Sample records for single-negative acoustic parameters

  1. Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials. (United States)

    Kaina, Nadège; Lemoult, Fabrice; Fink, Mathias; Lerosey, Geoffroy


    Metamaterials, man-made composite media structured on a scale much smaller than a wavelength, offer surprising possibilities for engineering the propagation of waves. One of the most interesting of these is the ability to achieve superlensing--that is, to focus or image beyond the diffraction limit. This originates from the left-handed behavior--the property of refracting waves negatively--that is typical of negative index metamaterials. Yet reaching this goal requires the design of 'double negative' metamaterials, which act simultaneously on the permittivity and permeability in electromagnetics, or on the density and compressibility in acoustics; this generally implies the use of two different kinds of building blocks or specific particles presenting multiple overlapping resonances. Such a requirement limits the applicability of double negative metamaterials, and has, for example, hampered any demonstration of subwavelength focusing using left-handed acoustic metamaterials. Here we show that these strict conditions can be largely relaxed by relying on media that consist of only one type of single resonant unit cell. Specifically, we show with a simple yet general semi-analytical model that judiciously breaking the symmetry of a single negative metamaterial is sufficient to turn it into a double negative one. We then demonstrate that this occurs solely because of multiple scattering of waves off the metamaterial resonant elements, a phenomenon often disregarded in these media owing to their subwavelength patterning. We apply our approach to acoustics and verify through numerical simulations that it allows the realization of negative index acoustic metamaterials based on Helmholtz resonators only. Finally, we demonstrate the operation of a negative index acoustic superlens, achieving subwavelength focusing and imaging with spot width and resolution 7 and 3.5 times better than the diffraction limit, respectively. Our findings have profound implications for the

  2. Isotropic Single Negative Metamaterials

    Directory of Open Access Journals (Sweden)

    P. Protiva


    Full Text Available This paper presents the application of simple, and therefore cheap, planar resonators for building 3D isotropic metamaterials. These resonators are: a broadside-coupled split ring resonator with a magnetic response providing negative permeability; an electric dipole terminated by a loop inductor together with a double H-shaped resonator with an electric response providing negative permittivity. Two kinds of 3D isotropic single negative metamaterials are reported. The first material consists of unit cells in the form of a cube bearing on its faces six equal planar resonators with tetrahedral symmetry. In the second material, the planar resonators boxed into spherical plastic shells and randomly distributed in a hosting material compose a real 3D volumetric metamaterial with an isotropic response. In both cases the metamaterial shows negative permittivity or permeability, according to the type of resonators that are used. The experiments prove the isotropic behavior of the cells and of the metamaterial specimens.

  3. Estimating RASATI scores using acoustical parameters

    International Nuclear Information System (INIS)

    Agüero, P D; Tulli, J C; Moscardi, G; Gonzalez, E L; Uriz, A J


    Acoustical analysis of speech using computers has reached an important development in the latest years. The subjective evaluation of a clinician is complemented with an objective measure of relevant parameters of voice. Praat, MDVP (Multi Dimensional Voice Program) and SAV (Software for Voice Analysis) are some examples of software for speech analysis. This paper describes an approach to estimate the subjective characteristics of RASATI scale given objective acoustical parameters. Two approaches were used: linear regression with non-negativity constraints, and neural networks. The experiments show that such approach gives correct evaluations with ±1 error in 80% of the cases.

  4. Virtual Acoustics: Evaluation of Psychoacoustic Parameters (United States)

    Begault, Durand R.; Null, Cynthia H. (Technical Monitor)


    Current virtual acoustic displays for teleconferencing and virtual reality are usually limited to very simple or non-existent renderings of reverberation, a fundamental part of the acoustic environmental context that is encountered in day-to-day hearing. Several research efforts have produced results that suggest that environmental cues dramatically improve perceptual performance within virtual acoustic displays, and that is possible to manipulate signal processing parameters to effectively reproduce important aspects of virtual acoustic perception in real-time. However, the computational resources for rendering reverberation remain formidable. Our efforts at NASA Ames have been focused using a several perceptual threshold metrics, to determine how various "trade-offs" might be made in real-time acoustic rendering. This includes both original work and confirmation of existing data that was obtained in real rather than virtual environments. The talk will consider the importance of using individualized versus generalized pinnae cues (the "Head-Related Transfer Function"); the use of head movement cues; threshold data for early reflections and late reverberation; and consideration of the necessary accuracy for measuring and rendering octave-band absorption characteristics of various wall surfaces. In addition, a consideration of the analysis-synthesis of the reverberation within "everyday spaces" (offices, conference rooms) will be contrasted to the commonly used paradigm of concert hall spaces.

  5. Audio Cartography: Visual Encoding of Acoustic Parameters


    Kornfeld, A.; Schiewe, J.; Dykes, J.


    Our sonic environment is the matter of subject in multiple domains which developed individual means of its description. As a result, it lacks an established visual language through which knowledge can be connected and insights shared. We provide a visual communication framework for the systematic and coherent documentation of sound in large-scale environments. This consists of visual encodings and mappings of acoustic parameters into distinct graphic variables that present plausible solutions...

  6. Prediction of room acoustical parameters (A)

    DEFF Research Database (Denmark)

    Gade, Anders Christian


    -averaged acoustical data. The results are presented in the form of linear, multiple regression formulas that may be used to predict the values of the newer measures of level, clarity, spaciousness, and musicians' conditions on the orchestra platform in halls with given RT and geometry....

  7. Effects Of Cutting Parameters On Acoustic Emission Signal ...

    African Journals Online (AJOL)

    Factorial design has been used to study the effect of cutting parameters on acoustic emission signal response during the drilling of composite laminates. Experimental design is a strategy of planning, conducting, analyzing and interpreting experiments so that sound and valid conclusion can be drawn efficiently, and ...

  8. The normative study of acoustic parameters in normal Egyptian ...

    African Journals Online (AJOL)

    Yehia A. Abo-Ras


    Mar 21, 2013 ... Voice: the book tip. Rio de Janeiro: Revinter;. 2001. p. 85–245 (Article in Portugese). 14. Tavares E, Badra R, Martins R. Normative study of vocal acoustic parameters from children from 4 to 12years of age without vocal symptoms. A pilot study. Brazilian Journal of. Otorhinolaryngology 2010;76(4):485–90.

  9. Effect of acoustic field parameters on arc acoustic binding during ultrasonic wave-assisted arc welding. (United States)

    Xie, Weifeng; Fan, Chenglei; Yang, Chunli; Lin, Sanbao


    As a newly developed arc welding method, power ultrasound has been successfully introduced into arc and weld pool during ultrasonic wave-assisted arc welding process. The advanced process for molten metals can be realized by utilizing additional ultrasonic field. Under the action of the acoustic wave, the plasma arc as weld heat source is regulated and its characteristics make an obvious change. Compared with the conventional arc, the ultrasonic wave-assisted arc plasma is bound significantly and becomes brighter. To reveal the dependence of the acoustic binding force on acoustic field parameters, a two-dimensional acoustic field model for ultrasonic wave-assisted arc welding device is established. The influences of the radiator height, the central pore radius, the radiator radius, and curvature radius or depth of concave radiator surface are discussed using the boundary element method. Then the authors analyze the resonant mode by this relationship curve between acoustic radiation power and radiator height. Furthermore, the best acoustic binding ability is obtained by optimizing the geometric parameters of acoustic radiator. In addition, three concave radiator surfaces including spherical cap surface, paraboloid of revolution, and rotating single curved surface are investigated systematically. Finally, both the calculation and experiment suggest that, to obtain the best acoustic binding ability, the ultrasonic wave-assisted arc welding setup should be operated under the first resonant mode using a radiator with a spherical cap surface, a small central pore, a large section radius and an appropriate curvature radius. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Robustness of Acoustic Scattering Cancellation to Parameter Variations

    Directory of Open Access Journals (Sweden)

    Claudia Guattari


    Full Text Available This contribution aims at investigating the possibility to cloak a spherical object from an acoustic wave by applying the scattering cancellation approach. In electromagnetism, the scattering problem is treated using the Mie expansion technique, through which the scattered field by a spherical object can be represented as a superposition of TE and TM spherical harmonics. It is possible to extend this concept to the acoustic field by defining an analogous approach; the pressure field, generated by an elastic wave impinging on a spherical object, can be expressed applying the Mie expansion technique, as well. In acoustics, to achieve scattering suppression at a given frequency, the constitutive parameters to control are density and compressibility. By varying these parameter values, it is possible to define an engineered material with anomalous properties, which cannot be found in nature, able to reduce the scattering cross-section (SCS from a spherical object. We propose a study about the effectiveness of the SCS reduction from an elastic sphere coated with a properly-designed acoustic metamaterial. The sensitivity of the SCS to parameter variations is analyzed for different coating thicknesses and sphere dimensions. Our analysis is supported by both the analytical modelling of the structure and numerical simulations.


    International Nuclear Information System (INIS)

    Rabello-Soares, M. Cristina; Bogart, Richard S.; Scherrer, Philip H.


    In order to quantify the influence of magnetic fields on acoustic mode parameters and flows in and around active regions, we analyze the differences in the parameters in magnetically quiet regions nearby an active region (which we call “nearby regions”), compared with those of quiet regions at the same disk locations for which there are no neighboring active regions. We also compare the mode parameters in active regions with those in comparably located quiet regions. Our analysis is based on ring-diagram analysis of all active regions observed by the Helioseismic and Magnetic Imager (HMI) during almost five years. We find that the frequency at which the mode amplitude changes from attenuation to amplification in the quiet nearby regions is around 4.2 mHz, in contrast to the active regions, for which it is about 5.1 mHz. This amplitude enhacement (the “acoustic halo effect”) is as large as that observed in the active regions, and has a very weak dependence on the wave propagation direction. The mode energy difference in nearby regions also changes from a deficit to an excess at around 4.2 mHz, but averages to zero over all modes. The frequency difference in nearby regions increases with increasing frequency until a point at which the frequency shifts turn over sharply, as in active regions. However, this turnover occurs around 4.9 mHz, which is significantly below the acoustic cutoff frequency. Inverting the horizontal flow parameters in the direction of the neigboring active regions, we find flows that are consistent with a model of the thermal energy flow being blocked directly below the active region.

  12. Mechanical Parameters Effects on Acoustic Absorption at Polymer Foam

    Directory of Open Access Journals (Sweden)

    Lyes Dib


    Full Text Available Polymer foams have acoustic absorption properties that play an important role in reducing noise level. When the skeleton is set to motion, it is necessary to use generalized Biot-Allard model which takes into account the deformation of the skeleton and the fluid and the interactions between them. The aim of this work is to study the quality of acoustic absorption in polyurethane foam and to show the importance of the structural vibration of this foam on the absorption by varying mechanical parameters (Young’s modulus E, Poisson’s coefficient ν, structural damping factor η, and the density ρ1. We calculated the absorption coefficient analytically using classical Biot formulation (us, uf and numerically using Biot mixed formulation (us, p in 3D COMSOL Multiphysics. The obtained results are compared together and show an excellent agreement. Afterwards, we studied the effect of varying each mechanical parameter independently on the absorption in interval of ±20%. The simulations show that these parameters have an influence on the sound absorption around the resonance frequency fr.

  13. Statistics of the acoustic emission signals parameters from Zircaloy-4 fuel cladding

    International Nuclear Information System (INIS)

    Oliveto, Maria E.; Lopez Pumarega, Maria I.; Ruzzante, Jose E.


    Statistic analysis of acoustic emission signals parameters: amplitude, duration and risetime was carried out. CANDU type Zircaloy-4 fuel claddings were pressurized up to rupture, one set of five normal pieces and six with defects included, acoustic emission was used on-line. Amplitude and duration frequency distributions were fitted with lognormal distribution functions, and risetime with an exponential one. Using analysis of variance, acoustic emission was appropriated to distinguish between defective and non-defective subsets. Clusters analysis applied on mean values of acoustic emission signal parameters were not effective to distinguish two sets of fuel claddings studied. (author)



    Swapna Sebastian; Prem; Mahasampath Gowri


    Objective:The study aimed at differentiating Adductor Spasmodic Dysphonia (ADSD) from Muscle Tension Dysphonia (MTD) using acoustic measurements . Method: Perceptual as well as acoustic analysis of the voice was done on 12 patients of Adductor Spasmodic dysphonics and Muscle tension dysphonics each. The age of these patients ranged between 30 to 64 years . Results: Adductor spasmodic dysphonics statistically differed from muscle tension dysphonia in the acoustic parameters of voice ...

  15. The normative study of acoustic parameters in normal Egyptian ...

    African Journals Online (AJOL)

    , Alexandria Main University Hospital, on one hundred normal children of both sexes aged from 4 to 12 years, all children were subjected to computerized acoustic analysis using Multidimensional voice program software. The vocal samples ...

  16. Acoustic parameters of sound insulating materials investigation in small reverberation rooms on rubber plates

    Directory of Open Access Journals (Sweden)

    О.О. Козлітін


    Full Text Available  The new method of sound insulating materials acoustic characteristics investigation in small reverberation rooms was elaborated. The research of sound insulating materials on rubber plates was done. The analysis of obtained results of acoustic parameters of materials being a part of the composite real structures of airplane was carried out.

  17. Effects of Various Architectural Parameters on Six Room Acoustical Measures in Auditoria. (United States)

    Chiang, Wei-Hwa

    The effects of architectural parameters on six room acoustical measures were investigated by means of correlation analyses, factor analyses and multiple regression analyses based on data taken in twenty halls. Architectural parameters were used to estimate acoustical measures taken at individual locations within each room as well as the averages and standard deviations of all measured values in the rooms. The six acoustical measures were Early Decay Time (EDT10), Clarity Index (C80), Overall Level (G), Bass Ratio based on Early Decay Time (BR(EDT)), Treble Ratio based on Early Decay Time (TR(EDT)), and Early Inter-aural Cross Correlation (IACC80). A comprehensive method of quantifying various architectural characteristics of rooms was developed to define a large number of architectural parameters that were hypothesized to effect the acoustical measurements made in the rooms. This study quantitatively confirmed many of the principles used in the design of concert halls and auditoria. Three groups of room architectural parameters such as the parameters associated with the depth of diffusing surfaces were significantly correlated with the hall standard deviations of most of the acoustical measures. Significant differences of statistical relations among architectural parameters and receiver specific acoustical measures were found between a group of music halls and a group of lecture halls. For example, architectural parameters such as the relative distance from the receiver to the overhead ceiling increased the percentage of the variance of acoustical measures that was explained by Barron's revised theory from approximately 70% to 80% only when data were taken in the group of music halls. This study revealed the major architectural parameters which have strong relations with individual acoustical measures forming the basis for a more quantitative method for advancing the theoretical design of concert halls and other auditoria. The results of this study provide

  18. An analysis of beam parameters on proton-acoustic waves through an analytic approach. (United States)

    Kipergil, Esra Aytac; Erkol, Hakan; Kaya, Serhat; Gulsen, Gultekin; Unlu, Mehmet Burcin


    It has been reported that acoustic waves are generated when a high-energy pulsed proton beam is deposited in a small volume within tissue. One possible application of proton-induced acoustics is to get real-time feedback for intra-treatment adjustments by monitoring such acoustic waves. A high spatial resolution in ultrasound imaging may reduce proton range uncertainty. Thus, it is crucial to understand the dependence of the acoustic waves on the proton beam characteristics. In this manuscript, firstly, an analytic solution for the proton-induced acoustic wave is presented to reveal the dependence of the signal on the beam parameters; then it is combined with an analytic approximation of the Bragg curve. The influence of the beam energy, pulse duration and beam diameter variation on the acoustic waveform are investigated. Further analysis is performed regarding the Fourier decomposition of the proton-acoustic signals. Our results show that the smaller spill time of the proton beam upsurges the amplitude of the acoustic wave for a constant number of protons, which is hence beneficial for dose monitoring. The increase in the energy of each individual proton in the beam leads to the spatial broadening of the Bragg curve, which also yields acoustic waves of greater amplitude. The pulse duration and the beam width of the proton beam do not affect the central frequency of the acoustic wave, but they change the amplitude of the spectral components.

  19. [Assessment of voice acoustic parameters in female teachers with diagnosed occupational voice disorders]. (United States)

    Niebudek-Bogusz, Ewa; Fiszer, Marta; Sliwińska-Kowalska, Mariola


    Laryngovideostroboscopy is the method most frequently used in the assessment of voice disorders. However, the employment of quantitative methods, such as voice acoustic analysis, is essential for evaluating the effectiveness of prophylactic and therapeutic activities as well as for objective medical certification of larynx pathologies. The aim of this study was to examine voice acoustic parameters in female teachers with occupational voice diseases. Acoustic analysis (IRIS software) was performed in 66 female teachers, including 35 teachers with occupational voice diseases and 31 with functional dysphonia. The teachers with occupational voice diseases presented the lower average fundamental frequency (193 Hz) compared to the group with functional dysphonia (209 Hz) and to the normative value (236 Hz), whereas other acoustic parameters did not differ significantly in both groups. Voice acoustic analysis, when applied separately from vocal loading, cannot be used as a testing method to verify the diagnosis of occupational voice disorders.

  20. Objective and subjective acoustical parameters in catholic churches


    António P. O.Carvalho; António E. J. Morgado


    This study reports on subjective and objective acoustical field measurements made in a surveyof 36 Catholic churches in Portugal built in the last 14 centuries. Monaural acousticalmeasurements (C80,D50,EDT, L, RT and TS) were taken at several source/receiver locationsin each church and a group of college students was asked to judge the subjective quality of¿music. The listeners in each church evaluated live music performances at similar locations ineach room. Evaluation sheets were used to re...

  1. Effect of Solvents on the Ultrasonic Velocity and Acoustic Parameters of Polyvinylidene Fluoride Solutions

    Directory of Open Access Journals (Sweden)

    S. S. Kulkarni


    Full Text Available Ultrasonic studies provide a wealth of information in understanding the molecular behavior and intermolecular interaction of polymer solvent mixtures. Attempts were made to measure ultrasonic velocity, density, and viscosity for the mixture of polyvinylidene fluoride (PVDF in acetone and dimethylformamide (DMF of various stoichiometric ratios at 300 K using crystal controlled ultrasonic interferometer (Mittal make, pyknometer (specific gravity bottle, and Ostwald viscometer, respectively. The acoustic parameters adiabatic compressibility (β, intermolecular free path length (Lf, acoustic impedance (Z, relative association (RA, ultrasonic attenuation (α/f2, and relaxation time (τ have been estimated using experimental data with well-known techniques. The variation of these acoustic parameters is explained in terms of solute-solvent molecular interaction in a polymer solution.

  2. Theoretical study of temperature dependent acoustic attenuation and non-linearity parameters in alkali metal hydride and deuteride

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rishi Pal [Department of Physics, Banaras Hindu University, Varanasi 221005 (India); Singh, Rajendra Kumar, E-mail: [Department of Physics, Banaras Hindu University, Varanasi 221005 (India)


    Temperature dependence of acoustic attenuation and non-linearity parameters in lithium hydride and lithium deuteride have been studied for longitudinal and shear modes along various crystallographic directions of propagation in a wide temperature range. Lattice parameter and repulsive parameters have been used as input data and interactions up to next nearest neighbours have been considered to calculate second and third order elastic constants which in turn have been used for evaluating acoustic attenuation and related parameters. The results have been discussed and compared with available data. It is hoped that the present results will serve to stimulate the determination of the acoustic attenuation of these compounds at different temperatures.

  3. Research on Relationship Between Parameters Correlation of Acoustic Emission and Rock Failure

    Directory of Open Access Journals (Sweden)

    Duan Dong


    Full Text Available Analyzes that granite AE signal parameters under uniaxial loading by that way of Pearson linear correlation, research that correlation of characterization parameters within that separate group with various characteristics, and analyzes that relationship between each parameter and destruction. This study shows that: impact, events and ringing are mainly used to describe the damage degree of rock, amplitude characteristics, time characteristics and frequency characteristics are mainly used for acoustic emission source properties, and energy characteristics can not only be used to describe the damage degree of rock, but also be used to analyze the acoustic emission source. That ringing counts are highly interrelated with energy, intensity, duration, RMS and ASL have high correlation, a high correlation is in the three parameters of the energy characteristics, and there is a higher correlation between the two parameters of the timing characteristics. The correlation between the parameters of frequency is very low, and the acoustic emission parameters can't be replaced for each other in analysis, which need separate analysis. Characteristics of ringing and energy can be a very good description of failure, but failure precursors can't be quantized. However, the amplitude, RMS, ASL, can quantify characterization of that precursor of failure, such as the effective voltage value 0.7 V as the precursor of destruction, the emergence of amplitude exceeding 95 dB as that destructive precursor. The relationship between the timing characteristics and damage is not obvious, so you can't use those parameters analysis that fracture of rocks. But those parameters can be used to describe AE source characteristics. The peak frequency, inverse frequency and the center frequency can't reflect AE source characteristics, and that average frequency and initial frequency can reflect AE source characteristics.

  4. Vocal assessment of addicts on methadone therapy via the RBH scale and objective acoustic parameters. (United States)

    Mirkov, Veljko; Mitrović, Slobodan M


    A large number of people around the world struggle daily to become free of their addiction to illegal psychoactive substances. In order to create an atmosphere of improved supervision, established communication and improved quality of life for drug addicts, centers have been set up to provide methadone as a substitute. The aim of the research was to assess the vocal features of drug addicts on methadone therapy via subjective and objective parameters, to ascertain if vocal damage has occurred and to determine whether subjective and objective acoustic vocal parameters are related, and how. The research included 34 adults of both genders who were undergoing methadone treatment. A subjective vocal evaluation assessed voice pitch and clarity, while the subjective acoustic analysis utilized the Roughness-Breathiness-Hoarseness scale of roughness-breathiness-hoarseness. Objective acoustic analysis was conducted after recording and analyzing an uninterrupted vocal /a/ of at least three seconds duration, using the "GllotisController" software. The subjective acoustic analysis using the Roughness-Breathiness-Hoarseness scale showed pathological values in 52.9% male and 47% female participants. The average values of the roughness-breathiness-hoarseness for the entire sample were 0.91, 0.38 and 0.50, respectively. Lower roughness was associated with a higher fundamental frequency (f 0 ) and lower jitter and shimmer values (p<0.05). There was a statistically significant correlation between breathiness, jitter (p<0.01) and shimmer (p<0.05), and between hoarseness and jitter (p<0.01). A statistically significant correlation was found between the two subjective vocal assessments, voice clarity and pitch, and Roughness-Breathiness-Hoarseness scale, and the parameters of the objective acoustic vocal assessment. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  5. Simulation of sound transmission through the porous material, determining the parameters of acoustic absorption and sound reduction

    Directory of Open Access Journals (Sweden)

    Zvolenský Peter


    Full Text Available Currently, the quality of structural design of a railway coach is evaluated by so called acoustic comfort, which is characterized by achieved levels of internal noise. Therefore, acoustic parameters of car body are being developed purposely. The paper presents the results of the computer simulation of noise transmission through the wagon walls and the use of noise tests from the train running. The acoustic properties of the original and new materials in the care body are compared.

  6. Optimization of input parameters of acoustic-transfection for the intracellular delivery of macromolecules using FRET-based biosensors (United States)

    Yoon, Sangpil; Wang, Yingxiao; Shung, K. K.


    Acoustic-transfection technique has been developed for the first time. We have developed acoustic-transfection by integrating a high frequency ultrasonic transducer and a fluorescence microscope. High frequency ultrasound with the center frequency over 150 MHz can focus acoustic sound field into a confined area with the diameter of 10 μm or less. This focusing capability was used to perturb lipid bilayer of cell membrane to induce intracellular delivery of macromolecules. Single cell level imaging was performed to investigate the behavior of a targeted single-cell after acoustic-transfection. FRET-based Ca2+ biosensor was used to monitor intracellular concentration of Ca2+ after acoustic-transfection and the fluorescence intensity of propidium iodide (PI) was used to observe influx of PI molecules. We changed peak-to-peak voltages and pulse duration to optimize the input parameters of an acoustic pulse. Input parameters that can induce strong perturbations on cell membrane were found and size dependent intracellular delivery of macromolecules was explored. To increase the amount of delivered molecules by acoustic-transfection, we applied several acoustic pulses and the intensity of PI fluorescence increased step wise. Finally, optimized input parameters of acoustic-transfection system were used to deliver pMax-E2F1 plasmid and GFP expression 24 hours after the intracellular delivery was confirmed using HeLa cells.

  7. Correlation between acoustic parameters and Voice Handicap Index in dysphonic teachers. (United States)

    Niebudek-Bogusz, E; Woznicka, E; Zamyslowska-Szmytke, E; Sliwinska-Kowalska, M


    The aim of this study was to investigate the relationship between acoustic analysis and biopsychosocial implications of voice problems, evaluated by the Voice Handicap Index (VHI). The study comprised 120 female teachers with voice disorders, evaluated by videolaryngostroboscopy. 60.8% of this group were diagnosed as having functional dysphonia and 39.2% had dysphonia with benign vocal fold masses (nodules and polyps). The controls consisted of 30 euphonic women. The correlations between VHI and acoustic analysis were assessed in both groups using the Pearson correlation coefficient and regression analysis. In teachers, the total VHI score was over 5 times as high as in controls (p teachers, significant positive correlations were found between the total VHI score and the frequency perturbation parameters and amplitude perturbation parameters when both statistical methods were used. These acoustic parameters also significantly correlated with the score on the functional and emotional subscales, but rarely with the physical subscale of the VHI. The study revealed a significant relationship between the objective voice measurements and the VHI. The results confirmed that VHI can be a valuable tool for assessing biopsychosocial implications of occupational dysphonia and should be incorporated in multidimensional voice evaluation. (c) 2010 S. Karger AG, Basel.

  8. Assessment of impact of acoustic and nonacoustic parameters on performance and well-being (United States)

    Mellert, Volker; Weber, Reinhard; Nocke, Christian


    It is of interest to estimate the influence of the environment in a specific work place area on the performance and well-being of people. Investigations have been carried out for the cabin environment of an airplane and for class rooms. Acoustics is only one issue of a variety of environmental factors, therefore the combined impact of temperature, humidity, air quality, lighting, vibration, etc. on human perception is the subject of psychophysical research. Methods for the objective assessment of subjective impressions have been developed for applications in acoustics for a long time, e.g., for concert hall acoustics, noise evaluation, and sound design. The methodology relies on questionnaires, measurement of acoustic parameters, ear-related signal processing and analysis, and on correlation of the physical input with subjective output. Methodology and results are presented from measurements of noise and vibration, temperature and humidity in aircraft simulators, and of reverberation, coloring, and lighting in a primary school, and of the environmental perception. [The work includes research with M. Klatte, A. Schick from the Psychology Department of Oldenburg University, and M. Meis from Hoerzentrum Oldenburg GmbH and with the European Project HEACE (for partners see

  9. Waveform inversion in acoustic orthorhombic media with a practical set of parameters

    KAUST Repository

    Masmoudi, Nabil


    Full-waveform inversion (FWI) in anisotropic media is overall challenging, mainly because of the large computational cost, especially in 3D, and the potential trade-offs between the model parameters needed to describe such a media. We propose an efficient 3D FWI implementation for orthorhombic anisotropy under the acoustic assumption. Our modeling is based on solving the pseudo-differential orthorhombic wave equation split into a differential operator and a scalar one. The modeling is computationally efficient and free of shear wave artifacts. Using the adjoint state method, we derive the gradients with respect to a practical set of parameters describing the acoustic orthorhombic model, made of one velocity and five dimensionless parameters. This parameterization allows us to use a multi-stage model inversion strategy based on the continuity of the scattering potential of the parameters as we go from higher symmetry anisotropy to lower ones. We apply the proposed approach on a modified SEG-EAGE overthrust synthetic model. The quality of the inverted model suggest that we may recover only 4 parameters, with different resolution scales depending on the scattering potential of these parameters.

  10. Frequency Domain Multi-parameter Full Waveform Inversion for Acoustic VTI Media

    KAUST Repository

    Djebbi, Ramzi


    Multi-parameter full waveform inversion (FWI) for transversely isotropic (TI) media with vertical axis of symmetry (VTI) suffers from the trade-off between the parameters. The trade-off results in the leakage of one parameter\\'s update into the other during the inversion. It affects the accuracy and convergence of the inversion. The sensitivity analyses suggested a parameterisation using the horizontal velocity vh, epsilon and eta to reduce the trade-off for surface recorded seismic data.We test the (vh, epsilon, eta) parameterisation for acoustic VTI media using a scattering integral (SI) based inversion. The data is modeled in frequency domain and the model is updated using a preconditioned conjugate gradient method. We applied the method to the VTI Marmousi II model and in the inversion, we keep eta parameter fixed as the background initial model and we invert simultaneously for both vh and epsilon. The results show the suitability of the parameterisation for multi-parameter VTI acoustic inversion as well as the accuracy of the inversion approach.

  11. Validation of Essential Acoustic Parameters for Highly Urgent In-Vehicle Collision Warnings. (United States)

    Lewis, Bridget A; Eisert, Jesse L; Baldwin, Carryl L


    Objective The aim of this study was to validate the importance of key acoustic criteria for use as in-vehicle forward collision warning (FCW) systems. Background Despite recent advances in vehicle safety, automobile crashes remain one of the leading causes of death. As automation allows for more control of noncritical functions by the vehicle, the potential for disengagement and distraction from the driving task also increases. It is, therefore, as important as ever that in-vehicle safety-critical interfaces are intuitive and unambiguous, promoting effective collision avoidance responses upon first exposure even under divided-attention conditions. Method The current study used a driving simulator to assess the effectiveness of two warnings, one that met all essential acoustic parameters, one that met only some essential parameters, and a no-warning control in the context of a lead vehicle-following task in conjunction with a cognitive distractor task and collision event. Results Participants receiving an FCW comprising five essential acoustic components had improved collision avoidance responses relative to a no-warning condition and an FCW missing essential elements on their first exposure. Responses to a consistently good warning (GMU Prime) improved with subsequent exposures, whereas continued exposure to the less optimal FCW (GMU Sub-Prime) resulted in poorer performance even relative to receiving no warning at all. Conclusions This study provides support for previous warning design studies and for the validity of five key acoustic parameters essential for the design of effective in-vehicle FCWs. Application Results from this study have implications for the design of auditory FCWs and in-vehicle display design.

  12. Acoustics (United States)

    Goodman, Jerry R.; Grosveld, Ferdinand


    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  13. The influence of environmental parameters on the optimal frequency in a shallow underwater acoustic channel (United States)

    Zarnescu, George


    In a shallow underwater acoustic channel the delayed replicas of a transmitted signal are mainly due to the interactions with the sea surface and the bottom layer. If a specific underwater region on the globe is considered, for which the sedimentary layer structure is constant across the transmission distance, then the variability of the amplitude-delay profile is determined by daily and seasonal changes of the sound speed profile (SSP) and by weather changes, such as variations of the wind speed. Such a parameter will influence the attenuation at the surface, the noise level and the profile of the sea surface. The temporal variation of the impulse response in a shallow underwater acoustic channel determines the variability of the optimal transmission frequency. If the ways in which the optimal frequency changes can be predicted, then an adaptive analog transceiver can be easily designed for an underwater acoustic modem or it can be found when a communication link has high throughput. In this article it will be highlighted the way in which the amplitude-delay profile is affected by the sound speed profile, wind speed and channel depth and also will be emphasized the changes of the optimal transmission frequency in a configuration, where the transmitter and receiver are placed on the seafloor and the bathymetry profile will be considered flat, having a given composition.

  14. A normalized wave number variation parameter for acoustic black hole design. (United States)

    Feurtado, Philip A; Conlon, Stephen C; Semperlotti, Fabio


    In recent years, the concept of the Acoustic Black Hole has been developed as an efficient passive, lightweight absorber of bending waves in plates and beams. Theory predicts greater absorption for a higher thickness taper power. However, a higher taper power also increases the violation of an underlying theory smoothness assumption. This paper explores the effects of high taper power on the reflection coefficient and spatial change in wave number and discusses the normalized wave number variation as a spatial design parameter for performance, assessment, and optimization.

  15. Modelling acoustic propagation beneath Antarctic sea ice using measured environmental parameters (United States)

    Alexander, Polly; Duncan, Alec; Bose, Neil; Williams, Guy


    Autonomous underwater vehicles are improving and expanding in situ observations of sea ice for the validation of satellite remote sensing and climate models. Missions under sea ice, particularly over large distances (up to 100 km) away from the immediate vicinity of a ship or base, require accurate acoustic communication for monitoring, emergency response and some navigation systems. We investigate the propagation of acoustic signals in the Antarctic seasonal ice zone using the BELLHOP model, examining the influence of ocean and sea ice properties. We processed available observations from around Antarctica to generate input variables such as sound speed, surface reflection coefficient (R) and roughness parameters. The results show that changes in the sound speed profile make the most significant difference to the propagation of the direct path signal. The inclusion of the surface reflected signals from a flat ice surface was found to greatly decrease the transmission loss with range. When ice roughness was added, the transmission loss increased with roughness, in a manner similar to the direct path transmission loss results. The conclusions of this work are that: (1) the accuracy of acoustic modelling in this environment is greatly increased by using realistic sound speed data; (2) a risk averse ranging model would use only the direct path signal transmission; and (3) in a flat ice scenario, much greater ranges can be achieved if the surface reflected transmission paths are included. As autonomous missions under sea ice increase in scale and complexity, it will be increasingly important for operational procedures to include effective modelling of acoustic propagation with representative environmental data.

  16. Monitoring the viscosity of diesel engine lubricating oil by using acoustic emission technique, the selection of measurement parameters

    International Nuclear Information System (INIS)

    Othman Inayatullah; Nordin Jamaludin; Fauziah Mat


    Acoustic emission technique has been developed through years of monitoring and diagnosis of bearing, but it is still new in the diagnosis and monitoring of lubrication oil to bearings drive. The propagation of acoustic emission signal is generated when the signal piston on the cylinder liner lubricating oil which is a par. The signal is analyzed in time domain to obtain the parameters of root mean squared, amplitude, energy and courtesy. Lubricant viscosity will undergo changes due to temperature, pressure and useful. This study focuses on the appropriate parameters for the diagnosis and monitoring of lubricating oil viscosity. Studies were conducted at a constant rotational speed and temperature, but use a different age. The results showed that the energy parameter is the best parameter used in this monitoring. However, this parameter cannot be used directly and it should be analyzed using mathematical formulas. This mathematical formula is a relationship between acoustic emission energy with the viscosity of lubricating oil. (author)

  17. A new qualitative acoustic emission parameter based on Shannon's entropy for damage monitoring (United States)

    Chai, Mengyu; Zhang, Zaoxiao; Duan, Quan


    An important objective of acoustic emission (AE) non-destructive monitoring is to accurately identify approaching critical damage and to avoid premature failure by means of the evolutions of AE parameters. One major drawback of most parameters such as count and rise time is that they are strongly dependent on the threshold and other settings employed in AE data acquisition system. This may hinder the correct reflection of original waveform generated from AE sources and consequently bring difficulty for the accurate identification of the critical damage and early failure. In this investigation, a new qualitative AE parameter based on Shannon's entropy, i.e. AE entropy is proposed for damage monitoring. Since it derives from the uncertainty of amplitude distribution of each AE waveform, it is independent of the threshold and other time-driven parameters and can characterize the original micro-structural deformations. Fatigue crack growth test on CrMoV steel and three point bending test on a ductile material are conducted to validate the feasibility and effectiveness of the proposed parameter. The results show that the new parameter, compared to AE amplitude, is more effective in discriminating the different damage stages and identifying the critical damage.

  18. Formulae for predicting non-acoustical parameters of deformed fibrous porous materials. (United States)

    Hirosawa, Kunikazu; Nakagawa, Hiroshi


    Formulae to predict non-acoustical parameters (i.e., flow resistivity, tortuosity, and viscous and thermal characteristic lengths) of deformed fibrous porous materials are proposed provided that the original values of these parameters are known in advance. These formulae are developed using numerical fluid analyses. The flow resistivity was calculated by using the finite element method for a two-dimensional incompressible viscous fluid approximated by Oseen flow. The tortuosity and characteristic lengths were calculated by using the complex variable boundary element method for a two-dimensional potential flow. These calculations showed that the flow resistivity was inversely proportional to the porosity multiplied by the three-halves power of the compression ratio, that the tortuosity can be represented by a linear expression of the porosity, and that both characteristic lengths changed in the same manner with respect to the porosity. These tendencies agreed well with measurements of real glass wools of various bulk densities. The proposed prediction formulae for the parameters were then derived from the tendencies obtained from the numerical analyses. The predicted parameter values were compared with the calculated parameters and good agreement was obtained, confirming the validity of the proposed formulae.

  19. Automated valve fault detection based on acoustic emission parameters and support vector machine

    Directory of Open Access Journals (Sweden)

    Salah M. Ali


    Full Text Available Reciprocating compressors are one of the most used types of compressors with wide applications in industry. The most common failure in reciprocating compressors is always related to the valves. Therefore, a reliable condition monitoring method is required to avoid the unplanned shutdown in this category of machines. Acoustic emission (AE technique is one of the effective recent methods in the field of valve condition monitoring. However, a major challenge is related to the analysis of AE signal which perhaps only depends on the experience and knowledge of technicians. This paper proposes automated fault detection method using support vector machine (SVM and AE parameters in an attempt to reduce human intervention in the process. Experiments were conducted on a single stage reciprocating air compressor by combining healthy and faulty valve conditions to acquire the AE signals. Valve functioning was identified through AE waveform analysis. SVM faults detection model was subsequently devised and validated based on training and testing samples respectively. The results demonstrated automatic valve fault detection model with accuracy exceeding 98%. It is believed that valve faults can be detected efficiently without human intervention by employing the proposed model for a single stage reciprocating compressor. Keywords: Condition monitoring, Faults detection, Signal analysis, Acoustic emission, Support vector machine

  20. A New Method for Determining Optimal Regularization Parameter in Near-Field Acoustic Holography

    Directory of Open Access Journals (Sweden)

    Yue Xiao


    Full Text Available Tikhonov regularization method is effective in stabilizing reconstruction process of the near-field acoustic holography (NAH based on the equivalent source method (ESM, and the selection of the optimal regularization parameter is a key problem that determines the regularization effect. In this work, a new method for determining the optimal regularization parameter is proposed. The transfer matrix relating the source strengths of the equivalent sources to the measured pressures on the hologram surface is augmented by adding a fictitious point source with zero strength. The minimization of the norm of this fictitious point source strength is as the criterion for choosing the optimal regularization parameter since the reconstructed value should tend to zero. The original inverse problem in calculating the source strengths is converted into a univariate optimization problem which is solved by a one-dimensional search technique. Two numerical simulations with a point driven simply supported plate and a pulsating sphere are investigated to validate the performance of the proposed method by comparison with the L-curve method. The results demonstrate that the proposed method can determine the regularization parameter correctly and effectively for the reconstruction in NAH.

  1. Acoustic parameters of snoring sound to assess the effectiveness of sleep nasendoscopy in predicting surgical outcome. (United States)

    Jones, Terry M; Walker, Paul; Ho, Meau-Shin; Earis, John E; Swift, Andrew C; Charters, Peter


    To assess the effectiveness of two grading systems used to predict surgical outcome in nonapneic snorers. A prospective observational study. Prior to undergoing palatal surgery, 20 patients completed a sleep nasendoscopic examination involving sequential steady-state sedation with intravenous propofol. Using a combination of acoustic parameters of snoring sound as an objective outcome measurement, and the answers to a specifically designed questionnaire as a subjective outcome measurement, the effectiveness of each grading system in predicting surgical outcome was examined. Depending on the outcome measurement used, sensitivity in predicting success of surgery for snoring varied from 16.7% to 50.0% and specificity from 38.5% to 62.5% for the Pringle and Croft system, while sensitivity varied from 91.7% to 100% and specificity from 30.8% to 31.5% for the Camilleri system. Sleep nasendoscopy using these classifications cannot be recommended as a reliable predictor of surgical outcome in nonapneic snorers. C-4.

  2. Body mass index and acoustic voice parameters: is there a relationship. (United States)

    Souza, Lourdes Bernadete Rocha de; Santos, Marquiony Marques Dos


    Specific elements such as weight and body volume can interfere in voice production and consequently in its acoustic parameters, which is why it is important for the clinician to be aware of these relationships. To investigate the relationship between body mass index and the average acoustic voice parameters. Observational, cross-sectional descriptive study. The sample consisted of 84 women, aged between 18 and 40years, an average of 26.83 (±6.88). The subjects were grouped according to body mass index: 19 underweight; 23 normal ranges, 20 overweight and 22 obese and evaluated the fundamental frequency of the sustained vowel [a] and the maximum phonation time of the vowels [a], [i], [u], using PRAAT software. The data were submitted to the Kruskal-Wallis test to verify if there were differences between the groups regarding the study variables. All variables showed statistically significant results and were subjected to non-parametric test Mann-Whitney. Regarding to the average of the fundamental frequency, there was statistically significant difference between groups with underweight and overweight and obese; normal range and overweight and obese. The average maximum phonation time revealed statistically significant difference between underweight and obese individuals; normal range and obese; overweight and obese. Body mass index influenced the average fundamental frequency of overweight and obese individuals evaluated in this study. Obesity influenced in reducing maximum phonation time average. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  3. Neutron scattering investigation of the acoustic-mode Grüneisen parameters in RbBr

    DEFF Research Database (Denmark)

    Ernst, G.; Krexner, G.; Quittner, G.


    The microscopic Grüneisen parameters in RbBr have been determined for 44 acoustic modes in the main symmetry directions Δ, Σ, and Λ by inelastic neutron scattering under hydrostatic pressure. The experimental data are well described within the framework of a breathing-shell model, which includes...

  4. Noise disturbance in open-plan study environments: a field study on noise sources, student tasks and room acoustic parameters. (United States)

    Braat-Eggen, P Ella; van Heijst, Anne; Hornikx, Maarten; Kohlrausch, Armin


    The aim of this study is to gain more insight in the assessment of noise in open-plan study environments and to reveal correlations between noise disturbance experienced by students and the noise sources they perceive, the tasks they perform and the acoustic parameters of the open-plan study environment they work in. Data were collected in five open-plan study environments at universities in the Netherlands. A questionnaire was used to investigate student tasks, perceived sound sources and their perceived disturbance, and sound measurements were performed to determine the room acoustic parameters. This study shows that 38% of the surveyed students are disturbed by background noise in an open-plan study environment. Students are mostly disturbed by speech when performing complex cognitive tasks like studying for an exam, reading and writing. Significant but weak correlations were found between the room acoustic parameters and noise disturbance of students. Practitioner Summary: A field study was conducted to gain more insight in the assessment of noise in open-plan study environments at universities in the Netherlands. More than one third of the students was disturbed by noise. An interaction effect was found for task type, source type and room acoustic parameters.

  5. Integrable parameter regimes and stationary states of nonlinearly coupled electromagnetic and ion-acoustic waves

    International Nuclear Information System (INIS)

    Rao, N.N.


    A systematic analysis of the stationary propagation of nonlinearly coupled electromagnetic and ion-acoustic waves in an unmagnetized plasma via the ponderomotive force is carried out. For small but finite amplitudes, the governing equations have a Hamiltonian structure, but with a kinetic energy term that is not positive definite. The Hamiltonian is similar to the well-known Hacute enon endash Heiles Hamiltonian of nonlinear dynamics, and is completely integrable in three regimes of the allowed parameter space. The corresponding second invariants of motion are also explicitly obtained. The integrable parameter regimes correspond to supersonic values of the Mach number, which characterizes the propagation speed of the coupled waves. On the other hand, in the sub- as well as near-sonic regimes, the coupled mode equations admit different types of exact analytical solutions, which represent nonlinear localized eigenstates of the electromagnetic field trapped in the density cavity due to the ponderomotive potential. While the density cavity has always a single-dip structure, for larger amplitudes it can support higher-order modes having a larger number of nodes in the electromagnetic field. In particular, we show the existence of a new type of localized electromagnetic wave whose field intensity has a triple-hump structure. For typical parameter values, the triple-hump solitons propagate with larger Mach numbers that are closer to the sonic limit than the single- as well as the double-hump solitons, but carry a lesser amount of the electromagnetic field energy. A comparison between the different types of solutions is carried out. The possibility of the existence of trapped electromagnetic modes having a larger number of humps is also discussed. copyright 1998 American Institute of Physics

  6. [Study of communication behaviour of the dolphin: procedure, motor and acoustic parameters]. (United States)

    Ivanov, M P


    First results of the experiments on the acoustic communication of dolphins are reported. They are complemented with the demonstration of a motor reaction of the dolphin keeping watch on the respondent, which was the same for all participants of the dialogue, i. e. turn of the head or trunk towards each other during transmission/reception of the information. The procedure allows unequivocal comparison of the acoustic signals with the behavioral acts of the animals during the experience. All stages of the animal's learning as well as oscillograms of the acoustic signals during acoustic communication behavior and echolocation process connected with differentiation of targets are shown. The routine procedure of investigating formation of the learning set served as the basic model of the physiological experiment. The non-realized action with an increasing emotional load leading on its peak to, inevitable acoustic intervention in to the respondent's work played the role of stimulus of the communication reaction, thus supporting model of communication behavior.

  7. Evaluation of voice acoustic parameters related to the vocal-loading test in professionally active teachers with dysphonia. (United States)

    Niebudek-Bogusz, Ewa; Kotyło, Piotr; Sliwińska-Kowalska, Mariola


    Teachers are at risk of developing voice disorders. A clinical battery of vocal function tests should include non-invasive and accurate measurements. The quantitative methods (e.g., voice acoustic analysis) make it possible to objectively evaluate voice efficiency and outcomes of dysphonia treatment. To identify possible signs of vocal fatigue, acoustic waveform perturbations during sustained phonation were measured before and after the vocal-loading test in 51 professionally active female teachers with functional voice disorders, using IRIS software. All the participants were also subjected to laryngological/phoniatric examination involving videostroboscopy combined with self-estimation by voice handicap index (VHI)-based scale. The phoniatric examination revealed glottal insufficiency with bowed vocal folds in 35.2%, soft vocal nodules in 31.4%, and hyperfunctional dysphonia with a tendency towards vestibular phonation in 19.6% of the patients. In the VHI scale, 66% of the female teachers estimated their own voice problems as moderate disability. An acoustic analysis performed after the vocal-loading test showed an increased rate of abnormal frequency perturbation parameters (pitch perturbation quotient (Jitter), relative average perturbation (RAP), and pitch period perturbation quotient (PPQ)) compared to the pre-test outcomes. The same was true of pitch-intensity contour of vowel /a:/, an indication of voice instability during sustained phonation. The recorded impairments of voice acoustic parameters related to vocal loading provide further evidence of dysphonia. The voice acoustic analysis performed before and after the vocal-loading test can significantly contribute to objective voice examinations useful in diagnosis of dysphonia among teachers.

  8. Investigation of the Influence of Acoustic Oscillation Parameters on the Mechanism of Waste Rubber Products Combustion (United States)

    Shakurov, R. F.; Sitnikov, O. R.; Galimova, A. I.; Sabitova, A. F.


    The article presents an analysis of the used methods of recycling of waste rubber products. The worn out tires are exposed to natural decomposition only after 50 - 100 years, and toxic organic compounds used in the manufacture constitute a danger to the environment. It contemplates a method of recycling waste rubber products in devices where pulsating combustion is realized. The dependence of the influence of acoustic pulsation parameters on the combustion mechanism of waste rubber products and on the composition of combustion products was experimentally investigated and established. For this purpose, the setup scheme based on the Rijke effect is optimized. The resonance pipe is coaxially embedded in the shaft. The known mathematical model of finding the combustion zones in the Rijke pipe, corresponding to the gas flow oscillations with the maximum amplitude, is applied to the chosen scheme. Investigations were carried out for three positions of the grate relative to the lower section of the experimental pipe, in which 1st, 2nd, 3rd modes of oscillation are formed. There are favorable conditions arise for the secondary combustion of mechanical particles entrained in the gas flow in the tube. The favorable conditions for afterburning also include the fact that through the upper section of the resonant pipe, the ambient air, caused by the features of the standing wave, is mixed into the gas stream. A comparative analysis of the change of gas concentration composition along the length of the resonance tube is carried out. It is established that the basic mode of oscillations contributes to the reduction of nitrogen oxides, in comparison with the oscillations occurring simultaneously at several harmonics, considering the main one. The results of research for the three positions of the grate in relation to the lower section of the installation are presented in tabular form, in which 1, 2, 3 modes of oscillation are formed. The analysis of experimental results confirms

  9. Energy- and wave-based beam-tracing prediction of room-acoustical parameters using different boundary conditions. (United States)

    Yousefzadeh, Behrooz; Hodgson, Murray


    A beam-tracing model was used to study the acoustical responses of three empty, rectangular rooms with different boundary conditions. The model is wave-based (accounting for sound phase) and can be applied to rooms with extended-reaction surfaces that are made of multiple layers of solid, fluid, or poroelastic materials-the acoustical properties of these surfaces are calculated using Biot theory. Three room-acoustical parameters were studied in various room configurations: sound strength, reverberation time, and RApid Speech Transmission Index. The main objective was to investigate the effects of modeling surfaces as either local or extended reaction on predicted values of these three parameters. Moreover, the significance of modeling interference effects was investigated, including the study of sound phase-change on surface reflection. Modeling surfaces as of local or extended reaction was found to be significant for surfaces consisting of multiple layers, specifically when one of the layers is air. For multilayers of solid materials with an air-cavity, this was most significant around their mass-air-mass resonance frequencies. Accounting for interference effects made significant changes in the predicted values of all parameters. Modeling phase change on reflection, on the other hand, was found to be relatively much less significant.

  10. Coefficient of volume expansion - thermo acoustical parameters in polystyrene, nylon-6 and teflon in the temperature range 173 degree K to 383 degree K

    International Nuclear Information System (INIS)

    Reddy, R.R.; Ahammed, Y.N.; Kumap, M.R.; Rag, T.V.R.; Sharma, B.K.


    Thermo acoustical parameters of polymers viz. Polystyrene, Nylon-6 and Teflon have been evaluated at temperature between 173 degree K and 383 degree K in terms of the coefficient of volume expansion, on the assumption that the Moelwyn-Hughes parameter is the dominant factor. Parameters such as the Beyer's nonlinearity parameter, Moelwyn-Hughes parameter, the isothermal, isobaric and isochoric Gruineisen parameters, the repulsive exponent of intermolecular potential, fractional available volume, and the Sharma thermo acoustical parameter S sub 0 have been evaluated through simple relationships. The interrelationships between the isobaric and isochoric Gruneisen and acoustical, parameters have been examined and analysed in these polymers over a wide temperature range. The results have been used to develop understanding of the significance of microscopic factors such as molecular order and intermolecular forces upon macroscopic thermo acoustical properties. The Sharma's parameter S sub 0 remains invariant with temperature over a wide range and retains its characteristic value i.e. 1.1 1+/- 0.01 as observed in case of several systems existing either in a liquid state or in a solid state. The present treatment has the distinct advantage of calculating several thermo acoustical parameters through simple interrelationships from the knowledge of volume expansivity alone

  11. Derivation of transformation equations for the parameters that characterize a plane acoustic wave without using phase invariance and Lorentz-Einstein transformation


    Rothenstein, Bernhard


    We show that the transformation equations for the parameters that characterize a plane acoustic wave: period, (frequency), wave vector, wave length and phase velocity can be derived without using phase invariance and Lorentz-Einstein transformation

  12. A numerical study of the effects of design parameters on the acoustics noise of a high efficiency propeller (United States)

    Yang, Liu; Huang, Jun; Yi, Mingxu; Zhang, Chaopu; Xiao, Qian


    A numerical study of a high efficiency propeller in the aerodynamic noise generation is carried out. Based on RANS, three-dimensional numerical simulation is performed to obtain the aerodynamic performance of the propeller. The result of the aerodynamic analysis is given as input of the acoustic calculation. The sound is calculated using the Farassat 1A, which is derived from Ffowcs Williams-Hawkings equation, and compared with the data of wind tunnel. The propeller is modified for noise reduction by changing its geometrical parameters such as diameter, chord width and pitch angle. The trend of variation between aerodynamic analysis data and acoustic calculation result are compared and discussed for different modification tasks. Meaningful conclusions are drawn on the noise reduction of propeller.

  13. Parametric Room Acoustic Workflows

    DEFF Research Database (Denmark)

    Parigi, Dario; Svidt, Kjeld; Molin, Erik


    and interoperability with Grasshopper 3d. The focus will be placed to the benchmarking of three different acoustic analysis tools based on raytracing. To compare the accuracy and speed of the acoustic evaluation across different tools, a homogeneous set of acoustic parameters is chosen. The room acoustics parameters...

  14. Effect of acoustic parameters on the cavitation behavior of SonoVue microbubbles induced by pulsed ultrasound. (United States)

    Lin, Yutong; Lin, Lizhou; Cheng, Mouwen; Jin, Lifang; Du, Lianfang; Han, Tao; Xu, Lin; Yu, Alfred C H; Qin, Peng


    SonoVue microbubbles could serve as artificial nuclei for ultrasound-triggered stable and inertial cavitation, resulting in beneficial biological effects for future therapeutic applications. To optimize and control the use of the cavitation of SonoVue bubbles in therapy while ensuring safety, it is important to comprehensively understand the relationship between the acoustic parameters and the cavitation behavior of the SonoVue bubbles. An agarose-gel tissue phantom was fabricated to hold the SonoVue bubble suspension. 1-MHz transmitting transducer calibrated by a hydrophone was used to trigger the cavitation of SonoVue bubbles under different ultrasonic parameters (i.e., peak rarefactional pressure (PRP), pulse repetition frequency (PRF), and pulse duration (PD)). Another 7.5-MHz focused transducer was employed to passively receive acoustic signals from the exposed bubbles. The ultraharmonics and broadband intensities in the acoustic emission spectra were measured to quantify the extent of stable and inertial cavitation of SonoVue bubbles, respectively. We found that the onset of both stable and inertial cavitation exhibited a strong dependence on the PRP and PD and a relatively weak dependence on the PRF. Approximate 0.25MPa PRP with more than 20μs PD was considered to be necessary for ultraharmonics emission of SonoVue bubbles, and obvious broadband signals started to appear when the PRP exceeded 0.40MPa. Moreover, the doses of stable and inertial cavitation varied with the PRP. The stable cavitation dose initially increased with increasing PRP, and then decreased rapidly after 0.5MPa. By contrast, the inertial cavitation dose continuously increased with increasing PRP. Finally, the doses of both stable and inertial cavitation were positively correlated with PRF and PD. These results could provide instructive information for optimizing future therapeutic applications of SonoVue bubbles. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Canonical sound speed profile and related ray acoustic parameters in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; Sadhuram, Y.; Rao, M.M.M.; Rao, B.P.; SuryaPrakash, S.; Chandramouli, P.; Murthy, K.S.R.; Prasad, K.V.S.R.

    Following Munk's canonical theory, canonical parameters (i.e., B the stratification scale and epsilon the perturbation coefficient) in adiabatic ocean are obtained using SOFAR channel parameters (i.e., C sound velocity at the channel axis, Z sub(1...

  16. Identification of Material Parameters for the Simulation of Acoustic Absorption of Fouled Sintered Fiber Felts

    Directory of Open Access Journals (Sweden)

    Nicolas Lippitz


    Full Text Available As a reaction to the increasing noise pollution, caused by the expansion of airports close to residential areas, porous trailing edges are investigated to reduce the aeroacoustic noise produced by flow around the airframe. Besides mechanical and acoustical investigations of porous materials, the fouling behavior of promising materials is an important aspect to estimate the performance in long-term use. For this study, two sintered fiber felts were selected for a long-term fouling experiment where the development of the flow resistivity and accumulation of dirt was observed. Based on 3D structural characterizations obtained from X-ray tomography of the initial materials, acoustic models (Biot and Johnson–Champoux–Allard in the frame of the transfer matrix method were applied to the sintered fiber felts. Flow resistivity measurements and the measurements of the absorption coefficient in an impedance tube are the basis for a fouling model for sintered fiber felts. The contribution will conclude with recommendations concerning the modeling of pollution processes of porous materials.

  17. Possibility-based robust design optimization for the structural-acoustic system with fuzzy parameters (United States)

    Yin, Hui; Yu, Dejie; Yin, Shengwen; Xia, Baizhan


    The conventional engineering optimization problems considering uncertainties are based on the probabilistic model. However, the probabilistic model may be unavailable because of the lack of sufficient objective information to construct the precise probability distribution of uncertainties. This paper proposes a possibility-based robust design optimization (PBRDO) framework for the uncertain structural-acoustic system based on the fuzzy set model, which can be constructed by expert opinions. The objective of robust design is to optimize the expectation and variability of system performance with respect to uncertainties simultaneously. In the proposed PBRDO, the entropy of the fuzzy system response is used as the variability index; the weighted sum of the entropy and expectation of the fuzzy response is used as the objective function, and the constraints are established in the possibility context. The computations for the constraints and objective function of PBRDO are a triple-loop and a double-loop nested problem, respectively, whose computational costs are considerable. To improve the computational efficiency, the target performance approach is introduced to transform the calculation of the constraints into a double-loop nested problem. To further improve the computational efficiency, a Chebyshev fuzzy method (CFM) based on the Chebyshev polynomials is proposed to estimate the objective function, and the Chebyshev interval method (CIM) is introduced to estimate the constraints, thereby the optimization problem is transformed into a single-loop one. Numerical results on a shell structural-acoustic system verify the effectiveness and feasibility of the proposed methods.

  18. The Effect of Objective Room Acoustic Parameters on Auditory Steady-State Responses

    DEFF Research Database (Denmark)

    Zapata Rodriguez, Valentina; M. Harte, James; Jeong, Cheol-Ho


    Verification that Hearing Aids (HA) have been fitted correctly in pre-lingual infants and hard-to-test adults is an important emerging application in technical audiology. These test subjects are unable to undergo reliable behavioral testing, so an objective method is required. Auditory steady......-state responses (ASSR), recorded in a sound field is a promising technology to verify the hearing aid fitting. The test involves the presentation of the auditory stimuli via a loudspeaker, unlike the usual procedure of delivering via insert earphones. Room reverberation clearly may significantly affect...... the features of the stimulus important for eliciting a strong electrophysiological response, and thus complicate its detection. This study investigates the effect of different room acoustic conditions on recorded ASSRs via an auralisation approach using insert earphones. Fifteen normal-hearing listeners were...

  19. Studies on thermo-acoustic parameters in binary liquid mixtures of phosphinic acid (Cyanex 272) with different diluents at temperature 303.15 K: an ultrasonic study

    International Nuclear Information System (INIS)

    Kamila, Susmita; Jena, Satyaban; Swain, Bipin Bihari


    Acoustical investigations for the binary mixtures of phosphinic acid (Cyanex 272), used as liquid-liquid extractant, have been made in various diluents such as benzene, toluene, and xylene from ultrasonic velocity and density measurements at temperature 303.15 K and atmospheric pressure. This study involves evaluation of different thermo-acoustic parameters along with the excess properties, which are interpreted in the light of molecular interaction between a polar extractant, Cyanex 272 with non-polar diluent, benzene and weakly polar diluents, toluene and xylene. The excess values are correlated using Redlich-Kister polynomial equation, and corresponding adjustable parameters are derived

  20. A Comparative Experimental Study on the Use of Machine Learning Approaches for Automated Valve Monitoring Based on Acoustic Emission Parameters (United States)

    Ali, Salah M.; Hui, K. H.; Hee, L. M.; Salman Leong, M.; Al-Obaidi, M. A.; Ali, Y. H.; Abdelrhman, Ahmed M.


    Acoustic emission (AE) analysis has become a vital tool for initiating the maintenance tasks in many industries. However, the analysis process and interpretation has been found to be highly dependent on the experts. Therefore, an automated monitoring method would be required to reduce the cost and time consumed in the interpretation of AE signal. This paper investigates the application of two of the most common machine learning approaches namely artificial neural network (ANN) and support vector machine (SVM) to automate the diagnosis of valve faults in reciprocating compressor based on AE signal parameters. Since the accuracy is an essential factor in any automated diagnostic system, this paper also provides a comparative study based on predictive performance of ANN and SVM. AE parameters data was acquired from single stage reciprocating air compressor with different operational and valve conditions. ANN and SVM diagnosis models were subsequently devised by combining AE parameters of different conditions. Results demonstrate that ANN and SVM models have the same results in term of prediction accuracy. However, SVM model is recommended to automate diagnose the valve condition in due to the ability of handling a high number of input features with low sampling data sets.

  1. Comparison between acoustic radiation force impulse quantification data and perfusion-CT parameters in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Esser, Michael, E-mail:; Schneeweiß, Sven, E-mail:; Kolb, Manuel, E-mail:; Kurucay, Mustafa, E-mail:; Ruff, Christer, E-mail:; Nikolaou, Konstantin, E-mail:; Horger, Marius, E-mail:


    Highlights: • HCC tissue stiffness did not correlate with the degree of tumor vascularization. • HCC tissue stiffness declined while increasing HCC distance to the skin surface. • HCC tissue stiffness showed higher values the larger the respective tumor was. • Poorly differentiated HCCs showed increased values of tumor tissue stiffness. - Abstract: Objective: To find out, if ultrasound elastography of hepatocellular carcinoma (HCC) can predict patterns of tumor perfusion in volume perfusion computed tomography (VPCT). Material and methods: 25 consecutive patients (mean age, 68.9; range, 51–85 years) with liver cirrhosis suspected of HCC underwent VPCT and acoustic radiation force impulse (ARFI) elastography the same day. Quantitative elasticity values were registered, while blood flow (BF), blood volume (BV) and hepatic perfusion index (HPI) of the HCC lesions were calculated. Additionally, we identified histologic WHO grading, lesion size and localization. The Siemens Acuson S 3000 HELX-System with Virtual Touch™-Software and Siemens Somatom Definition Flash with Syngo{sup ®} software were used. Results: A total of 43 HCC lesions were assessed. Mean shear wave velocity was 2.6 m/s (range, 1.1–4.3 m/s). There was no significant linear correlation between the elasticity values and BF (p = 0.751), BV (p = 0.426) and HPI (p = 0.437). However, elasticity values were higher, the larger the tumor was (p = 0.008). Shear wave velocity declined with increasing distance of the HCC to the skin surface (p = 0.028) and depending on liver segment. In addition, elasticity values were higher in less differentiated HCCs. This trend was not statistically significant (p = 0.842). Conclusion: Tissue elasticity in HCC does not correlate with the degree of tumor vascularization, but calculated values are influenced both by the tumor size and localization inside the liver.

  2. A study on regularization parameter choice in near-field acoustical holography

    DEFF Research Database (Denmark)

    Gomes, Jesper; Hansen, Per Christian


    a regularization parameter. These parameter choice methods (PCMs) are attractive, since they require no a priori knowledge about the noise. However, there seems to be no clear understanding of when one PCM is better than the other. This paper presents comparisons of three PCMs: GCV, L-curve and Normalized......), and the Equivalent Source Method (ESM). All combinations of the PCMs and the NAH methods are investigated using simulated measurements with different types of noise added to the input. Finally, the comparisons are carried out for a practical experiment. This aim of this work is to create a better understanding...... of which mechanisms that affect the performance of the different PCMs....

  3. Quantifying undesired parallel components in Thévenin-equivalent acoustic source parameters

    DEFF Research Database (Denmark)

    Nørgaard, Kren Rahbek; Neely, Stephen T.; Rasetshwane, Daniel M.


    in the source parameters. Such parallel components can result from, e.g., a leak in the ear tip or improperly accounting for evanescent modes, and introduce errors into subsequent measurements of impedance and reflectance. This paper proposes a set of additional error metrics that are capable of detecting...

  4. Deep Brain Stimulation of the Subthalamic Nucleus Parameter Optimization for Vowel Acoustics and Speech Intelligibility in Parkinson's Disease (United States)

    Knowles, Thea; Adams, Scott; Abeyesekera, Anita; Mancinelli, Cynthia; Gilmore, Greydon; Jog, Mandar


    Purpose: The settings of 3 electrical stimulation parameters were adjusted in 12 speakers with Parkinson's disease (PD) with deep brain stimulation of the subthalamic nucleus (STN-DBS) to examine their effects on vowel acoustics and speech intelligibility. Method: Participants were tested under permutations of low, mid, and high STN-DBS frequency,…

  5. Responsive acoustic surfaces

    DEFF Research Database (Denmark)

    Peters, Brady; Tamke, Martin; Nielsen, Stig Anton


    Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design...... was simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces....

  6. Responsive acoustic surfaces

    DEFF Research Database (Denmark)

    Peters, Brady; Tamke, Martin; Nielsen, Stig Anton


    Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design...... for the acoustic conditions of these spaces. This paper describes an experimental research project that studied the design processes necessary to design for sound. A responsive acoustic surface was designed, fabricated and tested. This acoustic surface was designed to create specific sonic effects. The design...... was simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces....

  7. Acoustic parameters of snoring sound to assess the effectiveness of the Müller Manoeuvre in predicting surgical outcome. (United States)

    Jones, Terry M; Ho, Meau-Shin; Earis, John E; Swift, Andrew C


    To assess the effectiveness of the Müller Manoeuvre in predicting surgical outcome in non-apnoeic snorers. Forty-one non-apnoeic snorers performed the Müller Manoeuvre, prior to palatal surgery for snoring. Pre-operatively and between 1.0 and 4.1 months (mean 2.5 months) post-operatively, patients were admitted overnight when their sleeping position and snoring sounds were recorded. At the time of the post-operative recordings, patients were required to complete a specifically designed questionnaire. Snore files comprising the inspiratory component of the first 100 snores whilst the patient was supine, were extracted. Snore duration (s), snore loudness (dBA), snore periodicity (%) and the energy ratios for the frequency bands 0-200, 0-250 and 0-400 Hz were calculated. Only patients who showed improvements in snore periodicity and all energy ratios were considered to be surgical successes. In addition, patients were also categorised as 'successes' or 'failures' depending on their responses to specific questionnaire questions. The effectiveness of the Müller Manoeuvre in predicting surgical outcome was then tested using these categories. The 41 patients included 35 men and 6 women. Mean age: 47 years (24-67 years). Mean PNIFR 145 (80-230). Median reported alcohol intake was 11-15 units/week (0 to 26-30 units/week). Mean BMI: 30.6 kg/m2 (24.3-47.2 kg/m2). Twenty-four patients underwent an uvulopalatal elevation palatoplasty and seventeen a traditional palatoplasty. Following the Müller Manoeuvre, patients were categorised as 'ideal', 'suboptimal, but acceptable' or 'unsuitable' for surgery. Using the acoustic parameters, 23/41 patients were considered a surgical success, whilst 18/41 were considered failures. Using the questionnaire responses, 14/40 patients were considered a surgical success, whilst 26/40 were considered failures. There was no correlation between the subjective and objective outcomes (rho=0.193; p=0.227). Neither pre-operative BMI, type of

  8. Mie Scattering by a Conducting Sphere Coated Uniaxial Single-Negative Medium

    Directory of Open Access Journals (Sweden)

    You-Lin Geng


    Full Text Available We propose an accurate analytical method to compute the electromagnetic scattering from three-dimensional (3D conducting sphere coated uniaxial anisotropic single-negative (SNG medium. Based on the spherical vector wave functions (SVWFs in uniaxial anisotropic medium, the electromagnetic field in homogeneous uniaxial SNG medium and free space can be expressed by the SVWFs in uniaxial SNG medium and free space. The continued boundary conditions of electromagnetic fields between the uniaxial SNG medium and free space are applied, and the tangential electrical field is vanished in the surface of conducting sphere, the coefficients of scattering fields in free space can be derived, and then the character of scattering of conducting sphere coated homogeneous uniaxial SNG medium can be obtained. Some numericals are given in the end.

  9. The correlation between acoustic and magnetic properties in the long working metal boiler drum with the parameters of the electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Ababkov, Nikolai, E-mail:; Smirnov, Alexander, E-mail: [T.F. Gorbachev Kuzbass State Technical University, Vesennjaja str 28, Kemerovo, 650000 Russian Federation (Russian Federation)


    The present paper presents comparative analysis of measurement results of acoustic and magnetic properties in long working metal of boiler drums and the results obtained by methods of electronic microscopy. The structure of the metal sample from the fracture zone to the base metal (metal working sample long) and the center of the base metal before welding (weld metal sample) was investigated by electron microscopy. Studies performed by spectral acoustic, magnetic noise and electron microscopic methods were conducted on the same plots and the same samples of long working and weld metal of high-pressure boiler drums. The analysis of research results showed high sensitivity of spectral-acoustic and magnetic-noise methods to definition changes of microstructure parameters. Practical application of spectral-acoustic and magnetic noise NDT method is possible for the detection of irregularities and changes in structural and phase state of the long working and weld metal of boiler drums, made of a special molybdenum steel (such as 20M). The above technique can be used to evaluate the structure and physical-mechanical properties of the long working metal of boiler drums in the energy sector.

  10. The correlation between acoustic and magnetic properties in the long working metal boiler drum with the parameters of the electron microscope

    International Nuclear Information System (INIS)

    Ababkov, Nikolai; Smirnov, Alexander


    The present paper presents comparative analysis of measurement results of acoustic and magnetic properties in long working metal of boiler drums and the results obtained by methods of electronic microscopy. The structure of the metal sample from the fracture zone to the base metal (metal working sample long) and the center of the base metal before welding (weld metal sample) was investigated by electron microscopy. Studies performed by spectral acoustic, magnetic noise and electron microscopic methods were conducted on the same plots and the same samples of long working and weld metal of high-pressure boiler drums. The analysis of research results showed high sensitivity of spectral-acoustic and magnetic-noise methods to definition changes of microstructure parameters. Practical application of spectral-acoustic and magnetic noise NDT method is possible for the detection of irregularities and changes in structural and phase state of the long working and weld metal of boiler drums, made of a special molybdenum steel (such as 20M). The above technique can be used to evaluate the structure and physical-mechanical properties of the long working metal of boiler drums in the energy sector

  11. Effects of charge design features on parameters of acoustic and seismic waves and cratering, for SMR chemical surface explosions (United States)

    Gitterman, Y.


    A series of experimental on-surface shots was designed and conducted by the Geophysical Institute of Israel at Sayarim Military Range (SMR) in Negev desert, including two large calibration explosions: about 82 tons of strong IMI explosives in August 2009, and about 100 tons of ANFO explosives in January 2011. It was a collaborative effort between Israel, CTBTO, USA and several European countries, with the main goal to provide fully controlled ground truth (GT0) infrasound sources in different weather/wind conditions, for calibration of IMS infrasound stations in Europe, Middle East and Asia. Strong boosters and the upward charge detonation scheme were applied to provide a reduced energy release to the ground and an enlarged energy radiation to the atmosphere, producing enhanced infrasound signals, for better observation at far-regional stations. The following observations and results indicate on the required explosives energy partition for this charge design: 1) crater size and local seismic (duration) magnitudes were found smaller than expected for these large surface explosions; 2) small test shots of the same charge (1 ton) conducted at SMR with different detonation directions showed clearly lower seismic amplitudes/energy and smaller crater size for the upward detonation; 3) many infrasound stations at local and regional distances showed higher than expected peak amplitudes, even after application of a wind-correction procedure. For the large-scale explosions, high-pressure gauges were deployed at 100-600 m to record air-blast properties, evaluate the efficiency of the charge design and energy generation, and provide a reliable estimation of the charge yield. Empirical relations for air-blast parameters - peak pressure, impulse and the Secondary Shock (SS) time delay - depending on distance, were developed and analyzed. The parameters, scaled by the cubic root of estimated TNT equivalent charges, were found consistent for all analyzed explosions, except of SS

  12. Acoustic comfort in eating establishments

    DEFF Research Database (Denmark)

    Svensson, David; Jeong, Cheol-Ho; Brunskog, Jonas


    The subjective concept of acoustic comfort in eating establishments has been investigated in this study. The goal was to develop a predictive model for the acoustic comfort, by means of simple objective parameters, while also examining which other subjective acoustic parameters could help explain...... the feeling of acoustic comfort. Through several layers of anal ysis, acoustic comfort was found to be rather complex, and could not be explained entirely by common subjective parameters such as annoyance, intelligibility or privacy. A predictive model for the mean acoustic comfort for an eating establishment...

  13. Theoretical Study of the Effect of Enamel Parameters on Laser-Induced Surface Acoustic Waves in Human Incisor (United States)

    Yuan, Ling; Sun, Kaihua; Shen, Zhonghua; Ni, Xiaowu; Lu, Jian


    The laser ultrasound technique has great potential for clinical diagnosis of teeth because of its many advantages. To study laser surface acoustic wave (LSAW) propagation in human teeth, two theoretical methods, the finite element method (FEM) and Laguerre polynomial extension method (LPEM), are presented. The full field temperature values and SAW displacements in an incisor can be obtained by the FEM. The SAW phase velocity in a healthy incisor and dental caries is obtained by the LPEM. The methods and results of this work can provide a theoretical basis for nondestructive evaluation of human teeth with LSAWs.

  14. Study of the influence of semiconductor material parameters on acoustic wave propagation modes in GaSb/AlSb bi-layered structures by Legendre polynomial method (United States)

    Othmani, Cherif; Takali, Farid; Njeh, Anouar; Ben Ghozlen, Mohamed Hédi


    The propagation of Rayleigh-Lamb waves in bi-layered structures is studied. For this purpose, an extension of the Legendre polynomial (LP) method is proposed to formulate the acoustic wave equation in the bi-layered structures induced by thin film Gallium Antimonide (GaSb) and with Aluminum Antimonide (AlSb) substrate in moderate thickness. Acoustic modes propagating along a bi-layer plate are shown to be quite different than classical Lamb modes, contrary to most of the multilayered structures. The validation of the LP method is illustrated by a comparison between the associated numerical results and those obtained using the ordinary differential equation (ODE) method. The convergency of the LP method is discussed through a numerical example. Moreover, the influences of thin film GaSb parameters on the characteristics Rayleigh-Lamb waves propagation has been studied in detail. Finally, the advantages of the Legendre polynomial (LP) method to analyze the multilayered structures are described. All the developments performed in this work were implemented in Matlab software.

  15. Study of the influence of semiconductor material parameters on acoustic wave propagation modes in GaSb/AlSb bi-layered structures by Legendre polynomial method

    Energy Technology Data Exchange (ETDEWEB)

    Othmani, Cherif, E-mail:; Takali, Farid; Njeh, Anouar; Ben Ghozlen, Mohamed Hédi


    The propagation of Rayleigh–Lamb waves in bi-layered structures is studied. For this purpose, an extension of the Legendre polynomial (LP) method is proposed to formulate the acoustic wave equation in the bi-layered structures induced by thin film Gallium Antimonide (GaSb) and with Aluminum Antimonide (AlSb) substrate in moderate thickness. Acoustic modes propagating along a bi-layer plate are shown to be quite different than classical Lamb modes, contrary to most of the multilayered structures. The validation of the LP method is illustrated by a comparison between the associated numerical results and those obtained using the ordinary differential equation (ODE) method. The convergency of the LP method is discussed through a numerical example. Moreover, the influences of thin film GaSb parameters on the characteristics Rayleigh–Lamb waves propagation has been studied in detail. Finally, the advantages of the Legendre polynomial (LP) method to analyze the multilayered structures are described. All the developments performed in this work were implemented in Matlab software.

  16. Discharge mechanisms and electrochemical impedance spectroscopy measurements of single negative and positive lead-acid battery plates

    Energy Technology Data Exchange (ETDEWEB)

    D' Alkaine, C.V. [Group of Electrochemistry and Polymers, Chemistry Department, Federal University of Sao Carlos, 13560-905 Sao Carlos, SP (Brazil); Mengarda, P.; Impinnisi, P.R. [Battery Laboratory, Institute of Technology for Development - LACTEC, Curitiba, PR (Brazil)


    This study interpreted open circuit impedance measurements of single negative and positive lead-acid battery plates, which were at different discharge levels and arranged in a four-electrode cell. This was performed in the framework of a proposed general model of charge/discharge reactions, morphological models of active materials, and based on interpretation of the characteristics of single negative and positive plates as measured by electrochemical impedance spectroscopy (EIS). This study shows that the proposed reaction models, morphological characteristics and EIS attributions are compatible with the obtained EIS data. The analysis indicates that negative and positive plate reaction mechanisms cannot be those proposed by the dissolution-precipitation mechanism alone. Rather, the reactions seem to obey the various mechanisms and morphologic ideas proposed in the present paper. It is shown that variations in the resistivity and dielectric constants of discharged films need to be studied in greater detail than film thicknesses to gain a better understanding of the processes. (author)

  17. Impact of an acoustic stimulus on the motility and blood parameters of European sea bass (Dicentrarchus labrax L.) and gilthead sea bream (Sparus aurata L.). (United States)

    Buscaino, Giuseppa; Filiciotto, Francesco; Buffa, Gaspare; Bellante, Antonio; Di Stefano, Vincenzo; Assenza, Anna; Fazio, Francesco; Caola, Giovanni; Mazzola, Salvatore


    The physiological responses of fish to underwater noise are poorly understood and further information is needed to evaluate any possible negative effects of sound exposure. We exposed European sea bass and gilthead sea bream to a 0.1-1 kHz linear sweep (150 dB(rms) re 1 microPa). This band frequency is perceptible by many species of fish and is mainly produced by vessel traffic. We assessed the noise-induced motility reaction (analysing the movements) and the haematological responses (measuring blood glucose and lactate, and haematocrit levels). The noise exposure produced a significant increase in motility as well as an increase in lactate and haematocrit levels in sea bream and sea bass. A significant decrease of glucose was only observed in sea bream. A linear correlation between blood parameters and motility in fish exposed to the noise was observed. The acoustic stimulus produced intense muscle activity. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. In-situ monitoring of pitting corrosion on vertically positioned 304 stainless steel by analyzing acoustic-emission energy parameter

    International Nuclear Information System (INIS)

    Wu, Kaige; Jung, Woo-Sang; Byeon, Jai-Won


    Highlights: • Pitting process in vertically positioned 304 SS is investigated by AE energy. • Gravity-influenced elongated pit, crack and rupture of pit cover were observed. • Hydrogen bubble evolution and pit covers rupturing were separately monitored by AE. • Four stages of AE energy were correlated with observed pitting mechanism. - Abstract: The acoustic emission (AE) energy was analyzed to monitor the pitting process on a vertically positioned 304-stainless steel. The gravity-dependent morphology of the elongated corrosion pits was observed. A scatter plot of the duration and energy indicated two AE clusters with different energy levels. There was a time delay after the detection of the low-energy hydrogen-bubble signals. Subsequently, high-energy signals were observed, whose AE source was attributed to large-scale cracks formed during the rupture of the elongated pit cover. An in-situ analysis of the AE energy evolution provided detailed insights into the corrosion process in relation to the specimen position.

  19. Acoustic parameters of snoring sound to compare natural snores with snores during 'steady-state' propofol sedation. (United States)

    Jones, T M; Ho, M S; Earis, J E; Swift, A C; Charters, P


    To investigate the acoustic similarity between natural and sedation-induced snores. Prospective observational study. University Hospital Aintree, Liverpool, UK. Twenty-one patients, who had already had overnight snore recordings, completed a pre-operative sleep nasendoscopic examination. Endoscopic examination of the upper aero-digestive tract was performed at sequentially increasing, steady-state sedation levels, using intravenous propofol administered according to a weight/time-based algorithm to predict blood and effect site (tissue) concentrations. At each sedation level at which snoring occurred, snoring sound was recorded. From these samples, snore files, comprising the inspiratory sound of each snore were created. Similarly, from natural snores recorded pre-operatively, snore files, comprising the inspiratory sounds of the first 100 snores with the patient sleeping in a supine position, were also created. Snore duration (s), loudness (dBA), periodicity (%) and energy ratios for the frequency sub-bands 0-200, 0-250 and 0-400 Hz. Snore loudness increased significantly (P snoring and snoring induced at the lowest sedation level was shown (P snores are sufficiently different to recommend the need for further research to determine whether the technique of sleep nasendoscopy is, in fact, a valid predictor of outcome of snoring surgery.


    Directory of Open Access Journals (Sweden)

    С.Ф. Філоненко


    Full Text Available  The simulation of the fracture process of elements of the composite material under the action of shear force and the formation of acoustic emission signals, taking into account changes in the geometric size of the elements of the composite material was conducted. The results of theoretical studies shows that changes in the geometric size of CM elements  affects on the development process of its destruction, and formed AE signal. An increase in the geometric size of CM elements at constant loading conditions, led to decrease in the speed of its destruction. Thus there is a decrease in the amplitude of AE signals, increasing the duration of their leading edge and duration. Was established that an increase in the geometric size of elements of the CM led to reduction of the maximum amplitude, power, energy, and area under the curve of formed AE signals by the linear laws. Such change in the maximum amplitude and duration of formed AE signals, obviously due to the fact that an increase in the geometric size of CM elements decreases the speed of their destruction. Reducing energy and power formed AE signals, probably due to a decrease in the maximum amplitude of formed AE signals by increasing the geometric size of CM elements, which is preceded by an increase in their duration.

  1. Architectural acoustics

    National Research Council Canada - National Science Library

    Long, Marshall


    .... Beginning with a brief history, it reviews the fundamentals of acoustics, human perception and reaction to sound, acoustic noise measurements, noise metrics, and environmental noise characterization...

  2. Single tracking location acoustic radiation force impulse viscoelasticity estimation (STL-VE): A method for measuring tissue viscoelastic parameters. (United States)

    Langdon, Jonathan H; Elegbe, Etana; McAleavey, Stephen A


    Single tracking location (STL) shear wave elasticity imaging (SWEI) is a method for detecting elastic differences between tissues. It has the advantage of intrinsic speckle bias suppression compared with multiple tracking location variants of SWEI. However, the assumption of a linear model leads to an overestimation of the shear modulus in viscoelastic media. A new reconstruction technique denoted single tracking location viscosity estimation (STL-VE) is introduced to correct for this overestimation. This technique utilizes the same raw data generated in STL-SWEI imaging. Here, the STL-VE technique is developed by way of a maximum likelihood estimation for general viscoelastic materials. The method is then implemented for the particular case of the Kelvin-Voigt Model. Using simulation data, the STL-VE technique is demonstrated and the performance of the estimator is characterized. Finally, the STL-VE method is used to estimate the viscoelastic parameters of ex vivo bovine liver. We find good agreement between the STL-VE results and the simulation parameters as well as between the liver shear wave data and the modeled data fit.

  3. Reduction of MRI acoustic noise achieved by manipulation of scan parameters – A study using veterinary MR sequences

    International Nuclear Information System (INIS)

    Baker, Martin A.


    Sound pressure levels were measured within an MR scan room for a range of sequences employed in veterinary brain scanning, using a test phantom in an extremity coil. Variation of TR and TE, and use of a quieter gradient mode (‘whisper’ mode) were evaluated to determine their effect on sound pressure levels (SPLs). Use of a human head coil and a human brain sequence was also evaluated. Significant differences in SPL were achieved for T2, T1, T2* gradient echo and VIBE sequences by varying TR or TE, or by selecting the ‘whisper’ gradient mode. An appreciable reduction was achieved for the FLAIR sequence. Noise levels were not affected when a head coil was used in place of an extremity coil. Due to sequence parameters employed, veterinary patients and anaesthetists may be exposed to higher sound levels than those experienced in human MR examinations. The techniques described are particularly valuable in small animal MR scanning where ear protection is not routinely provided for the patient.

  4. Communication Acoustics

    DEFF Research Database (Denmark)

    Blauert, Jens

    Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......: acoustics, cognitive science, speech science, and communication technology....

  5. Acoustic telemetry (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To determine movements of green turtles in the nearshore foraging areas, we deployed acoustic tags and determined their movements through active and passive acoustic...

  6. Controlling sound with acoustic metamaterials

    DEFF Research Database (Denmark)

    Cummer, Steven A. ; Christensen, Johan; Alù, Andrea


    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales....... The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create......-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview...

  7. Four-day Follow-up Study on the Self-reported Voice Condition and Noise Condition of Teachers: Relationship Between Vocal Parameters and Classroom Acoustics. (United States)

    Cantor Cutiva, Lady Catherine; Puglisi, Giuseppina Emma; Astolfi, Arianna; Carullo, Alessio


    This study aimed to determine the changes in self-reported voice and noise condition over a follow-up of 4 days (equivalent to one working week), to define the relationship between the objective voice parameters and the self-reported voice condition, as well as to characterize the relationship between classroom acoustics and the self-reported noise condition. This is a cohort study. We performed voice monitoring of 27 teachers for four working days using the Voice-Care device, which provides information on the fundamental frequency, vocal sound pressure level, and phonation time percentage. The participants performed a pre-monitoring, which consisted of a brief conversation, before each monitoring session, and filled in a questionnaire after each monitored lesson, in which they indicated their opinions about their voice condition and the classroom noise conditions. The teachers who, during the pre-monitoring, showed a higher standard deviation of the vocal sound pressure level and a greater phonation time percentage difference between the entire monitoring and the pre-monitoring sessions, reported fewer voice complaints. Decay time (DT 40ME ), a reverberation measure from the speakers' perspective, resulted to be associated with the self-reporting of the noise condition. Voice disorders at work prevention programs should include strategies to exercise the respiratory and laryngeal components of voice production, because these elements may influence the variation in the vocal sound pressure level, which was found to be significantly associated with the self-reported voice condition. This study also highlights the importance of including reverberation measures, from the speakers' perspective, in the design of schools. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  8. Acoustic cloaking and transformation acoustics

    Energy Technology Data Exchange (ETDEWEB)

    Chen Huanyang [School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006 (China); Chan, C T, E-mail: kenyon@ust.h, E-mail: phchan@ust.h [Department of Physics and the William Mong Institute of NanoScience and Technology, The Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong)


    In this review, we give a brief introduction to the application of the new technique of transformation acoustics, which draws on a correspondence between coordinate transformation and material properties. The technique is formulated for both acoustic waves and linear liquid surface waves. Some interesting conceptual devices can be designed for manipulating acoustic waves. For example, we can design acoustic cloaks that make an object invisible to acoustic waves, and the cloak can either encompass or lie outside the object to be concealed. Transformation acoustics, as an analog of transformation optics, can go beyond invisibility cloaking. As an illustration for manipulating linear liquid surface waves, we show that a liquid wave rotator can be designed and fabricated to rotate the wave front. The acoustic transformation media require acoustic materials which are anisotropic and inhomogeneous. Such materials are difficult to find in nature. However, composite materials with embedded sub-wavelength resonators can in principle be made and such 'acoustic metamaterials' can exhibit nearly arbitrary values of effective density and modulus tensors to satisfy the demanding material requirements in transformation acoustics. We introduce resonant sonic materials and Helmholtz resonators as examples of acoustic metamaterials that exhibit resonant behaviour in effective density and effective modulus. (topical review)

  9. Flat acoustic lens by acoustic grating with curled slits

    KAUST Repository

    Peng, Pai


    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry-Perot resonance.

  10. Acoustical Imaging

    CERN Document Server

    Litniewski, Jerzy; Kujawska, Tamara; 31st International Symposium on Acoustical Imaging


    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging

  11. Acoustic textiles

    CERN Document Server

    Nayak, Rajkishore


    This book highlights the manufacturing and applications of acoustic textiles in various industries. It also includes examples from different industries in which acoustic textiles can be used to absorb noise and help reduce the impact of noise at the workplace. Given the importance of noise reduction in the working environment in several industries, the book offers a valuable guide for companies, educators and researchers involved with acoustic materials.

  12. Speaker verification system using acoustic data and non-acoustic data (United States)

    Gable, Todd J [Walnut Creek, CA; Ng, Lawrence C [Danville, CA; Holzrichter, John F [Berkeley, CA; Burnett, Greg C [Livermore, CA


    A method and system for speech characterization. One embodiment includes a method for speaker verification which includes collecting data from a speaker, wherein the data comprises acoustic data and non-acoustic data. The data is used to generate a template that includes a first set of "template" parameters. The method further includes receiving a real-time identity claim from a claimant, and using acoustic data and non-acoustic data from the identity claim to generate a second set of parameters. The method further includes comparing the first set of parameters to the set of parameters to determine whether the claimant is the speaker. The first set of parameters and the second set of parameters include at least one purely non-acoustic parameter, including a non-acoustic glottal shape parameter derived from averaging multiple glottal cycle waveforms.

  13. Humans (Homo sapiens) judge the emotional content of piglet (Sus scrofa domestica) calls based on simple acoustic parameters, not personality, empathy, nor attitude toward animals. (United States)

    Maruščáková, Iva L; Linhart, Pavel; Ratcliffe, Victoria F; Tallet, Céline; Reby, David; Špinka, Marek


    The vocal expression of emotion is likely driven by shared physiological principles among species. However, which acoustic features promote decoding of emotional state and how the decoding is affected by their listener's psychology remain poorly understood. Here we tested how acoustic features of piglet vocalizations interact with psychological profiles of human listeners to affect judgments of emotional content of heterospecific vocalizations. We played back 48 piglet call sequences recorded in four different contexts (castration, isolation, reunion, nursing) to 60 listeners. Listeners judged the emotional intensity and valence of the recordings and were further asked to attribute a context of emission from four proposed contexts. Furthermore, listeners completed a series of questionnaires assessing their personality (NEO-FFI personality inventory), empathy [Interpersonal Reactivity Index (IRI)] and attitudes to animals (Animal Attitudes Scale). None of the listeners' psychological traits affected the judgments. On the contrary, acoustic properties of recordings had a substantial effect on ratings. Recordings were rated as more intense with increasing pitch (mean fundamental frequency) and increasing proportion of vocalized sound within each stimulus recording and more negative with increasing pitch and increasing duration of the calls within the recording. More complex acoustic properties (jitter, harmonic-to-noise ratio, and presence of subharmonics) did not seem to affect the judgments. The probability of correct context recognition correlated positively with the assessed emotion intensity for castration and reunion calls, and negatively for nursing calls. In conclusion, listeners judged emotions from pig calls using simple acoustic properties and the perceived emotional intensity might guide the identification of the context. (c) 2015 APA, all rights reserved).

  14. Radiation acoustics

    CERN Document Server

    Lyamshev, Leonid M


    Radiation acoustics is a developing field lying at the intersection of acoustics, high-energy physics, nuclear physics, and condensed matter physics. Radiation Acoustics is among the first books to address this promising field of study, and the first to collect all of the most significant results achieved since research in this area began in earnest in the 1970s.The book begins by reviewing the data on elementary particles, absorption of penetrating radiation in a substance, and the mechanisms of acoustic radiation excitation. The next seven chapters present a theoretical treatment of thermoradiation sound generation in condensed media under the action of modulated penetrating radiation and radiation pulses. The author explores particular features of the acoustic fields of moving thermoradiation sound sources, sound excitation by single high-energy particles, and the efficiency and optimal conditions of thermoradiation sound generation. Experimental results follow the theoretical discussions, and these clearl...


    NARCIS (Netherlands)


    To investigate the reproducibility of a single negative response to sting challenge with a living insect, we rechallenged a group of 61 patients who showed no clinical response to a first sting challenge. All patients had previously had symptoms suggestive of anaphylaxis after a yellow jacket field

  16. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.


    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  17. Experimental Acoustic Evaluation of an Auditorium

    Directory of Open Access Journals (Sweden)

    Marina Dana Ţopa


    Full Text Available The paper presents a case history: the acoustical analysis of a rectangular auditorium. The following acoustical parameters were evaluated: early decay time, reverberation time, clarity, definition, and center time. The excitation signal was linear sweep sine and additional analysis was carried out: peak-to-noise ratio, reverberation time for empty and occupied room, standard deviation of acoustical parameters, diffusion, and just noticeable differences analysis. Conclusions about room’s destination and modeling were drawn in the end.

  18. Battlefield acoustics

    CERN Document Server

    Damarla, Thyagaraju


    This book presents all aspects of situational awareness in a battlefield using acoustic signals. It starts by presenting the science behind understanding and interpretation of sound signals. The book then goes on to provide various signal processing techniques used in acoustics to find the direction of sound source, localize gunfire, track vehicles, and detect people. The necessary mathematical background and various classification and fusion techniques are presented. The book contains majority of the things one would need to process acoustic signals for all aspects of situational awareness in one location. The book also presents array theory, which is pivotal in finding the direction of arrival of acoustic signals. In addition, the book presents techniques to fuse the information from multiple homogeneous/heterogeneous sensors for better detection. MATLAB code is provided for majority of the real application, which is a valuable resource in not only understanding the theory but readers, can also use the code...

  19. Acoustic Neuroma (United States)

    ... a team composed of neurosurgeons, radiation oncologists, medical physicists and a nursing staff. Specialists in neuroimaging join ... Even though most acoustic neuromas arise from the balance nerve (and not from the adjacent hearing nerve), ...

  20. Acoustic neuroma (United States)

    ... Medical Professional Call your provider if you have: Hearing loss that is sudden or getting worse Ringing in one ear Dizziness (vertigo) Alternative Names Vestibular schwannoma; Tumor - acoustic; ... Patient Instructions Brain surgery - discharge ...

  1. Acoustics Research (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fisheries acoustics data are collected from more than 200 sea-days each year aboard the FRV DELAWARE II and FRV ALBATROSS IV (decommissioned) and the FSV Henry B....

  2. Acoustical Imaging

    CERN Document Server

    Akiyama, Iwaki


    The 29th International Symposium on Acoustical Imaging was held in Shonan Village, Kanagawa, Japan, April 15-18, 2007. This interdisciplinary Symposium has been taking place every two years since 1968 and forms a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. In the course of the years the volumes in the Acoustical Imaging Series have developed and become well-known and appreciated reference works. Offering both a broad perspective on the state-of-the-art in the field as well as an in-depth look at its leading edge research, this Volume 29 in the Series contains again an excellent collection of seventy papers presented in nine major categories: Strain Imaging Biological and Medical Applications Acoustic Microscopy Non-Destructive Evaluation and Industrial Applications Components and Systems Geophysics and Underwater Imaging Physics and Mathematics Medical Image Analysis FDTD method and Other Numerical Simulations Audience Researcher...

  3. Room Acoustics (United States)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  4. 4th Pacific Rim Underwater Acoustics Conference

    CERN Document Server

    Xu, Wen; Cheng, Qianliu; Zhao, Hangfang


    These proceedings are a collection of 16 selected scientific papers and reviews by distinguished international experts that were presented at the 4th Pacific Rim Underwater Acoustics Conference (PRUAC), held in Hangzhou, China in October 2013. The topics discussed at the conference include internal wave observation and prediction; environmental uncertainty and coupling to sound propagation; environmental noise and ocean dynamics; dynamic modeling in acoustic fields; acoustic tomography and ocean parameter estimation; time reversal and matched field processing; underwater acoustic localization and communication as well as measurement instrumentations and platforms. These proceedings provide insights into the latest developments in underwater acoustics, promoting the exchange of ideas for the benefit of future research.

  5. The Parameter Correlation of Acoustic Emission and High-Frequency Vibrations in the Assessment Process of the Operating State of the Technical System

    Directory of Open Access Journals (Sweden)

    Baron Petr


    Full Text Available The article describes application of selected methods of technical diagnostics for assessing the operating status of precision gearboxes. Within the confines of experimental measurements in the field of physical metallurgy materials of diagnosed system were being examined while taking into account the process of degradation of material properties during operation of monitored gearboxes. Measurements and collecting of dynamic data were realized on 4 selected gearboxes where a high-frequency vibrations and acoustic emission (noise measurements were carried out. Retrieved values were subsequently used for mutual correlation and verification of applied methods. Results of both selected methods underlined unsatisfactory operation status with 3 inspected gearboxes. Measured values were identified as being above suggested caution limit of Alarm 2, representing a level of danger.

  6. Influence of the parameters of a high-frequency acoustic wave on the structure, properties, and plastic flow of metal in the zone of a joint of materials welded by ultrasound-assisted explosive welding (United States)

    Peev, A. P.; Kuz'min, S. V.; Lysak, V. I.; Kuz'min, E. V.; Dorodnikov, A. N.


    The results of an investigation of the influence of the parameters of high-frequency acoustic wave on the structure and properties of the zone of joint of homogeneous metals bonded by explosive welding under the action of ultrasound have been presented. The influence of the frequency and amplitude of ultrasonic vibrations on the structure and properties of the explosively welded joints compared with the samples welded without the application of ultrasound has been established. The action of high-frequency acoustic waves on the metal leads to a reduction in the dynamic yield stress, which changes the properties of the surface layers of the metal and the conditions of the formation of the joint of the colliding plates upon the explosive welding. It has been shown that the changes in the length and amplitude of waves that arise in the weld joint upon the explosive welding with the simultaneous action of ultrasonic vibrations are connected with a decrease in the magnitude of the deforming pulse and time of action of the compressive stresses that exceed the dynamic yield stress beyond the point of contact.

  7. Acoustic emission

    International Nuclear Information System (INIS)

    Straus, A.; Lopez Pumarega, M.I.; Di Gaetano, J.O.; D'Atellis, C.E.; Ruzzante, J.E.


    This paper is related to our activities on acoustic emission (A.E.). The work is made with different materials: metals and fibre reinforced plastics. At present, acoustic emission transducers are being developed for low and high temperature. A test to detect electrical discharges in electrical transformers was performed. Our experience in industrial tests to detect cracks or failures in tanks or tubes is also described. The use of A.E. for leak detection is considered. Works on pattern recognition of A.E. signals are also being performed. (Author)

  8. Handbook of Signal Processing in Acoustics

    CERN Document Server

    Havelock, David; Vorländer, Michael


    The Handbook of Signal Processing in Acoustics presents signal processing as it is practiced in the field of acoustics. The Handbook is organized by areas of acoustics, with recognized leaders coordinating the self-contained chapters of each section. It brings together a wide range of perspectives from over 100 authors to reveal the interdisciplinary nature of signal processing in acoustics. Success in acoustic applications often requires juggling both the acoustic and the signal processing parameters of the problem. This handbook brings the key issues from both into perspective and is complementary to other reference material on the two subjects. It is a unique resource for experts and practitioners alike to find new ideas and techniques within the diversity of signal processing in acoustics.

  9. Acoustic emission

    Indian Academy of Sciences (India)

    3Universidade do Minho, Department Engineering Mecânica, Azurém,. 4800058 Guimar˜aes, Portugal e-mail: Abstract. Acoustic Emission (AE) has been widely used for monitoring man- ufacturing processes particularly those involving metal cutting. Monitoring the condition of the cutting tool in the ...

  10. Análise de parâmetros perceptivo-auditivos e acústicos em indivíduos gagos Analysis of acoustic and auditory-perceptual parameters in stutterers

    Directory of Open Access Journals (Sweden)

    Bruna Ferreira Valenzuela de Oliveira


    Full Text Available OBJETIVO: Analisar parâmetros perceptivo-auditivos e acústicos da voz em indivíduos adultos gagos. MÉTODOS: Foram analisados 15 indivíduos gagos do gênero masculino na faixa etária de 21 a 41 anos (média 26,6 anos, atendidos no Centro Clínico de Fonoaudiologia da instituição no período de fevereiro de 2005 a julho de 2007. Os parâmetros perceptivo-auditivos analisados envolveram a qualidade vocal, tipo de voz, ressonância, tensão vocal, velocidade de fala, coordenação pneumofônica, ataque vocal e gama tonal; quanto aos parâmetros acústicos, foram analisadas a frequência fundamental e sua variabilidade durante a fala espontânea. RESULTADOS: A análise perceptivo-auditiva mostrou que as características mais frequentes nos indivíduos gagos foram: qualidade vocal normal (60%, ressonância alterada (66%, tensão vocal (86%, ataque vocal alterado (73%, velocidade de fala normal (54%, gama tonal alterada (80% e coordenação pneumofônica alterada (100%. No entanto, a análise estatística revelou que apenas a presença de tensão vocal, coordenação pneumofônica e a gama tonal alteradas apresentaram-se estatisticamente significativas nos indivíduos gagos estudados. Na análise acústica, a frequência fundamental variou de 125,54 a 149,59 Hz e a variabilidade da frequência fundamental foi de 16 a 21 semitons ou 112,50 a 172,40 Hz. CONCLUSÃO: Os parâmetros perceptivo-auditivos analisados que tiveram frequência significativa nos indivíduos gagos estudados foram: presença de tensão vocal, alteração da gama tonal e na coordenação pneumofônica. Desta forma, é importante avaliar os aspectos vocais nesses pacientes, pois a desordem da fluência pode comprometer alguns parâmetros vocais podendo ocasionar disfonia.PURPOSE: To analyze auditory-perceptual and acoustic parameters of the voices of adult stutterers. METHODS: Fifteen male stutterers in the age range from 21 to 41 years (mean 26.6 years, attended at the

  11. Auditory modelling for assessing room acoustics

    NARCIS (Netherlands)

    Van Dorp Schuitman, J.


    The acoustics of a concert hall, or any other room, are generally assessed by measuring room impulse responses for one or multiple source and receiver location(s). From these responses, objective parameters can be determined that should be related to various perceptual attributes of room acoustics.

  12. Acoustic detection

    International Nuclear Information System (INIS)

    Riccobene, Giorgio


    The proposal of acoustic neutrino detection is living a renaissance: the interest in ultra high energy neutrino detection, the fast improvements of deep sea technology and the availability of large deep sea research infrastructures are the three main ingredients to explain the new interest in this technique. The status of simulation work, medium studies, sensor developments and first results from test experimental setups are presented.

  13. Acoustic Territoriality

    DEFF Research Database (Denmark)

    Kreutzfeldt, Jacob


    Under the heading of "Gang i København" a number of initiatives was presented by the Lord Mayer and the Technical and Environmental Mayer of Copenhagen in May 2006. The aim of the initiative, which roughly translates to Lively Copenhagen, was both to make Copenhagen a livelier city in terms of ci...... this article outline a few approaches to a theory of acoustic territoriality....

  14. Acoustic lenses

    International Nuclear Information System (INIS)

    Kittmer, C.A.


    Acoustic lenses focus ultrasound to produce pencil-like beams with reduced near fields. When fitted to conventional (flat-faced) transducers, such lenses greatly improve the ability to detect and size defects. This paper describes a program developed to design acoustic lenses for use in immersion or contact inspection, using normal or angle beam mode with flat or curved targets. Lens surfaces are circular in geometry to facilitate machining. For normal beam inspection of flat plate, spherical or cylindrical lenses are used. For angle beam or curved surface inspections, a compound lens is required to correct for the extra induced aberration. Such a lens is aspherical with one radius of curvature in the plane of incidence, and a different radius of curvature in the plane perpendicular to the incident plane. The resultant beam profile (i.e., location of the acoustic focus, beam diameter, 6 dB working range) depends on the degree of focusing and the transducer used. The operating frequency and bandwidth can be affected by the instrumentation used. Theoretical and measured beam profiles are in good agreement. Various applications, from zone focusing used for defect sizing in thick plate, to line focusing for pipe weld inspection, are discussed

  15. Hubble Parameter and Baryon Acoustic Oscillation Measurement Constraints on the Hubble Constant, the Deviation from the Spatially Flat ΛCDM Model, the Deceleration–Acceleration Transition Redshift, and Spatial Curvature (United States)

    Yu, Hai; Ratra, Bharat; Wang, Fa-Yin


    We compile a complete collection of reliable Hubble parameter H(z) data to redshift z ≤ 2.36 and use them with the Gaussian Process method to determine continuous H(z) functions for various data subsets. From these continuous H(z)'s, summarizing across the data subsets considered, we find H 0 ∼ 67 ± 4 km s‑1 Mpc‑1, more consistent with the recent lower values determined using a variety of techniques. In most data subsets, we see a cosmological deceleration–acceleration transition at 2σ significance, with the data subsets transition redshifts varying over 0.33< {z}da}< 1.0 at 1σ significance. We find that the flat-ΛCDM model is consistent with the H(z) data to a z of 1.5 to 2.0, depending on data subset considered, with 2σ deviations from flat-ΛCDM above this redshift range. Using the continuous H(z) with baryon acoustic oscillation distance-redshift observations, we constrain the current spatial curvature density parameter to be {{{Ω }}}K0=-0.03+/- 0.21, consistent with a flat universe, but the large error bar does not rule out small values of spatial curvature that are now under debate.

  16. Acoustic wave science realized by metamaterials. (United States)

    Lee, Dongwoo; Nguyen, Duc Minh; Rho, Junsuk


    Artificially structured materials with unit cells at sub-wavelength scale, known as metamaterials, have been widely used to precisely control and manipulate waves thanks to their unconventional properties which cannot be found in nature. In fact, the field of acoustic metamaterials has been much developed over the past 15 years and still keeps developing. Here, we present a topical review of metamaterials in acoustic wave science. Particular attention is given to fundamental principles of acoustic metamaterials for realizing the extraordinary acoustic properties such as negative, near-zero and approaching-infinity parameters. Realization of acoustic cloaking phenomenon which is invisible from incident sound waves is also introduced by various approaches. Finally, acoustic lenses are discussed not only for sub-diffraction imaging but also for applications based on gradient index (GRIN) lens.

  17. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Learn Back Learn about acoustic neuroma AN Facts What is acoustic neuroma? Diagnosing Symptoms Side Effects Keywords ... patient kit Treatment Options Overview Observation Radiation Surgery What is acoustic neuroma Diagnosing Symptoms Side effects Question ...

  18. Marine Acoustic Sensor Assembly

    National Research Council Canada - National Science Library

    Ruffa, Anthony A


    A marine acoustic sensor assembly includes an acoustic panel having a forward surface and an after surface, a laser scanner oriented so as to project a laser beam onto the acoustic panel after surface...

  19. Density-near-zero using the acoustically induced transparency of a Fano acoustic resonator

    KAUST Repository

    Elayouch, A.


    We report experimental results of near-zero mass density involving an acoustic metamaterial supporting Fano resonance. For this, we designed and fabricated an acoustic resonator with two closely coupled modes and measured its transmission properties. Our study reveals that the phenomenon of acoustically induced transparency is accompanied by an effect of near-zero density. Indeed, the dynamic effective parameters obtained from experimental data show the presence of a frequency band where the effective mass density is close to zero, with high transmission levels reaching 0.7. Furthermore, we demonstrate that such effective parameters lead to wave guiding in a 90-degrees-bent channel. This kind of acoustic metamaterial can, therefore, give rise to acoustic functions like controlling the wavefront, which may lead to very promising applications in acoustic cloacking or imaging.

  20. On the role of density and attenuation in 3D multi-parameter visco-acoustic VTI frequency-domain FWI: an OBC case study from the North Sea (United States)

    Operto, S.; Miniussi, A.


    Three-dimensional frequency-domain full waveform inversion (FWI) is applied on North Sea wide-azimuth ocean-bottom cable data at low frequencies (≤ 10 Hz) to jointly update vertical wavespeed, density and quality factor Q in the visco-acoustic VTI approximation. We assess whether density and Q should be viewed as proxy to absorb artefacts resulting from approximate wave physics or are valuable for interpretation in presence of saturated sediments and gas. FWI is performed in the frequency domain to account for attenuation easily. Multi-parameter frequency-domain FWI is efficiently performed with a few discrete frequencies following a multi-scale frequency continuation. However, grouping a few frequencies during each multi-scale step is necessary to mitigate acquisition footprint and match dispersive shallow guided waves. Q and density absorb a significant part of the acquisition footprint hence cleaning the velocity model from this pollution. Low Q perturbations correlate with low velocity zones associated with soft sediments and gas cloud. However, the amplitudes of the Q perturbations show significant variations when the inversion tuning is modified. This dispersion in the Q reconstructions is however not passed on the velocity parameter suggesting that cross-talks between first-order kinematic and second-order dynamic parameters are limited. The density model shows a good match with a well log at shallow depths. Moreover, the impedance built a posteriori from the FWI velocity and density models shows a well-focused image with however local differences with the velocity model near the sea bed where density might have absorbed elastic effects. The FWI models are finally assessed against time-domain synthetic seismogram modelling performed with the same frequency-domain modelling engine used for FWI.

  1. Nonlinear Localization due to a Double Negative Defect Layer in a One-Dimensional Photonic Crystal Containing Single Negative Material Layers

    International Nuclear Information System (INIS)

    Ali, Munazza Zulfiqar; Abdullah, Tariq


    We investigate the effects of introducing a defect layer in a one-dimensional photonic crystal containing single negative material layers on the transmission properties. The width of the defect layer is taken to be the same or smaller than the period of the structure. Different cases of the defect layer being linear or nonlinear and double positive or double negative are discussed. It is found that only a nonlinear double negative layer gives rises to a localized mode within the zero-φ eff gap in this kind of structure. It is also shown that the important characteristics of the nonlinear defect mode such as its frequency, its FWHM and the threshold of the associated bistability can be controlled by changing the widths of the defect layer and the host layers

  2. Focusing of Acoustic Waves through Acoustic Materials with Subwavelength Structures

    KAUST Repository

    Xiao, Bingmu


    In this thesis, wave propagation through acoustic materials with subwavelength slits structures is studied. Guided by the findings, acoustic wave focusing is achieved with a specific material design. By using a parameter retrieving method, an effective medium theory for a slab with periodic subwavelength cut-through slits is successfully derived. The theory is based on eigenfunction solutions to the acoustic wave equation. Numerical simulations are implemented by the finite-difference time-domain (FDTD) method for the two-dimensional acoustic wave equation. The theory provides the effective impedance and refractive index functions for the equivalent medium, which can reproduce the transmission and reflection spectral responses of the original structure. I analytically and numerically investigate both the validity and limitations of the theory, and the influences of material and geometry on the effective spectral responses are studied. Results show that large contrasts in impedance and density are conditions that validate the effective medium theory, and this approximation displays a better accuracy for a thick slab with narrow slits in it. Based on the effective medium theory developed, a design of a at slab with a snake shaped" subwavelength structure is proposed as a means of achieving acoustic focusing. The property of focusing is demonstrated by FDTD simulations. Good agreement is observed between the proposed structure and the equivalent lens pre- dicted by the theory, which leads to robust broadband focusing by a thin at slab.

  3. Acoustic rainbow trapping by coiling up space

    KAUST Repository

    Ni, Xu


    We numerically realize the acoustic rainbow trapping effect by tapping an air waveguide with space-coiling metamaterials. Due to the high refractive-index of the space-coiling metamaterials, our device is more compact compared to the reported trapped-rainbow devices. A numerical model utilizing effective parameters is also calculated, whose results are consistent well with the direct numerical simulation of space-coiling structure. Moreover, such device with the capability of dropping different frequency components of a broadband incident temporal acoustic signal into different channels can function as an acoustic wavelength division de-multiplexer. These results may have potential applications in acoustic device design such as an acoustic filter and an artificial cochlea.

  4. Perfect Undetectable Acoustic Device from Fabry-Pérot Resonances (United States)

    Chen, Huanyang; Zhou, Yangyang; Zhou, Mengying; Xu, Lin; Liu, Qing Huo


    Transformation acoustics is a method to design novel acoustic devices, while the complexity of the material parameters hinders its progress. In this paper, we analytically present a three-dimensional perfect undetectable acoustic device from Fabry-Pérot resonances and confirm its functionality from Mie theory. Such a mechanism goes beyond the traditional transformation acoustics. In addition, such a reduced version can be realized by holey-structured metamaterials. Our theory paves a way to the implementation of three-dimensional transformation acoustic devices.

  5. Acoustic characteristics of the medium with gradient change of impedance (United States)

    Hu, Bo; Yang, Desen; Sun, Yu; Shi, Jie; Shi, Shengguo; Zhang, Haoyang


    The medium with gradient change of acoustic impedance is a new acoustic structure which developed from multiple layer structures. In this paper, the inclusion is introduced and a new set of equations is developed. It can obtain better acoustic properties based on the medium with gradient change of acoustic impedance. Theoretical formulation has been systematically addressed which demonstrates how the idea of utilizing this method. The sound reflection and absorption coefficients were obtained. At last, the validity and the correctness of this method are assessed by simulations. The results show that appropriate design of parameters of the medium can improve underwater acoustic properties.

  6. Springer Handbook of Acoustics

    CERN Document Server

    Rossing, Thomas D


    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and others. The Springer Handbook of Acoustics is an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents spanning: animal acoustics including infrasound and ultrasound, environmental noise control, music and human speech and singing, physiological and psychological acoustics, architectural acoustics, physical and engineering acoustics, signal processing, medical acoustics, and ocean acoustics. This handbook reviews the most important areas of acoustics, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest rese...

  7. Acoustic Neurinomas

    Directory of Open Access Journals (Sweden)

    Mohammad Faraji Rad


    Full Text Available Acoustic neuromas (AN are schwann cell-derived tumors that commonly arise from the vestibular portion of the eighth cranial nerve also known as vestibular schwannoma(VS causes unilateral hearing loss, tinnitus, vertigo and unsteadiness. In many cases, the tumor size may remain unchanged for many years following diagnosis, which is typically made by MRI. In the majority of cases the tumor is small, leaving the clinician and patient with the options of either serial scanning or active treatment by gamma knife radiosurgery (GKR or microneurosurgery. Despite the vast number of published treatment reports, comparative studies are few. The predominant clinical endpoints of AN treatment include tumor control, facial nerve function and hearing preservation. Less focus has been put on symptom relief and health-related quality of life (QOL. It is uncertain if treating a small tumor leaves the patient with a better chance of obtaining relief from future hearing loss, vertigo or tinnitus than by observing it without treatment.   In this paper we review the literature for the natural course, the treatment alternatives and the results of AN. Finally, we present our experience with a management strategy applied for more than 30 years.

  8. Subjective evaluation of restaurant acoustics in a virtual sound environment

    DEFF Research Database (Denmark)

    Nielsen, Nicolaj Østergaard; Marschall, Marton; Santurette, Sébastien


    surveys report that noise complaints are on par with poor service. This study investigated the relation between objective acoustic parameters and subjective evaluation of acoustic comfort at five restaurants in terms of three parameters: noise annoyance, speech intelligibility, and privacy. At each...... location, customers filled out questionnaire surveys, acoustic parameters were measured, and recordings of restaurant acoustic scenes were obtained with a 64-channel spherical array. The acoustic scenes were reproduced in a virtual sound environment (VSE) with 64 loudspeakers placed in an anechoic room......, where listeners performed subjective evaluation of noise annoyance and privacy and a speech intelligibility test for each restaurant noise background. It was found that subjective evaluations of acoustic comfort correlate with occupancy rates and measured noise levels, that survey and listening test...

  9. Sonification of acoustic emission data (United States)

    Raith, Manuel; Große, Christian


    While loading different specimens, acoustic emissions appear due to micro crack formation or friction of already existing crack edges. These acoustic emissions can be recorded using suitable ultrasonic transducers and transient recorders. The analysis of acoustic emissions can be used to investigate the mechanical behavior of different specimens under load. Our working group has undertaken several experiments, monitored with acoustic emission techniques. Different materials such as natural stone, concrete, wood, steel, carbon composites and bone were investigated. Also the experimental setup has been varied. Fire-spalling experiments on ultrahigh performance concrete and pullout experiments on bonded anchors have been carried out. Furthermore uniaxial compression tests on natural stone and animal bone had been conducted. The analysis tools include not only the counting of events but the analysis of full waveforms. Powerful localization algorithms and automatic onset picking techniques (based on Akaikes Information Criterion) were established to handle the huge amount of data. Up to several thousand events were recorded during experiments of a few minutes. More sophisticated techniques like moment tensor inversion have been established on this relatively small scale as well. Problems are related to the amount of data but also to signal-to-noise quality, boundary conditions (reflections) sensor characteristics and unknown and changing Greens functions of the media. Some of the acoustic emissions recorded during these experiments had been transferred into audio range. The transformation into the audio range was done using Matlab. It is the aim of the sonification to establish a tool that is on one hand able to help controlling the experiment in-situ and probably adjust the load parameters according to the number and intensity of the acoustic emissions. On the other hand sonification can help to improve the understanding of acoustic emission techniques for training

  10. Acoustic Gaits: Gait Analysis With Footstep Sounds. (United States)

    Altaf, M Umair Bin; Butko, Taras; Juang, Biing-Hwang Fred


    We describe the acoustic gaits-the natural human gait quantitative characteristics derived from the sound of footsteps as the person walks normally. We introduce the acoustic gait profile, which is obtained from temporal signal analysis of sound of footsteps collected by microphones and illustrate some of the spatio-temporal gait parameters that can be extracted from the acoustic gait profile by using three temporal signal analysis methods-the squared energy estimate, Hilbert transform and Teager-Kaiser energy operator. Based on the statistical analysis of the parameter estimates, we show that the spatio-temporal parameters and gait characteristics obtained using the acoustic gait profile can consistently and reliably estimate a subset of clinical and biometric gait parameters currently in use for standardized gait assessments. We conclude that the Teager-Kaiser energy operator provides the most consistent gait parameter estimates showing the least variation across different sessions and zones. Acoustic gaits use an inexpensive set of microphones with a computing device as an accurate and unintrusive gait analysis system. This is in contrast to the expensive and intrusive systems currently used in laboratory gait analysis such as the force plates, pressure mats and wearable sensors, some of which may change the gait parameters that are being measured.

  11. Acoustics an introduction

    CERN Document Server

    Kuttruff, Heinrich


    This definitive textbook provides students with a comprehensive introduction to acoustics. Beginning with the basic physical ideas, Acoustics balances the fundamentals with engineering aspects, applications and electroacoustics, also covering music, speech and the properties of human hearing. The concepts of acoustics are exposed and applied in:room acousticssound insulation in buildingsnoise controlunderwater sound and ultrasoundScientifically thorough, but with mathematics kept to a minimum, Acoustics is the perfect introduction to acoustics for students at any level of mechanical, electrical or civil engineering courses and an accessible resource for architects, musicians or sound engineers requiring a technical understanding of acoustics and their applications.

  12. Recent experiments on acoustic leak detection

    International Nuclear Information System (INIS)

    Voss, J.; Arnaoutis, N.


    In the ASB-sodium loop a series of injection experiments with water, helium, argon and nitrogen was performed. The aim of these tests was to get: a comparison of the acoustic signals, generated by water and gas injections with regard to intensity and frequency content; an experimental basis for the design of an acoustic calibration source. The experimental set-up, the variation parameters and first results will be discussed. The principal design of an acoustic calibration source and its range of application will be given. (author)

  13. Acoustic Holography (United States)

    Kim, Yang-Hann

    One of the subtle problems that make noise control difficult for engineers is the invisibility of noise or sound. A visual image of noise often helps to determine an appropriate means for noise control. There have been many attempts to fulfill this rather challenging objective. Theoretical (or numerical) means for visualizing the sound field have been attempted, and as a result, a great deal of progress has been made. However, most of these numerical methods are not quite ready for practical applications to noise control problems. In the meantime, rapid progress with instrumentation has made it possible to use multiple microphones and fast signal-processing systems. Although these systems are not perfect, they are useful. A state-of-the-art system has recently become available, but it still has many problematic issues; for example, how can one implement the visualized noise field. The constructed noise or sound picture always consists of bias and random errors, and consequently, it is often difficult to determine the origin of the noise and the spatial distribution of the noise field. Section 26.2 of this chapter introduces a brief history, which is associated with sound visualization, acoustic source identification methods and what has been accomplished with a line or surface array. Section 26.2.3 introduces difficulties and recent studies, including de-Dopplerization and de-re verberation methods, both essential for visualizing a moving noise source, such as occurs for cars or trains. This section also addresses what produces ambiguity in realizing real sound sources in a room or closed space. Another major issue associated with sound/noise visualization is whether or not we can distinguish between mutual dependencies of noise in space (Sect. 26.2.4); for example, we are asked to answer the question, Can we see two birds singing or one bird with two beaks?

  14. Acoustic metasurface for refracted wave manipulation (United States)

    Han, Li-Xiang; Yao, Yuan-Wei; Zhang, Xin; Wu, Fu-Gen; Dong, Hua-Feng; Mu, Zhong-Fei; Li, Jing-bo


    Here we present a design of a transmitted acoustic metasurface based on a single row of Helmholtz resonators with varying geometric parameters. The proposed metasurface can not only steer an acoustic beam as expected from the generalized Snell's law of refraction, but also exhibits various interesting properties and potential applications such as insulation of two quasi-intersecting transmitted sound waves, ultrasonic Bessel beam generator, frequency broadening effect of anomalous refraction and focusing.


    Directory of Open Access Journals (Sweden)

    Sergii Filonenko


    Full Text Available Purpose: The aim of this study is to investigate the influence of treated composite material dispersion properties on acoustic radiation energy, which appears during composite material machining. Methods: The researches were grounded on simulation of acoustic radiation energy at change of mechanically treated composite material properties dispersion for the mechanical model of its surface layer destruction. The data processing with definition of acoustic radiation statistical energy parameters was conducted. The analysis of acoustic emission energy parameters sensitivity to change of composite material properties dispersion, and as the analysis of influencing of composite material properties dispersion on AE amplitude and energy parameters was conducted. Results: Were obtained that at decreasing of composite material properties dispersion there is increasing an average level of acoustic radiation energy and value of its deviation. Is determined, that at decreasing of composite material properties dispersion the greatest increasing there is an acoustic emission energy average level dispersion. It is show that the increasing of acoustic radiation energy parameters advances increasing its amplitude parameters. Discussion: The simulation of acoustic radiation energy at composite material machining for the mechanical model surface layer destruction at decreasing of composite material properties dispersion (spread is conducted. It is shown, that the decreasing of composite material properties dispersion does not influence on acoustic radiation energy nature change. At the same time, the ascending parameter, that describing of composite material properties dispersion decreasing, results in increase of acoustic radiation signal energy parameters. The obtained outcomes can be used at mining methods of verification, diagnostic and monitoring of composite material machining technological processes. Thus during the composite material machining is possible

  16. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Facts What is acoustic neuroma? Diagnosing Symptoms Side Effects Keywords Questions to ask Choosing a healthcare provider ... Surgery What is acoustic neuroma Diagnosing Symptoms Side effects Question To Ask Treatment Options Back Overview Observation ...

  17. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... more... LOGIN CALENDAR DONATE NEWS Home Learn Back Learn about acoustic neuroma AN Facts What is acoustic ... Stories Keywords Shop ANA Discussion Forum About Back Learn more about ANA About ANA Mission, Vision & Values ...

  18. Atlantic Herring Acoustic Surveys (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC Advanced Sampling Technologies Research Group conducts annual fisheries acoustic surveys using state-of-the-art acoustic, midwater trawling, and underwater...

  19. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... more Click to learn more... LOGIN CALENDAR DONATE NEWS Home Learn Back Learn about acoustic neuroma AN ... a Sponsor Patient Events Acoustic Neuroma Association Latest News Join / Renew Login Contact Us Become a Sponsor ...

  20. Estimation of suspended sediment concentration by acoustic ...

    African Journals Online (AJOL)

    concentration of sediments such as glass spheres or sand. However, the acoustic properties of natural sediments vary and depend on many parameters such as particle size, shape, mineralogy and distribution of those parameters in sample. Therefore, this study was conducted to determine the possibility of soil sediment ...

  1. Tutorial on architectural acoustics (United States)

    Shaw, Neil; Talaske, Rick; Bistafa, Sylvio


    This tutorial is intended to provide an overview of current knowledge and practice in architectural acoustics. Topics covered will include basic concepts and history, acoustics of small rooms (small rooms for speech such as classrooms and meeting rooms, music studios, small critical listening spaces such as home theatres) and the acoustics of large rooms (larger assembly halls, auditoria, and performance halls).

  2. A sound future for acoustic metamaterials. (United States)

    Cummer, Steven


    The field of acoustic metamaterials borrowed ideas from electromagnetics and optics to create engineered structures that exhibit desired fluid or fluid-like properties for the propagation of sound. These metamaterials offer the possibility of manipulating and controlling sound waves in ways that are challenging or impossible with conventional materials. Metamaterials with zero, or negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales. The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. And active acoustic metamaterials use external control and power to create effective material properties that are fundamentally not possible with passive structures. Challenges remain, including the development of efficient techniques for fabricating large-scale metamaterial structures and, critically, converting exciting laboratory experiments into practically useful devices. In this presentation, I will outline the recent history of the field, describe some of the designs and properties of materials with unusual acoustic parameters, discuss examples of extreme manipulation of sound, and finally, provide a personal perspective on future directions in the field.

  3. Listening to the acoustics in concert halls (United States)

    Beranek, Leo L.; Griesinger, David


    How does acoustics affect the symphonic music performed in a concert hall? The lecture begins with an illustrated discussion of the architectural features that influence the acoustics. Boston Symphony Hall, which was built in 1900 when only one facet of architectural design was known, now rates as one of the world's great halls. How this occurred will be presented. Music is composed with some acoustical environment in mind and this varies with time from the Baroque to the Romantic to the Modern musical period. Conductors vary their interpretation according to the hall they are in. Well-traveled listeners and music critics have favorite halls. The lecture then presents a list of 58 halls rank ordered according to their acoustical quality based on interviews of music critics and conductors. Modern acoustical measurements made in these halls are compared with their rankings. Music recordings will be presented that demonstrate how halls sound that have different measured acoustical parameters. Photographs of a number of recently built halls are shown as examples of how these known acoustical factors have been incorporated into architectural design.

  4. The Acoustical Properties of Indonesian Hardwood Species

    Directory of Open Access Journals (Sweden)

    Tarcisius Rio Mardikanto


    Full Text Available The acoustical properties of four Indonesian tropical hardwood species were evaluated in this study. The objectives of this study were to determine acoustical parameters e.g. logarithmic decrement, sound absorption, sound velocity as well as density and wood stiffness; and to evaluate the potential of those species for acoustical purposes. Sonokeling (Dalbergia latifolia, Mahoni (Swietenia mahagony, Acacia (Acacia mangium and Manii wood (Maesopsis eminii were selected in this research. Three different cutting plane patterns of sawn timber (quarter-sawn, flat-sawn, and plain-sawn were converted into small specimens. The methods for determining acoustical properties were longitudinal vibration testing and time of flight of ultrasonic wave method. The result showed no significant difference (α=0.05 of acoustical properties in logarithmic decrement, sound absorption, and ultrasonic velocity means on quarter-sawn, flat-sawn, and plain-sawn for all wood species tested. We found that Mahoni and Sonokeling had good acoustical properties of logarithmic decrement, ultrasonic wave velocity, and ratio of wood stiffness to wood density; and is preferred for crafting musical instruments. Acacia and Manii woods are recommended for developing acoustic panels in building construction because those species possess higher sound absorption values.

  5. Controlling the acoustic streaming by pulsed ultrasounds. (United States)

    Hoyos, Mauricio; Castro, Angélica


    We propose a technique based on pulsed ultrasounds for controlling, reducing to a minimum observable value the acoustic streaming in closed ultrasonic standing wave fluidic resonators. By modifying the number of pulses and the repetition time it is possible to reduce the velocity of the acoustic streaming with respect to the velocity generated by the continuous ultrasound mode of operation. The acoustic streaming is observed at the nodal plane where a suspension of 800nm latex particles was focused by primary radiation force. A mixture of 800nm and 15μm latex particles has been also used for showing that the acoustic streaming is hardly reduced while primary and secondary forces continue to operate. The parameter we call "pulse mode factor" i.e. the time of applied ultrasound divided by the duty cycle, is found to be the adequate parameter that controls the acoustic streaming. We demonstrate that pulsed ultrasound is more efficient for controlling the acoustic streaming than the variation of the amplitude of the standing waves. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Vibro-acoustics of lightweight sandwich structures

    CERN Document Server

    Lu, Tianjian


    Vibro-Acoustics of Lightweight Sandwich Structures introduces the study of the coupled vibration and acoustic behavior of lightweight sandwich structures in response to harmonic force and sound pressure. This book focuses on the theoretical modeling and experimental investigation of lightweight sandwich structures in order to provide a predictive framework for vibro-acoustic characteristics of typical engineering structures. Furthermore, by developing solution tools, it concentrates on the influence of key systematic parameters leading to effective guidance for optimal structure design toward lightweight, high-stiffness and superior sound insulation capability. This book is intended for researchers, scientists, engineers and graduate students in mechanical engineering especially in structural mechanics, mechanics and acoustics. Fengxian Xin and Tianjian Lu both work at the School of Aerospace, Xi’an Jiaotong University.

  7. Adjoint modeling for acoustic inversion (United States)

    Hursky, Paul; Porter, Michael B.; Cornuelle, B. D.; Hodgkiss, W. S.; Kuperman, W. A.


    The use of adjoint modeling for acoustic inversion is investigated. An adjoint model is derived from a linearized forward propagation model to propagate data-model misfit at the observation points back through the medium to the medium perturbations not being accounted for in the model. This adjoint model can be used to aid in inverting for these unaccounted medium perturbations. Adjoint methods are being applied to a variety of inversion problems, but have not drawn much attention from the underwater acoustic community. This paper presents an application of adjoint methods to acoustic inversion. Inversions are demonstrated in simulation for both range-independent and range-dependent sound speed profiles using the adjoint of a parabolic equation model. Sensitivity and error analyses are discussed showing how the adjoint model enables calculations to be performed in the space of observations, rather than the often much larger space of model parameters. Using an adjoint model enables directions of steepest descent in the model parameters (what we invert for) to be calculated using far fewer modeling runs than if a forward model only were used.

  8. Subjective evaluation of restaurant acoustics in a virtual sound environment

    DEFF Research Database (Denmark)

    Nielsen, Nicolaj Østergaard; Marschall, Marton; Santurette, Sébastien


    Many restaurants have smooth rigid surfaces made of wood, steel, glass, and concrete. This often results in a lack of sound absorption. Such restaurants are notorious for high sound noise levels during service that most owners actually desire for representing vibrant eating environments, although...... surveys report that noise complaints are on par with poor service. This study investigated the relation between objective acoustic parameters and subjective evaluation of acoustic comfort at five restaurants in terms of three parameters: noise annoyance, speech intelligibility, and privacy. At each...... location, customers filled out questionnaire surveys, acoustic parameters were measured, and recordings of restaurant acoustic scenes were obtained with a 64-channel spherical array. The acoustic scenes were reproduced in a virtual sound environment (VSE) with 64 loudspeakers placed in an anechoic room...

  9. Numerical analysis on acoustic impulse response for watermelon

    International Nuclear Information System (INIS)

    Kim, Yong Sul; Yang, Dong Hoon; Choi, Young Jae; Bae, Tas Joo; So, Chul Ho; Lee, Yun Ho


    In this study, we conducted both analysis on impact pulse signal and acoustic impulse response method using numerical analysistic finite element method. Considering its velocity, density, Young's Modulus, and Poisson's Ratio, we extracted featured parameters and compared both results of analysis on impact pulse signal and numerical analysis on acoustic impulse response then we found the feature of generated acoustic sound signal by way of numerical analysis varying featured parameters and consequently intended to extract feature indices influenced on its internal maturity through analysis of acoustic impulse response. As we analyzed impact pulse signal and extracted featured parameters concerned with evaluation of its ripeness, we found the plausibility of progress on nondestructive evaluation of ripeness and adoption of numerical analysis on acoustic impulse response.

  10. Numerical analysis on acoustic impulse response for watermelon

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Sul; Yang, Dong Hoon; Choi, Young Jae; Bae, Tas Joo; So, Chul Ho [Dongshin University, Naju (Korea, Republic of); Lee, Yun Ho [Korea Inspection and Engineering CO.,LTD., Seoul (Korea, Republic of)


    In this study, we conducted both analysis on impact pulse signal and acoustic impulse response method using numerical analysistic finite element method. Considering its velocity, density, Young's Modulus, and Poisson's Ratio, we extracted featured parameters and compared both results of analysis on impact pulse signal and numerical analysis on acoustic impulse response then we found the feature of generated acoustic sound signal by way of numerical analysis varying featured parameters and consequently intended to extract feature indices influenced on its internal maturity through analysis of acoustic impulse response. As we analyzed impact pulse signal and extracted featured parameters concerned with evaluation of its ripeness, we found the plausibility of progress on nondestructive evaluation of ripeness and adoption of numerical analysis on acoustic impulse response.


    Directory of Open Access Journals (Sweden)

    Florin Marian Nedeff


    Full Text Available The acoustic comfort of a speech hall is characterized by acoustic parameters. These parameters depend by on the hall volume, construction and design materials. On the hall ceiling (the most unused surface, some various acoustic devices can be installed on which the acoustic materials can be applied in order to obtain specific suitable acoustic parameters for that hall. Recycled materials such as wood, granular recycled rubber, shredded recycled plastic and shredded polypropylene, applied on various acoustic devices made from OAS, polystyrene or plasterboard rigips, can increase the acoustics quality of room.

  12. Mapping and Analyzing Acoustic Surveys' Results: A GIS Approach

    National Research Council Canada - National Science Library

    Manghi, Michele


    ... to provide one general clear picture of the study area. Nowadays, more than expanding scientific knowledge about acoustic communication and echolocation in marine mammals, researchers' interest is shifting to more comprehensive research topics. The methodology used to consolidate on a GIS acoustic data, historical data and measured or modeled parameters is hereafter described.

  13. A Review of Acoustic Consideration in Public and Multifunctional ...

    African Journals Online (AJOL)

    It has been shown that acoustics in buildings depend mainly on the type and use of the buildings, therefore acoustic criteria and design parameters in public and multifunctional buildings should be such that it takes into consideration the room reverberation time, background noise and sound isolation to enhance speech ...

  14. Acoustic streaming in microchannels

    DEFF Research Database (Denmark)

    Tribler, Peter Muller

    This thesis presents studies of boundary-driven acoustic streaming in microfluidic channels, which is a steady flow of the fluid initiated by the interactions of an oscillating acoustic standing wave and the rigid walls of the microchannel. The studies present analysis of the acoustic resonance......, the acoustic streaming flow, and the forces on suspended microparticles. The work is motivated by the application of particle focusing by acoustic radiation forces in medical, environmental and food sciences. Here acoustic streaming is most often unwanted, because it limits the focusability of particles...... oscillating plates. Furthermore, under general thermodynamic conditions, we derive the time-dependent first- and second-order equations for the conservation of mass, momentum, and energy. The coupling from fluid equations to particle motion is achieved through the expressions for the streaming-induced drag...

  15. Vibro-acoustics

    CERN Document Server

    Nilsson, Anders


    This three-volume book gives a thorough and comprehensive presentation of vibration and acoustic theories. Different from traditional textbooks which typically deal with some aspects of either acoustic or vibration problems, it is unique of this book to combine those two correlated subjects together. Moreover, it provides fundamental analysis and mathematical descriptions for several crucial phenomena of Vibro-Acoustics which are quite useful in noise reduction, including how structures are excited, energy flows from an excitation point to a sound radiating surface, and finally how a structure radiates noise to a surrounding fluid. Many measurement results included in the text make the reading interesting and informative. Problems/questions are listed at the end of each chapter and the solutions are provided. This will help the readers to understand the topics of Vibro-Acoustics more deeply. The book should be of interest to anyone interested in sound and vibration, vehicle acoustics, ship acoustics and inter...

  16. Springer handbook of acoustics

    CERN Document Server


    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and electronics. The Springer Handbook of Acoustics is also in his 2nd edition an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents. This new edition of the Handbook features over 11 revised and expanded chapters, new illustrations, and 2 new chapters covering microphone arrays  and acoustic emission.  Updated chapters contain the latest research and applications in, e.g. sound propagation in the atmosphere, nonlinear acoustics in fluids, building and concert hall acoustics, signal processing, psychoacoustics, computer music, animal bioacousics, sound intensity, modal acoustics as well as new chapters on microphone arrays an...

  17. Modeling temperature and moisture state effects on acoustic velocity in wood (United States)

    Shan Gao; X. Wang; L. Wang; R.B. Bruce


    Previous research has proved the concept of acoustic wave propagation methods for evaluating wood quality of trees and logs during forest operations. As commercial acoustic equipment is implemented in field for various purposes, one has to consider the influence of operating temperature on acoustic velocity — a key parameter for wood property prediction. Our field...

  18. Is reverberation time adequate for testing the acoustical quality of unroofed auditoriums?

    DEFF Research Database (Denmark)

    Paini, Dario; Gade, Anders Christian; Rindel, Jens Holger


    30) and other acoustical parameters normally used to test the acoustical quality of closed auditoria, such as concert halls, theatres, opera houses, are suitable and sufficient for testing the acoustical quality of open performance spaces. Simulations as well as measurements were carried out to study...

  19. Deep Water Ocean Acoustics (United States)


    analysis was conducted on the North Pacific Acoustics Laboratory Philippine Sea tests 2009 and 2010, both of which Dr. Heaney participated as a co-chief...obtained from the ambient noise field. In underwater acoustics , this travel time strongly depends on the depth and temperature and to a lesser al. 2012) and underwater volcanoes (Green at al. 2013). Guided wave propagation contributes to the limited acoustical attenuation by the SOFAR

  20. Acoustic cloaking in two dimensions: a feasible approach

    Energy Technology Data Exchange (ETDEWEB)

    Torrent, Daniel; Sanchez-Dehesa, Jose [Wave Phenomena Group, Department of Electronic Engineering, Polytechnic University of Valencia, C/ Camino de vera s.n., E-46022 Valencia (Spain)], E-mail:


    This work proposes an acoustic structure feasible to engineer that accomplishes the requirements of acoustic cloaking design recently introduced by Cummer and Schurig (2007 New J. Phys. 9 45). The structure, which consists of a multilayered composite made of two types of isotropic acoustic metamaterials, exactly matches the conditions for the acoustic cloaking. It is also shown that the isotropic metamaterials needed can be made of sonic crystals containing two types of material cylinders, whose elastic parameters should be properly chosen in order to satisfy (in the homogenization limit) the acoustic properties under request. In contrast to electromagnetic cloaking, the structure here proposed verifies the acoustic cloaking in a wide range of wavelengths; its performance is guaranteed for any wavelength above a certain cutoff defined by the homogenization limit of the sonic crystal employed in its fabrication.

  1. Shallow Water Acoustic Laboratory (United States)

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where high-frequency acoustic scattering and surface vibration measurements of fluid-loaded and non-fluid-loaded structures...

  2. Acoustic Signals and Systems

    DEFF Research Database (Denmark)


    The Handbook of Signal Processing in Acoustics will compile the techniques and applications of signal processing as they are used in the many varied areas of Acoustics. The Handbook will emphasize the interdisciplinary nature of signal processing in acoustics. Each Section of the Handbook...... will present topics on signal processing which are important in a specific area of acoustics. These will be of interest to specialists in these areas because they will be presented from their technical perspective, rather than a generic engineering approach to signal processing. Non-specialists, or specialists...

  3. Acoustic Technology Laboratory (United States)

    Federal Laboratory Consortium — This laboratory contains an electro-magnetic worldwide data collection and field measurement capability in the area of acoustic technology. Outfitted by NASA Langley...

  4. Localized Acoustic Surface Modes

    KAUST Repository

    Farhat, Mohamed


    We introduce the concept of localized acoustic surface modes (ASMs). We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  5. Handbook of Engineering Acoustics

    CERN Document Server

    Möser, Michael


    This book examines the physical background of engineering acoustics, focusing on empirically obtained engineering experience as well as on measurement techniques and engineering methods for prognostics. Its goal is not only to describe the state of art of engineering acoustics but also to give practical help to engineers in order to solve acoustic problems. It deals with the origin, the transmission and the methods of the abating different kinds of air-borne and structure-borne sounds caused by various mechanisms – from traffic to machinery and flow-induced sound. In addition the modern aspects of room and building acoustics, as well as psychoacoustics and active noise control, are covered.

  6. Laboratory for Structural Acoustics (United States)

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where acoustic radiation, scattering, and surface vibration measurements of fluid-loaded and non-fluid-loaded structures are...

  7. Non-Destructive Evaluation of Materials Using Pulsed Microwave Interrogating Signals and Acoustic Wave Induced Reflections

    National Research Council Canada - National Science Library

    Albanese, R


    A class of inverse problems is formulated for the estimation of material dielectric parameters using reflections of pulsed microwave interrogating signals from moving acoustic interfaces in the dielectric...

  8. Deep Water Ocean Acoustics (United States)


    Ocean Acoustics 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER...paper and presented on global acoustic propagation (including on Europa, a small moon of Jupiter ) at the International Conference of Sound and

  9. Acoustic emission source modeling

    Czech Academy of Sciences Publication Activity Database

    Hora, Petr; Červená, Olga


    Roč. 4, č. 1 (2010), s. 25-36 ISSN 1802-680X R&D Projects: GA ČR GA101/09/1630 Institutional research plan: CEZ:AV0Z20760514 Keywords : acoustic emission source * wave propagation * FEM Subject RIV: BI - Acoustics

  10. Computational Ocean Acoustics

    CERN Document Server

    Jensen, Finn B; Porter, Michael B; Schmidt, Henrik


    Since the mid-1970s, the computer has played an increasingly pivotal role in the field of ocean acoustics. Faster and less expensive than actual ocean experiments, and capable of accommodating the full complexity of the acoustic problem, numerical models are now standard research tools in ocean laboratories. The progress made in computational ocean acoustics over the last thirty years is summed up in this authoritative and innovatively illustrated new text. Written by some of the field's pioneers, all Fellows of the Acoustical Society of America, Computational Ocean Acoustics presents the latest numerical techniques for solving the wave equation in heterogeneous fluid–solid media. The authors discuss various computational schemes in detail, emphasizing the importance of theoretical foundations that lead directly to numerical implementations for real ocean environments. To further clarify the presentation, the fundamental propagation features of the techniques are illustrated in color. Computational Ocean A...

  11. Ocean acoustic reverberation tomography. (United States)

    Dunn, Robert A


    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography.

  12. Acoustic wayfinding: A method to measure the acoustic contrast of different paving materials for blind people. (United States)

    Secchi, Simone; Lauria, Antonio; Cellai, Gianfranco


    Acoustic wayfinding involves using a variety of auditory cues to create a mental map of the surrounding environment. For blind people, these auditory cues become the primary substitute for visual information in order to understand the features of the spatial context and orient themselves. This can include creating sound waves, such as tapping a cane. This paper reports the results of a research about the "acoustic contrast" parameter between paving materials functioning as a cue and the surrounding or adjacent surface functioning as a background. A number of different materials was selected in order to create a test path and a procedure was defined for the verification of the ability of blind people to distinguish different acoustic contrasts. A method is proposed for measuring acoustic contrast generated by the impact of a cane tip on the ground to provide blind people with environmental information on spatial orientation and wayfinding in urban places. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Agorá Acoustics - Effects of arcades on the acoustics of public squares

    DEFF Research Database (Denmark)

    Paini, Dario; Gade, Anders Christian; Rindel, Jens Holger


    and the receivers were positioned in the open square as well as in the arcades (making four different combinations).The results show that, when adding arcades to an open square, an increase in reverberation time is observed: a criterion is studied to predict in which cases arcades have this effect. Arcades can also......This paper is part of a PhD work, dealing with the acoustics of the public squares (‘Agorá Acoustics’), especially when music (amplified or not) is played. Consequently, our approach will be to evaluate public squares using the same set of acoustics concepts for subjective evaluation and objective...... measurements as applied for concert halls and theatres. In this paper the acoustical effects of arcades will be studied, in terms of reverberation (EDT and T30), clarity (C80), intelligibility (STI) and other acoustical parameters. For this purpose, also the theory of coupled rooms is applied and compared...

  14. Estudo normativo dos parâmetros acústicos vocais de crianças de 4 a 12 anos de idade sem sintomas vocais: estudo piloto Normative study of vocal acoustic parameters from children from 4 to 12 years of age without vocal symptoms: a pilot study

    Directory of Open Access Journals (Sweden)

    Elaine Lara Mendes Tavares


    Full Text Available Análise vocal acústica é método simples e rápido de avaliação vocal e permite diferenciar vozes normais de alteradas. Em crianças, poucas pesquisas analisam os parâmetros vocais acústicos normais nas diversas idades. OBJETIVOS: Estabelecer parâmetros acústicos vocais de normalidade em crianças de 4 a 12 anos. CASUÍSTICA E MÉTODOS: 240 crianças distribuídas por idade em quatro subgrupos: G1 (n-60; 4-5 anos, G2 (n-60; 6-7 anos, G3 (n-60; 8-9 anos e G4 (n-60; 10-12 anos. Os pais responderam um questionário de avaliação e as crianças foram submetidas à avaliação da acuidade auditiva (Pesquisa das Emissões Otoacústicas Transientes, às análises vocais acústicas e ao exame otorrinolaringológico (nasofibroscopia/ videolaringoscopia. RESULTADOS: Foram estabelecidos os valores normais dos parâmetros acústicos vocais estudados de acordo com as faixas etárias e o gênero. Com o aumento da idade, observou-se diminuição de f0 e do APQ e aumento do SPI com diferença estatística. Os parâmetros vocais não diferiram entre os gêneros até a idade de 12 anos. CONCLUSÕES: A caracterização dos padrões vocais normativos de crianças é importante ferramenta para outras pesquisas. Algumas das alterações constatadas mostraram relação com a idade como a diminuição de f0 e do APQ e aumento do SPI, sem haver diferença com relação ao gênero.Acoustic vocal analysis is a simple and fast method that allows to differentiate normal from changed voices. There are few studies that analyze normal acoustic vocal parameters at different age ranges in children. AIMS: To establish normative acoustic parameters of children's voice aged 4 to 12 years. METHODS: Two hundred and forty children were divided into four sub-groups by age: G1 (n-60; 4-5 years, G2 (n-60; 6-7 years, G3 (n-60; 8-9 years and G4 (n-60; 10-12 years. The children's parents answered a questionnaire and the children were submitted to auditory acuity evaluation

  15. Acoustic Force Density Acting on Inhomogeneous Fluids in Acoustic Fields

    DEFF Research Database (Denmark)

    Karlsen, Jonas Tobias; Augustsson, Per; Bruus, Henrik


    We present a theory for the acoustic force density acting on inhomogeneous fluids in acoustic fields on time scales that are slow compared to the acoustic oscillation period. The acoustic force density depends on gradients in the density and compressibility of the fluid. For microfluidic systems...

  16. Parametric Room Acoustic workflows with real-time acoustic simulation

    DEFF Research Database (Denmark)

    Parigi, Dario


    The paper investigates and assesses the opportunities that real-time acoustic simulation offer to engage in parametric acoustics workflow and to influence architectural designs from early design stages......The paper investigates and assesses the opportunities that real-time acoustic simulation offer to engage in parametric acoustics workflow and to influence architectural designs from early design stages...

  17. Flow acoustics in solid-fluid structures

    DEFF Research Database (Denmark)

    Willatzen, Morten; Mads, Mikhail Vladimirovich Deryabin


    The governing two-dimensional equations of a heterogeneous material composed of a fluid (allowed to flow in the absence of acoustic excitations) and a crystalline piezoelectric cubic solid stacked one-dimensionally (along the z direction) are derived and special emphasis is given to the discussion...... of acoustic group velocity for the structure as a function of the wavenumber component perpendicular to the stacking direction (being the x axis). Variations in physical parameters with y are neglected assuming infinite material homogeneity along the y direction and the flow velocity is assumed to be directed...

  18. Acoustic Quality Levels of Mosques in Batu Pahat (United States)

    Azizah Adnan, Nor; Nafida Raja Shahminan, Raja; Khair Ibrahim, Fawazul; Tami, Hannifah; Yusuff, M. Rizal M.; Murniwaty Samsudin, Emedya; Ismail, Isham


    Every Friday, Muslims has been required to perform a special prayer known as the Friday prayers which involve the delivery of a brief lecture (Khutbah). Speech intelligibility in oral communications presented by the preacher affected all the congregation and determined the level of acoustic quality in the interior of the mosque. Therefore, this study intended to assess the level of acoustic quality of three public mosques in Batu Pahat. Good acoustic quality is essential in contributing towards appreciation in prayers and increasing khusyu’ during the worship, which is closely related to the speech intelligibility corresponding to the actual function of the mosque according to Islam. Acoustic parameters measured includes noise criteria (NC), reverberation time (RT) and speech transmission index (STI), and was performed using the sound level meter and sound measurement instruments. This test is carried out through the physical observation with the consideration of space and volume design as a factor affecting acoustic parameters. Results from all 3 mosques as the showed that the acoustic quality level inside these buildings are slightly poor which is at below 0.45 coefficients based on the standard. Among the factors that influencing the low acoustical quality are location, building materials, installation of sound absorption material and the number of occupants inside the mosque. As conclusion, the acoustic quality level of a mosque is highly depends on physical factors of the mosque such as the architectural design and space volume besides other factors as been identified by this study.

  19. Acoustic building infiltration measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Muehleisen, Ralph T.; Raman, Ganesh


    Systems and methods of detecting and identifying a leak from a container or building. Acoustic pressure and velocity are measured. Acoustic properties are acquired from the measured values. The acoustic properties are converted to infiltration/leakage information. Nearfield Acoustic Holography (NAH) may be one method to detect the leakages from a container by locating the noise sources.

  20. Acoustic well cleaner (United States)

    Maki, Jr., Voldi E.; Sharma, Mukul M.


    A method and apparatus are disclosed for cleaning the wellbore and the near wellbore region. A sonde is provided which is adapted to be lowered into a borehole and which includes a plurality of acoustic transducers arranged around the sonde. Electrical power provided by a cable is converted to acoustic energy. The high intensity acoustic energy directed to the borehole wall and into the near wellbore region, redissolves or resuspends the material which is reducing the permeability of the formation and/or restricting flow in the wellbore.

  1. Scale Model Thruster Acoustic Measurement Results (United States)

    Vargas, Magda; Kenny, R. Jeremy


    The Space Launch System (SLS) Scale Model Acoustic Test (SMAT) is a 5% scale representation of the SLS vehicle, mobile launcher, tower, and launch pad trench. The SLS launch propulsion system will be comprised of the Rocket Assisted Take-Off (RATO) motors representing the solid boosters and 4 Gas Hydrogen (GH2) thrusters representing the core engines. The GH2 thrusters were tested in a horizontal configuration in order to characterize their performance. In Phase 1, a single thruster was fired to determine the engine performance parameters necessary for scaling a single engine. A cluster configuration, consisting of the 4 thrusters, was tested in Phase 2 to integrate the system and determine their combined performance. Acoustic and overpressure data was collected during both test phases in order to characterize the system's acoustic performance. The results from the single thruster and 4- thuster system are discussed and compared.

  2. Inverse Doppler Effects in Broadband Acoustic Metamaterials. (United States)

    Zhai, S L; Zhao, X P; Liu, S; Shen, F L; Li, L L; Luo, C R


    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with 'flute-like' acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe.

  3. Speaker independent acoustic-to-articulatory inversion (United States)

    Ji, An

    Acoustic-to-articulatory inversion, the determination of articulatory parameters from acoustic signals, is a difficult but important problem for many speech processing applications, such as automatic speech recognition (ASR) and computer aided pronunciation training (CAPT). In recent years, several approaches have been successfully implemented for speaker dependent models with parallel acoustic and kinematic training data. However, in many practical applications inversion is needed for new speakers for whom no articulatory data is available. In order to address this problem, this dissertation introduces a novel speaker adaptation approach called Parallel Reference Speaker Weighting (PRSW), based on parallel acoustic and articulatory Hidden Markov Models (HMM). This approach uses a robust normalized articulatory space and palate referenced articulatory features combined with speaker-weighted adaptation to form an inversion mapping for new speakers that can accurately estimate articulatory trajectories. The proposed PRSW method is evaluated on the newly collected Marquette electromagnetic articulography -- Mandarin Accented English (EMA-MAE) corpus using 20 native English speakers. Cross-speaker inversion results show that given a good selection of reference speakers with consistent acoustic and articulatory patterns, the PRSW approach gives good speaker independent inversion performance even without kinematic training data.

  4. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Connections Overview Find a Meeting Host a Meeting Volunteer Become a Volunteer Opportunities Support Overview Patient Events ... ANA About ANA Mission, Vision & Values Shop ANA Leadership & Staff Annual Reports Acoustic Neuroma Association 600 Peachtree ...

  5. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... with AN Healthcare Providers Acoustic Neuroma Association Donate Now Newly Diagnosed What is AN? Request a Patient ... Volunteer About ANA Get Info Shop ANA Donate Now DONATE Ways to Give Legacy Society Team ANA © ...

  6. Acoustics Noise Test Cell (United States)

    Federal Laboratory Consortium — The Acoustic Noise Test Cell at the NASA/Caltech Jet Propulsion Laboratory (JPL) is located adjacent to the large vibration system; both are located in a class 10K...

  7. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Choosing a healthcare provider Request a patient kit Treatment Options Overview Observation Radiation Surgery What is acoustic neuroma Diagnosing Symptoms Side effects Question To Ask Treatment Options Back Overview Observation Radiation Surgery Choosing a ...

  8. Acoustic imaging system (United States)

    Smith, Richard W.


    An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.

  9. Acoustic Igniter, Phase I (United States)

    National Aeronautics and Space Administration — An acoustic igniter eliminates the need to use electrical energy to drive spark systems to initiate combustion in liquid-propellant rockets. It does not involve the...

  10. Cryogenic Acoustic Suppression Testing (United States)

    National Aeronautics and Space Administration — A proof-of-concept method utilizing a cryogenic fluid for acoustic suppression in rocket engine testing environments will be demonstrated. It is hypothesized that...

  11. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Mission, Vision & Values Shop ANA Leadership & Staff Annual Reports Acoustic Neuroma Association 600 Peachtree Parkway Suite 108 ... About ANA Mission, Vision & Values Leadership & Staff Annual Reports Shop ANA Home Learn Educational Video English English ...

  12. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... ANA About ANA Mission, Vision & Values Shop ANA Leadership & Staff Annual Reports Acoustic Neuroma Association 600 Peachtree ... About ANA Mission, Vision & Values Leadership & Staff Annual Reports Shop ANA Home Learn Educational ...

  13. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Click to learn more... LOGIN CALENDAR DONATE NEWS Home Learn Back Learn about acoustic neuroma AN Facts ... Vision & Values Leadership & Staff Annual Reports Shop ANA Home Learn Educational Video English English Arabic Catalan Chinese ( ...

  14. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Info Booklets Research Back ANA Survey/Registry AN Research ... About Back Learn more about ANA About ANA Mission, Vision & Values Shop ANA Leadership & Staff Annual Reports Acoustic ...

  15. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... a patient kit Treatment Options Overview Observation Radiation Surgery What is acoustic neuroma Diagnosing Symptoms Side effects ... To Ask Treatment Options Back Overview Observation Radiation Surgery Choosing a healthcare provider Request a patient kit ...

  16. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Back Learn more about ANA About ANA Mission, Vision & Values Shop ANA Leadership & Staff Annual Reports Acoustic ... 205-8211 About ANA Mission, Vision & Values Leadership & Staff Annual Reports Shop ANA Home ...

  17. Department of Cybernetic Acoustics (United States)

    The development of the theory, instrumentation and applications of methods and systems for the measurement, analysis, processing and synthesis of acoustic signals within the audio frequency range, particularly of the speech signal and the vibro-acoustic signal emitted by technical and industrial equipments treated as noise and vibration sources was discussed. The research work, both theoretical and experimental, aims at applications in various branches of science, and medicine, such as: acoustical diagnostics and phoniatric rehabilitation of pathological and postoperative states of the speech organ; bilateral ""man-machine'' speech communication based on the analysis, recognition and synthesis of the speech signal; vibro-acoustical diagnostics and continuous monitoring of the state of machines, technical equipments and technological processes.

  18. Autonomous Acoustic Receiver System (United States)

    Federal Laboratory Consortium — FUNCTION: Collects underwater acoustic data and oceanographic data. Data are recorded onboard an ocean buoy and can be telemetered to a remote ship or shore station...

  19. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Learn more about ANA About ANA Mission, Vision & Values Shop ANA Leadership & Staff Annual Reports Acoustic Neuroma ... 8211 About ANA Mission, Vision & Values Leadership & Staff Annual Reports Shop ANA Home Learn ...

  20. Acoustic MIMO signal processing

    CERN Document Server

    Huang, Yiteng; Chen, Jingdong


    A timely and important book addressing a variety of acoustic signal processing problems under multiple-input multiple-output (MIMO) scenarios. It uniquely investigates these problems within a unified framework offering a novel and penetrating analysis.

  1. Thermal Acoustic Fatigue Apparatus (United States)

    Federal Laboratory Consortium — The Thermal Acoustic Fatigue Apparatus (TAFA) is a progressive wave tube test facility that is used to test structures for dynamic response and sonic fatigue due to...

  2. Principles of musical acoustics

    CERN Document Server

    Hartmann, William M


    Principles of Musical Acoustics focuses on the basic principles in the science and technology of music. Musical examples and specific musical instruments demonstrate the principles. The book begins with a study of vibrations and waves, in that order. These topics constitute the basic physical properties of sound, one of two pillars supporting the science of musical acoustics. The second pillar is the human element, the physiological and psychological aspects of acoustical science. The perceptual topics include loudness, pitch, tone color, and localization of sound. With these two pillars in place, it is possible to go in a variety of directions. The book treats in turn, the topics of room acoustics, audio both analog and digital, broadcasting, and speech. It ends with chapters on the traditional musical instruments, organized by family. The mathematical level of this book assumes that the reader is familiar with elementary algebra. Trigonometric functions, logarithms and powers also appear in the book, but co...

  3. Acoustic ambient noise recorder

    Digital Repository Service at National Institute of Oceanography (India)

    Saran, A.K.; Navelkar, G.S.; Almeida, A.M.; More, S.R.; Chodankar, P.V.; Murty, C.S.

    with a robust outfit that can withstand high pressures and chemically corrosion resistant materials. Keeping these considerations in view, a CMOS micro-controller-based marine acoustic ambient noise recorder has been developed with a real time clock...

  4. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Request a patient kit Treatment Options Overview Observation Radiation Surgery What is acoustic neuroma Diagnosing Symptoms Side ... Question To Ask Treatment Options Back Overview Observation Radiation Surgery Choosing a healthcare provider Request a patient ...

  5. Acoustic Igniter Project (United States)

    National Aeronautics and Space Administration — An acoustic igniter eliminates the need to use electrical energy to drive spark systems to initiate combustion in liquid-propellant rockets. It does not involve the...

  6. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... About ANA Mission, Vision & Values Shop ANA Leadership & Staff Annual Reports Acoustic Neuroma Association 600 Peachtree Parkway ... About ANA Mission, Vision & Values Leadership & Staff Annual Reports Shop ANA Home Learn Educational Video ...

  7. Acoustic metamaterials: From local resonances to broad horizons. (United States)

    Ma, Guancong; Sheng, Ping


    Within a time span of 15 years, acoustic metamaterials have emerged from academic curiosity to become an active field driven by scientific discoveries and diverse application potentials. This review traces the development of acoustic metamaterials from the initial findings of mass density and bulk modulus frequency dispersions in locally resonant structures to the diverse functionalities afforded by the perspective of negative constitutive parameter values, and their implications for acoustic wave behaviors. We survey the more recent developments, which include compact phase manipulation structures, superabsorption, and actively controllable metamaterials as well as the new directions on acoustic wave transport in moving fluid, elastic, and mechanical metamaterials, graphene-inspired metamaterials, and structures whose characteristics are best delineated by non-Hermitian Hamiltonians. Many of the novel acoustic metamaterial structures have transcended the original definition of metamaterials as arising from the collective manifestations of constituent resonating units, but they continue to extend wave manipulation functionalities beyond those found in nature.

  8. Acoustic simulations of Mudejar-Gothic churches. (United States)

    Galindo, Miguel; Zamarreño, Teófilo; Girón, Sara


    In this paper, an iterative process is used in order to estimate the values of absorption coefficients of those materials of which little is known in the literature, so that an acoustic simulation can be carried out in Mudejar-Gothic churches. The estimation of the scattering coefficients, which is even less developed, is based on the size of the irregularities. This methodology implemented is applied to six Mudejar-Gothic churches of Seville (southern Spain). The simulated monophonic acoustic parameters, both in the frequency domain and as a function of source-receiver distance (spatial distribution), are analyzed and compared with the in situ measures. Good agreement has been found between these sets of values, whereby each parameter is discussed in terms of the just noticeable difference. This procedure for existing buildings, especially for those which are rich in heritage, enables a reliable evaluation of the effect on the maintenance, restoration, and conditioning for new uses, as well as the recreation of the acoustic environment of ancient times. Along these lines, the acoustic influence of the timber roof and the presence of the public in these churches have also been studied.

  9. Acoustic reflection log in transversely isotropic formations (United States)

    Ronquillo Jarillo, G.; Markova, I.; Markov, M.


    We have calculated the waveforms of sonic reflection logging for a fluid-filled borehole located in a transversely isotropic rock. Calculations have been performed for an acoustic impulse source with the characteristic frequency of tens of kilohertz that is considerably less than the frequencies of acoustic borehole imaging tools. It is assumed that the borehole axis coincides with the axis of symmetry of the transversely isotropic rock. It was shown that the reflected wave was excited most efficiently at resonant frequencies. These frequencies are close to the frequencies of oscillations of a fluid column located in an absolutely rigid hollow cylinder. We have shown that the acoustic reverberation is controlled by the acoustic impedance of the rock Z = Vphρs for fixed parameters of the borehole fluid, where Vph is the velocity of horizontally propagating P-wave; ρs is the rock density. The methods of waveform processing to determine the parameters characterizing the reflected wave have been discussed.

  10. Dimensional analysis of acoustically propagated signals (United States)

    Hansen, Scott D.; Thomson, Dennis W.


    Traditionally, long term measurements of atmospherically propagated sound signals have consisted of time series of multiminute averages. Only recently have continuous measurements with temporal resolution corresponding to turbulent time scales been available. With modern digital data acquisition systems we now have the capability to simultaneously record both acoustical and meteorological parameters with sufficient temporal resolution to allow us to examine in detail relationships between fluctuating sound and the meteorological variables, particularly wind and temperature, which locally determine the acoustic refractive index. The atmospheric acoustic propagation medium can be treated as a nonlinear dynamical system, a kind of signal processor whose innards depend on thermodynamic and turbulent processes in the atmosphere. The atmosphere is an inherently nonlinear dynamical system. In fact one simple model of atmospheric convection, the Lorenz system, may well be the most widely studied of all dynamical systems. In this paper we report some results of our having applied methods used to characterize nonlinear dynamical systems to study the characteristics of acoustical signals propagated through the atmosphere. For example, we investigate whether or not it is possible to parameterize signal fluctuations in terms of fractal dimensions. For time series one such parameter is the limit capacity dimension. Nicolis and Nicolis were among the first to use the kind of methods we have to study the properties of low dimension global attractors.

  11. The acoustics of public squares/places: A comparison between results from a computer simulation program and measurements in situ

    DEFF Research Database (Denmark)

    Paini, Dario; Rindel, Jens Holger; Gade, Anders


    or a band during, for instance, music summer festivals) and the best position for the audience. A further result could be to propose some acoustic adjustments to achieve better acoustic quality by considering the acoustic parameters which are typically used for concert halls and opera houses....

  12. Acoustic anisotropic wavefields through perturbation theory

    KAUST Repository

    Alkhalifah, Tariq Ali


    Solving the anisotropic acoustic wave equation numerically using finite-difference methods introduces many problems and media restriction requirements, and it rarely contributes to the ability to resolve the anisotropy parameters. Among these restrictions are the inability to handle media with η<0 and the presence of shear-wave artifacts in the solution. Both limitations do not exist in the solution of the elliptical anisotropic acoustic wave equation. Using perturbation theory in developing the solution of the anisotropic acoustic wave equation allows direct access to the desired limitation-free solutions, that is, solutions perturbed from the elliptical anisotropic background medium. It also provides a platform for parameter estimation because of the ability to isolate the wavefield dependency on the perturbed anisotropy parameters. As a result, I derive partial differential equations that relate changes in the wavefield to perturbations in the anisotropy parameters. The solutions of the perturbation equations represented the coefficients of a Taylor-series-type expansion of the wavefield as a function of the perturbed parameter, which is in this case η or the tilt of the symmetry axis. The expansion with respect to the symmetry axis allows use of an acoustic transversely isotropic media with a vertical symmetry axis (VTI) kernel to estimate the background wavefield and the corresponding perturbation coefficients. The VTI extrapolation kernel is about one-fourth the cost of the transversely isotropic model with a tilt in the symmetry axis kernel. Thus, for a small symmetry axis tilt, the cost of migration using a first-order expansion can be reduced. The effectiveness of the approach was demonstrated on the Marmousi model.

  13. Application of fast BLMS algorithm in acoustic echo cancellation (United States)

    Zhao, Yue; Li, Nian Q.


    The acoustic echo path is usually very long and ranges from several hundreds to few thousands of taps. Frequency domain adaptive filter provides a solution to acoustic echo cancellation by means of resulting a significant reduction in the computational burden. In this paper, fast BLMS (Block Least-Mean-Square) algorithm in frequency domain is realized by using fast FFT technology. The adaptation of filter parameters is actually performed in the frequency domain. The proposed algorithm can ensure convergence with high speed and reduce computational complexity. Simulation results indicate that the algorithm demonstrates good performance for acoustic echo cancellation in communication systems.

  14. On spin dependence of relativistic acoustic geometry

    International Nuclear Information System (INIS)

    Pu, Hung-Yi; Chang, Hsiang-Kuang; Maity, Ishita; Das, Tapas Kumar


    This work makes the first ever attempt to understand the influence of the black hole background spacetime in determining the fundamental properties of the embedded relativistic acoustic geometry. To accomplish such task, we investigate the role of the spin angular momentum of the astrophysical black hole (the Kerr parameter a—a representative feature of the background black hole metric) in estimating the value of the acoustic surface gravity (the representative feature of the corresponding analogue spacetime). Since almost all astrophysical black holes are supposed to posses some degree of intrinsic rotation, the influence of the Kerr parameter on classical analogue models is very important to understand. We study the general relativistic, axially symmetric, non-self-gravitating inflow of the hydrodynamic fluid onto a rotating astrophysical black hole from the dynamical systems point of view. In this work the location of the acoustic horizon inside such fluid flow is identified and the associated acoustic surface gravity is estimated. We study the dependence of such surface gravity as a function of the Kerr parameter as well as with other dynamical and thermodynamic variables governing the fluid flow under strong gravity, and demonstrate that for retrograde flow, the surface gravity (and hence the associated analogue Hawking temperature) correlates with the black hole spin in general, whereas for the prograde flow, the surface gravity as well as the analogue temperature correlates with the black hole spin for slow to moderately rotating holes, but anti-correlates with the spin for fast to extremely rotating holes. We found that for certain values of the initial boundary conditions, more than one acoustic horizons, namely two black hole types and one white hole type, may form, and the surface gravity may become formally infinite at the acoustic white hole. We discuss the possible connection between the corresponding analogue Hawking temperature and astrophysically

  15. Measurements of different acoustic conditions in small rectangular rooms


    González Pacheco, Alejandro


    Impulse response measurements are carried out in laboratory facilities at Ecophon, Sweden, simulating a typical classroom with varying suspended ceilings and furniture arrangements. The aim of these measurements is to build a reliable database of acoustical parameters in order to have enough data to validate the new acoustical simulation tool which is under development at Danmarks Tekniske Universitet, Denmark. The different classroom configurations are also simulated using ODEON Room A...

  16. A periodic thin film filters for acoustic phonons

    International Nuclear Information System (INIS)

    Lanzillotti-Kimura, N D; Fainstein, A; Jusserand, B; LemaItre, A; Mauguin, O; Largeau, L


    We describe multilayer acoustic nanowave devices based on aperiodic stacks of GaAs and AlAs layers and achievable with standard Molecular Beam Epitaxy (MBE) technology. These nanostructures were designed to display optimized acoustic reflectivity curves in the terahertz range. We address the design and optimization of these devices using a downhill simplex algorithm. We analyze different strategies of optimization, and we study the different engineering parameters relevant for the conception of aperiodic filters

  17. Model-based acoustic remote sensing of seafloor characteristics

    Digital Repository Service at National Institute of Oceanography (India)

    De, Ch.; Chakraborty, B.

    =UTF-8 3868 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 49, NO. 10, OCTOBER 2011 Model-Based Acoustic Remote Sensing of Seafloor Characteristics Chanchal De and Bishwajit Chakraborty, Member, IEEE Abstract—The characterization... of the estimated values of seafloor roughness spectrum parameters with the values of sediment mean grain size are compared with published information available in the literature. Index Terms—Acoustic remote sensing, backscatter model, echo envelope, inversion, mean...

  18. Long-Term Aging Diagnosis of Rotor Steel Using Acoustic Nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chung Seok; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of); Park, Ik Keun; Hyun, Chang Yong [Seoul National University of Science and Tecnology, Seoul (Korea, Republic of)


    The long-term aging of ferritic 2.25CrMo steel was characterized using the acoustic nonlinear effect in order to apply to diagnose the degradation behavior of structural materials. We measured the acoustic nonlinearity parameter for each thermally aged specimen by the higher harmonic-generation technique. The acoustic nonlinearity parameter increased with aging time due to equilibrium M6C carbide precipitation, and has a favorable linear relation with Rockwell hardness. This study suggests that acoustic nonlinearity testing may be applicable to diagnostics on strength degradation in rotor steels.

  19. Acoustical measurement of the Salt Lake Mormon Tabernacle (United States)

    Rollins, Sarah; Leishman, Timothy W.


    An acoustical survey of the Salt Lake Mormon Tabernacle has been performed to assess the behavior of the hall in its current state. The tabernacle is a well-known historical building with a large elongated dome ceiling. This paper discusses the measurements used to characterize the hall. Several parameters derived from omnidirectional, directional, and binaural impulse response measurements are presented. Color maps of the parameters over audience seating areas reveal their spatial variations. These maps and the statistical properties of the parameters aid in clarifying the acoustical characteristics and anomalies of the hall.

  20. Effect of steel fibres dosage in alkali-activated slag mortar on acoustic emission obtained during three-point bending tests

    Directory of Open Access Journals (Sweden)

    Topolář Libor


    Full Text Available The acoustic emission phenomenon is directly associated with nucleation of cracks in structural materials during loading. This paper analyses acoustic emission signals captured during three-point bending fracture tests of alkali-activated slag mortar specimens with different amount of steel fibres. Typical parameters of acoustic emission signals were identified for different mixtures to further describe the under-the-stress behaviour and failure development. The acoustic emission signals from crack growth were continuously monitored using acoustic emission sensors mounted on the specimen surface. Acoustic emission results are accompanied by selected mechanical fracture parameters determined via evaluation of load versus displacement diagrams recorded during three-point bending tests.

  1. Practical acoustic emission testing

    CERN Document Server


    This book is intended for non-destructive testing (NDT) technicians who want to learn practical acoustic emission testing based on level 1 of ISO 9712 (Non-destructive testing – Qualification and certification of personnel) criteria. The essential aspects of ISO/DIS 18436-6 (Condition monitoring and diagnostics of machines – Requirements for training and certification of personnel, Part 6: Acoustic Emission) are explained, and readers can deepen their understanding with the help of practice exercises. This work presents the guiding principles of acoustic emission measurement, signal processing, algorithms for source location, measurement devices, applicability of testing methods, and measurement cases to support not only researchers in this field but also and especially NDT technicians.

  2. Sea Turtle Acoustic Telemetry Data (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Acoustic transmitters attached to sea turtles captured in various fishing gear enable the animals to be passively tracked. Acoustic receivers set up in an array...

  3. Advanced Active Acoustics Lab (AAAL) (United States)

    Federal Laboratory Consortium — The Advanced Active Acoustics Lab (AAAL) is a state-of-the-art Undersea Warfare (USW) acoustic data analysis facility capable of both active and passive underwater...

  4. Acoustic seafloor classification: Potential and limitations.

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.

    Technology, Vol. 9, No. 2, 2014 vCopyright Journal of Ocean Technology 2014 Acoustic Seafloor Classification: Potential and Limitations When sound waves interact with the seafloor and/or penetrate into the sediments beneath, the incident energy... to the acquired data, and therefore seafloor classification is imperative prior to inversion modelling. This is in part due to the fact that at low to medium frequencies (100 to 10,000 Hz) the estimated model parameters fluctuate due to the sound signal...

  5. Acoustic integrated extinction


    Norris, Andrew N.


    The integrated extinction (IE) is defined as the integral of the scattering cross section as a function of wavelength. Sohl et al. (2007 J. Acoust. Soc. Am. 122, 3206–3210. (doi:10.1121/1.2801546)) derived an IE expression for acoustic scattering that is causal, i.e. the scattered wavefront in the forward direction arrives later than the incident plane wave in the background medium. The IE formula was based on electromagnetic results, for which scattering is causal by default. Here, we der...

  6. Room Acoustical Fields

    CERN Document Server

    Mechel, Fridolin


    This book presents the theory of room acoustical fields and revises the Mirror Source Methods for practical computational use, emphasizing the wave character of acoustical fields.  The presented higher methods include the concepts of “Mirror Point Sources” and “Corner sources which allow for an excellent approximation of complex room geometries and even equipped rooms. In contrast to classical description, this book extends the theory of sound fields describing them by their complex sound pressure and the particle velocity. This approach enables accurate descriptions of interference and absorption phenomena.

  7. Acoustic emission intrusion detector

    International Nuclear Information System (INIS)

    Carver, D.W.


    In order to improve the security of handling special nuclear materials at the Oak Ridge Y-12 Plant, a sensitive acoustic emission detector has been developed that will detect forcible entry through block or tile walls, concrete floors, or concrete/steel vault walls. A small, low-powered processor was designed to convert the output from a sensitive, crystal-type acoustic transducer to an alarm relay signal for use with a supervised alarm loop. The unit may be used to detect forcible entry through concrete, steel, block, tile, and/or glass

  8. Carbon Nanotube Underwater Acoustic Thermophone (United States)


    Attorney Docket No. 300009 1 of 8 A CARBON NANOTUBE UNDERWATER ACOUSTIC THERMOPHONE STATEMENT OF GOVERNMENT INTEREST [0001] The...the Invention [0003] The present invention is an acoustically transparent carbon nanotube thermophone. (2) Description of the Prior Art [0004...amplitude of the resulting sound waves. [0006] Recently, there has been development of underwater acoustic carbon nanotube (CNT) yarn sheets capable

  9. Acoustical model of a Shoddy fibre absorber (United States)

    Manning, John Peter

    Shoddy fibres or "Shoddies" are a mixture of post-consumer and post-industrial fibres diverted from textile waste streams and recycled into their raw fibre form. They have found widespread use as a raw material for manufacturing sound absorbers that include, but are not limited to: automotive, architectural and home appliance applications. The purpose of this project is to develop a simple acoustic model to describe the acoustic behaviour of sound absorbers composed primarily of Shoddy fibres. The model requires knowledge of the material's bulk density only. To date, these materials have not been the focus of much published research and acoustical designers must rely on models that were developed for other materials or are overly complex. For modelling purposes, an equivalent fluid approach is chosen to balance complexity and accuracy. In deriving the proposed model, several popular equivalent fluid models are selected and the required input parameters for each model identified. The models are: the model of Delaney and Bazley, two models by Miki, the model of Johnson in conjunction with the model of Champoux and Allard and the model of Johnson in conjunction with the model of Lafarge. Characterization testing is carried out on sets of Shoddy absorbers produced using three different manufacturing methods. The measured properties are open porosity, tortuosity, airflow resistivity, the viscous and thermal characteristic lengths and the static thermal permeability. Empirical relationships between model parameters and bulk density are then derived and used to populate the selected models. This yields several 'simplified' models with bulk density as the only parameter. The most accurate model is then selected by comparing each model's prediction to the results of normal incidence sound absorption tests. The model of Johnson-Lafarge populated with the empirical relations is the most accurate model over the range of frequencies considered (approx. 300 Hz - 4000 Hz

  10. Computational acoustic modeling of cetacean vocalizations (United States)

    Gurevich, Michael Dixon

    A framework for computational acoustic modeling of hypothetical vocal production mechanisms in cetaceans is presented. As a specific example, a model of a proposed source in the larynx of odontocetes is developed. Whales and dolphins generate a broad range of vocal sounds, but the exact mechanisms they use are not conclusively understood. In the fifty years since it has become widely accepted that whales can and do make sound, how they do so has remained particularly confounding. Cetaceans' highly divergent respiratory anatomy, along with the difficulty of internal observation during vocalization have contributed to this uncertainty. A variety of acoustical, morphological, ethological and physiological evidence has led to conflicting and often disputed theories of the locations and mechanisms of cetaceans' sound sources. Computational acoustic modeling has been used to create real-time parametric models of musical instruments and the human voice. These techniques can be applied to cetacean vocalizations to help better understand the nature and function of these sounds. Extensive studies of odontocete laryngeal morphology have revealed vocal folds that are consistently similar to a known but poorly understood acoustic source, the ribbon reed. A parametric computational model of the ribbon reed is developed, based on simplified geometrical, mechanical and fluid models drawn from the human voice literature. The physical parameters of the ribbon reed model are then adapted to those of the odontocete larynx. With reasonable estimates of real physical parameters, both the ribbon reed and odontocete larynx models produce sounds that are perceptually similar to their real-world counterparts, and both respond realistically under varying control conditions. Comparisons of acoustic features of the real-world and synthetic systems show a number of consistencies. While this does not on its own prove that either model is conclusively an accurate description of the source, it

  11. Acoustic tomography in the atmospheric surface layer

    Directory of Open Access Journals (Sweden)

    A. Ziemann

    Full Text Available Acoustic tomography is presented as a technique for remote monitoring of meteorological quantities. This method and a special algorithm of analysis can directly produce area-averaged values of meteorological parameters. As a result consistent data will be obtained for validation of numerical atmospheric micro-scale models. Such a measuring system can complement conventional point measurements over different surfaces. The procedure of acoustic tomography uses the horizontal propagation of sound waves in the atmospheric surface layer. Therefore, to provide a general overview of sound propagation under various atmospheric conditions a two-dimensional ray-tracing model according to a modified version of Snell's law is used. The state of the crossed atmosphere can be estimated from measurements of acoustic travel time between sources and receivers at different points. Derivation of area-averaged values of the sound speed and furthermore of air temperature results from the inversion of travel time values for all acoustic paths. Thereby, the applied straight ray two-dimensional tomographic model using SIRT (simultaneous iterative reconstruction technique is characterised as a method with small computational requirements, satisfactory convergence and stability properties as well as simple handling, especially, during online evaluation.

    Key words. Meteorology and atmospheric dynamics (turbulence; instruments and techniques.

  12. Characteristics of small boat acoustic signatures (United States)

    Barlett, Martin L.; Wilson, Gary R.


    Small boats are often a dominant noise source in harbors, coastal regions, and lakes. However, detailed information about acoustic characteristics is not generally available. To remedy this deficiency, measurements of underwater acoustic signatures from various small boats have been conducted under controlled conditions. Boats used in the measurements were powered by a variety of gasoline and diesel motors in outboard, inboard-outboard, and inboard drive configurations. Measurements were made using a bottom mounted hydrophone in about 100 feet of water. In many instances, the boats were instrumented with a system that recorded the GPS position and engine RPM permitting accurate determinations of platform operating parameters. Measured small boat signatures contain both narrowband and broadband acoustic components. Narrowband components are generally associated with sources from the engine or drive. Narrowband levels in the observed spectra were found to exhibit significant variations and are believed to originate from fluctuations in the load on the engine and drive. Broadband energy was observed to be a dominant noise source at frequencies above several hundred Hertz and is a characteristic feature in all small boat signatures. Examples of small boat signatures will be presented and representative acoustic characteristics of this type of watercraft will be discussed.

  13. Design of a broadband ultra-large area acoustic cloak based on a fluid medium (United States)

    Zhu, Jian; Chen, Tianning; Liang, Qingxuan; Wang, Xiaopeng; Jiang, Ping


    A broadband ultra-large area acoustic cloak based on fluid medium was designed and numerically implemented with homogeneous metamaterials according to the transformation acoustics. In the present work, fluid medium as the body of the inclusion could be tuned by changing the fluid to satisfy the variant acoustic parameters instead of redesign the whole cloak. The effective density and bulk modulus of the composite materials were designed to agree with the parameters calculated from the coordinate transformation methodology by using the effective medium theory. Numerical simulation results showed that the sound propagation and scattering signature could be controlled in the broadband ultra-large area acoustic invisibility cloak, and good cloaking performance has been achieved and physically realized with homogeneous materials. The broadband ultra-large area acoustic cloaking properties have demonstrated great potentials in the promotion of the practical applications of acoustic cloak.

  14. Acoustic characterization of Thiel liver for magnetic resonance-guided focused ultrasound treatment. (United States)

    Karakitsios, Ioannis; Joy, Joyce; Mihcin, Senay; Melzer, Andreas


    The purpose of this work was to measure the essential acoustic parameters, i.e., acoustic impedance, reflection coefficient, attenuation coefficient, of Thiel embalmed human and animal liver. The Thiel embalmed tissue can be a promising, pre-clinical model to study liver treatment with Magnetic Resonance-guided Focused Ultrasound (MRgFUS). Using a single-element transducer and the contact pulse-echo method, the acoustic parameters, i.e., acoustic impedance, reflection coefficient and attenuation coefficient of Thiel embalmed human and animal liver were measured. The Thiel embalmed livers had higher impedance, similar reflection and lower attenuation compared to the fresh tissue. Embalming liver with Thiel fluid affects its acoustic properties. During MRgFUS sonication of a Thiel organ, more focused ultrasound (FUS) will be backscattered by the organ, and higher acoustic powers are required to reach coagulation levels (temperatures >56 °C).

  15. how acoustic schwannomas?

    African Journals Online (AJOL)

    chemistry In the diagnosis of brain tumours and, furthermore, shows that acoustic schwannoma must be considered In the appropriate clinical setting, even in a group previously regarded as low-risk. S Atr Med J 1990; 78: 11-14. Studies from various parts of the world on the relative. freqIJency of primary intracranial tumours ...

  16. Nonlinear acoustic tomography

    International Nuclear Information System (INIS)

    Monk, P.


    The use of acoustic waves as probes to determine otherwise inaccessible properties of a medium is extremely widespread. Applications include sonar, medical imaging and non-destructive testing. Despite the importance of the applications, there is as yet no acceptable method for solving the full non-linear problem at resonance frequencies (frequencies at which the size of the features under investigations are approximately the wavelength of the incident acoustic field). The medical imaging problem, which consists in trying to determine the sound speed, density and absorption properties of a bounded inhomogeneous medium from scattered acoustic waves is the motivaiton for the investigation described in this paper. We shall present a solution technique for a standard model inverse acoustic scattering problem which consists of reconstructing the refractive index of an inhomogeneity from given far field data (far field data is essentially the measured scattered field at considerable distance from the inhomogeneity). This model inverse problem simplifies the inhomogeneity by neglecting density and absorption but includes two important features of the real problem: nonlinearity and illposedness. Furthermore the method we present can easily by extended to more general problems

  17. Acoustic emission from beryllium

    International Nuclear Information System (INIS)

    Heiple, C.R.; Adams, R.O.


    The acoustic emission from both powder and ingot source beryllium has been measured as a function of strain and prior heat treatment. Most measurements were made during tensile deformation, but a limited number of compression tests have also been performed. The acoustic emission observed was of the burst type, with little or no contribution from continuous type emission. The emission was characterized by the variation of burst rate and average energy per burst as a function of strain. The tensile behavior was qualitatively similar for all the materials tested. Burst rate maxima centered roughly at 0.1 percent and 1.0 percent plastic strain were observed. The magnitude but not the strain at the low strain burst rate peak was very sensitive to prior thermal treatment, while the higher strain burst rate peak was insensitive to prior heat treatment. An energy per burst maximum was observed at 0.2 percent plastic strain, the magnitude of which was moderately sensitive to heat treatment. The Kaiser effect is observed in the material studied. Emission during compression was similar to that observed in tension. The acoustic emission observed is attributed to dislocation motion, as proposed by James and Carpenter for LiF, NaCl, and Zn. Metallographic studies of the beryllium at various strains have ruled out microcracking and twin formation as major contributors to the acoustic emission

  18. Acoustic force spectroscopy

    NARCIS (Netherlands)

    Sitters, G.; Kamsma, D.; Thalhammer, G.; Ritsch-Marte, M.; Peterman, E.J.G.; Wuite, G.J.L.


    Force spectroscopy has become an indispensable tool to unravel the structural and mechanochemical properties of biomolecules. Here we extend the force spectroscopy toolbox with an acoustic manipulation device that can exert forces from subpiconewtons to hundreds of piconewtons on thousands of

  19. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... 770-205-8211 ANAwareness Week 2018 – read more Click to learn more... LOGIN CALENDAR ... DONATE Ways to Give Legacy Society Team ANA © 2018 Acoustic Neuroma Association • 600 Peachtree Parkway • Suite 108 • ...

  20. Diagnosing Acoustic Neuroma (United States)

    ... triggered by a patient’s symptoms. The most common presenting feature of acoustic neuromas, occurring in 90% of patients, is unilateral hearing loss. When "pure tone audiometry" is used, the most common finding is high frequency hearing loss. The hearing loss ...

  1. Select Internet Resources on Acoustics

    Directory of Open Access Journals (Sweden)

    Angela R. Davis


    Full Text Available Merriam-Webster (2016 defines acoustics as, “a science that deals with the production, control, transmission, reception, and effects of sounds.” According to Rossing (2014, the study of acoustics began in ancient Greece with Pythagoras’ study of vibrating strings on musical instruments. Since those early beginnings, famous scientists including Rayleigh, Alexander Graham Bell, and Thomas Edison, have helped expand the field of acoustics to include architectural, physical, engineering, structural, underwater, physiological and psychological, musical acoustics, and speech. Acoustics is a highly interdisciplinary field and researchers may need resources from physics, medicine, and engineering to understand all aspects of their research.

  2. Asymmetric acoustic transmission in graded beam

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Li, E-mail: [School of Mechanical Engineering and State Key laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Wu, Jiu Hui, E-mail: [School of Mechanical Engineering and State Key laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Guan, Dong; Lu, Kuan [School of Mechanical Engineering and State Key laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Gao, Nansha [School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China); Songhua, Cao [School of Mechanical Engineering and State Key laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China)


    We demonstrate the dynamic effective material parameters and vibration performance of a graded beam. The structure of the beam was composed of several unit cells with different fill factors. The dispersion relations and energy band structures of each unit cell were calculated using the finite element method (FEM). The dynamic effective material parameters in each unit cell of the graded beam were determined by the dispersion relations and energy band structures. Longitudinal wave propagation was investigated using a numerical method and FEM. The results show that the graded beam allows asymmetric acoustic transmission over a wide range of frequencies.

  3. A linearized dispersion relation for orthorhombic pseudo-acoustic modeling

    KAUST Repository

    Song, Xiaolei


    Wavefield extrapolation in acoustic orthorhombic anisotropic media suffers from wave-mode coupling and stability limitations in the parameter range. We introduce a linearized form of the dispersion relation for acoustic orthorhombic media to model acoustic wavefields. We apply the lowrank approximation approach to handle the corresponding space-wavenumber mixed-domain operator. Numerical experiments show that the proposed wavefield extrapolator is accurate and practically free of dispersions. Further, there is no coupling of qSv and qP waves, because we use the analytical dispersion relation. No constraints on Thomsen\\'s parameters are required for stability. The linearized expression may provide useful application for parameter estimation in orthorhombic media.

  4. Exploiting Acoustic Similarity of Propagating Paths for Audio Signal Separation

    Directory of Open Access Journals (Sweden)

    Yin Bin


    Full Text Available Blind signal separation can easily find its position in audio applications where mutually independent sources need to be separated from their microphone mixtures while both room acoustics and sources are unknown. However, the conventional separation algorithms can hardly be implemented in real time due to the high computational complexity. The computational load is mainly caused by either direct or indirect estimation of thousands of acoustic parameters. Aiming at the complexity reduction, in this paper, the acoustic paths are investigated through an acoustic similarity index (ASI. Then a new mixing model is proposed. With closely spaced microphones (5–10 cm apart, the model relieves the computational load of the separation algorithm by reducing the number and length of the filters to be adjusted. To cope with real situations, a blind audio signal separation algorithm (BLASS is developed on the proposed model. BLASS only uses the second-order statistics (SOS and performs efficiently in frequency domain.

  5. Acoustics in Halls for Speech and Music (United States)

    Gade, Anders C.

    This chapter deals specifically with concepts, tools, and architectural variables of importance when designing auditoria for speech and music. The focus will be on cultivating the useful components of the sound in the room rather than on avoiding noise from outside or from installations, which is dealt with in Chap. 11. The chapter starts by presenting the subjective aspects of the room acoustic experience according to consensus at the time of writing. Then follows a description of their objective counterparts, the objective room acoustic parameters, among which the classical reverberation time measure is only one of many, but still of fundamental value. After explanations on how these parameters can be measured and predicted during the design phase, the remainder of the chapter deals with how the acoustic properties can be controlled by the architectural design of auditoria. This is done by presenting the influence of individual design elements as well as brief descriptions of halls designed for specific purposes, such as drama, opera, and symphonic concerts. Finally, some important aspects of loudspeaker installations in auditoria are briefly touched upon.

  6. An acoustic prion assay

    Directory of Open Access Journals (Sweden)

    Gordon Hayward


    Full Text Available An acoustic prion assay has been demonstrated for sheep brain samples. Only five false positives and no false negatives were observed in a test of 45 positive and 45 negative samples. The acoustic prion sensor was constructed using a thickness shear mode quartz resonator coated with a covalently bound recombinant prion protein. The characteristic indicator of a scrapie infected sheep brain sample was an observed shoulder in the frequency decrease in response to a sample.The response of the sensor aligns with a conformational shift in the surface protein and with the propagation mechanism of the disease. This alignment is evident in the response timing and shape, dependence on concentration, cross species behaviour and impact of blood plasma. This alignment is far from sufficient to prove the mechanism of the sensor but it does offer the possibility of a rapid and inexpensive additional tool to explore prion disease. Keywords: Prions, Thickness shear mode quartz sensor

  7. Suppression through acoustics (United States)

    Beck, Kevin D.; Short, Kenneth R.; VanMeenen, Kirsten M.; Servatius, Richard J.


    This paper reviews research conducted by our laboratory exploring the possible use of acoustical stimuli as a tool for influencing behavior. Over the course of several programs, different types of acoustic stimuli have been evaluated for their effectiveness in disrupting targeting, balance, and high-order cognitive processes in both humans and animals. Escape responses are of particular use in this regard. An escape response serves not only as an objective measure of aversion, but as a potential substitute for ongoing behavior. We have also assessed whether the level of performance changes if the individual does not perform an escape response. In general these studies have both suggested certain types of sounds are more aversive or distracting than others. Although the laboratory development of additional stimuli needs to continue, we are taking the next step by testing some of the more effective stimuli in more applied experimental scenarios including those involving group dynamics.

  8. Acoustic classification of dwellings

    DEFF Research Database (Denmark)

    Berardi, Umberto; Rasmussen, Birgit


    Schemes for the classification of dwellings according to different building performances have been proposed in the last years worldwide. The general idea behind these schemes relates to the positive impact a higher label, and thus a better performance, should have. In particular, focusing on sound...... insulation performance, national schemes for sound classification of dwellings have been developed in several European countries. These schemes define acoustic classes according to different levels of sound insulation. Due to the lack of coordination among countries, a significant diversity in terms...... of descriptors, number of classes, and class intervals occurred between national schemes. However, a proposal “acoustic classification scheme for dwellings” has been developed recently in the European COST Action TU0901 with 32 member countries. This proposal has been accepted as an ISO work item. This paper...

  9. A Martian acoustic anemometer. (United States)

    Banfield, Don; Schindel, David W; Tarr, Steve; Dissly, Richard W


    An acoustic anemometer for use on Mars has been developed. To understand the processes that control the interaction between surface and atmosphere on Mars, not only the mean winds, but also the turbulent boundary layer, the fluxes of momentum, heat and molecular constituents between surface and atmosphere must be measured. Terrestrially this is done with acoustic anemometers, but the low density atmosphere on Mars makes it challenging to adapt such an instrument for use on Mars. This has been achieved using capacitive transducers and pulse compression, and was successfully demonstrated on a stratospheric balloon (simulating the Martian environment) and in a dedicated Mars Wind Tunnel facility. This instrument achieves a measurement accuracy of ∼5 cm/s with an update rate of >20 Hz under Martian conditions.

  10. A Sound Working Environment : Optimizing the Acoustic Properties of Open Plan Workspaces Using Parametric Models

    NARCIS (Netherlands)

    Vlaun, N.J.V.; van Waart, A.; Tenpierik, M.J.; Turrin, M.; Attar, Ramtin; Chronis, Angelos; Hanna, Sean; Turrin, Michela


    Optimizing the acoustic environment of open plan offices is a complex task due to the large number of design parameters that must be considered. In current practice, acoustic analysis – even in a simplified form – is not naturally integrated into the design process of office spaces. Applying digital

  11. Localizing Near and Far Field Acoustic Sources with Distributed Microhone Arrays

    DEFF Research Database (Denmark)

    Hansen, Martin Weiss; Jensen, Jesper Rindom; Christensen, Mads Græsbøll


    of an acoustic source using a recently proposed method, based on a 4D parameter space defined by the 3D location of the source, and the TDOA. The performance of the proposed method for acoustic source localization is compared to generalized cross-correlation with phase transform (GCC-PHAT), and a method based...

  12. Pitch and TDOA-Based Localization of Acoustic Sources with Distributed Arrays

    DEFF Research Database (Denmark)

    Hansen, Martin Weiss; Jensen, Jesper Rindom; Christensen, Mads Græsbøll


    In this paper, a method for acoustic source localization using distributed microphone arrays based on time-differences of arrival (TDOAs) is presented. The TDOAs are used to estimate the location of an acoustic source using a recently proposed method, based on a 4D parameter space defined by the 3D...

  13. Homogenization scheme for acoustic metamaterials

    KAUST Repository

    Yang, Min


    We present a homogenization scheme for acoustic metamaterials that is based on reproducing the lowest orders of scattering amplitudes from a finite volume of metamaterials. This approach is noted to differ significantly from that of coherent potential approximation, which is based on adjusting the effective-medium parameters to minimize scatterings in the long-wavelength limit. With the aid of metamaterials’ eigenstates, the effective parameters, such as mass density and elastic modulus can be obtained by matching the surface responses of a metamaterial\\'s structural unit cell with a piece of homogenized material. From the Green\\'s theorem applied to the exterior domain problem, matching the surface responses is noted to be the same as reproducing the scattering amplitudes. We verify our scheme by applying it to three different examples: a layered lattice, a two-dimensional hexagonal lattice, and a decorated-membrane system. It is shown that the predicted characteristics and wave fields agree almost exactly with numerical simulations and experiments and the scheme\\'s validity is constrained by the number of dominant surface multipoles instead of the usual long-wavelength assumption. In particular, the validity extends to the full band in one dimension and to regimes near the boundaries of the Brillouin zone in two dimensions.

  14. Osmotic Acoustic Source (United States)


    one side of the radiating surface that is on the order of one meter the length and width of the plane of the enclosure. The walls of the enclosure...DEPARTMENT OF THE NAVY OFFICE OF COUNSEL NAVAL UNDERSEA WARFARE CENTER DIVISION 1176 HOWELL STREET NEWPORT Rl 02841-1708...across a semi-permeable membrane. (2) Description of the Prior Art [0004] Low frequency acoustic sources such as in a range of one to ten Hertz are

  15. The acoustics of snoring. (United States)

    Pevernagie, Dirk; Aarts, Ronald M; De Meyer, Micheline


    Snoring is a prevalent disorder affecting 20-40% of the general population. The mechanism of snoring is vibration of anatomical structures in the pharyngeal airway. Flutter of the soft palate accounts for the harsh aspect of the snoring sound. Natural or drug-induced sleep is required for its appearance. Snoring is subject to many influences such as body position, sleep stage, route of breathing and the presence or absence of sleep-disordered breathing. Its presentation may be variable within or between nights. While snoring is generally perceived as a social nuisance, rating of its noisiness is subjective and, therefore, inconsistent. Objective assessment of snoring is important to evaluate the effect of treatment interventions. Moreover, snoring carries information relating to the site and degree of obstruction of the upper airway. If evidence for monolevel snoring at the site of the soft palate is provided, the patient may benefit from palatal surgery. These considerations have inspired researchers to scrutinize the acoustic characteristics of snoring events. Similarly to speech, snoring is produced in the vocal tract. Because of this analogy, existing techniques for speech analysis have been applied to evaluate snoring sounds. It appears that the pitch of the snoring sound is in the low-frequency range (noise-like', and has scattered energy content in the higher spectral sub-bands (>500 Hz). To evaluate acoustic properties of snoring, sleep nasendoscopy is often performed. Recent evidence suggests that the acoustic quality of snoring is markedly different in drug-induced sleep as compared with natural sleep. Most often, palatal surgery alters sound characteristics of snoring, but is no cure for this disorder. It is uncertain whether the perceived improvement after palatal surgery, as judged by the bed partner, is due to an altered sound spectrum. Whether some acoustic aspects of snoring, such as changes in pitch, have predictive value for the presence of

  16. Deep Water Ocean Acoustics (United States)


    to a maximum of 143.1°. The back- azimuth as a function of frequency does show coherent behavior, at least within the observed 0.3° small time...level vs. Phone Number (similar to depth) as function of time as the source moved from 10-20 km away. The structure of this interference pattern...dimensional long-range acoustic propagation for improved localisation methods” Dr. Heaney visited Emanuel Coelho at CMRE in La Spezia Italy and

  17. Acoustic emission source modeling

    Directory of Open Access Journals (Sweden)

    Hora P.


    Full Text Available The paper deals with the acoustic emission (AE source modeling by means of FEM system COMSOL Multiphysics. The following types of sources are used: the spatially concentrated force and the double forces (dipole. The pulse excitation is studied in both cases. As a material is used steel. The computed displacements are compared with the exact analytical solution of point sources under consideration.

  18. Elastic versus acoustic inversion for marine surveys

    KAUST Repository

    Mora, Peter


    Full Wavefield Inversion (FWI) is a powerful and elegant approach for seismic imaging that is on the way to becoming the method of choice when processing exploration or global seismic data. In the case of processing marine survey data, one may be tempted to assume acoustic FWI is sufficient given that only pressure waves exist in the water layer. In this paper, we pose the question as to whether or not in theory – at least for a hard water bottom case – it should be possible to resolve the shear modulus or S-wave velocity in a marine setting using large offset data. We therefore conduct numerical experiments with idealized marine data calculated with the elastic wave equation. We study two cases, FWI of data due to a diffractor model, and FWI of data due to a fault model. We find that at least in idealized situation, elastic FWI of hard waterbottom data is capable of resolving between the two Lamé parameters λ and μ. Another numerical experiment with a soft waterbottom layer gives the same result. In contrast, acoustic FWI of the synthetic elastic data results in a single image of the first Lamé parameter λ which contains severe artefacts for diffraction data and noticable artefacts for layer reflection data. Based on these results, it would appear that at least, inversions of large offset marine data should be fully elastic rather than acoustic unless it has been demonstrated that for the specific case in question (offsets, model and water depth, practical issues such as soft sediment attenuation of shear waves or computational time), that an acoustic only inversion provides a reasonably good quality of image comparable to that of an elastic inversion. Further research with real data is required to determine the degree to which practical issues such as shear wave attenuation in soft sediments may affect this result.

  19. Broadband source localization using horizontal-beam acoustic intensity striations. (United States)

    Turgut, Altan; Orr, Marshall; Rouseff, Daniel


    Waveguide invariant theory is applied to horizontal line array (HLA) beamformer output to localize moving broadband noise sources from measured acoustic intensity striation patterns. Acoustic signals emitted by ships of opportunity (merchant ships) were simultaneously recorded on a HLA and three hydrophones separated by 10 km during the RAGS03 (relationship between array gain and shelf-break fluid processes) experiment. Hough transforms are used to estimate both the waveguide invariant parameter "beta" and the ratio of source range at the closest point of approach to source speed from the observed striation patterns. Broadband (50-150-Hz) acoustic data-sets are used to demonstrate source localization capability as well as inversion capability of waveguide invariant parameter beta. Special attention is paid to bathymetric variability since the acoustic intensity striation patterns seem to be influenced by range-dependent bathymetry of the experimental area. The Hough transform method is also applied to the HLA beam-time record data and to the acoustic intensity data from three distant receivers to validate the estimation results from HLA beamformer output. Good agreement of the results from all three approaches suggests the feasibility of locating broadband noise sources and estimating waveguide invariant parameter beta in shallow waters.

  20. Acoustically enhanced heat transport

    Energy Technology Data Exchange (ETDEWEB)

    Ang, Kar M.; Hung, Yew Mun; Tan, Ming K., E-mail: [School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor (Malaysia); Yeo, Leslie Y. [Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC 3001 (Australia); Friend, James R. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92093 (United States)


    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ∼ 10{sup 6} Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξ{sub s} ∼ 10{sup −9} m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξ{sub s} ∼ 10{sup −8} m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10{sup −8} m with 10{sup 6} Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  1. Acoustically enhanced heat transport (United States)

    Ang, Kar M.; Yeo, Leslie Y.; Friend, James R.; Hung, Yew Mun; Tan, Ming K.


    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ˜ 106 Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξs ˜ 10-9 m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξs ˜ 10-8 m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10-8 m with 106 Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  2. Ocean Acoustic Propagation and Coherence Studies (United States)


    Propagation variability is an inescapable complicating factor for both active and passive sonar systems, and for underwater acoustic communications...framework, to be exploited in the use of underwater sound in shallow water. Our knowledge of acoustic field patterns in shallow water, building block...Ocean Acoustics and Signals Laboratory . Five acoustic studies are planned: 1. Canyon and slope acoustics : Identify purely geometrically controlled

  3. Modeling ground vehicle acoustic signatures for analysis and synthesis

    International Nuclear Information System (INIS)

    Haschke, G.; Stanfield, R.


    Security and weapon systems use acoustic sensor signals to classify and identify moving ground vehicles. Developing robust signal processing algorithms for this is expensive, particularly in presence of acoustic clutter or countermeasures. This paper proposes a parametric ground vehicle acoustic signature model to aid the system designer in understanding which signature features are important, developing corresponding feature extraction algorithms and generating low-cost, high-fidelity synthetic signatures for testing. The authors have proposed computer-generated acoustic signatures of armored, tracked ground vehicles to deceive acoustic-sensored smart munitions. They have developed quantitative measures of how accurately a synthetic acoustic signature matches those produced by actual vehicles. This paper describes parameters of the model used to generate these synthetic signatures and suggests methods for extracting these parameters from signatures of valid vehicle encounters. The model incorporates wide-bandwidth and narrow- bandwidth components that are modulated in a pseudo-random fashion to mimic the time dynamics of valid vehicle signatures. Narrow- bandwidth feature extraction techniques estimate frequency, amplitude and phase information contained in a single set of narrow frequency- band harmonics. Wide-bandwidth feature extraction techniques estimate parameters of a correlated-noise-floor model. Finally, the authors propose a method of modeling the time dynamics of the harmonic amplitudes as a means adding necessary time-varying features to the narrow-bandwidth signal components. The authors present results of applying this modeling technique to acoustic signatures recorded during encounters with one armored, tracked vehicle. Similar modeling techniques can be applied to security systems

  4. Acoustic characteristics of the flow over different shapes of nozzle chevrons,

    Directory of Open Access Journals (Sweden)

    Daniel CRUNTEANU


    Full Text Available The objective of this paper is to present a comparison between different types of chevrons and their influence on the acoustic power level radiated by the flow over them. The comparison was performed using a two-dimensional simulation of the flow over four different shapes of chevrons resulting propagation of the acoustic waves for each shape. Acoustic characteristics were revealed studying the main flow parameters (pressure, velocity, kinetic energy in order to be able to discover the most efficient shape of chevron regarding the acoustic power level emitted.

  5. Nondestructive online testing method for friction stir welding using acoustic emission (United States)

    Levikhina, Anastasiya


    The paper reviews the possibility of applying the method of acoustic emission for online monitoring of the friction stir welding process. It is shown that acoustic emission allows the detection of weld defects and their location in real time. The energy of an acoustic signal and the median frequency are suggested to be used as informative parameters. The method of calculating the median frequency with the use of a short time Fourier transform is applied for the identification of correlations between the defective weld structure and properties of the acoustic emission signals received during welding.

  6. A new type of artificial structure to achieve broadband omnidirectional acoustic absorption

    Directory of Open Access Journals (Sweden)

    Li-Yang Zheng


    Full Text Available We present a design for a two-dimensional omnidirectional acoustic absorber that can achieve 98.6% absorption of acoustic waves in water, forming an effective acoustic black hole. This artificial black hole consists of an absorptive core coated with layers of periodically distributed polymer cylinders embedded in water. Effective medium theory describes the response of the coating layers to the acoustic waves. The polymer parameters can be adjusted, allowing practical fabrication of the absorber. Since the proposed structure does not rely on resonances, it is applicable to broad bandwidths. The design might be extended to a variety of applications.

  7. A new type of artificial structure to achieve broadband omnidirectional acoustic absorption

    KAUST Repository

    Zheng, L.-Y.


    We present a design for a two-dimensional omnidirectional acoustic absorber that can achieve 98.6% absorption of acoustic waves in water, forming an effective acoustic black hole. This artificial black hole consists of an absorptive core coated with layers of periodically distributed polymer cylinders embedded in water. Effective medium theory describes the response of the coating layers to the acoustic waves. The polymer parameters can be adjusted, allowing practical fabrication of the absorber. Since the proposed structure does not rely on resonances, it is applicable to broad bandwidths. The design might be extended to a variety of applications.

  8. Acoustic and Vibration Control for an Underwater Structure under Mechanical Excitation

    Directory of Open Access Journals (Sweden)

    Shi-Jian Zhu


    Full Text Available Acoustic and vibration control for an underwater structure under mechanical excitation has been investigated by using negative feedback control algorithm. The underwater structure is modeled with cylindrical shells, conical shells, and circular bulkheads, of which the motion equations are built with the variational approach, respectively. Acoustic property is analyzed by the Helmholtz integration formulation with boundary element method. Based on negative feedback control algorithm, a control loop with a coupling use of piezoelectric sensor and actuator is built, and accordingly some numerical examples are carried out on active control of structural vibration and acoustic response. Effects of geometrical and material parameters on acoustic and vibration properties are investigated and discussed.

  9. Fundamentals of Shallow Water Acoustics

    CERN Document Server

    Katsnelson, Boris; Lynch, James


    Shallow water acoustics (SWA), the study of how low and medium frequency sound propagates and scatters on the continental shelves of the world's oceans, has both technical interest and a large number of practical applications. Technically, shallow water poses an interesting medium for the study of acoustic scattering, inverse theory, and propagation physics in a complicated oceanic waveguide. Practically, shallow water acoustics has interest for geophysical exploration, marine mammal studies, and naval applications. Additionally, one notes the very interdisciplinary nature of shallow water acoustics, including acoustical physics, physical oceanography, marine geology, and marine biology. In this specialized volume, the authors, all of whom have extensive at-sea experience in U.S. and Russian research efforts, have tried to summarize the main experimental, theoretical, and computational results in shallow water acoustics, with an emphasis on providing physical insight into the topics presented.

  10. High-Frequency Seafloor Acoustics

    CERN Document Server

    Jackson, Darrell R


    High-Frequency Seafloor Acoustics is the first book in a new series sponsored by the Office of Naval Research on the latest research in underwater acoustics. This exciting new title provides ready access to experimental data, theory, and models relevant to high-frequency seafloor acoustics and will be of interest to sonar engineers and researchers working in underwater acoustics. The physical characteristics of the seafloor affecting acoustic propagation and scattering are covered, including physical and geoacoustic properties and surface roughness. Current theories for acoustic propagation in sediments are presented along with corresponding models for reflection, scattering, and seafloor penetration. The main text is backed up by an extensive bibliography and technical appendices.

  11. Acoustic Imaging of Combustion Noise (United States)

    Ramohalli, K. N.; Seshan, P. K.


    Elliposidal acoustic mirror used to measure sound emitted at discrete points in burning turbulent jets. Mirror deemphasizes sources close to target source and excludes sources far from target. At acoustic frequency of 20 kHz, mirror resolves sound from region 1.25 cm wide. Currently used by NASA for research on jet flames. Produces clearly identifiable and measurable variation of acoustic spectral intensities along length of flame. Utilized in variety of monitoring or control systems involving flames or other reacting flows.

  12. Tunable coupled surface acoustic cavities (United States)

    de Lima, M. M.; Santos, P. V.; Kosevich, Yu. A.; Cantarero, A.


    We demonstrate the electric tuning of the acoustic field in acoustic microcavities (MCs) defined by a periodic arrangement of metal stripes within a surface acoustic delay line on LiNbO3 substrate. Interferometric measurements show the enhancement of the acoustic field distribution within a single MC, the presence of a "bonding" and "anti-bonding" modes for two strongly coupled MCs, as well as the positive dispersion of the "mini-bands" formed by five coupled MCs. The frequency and amplitude of the resonances can be controlled by the potential applied to the metal stripes.

  13. Sinusoidal Representation of Acoustic Signals (United States)

    Honda, Masaaki

    Sinusoidal representation of acoustic signals has been an important tool in speech and music processing like signal analysis, synthesis and time scale or pitch modifications. It can be applicable to arbitrary signals, which is an important advantage over other signal representations like physical modeling of acoustic signals. In sinusoidal representation, acoustic signals are composed as sums of sinusoid (sine wave) with different amplitudes, frequencies and phases, which is based on the timedependent short-time Fourier transform (STFT). This article describes the principles of acoustic signal analysis/synthesis based on a sinusoid representation with focus on sine waves with rapidly varying frequency.

  14. Acoustic Communications Measurement Systems (ACOMMS) (United States)

    Federal Laboratory Consortium — FUNCTION: Design and develop adaptive signal processing techniques to improve underwater acoustic communications and networking. Phase coherent and incoherent signal...

  15. NDE Acoustic Microscopy Research Laboratory (United States)

    Federal Laboratory Consortium — The purpose is to develop advanced, more effective high-resolution micro-NDE materials characterization methods using scanning acoustic microscopy. The laboratory's...

  16. Combined Environment Acoustic Chamber (CEAC) (United States)

    Federal Laboratory Consortium — Purpose: The CEAC imposes combined acoustic, thermal and mechanical loads on aerospace structures. The CEAC is employed to measure structural response and determine...

  17. Acoustic invisibility cloaks of arbitrary shapes for complex background media (United States)

    Zhu, Jian; Chen, Tianning; Liang, Qingxuan; Wang, Xiaopeng; Xiong, Jie; Jiang, Ping


    We report on the theoretical investigation of the acoustic cloaks working in complex background media in this paper. The constitutive parameters of arbitrary-shape cloaks are derived based on the transformation acoustic theory and coordinate transformation technique. The detailed analysis of boundaries conditions and potential applications of the cloaks are also presented in our work. To overcome the difficulty of achieving the materials with ideal parameters in nature, concentric alternating layered isotropic materials is adopted to approximate the required properties of the cloak. Theoretical design and excellent invisibility are demonstrated by numerical simulations. The inhomogeneous medium and arbitrary-shape acoustic cloaks grow closer to real application and may be a new hot spot in future.

  18. Acoustic transparency and slow sound using detuned acoustic resonators

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco; Bozhevolnyi, Sergey I.


    We demonstrate that the phenomenon of acoustic transparency and slowsound propagation can be realized with detuned acoustic resonators (DAR), mimicking thereby the effect of electromagnetically induced transparency (EIT) in atomic physics. Sound propagation in a pipe with a series of side...

  19. Double negative acoustic metastructure for attenuation of acoustic emissions (United States)

    Kumar, Sanjay; Bhushan, Pulak; Prakash, Om; Bhattacharya, Shantanu


    Acoustic metamaterials hold great potential for attenuation of low frequency acoustic emissions. However, a fundamental challenge is achieving high transmission loss over a broad frequency range. In this work, we report a double negative acoustic metastructure for absorption of low frequency acoustic emissions in an aircraft. This is achieved by utilizing a periodic array of hexagonal cells interconnected with a neck and mounted with an elastic membrane on both ends. An average transmission loss of 56 dB under 500 Hz and an overall absorption of over 48% have been realized experimentally. The negative mass density is derived from the dipolar resonances created as a result of the in-phase movement of the membranes. Further, the negative bulk modulus is ascribed to the combined effect of out-of-phase acceleration of the membranes and the Helmholtz resonator. The proposed metastructure enables absorption of low frequency acoustic emissions with improved functionality that is highly desirable for varied applications.

  20. Nanofibrous Resonant Membrane for Acoustic Applications

    Directory of Open Access Journals (Sweden)

    K. Kalinová


    Full Text Available Because the absorption of lower-frequency sound is problematic with fibrous material made up of coarser fibers, highly efficient sound absorption materials must be developed. The focus of this paper is on the development of a new material with high acoustic absorption characteristics. For low-frequency absorption, structures based upon the resonance principle of nanofibrous layers are employed in which the resonance of some elements allows acoustic energy to be converted into thermal energy. A nanofibrous membrane was produced by an electrostatic spinning process from an aqueous solution of polyvinyl alcohol and the acoustic characteristics of the material measured. The resonant frequency prediction for the nanofibrous membrane is based on research into its production parameters. The distance between electrodes during the electrostatic spinning process determines the average diameter of the nanofibers, and the outlet velocity of the material determines its area density. The average diameter of nanofibers was measured using the Lucia software package directly from an electron microscope image. The resonant frequency of nanofibrous membranes was determined from the sound absorption coefficient and transmission loss measurement.

  1. Engineering acoustic lenses with help from evolution (United States)

    Ha˚Kansson, Andreas; Sánchez-Dehesa, José; Sánchis, Lorenzo


    Optimization engineering through evolutionary algorithms have proven to be very efficient, especially in hard problems containing a large set of optimization parameters. Like evolution this family of algorithms is able to tackle enormous complex problems with fairly simple means. Here, a simple genetic algorithm [J. H. Holland, Adaptation in Natural and Artificial Systems (Univ. of Michigan, Ann Arbor, 1975)] is used in conjunction with the multiple scattering theory [L. Sánchis et al., Phys. Rev. B 67, 035422 (2003)] to fabricate a new generation of acoustic devices based on a discrete number of cylindrical scatterers. In particular, acoustic lenses [F. Cervera et al., Phys. Rev. Lett. 88, 023902 (2002)] with flat surfaces have been designed to focus the sound in a fixed focal point for one or multiple frequencies. Each scatterer is carefully placed using the optimization method within the preset boundary conditions, to maximize the pressure contribution in the chosen focal spot. With this method acoustic lenses with very low f-numbers of the order 0.3 and with amplifications over 12 dB have been estimated using a reduced number of scatterers (~60). Preliminary results obtained from the experimental realization of the designed devices confirm our predictions.

  2. Acoustic Mechanical Feedthroughs (United States)

    Sherrit, Stewart; Walkemeyer, Phillip; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea


    Electromagnetic motors can have problems when operating in extreme environments. In addition, if one needs to do mechanical work outside a structure, electrical feedthroughs are required to transport the electric power to drive the motor. In this paper, we present designs for driving rotary and linear motors by pumping stress waves across a structure or barrier. We accomplish this by designing a piezoelectric actuator on one side of the structure and a resonance structure that is matched to the piezoelectric resonance of the actuator on the other side. Typically, piezoelectric motors can be designed with high torques and lower speeds without the need for gears. One can also use other actuation materials such as electrostrictive, or magnetostrictive materials in a benign environment and transmit the power in acoustic form as a stress wave and actuate mechanisms that are external to the benign environment. This technology removes the need to perforate a structure and allows work to be done directly on the other side of a structure without the use of electrical feedthroughs, which can weaken the structure, pipe, or vessel. Acoustic energy is pumped as a stress wave at a set frequency or range of frequencies to produce rotary or linear motion in a structure. This method of transferring useful mechanical work across solid barriers by pumping acoustic energy through a resonant structure features the ability to transfer work (rotary or linear motion) across pressure or thermal barriers, or in a sterile environment, without generating contaminants. Reflectors in the wall of barriers can be designed to enhance the efficiency of the energy/power transmission. The method features the ability to produce a bi-directional driving mechanism using higher-mode resonances. There are a variety of applications where the presence of a motor is complicated by thermal or chemical environments that would be hostile to the motor components and reduce life and, in some instances, not be

  3. A unidirectional acoustic cloak for multilayered background media with homogeneous metamaterials (United States)

    Zhu, Jian; Chen, Tianning; Liang, Qingxuan; Wang, Xiaopeng; Xiong, Jie; Jiang, Ping


    The acoustic cloak, which can make an object hard to detect acoustically in a homogeneous background, has attracted great attention from researchers in recent years. The inhomogeneous background media were considered in this paper. The relative constitutive parameters were derived for acoustic cloaks working in multilayered media. And a unidirectional acoustic cloak for layered background media was proposed, designed and implemented successfully in a wide frequency range. In water and NaCl aqueous solution, the acoustic cloak was designed and realized with homogeneous metamaterials which were composed of steel and porous materials. The effective parameters of the unit cells of the cloak were determined by using the effective medium theory. Numerical results demonstrated excellent cloaking performance and showed that such a device could be physically realized with natural materials which will greatly promote the real applications of an invisibility cloak in inhomogeneous backgrounds.

  4. Acoustics of the Great Hall of the Moscow State Conservatory after reconstruction in 2010-2011 (United States)

    Kanev, N. G.; Livshits, A. Ya.; Möller, H.


    The Great Hall of the Moscow State Conservatory was built in the early 20th century. For more than 100 years of service, it had a high acoustic reputation both among musicians and audience. By the beginning of the 21st century, the hall was in nearly critical condition. Thus, major renovation was needed. In terms of architectural acoustics, the main task was to keep the good acoustics of the hall. This paper presents the results of acoustic parameter measurements of the hall after Reconstruction in 2010-2011. The parameters of the hall measured before and after reconstruction are also compared. The comparative acoustic characteristics between the Great Hall and world leading concert halls are given.

  5. Thermoviscous effects on acoustic scattering by thermoelastic solid cylinders and spheres

    International Nuclear Information System (INIS)

    Lin, W.H.; Raptis, A.


    This paper presents analytic solutions and numerical results of the scattering of plane sound waves from a thermoelastic circular cylinder and from a thermoelastic sphere in an infinite, thermoviscous fluid medium. The thermoelastic properties of the cylinder and the sphere and the viscosity and thermal conductivity of the surrounding fluid are taken into consideration in the solutions of the acoustic-scattering problems. We started with examining the acoustic field equations in thermoviscous fluids and in thermoelastic solids from the standpoints of continuum mechanics and thermodynamics, and then presented the normal-mode solutions to, and numerical examples of, the acoustic scattering by a single cylinder and a sphere. The acoustic parameters of interest are the farfield scattering pattern, the acoustic-radiation force, and the absorption and scattering cross sections. These parameters were first derived in closed forms and then evaluated numerically for a given set of material properties

  6. Algorithms and interface for ocean acoustic ray-tracing (Developed in MATLAB)

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; Rao, M.M.M.; Prakash, S.S.; Chandramouli, P.; Murthy, K.S.R.

    for Munk's canonical sound speed profile off Visakhapatnam waters are detailed as a case study. The simulated acoustic ray parameters of canonical ocean, off Visakhapatnam continental slope regions, reveals that the even very flat angle rays can scan entire...

  7. Surface Acoustic Wave Devices

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard

    application is modulation of optical waves in waveguides. This presentation elaborates on how a SAW is generated by interdigital transducers using a 2D model of a piezoelectric, inhomogeneous material implemented in the high-level programming language Comsol Multiphysics. The SAW is send through a model......The work of this project is concerned with the simulation of surface acoustic waves (SAW) and topology optimization of SAW devices. SAWs are elastic vibrations that propagate along a material surface and are extensively used in electromechanical filters and resonators in telecommunication. A new...

  8. Acoustic Properties of Cellulose (United States)

    Trematerra, Amelia; Lombardi, Ilaria


    Cellulose is the oldest material for thermal insulation in construction field. Thomas Jefferson was the first architect that used the cellulose in his project of the Monticello house (1800). But only after 1945 that the cellulose from newsprint was used across America and northern Europe. In the 70s with the energy crisis it Austria, Czech Republic, Switzerland and Germany began the production of cellulose derived from paper newspapers. It used for both winter and summer thermal insulation, while respecting the environment. In this paper are reported acoustic measurements carried out with the tube of Kundt, with the cellulose melted and with glue with different thicknesses.

  9. Lecture Notes On Acoustics

    International Nuclear Information System (INIS)

    Kim, Yang Han


    This book mentions string vibration and wave, one-dimension wave and wave equation, characteristic impedance, governing equation of string, and wave energy from string, wave equation of wave and basic physical quantity like one-dimension wave equation, sound unit, sound intensity and energy, sound movement in a surface of discontinuity with transmission loss of sound by partition, and Snell's law, radiation, scatter and diffraction and sound in closed space with Sabine's theory, sound characteristic of closed space and duct acoustics.

  10. Quantum positron acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Metref, Hassina; Tribeche, Mouloud [Plasma Physics Group (PPG), Theoretical Physics Laboratory (TPL), Faculty of Physics, University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria)


    Nonlinear quantum positron-acoustic (QPA) waves are investigated for the first time, within the theoretical framework of the quantum hydrodynamic model. In the small but finite amplitude limit, both deformed Korteweg-de Vries and generalized Korteweg-de Vries equations governing, respectively, the dynamics of QPA solitary waves and double-layers are derived. Moreover, a full finite amplitude analysis is undertaken, and a numerical integration of the obtained highly nonlinear equations is carried out. The results complement our previously published results on this problem.

  11. Dynamic acoustic tractor beams

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F. G., E-mail: [Chevron, Area 52 Technology – ETC, Santa Fe, New Mexico 87508 (United States)


    Pulling a sphere and vibrating it around an equilibrium position by amplitude-modulation in the near-field of a single finite circular piston transducer is theoretically demonstrated. Conditions are found where a fluid hexane sphere (with arbitrary radius) chosen as an example, centered on the axis of progressive propagating waves and submerged in non-viscous water, experiences an attractive (steady) force pulling it towards the transducer, as well as an oscillatory force forcing it to vibrate back-and-forth. Numerical predictions for the dynamic force illustrate the theory and suggest an innovative method in designing dynamic acoustical tractor beams.

  12. Fractal Model for Acoustic Absorbing of Porous Fibrous Metal Materials

    Directory of Open Access Journals (Sweden)

    Weihua Chen


    Full Text Available To investigate the changing rules between sound absorbing performance and geometrical parameters of porous fibrous metal materials (PFMMs, this paper presents a fractal acoustic model by incorporating the static flow resistivity based on Biot-Allard model. Static flow resistivity is essential for an accurate assessment of the acoustic performance of the PFMM. However, it is quite difficult to evaluate the static flow resistivity from the microstructure of the PFMM because of a large number of disordered pores. In order to overcome this difficulty, we firstly established a static flow resistivity formula for the PFMM based on fractal theory. Secondly, a fractal acoustic model was derived on the basis of the static flow resistivity formula. The sound absorption coefficients calculated by the presented acoustic model were validated by the values of Biot-Allard model and experimental data. Finally, the variation of the surface acoustic impedance, the complex wave number, and the sound absorption coefficient with the fractal dimensions were discussed. The research results can reveal the relationship between sound absorption and geometrical parameters and provide a basis for improving the sound absorption capability of the PFMMs.

  13. Acoustic analysis in Mudejar-Gothic churches: experimental results. (United States)

    Galindo, Miguel; Zamarreño, Teófilo; Girón, Sara


    This paper describes the preliminary results of research work in acoustics, conducted in a set of 12 Mudejar-Gothic churches in the city of Seville in the south of Spain. Despite common architectural style, the churches feature individual characteristics and have volumes ranging from 3947 to 10 708 m3. Acoustic parameters were measured in unoccupied churches according to the ISO-3382 standard. An extensive experimental study was carried out using impulse response analysis through a maximum length sequence measurement system in each church. It covered aspects such as reverberation (reverberation times, early decay times), distribution of sound levels (sound strength); early to late sound energy parameters derived from the impulse responses (center time, clarity for speech, clarity, definition, lateral energy fraction), and speech intelligibility (rapid speech transmission index), which all take both spectral and spatial distribution into account. Background noise was also measured to obtain the NR indices. The study describes the acoustic field inside each temple and establishes a discussion for each one of the acoustic descriptors mentioned by using the theoretical models available and the principles of architectural acoustics. Analysis of the quality of the spaces for music and speech is carried out according to the most widespread criteria for auditoria.

  14. Acoustic analysis in Mudejar-Gothic churches: Experimental results (United States)

    Galindo, Miguel; Zamarreño, Teófilo; Girón, Sara


    This paper describes the preliminary results of research work in acoustics, conducted in a set of 12 Mudejar-Gothic churches in the city of Seville in the south of Spain. Despite common architectural style, the churches feature individual characteristics and have volumes ranging from 3947 to 10 708 m3. Acoustic parameters were measured in unoccupied churches according to the ISO-3382 standard. An extensive experimental study was carried out using impulse response analysis through a maximum length sequence measurement system in each church. It covered aspects such as reverberation (reverberation times, early decay times), distribution of sound levels (sound strength); early to late sound energy parameters derived from the impulse responses (center time, clarity for speech, clarity, definition, lateral energy fraction), and speech intelligibility (rapid speech transmission index), which all take both spectral and spatial distribution into account. Background noise was also measured to obtain the NR indices. The study describes the acoustic field inside each temple and establishes a discussion for each one of the acoustic descriptors mentioned by using the theoretical models available and the principles of architectural acoustics. Analysis of the quality of the spaces for music and speech is carried out according to the most widespread criteria for auditoria. .

  15. Equal autophonic level curves under different room acoustics conditions

    DEFF Research Database (Denmark)

    Pelegrin Garcia, David; Mendizábal, Oier Fuentes; Brunskog, Jonas


    The indirect auditory feedback from one’s own voice arises from sound reflections at the room boundaries or from sound reinforcement systems. The relative variations of indirect auditory feedback are quantified through room acoustic parameters such as the room gain and the voice support, rather t...

  16. Geometrical optimization of an acoustic thermal flow sensor

    NARCIS (Netherlands)

    van Honschoten, J.W.; Ekkels, P.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt


    In this paper a thermal acoustic flow sensor that measures particle velocity (the ‘Microflown’) is analyzed. A model is developed that calculates the sensor sensitivity and its frequency dependent behavior, as a function of material parameters and device geometry. Consequently, improved devices

  17. Impact of lithologic heterogeneity on acoustic velocities in the Bornu ...

    African Journals Online (AJOL)

    In general, the trends of relationship amongst acoustic wave velocity, porosity, density and permeability with depth have produced positive but non-linear variation. Ideally, if the formation is isotropic and homogeneous the trends would have been linear. The non-linearity which exists amongst these parameters could be as ...

  18. Predicting room acoustical behavior with the ODEON computer model

    DEFF Research Database (Denmark)

    Naylor, Graham; Rindel, Jens Holger


    for discrepancies are discussed. These discrepancies indicate areas in which the computational model has to be improved, and highlight some shortcomings of current room acoustical survey methods. The effects of various calculation parameters (e.g., number of rays, early reflection order) are also briefly considered....

  19. Airport acoustics: Aircraft noise distribution and modelling of some ...

    African Journals Online (AJOL)

    Airport acoustics: Aircraft noise distribution and modelling of some aircraft parameters. MU Onuu, EO Obisung. Abstract. No Abstract. Nigerian Journal of Physics Vol. 17 (Supplement) 2005: pp. 177-186. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  20. Parâmetros acústicos do contraste de sonoridade das plosivas no desenvolvimento fonológico típico e no desviante Acoustic parameters of the voicing contrast of plosives in typical phonological development and phonological disorder

    Directory of Open Access Journals (Sweden)

    Roberta Michelon Melo


    (['papa], ['baba], ['tata], ['dada], ['kaka] and ['gaga] inserted into carrier phrases, we measured voice onset time, vowel length, burst amplitude, and occlusion length of each plosive. The acoustic parameters of voiceless and voiced plosives were compared between and within groups through statistical analysis. RESULTS: The subjects within typical phonological development presented significant results mainly in distinguishing the parameters voice onset time, vowel length, and occlusion of voiceless and voiced stops, which was different from what was observed for children with phonological disorder. The comparison between groups showed differences related to the production of voice onset time and the occlusion length of voiced plosives. Regarding the other analyzed parameters, the values were similar between groups, with no statistical differences. CONCLUSION: The marking of the voicing contrast of the group with phonological disorder is different from the group with typical phonological development, especially regarding the voice onset time and the occlusion length of the voiced segments.

  1. Acoustic Center or Time Origin?

    DEFF Research Database (Denmark)

    Staffeldt, Henrik


    The paper discusses the acoustic center in relation to measurements of loudspeaker polar data. Also, it presents the related concept time origin and discusses the deviation that appears between positions of the acoustic center found by wavefront based and time based measuring methods....

  2. Propagation of Ion Acoustic Perturbations

    DEFF Research Database (Denmark)

    Pécseli, Hans


    Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered.......Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered....

  3. Acoustic Emission Technology and Application

    International Nuclear Information System (INIS)

    Joo, Y. S.; Lim, S. H.; Eom, H. S.; Kim, J. H.; Jung, H. K.


    Acoustic emission is the elastic wave that is generated by the rapid release of energy from the localized sources within a material. After the observation of acoustic emission phenomenon in 1950, the research and further investigation had been performed. Acoustic emission examination becomes a rapidly matured nondestructive testing method with demonstrated capabilities for characterizing material behavior and for detecting the defect. It is of interest as a possible passive monitoring technique for detecting, locating and characterizing the defects in component and structure. Acoustic emission technology has recently strengthened the on-line monitoring application for the detection of incipient failures and the assurance of structural integrity. The field of acoustic emission testing is still growing vigorously and presents many challenges. Especially, acoustic emission has been successfully applied in the leak detection of primary pressure boundary of nuclear power plants. In this state-of-art report, the principle, measurement and field applications of acoustic emission technique is reviewed and summarized. Acoustic emission technology will contribute to the assurance of nuclear safety as the on-line monitoring technique of structural integrity of NSSS components and structures

  4. Enhanced ion acoustic fluctuations and ion outflows

    Directory of Open Access Journals (Sweden)

    F. R. E. Forme


    Full Text Available A number of observations showing enhanced ion acoustic echoes observed by means of incoherent scatter radars have been reported in the literature. The received power is extremely enhanced by up to 1 or 2 orders of magnitude above usual values, and it is mostly contained in one of the two ion acoustic lines. This spectral asymmetry and the intensity of the received signal cannot be resolved by the standard analysis procedure and often causes its failure. As a result, and in spite of a very clear spectral signature, the analysis is unable to fit the plasma parameters inside the regions of ion acoustic turbulence. We present European Incoherent Scatter radar (EISCAT observations of large ion outflows associated with the simultaneous occurrence of enhanced ion acoustic echoes. The ion fluxes can reach 1014 m-2 s-1 at 800 km altitude. From the very clear spectral signatures of these echoes, a method is presented to extract estimates of the electron temperature and the ion drift within the turbulent regions. It is shown that the electron gas is strongly heated up to 11 000 K. Also electron temperature gradients of about 0.02 K/m exist. Finally, the estimates of the electron temperature and of the ion drift are used to study the possible implications for the plasma transport inside turbulent regions. It is shown that strong electron temperature gradients cause enhancement of the ambipolar electric field and can account for the observed ion outflows.Key words. Ionosphere (auroral ionosphere; ionosphere · magnetosphere interactions; plasma waves and instabilities.

  5. Acoustic properties of biodegradable nonwovens (United States)

    Yilmaz, Nazire Deniz

    The purpose of this study is to provide a better understanding of acoustical properties of nonwovens, and to model the noise control behavior in terms of material and treatment parameters. A review of existing models on sound absorption of fibrous materials, coupled with experimental data will help in modeling sound absorption in multi-layer needle-punched nonwoven fabrics of different fibers: hemp, polylactide, polypropylene, and glassfiber. The effects of several treatments, which the materials may undergo during sound absorber manufacturing, namely alkalization, compression and heat treatments are investigated. The collected data is evaluated by experts. Expert evaluation further provides information about market demands for sound absorbers, and the perception of the designed nonwovens through the eyes of professionals. This research provides a contribution to the body of knowledge on the sound absorption properties of nonwovens, and provides a better understanding of the effects of some manufacturing processes on nonwovens' noise control performance and contributes to the wider adoption of nonwovens as sound absorbers.

  6. Wastewater treatment with acoustic separator (United States)

    Kambayashi, Takuya; Saeki, Tomonori; Buchanan, Ian


    Acoustic separation is a filter-free wastewater treatment method based on the forces generated in ultrasonic standing waves. In this report, a batch-system separator based on acoustic separation was demonstrated using a small-scale prototype acoustic separator to remove suspended solids from oil sand process-affected water (OSPW). By applying an acoustic separator to the batch use OSPW treatment, the required settling time, which was the time that the chemical oxygen demand (COD) decreased to the environmental criterion (<200 mg/L), could be shortened from 10 to 1 min. Moreover, for a 10 min settling time, the acoustic separator could reduce the FeCl3 dose as coagulant in OSPW treatment from 500 to 160 mg/L.

  7. Acoustic localization of triggered lightning (United States)

    Arechiga, Rene O.; Johnson, Jeffrey B.; Edens, Harald E.; Thomas, Ronald J.; Rison, William


    We use acoustic (3.3-500 Hz) arrays to locate local (thunder produced by triggered lightning in the Magdalena Mountains of central New Mexico. The locations of the thunder sources are determined by the array back azimuth and the elapsed time since discharge of the lightning flash. We compare the acoustic source locations with those obtained by the Lightning Mapping Array (LMA) from Langmuir Laboratory, which is capable of accurately locating the lightning channels. To estimate the location accuracy of the acoustic array we performed Monte Carlo simulations and measured the distance (nearest neighbors) between acoustic and LMA sources. For close sources (6 km) the error increases to 800 m for the nearest neighbors and 650 m for the Monte Carlo analysis. This work shows that thunder sources can be accurately located using acoustic signals.

  8. Coupled Acoustic-Mechanical Bandgaps

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Kook, Junghwan


    In this work, we study the existence of coupled bandgaps for corrugated plate structures and acoustic channels. The study is motivated by the observation that the performance of traditional bandgap structures, such as periodic plates, may be compromised due to the coupling to a surrounding acoustic...... medium and the presence of acoustic resonances. It is demonstrated that corrugation of the plate structure can introduce bending wave bandgaps and bandgaps in the acoustic domain in overlapping and audible frequency ranges. This effect is preserved also when taking the physical coupling between the two...... domains into account. Additionally, the coupling is shown to introduce extra gaps in the band structure due to modal interaction and the appearance of a cut-on frequency for the fundamental acoustic mode....

  9. Electron/electron acoustic instability

    International Nuclear Information System (INIS)

    Gary, S.P.


    The electron acoustic wave becomes a normal mode of an unmagnetized collisionless plasma in the presence of two electron components with similar densities, but strongly disparate temperatures. The characteristic frequency of this mode is the plasma frequency of the cooler electron component. If these two electron components have a relative drift speed several times the thermal speed of the cooler component, the electron/electron acoustic instability may arise. This paper describes the parametric dependences of the threshold drift speed and maximum growth rate of this instability, and compares these with the same properties of the electron/ion acoustic instability. Under the condition of zero current, the electron/ion acoustic instability typically has the lower threshold drift speed, so that observation of the electron/electron acoustic instability is a strong indication of the presence of an electrical current in the plasma

  10. Acoustic emission linear pulse holography (United States)

    Collins, H.D.; Busse, L.J.; Lemon, D.K.


    This device relates to the concept of and means for performing Acoustic Emission Linear Pulse Holography, which combines the advantages of linear holographic imaging and Acoustic Emission into a single non-destructive inspection system. This unique system produces a chronological, linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. The innovation is the concept of utilizing the crack-generated acoustic emission energy to generate a chronological series of images of a growing crack by applying linear, pulse holographic processing to the acoustic emission data. The process is implemented by placing on a structure an array of piezoelectric sensors (typically 16 or 32 of them) near the defect location. A reference sensor is placed between the defect and the array.

  11. Acoustics and Hearing

    CERN Document Server

    Damaske, Peter


    When one listens to music at home, one would like to have an acoustic impression close to that of being in the concert hall. Until recently this meant elaborate multi-channelled sound systems with 5 or more speakers. But head-related stereophony achieves the surround-sound effect in living rooms with only two loudspeakers. By virtue of their slight directivity as well as an electronic filter the limitations previously common to two-speaker systems can be overcome and this holds for any arbitrary two-channel recording. The book also investigates the question of how a wide and diffuse sound image can arise in concert halls and shows that the quality of concert halls decisively depends on diffuse sound images arising in the onset of reverberation. For this purpose a strong onset of reverberation is modified in an anechoic chamber by electroacoustic means. Acoustics and Hearing proposes ideas concerning signal processing in the auditory system that explain the measured results and the resultant sound effects plea...

  12. Omnidirectional ventilated acoustic barrier (United States)

    Zhang, Hai-long; Zhu, Yi-fan; Liang, Bin; Yang, Jing; Yang, Jun; Cheng, Jian-chun


    As an important problem in acoustics, sound insulation finds applications in a great variety of situations. In the existing schemes, however, there has always been a trade-off between the thinness of sound-insulating devices and their ventilating capabilities, limiting their potentials in the control of low-frequency sound in high ventilation environments. Here, we design and experimentally implement an omnidirectional acoustic barrier with a planar profile, subwavelength thickness ( 0.18 λ ), yet high ventilation. The proposed mechanism is based on the interference between the resonant scattering of discrete states and the background scattering of continuous states which induces a Fano-like asymmetric transmission profile. Benefitting from the binary-structured design of the coiled unit and hollow pipe, it maximally simplifies the design and fabrication while ensuring the ventilation for all the non-resonant units with open tubes. The simulated and measured results agree well, showing the effectiveness of our proposed mechanism to block low frequency sound coming from various directions while allowing 63% of the air flow to pass. We anticipate our design to open routes to design sound insulators and to enable applications in traditionally unattainable cases such as those calling for noise reduction and cooling simultaneously.

  13. Time-reversal acoustics

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Mathias [Laboratoire Ondes et Acoustique, Ecole Superieure de Physique et de Chimie Industrielle de la Ville de Paris, Universite Denis Diderot, UMR CNRS 7587, 10 Rue Vauquelin, 75005 Paris (France)], E-mail:


    Time-reversal mirrors (TRMs) refocus an incident acoustic field to the position of the original source regardless of the complexity of the propagation medium. TRM's have now been implemented in a variety of physical scenarios from MHz ultrasonics with order centimeter aperture size to hundreds/thousands of Hz in ocean acoustics with order hundred meter aperture size. Common to this broad range of scales is a remarkable robustness exemplified by observations at all scales that the more complex the medium between the probe source and the TRM, the sharper the focus. The relation between the medium complexity and the size of the focal spot is studied in this paper. It is certainly the most exciting property of TRM compared to standard focusing devices. A TRM acts as an antenna that uses complex environments to appears wider than it is, resulting for a broadband pulse in a refocusing quality that does not depend of the TRM aperture. In this paper, we investigate the time-reversal approach in various media of increasing complexity and we discuss the link existing between time-reversal approach and local helioseismology where Green's functions can be extracted from diffusive noise.

  14. Review of Progress in Acoustic Levitation (United States)

    Andrade, Marco A. B.; Pérez, Nicolás; Adamowski, Julio C.


    Acoustic levitation uses acoustic radiation forces to counteract gravity and suspend objects in mid-air. Although acoustic levitation was first demonstrated almost a century ago, for a long time, it was limited to objects much smaller than the acoustic wavelength levitating at fixed positions in space. Recent advances in acoustic levitation now allow not only suspending but also rotating and translating objects in three dimensions. Acoustic levitation is also no longer restricted to small objects and can now be employed to levitate objects larger than the acoustic wavelength. This article reviews the progress of acoustic levitation, focusing on the working mechanism of different types of acoustic levitation devices developed to date. We start with a brief review of the theory. Then, we review the acoustic levitation methods to suspend objects at fixed positions, followed by the techniques that allow the manipulation of objects. Finally, we present a brief summary and offer some future perspectives for acoustic levitation.

  15. Bi-layer plate-type acoustic metamaterials with Willis coupling (United States)

    Ma, Fuyin; Huang, Meng; Xu, Yicai; Wu, Jiu Hui


    Dynamic effective negative parameters are principal to the representation of the physical properties of metamaterials. In this paper, a bi-layer plate-type unit was proposed with both a negative mass density and a negative bulk modulus; moreover, through analysis of these bi-layer structures, some important problems about acoustic metamaterials were studied. First, dynamic effective mass densities and the bulk modulus of the bi-layer plate-type acoustic structure were clarified through both the direct and the retrieval methods, and, in addition, the intrinsic relationship between the sound transmission (absorption) characteristics and the effective parameters was analyzed. Furthermore, the properties of dynamic effective parameters for an asymmetric bi-layer acoustic structure were further considered through an analysis of experimental data, and the modified effective parameters were then obtained through consideration of the Willis coupling in the asymmetric passive system. In addition, by taking both the clamped and the periodic boundary conditions into consideration in the bi-layer plate-type acoustic system, new perspectives were presented for study on the effective parameters and sound insulation properties in the range below the cut-off frequency. The special acoustic properties established by these effective parameters could enrich our knowledge and provide guidance for the design and installation of acoustic metamaterial structures in future sound engineering practice.

  16. Nonlinear acoustics of water-saturated marine sediments

    DEFF Research Database (Denmark)

    Jensen, Leif Bjørnø


    available for fluids to a few being used for a determination of the nonlinear acoustic parameters of water-saturated marine sediments. These test methods, comprising static, thermodynamic and finite-amplitude wave distortion and absorption methods, aiming at a determination of B/A for marine sediments...... and are compared with nonlinear acoustic qualities determined through small-scale explosion tests performed in the sediments. Sources leading to possible deviations between test results arising from prospective in situ measurements and from measurements carried out under laboratory conditions are discussed....

  17. Opera house acoustics based on subjective preference theory

    CERN Document Server

    Ando, Yoichi


    This book focuses on opera house acoustics based on subjective preference theory; it targets researchers in acoustics and vision who are working in physics, psychology, and brain physiology. This book helps readers to understand any subjective attributes in relation to objective parameters based on the powerful and workable model of the auditory system. It is reconfirmed here that the well-known Helmholtz theory, which was based on a peripheral model of the auditory system, may not well describe pitch, timbre, and duration as well as the spatial sensations described in this book, nor overall responses such as subjective preference of sound fields and the annoyance of environmental noise.

  18. From Architectural Acoustics to Acoustical Architecture Using Computer Simulation

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning


    acoustic design process and to set up a strategy to develop future programmes. The emphasis is put on the first three out of four phases in the working process of the architect and a case study is carried out in which each phase is represented by typical results ? as exemplified with reference...... to the design of Bagsvaerd Church by Jørn Utzon. The paper discusses the advantages and disadvantages of the programme in each phase compared to the works of architects not using acoustic simulation programmes. The conclusion of the paper points towards the need to apply the acoustic simulation programmes...

  19. Monitoring of Robot Assisted Polishing through parameters of acoustic emission

    DEFF Research Database (Denmark)

    Lazarev, Ruslan; Top, Søren; Bilberg, Arne

    The polishing process is essential for the surface generation of machine tooling components in advanced manufacturing. While robot assisted polishing is faster and more consistent than manual polishing, it can still consume a significant part of ma- chining time and operator presence time...

  20. Acoustic analysis of oropharyngeal swallowing using Sonar Doppler. (United States)

    Soria, Franciele Savaris; Silva, Roberta Gonçalves da; Furkim, Ana Maria


    During the aging process, one of the functions that changes is swallowing. These alterations in oropharyngeal swallowing may be diagnosed by methods that allow both the diagnosis and biofeedback monitoring by the patient. One of the methods recently described in the literature for the evaluation of swallowing is the Sonar Doppler. To compare the acoustic parameters of oropharyngeal swallowing between different age groups. This was a field, quantitative, study. Examination with Sonar Doppler was performed in 75 elderly and 72 non-elderly adult subjects. The following acoustic parameters were established: initial frequency, first peak frequency, second peak frequency; initial intensity, final intensity; and time for the swallowing of saliva, liquid, nectar, honey, and pudding, with 5- and 10-mL free drinks. Objective, measurable data were obtained; most acoustic parameters studied between adult and elderly groups with respect to consistency and volume were significant. When comparing elderly with non-elderly adult subjects, there is a modification of the acoustic pattern of swallowing, regarding both consistency and food bolus volume. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  1. Propagation of three-dimensional electron-acoustic solitary waves (United States)

    Shalaby, M.; El-Labany, S. K.; Sabry, R.; El-Sherif, L. S.


    Theoretical investigation is carried out for understanding the properties of three-dimensional electron-acoustic waves propagating in magnetized plasma whose constituents are cold magnetized electron fluid, hot electrons obeying nonthermal distribution, and stationary ions. For this purpose, the hydrodynamic equations for the cold magnetized electron fluid, nonthermal electron density distribution, and the Poisson equation are used to derive the corresponding nonlinear evolution equation, Zkharov-Kuznetsov (ZK) equation, in the small- but finite- amplitude regime. The ZK equation is solved analytically and it is found that it supports both solitary and blow-up solutions. It is found that rarefactive electron-acoustic solitary waves strongly depend on the density and temperature ratios of the hot-to-cold electron species as well as the nonthermal electron parameter. Furthermore, there is a critical value for the nonthermal electron parameter, which decides whether the electron-acoustic solitary wave's amplitude is decreased or increased by changing various plasma parameters. Importantly, the change of the propagation angles leads to miss the balance between the nonlinearity and dispersion; hence, the localized pulses convert to explosive/blow-up pulses. The relevance of this study to the nonlinear electron-acoustic structures in the dayside auroral zone in the light of Viking satellite observations is discussed.

  2. Propagation of three-dimensional electron-acoustic solitary waves

    International Nuclear Information System (INIS)

    Shalaby, M.; El-Sherif, L. S.; El-Labany, S. K.; Sabry, R.


    Theoretical investigation is carried out for understanding the properties of three-dimensional electron-acoustic waves propagating in magnetized plasma whose constituents are cold magnetized electron fluid, hot electrons obeying nonthermal distribution, and stationary ions. For this purpose, the hydrodynamic equations for the cold magnetized electron fluid, nonthermal electron density distribution, and the Poisson equation are used to derive the corresponding nonlinear evolution equation, Zkharov-Kuznetsov (ZK) equation, in the small- but finite- amplitude regime. The ZK equation is solved analytically and it is found that it supports both solitary and blow-up solutions. It is found that rarefactive electron-acoustic solitary waves strongly depend on the density and temperature ratios of the hot-to-cold electron species as well as the nonthermal electron parameter. Furthermore, there is a critical value for the nonthermal electron parameter, which decides whether the electron-acoustic solitary wave's amplitude is decreased or increased by changing various plasma parameters. Importantly, the change of the propagation angles leads to miss the balance between the nonlinearity and dispersion; hence, the localized pulses convert to explosive/blow-up pulses. The relevance of this study to the nonlinear electron-acoustic structures in the dayside auroral zone in the light of Viking satellite observations is discussed.

  3. Electrical circuit modeling and analysis of microwave acoustic interaction with biological tissues. (United States)

    Gao, Fei; Zheng, Qian; Zheng, Yuanjin


    Numerical study of microwave imaging and microwave-induced thermoacoustic imaging utilizes finite difference time domain (FDTD) analysis for simulation of microwave and acoustic interaction with biological tissues, which is time consuming due to complex grid-segmentation and numerous calculations, not straightforward due to no analytical solution and physical explanation, and incompatible with hardware development requiring circuit simulator such as SPICE. In this paper, instead of conventional FDTD numerical simulation, an equivalent electrical circuit model is proposed to model the microwave acoustic interaction with biological tissues for fast simulation and quantitative analysis in both one and two dimensions (2D). The equivalent circuit of ideal point-like tissue for microwave-acoustic interaction is proposed including transmission line, voltage-controlled current source, envelop detector, and resistor-inductor-capacitor (RLC) network, to model the microwave scattering, thermal expansion, and acoustic generation. Based on which, two-port network of the point-like tissue is built and characterized using pseudo S-parameters and transducer gain. Two dimensional circuit network including acoustic scatterer and acoustic channel is also constructed to model the 2D spatial information and acoustic scattering effect in heterogeneous medium. Both FDTD simulation, circuit simulation, and experimental measurement are performed to compare the results in terms of time domain, frequency domain, and pseudo S-parameters characterization. 2D circuit network simulation is also performed under different scenarios including different sizes of tumors and the effect of acoustic scatterer. The proposed circuit model of microwave acoustic interaction with biological tissue could give good agreement with FDTD simulated and experimental measured results. The pseudo S-parameters and characteristic gain could globally evaluate the performance of tumor detection. The 2D circuit network

  4. MR of acoustic neuromas

    International Nuclear Information System (INIS)

    Suzuki, Masayuki; Takashima, Tsutomu; Kadoya, Masumi; Takahashi, Shiroh; Miyayama, Shiroh; Taira, Sakae; Kashihara, Kengo; Yamashima, Tetsumori; Itoh, Haruhide


    In this report, the relationship of acoustic neuromas to the adjacent cranial nerves is discussed. On T 1 -weighted images, the trigeminal nerve was detected in all 13 cases. Mild to marked compression of these nerves by the tumors was observed in eight cases. The extent of compression did not always correspond to the clinical symptoms. In four cases with a maximum tumor diameter of 2 cm or less, the 7th and 8th cranial nerves were identified. There was no facial palsy in these patients. Two patients with a tumor diameter of more than 2 cm also had no facial palsy. All patients, including those with small tumors, complained of hearing loss and/or tinnitus. While MR imaging has some limitations, it is an effective imaging modality for showing the relationship between tumors and nerves. (author)

  5. Evoked acoustic emission

    DEFF Research Database (Denmark)

    Elberling, C; Parbo, J; Johnsen, N J


    Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has only...... a minor effect on the power spectra, i.e. the maximum jumps from one spectral peak to another. Experiments with deconvolution demonstrate that the emission generating system at least at a fixed intensity can be regarded as being linear and characterized by its impulse response which is similar...... to the emission evoked by click stimuli. It is concluded that significant information is obtained by the click rather than by the tonal stimuli. The click-evoked emissions were also recorded from both ears in a consecutive series of 100 full-term and otherwise normal babies 2-4 days after birth. The emission...

  6. A new parameterization for waveform inversion in acoustic orthorhombic media

    KAUST Repository

    Masmoudi, Nabil


    Orthorhombic anisotropic model inversion is extra challenging because of the multiple parameter nature of the inversion problem. The high number of parameters required to describe the medium exerts considerable trade-off and additional nonlinearity to a full-waveform inversion (FWI) application. Choosing a suitable set of parameters to describe the model and designing an effective inversion strategy can help in mitigating this problem. Using the Born approximation, which is the central ingredient of the FWI update process, we have derived radiation patterns for the different acoustic orthorhombic parameterizations. Analyzing the angular dependence of scattering (radiation patterns) of the parameters of different parameterizations starting with the often used Thomsen-Tsvankin parameterization, we have assessed the potential trade-off between the parameters and the resolution in describing the data and inverting for the parameters. The analysis led us to introduce new parameters ϵd, δd, and ηd, which have azimuthally dependent radiation patterns, but keep the scattering potential of the transversely isotropic parameters stationary with azimuth (azimuth independent). The novel parameters ϵd, δd, and ηd are dimensionless and represent a measure of deviation between the vertical planes in orthorhombic anisotropy. Therefore, these deviation parameters offer a new parameterization style for an acoustic orthorhombic medium described by six parameters: three vertical transversely isotropic (VTI) parameters, two deviation parameters, and one parameter describing the anisotropy in the horizontal symmetry plane. The main feature of any parameterization based on the deviation parameters, is the azimuthal independency of the modeled data with respect to the VTI parameters, which allowed us to propose practical inversion strategies based on our experience with the VTI parameters. This feature of the new parameterization style holds for even the long-wavelength components of

  7. [Physiological-occupational assessment of acoustic load with equal energy but different time and informational characteristics]. (United States)

    Suvorov, G A; Shkarinov, L N; Kravchenko, O K; Kur'erov, N N


    The article deals with results of experimental study comparing effects of 4 types of acoustic load--noise (constant and impulse) and music (electronic symphonic one and rap)--on hearing sensitivity, processes in nervous system and subjective evaluation. All types of acoustic load were equal in energy (on evaluation according to equivalent level during the experiment). The study included 2 levels of load--90 and 95 dB. The differences revealed demonstrate importance of impulse parameters of noise and musical load for reactions of acoustic analyzer and central nervous system. The experiments show that evaluation of harm caused by temporary and impulse noises should be based not only on assessment of specific (hearing) function, but also on parameters of central nervous system state. The authors found that music of certain acoustic and informational parameters may harm hearing function.

  8. Acoustics of friction (United States)

    Akay, Adnan


    This article presents an overview of the acoustics of friction by covering friction sounds, friction-induced vibrations and waves in solids, and descriptions of other frictional phenomena related to acoustics. Friction, resulting from the sliding contact of solids, often gives rise to diverse forms of waves and oscillations within solids which frequently lead to radiation of sound to the surrounding media. Among the many everyday examples of friction sounds, violin music and brake noise in automobiles represent the two extremes in terms of the sounds they produce and the mechanisms by which they are generated. Of the multiple examples of friction sounds in nature, insect sounds are prominent. Friction also provides a means by which energy dissipation takes place at the interface of solids. Friction damping that develops between surfaces, such as joints and connections, in some cases requires only microscopic motion to dissipate energy. Modeling of friction-induced vibrations and friction damping in mechanical systems requires an accurate description of friction for which only approximations exist. While many of the components that contribute to friction can be modeled, computational requirements become prohibitive for their contemporaneous calculation. Furthermore, quantification of friction at the atomic scale still remains elusive. At the atomic scale, friction becomes a mechanism that converts the kinetic energy associated with the relative motion of surfaces to thermal energy. However, the description of the conversion to thermal energy represented by a disordered state of oscillations of atoms in a solid is still not well understood. At the macroscopic level, friction interacts with the vibrations and waves that it causes. Such interaction sets up a feedback between the friction force and waves at the surfaces, thereby making friction and surface motion interdependent. Such interdependence forms the basis for friction-induced motion as in the case of

  9. Perspective: Acoustic metamaterials in transition

    KAUST Repository

    Wu, Ying


    Acoustic metamaterials derive their novel characteristics from the interaction between acoustic waves with designed structures. Since its inception seventeen years ago, the field has been driven by fundamental geometric and physical principles that guide the structure design rules as well as provide the basis for wave functionalities. Recent examples include resonance-based acoustic metasurfaces that offer flexible control of acoustic wave propagation such as focusing and re-direction; parity-time (PT)-symmetric acoustics that utilizes the general concept of pairing loss and gain to achieve perfect absorption at a single frequency; and topological phononics that can provide one-way edge state propagation. However, such novel functionalities are not without constraints. Metasurface elements rely on resonances to enhance their coupling to the incident wave; hence, its functionality is limited to a narrow frequency band. Topological phononics is the result of the special lattice symmetry that must be fixed at the fabrication stage. Overcoming such constraints naturally forms the basis for further developments. We identify two emergent directions: Integration of acoustic metamaterial elements for achieving broadband characteristics as well as acoustic wave manipulation tasks more complex than the single demonstrative functionality; and active acoustic metamaterials that can adapt to environment as well as to go beyond the constraints on the passive acoustic metamaterials. Examples of a successful recent integration of multi-resonators in achieving broadband sound absorption can be found in optimal sound-absorbing structures, which utilize causality constraint as a design tool in realizing the target-set absorption spectrum with a minimal sample thickness. Active acoustic metamaterials have also demonstrated the capability to tune bandgaps as well as to alter property of resonances in real time through stiffening of the spring constants, in addition to the PT symmetric

  10. Acoustic of monolithic dome structures

    Directory of Open Access Journals (Sweden)

    Mostafa Refat Ismail


    The interior of monolithic domes have perfect, concave shapes to ensure that sound travels through the dome and perfectly collected at different vocal points. These dome structures are utilized for domestic use because the scale allows the focal points to be positioned across daily life activities, thereby affecting the sonic comfort of the internal space. This study examines the various acoustic treatments and parametric configurations of monolithic dome sizes. A geometric relationship of acoustic treatment and dome radius is established to provide architects guidelines on the correct selection of absorption needed to maintain the acoustic comfort of these special spaces.

  11. Acoustic Study of Acted Emotions in Speech (United States)

    Wang, Rong

    An extensive set of carefully recorded utterances provided a speech database for investigating acoustic correlates among eight emotional states. Four professional actors and four professional actresses simulated the emotional states of joy, conversation, nervousness, anger, sadness, hate, fear, and depression. The values of 14 acoustic parameters were extracted from analyses of the simulated portrayals. Normalization of the parameters was made to reduce the talker-dependence. Correlates of emotion were investigated by means of principal components analysis. Sadness and depression were found to be "ambiguous" with respect to each other, but "unique" with respect to joy and anger in the principal components space. Joy, conversation, nervousness, anger, hate, and fear did not separate well in the space and so exhibited ambiguity with respect to one another. The different talkers expressed joy, anger, sadness, and depression more consistently than the other four emotions. The analysis results were compared with the results of a subjective study using the same speech database and considerable consistency between the two was found.

  12. Remote Acoustic Emission Monitoring of Metal Ware and Welded Joints (United States)

    Kapranov, Boris I.; Sutorikhin, Vladimir A.


    An unusual phenomenon was revealed in the metal-ultrasound interaction. Microwave sensor generates surface electric conductivity oscillations from exposure to elastic ultrasonic vibrations on regions of defects embracing micro-defects termed as “crack mouth.” They are known as the region of “acoustic activity,” method of Acoustic Emission (AE) method. It was established that the high phase-modulation coefficient of reflected field generates intentional Doppler radar signal with the following parameters: amplitude-1–5 nm, 6–30 dB adjusted to 70- 180 mm. This phenomenon is termed as “Gorbunov effect,” which is applied as a remote non-destructive testing method replacing ultrasonic flaw detection and acoustic emission methods.

  13. Performance Evaluation of a Biometric System Based on Acoustic Images

    Directory of Open Access Journals (Sweden)

    Juan J. Villacorta


    Full Text Available An acoustic electronic scanning array for acquiring images from a person using a biometric application is developed. Based on pulse-echo techniques, multifrequency acoustic images are obtained for a set of positions of a person (front, front with arms outstretched, back and side. Two Uniform Linear Arrays (ULA with 15 l/2-equispaced sensors have been employed, using different spatial apertures in order to reduce sidelobe levels. Working frequencies have been designed on the basis of the main lobe width, the grating lobe levels and the frequency responses of people and sensors. For a case-study with 10 people, the acoustic profiles, formed by all images acquired, are evaluated and compared in a mean square error sense. Finally, system performance, using False Match Rate (FMR/False Non-Match Rate (FNMR parameters and the Receiver Operating Characteristic (ROC curve, is evaluated. On the basis of the obtained results, this system could be used for biometric applications.

  14. Acoustic fluidization and the scale dependence of impact crater morphology (United States)

    Melosh, H. J.; Gaffney, E. S.


    A phenomenological Bingham plastic model has previously been shown to provide an adequate description of the collapse of impact craters. This paper demonstrates that the Bingham parameters may be derived from a model in which acoustic energy generated during excavation fluidizes the rock debris surrounding the crater. Experimental support for the theoretical flow law is presented. Although the Bingham yield stress cannot be computed without detailed knowledge of the initial acoustic field, the Bingham viscosity is derived from a simple argument which shows that it increases as the 3/2 power of crater diameter, consistent with observation. Crater collapse may occur in material with internal dissipation Q as low as 100, comparable to laboratory observations of dissipation in granular materials. Crater collapse thus does not require that the acoustic field be regenerated during flow.

  15. North Pacific Acoustic Laboratory and Deep Water Acoustics (United States)


    During FY16 the primary effort has been working on manuscripts as summarized below: 1) A test of deep water Rytov theory at 284 Hz and 107 km in... signal , while the ambient noise field is in direct competition with the received signal . Research conducted in the North Pacific Acoustic Laboratory...low-frequency, long-range, deep water, broadband acoustic propagation, the effects of ocean variability on signal coherence, and the fundamental

  16. Spatio-Temporal Analysis of Urban Acoustic Environments with Binaural Psycho-Acoustical Considerations for IoT-Based Applications. (United States)

    Segura-Garcia, Jaume; Navarro-Ruiz, Juan Miguel; Perez-Solano, Juan J; Montoya-Belmonte, Jose; Felici-Castell, Santiago; Cobos, Maximo; Torres-Aranda, Ana M


    Sound pleasantness or annoyance perceived in urban soundscapes is a major concern in environmental acoustics. Binaural psychoacoustic parameters are helpful to describe generic acoustic environments, as it is stated within the ISO 12913 framework. In this paper, the application of a Wireless Acoustic Sensor Network (WASN) to evaluate the spatial distribution and the evolution of urban acoustic environments is described. Two experiments are presented using an indoor and an outdoor deployment of a WASN with several nodes using an Internet of Things (IoT) environment to collect audio data and calculate meaningful parameters such as the sound pressure level, binaural loudness and binaural sharpness. A chunk of audio is recorded in each node periodically with a microphone array and the binaural rendering is conducted by exploiting the estimated directional characteristics of the incoming sound by means of DOA estimation. Each node computes the parameters in a different location and sends the values to a cloud-based broker structure that allows spatial statistical analysis through Kriging techniques. A cross-validation analysis is also performed to confirm the usefulness of the proposed system.

  17. Parameter Estimation

    DEFF Research Database (Denmark)

    Sales-Cruz, Mauricio; Heitzig, Martina; Cameron, Ian


    In this chapter the importance of parameter estimation in model development is illustrated through various applications related to reaction systems. In particular, rate constants in a reaction system are obtained through parameter estimation methods. These approaches often require the application...... of algebraic equations as the basis for parameter estimation.These approaches are illustrated using estimations of kinetic constants from reaction system models....

  18. Interaction of electromagnetic and acoustic waves in a stochastic atmosphere (United States)

    Bhatnagar, N.; Peterson, A. M.


    In the Stanford radio acoustic sounding system (RASS) an electromagnetic signal is made to scatter from a moving acoustic pulse train. Under a Bragg-scatter condition maximum electromagnetic scattering occurs. The scattered radio signal contains temperature and wind information as a function of the acoustic-pulse position. In this investigation RASS performance is assessed in an atmosphere characterized by the presence of turbulence and mean atmospheric parameters. The only assumption made is that the electromagnetic wave is not affected by stochastic perturbations in the atmosphere. It is concluded that the received radio signal depends strongly on the intensity of turbulence for altitudes of the acoustic pulse greater than the coherence length of propagation. The effect of mean vertical wind and mean temperature on the strength of the received signal is also demonstrated to be insignificant. Mean horizontal winds, however, shift the focus of the reflected electromagnetic energy from its origin, resulting in a decrease in received signal level when a monostatic radio-frequency (RF) system is used. For a bistatic radar configuration with space diversified receiving antennas, the shifting of the acoustic pulse makes possible the remote measurement of the horizontal wind component.

  19. Sound field simulation and acoustic animation in urban squares (United States)

    Kang, Jian; Meng, Yan


    Urban squares are important components of cities, and the acoustic environment is important for their usability. While models and formulae for predicting the sound field in urban squares are important for their soundscape design and improvement, acoustic animation tools would be of great importance for designers as well as for public participation process, given that below a certain sound level, the soundscape evaluation depends mainly on the type of sounds rather than the loudness. This paper first briefly introduces acoustic simulation models developed for urban squares, as well as empirical formulae derived from a series of simulation. It then presents an acoustic animation tool currently being developed. In urban squares there are multiple dynamic sound sources, so that the computation time becomes a main concern. Nevertheless, the requirements for acoustic animation in urban squares are relatively low compared to auditoria. As a result, it is important to simplify the simulation process and algorithms. Based on a series of subjective tests in a virtual reality environment with various simulation parameters, a fast simulation method with acceptable accuracy has been explored. [Work supported by the European Commission.

  20. Isotropic transformation acoustics and applications (United States)

    Su, Xiaoshi; Norris, Andrew N.


    A novel class of acoustic metamaterial is proposed for directional collimation of a cylindrical source into a plane wave beam. The effect is based on transformation acoustics which retains the exact form of the wave equation under conformal mapping from a circular region to a triangular area. The transformation is adjustable, allowing the acoustic energy to be equally radiated in three directions, or preferentially in a single direction. Importantly, the material properties in the physical domain are isotropic and therefore practically realizable. Two example devices are proposed using cylindrical elastic shells in water as the metamaterial elements and demonstrated using full wave simulations. This approach has potential applications beyond acoustic antenna design in beam-steering and wavefront manipulation.

  1. An Experimental Introduction to Acoustics (United States)

    Black, Andy Nicholas; Magruder, Robert H.


    Learning and understanding physics requires more than studying physics texts. It requires doing physics. Doing research is a key opportunity for students to connect physical principles with their everyday experience. A powerful way to introduce students to research and technique is through subjects in which they might find interest. Presented is an experiment that serves to introduce an advanced undergraduate or high school student to conducting research in acoustics via an experiment involving a standard dreadnought acoustic guitar, recording industry-related equipment, and relevant industrial analysis software. This experimental process is applicable to a wide range of acoustical topics including both acoustic and electric instruments. Also, the student has a hands-on experience with relevant audio engineering technology to study physical principles.

  2. Thermal/acoustical insulation foam (United States)

    Lin, R. Y.; Struzik, E. A.


    Lightweight low-density substance can be used as fire resistant insulation in aircraft. Material density can be controlled over range from 0.6-1.2 pounds per cubic foot and has good thermal and acoustic properties.

  3. NCPA Enhancement for Physical Acoustics

    National Research Council Canada - National Science Library

    Bass, Henry


    ...-rate scientists and students and carry out effective, ONR-supported research. Specific objectives of this grant are to support research and recruitment by enhancing the infrastructure in physical acoustics...

  4. Acoustic agglomeration methods and apparatus (United States)

    Barmatz, M. B. (Inventor)


    Methods are described for using acoustic energy to agglomerate fine particles on the order of one micron diameter that are suspended in gas, to provide agglomerates large enough for efficient removal by other techniques. The gas with suspended particles, is passed through the length of a chamber while acoustic energy at a resonant chamber mode is applied to set up one or more acoustic standing wave patterns that vibrate the suspended particles to bring them together so they agglomerate. Several widely different frequencies can be applied to efficiently vibrate particles of widely differing sizes. The standing wave pattern can be applied along directions transversed to the flow of the gas. The particles can be made to move in circles by applying acoustic energy in perpendicular directions with the energy in both directions being of the same wavelength but 90 deg out of phase.

  5. Reverberant Acoustic Test Facility (RATF) (United States)

    Federal Laboratory Consortium — The very large Reverberant Acoustic Test Facility (RATF) at the NASA Glenn Research Center (GRC), Plum Brook Station, is currently under construction and is due to...

  6. PVT Degradation Studies: Acoustic Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Dib, Gerges [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tucker, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kouzes, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Philip J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    Under certain environmental conditions, polyvinyl toluene (PVT) plastic scintillator has been observed to undergo internal fogging. This document reports on a study of acoustic techniques to determine whether they can provide a diagnostic for the fogging of PVT. Different ultrasound techniques were employed for detecting the level of internal fogging in PVT, including wave velocity measurements, attenuation, nonlinear acoustics, and acoustic microscopy. The results indicate that there are linear relations between the wave velocity and wave attenuation with the level of internal fogging. The effects of fogging on ultrasound wave attenuation is further verified by acoustic microscopy imaging, where regions with fog in the specimen demonstration higher levels of attenuation compared to clear regions. Results from the nonlinear ultrasound measurements were inconclusive due to high sensitivities to transducer coupling and fixture variabilities.

  7. Acoustical Properties of Contemporary Mosques

    Directory of Open Access Journals (Sweden)

    Karaman Özgül Yılmaz


    Full Text Available Religious buildings are important for many communities because of their representation of different beliefs. In such structures, the sense of individuality or unity & togetherness are created according to variable worship activities; these different uses have also different acoustical requirements. In order to create the desired feeling in the space at the required time, rooms should be evaluated in terms of acoustical conditions.

  8. Change of nonlinear acoustics in ASME grade 122 steel welded joint during creep (United States)

    Ohtani, Toshihiro; Honma, Takumi; Ishii, Yutaka; Tabuchi, Masaaki; Hongo, Hiromichi; Hirao, Masahiko


    In this paper, we described the changes of two nonlinear acoustic characterizations; resonant frequency shift and three-wave interaction, with electromagnetic acoustic resonance (EMAR) throughout the creep life in the welded joints of ASME Grade 122, one of high Cr ferritic heat resisting steels. EMAR was a combination of the resonant acoustic technique with a non-contact electromagnetic acoustic transducer (EMAT). These nonlinear acoustic parameters decreased from the start to 50% of creep life. After slightly increased, they rapidly increased from 80% of creep life to rupture. We interpreted these phenomena in terms of dislocation recovery, recrystallization, and restructuring related to the initiation and growth of creep void, with support from the SEM and TEM observation.

  9. Parametric Analysis of Acoustical Requirements for Lateral Reflections: Melbourne Recital Hall Case Study

    Directory of Open Access Journals (Sweden)

    Erica Claustro


    Full Text Available This paper is an investigation of the Melbourne Recital Centre as a case study to define the parameters necessary for good acoustical quality as it relates to the Binaural Quality Index and determining the intimacy of the hall by its initial time delay gap. The Melbourne Recital Centre, designed by Ashton Raggatt McDougall Architects, is a significant case study, as its design was driven by the acoustic requirements of reflection and diffusion through Odeon Acoustical Software. It achieves the same acoustical quality of older, ornately designed shoebox concert halls, from the perspective of contemporary design and fabrication tools and techniques. The sleek design of the Melbourne Recital Centre successfully reflects sound waves in low, mid, and high frequencies due to corresponding wall panel differentiation in the corresponding scales, as engineered by Arup Acoustics.

  10. Transmission Characteristics in Tubular Acoustic Metamaterials Studied with Fluid Impedance Theory

    International Nuclear Information System (INIS)

    Fan Li; Zhang Shu-Yi; Zhang Hui


    Tubular acoustic metamaterials with negative densities composed of periodical membranes set up along pipes are studied with the fluid impedance theory. In addition to the conventional forbidden bands induced by the Bragg-scattering due to the periodic distributions of different acoustic impedances, the low-frequency forbidden band (LFB) with the low-frequency limit of zero Hertz is studied, in which the LFB is explained with acoustic impedance matching and the Bloch theory. Furthermore, the influences of the structural parameters of the tubular acoustic metamaterials on the transmission characteristics, such as the transmission coefficients, dispersion curves, widths of forbidden and pass bands, fluctuations in pass bands, etc., are evaluated, which can be used in the optimization of the acoustic insulation ability of the metamaterials. (fundamental areas of phenomenology (including applications))

  11. Acoustics of the Intonarumori (United States)

    Serafin, Stefania


    The Intonarumori were a family of musical instruments invented by the Italian futurist composer and painter Luigi Russolo. Each Intonarumori was made of a wooden parallelepiped sound box, inside which a wheel of different sizes and materials was setting into vibration a catgut or metal string. The pitch of the string was varied by using a lever, while the speed of the wheel was controlled by the performer using a crank. At one end of the string there was a drumhead that transmitted vibrations to the speaker. Unfortunately, all the original Intonarumori were destroyed after a fire during World War II. Since then, researchers have tried to understand the sound production mechanism of such instruments, especially by consulting the patents compiled by Russolo or by reading his book ``The art of noise.'' In this paper we describe the acoustics of the Intonarumori. Based on such description, we propose physical models that simulate such instruments. The intonarumori's string is modeled using a one dimensional waveguide, which is excited either by an impact or a friction model. The body of the instrument is modeled using a 3-D rectangular mesh, while the horn is considered as an omnidirectional radiator.

  12. Ultrasonic superlensing jets and acoustic-fork sheets

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F.G., E-mail:


    Focusing acoustical (and optical) beams beyond the diffraction limit has remained a major challenge in imaging instruments and systems, until recent advances on “hyper” or “super” lensing and higher-resolution imaging techniques have shown the counterintuitive violation of this rule under certain circumstances. Nonetheless, the proposed technologies of super-resolution acoustical focusing beyond the diffraction barrier require complex tools such as artificially engineered metamaterials, and other hardware equipment that may not be easily synthesized or manufactured. The present contribution therefore suggests a simple and reliable method of using a sound-penetrable circular cylinder lens illuminated by a nonparaxial Gaussian acoustical sheet (i.e. finite beam in 2D) to produce non-evanescent ultrasonic superlensing jets (or bullets) and acoustical ‘snail-fork’ shaped wavefronts with limited diffraction. The generalized (near-field) scattering theory for acoustical sheets of arbitrary wavefronts and incidence is utilized to synthesize the incident beam based upon the angular spectrum decomposition method and the multipole expansion method in cylindrical wave functions to compute the scattered pressure around the cylinder with particular emphasis on its physical properties. The results show that depending on the beam and lens parameters, a tight focusing (with dimensions much smaller than the beam waist) can be achieved. Subwavelength resolution can be also achieved by selecting a lens material with a speed of sound exceeding that of the host fluid medium. The ultrasonic superlensing jets provide the impetus to develop improved subwavelength microscopy and acoustical image-slicing systems, cell lysis and surgery, and photoacoustic imaging to name a few examples. Moreover, an acoustical fork-sheet generation may open innovative avenues in reconfigurable on-chip micro/nanoparticle tweezers and surface acoustic waves devices. - Highlights: • Ultrasonic

  13. Acoustic analysis of pathological voice. Some results of clinical application. (United States)

    Hirano, M; Hibi, S; Yoshida, T; Hirade, Y; Kasuya, H; Kikuchi, Y


    Tape-recorded voices of 30 patients were acoustically analysed: 10 had glottic Tla carcinoma, 10 unilateral vocal fold polyp and 10 unilateral recurrent laryngeal nerve paralysis. The carcinoma cases were treated with laser surgery with/without radiotherapy, the polyp cases with endolaryngeal microsurgery and the paralysis cases with intrafold silicone injection. The acoustic analysis was conducted before and after the treatment for each patient. Three acoustic parameters, viz. pitch perturbation quotient (PPQ), amplitude perturbation quotient (APQ) and normalized noise energy (NNE), were employed. The results were as follows: (1) PPQ and APQ were greater in paralysis cases than in carcinoma and polyp cases; (2) none of the parameters was useful in differentiating the three disease groups investigated; (3) all three parameters proved to be useful in monitoring the effects of treatments; (4) all three parameters were positively correlated to the grade of hoarseness, rough and breathy quality of hoarseness, mean airflow rate and regularity of vocal fold vibration viewed under stroboscopy; (5) PPQ, APQ and NNE were positively related to each other.


    Energy Technology Data Exchange (ETDEWEB)

    John l. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Deepak Mehra


    The 1st generation acoustic monitoring package was designed to detect and analyze weak acoustic signals inside natural gas transmission lines. Besides a microphone it housed a three-inch diameter aerodynamic acoustic signal amplifier to maximize sensitivity to leak induced {Delta}p type signals. The theory and test results of this aerodynamic signal amplifier was described in the master's degree thesis of our Research Assistant Deepak Mehra who is about to graduate. To house such a large three-inch diameter sensor required the use of a steel 300-psi rated 4 inch weld neck flange, which itself weighed already 29 pounds. The completed 1st generation Acoustic Monitoring Package weighed almost 100 pounds. This was too cumbersome to mount in the field, on an access port at a pipeline shut-off valve. Therefore a 2nd generation and truly Portable Acoustic Monitor was built. It incorporated a fully self-contained {Delta}p type signal sensor, rated for line pressures up to 1000 psi with a base weight of only 6 pounds. This is the Rosemont Inc. Model 3051CD-Range 0, software driven sensor, which is believed to have industries best total performance. Its most sensitive unit was purchased with a {Delta}p range from 0 to 3 inch water. This resulted in the herein described 2nd generation: Portable Acoustic Monitoring Package (PAMP) for pipelines up to 1000 psi. Its 32-pound total weight includes an 18-volt battery. Together with a 3 pound laptop with its 4-channel data acquisition card, completes the equipment needed for field acoustic monitoring of natural gas transmission pipelines.

  15. Impacts of short-time scale water column variability on broadband high-frequency acoustic wave propagation (United States)

    Eickmeier, Justin

    Acoustical oceanography is one way to study the ocean, its internal layers, boundaries and all processes occurring within using underwater acoustics. Acoustical sensing techniques allows for the measurement of ocean processes from within that logistically or financially preclude traditional in-situ measurements. Acoustic signals propagate as pressure wavefronts from a source to a receiver through an ocean medium with variable physical parameters. The water column physical parameters that change acoustic wave propagation in the ocean include temperature, salinity, current, surface roughness, seafloor bathymetry, and vertical stratification over variable time scales. The impacts of short-time scale water column variability on acoustic wave propagation include coherent and incoherent surface reflections, wavefront arrival time delay, focusing or defocusing of the intensity of acoustic beams and refraction of acoustic rays. This study focuses on high-frequency broadband acoustic waves, and examines the influence of short-time scale water column variability on broadband high-frequency acoustics, wavefronts, from 7 to 28 kHz, in shallow water. Short-time scale variability is on the order of seconds to hours and the short-spatial scale variability is on the order of few centimeters. Experimental results were collected during an acoustic experiment along 100 m isobaths and data analysis was conducted using available acoustic wave propagation models. Three main topics are studied to show that acoustic waves are viable as a remote sensing tool to measure oceanographic parameters in shallow water. First, coherent surface reflections forming striation patterns, from multipath receptions, through rough surface interaction of broadband acoustic signals with the dynamic sea surface are analyzed. Matched filtered results of received acoustic waves are compared with a ray tracing numerical model using a sea surface boundary generated from measured water wave spectra at the time of

  16. Compact Acoustic Models for Embedded Speech Recognition

    Directory of Open Access Journals (Sweden)

    Christophe Lévy


    Full Text Available Speech recognition applications are known to require a significant amount of resources. However, embedded speech recognition only authorizes few KB of memory, few MIPS, and small amount of training data. In order to fit the resource constraints of embedded applications, an approach based on a semicontinuous HMM system using state-independent acoustic modelling is proposed. A transformation is computed and applied to the global model in order to obtain each HMM state-dependent probability density functions, authorizing to store only the transformation parameters. This approach is evaluated on two tasks: digit and voice-command recognition. A fast adaptation technique of acoustic models is also proposed. In order to significantly reduce computational costs, the adaptation is performed only on the global model (using related speaker recognition adaptation techniques with no need for state-dependent data. The whole approach results in a relative gain of more than 20% compared to a basic HMM-based system fitting the constraints.

  17. Radiological evaluation of acoustic neurinoma

    International Nuclear Information System (INIS)

    Lee, Jong Tae; Park, Chang Yun; Choi, Byung So


    All 25 patients surgically proven acoustic neurinoma was analysed clinically, radiographically at Severance Hospital of Yonsei Univ. The patients not proved surgically in spite of clinical diagnosis of acoustic neurinoma was excluded from this study. The results are summarized as follows; The clinical findings are; 1. The incidence of tumor in female was twice more frequent than in male and the range of age was 20-50 years peak of age at onset of symptom. 2. The clinical symptoms were variable from unilateral hearing impairment or less (100%), headache (84%) to tinnitus (60%) in order of frequency. 3. The tumor growth in the left cerebellopontine angle was twice more than in the right side with the radio of 16:8. However, in one case bilateral simultaneous growth of acoustic neurinoma was noted. The radiological findings are: The best radiographic method to study the shape and size of internal acoustic canal to demonstrate erosion or destruction of petrous pyramida was considered to be straight frontal view and tomography of the skull in our series. 1. The shape of internal acoustic canal in tumors were straight (in 2 cases), bulbous (in 12 cases), and flared (in 11 cases). Particularly there was erosion or destruction of petrous bone in all of the flared cases of canal. 2. The acoustic meatal erosion was mainly suprameatal in 14 cases of 17 which was noted definite erosion radiographically. 3. The difference of height (vertical diameter) of both side of acoustic canal were follows; 6 cases among 25 was in the range of 0-2 mm measurement, remainder was more than 2 mm. Hence the variation in greater than 1 mm in between both sides of canal in same patient should be regard as abnormal as of acoustic neurinoma. 4. The carotid angiogram shows hydrocephalic pattern in 12 cases among 17. 5. In the vertebral angiogram of 8 cases, anterolateral displacement of basilar artery (in 6 caes), the upward displacement of superior cerebellar artery (in 4 cases) was common findings

  18. Acoustic constituents of prosodic typology (United States)

    Komatsu, Masahiko

    Different languages sound different, and considerable part of it derives from the typological difference of prosody. Although such difference is often referred to as lexical accent types (stress accent, pitch accent, and tone; e.g. English, Japanese, and Chinese respectively) and rhythm types (stress-, syllable-, and mora-timed rhythms; e.g. English, Spanish, and Japanese respectively), it is unclear whether these types are determined in terms of acoustic properties, The thesis intends to provide a potential basis for the description of prosody in terms of acoustics. It argues for the hypothesis that the source component of the source-filter model (acoustic features) approximately corresponds to prosody (linguistic features) through several experimental-phonetic studies. The study consists of four parts. (1) Preliminary experiment: Perceptual language identification tests were performed using English and Japanese speech samples whose frequency spectral information (i.e. non-source component) is heavily reduced. The results indicated that humans can discriminate languages with such signals. (2) Discussion on the linguistic information that the source component contains: This part constitutes the foundation of the argument of the thesis. Perception tests of consonants with the source signal indicated that the source component carries the information on broad categories of phonemes that contributes to the creation of rhythm. (3) Acoustic analysis: The speech samples of Chinese, English, Japanese, and Spanish, differing in prosodic types, were analyzed. These languages showed difference in acoustic characteristics of the source component. (4) Perceptual experiment: A language identification test for the above four languages was performed using the source signal with its acoustic features parameterized. It revealed that humans can discriminate prosodic types solely with the source features and that the discrimination is easier as acoustic information increases. The


    Directory of Open Access Journals (Sweden)

    Aleksandr Skvortsov


    Full Text Available The research of influence of life environment adverse factors on physical development and health of population is an actual problem of ecology. The aspects of the most actual problems of the modern world, namely environmental industrial noise pollution are considered in the article. Industrial facilities everywhere have noisy equipment. Noise is a significant factors of negative influenceon people and environment. Combined effects of noise and of other physical pollutions on people may cause amplification of their negative impact. If the noise pollution level from the object in a residential area exceeds the permissible levels (MPL, noise protection measures can be initiated. Today, the most common design decisions for noise protection are sound absorbing construction, noise screens and barriers, acousting housings, soundproff cabins. Many of them are popular, others are less known. The article deals with one of the most wide spread means of noise protection – a portable acoustic screen. The aim of the research is to determine the efficiency of portable acoustic screens. It is shown that the installation of such structures can reduce the average value of the sound level. The authors analyzed acoustic screens as device to reduce noise pollution. The authors offer a potable acoustic screen differing from the used easyness, mobility, minimum price and good sound protective properties. Effectiveness, a sound absorption coefficient and sound conductivity coefficient of a portable acoustic screen are evaluated. The descriptions of the algorithm calculations and the combination of technical solutions have practical originality. The results of the research demonstrate the advantages of the proposed solutions for reducing noise levels in the agro-industrial complex.

  20. Acoustic emission from polycrystalline graphites

    International Nuclear Information System (INIS)

    Ioka, I.; Yoda, S.; Oku, T.; Miyamoto, Y.


    Acoustic emission was monitored from polycrystalline graphites with different microstructure (pore size and pore volume) subjected to compressive loading. The graphites used in this study comprised five brands, that is, PGX, ISEM-1, IG-11, IG-15, and ISO-88. A root mean square (RMS) voltage and event counts of acoustic emission for graphites were measured during compressive loading. The acoustic emission was measured using a computed-based data acquisition and analysis system. The graphites were first deformed up to 80 % of the average fracture stress, then unloaded and reloaded again until the fracture occured. During the first loading, the change in RMS voltage for acoustic emission was detected from the initial stage. During the unloading, the RMS voltage became zero level as soon as the applied stress was released and then gradually rose to a peak and declined. The behavior indicated that the reversed plastic deformation occured in graphites. During the second loading, the RMS voltage gently increased until the applied stress exceeded the maximum stress of the first loading; there is no Kaiser effect in the graphites. A bicrystal model could give a reasonable explanation of this results. The empirical equation between the ratio of σ AE to σ f and σ f was obtained. It is considered that the detection of microfracture by the acoustic emission technique is effective in macrofracture prediction of polycrystalline graphites. (author)

  1. The sound of trustworthiness: Acoustic-based modulation of perceived voice personality


    Belin, Pascal; Boehme, Bibi; McAleer, Phil


    When we hear a new voice we automatically form a "first impression" of the voice owner’s\\ud personality; a single word is sufficient to yield ratings highly consistent across listeners. Past\\ud studies have shown correlations between personality ratings and acoustical parameters of\\ud voice, suggesting a potential acoustical basis for voice personality impressions, but its\\ud nature and extent remain unclear. Here we used data-driven voice computational modelling\\ud to investigate the link be...

  2. Analysis of acoustic emission data for bearings subject to unbalance

    Directory of Open Access Journals (Sweden)

    Rapinder Sawhney


    Full Text Available Acoustic Emission (AE is an effective nondestructive method for investigating the behavior of materials under stress. In recent decades, AE applications in structural health monitoring have been extended to other areas such as rotating machineries and cutting tools. This research investigates the application of acoustic emission data for unbalance analysis and detection in rotary systems. The AE parameter of interest in this study is a discrete variable that covers the significance of count, duration and amplitude of AE signals. A statistical model based on Zero-Inflated Poisson (ZIP regression is proposed to handle over-dispersion and excess zeros of the counting data. The ZIP model indicates that faulty bearings can generate more transient wave in the AE waveform. Control charts can easily detect the faulty bearing using the parameters of the ZIP model. Categorical data analysis based on generalized linear models (GLM is also presented. The results demonstrate the significance of the couple unbalance.

  3. Acoustic metamaterials for new two-dimensional sonic devices

    Energy Technology Data Exchange (ETDEWEB)

    Torrent, Daniel; Sanchez-Dehesa, Jose [Wave Phenomena Group, Department of Electronic Engineering, Polytechnic University of Valencia, C/Camino de Vera sn, E-46022 Valencia (Spain)


    It has been shown that two-dimensional arrays of rigid or fluidlike cylinders in a fluid or a gas define, in the limit of large wavelengths, a class of acoustic metamaterials whose effective parameters (sound velocity and density) can be tailored up to a certain limit. This work goes a step further by considering arrays of solid cylinders in which the elastic properties of cylinders are taken into account. We have also treated mixtures of two different elastic cylinders. It is shown that both effects broaden the range of acoustic parameters available for designing metamaterials. For example, it is predicted that metamaterials with perfect matching of impedance with air are now possible by using aerogel and rigid cylinders equally distributed in a square lattice. As a potential application of the proposed metamaterial, we present a gradient index lens for airborne sound (i.e. a sonic Wood lens) whose functionality is demonstrated by multiple scattering simulations.

  4. Inventory parameters

    CERN Document Server

    Sharma, Sanjay


    This book provides a detailed overview of various parameters/factors involved in inventory analysis. It especially focuses on the assessment and modeling of basic inventory parameters, namely demand, procurement cost, cycle time, ordering cost, inventory carrying cost, inventory stock, stock out level, and stock out cost. In the context of economic lot size, it provides equations related to the optimum values. It also discusses why the optimum lot size and optimum total relevant cost are considered to be key decision variables, and uses numerous examples to explain each of these inventory parameters separately. Lastly, it provides detailed information on parameter estimation for different sectors/products. Written in a simple and lucid style, it offers a valuable resource for a broad readership, especially Master of Business Administration (MBA) students.

  5. Software-based acoustical measurements

    CERN Document Server

    Miyara, Federico


    This textbook provides a detailed introduction to the use of software in combination with simple and economical hardware (a sound level meter with calibrated AC output and a digital recording system) to obtain sophisticated measurements usually requiring expensive equipment. It emphasizes the use of free, open source, and multiplatform software. Many commercial acoustical measurement systems use software algorithms as an integral component; however the methods are not disclosed. This book enables the reader to develop useful algorithms and provides insight into the use of digital audio editing tools to document features in the signal. Topics covered include acoustical measurement principles, in-depth critical study of uncertainty applied to acoustical measurements, digital signal processing from the basics, and metrologically-oriented spectral and statistical analysis of signals. The student will gain a deep understanding of the use of software for measurement purposes; the ability to implement software-based...

  6. Prototype acoustic resonance spectroscopy monitor

    International Nuclear Information System (INIS)

    Sinha, D.N.; Olinger, C.T.


    This report reports on work performed for the International Atomic Energy Agency (IAEA) through the Program Office for Technical Assistance (POTAS). In this work, we investigate possible applications of nondestructive acoustics measurements to facilitate IAEA safeguards at bulk processing facilities. Two different acoustic techniques for verifying the internal structure of a processing tank were investigated. During this effort we also examined two acoustic techniques for assessing the fill level within a processing tank. The fill-level measurements could be made highly portable and have an added safeguards advantage that they can also detect stratification of fill material. This later application may be particularly useful in confirming the absence of stratification in plutonium processing tanks before accountability samples are withdrawn

  7. Classroom acoustics: Three pilot studies (United States)

    Smaldino, Joseph J.


    This paper summarizes three related pilot projects designed to focus on the possible effects of classroom acoustics on fine auditory discrimination as it relates to language acquisition, especially English as a second language. The first study investigated the influence of improving the signal-to-noise ratio on the differentiation of English phonemes. The results showed better differentiation with better signal-to-noise ratio. The second studied speech perception in noise by young adults for whom English was a second language. The outcome indicated that the second language learners required a better signal-to-noise ratio to perform equally to the native language participants. The last study surveyed the acoustic conditions of preschool and day care classrooms, wherein first and second language learning occurs. The survey suggested an unfavorable acoustic environment for language learning.

  8. Acoustic multivariate condition monitoring - AMCM

    Energy Technology Data Exchange (ETDEWEB)

    Rosenhave, P.E. [Vestfold College, Maritime Dept., Toensberg (Norway)


    In Norway, Vestfold College, Maritime Department presents new opportunities for non-invasive, on- or off-line acoustic monitoring of rotating machinery such as off-shore pumps and diesel engines. New developments within acoustic sensor technology coupled with chemometric data analysis of complex signals now allow condition monitoring of hitherto unavailable flexibility and diagnostic specificity. Chemometrics paired with existing knowledge yields a new and powerful tool for condition monitoring. By the use of multivariate techniques and acoustics it is possible to quantify wear and tear as well as predict the performance of working components in complex machinery. This presentation describes the AMCM method and one result of a feasibility study conducted onboard the LPG/C `Norgas Mariner` owned by Norwegian Gas Carriers as (NGC), Oslo. (orig.) 6 refs.

  9. Performance of several viscothermal acoustic finite elements

    NARCIS (Netherlands)

    Kampinga, W.R.; Wijnant, Ysbrand H.; de Boer, Andries


    Viscothermal acoustics can be described by the linearized Navier Stokes equations. Besides inertia and compressibility, these equations take the heat conductivity and the viscosity of the medium (air) into account. These 'viscothermal' effects are significant in, for example, miniature acoustic

  10. Golden Gate and Pt. Reyes Acoustic Detections (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains detections of acoustic tagged fish from two general locations: Golden Gate (east and west line) and Pt. Reyes. Several Vemco 69khz acoustic...

  11. Subwoofer and nanotube butterfly acoustic flame extinction

    NARCIS (Netherlands)

    Aliev, Ali E.; Mayo, Nathanael K.; Baughman, Ray H.; Mills, Brent T.; Habtour, Ed


    Nonchemical flame control using acoustic waves from a subwoofer and a lightweight carbon nanotube thermoacoustic projector was demonstrated. The intent was to manipulate flame intensity, direction and propagation. The mechanisms of flame suppression using low frequency acoustic waves were discussed.

  12. Aero-acoustics noise assessment for Wind-Lens turbine

    International Nuclear Information System (INIS)

    Hashem, I.; Mohamed, M.H.; Hafiz, A.A.


    This paper introduces an aero-acoustic computational study that investigates the noise caused by one of the most promising wind energy conversion concepts, namely the 'Wind-Lens' technology. The hybrid method - where the flow field and acoustic field are solved separately, was deemed to be an appropriate tool to compute this study. The need to investigate this phenomenon increased gradually, since the feasibility of utilizing Wind-Lens turbine within densely populated cities and urban areas depends largely on their noise generation. Ffowcs Williams-Hawkings (FW-H) equation and its integral solution are used to predict the noise radiating to the farfield. CFD Simulations of transient three-dimensional flow field using (URANS) unsteady Reynolds-averaged Navier-Stokes equations are computed to acquire the acoustic sources location and sound intensity. Then, the noise propagates from the before-mentioned sources to pre-defined virtual microphones positioned in different locations. ANSYS-FLUENT is used to calculate the flow field on and around such turbines which is required for the FW-H code. Some effective parameters are investigated such as Wind-Lens shape, brim height and tip speed ratio. Comparison of the noise emitted from the bare wind turbine and different types of Wind-Lens turbine reveals that, the Wind-Lens generates higher noise intensity. - Highlights: • Aero-acoustic noise generated by wind turbines are one of the major challenges. • Noise from wind turbine equipped with a brimmed diffuser is investigated. • A computational aero-acoustic study using the hybrid method is introduced. • Effective parameters are studied such Wind-Lens shape, brim height and speed ratio. • The optimal shape has a moderate power coefficient and the less noise generation.

  13. Acoustic sensors in the helmet detect voice and physiology (United States)

    Scanlon, Michael V.


    The Army Research Laboratory has developed body-contacting acoustic sensors that detect diverse physiological sounds such as heartbeats and breaths, high quality speech, and activity. These sensors use an acoustic impedance-matching gel contained in a soft, compliant pad to enhance the body borne sounds, yet significantly repel airborne noises due to an acoustic impedance mismatch. The signals from such a sensor can be used as a microphone with embedded physiology, or a dedicated digital signal processor can process packetized data to separate physiological parameters from voice, and log parameter trends for performance surveillance. Acoustic sensors were placed inside soldier helmets to monitor voice, physiology, activity, and situational awareness clues such as bullet shockwaves from sniper activity and explosions. The sensors were also incorporated into firefighter breathing masks, neck and wrist straps, and other protective equipment. Heart rate, breath rate, blood pressure, voice and activity can be derived from these sensors (reports at Having numerous sensors at various locations provides a means for array processing to reduce motion artifacts, calculate pulse transit time for passive blood pressure measurement, and the origin of blunt/penetrating traumas such as ballistic wounding. These types of sensors give us the ability to monitor soldiers and civilian emergency first-responders in demanding environments, and provide vital signs information to assess their health status and how that person is interacting with the environment and mission at hand. The Objective Force Warrior, Scorpion, Land Warrior, Warrior Medic, and other military and civilian programs can potentially benefit from these sensors.

  14. Laryngeal findings and acoustic changes in hubble-bubble smokers. (United States)

    Hamdan, Abdul-latif; Sibai, Abla; Oubari, Dima; Ashkar, Jihad; Fuleihan, Nabil


    The purpose of our investigation was to evaluate the laryngeal findings and acoustic changes in hubble-bubble smokers. A total of 42 subjects with history of hubble-bubble smoking were recruited for this study. A corresponding group with a history of cigarette smoking and controls were matched. All subjects underwent laryngeal video-endostroboscopic evaluation and acoustic analysis. In the hubble-bubble smoking group, 61.9% were males. The average age was 30.02 +/- 9.48 years and the average number of years of smoking was 8.09 +/- 6.45 years. Three subjects had dysphonia at the time of examination. The incidence of benign lesions of the vocal folds in the hubble-bubble group was 21.5%, with edema being the most common at 16.7% followed by cyst at 4.8%. The incidence of laryngeal findings was significantly higher in the hubble-bubble group compared to controls. In the cigarette-smoking group, the most common finding was vocal fold cyst in 14.8% followed by polyps in 7.4%, and edema, sulcus vocalis and granuloma. These findings were not significantly different from the hubble-bubble group except for the thick mucus, which was significantly higher in the latter. There were no significant changes in any of the acoustic parameters between hubble-bubble smokers and controls except for the VTI and MPT, which were significantly lower in the hubble-bubble group. In comparison with the cigarette-smoking group, hubble-bubble smokers had significantly higher Fundamental frequency and habitual pitch (p value 0.042 and 0.008, respectively). The laryngeal findings in hubble-bubble smokers are comparable to cigarette smokers. These laryngeal findings are not translated acoustically, as all the acoustic parameters are within normal range compared to controls.

  15. Why and how acoustic emission in pressure vessel first hydrotest

    International Nuclear Information System (INIS)

    Panzani, C.; Tonolini, F.; Villa, G.; Regis, V.


    The main advantages obtained performing the Acoustic Emission (AE) examination during pressure vessel first hydrotest are presented. The characteristics and performance of the AE instrumentation to be used for a correct test are illustrated. The main criteria for AE source characterization (location, typical AE parameters and their correlation with pressure value), the calibration and test procedures are discussed. The ndt post-test examinations and laboratory specimen experiments are also outlined. Personnel qualification requirements are finally indicated. (Author) [pt

  16. Stochastic formalism-based seafloor feature discrimination using multifractality of time-dependent acoustic backscatter

    Digital Repository Service at National Institute of Oceanography (India)

    Haris, K.; Chakraborty, B.

    parameters among the coarse and fine sediments exhibit subtle difference in alpha and H, whereas the codimension parameter C1 representing the sparseness of the data varies. The C1 values are well clustered at both the acoustic...

  17. Historic perspective of the acoustic otoscope. (United States)

    Walsh, F P; Cox, L C; MacDonald, C B


    The acoustic otoscope, originally called the acoustic reflectometer, was developed and produced by John and David Teele in the early 1980s. Since initial production, two different instrument versions have been developed by two separate companies. During the period of time in which the acoustic otoscope has been in production, there have been numerous studies reported with the two instrument versions. We provide a historic summary of the acoustic otoscope, summarize the pertinent studies, and address the contrasting results found in the literature.

  18. Physical foundations of technical acoustics

    CERN Document Server

    Malecki, I


    Physical Foundations of Technical Acoustics discusses theoretical foundations of acoustical engineering. It is not so much a technical compendium as a systematic statement of physical laws so conceived that technologists might find in it all the information they need to become acquainted with the physical meaning and mathematical expression of phenomena they encounter in their work. To facilitate the acquirement of notions, which lie beyond a layman's grasp, the plan of narration adopted consists in beginning with the simplest idealized cases and then gradually moving on to the truest possibl

  19. Acoustic target models and phenomenology (United States)

    Neiswander, Paul R.; Kaiser, Stephen G.


    Ground-based and airborne acoustic systems often target vehicles that are powered by reciprocating internal combustion engines. Typically the far-field acoustic spectra of these vehicles are dominated by a few narrow spectral lines that are harmonically related. The dominant harmonics change with engine speed and also with emission angle. This paper describes a simple model that recreates some of this variability. The model breaks the far-field signature into two components: the generation of a train of pressure pulses at each exhaust outlet, and the radiation of sound pressures from the outlet(s) to the far field. Predictions are compared with field test data for two ground vehicles.

  20. Phase conjugation of acoustic beams (United States)

    Bunkin, F. V.; Vlasov, D. V.; Kravtsov, Iu. A.

    The paper presents a classification of methods for the phase conjugation (PC) of wave fields of various physical natures on the basis of such nonliner interactions as stimulated scattering, and three- and four-wave interactions. Among the latter, attention is given to holographic (volume and surface) and parametric PC schemes, permitting PC with amplification. The possibility of developing phase-conjugated devices using acoustic PC devices on the basis of various nonlinear effects is considered. Experimental results pertaining to the PC of sound fields are presented, and possible applications of acoustic PC devices are indicated.

  1. Influence of Architectural Features and Styles on Various Acoustical Measures in Churches (United States)

    Carvalho, Antonio Pedro Oliveira De.

    This work reports on acoustical field measurements made in a major survey of 41 Catholic churches in Portugal that were built in the last 14 centuries. A series of monaural and binaural acoustical measurements was taken at multiple source/receiver positions in each church using the impulse response with noise burst method. The acoustical measures were Reverberation Time (RT), Early Decay Time (EDT), Clarity (C80), Definition (D), Center Time (TS), Loudness (L), Bass Ratios based on the Reverberation Time and Loudness rm (BR_-RT and rm BR_-L), Rapid Speech Transmission Index (RASTI), and the binaural Coherence (COH). The scope of this research is to investigate how the acoustical performance of Catholic churches relates to their architectural features and to determine simple formulas to predict acoustical measures by the use of elementary architectural parameters. Prediction equations were defined among the acoustical measures to estimate values at individual locations within each room as well as the mean values in each church. Best fits with rm R^2~0.9 were not uncommon among many of the measures. Within and interchurch differences in the data for the acoustical measures were also analyzed. The variations of RT and EDT were identified as much smaller than the variations of the other measures. The churches tested were grouped in eight architectural styles, and the effect of their evolution through time on these acoustical measures was investigated. Statistically significant differences were found regarding some architectural styles that can be traced to historical changes in Church history, especially to the Reformation period. Prediction equations were defined to estimate mean acoustical measures by the use of fifteen simple architectural parameters. The use of the Sabine and Eyring reverberation time equations was tested. The effect of coupled spaces was analyzed, and a new algorithm for the application of the Sabine equation was developed, achieving an average of

  2. Acoustic Analysis and Electroglottography in Elite Vocal Performers. (United States)

    Villafuerte-Gonzalez, Rocio; Valadez-Jimenez, Victor M; Sierra-Ramirez, Jose A; Ysunza, Pablo Antonio; Chavarria-Villafuerte, Karen; Hernandez-Lopez, Xochiquetzal


    Acoustic analysis of voice (AAV) and electroglottography (EGG) have been used for assessing vocal quality in patients with voice disorders. The effectiveness of these procedures for detecting mild disturbances in vocal quality in elite vocal performers has been controversial. To compare acoustic parameters obtained by AAV and EGG before and after vocal training to determine the effectiveness of these procedures for detecting vocal improvements in elite vocal performers. Thirty-three elite vocal performers were studied. The study group included 14 males and 19 females, ages 18-40 years, without a history of voice disorders. Acoustic parameters were obtained through AAV and EGG before and after vocal training using the Linklater method. Nonsignificant differences (P > 0.05) were found between values of fundamental frequency (F 0 ), shimmer, and jitter obtained by both procedures before vocal training. Mean F 0 was similar after vocal training. Jitter percentage as measured by AAV showed nonsignificant differences (P > 0.05) before and after vocal training. Shimmer percentage as measured by AAV demonstrated a significant reduction (P performers undergoing vocal training. EGG demonstrated better efficacy for detecting improvements and provided additional parameters as compared to AAV. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  3. Acoustic Characterization of a Multi-Rotor Unmanned Aircraft (United States)

    Feight, Jordan; Gaeta, Richard; Jacob, Jamey


    In this study, the noise produced by a small multi-rotor rotary wing aircraft, or drone, is measured and characterized. The aircraft is tested in different configurations and environments to investigate specific parameters and how they affect the acoustic signature of the system. The parameters include rotor RPM, the number of rotors, distance and angle of microphone array from the noise source, and the ambient environment. The testing environments include an anechoic chamber for an idealized setting and both indoor and outdoor settings to represent real world conditions. PIV measurements are conducted to link the downwash and vortical flow structures from the rotors with the noise generation. The significant factors that arise from this study are the operational state of the aircraft and the microphone location (or the directivity of the noise source). The directivity in the rotor plane was shown to be omni-directional, regardless of the varying parameters. The tonal noise dominates the low to mid frequencies while the broadband noise dominates the higher frequencies. The fundamental characteristics of the acoustic signature appear to be invariant to the number of rotors. Flight maneuvers of the aircraft also significantly impact the tonal content in the acoustic signature.

  4. On Architectural Acoustics Design using Computer Simulation

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning


    The acoustical quality of a given building, or space within the building, is highly dependent on the architectural design. Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in the architectural acoustic and the emergence of potent...

  5. Measuring ship acoustic signatures against mine threat

    NARCIS (Netherlands)

    Jong, C.A.F. de; Quesson, B.A.J.; Ainslie, M.A.; Vermeulen, R.C.N.


    The NATO standard ‘AMP-15’ [1] provides procedures for the measurement and reporting of the acoustic signature of ships and for the establishment of acoustic signature goals to counter the naval mine threat. Measurements are carried out at dedicated shallow water acoustic ranges. Measurements

  6. Acoustic communication in plant–animal interactions

    NARCIS (Netherlands)

    Schöner, M.G.; Simon, R.; Schöner, C.R.


    Acoustic communication is widespread and well-studied in animals but has been neglected in other organisms such as plants. However, there is growing evidence for acoustic communication in plant–animal interactions. While knowledge about active acoustic signalling in plants (i.e. active sound

  7. Predicting and auralizing acoustics in classrooms

    DEFF Research Database (Denmark)

    Christensen, Claus Lynge


    Although classrooms have fairly simple geometries, this type of room is known to cause problems when trying to predict their acoustics using room acoustics computer modeling. Some typical features from a room acoustics point of view are: Parallel walls, low ceilings (the rooms are flat), uneven...

  8. The Acoustical Apparatus of Rudolph Koenig. (United States)

    Greenslade, Thomas B., Jr.


    Discusses the history of Rudolph Koenig's contribution to the development of acoustical apparatus. Contributions include the clock fork to determine absolute acoustic frequencies, a forerunner of the oscilloscope called the manometric flame, and an acoustic interference apparatus used in the Fourier synthesis of musical sounds. (MDH)

  9. Application of holography in jet acoustic studies

    Indian Academy of Sciences (India)

    Source strength distribution on a jet boundary was obtained from measurements using the principle of acoustic holography. Measurements were conducted in an open field. Measurement of acoustic pressure on a cylindrical twodimensional contour located close to the vibrating jet boundary was used to obtain the acoustic ...

  10. Outdoor Acoustics as a General Discipline

    DEFF Research Database (Denmark)

    Rasmussen, Karsten Bo


    A tutorial paper exploring the characteristics of sound outdoors. Outdoor acoustics is contrasted to room acoustics. A number of important aspects of outdoor acoustics are exemplified and theoretical approaches are outlined. These are influence of ground impedance, influence of weather, screening...

  11. Acoustical monitoring of diesel engines in reverberant environment

    International Nuclear Information System (INIS)

    Mein, M.


    The feed-back knowledge of emergency diesel generators in nuclear power plants shows that some malfunctions, mainly affecting fuel-injection or distribution system of the engine can be heard and detected by experienced maintenance agents. This study consists in the feasibility,v of acoustical monitoring of those diesel engines, taking into account the reverberant environment of the machine. The operating cycle of the diesel is composed of transient events (injection, combustion, valve closure...) which generate highly non stationary acoustical signals. The detection of a malfunction appearing on such transients requires the use of adapted signal processing techniques. Visual analysis of the phenomena is first proceeded using time-frequency and time-scale representations. The second step will be parametric modeling of acoustical signatures for the extraction of characteristic parameters, in order to characterize the fault and to use an automatic classification system. The lest part of the study will concern the evaluation of the robustness of the detection methods in regard to acoustical reverberation. (author). 10 refs., 6 figs

  12. Single-Channel Blind Estimation of Reverberation Parameters

    DEFF Research Database (Denmark)

    Doire, C.S.J.; Brookes, M. D.; Naylor, P. A.


    The reverberation of an acoustic channel can be characterised by two frequency-dependent parameters: the reverberation time and the direct-to-reverberant energy ratio. This paper presents an algorithm for blindly determining these parameters from a single-channel speech signal. The algorithm uses...

  13. Reverberant Acoustic Testing and Direct Field Acoustic Testing Acoustic Standing Waves and their Impact on Structural Responses (United States)

    Kolaini, Ali R.; Doty, Benjamin; Chang, Zensheu


    The aerospace industry has been using two methods of acoustic testing to qualify flight hardware: (1) Reverberant Acoustic Test (RAT), (2) Direct Field Acoustic Test (DFAT). The acoustic field obtained by RAT is generally understood and assumed to be diffuse, expect below Schroeder cut-of frequencies. DFAT method of testing has some distinct advantages over RAT, however the acoustic field characteristics can be strongly affected by test setup such as the speaker layouts, number and location of control microphones and control schemes. In this paper the following are discussed based on DEMO tests performed at APL and JPL: (1) Acoustic wave interference patterns and acoustic standing waves, (2) The structural responses in RAT and DFAT.

  14. Acoustic emission monitoring during welding

    International Nuclear Information System (INIS)

    Prine, D.W.


    Weld repair is a major cost item, particularly in the fabrication of heavy section weldments such as pressure vessels. A heavy section repair can frequently leave the weld with worse problems than the original flaw. These problems may include damage to weld microstructure as well as added residual stress. The removal of flaws through in-process repair can minimize these problems and certainly, the removal of one or two passes and their replacement with automatic welding procedure is considerably cheaper than a heavy section post weld repair. The major barrier to application of in-process repair is the lack of an effective in-process inspection procedure. In-process monitoring of Acoustic Emission shows great promise for providing this much needed tool. The successful application of acoustic emission to in-process weld monitoring requires that advanced signal processing and pattern recognition techniques be applied if the flaw related acoustic emission is to be separated from the overwhelming amount of background noise present in welding. GARD, INC. has studied the problem of applying in-process acoustic emission monitoring to weld inspection for over 9 years and has empirically developed AE signal processing techniques which allow typical weld flaws to be detected, located, and characterized. This paper discusses these techniques and describes a recent successful field test of a microcomputer based AE weld monitor in a nuclear fabrication plant. (author)

  15. Satellite and acoustic tracking device

    KAUST Repository

    Berumen, Michael L.


    The present invention relates a method and device for tracking movements of marine animals or objects in large bodies of water and across significant distances. The method and device can track an acoustic transmitter attached to an animal or object beneath the ocean surface by employing an unmanned surface vessel equipped with a hydrophone array and GPS receiver.

  16. Shallow-Water Mud Acoustics (United States)


    Ballard, Tom Muir , David Knobles, Kevin Lee, and Preston Wilson), and Naval Underwater Warfare Center-PC & NP (Kerry Commander, Danny Lim, David Burnett...K. M. Lee, and T. G. Muir , “Laboratory P- and S-wave measurements of a reconstituted muddy sediment with comparison to card-house theory,” J. Acoust

  17. Topology optimization for acoustic problems

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard


    In this paper a method to control acoustic properties in a room with topology optimization is presented. It is shown how the squared sound pressure amplitude in a certain part of a room can be minimized by distribution of material in a design domain along the ceiling in 2D and 3D. Nice 0-1 designs...

  18. Acoustic Resonance in School Hallways (United States)

    Bucki, Elliot; Nagle, Matthew; Smith, Pearson; Taylor, Ken


    This paper takes the theory of acoustic standing waves for air columns and applies it to school hallways. By utilizing an audio generator and power amplifier/speaker the authors set up an experiment in a school hallway and studied the resonant patterns created for a range of driving frequencies. Data describing the various mode structures are presented.

  19. Acoustical coupling of lizard eardrums

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, Jakob; Manley, Geoffrey A


    Lizard ears are clear examples of two-input pressure-difference receivers, with up to 40-dB differences in eardrum vibration amplitude in response to ipsi- and contralateral stimulus directions. The directionality is created by acoustical coupling of the eardrums and interaction of the direct...

  20. Acoustics SIMOPS: managing the unnecessary

    Energy Technology Data Exchange (ETDEWEB)

    Hanton, Samuel John [Nautronix Marine Technology Solutions, Rio de Janeiro, RJ (Brazil)


    Time is money, and offshore operations are expensive. The desire therefore, is to increase efficiency through the condensing of schedules. This inevitably leads to SIMOPS of some degree, and this paper discusses SIMOPS along with, more specifically, the challenges they provide to acoustic positioning. (author)

  1. Acoustic design of boundary segments in aircraft fuselages using topology optimization and a specialized acoustic pressure function (United States)

    Radestock, Martin; Rose, Michael; Monner, Hans Peter


    In most aviation applications, a major cost benefit can be achieved by a reduction of the system weight. Often the acoustic properties of the fuselage structure are not in the focus of the primary design process, too. A final correction of poor acoustic properties is usually done using insulation mats in the chamber between the primary and secondary shell. It is plausible that a more sophisticated material distribution in that area can result in a substantially reduced weight. Topology optimization is a well-known approach to reduce material of compliant structures. In this paper an adaption of this method to acoustic problems is investigated. The gap full of insulation mats is suitably parameterized to achieve different material distributions. To find advantageous configurations, the objective in the underlying topology optimization is chosen to obtain good acoustic pressure patterns in the aircraft cabin. An important task in the optimization is an adequate Finite Element model of the system. This can usually not be obtained from commercially available programs due to the lack of special sensitivity data with respect to the design parameters. Therefore an appropriate implementation of the algorithm has been done, exploiting the vector and matrix capabilities in the MATLABQ environment. Finally some new aspects of the Finite Element implementation will also be presented, since they are interesting on its own and can be generalized to efficiently solve other partial differential equations as well.

  2. Parvulescu Revisited: Small Tank Acoustics for Bioacousticians. (United States)

    Rogers, Peter H; Hawkins, Anthony D; Popper, Arthur N; Fay, Richard R; Gray, Michael D


    Researchers often perform hearing studies on fish in small tanks. The acoustic field in such a tank is considerably different from the acoustic field that occurs in the animal's natural environment. The significance of these differences is magnified by the nature of the fish's auditory system where either acoustic pressure (a scalar), acoustic particle velocity (a vector), or both may serve as the stimulus. It is essential for the underwater acoustician to understand the acoustics of small tanks to be able to carry out valid auditory research in the laboratory and to properly compare and interpret the results of others.

  3. Empirical mode decomposition for analyzing acoustical signals (United States)

    Huang, Norden E. (Inventor)


    The present invention discloses a computer implemented signal analysis method through the Hilbert-Huang Transformation (HHT) for analyzing acoustical signals, which are assumed to be nonlinear and nonstationary. The Empirical Decomposition Method (EMD) and the Hilbert Spectral Analysis (HSA) are used to obtain the HHT. Essentially, the acoustical signal will be decomposed into the Intrinsic Mode Function Components (IMFs). Once the invention decomposes the acoustic signal into its constituting components, all operations such as analyzing, identifying, and removing unwanted signals can be performed on these components. Upon transforming the IMFs into Hilbert spectrum, the acoustical signal may be compared with other acoustical signals.

  4. Acoustic and spectral characteristics of young children's fricative productions: A developmental perspective (United States)

    Nissen, Shawn L.; Fox, Robert Allen


    Scientists have made great strides toward understanding the mechanisms of speech production and perception. However, the complex relationships between the acoustic structures of speech and the resulting psychological percepts have yet to be fully and adequately explained, especially in speech produced by younger children. Thus, this study examined the acoustic structure of voiceless fricatives (/f, θ, s, /sh/) produced by adults and typically developing children from 3 to 6 years of age in terms of multiple acoustic parameters (durations, normalized amplitude, spectral slope, and spectral moments). It was found that the acoustic parameters of spectral slope and variance (commonly excluded from previous studies of child speech) were important acoustic parameters in the differentiation and classification of the voiceless fricatives, with spectral variance being the only measure to separate all four places of articulation. It was further shown that the sibilant contrast between /s/ and /sh/ was less distinguished in children than adults, characterized by a dramatic change in several spectral parameters at approximately five years of age. Discriminant analysis revealed evidence that classification models based on adult data were sensitive to these spectral differences in the five-year-old age group.

  5. Hawking Temperature of Acoustic Black Hole Zhi Kun Xie

    Indian Academy of Sciences (India)

    With parameter r = rH(ν), it is the local event horizon of the acoustic black hole. The new tortoise coordinate can be expressed as (Zheng et al. 2010; Zhikun &. Xie 2011; Weizhen et al. 2011) r∗ = 1. 2κ ln. [ r − rH. rH. ] , ν∗ = ν − ν0, θ∗ = θ − θ0, ϕ∗ = ϕ − ϕ0,. (2) where κ is an adjustable parameter, and κ, ν0,θ0 and ϕ0 are all ...

  6. A comprehensive strategy for the analysis of acoustic compressibility and optical deformability on single cells (United States)

    Yang, Tie; Bragheri, Francesca; Nava, Giovanni; Chiodi, Ilaria; Mondello, Chiara; Osellame, Roberto; Berg-Sørensen, Kirstine; Cristiani, Ilaria; Minzioni, Paolo


    We realized an integrated microfluidic chip that allows measuring both optical deformability and acoustic compressibility on single cells, by optical stretching and acoustophoresis experiments respectively. Additionally, we propose a measurement protocol that allows evaluating the experimental apparatus parameters before performing the cell-characterization experiments, including a non-destructive method to characterize the optical force distribution inside the microchannel. The chip was used to study important cell-mechanics parameters in two human breast cancer cell lines, MCF7 and MDA-MB231. Results indicate that MDA-MB231 has both higher acoustic compressibility and higher optical deformability than MCF7, but statistical analysis shows that optical deformability and acoustic compressibility are not correlated parameters. This result suggests the possibility to use them to analyze the response of different cellular structures. We also demonstrate that it is possible to perform both measurements on a single cell, and that the order of the two experiments does not affect the retrieved values.

  7. The deep sea Acoustic Detection system AMADEUS

    International Nuclear Information System (INIS)

    Naumann, Christopher Lindsay


    As a part of the ANTARES neutrino telescope, the AMADEUS (ANTARES Modules for Acoustic Detection Under the Sea) system is an array of acoustical sensors designed to investigate the possibilities of acoustic detection of ultra-high energy neutrinos in the deep sea. The complete system will comprise a total of 36 acoustic sensors in six clusters on two of the ANTARES detector lines. With an inter-sensor spacing of about one metre inside the clusters and between 15 and 340 metres between the different clusters, it will cover a wide range of distances as will as provide a considerable lever arm for point source triangulation. Three of these clusters have already been deployed in 2007 and have been in operation since, currently yielding around 2GB of acoustic data per day. The remaining three clusters are scheduled to be deployed in May 2008 together with the final ANTARES detector line. Apart from proving the feasibility of operating an acoustic detection system in the deep sea, the main aim of this project is an in-depth survey of both the acoustic properties of the sea water and the acoustic background present at the detector site. It will also serve as a platform for the development and refinement of triggering, filtering and reconstruction algorithms for acoustic particle detection. In this presentation, a description of the acoustic sensor and read-out system is given, together with examples for the reconstruction and evaluation of the acoustic data.

  8. The Importance of Vocal Parameters Correlation

    Directory of Open Access Journals (Sweden)

    Valentin Ghisa


    Full Text Available To analyze communication we need to study the main parameters that describe the vocal sounds from the point of view of information content transfer efficiency. In this paper we analyze the physical quality of the “on air" information transfer, according to the audio streaming parameters and from the particular phonetic nature of the human factor. Applying this statistical analysis we aim to identify and record the correlation level of the acoustical parameters with the vocal ones and the impact which the presence of this cross-correlation can have on communication structures’ improvement.

  9. Acoustically assisted diffusion through membranes and biomaterials

    International Nuclear Information System (INIS)

    Floros, J.D.; Liang, H.


    Part of a special section on the symposium ''Ultrasonic Applications in the Food Industry.'' The use of high-intensity ultrasound in food processing is reviewed. Acoustic radiation, or sound, can be used to monitor various operations or products or to alter a process or product; however, the direct use of sound to improve food processes is not very popular. High-intensity acoustic radiation induces various changes as it passes through a medium, largely as a result of heating, cavitation, agitation and shear stresses, compression and rarefaction, and turbulence. The diffusion of sound through a medium is influenced by factors such as the temperature, acoustic intensity, acoustic frequency, direction of the acoustic wave, pulsation of the acoustic wave, and properties of the medium. Some potential applications of acoustic energy in food processes are increased drying efficiency, acceleration of diffusion through polymeric and biological membranes, and enhanced diffusion through porous materials

  10. Granular acoustic switches and logic elements (United States)

    Li, Feng; Anzel, Paul; Yang, Jinkyu; Kevrekidis, Panayotis G.; Daraio, Chiara


    Electrical flow control devices are fundamental components in electrical appliances and computers; similarly, optical switches are essential in a number of communication, computation and quantum information-processing applications. An acoustic counterpart would use an acoustic (mechanical) signal to control the mechanical energy flow through a solid material. Although earlier research has demonstrated acoustic diodes or circulators, no acoustic switches with wide operational frequency ranges and controllability have been realized. Here we propose and demonstrate an acoustic switch based on a driven chain of spherical particles with a nonlinear contact force. We experimentally and numerically verify that this switching mechanism stems from a combination of nonlinearity and bandgap effects. We also realize the OR and AND acoustic logic elements by exploiting the nonlinear dynamical effects of the granular chain. We anticipate these results to enable the creation of novel acoustic devices for the control of mechanical energy flow in high-performance ultrasonic devices.

  11. Measurements of acoustic properties for thin films

    International Nuclear Information System (INIS)

    Kushibiki, J.; Maehara, H.; Chubachi, N.


    A measurement method for determining thin-film acoustic properties, such as characteristic acoustic impedance, sound velocity, density, and stiffness constant, is developed with a simple measurement principle and high measurement accuracy. The acoustic properties are determined from a maximum reflection loss and a center frequency obtained through a frequency response of the reflection loss for an acoustic transmission line composed of a sapphire/film/water system by using the acoustic pulse mode measurement system in the UHF range. The determination of the acoustic properties is demonstrated for sputtered fused quartz film, low-expansion borosilicate glass films, and chalcogenide glass films of evaporated As 2 S 3 and As 2 Se 3 , within the measurement accuracy around 1--2%. It is also found that the acoustic properties of thin films are generally different from those of bulk materials, depending on the fabrication techniques and conditions

  12. Shape optimization: Good looks and acoustics too! (United States)

    D'Antonio, Peter; Cox, Trevor J.; Haas, Steve


    One of the challenges in the architectural acoustic design of museums and other public spaces is to develop contemporary scattering surfaces that complement contemporary architecture in the way that statuary, coffered ceilings, columns, and relief ornamentation complemented classic architecture. Often acoustic surfaces satisfy the acoustics, but may or may not satisfy the aesthetics. One approach that has been successful employs a combination of boundary element and multidimensional optimization techniques. The architect supplies the desired shape motif and the acoustician supplies the acoustical performance requirements. The optimization program then provides an Arcousthetic surface, which simultaneously satisfies the architecture, the acoustics, and the aesthetics. The program can be used with diffusive or diffsorptive surfaces. Photos of installations using these acoustic tools and a description of the design of the National Museum of the American Indian will also be presented to illustrate the usefulness of these devices and their impact on architectural acoustics.

  13. Acoustic Studies on Nanodroplets, Microbubbles and Liposomes (United States)

    Kumar, Krishna Nandan

    in vitro study aimed at developing an ultrasound-aided noninvasive pressure estimation technique using contrast agents-DefinityRTM, a lipid coated microbubble, and an experimental PLA (Poly lactic acid) microbubbles. Scattered responses from these bubbles have been measured in vitro as a function of ambient pressure using a 3.5 MHz acoustic excitation of varying amplitude. At an acoustic pressure of 670 kPa, Definity RTM microbubbles showed a linear decrease in subharmonic signal with increasing ambient pressure, registering a 12dB reduction at an overpressure of 120 mm Hg. Ultrasound contrast microbubbles experience widely varying ambient blood pressure in different organs, which can also change due to diseases. Pressure change can alter the material properties of the encapsulation of these microbubbles. Here the characteristic rheological parameters of contrast agent Definity and Targestar are determined by varying the ambient pressure (in a physiologically relevant range 0-200 mmHg). Four different interfacial rheological models are used to characterize the microbubbles. Both the contrast agents show an increase in their interfacial dilatational viscosity and interfacial dilatational elasticity with ambient pressure. It has been well established that liposomes prepared following a careful multi-step procedure can be made echogenic. Our group as well as others experimentally demonstrated that freeze-drying in the presence of mannitol is a crucial component to ensure echogenicity. Here, we showed that freeze-dried aqueous solutions of excipients such as mannitol, meso-erythritol, glycine, and glucose that assume a crystalline state, when dispersed in water creates bubbles and are echogenic even without any lipids. We also present an explanation for the bubble generation process because of dissolution of mannitol.

  14. The sound of trustworthiness: Acoustic-based modulation of perceived voice personality.

    Directory of Open Access Journals (Sweden)

    Pascal Belin

    Full Text Available When we hear a new voice we automatically form a "first impression" of the voice owner's personality; a single word is sufficient to yield ratings highly consistent across listeners. Past studies have shown correlations between personality ratings and acoustical parameters of voice, suggesting a potential acoustical basis for voice personality impressions, but its nature and extent remain unclear. Here we used data-driven voice computational modelling to investigate the link between acoustics and perceived trustworthiness in the single word "hello". Two prototypical voice stimuli were generated based on the acoustical features of voices rated low or high in perceived trustworthiness, respectively, as well as a continuum of stimuli inter- and extrapolated between these two prototypes. Five hundred listeners provided trustworthiness ratings on the stimuli via an online interface. We observed an extremely tight relationship between trustworthiness ratings and position along the trustworthiness continuum (r = 0.99. Not only were trustworthiness ratings higher for the high- than the low-prototypes, but the difference could be modulated quasi-linearly by reducing or exaggerating the acoustical difference between the prototypes, resulting in a strong caricaturing effect. The f0 trajectory, or intonation, appeared a parameter of particular relevance: hellos rated high in trustworthiness were characterized by a high starting f0 then a marked decrease at mid-utterance to finish on a strong rise. These results demonstrate a strong acoustical basis for voice personality impressions, opening the door to multiple potential applications.

  15. Empirical and quadrature approximation of acoustic field and array response probability density functions. (United States)

    Hayward, Thomas J; Oba, Roger M


    Numerical methods are presented for approximating the probability density functions (pdf's) of acoustic fields and receiver-array responses induced by a given joint pdf of a set of acoustic environmental parameters. An approximation to the characteristic function of the random acoustic field (the inverse Fourier transform of the field pdf) is first obtained either by construction of the empirical characteristic function (ECF) from a random sample of the acoustic parameters, or by application of generalized Gaussian quadrature to approximate the integral defining the characteristic function. The Fourier transform is then applied to obtain an approximation of the pdf by a continuous function of the field variables. Application of both the ECF and generalized Gaussian quadrature is demonstrated in an example of a shallow-water ocean waveguide with two-dimensional uncertainty of sound speed and attenuation coefficient in the ocean bottom. Both approximations lead to a smoother estimate of the field pdf than that provided by a histogram, with generalized Gaussian quadrature providing a smoother estimate at the tails of the pdf. Potential applications to acoustic system performance quantification and to nonparametric acoustic signal processing are discussed.

  16. The sound of trustworthiness: Acoustic-based modulation of perceived voice personality. (United States)

    Belin, Pascal; Boehme, Bibi; McAleer, Phil


    When we hear a new voice we automatically form a "first impression" of the voice owner's personality; a single word is sufficient to yield ratings highly consistent across listeners. Past studies have shown correlations between personality ratings and acoustical parameters of voice, suggesting a potential acoustical basis for voice personality impressions, but its nature and extent remain unclear. Here we used data-driven voice computational modelling to investigate the link between acoustics and perceived trustworthiness in the single word "hello". Two prototypical voice stimuli were generated based on the acoustical features of voices rated low or high in perceived trustworthiness, respectively, as well as a continuum of stimuli inter- and extrapolated between these two prototypes. Five hundred listeners provided trustworthiness ratings on the stimuli via an online interface. We observed an extremely tight relationship between trustworthiness ratings and position along the trustworthiness continuum (r = 0.99). Not only were trustworthiness ratings higher for the high- than the low-prototypes, but the difference could be modulated quasi-linearly by reducing or exaggerating the acoustical difference between the prototypes, resulting in a strong caricaturing effect. The f0 trajectory, or intonation, appeared a parameter of particular relevance: hellos rated high in trustworthiness were characterized by a high starting f0 then a marked decrease at mid-utterance to finish on a strong rise. These results demonstrate a strong acoustical basis for voice personality impressions, opening the door to multiple potential applications.

  17. Large amplitude ion-acoustic solitary waves and double layers in multicomponent plasma with positrons

    International Nuclear Information System (INIS)

    Sabry, R.


    A finite amplitude theory for ion-acoustic solitary waves and double layers in multicomponent plasma consisting of hot positrons, cold ions, and electrons with two-electron temperature distributions is presented. Conditions are obtained under which large amplitude stationary ion-acoustic solitary waves and double layers can exist. For the physical parameters of interest, the ion-acoustic solitary wave (double layers) profiles and the relationship between the maximum soliton (double layers) amplitude and the Mach number are found. Also, we have presented the region of existence of the large amplitude ion-acoustic waves by analyzing the structure of the pseudopotential. For the selected range of parameters, it is found that only positive solitary waves and double layers can exist. An analysis for the small amplitude limit through the Sagdeev pseudopotential analysis and the reductive perturbation theory shows the existence of positive and negative ion-acoustic solitary waves and double layers. The effects of positron concentration and temperature ratio on the characteristics of the solitary ion-acoustic waves and double layers (namely, the amplitude and width) are discussed in detail. The relevance of this investigation to space and laboratory plasmas is pointed out.

  18. Large amplitude ion-acoustic solitary waves and double layers in multicomponent plasma with positrons (United States)

    Sabry, R.


    A finite amplitude theory for ion-acoustic solitary waves and double layers in multicomponent plasma consisting of hot positrons, cold ions, and electrons with two-electron temperature distributions is presented. Conditions are obtained under which large amplitude stationary ion-acoustic solitary waves and double layers can exist. For the physical parameters of interest, the ion-acoustic solitary wave (double layers) profiles and the relationship between the maximum soliton (double layers) amplitude and the Mach number are found. Also, we have presented the region of existence of the large amplitude ion-acoustic waves by analyzing the structure of the pseudopotential. For the selected range of parameters, it is found that only positive solitary waves and double layers can exist. An analysis for the small amplitude limit through the Sagdeev pseudopotential analysis and the reductive perturbation theory shows the existence of positive and negative ion-acoustic solitary waves and double layers. The effects of positron concentration and temperature ratio on the characteristics of the solitary ion-acoustic waves and double layers (namely, the amplitude and width) are discussed in detail. The relevance of this investigation to space and laboratory plasmas is pointed out.

  19. Acoustic agglomeration of fine particles based on a high intensity acoustical resonator (United States)

    Zhao, Yun; Zeng, Xinwu; Tian, Zhangfu


    Acoustic agglomeration (AA) is considered to be a promising method for reducing the air pollution caused by fine aerosol particles. Removal efficiency and energy consuming are primary parameters and generally have a conflict with each other for the industry applications. It was proved that removal efficiency is increased with sound intensity and optimal frequency is presented for certain polydisperse aerosol. As a result, a high efficiency and low energy cost removal system was constructed using acoustical resonance. High intensity standing wave is generated by a tube system with abrupt section driven by four loudspeakers. Numerical model of the tube system was built base on the finite element method, and the resonance condition and SPL increase were confirmd. Extensive tests were carried out to investigate the acoustic field in the agglomeration chamber. Removal efficiency of fine particles was tested by the comparison of filter paper mass and particle size distribution at different operating conditions including sound pressure level (SPL), and frequency. The experimental study has demonstrated that agglomeration increases with sound pressure level. Sound pressure level in the agglomeration chamber is between 145 dB and 165 dB from 500 Hz to 2 kHz. The resonance frequency can be predicted with the quarter tube theory. Sound pressure level gain of more than 10 dB is gained at resonance frequency. With the help of high intensity sound waves, fine particles are reduced greatly, and the AA effect is enhanced at high SPL condition. The optimal frequency is 1.1kHz for aerosol generated by coal ash. In the resonace tube, higher resonance frequencies are not the integral multiplies of the first one. As a result, Strong nonlinearity is avoided by the dissonant characteristic and shock wave is not found in the testing results. The mechanism and testing system can be used effectively in industrial processes in the future.

  20. Direct Numerical Simulation of Acoustic Noise Generation from the Nozzle Wall of a Hypersonic Wind Tunnel (United States)

    Huang, Junji; Duan, Lian; Choudhari, Meelan; Missouri Univ of Sci; Tech Team; NASA Langley Research Center Team


    Direct numerical simulations (DNS) are used to examine the acoustic noise generation from the turbulent boundary layer on the nozzle wall of a Mach 6 Ludwieg Tube. The emphasis is on characterizing the freestream acoustic pressure disturbances radiated from the nozzle-wall turbulent boundary layer and comparing it with acoustic noise generated from a single, flat wall in an unconfined setting at a similar freestream Mach number to assess the effects of noise reverberation. In particular, the numerical database is used to provide insights into the pressure disturbance spectrum and amplitude scaling with respect to the boundary-layer parameters as well as to understand the acoustic source mechanisms. Such information is important for characterizing the freestream disturbance environment in conventional (i.e., noisy) hypersonic wind tunnels. Air Force Office of Scientific Research Award No. FA9550-14-1-0170.

  1. The need to reconcile the habitability regulations with the acoustic rehabilitation of the minimum dwelling

    Directory of Open Access Journals (Sweden)

    F. Daumal


    Full Text Available There is no scientific literature on the interaction between the correction processes of acoustic pathologies and the habitability conditions in housing buildings. In this paper, the authors deduce the main interferences caused by the acoustic refurbishment of minimum dwellings in their habitability conditions from more than one hundred cases of legal claims in Catalonia. An analysis of the degree of interference is performed using as a case study the social housing of Aragon from the period 1939-1975 before and after a theoretical acoustic refurbishment. It is verified that the acoustic refurbishment solutions can have inopportune consequences in the habitability parameters of the dwellings. In addition, some of these dwellings before a hypothetical intervention are already deficient in this sense, raising the need for a revision of the habitability regulations for the minimum housing stock.

  2. Theoretical study of time-dependent, ultrasound-induced acoustic streaming in microchannels

    DEFF Research Database (Denmark)

    Muller, Peter Barkholt; Bruus, Henrik


    Based on first- and second-order perturbation theory, we present a numerical study of the temporal buildup and decay of unsteady acoustic fields and acoustic streaming flows actuated by vibrating walls in the transverse cross-sectional plane of a long straight microchannel under adiabatic...... conditions and assuming temperature-independent material parameters. The unsteady streaming flow is obtained by averaging the time-dependent velocity field over one oscillation period, and as time increases, it is shown to converge towards the well-known steady time-averaged solution calculated...... in the frequency domain. Scaling analysis reveals that the acoustic resonance builds up much faster than the acoustic streaming, implying that the radiation force may dominate over the drag force from streaming even for small particles. However, our numerical time-dependent analysis indicates that pulsed actuation...

  3. Catch of pelagic hauls in Mediterranean acoustic surveys: Is it the same between day and night?

    Directory of Open Access Journals (Sweden)

    Athanassios Machias


    Full Text Available Fish sampling is a critical aspect of acoustic surveys, because it is directly related to the “transformation” of echo into species biomass and subsequently affects the accuracy of acoustic estimates. In the present study, we investigated the differences between day and night sampling in a the catch composition through certain diversity indices and b the length frequency distribution of anchovy and sardine using catch data of pelagic hauls collected from four different regions of the European Mediterranean waters. In addition, the possible bias in trawl efficiency due to sampling time and the possible error introduced in acoustic estimates were investigated. No statistically significant differences were found between day and night in any of the parameters examined. The results showed that a more flexible strategy can be adopted to reduce the duration and the cost of acoustic sampling for small pelagic species. The advantages and disadvantages of the two sampling strategies are discussed.

  4. Acoustic Method for Testing the Quality of Sterilized Male Tsetse Flies Glossina Pallidipes

    International Nuclear Information System (INIS)

    Kratochvil, H.; Noll, A.; Bolldorf, J.; Parker, A.G.


    Tsetse flies are able to emit different acoustic signals. An acoustic method to test the quality of sterilized male tsetse flies was developed. Differences in the sound characteristics between males and females, between sterilized and unsterilized males, and between males sterilized in air and nitrogen, were determined. Also, the acoustic parameters (frequency, time, sound pressure level) of the sounds that are useful as criteria for quality control were determined. It was demonstrated that only the so-called 'feeding sounds' can be used as a quality criterion. Both sexes emitted feeding sounds while feeding on a host. These sounds were also used to find sexual partners, and had an effect on male copulation success. An acoustic sound analysis programme was developed; it automatically measured sound activity (only feeding sounds) under standard conditions (random sample, relative humidity, temperature, light intensity). (author)

  5. Acoustic analysis with vocal loading test in occupational voice disorders: outcomes before and after voice therapy. (United States)

    Niebudek-Bogusz, Ewa; Kotyło, Piotr; Politański, Piotr; Sliwińska-Kowalska, Mariola


    To assess the usefulness of acoustic analysis with vocal loading test for evaluating the treatment outcomes in occupational voice disorders. Fifty-one female teachers with dysphonia were examined (Voice Handicap Index--VHI, laryngovideostroboscopy and acoustic analysis with vocal loading) before and after treatment. The outcomes of teachers receiving vocal training (group I) were referred to outcomes of group II receiving only voice hygiene instructions. The results of subjective assessment (VHI score) and objective evaluation (acoustic analysis) improved more significantly in group I than in group II. The post-treatment examination revealed a decreased percentage of subjects with deteriorated jitter parameters after vocal loading, particularly in group I. Acoustic analysis with vocal loading test can be a helpful tool in the diagnosis and evaluation of treatment efficacy in occupational dysphonia.

  6. Study of uranium dioxide pellets by micro-acoustic techniques

    International Nuclear Information System (INIS)

    Roque, V.


    In order to reduce the volume of spent fuel to reprocess and to improve the productivity and the safety of the nuclear reactor, 'Electricite De France' aim to increase the average fuel discharge burn-up. To elaborate the safety reports, EDF develops codes to simulate the thermo-mechanical behaviour of the nuclear fuel element. These numeric simulations need to evaluate accurately and locally the evolution of the material and of its properties. One of the major concern today is the local characterisation of the intrinsic volume fraction porosity and the mechanical properties of the irradiated fuel. The fuel pellet fragmentation, the steep radial gradient in its physical properties evolution and the chemical evolution of the irradiated material make difficult nay the use of the conventional techniques. This leads EDF to pay interest for the use of two complementary techniques: micro-indentation on the one hand and acoustic methods on the other hand (acoustic microscopy and micro-echography), with an additional constrain to perform on active materials. The objective of this work has been to adapt the acoustic methods for an application on uranium dioxide pellets, used as nuclear fuel in Water Pressurised Reactor. Acquisitions protocols have been set to measure accurately the Rayleigh velocity and the longitudinal velocity of the UO 2 . Using these protocols, we have calibrated these acoustic methods by analysing non irradiated nuclear pellet which properties were well known. This process enable to quantify the effects of different physico-chemical parameters of the UO 2 on the ultrasonic velocities measured. Particularly, the large influence of the porosity has been demonstrated and empirical laws to express the evolution of the acoustic velocities as a function of the volume fraction porosity were established. Moreover, we have established a methodology to characterise the intrinsic elastic constants and the volume fraction porosity on irradiated UO 2 fuel pellets

  7. Acoustic conditions in open plan offices – Pilot test results

    Directory of Open Access Journals (Sweden)

    Witold Mikulski


    Full Text Available Background: The main source of noise in open plan office are conversations. Office work standards in such premises are attained by applying specific acoustic adaptation. This article presents the results of pilot tests and acoustic evaluation of open space rooms. Material and Methods: Acoustic properties of 6 open plan office rooms were the subject of the tests. Evaluation parameters, measurement methods and criterial values were adopted according to the following standards: PN-EN ISO 3382- 3:2012, PN-EN ISO 3382-2:2010, PN-B-02151-4:2015-06 and PN-B-02151-3:2015-10. Results: The reverberation time was 0.33– 0.55 s (maximum permissible value in offices – 0.6 s; the criterion was met, sound absorption coefficient in relation to 1 m2 of the room’s plan was 0.77–1.58 m2 (minimum permissible value – 1.1 m2; 2 out of 6 rooms met the criterion, distraction distance was 8.5–14 m (maximum permissible value – 5 m; none of the rooms met the criterion, A-weighted sound pressure level of speech at a distance of 4 m was 43.8–54.7 dB (maximum permissible value – 48 dB; 2 out of 6 rooms met the criterion, spatial decay rate of the speech was 1.8–6.3 dB (minimum permissible value – 7 dB; none of the rooms met the criterion. Conclusions: Standard acoustic treatment, containing sound absorbing suspended ceiling, sound absorbing materials on the walls, carpet flooring and sound absorbing workplace barriers, is not sufficient. These rooms require specific advanced acoustic solutions. Med Pr 2016;67(5:653–662

  8. Wavelet-based ground vehicle recognition using acoustic signals (United States)

    Choe, Howard C.; Karlsen, Robert E.; Gerhart, Grant R.; Meitzler, Thomas J.


    We present, in this paper, a wavelet-based acoustic signal analysis to remotely recognize military vehicles using their sound intercepted by acoustic sensors. Since expedited signal recognition is imperative in many military and industrial situations, we developed an algorithm that provides an automated, fast signal recognition once implemented in a real-time hardware system. This algorithm consists of wavelet preprocessing, feature extraction and compact signal representation, and a simple but effective statistical pattern matching. The current status of the algorithm does not require any training. The training is replaced by human selection of reference signals (e.g., squeak or engine exhaust sound) distinctive to each individual vehicle based on human perception. This allows a fast archiving of any new vehicle type in the database once the signal is collected. The wavelet preprocessing provides time-frequency multiresolution analysis using discrete wavelet transform (DWT). Within each resolution level, feature vectors are generated from statistical parameters and energy content of the wavelet coefficients. After applying our algorithm on the intercepted acoustic signals, the resultant feature vectors are compared with the reference vehicle feature vectors in the database using statistical pattern matching to determine the type of vehicle from where the signal originated. Certainly, statistical pattern matching can be replaced by an artificial neural network (ANN); however, the ANN would require training data sets and time to train the net. Unfortunately, this is not always possible for many real world situations, especially collecting data sets from unfriendly ground vehicles to train the ANN. Our methodology using wavelet preprocessing and statistical pattern matching provides robust acoustic signal recognition. We also present an example of vehicle recognition using acoustic signals collected from two different military ground vehicles. In this paper, we will

  9. Bomb parameters

    International Nuclear Information System (INIS)

    Kerr, George D.; Young, Rebert W.; Cullings, Harry M.; Christry, Robert F.


    The reconstruction of neutron and gamma-ray doses at Hiroshima and Nagasaki begins with a determination of the parameters describing the explosion. The calculations of the air transported radiation fields and survivor doses from the Hiroshima and Nagasaki bombs require knowledge of a variety of parameters related to the explosions. These various parameters include the heading of the bomber when the bomb was released, the epicenters of the explosions, the bomb yields, and the tilt of the bombs at time of explosion. The epicenter of a bomb is the explosion point in air that is specified in terms of a burst height and a hypocenter (or the point on the ground directly below the epicenter of the explosion). The current reassessment refines the energy yield and burst height for the Hiroshima bomb, as well as the locations of the Hiroshima and Nagasaki hypocenters on the modern city maps used in the analysis of the activation data for neutrons and TLD data for gamma rays. (J.P.N.)

  10. A numerical method for acoustic normal modes for shear flows (United States)

    Porter, M. B.; Reiss, E. L.


    The normal modes and their propagation numbers for acoustic propagation in wave guides with flow are the eigenvectors and eigenvalues of a boundary value problem for a non-standard Sturm-Liouville problem. It is non-standard because it depends non-linearly on the eigenvalue parameter. (In the classical problem for ducts with no flow, the problem depends linearly on the eigenvalue parameter). In this paper a method is presented for the fast numerical solution of this problem. It is a generalization of a method that was developed for the classical problem. A finite difference method is employed that combines well known numerical techniques and a generalization of the Sturm sequence method to solve the resulting algebraic eigenvalue problem. Then a modified Richardson extrapolation method is used that dramatically increases the accuracy of the computed eigenvalues. The method is then applied to two problems. They correspond to acoustic propagation in the ocean in the presence of a current, and to acoustic propagation in shear layers over flat plates.

  11. Objective measurement of inhaler inhalation flow profile using acoustic methods

    Energy Technology Data Exchange (ETDEWEB)

    Lacalle, H.; Taylor, T.E.; Marco, S.; Reilly, R.B.


    Patients with asthma and chronic obstructive pulmonary diseases (COPD) are mostly treated with inhalers that deliver medication directly to their airways. Drug delivery from dry powder inhalers (DPIs) is very much reliant on the inhalation manoeuvre, specifically the peak inspiratory flow rate (PIFR), inspiratory capacity (IC) and inhalation rise time (IRT) of the inhalation. It has been widely reported that patients may not follow correct inhalation technique while using their inhaler. In this study, a novel acoustic method is proposed to accurately estimate inhalation flow profile using only one inhalation recording for calibration. An Ellipta DPI was placed inside an airtight container with a spirometer connected in order to measure inhalation flow parameters. An acoustic recording device (Inhaler Compliance Assessment (INCA)) was also attached to the DPI. Inhalation audio and flow signals were recorded simultaneously. The data were collected from 20 healthy subjects while performing inhaler inhalations at a range of inspiratory flow rates. A power law regression model was computed to obtain the relationship between the acoustic envelope of the inhalation and flow profile of each recording. Each model was tested on the remaining audio signals to estimate flow profile. The average estimation error was found to be 10.5±0.3% for estimating flow profile from audio signals. Inhalation flow profile parameters (PIFR, IC and IRT) could then be measured from the estimated flow profile with high accuracy giving information on user inhalation technique. This method may assist in improving patient inhaler adherence and overall disease control. (Author)

  12. Acoustic Environment Simulation Study; Acoustic Intrusion Sensor Performance. (United States)


    generation of transients. 10,000. 13. Software for stastistical record keeping. 7,500. Note that no allowance is made here for additional racks or backplanes...sAcoustic Instrusion Sensor Performance Date Jan 83 I 0.1. TERMINOLOGY ATSA APPLIED TIME SERIES ANALYSIS, R. K. Otnes and L. Enochson, Wiley Interscience...verif- ication of the procedures. The terminology used in this report is essentially the same as that in APPLIED TIME SERIES ANALYSIS, VOLUME I, by Robert

  13. Acoustic Full Waveform Inversion using the Pure Acoustic Wave Equation in VTI Media (United States)

    Joo, Yonghwan; Seol, Soon Jee; Byun, Joongmoo


    During the past several decades, full waveform inversion (FWI) has received considerable attention for the high resolution imaging of complex media in seismic exploration applications. After its introduction in the 1980s, several researchers endeavored to develop a more practical and robust FWI algorithm based on recent advancements in computer performance. However, the computational cost of FWI is extremely high in modern acquisitions with high-fold, dense sources and receivers and wide azimuthal coverage. Moreover, the intrinsic non-linearity, ill-posedness, and possibility of being trapped in local minima must be addressed to consider multiparameter FWI in an anisotropic media. In this study, a pure-acoustic wave modeling algorithm using a modified cell-based method was developed as a modeling engine for FWI, and the developed pure acoustic algorithm was used to simulate P-wave propagation in VTI media without generating any S-wave artifacts. For efficient anisotropic inversion, a FWI algorithm that uses the plane-wave approach and a multifrequency simultaneous inversion method were also developed. The computational cost of FWI can be effectively reduced by using the proposed FWI algorithm. To overcome the intrinsic problems of the multiparameter FWI, a hybrid inversion strategy consisting of monoparameter and multiparameter FWI was suggested based on the sensitivity analysis according to the ray parameter range. In the developed hybrid FWI, the vertical velocity, which has a major influence on the data, is first estimated using the monoparameter FWI scheme. In the second stage, joint updates of the vertical and horizontal wave speeds without a lower absolute value of the ray parameter are performed using the multiparameter FWI scheme. By applying the suggested FWI strategy, both the vertical and horizontal velocities were reconstructed properly for the complex model and fault model, and the root mean square (RMS) error curves converged steadily to lower values

  14. Acoustic Monitoring of the Arctic Ice Cap (United States)

    Porter, D. L.; Goemmer, S. A.; Chayes, D. N.


    Introduction The monitoring of the Arctic Ice Cap is important economically, tactically, and strategically. In the scenario of ice cap retreat, new paths of commerce open, e.g. waterways from Northern Europe to the Far East. Where ship-going commerce is conducted, the U.S. Navy and U.S. Coast Guard have always stood guard and been prepared to assist from acts of nature and of man. It is imperative that in addition to measuring the ice from satellites, e.g. Icesat, that we have an ability to measure the ice extent, its thickness, and roughness. These parameters play an important part in the modeling of the ice and the processes that control its growth or shrinking and its thickness. The proposed system consists of three subsystems. The first subsystem is an acoustic source, the second is an array of geophones and the third is a system to supply energy and transmit the results back to the analysis laboratory. The subsystems are described below. We conclude with a plan on how to tackle this project and the payoff to the ice cap modeler and hence the users, i.e. commerce and defense. System Two historically tested methods to generate a large amplitude multi-frequency sound source include explosives and air guns. A new method developed and tested by the University of Texas, ARL is a combustive Sound Source [Wilson, et al., 1995]. The combustive sound source is a submerged combustion chamber that is filled with the byproducts of the electrolysis of sea water, i.e. Hydrogen and Oxygen, an explosive mixture which is ignited via a spark. Thus, no additional compressors, gases, or explosives need to be transported to the Arctic to generate an acoustic pulse capable of the sediment and the ice. The second subsystem would be geophones capable of listening in the O(10 Hz) range and transmitting that data back to the laboratory. Thus two single arrays of geophones arranged orthogonal to each other with a range of 1000's of kilometers and a combustive sound source where the two

  15. A Simulation Study of Acoustic-Assisted Tracking of Whales for Mark-Recapture Surveys (United States)

    Peel, David; Miller, Brian S.; Kelly, Natalie; Dawson, Steve; Slooten, Elisabeth; Double, Michael C.


    Collecting enough data to obtain reasonable abundance estimates of whales is often difficult, particularly when studying rare species. Passive acoustics can be used to detect whale sounds and are increasingly used to estimate whale abundance. Much of the existing effort centres on the use of acoustics to estimate abundance directly, e.g. analysing detections in a distance sampling framework. Here, we focus on acoustics as a tool incorporated within mark-recapture surveys. In this context, acoustic tools are used to detect and track whales, which are then photographed or biopsied to provide data for mark-recapture analyses. The purpose of incorporating acoustics is to increase the encounter rate beyond using visual searching only. While this general approach is not new, its utility is rarely quantified. This paper predicts the “acoustically-assisted” encounter rate using a discrete-time individual-based simulation of whales and survey vessel. We validate the simulation framework using existing data from studies of sperm whales. We then use the framework to predict potential encounter rates in a study of Antarctic blue whales. We also investigate the effects of a number of the key parameters on encounter rate. Mean encounter rates from the simulation of sperm whales matched well with empirical data. Variance of encounter rate, however, was underestimated. The simulation of Antarctic blue whales found that passive acoustics should provide a 1.7–3.0 fold increase in encounter rate over visual-only methods. Encounter rate was most sensitive to acoustic detection range, followed by vocalisation rate. During survey planning and design, some indication of the relationship between expected sample size and effort is paramount; this simulation framework can be used to predict encounter rates and establish this relationship. For a case in point, the simulation framework indicates unequivocally that real-time acoustic tracking should be considered for quantifying the

  16. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    Directory of Open Access Journals (Sweden)

    N. I. Polzikova


    Full Text Available We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW resonator (HBAR formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  17. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    Energy Technology Data Exchange (ETDEWEB)

    Polzikova, N. I., E-mail:; Alekseev, S. G.; Pyataikin, I. I.; Kotelyanskii, I. M.; Luzanov, V. A.; Orlov, A. P. [Kotel’nikov Institute of Radio Engineering and Electronics of Russian Academy of Sciences, Mokhovaya 11, building 7, Moscow, 125009 (Russian Federation)


    We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW) resonator (HBAR) formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE) this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  18. Acoustic design method of ship's cabin based on geometrical acoustics

    Directory of Open Access Journals (Sweden)

    FENG Aijing


    Full Text Available In light of the question of how to select the best noise control position and measures in the large noise transmission path of the cabins of a ship, based on the acoustic ray-tracing method in the theory of geometrical acoustics, and by considering the effect of the sound transmission of the bulkhead, this paper proposes the sound line search method. It is used to calculate the sound pressure of a ship's cabin, allowing the sound field distribution of multiple compartments to be simulated. The paper proposes a sound ray-searching method in which the acoustic sensitivity of different positions of the bulkhead to the noise of the target cabin is calculated by searching for the sound ray passing the target cabin. According to this, a cabin noise reduction plan can be designed to optimize medium and high frequency cabin noise. With this method, the noise of a typical cabin can be optimized and reduced by 7.3 dB. Through comparative analysis with the statistical energy method, it is proven that the method is feasible and can guide the refined design of noise reduction in ships' cabins.

  19. A Methodology to Integrate Magnetic Resonance and Acoustic Measurements for Reservoir Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Parra, J.O.


    The objective of this project was to develop an advanced imaging method, including pore scale imaging, to integrate magnetic resonance (MR) techniques and acoustic measurements to improve predictability of the pay zone in two hydrocarbon reservoirs. This was accomplished by extracting the fluid property parameters using MR laboratory measurements and the elastic parameters of the rock matrix from acoustic measurements to create poroelastic models of different parts of the reservoir. Laboratory measurements were compared with petrographic analysis results to determine the relative roles of petrographic elements such as porosity type, mineralogy, texture, and distribution of clay and cement in creating permeability heterogeneity.

  20. Different quantization mechanisms in single-electron pumps driven by surface acoustic waves

    DEFF Research Database (Denmark)

    Utko, P.; Gloos, K.; Hansen, Jørn Bindslev


    We have studied the acoustoelectric current in single-electron pumps driven by surface acoustic waves. We have found that in certain parameter ranges two different sets of quantized steps dominate the acoustoelectric current versus gate-voltage characteristics. In some cases, both types of quanti......We have studied the acoustoelectric current in single-electron pumps driven by surface acoustic waves. We have found that in certain parameter ranges two different sets of quantized steps dominate the acoustoelectric current versus gate-voltage characteristics. In some cases, both types...

  1. Acoustic wave propagation in bubbly flow with gas, vapor or their mixtures. (United States)

    Zhang, Yuning; Guo, Zhongyu; Gao, Yuhang; Du, Xiaoze


    Presence of bubbles in liquids could significantly alter the acoustic waves in terms of wave speed and attenuation. In the present paper, acoustic wave propagation in bubbly flows with gas, vapor and gas/vapor mixtures is theoretically investigated in a wide range of parameters (including frequency, bubble radius, void fraction, and vapor mass fraction). Our finding reveals two types of wave propagation behavior depending on the vapor mass fraction. Furthermore, the minimum wave speed (required for the closure of cavitation modelling in the sonochemical reactor design) is analyzed and the influences of paramount parameters on it are quantitatively discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Acoustic behaviour of zinc chloride p osphate glasses

    International Nuclear Information System (INIS)

    Sidek, H.A.A.; Senin, H.B.; Shaari, A.H.; Chow, S.P.


    The effect of hydrostatic pressure and temperature on the velocities of longitudinal and shear ultrasonic waves propagated in (ZnCl/sub 2/)/sub x/ (P/sub 2/O/sub 5/)/sub 1-x/ glasses (x = 0.2, 0.3, 0.5) have been measured. The hydrostatic pressure derivatives (del C/sub 11/del p) and (del C/sub 44/del P) of the longitudinal (C-s 11 and shear C-s 44 elastic stiffness are negative: both longitudinal and shear acoustic mode Grueneisen parameters are small and negative: the application of hydrostatic pressure results in softening of the long wavelength acoustic mode phonon modes. (authors)

  3. Rabi splitting in an acoustic cavity embedded plate

    International Nuclear Information System (INIS)

    Ni, Xu; Liu, Xiao-Ping; Chen, Ze-Guo; Zheng, Li-Yang; Xu, Ye-Long; Lu, Ming-Hui; Chen, Yan-Feng


    We design a structure to realize Rabi splitting and Rabi oscillation in acoustics. We develop rigorous analytical models to analyze the splitting effect from the aspect of phase matching, and from the aspect of mode coupling using a coupled mode model. In this model, we discover that the splitting effect is caused by the coupling of the Fabry–Perot fundamental mode with the resonant mode of an artificial acoustic ‘atom’. We then extract the coupling strength and analyze the impact of structural parameters on it. In addition, we demonstrate Rabi oscillation in the time domain. Such quantum phenomena in the classical regime may have potential applications in the design of novel ultrasonic devices.

  4. An acoustic eikonal equation for attenuating VTI media

    KAUST Repository

    Hao, Qi


    We present an acoustic eikonal equation governing the complex-valued travel time of P-waves in attenuating, transversely isotropic media with a vertical symmetry axis (VTI). This equation is based on the assumption that the Pwave complex-valued travel time is independent of the Swave velocity parameter v in Thomsen\\'s notation and the attenuation coefficient A in the Thomsen-type notation for attenuating VTI media. We combine perturbation theory and Shanks transform to develop practical approximations to the attenuating acoustic eikonal equation, capable of admitting analytical description of the attenuation in homogeneous media. For a horizontal, attenuating VTI layer, we also derive non-hyperbolic approximations for the real and imaginary parts of the complex-valued reflection travel time.

  5. Acoustic chemometric prediction of total solids in bioslurry

    DEFF Research Database (Denmark)

    Ihunegbo, Felicia; Madsen, Michael; Esbensen, Kim


    Dry matter is an important process control parameter in the bioconversion application field. Acoustic chemometrics, as a Process Analytical Technology (PAT) modality for quantitative characterisation of dry matter in complex bioslurry systems (biogas fermentation), has not been successful despite...... several earlier dedicated attempts. A full-scale feasibility study based on standard addition experiments involving natural plant biomass was conducted using multivariate calibration (Partial Least Squares Regression, PLS-R) of acoustic signatures against dry matter content (total solids, TS). Prediction...... performance of the optimised process implementation was evaluated using independent test set validation, with estimates of accuracy (slope of predicted vs. reference values) and precision (squared correlation coefficient, r2) of 0.94 and 0.97 respectively, with RMSEP of 0.32% w/w (RMSEPrel = 3...

  6. Hidden acoustic information revealed by intentional nonlinearity (United States)

    Dowling, David R.


    Acoustic waves are omnipresent in modern life and are well described by the linearized equations of fluid dynamics. Once generated, acoustic waves carry and collect information about their source and the environment through which they propagate, respectively, and this information may be retrieved by analyzing recordings of these waves. Because of this, acoustics is the primary means for observation, surveillance, reconnaissance, and remote sensing in otherwise opaque environments, such as the Earth's oceans and crust, and the interior of the human body. For such information-retrieval tasks, acoustic fields are nearly always interrogated within their recorded frequency range or bandwidth. However, this frequency-range restriction is not general; acoustic fields may also carry (hidden) information at frequencies outside their bandwidth. Although such a claim may seem counter intuitive, hidden acoustic-field information can be revealed by re-introducing a marquee trait of fluid dynamics: nonlinearity. In particular, an intentional quadratic nonlinearity - a form of intra-signal heterodyning - can be used to obtain acoustic field information at frequencies outside a recorded acoustic field's bandwidth. This quadratic nonlinearity enables a variety of acoustic remote sensing applications that were long thought to be impossible. In particular, it allows the detrimental effects of sparse recordings and random scattering to be suppressed when the original acoustic field has sufficient bandwidth. In this presentation, the topic is developed heuristically, with a just brief exposition of the relevant mathematics. Hidden acoustic field information is then revealed from simulated and measured acoustic fields in simple and complicated acoustic environments involving frequencies from a few Hertz to more than 100 kHz, and propagation distances from tens of centimeters to hundreds of kilometers. Sponsored by ONR, NAVSEA, and NSF.

  7. Cooperative OFDM underwater acoustic communications

    CERN Document Server

    Cheng, Xilin; Cheng, Xiang


    Following underwater acoustic channel modeling, this book investigates the relationship between coherence time and transmission distances. It considers the power allocation issues of two typical transmission scenarios, namely short-range transmission and medium-long range transmission. For the former scenario, an adaptive system is developed based on instantaneous channel state information. The primary focus is on cooperative dual-hop orthogonal frequency division multiplexing (OFDM). This book includes the decomposed fountain codes designed to enable reliable communications with higher energy efficiency. It covers the Doppler Effect, which improves packet transmission reliability for effective low-complexity mirror-mapping-based intercarrier interference cancellation schemes capable of suppressing the intercarrier interference power level. Designed for professionals and researchers in the field of underwater acoustic communications, this book is also suitable for advanced-level students in electrical enginee...

  8. Acoustic biotelemetry from Slocum Gliders (United States)

    Oliver, M. J.; Haulsee, D.; Breece, M.; Kohut, J. T.; Fox, D. A.; Wetherbee, B.; Cimino, M. A.


    The integration of biotelemetry and Slocum electric gliders presents new opportunities and challenges for interpreting the relationship between acoustically telemetered animals and the environment. Slocum gliders are able to stay in the field for extended periods (> 90 days) while collecting high-resolution data that can be used to reconstruct subsurface habitats. Here we present several case studies that compare integrated and externally mounted acoustic receiver technologies aboard Slocum gliders, compare detection efficiency between coastal arrays and Slocum gliders, investigate signal detectability in coastal habitats, and identify habitat associations of migrating species. Our studies leverage several ongoing tagging efforts, and would not be possible without a highly collaborative biotelemetry community. Slocum gliders are a robust technology that augments existing biotelemetry arrays and enable dynamic sampling of environments that extend beyond the feasibility of stationary arrays. The platforms are ideal for integrating biotelemetry into ocean observing and can provide ecologically relevant habitat associations that assist in the management of telemetered species.

  9. Oscillating nonlinear acoustic shock waves

    DEFF Research Database (Denmark)

    Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth


    We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... that at resonance a stationary state arise consisting of multiple oscillating shock waves. Off resonance driving leads to a nearly linear oscillating ground state but superimposed by bursts of a fast oscillating shock wave. Based on a travelling wave ansatz for the fluid velocity potential with an added 2'nd order...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....

  10. Longitudinal bulk acoustic mass sensor

    DEFF Research Database (Denmark)

    Hales, Jan Harry; Teva, Jordi; Boisen, Anja


    A polycrystalline silicon longitudinal bulk acoustic cantilever is fabricated and operated in air at 51 MHz. A mass sensitivity of 100 Hz/fg (1 fg=10(-15) g) is obtained from the preliminary experiments where a minute mass is deposited on the device by means of focused ion beam. The total noise i...... in the currently applied measurement system allows for a minimum detectable mass of 0.5 fg in air.......A polycrystalline silicon longitudinal bulk acoustic cantilever is fabricated and operated in air at 51 MHz. A mass sensitivity of 100 Hz/fg (1 fg=10(-15) g) is obtained from the preliminary experiments where a minute mass is deposited on the device by means of focused ion beam. The total noise...

  11. [Acoustic information in snoring noises]. (United States)

    Janott, C; Schuller, B; Heiser, C


    More than one third of all people snore regularly. Snoring is a common accompaniment of obstructive sleep apnea (OSA) and is often disruptive for the bed partner. This work gives an overview of the history of and state of research on acoustic analysis of snoring for classification of OSA severity, detection of obstructive events, measurement of annoyance, and identification of the sound excitation location. Based on these objectives, searches were conducted in the literature databases PubMed and IEEE Xplore. Publications dealing with the respective objectives according to title and abstract were selected from the search results. A total of 48 publications concerning the above objectives were considered. The limiting factor of many studies is the small number of subjects upon which the analyses are based. Recent research findings show promising results, such that acoustic analysis may find a place in the framework of sleep diagnostics, thus supplementing the recognized standard methods.

  12. Acoustic emission linear pulse holography

    International Nuclear Information System (INIS)

    Collins, H.D.; Busse, L.J.; Lemon, D.K.


    This paper describes the emission linear pulse holography which produces a chronological linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. A thirty two point sampling array is used to construct phase-only linear holograms of simulated acoustic emission sources on large metal plates. The concept behind the AE linear pulse holography is illustrated, and a block diagram of a data acquisition system to implement the concept is given. Array element spacing, synthetic frequency criteria, and lateral depth resolution are specified. A reference timing transducer positioned between the array and the inspection zone and which inititates the time-of-flight measurements is described. The results graphically illustrate the technique using a one-dimensional FFT computer algorithm (ie. linear backward wave) for an AE image reconstruction

  13. Study of acoustic emission sources and signals

    International Nuclear Information System (INIS)

    Pumarega, M.I. Lopez; Armeite, M.; Oliveto, M.E.; Piotrkowski, R.; Ruzzante, J.E.


    Methods of acoustic emission (AE) signal analysis give information about material conditions, since AE generated in stressed solids can be used to indicate cracks and defect positions so as their damaging potential. We present a review of results of laboratory AE tests on metallic materials. Rings of seamless steel tubes, with and without oxide layers, were cut and then deformed by opening their ends. Seamless Zry-4 tubes were submitted to hydraulic stress tests until rupture with a purposely-constructed hydraulic system. In burst type signals, their parameters, Amplitude (A), Duration (D) and Risetime (R), were statistically studied. Amplitudes were found to follow the Log-normal distribution. This led to infer that the detected AE signal, is the complex consequence of a great number of random independent sources, which individual effects are linked. We could show, using cluster analysis for A, D and R mean values, with 5 clusters, coincidence between the clusters and the test types. A slight linear correlation was obtained for the parameters A and D. The arrival time of the AE signals was also studied, which conducted to discussing Poisson and Polya processes. The digitized signals were studied as (1/f) β noises. The general results are coherent if we consider the AE phenomena in the frame of Self Organized Criticality theory

  14. Nonlinear positron acoustic solitary waves

    International Nuclear Information System (INIS)

    Tribeche, Mouloud; Aoutou, Kamel; Younsi, Smain; Amour, Rabia


    The problem of nonlinear positron acoustic solitary waves involving the dynamics of mobile cold positrons is addressed. A theoretical work is presented to show their existence and possible realization in a simple four-component plasma model. The results should be useful for the understanding of the localized structures that may occur in space and laboratory plasmas as new sources of cold positrons are now well developed.

  15. Effects of melody and technique on acoustical and musical features of western operatic singing voices. (United States)

    Larrouy-Maestri, Pauline; Magis, David; Morsomme, Dominique


    The operatic singing technique is frequently used in classical music. Several acoustical parameters of this specific technique have been studied but how these parameters combine remains unclear. This study aims to further characterize the Western operatic singing technique by observing the effects of melody and technique on acoustical and musical parameters of the singing voice. Fifty professional singers performed two contrasting melodies (popular song and romantic melody) with two vocal techniques (with and without operatic singing technique). The common quality parameters (energy distribution, vibrato rate, and extent), perturbation parameters (standard deviation of the fundamental frequency, signal-to-noise ratio, jitter, and shimmer), and musical features (fundamental frequency of the starting note, average tempo, and sound pressure level) of the 200 sung performances were analyzed. The results regarding the effect of melody and technique on the acoustical and musical parameters show that the choice of melody had a limited impact on the parameters observed, whereas a particular vocal profile appeared depending on the vocal technique used. This study confirms that vocal technique affects most of the parameters examined. In addition, the observation of quality, perturbation, and musical parameters contributes to a better understanding of the Western operatic singing technique. Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  16. The contrast between alveolar and velar stops with typical speech data: acoustic and articulatory analyses. (United States)

    Melo, Roberta Michelon; Mota, Helena Bolli; Berti, Larissa Cristina


    This study used acoustic and articulatory analyses to characterize the contrast between alveolar and velar stops with typical speech data, comparing the parameters (acoustic and articulatory) of adults and children with typical speech development. The sample consisted of 20 adults and 15 children with typical speech development. The analyzed corpus was organized through five repetitions of each target-word (/'kap ə/, /'tapə/, /'galo/ e /'daɾə/). These words were inserted into a carrier phrase and the participant was asked to name them spontaneously. Simultaneous audio and video data were recorded (tongue ultrasound images). The data was submitted to acoustic analyses (voice onset time; spectral peak and burst spectral moments; vowel/consonant transition and relative duration measures) and articulatory analyses (proportion of significant axes of the anterior and posterior tongue regions and description of tongue curves). Acoustic and articulatory parameters were effective to indicate the contrast between alveolar and velar stops, mainly in the adult group. Both speech analyses showed statistically significant differences between the two groups. The acoustic and articulatory parameters provided signals to characterize the phonic contrast of speech. One of the main findings in the comparison between adult and child speech was evidence of articulatory refinement/maturation even after the period of segment acquisition.

  17. Acoustic telemetry and fisheries management (United States)

    Crossin, Glenn T.; Heupel, Michelle R.; Holbrook, Christopher; Hussey, Nigel E.; Lowerre-Barbieri, Susan K; Nguyen, Vivian M.; Raby, Graham D.; Cooke, Steven J.


    This paper reviews the use of acoustic telemetry as a tool for addressing issues in fisheries management, and serves as the lead to the special Feature Issue of Ecological Applications titled “Acoustic Telemetry and Fisheries Management”. Specifically, we provide an overview of the ways in which acoustic telemetry can be used to inform issues central to the ecology, conservation, and management of exploited and/or imperiled fish species. Despite great strides in this area in recent years, there are comparatively few examples where data have been applied directly to influence fisheries management and policy. We review the literature on this issue, identify the strengths and weaknesses of work done to date, and highlight knowledge gaps and difficulties in applying empirical fish telemetry studies to fisheries policy and practice. We then highlight the key areas of management and policy addressed, as well as the challenges that needed to be overcome to do this. We conclude with a set of recommendations about how researchers can, in consultation with stock assessment scientists and managers, formulate testable scientific questions to address and design future studies to generate data that can be used in a meaningful way by fisheries management and conservation practitioners. We also urge the involvement of relevant stakeholders (managers, fishers, conservation societies, etc.) early on in the process (i.e. in the co-creation of research projects), so that all priority questions and issues can be addressed effectively.

  18. Method for acoustic signal detection

    International Nuclear Information System (INIS)

    Blalock, S.E.


    The disclosure relates to a method and apparatus for acoustic signal detection, adapted for use in acoustic velocity well logging to measure the difference in transit times of an acoustic signal between a transmitter and two or more receivers. In a preferred embodiment of the present invention two timing measurements of the signal arriving at each of two receivers may be made by activating zero crossing detectors at the arrival of the first negative and first positive half-cycles at each receiver. A transit time is calculated from the zero crossing times following the first negative half-cycle. This first transit time may be checked for accuracy by comparing the first transit time with a second transit time calculated from zero crossing times following the first positive half-cycles, by comparing the first transit time to a previously measured transit time and/or by detecting the order of arrival of the negative and positive half-cycles to determine whether the half-cycles have been detected out of sequence at either receiver. Should the first transit time be determined to be inaccurate, the previously measured transit time or the second transit time may be substituted therefor

  19. Modeling of natural acoustic frequencies of a gas-turbine plant combustion chamber (United States)

    Zubrilin, I. A.; Gurakov, N. I.; Zubrilin, R. A.; Matveev, S. G.


    The paper presents results of determination of natural acoustic frequencies of a gas-turbine plant annular combustion chamber model using 3D-simulation. At the beginning, a calculation procedure for determining natural acoustic frequencies of the gas-turbine plant combustion chamber was worked out. The effect of spatial inhomogeneity of the flow parameters (fluid composition, pressure, temperature) arising in combustion and some geometrical parameters (cooling holes of the flame tube walls) on the calculation results is studied. It is found that the change of the fluid composition in combustion affects the acoustic velocity not more than 5%; therefore, the air with a volume variable temperature can be taken as a working fluid in the calculation of natural acoustic frequencies. It is also shown that the cooling holes of the flame tube walls with diameter less than 2 mm can be neglected in the determination of the acoustic modes in the frequency range of up to 1000 Hz. This reduces the number of the grid-model elements by a factor of six in comparison with a model that considers all of the holes. Furthermore, a method of export of spatial inhomogeneity of the flow parameters from a CFD solver sector model to the annular combustion chamber model in a modal solver is presented. As a result of the obtained model calculation, acoustic modes of the combustion chamber in the frequency range of up to 1000 Hz are determined. For a standard engine condition, a potentially dangerous acoustic mode with a frequency close to the ripple frequency of the precessing vortex core, which is formed behind the burner device of this combustion chamber, is detected.

  20. Regularity of acoustic radiation at ascending load on a pair of friction from a composite material

    Directory of Open Access Journals (Sweden)

    С. Ф. Філоненко


    Full Text Available In this article the simulation the results of acoustic emission signals formed by friction surfaces with composite materials at load increasing were showed. The results showed that at increase of axial load increases the amplitude of the resulting parameters of acoustic emission signals, such as the average amplitude, its standard deviation and variance. Thus were obtained the basic changes of amplitude parameters generated signals. Was determined that the variation of the percentage increase in the average amplitude, its standard deviation and variance were  the same type of character, with well approximate by linear functions. The results showed that with growing of axial load the percent increase in average amplitude of the resulting acoustic emission signals. Also, an analysis of the energy parameters of acoustic emission with increasing axial load on the friction pair with composite materials was conducted. The simulation results showed that the percentage increase in the average level of energy and its standard deviation are approximate by linear functions. At the same time the greatest percentage increase with increasing axial load on the friction pair is observed in the dispersion of the average energy of the resulting acoustic emission signals. The results showed that at experimental study of the acoustic emission signals with increasing axial load on the friction pair with composite materials greatest growth is expected in the average amplitude of the resulting AE signals. The growth of its standard deviation and variance will be not significant. At the same time, the greatest growth is expected in the dispersion of the average energy of acoustic emission signals

  1. Evanescent Acoustic Wave Scattering by Targets and Diffraction by Ripples Graduate Traineeship Award in Ocean Acoustics

    National Research Council Canada - National Science Library

    Osterhoudt, Curtis F; Marston, Philip L


    .... The purpose of his research was to improve the understanding of the way that acoustic evanescent waves interact with targets buried in sediments in situations encountered in underwater acoustics...

  2. Acoustic communication for Maya Autonomous Underwater Vehicle - performance evaluation of acoustic modem

    Digital Repository Service at National Institute of Oceanography (India)

    Afzulpurkar, S.; Maurya, P.; Navelkar, G.S.; Desa, E.S.; Mascarenhas, A.A.M.Q.; Dabholkar, N.A.; Madhan, R.; Prabhudesai, S.P.

    traffic. This necessitates monitoring the AUV status and data quality through an acoustic link which needs to perform reliably under such conditions, at long range. To address these situations partially, acoustic communication capability is planned...

  3. Acoustic levitation of a large solid sphere

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Marco A. B., E-mail: [Institute of Physics, University of São Paulo, São Paulo 05508-090 (Brazil); Bernassau, Anne L. [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Adamowski, Julio C. [Department of Mechatronics and Mechanical Systems Engineering, Escola Politécnica, University of São Paulo, São Paulo 05508-030 (Brazil)


    We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.

  4. Acoustic energy relations in Mudejar-Gothic churches. (United States)

    Zamarreño, Teófilo; Girón, Sara; Galindo, Miguel


    Extensive objective energy-based parameters have been measured in 12 Mudejar-Gothic churches in the south of Spain. Measurements took place in unoccupied churches according to the ISO-3382 standard. Monoaural objective measures in the 125-4000 Hz frequency range and in their spatial distributions were obtained. Acoustic parameters: clarity C80, definition D50, sound strength G and center time Ts have been deduced using impulse response analysis through a maximum length sequence measurement system in each church. These parameters spectrally averaged according to the most extended criteria in auditoria in order to consider acoustic quality were studied as a function of source-receiver distance. The experimental results were compared with predictions given by classical and other existing theoretical models proposed for concert halls and churches. An analytical semi-empirical model based on the measured values of the C80 parameter is proposed in this work for these spaces. The good agreement between predicted values and experimental data for definition, sound strength, and center time in the churches analyzed shows that the model can be used for design predictions and other purposes with reasonable accuracy.

  5. Acoustical analysis and multiple source auralizations of charismatic worship spaces (United States)

    Lee, Richard W.


    Because of the spontaneity and high level of call and response, many charismatic churches have verbal and musical communication problems that stem from highly reverberant sound fields, poor speech intelligibility, and muddy music. This research looks at the subjective dimensions of room acoustics perception that affect a charismatic worship space, which is summarized using the acronym RISCS (reverberation, intimacy, strength, coloration, and spaciousness). The method of research is to obtain acoustical measurements for three worship spaces in order to analyze the objective parameters associated with the RISCS subjective dimensions. For the same spaces, binaural room impulse response (BRIR) measurements are done for different receiver positions in order to create an auralization for each position. The subjective descriptors of RISCS are analyzed through the use of listening tests of the three auralized spaces. The results from the measurements and listening tests are analyzed to determine if listeners' perceptions correlate with the objective parameter results, the appropriateness of the subjective parameters for the use of the space, and which parameters seem to take precedent. A comparison of the multi-source auralization to a conventional single-source auralization was done with the mixed down version of the synchronized multi-track anechoic signals.

  6. Supergranular Parameters (United States)

    Udayashankar, Paniveni


    I study the complexity of supergranular cells using intensity patterns from Kodaikanal solar observatory. The chaotic and turbulent aspect of the solar supergranulation can be studied by examining the interrelationships amongst the parameters characterizing supergranular cells namely size, horizontal flow field, lifetime and physical dimensions of the cells and the fractal dimension deduced from the size data. The findings are supportive of Kolmogorov's theory of turbulence. The Data consists of visually identified supergranular cells, from which a fractal dimension 'D' for supergranulation is obtained according to the relation P α AD/2 where 'A' is the area and 'P' is the perimeter of the supergranular cells. I find a fractal dimension close to about 1.3 which is consistent with that for isobars and suggests a possible turbulent origin. The cell circularity shows a dependence on the perimeter with a peak around (1.1-1.2) x 105 m. The findings are supportive of Kolmogorov's theory of turbulence.

  7. An acoustical study of English word stress produced by Americans and Koreans (United States)

    Yang, Byunggon


    Acoustical correlates of stress can be divided into duration, intensity, and fundamental frequency. This study examined the acoustical difference in the first two syllables of stressed English words produced by ten American and Korean speakers. The Korean subjects scored very high in TOEFL. They read, at a normal speed, a fable from which the acoustical parameters of eight words were analyzed. In order to make the data comparison meaningful, each parameter was collected at 100 dynamic time points proportional to the total duration of the two syllables. Then, the ratio of the parameter sum of the first rime to that of the second rime was calculated to determine the relative prominence of the syllables. Results showed that the durations of the first two syllables were almost comparable between the Americans and Koreans. However, statistically significant differences showed up in the diphthong pronunciations and in the words with the second syllable stressed. Also, remarkably high r-squared values were found between pairs of the three acoustical parameters, which suggests that either one or a combination of two or more parameters may account for the prominence of a syllable within a word. [Work supported by Korea Science Foundation R01-1999-00229.

  8. Feature selection for multimodal: acoustic Event detection


    Butko, Taras


    Acoustic Event Detection  The detection of the Acoustic Events (AEs) naturally produced in a meeting room may help to describe the human and social activity. The automatic description of interactions between humans and environment can be useful for providing: implicit assistance to the people inside the room, context-aware and content-aware information requiring a minimum of human attention or interruptions, support for high-level analysis of the underlying acoustic scene, etc. On the othe...

  9. Acoustic 3D imaging of dental structures

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, D.K. [Lawrence Livermore National Lab., CA (United States); Hume, W.R. [California Univ., Los Angeles, CA (United States); Douglass, G.D. [California Univ., San Francisco, CA (United States)


    Our goals for the first year of this three dimensional electodynamic imaging project was to determine how to combine flexible, individual addressable; preprocessing of array source signals; spectral extrapolation or received signals; acoustic tomography codes; and acoustic propagation modeling code. We investigated flexible, individually addressable acoustic array material to find the best match in power, sensitivity and cost and settled on PVDF sheet arrays and 3-1 composite material.

  10. Canada Basin Acoustic Propagation Experiment (CANAPE) (United States)


    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Canada Basin Acoustic Propagation Experiment (CANAPE...about Arctic acoustics during the Cold War is now obsolete. The goal of the Canada Basin Acoustic Propagation Experiment (CANAPE) is to determine the...Canada Basin (McLaughlin et al., 2011). These changing conditions make the Canada Basin an ideal location to test the hypothesis put forward by P

  11. North Pacific Acoustic Laboratory: Deep Water Acoustic Propagation in the Philippine Sea (United States)


    Acoustic Laboratory: Deep Water Acoustic Propagation in the Philippine Sea 5b. GRANT NUMBER NOOO 14-12-1 -0226 5c. PROGRAM ELEMENT NUMBER 6...based on data from the 2009-20 I I NPAL Philippine Sea experiments funded by ONR Grant NOOO 14-08-1-0840 , Fourteen of these publi cations appeared in...North Pacific Acoustic Laboratory: Deep Water Acoustic Propagation in the Philippine Sea ONR Grant NOOO 14-12-1-0226 Period of Performance: 01

  12. Unification of acoustic drillhole logging data

    International Nuclear Information System (INIS)

    Oehman, I.; Palmen, J.; Heikkinen, E.


    Posiva Oy prepares for disposal of spent nuclear fuel in bedrock in Olkiluoto, Eurajoki. This is in accordance of the application filed in 1999, the Decision-in-Principle of the State Council in 2000, and ratification by the Parliament in 2001. The site characterization at Olkiluoto has included comprehensive geological, hydrological, geochemical and geophysical investigations airborne, on ground and in drillholes since 1988. One of key techniques in geophysical drillhole surveys has been acoustic full waveform logging, which has been implemented since 1994. Various tools have been used in acquisition of acoustic data and several processing techniques have been applied. The logging work and processing to P and S wave velocities has been previously carried out on single drillhole basis. Comparisons to actual values and levels have not been made, and the results have not been calibrated. Therefore results for different drillholes have not been comparable. Resolution of the P and S wave velocity has been rather coarse, and depth correlation to the core data has been on tentative level. As the investigation data has been accumulating, it has become possible to correlate the results to geological and laboratory control data and to calibrate the results of separate measurement campaigns and different drillholes together onto same reference level and resolution. The presented technique has been applied for drillhole OL-KR29 onwards and has set the processing standard, settings and reference levels for later surveys. This approach will further assist the application of the method for mapping and numerical description of lithology variation and possible effect of alteration and deformation on it. Further on, the P and S wave velocity data together with density can be used in computing of dynamic in situ rock mechanical parameters, and possibly in correlating rock strength laboratory data to P and S wave velocity logging data. The acoustic logging data from drillholes OL-KR1

  13. Acoustic Seaglider: Planning for the Philippine Sea

    National Research Council Canada - National Science Library

    Howe, Bruce M


    .... In all cases, the detailed understanding of acoustic propagation, ocean variability, temporal and spatial coherence ambient sound and the assimilation of data in models is essential for improved...

  14. Acoustic concentration of particles in fluid flow (United States)

    Ward, Michael D.; Kaduchak, Gregory


    An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

  15. Acoustic concentration of particles in fluid flow (United States)

    Ward, Michael W.; Kaduchak, Gregory


    Disclosed herein is a acoustic concentration of particles in a fluid flow that includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

  16. Acoustic Particle Detection with the ANTARES Detector

    Directory of Open Access Journals (Sweden)

    M. Neff


    Full Text Available The (Antares Modules for Acoustic Detection Under the Sea AMADEUS system within the (Astronomy with a Neutrino Telescope and Abyss environmental RESsearch ANTARES neutrino telescope is designed to investigate detection techniques for acoustic signals produced by particle cascades. While passing through a liquid a cascade deposits energy and produces a measurable pressure pulse. This can be used for the detection of neutrinos with energies exceeding 1018 eV. The AMADEUS setup consists of 36 hydrophones grouped in six local clusters measuring about one cubic meter each. This article focuses on acoustic particle detection, the hardware of the AMADEUS detector and techniques used for acoustic signal processing.

  17. Acoustic Particle Detection with the ANTARES Detector

    Directory of Open Access Journals (Sweden)

    Richardt C


    Full Text Available The (Antares Modules for Acoustic Detection Under the Sea AMADEUS system within the (Astronomy with a Neutrino Telescope and Abyss environmental RESsearch ANTARES neutrino telescope is designed to investigate detection techniques for acoustic signals produced by particle cascades. While passing through a liquid a cascade deposits energy and produces a measurable pressure pulse. This can be used for the detection of neutrinos with energies exceeding  eV. The AMADEUS setup consists of 36 hydrophones grouped in six local clusters measuring about one cubic meter each. This article focuses on acoustic particle detection, the hardware of the AMADEUS detector and techniques used for acoustic signal processing.

  18. Acoustic resonance for nonmetallic mine detection

    Energy Technology Data Exchange (ETDEWEB)

    Kercel, S.W.


    The feasibility of acoustic resonance for detection of plastic mines was investigated by researchers at the Oak Ridge National Laboratory`s Instrumentation and Controls Division under an internally funded program. The data reported in this paper suggest that acoustic resonance is not a practical method for mine detection. Representative small plastic anti-personnel mines were tested, and were found to not exhibit detectable acoustic resonances. Also, non-metal objects known to have strong acoustic resonances were tested with a variety of excitation techniques, and no practical non-contact method of exciting a consistently detectable resonance in a buried object was discovered. Some of the experimental data developed in this work may be useful to other researchers seeking a method to detect buried plastic mines. A number of excitation methods and their pitfalls are discussed. Excitation methods that were investigated include swept acoustic, chopped acoustic, wavelet acoustic, and mechanical shaking. Under very contrived conditions, a weak response that could be attributed to acoustic resonance was observed, but it does not appear to be practical as a mine detection feature. Transfer properties of soil were investigated. Impulse responses of several representative plastic mines were investigated. Acoustic leakage coupling, and its implications as a disruptive mechanism were investigated.

  19. Acoustic Purcell Effect for Enhanced Emission

    KAUST Repository

    Landi, Maryam


    We observe that our experimentally measured emission power enhancement of a speaker inside a previously proposed metacavity agrees with our numerically calculated enhancement of the density of states (DOS) of the source-cavity system. We interpret the agreement by formulating a relation between the emitted sound power and the acoustic DOS. The formulation is an analog to Fermi’s golden rule in quantum emission. The formulation complements the radiation impedance theory in traditional acoustics for describing sound emission. Our study bridges the gap between acoustic DOS and the acoustic Purcell effect for sound emission enhancement.

  20. Relationships between acoustic emissions and microstructures

    International Nuclear Information System (INIS)

    Rao, G.V.; Gopal, R.


    Results of a systematic study of 'microstructure-deformation-acoustic emission' relationships on two widely used pressure retaining component materials, namely A533-B nuclear pressure vessel steel and a 7075 aluminum alloy, are presented. The study consists of conducting acoustic monitored tensile tests on a variety of quenched and aged microstructures in the two alloy systems and extensive microstructural characterization of test specimens by light optic and electron microscopy techniques. The results suggest a consistent relationship between acoustic emissions and microdeformation mechanisms. The role of specific microstructural constituents in generating acoustic emissions in the two alloys is discussed. (author)

  1. Acoustic concerns related to multi cultural societies

    DEFF Research Database (Denmark)

    Gade, Anders Christian


    Immigration has increased cultural diversity in western societies. The process of integrating immigrants into their host countries can be smoothed if acousticians learn to recognize (1) the acoustic traditions of immigrant cultures and (2) the specific acoustic needs of the new society members. Two...... related projects are discussed. The ``Cahrisma'' project (Conservation of Acoustical Heritage by the Revival and Identification of the Sinan's Mosque Acoustics) is sponsored by the European Commission and carried out in cooperation among researchers in Turkey, Malta, Italy, France, Switzerland....... It is suggested that these soundscapes can provide comfort to recent immigrants by increasing their sense of being ``at home.''...

  2. Experimental verification of transient nonlinear acoustical holography. (United States)

    Jing, Yun; Cannata, Jonathan; Wang, Tianren


    This paper presents an experimental study on nonlinear transient acoustical holography. The validity and effectiveness of a recently proposed nonlinear transient acoustical holography algorithm is evaluated in the presence of noise. The acoustic field measured on a post-focal plane of a high-intensity focused transducer is backward projected to reconstruct the pressure distributions on the focal and a pre-focal plane, which are shown to be in good agreement with the measurement. In contrast, the conventional linear holography produces erroneous results in this case where the nonlinearity involved is strong. Forward acoustic field projection was also carried out to further verify the algorithm.

  3. A model for an acoustically driven microbubble inside a rigid tube

    KAUST Repository

    Qamar, Adnan


    A theoretical framework to model the dynamics of acoustically driven microbubble inside a rigid tube is presented. The proposed model is not a variant of the conventional Rayleigh-Plesset category of models. It is derived from the reduced Navier-Stokes equation and is coupled with the evolving flow field solution inside the tube by a similarity transformation approach. The results are computed, and compared with experiments available in literature, for the initial bubble radius of Ro=1.5μm and 2μm for the tube diameter of D=12μm and 200μm with the acoustic parameters as utilized in the experiments. Results compare quite well with the existing experimental data. When compared to our earlier basic model, better agreement on a larger tube diameter is obtained with the proposed coupled model. The model also predicts, accurately, bubble fragmentation in terms of acoustic and geometric parameters.

  4. Thermo-acoustical molecular interaction study in binary mixtures of glycerol and ethylene glycol (United States)

    Kaur, Kirandeep; Juglan, K. C.; Kumar, Harsh


    Ultrasonic velocity, density and viscosity are measured over the entire composition range for binary liquid mixtures of glycerol (CH2OH-CHOH-CH2OH) and ethylene glycol (HOCH2CH2OH) at different temperatures and constant frequency of 2MHz using ultrasonic interferometer, specific gravity bottle and viscometer respectively. Measured experimental values are used to obtained various acoustical parameters such as adiabatic compressibility, acoustic impedance, intermolecular free length, relaxation time, ultrasonic attenuation, effective molar weight, free volume, available volume, molar volume, Wada's constant, Rao's constant, Vander Waal's constant, internal pressure, Gibb's free energy and enthalpy. The variation in acoustical parameters are interpreted in terms of molecular interactions between the components of molecules of binary liquid mixtures.

  5. Supersonic acoustic intensity with statistically optimized near-field acoustic holography

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn


    to the information provided by the near-field acoustic holography technique. This study proposes a version of the supersonic acoustic intensity applied to statistically optimized near-field acoustic holography (SONAH). The theory, numerical results and an experimental study are presented. The possibility of using...

  6. An introduction to acoustic emission technology for in-process inspection of welds

    International Nuclear Information System (INIS)

    Goswami, G.L.


    Weld quality monitoring, as it stands today, is primarily done by X-ray radiography and ultrasonic testing which is applied after welding is complete. Acoustic Emission Technique (AET) also presents a possible substitute for weld quality monitoring which can be used during welding. Acoustic signals are generated during welding and the sound waves of weld defects are picked up by using AE sensors. With the introduction of sophisticated instrumentation in AET, it is possible to carry out the test even in noisy shop floor environments. Large number of reports on the subject of acoustic emission in recent years is a clear indication that it is gaining importance in welding industry. The present day status of the acoustic emission technology as an on-line weld quality monitoring technique has been reviewed. This report discusses the technique and system along with the acoustic emission parameters important for weld quality analysis. This also deals with the application of this technique in different welding processes like TIG, resistance, electro slag and submerged arc. It has been reported that monitoring of emission during welding can detect crack formation, crack growth and lack of fusion precisely. Static defects like porosity and inclusion do not generate very strong acoustic signals and are therefore difficult to intercept, but, however, lately they have detected successfully. (author)

  7. Controlling the transmission of ultrahigh frequency bulk acoustic waves in silicon by 45° mirrors. (United States)

    Wang, Shengxiang; Gao, Jiaming; Carlier, Julien; Campistron, Pierre; NDieguene, Assane; Guo, Shishang; Matar, Olivier Bou; Dorothee, Debavelaere-Callens; Nongaillard, Bertrand


    In this paper, we present a feasible microsystem in which the direction of localized ultrahigh frequency (∼1GHz) bulk acoustic wave can be controlled in a silicon wafer. Deep etching technology on the silicon wafer makes it possible to achieve high aspect ratio etching patterns which can be used to control bulk acoustic wave to transmit in the directions parallel to the surface of the silicon wafer. Passive 45° mirror planes obtained by wet chemical etching were employed to reflect the bulk acoustic wave. Zinc oxide (ZnO) thin film transducers were deposited by radio frequency sputtering with a thickness of about 1μm on the other side of the wafer, which act as emitter/receptor after aligned with the mirrors. Two opponent vertical mirrors were inserted between the 45° mirrors to guide the transmission of the acoustic waves. The propagation of the bulk acoustic wave was studied with simulations and the characterization of S(21) scattering parameters, indicating that the mirrors were efficient to guide bulk acoustic waves in the silicon wafer. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Time domain characteristics of wave motion in dispersive and anisotropic continuum acoustic metamaterials. (United States)

    Wang, Zhaojun; Zhou, Xiaoming


    The authors study the wave propagation in continuum acoustic metamaterials whose all or not all of the principal elements of the mass tensor or the scalar compressibility can be negative due to wave dispersion. Their time-domain wave characteristics are particularly investigated by the finite-difference time-domain (FDTD) method, in which algorithms for the Drude and Lorentz dispersion pertinent to acoustic metamaterials are provided necessarily. Wave propagation nature of anisotropic acoustic metamaterials with all admissible material parameters are analyzed in a general manner. It is found that anomalous negative refraction phenomena can appear in several dispersion regimes, and their unique time-domain signatures have been discovered by the FDTD modeling. It is further proposed that two different metamaterial layers with specially assigned dispersions could comprise a conjugate pair that permits wave propagation only at specific points in the wave vector space. The time-domain pulse simulation verifies that acoustic directive radiation capable of modulating radiation angle with the wave frequency can be realized with this conjugate pair. The study provides the detailed analysis of wave propagation in anisotropic and dispersive acoustic mediums, which makes a further step toward dispersion engineering and transient wave control through acoustic metamaterials.

  9. Acoustic emission evolution during sliding friction of Hadfield steel single crystal (United States)

    Lychagin, D. V.; Novitskaya, O. S.; Kolubaev, A. V.; Sizova, O. V.


    Friction is a complex dynamic process. Direct observation of processes occurring in the friction zone is impossible due to a small size of a real contact area and, as a consequence, requires various additional methods applicable to monitor a tribological contact state. One of such methods consists in the analysis of acoustic emission data of a tribological contact. The use of acoustic emission entails the problem of interpreting physical sources of signals. In this paper, we analyze the evolution of acoustic emission signal frames in friction of Hadfield steel single crystals. The chosen crystallographic orientation of single crystals enables to identify four stages related to friction development as well as acoustic emission signals inherent in these stages. Acoustic emission signal parameters are studied in more detail by the short-time Fourier transform used to determine the time variation of the median frequency and its power spectrum. The results obtained will facilitate the development of a more precise method to monitor the tribological contact based on the acoustic emission method.

  10. Physiological parameters

    International Nuclear Information System (INIS)

    Natera, E.S.


    The physiological characteristics of man depend on the intake, metabolism and excretion of stable elements from food, water, and air. The physiological behavior of natural radionuclides and radionuclides from nuclear weapons testing and from the utilization of nuclear energy is believed to follow the pattern of stable elements. Hence information on the normal physiological processes occurring in the human body plays an important role in the assessment of the radiation dose received by man. Two important physiological parameters needed for internal dose determination are the pulmonary function and the water balance. In the Coordinated Research Programme on the characterization of Asian population, five participants submitted data on these physiological characteristics - China, India, Japan, Philippines and Viet Nam. During the CRP, data on other pertinent characteristics such as physical and dietary were simultaneously being collected. Hence, the information on the physiological characteristics alone, coming from the five participants were not complete and are probably not sufficient to establish standard values for the Reference Asian Man. Nonetheless, the data collected is a valuable contribution to this research programme

  11. Effect of dust size distribution on ion-acoustic solitons in dusty plasmas with different dust grains

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Dong-Ning; Yang, Yang; Yan, Qiang [Northwest Normal University, College of Physics and Electronic Engineering (China); Wang, Xiao-Yun [Lanzhou Jiao Tong University, Department of Mathematics and Physics (China); Duan, Wen-Shan, E-mail: [Northwest Normal University, College of Physics and Electronic Engineering (China)


    Theoretical studies are carried out for ion acoustic solitons in multicomponent nonuniform plasma considering the dust size distribution. The Korteweg−de Vries equation for ion acoustic solitons is given by using the reductive perturbation technique. Two special dust size distributions are considered. The dependences of the width and amplitude of solitons on dust size parameters are shown. It is found that the properties of a solitary wave depend on the shape of the size distribution function of dust grains.

  12. Liquid rocket combustion chamber acoustic characterization

    Directory of Open Access Journals (Sweden)

    Cândido Magno de Souza


    Full Text Available Over the last 40 years, many solid and liquid rocket motors have experienced combustion instabilities. Among other causes, there is the interaction of acoustic modes with the combustion and/or fluid dynamic processes inside the combustion chamber. Studies have been showing that, even if less than 1% of the available energy is diverted to an acoustic mode, combustion instability can be generated. On one hand, this instability can lead to ballistic pressure changes, couple with other propulsion systems such as guidance or thrust vector control, and in the worst case, cause motor structural failure. In this case, measures, applying acoustic techniques, must be taken to correct/minimize these influences on the combustion. The combustion chamber acoustic behavior in operating conditions can be estimated by considering its behavior in room conditions. In this way, acoustic tests can be easily performed, thus identifying the cavity modes. This paper describes the procedures to characterize the acoustic behavior in the inner cavity of four different configurations of a combustion chamber. Simple analytical models are used to calculate the acoustic resonance frequencies and these results are compared with acoustic natural frequencies measured at room conditions. Some comments about the measurement procedures are done, as well as the next steps for the continuity of this research. The analytical and experimental procedures results showed good agreement. However, limitations on high frequency band as well as in the identification of specific kinds of modes indicate that numerical methods able to model the real cavity geometry and an acoustic experimental modal analysis may be necessary for a more complete analysis. Future works shall also consider the presence of passive acoustic devices such as baffles and resonators capable of introducing damping and avoiding or limiting acoustic instabilities.

  13. Acoustic hemostasis device for automated treatment of bleeding in limbs (United States)

    Sekins, K. Michael; Zeng, Xiaozheng; Barnes, Stephen; Hopple, Jerry; Kook, John; Moreau-Gobard, Romain; Hsu, Stephen; Ahiekpor-Dravi, Alexis; Lee, Chi-Yin; Ramachandran, Suresh; Maleke, Caroline; Eaton, John; Wong, Keith; Keneman, Scott


    A research prototype automated image-guided acoustic hemostasis system for treatment of deep bleeding was developed and tested in limb phantoms. The system incorporated a flexible, conformal acoustic applicator cuff. Electronically steered and focused therapeutic arrays (Tx) populated the cuff to enable dosing from multiple Tx's simultaneously. Similarly, multiple imaging arrays (Ix) were deployed on the cuff to enable 3D compounded images for targeting and treatment monitoring. To affect a lightweight cuff, highly integrated Tx electrical circuitry was implemented, fabric and lightweight structural materials were used, and components were minimized. Novel cuff and Ix and Tx mechanical registration approaches were used to insure targeting accuracy. Two-step automation was implemented: 1) targeting (3D image volume acquisition and stitching, Power and Pulsed Wave Doppler automated bleeder detection, identification of bone, followed by closed-loop iterative Tx beam targeting), and 2) automated dosing (auto-selection of arrays and Tx dosing parameters, power initiation and then monitoring by acoustic thermometry for power shut-off). In final testing the device automatically detected 65% of all bleeders (with various bleeder flow rates). Accurate targeting was achieved in HIFU phantoms with end-dose (30 sec) temperature rise reaching the desired 33-58°C. Automated closed-loop targeting and treatment was demonstrated in separate phantoms.

  14. Acoustic velocity investigation and density calculation in liquid nitrogen tetroxide

    International Nuclear Information System (INIS)

    Belyaeva, O.V.; Nikolaev, V.A.; Timofeev, B.D.


    Acoustic velocity in liquid nitrogen tetroxide was investigated on an ultrasonic interferometer, which represents a tube with the 30x2.5 mm diameter, at the ends of which ultrasonic sensors are located. The sensors and the interferometer tube are fabricated of the Kh18N9T stainless steel. The calibration tests were carried out on twice-distilled water at the pressure from 1 to 80 bar in the operational range of temperatures from 283 to 360 K. The relative mean square error in experimental data on the acoustic velocity in liquid nitrogen tetroxide is 0.17%. The experimental data are described by the interpolation polynom in the investigated range of state parameters. On the basis of experimental data on the density of liquid nitrogen tetroxide near the saturation line and the experimental values of acoustic velocity, an interpolation equation is suggested to calculate the substance density under investigation in the range of 290-360 K from pressures corresponding to the saturation line, to 300 bar

  15. Upscaling behavioural studies to the field using acoustic telemetry. (United States)

    Hellström, Gustav; Klaminder, Jonatan; Jonsson, Micael; Fick, Jerker; Brodin, Tomas


    Laboratory-based behavioural assays are often used in ecotoxicological studies to assess the environmental risk of aquatic contaminants. While results from such laboratory-based risk assessments may be difficult to extrapolate to natural environments, technological advancements over the past decade now make it possible to perform risk assessments through detailed studies of exposed individuals in natural settings. Acoustic telemetry is a technology to monitor movement and behaviour of aquatic organism in oceans, lakes, and rivers. The technology allows for tracking of multiple individuals simultaneously with very high temporal and spatial resolution, with the option to incorporate sensors to measure various physiological and environmental parameters. Although frequently used in fisheries research, aquatic ecotoxicology has been slow to adopt acoustic telemetry as a tool in field-based studies. This mini-review intends to introduce acoustic telemetry to aquatic ecotoxicologists, focusing on the potential of the technology to bridge the gap between laboratory assays and natural behaviours when making toxicological risk assessments. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. An Adaptive Framework for Acoustic Monitoring of Potential Hazards

    Directory of Open Access Journals (Sweden)

    Potamitis Ilyas


    Full Text Available Robust recognition of general audio events constitutes a topic of intensive research in the signal processing community. This work presents an efficient methodology for acoustic surveillance of atypical situations which can find use under different acoustic backgrounds. The primary goal is the continuous acoustic monitoring of a scene for potentially hazardous events in order to help an authorized officer to take the appropriate actions towards preventing human loss and/or property damage. A probabilistic hierarchical scheme is designed based on Gaussian mixture models and state-of-the-art sound parameters selected through extensive experimentation. A feature of the proposed system is its model adaptation loop that provides adaptability to different sound environments. We report extensive experimental results including installation in a real environment and operational detection rates for three days of function on a 24 hour basis. Moreover, we adopt a reliable testing procedure that demonstrates high detection rates as regards average recognition, miss probability, and false alarm rates.

  17. Flute ``breath support'' perception and its acoustical correlates (United States)

    Cossette, Isabelle A.; Sabourin, Patrick


    Music educators and performers commonly refer to ``breath support'' in flute playing, yet the term ``support'' is neither well-defined nor consistently used. Different breathing strategies used by professional flautists who were instructed to play with and without support were previously identified by the authors. In the current study, 14 musical excerpts with and without support were recorded by five professional flautists. Eleven professional flautists listened to the recordings in a random order and ranked (1 to 6) how much of the following sound qualities they judged to be in each example: support, intonation, control and musical expressiveness. Answers to the test showed that musical expressiveness was associated more closely with the supported excerpts than the answers about support itself. The ratings for each sound quality were highly intercorrelated. Acoustical parameters were analyzed (frequency and centroid variation within each note) and compared with the results of the perception test in order to better understand how the acoustical and psychological variables were related. The acoustical analysis of the central part of the notes did not show evident correlation with the answers of the perception test. [Work funded by the Social Sciences and Humanities Research Council of Canada.

  18. AUVs as integrated, adaptive acoustic sensors for ocean exploration (United States)

    Schmidt, Henrik; Edwards, Joseph R.; Liu, Te-Chih; Montanari, Monica


    Autonomous underwater vehicles (AUV) are rapidly being transitioned into operational systems for national defense, offshore exploration, and ocean science. AUVs provide excellent sensor platform control, allowing for, e.g., accurate acoustic mapping of seabeds not easily reached by conventional platforms, such as the deep ocean. However, the full potential of the robotic platforms is far from exhausted by such applications. Thus, for example, most seabed-mapping applications use imaging sonar technology, the data volume of which cannot be transmitted back to the operators in real time due to the severe bandwidth limitation of the acoustic communication. The sampling patterns are therefore in general being preprogramed and the data are being stored for postmission analysis. This procedure is therefore associated with indiscriminate distribution of the sampling throughout the area of interest, irrespective of whether features of interest are present or not. However, today's computing technology allows for a significant amount of signal processing and analysis to be performed on the platforms, where the results may then be used for real-time adaptive sampling to optimally concentrate the sampling in area of interest, and compress the results to a few parameters which may be transmitted back to the operators. Such adaptive sensing concepts combining environmental acoustics, signal processing, and robotics are currently being developed for concurrent detection, localization, and classification of buried objects, with application to littoral mine countermeasures, deep ocean seabed characterization, and marine archeology. [Work supported by ONR and NATO Undersea Research Center.

  19. An efficient Helmholtz solver for acoustic transversely isotropic media

    KAUST Repository

    Wu, Zedong


    The acoustic approximation, even for anisotropic media, is widely used in current industry imaging and inversion algorithms mainly because P-waves constitute the majority of the energy recorded in seismic exploration. The resulting acoustic formulas tend to be simpler, resulting in more efficient implementations, and depend on less medium parameters. However, conventional solutions of the acoustic wave equation with higher-order derivatives suffer from S-wave artifacts. Thus, we propose to separate the quasi-P wave propagation in anisotropic media into the elliptic anisotropic operator (free of the artifacts) and the non-elliptic-anisotropic components, which form a pseudo-differential operator. We, then, develop a separable approximation of the dispersion relation of non-elliptic-anisotropic components, specifically for transversely isotropic (TI) media. Finally, we iteratively solve the simpler lower-order elliptical wave equation for a modified source function that includes the non-elliptical terms represented in the Fourier domain. A frequency domain Helmholtz formulation of the approach renders the iterative implementation efficient as the cost is dominated by the Lower-Upper (LU) decomposition of the impedance matrix for the simpler elliptical anisotropic model. Also, the resulting wavefield is free of S-wave artifacts and has balanced amplitude. Numerical examples show that the method is reasonably accurate and efficient.

  20. Control of inhomogeneous materials strength by method of acoustic emission

    Directory of Open Access Journals (Sweden)

    В. В. Носов


    Full Text Available The ambiguous connection between the results of acoustic emission control and the strength of materials makes acoustic-emission diagnosis ineffective and actualizes the problem of strength and metrological heterogeneity. Inhomogeneity is some deviation from a certain norm. The real object is always heterogeneous, homogeneity is an assumption that simplifies the image of the object and the solution of the tasks associated with it. The need to consider heterogeneity is due to the need to clarify a particular task and is a transition to a more complex level of research. Accounting for heterogeneity requires the definition of its type, criterion and method of evaluation. The type of heterogeneity depends on the problem being solved and should be related to the property that determines the function of the real object, the criterion should be informative, and the way of its evaluation is non-destructive. The complexity of predicting the behavior of heterogeneous materials necessitates the modeling of the destructive process that determines the operability, the formulation of the inhomogeneity criterion, the interpretation of the Kaiser effect, as showing inhomogeneity of the phenomenon of non-reproduction of acoustic emission (AE activity upon repeated loading of the examined object.The article gives an example of modeling strength and metrological heterogeneity, analyzes and estimates the informative effect of the Kaiser effect on the danger degree of state of diagnosed object from the positions of the micromechanical model of time dependencies of AE parameters recorded during loading of structural materials and technical objects.