-group study of current and activity fluctuations near nonequilibrium phase transitions.

    Science.gov (United States)

    Gorissen, Mieke; Hooyberghs, Jef; Vanderzande, Carlo

    2009-02-01

    Cumulants of a fluctuating current can be obtained from a free-energy-like generating function, which for Markov processes equals the largest eigenvalue of a generalized generator. We determine this eigenvalue with the density-matrix renormalization group for stochastic systems. We calculate the variance of the current in the different phases, and at the phase transitions, of the totally asymmetric exclusion process. Our results can be described in the terms of a scaling ansatz that involves the dynamical exponent z . We also calculate the generating function of the dynamical activity (total number of configuration changes) near the absorbing-state transition of the contact process. Its scaling properties can be expressed in terms of known critical exponents.

  19. Construction of environment states in quantum-chemical density-matrix renormalization group calculations.

    Science.gov (United States)

    Moritz, Gerrit; Reiher, Markus

    2006-01-21

    The application of the quantum-chemical density-matrix renormalization group (DMRG) algorithm is cumbersome for complex electronic structures with many active orbitals. The high computational cost is mainly due to the poor convergence of standard DMRG calculations. A factor which affects the convergence behavior of the calculations is the choice of the start-up procedure. In this start-up step matrix representations of operators have to be calculated in a guessed many-electron basis of the DMRG environment block. Different possibilities for the construction of these basis states exist, and we first compare four procedures to approximate the environment states using Slater determinants explicitly. These start-up procedures are applied to DMRG calculations on a sophisticated test system: the chromium dimer. It is found that the converged energies and the rate of convergence depend significantly on the choice of the start-up procedure. However, since already the most simple start-up procedure, which uses only the Hartree-Fock determinant, is comparatively good, Slater determinants, in general, appear not to be a good choice as approximate environment basis states for convergence acceleration. Based on extensive test calculations it is demonstrated that the computational cost can be significantly reduced if the number of total states m is successively increased. This is done in such a way that the environment states are built up stepwise from system states of previous truncated DMRG sweeps for slowly increasing m values.

  20. Optical excitation and electron relaxation dynamics at semiconductor surfaces: a combined approach of density functional and density matrix theory applied to the silicon (001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Buecking, N.

    2007-11-05

    In this work a new theoretical formalism is introduced in order to simulate the phononinduced relaxation of a non-equilibrium distribution to equilibrium at a semiconductor surface numerically. The non-equilibrium distribution is effected by an optical excitation. The approach in this thesis is to link two conventional, but approved methods to a new, more global description: while semiconductor surfaces can be investigated accurately by density-functional theory, the dynamical processes in semiconductor heterostructures are successfully described by density matrix theory. In this work, the parameters for density-matrix theory are determined from the results of density-functional calculations. This work is organized in two parts. In Part I, the general fundamentals of the theory are elaborated, covering the fundamentals of canonical quantizations as well as the theory of density-functional and density-matrix theory in 2{sup nd} order Born approximation. While the formalism of density functional theory for structure investigation has been established for a long time and many different codes exist, the requirements for density matrix formalism concerning the geometry and the number of implemented bands exceed the usual possibilities of the existing code in this field. A special attention is therefore attributed to the development of extensions to existing formulations of this theory, where geometrical and fundamental symmetries of the structure and the equations are used. In Part II, the newly developed formalism is applied to a silicon (001)surface in a 2 x 1 reconstruction. As first step, density-functional calculations using the LDA functional are completed, from which the Kohn-Sham-wave functions and eigenvalues are used to calculate interaction matrix elements for the electron-phonon-coupling an the optical excitation. These matrix elements are determined for the optical transitions from valence to conduction bands and for electron-phonon processes inside the

  1. Decay properties of high-lying single-particles modes

    Energy Technology Data Exchange (ETDEWEB)

    Beaumel, D. [Institut de Physique Nucleaire, 91 - Orsay (France); Fortier, S. [Institut de Physique Nucleaire, 91 - Orsay (France); Gales, S. [Institut de Physique Nucleaire, 91 - Orsay (France); Guillot, J. [Institut de Physique Nucleaire, 91 - Orsay (France); Langevin-Joliot, H. [Institut de Physique Nucleaire, 91 - Orsay (France); Laurent, H. [Institut de Physique Nucleaire, 91 -Orsay (France); Maison, J.M. [Institut de Physique Nucleaire, 91 - Orsay (France); Vernotte, J. [Institut de Physique Nucleaire, 91 - Orsay (France); Bordewijck, J. [Kernfysisch Versneller Instituut, 9747 Groningen (Netherlands); Brandenburg, S. [Kernfysisch Versneller Instituut, 9747 Groningen (Netherlands); Krasznahorkay, A. [Kernfysisch Versneller Instituut, 9747 Groningen (Netherlands); Crawley, G.M. [NSCL, Michigan State University, East Lansing, MI 48824 (United States); Massolo, C.P. [Universitad Nacional de La Plata, 1900 La Plata (Argentina); Renteria, M. [Universitad Nacional de La Plata, 1900 La Plata (Argentina); Khendriche, A. [University of Tizi-Ouzou, Tizi-Ouzou (Algeria)

    1996-03-18

    The neutron decay of high-lying single-particle states in {sup 64}Ni, {sup 90}Zr, {sup 120}Sn and {sup 208}Pb excited by means of the ({alpha},{sup 3}He) reaction has been investigated at 120 MeV incident energy using the multidetector EDEN. The characteristics of this reaction are studied using inclusive spectra and angular correlation analysis. The structure located between 11 and 15 MeV in {sup 91}Zr, and between 8 and 12 MeV excitation energy in {sup 209}Pb display large departures from a pure statistical decay. The corresponding non-statistical branching ratios are compared with the results of two theoretical calculations. (orig.).

  2. Magnetophoretic circuits for digital control of single particles and cells

    Science.gov (United States)

    Lim, Byeonghwa; Reddy, Venu; Hu, Xinghao; Kim, Kunwoo; Jadhav, Mital; Abedini-Nassab, Roozbeh; Noh, Young-Woock; Lim, Yong Taik; Yellen, Benjamin B.; Kim, Cheolgi

    2014-05-01

    The ability to manipulate small fluid droplets, colloidal particles and single cells with the precision and parallelization of modern-day computer hardware has profound applications for biochemical detection, gene sequencing, chemical synthesis and highly parallel analysis of single cells. Drawing inspiration from general circuit theory and magnetic bubble technology, here we demonstrate a class of integrated circuits for executing sequential and parallel, timed operations on an ensemble of single particles and cells. The integrated circuits are constructed from lithographically defined, overlaid patterns of magnetic film and current lines. The magnetic patterns passively control particles similar to electrical conductors, diodes and capacitors. The current lines actively switch particles between different tracks similar to gated electrical transistors. When combined into arrays and driven by a rotating magnetic field clock, these integrated circuits have general multiplexing properties and enable the precise control of magnetizable objects.

  3. Classification using diffraction patterns for single-particle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Hongli; Zhang, Kaiming [Department of Biophysics, the Health Science Centre, Peking University, Beijing 100191 (China); Meng, Xing, E-mail: xmeng101@gmail.com [Wadsworth Centre, New York State Department of Health, Albany, New York 12201 (United States)

    2016-05-15

    An alternative method has been assessed; diffraction patterns derived from the single particle data set were used to perform the first round of classification in creating the initial averages for proteins data with symmetrical morphology. The test protein set was a collection of Caenorhabditis elegans small heat shock protein 17 obtained by Cryo EM, which has a tetrahedral (12-fold) symmetry. It is demonstrated that the initial classification on diffraction patterns is workable as well as the real-space classification that is based on the phase contrast. The test results show that the information from diffraction patterns has the enough details to make the initial model faithful. The potential advantage using the alternative method is twofold, the ability to handle the sets with poor signal/noise or/and that break the symmetry properties. - Highlights: • New classification method. • Create the accurate initial model. • Better in handling noisy data.

  4. Classification using diffraction patterns for single-particle analysis

    International Nuclear Information System (INIS)

    Hu, Hongli; Zhang, Kaiming; Meng, Xing

    2016-01-01

    An alternative method has been assessed; diffraction patterns derived from the single particle data set were used to perform the first round of classification in creating the initial averages for proteins data with symmetrical morphology. The test protein set was a collection of Caenorhabditis elegans small heat shock protein 17 obtained by Cryo EM, which has a tetrahedral (12-fold) symmetry. It is demonstrated that the initial classification on diffraction patterns is workable as well as the real-space classification that is based on the phase contrast. The test results show that the information from diffraction patterns has the enough details to make the initial model faithful. The potential advantage using the alternative method is twofold, the ability to handle the sets with poor signal/noise or/and that break the symmetry properties. - Highlights: • New classification method. • Create the accurate initial model. • Better in handling noisy data.

  5. Reconstructing an icosahedral virus from single-particle diffraction experiments

    Science.gov (United States)

    Saldin, D. K.; Poon, H.-C.; Schwander, P.; Uddin, M.; Schmidt, M.

    2011-08-01

    The first experimental data from single-particle scattering experiments from free electron lasers (FELs) are now becoming available. The first such experiments are being performed on relatively large objects such as viruses, which produce relatively low-resolution, low-noise diffraction patterns in so-called ``diffract-and-destroy'' experiments. We describe a very simple test on the angular correlations of measured diffraction data to determine if the scattering is from an icosahedral particle. If this is confirmed, the efficient algorithm proposed can then combine diffraction data from multiple shots of particles in random unknown orientations to generate a full 3D image of the icosahedral particle. We demonstrate this with a simulation for the satellite tobacco necrosis virus (STNV), the atomic coordinates of whose asymmetric unit is given in Protein Data Bank entry 2BUK.

  6. Single particle analysis with a 3600 light scattering photometer

    International Nuclear Information System (INIS)

    Bartholdi, M.F.

    1979-06-01

    Light scattering by single spherical homogeneous particles in the diameter range 1 to 20 μm and relative refractive index 1.20 is measured. Particle size of narrowly dispersed populations is determined and a multi-modal dispersion of five components is completely analyzed. A 360 0 light scattering photometer for analysis of single particles has been designed and developed. A fluid stream containing single particles intersects a focused laser beam at the primary focal point of an ellipsoidal reflector ring. The light scattered at angles theta = 2.5 0 to 177.5 0 at phi = 0 0 and 180 0 is reflected onto a circular array of photodiodes. The ellipsoidal reflector is situated in a chamber filled with fluid matching that of the stream to minimize refracting and reflecting interfaces. The detector array consists of 60 photodiodes each subtending 3 0 in scattering angle on 6 0 centers around 360 0 . 32 measurements on individual particles can be acquired at rates of 500 particles per second. The intensity and angular distribution of light scattered by spherical particles are indicative of size and relative refractive index. Calculations, using Lorenz--Mie theory, of differential scattering patterns integrated over angle corresponding to the detector geometry determined the instrument response to particle size. From this the expected resolution and experimental procedures are determined.Ultimately, the photometer will be utilized for identification and discrimination of biological cells based on the sensitivity of light scattering to size, shape, refractive index differences, internal granularity, and other internal morphology. This study has demonstrated the utility of the photometer and indicates potential for application to light scattering studies of biological cells

  7. Density-matrix-functional calculations for matter in strong magnetic fields: Ground states of heavy atoms

    DEFF Research Database (Denmark)

    Johnsen, Kristinn; Yngvason, Jakob

    1996-01-01

    We report on a numerical study of the density matrix functional introduced by Lieb, Solovej, and Yngvason for the investigation of heavy atoms in high magnetic fields. This functional describes exactly the quantum mechanical ground state of atoms and ions in the limit when the nuclear charge Z...... and the electron number N tend to infinity with N/Z fixed, and the magnetic field B tends to infinity in such a way that B/Z4/3→∞. We have calculated electronic density profiles and ground-state energies for values of the parameters that prevail on neutron star surfaces and compared them with results obtained...... by other methods. For iron at B=1012 G the ground-state energy differs by less than 2% from the Hartree-Fock value. We have also studied the maximal negative ionization of heavy atoms in this model at various field strengths. In contrast to Thomas-Fermi type theories atoms can bind excess negative charge...

  8. Reconstructive approaches to one- and two-electron density matrix theory

    Science.gov (United States)

    Herbert, John Michael

    Novel computational methods for electronic structure theory are explored, in which the fundamental variable is either the one- or the two-electron reduced density matrix (1- or 2-RDM), rather than the electronic wavefunction. A unifying theme among these methods is density matrix reconstruction, that is, decoupling approximations that express higher-order density matrices as functionals of lower-order ones. On the 2-RDM side, a connected (extensive) version of the Contracted Schrodinger Equation (CSE) is developed, in which the basic unknowns are the RDM cumulants through order four. Reconstruction functionals that neglect the 3- and 4-RDM cumulants are examined and revealed to be significantly less accurate than suggested by previous minimal-basis results. Exact 3-RDM cumulants for some four-electron systems are calculated and found to be comparable in importance to unconnected products of lower-order cumulants. Decoupling approximations for the 3- and 4-RDM cumulants are developed based upon a renormalized, diagrammatic perturbation theory for the three- and four-particle Green's functions, in which the effective, pairwise interaction is extracted from the two-particle cumulant. Diagram rules suitable for both the time-dependent and time-independent versions of this perturbation theory are derived. Reconstructive approaches to natural orbital (1-RDM) functional theory are also examined, wherein the 2-RDM is parametrized in terms of the natural orbitals and their (generally fractional) occupancies. It is demonstrated, at the theorem level, that proposed "corrected Hartree" and "corrected Hartree-Fock" natural orbital functionals necessarily violate positivity of the 2-RDM, which is closely related to their failure to respect antisymmetry. Calculations demonstrate that negative eigenvalues of the 2-RDM are associated with a large, stabilizing (but ultimately spurious) contribution to the energy. Nevertheless, a partially self-interaction-corrected version of the

  9. Determination of the ribosome structure to a resolution of 2.5 Å by single-particle cryo-EM.

    Science.gov (United States)

    Liu, Zheng; Gutierrez-Vargas, Cristina; Wei, Jia; Grassucci, Robert A; Sun, Ming; Espina, Noel; Madison-Antenucci, Susan; Tong, Liang; Frank, Joachim

    2017-01-01

    With the advance of new instruments and algorithms, and the accumulation of experience over decades, single-particle cryo-EM has become a pivotal part of structural biology. Recently, we determined the structure of a eukaryotic ribosome at 2.5 Å for the large subunit. The ribosome was derived from Trypanosoma cruzi, the protozoan pathogen of Chagas disease. The high-resolution density map allowed us to discern a large number of unprecedented details including rRNA modifications, water molecules, and ions such as Mg 2+ and Zn 2+ . In this paper, we focus on the procedures for data collection, image processing, and modeling, with particular emphasis on factors that contributed to the attainment of high resolution. The methods described here are readily applicable to other macromolecules for high-resolution reconstruction by single-particle cryo-EM. © 2016 The Protein Society.

  10. Response calculations based on an independent particle system with the exact one-particle density matrix: excitation energies.

    Science.gov (United States)

    Giesbertz, K J H; Gritsenko, O V; Baerends, E J

    2012-03-07

    Adiabatic response time-dependent density functional theory (TDDFT) suffers from the restriction to basically an occupied → virtual single excitation formulation. Adiabatic time-dependent density matrix functional theory allows to break away from this restriction. Problematic excitations for TDDFT, viz. bonding-antibonding, double, charge transfer, and higher excitations, are calculated along the bond-dissociation coordinate of the prototype molecules H(2) and HeH(+) using the recently developed adiabatic linear response phase-including (PI) natural orbital theory (PINO). The possibility to systematically increase the scope of the calculation from excitations out of (strongly) occupied into weakly occupied ("virtual") natural orbitals to larger ranges of excitations is explored. The quality of the PINO response calculations is already much improved over TDDFT even when the severest restriction is made, to virtually the size of the TDDFT diagonalization problem (only single excitation out of occupied orbitals plus all diagonal doubles). Further marked improvement is obtained with moderate extension to allow for excitation out of the lumo and lumo+1, which become fractionally occupied in particular at longer distances due to left-right correlation effects. In the second place the interpretation of density matrix response calculations is elucidated. The one-particle reduced density matrix response for an excitation is related to the transition density matrix to the corresponding excited state. The interpretation of the transition density matrix in terms of the familiar excitation character (single excitations, double excitations of various types, etc.) is detailed. The adiabatic PINO theory is shown to successfully resolve the problematic cases of adiabatic TDDFT when it uses a proper PI orbital functional such as the PILS functional. © 2012 American Institute of Physics

  11. Linear scaling density matrix perturbation theory for basis-set-dependent quantum response calculations: an orthogonal formulation.

    Science.gov (United States)

    Niklasson, Anders M N; Weber, Valéry

    2007-08-14

    Linear scaling density matrix perturbation theory [A. M. N. Niklasson and M. Challacombe, Phys. Rev. Lett. 92, 193001 (2004)] is extended to basis-set-dependent quantum response calculations for a nonorthogonal basis set representation. The generalization is achieved by a perturbation-dependent congruence transform, derived from the factorization of the inverse overlap matrix, which transforms the generalized eigenvalue problem to an orthogonal, standard form. With this orthogonalization transform the basis-set-dependent perturbation in the overlap matrix is included in the orthogonalized Hamiltonian, which is expanded in orders of the perturbation. In this way density matrix perturbation theory developed for an orthogonal representation can be applied also to basis-set-dependent response calculations. The method offers an alternative to the previous solution of the basis-set-dependent response problem, based on a nonorthogonal generalization of the density matrix perturbation theory, where the calculations are performed within a purely nonorthogonal setting [A. M. N. Niklasson et al., J. Chem. Phys. 123, 44107 (2005)].

  12. The single-particle microbeam facility at CEA-Saclay

    Energy Technology Data Exchange (ETDEWEB)

    Khodja, H. [DSM/IRAMIS/SIS2M, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France); CNRS, UMR9956, Laboratoire Pierre Suee, F-91191 Gif-sur-Yvette Cedex (France)], E-mail: hicham.khodja@cea.fr; Hanot, M.; Carriere, M.; Hoarau, J. [DSM/IRAMIS/SIS2M, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France); CNRS, UMR9956, Laboratoire Pierre Suee, F-91191 Gif-sur-Yvette Cedex (France); Angulo, J.F. [DSV, IRCM, SRO, Laboratoire de Genetique de la Radiosensibilite, F-92265 Fontenay aux Roses (France)

    2009-06-15

    Low dose and non-targeted effect studies continue to attract the attention of a growing number of radiobiologists. Experimental setups based on light ion microbeams constitute a tool of choice for this kind of investigations. However, a careful attention must be given to experimental conditions, as setup-induced stress levels should be well below those induced by the irradiation itself. Here, we present the current status of the single-particle microbeam facility that has been developed these last years at the nuclear microprobe of Saclay. The driving idea was to build a facility in which local irradiation studies are performed in an environment close to cellular biology standards. This facility includes unique features, such as (i) a compact setup that allows easy access and vertical irradiation mode, (ii) a collimated beam that can be mechanically positioned under the desired cells at a very fast speed, avoiding the requirement of a focusing element and (iii) a controlled environment (temperature, CO{sub 2}, humidity) that allows performing of very long term experiments on cultured cells. Fluorescent techniques are implemented and permit in situ monitoring of cellular responses to irradiations. Several radiobiological studies are already underway and this will be illustrated with recent results regarding DNA damage and reactive oxygen species signaling time courses following targeted irradiations.

  13. Single particle raster image analysis of diffusion for particle mixtures.

    Science.gov (United States)

    Longfils, M; Röding, M; Altskär, A; Schuster, E; Lorén, N; Särkkä, A; Rudemo, M

    2018-03-01

    Recently we complemented the raster image correlation spectroscopy (RICS) method of analysing raster images via estimation of the image correlation function with the method single particle raster image analysis (SPRIA). In SPRIA, individual particles are identified and the diffusion coefficient of each particle is estimated by a maximum likelihood method. In this paper, we extend the SPRIA method to analyse mixtures of particles with a finite set of diffusion coefficients in a homogeneous medium. In examples with simulated and experimental data with two and three different diffusion coefficients, we show that SPRIA gives accurate estimates of the diffusion coefficients and their proportions. A simple technique for finding the number of different diffusion coefficients is also suggested. Further, we study the use of RICS for mixtures with two different diffusion coefficents and investigate, by plotting level curves of the correlation function, how large the quotient between diffusion coefficients needs to be in order to allow discrimination between models with one and two diffusion coefficients. We also describe a minor correction (compared to published papers) of the RICS autocorrelation function. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  14. Single particle composition measurements of artificial Calcium Carbonate aerosols

    Science.gov (United States)

    Zorn, S. R.; Mentel, T. F.; Schwinger, T.; Croteau, P. L.; Jayne, J.; Worsnop, D. R.; Trimborn, A.

    2012-12-01

    Mineral dust, with an estimated total source from natural and anthropogenic emissions of up to 2800 Tg/yr, is one of the two largest contributors to total aerosol mass, with only Sea salt having a similar source strength (up to 2600 Tg/yr). The composition of dust particles varies strongly depending on the production process and, most importantly, the source location. Therefore, the composition of single dust particles can be used both to trace source regions of air masses as well as to identify chemical aging processes. Here we present results of laboratory studies on generating artificial calcium carbonate (CaCO3) particles, a model compound for carbonaceous mineral dust particles. Particles were generated by atomizing an aqueous hydrogen carbonate solution. Water was removed using a silica diffusion dryer., then the particles were processed in an oven at temperatures up to 900°C, converting the hydrogen carbonate to its anhydrous form. The resulting aerosol was analyzed using an on-line single particle laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF). The results confirm the conversion to calcium carbonate, and validate that the produced particles indeed can be used as a model compound for carbonaceous dust aerosols.

  15. Automated single particle detection and tracking for large microscopy datasets.

    Science.gov (United States)

    Wilson, Rhodri S; Yang, Lei; Dun, Alison; Smyth, Annya M; Duncan, Rory R; Rickman, Colin; Lu, Weiping

    2016-05-01

    Recent advances in optical microscopy have enabled the acquisition of very large datasets from living cells with unprecedented spatial and temporal resolutions. Our ability to process these datasets now plays an essential role in order to understand many biological processes. In this paper, we present an automated particle detection algorithm capable of operating in low signal-to-noise fluorescence microscopy environments and handling large datasets. When combined with our particle linking framework, it can provide hitherto intractable quantitative measurements describing the dynamics of large cohorts of cellular components from organelles to single molecules. We begin with validating the performance of our method on synthetic image data, and then extend the validation to include experiment images with ground truth. Finally, we apply the algorithm to two single-particle-tracking photo-activated localization microscopy biological datasets, acquired from living primary cells with very high temporal rates. Our analysis of the dynamics of very large cohorts of 10 000 s of membrane-associated protein molecules show that they behave as if caged in nanodomains. We show that the robustness and efficiency of our method provides a tool for the examination of single-molecule behaviour with unprecedented spatial detail and high acquisition rates.

  16. Simulating Biomass Fast Pyrolysis at the Single Particle Scale

    Energy Technology Data Exchange (ETDEWEB)

    Ciesielski, Peter [National Renewable Energy Laboratory (NREL); Wiggins, Gavin [ORNL; Daw, C Stuart [ORNL; Jakes, Joseph E. [U.S. Forest Service, Forest Products Laboratory, Madison, Wisconsin, USA

    2017-07-01

    Simulating fast pyrolysis at the scale of single particles allows for the investigation of the impacts of feedstock-specific parameters such as particle size, shape, and species of origin. For this reason particle-scale modeling has emerged as an important tool for understanding how variations in feedstock properties affect the outcomes of pyrolysis processes. The origins of feedstock properties are largely dictated by the composition and hierarchical structure of biomass, from the microstructural porosity to the external morphology of milled particles. These properties may be accounted for in simulations of fast pyrolysis by several different computational approaches depending on the level of structural and chemical complexity included in the model. The predictive utility of particle-scale simulations of fast pyrolysis can still be enhanced substantially by advancements in several areas. Most notably, considerable progress would be facilitated by the development of pyrolysis kinetic schemes that are decoupled from transport phenomena, predict product evolution from whole-biomass with increased chemical speciation, and are still tractable with present-day computational resources.

  17. Avoiding the 4-index transformation in one-body reduced density matrix functional calculations for separable functionals

    NARCIS (Netherlands)

    Giesbertz, K.J.H.

    2016-01-01

    One of the major computational bottlenecks in one-body reduced density matrix (1RDM) functional theory is the evaluation of approximate 1RDM functionals and their derivatives. The reason is that more advanced approximate functionals are almost exclusively defined in the natural orbital basis, so a

  18. Determining the mass density of a hydrocarbon matrix in thin-film nanocomposites by ion-beam techniques

    NARCIS (Netherlands)

    Chechenin, N. G.; Chernykh, P. N.; Kulikauskas, V. S.; Pei, Y.; Vainshtein, D.; De Hosson, J. Th. M.

    2007-01-01

    An approach based on ion-beam analysis, including Rutherford backscattering, nuclear backscattering, and elastic recoil detection, for determining the partial mass density of a hydrocarbon matrix in nanocomposites is proposed and applied to the nc-TiC/a-C:H thin-film coating material.

  19. Deblurring of class-averaged images in single-particle electron microscopy

    International Nuclear Information System (INIS)

    Park, Wooram; Chirikjian, Gregory S; Madden, Dean R; Rockmore, Daniel N

    2010-01-01

    This paper proposes a method for the deblurring of class-averaged images in single-particle electron microscopy (EM). Since EM images of biological samples are very noisy, the images which are nominally identical projection images are often grouped, aligned and averaged in order to cancel or reduce the background noise. However, the noise in the individual EM images generates errors in the alignment process, which creates an inherent limit on the accuracy of the resulting class averages. This inaccurate class average due to the alignment errors can be viewed as the result of a convolution of an underlying clear image with a blurring function. In this work, we develop a deconvolution method that gives an estimate for the underlying clear image from a blurred class-averaged image using precomputed statistics of misalignment. Since this convolution is over the group of rigid-body motions of the plane, SE(2), we use the Fourier transform for SE(2) in order to convert the convolution into a matrix multiplication in the corresponding Fourier space. For practical implementation we use a Hermite-function-based image modeling technique, because Hermite expansions enable lossless Cartesian-polar coordinate conversion using the Laguerre–Fourier expansions, and Hermite expansion and Laguerre–Fourier expansion retain their structures under the Fourier transform. Based on these mathematical properties, we can obtain the deconvolution of the blurred class average using simple matrix multiplication. Tests of the proposed deconvolution method using synthetic and experimental EM images confirm the performance of our method

  20. Applications of density matrix in the fractional quantum mechanics: Thomas-Fermi model and Hohenberg-Kohn theorems revisited

    International Nuclear Information System (INIS)

    Dong, Jianping

    2011-01-01

    The many-body space fractional quantum system is studied using the density matrix method. We give the new results of the Thomas-Fermi model, obtain the quantum pressure of the free electron gas. We also show the validity of the Hohenberg-Kohn theorems in the space fractional quantum mechanics and generalize the density functional theory to the fractional quantum mechanics. -- Highlights: → Thomas-Fermi model under the framework of fractional quantum mechanics is studied. → We show the validity of the HK theorems in the space fractional quantum mechanics. → The density functional theory is generalized to the fractional quantum mechanics.

  1. Single particle dynamics and nonlinear resonances in circular accelerators

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1985-11-01

    The purpose of this paper is to introduce the reader to single particle dynamics in circular accelerators with an emphasis on nonlinear resonances. We begin with the Hamiltonian and the equations of motion in the neighborhood of the design orbit. In the linear theory this yields linear betatron oscillations about a closed orbit. It is useful then to introduce the action-angle variables of the linear problem. Next we discuss the nonlinear terms which are present in an actual accelerator, and in particular, we motivate the inclusion of sextupoles to cure chromatic effects. To study the effects of the nonlinear terms, we next discuss canonical perturbation theory which leads us to nonlinear resonances. After showing a few examples of perturbation theory, we abandon it when very close to a resonance. This leads to the study of an isolated resonance in one degree of freedom with a 'time'-dependent Hamiltonian. We see the familiar resonance structure in phase space which is simply closed islands when the nonlinear amplitude dependence of the frequency or 'tune' is included. To show the limits of the validity of the isolated resonance approximation, we discuss two criteria for the onset of chaotic motion. Finally, we study an isolated coupling resonance in two degrees of freedom with a 'time'-dependent Hamiltonian and calculate the two invariants in this case. This leads to a surface of section which is a 2-torus in 4-dimensional phase space. However, we show that it remains a 2-torus when projected into particular 3-dimensional subspaces, and thus can be viewed in perspective

  2. Laboratory Measurements of Single-Particle Polarimetric Spectrum

    Science.gov (United States)

    Gritsevich, M.; Penttila, A.; Maconi, G.; Kassamakov, I.; Helander, P.; Puranen, T.; Salmi, A.; Hæggström, E.; Muinonen, K.

    2017-12-01

    Measuring scattering properties of different targets is important for material characterization, remote sensing applications, and for verifying theoretical results. Furthermore, there are usually simplifications made when we model targets and compute the scattering properties, e.g., ideal shape or constant optical parameters throughout the target material. Experimental studies help in understanding the link between the observed properties and computed results. Experimentally derived Mueller matrices of studied particles can be used as input for larger-scale scattering simulations, e.g., radiative transfer computations. This method allows to bypass the problem of using an idealized model for single-particle optical properties. While existing approaches offer ensemble- and orientation-averaged particle properties, our aim is to measure individual particles with controlled or known orientation. With the newly developed scatterometer, we aim to offer novel possibility to measure single, small (down to μm-scale) targets and their polarimetric spectra. This work presents an experimental setup that measures light scattered by a fixed small particle with dimensions ranging between micrometer and millimeter sizes. The goal of our setup is nondestructive characterization of such particles by measuring light of multiple wavelengths scattered in 360° in a horizontal plane by an ultrasonically levitating sample, whilst simultaneously controlling its 3D position and orientation. We describe the principles and design of our instrument and its calibration. We also present example measurements of real samples. This study was conducted under the support from the European Research Council, in the frame of the Advanced Grant project No. 320773 `Scattering and Absorption of Electromagnetic Waves in Particulate Media' (SAEMPL).

  3. Drift correction of the dissolved signal in single particle ICPMS.

    Science.gov (United States)

    Cornelis, Geert; Rauch, Sebastien

    2016-07-01

    A method is presented where drift, the random fluctuation of the signal intensity, is compensated for based on the estimation of the drift function by a moving average. It was shown using single particle ICPMS (spICPMS) measurements of 10 and 60 nm Au NPs that drift reduces accuracy of spICPMS analysis at the calibration stage and during calculations of the particle size distribution (PSD), but that the present method can again correct the average signal intensity as well as the signal distribution of particle-containing samples skewed by drift. Moreover, deconvolution, a method that models signal distributions of dissolved signals, fails in some cases when using standards and samples affected by drift, but the present method was shown to improve accuracy again. Relatively high particle signals have to be removed prior to drift correction in this procedure, which was done using a 3 × sigma method, and the signals are treated separately and added again. The method can also correct for flicker noise that increases when signal intensity is increased because of drift. The accuracy was improved in many cases when flicker correction was used, but when accurate results were obtained despite drift, the correction procedures did not reduce accuracy. The procedure may be useful to extract results from experimental runs that would otherwise have to be run again. Graphical Abstract A method is presented where a spICP-MS signal affected by drift (left) is corrected (right) by adjusting the local (moving) averages (green) and standard deviations (purple) to the respective values at a reference time (red). In combination with removing particle events (blue) in the case of calibration standards, this method is shown to obtain particle size distributions where that would otherwise be impossible, even when the deconvolution method is used to discriminate dissolved and particle signals.

  4. Crosslinked Functional Polymer Nanowire Formation Along Single Particle Tracks

    International Nuclear Information System (INIS)

    Tagawa, S.

    2006-01-01

    The use of high-energy charged particles has extended to many fields in recent years. In medicine, non-homogeneous energy deposition along an ion trajectory (ion track) plays a crucial role in cancer radiotherapy, allowing for high spatial selectivity in the distribution of the radiation dose. The direct observation and application of ion tracks in media have also attracted interest in materials science, where it is known as nuclear track fabrication. Since the discovery that high-energy particle leave latent tracks in inorganic and organic polymer materials, the technique has also been applied to the production of micro- and nano-sized pores in materials through chemical etching of the tracks. The clear correlation between the etched pore and the characteristics of the incident charged particle has been utilized for measurement of the velocity and mass of the incident particles, and such organic film detectors are widely used in dosimetry, and in particular for galactic cosmic rays in space. The scope of the present paper is the direct nano-structure formation based on crosslinking reactions induced in nano-scale ultra-small spaces of single particle tracks. We have developed the simple one-step formation processes of nanowires without using any chemical etching or refilling processes. The present technique is in striking contrast to the previous 'nuclear track' nanofabrication techniques. According to its high feasibility for the preparation of 1-D nanowires based on 'any' kinds of polymeric materials, the present paper demonstrates the formation of not only simple polymer nanowires but also ceramic and/or multi-segment multi-functional nanowires

  5. A local-optimization refinement algorithm in single particle analysis for macromolecular complex with multiple rigid modules

    Directory of Open Access Journals (Sweden)

    Hong Shan

    2015-12-01

    Full Text Available ABSTRACT Single particle analysis, which can be regarded as an average of signals from thousands or even millions of particle projections, is an efficient method to study the three-dimensional structures of biological macromolecules. An intrinsic assumption in single particle analysis is that all the analyzed particles must have identical composition and conformation. Thus specimen heterogeneity in either composition or conformation has raised great challenges for high-resolution analysis. For particles with multiple conformations, inaccurate alignments and orientation parameters will yield an averaged map with diminished resolution and smeared density. Besides extensive classification approaches, here based on the assumption that the macromolecular complex is made up of multiple rigid modules whose relative orientations and positions are in slight fluctuation around equilibriums, we propose a new method called as local optimization refinement to address this conformational heterogeneity for an improved resolution. The key idea is to optimize the orientation and shift parameters of each rigid module and then reconstruct their three-dimensional structures individually. Using simulated data of 80S/70S ribosomes with relative fluctuations between the large (60S/50S and the small (40S/30S subunits, we tested this algorithm and found that the resolutions of both subunits are significantly improved. Our method provides a proof-of-principle solution for high-resolution single particle analysis of macromolecular complexes with dynamic conformations.

  6. A local-optimization refinement algorithm in single particle analysis for macromolecular complex with multiple rigid modules.

    Science.gov (United States)

    Shan, Hong; Wang, Zihao; Zhang, Fa; Xiong, Yong; Yin, Chang-Cheng; Sun, Fei

    2016-01-01

    Single particle analysis, which can be regarded as an average of signals from thousands or even millions of particle projections, is an efficient method to study the three-dimensional structures of biological macromolecules. An intrinsic assumption in single particle analysis is that all the analyzed particles must have identical composition and conformation. Thus specimen heterogeneity in either composition or conformation has raised great challenges for high-resolution analysis. For particles with multiple conformations, inaccurate alignments and orientation parameters will yield an averaged map with diminished resolution and smeared density. Besides extensive classification approaches, here based on the assumption that the macromolecular complex is made up of multiple rigid modules whose relative orientations and positions are in slight fluctuation around equilibriums, we propose a new method called as local optimization refinement to address this conformational heterogeneity for an improved resolution. The key idea is to optimize the orientation and shift parameters of each rigid module and then reconstruct their three-dimensional structures individually. Using simulated data of 80S/70S ribosomes with relative fluctuations between the large (60S/50S) and the small (40S/30S) subunits, we tested this algorithm and found that the resolutions of both subunits are significantly improved. Our method provides a proof-of-principle solution for high-resolution single particle analysis of macromolecular complexes with dynamic conformations.

  7. Increased extracellular matrix density decreases MCF10A breast cell acinus formation in 3D culture conditions.

    Science.gov (United States)

    Lance, Amanda; Yang, Chih-Chao; Swamydas, Muthulekha; Dean, Delphine; Deitch, Sandy; Burg, Karen J L; Dréau, Didier

    2016-01-01

    The extracellular matrix (ECM) contributes to the generation and dynamic of normal breast tissue, in particular to the generation of polarized acinar and ductal structures. In vitro 3D culture conditions, including variations in the composition of the ECM, have been shown to directly influence the formation and organization of acinus-like and duct-like structures. Furthermore, the density of the ECM appears to also play a role in the normal mammary tissue and tumour formation. Here we show that the density of the ECM directly influences the number, organization and function of breast acini. Briefly, non-malignant human breast MCF10A cells were incubated in increasing densities of a Matrigel®-collagen I matrix. Elastic moduli near and distant to the acinus structures were measured by atomic force microscopy, and the number of acinus structures was determined. Immunochemistry was used to investigate the expression levels of E-cadherin, laminin, matrix metalloproteinase-14 and ß-casein in MCF10A cells. The modulus of the ECM was significantly increased near the acinus structures and the number of acinus structures decreased with the increase in Matrigel-collagen I density. As evaluated by the expression of laminin, the organization of the acinus structures present was altered as the density of the ECM increased. Increases in both E-cadherin and MMP14 expression by MCF10A cells as ECM density increased were also observed. In contrast, MCF10A cells expressed lower ß-casein levels as the ECM density increased. Taken together, these observations highlight the key role of ECM density in modulating the number, organization and function of breast acini. Copyright © 2013 John Wiley & Sons, Ltd.

  8. A matrix-based approach to solving the inverse Frobenius-Perron problem using sequences of density functions of stochastically perturbed dynamical systems.

    Science.gov (United States)

    Nie, Xiaokai; Coca, Daniel

    2018-01-01

    The paper introduces a matrix-based approach to estimate the unique one-dimensional discrete-time dynamical system that generated a given sequence of probability density functions whilst subjected to an additive stochastic perturbation with known density.

  9. Reply to "Comment on "Nonuniqueness of algebraic first-order density-matrix functionals" "

    Science.gov (United States)

    Wang, Jian; Knowles, Peter J.

    2018-02-01

    It is shown that symmetry considerations do not alter the conclusions of our original work [Phys. Rev. A 92, 012520 (2015), 10.1103/PhysRevA.92.012520], and that there exists an example of an electronic system for which at several geometries the one-matrix eigenvalues are identical, but the two-matrix spectrum is not. It is still therefore the case that JK and related functionals that depend on the one-matrix eigenvalues to model the two-matrix cannot be made arbitrarily accurate.

  10. Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate

    International Nuclear Information System (INIS)

    Karuppasamy, Manikandan; Karimi Nejadasl, Fatemeh; Vulovic, Milos; Koster, Abraham J.; Ravelli, Raimond B. G.

    2011-01-01

    The effects of dose and dose-rate were investigated for single-particle cryo-electron microscopy using stroboscopic data collection. A dose-rate effect was observed favoring lower flux densities. Radiation damage is an important resolution limiting factor both in macromolecular X-ray crystallography and cryo-electron microscopy. Systematic studies in macromolecular X-ray crystallography greatly benefited from the use of dose, expressed as energy deposited per mass unit, which is derived from parameters including incident flux, beam energy, beam size, sample composition and sample size. In here, the use of dose is reintroduced for electron microscopy, accounting for the electron energy, incident flux and measured sample thickness and composition. Knowledge of the amount of energy deposited allowed us to compare doses with experimental limits in macromolecular X-ray crystallography, to obtain an upper estimate of radical concentrations that build up in the vitreous sample, and to translate heat-transfer simulations carried out for macromolecular X-ray crystallography to cryo-electron microscopy. Stroboscopic exposure series of 50–250 images were collected for different incident flux densities and integration times from Lumbricus terrestris extracellular hemoglobin. The images within each series were computationally aligned and analyzed with similarity metrics such as Fourier ring correlation, Fourier ring phase residual and figure of merit. Prior to gas bubble formation, the images become linearly brighter with dose, at a rate of approximately 0.1% per 10 MGy. The gradual decomposition of a vitrified hemoglobin sample could be visualized at a series of doses up to 5500 MGy, by which dose the sample was sublimed. Comparison of equal-dose series collected with different incident flux densities showed a dose-rate effect favoring lower flux densities. Heat simulations predict that sample heating will only become an issue for very large dose rates (50 e − Å −2 s

  11. Modeling and spectral simulation of matrix-isolated molecules by density functional calculations: a case study on formic acid dimer.

    Science.gov (United States)

    Ito, Fumiyuki

    2010-12-07

    The supermolecule approach has been used to model molecules embedded in solid argon matrix, wherein interaction between the guest and the host atoms in the first solvation shell is evaluated with the use of density functional calculations. Structural stability and simulated spectra have been obtained for formic acid dimer (FAD)-Ar(n) (n = 21-26) clusters. The calculations at the B971∕6-31++G(3df,3pd) level have shown that the tetrasubstitutional site on Ar(111) plane is likely to incorporate FAD most stably, in view of consistency with the matrix shifts available experimentally.

  12. Time-dependent reduced density matrix functional theory applied to laser-driven, correlated two-electron dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brics, Martins; Kapoor, Varun; Bauer, Dieter [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany)

    2013-07-01

    Time-dependent density functional theory (TDDFT) with known and practicable exchange-correlation potentials does not capture highly correlated electron dynamics such as single-photon double ionization, autoionization, or nonsequential ionization. Time-dependent reduced density matrix functional theory (TDRDMFT) may remedy these problems. The key ingredients in TDRDMFT are the natural orbitals (NOs), i.e., the eigenfunctions of the one-body reduced density matrix (1-RDM), and the occupation numbers (OCs), i.e., the respective eigenvalues. The two-body reduced density matrix (2-RDM) is then expanded in NOs, and equations of motion for the NOs can be derived. If the expansion coefficients of the 2-RDM were known exactly, the problem at hand would be solved. In practice, approximations have to be made. We study the prospects of TDRDMFT following a top-down approach. We solve the exact two-electron time-dependent Schroedinger equation for a model Helium atom in intense laser fields in order to study highly correlated phenomena such as the population of autoionizing states or single-photon double ionization. From the exact wave function we calculate the exact NOs, OCs, the exact expansion coefficients of the 2-RDM, and the exact potentials in the equations of motion. In that way we can identify how many NOs and which level of approximations are necessary to capture such phenomena.

  13. Planck scale physics of the single-particle Schrödinger equation ...

    Indian Academy of Sciences (India)

    August 2002 physics pp. 375–383. Planck scale physics of the single-particle Schrödinger equation with gravitational self-interaction. VIKRAM SONI. National Physical Laboratory, K.S. Krishnan Marg, New Delhi 110 016, India. Abstract. We consider the modification of a single-particle Schrödinger equation by the inclusion.

  14. Technical Note: The single particle soot photometer fails to reliably detect PALAS soot nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Gysel

    2012-12-01

    Full Text Available The single particle soot photometer (SP2 uses laser-induced incandescence (LII for the measurement of atmospheric black carbon (BC particles. The BC mass concentration is obtained by combining quantitative detection of BC mass in single particles with a counting efficiency of 100% above its lower detection limit. It is commonly accepted that a particle must contain at least several tenths of a femtogram BC in order to be detected by the SP2.

    Here we show the result that most BC particles from a PALAS spark discharge soot generator remain undetected by the SP2, even if their BC mass, as independently determined with an aerosol particle mass analyser (APM, is clearly above the typical lower detection limit of the SP2. Comparison of counting efficiency and effective density data of PALAS soot with flame generated soot (combustion aerosol standard burner, CAST, fullerene soot and carbon black particles (Cabot Regal 400R reveals that particle morphology can affect the SP2's lower detection limit. PALAS soot particles are fractal-like agglomerates of very small primary particles with a low fractal dimension, resulting in a very low effective density. Such loosely packed particles behave like "the sum of individual primary particles" in the SP2's laser. Accordingly, most PALAS soot particles remain undetected as the SP2's laser intensity is insufficient to heat the primary particles to their vaporisation temperature because of their small size (Dpp ≈ 5–10 nm. Previous knowledge from pulsed laser-induced incandescence indicated that particle morphology might have an effect on the SP2's lower detection limit, however, an increase of the lower detection limit by a factor of ∼5–10, as reported here for PALAS soot, was not expected.

    In conclusion, the SP2's lower detection limit at a certain laser power depends primarily on the total BC mass per particle for compact particles with sufficiently high effective

  15. Single Particle Soot Photometer intercomparison at the AIDA chamber

    Directory of Open Access Journals (Sweden)

    M. Laborde

    2012-12-01

    Full Text Available Soot particles, consisting of black carbon (BC, organic carbon (OC, inorganic salts, and trace elements, are emitted into the atmosphere during incomplete combustion. Accurate measurements of atmospheric BC are important as BC particles cause adverse health effects and impact the climate.

    Unfortunately, the accurate measurement of the properties and mass concentrations of BC particles remains difficult. The Single Particle Soot Photometer (SP2 can contribute to improving this situation by measuring the mass of refractory BC in individual particles as well as its mixing state.

    Here, the results of the first detailed SP2 intercomparison, involving 6 SP2s from 6 different research groups, are presented, including the most evolved data products that can presently be calculated from SP2 measurements.

    It was shown that a detection efficiency of almost 100% down to 1 fg BC per particle can readily be achieved, and that this limit can be pushed down to ∼0.2 fg BC with optimal SP2 setup. Number and mass size distributions of BC cores agreed within ±5% and ±10%, respectively, in between the SP2s, with larger deviations in the range below 1 fg BC.

    The accuracy of the SP2's mass concentration measurement depends on the calibration material chosen. The SP2 has previously been shown to be equally sensitive to fullerene soot and ambient BC from sources where fossil fuel was dominant and less sensitive to fullerene soot than to Aquadag. Fullerene soot was therefore chosen as the standard calibration material by the SP2 user community; however, many data sets rely solely on Aquadag calibration measurements. The difference in SP2 sensitivity was found to be almost equal (fullerene soot to Aquadag response ratio of ∼0.75 at 8.9 fg BC for all SP2s. This allows the calculation of a fullerene soot equivalent calibration curve from a measured Aquadag calibration, when no fullerene soot calibration is available. It could be

  16. Single particle behaviour in circulating fluidized bed combustors

    DEFF Research Database (Denmark)

    Erik Weinell, Claus

    1994-01-01

    of fuel particles in a boiler. A cold pilot scale model of a circulating fluidized bed combustor was used. Here sand was recirculated by means of air. Pressure measurements along the riser determined suspension density. A radioactive tracking facility to determined the dynamic picture of the particle...... trajectories in the simulated boiler. In the splash zone, closest to the secondary air inlet an exponential decay in the solids suspension density with the riser height was observed. A transport zone was characterized by an exponential decay in the solids suspension but with a smaller decay constant...

  17. Manifestly Hermitian semiclassical expansion for the one-particle density matrix of a two-dimensional Fermi gas

    Science.gov (United States)

    Bencheikh, K.; van Zyl, B. P.; Berkane, K.

    2016-08-01

    The semiclassical ℏ expansion of the one-particle density matrix for a two-dimensional Fermi gas is calculated within the Wigner transform method of B. Grammaticos and A. Voros [Ann. Phys. (N.Y.) 123, 359 (1979), 10.1016/0003-4916(79)90343-9], originally developed in the context of nuclear physics. The method of Grammaticos and Voros has the virtue of preserving both the Hermiticity and idempotency of the density matrix to all orders in the ℏ expansion. As a topical application, we use our semiclassical expansion to go beyond the local-density approximation for the construction of the total dipole-dipole interaction energy functional of a two-dimensional, spin-polarized dipolar Fermi gas. We find a finite, second-order gradient correction to the Hartree-Fock energy, which takes the form ɛ (∇ρ ) 2/√{ρ } , with ɛ being small (|ɛ |≪1 ) and negative. We test the quality of the corrected energy by comparing it with the exact results available for harmonic confinement. Even for small particle numbers, the gradient correction to the dipole-dipole energy provides a significant improvement over the local-density approximation.

  18. Electronic coupling matrix elements from charge constrained density functional theory calculations using a plane wave basis set.

    Science.gov (United States)

    Oberhofer, Harald; Blumberger, Jochen

    2010-12-28

    We present a plane wave basis set implementation for the calculation of electronic coupling matrix elements of electron transfer reactions within the framework of constrained density functional theory (CDFT). Following the work of Wu and Van Voorhis [J. Chem. Phys. 125, 164105 (2006)], the diabatic wavefunctions are approximated by the Kohn-Sham determinants obtained from CDFT calculations, and the coupling matrix element calculated by an efficient integration scheme. Our results for intermolecular electron transfer in small systems agree very well with high-level ab initio calculations based on generalized Mulliken-Hush theory, and with previous local basis set CDFT calculations. The effect of thermal fluctuations on the coupling matrix element is demonstrated for intramolecular electron transfer in the tetrathiafulvalene-diquinone (Q-TTF-Q(-)) anion. Sampling the electronic coupling along density functional based molecular dynamics trajectories, we find that thermal fluctuations, in particular the slow bending motion of the molecule, can lead to changes in the instantaneous electron transfer rate by more than an order of magnitude. The thermal average, ()(1/2)=6.7 mH, is significantly higher than the value obtained for the minimum energy structure, |H(ab)|=3.8 mH. While CDFT in combination with generalized gradient approximation (GGA) functionals describes the intermolecular electron transfer in the studied systems well, exact exchange is required for Q-TTF-Q(-) in order to obtain coupling matrix elements in agreement with experiment (3.9 mH). The implementation presented opens up the possibility to compute electronic coupling matrix elements for extended systems where donor, acceptor, and the environment are treated at the quantum mechanical (QM) level.

  19. New approaches for the chemical and physical characterization of aerosols using a single particle mass spectrometry based technique

    Science.gov (United States)

    Spencer, Matthew Todd

    burning and appeared to be internally mixed with sulfate which suggests it was cloud processed during transport. Lastly, noble metal nanoparticles are explored as potential matrices for visible wavelength single particle matrix assisted laser desorption/ionization mass spectrometry (VIS-MALDI). This work demonstrates that noble metal nanoparticle matrices can be used for VIS-MALDI analysis.

  20. Plasma matrix metalloproteinases, low density lipoprotein oxidisability and soluble adhesion molecules after a glucose load in Type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Brown Jackie

    2004-06-01

    Full Text Available Abstract Background Acute hyperglycaemia is an independent cardiovascular risk factor in Type 2 diabetes which may be mediated through increased oxidative damage to plasma low density lipoprotein, and in vitro, high glucose concentrations promote proatherogenic adhesion molecule expression and matrix metalloproteinase expression. Methods We examined these atherogenic risk markers in 21 subjects with Type 2 diabetes and 20 controls during an oral 75 g glucose tolerance test. Plasma soluble adhesion molecule concentrations [E-selectin, VCAM-1 and ICAM-1], plasma matrix metalloproteinases [MMP-3 and 9] and plasma LDL oxidisability were measured at 30 minute intervals. Results In the diabetes group, the concentrations of all plasma soluble adhesion molecules fell promptly [all p Conclusions A glucose load leads to a rapid fall in plasma soluble adhesion molecule concentrations in Type 2 diabetes and controls, perhaps reflecting reduced generation of soluble from membrane forms during enhanced leukocyte – endothelial adhesion or increased hepatic clearance, without changes in plasma matrix metalloproteinase concentrations or low density lipoprotein oxidisability. These in vivo findings are in contrast with in vitro data.

  1. Gamow-Jordan vectors and non-reducible density operators from higher-order S-matrix poles

    International Nuclear Information System (INIS)

    Bohm, A.; Loewe, M.; Maxson, S.; Patuleanu, P.; Puentmann, C.; Gadella, M.

    1997-01-01

    In analogy to Gamow vectors that are obtained from first-order resonance poles of the S-matrix, one can also define higher-order Gamow vectors which are derived from higher-order poles of the S-matrix. An S-matrix pole of r-th order at z R =E R -iΓ/2 leads to r generalized eigenvectors of order k=0,1,hor-ellipsis,r-1, which are also Jordan vectors of degree (k+1) with generalized eigenvalue (E R -iΓ/2). The Gamow-Jordan vectors are elements of a generalized complex eigenvector expansion, whose form suggests the definition of a state operator (density matrix) for the microphysical decaying state of this higher-order pole. This microphysical state is a mixture of non-reducible components. In spite of the fact that the k-th order Gamow-Jordan vectors has the polynomial time-dependence which one always associates with higher-order poles, the microphysical state obeys a purely exponential decay law. copyright 1997 American Institute of Physics

  2. Theoretical investigations of single particle spectroscopies of novel materials

    Energy Technology Data Exchange (ETDEWEB)

    Randeria, Mohit [The Ohio State Univ., Columbus, OH (United States)

    2017-02-24

    The project focused on three areas in the theoretical investigation of quantum materials. The first was novel magnetism in low dimensional systems, especially chiral magnetism and topological spin textures that can arise in thin films and at interfaces. The second related to high temperature superconductivity, and particularly on understanding puzzling features of quantum oscillations. The third related to collaborations with experimentalists on angle-resolved photoemission spectroscopy of high Tc superconductors and charge density wave materials.

  3. A review of progress in single particle tracking: from methods to biophysical insights

    Science.gov (United States)

    Manzo, Carlo; Garcia-Parajo, Maria F.

    2015-12-01

    Optical microscopy has for centuries been a key tool to study living cells with minimum invasiveness. The advent of single molecule techniques over the past two decades has revolutionized the field of cell biology by providing a more quantitative picture of the complex and highly dynamic organization of living systems. Amongst these techniques, single particle tracking (SPT) has emerged as a powerful approach to study a variety of dynamic processes in life sciences. SPT provides access to single molecule behavior in the natural context of living cells, thereby allowing a complete statistical characterization of the system under study. In this review we describe the foundations of SPT together with novel optical implementations that nowadays allow the investigation of single molecule dynamic events with increasingly high spatiotemporal resolution using molecular densities closer to physiological expression levels. We outline some of the algorithms for the faithful reconstruction of SPT trajectories as well as data analysis, and highlight biological examples where the technique has provided novel insights into the role of diffusion regulating cellular function. The last part of the review concentrates on different theoretical models that describe anomalous transport behavior and ergodicity breaking observed from SPT studies in living cells.

  4. Component tree analysis of cystovirus φ6 nucleocapsid Cryo-EM single particle reconstructions.

    Directory of Open Access Journals (Sweden)

    Lucas M Oliveira

    Full Text Available The 3-dimensional structure of the nucleocapsid (NC of bacteriophage φ6 is described utilizing component tree analysis, a topological and geometric image descriptor. The component trees are derived from density maps of cryo-electron microscopy single particle reconstructions. Analysis determines position and occupancy of structure elements responsible for RNA packaging and transcription. Occupancy of the hexameric nucleotide triphosphorylase (P4 and RNA polymerase (P2 are found to be essentially complete in the NC. The P8 protein lattice likely fixes P4 and P2 in place during maturation. We propose that the viral procapsid (PC is a dynamic structural intermediate where the P4 and P2 can attach and detach until held in place in mature NCs. During packaging, the PC expands to accommodate the RNA, and P2 translates from its original site near the inner 3-fold axis (20 sites to the inner 5-fold axis (12 sites with excess P2 positioned inside the central region of the NC.

  5. Very high cell density perfusion of CHO cells anchored in a non-woven matrix-based bioreactor.

    Science.gov (United States)

    Zhang, Ye; Stobbe, Per; Silvander, Christian Orrego; Chotteau, Véronique

    2015-11-10

    Recombinant Chinese Hamster Ovary (CHO) cells producing IgG monoclonal antibody were cultivated in a novel perfusion culture system CellTank, integrating the bioreactor and the cell retention function. In this system, the cells were harbored in a non-woven polyester matrix perfused by the culture medium and immersed in a reservoir. Although adapted to suspension, the CHO cells stayed entrapped in the matrix. The cell-free medium was efficiently circulated from the reservoir into- and through the matrix by a centrifugal pump placed at the bottom of the bioreactor resulting in highly homogenous concentrations of the nutrients and metabolites in the whole system as confirmed by measurements from different sampling locations. A real-time biomass sensor using the dielectric properties of living cells was used to measure the cell density. The performances of the CellTank were studied in three perfusion runs. A very high cell density measured as 200 pF/cm (where 1 pF/cm is equivalent to 1 × 10(6)viable cells/mL) was achieved at a perfusion rate of 10 reactor volumes per day (RV/day) in the first run. In the second run, the effect of cell growth arrest by hypothermia at temperatures lowered gradually from 37 °C to 29 °C was studied during 13 days at cell densities above 100 pF/cm. Finally a production run was performed at high cell densities, where a temperature shift to 31 °C was applied at cell density 100 pF/cm during a production period of 14 days in minimized feeding conditions. The IgG concentrations were comparable in the matrix and in the harvest line in all the runs, indicating no retention of the product of interest. The cell specific productivity was comparable or higher than in Erlenmeyer flask batch culture. During the production run, the final harvested IgG production was 35 times higher in the CellTank compared to a repeated batch culture in the same vessel volume during the same time period. Copyright © 2015 The Authors. Published by Elsevier B.V. All

  6. Molecular dynamics and density functional theory simulations of matrix deposition. II. Absolute site structure assignment for porphyrin in xenon.

    Science.gov (United States)

    Kyrychenko, Alexander; Gorski, Alexander; Waluk, Jacek

    2004-12-15

    Molecular dynamics calculations reveal that the main trapping site for porphyrin embedded in a xenon matrix corresponds to a hexagonal cavity formed after removal of seven host atoms. Tautomerization involving two inner hydrogen atoms leads to two trans forms that interact differently with the matrix cage. Therefore, both electronic and infrared spectra are split into doublets. Comparison of the experimentally observed splitting patterns with the results of density functional theory calculations that explicitly include the nearest xenon atoms allows assigning each spectral feature to one of two different configurations of the chromophore inside the xenon cavity. The main factor responsible for the splittings is a distortion of the molecular skeleton from a squarelike towards rectangular geometry. (c) 2004 American Institute of Physics

  7. Symmetry-adapted density matrix renormalization group calculations of the primary excited states of poly(para-phenylene vinylene).

    Science.gov (United States)

    Bursill, Robert J; Barford, William

    2009-06-21

    The Pariser-Parr-Pople model of pi-conjugated electrons is solved by a three-block, symmetry-adapted density matrix renormalization group (DMRG) method for the light emitting polymer, poly(para-phenylene vinylene). The energies of the primary excited states are calculated. There is excellent agreement between theory and experiment when solid state screening is incorporated into the model parameters, enabling us to make an identification of the origin of the key spectroscopic features. Appendices describe important technical aspects of the three-block DMRG approach: Local Hilbert space efficiency and its relation to the matrix product formulation of the DMRG; an efficient computational procedure for constructing symmetry-adapted states for DMRG calculations; and correct superblock state targeting to ensure good convergence of the method.

  8. Global matrix of thermospheric density values for selected solar/geomagnetic conditions and spacecraft orbital attitudes

    Science.gov (United States)

    Johnson, D. L.

    1984-01-01

    Presented are selected thermospheric/exospheric global mean and extreme density values computed between 130 and 1100 km altitude. These values were generated from the MSFC/J70 reference orbital atmospheric model using different input conditions of solar flux and geomagnetic index, ranging from low to peak. Typical magnitudes of day-night density changes are presented, as an example, for use in space vehicle orbital analyses.

  9. Spin orbit coupling for molecular ab initio density matrix renormalization group calculations: Application to g-tensors

    International Nuclear Information System (INIS)

    Roemelt, Michael

    2015-01-01

    Spin Orbit Coupling (SOC) is introduced to molecular ab initio density matrix renormalization group (DMRG) calculations. In the presented scheme, one first approximates the electronic ground state and a number of excited states of the Born-Oppenheimer (BO) Hamiltonian with the aid of the DMRG algorithm. Owing to the spin-adaptation of the algorithm, the total spin S is a good quantum number for these states. After the non-relativistic DMRG calculation is finished, all magnetic sublevels of the calculated states are constructed explicitly, and the SOC operator is expanded in the resulting basis. To this end, spin orbit coupled energies and wavefunctions are obtained as eigenvalues and eigenfunctions of the full Hamiltonian matrix which is composed of the SOC operator matrix and the BO Hamiltonian matrix. This treatment corresponds to a quasi-degenerate perturbation theory approach and can be regarded as the molecular equivalent to atomic Russell-Saunders coupling. For the evaluation of SOC matrix elements, the full Breit-Pauli SOC Hamiltonian is approximated by the widely used spin-orbit mean field operator. This operator allows for an efficient use of the second quantized triplet replacement operators that are readily generated during the non-relativistic DMRG algorithm, together with the Wigner-Eckart theorem. With a set of spin-orbit coupled wavefunctions at hand, the molecular g-tensors are calculated following the scheme proposed by Gerloch and McMeeking. It interprets the effective molecular g-values as the slope of the energy difference between the lowest Kramers pair with respect to the strength of the applied magnetic field. Test calculations on a chemically relevant Mo complex demonstrate the capabilities of the presented method

  10. Spin orbit coupling for molecular ab initio density matrix renormalization group calculations: Application to g-tensors.

    Science.gov (United States)

    Roemelt, Michael

    2015-07-28

    Spin Orbit Coupling (SOC) is introduced to molecular ab initio density matrix renormalization group (DMRG) calculations. In the presented scheme, one first approximates the electronic ground state and a number of excited states of the Born-Oppenheimer (BO) Hamiltonian with the aid of the DMRG algorithm. Owing to the spin-adaptation of the algorithm, the total spin S is a good quantum number for these states. After the non-relativistic DMRG calculation is finished, all magnetic sublevels of the calculated states are constructed explicitly, and the SOC operator is expanded in the resulting basis. To this end, spin orbit coupled energies and wavefunctions are obtained as eigenvalues and eigenfunctions of the full Hamiltonian matrix which is composed of the SOC operator matrix and the BO Hamiltonian matrix. This treatment corresponds to a quasi-degenerate perturbation theory approach and can be regarded as the molecular equivalent to atomic Russell-Saunders coupling. For the evaluation of SOC matrix elements, the full Breit-Pauli SOC Hamiltonian is approximated by the widely used spin-orbit mean field operator. This operator allows for an efficient use of the second quantized triplet replacement operators that are readily generated during the non-relativistic DMRG algorithm, together with the Wigner-Eckart theorem. With a set of spin-orbit coupled wavefunctions at hand, the molecular g-tensors are calculated following the scheme proposed by Gerloch and McMeeking. It interprets the effective molecular g-values as the slope of the energy difference between the lowest Kramers pair with respect to the strength of the applied magnetic field. Test calculations on a chemically relevant Mo complex demonstrate the capabilities of the presented method.

  11. Off-diagonal helicity density matrix elements for vector mesons produced in polarized e+e- processes

    International Nuclear Information System (INIS)

    Anselmino, M.; Murgia, F.; Quintairos, P.

    1999-04-01

    Final state q q-bar interactions give origin to non zero values of the off-diagonal element ρ 1,-1 of the helicity density matrix of vector mesons produced in e + e - annihilations, as confirmed by recent OPAL data on φ, D * and K * 's. New predictions are given for ρ 1,-1 of several mesons produced at large x E and small p T - i.e. collinear with the parent jet - in the annihilation of polarized 3 + and 3 - , the results depend strongly on the elementary dynamics and allow further non trivial tests of the standard model. (author)

  12. Dynamical mean-field theory, density-matrix embedding theory, and rotationally invariant slave bosons: A unified perspective

    Science.gov (United States)

    Ayral, Thomas; Lee, Tsung-Han; Kotliar, Gabriel

    2017-12-01

    We present a unified perspective on dynamical mean-field theory (DMFT), density-matrix embedding theory (DMET), and rotationally invariant slave bosons (RISB). We show that DMET can be regarded as a simplification of the RISB method where the quasiparticle weight is set to unity. This relation makes it easy to transpose extensions of a given method to another: For instance, a temperature-dependent version of RISB can be used to derive a temperature-dependent free-energy formula for DMET.

  13. Limiting factors in single particle cryo electron tomography

    Directory of Open Access Journals (Sweden)

    Mikhail Kudryashev

    2012-07-01

    Full Text Available Modern methods of cryo electron microscopy and tomography allow visualization of protein nanomachines in their native state at the nanometer scale. Image processing methods including sub-volume averaging applied to repeating macromolecular elements within tomograms allow exploring their structures within the native context of the cell, avoiding the need for protein isolation and purification. Today, many different data acquisition protocols and software solutions are available to researchers to determine average structures of macromolecular complexes and potentially to classify structural intermediates. Here, we list the density maps reported in the literature, and analyze each structure for the chosen instrumental settings, sample conditions, main processing steps, and obtained resolution. We present conclusions that identify factors currently limiting the resolution gained by this approach.

  14. Understanding particle size and distance driven competition of interparticle interactions and effective single-particle anisotropy.

    Science.gov (United States)

    Pacakova, B; Mantlikova, A; Niznansky, D; Kubickova, S; Vejpravova, J

    2016-05-25

    Magnetic response of single-domain nanoparticles (NPs) in concentrated systems is strongly affected by mutual interparticle interactions. However, particle proximity significantly influences single-particle effective anisotropy. To solve which of these two phenomena plays a dominant role in the magnetic response of real NP systems, systematic study on samples with well-defined parameters is required. In our work, we prepared a series of nanocomposites constituted of highly-crystalline and well-isolated CoFe2O4 NPs embedded in an amorphous SiO2 matrix using a single-molecule precursor method. This preparation method enabled us to reach a wide interval of particle size and concentration. We observed that the characteristic parameters of the single-domain state (coercivity, blocking temperature) and dipole-dipole interaction energy ([Formula: see text]) scaled with each other and increased with increasing [Formula: see text], where d XRD was the NP diameter and r was the interparticle distance. Our results are in excellent agreement with Monte-Carlo simulations of the particle growth. Moreover, we demonstrated that the contribution of [Formula: see text] acting as an additional energetic barrier to the superspin reversal or as an average static field did not sufficiently explain how the concentrated NP systems responded to an external magnetic field. Alternations in the blocking temperature and coercivity of our NP systems accounted for reformed relaxations of the NP superspins and modified effective anisotropy energy of the interacting NPs. Therefore, the concept of modified NP effective anisotropy explains the magnetic response of our concentrated NP systems better than the concept of the energy barrier influenced by interparticle interactions.

  15. Communication: Novel quantum states of electron spins in polycarbenes from ab initio density matrix renormalization group calculations.

    Science.gov (United States)

    Mizukami, Wataru; Kurashige, Yuki; Yanai, Takeshi

    2010-09-07

    An investigation into spin structures of poly(m-phenylenecarbene), a prototype of magnetic organic molecules, is presented using the ab initio density matrix renormalization group method. It is revealed by achieving large-scale multireference calculations that the energy differences between high-spin and low-spin states (spin-gaps) of polycarbenes decrease with increasing the number of carbene sites. This size-dependency of the spin-gaps strikingly contradicts the predictions with single-reference methods including density functional theory. The wave function analysis shows that the low-spin states are beyond the classical spin picture, namely, much of multireference character, and thus are manifested as strongly correlated quantum states. The size dependence of the spin-gaps involves an odd-even oscillation, which cannot be explained by the integer-spin Heisenberg model with a single magnetic-coupling constant.

  16. Density induced phase transitions in the Schwinger model. A study with matrix product states

    Energy Technology Data Exchange (ETDEWEB)

    Banuls, Mari Carmen; Cirac, J. Ignacio; Kuehn, Stefan [Max-Planck-Institut fuer Quantenoptik (MPQ), Garching (Germany); Cichy, Krzysztof [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2017-02-15

    We numerically study the zero temperature phase structure of the multiflavor Schwinger model at nonzero chemical potential. Using matrix product states, we reproduce analytical results for the phase structure for two flavors in the massless case and extend the computation to the massive case, where no analytical predictions are available. Our calculations allow us to locate phase transitions in the mass-chemical potential plane with great precision and provide a concrete example of tensor networks overcoming the sign problem in a lattice gauge theory calculation.

  17. Influence of Hemp Fibers Pre-processing on Low Density Polyethylene Matrix Composites Properties

    Science.gov (United States)

    Kukle, S.; Vidzickis, R.; Zelca, Z.; Belakova, D.; Kajaks, J.

    2016-04-01

    In present research with short hemp fibres reinforced LLDPE matrix composites with fibres content in a range from 30 to 50 wt% subjected to four different pre-processing technologies were produced and such their properties as tensile strength and elongation at break, tensile modulus, melt flow index, micro hardness and water absorption dynamics were investigated. Capillary viscosimetry was used for fluidity evaluation and melt flow index (MFI) evaluated for all variants. MFI of fibres of two pre-processing variants were high enough to increase hemp fibres content from 30 to 50 wt% with moderate increase of water sorption capability.

  18. Structure of the first order reduced density matrix in three electron systems: A generalized Pauli constraints assisted study

    Science.gov (United States)

    Theophilou, Iris; Lathiotakis, Nektarios N.; Helbig, Nicole

    2018-03-01

    We investigate the structure of the one-body reduced density matrix of three electron systems, i.e., doublet and quadruplet spin configurations, corresponding to the smallest interacting system with an open-shell ground state. To this end, we use configuration interaction (CI) expansions of the exact wave function in Slater determinants built from natural orbitals in a finite dimensional Hilbert space. With the exception of maximally polarized systems, the natural orbitals of spin eigenstates are generally spin dependent, i.e., the spatial parts of the up and down natural orbitals form two different sets. A measure to quantify this spin dependence is introduced and it is shown that it varies by several orders of magnitude depending on the system. We also study the ordering issue of the spin-dependent occupation numbers which has practical implications in reduced density matrix functional theory minimization schemes, when generalized Pauli constraints (GPCs) are imposed and in the form of the CI expansion in terms of the natural orbitals. Finally, we discuss the aforementioned CI expansion when there are GPCs that are almost "pinned."

  19. Response calculations based on an independent particle system with the exact one-particle density matrix: polarizabilities.

    Science.gov (United States)

    Giesbertz, K J H; Gritsenko, O V; Baerends, E J

    2014-05-14

    Recently, we have demonstrated that the problems finding a suitable adiabatic approximation in time-dependent one-body reduced density matrix functional theory can be remedied by introducing an additional degree of freedom to describe the system: the phase of the natural orbitals [K. J. H. Giesbertz, O. V. Gritsenko, and E. J. Baerends, Phys. Rev. Lett. 105, 013002 (2010); K. J. H. Giesbertz, O. V. Gritsenko, and E. J. Baerends, J. Chem. Phys. 133, 174119 (2010)]. In this article we will show in detail how the frequency-dependent response equations give the proper static limit (ω → 0), including the perturbation in the chemical potential, which is required in static response theory to ensure the correct number of particles. Additionally we show results for the polarizability for H2 and compare the performance of two different two-electron functionals: the phase-including Löwdin-Shull functional and the density matrix form of the Löwdin-Shull functional.

  20. Effects of increased collagen-matrix density on the mechanical properties and in vivo absorbability of hydroxyapatite-collagen composites as artificial bone materials

    Energy Technology Data Exchange (ETDEWEB)

    Yunoki, Shunji [Life Science Group, Tokyo Metropolitan Industrial Technology Research Institute, 2-11-1 Fukasawa, Setagaya-ku, Tokyo 158-0081 (Japan); Sugiura, Hiroaki; Kondo, Eiji; Yasuda, Kazunori [Department of Sports Medicine and Joint Surgery, Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, Hokkaido 060-8638 Japan (Japan); Ikoma, Toshiyuki; Tanaka, Junzo, E-mail: yunoki.shunji@iri-tokyo.jp [Department of Metallurgy and Ceramics Science, 2-12-1-S7-1, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2011-02-15

    The aim of this study was to evaluate the effects of increased collagen-matrix density on the mechanical properties and in vivo absorbability of porous hydroxyapatite (HAp)-collagen composites as artificial bone materials. Seven types of porous HAp-collagen composites were prepared from HAp nanocrystals and dense collagen fibrils. Their densities and HAp/collagen weight ratios ranged from 122 to 331 mg cm{sup -3} and from 20/80 to 80/20, respectively. The flexural modulus and strength increased with an increase in density, reaching 2.46 {+-} 0.48 and 0.651 {+-} 0.103 MPa, respectively. The porous composites with a higher collagen-matrix density exhibited much higher mechanical properties at the same densities, suggesting that increasing the collagen-matrix density is an effective way of improving the mechanical properties. It was also suggested that other structural factors in addition to collagen-matrix density are required to achieve bone-like mechanical properties. The in vivo absorbability of the composites was investigated in bone defects of rabbit femurs, demonstrating that the absorption rate decreased with increases in the composite density. An exhaustive increase in density is probably limited by decreases in absorbability as artificial bones.

  1. The localization-delocalization matrix and the electron-density-weighted connectivity matrix of a finite graphene nanoribbon reconstructed from kernel fragments.

    Science.gov (United States)

    Timm, Matthew J; Matta, Chérif F; Massa, Lou; Huang, Lulu

    2014-11-26

    Bader's quantum theory of atoms in molecules (QTAIM) and chemical graph theory, merged in the localization-delocalization matrices (LDMs) and the electron-density-weighted connectivity matrices (EDWCM), are shown to benefit in computational speed from the kernel energy method (KEM). The LDM and EDWCM quantum chemical graph matrices of a 66-atom C46H20 hydrogen-terminated armchair graphene nanoribbon, in 14 (2×7) rings of C2v symmetry, are accurately reconstructed from kernel fragments. (This includes the full sets of electron densities at 84 bond critical points and 19 ring critical points, and the full sets of 66 localization and 4290 delocalization indices (LIs and DIs).) The average absolute deviations between KEM and directly calculated atomic electron populations, obtained from the sum of the LIs and half of the DIs of an atom, are 0.0012 ± 0.0018 e(-) (∼0.02 ± 0.03%) for carbon atoms and 0.0007 ± 0.0003 e(-) (∼0.01 ± 0.01%) for hydrogen atoms. The integration errors in the total electron population (296 electrons) are +0.0003 e(-) for the direct calculation (+0.0001%) and +0.0022 e(-) for KEM (+0.0007%). The accuracy of the KEM matrix elements is, thus, probably of the order of magnitude of the combined precision of the electronic structure calculation and the atomic integrations. KEM appears capable of delivering not only the total energies with chemical accuracy (which is well documented) but also local and nonlocal properties accurately, including the DIs between the fragments (crossing fragmentation lines). Matrices of the intact ribbon, the kernels, the KEM-reconstructed ribbon, and errors are available as Supporting Information .

  2. Single particle mass spectral signatures from vehicle exhaust particles and the source apportionment of on-line PM2.5by single particle aerosol mass spectrometry.

    Science.gov (United States)

    Yang, Jian; Ma, Shexia; Gao, Bo; Li, Xiaoying; Zhang, Yanjun; Cai, Jing; Li, Mei; Yao, Ling'ai; Huang, Bo; Zheng, Mei

    2017-09-01

    In order to accurately apportion the many distinct types of individual particles observed, it is necessary to characterize fingerprints of individual particles emitted directly from known sources. In this study, single particle mass spectral signatures from vehicle exhaust particles in a tunnel were performed. These data were used to evaluate particle signatures in a real-world PM 2.5 apportionment study. The dominant chemical type originating from average positive and negative mass spectra for vehicle exhaust particles are EC species. Four distinct particle types describe the majority of particles emitted by vehicle exhaust particles in this tunnel. Each particle class is labeled according to the most significant chemical features in both average positive and negative mass spectral signatures, including ECOC, NaK, Metal and PAHs species. A single particle aerosol mass spectrometry (SPAMS) was also employed during the winter of 2013 in Guangzhou to determine both the size and chemical composition of individual atmospheric particles, with vacuum aerodynamic diameter (d va ) in the size range of 0.2-2μm. A total of 487,570 particles were chemically analyzed with positive and negative ion mass spectra and a large set of single particle mass spectra was collected and analyzed in order to identify the speciation. According to the typical tracer ions from different source types and classification by the ART-2a algorithm which uses source fingerprints for apportioning ambient particles, the major sources of single particles were simulated. Coal combustion, vehicle exhaust, and secondary ion were the most abundant particle sources, contributing 28.5%, 17.8%, and 18.2%, respectively. The fraction with vehicle exhaust species particles decreased slightly with particle size in the condensation mode particles. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Development and application of a 2-electron reduced density matrix approach to electron transport via molecular junctions

    Science.gov (United States)

    Hoy, Erik P.; Mazziotti, David A.; Seideman, Tamar

    2017-11-01

    Can an electronic device be constructed using only a single molecule? Since this question was first asked by Aviram and Ratner in the 1970s [Chem. Phys. Lett. 29, 277 (1974)], the field of molecular electronics has exploded with significant experimental advancements in the understanding of the charge transport properties of single molecule devices. Efforts to explain the results of these experiments and identify promising new candidate molecules for molecular devices have led to the development of numerous new theoretical methods including the current standard theoretical approach for studying single molecule charge transport, i.e., the non-equilibrium Green's function formalism (NEGF). By pairing this formalism with density functional theory (DFT), a wide variety of transport problems in molecular junctions have been successfully treated. For some systems though, the conductance and current-voltage curves predicted by common DFT functionals can be several orders of magnitude above experimental results. In addition, since density functional theory relies on approximations to the exact exchange-correlation functional, the predicted transport properties can show significant variation depending on the functional chosen. As a first step to addressing this issue, the authors have replaced density functional theory in the NEGF formalism with a 2-electron reduced density matrix (2-RDM) method, creating a new approach known as the NEGF-RDM method. 2-RDM methods provide a more accurate description of electron correlation compared to density functional theory, and they have lower computational scaling compared to wavefunction based methods of similar accuracy. Additionally, 2-RDM methods are capable of capturing static electron correlation which is untreatable by existing NEGF-DFT methods. When studying dithiol alkane chains and dithiol benzene in model junctions, the authors found that the NEGF-RDM predicts conductances and currents that are 1-2 orders of magnitude below

  4. Invertibility of retarded response functions for Laplace transformable potentials: Application to one-body reduced density matrix functional theory.

    Science.gov (United States)

    Giesbertz, K J H

    2015-08-07

    A theorem for the invertibility of arbitrary response functions is presented under the following conditions: the time dependence of the potentials should be Laplace transformable and the initial state should be a ground state, though it might be degenerate. This theorem provides a rigorous foundation for all density-functional-like theories in the time-dependent linear response regime. Especially for time-dependent one-body reduced density matrix (1RDM) functional theory, this is an important step forward, since a solid foundation has currently been lacking. The theorem is equally valid for static response functions in the non-degenerate case, so can be used to characterize the uniqueness of the potential in the ground state version of the corresponding density-functional-like theory. Such a classification of the uniqueness of the non-local potential in ground state 1RDM functional theory has been lacking for decades. With the aid of presented invertibility theorem presented here, a complete classification of the non-uniqueness of the non-local potential in 1RDM functional theory can be given for the first time.

  5. Optimal Estimation of Diffusion Coefficients from Noisy Time-Lapse-Recorded Single-Particle Trajectories

    DEFF Research Database (Denmark)

    Vestergaard, Christian Lyngby

    2012-01-01

    Optimal Estimation of Diusion Coecients from Noisy Time-Lapse- Measurements of Single-Particle Trajectories Single-particle tracking techniques allow quantitative measurements of diusion at the single-molecule level. Recorded time-series are mostly short and contain considerable measurement noise....... The standard method for estimating diusion coecients from single-particle trajectories is based on leastsquares tting to the experimentally measured mean square displacements. This method is highly inecient, since it ignores the high correlations inherent in these. We derive the exact maximum likelihood...... parameter values. We extend the methods to particles diusing on a uctuating substrate, e.g., exible or semi exible polymers such as DNA, and show that uctuations induce an important bias in the estimates of diusion coecients if they are not accounted for. We apply the methods to obtain precise estimates...

  6. Progress on Complex Langevin simulations of a finite density matrix model for QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bloch, Jacques [Univ. of Regensburg (Germany). Inst. for Theorectical Physics; Glesaan, Jonas [Swansea Univ., Swansea U.K.; Verbaarschot, Jacobus [Stony Brook Univ., NY (United States). Dept. of Physics and Astronomy; Zafeiropoulos, Savvas [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States); Heidelberg Univ. (Germany). Inst. for Theoretische Physik

    2018-04-01

    We study the Stephanov model, which is an RMT model for QCD at finite density, using the Complex Langevin algorithm. Naive implementation of the algorithm shows convergence towards the phase quenched or quenched theory rather than to intended theory with dynamical quarks. A detailed analysis of this issue and a potential resolution of the failure of this algorithm are discussed. We study the effect of gauge cooling on the Dirac eigenvalue distribution and time evolution of the norm for various cooling norms, which were specifically designed to remove the pathologies of the complex Langevin evolution. The cooling is further supplemented with a shifted representation for the random matrices. Unfortunately, none of these modifications generate a substantial improvement on the complex Langevin evolution and the final results still do not agree with the analytical predictions.

  7. Some features of excited states density matrix calculation and their pairing relations in conjugated systems

    International Nuclear Information System (INIS)

    Giambiagi, M.S. de; Giambiagi, M.

    1982-01-01

    Direct PPP-type calculations of self-consistent (SC) density matrices for excited states are described and the corresponding 'thawn' molecular orbitals (MO) are discussed. Special attention is addressed to particular solutions arising in conjugated systems of a certain symmetry, and to their chemical implications. The U(2) and U(3) algebras are applied respectively to the 4-electron and 6-electron cases: a natural separation of excited states in different cases follows. A simple approach to the convergence problem for excited states is given. The complementarity relations, an alternative formulation of the pairing theorem valid for heteromolecules and non-alternant systems, allow some fruitful experimental applications. Together with the extended pairing relations shown here, they may help to rationalize general trends. (Author) [pt

  8. Quantum chaos in nuclear single-particle motion and damping of giant resonances

    International Nuclear Information System (INIS)

    Pal, Santanu; Mukhopadhyay, Tapan

    1995-01-01

    The spectral statistics of single particle motion in deformed cavities with axial symmetry are presented. The single particle motion in the cavities considered are non-integrable and the systematics of the fluctuation measures of the spectra reveal a transition from regular to chaotic regime in the corresponding classical systems. Quantitative estimate of the degree of chaos enables us to introduce a correction factor to the one-body wall formula for the damping widths of isoscalar giant resonances. The damping widths calculated with this correction factor give much better agreement with experimental values than earlier calculations of one-body damping widths. (author). 21 refs., 5 figs

  9. Single particle radiation between high spin states in /sup 147/Gd

    Energy Technology Data Exchange (ETDEWEB)

    Borggreen, J.; Sletten, G.; Bjoernholm, S.; Pedersen, J.; Del Zoppo, A.; Radford, D.C.; Janssens, R.V.F.; Chowdhury, P.; Emling, H.; Frekers, D.

    1987-05-04

    Transitions above the T/sub 1/2/=550 ns, 8.59 MeV isomer in /sup 147/Gd have been studied using the (/sup 30/Si, 5n) reaction. Results from ..gamma gamma.. coincidence, angular distribution and recoil distance measurements are combined to establish a level scheme up to 16.9 MeV and I approx. = 79/2. Single particle configurations are assigned on the basis of the deformed independent particle model. The single particle nature of the highest spin states and the apparent lack of collectivity is discussed.

  10. The application of single particle hydrodynamics in continuum models of multiphase flow

    Science.gov (United States)

    Decker, Rand

    1988-01-01

    A review of the application of single particle hydrodynamics in models for the exchange of interphase momentum in continuum models of multiphase flow is presented. Considered are the equations of motion for a laminar, mechanical two phase flow. Inherent to this theory is a model for the interphase exchange of momentum due to drag between the dispersed particulate and continuous fluid phases. In addition, applications of two phase flow theory to de-mixing flows require the modeling of interphase momentum exchange due to lift forces. The applications of single particle analysis in deriving models for drag and lift are examined.

  11. Preparation of Disease-Related Protein Assemblies for Single Particle Electron Microscopy.

    Science.gov (United States)

    Cameron Varano, A; Harafuji, Naoe; Dearnaley, William; Guay-Woodford, Lisa; Kelly, Deborah F

    2017-01-01

    Electron microscopy (EM) is a rapidly growing area of structural biology that permits us to decode biological assemblies at the nanoscale. To examine biological materials for single particle EM analysis, purified assemblies must be obtained using biochemical separation techniques. Here, we describe effective methodologies for isolating histidine (his)-tagged protein assemblies from the nucleus of disease-relevant cell lines. We further demonstrate how isolated assemblies are visualized using single particle EM techniques and provide representative results for each step in the process.

  12. Solving the Multi-site and Multi-orbital Dynamical Mean Field Theory Using Density Matrix Renormalization

    Directory of Open Access Journals (Sweden)

    Yuriel Núñez Fernández

    2018-02-01

    Full Text Available We implement an efficient numerical method to calculate response functions of complex impurities based on the Density Matrix Renormalization Group (DMRG and use it as the impurity-solver of the Dynamical Mean Field Theory (DMFT. This method uses the correction vector to obtain precise Green's functions on the real frequency axis at zero temperature. By using a self-consistent bath configuration with very low entanglement, we take full advantage of the DMRG to calculate dynamical response functions paving the way to treat large effective impurities such as those corresponding to multi-orbital interacting models and multi-site or multi-momenta clusters. This method leads to reliable calculations of non-local self energies at arbitrary dopings and interactions and at any energy scale.

  13. Avoiding the 4-index transformation in one-body reduced density matrix functional calculations for separable functionals.

    Science.gov (United States)

    Giesbertz, Klaas J H

    2016-08-03

    One of the major computational bottlenecks in one-body reduced density matrix (1RDM) functional theory is the evaluation of approximate 1RDM functionals and their derivatives. The reason is that more advanced approximate functionals are almost exclusively defined in the natural orbital basis, so a 4-index transformation of the two-electron integrals appears to be unavoidable. I will show that this is not the case and that so-called separable functionals can be evaluated much more efficiently, i.e. only at cubic cost in the basis size. Since most approximate functionals are actually separable, this new algorithm is an important development to make 1RDM functional theory calculations feasible for large electronic systems.

  14. Correlation between Microvascular Density and Matrix Metalloproteinase 11 Expression in Prostate Cancer Tissues: a Preliminary Study in Thailand.

    Science.gov (United States)

    Kanharat, Nongnuch; Tuamsuk, Panya

    2015-01-01

    Prostate cancer is a major concern of public health. Microvascular density (MVD) is one of the prognostic markers for various solid cancers. Matrix metalloproteinase 11 (MMP11) plays an important role in angiogenesis and changes in its expression level are known to be associated with tumor progression and clinical outcome. To investigate the relationship between MVD and MMP11 expression in prostatic adenocarcinoma tissues. The expression levels of MMP11 and MVD were analyzed immunohistochemically for 50 specimens of prostatic adenocarcinoma. MMP11 was mainly expressed in stromal cells but rarely seen in epithelial cells. Mean MVD was 36/mm2, and it was correlated significantly only with bone metastases. MVD was also significantly correlated with MMP11 expression (r=0.29, p=0.044). MMP11 may alter the stromal microenvironment of prostate cancer to stimulate tumor angiogenesis.

  15. Polarization observables in the longitudinal basis for pseudo-scalar meson photoproduction using a density matrix approach

    Energy Technology Data Exchange (ETDEWEB)

    Biplab Dey, Michael E. McCracken, David G. Ireland, Curtis A. Meyer

    2011-05-01

    The complete expression for the intensity in pseudo-scalar meson photoproduction with a polarized beam, target, and recoil baryon is derived using a density matrix approach that offers great economy of notation. A Cartesian basis with spins for all particles quantized along a single direction, the longitudinal beam direction, is used for consistency and clarity in interpretation. A single spin-quantization axis for all particles enables the amplitudes to be written in a manifestly covariant fashion with simple relations to those of the well-known CGLN formalism. Possible sign discrepancies between theoretical amplitude-level expressions and experimentally measurable intensity profiles are dealt with carefully. Our motivation is to provide a coherent framework for coupled-channel partial-wave analysis of several meson photoproduction reactions, incorporating recently published and forthcoming polarization data from Jefferson Lab.

  16. Comparison of the iterated equation of motion approach and the density matrix formalism for the quantum Rabi model

    Science.gov (United States)

    Kalthoff, Mona; Keim, Frederik; Krull, Holger; Uhrig, Götz S.

    2017-05-01

    The density matrix formalism and the equation of motion approach are two semi-analytical methods that can be used to compute the non-equilibrium dynamics of correlated systems. While for a bilinear Hamiltonian both formalisms yield the exact result, for any non-bilinear Hamiltonian a truncation is necessary. Due to the fact that the commonly used truncation schemes differ for these two methods, the accuracy of the obtained results depends significantly on the chosen approach. In this paper, both formalisms are applied to the quantum Rabi model. This allows us to compare the approximate results and the exact dynamics of the system and enables us to discuss the accuracy of the approximations as well as the advantages and the disadvantages of both methods. It is shown to which extent the results fulfill physical requirements for the observables and which properties of the methods lead to unphysical results.

  17. Quantitative determination of carbonaceous particle mixing state in Paris using single-particle mass spectrometer and aerosol mass spectrometer measurements

    Directory of Open Access Journals (Sweden)

    R. M. Healy

    2013-09-01

    Full Text Available Single-particle mixing state information can be a powerful tool for assessing the relative impact of local and regional sources of ambient particulate matter in urban environments. However, quantitative mixing state data are challenging to obtain using single-particle mass spectrometers. In this study, the quantitative chemical composition of carbonaceous single particles has been determined using an aerosol time-of-flight mass spectrometer (ATOFMS as part of the MEGAPOLI 2010 winter campaign in Paris, France. Relative peak areas of marker ions for elemental carbon (EC, organic aerosol (OA, ammonium, nitrate, sulfate and potassium were compared with concurrent measurements from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, a thermal–optical OCEC analyser and a particle into liquid sampler coupled with ion chromatography (PILS-IC. ATOFMS-derived estimated mass concentrations reproduced the variability of these species well (R2 = 0.67–0.78, and 10 discrete mixing states for carbonaceous particles were identified and quantified. The chemical mixing state of HR-ToF-AMS organic aerosol factors, resolved using positive matrix factorisation, was also investigated through comparison with the ATOFMS dataset. The results indicate that hydrocarbon-like OA (HOA detected in Paris is associated with two EC-rich mixing states which differ in their relative sulfate content, while fresh biomass burning OA (BBOA is associated with two mixing states which differ significantly in their OA / EC ratios. Aged biomass burning OA (OOA2-BBOA was found to be significantly internally mixed with nitrate, while secondary, oxidised OA (OOA was associated with five particle mixing states, each exhibiting different relative secondary inorganic ion content. Externally mixed secondary organic aerosol was not observed. These findings demonstrate the range of primary and secondary organic aerosol mixing states in Paris. Examination of the

  18. Efficient density matrix renormalization group algorithm to study Y junctions with integer and half-integer spin

    KAUST Repository

    Kumar, Manoranjan

    2016-02-03

    An efficient density matrix renormalization group (DMRG) algorithm is presented and applied to Y junctions, systems with three arms of n sites that meet at a central site. The accuracy is comparable to DMRG of chains. As in chains, new sites are always bonded to the most recently added sites and the superblock Hamiltonian contains only new or once renormalized operators. Junctions of up to N=3n+1≈500 sites are studied with antiferromagnetic (AF) Heisenberg exchange J between nearest-neighbor spins S or electron transfer t between nearest neighbors in half-filled Hubbard models. Exchange or electron transfer is exclusively between sites in two sublattices with NA≠NB. The ground state (GS) and spin densities ρr=⟨Szr⟩ at site r are quite different for junctions with S=1/2, 1, 3/2, and 2. The GS has finite total spin SG=2S(S) for even (odd) N and for MG=SG in the SG spin manifold, ρr>0(<0) at sites of the larger (smaller) sublattice. S=1/2 junctions have delocalized states and decreasing spin densities with increasing N. S=1 junctions have four localized Sz=1/2 states at the end of each arm and centered on the junction, consistent with localized states in S=1 chains with finite Haldane gap. The GS of S=3/2 or 2 junctions of up to 500 spins is a spin density wave with increased amplitude at the ends of arms or near the junction. Quantum fluctuations completely suppress AF order in S=1/2 or 1 junctions, as well as in half-filled Hubbard junctions, but reduce rather than suppress AF order in S=3/2 or 2 junctions.

  19. Considerations of particle vaporization and analyte diffusion in single-particle inductively coupled plasma-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Koon-Sing; Lui, Kwok-On; Lee, Kin-Ho; Chan, Wing-Tat, E-mail: wtchan@hku.hk

    2013-11-01

    empirical equation is formulated for the estimation of the position of complete vaporization of a particle in the ICP. The equation takes into account the particle properties (diameter, density, boiling point, and molecular weight of the constituents of the particle) and the ICP operating parameters (ICP forward power and central channel gas flow rate). The proportional constant and exponents of the variables in the equation were solved using literature values of ICP operating conditions for single-particle inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) measurements of 6 kinds of particles in 12 studies. The calculated position is a useful guide for the selection of sampling depth or observation height for ICP-MS and ICP-AES measurements of single particles as well as discrete particles in a flow, such as laser-ablated materials and airborne particulates. - Highlights: • Calibration curve constructed from ICPMS intensity and particle mass distributions • Degree of vaporization and analyte diffusion determine calibration curve linearity. • Single-particle ICPMS requires standard particle/solution droplet for calibration. • Empirical equation to estimate complete vaporization position of particle in ICP.

  20. Online Characterisation of Mineral Dust Aerosol by Single Particle Mass Spectrometry: Mineralogical Signatures of Potential Source Areas in North Africa.

    Science.gov (United States)

    Marsden, N. A.; Allan, J. D.; Flynn, M.; Ullrich, R.; Moehler, O.; Coe, H.

    2017-12-01

    The mineralogy of individual dust particles is important for atmospheric processes because mineralogy influences optical properties, their potential to act as ice nucleating particles (INP) and geochemical cycling of elements to the ocean. Bulk mineralogy of transported mineral dust has been shown to be a reflection of the source area and size fractionation during transport. Online characterisation of single particle mineralogy is highly desirable as the composition of individual particles can be reported at a temporal resolution that is relevant to atmospheric processes. Single particle mass spectrometry (SPMS) has indentified and characterised the composition of ambient dust particles but is hampered by matrix effects that result in a non-quantatative measurement of composition. The work presented describes a comparison of mass spectral characteristics of sub 2.5μm particle fractions generated from; i) nominally pure samples from the clay mineral society (CMS), ii) soil samples collected from potential source areas in North Africa and iii) ambient measurement of transported African dust made at the Cape Verde Islands. Using a novel approach to analyse the mass spectra, the distinct characteristics of the various dust samples are obtained from the online measurements. Using this technique it was observed that dust generated from sources on the North West Margin of the Sahara Desert have distinct characteristics of illite in contrast to the kaolinitic characteristics of dust generated from sources in the Sahel. These methods offer great potential for describing the hourly variation in the source and mineralogy of transported mineral dust and the online differentiation of mineral phase in multi-mineralic dust samples.

  1. A photoemission moments model using density functional and transfer matrix methods applied to coating layers on surfaces: Theory

    Science.gov (United States)

    Jensen, Kevin L.; Finkenstadt, Daniel; Shabaev, Andrew; Lambrakos, Samuel G.; Moody, Nathan A.; Petillo, John J.; Yamaguchi, Hisato; Liu, Fangze

    2018-01-01

    Recent experimental measurements of a bulk material covered with a small number of graphene layers reported by Yamaguchi et al. [NPJ 2D Mater. Appl. 1, 12 (2017)] (on bialkali) and Liu et al. [Appl. Phys. Lett. 110, 041607 (2017)] (on copper) and the needs of emission models in beam optics codes have lead to substantial changes in a Moments model of photoemission. The changes account for (i) a barrier profile and density of states factor based on density functional theory (DFT) evaluations, (ii) a Drude-Lorentz model of the optical constants and laser penetration depth, and (iii) a transmission probability evaluated by an Airy Transfer Matrix Approach. Importantly, the DFT results lead to a surface barrier profile of a shape similar to both resonant barriers and reflectionless wells: the associated quantum mechanical transmission probabilities are shown to be comparable to those recently required to enable the Moments (and Three Step) model to match experimental data but for reasons very different than the assumption by conventional wisdom that a barrier is responsible. The substantial modifications of the Moments model components, motivated by computational materials methods, are developed. The results prepare the Moments model for use in treating heterostructures and discrete energy level systems (e.g., quantum dots) proposed for decoupling the opposing metrics of performance that undermine the performance of advanced light sources like the x-ray Free Electron Laser. The consequences of the modified components on quantum yield, emittance, and emission models needed by beam optics codes are discussed.

  2. Theory of open quantum systems with bath of electrons and phonons and spins: many-dissipaton density matrixes approach.

    Science.gov (United States)

    Yan, YiJing

    2014-02-07

    This work establishes a strongly correlated system-and-bath dynamics theory, the many-dissipaton density operators formalism. It puts forward a quasi-particle picture for environmental influences. This picture unifies the physical descriptions and algebraic treatments on three distinct classes of quantum environments, electron bath, phonon bath, and two-level spin or exciton bath, as their participating in quantum dissipation processes. Dynamical variables for theoretical description are no longer just the reduced density matrix for system, but remarkably also those for quasi-particles of bath. The present theoretical formalism offers efficient and accurate means for the study of steady-state (nonequilibrium and equilibrium) and real-time dynamical properties of both systems and hybridizing environments. It further provides universal evaluations, exact in principle, on various correlation functions, including even those of environmental degrees of freedom in coupling with systems. Induced environmental dynamics could be reflected directly in experimentally measurable quantities, such as Fano resonances and quantum transport current shot noise statistics.

  3. Response function of an HPGe detector simulated through MCNP 4A varying the density and chemical composition of the matrix

    International Nuclear Information System (INIS)

    Leal A, B.; Mireles G, F.; Quirino T, L.; Pinedo, J.L.

    2005-01-01

    In the area of the Radiological Safety it is required of a calibrated detection system in energy and efficiency for the determination of the concentration in activity in samples that vary in chemical composition and by this in density. The area of Nuclear Engineering requires to find the grade of isotopic enrichment of the uranium of the Sub-critic Nuclear Chicago 9000 Mark. Given the experimental importance that has the determination from the curves of efficiency to the effects of establishing the quantitative results, is appealed to the simulation of the response function of the detector used in the Regional Center of Nuclear Studies inside the range of energy of 80 keV to 1400 keV varying the density of the matrix and the chemical composition by means of the application of the Monte Carlo code MCNP-4A. The obtained results in the simulation of the response function of the detector show a grade of acceptance in the range from 500 to 1400 keV energy, with a smaller percentage discrepancy to 10%, in the range of low energy that its go from 59 to 400 keV, the percentage discrepancy varies from 17% until 30%, which is manifested in the opposing isotopic relationship for 5 fuel rods of the Sub critic nuclear assemble. (Author)

  4. DECAY MODES OF HIGH-LYING SINGLE-PARTICLE STATES IN PB-209

    NARCIS (Netherlands)

    BEAUMEL, D; FORTIER, S; GALES, S; GUILLOT, J; LANGEVINJOLIOT, H; LAURENT, H; MAISON, JM; VERNOTTE, J; BORDEWIJK, JA; BRANDENBURG, S; KRASZNAHORKAY, A; CRAWLEY, GM; MASSOLO, CP; RENTERIA, M

    The neutron decay of high-lying single-particle states in Pb-209 excited by means of the (alpha, He-3) reaction has been investigated at 122 MeV incident energy using a multidetector array. The high-spin values of these states, inferred from previous inclusive experiments, are confirmed by the

  5. Summary report of the group on single-particle nonlinear dynamics

    International Nuclear Information System (INIS)

    Axinescu, S.; Bartolini, R.; Bazzani, A.

    1996-10-01

    This report summarizes the research on single-particle nonlinear beam dynamics. It discusses the following topics: analytical and semi-analytical tools; early prediction of the dynamic aperture; how the results are commonly presented; Is the mechanism of the dynamic aperture understand; ripple effects; and beam-beam effects

  6. Homogeneous vs heterogeneous polymerization catalysis revealed by single-particle fluorescence microscopy.

    Science.gov (United States)

    Esfandiari, N Melody; Blum, Suzanne A

    2011-11-16

    A high-sensitivity and high-resolution single-particle fluorescence microscopy technique differentiated between homogeneous and heterogeneous metathesis polymerization catalysis by imaging the location of the early stages of polymerization. By imaging single polymers and single crystals of Grubbs II, polymerization catalysis was revealed to be solely homogeneous rather than heterogeneous or both.

  7. Single-particle electron microscopy in the study of membrane protein structure.

    Science.gov (United States)

    De Zorzi, Rita; Mi, Wei; Liao, Maofu; Walz, Thomas

    2016-02-01

    Single-particle electron microscopy (EM) provides the great advantage that protein structure can be studied without the need to grow crystals. However, due to technical limitations, this approach played only a minor role in the study of membrane protein structure. This situation has recently changed dramatically with the introduction of direct electron detection device cameras, which allow images of unprecedented quality to be recorded, also making software algorithms, such as three-dimensional classification and structure refinement, much more powerful. The enhanced potential of single-particle EM was impressively demonstrated by delivering the first long-sought atomic model of a member of the biomedically important transient receptor potential channel family. Structures of several more membrane proteins followed in short order. This review recounts the history of single-particle EM in the study of membrane proteins, describes the technical advances that now allow this approach to generate atomic models of membrane proteins and provides a brief overview of some of the membrane protein structures that have been studied by single-particle EM to date. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Single-particle thermal diffusion of charged colloids: Double-layer theory in a temperature gradient

    NARCIS (Netherlands)

    Dhont, J.K.G.; Briels, Willem J.

    2008-01-01

    The double-layer contribution to the single-particle thermal diffusion coefficient of charged, spherical colloids with arbitrary double-layer thickness is calculated and compared to experiments. The calculation is based on an extension of the Debye-Hückel theory for the double-layer structure that

  9. Lagrangian single-particle turbulent statistics through the Hilbert-Huang transform

    NARCIS (Netherlands)

    Huang, Y.; Biferale, L.; Calzavarini, E.; Sun, Chao; Toschi, F.

    2013-01-01

    The Hilbert-Huang transform is applied to analyze single-particle Lagrangian velocity data from numerical simulations of hydrodynamic turbulence. The velocity trajectory is described in terms of a set of intrinsic mode functions C i (t) and of their instantaneous frequency ω i (t) . On the basis of

  10. Insensitivity of single particle time domain measurements to laser velocimeter 'Doppler ambiguity.'

    Science.gov (United States)

    Johnson, D. A.

    1973-01-01

    It is shown that single particle time domain measurements in high speed gas flows obtained by a laser velocimeter technique developed for use in wind tunnels are not affected by the so-called 'Doppler ambiguity.' A comparison of hot-wire anemometer and laser velocimeter measurements taken under similar flow conditions is used for the demonstration.

  11. Single particle electron microscopy in combination with mass spectrometry to investigate novel complexes of membrane proteins

    NARCIS (Netherlands)

    Arteni, Ana A.; Nowaczyk, Marc; Lax, Julia; Rögner, Matthias; Boekema, Egbert J.; Kouril, R.; Rogner, M.

    2005-01-01

    Large data sets of molecular projections of the membrane proteins Photosystem I and Photosystem II from cyanobacteria were analyzed by single particle electron microscopy (EM). Analysis resulted in the averaging of 2D projections from the purified complexes but also in the simultaneous detection and

  12. Deformed single-particle levels in the boson-fermion model

    International Nuclear Information System (INIS)

    Leviatan, A.; Shao, B.

    1989-01-01

    Deformed single-particle levels are derived from a boson-fermion Hamiltonian in which the odd fermion occupies several j orbits. The geometric-oriented approach applied to 169 Tm clarified the role of algebraic interactions and provides an intuitive interpretation and guidance to numerical calculations in deformed nuclei

  13. Deformed single-particle levels in the boson-fermion model

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A.; Shao, B. (Center for Theoretical Physics, Sloane Laboratory, Yale University, New Haven, Connecticut 06511 (US) Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (US))

    1989-11-13

    Deformed single-particle levels are derived from a boson-fermion Hamiltonian in which the odd fermion occupies several {ital j} orbits. The geometric-oriented approach applied to {sup 169}Tm clarified the role of algebraic interactions and provides an intuitive interpretation and guidance to numerical calculations in deformed nuclei.

  14. Understanding particle size and distance driven competition of interparticle interactions and effective single-particle anisotropy

    Czech Academy of Sciences Publication Activity Database

    Pacáková, Barbara; Mantlíková, Alice; Nižňanský, D.; Kubíčková, Simona; Vejpravová, Jana

    2016-01-01

    Roč. 28, č. 20 (2016), 1-11, č. článku 206004. ISSN 0953-8984 R&D Projects: GA ČR(CZ) GA15-01953S Institutional support: RVO:68378271 Keywords : magnetic nanoparticles * single-particle anisotropy * dipolar energy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.649, year: 2016

  15. Linear-scaling fixed-node diffusion quantum Monte Carlo: accounting for the nodal information in a density matrix-based scheme.

    Science.gov (United States)

    Kussmann, Jörg; Ochsenfeld, Christian

    2008-04-07

    A reformulation of the fixed-node diffusion quantum Monte Carlo method (FN-DQMC) in terms of the N-particle density matrix is presented, which allows us to reduce the computational effort to linear for the evaluation of the local energy. The reformulation is based on our recently introduced density matrix-based approach for a linear-scaling variational QMC method [J. Kussmann et al., Phys. Rev. B. 75, 165107 (2007)]. However, within the latter approach of using the positive semi-definite N-particle trial density (rhoN T(R)=mid R:Psi(T)(R)mid R:(2)), the nodal information of the trial function is lost. Therefore, a straightforward application to the FN-DQMC method is not possible, in which the sign of the trial function is usually traced in order to confine the random walkers to their nodal pockets. As a solution, we reformulate the FN-DQMC approach in terms of off-diagonal elements of the N-particle density matrix rhoN T(R;R'), so that the nodal information of the trial density matrix is obtained. Besides all-electron moves, a scheme to perform single-electron moves within N-PDM QMC is described in detail. The efficiency of our method is illustrated for exemplary calculations.

  16. Development of a poly(dimethylacrylamide) based matrix material for solid phase high density peptide array synthesis employing a laser based material transfer

    Energy Technology Data Exchange (ETDEWEB)

    Ridder, Barbara [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe (Germany); Foertsch, Tobias C. [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Welle, Alexander [Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Mattes, Daniela S. [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe (Germany); Bojnicic-Kninski, Clemens M. von; Loeffler, Felix F.; Nesterov-Mueller, Alexander [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Meier, Michael A.R., E-mail: m.a.r.meier@kit.edu [Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe (Germany); Breitling, Frank, E-mail: frank.breitling@kit.edu [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2016-12-15

    Highlights: • New matrix material for peptide array synthesis from a ‘solid solvent’. • Resolution was increased with possible spot densities of up to 20.000 spots per cm{sup 2}. • The coupling depth and the effectiveness of washing steps analyzed by ToF-SIMS. • Adaptations and custom changes of the matrix material are possible. - Abstract: Poly(dimethylacrylamide) (PDMA) based matrix materials were developed for laser-based in situ solid phase peptide synthesis to produce high density arrays. In this specific array synthesis approach, amino acid derivatives are embedded into a matrix material, serving as a “solid” solvent material at room temperature. Then, a laser pulse transfers this mixture to the target position on a synthesis slide, where the peptide array is synthesized. Upon heating above the glass transition temperature of the matrix material, it softens, allowing diffusion of the amino acid derivatives to the synthesis surface and serving as a solvent for peptide bond formation. Here, we synthesized PDMA six-arm star polymers, offering the desired matrix material properties, using atom transfer radical polymerization. With the synthesized polymers as matrix material, we structured and synthesized arrays with combinatorial laser transfer. With densities of up to 20,000 peptide spots per cm{sup 2}, the resolution could be increased compared to the commercially available standard matrix material. Time-of-Flight Secondary Ion Mass Spectrometry experiments revealed the penetration behavior of an amino acid derivative into the prepared acceptor synthesis surface and the effectiveness of the washing protocols.

  17. High performance computing of density matrix renormalization group method for 2-dimensional model. Parallelization strategy toward peta computing

    International Nuclear Information System (INIS)

    Yamada, Susumu; Igarashi, Ryo; Machida, Masahiko; Imamura, Toshiyuki; Okumura, Masahiko; Onishi, Hiroaki

    2010-01-01

    We parallelize the density matrix renormalization group (DMRG) method, which is a ground-state solver for one-dimensional quantum lattice systems. The parallelization allows us to extend the applicable range of the DMRG to n-leg ladders i.e., quasi two-dimension cases. Such an extension is regarded to bring about several breakthroughs in e.g., quantum-physics, chemistry, and nano-engineering. However, the straightforward parallelization requires all-to-all communications between all processes which are unsuitable for multi-core systems, which is a mainstream of current parallel computers. Therefore, we optimize the all-to-all communications by the following two steps. The first one is the elimination of the communications between all processes by only rearranging data distribution with the communication data amount kept. The second one is the avoidance of the communication conflict by rescheduling the calculation and the communication. We evaluate the performance of the DMRG method on multi-core supercomputers and confirm that our two-steps tuning is quite effective. (author)

  18. Full Quantum Dynamics Simulation of a Realistic Molecular System Using the Adaptive Time-Dependent Density Matrix Renormalization Group Method.

    Science.gov (United States)

    Yao, Yao; Sun, Ke-Wei; Luo, Zhen; Ma, Haibo

    2018-01-18

    The accurate theoretical interpretation of ultrafast time-resolved spectroscopy experiments relies on full quantum dynamics simulations for the investigated system, which is nevertheless computationally prohibitive for realistic molecular systems with a large number of electronic and/or vibrational degrees of freedom. In this work, we propose a unitary transformation approach for realistic vibronic Hamiltonians, which can be coped with using the adaptive time-dependent density matrix renormalization group (t-DMRG) method to efficiently evolve the nonadiabatic dynamics of a large molecular system. We demonstrate the accuracy and efficiency of this approach with an example of simulating the exciton dissociation process within an oligothiophene/fullerene heterojunction, indicating that t-DMRG can be a promising method for full quantum dynamics simulation in large chemical systems. Moreover, it is also shown that the proper vibronic features in the ultrafast electronic process can be obtained by simulating the two-dimensional (2D) electronic spectrum by virtue of the high computational efficiency of the t-DMRG method.

  19. Exploiting the spatial locality of electron correlation within the parametric two-electron reduced-density-matrix method

    Science.gov (United States)

    DePrince, A. Eugene; Mazziotti, David A.

    2010-01-01

    The parametric variational two-electron reduced-density-matrix (2-RDM) method is applied to computing electronic correlation energies of medium-to-large molecular systems by exploiting the spatial locality of electron correlation within the framework of the cluster-in-molecule (CIM) approximation [S. Li et al., J. Comput. Chem. 23, 238 (2002); J. Chem. Phys. 125, 074109 (2006)]. The 2-RDMs of individual molecular fragments within a molecule are determined, and selected portions of these 2-RDMs are recombined to yield an accurate approximation to the correlation energy of the entire molecule. In addition to extending CIM to the parametric 2-RDM method, we (i) suggest a more systematic selection of atomic-orbital domains than that presented in previous CIM studies and (ii) generalize the CIM method for open-shell quantum systems. The resulting method is tested with a series of polyacetylene molecules, water clusters, and diazobenzene derivatives in minimal and nonminimal basis sets. Calculations show that the computational cost of the method scales linearly with system size. We also compute hydrogen-abstraction energies for a series of hydroxyurea derivatives. Abstraction of hydrogen from hydroxyurea is thought to be a key step in its treatment of sickle cell anemia; the design of hydroxyurea derivatives that oxidize more rapidly is one approach to devising more effective treatments.

  20. Assessment of various natural orbitals as the basis of large active space density-matrix renormalization group calculations.

    Science.gov (United States)

    Ma, Yingjin; Ma, Haibo

    2013-06-14

    It is well-known that not only the orbital ordering but also the choice of the orbitals itself as the basis may significantly influence the computational efficiency of density-matrix renormalization group (DMRG) calculations. In this study, for assessing the efficiency of using various natural orbitals (NOs) as the DMRG basis, we performed benchmark DMRG calculations with different bases, which included the NOs obtained by various traditional electron correlation methods, as well as NOs acquired from preliminary moderate DMRG calculations (e.g., preserved states less than 500). The tested systems included N2, transition metal Cr2 systems, as well as 1D hydrogen polyradical chain systems under equilibrium and dissociation conditions and 2D hydrogen aggregates. The results indicate that a good compromise between the requirement for low computational costs of acquiring NOs and the demand for high efficiency of NOs as the basis of DMRG calculations may be very dependent on the studied systems' diverse electron correlation characteristics and the size of the active space. It is also shown that a DMRG-complete active space configuration interaction (DMRG-CASCI) calculation in a basis of carefully chosen NOs can provide a less expensive alternative to the standard DMRG-complete active space self-consistent field (DMRG-CASSCF) calculation and avoid the convergence difficulties of orbital optimization for large active spaces. The effect of different NO ordering schemes on DMRG-CASCI calculations is also discussed.

  1. Density matrix renormalization group study of a three-orbital Hubbard model with spin-orbit coupling in one dimension

    Science.gov (United States)

    Kaushal, Nitin; Herbrych, Jacek; Nocera, Alberto; Alvarez, Gonzalo; Moreo, Adriana; Reboredo, F. A.; Dagotto, Elbio

    2017-10-01

    Using the density matrix renormalization group technique we study the effect of spin-orbit coupling on a three-orbital Hubbard model in the (t2g) 4 sector and in one dimension. Fixing the Hund coupling to a robust value compatible with some multiorbital materials, we present the phase diagram varying the Hubbard U and spin-orbit coupling λ , at zero temperature. Our results are shown to be qualitatively similar to those recently reported using the dynamical mean-field theory in higher dimensions, providing a robust basis to approximate many-body techniques. Among many results, we observe an interesting transition from an orbital-selective Mott phase to an excitonic insulator with increasing λ at intermediate U . In the strong U coupling limit, we find a nonmagnetic insulator with an effective angular momentum 〈(Jeff)2〉≠0 near the excitonic phase, smoothly connected to the 〈(Jeff)2〉=0 regime. We also provide a list of quasi-one-dimensional materials where the physics discussed in this paper could be realized.

  2. The hole spectral function and the relationship between overlap functions, natural orbitals and the one-body density matrix in nuclei

    International Nuclear Information System (INIS)

    Antonov, A.N.; Stoitsov, M.V.; Gaidarov, M.K.; Dimitrova, S.S.; Hodgson, P.E.

    1995-01-01

    A method to calculate the hole spectral function in the discrete part of the spectrum is suggested within the natural orbital representation of the one-body density matrix of the A-nucleon system using its relationship with the overlap functions of the eigenstates in the (A-1)-nucleon system. (author)

  3. The maximal excess charge for a family of density-matrix-functional theories including Hartree-Fock and Müller theories

    Science.gov (United States)

    Kehle, Christoph

    2017-01-01

    We will give a proof that the maximal excess charge for an atom described by a family of density-matrix-functionals, which includes Hartree-Fock and Müller theories, is bounded by a universal constant. We will use the new technique introduced by Frank et al. [preprint arXiv:1608.05625 (2016)].

  4. INFLUENCE OF SOLVENT ON INTRAMOLECULAR PROTON-TRANSFER IN HYDROGEN MALONATE - MOLECULAR-DYNAMICS SIMULATION STUDY OF TUNNELING BY DENSITY-MATRIX EVOLUTION AND NONEQUILIBRIUM SOLVATION

    NARCIS (Netherlands)

    MAVRI, J; BERENDSEN, HJC; VANGUNSTEREN, WF

    1993-01-01

    A density matrix evolution (DME) method (Berendsen, H. J. C.; Mavri, J. J. Phys. Chem. the preceding paper in this issue) in combination with classical molecular dynamics simulation was applied to calculate the rate of proton tunneling in the intramolecular double-well hydrogen bond of hydrogen

  5. CALCULATION OF THE PROTON-TRANSFER RATE USING DENSITY-MATRIX EVOLUTION AND MOLECULAR-DYNAMICS SIMULATIONS - INCLUSION OF THE PROTON EXCITED-STATES

    NARCIS (Netherlands)

    MAVRI, J; BERENDSEN, HJC

    1995-01-01

    The methodology for treatment of proton transfer processes by density matrix evolution (DME) with inclusion of many excited states is presented. The DME method (Berendsen, H. J. C.; Mavri, J. J. Phys. Chem. 1993, 97, 13464) that simulates the dynamics of quantum systems embedded in a classical

  6. Quantification of dermal exposure to nanoparticles from solid nanocomposites by using single particle ICP-MS

    DEFF Research Database (Denmark)

    Mackevica, Aiga; Olsson, Mikael Emil; Hansen, Steffen Foss

    2016-01-01

    was tested by surface wiping followed by analysis using single particle ICP-MS. The nanoparticles were extracted from the wipes by ultrasonication in deionized water, and this technique was tested to be around 60-100% effective for extracting the particles adsorbed to the wipes. The method was optimized......Engineered nanoparticles are used in various applications due to their unique properties, which has led to their widespread use in consumer products. Silver, titanium and copper-based nanoparticles are few of the most commonly used nanomaterials in consumer products, mainly due to their biocidal...... by spiking the wipes with known amounts of nanoparticles and treating them the same way as the experimental samples. Our preliminary results show that single particle ICP-MS has the potential for quantitatively measuring potential dermal exposure to nanoparticles, and when used in combination with other...

  7. Blowing Snow and Aerosol Composition: Bulk and Single Particle Measurements in Antarctica

    Science.gov (United States)

    DeCarlo, P. F.; Giordano, M.

    2017-12-01

    Recent evidence suggests that aerosol concentration and composition in the cryosphere is influenced by blowing snow, though the mechanisms remain unclear. Changes in aerosol composition due to blowing snow may significantly alter local and regional aerosol production, processing, transport, and lifetimes in the cryosphere. This presentation will focus on both bulk composition changes and single particle results from deploying an aerosol mass spectrometer (AMS) to the Antarctic sea ice during the 2ODIAC campaign, with a focus on blowing snow events. With this first on-line analysis, blowing snow clearly enhances the submicron sea salt (Na and Cl) concentrations in Antarctic aerosols. These bulk composition changes are shown to be independent from air mass origins. Single particle results from the AMS show a variety of chemical species in addition to sulfates in the submicron aerosol mass. K-means cluster analysis also shows distinct changes in the overall aerosol mass spectra during to blowing snow events.

  8. Single-particle model of a strongly driven, dense, nanoscale quantum ensemble

    Science.gov (United States)

    DiLoreto, C. S.; Rangan, C.

    2018-01-01

    We study the effects of interatomic interactions on the quantum dynamics of a dense, nanoscale, atomic ensemble driven by a strong electromagnetic field. We use a self-consistent, mean-field technique based on the pseudospectral time-domain method and a full, three-directional basis to solve the coupled Maxwell-Liouville equations. We find that interatomic interactions generate a decoherence in the state of an ensemble on a much faster time scale than the excited-state lifetime of individual atoms. We present a single-particle model of the driven, dense ensemble by incorporating interactions into a dephasing rate. This single-particle model reproduces the essential physics of the full simulation and is an efficient way of rapidly estimating the collective dynamics of a dense ensemble.

  9. Inequivalence of single-particle and population lifetimes in a cuprate superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuolong [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Sobota, J. A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Leuenberger, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); He, Y. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Hashimoto, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lu, D. H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Eisaki, H. [National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan); Kirchmann, P. S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Shen, Z. -X. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States)

    2015-06-15

    We study optimally doped Bi-2212 (Tc=96 K) using femtosecond time- and angle-resolved photoelectron spectroscopy. Energy-resolved population lifetimes are extracted and compared with single-particle lifetimes measured by equilibrium photoemission. The population lifetimes deviate from the single-particle lifetimes in the low excitation limit by 1–2 orders of magnitude. Fundamental considerations of electron scattering unveil that these two lifetimes are in general distinct, yet for systems with only electron-phonon scattering they should converge in the low-temperature, low-fluence limit. As a result, the qualitative disparity in our data, even in this limit, suggests that scattering channels beyond electron-phonon interactions play a significant role in the electron dynamics of cuprate superconductors.

  10. The advent of structural biologyin situby single particle cryo-electron tomography.

    Science.gov (United States)

    Galaz-Montoya, Jesús G; Ludtke, Steven J

    2017-01-01

    Single particle tomography (SPT), also known as subtomogram averaging, is a powerful technique uniquely poised to address questions in structural biology that are not amenable to more traditional approaches like X-ray crystallography, nuclear magnetic resonance, and conventional cryoEM single particle analysis. Owing to its potential for in situ structural biology at subnanometer resolution, SPT has been gaining enormous momentum in the last five years and is becoming a prominent, widely used technique. This method can be applied to unambiguously determine the structures of macromolecular complexes that exhibit compositional and conformational heterogeneity, both in vitro and in situ . Here we review the development of SPT, highlighting its applications and identifying areas of ongoing development.

  11. Comparison of mineral dust and droplet residuals measured with two single particle aerosol mass spectrometers

    Science.gov (United States)

    Wonaschütz, Anna; Ludwig, Wolfgang; Zawadowicz, Maria; Hiranuma, Naruki; Hitzenberger, Regina; Cziczo, Daniel; DeMott, Paul; Möhler, Ottmar

    2017-04-01

    Single Particle mass spectrometers are used to gain information on the chemical composition of individual aerosol particles, aerosol mixing state, and other valuable aerosol characteristics. During the Mass Spectrometry Intercomparison at the Fifth Ice Nucleation (FIN-01) Workshop, the new LAAPTOF single particle aerosol mass spectrometer (AeroMegt GmbH) was conducting simultaneous measurements together with the PALMS (Particle Analysis by Laser Mass Spectrometry) instrument. The aerosol particles were sampled from the AIDA chamber during ice cloud expansion experiments. Samples of mineral dust and ice droplet residuals were measured simultaneously. In this work, three expansion experiments are chosen for a comparison between the two mass spectrometers. A fuzzy clustering routine is used to group the spectra. Cluster centers describing the ensemble of particles are compared. First results show that while differences in the peak heights are likely due to the use of an amplifier in PALMS, cluster centers are comparable.

  12. Guidelines for the fitting of anomalous diffusion mean square displacement graphs from single particle tracking experiments.

    Directory of Open Access Journals (Sweden)

    Eldad Kepten

    Full Text Available Single particle tracking is an essential tool in the study of complex systems and biophysics and it is commonly analyzed by the time-averaged mean square displacement (MSD of the diffusive trajectories. However, past work has shown that MSDs are susceptible to significant errors and biases, preventing the comparison and assessment of experimental studies. Here, we attempt to extract practical guidelines for the estimation of anomalous time averaged MSDs through the simulation of multiple scenarios with fractional Brownian motion as a representative of a large class of fractional ergodic processes. We extract the precision and accuracy of the fitted MSD for various anomalous exponents and measurement errors with respect to measurement length and maximum time lags. Based on the calculated precision maps, we present guidelines to improve accuracy in single particle studies. Importantly, we find that in some experimental conditions, the time averaged MSD should not be used as an estimator.

  13. Insight into interrelation between single-particle and collective diffusion in binary melts

    Science.gov (United States)

    Levchenko, Elena V.; Evteev, Alexander V.

    2018-01-01

    The interrelation between the kinetics of single-particle (tracer) and collective diffusion in a binary melt is investigated theoretically within the framework of the Mori-Zwanzig formalism of statistical mechanics. An analytical expression for the Onsager coefficient for mass transport and two self-diffusion coefficients of species in a binary melt is derived using analysis based on the generalized Langevin equation. The derived expression naturally accounts for manifestation of microscopic (dynamic) cross-correlation effects in the kinetics of collective diffusion. Hence, it presents an explicit extension of the well-known Darken equation which is currently often used for expressing collective interdiffusion in terms of the two self-diffusion coefficients. An application of our analysis for interpretation of recent experimental data on the interrelation between the kinetics of single-particle and collective diffusion in Al-rich Ni-Al melts is demonstrated.

  14. Digital atom interferometer with single particle control on a discretized space-time geometry.

    Science.gov (United States)

    Steffen, Andreas; Alberti, Andrea; Alt, Wolfgang; Belmechri, Noomen; Hild, Sebastian; Karski, Michał; Widera, Artur; Meschede, Dieter

    2012-06-19

    Engineering quantum particle systems, such as quantum simulators and quantum cellular automata, relies on full coherent control of quantum paths at the single particle level. Here we present an atom interferometer operating with single trapped atoms, where single particle wave packets are controlled through spin-dependent potentials. The interferometer is constructed from a sequence of discrete operations based on a set of elementary building blocks, which permit composing arbitrary interferometer geometries in a digital manner. We use this modularity to devise a space-time analogue of the well-known spin echo technique, yielding insight into decoherence mechanisms. We also demonstrate mesoscopic delocalization of single atoms with a separation-to-localization ratio exceeding 500; this result suggests their utilization beyond quantum logic applications as nano-resolution quantum probes in precision measurements, being able to measure potential gradients with precision 5 x 10(-4) in units of gravitational acceleration g.

  15. Innovative molecular-based fluorescent nanoparticles for multicolor single particle tracking in cells

    International Nuclear Information System (INIS)

    Daniel, Jonathan; Blanchard-Desce, Mireille; Godin, Antoine G; Palayret, Matthieu; Lounis, Brahim; Cognet, Laurent

    2016-01-01

    Based on an original molecular-based design, we present bright and photostable fluorescent organic nanoparticles (FONs) showing excellent colloidal stability in various aqueous environments. Complementary near-infrared emitting and green emitting FONs were prepared using a simple, fast and robust protocol. Both types of FONs could be simultaneously imaged at the single-particle level in solution as well as in biological environments using a monochromatic excitation and a dual-color fluorescence microscope. No evidence of acute cytotoxicity was found upon incubation of live cells with mixed solutions of FONs, and both types of nanoparticles were found internalized in the cells where their motion could be simultaneously tracked at video-rate up to minutes. These fluorescent organic nanoparticles open a novel non-toxic alternative to existing nanoparticles for imaging biological structures, compatible with live-cell experiments and specially fitted for multicolor single particle tracking. (paper)

  16. Radiative capture of nucleons at astrophysical energies with single-particle states

    International Nuclear Information System (INIS)

    Huang, J.T.; Bertulani, C.A.; Guimaraes, V.

    2010-01-01

    Radiative capture of nucleons at energies of astrophysical interest is one of the most important processes for nucleosynthesis. The nucleon capture can occur either by a compound nucleus reaction or by a direct process. The compound reaction cross sections are usually very small, especially for light nuclei. The direct capture proceeds either via the formation of a single-particle resonance or a non-resonant capture process. In this work we calculate radiative capture cross sections and astrophysical S-factors for nuclei in the mass region A<20 using single-particle states. We carefully discuss the parameter fitting procedure adopted in the simplified two-body treatment of the capture process. Then we produce a detailed list of cases for which the model works well. Useful quantities, such as spectroscopic factors and asymptotic normalization coefficients, are obtained and compared to published data.

  17. Single particle Green's functions calculation of the electrical conductivity of strong correlated systems

    International Nuclear Information System (INIS)

    Rodrigues Junior, W.A.

    A calculation of the electrical conductivity for Hubbard materials is presented which is valid when U/t >> 1 (U being the Coulomb repulsion and t the nearest neighbor hopping energy) for arbitrary electron concentration and temperature. The derivation emploies the single particle Green's functions with real and imaginary times instead of the usual two-particle real time Green's function. The result is compared with the experimental data available for some organic charge transfer salts [pt

  18. A clustering approach to multireference alignment of single-particle projections in electron microscopy

    OpenAIRE

    Sorzano, C.O.S.; Bilbao-Castro, J.R.; Shkolnisky, Y.; Alcorlo, M.; Melero, R.; Caffarena-Fernández, G.; Li, M.; Xu, G.; Marabini, R.; Carazo, J.M.

    2010-01-01

    Two-dimensional analysis of projections of single particles acquired by an electron microscope is a useful tool to help identifying the different kinds of projections present in a dataset and their different projection directions. Such analysis is also useful to distinguish between different kinds of particles or different particle conformations. In this paper we introduce a new algorithm for performing two-dimensional multireference alignment and classification that is based on a Hierarchica...

  19. Single particle measurements and two particle interferometry results from CERN experiment NA44

    International Nuclear Information System (INIS)

    Simon-Gillo, J.

    1994-01-01

    CERN experiment NA44 is optimized for the study of identified single and multiple particle distributions to p T = 0 near mid-rapidity. We measure π +- , K +- , p, bar p, d and bar d, in p + A and A + A collisions at 450 and 20OGeV/u, respectively. Two-particle intensity interferometry results from π + π + , K + K + , and K - K - measurements and single particle distributions are presented

  20. A deep convolutional neural network approach to single-particle recognition in cryo-electron microscopy.

    Science.gov (United States)

    Zhu, Yanan; Ouyang, Qi; Mao, Youdong

    2017-07-21

    Single-particle cryo-electron microscopy (cryo-EM) has become a mainstream tool for the structural determination of biological macromolecular complexes. However, high-resolution cryo-EM reconstruction often requires hundreds of thousands of single-particle images. Particle extraction from experimental micrographs thus can be laborious and presents a major practical bottleneck in cryo-EM structural determination. Existing computational methods for particle picking often use low-resolution templates for particle matching, making them susceptible to reference-dependent bias. It is critical to develop a highly efficient template-free method for the automatic recognition of particle images from cryo-EM micrographs. We developed a deep learning-based algorithmic framework, DeepEM, for single-particle recognition from noisy cryo-EM micrographs, enabling automated particle picking, selection and verification in an integrated fashion. The kernel of DeepEM is built upon a convolutional neural network (CNN) composed of eight layers, which can be recursively trained to be highly "knowledgeable". Our approach exhibits an improved performance and accuracy when tested on the standard KLH dataset. Application of DeepEM to several challenging experimental cryo-EM datasets demonstrated its ability to avoid the selection of un-wanted particles and non-particles even when true particles contain fewer features. The DeepEM methodology, derived from a deep CNN, allows automated particle extraction from raw cryo-EM micrographs in the absence of a template. It demonstrates an improved performance, objectivity and accuracy. Application of this novel method is expected to free the labor involved in single-particle verification, significantly improving the efficiency of cryo-EM data processing.

  1. Quantum private comparison with d-level single-particle states

    International Nuclear Information System (INIS)

    Yu, Chao-Hua; Guo, Gong-De; Lin, Song

    2013-01-01

    In this paper, a quantum private comparison protocol with d-level single-particle states is proposed. In the protocol, a semi-honest third party is introduced to help two participants compare the size relationship of their secrets without revealing them to any other people. It is shown that the protocol is secure in theory. Moreover, the security of the protocol in real circumstance is also discussed. (paper)

  2. Single-particle cryo-electron microscopy of Rift Valley fever virus

    OpenAIRE

    Sherman, Michael B.; Freiberg, Alexander N.; Holbrook, Michael R.; Watowich, Stanley J.

    2009-01-01

    Rift Valley fever virus (RVFV; Bunyaviridae; Phlebovirus) is an emerging human veterinary pathogen causing acute hepatitis in ruminants and has the potential to Single-particle cryo-EM reconstruction of RVFV MP-12 hemorrhagic fever in humans. We report a three-dimensional reconstruction of RVFV vaccine strain MP-12 (RVFV MP-12) by cryo-electron microcopy using icosahedral symmetry of individual virions. Although the genomic core of RVFV MP-12 is apparently poorly ordered, the glycoproteins on...

  3. High rate discharge capability of single particle electrode of LiCoO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Dokko, Kaoru [Department of Chemistry and Biotechnology, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan); Nakata, Natsuko; Kanamura, Kiyoshi [Department of Applied Chemistry, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397 (Japan)

    2009-04-01

    The electrochemical properties of a single particle of LiCoO{sub 2} (8 {mu}m in diameter) in an organic electrolyte were characterized using a microelectrode technique, and the high rate capability of commercially available micron-sized LiCoO{sub 2} was examined in this study. A Pt microfilament (10 {mu}m in diameter) was attached to the single LiCoO{sub 2} particle in the electrolyte during optical microscope observation, and galvanostatic charge-discharge tests were carried out. The discharge capacity of the single LiCoO{sub 2} particle (8 {mu}m diameter) was 0.157 nA h in the potential range of 3.0-4.2 V vs. Li/Li{sup +}, which was close to the theoretical capacity. The discharge rate capability of the single LiCoO{sub 2} particle was excellent, and the particle exhibited its full-discharge capacity up to a high rate of 30 C (5 nA). The discharge reaction of the single particle was not controlled by the solid-state diffusion of Li{sup +}, but by the charge transfer process at a rate lower than 30 C. The discharge capacity of the particle measured at a high rate of 300 C (50 nA) was 0.12 nA h, which was more than 75% of the full capacity of a single particle. (author)

  4. High rate discharge capability of single particle electrode of LiCoO 2

    Science.gov (United States)

    Dokko, Kaoru; Nakata, Natsuko; Kanamura, Kiyoshi

    The electrochemical properties of a single particle of LiCoO 2 (8 μm in diameter) in an organic electrolyte were characterized using a microelectrode technique, and the high rate capability of commercially available micron-sized LiCoO 2 was examined in this study. A Pt microfilament (10 μm in diameter) was attached to the single LiCoO 2 particle in the electrolyte during optical microscope observation, and galvanostatic charge-discharge tests were carried out. The discharge capacity of the single LiCoO 2 particle (8 μm diameter) was 0.157 nA h in the potential range of 3.0-4.2 V vs. Li/Li +, which was close to the theoretical capacity. The discharge rate capability of the single LiCoO 2 particle was excellent, and the particle exhibited its full-discharge capacity up to a high rate of 30 C (5 nA). The discharge reaction of the single particle was not controlled by the solid-state diffusion of Li +, but by the charge transfer process at a rate lower than 30 C. The discharge capacity of the particle measured at a high rate of 300 C (50 nA) was 0.12 nA h, which was more than 75% of the full capacity of a single particle.

  5. A new Insight Into Microscale Soil Organic Matter Dynamics - From Single Particles to Aggregates

    Science.gov (United States)

    Mueller, C. W.; Heister, K.; Hillion, F.; Herrmann, A. M.; Koegel-Knabner, I.

    2008-12-01

    Both mineral interactions and the spatial inaccessibility due to aggregation are key-factors affecting the stabilization of soil organic matter (SOM). Knowledge about the factors controlling the preservation of SOM and underlying stabilization mechanisms has improved significantly over the last years. Nevertheless, in situ processes remain almost unclear and are still challenging to evaluate. In the presented work, we studied the alteration of spatial distribution of fresh introduced OM over time on single particles and in intact soil aggregates. Single particles of a fine silt and clay mixture (resin embedded. Samples were then analyzed by scanning electron microscopy (SEM) and nano-scale secondary ion mass spectrometry (nanoSIMS50). We will demonstrate the spatial distribution of OM on single particles and in intact soil aggregates at the microscale by SEM and nanoSIMS. In addition, with the isotopic sensitivity of nanoSIMS, we are able to follow the fate of 13C and 15N, which is expected to be influenced by diffusion, sorption and microbial activity. From these results, we propose how OM in soil can be stabilized on single soil particles and at complex soil aggregates.

  6. Single-particle cryo-EM-Improved ab initio 3D reconstruction with SIMPLE/PRIME.

    Science.gov (United States)

    Reboul, Cyril F; Eager, Michael; Elmlund, Dominika; Elmlund, Hans

    2018-01-01

    Cryogenic electron microscopy (cryo-EM) and single-particle analysis now enables the determination of high-resolution structures of macromolecular assemblies that have resisted X-ray crystallography and other approaches. We developed the SIMPLE open-source image-processing suite for analysing cryo-EM images of single-particles. A core component of SIMPLE is the probabilistic PRIME algorithm for identifying clusters of images in 2D and determine relative orientations of single-particle projections in 3D. Here, we extend our previous work on PRIME and introduce new stochastic optimization algorithms that improve the robustness of the approach. Our refined method for identification of homogeneous subsets of images in accurate register substantially improves the resolution of the cluster centers and of the ab initio 3D reconstructions derived from them. We now obtain maps with a resolution better than 10 Å by exclusively processing cluster centers. Excellent parallel code performance on over-the-counter laptops and CPU workstations is demonstrated. © 2017 The Protein Society.

  7. Online single particle measurement of fireworks pollution during Chinese New Year in Nanning.

    Science.gov (United States)

    Li, Jingyan; Xu, Tingting; Lu, Xiaohui; Chen, Hong; Nizkorodov, Sergey A; Chen, Jianmin; Yang, Xin; Mo, Zhaoyu; Chen, Zhiming; Liu, Huilin; Mao, Jingying; Liang, Guiyun

    2017-03-01

    Time-resolved single-particle measurements were conducted during Chinese New Year in Nanning, China. Firework displays resulted in a burst of SO 2 , coarse mode, and accumulation mode (100-500nm) particles. Through single particle mass spectrometry analysis, five different types of particles (fireworks-metal, ash, dust, organic carbon-sulfate (OC-sulfate), biomass burning) with different size distributions were identified as primary emissions from firework displays. The fireworks-related particles accounted for more than 70% of the total analyzed particles during severe firework detonations. The formation of secondary particulate sulfate and nitrate during firework events was investigated on single particle level. An increase of sulfite peak (80SO 3 - ) followed by an increase of sulfate peaks (97HSO 4 - +96SO 4 - ) in the mass spectra during firework displays indicated the aqueous uptake and oxidation of SO 2 on particles. High concentration of gaseous SO 2 , high relative humidity and high particle loading likely promoted SO 2 oxidation. Secondary nitrate formed through gas-phase oxidation of NO 2 to nitric acid, followed by the condensation into particles as ammonium nitrate. This study shows that under worm, humid conditions, both primary and secondary aerosols contribute to the particulate air pollution during firework displays. Copyright © 2016. Published by Elsevier B.V.

  8. Automatic CTF correction for single particles based upon multivariate statistical analysis of individual power spectra.

    Science.gov (United States)

    Sander, B; Golas, M M; Stark, H

    2003-06-01

    Three-dimensional electron cryomicroscopy of randomly oriented single particles is a method that is suitable for the determination of three-dimensional structures of macromolecular complexes at molecular resolution. However, the electron-microscopical projection images are modulated by a contrast transfer function (CTF) that prevents the calculation of three-dimensional reconstructions of biological complexes at high resolution from uncorrected images. We describe here an automated method for the accurate determination and correction of the CTF parameters defocus, twofold astigmatism and amplitude-contrast proportion from single-particle images. At the same time, the method allows the frequency-dependent signal decrease (B factor) and the non-convoluted background signal to be estimated. The method involves the classification of the power spectra of single-particle images into groups with similar CTF parameters; this is done by multivariate statistical analysis (MSA) and hierarchically ascending classification (HAC). Averaging over several power spectra generates class averages with enhanced signal-to-noise ratios. The correct CTF parameters can be deduced from these class averages by applying an iterative correlation procedure with theoretical CTF functions; they are then used to correct the raw images. Furthermore, the method enables the tilt axis of the sample holder to be determined and allows the elimination of individual poor-quality images that show high drift or charging effects.

  9. Single Particle ICP-MS: Advances toward routine analysis of nanomaterials.

    Science.gov (United States)

    Montaño, Manuel D; Olesik, John W; Barber, Angela G; Challis, Katie; Ranville, James F

    2016-07-01

    From its early beginnings in characterizing aerosol particles to its recent applications for investigating natural waters and waste streams, single particle inductively coupled plasma-mass spectrometry (spICP-MS) has proven to be a powerful technique for the detection and characterization of aqueous dispersions of metal-containing nanomaterials. Combining the high-throughput of an ensemble technique with the specificity of a single particle counting technique and the elemental specificity of ICP-MS, spICP-MS is capable of rapidly providing researchers with information pertaining to size, size distribution, particle number concentration, and major elemental composition with minimal sample perturbation. Recently, advances in data acquisition, signal processing, and the implementation of alternative mass analyzers (e.g., time-of-flight) has resulted in a wider breadth of particle analyses and made significant progress toward overcoming many of the challenges in the quantitative analysis of nanoparticles. This review provides an overview of spICP-MS development from a niche technique to application for routine analysis, a discussion of the key issues for quantitative analysis, and examples of its further advancement for analysis of increasingly complex environmental and biological samples. Graphical Abstract Single particle ICP-MS workflow for the analysis of suspended nanoparticles.

  10. Determining Complex Structures using Docking Method with Single Particle Scattering Data

    Directory of Open Access Journals (Sweden)

    Haiguang Liu

    2017-04-01

    Full Text Available Protein complexes are critical for many molecular functions. Due to intrinsic flexibility and dynamics of complexes, their structures are more difficult to determine using conventional experimental methods, in contrast to individual subunits. One of the major challenges is the crystallization of protein complexes. Using X-ray free electron lasers (XFELs, it is possible to collect scattering signals from non-crystalline protein complexes, but data interpretation is more difficult because of unknown orientations. Here, we propose a hybrid approach to determine protein complex structures by combining XFEL single particle scattering data with computational docking methods. Using simulations data, we demonstrate that a small set of single particle scattering data collected at random orientations can be used to distinguish the native complex structure from the decoys generated using docking algorithms. The results also indicate that a small set of single particle scattering data is superior to spherically averaged intensity profile in distinguishing complex structures. Given the fact that XFEL experimental data are difficult to acquire and at low abundance, this hybrid approach should find wide applications in data interpretations.

  11. Determining Complex Structures using Docking Method with Single Particle Scattering Data.

    Science.gov (United States)

    Wang, Hongxiao; Liu, Haiguang

    2017-01-01

    Protein complexes are critical for many molecular functions. Due to intrinsic flexibility and dynamics of complexes, their structures are more difficult to determine using conventional experimental methods, in contrast to individual subunits. One of the major challenges is the crystallization of protein complexes. Using X-ray free electron lasers (XFELs), it is possible to collect scattering signals from non-crystalline protein complexes, but data interpretation is more difficult because of unknown orientations. Here, we propose a hybrid approach to determine protein complex structures by combining XFEL single particle scattering data with computational docking methods. Using simulations data, we demonstrate that a small set of single particle scattering data collected at random orientations can be used to distinguish the native complex structure from the decoys generated using docking algorithms. The results also indicate that a small set of single particle scattering data is superior to spherically averaged intensity profile in distinguishing complex structures. Given the fact that XFEL experimental data are difficult to acquire and at low abundance, this hybrid approach should find wide applications in data interpretations.

  12. Single particle electron microscopy reconstruction of the exosome complex using the random conical tilt method.

    Science.gov (United States)

    Liu, Xueqi; Wang, Hong-Wei

    2011-03-28

    Single particle electron microscopy (EM) reconstruction has recently become a popular tool to get the three-dimensional (3D) structure of large macromolecular complexes. Compared to X-ray crystallography, it has some unique advantages. First, single particle EM reconstruction does not need to crystallize the protein sample, which is the bottleneck in X-ray crystallography, especially for large macromolecular complexes. Secondly, it does not need large amounts of protein samples. Compared with milligrams of proteins necessary for crystallization, single particle EM reconstruction only needs several micro-liters of protein solution at nano-molar concentrations, using the negative staining EM method. However, despite a few macromolecular assemblies with high symmetry, single particle EM is limited at relatively low resolution (lower than 1 nm resolution) for many specimens especially those without symmetry. This technique is also limited by the size of the molecules under study, i.e. 100 kDa for negatively stained specimens and 300 kDa for frozen-hydrated specimens in general. For a new sample of unknown structure, we generally use a heavy metal solution to embed the molecules by negative staining. The specimen is then examined in a transmission electron microscope to take two-dimensional (2D) micrographs of the molecules. Ideally, the protein molecules have a homogeneous 3D structure but exhibit different orientations in the micrographs. These micrographs are digitized and processed in computers as "single particles". Using two-dimensional alignment and classification techniques, homogenous molecules in the same views are clustered into classes. Their averages enhance the signal of the molecule's 2D shapes. After we assign the particles with the proper relative orientation (Euler angles), we will be able to reconstruct the 2D particle images into a 3D virtual volume. In single particle 3D reconstruction, an essential step is to correctly assign the proper orientation

  13. Molecular dynamics simulations of the structure and single-particle dynamics of mixtures of divalent salts and ionic liquids

    Science.gov (United States)

    Gómez-González, Víctor; Docampo-Álvarez, Borja; Cabeza, Oscar; Fedorov, Maxim; Lynden-Bell, Ruth M.; Gallego, Luis J.; Varela, Luis M.

    2015-09-01

    We report a molecular dynamics study of the structure and single-particle dynamics of mixtures of a protic (ethylammonium nitrate) and an aprotic (1-butyl-3-methylimidazolium hexaflurophosphate [BMIM][PF6]) room-temperature ionic liquids doped with magnesium and calcium salts with a common anion at 298.15 K and 1 atm. The solvation of these divalent cations in dense ionic environments is analyzed by means of apparent molar volumes of the mixtures, radial distribution functions, and coordination numbers. For the protic mixtures, the effect of salt concentration on the network of hydrogen bonds is also considered. Moreover, single-particle dynamics of the salt cations is studied by means of their velocity autocorrelation functions and vibrational densities of states, explicitly analyzing the influence of salt concentration, and cation charge and mass on these magnitudes. The effect of the valency of the salt cation on these properties is considered comparing the results with those for the corresponding mixtures with lithium salts. We found that the main structural and dynamic features of the local solvation of divalent cations in ionic liquids are similar to those of monovalent salts, with cations being localized in the polar nanoregions of the bulk mixture coordinated in monodentate and bidentate coordination modes by the [NO3]- and [PF6]- anions. However, stronger electrostatic correlations of these polar nanoregions than in mixtures with salts with monovalent cations are found. The vibrational modes of the ionic liquid (IL) are seen to be scarcely affected by the addition of the salt, and the effect of mass and charge on the vibrational densities of states of the dissolved cations is reported. Cation mass is seen to exert a deeper influence than charge on the low-frequency vibrational spectra, giving a red shift of the vibrational modes and a virtual suppression of the higher energy vibrational modes for the heavier Ca2+ cations. No qualitative difference with

  14. Single Particle-Inductively Coupled Plasma Mass Spectroscopy Analysis of Metallic Nanoparticles in Environmental Samples with Large Dissolved Analyte Fractions.

    Science.gov (United States)

    Schwertfeger, D M; Velicogna, Jessica R; Jesmer, Alexander H; Scroggins, Richard P; Princz, Juliska I

    2016-10-18

    There is an increasing interest to use single particle-inductively coupled plasma mass spectroscopy (SP-ICPMS) to help quantify exposure to engineered nanoparticles, and their transformation products, released into the environment. Hindering the use of this analytical technique for environmental samples is the presence of high levels of dissolved analyte which impedes resolution of the particle signal from the dissolved. While sample dilution is often necessary to achieve the low analyte concentrations necessary for SP-ICPMS analysis, and to reduce the occurrence of matrix effects on the analyte signal, it is used here to also reduce the dissolved signal relative to the particulate, while maintaining a matrix chemistry that promotes particle stability. We propose a simple, systematic dilution series approach where by the first dilution is used to quantify the dissolved analyte, the second is used to optimize the particle signal, and the third is used as an analytical quality control. Using simple suspensions of well characterized Au and Ag nanoparticles spiked with the dissolved analyte form, as well as suspensions of complex environmental media (i.e., extracts from soils previously contaminated with engineered silver nanoparticles), we show how this dilution series technique improves resolution of the particle signal which in turn improves the accuracy of particle counts, quantification of particulate mass and determination of particle size. The technique proposed here is meant to offer a systematic and reproducible approach to the SP-ICPMS analysis of environmental samples and improve the quality and consistency of data generated from this relatively new analytical tool.

  15. Building the Nanoplasmonics Toolbox Through Shape Modeling and Single Particle Optical Studies

    Science.gov (United States)

    Ringe, Emilie

    Interest in nanotechnology is driven by unprecedented properties tailorability, achievable by controlling particle structure and composition. Unlike bulk components, minute changes in size and shape affect the optical and electronic properties of nanoparticles. Characterization of such structure-function relationships and better understanding of structure control mechanisms is crucial to the development of applications such as plasmonic sensors and devices. The objective of the current research is thus twofold: to theoretically predict and understand how shape is controlled by synthesis conditions, and to experimentally unravel, through single particle studies, how shape, composition, size, and surrounding environment affect plasmonic properties in noble metal particles. Quantitative, predictive rules and fundamental knowledge obtained from this research contributes to the "nanoplasmonics toolbox", a library designed to provide scientists and engineers the tools to create and optimize novel nanotechnology applications. In this dissertation, single particle approaches are developed and used to unravel the effects of size, shape, substrate, aggregation state and surrounding environment on the optical response of metallic nanoparticles. Ag and Au nanocubes on different substrates are first presented, followed by the discussion of the concept of plasmon length, a universal parameter to describe plasmon energy for a variety of particle shapes and plasmon modes. Plasmonic sensing (both refractive index sensing and surface-enhanced Raman spectroscopy) and polarization effects are then studied at the single particle level. In the last two Chapters, analytical shape models based on the Wulff construction provide unique modeling tools for alloy and kinetically grown nanoparticles. The former reveals a size-dependence of the shape of small alloy particles (such as those used in catalysis) because of surface segregation, while the latter uniquely models the shape of many

  16. Single particle 3D reconstruction for 2D crystal images of membrane proteins.

    Science.gov (United States)

    Scherer, Sebastian; Arheit, Marcel; Kowal, Julia; Zeng, Xiangyan; Stahlberg, Henning

    2014-03-01

    In cases where ultra-flat cryo-preparations of well-ordered two-dimensional (2D) crystals are available, electron crystallography is a powerful method for the determination of the high-resolution structures of membrane and soluble proteins. However, crystal unbending and Fourier-filtering methods in electron crystallography three-dimensional (3D) image processing are generally limited in their performance for 2D crystals that are badly ordered or non-flat. Here we present a single particle image processing approach, which is implemented as an extension of the 2D crystallographic pipeline realized in the 2dx software package, for the determination of high-resolution 3D structures of membrane proteins. The algorithm presented, addresses the low single-to-noise ratio (SNR) of 2D crystal images by exploiting neighborhood correlation between adjacent proteins in the 2D crystal. Compared with conventional single particle processing for randomly oriented particles, the computational costs are greatly reduced due to the crystal-induced limited search space, which allows a much finer search space compared to classical single particle processing. To reduce the considerable computational costs, our software features a hybrid parallelization scheme for multi-CPU clusters and computer with high-end graphic processing units (GPUs). We successfully apply the new refinement method to the structure of the potassium channel MloK1. The calculated 3D reconstruction shows more structural details and contains less noise than the map obtained by conventional Fourier-filtering based processing of the same 2D crystal images. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Impact of KCl impregnation on single particle combustion of wood and torrefied wood

    DEFF Research Database (Denmark)

    Lu, Zhimin; Jian, Jie; Jensen, Peter Arendt

    2017-01-01

    In this work, single particle combustion of raw and torrefied 4 mm wood particles with different potassium content obtained by KCl impregnation and washing was studied experimentally under a condition of 1225 °C, 3.1% O2 and 26.1% H2O. The ignition time and devolatilization time depended almost......, and unchanged by torrefaction. Compared to the raw wood particle, the char conversion time was increased by torrefaction, decreased by washing, and almost unchanged by KCl impregnation due to its promoting effect on both char yield and reactivity....

  18. Development and characterization of a single particle laser ablation mass spectrometer (SPLAM for organic aerosol studies

    Directory of Open Access Journals (Sweden)

    F. Gaie-Levrel

    2012-01-01

    Full Text Available A single particle instrument was developed for real-time analysis of organic aerosol. This instrument, named Single Particle Laser Ablation Mass Spectrometry (SPLAM, samples particles using an aerodynamic lens system for which the theoretical performances were calculated. At the outlet of this system, particle detection and sizing are realized by using two continuous diode lasers operating at λ = 403 nm. Polystyrene Latex (PSL, sodium chloride (NaCl and dioctylphtalate (DOP particles were used to characterize and calibrate optical detection of SPLAM. The optical detection limit (DL and detection efficiency (DE were determined using size-selected DOP particles. The DE ranges from 0.1 to 90% for 100 and 350 nm DOP particles respectively and the SPLAM instrument is able to detect and size-resolve particles as small as 110–120 nm. During optical detection, particle scattered light from the two diode lasers, is detected by two photomultipliers and the detected signals are used to trigger UV excimer laser (λ = 248 nm used for one-step laser desorption ionization (LDI of individual aerosol particles. The formed ions are analyzed by a 1 m linear time-of-flight mass spectrometer in order to access to the chemical composition of individual particles. The TOF-MS detection limit for gaseous aromatic compounds was determined to be 0.85 × 10−15 kg (∼4 × 103 molecules. DOP particles were also used to test the overall operation of the instrument. The analysis of a secondary organic aerosol, formed in a smog chamber by the ozonolysis of indene, is presented as a first application of the instrument. Single particle mass spectra were obtained with an effective hit rate of 8%. Some of these mass spectra were found to be very different from one particle to another possibly reflecting chemical differences within the investigated indene SOA particles. Our study shows that an exhaustive statistical analysis, over hundreds of particles

  19. Statistical and direct decay of high-lying single-particle excitations

    International Nuclear Information System (INIS)

    Gales, S.

    1993-01-01

    Transfer reactions induced by hadronic probes at intermediate energies have revealed a rich spectrum of high-lying excitations embedded in the nuclear continuum. The investigation of their decay properties is believed to be a severe test of their microscopic structure as predicted by microscopic nuclear models. In addition the degree of damping of these simple modes in the nuclear continuum can be obtained by means of the measured particle (n,p) decay branching ratios. The neutron and proton decay studies of high-lying single-particle states in heavy nuclei are presented. (author). 13 refs., 9 figs

  20. The free-electron laser - Maxwell's equations driven by single-particle currents

    Science.gov (United States)

    Colson, W. B.; Ride, S. K.

    1980-01-01

    It is shown that if single particle currents are coupled to Maxwell's equations, the resulting set of self-consistent nonlinear equations describes the evolution of the electron beam and the amplitude and phase of the free-electron-laser field. The formulation is based on the slowly varying amplitude and phase approximation, and the distinction between microscopic and macroscopic scales, which distinguishes the microscopic bunching from the macroscopic pulse propagation. The capabilities of this new theoretical approach become apparent when its predictions for the ultrashort pulse free-electron laser are compared to experimental data; the optical pulse evolution, determined simply and accurately, agrees well with observations.

  1. Uncovering non-ergodicity on the cell membrane using single particle tracking approaches

    OpenAIRE

    Symeonidou Besi, Parthena

    2013-01-01

    Treball final de màster oficial fet en col·laboració amb Universitat Autònoma de Barcelona (UAB), Universitat de Barcelona (UB) i Institut de Ciències Fotòniques (ICFO) [ANGLES] In this work, we study the diffusion on the plasma membrane of the receptor DC-SIGN. The data we used were obtained by Single Particle Tracking technique and hence consist of individual trajectories. Motivated by investigating the dynamics of this receptor, our analysis comprises not only of standard statistical ap...

  2. Effects of single particle on shape phase transitions and phase coexistence in odd-even nuclei

    Science.gov (United States)

    Yu, Xiang-Ru; Hu, Jing; Li, Xiao-Xue; An, Si-Yu; Zhang, Yu

    2018-02-01

    A classical analysis of shape phase transitions and phase coexistence in odd-even nuclei has been performed in the framework of the interacting boson-fermion model. The results indicate that the effects of a single particle may influence different types of transitions in different ways. Especially, it is revealed that phase coexistence can clearly emerge in the critical region and thus be taken as a indicator of the shape phase transitions in odd-even nuclei. Supported by National Natural Science Foundation of China (11375005)

  3. Single-particle spectral function of a generalized Hubbard model: Metal-insulator transition

    Science.gov (United States)

    Gagliano, E. R.; Aligia, A. A.; Arrachea, Liliana; Avignon, Michel

    1995-05-01

    A generalized Hubbard model with correlated hoppings is studied at half filling using exact diagonalization methods. For certain values of the hopping parameters our results for several static properties, the Drude weight and the single-particle spectra function, suggest the occurrence of a metal-insulator transition (MIT) at a finite value of the local Coulomb interaction Uc. We identify the regions of the hopping parameters where the MIT is of the Mott type. In these regions, for large U

  4. In-situ determination of metallic variation and multi-association in single particles by combining synchrotron microprobe, sequential chemical extraction and multivariate statistical analysis.

    Science.gov (United States)

    Zhu, Yu-Min; Zhang, Hua; Fan, Shi-Suo; Wang, Si-Jia; Xia, Yi; Shao, Li-Ming; He, Pin-Jing

    2014-07-15

    Due to the heterogeneity of metal distribution, it is challenging to identify the speciation, source and fate of metals in solid samples at micro scales. To overcome these challenges single particles of air pollution control residues were detected in situ by synchrotron microprobe after each step of chemical extraction and analyzed by multivariate statistical analysis. Results showed that Pb, Cu and Zn co-existed as acid soluble fractions during chemical extraction, regardless of their individual distribution as chlorides or oxides in the raw particles. Besides the forms of Fe2O3, MnO2 and FeCr2O4, Fe, Mn, Cr and Ni were closely associated with each other, mainly as reducible fractions. In addition, the two groups of metals had interrelations with the Si-containing insoluble matrix. The binding could not be directly detected by micro-X-ray diffraction (μ-XRD) and XRD, suggesting their partial existence as amorphous forms or in the solid solution. The combined method on single particles can effectively determine metallic multi-associations and various extraction behaviors that could not be identified by XRD, μ-XRD or X-ray absorption spectroscopy. The results are useful for further source identification and migration tracing of heavy metals. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Spin density matrix elements in exclusive ρ 0 electroproduction on 1H and 2H targets at 27.5 GeV beam energy

    Science.gov (United States)

    Airapetian, A.; Akopov, N.; Akopov, Z.; Andrus, A.; Aschenauer, E. C.; Augustyniak, W.; Avakian, R.; Avetissian, A.; Avetissian, E.; Belostotski, S.; Bianchi, N.; Blok, H. P.; Böttcher, H.; Bonomo, C.; Borissov, A.; Brüll, A.; Bryzgalov, V.; Capiluppi, M.; Capitani, G. P.; Cisbani, E.; Ciullo, G.; Contalbrigo, M.; Dalpiaz, P. F.; Deconinck, W.; de Leo, R.; Demey, M.; de Nardo, L.; de Sanctis, E.; Diefenthaler, M.; di Nezza, P.; Dreschler, J.; Düren, M.; Ehrenfried, M.; Elalaoui-Moulay, A.; Elbakian, G.; Ellinghaus, F.; Elschenbroich, U.; Fabbri, R.; Fantoni, A.; Felawka, L.; Frullani, S.; Funel, A.; Gabbert, D.; Gapienko, G.; Gapienko, V.; Garibaldi, F.; Gavrilov, G.; Gharibyan, V.; Giordano, F.; Gliske, S.; Grebeniouk, O.; Gregor, I. M.; Guler, H.; Hadjidakis, C.; Hartig, M.; Hasch, D.; Hasegawa, T.; Hesselink, W. H. A.; Hill, G.; Hillenbrand, A.; Hoek, M.; Holler, Y.; Hommez, B.; Hristova, I.; Iarygin, G.; Imazu, Y.; Ivanilov, A.; Izotov, A.; Jackson, H. E.; Jgoun, A.; Kaiser, R.; Keri, T.; Kinney, E.; Kisselev, A.; Kobayashi, T.; Kopytin, M.; Korotkov, V.; Kozlov, V.; Kravchenko, P.; Krivokhijine, V. G.; Lagamba, L.; Lamb, R.; Lapikás, L.; Lehmann, I.; Lenisa, P.; Liebing, P.; Linden-Levy, L. A.; Lorenzon, W.; Lu, S.; Lu, X.-R.; Ma, B.-Q.; Maiheu, B.; Makins, N. C. R.; Manaenkov, S. I.; Mao, Y.; Marianski, B.; Marukyan, H.; Mexner, V.; Miller, C. A.; Miyachi, Y.; Muccifora, V.; Murray, M.; Mussgiller, A.; Nagaitsev, A.; Nappi, E.; Naryshkin, Y.; Nass, A.; Negodaev, M.; Nowak, W.-D.; Osborne, A.; Pappalardo, L. L.; Perez-Benito, R.; Pickert, N.; Raithel, M.; Reggiani, D.; Reimer, P. E.; Reischl, A.; Reolon, A. R.; Riedl, C.; Rith, K.; Rock, S. E.; Rosner, G.; Rostomyan, A.; Rubacek, L.; Rubin, J.; Ryckbosch, D.; Salomatin, Y.; Sanjiev, I.; Schäfer, A.; Schnell, G.; Schüler, K. P.; Seitz, B.; Shearer, C.; Shibata, T.-A.; Shutov, V.; Stancari, M.; Statera, M.; Steffens, J. E.; Steijger, J. J. M.; Stenzel, H.; Stewart, J.; Stinzing, F.; Streit, J.; Tait, P.; Taroian, S.; Tchuiko, B.; Terkulov, A.; Trzcinski, A.; Tytgat, M.; Vandenbroucke, A.; van der Nat, P. B.; van der Steenhoven, G.; van Haarlem, Y.; van Hulse, C.; Varanda, M.; Veretennikov, D.; Vikhrov, V.; Vilardi, I.; Vogel, C.; Wang, S.; Yaschenko, S.; Ye, H.; Ye, Y.; Ye, Z.; Yen, S.; Yu, W.; Zeiler, D.; Zihlmann, B.; Zupranski, P.

    2009-08-01

    Spin Density Matrix Elements (SDMEs) describing the angular distribution of exclusive ρ 0 electroproduction and decay are determined in the HERMES experiment with 27.6 GeV beam energy and unpolarized hydrogen and deuterium targets. Eight (fifteen) SDMEs that are related (unrelated) to the longitudinal polarization of the beam are extracted in the kinematic region 1exchange amplitudes; these amplitudes are naturally generated with a quark-exchange mechanism.

  6. Structural defect induced peak splitting in gold-copper bimetallic nanorods during growth by single particle spectroscopy.

    Science.gov (United States)

    Thota, Sravan; Chen, Shutang; Zhou, Yadong; Zhang, Yong; Zou, Shengli; Zhao, Jing

    2015-09-21

    A single particle level study of bimetallic nanoparticle growth provides valuable information that is usually hidden in ensemble measurements, helping to improve the understanding of a reaction mechanism and overcome the synthetic challenges. In this study, we use single particle spectroscopy to monitor the changes in the scattering spectra of Au-Cu alloy nanorods during growth. We found that the unique features of the single particle scattering spectra were due to atomic level geometric defects in the nanorods. Electrodynamics simulations have demonstrated that small structural defects of a few atomic layers split the scattering peaks, giving rise to higher order modes, which do not exist in defect-free rods of similar geometry. The study shows that single particle scattering technique is as sensitive as high-resolution electron microscopy in revealing atomic level structural defects.

  7. Multispin correlations and pseudo-thermalization of the transient density matrix in solid-state NMR: free induction decay and magic echo

    Science.gov (United States)

    Morgan, Steven W.; Oganesyan, Vadim; Boutis, Gregory S.

    2013-01-01

    Quantum unitary evolution typically leads to thermalization of generic interacting many-body systems. There are very few known general methods for reversing this process, and we focus on the magic echo, a radio-frequency pulse sequence known to approximately “rewind” the time evolution of dipolar coupled homonuclear spin systems in a large magnetic field. By combining analytic, numerical, and experimental results we systematically investigate factors leading to the degradation of magic echoes, as observed in reduced revival of mean transverse magnetization. Going beyond the conventional analysis based on mean magnetization we use a phase encoding technique to measure the growth of spin correlations in the density matrix at different points in time following magic echoes of varied durations and compare the results to those obtained during a free induction decay (FID). While considerable differences are documented at short times, the long-time behavior of the density matrix appears to be remarkably universal among the types of initial states considered – simple low order multispin correlations are observed to decay exponentially at the same rate, seeding the onset of increasingly complex high order correlations. This manifestly athermal process is constrained by conservation of the second moment of the spectrum of the density matrix and proceeds indefinitely, assuming unitary dynamics. PMID:23710125

  8. 3D dual-virtual-pinhole assisted single particle tracking microscopy

    International Nuclear Information System (INIS)

    Ma, Ye; Wang, Yifan; Zhou, Xin; Kuang, Cuifang; Liu, Xu

    2014-01-01

    We propose a novel approach for high-speed, three-dimensional single particle tracking (SPT), which we refer to as dual-virtual-pinhole assisted single particle tracking microscopy (DVPaSPTM). DVPaSPTM system can obtain axial information of the sample without optical or mechanical depth scanning, so as to offer numbers of advantages including faster imaging, improved efficiency and a great reduction of photobleaching and phototoxicity. In addition, by the use of the dual-virtual-pinhole, the effect that the quantum yield exerts to the fluorescent signal can be eliminated, which makes the measurement independent of the surroundings and increases the accuracy of the result. DVPaSPTM system measures the intensity within different virtual pinholes of which the radii are given by the host computer. Axial information of fluorophores can be measured by the axial response curve through the ratio of intensity signals. We demonstrated the feasibility of the proposed method by a series of experiments. Results showed that the standard deviation of the axial measurement was 19.2 nm over a 2.5 μm range with 30 ms temporal resolution. (papers)

  9. Massively parallel unsupervised single-particle cryo-EM data clustering via statistical manifold learning.

    Science.gov (United States)

    Wu, Jiayi; Ma, Yong-Bei; Congdon, Charles; Brett, Bevin; Chen, Shuobing; Xu, Yaofang; Ouyang, Qi; Mao, Youdong

    2017-01-01

    Structural heterogeneity in single-particle cryo-electron microscopy (cryo-EM) data represents a major challenge for high-resolution structure determination. Unsupervised classification may serve as the first step in the assessment of structural heterogeneity. However, traditional algorithms for unsupervised classification, such as K-means clustering and maximum likelihood optimization, may classify images into wrong classes with decreasing signal-to-noise-ratio (SNR) in the image data, yet demand increased computational costs. Overcoming these limitations requires further development of clustering algorithms for high-performance cryo-EM data processing. Here we introduce an unsupervised single-particle clustering algorithm derived from a statistical manifold learning framework called generative topographic mapping (GTM). We show that unsupervised GTM clustering improves classification accuracy by about 40% in the absence of input references for data with lower SNRs. Applications to several experimental datasets suggest that our algorithm can detect subtle structural differences among classes via a hierarchical clustering strategy. After code optimization over a high-performance computing (HPC) environment, our software implementation was able to generate thousands of reference-free class averages within hours in a massively parallel fashion, which allows a significant improvement on ab initio 3D reconstruction and assists in the computational purification of homogeneous datasets for high-resolution visualization.

  10. Shape evolution and single particle luminescence of organometal halide perovskite nanocrystals.

    Science.gov (United States)

    Zhu, Feng; Men, Long; Guo, Yijun; Zhu, Qiaochu; Bhattacharjee, Ujjal; Goodwin, Peter M; Petrich, Jacob W; Smith, Emily A; Vela, Javier

    2015-03-24

    Organometallic halide perovskites CH3NH3PbX3 (X = I, Br, Cl) have quickly become one of the most promising semiconductors for solar cells, with photovoltaics made of these materials reaching power conversion efficiencies of near 20%. Improving our ability to harness the full potential of organometal halide perovskites will require more controllable syntheses that permit a detailed understanding of their fundamental chemistry and photophysics. In this manuscript, we systematically synthesize CH3NH3PbX3 (X = I, Br) nanocrystals with different morphologies (dots, rods, plates or sheets) by using different solvents and capping ligands. CH3NH3PbX3 nanowires and nanorods capped with octylammonium halides show relatively higher photoluminescence (PL) quantum yields and long PL lifetimes. CH3NH3PbI3 nanowires monitored at the single particle level show shape-correlated PL emission across whole particles, with little photobleaching observed and very few off periods. This work highlights the potential of low-dimensional organometal halide perovskite semiconductors in constructing new porous and nanostructured solar cell architectures, as well as in applying these materials to other fields such as light-emitting devices and single particle imaging and tracking.

  11. Bidirectional reflectance spectroscopy 7. The single particle phase function hockey stick relation

    Science.gov (United States)

    Hapke, Bruce

    2012-11-01

    The measured volume-average single particle angular scattering functions of a large number of types of particle of interest for planetary regoliths in the visible-near-IR wavelength region can be represented to a reasonable approximation by two-parameter, double Henyey-Greenstein functions. When the two parameters of this function are plotted against one another they are found to be inversely correlated and lie within a restricted zone shaped like a hockey stick within the parameter space. The centroid of the zone is a curve that can be represented by a simple empirical equation. The wide variety of types of particles used to construct the plot implies that this equation may represent most of the particles found in regoliths. This means that when modeling the bidirectional reflectance of a regolith it may be possible to reduce the number of parameters necessary to specify the reflectance, and also to characterize the entire single particle phase function from observations at phase angles less than 90°. Even if the hockey stick relation has a finite width, rather than being a line, it restricts the parameter space that must be searched when fitting data. The curve should also be useful for forward modeling particle phase functions.

  12. Study on the fragmentation of granite due to the impact of single particle and double particles

    Directory of Open Access Journals (Sweden)

    Yuchun Kuang

    2016-09-01

    Full Text Available Particle Impact Drilling (PID is a novel method to improve the rate of penetration (ROP. In order to further improve the performance of PID, an investigation into the effect of single and double particles: (1 diameter; (2 initial velocity; (3 distance; and (4 angle of incidence was undertaken to investigate their effects on broken volume and penetration depth into hard brittle rock. For this purpose, the laboratory experiment of single particle impact rock was employed. Meanwhile, based on the LS-DYNA, a new finite element (FE simulation of the PID, including single and double particles impact rock, has been presented. The 3-dimensional (3D, aix-symmetric, dynamic-explicit, Lagrangian model has been considered in this simulation. And the Elastic and Holmquist Johnson Cook (HJC material behaviors have been used for particles and rocks, respectively. The FE simulation results of single particle impacting rock are good agreement with experimental data. Furthermore, in this article the optimal impact parameters, including diameter, initial velocity, distance and the angle of incidence, are obtained in PID.

  13. Single Particle Cryo-electron Microscopy and 3-D Reconstruction of Viruses

    Science.gov (United States)

    Guo, Fei; Jiang, Wen

    2014-01-01

    With fast progresses in instrumentation, image processing algorithms, and computational resources, single particle electron cryo-microscopy (cryo-EM) 3-D reconstruction of icosahedral viruses has now reached near-atomic resolutions (3–4 Å). With comparable resolutions and more predictable outcomes, cryo-EM is now considered a preferred method over X-ray crystallography for determination of atomic structure of icosahedral viruses. At near-atomic resolutions, all-atom models or backbone models can be reliably built that allow residue level understanding of viral assembly and conformational changes among different stages of viral life cycle. With the developments of asymmetric reconstruction, it is now possible to visualize the complete structure of a complex virus with not only its icosahedral shell but also its multiple non-icosahedral structural features. In this chapter, we will describe single particle cryo-EM experimental and computational procedures for both near-atomic resolution reconstruction of icosahedral viruses and asymmetric reconstruction of viruses with both icosahedral and non-icosahedral structure components. Procedures for rigorous validation of the reconstructions and resolution evaluations using truly independent de novo initial models and refinements are also introduced. PMID:24357374

  14. Mask-based approach to phasing of single-particle diffraction data.

    Science.gov (United States)

    Lunin, Vladimir Y; Lunina, Natalia L; Petrova, Tatiana E; Baumstark, Manfred W; Urzhumtsev, Alexandre G

    2016-01-01

    A Monte Carlo-type approach for low- and medium-resolution phasing of single-particle diffraction data is suggested. Firstly, the single-particle phase problem is substituted with the phase problem for an imaginary crystal. A unit cell of this crystal contains a single isolated particle surrounded by a large volume of bulk solvent. The developed phasing procedure then generates a large number of connected and finite molecular masks, calculates their Fourier coefficients, selects the sets with magnitudes that are highly correlated with the experimental values and finally aligns the selected phase sets and calculates the averaged phase values. A test with the known structure of monomeric photosystem II resulted in phases that have 97% correlation with the exact phases in the full 25 Å resolution shell (1054 structure factors) and correlations of 99, 94, 81 and 79% for the resolution shells ∞-60, 60-40, 40-30 and 30-25 Å, respectively. The same procedure may be used for crystallographic ab initio phasing.

  15. Silver nanoflowers for single-particle SERS with 10 pM sensitivity.

    Science.gov (United States)

    Roy, Shrawan; Muhammed Ajmal, C; Baik, Seunghyun; Kim, Jeongyong

    2017-11-17

    Surface-enhanced Raman scattering (SERS) has received considerable attention as a noninvasive optical sensing technique with ultrahigh sensitivity. While numerous types of metallic particles have been actively investigated as SERS substrates, the development of new SERS agents with high sensitivity and their reliable characterization are still required. Here we report the preparation and characterization of flower-shaped silver (Ag) nanoparticles that exhibit high-sensitivity single-particle SERS performance. Ag nanoflowers (NFs) with bud sizes in the range 220-620 nm were synthesized by the wet synthesis method. The densely packed nanoscale petals with thicknesses in the range 9-22 nm exhibit a large number of hot spots that significantly enhance their plasmonic activity. A single Ag NF particle (530-620 nm) can detect as little as 10 -11 M 4-mercaptobenzoic acid, and thus provides a sensitivity three orders of SERS magnitude greater than that of a spherical Ag nanoparticle. The analytical enhancement factors for single Ag NF particles were found to be as high as 8.0 × 10 9 , providing unprecedented high SERS detectivity at the single particle level. Here we present an unambiguous and systematic assessment of the SERS performances of the Ag NFs and demonstrate that they provide highly sensitive sensing platforms by single SERS particle.

  16. Detection of isolated protein-bound metal ions by single-particle cryo-STEM.

    Science.gov (United States)

    Elad, Nadav; Bellapadrona, Giuliano; Houben, Lothar; Sagi, Irit; Elbaum, Michael

    2017-10-17

    Metal ions play essential roles in many aspects of biological chemistry. Detecting their presence and location in proteins and cells is important for understanding biological function. Conventional structural methods such as X-ray crystallography and cryo-transmission electron microscopy can identify metal atoms on protein only if the protein structure is solved to atomic resolution. We demonstrate here the detection of isolated atoms of Zn and Fe on ferritin, using cryogenic annular dark-field scanning transmission electron microscopy (cryo-STEM) coupled with single-particle 3D reconstructions. Zn atoms are found in a pattern that matches precisely their location at the ferroxidase sites determined earlier by X-ray crystallography. By contrast, the Fe distribution is smeared along an arc corresponding to the proposed path from the ferroxidase sites to the mineral nucleation sites along the twofold axes. In this case the single-particle reconstruction is interpreted as a probability distribution function based on the average of individual locations. These results establish conditions for detection of isolated metal atoms in the broader context of electron cryo-microscopy and tomography.

  17. Massively parallel unsupervised single-particle cryo-EM data clustering via statistical manifold learning

    Science.gov (United States)

    Wu, Jiayi; Ma, Yong-Bei; Congdon, Charles; Brett, Bevin; Chen, Shuobing; Xu, Yaofang; Ouyang, Qi

    2017-01-01

    Structural heterogeneity in single-particle cryo-electron microscopy (cryo-EM) data represents a major challenge for high-resolution structure determination. Unsupervised classification may serve as the first step in the assessment of structural heterogeneity. However, traditional algorithms for unsupervised classification, such as K-means clustering and maximum likelihood optimization, may classify images into wrong classes with decreasing signal-to-noise-ratio (SNR) in the image data, yet demand increased computational costs. Overcoming these limitations requires further development of clustering algorithms for high-performance cryo-EM data processing. Here we introduce an unsupervised single-particle clustering algorithm derived from a statistical manifold learning framework called generative topographic mapping (GTM). We show that unsupervised GTM clustering improves classification accuracy by about 40% in the absence of input references for data with lower SNRs. Applications to several experimental datasets suggest that our algorithm can detect subtle structural differences among classes via a hierarchical clustering strategy. After code optimization over a high-performance computing (HPC) environment, our software implementation was able to generate thousands of reference-free class averages within hours in a massively parallel fashion, which allows a significant improvement on ab initio 3D reconstruction and assists in the computational purification of homogeneous datasets for high-resolution visualization. PMID:28786986

  18. Fourier transforms of single-particle wave functions in cylindrical coordinates

    International Nuclear Information System (INIS)

    Rizea, M.; Carjan, N.

    2016-01-01

    A formalism and the corresponding numerical procedures that calculate the Fourier transform of a single-particle wave function defined on a grid of cylindrical (ρ, z) coordinates is presented. Single-particle states in spherical and deformed nuclei have been chosen in view of future applications in the field of nuclear reactions. Bidimensional plots of the probability that the nucleon's momentum has a given value K = √(k ρ 2 +k z 2 ) are produced and from them the K -distributions are deduced. Three potentials have been investigated: (a) a sharp surface spherical well (i.e., of constant depth), (b) a spherical Woods-Saxon potential (i.e., diffuse surface) and (c) a deformed potential of Woods-Saxon type. In the first case the momenta are as well defined as allowed by the uncertainty principle. Depending on the state, their distributions have up to three separated peaks as a consequence of the up to three circular ridges of the bidimensional probabilities plots. In the second case the diffuseness allows very low momenta to be always populated thus creating tails towards the origin (K = 0). The peaks are still present but not well separated. In the third case the deformation transforms the above mentioned circular ridges into ellipses thus spreading the K-values along them. As a consequence the K-distributions have only one broad peak. (orig.)

  19. Effect of single-particle splitting in the exact wave function of the isovectorial pairing Hamiltonian

    International Nuclear Information System (INIS)

    Lerma H, S.

    2010-01-01

    The structure of the exact wave function of the isovectorial pairing Hamiltonian with nondegenerate single-particle levels is discussed. The way that the single-particle splittings break the quartet condensate solution found for N=Z nuclei in a single degenerate level is established. After a brief review of the exact solution, the structure of the wave function is analyzed and some particular cases are considered where a clear interpretation of the wave function emerges. An expression for the exact wave function in terms of the isospin triplet of pair creators is given. The ground-state wave function is analyzed as a function of pairing strength, for a system of four protons and four neutrons. For small and large values of the pairing strength a dominance of two-pair (quartets) scalar couplings is found, whereas for intermediate values enhancements of the nonscalar couplings are obtained. A correlation of these enhancements with the creation of Cooper-like pairs is observed.

  20. Recognition and separation of single particles with size variation by statistical analysis of their images.

    Science.gov (United States)

    White, Helen E; Saibil, Helen R; Ignatiou, Athanasios; Orlova, Elena V

    2004-02-13

    Macromolecules may occupy conformations with structural differences that cannot be resolved biochemically. The separation of mixed molecular populations is a pressing problem in single-particle analysis. Until recently, the task of distinguishing small structural variations was intractable, but developments in cryo-electron microscopy hardware and software now make it possible to address this problem. We have developed a general strategy for recognizing and separating structures of variable size from cryo-electron micrographs of single particles. The method uses a combination of statistical analysis and projection matching to multiple models. Identification of size variations by multivariate statistical analysis was used to do an initial separation of the data and generate starting models by angular reconstitution. Refinement was performed using alternate projection matching to models and angular reconstitution of the separated subsets. The approach has been successful at intermediate resolution, taking it within range of resolving secondary structure elements of proteins. Analysis of simulated and real data sets is used to illustrate the problems encountered and possible solutions. The strategy developed was used to resolve the structures of two forms of a small heat shock protein (Hsp26) that vary slightly in diameter and subunit packing.

  1. Low cost, high performance processing of single particle cryo-electron microscopy data in the cloud.

    Science.gov (United States)

    Cianfrocco, Michael A; Leschziner, Andres E

    2015-05-08

    The advent of a new generation of electron microscopes and direct electron detectors has realized the potential of single particle cryo-electron microscopy (cryo-EM) as a technique to generate high-resolution structures. Calculating these structures requires high performance computing clusters, a resource that may be limiting to many likely cryo-EM users. To address this limitation and facilitate the spread of cryo-EM, we developed a publicly available 'off-the-shelf' computing environment on Amazon's elastic cloud computing infrastructure. This environment provides users with single particle cryo-EM software packages and the ability to create computing clusters with 16-480+ CPUs. We tested our computing environment using a publicly available 80S yeast ribosome dataset and estimate that laboratories could determine high-resolution cryo-EM structures for $50 to $1500 per structure within a timeframe comparable to local clusters. Our analysis shows that Amazon's cloud computing environment may offer a viable computing environment for cryo-EM.

  2. Single-Particle Cryo-EM of the Ryanodine Receptor Channel in an Aqueous Environment.

    Science.gov (United States)

    Baker, Mariah R; Fan, Guizhen; Serysheva, Irina I

    2015-01-07

    Ryanodine receptors (RyRs) are tetrameric ligand-gated Ca(2+) release channels that are responsible for the increase of cytosolic Ca(2+) concentration leading to muscle contraction. Our current understanding of RyR channel gating and regulation is greatly limited due to the lack of a high-resolution structure of the channel protein. The enormous size and unwieldy shape of Ca(2+) release channels make X-ray or NMR methods difficult to apply for high-resolution structural analysis of the full-length functional channel. Single-particle electron cryo-microscopy (cryo-EM) is one of the only effective techniques for the study of such a large integral membrane protein and its molecular interactions. Despite recent developments in cryo-EM technologies and break-through single-particle cryo-EM studies of ion channels, cryospecimen preparation, particularly the presence of detergent in the buffer, remains the main impediment to obtaining atomic-resolution structures of ion channels and a multitude of other integral membrane protein complexes. In this review we will discuss properties of several detergents that have been successfully utilized in cryo-EM studies of ion channels and the emergence of the detergent alternative amphipol to stabilize ion channels for structure-function characterization. Future structural studies of challenging specimen like ion channels are likely to be facilitated by cryo-EM amenable detergents or alternative surfactants.

  3. Massively parallel unsupervised single-particle cryo-EM data clustering via statistical manifold learning.

    Directory of Open Access Journals (Sweden)

    Jiayi Wu

    Full Text Available Structural heterogeneity in single-particle cryo-electron microscopy (cryo-EM data represents a major challenge for high-resolution structure determination. Unsupervised classification may serve as the first step in the assessment of structural heterogeneity. However, traditional algorithms for unsupervised classification, such as K-means clustering and maximum likelihood optimization, may classify images into wrong classes with decreasing signal-to-noise-ratio (SNR in the image data, yet demand increased computational costs. Overcoming these limitations requires further development of clustering algorithms for high-performance cryo-EM data processing. Here we introduce an unsupervised single-particle clustering algorithm derived from a statistical manifold learning framework called generative topographic mapping (GTM. We show that unsupervised GTM clustering improves classification accuracy by about 40% in the absence of input references for data with lower SNRs. Applications to several experimental datasets suggest that our algorithm can detect subtle structural differences among classes via a hierarchical clustering strategy. After code optimization over a high-performance computing (HPC environment, our software implementation was able to generate thousands of reference-free class averages within hours in a massively parallel fashion, which allows a significant improvement on ab initio 3D reconstruction and assists in the computational purification of homogeneous datasets for high-resolution visualization.

  4. Evolution of Single Particle and Collective properties in the Neutron-Rich Mg Isotopes

    CERN Multimedia

    Reiter, P; Wiens, A; Fitting, J; Lauer, M; Van duppen, P L E; Finke, F

    2002-01-01

    We propose to study the single particle and collective properties of the neutron-rich Mg isotopes in transfer reactions and Coulomb excitation using REX-ISOLDE and MINIBALL. From the Coulomb excitation measurement precise and largely model independent B( E2 ; 0$^{+}_{g.s.}\\rightarrow$ 2$^{+}_{1}$ ) will be determined for the even-even isotopes. For the odd isotopes the distribution of the E2 strength over a few low-lying states will be measured. The sign of the M1/E2 mixing ratio, extracted from angular distributions, is characteristic of the sign of the deformation, as is the resulting level scheme. The neutron-pickup channel in the transfer reactions will allow for a determination of the single particle properties (spin, parity, spectroscopic factors) of these nuclei. This information will give new insights in changes of nuclear structure in the vicinity of the island of deformation around $^{32}$Mg. A total of 24 shifts of REX beam time is requested.

  5. Airborne single particle mass spectrometers (SPLAT II & miniSPLAT) and new software for data visualization and analysis in a geo-spatial context.

    Science.gov (United States)

    Zelenyuk, Alla; Imre, Dan; Wilson, Jacqueline; Zhang, Zhiyuan; Wang, Jun; Mueller, Klaus

    2015-02-01

    Understanding the effect of aerosols on climate requires knowledge of the size and chemical composition of individual aerosol particles-two fundamental properties that determine an aerosol's optical properties and ability to serve as cloud condensation or ice nuclei. Here we present our aircraft-compatible single particle mass spectrometers, SPLAT II and its new, miniaturized version, miniSPLAT that measure in-situ and in real-time the size and chemical composition of individual aerosol particles with extremely high sensitivity, temporal resolution, and sizing precision on the order of a monolayer. Although miniSPLAT's size, weight, and power consumption are significantly smaller, its performance is on par with SPLAT II. Both instruments operate in dual data acquisition mode to measure, in addition to single particle size and composition, particle number concentrations, size distributions, density, and asphericity with high temporal resolution. We also present ND-Scope, our newly developed interactive visual analytics software package. ND-Scope is designed to explore and visualize the vast amount of complex, multidimensional data acquired by our single particle mass spectrometers, along with other aerosol and cloud characterization instruments on-board aircraft. We demonstrate that ND-Scope makes it possible to visualize the relationships between different observables and to view the data in a geo-spatial context, using the interactive and fully coupled Google Earth and Parallel Coordinates displays. Here we illustrate the utility of ND-Scope to visualize the spatial distribution of atmospheric particles of different compositions, and explore the relationship between individual particle compositions and their activity as cloud condensation nuclei.

  6. [Analysis of Single Particle Aging and Mixing State at an Agriculture Site (Quzhou) in the North China Plain in Summer Using a Single Particle Aerosol Mass Spectrometer].

    Science.gov (United States)

    Huang, Zi-long; Zeng, Li-mm; Dong, I-Iua-Bin; Li, Mei; Zhu, Tong

    2016-04-15

    To characterize the size distribution and chemical ompsitins f abiet prtices t a agicuturesit intheNorh o Chinese Plain, a single particle aerosol mass spectrometer (SPAMS) was deployed from June 30 to July 8, 2013. A total of 230,152 particles in the size range of 0.2-2.0 pm were chemically analyzed with both positive and negative ion spectra. The results revealed that aerosol could he classified into eight dominant groups, including elemental carbon (EC, 55.5%), organic carbon (OC, 10.7%), alkalis (Na-K, 17.4%), other metals (1.7%), Fe-rich (6.3%), Pb-rich (3.1%), dust (4.8%), and other (0.8%). The observed eight types of particles contained secondary components such as 46NO2-, 62NO3-, 96SO3-, 96SO4-, 97HSO4-, showing that they probably went through different aging processes. The analysis of particle size distribution showed that 700-800 nm was the peak value of all particles, and that dust and Fe particles were mainly in the coarse size range. EC particles subtype group research revealed EC particles tended to be aging with the above mentioned secondary ions and eventually led to a particle type conversion from EC to the less aging ECN and the more serious aging ECS, the diurnal variation of which was obviously negatively correlated, and there was a possibility of forming OC/EC mixture with the adsorption of secondary organic matter on EC surface.

  7. 4-D single particle tracking of synthetic and proteinaceous microspheres reveals preferential movement of nuclear particles along chromatin - poor tracks.

    Science.gov (United States)

    Bacher, Christian P; Reichenzeller, Michaela; Athale, Chaitanya; Herrmann, Harald; Eils, Roland

    2004-11-23

    The dynamics of nuclear organization, nuclear bodies and RNPs in particular has been the focus of many studies. To understand their function, knowledge of their spatial nuclear position and temporal translocation is essential. Typically, such studies generate a wealth of data that require novel methods in image analysis and computational tools to quantitatively track particle movement on the background of moving cells and shape changing nuclei. We developed a novel 4-D image processing platform (TIKAL) for the work with laser scanning and wide field microscopes. TIKAL provides a registration software for correcting global movements and local deformations of cells as well as 2-D and 3-D tracking software. With this new tool, we studied the dynamics of two different types of nuclear particles, namely nuclear bodies made from GFP-NLS-vimentin and microinjected 0.1 mum - wide polystyrene beads, by live cell time-lapse microscopy combined with single particle tracking and mobility analysis. We now provide a tool for the automatic 3-D analysis of particle movement in parallel with the acquisition of chromatin density data. Kinetic analysis revealed 4 modes of movement: confined obstructed, normal diffusion and directed motion. Particle tracking on the background of stained chromatin revealed that particle movement is directly related to local reorganization of chromatin. Further a direct comparison of particle movement in the nucleoplasm and the cytoplasm exhibited an entirely different kinetic behaviour of vimentin particles in both compartments. The kinetics of nuclear particles were slightly affected by depletion of ATP and significantly disturbed by disruption of actin and microtubule networks. Moreover, the hydration state of the nucleus had a strong impact on the mobility of nuclear bodies since both normal diffusion and directed motion were entirely abolished when cells were challenged with 0.6 M sorbitol. This effect correlated with the compaction of chromatin

  8. Detection and characterization of silver nanoparticles in chicken meat by asymmetric flow field flow fractionation with detection by conventional or single particle ICP-MS

    DEFF Research Database (Denmark)

    Löschner, Katrin; Navratilova, Jana; Købler, Carsten

    2013-01-01

    A method of analysis of silver nanoparticles (AgNPs) in chicken meat was developed. The homogenized chicken meat sample, which was spiked with AgNPs, was subjected to enzymolysis by Proteinase K for 40 min at 37 °C. Transmission electron microscopy and inductively coupled plasma mass spectrometry...... (ICP-MS) in single particle mode were used to characterize the number-based size distribution of AgNPs in the meat digestate. Because similar size distributions were found in the meat digestate and in the aqueous suspension of AgNPs used for spiking the meat, it was shown that no detectable dissolution...... of the AgNPs took place during the sample preparation stage. The digestate was injected into the asymmetric flow field flow fractionation (AF(4)) -ICP-MS system, which enabled fractionation of nanoparticles from the remaining meat matrix, and resulted in one large peak in the fractograms as well as two...

  9. Single particle characterization of black carbon aerosols at a tropospheric alpine site in Switzerland

    Science.gov (United States)

    Liu, D.; Flynn, M.; Gysel, M.; Targino, A.; Crawford, I.; Bower, K.; Choularton, T.; Jurányi, Z.; Steinbacher, M.; Hüglin, C.; Curtius, J.; Kampus, M.; Petzold, A.; Weingartner, E.; Baltensperger, U.; Coe, H.

    2010-08-01

    The refractory black carbon (rBC) mass, size distribution (190-720 nm) and mixing state in sub-micron aerosols were characterized from late February to March 2007 using a single particle incandescence method at the high alpine research station Jungfraujoch (JFJ), Switzerland (46.33° N, 7.59° E, 3580 m a.s.l.). JFJ is a ground based location, which is at times exposed to continental free tropospheric air. A median mass absorption coefficient (MAC) of 10.2±3.2 m2 g-1 at λ=630 nm was derived by comparing single particle incandescence measurements of black carbon mass with continuous measurements of absorption coefficient. This value is comparable with other estimates at this location. The aerosols measured at the site were mostly well mixed and aged during transportation via the free troposphere. Pollutant sources were traced by air mass back trajectories, trace gases concentrations and the mass loading of rBC. In southeasterly wind directions, mixed or convective weather types provided the potential to vent polluted boundary layer air from the southern Alpine area and industrial northern Italy, delivering enhanced rBC mass loading and CN concentrations to the JFJ. The aerosol loadings at this site were also significantly influenced by precipitation, which led to the removal of rBC from the atmosphere. Precipitation events were shown to remove about 65% of the rBC mass from the free tropospheric background reducing the mean loading from 13±5 ng m-3 to 6±2 ng m-3(corrected to standard temperature and pressure). Overall, 40±15% of the observed rBC particles within the detectable size range were mixed with large amounts of non-refractory materials present as a thick coating. The growth of particle size into the accumulation mode was positively linked with the degree of rBC mixing, suggesting the important role of condensable materials in increasing particle size and leading to enhanced internal mixing of these materials with rBC. It is the first time that BC mass

  10. The density of collagen fiber in alveolus mandibular bone of rabbit after augmentation with powder demineralized bone matrix post incisivus extraction

    Directory of Open Access Journals (Sweden)

    Regina TC. Tandelilin

    2006-06-01

    Full Text Available The bone defect due to tooth extraction contributes the most cases reported in the aspects of oral surgery. The defect can be preventively managed by adding powder bone matrix intended for augmentation which eventually induces the formation of new bones. This hard tissue wound healing is preceded by the presence of collagen fibers. The aim of this study was to determine the density of collagen fiber in the alveolus mandibular bone of rabbit which was augmented using powder demineralized bone matrix (DBM post incisivus extraction. Twenty four male rabbits aged 2.5–3 months weighed 900–1,100 grams were randomly divided into two groups. The treated rabbits were augmented with DBM after the incisivus extraction on mandible. The mucosa was then sutured. On the other hand, the controlled rabbits received similar treatments with those of the treated rabbits except there was no augmentation of DBM. Decapitation of treated and controlled rabbits was made on day 5, 7, 10, and 14 days post surgery, each with three rabbits. Mandibles were cut, decalcified, and imbedded in paraffin block. The staining was done using Mallory. Significant differences in the density of collagen were noted on day 10 and 14 post surgery, indicating that powder demineralized bone matrix successfully induced the stimulation of collagen.

  11. Single particle tracking-based reaction progress kinetic analysis reveals a series of molecular mechanisms of cetuximab-induced EGFR processes in a single living cell.

    Science.gov (United States)

    Kim, Do-Hyeon; Kim, Dong-Kyun; Zhou, Kai; Park, Soyeon; Kwon, Yonghoon; Jeong, Min Gyu; Lee, Nam Ki; Ryu, Sung Ho

    2017-07-01

    Cellular processes occur through the orchestration of multi-step molecular reactions. Reaction progress kinetic analysis (RPKA) can provide the mechanistic details to elucidate the multi-step molecular reactions. However, current tools have limited ability to simultaneously monitor dynamic variations in multiple complex states at the single molecule level to apply RPKA in living cells. In this research, a single particle tracking-based reaction progress kinetic analysis (sptRPKA) was developed to simultaneously determine the kinetics of multiple states of protein complexes in the membrane of a single living cell. The subpopulation ratios of different states were quantitatively (and statistically) reliably extracted from the diffusion coefficient distribution rapidly acquired by single particle tracking at constant and high density over a long period of time using super-resolution microscopy. Using sptRPKA, a series of molecular mechanisms of epidermal growth factor receptor (EGFR) cellular processing induced by cetuximab were investigated. By comprehensively measuring the rate constants and cooperativity of the molecular reactions involving four EGFR complex states, a previously unknown intermediate state was identified that represents the rate limiting step responsible for the selectivity of cetuximab-induced EGFR endocytosis to cancer cells.

  12. Nonorthogonal orbital based N-body reduced density matrices and their applications to valence bond theory. I. Hamiltonian matrix elements between internally contracted excited valence bond wave functions

    Science.gov (United States)

    Chen, Zhenhua; Chen, Xun; Wu, Wei

    2013-04-01

    In this series, the n-body reduced density matrix (n-RDM) approach for nonorthogonal orbitals and their applications to ab initio valence bond (VB) methods are presented. As the first paper of this series, Hamiltonian matrix elements between internally contracted VB wave functions are explicitly provided by means of nonorthogonal orbital based RDM approach. To this end, a more generalized Wick's theorem, called enhanced Wick's theorem, is presented both in arithmetical and in graphical forms, by which the deduction of expressions for the matrix elements between internally contracted VB wave functions is dramatically simplified, and the matrix elements are finally expressed in terms of tensor contractions of electronic integrals and n-RDMs of the reference VB self-consistent field wave function. A string-based algorithm is developed for the purpose of evaluating n-RDMs in an efficient way. Using the techniques presented in this paper, one is able to develop new methods and efficient algorithms for nonorthogonal orbital based many-electron theory much easier than by use of the first quantized formulism.

  13. Decay modes of high-lying single-particle states in [sup 209]Pb

    Energy Technology Data Exchange (ETDEWEB)

    Beaumel, D.; Fortier, S.; Gales, S.; Guillot, J.; Langevin-Joliot, H.; Laurent, H.; Maison, J.M.; Vernotte, J.; Bordewijk, J.A.; Brandenburg, S.; Krasznahorkay, A.; Crawley, G.M.; Massolo, C.P.; Renteria, M. (Institut de Physique Nucleaire, Institut National de Physique Nucleaire et de Physique des Particules Centre National de la Recherche Scientifique, 91406 Orsay Cedex (France) Kernfysisch Versneller Instituut, 9747AA Groningen (Netherlands) National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States) Departamento de Fisica, Fac. Cs. Exactas, Universidad Nacional de La Plata, CC No. 67, 1900 La Plata (Argentina))

    1994-05-01

    The neutron decay of high-lying single-particle states in [sup 209]Pb excited by means of the ([alpha],[sup 3]He) reaction has been investigated at 122 MeV incident energy using a multidetector array. The high spin values of these states, inferred from previous inclusive experiments, are confirmed by the present data involving angular correlation measurements and the determination of branching ratios to low lying levels in [sup 208]Pb. The structure located between 8.5 and 12 MeV excitation energy in [sup 209]Pb displays large departures from a pure statistical decay with significant direct feeding of the low-lying collective states (3[sup [minus

  14. Decay modes of high-lying single-particle states in 209Pb

    International Nuclear Information System (INIS)

    Beaumel, D.; Fortier, S.; Gales, S.; Guillot, J.; Crawley, G.M.; Massolo, C.P.; Renteria, M.

    1993-01-01

    The neutron decay of high-lying single-particle states in 209 Pb excited by means of the (α, 3 He) reaction has been investigated at 122 MeV incident energy using the multidetector array EDEN. The high spin values of these states, inferred from previous inclusive experiments, are confirmed by the present data involving angular correlation measurements and the determination of branching ratios to low lying levels in 208 Pb. The structure located between 8.5 and 12 MeV excitation energy in 209 Pb displays large departures from a pure statistical decay with significant direct feeding of the low-lying collective states (3 - ,5 - ) of 208 Pb. At higher excitation energy up to 20 MeV, the measured neutron decay is in agreement with the predictions of the statistical model. (authors). 24 refs., 16 figs., 2 tabs

  15. A clustering approach to multireference alignment of single-particle projections in electron microscopy.

    Science.gov (United States)

    Sorzano, C O S; Bilbao-Castro, J R; Shkolnisky, Y; Alcorlo, M; Melero, R; Caffarena-Fernández, G; Li, M; Xu, G; Marabini, R; Carazo, J M

    2010-08-01

    Two-dimensional analysis of projections of single-particles acquired by an electron microscope is a useful tool to help identifying the different kinds of projections present in a dataset and their different projection directions. Such analysis is also useful to distinguish between different kinds of particles or different particle conformations. In this paper we introduce a new algorithm for performing two-dimensional multireference alignment and classification that is based on a Hierarchical clustering approach using correntropy (instead of the more traditional correlation) and a modified criterion for the definition of the clusters specially suited for cases in which the Signal-to-Noise Ratio of the differences between classes is low. We show that our algorithm offers an improved sensitivity over current methods in use for distinguishing between different projection orientations and different particle conformations. This algorithm is publicly available through the software package Xmipp. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Single-particle structure determination by correlations of snapshot X-ray diffraction patterns

    Science.gov (United States)

    Starodub, D.; Aquila, A.; Bajt, S.; Barthelmess, M.; Barty, A.; Bostedt, C.; Bozek, J. D.; Coppola, N.; Doak, R. B.; Epp, S. W.; Erk, B.; Foucar, L.; Gumprecht, L.; Hampton, C. Y.; Hartmann, A.; Hartmann, R.; Holl, P.; Kassemeyer, S.; Kimmel, N.; Laksmono, H.; Liang, M.; Loh, N. D.; Lomb, L.; Martin, A. V.; Nass, K.; Reich, C.; Rolles, D.; Rudek, B.; Rudenko, A.; Schulz, J.; Shoeman, R. L.; Sierra, R. G.; Soltau, H.; Steinbrener, J.; Stellato, F.; Stern, S.; Weidenspointner, G.; Frank, M.; Ullrich, J.; Strüder, L.; Schlichting, I.; Chapman, H. N.; Spence, J. C. H.; Bogan, M. J.

    2012-12-01

    Diffractive imaging with free-electron lasers allows structure determination from ensembles of weakly scattering identical nanoparticles. The ultra-short, ultra-bright X-ray pulses provide snapshots of the randomly oriented particles frozen in time, and terminate before the onset of structural damage. As signal strength diminishes for small particles, the synthesis of a three-dimensional diffraction volume requires simultaneous involvement of all data. Here we report the first application of a three-dimensional spatial frequency correlation analysis to carry out this synthesis from noisy single-particle femtosecond X-ray diffraction patterns of nearly identical samples in random and unknown orientations, collected at the Linac Coherent Light Source. Our demonstration uses unsupported test particles created via aerosol self-assembly, and composed of two polystyrene spheres of equal diameter. The correlation analysis avoids the need for orientation determination entirely. This method may be applied to the structural determination of biological macromolecules in solution.

  17. Single-particle And Collective Effects Of Cubic Nonlinearity In The Beam Dynamics Of Proton Synchrotrons

    CERN Document Server

    Tran Hy, J

    1998-01-01

    This thesis describes some new studies of the effects of cubic nonlinearities arising from image-charge forces and octupole magnets on the transverse beam dynamics of proton synchrotrons and storage rings, and also a study of the damping of coherent oscillations using a feed-back damper. In the latter case, various corrective algorithms were modeled using linear one-turn maps. Kicks of fixed amplitude but appropriate sign were shown to provide linear damping and no coherent tune shift, though the rate predicted analytically was somewhat higher than that observed in simulations. This algorithm gave much faster damping (for equal power) than conventional proportional kicks, which damp exponentially. Two single-particle effects of the image-change force were investigated: distortion of the momentum dispersion function and amplitude dependence of the betatron tunes (resulting in tune spread). The former is calculated using transfer maps and the method of undetermined coefficients, the latter by solving the cubic ...

  18. Response of microchannel plates in ionization mode to single particles and electromagnetic showers

    Science.gov (United States)

    Barnyakov, A. Yu.; Barnyakov, M. Yu.; Brianza, L.; Cavallari, F.; Cipriani, M.; Ciriolo, V.; del Re, D.; Gelli, S.; Ghezzi, A.; Gotti, C.; Govoni, P.; Katcin, A. A.; Malberti, M.; Martelli, A.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Pigazzini, S.; Preiato, F.; Prisekin, V. G.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Tabarelli de Fatis, T.

    2018-01-01

    Hundreds of concurrent collisions per bunch crossing are expected at future hadron colliders. Precision timing calorimetry has been advocated as a way to mitigate the pileup effects and, thanks to their excellent time resolution, microchannel plates (MCPs) are good candidate detectors for this goal. We report on the response of MCPs, used as secondary emission detectors, to single relativistic particles and to electromagnetic showers. Several prototypes, with different geometries and characteristics, were exposed to particle beams at the INFN-LNF Beam Test Facility and at CERN. Their time resolution and efficiency are measured for single particles and as a function of the multiplicity of particles. Efficiencies between 50% and 90% to single relativistic particles are reached, and up to 100% in presence of a large number of particles. Time resolutions between 20 ps and 30 ps are obtained.

  19. Single particle transfer for quantitative analysis with total-reflection X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Esaka, Fumitaka; Esaka, Konomi T.; Magara, Masaaki; Sakurai, Satoshi; Usuda, Shigekazu; Watanabe, Kazuo

    2006-01-01

    The technique of single particle transfer was applied to quantitative analysis with total-reflection X-ray fluorescence (TXRF) spectrometry. The technique was evaluated by performing quantitative analysis of individual Cu particles with diameters between 3.9 and 13.2 μm. The direct quantitative analysis of the Cu particle transferred onto a Si carrier gave a discrepancy between measured and calculated Cu amounts due to the absorption effects of incident and fluorescent X-rays within the particle. By the correction for the absorption effects, the Cu amounts in individual particles could be determined with the deviation within 10.5%. When the Cu particles were dissolved with HNO 3 solution prior to the TXRF analysis, the deviation was improved to be within 3.8%. In this case, no correction for the absorption effects was needed for quantification

  20. Detecting the shape of anisotropic gold nanoparticles in dispersion with single particle extinction and scattering.

    Science.gov (United States)

    Potenza, M A C; Krpetić, Ž; Sanvito, T; Cai, Q; Monopoli, M; de Araújo, J M; Cella, C; Boselli, L; Castagnola, V; Milani, P; Dawson, K A

    2017-02-23

    The shape and size of nanoparticles are important parameters affecting their biodistribution, bioactivity, and toxicity. The high-throughput characterisation of the nanoparticle shape in dispersion is a fundamental prerequisite for realistic in vitro and in vivo evaluation, however, with routinely available bench-top optical characterisation techniques, it remains a challenging task. Herein, we demonstrate the efficacy of a single particle extinction and scattering (SPES) technique for the in situ detection of the shape of nanoparticles in dispersion, applied to a small library of anisotropic gold particles, with a potential development for in-line detection. The use of SPES paves the way to the routine quantitative analysis of nanoparticles dispersed in biologically relevant fluids, which is of importance for the nanosafety assessment and any in vitro and in vivo administration of nanomaterials.

  1. EMHP: an accurate automated hole masking algorithm for single-particle cryo-EM image processing.

    Science.gov (United States)

    Berndsen, Zachary; Bowman, Charles; Jang, Haerin; Ward, Andrew B

    2017-12-01

    The Electron Microscopy Hole Punch (EMHP) is a streamlined suite of tools for quick assessment, sorting and hole masking of electron micrographs. With recent advances in single-particle electron cryo-microscopy (cryo-EM) data processing allowing for the rapid determination of protein structures using a smaller computational footprint, we saw the need for a fast and simple tool for data pre-processing that could run independent of existing high-performance computing (HPC) infrastructures. EMHP provides a data preprocessing platform in a small package that requires minimal python dependencies to function. https://www.bitbucket.org/chazbot/emhp Apache 2.0 License. bowman@scripps.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  2. An efficient, movable single-particle detector for use in cryogenic ultra-high vacuum environments.

    Science.gov (United States)

    Spruck, Kaija; Becker, Arno; Fellenberger, Florian; Grieser, Manfred; von Hahn, Robert; Klinkhamer, Vincent; Novotný, Oldřich; Schippers, Stefan; Vogel, Stephen; Wolf, Andreas; Krantz, Claude

    2015-02-01

    A compact, highly efficient single-particle counting detector for ions of keV/u kinetic energy, movable by a long-stroke mechanical translation stage, has been developed at the Max-Planck-Institut für Kernphysik (Max Planck Institute for Nuclear Physics, MPIK). Both, detector and translation mechanics, can operate at ambient temperatures down to ∼10 K and consist fully of ultra-high vacuum compatible, high-temperature bakeable, and non-magnetic materials. The set-up is designed to meet the technical demands of MPIK's Cryogenic Storage Ring. We present a series of functional tests that demonstrate full suitability for this application and characterise the set-up with regard to its particle detection efficiency.

  3. The on-line analysis of aerosol-delivered pharmaceuticals via single particle aerosol mass spectrometry.

    Science.gov (United States)

    Morrical, Bradley D; Balaxi, Maria; Fergenson, David

    2015-07-15

    The use of single particle aerosol mass spectrometry (SPAMS) was evaluated for the analysis of inhaled pharmaceuticals to determine the mass distribution of the individual active pharmaceutical ingredients (API) in both single ingredient and combination drug products. SPAMS is an analytical technique where the individual aerodynamic diameters and chemical compositions of many aerosol particles are determined in real-time. The analysis was performed using a Livermore Instruments SPAMS 3.0, which allowed the efficient analysis of aerosol particles with broad size distributions and can acquire data even under a very large particle load. Data similar to what would normally require roughly three days of experimentation and analysis was collected in a five minute period and analyzed automatically. The results were computed to be comparable to those returned by a typical Next Generation Impactor (NGI) particle size distribution experiment. Copyright © 2015. Published by Elsevier B.V.

  4. Sampling and single particle analysis for the chemical characterisation of fine atmospheric particulates: A review.

    Science.gov (United States)

    Elmes, Michele; Gasparon, Massimo

    2017-11-01

    To better understand the potential environmental and human health impacts of fine airborne particulate matter (APM), detailed physical and chemical characterisation is required. The only means to accurately distinguish between the multiple compositions in APM is by single particle analysis. A variety of methods and instruments are available, which range from filter-based sample collection for off-line laboratory analysis to on-line instruments that detect the airborne particles and generate size distribution and chemical data in real time. There are many reasons for sampling particulates in the ambient atmosphere and as a consequence, different measurement strategies and sampling devices are used depending on the scientific objectives and subsequent analytical techniques. This review is designed as a guide to some of the techniques available for the sampling and subsequent chemical analysis of individual inorganic particles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Single particle momentum and angular distributions in hadron-hadron collisions at ultrahigh energies

    Science.gov (United States)

    Chou, T. T.; Chen, N. Y.

    1985-01-01

    The forward-backward charged multiplicity distribution (P n sub F, n sub B) of events in the 540 GeV antiproton-proton collider has been extensively studied by the UA5 Collaboration. It was pointed out that the distribution with respect to n = n sub F + n sub B satisfies approximate KNO scaling and that with respect to Z = n sub F - n sub B is binomial. The geometrical model of hadron-hadron collision interprets the large multiplicity fluctuation as due to the widely different nature of collisions at different impact parameters b. For a single impact parameter b, the collision in the geometrical model should exhibit stochastic behavior. This separation of the stochastic and nonstochastic (KNO) aspects of multiparticle production processes gives conceptually a lucid and attractive picture of such collisions, leading to the concept of partition temperature T sub p and the single particle momentum spectrum to be discussed in detail.

  6. Chaos and nonlinear dynamics of single-particle orbits in a magnetotaillike magnetic field

    Science.gov (United States)

    Chen, J.; Palmadesso, P. J.

    1986-01-01

    The properties of charged-particle motion in Hamiltonian dynamics are studied in a magnetotaillike magnetic field configuration. It is shown by numerical integration of the equation of motion that the system is generally nonintegrable and that the particle motion can be classified into three distinct types of orbits: bounded integrable orbits, unbounded stochastic orbits, and unbounded transient orbits. It is also shown that different regions of the phase space exhibit qualitatively different responses to external influences. The concept of 'differential memory' in single-particle distributions is proposed. Physical implications for the dynamical properties of the magnetotail plasmas and the possible generation of non-Maxwellian features in the distribution functions are discussed.

  7. 3D structure determination of protein using TEM single particle analysis.

    Science.gov (United States)

    Sato, Chikara; Mio, Kazuhiro; Kawata, Masaaki; Ogura, Toshihiko

    2014-11-01

    Proteins play important roles in cell functions such as enzymes, cell trafficking, neurotransmission, muscle contraction and hormone secretion. However, some proteins are very difficult to be crystallized and their structures are undetermined. Several techniques have been developed to elucidate the structure of macromolecules; X-ray or electron crystallography, nuclear magnetic resonance spectroscopy, and high-resolution electron microscopy. Among them, electron microscopy based single particle reconstruction (SPA) technique is a computer-aided structure determination method. This method reconstructs the 3D structure from projection images of dispersed protein. A large number of two-dimensional particle images are picked up from EM films, aligned and classified to generate 2D averages, and used to reconstruct the 3D structure by assigning the Euler angle of each 2D average. Due to the necessity of elaborate collaboration between the classical biology and the innovative information technology including parallel computing, scientists needed to break unseen barriers to get a start of this analysis. However, recent progresses in electron microscopes, mathematical algorithms, and computational abilities greatly reduced the height of barriers and expanded targets that are considered to be primarily addressable using single particle analysis. Membrane proteins are one of these targets to which the single particle analysis is successfully applied for the understanding of their 3D structures. For this purpose, we have developed various SPA methods [1-5] and applied them to different proteins [6-8].Here, we introduce reconstructed proteins, and discuss the availability of this technique. The intramembrane-cleaving proteases (I-CLiPs) that sever the transmembrane domains of their substrates have been identified in a range of organisms and play a variety of roles in biological conditions. I-CLiPs have been classified into three groups: serine-, aspartyl- and metalloprotease

  8. Detection and characterization of chemical aerosol using laser-trapping single-particle Raman spectroscopy.

    Science.gov (United States)

    Kalume, Aimable; Beresnev, Leonid A; Santarpia, Joshua; Pan, Yong-Le

    2017-08-10

    Detection and characterization of the presence of chemical agent aerosols in various complex atmospheric environments is an essential defense mission. Raman spectroscopy has the ability to identify chemical molecules, but there are limited numbers of photons detectable from single airborne aerosol particles as they are flowing through a detection system. In this paper, we report on a single-particle Raman spectrometer system that can measure strong spontaneous, stimulated, and resonance Raman spectral peaks from a single laser-trapped chemical aerosol particle, such as a droplet of the VX nerve agent chemical simulant diethyl phthalate. Using this system, time-resolved Raman spectra and elastic scattered intensities were recorded to monitor the chemical properties and size variation of the trapped particle. Such a system supplies a new approach for the detection and characterization of single airborne chemical aerosol particles.

  9. Proton resonance elastic scattering of $^{30}$Mg for single particle structure of $^{31}$Mg

    CERN Multimedia

    The single particle structure of $^{31}$Mg, which is located in the so-called “island of inversion”, will be studied through measuring Isobaric Analog Resonances (IARs) of bound states of $^{31}$Mg. They are located in the high excitation energy of $^{31}$Al. We are going to determine the spectroscopic factors and angular momenta of the parent states by measuring the excitation function of the proton resonance elastic scattering around 0 degrees in the laboratory frame with around 3 MeV/nucleon $^{30}$Mg beam. The present study will reveal the shell evolution around $^{32}$Mg. In addition, the spectroscopic factor of the (7/2)$^{−}$ state which was not yet determined experimentally, may allow one to study the shape coexistence in this nucleus.

  10. Estimating the anomalous diffusion exponent for single particle tracking data with measurement errors - An alternative approach.

    Science.gov (United States)

    Burnecki, Krzysztof; Kepten, Eldad; Garini, Yuval; Sikora, Grzegorz; Weron, Aleksander

    2015-06-11

    Accurately characterizing the anomalous diffusion of a tracer particle has become a central issue in biophysics. However, measurement errors raise difficulty in the characterization of single trajectories, which is usually performed through the time-averaged mean square displacement (TAMSD). In this paper, we study a fractionally integrated moving average (FIMA) process as an appropriate model for anomalous diffusion data with measurement errors. We compare FIMA and traditional TAMSD estimators for the anomalous diffusion exponent. The ability of the FIMA framework to characterize dynamics in a wide range of anomalous exponents and noise levels through the simulation of a toy model (fractional Brownian motion disturbed by Gaussian white noise) is discussed. Comparison to the TAMSD technique, shows that FIMA estimation is superior in many scenarios. This is expected to enable new measurement regimes for single particle tracking (SPT) experiments even in the presence of high measurement errors.

  11. Logarithmic Decay in Single-Particle Relaxation of Hydrated Lysozyme Powder

    Science.gov (United States)

    Lagi, Marco; Baglioni, Piero; Chen, Sow-Hsin

    2009-09-01

    We present the self-dynamics of protein amino acids of hydrated lysozyme powder around the physiological temperature by means of molecular dynamics simulations. The self-intermediate scattering functions of the amino acid residue center of mass display a logarithmic decay over 3 decades of time, from 2 ps to 2 ns, followed by an exponential α relaxation. This kind of slow dynamics resembles the relaxation scenario within the β-relaxation time range predicted by mode coupling theory in the vicinity of higher-order singularities. These results suggest a strong analogy between the single-particle dynamics of the protein and the dynamics of colloidal, polymeric, and molecular glass-forming liquids.

  12. Preliminary Understanding of Surface Plasmon-Enhanced Circular Dichroism Spectroscopy by Single Particle Imaging

    Science.gov (United States)

    Zhan, Kangshu

    Monitoring chiral optical signals of biomolecules as their conformation changes is an important means to study their structures, properties, and functions. Most measurements, however, are ensemble measurements because chiral optical signals from a single biomolecule is often too weak to be detected. In this dissertation, I present my early attempts to study conformational changes of adsorbed proteins by taking advantage of the enhanced electromagnetic (EM) field around a well-designed plasmonic nanofeature. In particular, I discuss the detection of protein adsorption and denaturation on metallic nanoparticles using single particle scattering and CD spectroscopic imaging. Particles of two distinctively different sizes were compared and two different sample protein molecules were studied. A combination of experimental and computational tools was used to simulate and interpret the collected scattering and CD results. The first chapter provides a brief overview of the state-of-art research in CD spectroscopic studies at the single particle level. Three different means to make particles capable of chiral detection are discussed. Various applications beyond single particle imaging are presented to showcase the potential of the described research project, beyond our immediate goals. The second chapter describes my initial characterization of large, metallic, anisotropic nanorods and the establishment of experimental procedures used later for spectrum reconstruction, data visualization and analysis. The physical shape and structure of the particles were imaged by scanning electron microscopy (SEM), the chemical composition by energy dispersive X-ray Spectroscopy (EDS), and the optical properties by darkfield microscopy. An experimental protocol was developed to connect information collected from separate techniques for the same particle, with the aims of discovering any possible structural-property correlation. The reproducibility of the single particle imaging method was

  13. Single-Particle Momentum Distributions of Efimov States in Mixed-Species Systems

    DEFF Research Database (Denmark)

    T. Yamashita, M.; F. Bellotti, F.; Frederico, T.

    2013-01-01

    to derive formulas for the scaling factor of the Efimov spectrum for any mass ratio assuming either that two or three of the two-body subsystems have a bound state at zero energy. We consider the single-particle momentum distribution analytically and numerically and analyse the tail of the momentum......We solve the three-body bound state problem in three dimensions for mass imbalanced systems of two identical bosons and a third particle in the universal limit where the interactions are assumed to be of zero-range. The system displays the Efimov effect and we use the momentum-space wave equation...... distribution to obtain the three-body contact parameter. Our finding demonstrate that the functional form of the three-body contact term depends on the mass ratio and we obtain an analytic expression for this behavior. To exemplify our results, we consider mixtures of Lithium with either two Caesium or Rubium...

  14. Single particle analysis with a 360/sup 0/ light scattering photometer

    Energy Technology Data Exchange (ETDEWEB)

    Bartholdi, M.F.

    1979-06-01

    Light scattering by single spherical homogeneous particles in the diameter range 1 to 20 ..mu..m and relative refractive index 1.20 is measured. Particle size of narrowly dispersed populations is determined and a multi-modal dispersion of five components is completely analyzed. A 360/sup 0/ light scattering photometer for analysis of single particles has been designed and developed. A fluid stream containing single particles intersects a focused laser beam at the primary focal point of an ellipsoidal reflector ring. The light scattered at angles theta = 2.5/sup 0/ to 177.5/sup 0/ at phi = 0/sup 0/ and 180/sup 0/ is reflected onto a circular array of photodiodes. The ellipsoidal reflector is situated in a chamber filled with fluid matching that of the stream to minimize refracting and reflecting interfaces. The detector array consists of 60 photodiodes each subtending 3/sup 0/ in scattering angle on 6/sup 0/ centers around 360/sup 0/. 32 measurements on individual particles can be acquired at rates of 500 particles per second. The intensity and angular distribution of light scattered by spherical particles are indicative of size and relative refractive index. Calculations, using Lorenz--Mie theory, of differential scattering patterns integrated over angle corresponding to the detector geometry determined the instrument response to particle size. From this the expected resolution and experimental procedures are determined.Ultimately, the photometer will be utilized for identification and discrimination of biological cells based on the sensitivity of light scattering to size, shape, refractive index differences, internal granularity, and other internal morphology. This study has demonstrated the utility of the photometer and indicates potential for application to light scattering studies of biological cells.

  15. DEMONIC programming: a computational language for single-particle equilibrium thermodynamics, and its formal semantics.

    Directory of Open Access Journals (Sweden)

    Samson Abramsky

    2015-11-01

    Full Text Available Maxwell's Demon, 'a being whose faculties are so sharpened that he can follow every molecule in its course', has been the centre of much debate about its abilities to violate the second law of thermodynamics. Landauer's hypothesis, that the Demon must erase its memory and incur a thermodynamic cost, has become the standard response to Maxwell's dilemma, and its implications for the thermodynamics of computation reach into many areas of quantum and classical computing. It remains, however, still a hypothesis. Debate has often centred around simple toy models of a single particle in a box. Despite their simplicity, the ability of these systems to accurately represent thermodynamics (specifically to satisfy the second law and whether or not they display Landauer Erasure, has been a matter of ongoing argument. The recent Norton-Ladyman controversy is one such example. In this paper we introduce a programming language to describe these simple thermodynamic processes, and give a formal operational semantics and program logic as a basis for formal reasoning about thermodynamic systems. We formalise the basic single-particle operations as statements in the language, and then show that the second law must be satisfied by any composition of these basic operations. This is done by finding a computational invariant of the system. We show, furthermore, that this invariant requires an erasure cost to exist within the system, equal to kTln2 for a bit of information: Landauer Erasure becomes a theorem of the formal system. The Norton-Ladyman controversy can therefore be resolved in a rigorous fashion, and moreover the formalism we introduce gives a set of reasoning tools for further analysis of Landauer erasure, which are provably consistent with the second law of thermodynamics.

  16. Quantitative diagnosis of HER2 protein expressing breast cancer by single-particle quantum dot imaging.

    Science.gov (United States)

    Miyashita, Minoru; Gonda, Kohsuke; Tada, Hiroshi; Watanabe, Mika; Kitamura, Narufumi; Kamei, Takashi; Sasano, Hironobu; Ishida, Takanori; Ohuchi, Noriaki

    2016-10-01

    Overexpression of HER2 is one of the major causes of breast cancer, and therefore precise diagnosis of its protein expression level is important. However, current methods estimating the HER2-expression level are insufficient due to problem with the lack of quantification. This might result in a gap between diagnostics and therapeutics targeting HER2. Therefore, a new effective diagnostic method is needed. We developed a new immunohistochemical (IHC) technique with quantum dots (QD)-conjugated trastuzumab using single-particle imaging to quantitatively measure the HER2 expression level. Tissues from 37 breast cancer patients with available detailed clinical information were tested by IHC with QDs (IHC-QD) and the correlation with IHC with 3,3'-diaminobenzidine (DAB), fluorescence in situ hybridization (FISH), and IHC-QD was examined. The number of QD-conjugated trastuzumab particles binding specifically to a cancer cell was precisely calculated as the IHC-QD score. The IHC-QD score in 37 cases was correlated proportionally with the score of HER2 gene copy number as assessed by FISH (R = 0.83). When HER2 positivity was judged to be positive, the IHC-QD score with our cut-off level was exactly concordant with the FISH score with a cut-off value of 2.0. Furthermore, IHC-QDs score and time to progression (TTP) of trastuzumab therapy were well correlated in HER2-positive cases (R = 0.69). Conversely, the correlation between FISH score and TTP was not observed. We developed a precisely quantitative IHC method using trastuzumab-conjugated QDs and single-particle imaging analysis and propose the possibility of using IHC-QDs score as a predictive factor for trastuzumab therapy. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  17. Characteristics of tyre dust in polluted air: Studies by single particle mass spectrometry (ATOFMS)

    Science.gov (United States)

    Dall'Osto, Manuel; Beddows, David C. S.; Gietl, Johanna K.; Olatunbosun, Oluremi A.; Yang, Xiaoguang; Harrison, Roy M.

    2014-09-01

    There is a paucity of quantitative knowledge on the contributions of non-exhaust (abrasion and re-suspension) sources to traffic emissions. Abrasive emissions can be broadly categorised as tyre wear, brake wear and road dust/road surface wear. Current research often considers road dust and tyre dust as externally mixed particles, the former mainly composed of mineral matter and the latter solely composed of mainly organic matter and some trace elements. The aim of this work was to characterise tyre wear from both laboratory and field studies by using Aerosol Time-Of-Flight Mass Spectrometry (ATOFMS). Real-time single particle chemical composition was obtained from a set of rubber tyres rotating on a metal surface. Bimodal particle number size distributions peaking at 35 nm and 85 nm were obtained from SMPS/APS measurements over the range 6-20,000 nm. ATOFMS mass spectra of tyre wear in the particle size range 200-3000 nm diameter show peaks due to exo-sulphur compounds, nitrate, Zn and ions of high molecular weight (m/z > 100) attributed to organic polymers. Two large ATOFMS datasets collected from a number of outdoor studies were examined. The former was constituted of 48 road dust samples collected on the roads of London. The latter consisted of ATOFMS ambient air field studies from Europe, overall composed of more than 2,000,000 single particle mass spectra. The majority (95%) of tyre wear particles present in the road dust samples and atmospheric samples are internally mixed with metals (Li, Na, Ca, Fe, Ti), as well as phosphate. It is concluded that the interaction of tyres with the road surface creates particles internally mixed from two sources: tyre rubber and road surface materials. Measurements of the tyre rubber component alone may underestimate the contribution of tyre wear to concentrations of airborne particulate matter. The results presented are especially relevant for urban aerosol source apportionment and PM2.5 exposure assessment.

  18. Optical, magnetic, and single-particle excitations in the multiband Hubbard model for cuprate superconductors

    Science.gov (United States)

    Wagner, J.; Hanke, W.; Scalapino, D. J.

    1991-05-01

    On the basis of exact diagonalizations, a comparative study of two-particle optical and magnetic, as well as single-particle, excitations is presented for a two-dimensional (2D) multiorbital Hubbard model. For reasonable parameter sets appropriate for the cuprate superconductors, the single-particle excitations display strongly correlated states related to the Zhang-Rice Cu-O singlet construction. These states define the gap (to the upper Hubbard band) at half-filling and become partially occupied by doping holes in our 2×2 unit-cell system. The optical results, which are the first quantitative calculations performed for realistic parameters of the three-band Hubbard model, clearly show three allowed optical transitions: (i) itinerant motion of the Cu-O singlets, having (for doping concentrations x≠0) a spectral Drude distribution around ω=0 with spectral weight proportional to x; (ii) unbinding of the O hole from the Cu spin in the singlet. This gives, in particular, a strong absorption peak due to singlet-->nonbonding oxygen transitions, again with relative weight ~x. It is roughly centered at ω~JKondoUpd. They show a pronounced excitonic effect due to the p-d interaction Upd and have a reduced spectral weight shifted to higher energies for increased dopings. Findings (i)-(iii) are in general accordance with recent experimental data. Our study of the low-energy absorption is complemented with a numerical scaling analysis of the Drude weight in 1D, where, in particular, we find an interesting violation of Lenz's law for 4n-site Hubbard rings. Finally, the magnetic structure factor is calculated for the 2D case. For finite doping it contains a peak at 2JKondo, which should be detectable in experiment.

  19. Excitation energies with linear response density matrix functional theory along the dissociation coordinate of an electron-pair bond in N-electron systems

    International Nuclear Information System (INIS)

    Meer, R. van; Gritsenko, O. V.; Baerends, E. J.

    2014-01-01

    Time dependent density matrix functional theory in its adiabatic linear response formulation delivers exact excitation energies ω α and oscillator strengths f α for two-electron systems if extended to the so-called phase including natural orbital (PINO) theory. The Löwdin-Shull expression for the energy of two-electron systems in terms of the natural orbitals and their phases affords in this case an exact phase-including natural orbital functional (PILS), which is non-primitive (contains other than just J and K integrals). In this paper, the extension of the PILS functional to N-electron systems is investigated. With the example of an elementary primitive NO functional (BBC1) it is shown that current density matrix functional theory ground state functionals, which were designed to produce decent approximations to the total energy, fail to deliver a qualitatively correct structure of the (inverse) response function, due to essential deficiencies in the reconstruction of the two-body reduced density matrix (2RDM). We now deduce essential features of an N-electron functional from a wavefunction Ansatz: The extension of the two-electron Löwdin-Shull wavefunction to the N-electron case informs about the phase information. In this paper, applications of this extended Löwdin-Shull (ELS) functional are considered for the simplest case, ELS(1): one (dissociating) two-electron bond in the field of occupied (including core) orbitals. ELS(1) produces high quality ω α (R) curves along the bond dissociation coordinate R for the molecules LiH, Li 2 , and BH with the two outer valence electrons correlated. All of these results indicate that response properties are much more sensitive to deficiencies in the reconstruction of the 2RDM than the ground state energy, since derivatives of the functional with respect to both the NOs and the occupation numbers need to be accurate

  20. Three-Dimensional Localization of Single Molecules for Super-Resolution Imaging and Single-Particle Tracking.

    Science.gov (United States)

    von Diezmann, Alex; Shechtman, Yoav; Moerner, W E

    2017-06-14

    Single-molecule super-resolution fluorescence microscopy and single-particle tracking are two imaging modalities that illuminate the properties of cells and materials on spatial scales down to tens of nanometers or with dynamical information about nanoscale particle motion in the millisecond range, respectively. These methods generally use wide-field microscopes and two-dimensional camera detectors to localize molecules to much higher precision than the diffraction limit. Given the limited total photons available from each single-molecule label, both modalities require careful mathematical analysis and image processing. Much more information can be obtained about the system under study by extending to three-dimensional (3D) single-molecule localization: without this capability, visualization of structures or motions extending in the axial direction can easily be missed or confused, compromising scientific understanding. A variety of methods for obtaining both 3D super-resolution images and 3D tracking information have been devised, each with their own strengths and weaknesses. These include imaging of multiple focal planes, point-spread-function engineering, and interferometric detection. These methods may be compared based on their ability to provide accurate and precise position information on single-molecule emitters with limited photons. To successfully apply and further develop these methods, it is essential to consider many practical concerns, including the effects of optical aberrations, field dependence in the imaging system, fluorophore labeling density, and registration between different color channels. Selected examples of 3D super-resolution imaging and tracking are described for illustration from a variety of biological contexts and with a variety of methods, demonstrating the power of 3D localization for understanding complex systems.

  1. Comparison of Conjugate Gradient Density Matrix Search and Chebyshev Expansion Methods for Avoiding Diagonalization in Large-Scale Electronic Structure Calculations

    Science.gov (United States)

    Bates, Kevin R.; Daniels, Andrew D.; Scuseria, Gustavo E.

    1998-01-01

    We report a comparison of two linear-scaling methods which avoid the diagonalization bottleneck of traditional electronic structure algorithms. The Chebyshev expansion method (CEM) is implemented for carbon tight-binding calculations of large systems and its memory and timing requirements compared to those of our previously implemented conjugate gradient density matrix search (CG-DMS). Benchmark calculations are carried out on icosahedral fullerenes from C60 to C8640 and the linear scaling memory and CPU requirements of the CEM demonstrated. We show that the CPU requisites of the CEM and CG-DMS are similar for calculations with comparable accuracy.

  2. Matrix infrared spectra and density functional calculations of the H2CCN and H2CNC radicals produced from CH3CN.

    Science.gov (United States)

    Cho, Han-Gook; Andrews, Lester

    2011-08-11

    The H(2)CCN and H(2)CNC radicals are observed in matrix IR spectra from acetonitrile exposed to radiation from laser ablation of transition metals, whereas cyc-H(2)CCN, another plausible isomer, is not. Density functional frequency calculations and D and (13)C isotopic substitutions substantiate the vibrational assignments. The cyano methyl radical converts to the 95 kJ/mol higher energy isocyano counterpart on uv photolysis. Computations show that the cyclic isomer is a shallow energy minimum between two transition states. Intrinsic reaction coordinate calculations indicate that conversion between the two products is feasible via the cyclic configuration.

  3. Majorana zero modes and long range edge correlation in interacting Kitaev chains: analytic solutions and density-matrix-renormalization-group study.

    Science.gov (United States)

    Miao, Jian-Jian; Jin, Hui-Ke; Zhang, Fu-Chun; Zhou, Yi

    2018-01-11

    We study Kitaev model in one-dimension with open boundary condition by using exact analytic methods for non-interacting system at zero chemical potential as well as in the symmetric case of Δ = t, and by using density-matrix-renormalization-group method for interacting system with nearest neighbor repulsion interaction. We suggest and examine an edge correlation function of Majorana fermions to characterize the long range order in the topological superconducting states and study the phase diagram of the interating Kitaev chain.

  4. Single-particle properties of N = 12 to N = 20 silicon isotopes within the dispersive optical model

    Science.gov (United States)

    Bespalova, O. V.; Ermakova, T. A.; Klimochkina, A. A.; Spasskaya, T. I.

    2017-09-01

    Experimental neutron and proton single-particle energies in N = 12 to N = 20 silicon isotopes and data on neutron and proton scattering by nuclei of the isotope 28Si are analyzed on the basis of the dispersive optical model. Good agreement with available experimental data was attained. The occupation probabilities calculated for the single-particle states in question suggest a parallel-type filling of the 1 d and 2 s 1/2 neutron states in the isotopes 26,28,30,32,34Si. The single-particle spectra being considered are indicative of the closure of the Z = 14 proton subshell in the isotopes 30,32,34Si and the N = 20 neutron shell.

  5. Detection and characterisation of aluminium-containing nanoparticles in Chinese noodles by single particle ICP-MS

    DEFF Research Database (Denmark)

    Löschner, Katrin; Correia, Manuel; López Chaves, Carlos

    2018-01-01

    This study investigated Chinese noodles for the presence of aluminium-containing nanoparticles by using inductively coupled plasma mass spectrometry in single particle mode (spICP-MS) after enzymatic digestion by α-amylase. The aluminium concentrations in the noodle samples, determined by convent......This study investigated Chinese noodles for the presence of aluminium-containing nanoparticles by using inductively coupled plasma mass spectrometry in single particle mode (spICP-MS) after enzymatic digestion by α-amylase. The aluminium concentrations in the noodle samples, determined......-containing particles in food by spICP-MS....

  6. Influence of food matrix on absorption of flavour compounds by linear low-density polyethylene: oil and real food products

    NARCIS (Netherlands)

    Willige, van R.W.G.; Linssen, J.P.H.; Voragen, A.G.J.

    2000-01-01

    The influence of oil and food components in real food products on the absorption of four flavour compounds (limonene, decanal, linalool and ethyl 2-methyl butyrate) into linear low-density polyethylene (LLDPE) was studied using a large volume injection GC in vial extraction method. Model food

  7. Influence of food matrix on absorption of flavour compounds by linear low-density polyethylene: proteins and carbohydrates

    NARCIS (Netherlands)

    Willige, van R.W.G.; Linssen, J.P.H.; Voragen, A.G.J.

    2000-01-01

    The influence of oil and food components in real food products on the absorption of four flavour compounds (limonene, decanal, linalool and ethyl 2-methyl butyrate) into linear low-density polyethylene (LLDPE) was studied using a large volume injection GC in vial extraction method. Model food

  8. Dynamic impact response of high-density square honeycombs made of TRIP steel and TRIP matrix composite material

    Directory of Open Access Journals (Sweden)

    Weigelt C.

    2012-08-01

    Full Text Available Two designs of square-celled metallic honeycomb structures fabricated by a modified extrusion technology based on a powder feedstock were investigated. The strength and ductility of these cellular materials are achieved by an austenitic CrNi (AISI 304 steel matrix particle reinforced by an MgO partially-stabilized zirconia building up their cell wall microstructure. Similar to the mechanical behaviour of the bulk materials, the strengthening mechanism and the martensitic phase transformations in the cell walls are affected by the deformation temperature and the nominal strain rate. The microstructure evolution during quasi-static and dynamic impact compression up to high strain rates of 103 1/s influences the buckling and failure behaviour of the honeycomb structures. In contrast to bending-dominated quasi-isotropic networks like open-celled metal foams, axial compressive loading to the honeycomb’s channels causes membrane stretching as well as crushing of the vertical cell node elements and cell walls. The presented honeycomb materials differ geometrically in their cell wall thickness-to-cell size-ratio. Therefore, the failure behaviour is predominantly controlled by global buckling and torsional-flexural buckling, respectively, accompanied by plastic matrix flow and strengthening of the cell wall microstructure.

  9. Dynamic impact response of high-density square honeycombs made of TRIP steel and TRIP matrix composite material

    Science.gov (United States)

    Ehinger, D.; Krüger, L.; Krause, S.; Martin, U.; Weigelt, C.; Aneziris, C. G.

    2012-08-01

    Two designs of square-celled metallic honeycomb structures fabricated by a modified extrusion technology based on a powder feedstock were investigated. The strength and ductility of these cellular materials are achieved by an austenitic CrNi (AISI 304) steel matrix particle reinforced by an MgO partially-stabilized zirconia building up their cell wall microstructure. Similar to the mechanical behaviour of the bulk materials, the strengthening mechanism and the martensitic phase transformations in the cell walls are affected by the deformation temperature and the nominal strain rate. The microstructure evolution during quasi-static and dynamic impact compression up to high strain rates of 103 1/s influences the buckling and failure behaviour of the honeycomb structures. In contrast to bending-dominated quasi-isotropic networks like open-celled metal foams, axial compressive loading to the honeycomb's channels causes membrane stretching as well as crushing of the vertical cell node elements and cell walls. The presented honeycomb materials differ geometrically in their cell wall thickness-to-cell size-ratio. Therefore, the failure behaviour is predominantly controlled by global buckling and torsional-flexural buckling, respectively, accompanied by plastic matrix flow and strengthening of the cell wall microstructure.

  10. Octupole deformation in neutron-rich actinides and superheavy nuclei and the role of nodal structure of single-particle wavefunctions in extremely deformed structures of light nuclei

    Science.gov (United States)

    Afanasjev, A. V.; Abusara, H.; Agbemava, S. E.

    2018-03-01

    Octupole deformed shapes in neutron-rich actinides and superheavy nuclei as well as extremely deformed shapes of the N∼ Z light nuclei have been investigated within the framework of covariant density functional theory. We confirmed the presence of new region of octupole deformation in neutron-rich actinides with the center around Z∼ 96,N∼ 196 but our calculations do not predict octupole deformation in the ground states of superheavy Z≥slant 108 nuclei. As exemplified by the study of 36Ar, the nodal structure of the wavefunction of occupied single-particle orbitals in extremely deformed structures allows to understand the formation of the α-clusters in very light nuclei, the suppression of the α-clusterization with the increase of mass number, the formation of ellipsoidal mean-field type structures and nuclear molecules.

  11. Integrated Method for Purification and Single-Particle Characterization of Lentiviral Vector Systems by Size Exclusion Chromatography and Tunable Resistive Pulse Sensing.

    Science.gov (United States)

    Heider, Susanne; Muzard, Julien; Zaruba, Marianne; Metzner, Christoph

    2017-07-01

    Elements derived from lentiviral particles such as viral vectors or virus-like particles are commonly used for biotechnological and biomedical applications, for example in mammalian protein expression, gene delivery or therapy, and vaccine development. Preparations of high purity are necessary in most cases, especially for clinical applications. For purification, a wide range of methods are available, from density gradient centrifugation to affinity chromatography. In this study we have employed size exclusion columns specifically designed for the easy purification of extracellular vesicles including exosomes. In addition to viral marker protein and total protein analysis, a well-established single-particle characterization technology, termed tunable resistive pulse sensing, was employed to analyze fractions of highest particle load and purity and characterize the preparations by size and surface charge/electrophoretic mobility. With this study, we propose an integrated platform combining size exclusion chromatography and tunable resistive pulse sensing for monitoring production and purification of viral particles.

  12. Online single particle measurements of black carbon coatings, structure and optical properties

    Science.gov (United States)

    Allan, James; Liu, Dantong; Taylor, Jonathan; Flynn, Michael; Williams, Paul; Morgan, William; Whitehead, James; Alfarra, Rami; McFiggans, Gordon; Coe, Hugh

    2016-04-01

    The impacts of black carbon on meteorology and climate remain a major source of uncertainty, owing in part to the complex relationship between the bulk composition of the particulates and their optical properties. A particular complication stems from how light interacts with particles in response to the microphysical configuration and any 'coatings', i.e. non-black carbon material that is either co-emitted or subsequently obtained through atmospheric processing. This may cause the particle to more efficiently absorb or scatter light and may even change the sign of its radiative forcing potential. While much insight has been gained through measurements of bulk aerosol properties, either while suspended or after collection on a filter or impactor substrate, this does not provide a complete picture and thus may not adequately constrain the system. Here we present an overview of recent work to better constrain the properties of black carbon using online, in situ measurements of single particles, primarily using a Single Particle Soot Photometer (SP2). We have developed novel methods of inverting the data produced and combining the different metrics derived so as to give the most effective insights into black carbon sources, processes and properties. We have also used this measurement in conjunction with other instruments (sometimes in series) and used the data to challenge many commonly used models of optical properties such as core-shell Mie, Rayleigh-Debeye-Gans and effective medium. This work has been carried out in a variety of atmospheric environments and with laboratory-produced soots, e.g. from a diesel engine rig. Highlights include the finding that with real-world atmospheric aerosols, bulk optical measurements may be insufficient to derive brown carbon parameters without detailed morphological data. We also show that the enhancement of absorption for both ambient and laboratory generated particles only occurs after the coating mass fraction reaches a certain

  13. Mass Spectrometry of Single Particles Levitated in an Electrodynamic Balance: Applications to Laboratory Atmospheric Chemistry Research

    Science.gov (United States)

    Birdsall, A.; Krieger, U. K.; Keutsch, F. N.

    2017-12-01

    Dynamic changes to atmospheric aerosol particle composition (e.g., originating from evaporation/condensation, oxidative aging, or aqueous-phase chemical reactions) impact particle properties with importance for understanding particle effects on climate and human health. These changes can take place over the entire lifetime of an atmospheric particle, which can extend over multiple days. Previous laboratory studies of such processes have included analyzing single particles suspended in a levitation device, such as an electrodynamic balance (EDB), an optical levitator, or an acoustic trap, using optical detection techniques. However, studying chemically complex systems can require an analytical method, such as mass spectrometry, that provides more molecular specificity. Existing work coupling particle levitation with mass spectrometry is more limited and largely has consisted of acoustic levitation of millimeter-sized droplets.In this work an EDB has been coupled with a custom-built ionization source and commercial time-of-flight mass spectrometer (MS) as a platform for laboratory atmospheric chemistry research. Single charged particles (radius 10 μm) have been injected into an EDB, levitated for an arbitrarily long period of time, and then transferred to a vaporization-corona discharge ionization region for MS analysis. By analyzing a series of particles of identical composition, residing in the controlled environment of the EDB for varying times, we can trace the chemical evolution of a particle over hours or days, appropriate timescales for understanding transformations of atmospheric particles.To prove the concept of our EDB-MS system, we have studied the evaporation of particles consisting of polyethylene glycol (PEG) molecules of mixed chain lengths, used as a benchmark system. Our system can quantify the composition of single particles (see Figure for sample spectrum of a single PEG-200 particle: PEG parent ions labeled with m/z, known PEG fragment ions

  14. Single-particle characterization of the high-Arctic summertime aerosol

    Directory of Open Access Journals (Sweden)

    B. Sierau

    2014-07-01

    Full Text Available Single-particle mass-spectrometric measurements were carried out in the high Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS. The instrument deployed was an aerosol time-of-flight mass spectrometer (ATOFMS that provides information on the chemical composition of individual particles and their mixing state in real time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 and 3000 nm in diameter showed mass-spectrometric patterns, indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the high Arctic. To assess the importance of long-range particle sources for aerosol–cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest the presence of a particle type of

  15. Measurement of ambient aerosols in northern Mexico City by single particle mass spectrometry

    Directory of Open Access Journals (Sweden)

    R. C. Moffet

    2008-08-01

    Full Text Available Continuous ambient measurements with aerosol time-of-flight mass spectrometry (ATOFMS were made in an industrial/residential section in the northern part of Mexico City as part of the Mexico City Metropolitan Area-2006 campaign (MCMA-2006. Results are presented for the period of 15–27 March 2006. The submicron size mode contained both fresh and aged biomass burning, aged organic carbon (OC mixed with nitrate and sulfate, elemental carbon (EC, nitrogen-organic carbon, industrial metal, and inorganic NaK inorganic particles. Overall, biomass burning and aged OC particle types comprised 40% and 31%, respectively, of the submicron mode. In contrast, the supermicron mode was dominated by inorganic NaK particle types (42% which represented a mixture of dry lake bed dust and industrial NaK emissions mixed with soot. Additionally, aluminosilicate dust, transition metals, OC, and biomass burning contributed to the supermicron particles. Early morning periods (2–6 a.m. showed high fractions of inorganic particles from industrial sources in the northeast, composed of internal mixtures of Pb, Zn, EC and Cl, representing up to 73% of the particles in the 0.2–3μm size range. A unique nitrogen-containing organic carbon (NOC particle type, peaking in the early morning hours, was hypothesized to be amines from local industrial emissions based on the time series profile and back trajectory analysis. A strong dependence on wind speed and direction was observed in the single particle types that were present during different times of the day. The early morning (3:30–10 a.m. showed the greatest contributions from industrial emissions. During mid to late mornings (7–11 a.m., weak northerly winds were observed along with the most highly aged particles. Stronger winds from the south picked up in the late morning (after 11 a.m., resulting in a decrease in the concentrations of the major aged particle types and an increase in the number fraction of fresh

  16. Intrinsic Local Constituents of Molecular Electronic Wave Functions.I. Exact Representation of the Density Matrix in Terms of Chemically Deformed and Oriented Atomic Minimal Basis Set Orbitals

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Ivanic; Gregory J. Atchity; Klaus Ruedenberg

    2007-02-12

    A coherent, intrinsic, basis-set-independent analysis is developed for the invariants of the first-order density matrix of an accurate molecular electronic wavefunction. From the hierarchical ordering of the natural orbitals, the zeroth-order orbital space is deduced, which generates the zeroth-order wavefunction, typically an MCSCF function in the full valence space. It is shown that intrinsically embedded in such wavefunctions are elements that are local in bond regions and elements that are local in atomic regions. Basis-set-independent methods are given that extract and exhibit the intrinsic bond orbitals and the intrinsic minimal-basis quasi-atomic orbitals in terms of which the wavefunction can be exactly constructed. The quasi-atomic orbitals are furthermore oriented by a basis-set independent method (viz. maximization of the sum of the fourth powers of all off-diagonal density matrix elements) so as to exhibit clearly the chemical interactions. The unbiased nature of the method allows for the adaptation of the localized and directed orbitals to changing geometries.

  17. Measurement of the spin density matrix for the $\\rho^0$, $K^{*0}(892)$ and $\\phi$ produced in $Z^0$ Decays

    CERN Document Server

    Abreu, P; Adye, T; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Andersson, P; Andreazza, A; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbi, M S; Barbiellini, Guido; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Bärring, O; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Benvenuti, Alberto C; Bérat, C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bizouard, M A; Bloch, D; Blume, M; Bonesini, M; Bonivento, W; Booth, P S L; Borgland, A W; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Bricman, C; Brown, R C A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cao, F; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Chabaud, V; Chapkin, M M; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Cindro, V; Collins, P; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Dahm, J; D'Almagne, B; Dam, M; Damgaard, G; Dauncey, P D; Davenport, Martyn; Da Silva, W; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; Dijkstra, H; Di Ciaccio, Lucia; Di Diodato, A; Djannati, A; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Durand, J D; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fanourakis, G K; Fassouliotis, D; Feindt, Michael; Fenyuk, A; Ferrari, P; Ferrer, A; Fichet, S; Filippas-Tassos, A; Firestone, A; Fischer, P A; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gerdyukov, L N; Gokieli, R; Golob, B; Gonçalves, P; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Graziani, E; Green, C; Grefrath, A; Gris, P; Grosdidier, G; Grzelak, K; Günther, M; Guy, J; Hahn, F; Hahn, S; Hajduk, Z; Hallgren, A; Hamacher, K; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, Christian; Juillot, P; Kaiser, M; Kapusta, F; Karafasoulis, K; Katsanevas, S; Katsoufis, E C; Keränen, R; Khokhlov, Yu A; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klapp, O; Klein, H; Kluit, P M; Knoblauch, D; Kokkinias, P; Koratzinos, M; Korcyl, K; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krstic, J; Krumshtein, Z; Krupinski, W; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Laktineh, I; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leisos, A; Leitner, R; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Libby, J; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Maehlum, G; Mahon, J R; Maio, A; Malmgren, T G M; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; McPherson, G; Medbo, J; Meroni, C; Meyer, S; Meyer, W T; Myagkov, A; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Morettini, P; Müller, H; Münich, K; Mulders, M; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Myklebust, T; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Némécek, S; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Nikolenko, M; Niss, P; Nomerotski, A; Normand, Ainsley; Nygren, A; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Orazi, G; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Pain, R; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Pegoraro, M; Peralta, L; Pernegger, H; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Podobnik, T; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Rídky, J; Rinaudo, G; Røhne, O M; Romero, A; Ronchese, P; Roos, L; Rosenberg, E I; Rosinsky, P; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ruiz, A; Rybicki, K; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sannino, M; Schneider, H; Schwickerath, U; Schyns, M A E; Sciolla, G; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Serbelloni, L; Shellard, R C; Sheridan, A; Siegrist, P; Silvestre, R; Simonetto, F; Sissakian, A N; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sokolov, A; Solovyanov, O; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stampfer, D; Stanescu, C; Stanic, S; Stapnes, Steinar; Stavitski, I; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tavernet, J P; Tegenfeldt, F; Terranova, F; Thomas, J; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Todorova, S; Toet, D Z; Tomaradze, A G; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; van Apeldoorn, G W; van Dam, P; Van Eldik, J; Van Lysebetten, A; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Wlodek, T; Yi, J; Yip, K; Yushchenko, O P; Zach, F; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zucchelli, G C; Zumerle, G

    1997-01-01

    The spin density matrix elements for the $\\rho^0$, K$^{*0}(892)$ and $\\phi$ produced in hadronic Z$^0$ decays are measured in the DELPHI detector. There is no evidence for spin alignment of the K$^{*0}(892)$ and $\\phi$ in the region $x_p \\leq 0.3$ ($x_p = p/p_{beam}$), where $\\rho_{00} = 0.33 \\pm 0.05$ and $\\rho_{00} = 0.30 \\pm 0.04$, respectively. In the fragmentation region, $x_p \\geq 0.4$, there is some indication for spin alignment of the $\\rho^0$ and K$^{*0}(892)$, since $\\rho_{00} = 0.43 \\pm 0.05$ and $\\rho_{00} = 0.46 \\pm 0.08$, respectively. These values are compared with those found in meson-induced hadronic reactions. For the $\\phi$, $\\rho_{00} = 0.30 \\pm 0.04$ for $x_p \\geq 0.4$ and $0.55 \\pm 0.10$ for $x_p \\geq 0.7$. The off-diagonal spin density matrix element $\\rho_{1-1}$ is consistent with zero in all cases.

  18. Path integral density matrix dynamics: a method for calculating time-dependent properties in thermal adiabatic and non-adiabatic systems.

    Science.gov (United States)

    Habershon, Scott

    2013-09-14

    We introduce a new approach for calculating quantum time-correlation functions and time-dependent expectation values in many-body thermal systems; both electronically adiabatic and non-adiabatic cases can be treated. Our approach uses a path integral simulation to sample an initial thermal density matrix; subsequent evolution of this density matrix is equivalent to solution of the time-dependent Schrödinger equation, which we perform using a linear expansion of Gaussian wavepacket basis functions which evolve according to simple classical-like trajectories. Overall, this methodology represents a formally exact approach for calculating time-dependent quantum properties; by introducing approximations into both the imaginary-time and real-time propagations, this approach can be adapted for complex many-particle systems interacting through arbitrary potentials. We demonstrate this method for the spin Boson model, where we find good agreement with numerically exact calculations. We also discuss future directions of improvement for our approach with a view to improving accuracy and efficiency.

  19. Online differentiation of mineral phase in aerosol particles by ion formation mechanism using a LAAP-TOF single-particle mass spectrometer

    Directory of Open Access Journals (Sweden)

    N. A. Marsden

    2018-01-01

    Full Text Available Mineralogy of silicate mineral dust has a strong influence on climate and ecosystems due to variation in physiochemical properties that result from differences in composition and crystal structure (mineral phase. Traditional offline methods of analysing mineral phase are labour intensive and the temporal resolution of the data is much longer than many atmospheric processes. Single-particle mass spectrometry (SPMS is an established technique for the online size-resolved measurement of particle composition by laser desorption ionisation (LDI followed by time-of-flight mass spectrometry (TOF-MS. Although non-quantitative, the technique is able to identify the presence of silicate minerals in airborne dust particles from markers of alkali metals and silicate molecular ions in the mass spectra. However, the differentiation of mineral phase in silicate particles by traditional mass spectral peak area measurements is not possible. This is because instrument function and matrix effects in the ionisation process result in variations in instrument response that are greater than the differences in composition between common mineral phases.In this study, we introduce a novel technique that enables the differentiation of mineral phase in silicate mineral particles by ion formation mechanism measured from subtle changes in ion arrival times at the TOF-MS detector. Using a combination of peak area and peak centroid measurements, we show that the arrangement of the interstitial alkali metals in the crystal structure, an important property in silicate mineralogy, influences the ion arrival times of elemental and molecular ion species in the negative ion mass spectra. A classification scheme is presented that allowed for the differentiation of illite–smectite, kaolinite and feldspar minerals on a single-particle basis. Online analysis of mineral dust aerosol generated from clay mineral standards produced mineral fractions that are in agreement with bulk

  20. Online differentiation of mineral phase in aerosol particles by ion formation mechanism using a LAAP-TOF single-particle mass spectrometer

    Science.gov (United States)

    Marsden, Nicholas A.; Flynn, Michael J.; Allan, James D.; Coe, Hugh

    2018-01-01

    Mineralogy of silicate mineral dust has a strong influence on climate and ecosystems due to variation in physiochemical properties that result from differences in composition and crystal structure (mineral phase). Traditional offline methods of analysing mineral phase are labour intensive and the temporal resolution of the data is much longer than many atmospheric processes. Single-particle mass spectrometry (SPMS) is an established technique for the online size-resolved measurement of particle composition by laser desorption ionisation (LDI) followed by time-of-flight mass spectrometry (TOF-MS). Although non-quantitative, the technique is able to identify the presence of silicate minerals in airborne dust particles from markers of alkali metals and silicate molecular ions in the mass spectra. However, the differentiation of mineral phase in silicate particles by traditional mass spectral peak area measurements is not possible. This is because instrument function and matrix effects in the ionisation process result in variations in instrument response that are greater than the differences in composition between common mineral phases.In this study, we introduce a novel technique that enables the differentiation of mineral phase in silicate mineral particles by ion formation mechanism measured from subtle changes in ion arrival times at the TOF-MS detector. Using a combination of peak area and peak centroid measurements, we show that the arrangement of the interstitial alkali metals in the crystal structure, an important property in silicate mineralogy, influences the ion arrival times of elemental and molecular ion species in the negative ion mass spectra. A classification scheme is presented that allowed for the differentiation of illite-smectite, kaolinite and feldspar minerals on a single-particle basis. Online analysis of mineral dust aerosol generated from clay mineral standards produced mineral fractions that are in agreement with bulk measurements reported by

  1. Meniscal tear evaluation. Comparison of a conventional spin-echo proton density sequence with a fast spin-echo sequence utilizing a 512x358 matrix size

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, M.A.; Robinson, P. [Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Grainger, A.J., E-mail: andrew.grainger@leedsth.nhs.u [Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom)

    2011-04-15

    Aim: To determine the sensitivities, specificities, and receiver-operating characteristics (ROCs) for sagittal conventional spin-echo proton density (SE-PD) and fast spin-echo proton density (FSE-PD) sequences in the diagnosis of meniscal tears when compared to arthroscopic findings utilizing increased FSE matrix acquisition size. Method and materials: Magnetic resonance imaging (MRI) studies of 97 knees (194 menisci) were independently and prospectively interpreted by two experienced musculoskeletal radiologists over four separate readings at least 3 weeks apart. Readings 1 and 2 included images in all three planes in accordance with the standard protocol with either a SE or FSE sagittal PD, at readings 3 and 4 just the SE or FSE sagittal PD sequences were reported. The FSE sequence was acquired with an increased matrix size, compared to the SE sequence, to provide increased resolution. Menisci were graded for the presence of a tear and statistical analysis to calculate sensitivity and specificity was performed comparing to arthroscopy as the reference standard. ROC analysis for the diagnosis of meniscal tears on the SE and FSE sagittal sequences was also evaluated. Reader concordance for the SE and FSE sequences was calculated. Results: Sixty-seven tears were noted at arthroscopy; 60 were detected on SE and 56 on FSE. The sensitivity and specificity for SE was 90 and 90%, and for FSE was 84 and 94%, respectively, with no significant difference. ROC analysis showed no significant difference between the two sequences and kappa values demonstrated a higher level of reader agreement for the FSE than for the SE reading. Conclusion: Use of a FSE sagittal PD sequence with an increased matrix size provides comparable performance to conventional SE sagittal PD when evaluating meniscal disease with a modern system. The present study indicates an increased level of concordance between readers for the FSE sagittal sequence compared to the conventional SE.

  2. Meniscal tear evaluation. Comparison of a conventional spin-echo proton density sequence with a fast spin-echo sequence utilizing a 512x358 matrix size

    International Nuclear Information System (INIS)

    Hopper, M.A.; Robinson, P.; Grainger, A.J.

    2011-01-01

    Aim: To determine the sensitivities, specificities, and receiver-operating characteristics (ROCs) for sagittal conventional spin-echo proton density (SE-PD) and fast spin-echo proton density (FSE-PD) sequences in the diagnosis of meniscal tears when compared to arthroscopic findings utilizing increased FSE matrix acquisition size. Method and materials: Magnetic resonance imaging (MRI) studies of 97 knees (194 menisci) were independently and prospectively interpreted by two experienced musculoskeletal radiologists over four separate readings at least 3 weeks apart. Readings 1 and 2 included images in all three planes in accordance with the standard protocol with either a SE or FSE sagittal PD, at readings 3 and 4 just the SE or FSE sagittal PD sequences were reported. The FSE sequence was acquired with an increased matrix size, compared to the SE sequence, to provide increased resolution. Menisci were graded for the presence of a tear and statistical analysis to calculate sensitivity and specificity was performed comparing to arthroscopy as the reference standard. ROC analysis for the diagnosis of meniscal tears on the SE and FSE sagittal sequences was also evaluated. Reader concordance for the SE and FSE sequences was calculated. Results: Sixty-seven tears were noted at arthroscopy; 60 were detected on SE and 56 on FSE. The sensitivity and specificity for SE was 90 and 90%, and for FSE was 84 and 94%, respectively, with no significant difference. ROC analysis showed no significant difference between the two sequences and kappa values demonstrated a higher level of reader agreement for the FSE than for the SE reading. Conclusion: Use of a FSE sagittal PD sequence with an increased matrix size provides comparable performance to conventional SE sagittal PD when evaluating meniscal disease with a modern system. The present study indicates an increased level of concordance between readers for the FSE sagittal sequence compared to the conventional SE.

  3. Cortical Matrix Mineral Density Measured Non-invasively in Pre- and Postmenopausal Women and a Woman with Vitamin D Dependent Rickets.

    Science.gov (United States)

    Chiang, Cherie Y; Zebaze, Roger; Wang, Xiao-Fang; Ghasem-Zadeh, Ali; Zajac, Jeffrey D; Seeman, Ego

    2018-02-28

    Reduced bone mineral density (BMD) may be due to reduced mineralized bone matrix volume, incomplete secondary mineralization or reduced primary mineralization. As bone biopsy is invasive, we hypothesized that non-invasive image acquisition at high resolution can accurately quantify matrix mineral density (MMD). Quantification of MMD was confined to voxels attenuation photons above 80% of that produced by fully mineralized bone matrix because attenuation at this level is due to variation in mineralization not porosity. To assess accuracy, 9 cadaveric distal radii were imaged at a voxel size of 82 microns using high resolution peripheral quantitative computed tomography (HR-pQCT, XtremeCT, Scanco Medical AG, Switzerland) and compared with VivaCT 40 (µCT) at 19 microns voxel size. Associations between MMD and porosity were studied in 94 heathy vitamin D replete pre-menopausal, 77 post-menopausal women, and in a 27 year-old woman with vitamin-D Dependent Rickets (VDDR). Microstructure and MMD were quantified using StrAx (StraxCorp, Melbourne, Australia). MMD measured by HR-pQCT and µCT correlated (R = 0.87; p woman with VDDR, MMD was 5.6 SD lower, and porosity was 5.6 SD higher, than the respective trait means in premenopausal women. BMD was reduced (Z scores femoral neck - 4.3 SD, lumbar spine - 3.8 SD). Low radiation HR-pQCT may facilitate non-invasive quantification of bone's MMD and microstructure in health, disease and during treatment. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Matrix infrared spectra and density functional calculations of TiO3 and TiO5 in solid argon.

    Science.gov (United States)

    Gong, Yu; Zhou, Mingfei

    2008-10-09

    The reaction of titanium monoxide molecules and O2 was studied by using matrix isolation infrared spectroscopy as well as theoretical calculations. The titanium monoxide molecule reacts with O2 to form TiO 3 spontaneously on annealing. The TiO3 molecule is characterized to be a side-on bonded peroxo titanium monoxide complex, (eta(2)-O2)TiO, which has a nonplanar Cs symmetry with a 1A' ground state. The (eta(2)-O2)TiO complex can further coordinate another dioxygen to give TiO 5, a disuperoxo titanium monoxide complex, (eta(2)-O2)(2)TiO, which possesses a 3A'' ground state and a nonplanar Cs geometry.

  5. Characterization of biomass combustion at high temperatures based on an upgraded single particle model

    International Nuclear Information System (INIS)

    Li, Jun; Paul, Manosh C.; Younger, Paul L.; Watson, Ian; Hossain, Mamdud; Welch, Stephen

    2015-01-01

    Highlights: • High temperature rapid biomass combustion is studied based on single particle model. • Particle size changes in devolatilization and char oxidation models are addressed. • Time scales of various thermal sub-processes are compared and discussed. • Potential solutions are suggested to achieve better biomass co-firing performances. - Abstract: Biomass co-firing is becoming a promising solution to reduce CO 2 emissions, due to its renewability and carbon neutrality. Biomass normally has high moisture and volatile contents, complicating its combustion behavior, which is significantly different from that of coal. A computational fluid dynamics (CFD) combustion model of a single biomass particle is employed to study high-temperature rapid biomass combustion. The two-competing-rate model and kinetics/diffusion model are used to model biomass devolatilization reaction and char burnout process, respectively, in which the apparent kinetics used for those two models were from high temperatures and high heating rates tests. The particle size changes during the devolatilization and char burnout are also considered. The mass loss properties and temperature profile during the biomass devolatilization and combustion processes are predicted; and the timescales of particle heating up, drying, devolatilization, and char burnout are compared and discussed. Finally, the results shed light on the effects of particle size on the combustion behavior of biomass particle

  6. Real-time analysis of insoluble particles in glacial ice using single-particle mass spectrometry

    Science.gov (United States)

    Osman, Matthew; Zawadowicz, Maria A.; Das, Sarah B.; Cziczo, Daniel J.

    2017-11-01

    Insoluble aerosol particles trapped in glacial ice provide insight into past climates, but analysis requires information on climatically relevant particle properties, such as size, abundance, and internal mixing. We present a new analytical method using a time-of-flight single-particle mass spectrometer (SPMS) to determine the composition and size of insoluble particles in glacial ice over an aerodynamic size range of ˜ 0.2-3.0 µm diameter. Using samples from two Greenland ice cores, we developed a procedure to nebulize insoluble particles suspended in melted ice, evaporate condensed liquid from those particles, and transport them to the SPMS for analysis. We further determined size-dependent extraction and instrument transmission efficiencies to investigate the feasibility of determining particle-class-specific mass concentrations. We find SPMS can be used to provide constraints on the aerodynamic size, composition, and relative abundance of most insoluble particulate classes in ice core samples. We describe the importance of post-aqueous processing to particles, a process which occurs due to nebulization of aerosols from an aqueous suspension of originally soluble and insoluble aerosol components. This study represents an initial attempt to use SPMS as an emerging technique for the study of insoluble particulates in ice cores.

  7. Single Particle Laser Mass Spectrometry Applied to Differential Ice Nucleation Experiments at the AIDA Chamber

    International Nuclear Information System (INIS)

    Gallavardin, S. J.; Froyd, Karl D.; Lohmann, U.; Moehler, Ottmar; Murphy, Daniel M.; Cziczo, Dan

    2008-01-01

    Experiments conducted at the Aerosol Interactions and Dynamics in the Atmosphere (AIDA) chamber located in Karlsruhe, Germany permit investigation of particle properties that affect the nucleation of ice at temperature and water vapor conditions relevant to cloud microphysics and climate issues. Ice clouds were generated by heterogeneous nucleation of Arizona test dust (ATD), illite, and hematite and homogeneous nucleation of sulfuric acid. Ice crystals formed in the chamber were inertially separated from unactivated, or 'interstitial' aerosol particles with a pumped counterflow virtual impactor (PCVI), then evaporated. The ice residue (i.e., the aerosol which initiated ice nucleation plus any material which was scavenged from the gas- and/or particle-phase), was chemically characterized at the single particle level using a laser ionization mass spectrometer. In this manner the species that first nucleated ice could be identified out of a mixed aerosol population in the chamber. Bare mineral dust particles were more effective ice nuclei (IN) than similar particles with a coating. Metallic particles from contamination in the chamber initiated ice nucleation before other species but there were few enough that they did not compromise the experiments. Nitrate, sulfate, and organics were often detected on particles and ice residue, evidently from scavenging of trace gas-phase species in the chamber. Hematite was a more effective ice nucleus than illite. Ice residue was frequently larger than unactivated test aerosol due to the formation of aggregates due to scavenging, condensation of contaminant gases, and the predominance of larger aerosol in nucleation

  8. Analysis and differentiation of mineral dust by single particle laser mass spectrometry

    International Nuclear Information System (INIS)

    Gallavardin, S. J.; Lohmann, U.; Cziczo, Daniel J.

    2008-01-01

    This study evaluates the potential of single particle laser desorption/ionization mass spectrometry for the analysis of atmospherically relevant mineral dusts. Samples of hematite, goethite, calcium carbonate, calcium sulfate, silica, quartz, montmorrillonite, kaolinite, illite, hectorite, wollastonite and nephelinsyenit were investigated in positive and negative ion mode with a monopolar time-of-flight mass spectrometer where the desorption/ionization step was performed with a 193 nm excimer laser (∼10 9 W/cm 2 ). Particle size ranged from 500 nm to 3 (micro)m. Positive mass spectra mainly provide elemental composition whereas negative ion spectra provide information on element speciation and of a structural nature. The iron oxide, calcium-rich and aluminosilicate nature of particles is established in positive ion mode. The differentiation of calcium materials strongly relies on the calcium counter-ions in negative mass spectra. Aluminosilicates can be differentiated in both positive and negative ion mode using the relative abundance of various aluminum and silicon ions

  9. Investigating single-particle structure in 26Na using the new SHARC array

    International Nuclear Information System (INIS)

    Wilson, G.L.; Catford, W.N.; Diget, C.Aa.

    2015-01-01

    The changing of the nuclear shells for light, neutron-rich nuclei, and the single-particle nature of 26 Na, has been explored by studying 25 Na(d, p) 26 Na in inverse kinematics, using a beam of 25 Na ions at 5 MeV per nucleon, provided by the ISAC-II facility at TRIUMF, Vancouver. Charged particles were detected with a highly-segmented silicon array that surrounded the 0.5 mg/cm 2 (CD 2 ) n target. Gamma rays from the recoiling 26 Na nucleus were detected using eight Compton-suppressed HPGe clover detectors. Recoil tagging was provided by an in-beam scintillation foil, downstream of the germanium array. A novel technique of utilising pγ- and pγγ-gating to extract proton angular distributions from states populated close in energy was employed with success. New states in 26 Na that are populated directly have been identified, using γ-decay patterns. Shell model calculations for comparison to experimental results are ongoing, using different model bases. (author)

  10. Investigating Single-Particle Structure in 26Na Using the New SHARC Array

    Science.gov (United States)

    Wilson, G. L.; Catford, W. N.; Diget, C. Aa.; Orr, N. A.; Matta, A.; Hackman, G.; Williams, S. J.; Simpson, E. C.; Celik, I. C.; Achouri, N. L.; Adsley, P.; Al-Falou, H.; Ashley, R.; Austin, R. A. E.; Ball, G. C.; Blackmon, J. C.; Boston, A. J.; Boston, H. C.; Brown, S. M.; Cross, D. S.; Djongolov, M.; Drake, T. E.; Hager, U.; Fox, S. P.; Fulton, B. R.; Galinski, N.; Garnsworthy, A. B.; Jamieson, D.; Kanungo, R.; Leach, K.; Orce, J. N.; Pearson, C. J.; Porter-Peden, M.; Sarazin, F.; Sjue, S.; Smalley, D.; Sumithrarachchi, C.; Triambak, S.; Unsworth, C.; Wadsworth, R.

    The changing of the nuclear shells for light, neutron-rich nuclei, and the single-particle nature of 26Na, has been explored by studying 25Na(d, p)26Na in inverse kinematics, using a beam of 25Na ions at 5 MeV per nucleon, provided by the ISAC-II facility at TRIUMF, Vancouver. Charged particles were detected with a highly-segmented silicon array that surrounded the 0.5 mg/cm2 (CD2)n target. Gamma rays from the recoiling 26Na nucleus were detected using eight Compton-suppressed HPGe clover detectors. Recoil tagging was provided by an in-beam scintillation foil, downstream of the germanium array. A novel technique of utilising pγ- and pγγ-gating to extract proton angular distributions from states populated close in energy was employed with success. New states in 26Na that are populated directly have been identified, using γ-decay patterns. Shell model calculations for comparison to experimental results are ongoing, using different model bases.

  11. cisTEM, user-friendly software for single-particle image processing.

    Science.gov (United States)

    Grant, Timothy; Rohou, Alexis; Grigorieff, Nikolaus

    2018-03-07

    We have developed new open-source software called cis TEM (computational imaging system for transmission electron microscopy) for the processing of data for high-resolution electron cryo-microscopy and single-particle averaging. cis TEM features a graphical user interface that is used to submit jobs, monitor their progress, and display results. It implements a full processing pipeline including movie processing, image defocus determination, automatic particle picking, 2D classification, ab-initio 3D map generation from random parameters, 3D classification, and high-resolution refinement and reconstruction. Some of these steps implement newly-developed algorithms; others were adapted from previously published algorithms. The software is optimized to enable processing of typical datasets (2000 micrographs, 200 k - 300 k particles) on a high-end, CPU-based workstation in half a day or less, comparable to GPU-accelerated processing. Jobs can also be scheduled on large computer clusters using flexible run profiles that can be adapted for most computing environments. cis TEM is available for download from cistem.org. © 2018, Grant et al.

  12. Single Particle Transport Through Carbon Nanotube Wires: Effect of Defects and Polyhedral Cap

    Science.gov (United States)

    Anantram, M. P.; Govidan, T. R.

    1999-01-01

    The ability to manipulate carbon nanotubes with increasing precision has enabled a large number of successful electron transport experiments. These studies have primarily focussed on characterizing transport through both metallic and semiconducting wires. Tans et al. demonstrated ballistic transport in single-wall nanotubes for the first time, although the experimental configuration incurred large contact resistance. Subsequently, methods of producing low contact resistances have been developed and two terminal conductances smaller than 50 k-ohms have been repeatably demonstrated in single-wall and multi-wall nanotubes. In multi-wall nanotubes, Frank et al. demonstrated a resistance of approximately h/2e(exp 2) in a configuration where the outermost layer made contact to a liquid metal. This was followed by the work of de Pablo et al. where a resistance of h(bar)/27e(exp 2) (approximately 478 ohms) was measured in a configuration where electrical contact was made to many layers of a multi-wall nanotube. Frank et al. and Pablo et al. note that each conducting layer contributes a conductance of only 2e(exp 2)/h, instead of the 4e(exp 2)/h that a single particle mode counting picture yields. These small resistances have been obtained in microns long nanotubes, making them the best conducting molecular wires to date. The large conductance of nanotube wires stems from the fact that the crossing bands of nanotubes are robust to defect scattering.

  13. Accelerators for critical experiments involving single-particle upset in solid-state microcircuits

    Science.gov (United States)

    Zoutendyk, J. A.

    1985-01-01

    Charged-particle interactions in microelectronic circuit chips (integrated circuits) present a particularly insidious problem for solid-state electronic systems due to the generation of soft errors or single-particle event upset (SEU) by either cosmic rays or other radiation sources. Particle accelerators are used to provide both light and heavy ions in order to assess the propensity of integrated circuit chips for SEU. Critical aspects of this assessment involve the ability to analytically model SEU for the prediction of error rates in known radiation environments. In order to accurately model SEU, the measurement and prediction of energy deposition in the form of an electron-hole plasma generated along an ion track is of paramount importance. This requires the use of accelerators which allow for ease in both energy control (change of energy) and change of ion species. This and other aspects of ion-beam control and diagnostics (e.g., uniformity and flux) are of critical concern for the experimental verification of theoretical SEU models.

  14. Scattering measurement of single particle for highly sensitive homogeneous detection of DNA in serum.

    Science.gov (United States)

    Zhu, Liang; Li, Guohua; He, Yonghong; Tan, Hui; Sun, Shuqing

    2018-02-01

    A highly sensitive homogeneous method for DNA detection has been developed. The system relies on two kinds of gold nanorod (AuNR) probes with complementary DNA sequences to the target DNA. In the presence of the target DNA, two kinds of AuNR probes are assembling into dimers or small aggregates. The target-induced AuNR aggregate has higher scattering intensity than that of a single AuNR because of the plasmonic coupling effect. Dark field microscopy was utilized to image the single particle and measure its scattering intensity. We wrote our own Matlab code and used it to extract the scattering signal of all particles. Difference in distribution of scattering intensity between the single AuNR and its aggregate provides a quantitative basis for the detection of target DNA. A linear dynamic range spanning from 0.1pM to 1nM and a detection limit of ~ 30fM were achieved for the detection of DNA in serum sample. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Particle interactions of fluticasone propionate and salmeterol xinafoate detected with single particle aerosol mass spectrometry (SPAMS).

    Science.gov (United States)

    Jetzer, Martin W; Morrical, Bradley D; Fergenson, David P; Imanidis, Georgios

    2017-10-30

    Particle co-associations between the active pharmaceutical ingredients fluticasone propionate and salmeterol xinafoate were examined in dry powder inhaled (DPI) and metered dose inhaled (MDI) combination products. Single Particle Aerosol Mass Spectrometry was used to investigate the particle interactions in Advair Diskus ® (500/50 mcg) and Seretide ® (125/25 mcg). A simple rules tree was used to identify each compound, either alone or co-associated at the level of the individual particle, using unique marker peaks in the mass spectra for the identification of each drug. High levels of drug particle co-association (fluticasone-salmeterol) were observed in the aerosols emitted from Advair Diskus ® and Seretide ® . The majority of the detected salmeterol particles were found to be in co-association with fluticasone in both tested devices. Another significant finding was that rather coarse fluticasone particles (in DPI) and fine salmeterol particles (both MDI and DPI) were forming the particle co-associations. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Robust model-based analysis of single-particle tracking experiments with Spot-On.

    Science.gov (United States)

    Hansen, Anders S; Woringer, Maxime; Grimm, Jonathan B; Lavis, Luke D; Tjian, Robert; Darzacq, Xavier

    2018-01-04

    Single-particle tracking (SPT) has become an important method to bridge biochemistry and cell biology since it allows direct observation of protein binding and diffusion dynamics in live cells. However, accurately inferring information from SPT studies is challenging due to biases in both data analysis and experimental design. To address analysis bias, we introduce 'Spot-On', an intuitive web-interface. Spot-On implements a kinetic modeling framework that accounts for known biases, including molecules moving out-of-focus, and robustly infers diffusion constants and subpopulations from pooled single-molecule trajectories. To minimize inherent experimental biases, we implement and validate stroboscopic photo-activation SPT (spaSPT), which minimizes motion-blur bias and tracking errors. We validate Spot-On using experimentally realistic simulations and show that Spot-On outperforms other methods. We then apply Spot-On to spaSPT data from live mammalian cells spanning a wide range of nuclear dynamics and demonstrate that Spot-On consistently and robustly infers subpopulation fractions and diffusion constants. © 2018, Hansen et al.

  17. Single particle nonlocality, geometric phases and time-dependent boundary conditions

    Science.gov (United States)

    Matzkin, A.

    2018-03-01

    We investigate the issue of single particle nonlocality in a quantum system subjected to time-dependent boundary conditions. We discuss earlier claims according to which the quantum state of a particle remaining localized at the center of an infinite well with moving walls would be specifically modified by the change in boundary conditions due to the wall’s motion. We first prove that the evolution of an initially localized Gaussian state is not affected nonlocally by a linearly moving wall: as long as the quantum state has negligible amplitude near the wall, the boundary motion has no effect. This result is further extended to related confined time-dependent oscillators in which the boundary’s motion is known to give rise to geometric phases: for a Gaussian state remaining localized far from the boundaries, the effect of the geometric phases is washed out and the particle dynamics shows no traces of a nonlocal influence that would be induced by the moving boundaries.

  18. Single particle transfer reactions: what can they tell us about vibrational states

    International Nuclear Information System (INIS)

    Hering, W.R.

    1975-01-01

    The topic discussed concerns single particle transfer reactions (SPTR) which are, in general, used to study SP states. However, good SP states are rare objects in nature and people who try to look for them have often to settle with something less than ideal. Indeed the picture of a pure SP state is physically not even reasonable. It means that a nucleon is moving around a core nucleus which stays in its ground state: a process which one could call equivalent to elastic scattering of a nucleon which is not free but rather in a bound state. However it is shown that inelastic scattering is a very strong competitor to elastic scattering if the nucleus possesses states of high collectivity. Thus one would expect inelastic scattering to happen also while the nucleon is bound. This is a very intuitive picture of what is called the fragmentation of SP states. A final state psi sub(B) is populated by the transfer reaction A + a → B + b where psi sub(B) = α 1 phi 1 phi sub(A)(0) + α 2 phi 2 phi sub(A)(lambda). Hence the population of psi sub(B) automatically involves the collective state phi sub(A)(lambda). A discussion of how one can get information about phi sub(A)(lambda) out of the experimental data is given. (Auth.)

  19. Refined source apportionment of coal combustion sources by using single particle mass spectrometry.

    Science.gov (United States)

    Xu, Jiao; Wang, Haiting; Li, Xiujian; Li, Yue; Wen, Jie; Zhang, Jinsheng; Shi, Xurong; Li, Mei; Wang, Wei; Shi, Guoliang; Feng, Yinchang

    2018-06-15

    In this study, samples of three typical coal combustion source types, including Domestic bulk coal combustion (DBCC), Heat supply station (HSS), and Power plant (PP) were sampled and large sets of their mass spectra were obtained and analyzed by SPAMS during winter in a megacity in China. A primary goal of this study involves determining representative size-resolved single particle mass spectral signatures of three source types that can be used in source apportionment activities. Chemical types describe the majority of the particles of each source type were extracted by ART-2a algorithm with distinct size characteristics, and the corresponding tracer signals were identified. Mass spectral signatures from three source types were different from each other, and the tracer signals were effective in distinguishing different source types. A high size-resolution source apportionment method were proposed in this study through matching sources' mass spectral signatures to particle spectra in a twelve days ambient sampling to source apportion the particles. Contributions of three source types got different size characteristics, as HSS source got higher contribution in smaller sizes, But PP source got higher contributions as size increased. Source contributions were also quantified during two typical haze episodes, and results indicated that HSS source (for central-heating) and DBCC source (for domestic heating and cooking) may contribute evidently to pollution formation. Copyright © 2018. Published by Elsevier B.V.

  20. Single-Particle Tracking of Human Immunodeficiency Virus Type 1 Productive Entry into Human Primary Macrophages.

    Science.gov (United States)

    Li, Qin; Li, Wei; Yin, Wen; Guo, Jia; Zhang, Zhi-Ping; Zeng, Dejun; Zhang, Xiaowei; Wu, Yuntao; Zhang, Xian-En; Cui, Zongqiang

    2017-04-25

    Macrophages are one of the major targets of human immunodeficiency virus (HIV-1), but the viral entry pathway remains poorly understood in these cells. Noninvasive virus labeling and single-virus tracking are effective tools for studying virus entry. Here, we constructed a quantum dot (QD)-encapsulated infectious HIV-1 particle to track viral entry at a single-particle level in live human primary macrophages. QDs were encapsulated in HIV-1 virions by incorporating viral accessory protein Vpr-conjugated QDs during virus assembly. With the HIV-1 particles encapsulating QDs, we monitored the early phase of viral infection in real time and observed that, during infection, HIV-1 was endocytosed in a clathrin-mediated manner; the particles were translocated into Rab5A-positive endosomes, and the core was released into the cytoplasm by viral envelope-mediated endosomal fusion. Drug inhibition assays verified that endosome fusion contributes to HIV-1 productive infection in primary macrophages. Additionally, we observed that a dynamic actin cytoskeleton is critical for HIV-1 entry and intracellular migration in primary macrophages. HIV-1 dynamics and infection could be blocked by multiple different actin inhibitors. Our study revealed a productive entry pathway in macrophages that requires both endosomal function and actin dynamics, which may assist in the development of inhibitors to block the HIV entry in macrophages.

  1. Detection of Engineered Copper Nanoparticles in Soil Using Single Particle ICP-MS

    Directory of Open Access Journals (Sweden)

    Jana Navratilova

    2015-12-01

    Full Text Available Regulatory efforts rely on nanometrology for the development and implementation of laws regarding the incorporation of engineered nanomaterials (ENMs into industrial and consumer products. Copper is currently one of the most common metals used in the constantly developing and expanding sector of nanotechnology. The use of copper nanoparticles in products, such as agricultural biocides, cosmetics and paints, is increasing. Copper based ENMs will eventually be released to the environment through the use and disposal of nano-enabled products, however, the detection of copper ENMs in environmental samples is a challenging task. Single particle inductively coupled plasma mass spectroscopy (spICP-MS has been suggested as a powerful tool for routine nanometrology efforts. In this work, we apply a spICP-MS method for the detection of engineered copper nanomaterials in colloidal extracts from natural soil samples. Overall, copper nanoparticles were successfully detected in the soil colloidal extracts and the importance of dwell time, background removal, and sample dilution for method optimization and recovery maximization is highlighted.

  2. Pick-off annihilation of positronium in matter using full correlation single particle potentials: solid He.

    Science.gov (United States)

    Zubiaga, A; Tuomisto, F; Puska, M J

    2015-01-29

    We investigate the modeling of positronium (Ps) states and their pick-off annihilation trapped at open volumes pockets in condensed molecular matter. Our starting point is the interacting many-body system of Ps and a He atom because it is the smallest entity that can mimic the energy gap between the highest occupied and lowest unoccupied molecular orbitals of molecules, and yet the many-body structure of the HePs system can be calculated accurately enough. The exact-diagonalization solution of the HePs system enables us to construct a pairwise full-correlation single-particle potential for the Ps-He interaction, and the total potential in solids is obtained as a superposition of the pairwise potentials. We study in detail Ps states and their pick-off annihilation rates in voids inside solid He and analyze experimental results for Ps-induced voids in liquid He obtaining the radii of the voids. More importantly, we generalize our conclusions by testing the validity of the Tao-Eldrup model, widely used to analyze ortho-Ps annihilation measurements for voids in molecular matter, against our theoretical results for the solid He. Moreover, we discuss the influence of the partial charges of polar molecules and the strength of the van der Waals interaction on the pick-off annihilation rate.

  3. Experimental study of the rearrangements of valence protons and neutrons amongst single-particle orbits during double- β decay in Mo100

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, S. J.; Sharp, D. K.; McAllister, S. A.; Kay, B. P.; Deibel, C. M.; Faestermann, T.; Hertenberger, R.; Mitchell, A. J.; Schiffer, J. P.; Szwec, S. V.; Thomas, J. S.; Wirth, H. -F.

    2017-11-01

    The rearrangements of protons and neutrons amongst the valence single-particle orbitals during double-beta decay of Mo-100 have been determined by measuring cross sections in (d, p), (p, d), (He-3, a), and (He-3, d) reactions on Mo-98,Mo-100 and Ru-100,Ru-102 targets. The deduced nucleon occupancies reveal significant discrepancies when compared with theoretical calculations; the same calculations have previously been used to determine the nuclear matrix element associated with the decay probability of double-beta decay of the Mo-100 system.

  4. Detection of lead nanoparticles in game meat by single particle ICP-MS following use of lead-containing bullets

    DEFF Research Database (Denmark)

    Kollander, Barbro; Widemo, Fredrik; Ågren, Erik

    2017-01-01

    This study investigated whether game meat may contain nanoparticles of lead from ammunition. Lead nanoparticles in the range 40 to 750 nm were detected by ICP-MS in single particle mode in game shot with lead-containing bullets. The median diameter of the detected nanoparticles was around 60 nm. ...

  5. Single Particle and PET-based Platform for Identifying Optimal Plasmonic Nano-Heaters for Photothermal Cancer Therapy

    DEFF Research Database (Denmark)

    Jørgensen, Jesper Tranekjær; Nørregaard, Kamilla; Tian, Pengfei

    2016-01-01

    Plasmonic nanoparticle-based photothermal cancer therapy is a promising new tool to inflict localized and irreversible damage to tumor tissue by hyperthermia, without harming surrounding healthy tissue. We developed a single particle and positron emission tomography (PET)-based platform to quanti...

  6. Inert gases in a terra sample - Measurements in six grain-size fractions and two single particles from Lunar 20.

    Science.gov (United States)

    Heymann, D.; Lakatos, S.; Walton, J. R.

    1973-01-01

    Review of the results of inert gas measurements performed on six grain-size fractions and two single particles from four samples of Luna 20 material. Presented and discussed data include the inert gas contents, element and isotope systematics, radiation ages, and Ar-36/Ar-40 systematics.

  7. Single particle deformation and analysis of the same silica coated gold nanorods before and after fs-laser pulse excitation

    NARCIS (Netherlands)

    Albrecht, W.; Deng, Tian-Song; Goris, Bart; van Huis, M.A.; Bals, Sarah; van Blaaderen, Alfons

    2016-01-01

    We performed single particle deformation experiments on silicacoated gold nanorods under femtosecond (fs) illumination. Changes in the particle shape were analyzed by electron microscopy and associated changes in the plasmon resonance by electron energy loss spectroscopy. Silica-coated rods were

  8. Development of a Charged Particle Microbeam for Single-Particle Subcellular Irradiations at the MIT Laboratory for Accelerator Beam Application

    International Nuclear Information System (INIS)

    Yanch, Jacquelyn C.

    2004-01-01

    The development of a charged particle microbeam for single particle, subcellular irradiations at the Massachusetts Institute of Technology Laboratory for Accelerator Beam Applications (MIT LABA) was initiated under this NEER aeard. The Microbeam apparatus makes use of a pre-existing electrostatic accelerator with a horizontal beam tube

  9. Principles and biophysical applications of single particle super-localization and rotational tracking

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Yan [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    While conventional Single Particle Tracking (SPT) techniques acquire 2D or 3D trajectories of particle probes, we have developed Single Particle Orientation and Rotational Tracking (SPORT) techniques to extract orientation and rotational information. Combined with DIC microscopy, the SPORT technique has been applied in biophysical studies, including membrane diffusion and intracellular transport. The rotational dynamics of nanoparticle vectors on live cell membranes was recorded and its influence on the fate of these nanoparticle vectors was elucidated. The rotational motions of gold nanorods with various surface modifiers were tracked continuously at a temporal resolution of 5 ms under a DIC microscope. We found that the rotational behaviors of gold nanorod vectors are strongly related to their surface charge, specific surface functional groups, and the availability of receptors on cell membranes. The study of rotational Brownian motion of nanoparticles on cell membranes will lead to a better understanding of the mechanisms of drug delivery and provide guidance in designing surface modification strategies for drug delivery vectors under various circumstances. To characterize the rotation mode of surface functionalized gold nanorods on cell membranes, the SPORT technique is combined with the correlation analysis of the bright and dark DIC intensities. The unique capabilities of visualizing and understanding rotational motions of functionalized nanoparticles on live cell membranes allow us to correlate rotational and translational dynamics in unprecedented detail and provide new insights for complex membrane processes, including electrostatic interactions, ligand-receptor binding, and lateral (confined and hopping) diffusion of membrane receptors. Surface-functionalized nanoparticles interact with the membrane in fundamentally different ways and exhibit distinct rotational modes. The early events of particle-membrane approach and attachment are directly visualized

  10. Characterisation of Black Carbon (BC) mixing state and flux in Beijing using single particle measurements.

    Science.gov (United States)

    Joshi, Rutambhara; Liu, Dantong; Allan, James; Coe, Hugh; Flynn, Michael; Broda, Kurtis; Olfert, Jason; Irwin, Martin; Sun, Yele; Fu, Pingqing; Wang, Junfeng; Ge, Xinlei; Langford, Ben; Nemitz, Eiko; Mullinger, Neil

    2017-04-01

    BC is generated by the incomplete combustion of carbonaceous fuels and it is an important component of fine PM2.5. In the atmosphere BC particles have a complex structure and its mixing state has crucial impact on optical properties. Quantifying the sources and emissions of black carbon in urban environments is important and presently uncertain, particularly in megacities undergoing rapid growth and change in emissions. During the winter of 2016 (10th Nov-10th Dec) the BC was characterised as part of a large joint UK-China field experiment in Beijing. This paper focuses on understanding the mixing state of BC as well as identification and quantification of BC sources. We used a combination of a Centrifugal Particle Mass Analyser (CPMA) and a Single Particle Soot Photometer (SP2) to uniquely quantify the morphology independent mass of single refractory BC particles and their coating content. The CPMA allows us to select pre-charged aerosol particles according to their mass to charge ratio and the SP2 provides information on the mass of refractory BC through a laser-induced incandescence method. Furthermore, another SP2 was used to measure the BC flux at 100m height using the Eddy Covariance method. We have successfully gathered 4 weeks of continuous measurements which include several severe pollution events in Beijing. Here we present preliminary results, characterising the distribution of coating mass on BC particles in Beijing and linking this to the main sources of BC in the city. We will provide initial estimates of the BC flux over a several kilometre footprint. Such analysis will provide important information for the further investigation of source distribution, emission, lifetime and optical properties of BC under complex environments in Beijing.

  11. RNA interference and single particle tracking analysis of hepatitis C virus endocytosis.

    Directory of Open Access Journals (Sweden)

    Kelly E Coller

    2009-12-01

    Full Text Available Hepatitis C virus (HCV enters hepatocytes following a complex set of receptor interactions, culminating in internalization via clathrin-mediated endocytosis. However, aside from receptors, little is known about the cellular molecular requirements for infectious HCV entry. Therefore, we analyzed a siRNA library that targets 140 cellular membrane trafficking genes to identify host genes required for infectious HCV production and HCV pseudoparticle entry. This approach identified 16 host cofactors of HCV entry that function primarily in clathrin-mediated endocytosis, including components of the clathrin endocytosis machinery, actin polymerization, receptor internalization and sorting, and endosomal acidification. We next developed single particle tracking analysis of highly infectious fluorescent HCV particles to examine the co-trafficking of HCV virions with cellular cofactors of endocytosis. We observe multiple, sequential interactions of HCV virions with the actin cytoskeleton, including retraction along filopodia, actin nucleation during internalization, and migration of internalized particles along actin stress fibers. HCV co-localizes with clathrin and the ubiquitin ligase c-Cbl prior to internalization. Entering HCV particles are associated with the receptor molecules CD81 and the tight junction protein, claudin-1; however, HCV-claudin-1 interactions were not restricted to Huh-7.5 cell-cell junctions. Surprisingly, HCV internalization generally occurred outside of Huh-7.5 cell-cell junctions, which may reflect the poorly polarized nature of current HCV cell culture models. Following internalization, HCV particles transport with GFP-Rab5a positive endosomes, which is consistent with trafficking to the early endosome. This study presents technical advances for imaging HCV entry, in addition to identifying new host cofactors of HCV infection, some of which may be antiviral targets.

  12. TrackMate: An open and extensible platform for single-particle tracking.

    Science.gov (United States)

    Tinevez, Jean-Yves; Perry, Nick; Schindelin, Johannes; Hoopes, Genevieve M; Reynolds, Gregory D; Laplantine, Emmanuel; Bednarek, Sebastian Y; Shorte, Spencer L; Eliceiri, Kevin W

    2017-02-15

    We present TrackMate, an open source Fiji plugin for the automated, semi-automated, and manual tracking of single-particles. It offers a versatile and modular solution that works out of the box for end users, through a simple and intuitive user interface. It is also easily scriptable and adaptable, operating equally well on 1D over time, 2D over time, 3D over time, or other single and multi-channel image variants. TrackMate provides several visualization and analysis tools that aid in assessing the relevance of results. The utility of TrackMate is further enhanced through its ability to be readily customized to meet specific tracking problems. TrackMate is an extensible platform where developers can easily write their own detection, particle linking, visualization or analysis algorithms within the TrackMate environment. This evolving framework provides researchers with the opportunity to quickly develop and optimize new algorithms based on existing TrackMate modules without the need of having to write de novo user interfaces, including visualization, analysis and exporting tools. The current capabilities of TrackMate are presented in the context of three different biological problems. First, we perform Caenorhabditis-elegans lineage analysis to assess how light-induced damage during imaging impairs its early development. Our TrackMate-based lineage analysis indicates the lack of a cell-specific light-sensitive mechanism. Second, we investigate the recruitment of NEMO (NF-κB essential modulator) clusters in fibroblasts after stimulation by the cytokine IL-1 and show that photodamage can generate artifacts in the shape of TrackMate characterized movements that confuse motility analysis. Finally, we validate the use of TrackMate for quantitative lifetime analysis of clathrin-mediated endocytosis in plant cells. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Overcoming challenges in single particle inductively coupled plasma mass spectrometry measurement of silver nanoparticles.

    Science.gov (United States)

    Liu, Jingyu; Murphy, Karen E; Winchester, Michael R; Hackley, Vincent A

    2017-10-01

    Single particle ICP-MS has evolved rapidly as a quantitative method for determining nanoparticle size and number concentration at environmentally relevant exposure levels. Central to the application of spICP-MS is a commonly used, but not rigorously validated, calibration approach based on the measured transport efficiency and the response of ionic standards. In this work, we present a comprehensive and systematic study of the accuracy, precision and robustness of spICP-MS using the rigorously characterized reference material (RM) 8017 (Polyvinylpyrrolidone Coated Nominal 75 nm Silver Nanoparticles), recently issued by the National Institute of Standards and Technology (NIST). We report for the first time, statistically significant differences in frequency-based and size-based measures of transport efficiency with NIST RM 8013 Gold Nanoparticles and demonstrate that the size-based measure of transport efficiency is more robust and yields accurate results for the silver nanoparticle RM relative to TEM-based reference values. This finding is significant, because the frequency-based method is more widely applied. Furthermore, we demonstrate that the use of acidified ionic standards improves measurement of ICP-MS Ag response, but does not degrade the accuracy of the results for AgNP suspensions in water or various other diluents. Approaches for controlling AgNP dissolution were investigated and are shown to effectively improve particle stability in dilute suspensions required for spICP-MS analysis, while minimally affecting the measured intensity and allowing for more robust analysis. This study is an important and necessary advancement toward full validation and adoption of spICP-MS by the broader research community. Graphical abstract Measurement challenges in spICP-MS analysis.

  14. FIREX-Related Biomass Burning Research Using ARM Single-Particle Soot Photometer Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Onasch, Timothy B [Aerodyne Research, Inc.; Sedlacek, Arthur J [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-03-15

    The scientific focus of this study was to investigate and quantify the mass loadings, chemical compositions, and optical properties of biomass burning particulate emissions generated in the laboratory from Western U.S. fuels using a similar instrument suite to the one deployed on the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Gulfstream-1 (G-1) aircraft during the 2013 Biomass Burning Observation Project (BBOP) field study (Kleinman and Sedlacek, 2013). We deployed the single-particle soot photometer (SP2) to make measurements of biomass burning refractory black carbon (rBC) mass loadings and size distributions to correlate with non-refractory particulate matter (NR-PM; i.e., HR-AMS) and rBC (SP-AMS) measurements as a function of photo-oxidation processes in an environmental chamber. With these measurements, we will address the following scientific questions: 1. What are the emission indices (g/kg fuel) of rBC from various wildland fuels from the Pacific Northwest (i.e., relevant to BBOP analysis) as a function of combustion conditions and simulated atmospheric processing in an environmental chamber? 2. What are the optical properties (e.g., mass-specific absorption cross-section [MAC], single-scattering albedo [SSA], and absorption Angstrom exponent [AAE)] of rBC emitted from various wildland fuels and how are they impacted by atmospheric processing? 3. How does the mixing state of rBC in biomass-burning plumes relate to the optical properties? 4. How does the emitted rBC affect radiative forcing?

  15. Large-distance and long-time asymptotic behavior of the reduced density matrix in the non-linear Schroedinger model

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, K.K.

    2010-12-15

    Starting from the form factor expansion in finite volume, we derive the multidimensional generalization of the so-called Natte series for the zero-temperature, time and distance dependent reduced density matrix in the non-linear Schroedinger model. This representation allows one to read-off straightforwardly the long-time/large-distance asymptotic behavior of this correlator. Our method of analysis reduces the complexity of the computation of the asymptotic behavior of correlation functions in the so-called interacting integrable models, to the one appearing in free fermion equivalent models. We compute explicitly the first few terms appearing in the asymptotic expansion. Part of these terms stems from excitations lying away from the Fermi boundary, and hence go beyond what can be obtained by using the CFT/Luttinger liquid based predictions. (orig.)

  16. Linear-scaling density-functional simulations of charged point defects in Al2O3 using hierarchical sparse matrix algebra.

    Science.gov (United States)

    Hine, N D M; Haynes, P D; Mostofi, A A; Payne, M C

    2010-09-21

    We present calculations of formation energies of defects in an ionic solid (Al(2)O(3)) extrapolated to the dilute limit, corresponding to a simulation cell of infinite size. The large-scale calculations required for this extrapolation are enabled by developments in the approach to parallel sparse matrix algebra operations, which are central to linear-scaling density-functional theory calculations. The computational cost of manipulating sparse matrices, whose sizes are determined by the large number of basis functions present, is greatly improved with this new approach. We present details of the sparse algebra scheme implemented in the ONETEP code using hierarchical sparsity patterns, and demonstrate its use in calculations on a wide range of systems, involving thousands of atoms on hundreds to thousands of parallel processes.

  17. PWA with full rank density matrix of the π+π−π− and π−π0π0 systems at VES setup

    International Nuclear Information System (INIS)

    Kachaev, Igor; Ryabchikov, Dmitry

    2016-01-01

    Partial Wave Analysis of the π + π − π − and π − π 0 π 0 final states produced by 29GeV/c π − beam on beryllium target is presented. About 42 · 10 6 events for the first system and 22 · 10 6 events for the second one are collected with VES setup. The statistics for 3π neutral is known to be the largest in the world while statistics for 3π charged is next to largest. The t′ range for the analysis is 0 < |t′| < 0.8 GeV 2 /c 2 . The data are analysed using formalism of full rank density matrix. The comparison of the analysis results for two systems is presented.

  18. Photoinduced hydrogen-atom eliminations of 6-hydroxyquinoline and 7-hydroxyquinoline studied by low-temperature matrix-isolation infrared spectroscopy and density-functional-theory calculations.

    Science.gov (United States)

    Sekine, Masahiko; Nagai, Yuko; Sekiya, Hiroshi; Nakata, Munetaka

    2009-07-23

    Photoreaction mechanisms of 6-hydroxyquinoline (6-HQ) and 7-hydroxyquinoline (7-HQ) in low-temperature argon matrixes have been investigated by Fourier transform infrared (IR) spectroscopy and density-functional-theory (DFT) calculations. A comparison of the observed IR spectra of reactants with the corresponding calculated spectral patterns obtained by the DFT method led to the conclusion that the hydrogen atoms in the O-H group of 6-HQ and in that of 7-HQ are selectively located at the outer position against the quinoline ring. When the matrix samples were irradiated upon UV light around 300 nm, IR spectra of unknown chemical species were observed; they were assigned to the photoreaction intermediates, quinolinoxyl radicals and ketene compounds, produced by eliminations of a hydrogen atom and a hydrogen molecule, respectively. In the photoreaction of 7-HQ, a small amount of keto form was also produced by intramolecular hydrogen-atom transfer from oxygen to nitrogen in an argon cage. Kinetic analyses were made by assuming that 5-ketene and 6-ketene were produced from 6-HQ, while 6-ketene and 7-ketene were produced from 7-HQ. The effective rate constants estimated from the absorbance changes of IR bands against irradiation time revealed that the reaction pathway to produce 6-ketene was minor in both HQs, leading to the conclusion that the conformation of reactants, HQs, plays an important role in the photoproduction of ketenes through biradicals in the Wolff rearrangement.

  19. Strong correlation in acene sheets from the active-space variational two-electron reduced density matrix method: effects of symmetry and size.

    Science.gov (United States)

    Pelzer, Kenley; Greenman, Loren; Gidofalvi, Gergely; Mazziotti, David A

    2011-06-09

    Polyaromatic hydrocarbons (PAHs) are a class of organic molecules with importance in several branches of science, including medicine, combustion chemistry, and materials science. The delocalized π-orbital systems in PAHs require highly accurate electronic structure methods to capture strong electron correlation. Treating correlation in PAHs has been challenging because (i) traditional wave function methods for strong correlation have not been applicable since they scale exponentially in the number of strongly correlated orbitals, and (ii) alternative methods such as the density-matrix renormalization group and variational two-electron reduced density matrix (2-RDM) methods have not been applied beyond linear acene chains. In this paper we extend the earlier results from active-space variational 2-RDM theory [Gidofalvi, G.; Mazziotti, D. A. J. Chem. Phys. 2008, 129, 134108] to the more general two-dimensional arrangement of rings--acene sheets--to study the relationship between geometry and electron correlation in PAHs. The acene-sheet calculations, if performed with conventional wave function methods, would require wave function expansions with as many as 1.5 × 10(17) configuration state functions. To measure electron correlation, we employ several RDM-based metrics: (i) natural-orbital occupation numbers, (ii) the 1-RDM von Neumann entropy, (iii) the correlation energy per carbon atom, and (iv) the squared Frobenius norm of the cumulant 2-RDM. The results confirm a trend of increasing polyradical character with increasing molecular size previously observed in linear PAHs and reveal a corresponding trend in two-dimensional (arch-shaped) PAHs. Furthermore, in PAHs of similar size they show significant variations in correlation with geometry. PAHs with the strictly linear geometry (chains) exhibit more electron correlation than PAHs with nonlinear geometries (sheets).

  20. A non-JKL density matrix functional for intergeminal correlation between closed-shell geminals from analysis of natural orbital configuration interaction expansions.

    Science.gov (United States)

    van Meer, R; Gritsenko, O V; Baerends, E J

    2018-03-14

    Almost all functionals that are currently used in density matrix functional theory have been created by some a priori ansatz that generates approximations to the second-order reduced density matrix (2RDM). In this paper, a more consistent approach is used: we analyze the 2RDMs (in the natural orbital basis) of rather accurate multi-reference configuration interaction expansions for several small molecules (CH 4 , NH 3 , H 2 O, FH, and N 2 ) and use the knowledge gained to generate new functionals. The analysis shows that a geminal-like structure is present in the 2RDMs, even though no geminal theory has been applied from the onset. It is also shown that the leading non-geminal dynamical correlation contributions are generated by a specific set of double excitations. The corresponding determinants give rise to non-JKL (non Coulomb/Exchange like) multipole-multipole dispersive attractive terms between geminals. Due to the proximity of the geminals, these dispersion terms are large and cannot be omitted, proving pure JKL functionals to be essentially deficient. A second correction emerges from the observation that the "normal" geminal-like exchange between geminals breaks down when one breaks multiple bonds. This problem can be fixed by doubling the exchange between bond broken geminals, effectively restoring the often physically correct high-spin configurations on the bond broken fragments. Both of these corrections have been added to the commonly used antisymmetrized product of strongly orthogonal geminals functional. The resulting non-JKL functional Extended Löwdin-Shull Dynamical-Multibond is capable of reproducing complete active space self-consistent field curves, in which one active orbital is used for each valence electron.

  1. Combining Density Functional Theory and Green's Function Theory: Range-Separated, Nonlocal, Dynamic, and Orbital-Dependent Hybrid Functional.

    Science.gov (United States)

    Kananenka, Alexei A; Zgid, Dominika

    2017-11-14

    We present a rigorous framework which combines single-particle Green's function theory with density functional theory based on a separation of electron-electron interactions into short- and long-range components. Short-range contribution to the total energy and exchange-correlation potential is provided by a density functional approximation, while the long-range contribution is calculated using an explicit many-body Green's function method. Such a hybrid results in a nonlocal, dynamic, and orbital-dependent exchange-correlation functional of a single-particle Green's function. In particular, we present a range-separated hybrid functional called srSVWN5-lrGF2 which combines the local-density approximation and the second-order Green's function theory. We illustrate that similarly to density functional approximations, the new functional is weakly basis-set dependent. Furthermore, it offers an improved description of the short-range dynamic correlation. The many-body contribution to the functional mitigates the many-electron self-interaction error present in many density functional approximations and provides a better description of molecular properties. Additionally, we illustrate that the new functional can be used to scale down the self-energy and, therefore, introduce an additional sparsity to the self-energy matrix that in the future can be exploited in calculations for large molecules or periodic systems.

  2. Spin-memory loss due to spin-orbit coupling at ferromagnet/heavy-metal interfaces: Ab initio spin-density matrix approach

    Science.gov (United States)

    Dolui, Kapildeb; Nikolić, Branislav K.

    2017-12-01

    Spin-memory loss (SML) of electrons traversing ferromagnetic-metal/heavy-metal (FM/HM), FM/normal-metal (FM/NM), and HM/NM interfaces is a fundamental phenomenon that must be invoked to explain consistently large numbers of spintronic experiments. However, its strength extracted by fitting experimental data to phenomenological semiclassical theory, which replaces each interface by a fictitious bulk diffusive layer, is poorly understood from a microscopic quantum framework and/or materials properties. Here we describe an ensemble of flowing spin quantum states using spin-density matrix, so that SML is measured like any decoherence process by the decay of its off-diagonal elements or, equivalently, by the reduction of the magnitude of polarization vector. By combining this framework with density functional theory, we examine how all three components of the polarization vector change at Co/Ta, Co/Pt, Co/Cu, Pt/Cu, and Pt/Au interfaces embedded within Cu/FM/HM/Cu vertical heterostructures. In addition, we use ab initio Green's functions to compute spectral functions and spin textures over FM, HM, and NM monolayers around these interfaces which quantify interfacial spin-orbit coupling and explain the microscopic origin of SML in long-standing puzzles, such as why it is nonzero at the Co/Cu interface; why it is very large at the Pt/Cu interface; and why it occurs even in the absence of disorder, intermixing and magnons at the interface.

  3. Silver speciation and characterization of nanoparticles released from plastic food containers by single particle ICPMS.

    Science.gov (United States)

    Ramos, K; Gómez-Gómez, M M; Cámara, C; Ramos, L

    2016-05-01

    Silver migration from a commercial baby feeding bottle and a food box containing AgNPs, as confirmed by SEM-EDX analysis, was evaluated using food simulant solutions [i.e., water, 3% (v/v) acetic acid, and 10% and 90% (v/v) ethanol]. Silver release was investigated at temperatures in the 20-70°C range using contact times of up to 10 days. Migration of silver from the food box was in all cases 2 to 3 orders of magnitude higher than that observed for the baby bottle, although the total silver content in the original box material was half of that found in the baby bottle. As expected, for both food containers, silver migration depended on both the nature of the tested solution and the applied conditions. The highest release was observed for 3% acetic acid at 70°C for 2h, corresponding to 62ngdm(2) and 1887ngdm(-2) of silver for the baby bottle and the food box, respectively. Single particle-inductively coupled plasma mass spectrometry (SP-ICPMS) was used to characterise and quantify AgNPs in the food simulants extracts. Sample preparation was optimized to preserve AgNPs integrity. The experimental parameters affecting AgNPs detection, sizing and quantification by SP-ICPMS were also optimised. Analyses of water and acidic extracts revealed the presence of both dissolved silver and AgNPs. Small AgNPs (in the 18-30nm range) and particle number concentrations within the 4-1510 10(6)L(-1) range were detected, corresponding to only 0.1-8.6% of the total silver released from these materials. The only exception was AgNPs migrated into water at 40°C and 70°C from the food box, which accounted for as much as 34% and 69% of the total silver content, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Probing correlated quantum many-body systems at the single-particle level

    International Nuclear Information System (INIS)

    Endres, Manuel

    2013-01-01

    The detection of correlation and response functions plays a crucial role in the experimental characterization of quantum many-body systems. In this thesis, we present novel techniques for the measurement of such functions at the single-particle level. Specifically, we show the single-atom- and single-site-resolved detection of an ultracold quantum gas in an optical lattice. The quantum gas is described by the Bose-Hubbard model, which features a zero temperature phase transition from a superfluid to a Mott-insulating state, a paradigm example of a quantum phase transition. We used the aforementioned detection techniques to study correlation and response properties across the superfluid-Mott-insulator transition. The single-atom sensitivity of our method is achieved by fluorescence detection of individual atoms with a high signal-to-noise ratio. A high-resolution objective collects the fluorescence light and yields in situ 'snapshots' of the quantum gas that allow for a single-site-resolved reconstruction of the atomic distribution. This allowed us to measure two-site and non-local correlation-functions across the superfluid-Mott-insulator transition. Non-local correlation functions are based on the information of an extended region of the system and play an important role for the characterization of low-dimensional quantum phases. While non-local correlation functions were so far only theoretical tools, our results show that they are actually experimentally accessible. Furthermore, we used a new thermometry scheme, based on the counting of individual thermal excitations, to measure the response of the system to lattice modulation. Using this method, we studied the excitation spectrum of the system across the two-dimensional superfluid-Mott-insulator transition. In particular, we detected a 'Higgs' amplitude mode in the strongly-interacting superfluid close to the transition point where the system is described by an effectively Lorentz-invariant low-energy theory

  5. Probing correlated quantum many-body systems at the single-particle level

    Energy Technology Data Exchange (ETDEWEB)

    Endres, Manuel

    2013-02-27

    The detection of correlation and response functions plays a crucial role in the experimental characterization of quantum many-body systems. In this thesis, we present novel techniques for the measurement of such functions at the single-particle level. Specifically, we show the single-atom- and single-site-resolved detection of an ultracold quantum gas in an optical lattice. The quantum gas is described by the Bose-Hubbard model, which features a zero temperature phase transition from a superfluid to a Mott-insulating state, a paradigm example of a quantum phase transition. We used the aforementioned detection techniques to study correlation and response properties across the superfluid-Mott-insulator transition. The single-atom sensitivity of our method is achieved by fluorescence detection of individual atoms with a high signal-to-noise ratio. A high-resolution objective collects the fluorescence light and yields in situ 'snapshots' of the quantum gas that allow for a single-site-resolved reconstruction of the atomic distribution. This allowed us to measure two-site and non-local correlation-functions across the superfluid-Mott-insulator transition. Non-local correlation functions are based on the information of an extended region of the system and play an important role for the characterization of low-dimensional quantum phases. While non-local correlation functions were so far only theoretical tools, our results show that they are actually experimentally accessible. Furthermore, we used a new thermometry scheme, based on the counting of individual thermal excitations, to measure the response of the system to lattice modulation. Using this method, we studied the excitation spectrum of the system across the two-dimensional superfluid-Mott-insulator transition. In particular, we detected a 'Higgs' amplitude mode in the strongly-interacting superfluid close to the transition point where the system is described by an effectively Lorentz

  6. Synthesis of micro-sized shell-isolated 3D plasmonic superstructures for in situ single-particle SERS monitoring

    Science.gov (United States)

    Zhang, Kun; Zhao, Jingjing; Ji, Ji; Liu, Baohong

    2016-04-01

    A single-particle SERS system enabling real-time and in situ observation of Au-catalyzed reactions has been developed. Both the catalytic activity and the SERS effect are coupled into a single bi-functional 3D superstructure comprising Au nanosatellites self-assembled onto a shell-insulated Ag microflower core, which eliminates the interference from photocatalysis.A single-particle SERS system enabling real-time and in situ observation of Au-catalyzed reactions has been developed. Both the catalytic activity and the SERS effect are coupled into a single bi-functional 3D superstructure comprising Au nanosatellites self-assembled onto a shell-insulated Ag microflower core, which eliminates the interference from photocatalysis. Electronic supplementary information (ESI) available: Details of the synthesis and characterization of the Ag@SiO2@Au superstructures (SEM and TEM images, UV/vis and SERS spectra). See DOI: 10.1039/c6nr00278a

  7. Convergence of lateral dynamic measurements in the plasma membrane of live cells from single particle tracking and STED-FCS

    DEFF Research Database (Denmark)

    Lagerholm, B. Christoffer; Andrade, Débora M.; Clausen, Mathias P.

    2017-01-01

    Fluorescence correlation spectroscopy (FCS) in combination with the super-resolution imaging method STED (STED-FCS), and single-particle tracking (SPT) are able to directly probe the lateral dynamics of lipids and proteins in the plasma membrane of live cells at spatial scales much below the diff......Fluorescence correlation spectroscopy (FCS) in combination with the super-resolution imaging method STED (STED-FCS), and single-particle tracking (SPT) are able to directly probe the lateral dynamics of lipids and proteins in the plasma membrane of live cells at spatial scales much below...... the diffraction limit of conventional microscopy. However, a major disparity in interpretation of data from SPT and STED-FCS remains, namely the proposed existence of a very fast (unhindered) lateral diffusion coefficient, ≥5 μm2 s-1, in the plasma membrane of live cells at very short length scales, ≈ 100 nm...

  8. Quasifree (p , 2 p ) Reactions on Oxygen Isotopes: Observation of Isospin Independence of the Reduced Single-Particle Strength

    Science.gov (United States)

    Atar, L.; Paschalis, S.; Barbieri, C.; Bertulani, C. A.; Díaz Fernández, P.; Holl, M.; Najafi, M. A.; Panin, V.; Alvarez-Pol, H.; Aumann, T.; Avdeichikov, V.; Beceiro-Novo, S.; Bemmerer, D.; Benlliure, J.; Boillos, J. M.; Boretzky, K.; Borge, M. J. G.; Caamaño, M.; Caesar, C.; Casarejos, E.; Catford, W.; Cederkall, J.; Chartier, M.; Chulkov, L.; Cortina-Gil, D.; Cravo, E.; Crespo, R.; Dillmann, I.; Elekes, Z.; Enders, J.; Ershova, O.; Estrade, A.; Farinon, F.; Fraile, L. M.; Freer, M.; Galaviz Redondo, D.; Geissel, H.; Gernhäuser, R.; Golubev, P.; Göbel, K.; Hagdahl, J.; Heftrich, T.; Heil, M.; Heine, M.; Heinz, A.; Henriques, A.; Hufnagel, A.; Ignatov, A.; Johansson, H. T.; Jonson, B.; Kahlbow, J.; Kalantar-Nayestanaki, N.; Kanungo, R.; Kelic-Heil, A.; Knyazev, A.; Kröll, T.; Kurz, N.; Labiche, M.; Langer, C.; Le Bleis, T.; Lemmon, R.; Lindberg, S.; Machado, J.; Marganiec-Gałązka, J.; Movsesyan, A.; Nacher, E.; Nikolskii, E. Y.; Nilsson, T.; Nociforo, C.; Perea, A.; Petri, M.; Pietri, S.; Plag, R.; Reifarth, R.; Ribeiro, G.; Rigollet, C.; Rossi, D. M.; Röder, M.; Savran, D.; Scheit, H.; Simon, H.; Sorlin, O.; Syndikus, I.; Taylor, J. T.; Tengblad, O.; Thies, R.; Togano, Y.; Vandebrouck, M.; Velho, P.; Volkov, V.; Wagner, A.; Wamers, F.; Weick, H.; Wheldon, C.; Wilson, G. L.; Winfield, J. S.; Woods, P.; Yakorev, D.; Zhukov, M.; Zilges, A.; Zuber, K.; R3B Collaboration

    2018-01-01

    Quasifree one-proton knockout reactions have been employed in inverse kinematics for a systematic study of the structure of stable and exotic oxygen isotopes at the R3B /LAND setup with incident beam energies in the range of 300 - 450 MeV /u . The oxygen isotopic chain offers a large variation of separation energies that allows for a quantitative understanding of single-particle strength with changing isospin asymmetry. Quasifree knockout reactions provide a complementary approach to intermediate-energy one-nucleon removal reactions. Inclusive cross sections for quasifree knockout reactions of the type O A (p ,2 p )N-1A have been determined and compared to calculations based on the eikonal reaction theory. The reduction factors for the single-particle strength with respect to the independent-particle model were obtained and compared to state-of-the-art ab initio predictions. The results do not show any significant dependence on proton-neutron asymmetry.

  9. Analysis of electron-correlation effects in strongly correlated systems (N2 and N2+ ) by applying the density-matrix renormalization-group method and quantum information theory

    Science.gov (United States)

    Stemmle, Christian; Paulus, Beate; Legeza, Örs

    2018-02-01

    The dissociation of N2 and N2 + has been studied by using the ab initio density-matrix renormalization-group (DMRG) method. Accurate potential energy surfaces (PESs) have been obtained for the electronic ground states of N2 (X1 Σg+ ) and N2+ (X2 Σg+ ) as well as for the N2+ excited state B2 Σu+ . Inherent to the DMRG approach, the eigenvalues of the reduced density matrix (ρ ) and their correlation functions are at hand. Thus we can apply quantum information theory directly and investigate how the wave function changes along the PES and depict differences between the different states. Moreover, by characterizing quantum entanglement between different pairs of orbitals and analyzing the reduced density matrix, we achieved a better understanding of the multireference character featured by these systems.

  10. Inclusive single-particle production in two-photon collisions at LEP II with the DELPHI detector

    CERN Document Server

    Abdallah, J.; Adam, W.; Adzic, P.; Albrecht, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P.P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G.J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P.S.L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T.J.V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J.M.; Buschbeck, B.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S.U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M.J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; da Silva, T.; Da Silva, W.; Della Ricca, G.; De Angelis, A.; De Boer, W.; De Clercq, C.; De Lotto, B.; De Maria, N.; De Min, A.; de Paula, L.; Di Ciaccio, L.; Di Simone, A.; Doroba, K.; Drees, J.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M.C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Hoffman, J.; Holmgren, S.O.; Holt, P.J.; Houlden, M.A.; Jackson, J.N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E.K.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B.P.; Kerzel, U.; King, B.T.; Kjaer, N.J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J.H.; Lopez, J.M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Mc Nulty, R.; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nemecek, S.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J.P.; Palka, H.; Papadopoulou, Th.D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M.E.; Polok, G.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.L.; Tyapkin, I.A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; Van Dam, P.; Van Eldik, J.; van Remortel, N.; Van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimine, N.I.; Zintchenko, A.; Zupan, M.

    2009-01-01

    A study of the inclusive charged hadron production in two-photon collisions is described. The data were collected with the DELPHI detector at LEP II. Results on the inclusive single-particle p_T distribution and the differential charged hadrons dsigma/dp_T cross-section are presented and compared to the predictions of perturbative NLO QCD calculations and to published results.

  11. Mass spectra features of biomass burning boiler and coal burning boiler emitted particles by single particle aerosol mass spectrometer.

    Science.gov (United States)

    Xu, Jiao; Li, Mei; Shi, Guoliang; Wang, Haiting; Ma, Xian; Wu, Jianhui; Shi, Xurong; Feng, Yinchang

    2017-11-15

    In this study, single particle mass spectra signatures of both coal burning boiler and biomass burning boiler emitted particles were studied. Particle samples were suspended in clean Resuspension Chamber, and analyzed by ELPI and SPAMS simultaneously. The size distribution of BBB (biomass burning boiler sample) and CBB (coal burning boiler sample) are different, as BBB peaks at smaller size, and CBB peaks at larger size. Mass spectra signatures of two samples were studied by analyzing the average mass spectrum of each particle cluster extracted by ART-2a in different size ranges. In conclusion, BBB sample mostly consists of OC and EC containing particles, and a small fraction of K-rich particles in the size range of 0.2-0.5μm. In 0.5-1.0μm, BBB sample consists of EC, OC, K-rich and Al_Silicate containing particles; CBB sample consists of EC, ECOC containing particles, while Al_Silicate (including Al_Ca_Ti_Silicate, Al_Ti_Silicate, Al_Silicate) containing particles got higher fractions as size increase. The similarity of single particle mass spectrum signatures between two samples were studied by analyzing the dot product, results indicated that part of the single particle mass spectra of two samples in the same size range are similar, which bring challenge to the future source apportionment activity by using single particle aerosol mass spectrometer. Results of this study will provide physicochemical information of important sources which contribute to particle pollution, and will support source apportionment activities. Copyright © 2017. Published by Elsevier B.V.

  12. A tilt-pair based method for assigning the projection directions of randomly oriented single-particle molecules.

    Science.gov (United States)

    Ueno, Yutaka; Mine, Shouhei; Kawasaki, Kazunori

    2015-04-01

    In this article, we describe an improved method to assign the projection angle for averaged images using tilt-pair images for three-dimensional reconstructions from randomly oriented single-particle molecular images. Our study addressed the so-called 'initial volume problem' in the single-particle reconstruction, which involves estimation of projection angles of the particle images. The projected images of the particles in different tilt observations were mixed and averaged for the characteristic views. After the ranking of these group average images in terms of reliable tilt angle information, mutual tilt angles between images are assigned from the constituent tilt-pair information. Then, multiples of the conical tilt series are made and merged to construct a network graph of the particle images in terms of projection angles, which are optimized for the three-dimensional reconstruction. We developed the method with images of a synthetic object and applied it to a single-particle image data set of the purified deacetylase from archaea. With the introduction of low-angle tilt observations to minimize unfavorable imaging conditions due to tilting, the results demonstrated reasonable reconstruction models without imposing symmetry to the structure. This method also guides its users to discriminate particle images of different conformational state of the molecule. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Effect of Structural Heterogeneity in Chemical Composition on Online Single-Particle Mass Spectrometry Analysis of Sea Spray Aerosol Particles.

    Science.gov (United States)

    Sultana, Camille M; Collins, Douglas B; Prather, Kimberly A

    2017-04-04

    Knowledge of the surface composition of sea spray aerosols (SSA) is critical for understanding and predicting climate-relevant impacts. Offline microscopy and spectroscopy studies have shown that dry supermicron SSA tend to be spatially heterogeneous particles with sodium- and chloride-rich cores surrounded by organic enriched surface layers containing minor inorganic seawater components such as magnesium and calcium. At the same time, single-particle mass spectrometry reveals several different mass spectral ion patterns, suggesting that there may be a number of chemically distinct particle types. This study investigates factors controlling single particle mass spectra of nascent supermicron SSA. Depth profiling experiments conducted on SSA generated by a fritted bubbler and total ion intensity analysis of SSA generated by a marine aerosol reference tank were compared with observations of ambient SSA observed at two coastal locations. Analysis of SSA produced by utilizing controlled laboratory methods reveals that single-particle mass spectra with weak sodium ion signals can be produced by the desorption of the surface of typical dry SSA particles composed of salt cores and organic-rich coatings. Thus, this lab-based study for the first time unifies findings from offline and online measurements as well as lab and field studies of the SSA particle-mixing state.

  14. Facilitating model reconstruction for single-particle scattering using small-angle X-ray scattering methods.

    Science.gov (United States)

    Ma, Shufen; Liu, Haiguang

    2016-04-01

    X-ray free-electron lasers generate intense femtosecond X-ray pulses, so that high-resolution structure determination becomes feasible from noncrystalline samples, such as single particles or single molecules. At the moment, the orientation of sample particles cannot be precisely controlled, and consequently the unknown orientation needs to be recovered using computational algorithms. This delays the model reconstruction until all the scattering patterns have been re-oriented, which often entails a long elapse of time and until the completion of the experiment. The scattering patterns from single particles or multiple particles can be summed to form a virtual powder diffraction pattern, and the low-resolution region, corresponding to the small-angle X-ray scattering (SAXS) regime, can be analysed using existing SAXS methods. This work presents a pipeline that converts single-particle data sets into SAXS data, from which real-time model reconstruction is achieved using the model retrieval approach implemented in the software package SASTBX [Liu, Hexemer & Zwart (2012). J. Appl. Cryst. 45 , 587-593]. To illustrate the applications, two case studies are presented with real experimental data sets collected at the Linac Coherent Light Source.

  15. Single-Particle Cryo-EM and 3D Reconstruction of Hybrid Nanoparticles with Electron-Dense Components.

    Science.gov (United States)

    Yu, Guimei; Yan, Rui; Zhang, Chuan; Mao, Chengde; Jiang, Wen

    2015-10-01

    Single-particle cryo-electron microscopy (cryo-EM), accompanied with 3D reconstruction, is a broadly applicable tool for the structural characterization of macromolecules and nanoparticles. Recently, the cryo-EM field has pushed the limits of this technique to higher resolutions and samples of smaller molecular mass, however, some samples still present hurdles to this technique. Hybrid particles with electron-dense components, which have been studied using single-particle cryo-EM yet with limited success in 3D reconstruction due to the interference caused by electron-dense elements, constitute one group of such challenging samples. To process such hybrid particles, a masking method is developed in this work to adaptively remove pixels arising from electron-dense portions in individual projection images while maintaining maximal biomass signals for subsequent 2D alignment, 3D reconstruction, and iterative refinements. As demonstrated by the success in 3D reconstruction of an octahedron DNA/gold hybrid particle, which has been previously published without a 3D reconstruction, the devised strategy that combines adaptive masking and standard single-particle 3D reconstruction approach has overcome the hurdle of electron-dense elements interference, and is generally applicable to cryo-EM structural characterization of most, if not all, hybrid nanomaterials with electron-dense components. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Development of a high throughput single-particle screening for inorganic semiconductor nanorods as neural voltage sensor

    Science.gov (United States)

    Kuo, Yung; Park, Kyoungwon; Li, Jack; Ingargiola, Antonino; Park, Joonhyuck; Shvadchak, Volodymyr; Weiss, Shimon

    2017-08-01

    Monitoring membrane potential in neurons requires sensors with minimal invasiveness, high spatial and temporal (sub-ms) resolution, and large sensitivity for enabling detection of sub-threshold activities. While organic dyes and fluorescent proteins have been developed to possess voltage-sensing properties, photobleaching, cytotoxicity, low sensitivity, and low spatial resolution have obstructed further studies. Semiconductor nanoparticles (NPs), as prospective voltage sensors, have shown excellent sensitivity based on Quantum confined Stark effect (QCSE) at room temperature and at single particle level. Both theory and experiment have shown their voltage sensitivity can be increased significantly via material, bandgap, and structural engineering. Based on theoretical calculations, we synthesized one of the optimal candidates for voltage sensors: 12 nm type-II ZnSe/CdS nanorods (NRs), with an asymmetrically located seed. The voltage sensitivity and spectral shift were characterized in vitro using spectrally-resolved microscopy using electrodes grown by thin film deposition, which "sandwich" the NRs. We characterized multiple batches of such NRs and iteratively modified the synthesis to achieve higher voltage sensitivity (ΔF/F> 10%), larger spectral shift (>5 nm), better homogeneity, and better colloidal stability. Using a high throughput screening method, we were able to compare the voltage sensitivity of our NRs with commercial spherical quantum dots (QDs) with single particle statistics. Our method of high throughput screening with spectrally-resolved microscope also provides a versatile tool for studying single particles spectroscopy under field modulation.

  17. Simultaneous characterisation of silver nanoparticles and determination of dissolved silver in chicken meat subjected to in vitro human gastrointestinal digestion using single particle inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Ramos, K; Ramos, L; Gómez-Gómez, M M

    2017-04-15

    In this study, a chicken meat containing AgNPs (candidate reference material Nanolyse 14) has been used as a model matrix to study the fate and behaviour of AgNPs upon oral ingestion following an in vitro model that included saliva, gastric and intestinal digestions. The behaviour of a 40nm AgNPs standard solution during the three digestion steps was also evaluated. Sample preparation conditions were optimised to prevent AgNPs oxidation and/or aggregation and to ensure the representativeness of the reported results. Total silver released from the test sample and the evaluated AgNP standard was determined by inductively coupled plasma mass spectrometry (ICPMS). The presence of both AgNPs and dissolved silver in the extracts was confirmed by single particle (SP)-ICPMS analysis. AgNPs were sized and the particle number concentration determined in the three digestion juices. Experimental results demonstrated differentiated behaviours for AgNP from the standard solution and the meat sample highlighting the relevance of using physiological conditions for accurate risk assessment. In the most realistic scenario assayed (i.e., spiked chicken meat analysis), only 13% of the AgNPs present in the reference material would reach the intestine wall. Meanwhile, other bioaccessible dissolved forms of silver would account for as much as 44% of the silver initially spiked to the meat paste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Characterization of gold nanoparticle uptake by tomato plants using enzymatic extraction followed by single-particle inductively coupled plasma-mass spectrometry analysis.

    Science.gov (United States)

    Dan, Yongbo; Zhang, Weilan; Xue, Runmiao; Ma, Xingmao; Stephan, Chady; Shi, Honglan

    2015-03-03

    Plant uptake and accumulation of nanoparticles (NPs) represent an important pathway for potential human expose to NPs. Consequently, it is imperative to understand the uptake of accumulation of NPs in plant tissues and their unique physical and chemical properties within plant tissues. Current technologies are limited in revealing the unique characteristics of NPs after they enter plant tissues. An enzymatic digestion method, followed by single-particle inductively coupled plasma-mass spectrometry (SP-ICP-MS) analysis, was developed for simultaneous determination of gold NP (AuNP) size, size distribution, particle concentration, and dissolved Au concentration in tomato plant tissues. The experimental results showed that Macerozyme R-10 enzyme was capable of extracting AuNPs from tomato plants without causing dissolution or aggregation of AuNPs. The detection limit for quantification of AuNP size was 20 nm, and the AuNP particle concentration detection limit was 1000 NPs/mL. The particle concentration recoveries of spiked AuNPs were high (79-96%) in quality control samples. The developed SP-ICP-MS method was able to accurately measure AuNP size, size distribution, and particle concentration in the plant matrix. The dosing study indicated that tomato can uptake AuNPs as intact particles without alternating the AuNP properties.

  19. Mechanism for odd-electron anion generation of dihydroxybenzoic acid isomers in matrix-assisted laser desorption/ionization mass spectrometry with density functional theory calculations.

    Science.gov (United States)

    Yamagaki, Tohru; Takeuchi, Michika; Watanabe, Takehiro; Sugahara, Kohtaro; Takeuchi, Takae

    2016-12-30

    Proton and radical are transferred between matrices and matrix and analyte in matrix-assisted laser desorption/ionization (MALDI) and these transfers drive ionization of analytes. The odd-electron anion [M-2H] •- was generated in dihydroxybenzoic acids (DHBs) and the ion abundance of the 2,5-DHB was the highest among six DHB isomers. We were interested in the mechanism of the ion generation of the odd-electron anion. The observed [M-2H] •- and [M-3H] - ions, which were generated with the hydrogen radical removed from the phenolic hydroxyl groups (OH) in DHB isomers, were analyzed using negative-ion MALDI-MS. The enthalpy for ion generation and their stable structures were calculated using the density functional theory (DFT) calculation program Gaussian 09 with the B3LYP functional and the 6-31+G(d) basis set. The number of observed [M-2H] •- and [M-3H] - ions of the DHB isomers was dependent on the positions of the phenolic OH groups in the DHB isomers because the carboxy group interacts with the ortho OH group due to neighboring group participation, as confirmed from the stable structures of the [M-2H] •- anions calculated with the Gaussian 09 program. The DHB isomers were placed into three categories according to the number of the ions. Odd-electron anions ([M-2H] •- ) and [M-2H • -H] - ([M-3H] - ) ions were generated from DHB isomers due to removal of the hydrogen radical from the phenolic groups. The enthalpy for ion generation revealed that ion formation proceeds via a two-step pathway through the [M-M] - ion as an intermediate. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd.

  20. The development of optical microscopy techniques for the advancement of single-particle studies

    Energy Technology Data Exchange (ETDEWEB)

    Marchuk, Kyle [Iowa State Univ., Ames, IA (United States)

    2013-05-15

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called “non-blinking” quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to

  1. Sensitivity of the Single Particle Soot Photometer to different black carbon types

    Science.gov (United States)

    Laborde, M.; Mertes, P.; Zieger, P.; Dommen, J.; Baltensperger, U.; Gysel, M.

    2012-05-01

    Black carbon (BC) is now mainly of anthropogenic origin. It is the dominant light absorbing component of atmospheric aerosols, playing an important role in the earth's radiative balance and therefore relevant to climate change studies. In addition, BC is known to be harmful to human beings making it relevant to policy makers. Nevertheless, the measurement of BC remains biased by the instrument-based definition of BC. The Single Particle Soot Photometer (SP2), allows the measurement of the refractory BC (rBC) mass of individual particles using laser-induced incandescence. However, the SP2 needs an empirical calibration to retrieve the rBC mass from the incandescence signal and the sensitivity of the SP2 differs between different BC types. Ideally, for atmospheric studies, the SP2 should be calibrated using ambient particles containing a known mass of ambient rBC. However, such "ambient BC" calibration particles cannot easily be obtained and thus commercially available BC particles are commonly used for SP2 calibration instead. In this study we tested the sensitivity of the SP2 to different BC types in order to characterize the potential error introduced by using non-ambient BC for calibration. The sensitivity of the SP2 was determined, using an aerosol particle mass analyzer, for rBC from thermodenuded diesel exhaust, wood burning exhaust and ambient particles as well as for commercially available products: Aquadag® and fullerene soot. Thermodenuded, fresh diesel exhaust has been found to be ideal for SP2 calibration for two reasons. First, the small amount of non-BC matter upon emission reduces the risk of bias due to incomplete removal of non-BC matter and second, it is considered to represent atmospheric rBC in urban locations where diesel exhaust is the main source of BC. The SP2 was found to be up to 16% less sensitive to rBC from thermodenuded ambient particles (≤15 fg) than rBC from diesel exhaust, however, at least part of this difference can be explained

  2. Biomass Burning Research Using DOE ARM Single-Particle Soot Photometer (SP2) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Onasch, Timothy B [Aerodyne Research, Inc., Billerica, MA (United States); Sedlacek, Arthur J [Brookhaven National Lab. (BNL), Upton, NY (United States); Lewis, Ernie [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-03-01

    The focus of this laboratory study was to investigate the chemical and optical properties, and the detection efficiencies, of tar balls generated in the laboratory using the same instruments deployed on the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Gulfstream-1 (G-1) aircraft during the 2013 Biomass Burning Observation Project (BBOP) field study, during which tar balls were observed in wildland biomass burning particulate emissions. Key goals of this laboratory study were: (a) measuring the chemical composition of tar balls to provide insights into the atmospheric processes that form (evaporation/oxidation) and modify them in biomass burning plumes, (b) identifying whether tar balls contain refractory black carbon, (c) determining the collection efficiencies of tar balls impacting on the 600oC heated tungsten vaporizer in the Aerodyne Soot Particle Aerosol Mass Spectrometer (SP-AMS) (i.e., given the observed low volatilities, AMS measurements might underestimate organic biomass burning plume loadings), and (d) measuring the wavelength-dependent, mass-specific absorption cross-sections of brown carbon components of tar balls. This project was funded primarily by the DOE Atmospheric System Research (ASR) program, and the ARM Facility made their single-particle soot photometer (SP2) available for September 1-September 31, 2016 in the Aerodyne laboratories. The ARM mentor (Dr. Sedlacek) requested no funds for mentorship or data reduction. All ARM SP2 data collected as part of this project are archived in the ARM Data Archive in accordance with established protocols. The main objectives of the ARM Biomass Burning Observation Period (BBOP, July-October, 2013) field campaign were to (1) assess the impact of wildland fires in the Pacific Northwest on climate, through near-field and regional intensive measurement campaigns, and (2) investigate agricultural burns to determine how those biomass burn plumes differ from

  3. Developing new optical imaging techniques for single particle and molecule tracking in live cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    Differential interference contrast (DIC) microscopy is a far-field as well as wide-field optical imaging technique. Since it is non-invasive and requires no sample staining, DIC microscopy is suitable for tracking the motion of target molecules in live cells without interfering their functions. In addition, high numerical aperture objectives and condensers can be used in DIC microscopy. The depth of focus of DIC is shallow, which gives DIC much better optical sectioning ability than those of phase contrast and dark field microscopies. In this work, DIC was utilized to study dynamic biological processes including endocytosis and intracellular transport in live cells. The suitability of DIC microscopy for single particle tracking in live cells was first demonstrated by using DIC to monitor the entire endocytosis process of one mesoporous silica nanoparticle (MSN) into a live mammalian cell. By taking advantage of the optical sectioning ability of DIC, we recorded the depth profile of the MSN during the endocytosis process. The shape change around the nanoparticle due to the formation of a vesicle was also captured. DIC microscopy was further modified that the sample can be illuminated and imaged at two wavelengths simultaneously. By using the new technique, noble metal nanoparticles with different shapes and sizes were selectively imaged. Among all the examined metal nanoparticles, gold nanoparticles in rod shapes were found to be especially useful. Due to their anisotropic optical properties, gold nanorods showed as diffraction-limited spots with disproportionate bright and dark parts that are strongly dependent on their orientation in the 3D space. Gold nanorods were developed as orientation nanoprobes and were successfully used to report the self-rotation of gliding microtubules on kinesin coated substrates. Gold nanorods were further used to study the rotational motions of cargoes during the endocytosis and intracellular transport processes in live mammalian

  4. Random matrix theory for transition strengths: Applications and open questions

    Science.gov (United States)

    Kota, V. K. B.

    2017-12-01

    Embedded random matrix ensembles are generic models for describing statistical properties of finite isolated interacting quantum many-particle systems. A finite quantum system, induced by a transition operator, makes transitions from its states to the states of the same system or to those of another system. Examples are electromagnetic transitions (then the initial and final systems are same), nuclear beta and double beta decay (then the initial and final systems are different) and so on. Using embedded ensembles (EE), there are efforts to derive a good statistical theory for transition strengths. With m fermions (or bosons) in N mean-field single particle levels and interacting via two-body forces, we have with GOE embedding, the so called EGOE(1+2). Now, the transition strength density (transition strength multiplied by the density of states at the initial and final energies) is a convolution of the density generated by the mean-field one-body part with a bivariate spreading function due to the two-body interaction. Using the embedding U(N) algebra, it is established, for a variety of transition operators, that the spreading function, for sufficiently strong interactions, is close to a bivariate Gaussian. Also, as the interaction strength increases, the spreading function exhibits a transition from bivariate Breit-Wigner to bivariate Gaussian form. In appropriate limits, this EE theory reduces to the polynomial theory of Draayer, French and Wong on one hand and to the theory due to Flambaum and Izrailev for one-body transition operators on the other. Using spin-cutoff factors for projecting angular momentum, the theory is applied to nuclear matrix elements for neutrinoless double beta decay (NDBD). In this paper we will describe: (i) various developments in the EE theory for transition strengths; (ii) results for nuclear matrix elements for 130Te and 136Xe NDBD; (iii) important open questions in the current form of the EE theory.

  5. Improved single particle potential for transport model simulations of nuclear reactions induced by rare isotope beams

    International Nuclear Information System (INIS)

    Xu Chang; Li Baoan

    2010-01-01

    Taking into account more accurately the isospin dependence of nucleon-nucleon interactions in the in-medium many-body force term of the Gogny effective interaction, new expressions for the single-nucleon potential and the symmetry energy are derived. Effects of both the spin (isospin) and the density dependence of nuclear effective interactions on the symmetry potential and the symmetry energy are examined. It is shown that they both play a crucial role in determining the symmetry potential and the symmetry energy at suprasaturation densities. The improved single-nucleon potential will be useful for more accurate simulation of nuclear reactions induced by rare-isotope beams within transport models.

  6. Can Density Matrix Embedding Theory with the Complete Activate Space Self-Consistent Field Solver Describe Single and Double Bond Breaking in Molecular Systems?

    Science.gov (United States)

    Pham, Hung Q; Bernales, Varinia; Gagliardi, Laura

    2018-03-13

    Density matrix embedding theory (DMET) [ Phys. Rev. Lett. 2012, 109, 186404] has been demonstrated as an efficient wave-function-based embedding method to treat extended systems. Despite its success in many quantum lattice models, the extension of DMET to real chemical systems has been tested only on selected cases. Herein, we introduce the use of the complete active space self-consistent field (CASSCF) method as a correlated impurity solver for DMET, leading to a method called CAS-DMET. We test its performance in describing the dissociation of H-H single bonds in a H 10 ring model system and an N═N double bond in azomethane (CH 3 -N═N-CH 3 ) and pentyldiazene (CH 3 (CH 2 ) 4 -N═NH). We find that the performance of CAS-DMET is comparable to CASSCF with different active space choices when single-embedding DMET corresponding to only one embedding problem for the system is used. When multiple embedding problems are used for the system, the CAS-DMET is in good agreement with CASSCF for the geometries around the equilibrium, but not in equal agreement at bond dissociation.

  7. Density matrix renormalization group simulations of SU(N ) Heisenberg chains using standard Young tableaus: Fundamental representation and comparison with a finite-size Bethe ansatz

    Science.gov (United States)

    Nataf, Pierre; Mila, Frédéric

    2018-04-01

    We develop an efficient method to perform density matrix renormalization group simulations of the SU(N ) Heisenberg chain with open boundary conditions taking full advantage of the SU(N ) symmetry of the problem. This method is an extension of the method previously developed for exact diagonalizations and relies on a systematic use of the basis of standard Young tableaux. Concentrating on the model with the fundamental representation at each site (i.e., one particle per site in the fermionic formulation), we have benchmarked our results for the ground-state energy up to N =8 and up to 420 sites by comparing them with Bethe ansatz results on open chains, for which we have derived and solved the Bethe ansatz equations. The agreement for the ground-state energy is excellent for SU(3) (12 digits). It decreases with N , but it is still satisfactory for N =8 (six digits). Central charges c are also extracted from the entanglement entropy using the Calabrese-Cardy formula and agree with the theoretical values expected from the SU (N) 1 Wess-Zumino-Witten conformal field theories.

  8. Structure, single-particle and many-particle coefficients of Lennard ...

    Indian Academy of Sciences (India)

    The dynamics of atomic pairs in the short-time regime in liquid aluminium may be said to be governed by the potential of mean force, which depends on the static structure of liquid Al at all investigated temperatures. A polynomial dependence of on density and temperature was observed in contradiction to Arrhenius law.

  9. Evaluation of number concentration quantification by single-particle inductively coupled plasma mass spectrometry: microsecond vs. millisecond dwell times.

    Science.gov (United States)

    Abad-Álvaro, Isabel; Peña-Vázquez, Elena; Bolea, Eduardo; Bermejo-Barrera, Pilar; Castillo, Juan R; Laborda, Francisco

    2016-07-01

    The quality of the quantitative information in single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS) depends directly on the number concentration of the nanoparticles in the sample analyzed, which is proportional to the flux of nanoparticles through the plasma. Particle number concentrations must be selected in accordance with the data acquisition frequency, to control the precision from counting statistics and the bias, which is produced by the occurrence of multiple-particle events recorded as single-particle events. With quadrupole mass spectrometers, the frequency of data acquisition is directly controlled by the dwell time. The effect of dwell times from milli- to microseconds (10 ms, 5 ms, 100 μs, and 50 μs) on the quality of the quantitative data has been studied. Working with dwell times in the millisecond range, precision figures about 5 % were achieved, whereas using microsecond dwell times, the suitable fluxes of nanoparticles are higher and precision was reduced down to 1 %; this was independent of the dwell time selected. Moreover, due to the lower occurrence of multiple-nanoparticle events, linear ranges are wider when dwell times equal to or shorter than 100 μs are used. A calculation tool is provided to determine the optimal concentration for any instrument or experimental conditions selected. On the other hand, the use of dwell times in the microsecond range reduces significantly the contribution of the background and/or the presence of dissolved species, in comparison with the use of millisecond dwell times. Although the use of dwell times equal to or shorter than 100 μs offers improved performance working in single-particle mode, the use of conventional dwell times (3-10 ms) should not be discarded, once their limitations are known.

  10. Investigation of the single Particle Structure of the neutron-rich Sodium Isotopes $^{27-31}\\!$Na

    CERN Multimedia

    2002-01-01

    We propose to study the single particle structure of the neutron-rich isotopes $^{27-31}\\!$Na. These isotopes will be investigated via neutron pickup reactions in inverse kinematics on a deuterium and a beryllium target. Scattered beam particles and transfer products are detected in a position sensitive detector located around 0$^\\circ$. De-excitation $\\gamma$-rays emitted after an excited state has been populated will be registered by the MINIBALL Germanium array. The results will shed new light on the structure of the neutron-rich sodium isotopes and especially on the region of strong deformation around the N=20 nucleus $^{31}\\!$Na.

  11. Characterization of silver nanoparticle aggregates using single particle-inductively coupled plasma-mass spectrometry (spICP-MS).

    Science.gov (United States)

    Kim, Hyun-A; Lee, Byung-Tae; Na, So-Young; Kim, Kyoung-Woong; Ranville, James F; Kim, Soon-Oh; Jo, Eunhye; Eom, Ig-Chun

    2017-03-01

    The single particle-inductively coupled plasma-mass spectrometry was applied to characterize the aggregates of AgNPs. was applied to characterize the aggregates of AgNPs. Two sizes of citrate-AgNPs and PVP-AgNPs were used at relatively high and predicted environmental concentrations under various ionic strengths. Citrate-AgNP aggregated with increases in the ionic strength, whereas PVP-AgNPs were sterically stable. The critical coagulation concentrations were 85 mM and 100 mM NaNO 3 for 60 nm and 100 nm citrate-AgNPs at 2 mg L -1 as total Ag obtained by dynamic light scattering (DLS). At 2 mg L -1 as total Ag, the mass of an aggregate gradually increased with increasing ionic strength for both citrate-AgNP during spICP-MS analyses. The average number of single particles derived from the mass in an aggregate was calculated to be 8.68 and 5.95 for 60 nm and 100 nm citrate-AgNPs at 85 mM and 100 mM NaNO 3 , respectively after 2 h. The mass fractal dimensions were determined to be 2.97 and 2.83, further implying that the aggregate structures were very rigid and compact. Only marginal increases in the average mass and number of single particles in the aggregate units were found during 24 h under environmentally relevant AgNP concentrations. The average number of single particles constituting an aggregate unit for 60 nm and 100 nm citrate-AgNPs was 1.24 and 1.37 after 24 h at a high ionic strength. These results indicate that under environmentally relevant conditions, the collision frequency is predominant in the aggregation and that NPs are likely to encounter natural colloids such as clay and organic matter to form hetero-aggregates. Copyright © 2016. Published by Elsevier Ltd.

  12. Pre-asymptotic behavior of single-particle overlap integrals of non-Borromean two-neutron halos

    International Nuclear Information System (INIS)

    Timofeyuk, N.K.; Tostevin, J.A.; Blokhintsev, L.D.

    2003-01-01

    For non-Borromean two-neutron halo nuclei, modifications to the behavior of single-particle overlap integrals will arise due to the correlations of the two interacting nucleons in the halo. An additional contribution to the overlap integral can be obtained using the Feynman diagram approach. This additional term is modeled using a simple local potential model. We show that these modifications may play a role in detailed interpretations of experimental results from single-nucleon knockout, transfer, and other reactions that probe the single-nucleon overlap functions

  13. Characterizing physical properties and heterogeneous chemistry of single particles in air using optical trapping-Raman spectroscopy

    Science.gov (United States)

    Gong, Z.; Wang, C.; Pan, Y. L.; Videen, G.

    2017-12-01

    Heterogeneous reactions of solid particles in a gaseous environment are of increasing interest; however, most of the heterogeneous chemistry studies of airborne solids were conducted on particle ensembles. A close examination on the heterogeneous chemistry between single particles and gaseous-environment species is the key to elucidate the fundamental mechanisms of hydroscopic growth, cloud nuclei condensation, secondary aerosol formation, etc., and reduce the uncertainty of models in radiative forcing, climate change, and atmospheric chemistry. We demonstrate an optical trapping-Raman spectroscopy (OT-RS) system to study the heterogeneous chemistry of the solid particles in air at single-particle level. Compared to other single-particle techniques, optical trapping offers a non-invasive, flexible, and stable method to isolate single solid particle from substrates. Benefited from two counter-propagating hollow beams, the optical trapping configuration is adaptive to trap a variety of particles with different materials from inorganic substitution (carbon nanotubes, silica, etc.) to organic, dye-doped polymers and bioaerosols (spores, pollen, etc.), with different optical properties from transparent to strongly absorbing, with different sizes from sub-micrometers to tens of microns, or with distinct morphologies from loosely packed nanotubes to microspheres and irregular pollen grains. The particles in the optical trap may stay unchanged, surface degraded, or optically fragmented according to different laser intensity, and their physical and chemical properties are characterized by the Raman spectra and imaging system simultaneously. The Raman spectra is able to distinguish the chemical compositions of different particles, while the synchronized imaging system can resolve their physical properties (sizes, shapes, morphologies, etc.). The temporal behavior of the trapped particles also can be monitored by the OT-RS system at an indefinite time with a resolution from

  14. Burnout of pulverized biomass particles in large scale boiler – Single particle model approach

    DEFF Research Database (Denmark)

    Saastamoinen, Jaakko; Aho, Martti; Moilanen, Antero

    2010-01-01

    the particle combustion model is coupled with one-dimensional equation of motion of the particle, is applied for the calculation of the burnout in the boiler. The particle size of biomass can be much larger than that of coal to reach complete burnout due to lower density and greater reactivity. The burner...... location and the trajectories of the particles might be optimised to maximise the residence time and burnout....

  15. Single particle analysis of thylakoid proteins from Thermosynechococcus elongatus and Synechocystis 6803 : Localization of the CupA subunit of NDH-1

    NARCIS (Netherlands)

    Folea, I. Mihaela; Zhang, Pengpeng; Nowaczyk, Marc M.; Ogawa, Teruo; Aro, Eva-Marl; Boekema, Egbert J.; Aro, Eva-Mari

    The larger protein complexes of the cyanobacterial photosynthetic membrane of Thermosynechoccus elongatus and Synechocystis 6803 were studied by single particle electron microscopy after detergent solubilization, without any purification steps. Besides the "standard" L-shaped NDH-1L complex, related

  16. Development of the Tagger Microscope & Analysis of Spin Density Matrix Elements in gamma-p -> phi-p for the GlueX Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Alexander E. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2017-05-31

    The quark model has been successful in classifying the spectrum of mesons observed since the 1960s, however, it fails to explain some of the measured bound states. Lattice QCD predictions have shown that an excited gluonic field may contribute to the quantum numbers of the bound state and form hybrid mesons, qq-bar-g, where g is a constituent gluon. It is possible for some hybrids to possess quantum numbers forbidden by the quark model and are known as \\smoking gun" hybrids due to their lack of mixing with conventional qq-bar states. The GlueX photoproduction experiment at Jefferson Lab in Newport News, VA is designed to study hybrid mesons and to map their spectrum. A 12 GeV electron beam produces 9 GeV linearly polarized photons via coherent bremsstrahlung in a diamond radiator which are incident on a liquid H2 target. In order to determine the photon energy, the use of a tagging spectrometer which measures the energy of the post-bremsstrahlung electron is required. The tagger microscope is a scintillating fiber detector designed to measure the energy of electrons corresponding to the polarized photons. The main focus of this work is the design and construction of the tagger microscope electronics as well as the calibration of the microscope within the experiment. Additionally, the analysis of the reaction gamma-p -> phi-p, where phi (1020) -> K+K-, is discussed. This analysis provides a high-level calibration for GlueX in regards to understanding the acceptance and sensitivity of the detectors to mesons with strange quark content. By studying the phi with linearly polarized photons, information on the production mechanism can be extracted. The measurement of the phi spin-density matrix elements are shown and compared with past data which are found to be in agreement.

  17. A comparison of single particle tracking and temporal image correlation spectroscopy for quantitative analysis of endosome motility

    DEFF Research Database (Denmark)

    Lund, F. W.; Wustner, D.

    2013-01-01

    Single particle tracking (SPT) is becoming a standard method to extract transport parameters from time-lapse image sequences of fluorescent vesicles in living cells. Another method to obtain these data is temporal image correlation spectroscopy (TICS), but this method is less often used for measu......Single particle tracking (SPT) is becoming a standard method to extract transport parameters from time-lapse image sequences of fluorescent vesicles in living cells. Another method to obtain these data is temporal image correlation spectroscopy (TICS), but this method is less often used...... for measurement of intracellular vesicle transport. Here, we present an extensive comparison of SPT and TICS. First we examine the effect of photobleaching, shading and noise on SPT and TICS analysis using simulated image sequences. To this end, we developed a simple photophysical model, which relates spatially...... varying illumination intensity to the bleaching propensity and fluorescence intensity of the moving particles. We found that neither SPT nor TICS are affected by photobleaching per se, but the transport parameters obtained by both methods are sensitive to the signal-to-noise ratio. In addition, the number...

  18. Continuous quantum mechanics of single particles in closed and quasi-closed systems: Pt. 1 and 2

    International Nuclear Information System (INIS)

    Brieger, M.

    2004-01-01

    The established statistical interpretation of quantum mechanics never envisioned our today's ability to handle and investigate single particles in trap devices. After scrutinizing the development of quantum mechanics, we point out that Schroedinger's equation establishes an energy representation, which obtains the energy eigenvalues as extrema of the energy curve or on the energy hypersurface, respectively. We also strongly emphasize its never exhausted capability of accounting in classical terms and full detail for the dynamics of single particles in closed systems. This is demonstrated for several familiar examples. They show that the eigensolutions to Schroedinger's equation must not blindly be identified with physically stationary states. The gained insight into the true dynamics allows to describe, without involving QED, the time evolution of a complete spontaneous transition as being driven by unbalanced internal dynamics. This mechanism relies on the fact that perfect balances are only possible in the exact extrema of the total energy and that any deviation, which is characterized by nonstationary states, makes multipole moments oscillate and emit electromagnetic radiation. (orig.)

  19. Detection of lead nanoparticles in game meat by single particle ICP-MS following use of lead-containing bullets.

    Science.gov (United States)

    Kollander, Barbro; Widemo, Fredrik; Ågren, Erik; Larsen, Erik H; Loeschner, Katrin

    2017-03-01

    This study investigated whether game meat may contain nanoparticles of lead from ammunition. Lead nanoparticles in the range 40 to 750 nm were detected by ICP-MS in single particle mode in game shot with lead-containing bullets. The median diameter of the detected nanoparticles was around 60 nm. The particle mass concentration ranged from 290 to 340 ng/g meat and the particle number concentrations from 27 to 50 million particles/g meat. The size limit of detection strongly depended on the level of dissolved lead and was in the range of 40 to 80 nm. In game meat sampled more than 10 cm away from the wound channel, no lead particles with a diameter larger than 40 nm were detected. In addition to dissolved lead in meat that originated from particulates, the presence of lead nano particles in game meat represents a hitherto unattended source of lead with a largely unknown toxicological impact to humans. Graphical Abstract Detection of lead nanoparticles in game meat by single particle ICP-MS following use of leadcontaining bullets.

  20. Reconstruction from limited single-particle diffraction data via simultaneous determination of state, orientation, intensity, and phase.

    Science.gov (United States)

    Donatelli, Jeffrey J; Sethian, James A; Zwart, Peter H

    2017-07-11

    Free-electron lasers now have the ability to collect X-ray diffraction patterns from individual molecules; however, each sample is delivered at unknown orientation and may be in one of several conformational states, each with a different molecular structure. Hit rates are often low, typically around 0.1%, limiting the number of useful images that can be collected. Determining accurate structural information requires classifying and orienting each image, accurately assembling them into a 3D diffraction intensity function, and determining missing phase information. Additionally, single particles typically scatter very few photons, leading to high image noise levels. We develop a multitiered iterative phasing algorithm to reconstruct structural information from single-particle diffraction data by simultaneously determining the states, orientations, intensities, phases, and underlying structure in a single iterative procedure. We leverage real-space constraints on the structure to help guide optimization and reconstruct underlying structure from very few images with excellent global convergence properties. We show that this approach can determine structural resolution beyond what is suggested by standard Shannon sampling arguments for ideal images and is also robust to noise.

  1. Source characterization of urban particles from meat smoking activities in Chongqing, China using single particle aerosol mass spectrometry.

    Science.gov (United States)

    Chen, Yang; Wenger, John C; Yang, Fumo; Cao, Junji; Huang, Rujin; Shi, Guangming; Zhang, Shumin; Tian, Mi; Wang, Huanbo

    2017-09-01

    A Single Particle Aerosol Mass Spectrometer (SPAMS) was deployed in the urban area of Chongqing to characterize the particles present during a severe particulate pollution event that occurred in winter 2014-2015. The measurements were made at a time when residents engaged in traditional outdoor meat smoking activities to preserve meat before the Chinese Spring Festival. The measurement period was predominantly characterized by stagnant weather conditions, highly elevated levels of PM 2.5 , and low visibility. Eleven major single particle types were identified, with over 92.5% of the particles attributed to biomass burning emissions. Most of the particle types showed appreciable signs of aging in the stagnant air conditions. To simulate the meat smoking activities, a series of controlled smoldering experiments was conducted using freshly cut pine and cypress branches, both with and without wood logs. SPAMS data obtained from these experiments revealed a number of biomass burning particle types, including an elemental and organic carbon (ECOC) type that proved to be the most suitable marker for meat smoking activities. The traditional activity of making preserved meat in southwestern China is shown here to be a major source of particulate pollution. Improved measures to reduce emissions from the smoking of meat should be introduced to improve air quality in regions where smoking meat activity prevails. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Site-Specific SERS Assay for Survivin Protein Dimer: From Ensemble Experiments to Correlative Single-Particle Imaging.

    Science.gov (United States)

    Wissler, Jörg; Bäcker, Sandra; Feis, Alessandro; Knauer, Shirley K; Schlücker, Sebastian

    2017-08-01

    An assay for Survivin, a small dimeric protein which functions as modulator of apoptosis and cell division and serves as a promising diagnostic biomarker for different types of cancer, is presented. The assay is based on switching on surface-enhanced Raman scattering (SERS) upon incubation of the Survivin protein dimer with Raman reporter-labeled gold nanoparticles (AuNP). Site-specificity is achieved by complexation of nickel-chelated N-nitrilo-triacetic acid (Ni-NTA) anchors on the particle surface by multiple histidines (His 6 -tag) attached to each C-terminus of the centrosymmetric protein dimer. Correlative single-particle analysis using light sheet laser microscopy enables the simultaneous observation of both elastic and inelastic light scattering from the same sample volume. Thereby, the SERS-inactive AuNP-protein monomers can be directly discriminated from the SERS-active AuNP-protein dimers/oligomers. This information, i.e. the percentage of SERS-active AuNP in colloidal suspension, is not accessible from conventional SERS experiments due to ensemble averaging. The presented correlative single-particle approach paves the way for quantitative site-specific SERS assays in which site-specific protein recognition by small chemical and in particular supramolecular ligands can be tested. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Single particle tracking of internalized metallic nanoparticles reveals heterogeneous directed motion after clathrin dependent endocytosis in mouse chromaffin cells

    Science.gov (United States)

    Gabriel, Manuela; Moya-Díaz, José; Gallo, Luciana I.; Marengo, Fernando D.; Estrada, Laura C.

    2018-01-01

    Most accepted single particle tracking methods are able to obtain high-resolution trajectories for relatively short periods of time. In this work we apply a straightforward combination of single-particle tracking microscopy and metallic nanoparticles internalization on mouse chromaffin cells to unveil the intracellular trafficking mechanism of metallic-nanoparticle-loaded vesicles (MNP-V) complexes after clathrin dependent endocytosis. We found that directed transport is the major route of MNP-Vs intracellular trafficking after stimulation (92.6% of the trajectories measured). We then studied the MNP-V speed at each point along the trajectory, and found that the application of a second depolarization stimulus during the tracking provokes an increase in the percentage of low-speed trajectory points in parallel with a decrease in the number of high-speed trajectory points. This result suggests that stimulation may facilitate the compartmentalization of internalized MNPs in a more restricted location such as was already demonstrated in neuronal and neuroendocrine cells (Bronfman et al 2003 J. Neurosci. 23 3209-20). Although further experiments will be required to address the mechanisms underlying this transport dynamics, our studies provide quantitative evidence of the heterogeneous behavior of vesicles mobility after endocytosis in chromaffin cells highlighting the potential of MNPs as alternative labels in optical microscopy to provide new insights into the vesicles dynamics in a wide variety of cellular environments.

  4. Enhancement of single particle rare earth doped NaYF4: Yb, Er emission with a gold shell

    International Nuclear Information System (INIS)

    Li, Ling; Green, Kory; Hallen, Hans; Lim, Shuang Fang

    2015-01-01

    Upconversion of infrared light to visible light has important implications for bioimaging. However, the small absorption cross-section of rare earth dopants has limited the efficiency of these anti-Stokes nanomaterials. We present enhanced excitation absorption and single particle fluorescent emission of sodium yttrium fluoride, NaYF 4 : Yb, Er based upconverting nanoparticles coated with a gold nanoshell through surface plasmon resonance. The single gold-shell coated nanoparticles show enhanced absorption in the near infrared, enhanced total emission intensity, and increased green relative to red emission. We also show differences in enhancement between single and aggregated gold shell nanoparticles. The surface plasmon resonance of the gold-shell coated nanoparticle is shown to be dependent on the shell thickness. In contrast to other reported results, our single particle experimental observations are corroborated by finite element calculations that show where the green/red emission enhancement occurs, and what portion of the enhancement is due to electromagnetic effects. We find that the excitation enhancement and green/red emission ratio enhancement occurs at the corners and edges of the doped emissive core. (paper)

  5. Characteristic rotational behaviors of rod-shaped cargo revealed by automated five-dimensional single particle tracking.

    Science.gov (United States)

    Chen, Kuangcai; Gu, Yan; Sun, Wei; Bin Dong; Wang, Gufeng; Fan, Xinxin; Xia, Tian; Fang, Ning

    2017-10-12

    We report an automated single particle tracking technique for tracking the x, y, z coordinates, azimuthal and elevation angles of anisotropic plasmonic gold nanorod probes in live cells. These five spatial coordinates are collectively referred to as 5D. This method overcomes a long-standing challenge in distinguishing rotational motions from translational motions in the z-axis in differential interference contrast microscopy to result in full disclosure of nanoscale motions with high accuracy. Transferrin-coated endocytic gold nanorod cargoes initially undergo active rotational diffusion and display characteristic rotational motions on the membrane. Then as the cargoes being enclosed in clathrin-coated pits, they slow down the active rotation and experience a quiet period before they restore active rotational diffusion after fission and eventually being transported away from the original entry spots. Finally, the 3D trajectories and the accompanying rotational motions of the cargoes are resolved accurately to render the intracellular transport process in live cells.Distinguishing rotational motions from translational motions in the z-axis has been a long-standing challenge. Here the authors develop a five-dimensional single particle tracking method to detect rotational behaviors of nanocargos during clathrin-mediated endocytosis and intracellular transport.

  6. Continuous quantum mechanics of single particles in closed and quasi-closed systems: Pt. 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Brieger, M. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Stuttgart (Germany). Inst. fuer Technische Physik

    2004-07-01

    The established statistical interpretation of quantum mechanics never envisioned our today's ability to handle and investigate single particles in trap devices. After scrutinizing the development of quantum mechanics, we point out that Schroedinger's equation establishes an energy representation, which obtains the energy eigenvalues as extrema of the energy curve or on the energy hypersurface, respectively. We also strongly emphasize its never exhausted capability of accounting in classical terms and full detail for the dynamics of single particles in closed systems. This is demonstrated for several familiar examples. They show that the eigensolutions to Schroedinger's equation must not blindly be identified with physically stationary states. The gained insight into the true dynamics allows to describe, without involving QED, the time evolution of a complete spontaneous transition as being driven by unbalanced internal dynamics. This mechanism relies on the fact that perfect balances are only possible in the exact extrema of the total energy and that any deviation, which is characterized by nonstationary states, makes multipole moments oscillate and emit electromagnetic radiation. (orig.)

  7. Interplay between Single-Particle and Collective Effects in the Odd-A Cu Isotopes beyond N=40

    CERN Document Server

    Stefanescu, I; Balabanski, D L; Blasi, N; Blazhev, A; Bree, N; Cederkäll, J; Cocolios, T E; Davinson, T; Diriken, J; Eberth, J; Ekström, A; Fedorov, D; Fedosseev, V; Fraile-Prieto, L M; Franchoo, S; Gladnishki, K; Huyse, M; Ivanov, O; Ivanov, I; Iwanicki, J; Jolie, J; Konstantinopoulos, T; Kröll, Th; Krücken, R; Köster, U; Lagoyannis, A; Lo Bianco, G; Maierbeck, P; Marsh, B A; Napiorkowski, P; Patronis, N; Pauwels, D; Rainovski, G; Reiter, P; Riisager, K; Seliverstov, M; Sletten, G; Van de Walle, J; Van Duppen, P; Voulot, D; Warr, N; Wenander, F; Wrzosek, K

    2008-01-01

    Collective properties of the low-lying levels in the odd-A 67–73Cu were investigated by Coulomb excitation with radioactive beams. The beams were produced at ISOLDE and postaccelerated by REX-ISOLDE up to 2.99  MeV/u. In 67,69Cu, low-lying 1/2-, 5/2-, and 7/2- states were populated. In 71,73Cu, besides the known transitions deexciting the single-particle-like 5/2- and core-coupled 7/2- levels, γ rays of 454 and 135 keV, respectively, were observed for the first time. Based on a reanalysis of β-decay work and comparison with the systematics, a spin 1/2- is suggested for these excited states. Three B(E2) values were determined in each of the four isotopes. The results indicate a significant change in the structure of the odd-A Cu isotopes beyond N=40 where single-particle-like and collective levels are suggested to coexist at very low excitation energies.

  8. Level density from realistic nuclear potentials

    International Nuclear Information System (INIS)

    Calboreanu, A.

    2006-01-01

    Nuclear level density of some nuclei is calculated using a realistic set of single particle states (sps). These states are derived from the parameterization of nuclear potentials that describe the observed sps over a large number of nuclei. This approach has the advantage that one can infer level density for nuclei that are inaccessible for a direct study, but are very important in astrophysical processes such as those close to the drip lines. Level densities at high excitation energies are very sensitive to the actual set of sps. The fact that the sps spectrum is finite has extraordinary consequences upon nuclear reaction yields due to the leveling-off of the level density at extremely high excitation energies wrongly attributed so far to other nuclear effects. Single-particle level density parameter a parameter is extracted by fitting the calculated densities to the standard Bethe formula

  9. 4-D single particle tracking of synthetic and proteinaceous microspheres reveals preferential movement of nuclear particles along chromatin – poor tracks

    Directory of Open Access Journals (Sweden)

    Athale Chaitanya

    2004-11-01

    Full Text Available Abstract Background The dynamics of nuclear organization, nuclear bodies and RNPs in particular has been the focus of many studies. To understand their function, knowledge of their spatial nuclear position and temporal translocation is essential. Typically, such studies generate a wealth of data that require novel methods in image analysis and computational tools to quantitatively track particle movement on the background of moving cells and shape changing nuclei. Results We developed a novel 4-D image processing platform (TIKAL for the work with laser scanning and wide field microscopes. TIKAL provides a registration software for correcting global movements and local deformations of cells as well as 2-D and 3-D tracking software. With this new tool, we studied the dynamics of two different types of nuclear particles, namely nuclear bodies made from GFP-NLS-vimentin and microinjected 0.1 μm – wide polystyrene beads, by live cell time-lapse microscopy combined with single particle tracking and mobility analysis. We now provide a tool for the automatic 3-D analysis of particle movement in parallel with the acquisition of chromatin density data. Conclusions Kinetic analysis revealed 4 modes of movement: confined obstructed, normal diffusion and directed motion. Particle tracking on the background of stained chromatin revealed that particle movement is directly related to local reorganization of chromatin. Further a direct comparison of particle movement in the nucleoplasm and the cytoplasm exhibited an entirely different kinetic behaviour of vimentin particles in both compartments. The kinetics of nuclear particles were slightly affected by depletion of ATP and significantly disturbed by disruption of actin and microtubule networks. Moreover, the hydration state of the nucleus had a strong impact on the mobility of nuclear bodies since both normal diffusion and directed motion were entirely abolished when cells were challenged with 0.6 M

  10. 4-D single particle tracking of synthetic and proteinaceous microspheres reveals preferential movement of nuclear particles along chromatin – poor tracks

    Science.gov (United States)

    Bacher, Christian P; Reichenzeller, Michaela; Athale, Chaitanya; Herrmann, Harald; Eils, Roland

    2004-01-01

    Background The dynamics of nuclear organization, nuclear bodies and RNPs in particular has been the focus of many studies. To understand their function, knowledge of their spatial nuclear position and temporal translocation is essential. Typically, such studies generate a wealth of data that require novel methods in image analysis and computational tools to quantitatively track particle movement on the background of moving cells and shape changing nuclei. Results We developed a novel 4-D image processing platform (TIKAL) for the work with laser scanning and wide field microscopes. TIKAL provides a registration software for correcting global movements and local deformations of cells as well as 2-D and 3-D tracking software. With this new tool, we studied the dynamics of two different types of nuclear particles, namely nuclear bodies made from GFP-NLS-vimentin and microinjected 0.1 μm – wide polystyrene beads, by live cell time-lapse microscopy combined with single particle tracking and mobility analysis. We now provide a tool for the automatic 3-D analysis of particle movement in parallel with the acquisition of chromatin density data. Conclusions Kinetic analysis revealed 4 modes of movement: confined obstructed, normal diffusion and directed motion. Particle tracking on the background of stained chromatin revealed that particle movement is directly related to local reorganization of chromatin. Further a direct comparison of particle movement in the nucleoplasm and the cytoplasm exhibited an entirely different kinetic behaviour of vimentin particles in both compartments. The kinetics of nuclear particles were slightly affected by depletion of ATP and significantly disturbed by disruption of actin and microtubule networks. Moreover, the hydration state of the nucleus had a strong impact on the mobility of nuclear bodies since both normal diffusion and directed motion were entirely abolished when cells were challenged with 0.6 M sorbitol. This effect correlated

  11. Nuclear reaction matrix calculations with a shell-model Q

    International Nuclear Information System (INIS)

    Barrett, B.R.; McCarthy, R.J.

    1976-01-01

    Das Barrett-Hewitt-McCarthy (BHM) method for calculating the nuclear reaction matrix G is used to compute shell-model matrix elements for A = 18 nuclei. The energy denominators in intermediate states containing one unoccupied single-particle (s.p.) state and one valence s.p. state are treated correctly, in contrast to previous calculations. These corrections are not important for valence-shell matrix elements but are found to lead to relatively large changes in cross-shell matrix elements involved in core-polarization diagrams. (orig.) [de

  12. Single particle and molecular assembly analysis of polyribosomes by single- and double-tilt cryo electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Myasnikov, Alexander G. [IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Department of Integrative Structural Biology, Centre National de la Recherche Scientifique (CNRS) UMR 7104/ Institut National de la Santé de la Recherche Médicale INSERM U964/ Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch (France); Afonina, Zhanna A. [Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region (Russian Federation); Klaholz, Bruno P., E-mail: klaholz@igbmc.fr [IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Department of Integrative Structural Biology, Centre National de la Recherche Scientifique (CNRS) UMR 7104/ Institut National de la Santé de la Recherche Médicale INSERM U964/ Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch (France)

    2013-03-15

    Cryo electron tomography (cryo-ET) can provide cellular and molecular structural information on various biological samples. However, the detailed interpretation of tomograms reconstructed from single-tilt data tends to suffer from low signal-to-noise ratio and artefacts caused by some systematically missing angular views. While these can be overcome by sub-tomogram averaging, they remain limiting for the analysis of unique structures. Double-tilt ET can improve the tomogram quality by acquiring a second tilt series after an in-plane rotation, but its usage is not widespread yet because it is considered technically demanding and it is rarely used under cryo conditions. Here we show that double-tilt cryo-ET improves the quality of 3D reconstructions so significantly that even single particle analysis can be envisaged despite of the intrinsically low image contrast obtained from frozen-hydrated specimens. This is illustrated by the analysis of eukaryotic polyribosomes in which individual ribosomes were reconstructed using single-tilt, partial and full double-tilt geometries. The improved tomograms favour the faster convergence of iterative sub-tomogram averaging and allow a better 3D classification using multivariate statistical analysis. Our study of single particles and molecular assemblies within polysomes illustrates that the dual-axis approach is particularly useful for cryo applications of ET, both for unique objects and for structures that can be classified and averaged. - Highlights: ► Double-tilt cryo-ET improves 3D reconstructions thus making single particle analysis possible. ► Dual-axis cryo-ET data favour a faster convergence of iterative sub-tomogram averaging. ► Individual ribosomes were reconstructed from single-tilt, partial/ full double-tilt geometries. ► Double-tilt cryo-ET facilitates analysis of larger molecular assemblies such as in cell sections. ► Dual-axis cryo-ET is applicable to unique objects and to structures that can be

  13. Magnetization distribution of single-particle states and 2/sup +/ rotational states from muonic atoms

    CERN Document Server

    Backe, H; Engfer, R; Kankeleit, E; Link, R; Michaelsen, R; Petitjean, C; Schellenberg, L; Schneuwly, H; Schröder, W U; Vuilleumier, J L; Walter, H K; Zehnder, A

    1973-01-01

    The lowest states in muonic atoms are rather sensitive to the spatial distribution of the nuclear magnetization density, and several results were deduced from the broadening of the muonic 2p/sub 1/2/-1s/sub 1/2/ and 3d/sub 3/2/-2p/sub 1/2/ transitions. By measuring low energetic transitions such as the 2s/sub 1/2/-2p/sub 1/2/ transition or nuclear gamma -transitions, it is possible to resolve the magnetic hyperfine splittings. The magnetic hf splitting of the 2s/sub 1/2/-2p/sub 1/2/ transition in mu /sup 115/In and of the 3/2/sup +/-1/2/sup +/ nuclear gamma -transitions in mu /sup 203/Tl at 279 keV, and in mu /sup 205/Tl at 204 keV, have been resolved. For the 2/sup +/-0/sup +/ nuclear gamma -transition in mu /sup 190,192/Os at 187 keV and 206 keV, respectively, the magnetic hf splitting of the 2/sup +/ rotational levels and the intensities of the hf components were determined from a nearly resolved doublet splitting. (7 refs).

  14. Selective Coherent Excitation of Charged Density Waves

    NARCIS (Netherlands)

    Tsvetkov, A.A.; Sagar, D.M.; Loosdrecht, P.H.M. van; Marel, D. van der

    2003-01-01

    Real time femtosecond pump-probe spectroscopy is used to study collective and single particle excitations in the charge density wave state of the quasi-1D metal, blue bronze. Along with the previously observed collective amplitudon excitation, the spectra show several additional coherent features.

  15. Strong reduction of spectral heterogeneity in gold bipyramids for single-particle and single-molecule plasmon sensing.

    Science.gov (United States)

    Peters, S M E; Verheijen, M A; Prins, M W J; Zijlstra, P

    2016-01-15

    Single metal nanoparticles are attractive biomolecular sensors. Binding of analyte to a functional particle results in a plasmon shift that can be conveniently monitored in a far-field optical microscope. Heterogeneities in spectral properties of individual particles in an ensemble affect the reliability of a single-particle plasmon sensor, especially when plasmon shifts are monitored in real-time using a fixed irradiation wavelength. We compare the spectral heterogeneity of different plasmon sensor geometries (gold nanospheres, nanorods, and bipyramids) and correlate this to their size and aspect-ratio dispersion. We show that gold bipyramids exhibit a strongly reduced heterogeneity in aspect ratio and plasmon wavelength compared to commonly used gold nanorods. We show that this translates into a significantly improved homogeneity of the response to molecular binding without compromising single-molecule sensitivity.

  16. Investigation on the biological effects of pharynx irradiation by single-particle microbeam and C.elegans immobilization

    International Nuclear Information System (INIS)

    Guo Xiaoying; Yang Gen; Chen Lianyun; Wu Lijun; Li Buqing

    2010-01-01

    Using C.elegans- with clear genetic background, easy genetic maneuverability, small individual, transparence, easily penetrated by a variety of particle as a in vivo model organism, irradiation damage at the individual level of the signal transduction and the mechanism research were investigated. In order to radiate accurately, the worms need Immobilize. The results showed that the ether: ethanol = 1:1 mixture, enabled the worms quickly anesthesia, and kept the worms Immobilization in the whole irradiation process, then quickly recovered after irradiation and recovery rate of 100%. On the basis, the laved and the apoptotic cells in the distal gonad would be test when the worm pharynx were irradiated by single-particle microbeam. The primary results showed that the apoptotic cells in distal gonad significantly increased when the worm pharynx were irradiated 5000 particles. (authors)

  17. Insight into the three-dimensional structure of maize chlorotic mottle virus revealed by Cryo-EM single particle analysis.

    Science.gov (United States)

    Wang, Chun-Yan; Zhang, Qin-Fen; Gao, Yuan-Zhu; Zhou, Xue-Ping; Ji, Gang; Huang, Xiao-Jun; Hong, Jian; Zhang, Chuan-Xi

    2015-11-01

    Maize chlorotic mottle virus (MCMV) is the only member of the Machlomovirus genus in the family Tombusviridae. Here, we obtained the Cryo-EM structure of MCMV by single particle analysis with most local resolution at approximately 4 Å. The Cα backbone was built based on residues with bulky side chains. The resolved C-terminus of the capsid protein subunit and obvious openings at the 2-fold axis demonstrated the compactness of the asymmetric unit, which indicates an important role in the stability of MCMV. The Asp116 residue from each subunit around the 5-fold and 3-fold axes contributed to the negative charges in the centers of the pentamers and hexamers, which might serve as a solid barrier against the leakage of genomic RNA. Finally, the loops most exposed on the surface were analyzed and are proposed to be potential functional sites related to MCMV transmission. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Elucidating distinct ion channel populations on the surface of hippocampal neurons via single-particle tracking recurrence analysis

    Science.gov (United States)

    Sikora, Grzegorz; Wyłomańska, Agnieszka; Gajda, Janusz; Solé, Laura; Akin, Elizabeth J.; Tamkun, Michael M.; Krapf, Diego

    2017-12-01

    Protein and lipid nanodomains are prevalent on the surface of mammalian cells. In particular, it has been recently recognized that ion channels assemble into surface nanoclusters in the soma of cultured neurons. However, the interactions of these molecules with surface nanodomains display a considerable degree of heterogeneity. Here, we investigate this heterogeneity and develop statistical tools based on the recurrence of individual trajectories to identify subpopulations within ion channels in the neuronal surface. We specifically study the dynamics of the K+ channel Kv1.4 and the Na+ channel Nav1.6 on the surface of cultured hippocampal neurons at the single-molecule level. We find that both these molecules are expressed in two different forms with distinct kinetics with regards to surface interactions, emphasizing the complex proteomic landscape of the neuronal surface. Further, the tools presented in this work provide new methods for the analysis of membrane nanodomains, transient confinement, and identification of populations within single-particle trajectories.

  19. Fluidity evaluation of cell membrane model formed on graphene oxide with single particle tracking using quantum dot

    Science.gov (United States)

    Okamoto, Yoshiaki; Motegi, Toshinori; Iwasa, Seiji; Sandhu, Adarsh; Tero, Ryugo

    2015-04-01

    The lipid bilayer is the fundamental structure of plasma membranes, and artificial lipid bilayer membranes are used as model systems of cell membranes. Recently we reported the formation of a supported lipid bilayer (SLB) on graphene oxide (GO) by the vesicle fusion method. In this study, we conjugated a quantum dot (Qdot) on the SLB surface as a fluorescence probe brighter than dye-labeled lipid molecules, to qualitatively evaluate the fluidity of the SLB on GO by the single particle tracking method. We obtained the diffusion coefficient of the Qdot-conjugated lipids in the SLB on GO. We also performed the Qdot conjugation on the SLB containing a lipid conjugated with polyethylene glycol, to prevent the nonspecific adsorption of Qdots. The difference in the diffusion coefficients between the SLBs on the GO and the bare SiO2 regions was evaluated from the trajectory of single Qdot-conjugated lipid diffusing between the two regions.

  20. Intra-Nuclear Single-Particle Tracking (I-SPT) to Reveal the Functional Architecture of Chromosomes.

    Science.gov (United States)

    Récamier, Vincent

    2016-01-01

    Chromosome architecture needs to be investigated in relation with the chemical function of DNA. The kinetics of gene expression, DNA replication, and repair are driven by the mechanisms by which a functional nuclear protein finds its substrate in the nucleus. Single-particle tracking (SPT) is a method to quantify fluorescent molecules dynamics from the tracks of the single molecules recorded by high-resolution microscopes. SPT offers direct observation of the movement and single-molecule resolution. Usually SPT is performed on membranes because of higher contrast. Here, we introduce a novel method to record the trajectories of weakly fluorescent molecules in the nucleus of living cells. I-SPT uses some specific detection and analysis tools to enable the computation of reliable statistics on nuclear particle movement.

  1. Second order single particle dynamics in quasi-isochronous storage rings and its application to the LNLS-UVX ring

    Energy Technology Data Exchange (ETDEWEB)

    Lin Liu (Pro-Reitoria de Pesquisa, Univ. Estadual de Campinas, SP (Brazil) Lab. Nacional de Luz Sincrotron-LNLS, Campinas, SP (Brazil)); Concalves da Silva, C.E.T. (Inst. de Fisica Gleb Wataghin, Univ. Estadual de Campinas, SP (Brazil) Lab. Nacional de Luz Sincrotron-LNLS, Campinas, SP (Brazil))

    1993-05-15

    We analyze the second order single particle longitudinal dynamics in a quasi-isochronous storage ring. We expand the momentum compaction factor to include the effects of second order terms taking sextupoles into account and of transverse betatron oscillations. The introduction of nonlinearities due to higher order terms results in a second stability region for longitudinal phase oscillations, in addition to the well known linear stable operation point. The conditions for this new solution to fall within the energy acceptance of the storage ring are presented. Inclusion of transverse motion coupling may lead to either a reduction or an enhancement of the stable longitudinal phase-space regions. The analysis is applied to the LNLS 1.15 GeV UVX electron storage ring, indicating that it should be possible to operate this ring in a quasi-isochronous mode. (orig.).

  2. Nonequilibrium thermodynamics of interacting tunneling transport: variational grand potential, density functional formulation and nature of steady-state forces

    International Nuclear Information System (INIS)

    Hyldgaard, P

    2012-01-01

    The standard formulation of tunneling transport rests on an open-boundary modeling. There, conserving approximations to nonequilibrium Green function or quantum statistical mechanics provide consistent but computational costly approaches; alternatively, the use of density-dependent ballistic-transport calculations (e.g., Lang 1995 Phys. Rev. B 52 5335), here denoted ‘DBT’, provides computationally efficient (approximate) atomistic characterizations of the electron behavior but has until now lacked a formal justification. This paper presents an exact, variational nonequilibrium thermodynamic theory for fully interacting tunneling and provides a rigorous foundation for frozen-nuclei DBT calculations as a lowest-order approximation to an exact nonequilibrium thermodynamic density functional evaluation. The theory starts from the complete electron nonequilibrium quantum statistical mechanics and I identify the operator for the nonequilibrium Gibbs free energy which, generally, must be treated as an implicit solution of the fully interacting many-body dynamics. I demonstrate a minimal property of a functional for the nonequilibrium thermodynamic grand potential which thus uniquely identifies the solution as the exact nonequilibrium density matrix. I also show that the uniqueness-of-density proof from a closely related Lippmann-Schwinger collision density functional theory (Hyldgaard 2008 Phys. Rev. B 78 165109) makes it possible to express the variational nonequilibrium thermodynamic description as a single-particle formulation based on universal electron-density functionals; the full nonequilibrium single-particle formulation improves the DBT method, for example, by a more refined account of Gibbs free energy effects. I illustrate a formal evaluation of the zero-temperature thermodynamic grand potential value which I find is closely related to the variation in the scattering phase shifts and hence to Friedel density oscillations. This paper also discusses the

  3. Lipid diffusion in the distal and proximal leaflets of supported lipid bilayer membranes studied by single particle tracking

    Science.gov (United States)

    Schoch, Rafael L.; Barel, Itay; Brown, Frank L. H.; Haran, Gilad

    2018-03-01

    Supported lipid bilayers (SLBs) have been studied extensively as simple but powerful models for cellular membranes. Yet, potential differences in the dynamics of the two leaflets of a SLB remain poorly understood. Here, using single particle tracking, we obtain a detailed picture of bilayer dynamics. We observe two clearly separate diffusing populations, fast and slow, that we associate with motion in the distal and proximal leaflets of the SLB, respectively, based on fluorescence quenching experiments. We estimate diffusion coefficients using standard techniques as well as a new method based on the blur of images due to motion. Fitting the observed diffusion coefficients to a two-leaflet membrane hydrodynamic model allows for the simultaneous determination of the intermonolayer friction coefficient and the substrate-membrane friction coefficient, without any prior assumptions on the strengths of the relevant interactions. Remarkably, our calculations suggest that the viscosity of the interfacial water confined between the membrane and the substrate is elevated by ˜104 as compared to bulk water. Using hidden Markov model analysis, we then obtain insight into the transbilayer movement of lipids. We find that lipid flip-flop dynamics are very fast, with half times in the range of seconds. Importantly, we find little evidence for membrane defect mediated lipid flip-flop for SLBs at temperatures well above the solid-to-liquid transition, though defects seem to be involved when the SLBs are cooled down. Our work thus shows that the combination of single particle tracking and advanced hydrodynamic modeling provides a powerful means to obtain insight into membrane dynamics.

  4. Detection of zinc oxide and cerium dioxide nanoparticles during drinking water treatment by rapid single particle ICP-MS methods.

    Science.gov (United States)

    Donovan, Ariel R; Adams, Craig D; Ma, Yinfa; Stephan, Chady; Eichholz, Todd; Shi, Honglan

    2016-07-01

    Nanoparticles (NPs) entering water systems are an emerging concern as NPs are more frequently manufactured and used. Single particle inductively coupled plasma-mass spectrometry (SP-ICP-MS) methods were validated to detect Zn- and Ce-containing NPs in surface and drinking water using a short dwell time of 0.1 ms or lower, ensuring precision in single particle detection while eliminating the need for sample preparation. Using this technique, information regarding NP size, size distribution, particle concentration, and dissolved ion concentrations was obtained simultaneously. The fates of Zn- and Ce-NPs, including those found in river water and added engineered NPs, were evaluated by simulating a typical drinking water treatment process. Lime softening, alum coagulation, powdered activated carbon sorption, and disinfection by free chlorine were simulated sequentially using river water. Lime softening removed 38-53 % of Zn-containing and ZnO NPs and >99 % of Ce-containing and CeO2 NPs. Zn-containing and ZnO NP removal increased to 61-74 % and 77-79 % after alum coagulation and disinfection, respectively. Source and drinking water samples were collected from three large drinking water treatment facilities and analyzed for Zn- and Ce-containing NPs. Each facility had these types of NPs present. In all cases, particle concentrations were reduced by a minimum of 60 % and most were reduced by >95 % from source water to finished drinking water. This study concludes that uncoated ZnO and CeO2 NPs may be effectively removed by conventional drinking water treatments including lime softening and alum coagulation.

  5. Single-particle cryo-EM using alignment by classification (ABC): the structure ofLumbricus terrestrishaemoglobin.

    Science.gov (United States)

    Afanasyev, Pavel; Seer-Linnemayr, Charlotte; Ravelli, Raimond B G; Matadeen, Rishi; De Carlo, Sacha; Alewijnse, Bart; Portugal, Rodrigo V; Pannu, Navraj S; Schatz, Michael; van Heel, Marin

    2017-09-01

    Single-particle cryogenic electron microscopy (cryo-EM) can now yield near-atomic resolution structures of biological complexes. However, the reference-based alignment algorithms commonly used in cryo-EM suffer from reference bias, limiting their applicability (also known as the 'Einstein from random noise' problem). Low-dose cryo-EM therefore requires robust and objective approaches to reveal the structural information contained in the extremely noisy data, especially when dealing with small structures. A reference-free pipeline is presented for obtaining near-atomic resolution three-dimensional reconstructions from heterogeneous ('four-dimensional') cryo-EM data sets. The methodologies integrated in this pipeline include a posteriori camera correction, movie-based full-data-set contrast transfer function determination, movie-alignment algorithms, (Fourier-space) multivariate statistical data compression and unsupervised classification, 'random-startup' three-dimensional reconstructions, four-dimensional structural refinements and Fourier shell correlation criteria for evaluating anisotropic resolution. The procedures exclusively use information emerging from the data set itself, without external 'starting models'. Euler-angle assignments are performed by angular reconstitution rather than by the inherently slower projection-matching approaches. The comprehensive 'ABC-4D' pipeline is based on the two-dimensional reference-free 'alignment by classification' (ABC) approach, where similar images in similar orientations are grouped by unsupervised classification. Some fundamental differences between X-ray crystallography versus single-particle cryo-EM data collection and data processing are discussed. The structure of the giant haemoglobin from Lumbricus terrestris at a global resolution of ∼3.8 Å is presented as an example of the use of the ABC-4D procedure.

  6. Single particle aerosol mass spectrometry of coal combustion particles associated with high lung cancer rates in Xuanwei and Fuyuan, China.

    Science.gov (United States)

    Lu, Senlin; Tan, Zhengying; Liu, Pinwei; Zhao, Hui; Liu, Dingyu; Yu, Shang; Cheng, Ping; Win, Myat Sandar; Hu, Jiwen; Tian, Linwei; Wu, Minghong; Yonemochi, Shinich; Wang, Qingyue

    2017-11-01

    Coal combustion particles (CCPs) are linked to the high incidence of lung cancer in Xuanwei and in Fuyuan, China, but studies on the chemical composition of the CCPs are still limited. Single particle aerosol mass spectrometry (SPAMS) was recently developed to measure the chemical composition and size of single particles in real-time. In this study, SPAMS was used to measure individual combustion particles emitted from Xuanwei and Fuyuan coal samples and the results were compared with those by ICP-MS and transmission electron microscopy (TEM). The total of 38,372 particles mass-analyzed by SPAMS can be divided into 9 groups based on their chemical composition and their number percentages: carbonaceous, Na-rich, K-rich, Al-rich, Fe-rich, Si-rich, Ca-rich, heavy metal-bearing, and PAH-bearing particles. The carbonaceous and PAH-bearing particles are enriched in the size range below 0.56 μm, Fe-bearing particles range from 0.56 to 1.0 μm in size, and heavy metals such as Ti, V, Cr, Cu, Zn, and Pb have diameters below 1 μm. The TEM results show that the particles from Xuanwei and Fuyuan coal combustion can be classified into soot aggregates, Fe-rich particles, heavy metal containing particles, and mineral particles. Non-volatile particles detected by SPAMS could also be observed with TEM. The number percentages by SPAMS also correlate with the mass concentrations measured by ICP-MS. Our results could provide valuable insight for understanding high lung cancer incidence in the area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Creation of giant two-dimensional crystal of zinc oxide nanodisk by method of single-particle layer of organo-modified inorganic fine particles.

    Science.gov (United States)

    Meng, Qi; Honda, Nanami; Uchida, Saki; Hashimoto, Kazuaki; Shibata, Hirobumi; Fujimori, Atsuhiro

    2015-09-01

    In this study, the formation and structure of a single-particle layer of organo-zinc oxide are investigated using surface-pressure-area (π-A) isotherms, out-of-plane X-ray diffraction (XRD) analysis, and atomic force microscopy (AFM). Further, techniques for achieving the solubilization of inorganic fine particles in general solvents have been proposed, and a single-particle layer has been formed using such an inorganic solution as a "spreading solution" for an interfacial film. Surface modification of ZnO is performed using a long-chain carboxylic acid. Accordingly, a regular arrangement of ZnO can be easily achieved in order to overcome the relatively weak van der Walls interactions between inorganic materials. A condensed Langmuir monolayer of these particles is also formed. A multiparticle layered structure is constructed by the Langmuir-Blodgett (LB) technique. Out-of-plane XRD measurement results for a single-particle layer of organo-ZnO clearly show a sharp peak at 42 Å. This peak is attributed to the distance between ZnO layers. The AFM image of this single-particle layer of organo-ZnO shows a particle assembly with a uniform height of 60 nm. These aggregated particles form large two-dimensional crystals. In other words, a regular periodic structure along the c-axis and a condensed single-particle layer had been fabricated using Langmuir and LB techniques. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Influence of gold coating and interplate voltage on the performance of chevron micro-channel plates for temporally and spatially resolved single particle detection

    Science.gov (United States)

    Hoendervanger, A. L.; Clément, D.; Aspect, A.; Westbrook, C. I.; Dowek, D.; Picard, Y. J.; Boiron, D.

    2013-02-01

    We present a study of two different sets of Micro-Channel Plates used for time and space resolved single particle detection. We investigate the effects of the gold coating and that of introducing an interplate voltage between the spatially separated plates. We find that the gold coating increases the count rate of the detector and the pulse amplitude as previously reported for non-spatially resolved setups. The interplate voltage also increases count rates. In addition, we find that a non-zero interplate voltage improves the spatial accuracy in determining the arrival position of incoming single particles (by ˜20%) while the gold coating has a negative effect (by ˜30%).

  9. Transport in Weakly Coupled Vertical Double Quantum Dots: Single-Particle Energy Level Spectroscopy and Hyperfine Interaction Effects

    Science.gov (United States)

    Payette, Christopher

    2011-12-01

    Performing transport measurements on weakly coupled vertical double quantum dots, we study by magneto-resonant-tunneling spectroscopy, single-particle energy spectra of the constituent dots over a wide energy window. The measured energy spectra are well modeled overall by ideal spectra calculated for elliptical and parabolic in-dot-plane confinement potentials. However, in regions where single-particle energy levels are naively expected to cross, we observe pronounced level anti-crossing behaviour and strong resonant current variations (both enhancement and suppression). Within a coherent tunneling picture, these effects can be attributed to coherent level mixing induced by weak perturbations in the nearly ideal dot confinement potentials. We analyze the energy spectra in detail, and focus on examples of two-, three- and four-level crossings where we observe the suppression of an otherwise strong current resonance, a signature of dark state formation due to destructive interference. The mixing we measure and model at two three-level crossings represents an all-electrical analogue of coherent population trapping. We also explore the limitations of the applicability of the coherent level mixing model and demonstrate in-situ alteration of the coupling between levels. We further examine the electron spin-nuclear spin (hyperfine) interaction. In the familiar two-electron spin blockade regime, on application of an out-of-dot-plane magnetic field, we observe current switching and hysteresis, and a funnel-like structure in the leakage current, all hallmarks of the hyperfine interaction. The measurements bring to light a strong gate voltage dependence, significant device-to-device variations, and an intricate bias voltage history dependence not accounted for in any existing model. Unexpectedly, we also observe signatures of the hyperfine interaction at high bias, well outside the spin blockade regime. We characterize these features and suggest how the hyperfine interaction

  10. Explaining Air and Water Transport in Undisturbed Soils By X-Ray CT Derived Macroporosity and CT- Number-Derived Matrix Density

    DEFF Research Database (Denmark)

    Paradelo Pérez, Marcos; Katuwal, Sheela; Møldrup, Per

    ), and saturated hydraulic conductivity (Ksat). The CT number of the matrix (CTmatrix) was obtained from the CT scans by calculating the average CT number of the voxels in the greyscale image excluding macropores and rocks. CTmatrix was the best predictor of the five percent arrival time (t0.05) which...

  11. Long-term culture of rat hippocampal neurons at low density in serum-free medium: combination of the sandwich culture technique with the three-dimensional nanofibrous hydrogel PuraMatrix.

    Science.gov (United States)

    Kaneko, Ai; Sankai, Yoshiyuki

    2014-01-01

    The primary culture of neuronal cells plays an important role in neuroscience. There has long been a need for methods enabling the long-term culture of primary neurons at low density, in defined serum-free medium. However, the lower the cell density, the more difficult it is to maintain the cells in culture. Therefore, we aimed to develop a method for long-term culture of neurons at low density, in serum-free medium, without the need for a glial feeder layer. Here, we describe the work leading to our determination of a protocol for long-term (>2 months) primary culture of rat hippocampal neurons in serum-free medium at the low density of 3×10(4) cells/mL (8.9×10(3) cells/cm2) without a glial feeder layer. Neurons were cultured on a three-dimensional nanofibrous hydrogel, PuraMatrix, and sandwiched under a coverslip to reproduce the in vivo environment, including the three-dimensional extracellular matrix, low-oxygen conditions, and exposure to concentrated paracrine factors. We examined the effects of varying PuraMatrix concentrations, the timing and presence or absence of a coverslip, the timing of neuronal isolation from embryos, cell density at plating, medium components, and changing the medium or not on parameters such as developmental pattern, cell viability, neuronal ratio, and neurite length. Using our method of combining the sandwich culture technique with PuraMatrix in Neurobasal medium/B27/L-glutamine for primary neuron culture, we achieved longer neurites (≥3,000 µm), greater cell viability (≥30%) for 2 months, and uniform culture across the wells. We also achieved an average neuronal ratio of 97%, showing a nearly pure culture of neurons without astrocytes. Our method is considerably better than techniques for the primary culture of neurons, and eliminates the need for a glial feeder layer. It also exhibits continued support for axonal elongation and synaptic activity for long periods (>6 weeks).

  12. Cryptanalysis and Improvement for the Quantum Private Comparison Protocol Based on Triplet Entangled State and Single-Particle Measurement

    Science.gov (United States)

    Ting, Xu; Tian-Yu, Ye

    2017-03-01

    Quantum private comparison (QPC) aims to accomplish the equality comparison of secret inputs from two users on the basis of not leaking their contents out. Recently, Chen et al. proposed the QPC protocol based on triplet GHZ state and single-particle measurement (Optics Communications 283, 1561-1565 (2010)). In this paper, they suggested the standard model of a semi-honest third party (TP) for the first time, and declared that their protocol is secure. Subsequently, Lin et al. pointed out that in Chen et al.'s protocol, one user can extract the other user's secret without being discovered by performing the intercept-resend attack, and suggested two corresponding improvements (Optics Communications 284, 2412-2414 (2011)). However, Yang et al. first pointed out that the model of TP adopted by both Chen et al.'s protocol and Lin et al.'s improved protocols is unreasonable, and thought that a practical TP may also try any possible means to steal the users' secrets except being corrupted by the adversary including the dishonest user (Quantum Inf Process 12, 877-885 (2013). In this paper, after taking the possible attacks from TP into account, we propose the eavesdropping strategy of TP toward Lin et al.'s improved protocols and suggest two feasible solutions accordingly.

  13. HybTrack: A hybrid single particle tracking software using manual and automatic detection of dim signals.

    Science.gov (United States)

    Lee, Byung Hun; Park, Hye Yoon

    2018-01-09

    Single particle tracking is a compelling technique for investigating the dynamics of nanoparticles and biological molecules in a broad range of research fields. In particular, recent advances in fluorescence microscopy have made single molecule tracking a prevalent method for studying biomolecules with a high spatial and temporal precision. Particle tracking algorithms have matured over the past three decades into more easily accessible platforms. However, there is an inherent difficulty in tracing particles that have a low signal-to-noise ratio and/or heterogeneous subpopulations. Here, we present a new MATLAB based tracking program which combines the benefits of manual and automatic tracking methods. The program prompts the user to manually locate a particle when an ambiguous situation occurs during automatic tracking. We demonstrate the utility of this program by tracking the movement of β-actin mRNA in the dendrites of cultured hippocampal neurons. We show that the diffusion coefficient of β-actin mRNA decreases upon neuronal stimulation by bicuculline treatment. This tracking method enables an efficient dissection of the dynamic regulation of biological molecules in highly complex intracellular environments.

  14. Effect of particle shape and structure on the results of single-particle light-scattering size analysis.

    Science.gov (United States)

    Umhauer, H; Bottlinger, M

    1991-11-20

    To evaluate quantitatively the influence exerted by the shape and structure of nonspherical, nonideal particles on the results of single-particle scattered-light size analysis, measurements were conducted with individual particles of different materials (glass, limestone, and quartz). For this purpose, the particles were suspended in an electrodynamic balance and repeatedly passed through the analyzer's measuring volume with a continually changing random orientation. The scattered-light signal spectra thus obtained specify the probability with which a certain pulse height is induced when the particle passes once through the measuring volume at a given coincidental orientation. The spectra reflect the material-characteristic influence. They allow the loss of resolution of common scattered-light size analyses to be assessed and algorithms (matrices) to be compiled with which the shape and structure influence may be mathematically eliminated. Because a shape and structure independent size parameter is also determined from the individual particles, exact calibration curves can be derived in which the shape and structure influence are incorporated.

  15. Single Particle and PET-based Platform for Identifying Optimal Plasmonic Nano-Heaters for Photothermal Cancer Therapy.

    Science.gov (United States)

    Jørgensen, Jesper Tranekjær; Norregaard, Kamilla; Tian, Pengfei; Bendix, Poul Martin; Kjaer, Andreas; Oddershede, Lene B

    2016-08-02

    Plasmonic nanoparticle-based photothermal cancer therapy is a promising new tool to inflict localized and irreversible damage to tumor tissue by hyperthermia, without harming surrounding healthy tissue. We developed a single particle and positron emission tomography (PET)-based platform to quantitatively correlate the heat generation of plasmonic nanoparticles with their potential as cancer killing agents. In vitro, the heat generation and absorption cross-section of single irradiated nanoparticles were quantified using a temperature sensitive lipid-based assay and compared to their theoretically predicted photo-absorption. In vivo, the heat generation of irradiated nanoparticles was evaluated in human tumor xenografts in mice using 2-deoxy-2-[F-18]fluoro-D-glucose ((18)F-FDG) PET imaging. To validate the use of this platform, we quantified the photothermal efficiency of near infrared resonant silica-gold nanoshells (AuNSs) and benchmarked this against the heating of colloidal spherical, solid gold nanoparticles (AuNPs). As expected, both in vitro and in vivo the heat generation of the resonant AuNSs performed superior compared to the non-resonant AuNPs. Furthermore, the results showed that PET imaging could be reliably used to monitor early treatment response of photothermal treatment. This multidisciplinary approach provides a much needed platform to benchmark the emerging plethora of novel plasmonic nanoparticles for their potential for photothermal cancer therapy.

  16. Spatial filtering technique to image and measure two-dimensional near-forward scattering from single particles.

    Science.gov (United States)

    Berg, Matthew J; Hill, Steven C; Videen, Gorden; Gurton, Kristan P

    2010-04-26

    This work describes the design and use of an optical apparatus to measure the far-field elastic light-scattering pattern for a single particle over two angular-dimensions. A spatial filter composed of a mirror with a small through-hole is used to enable collection of the pattern uncommonly close to the forward direction; to within tenths of a degree. Minor modifications of the design allow for the simultaneous measurement of a particle's image along with its two-dimensional scattering pattern. Example measurements are presented involving single micrometer-sized glass spherical particles confined in an electrodynamic trap and a dilute suspension of polystyrene latex particles in water. A small forward-angle technique, called Guinier analysis, is used to determine a particle-size estimate directly from the measured pattern without a priori knowledge of the particle refractive index. Comparison of these size estimates to those obtained by fitting the measurements to Mie theory reveals relative errors low as 2%.

  17. Multiparameter Quantification of Liposomal Nanomedicines at the Single-Particle Level by High-Sensitivity Flow Cytometry.

    Science.gov (United States)

    Chen, Chaoxiang; Zhu, Shaobin; Wang, Shuo; Zhang, Wenqiang; Cheng, Yu; Yan, Xiaomei

    2017-04-26

    Drug-encapsulated liposomes have been considered the most clinically acceptable drug-delivery systems. However, current methods fall short in the quantitative characterization of individual nanoliposomes because of their small sizes and large heterogeneity. Here, we report a high-throughput method for the absolute quantification of particle size, drug content, fraction of drug encapsulation, and particle concentration of liposomal nanomedicines at the single-particle level. A laboratory-built high-sensitivity flow cytometer was used to simultaneously detect the side-scatter and fluorescence signals generated by individual nanomedicine particles at a speed up to 10 000 nanoparticles/min. To cope with the size dependence of the refractive index of liposomal nanomedicines, different sizes of doxorubicin-loaded liposomes were fabricated and characterized to serve as the calibration standards for the measurement of both particle size and drug content. This method provides a highly practical platform for the characterization of liposomal nanomedicines, and broad applications can be envisioned.

  18. Detection and Sizing of Ti-Containing Particles in Recreational Waters Using Single Particle ICP-MS.

    Science.gov (United States)

    Venkatesan, Arjun K; Reed, Robert B; Lee, Sungyun; Bi, Xiangyu; Hanigan, David; Yang, Yu; Ranville, James F; Herckes, Pierre; Westerhoff, Paul

    2018-01-01

    Single particle inductively coupled plasma mass spectrometry (spICP-MS) was used to detect Ti-containing particles in heavily-used bathing areas of a river (Salt River) and five swimming pools. Ti-containing particle concentrations in swimming pools ranged from 2.8 × 10 3 to 4.4 × 10 3 particles/mL and were an order of magnitude lower than those detected in the Salt River. Measurements from the Salt River showed an 80% increase in Ti-containing particle concentration over baseline concentration during peak recreational activity (at 16:00 h) in the river. Cloud point extraction followed by transmission electron microscopy with energy dispersive X-ray analysis confirmed presence of aggregated TiO 2 particles in river samples, showing morphological similarity to particles present in an over-the-counter sunscreen product. The maximum particle mass concentration detected in a sample from the Salt River (659 ng/L) is only slightly lower than the predicted no effect concentration for TiO 2 to aquatic organisms (< 1 μg/L).

  19. International interlaboratory study for sizing and quantification of Ag nanoparticles in food simulants by single-particle ICPMS.

    Science.gov (United States)

    Linsinger, Thomas P J; Peters, Ruud; Weigel, Stefan

    2014-06-01

    This publication describes the first international intercomparison of particle-size determination by single-particle inductively coupled plasma mass spectrometry (sp-ICPMS). Concentrated monodisperse silver nanoparticle suspensions with particle diameters of 20, 40 and 100 nm and a blank solution were sent to 23 laboratories in Europe, the USA and Canada. Laboratories prepared eight nanoparticle preparations in two food simulants (distilled water; 10% ethanol) and reported median particle size, Ag particle mass concentration and Ag particle number concentrations. Average repeatability and reproducibility standard deviation (sr and sR) for the median particle diameter were 1 and 14 nm, respectively. Relative precision was worse for Ag particle number concentrations (RSD r = 11%; RSD R = 78%). While further improvements of the method, especially with respect to software tools for evaluation, hardware options for shorter dwell times, calibration standards for determining nebuliser efficiency and further experience by laboratories are certainly desirable, the results of this study demonstrate the suitability of sp-ICPMS for the detection and quantification of certain kinds of nanoparticles.

  20. Single Particle Tracking reveals two distinct environments for CD4 receptors at the surface of living T lymphocytes

    International Nuclear Information System (INIS)

    Mascalchi, Patrice; Lamort, Anne Sophie; Salomé, Laurence; Dumas, Fabrice

    2012-01-01

    Highlights: ► We studied the diffusion of single CD4 receptors on living lymphocytes. ► This study reveals that CD4 receptors have either a random or confined diffusion. ► The dynamics of unconfined CD4 receptors was accelerated by a temperature raise. ► The dynamics of confined CD4 receptors was unchanged by a temperature raise. ► Our results suggest the existence of two different environments for CD4 receptors. -- Abstract: We investigated the lateral diffusion of the HIV receptor CD4 at the surface of T lymphocytes at 20 °C and 37 °C by Single Particle Tracking using Quantum Dots. We found that the receptors presented two major distinct behaviors that were not equally affected by temperature changes. About half of the receptors showed a random diffusion with a diffusion coefficient increasing upon raising the temperature. The other half of the receptors was permanently or transiently confined with unchanged dynamics on raising the temperature. These observations suggest that two distinct subpopulations of CD4 receptors with different environments are present at the surface of living T lymphocytes.