WorldWideScience

Sample records for single-multiple scattering theories

  1. Scattering theory

    International Nuclear Information System (INIS)

    Sitenko, A.

    1991-01-01

    This book emerged out of graduate lectures given by the author at the University of Kiev and is intended as a graduate text. The fundamentals of non-relativistic quantum scattering theory are covered, including some topics, such as the phase-function formalism, separable potentials, and inverse scattering, which are not always coverded in textbooks on scattering theory. Criticisms of the text are minor, but the reviewer feels an inadequate index is provided and the citing of references in the Russian language is a hindrance in a graduate text

  2. Scattering theory

    CERN Document Server

    Friedrich, Harald

    2016-01-01

    This corrected and updated second edition of "Scattering Theory" presents a concise and modern coverage of the subject. In the present treatment, special attention is given to the role played by the long-range behaviour of the projectile-target interaction, and a theory is developed, which is well suited to describe near-threshold bound and continuum states in realistic binary systems such as diatomic molecules or molecular ions. It is motivated by the fact that experimental advances have shifted and broadened the scope of applications where concepts from scattering theory are used, e.g. to the field of ultracold atoms and molecules, which has been experiencing enormous growth in recent years, largely triggered by the successful realization of Bose-Einstein condensates of dilute atomic gases in 1995. The book contains sections on special topics such as near-threshold quantization, quantum reflection, Feshbach resonances and the quantum description of scattering in two dimensions. The level of abstraction is k...

  3. Quantum theory of scattering

    CERN Document Server

    Wu Ta You

    1962-01-01

    This volume addresses the broad formal aspects and applications of the quantum theory of scattering in atomic and nuclear collisions. An encyclopedic source of pioneering work, it serves as a text for students and a reference for professionals in the fields of chemistry, physics, and astrophysics. The self-contained treatment begins with the general theory of scattering of a particle by a central field. Subsequent chapters explore particle scattering by a non-central field, collisions between composite particles, the time-dependent theory of scattering, and nuclear reactions. An examinati

  4. Electromagnetic scattering theory

    Science.gov (United States)

    Bird, J. F.; Farrell, R. A.

    1986-01-01

    Electromagnetic scattering theory is discussed with emphasis on the general stochastic variational principle (SVP) and its applications. The stochastic version of the Schwinger-type variational principle is presented, and explicit expressions for its integrals are considered. Results are summarized for scalar wave scattering from a classic rough-surface model and for vector wave scattering from a random dielectric-body model. Also considered are the selection of trial functions and the variational improvement of the Kirchhoff short-wave approximation appropriate to large size-parameters. Other applications of vector field theory discussed include a general vision theory and the analysis of hydromagnetism induced by ocean motion across the geomagnetic field. Levitational force-torque in the magnetic suspension of the disturbance compensation system (DISCOS), now deployed in NOVA satellites, is also analyzed using the developed theory.

  5. Stationary scattering theory

    International Nuclear Information System (INIS)

    Combes, J.M.

    1980-10-01

    A complementary approach to the time dependent scattering theory for one-body Schroedinger operators is presented. The stationary theory is concerned with objects of quantum theory like scattering waves and amplitudes. In the more recent abstract stationary theory some generalized form of the Lippman-Schwinger equation plays the basic role. Solving this equation leads to a linear map between generalized eigenfunctions of the perturbed and unperturbed operators. This map is the section at fixed energy of the wave-operator from the time dependent theory. Although the radiation condition does not appears explicitely in this formulation it can be shown to hold a posteriori in a variety of situations thus restoring the link with physical theories

  6. Applied electromagnetic scattering theory

    CERN Document Server

    Osipov, Andrey A

    2017-01-01

    Besides classical applications (radar and stealth, antennas, microwave engineering), scattering and diffraction are enabling phenomena for some emerging research fields (artificial electromagnetic materials or metamaterials, terahertz technologies, electromagnetic aspects of nano-science). This book is a tutorial for advanced students who need to study diffraction theory. The textbook gives fundamental knowledge about scattering and diffraction of electromagnetic waves and provides some working examples of solutions for practical high-frequency scattering and diffraction problems. The book focuses on the most important diffraction effects and mechanisms influencing the scattering process and describes efficient and physically justified simulation methods - physical optics (PO) and the physical theory of diffraction (PTD) - applicable in typical remote sensing scenarios. The material is presented in a comprehensible and logical form, which relates the presented results to the basic principles of electromag...

  7. Scattering theory. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Harald [Technische Univ. Muenchen, Garching (Germany). Physik-Department

    2016-07-01

    This corrected and updated second edition of ''Scattering Theory'' presents a concise and modern coverage of the subject. In the present treatment, special attention is given to the role played by the long-range behaviour of the projectile-target interaction, and a theory is developed, which is well suited to describe near-threshold bound and continuum states in realistic binary systems such as diatomic molecules or molecular ions. It is motivated by the fact that experimental advances have shifted and broadened the scope of applications where concepts from scattering theory are used, e.g. to the field of ultracold atoms and molecules, which has been experiencing enormous growth in recent years, largely triggered by the successful realization of Bose-Einstein condensates of dilute atomic gases in 1995. The book contains sections on special topics such as near-threshold quantization, quantum reflection, Feshbach resonances and the quantum description of scattering in two dimensions. The level of abstraction is kept as low as at all possible and deeper questions related to the mathematical foundations of scattering theory are passed by. It should be understandable for anyone with a basic knowledge of nonrelativistic quantum mechanics. The book is intended for advanced students and researchers, and it is hoped that it will be useful for theorists and experimentalists alike.

  8. Basic scattering theory

    International Nuclear Information System (INIS)

    Queen, N.M.

    1978-01-01

    This series of lectures on basic scattering theory were given as part of a course for postgraduate high energy physicists and were designed to acquaint the student with some of the basic language and formalism used for the phenomenological description of nuclear reactions and decay processes used for the study of elementary particle interactions. Well established and model independent aspects of scattering theory, which are the basis of S-matrix theory, are considered. The subject is considered under the following headings; the S-matrix, cross sections and decay rates, phase space, relativistic kinematics, the Mandelstam variables, the flux factor, two-body phase space, Dalitz plots, other kinematic plots, two-particle reactions, unitarity, the partial-wave expansion, resonances (single-channel case), multi-channel resonances, analyticity and crossing, dispersion relations, the one-particle exchange model, the density matrix, mathematical properties of the density matrix, the density matrix in scattering processes, the density matrix in decay processes, and the helicity formalism. Some exercises for the students are included. (U.K.)

  9. Dispersion Decay and Scattering Theory

    CERN Document Server

    Komech, Alexander

    2012-01-01

    A simplified, yet rigorous treatment of scattering theory methods and their applications Dispersion Decay and Scattering Theory provides thorough, easy-to-understand guidance on the application of scattering theory methods to modern problems in mathematics, quantum physics, and mathematical physics. Introducing spectral methods with applications to dispersion time-decay and scattering theory, this book presents, for the first time, the Agmon-Jensen-Kato spectral theory for the Schr?dinger equation, extending the theory to the Klein-Gordon equation. The dispersion decay plays a crucial role i

  10. Scattering theory for Stark Hamiltonians

    International Nuclear Information System (INIS)

    Jensen, Arne

    1994-01-01

    An introduction to the spectral and scattering theory for Schroedinger operators is given. An abstract short range scattering theory is developed. It is applied to perturbations of the Laplacian. Particular attention is paid to the study of Stark Hamiltonians. The main result is an explanation of the discrepancy between the classical and the quantum scattering theory for one-dimensional Stark Hamiltonians. (author). 47 refs

  11. Scattering theory and chemical reactions

    International Nuclear Information System (INIS)

    Kuppermann, A.

    1988-01-01

    In this course, scattering theory and chemical reactions are presented including scattering of one particle by a potential, n-particle systems, colinear triatomic molecules and the study of reactive scattering for 3-dimensional triatomic systems. (A.C.A.S.) [pt

  12. Stationary theory of scattering

    International Nuclear Information System (INIS)

    Kato, T.

    1977-01-01

    A variant of the stationary methods is described, and it is shown that it is useful in a wide range of problems, including scattering, by long-range potentials, two-space scattering, and multichannel scattering. The method is based on the notion of spectral forms. The paper is restricted to the simplest case of continuous spectral forms defined on a Banach space embedded in the basic Hilbert space. (P.D.)

  13. Scattering Amplitudes from Intersection Theory.

    Science.gov (United States)

    Mizera, Sebastian

    2018-04-06

    We use Picard-Lefschetz theory to prove a new formula for intersection numbers of twisted cocycles associated with a given arrangement of hyperplanes. In a special case when this arrangement produces the moduli space of punctured Riemann spheres, intersection numbers become tree-level scattering amplitudes of quantum field theories in the Cachazo-He-Yuan formulation.

  14. Semiclassical scattering theory

    International Nuclear Information System (INIS)

    Di Salvo, A.

    1985-01-01

    It is intended to write the semiclassical scattering amplitude as a sum of terms, each of them being associated to trajectory. First of all the classical equations of motion are studied, considering both the analytical (real and complex) solutions and a certain type of singular solutions, which behave similary to the difracted rays in optics; in particular, in the case of a central nuclear potential, classical effects like rainbow and orbiting and also wave effects like diffraction and direct reflection are singled out. Successively, considering the Debye expansion of the scattering amplitude relative to a central nuclear potential, and evaluating asymptotically each term by means of the saddle point technique, the decay exponents and difraction coefficients relative to such a potential are determined

  15. Analytic nuclear scattering theories

    International Nuclear Information System (INIS)

    Di Marzio, F.; University of Melbourne, Parkville, VIC

    1999-01-01

    A wide range of nuclear reactions are examined in an analytical version of the usual distorted wave Born approximation. This new approach provides either semi analytic or fully analytic descriptions of the nuclear scattering processes. The resulting computational simplifications, when used within the limits of validity, allow very detailed tests of both nuclear interaction models as well as large basis models of nuclear structure to be performed

  16. Scattering theory and automorphic functions

    International Nuclear Information System (INIS)

    Lachaud, G.

    1982-01-01

    After a consideration of the Fourier expansion of an automorphic function corresponding to the group SL(2,R) and a description of the Eisenstein series the author describes the application of these results to the quantum mechanical scattering theory using the group SO(2,R). (HSI)

  17. Scattering theory and orthogonal polynomials

    International Nuclear Information System (INIS)

    Geronimo, J.S.

    1977-01-01

    The application of the techniques of scattering theory to the study of polynomials orthogonal on the unit circle and a finite segment of the real line is considered. The starting point is the recurrence relations satisfied by the polynomials instead of the orthogonality condition. A set of two two terms recurrence relations for polynomials orthogonal on the real line is presented and used. These recurrence relations play roles analogous to those satisfied by polynomials orthogonal on unit circle. With these recurrence formulas a Wronskian theorem is proved and the Christoffel-Darboux formula is derived. In scattering theory a fundamental role is played by the Jost function. An analogy is deferred of this function and its analytic properties and the locations of its zeros investigated. The role of the analog Jost function in various properties of these orthogonal polynomials is investigated. The techniques of inverse scattering theory are also used. The discrete analogues of the Gelfand-Levitan and Marchenko equations are derived and solved. These techniques are used to calculate asymptotic formulas for the orthogonal polynomials. Finally Szego's theorem on toeplitz and Hankel determinants is proved using the recurrence formulas and some properties of the Jost function. The techniques of inverse scattering theory are used to calculate the correction terms

  18. Group theory approach to scattering

    International Nuclear Information System (INIS)

    Wu, J.

    1985-01-01

    For certain physical systems, there exists a dynamical group which contains the operators connecting states with the same energy but belonging to potentials with different strengths. This group is called the potential group of that system. The SO(2,1) potential groups structure is introduced to describe physical systems with mixed spectra, such as Morse and Poeschl-teller potentials. The discrete spectrum describes bound states and the continuous spectrum describes bound states and the continuous spectrum describes scattering states. A solvable class of one-dimensional potentials given by Natanzon belongs to this structure with an SO(2,2) potential group. The potential group structure provides us with an algebraic procedure generating the recursion relations for the scattering matrix, which can be formulated in a purely algebraic fashion, divorced from any differential realization. This procedure, when applied to the three-dimensional scattering problem with SO(3,1) symmetry, generates the scattering matrix of the Coulomb problem. Preliminary phenomenological models for elastic scattering in a heavy-ion collision are constructed on the basis. The results obtained here can be regarded as an important extension of the group theory techniques to scattering problems similar to that developed for bound state problems

  19. Scattering amplitudes in gauge theories

    CERN Document Server

    Henn, Johannes M

    2014-01-01

    At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge.   These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum ...

  20. Scattering theory for Riemannian Laplacians

    DEFF Research Database (Denmark)

    Ito, Kenichi; Skibsted, Erik

    In this paper we introduce a notion of scattering theory for the Laplace-Beltrami operator on non-compact, connected and complete Riemannian manifolds. A principal condition is given by a certain positive lower bound of the second fundamental form of angular submanifolds at infinity. Another...... condition is certain bounds of derivatives up to order one of the trace of this quantity. These conditions are shown to be optimal for existence and completeness of a wave operator. Our theory does not involve prescribed asymptotic behaviour of the metric at infinity (like asymptotic Euclidean or hyperbolic...

  1. Scattering amplitudes in gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Henn, Johannes M. [Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Plefka, Jan C. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2014-03-01

    First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.

  2. Scattering amplitudes in gauge theories

    International Nuclear Information System (INIS)

    Henn, Johannes M.; Plefka, Jan C.

    2014-01-01

    First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.

  3. Towards a nonpotential scattering theory

    International Nuclear Information System (INIS)

    Mignani, R.

    1985-01-01

    We present a formal approach to nonpotential scattering theory (i.e. scattering under unrestricted nonlocal non-Hamiltonian forces), based on the generalization of the concept of scattering matrix (and related topics) to the Lie-isotopic and Lie-admissible case. In the time-dependent formalism, the main taks is the determination of the evolution operator, from which the S matrix is found as a double infinite limit. The study of time-development operators is carried out in detail in the isotopic case, and involves the isotopic generalizations of Moller wave operators, in- and out-states, and temporal (retarded and advanced) propagators. We give also expansion techniques for the S matrix, which extend to the Lie-isotopic formulation the Feynman-Dyson perturbation series, the Magnus expansion, and the Wei-Norman theorem. In the time-independent approach, we solve the isotopic Schroedinger eigenvalue equation by exploiting the properties of isotopic Green operators, Lippmann-Schwinger equations, and incoming and outgoing states, which turn out to be suitable generalizations of the conventional ones. The changes in cross sections due to nonpotential forces are explicitly worked out in some simple cases. A purely algebraic approach to nonpotential scattering, essentially based on the properties of the isowave operators, is presented. The Lie-admissible formulation of the main results is briefly outlined

  4. Theory of Graphene Raman Scattering.

    Science.gov (United States)

    Heller, Eric J; Yang, Yuan; Kocia, Lucas; Chen, Wei; Fang, Shiang; Borunda, Mario; Kaxiras, Efthimios

    2016-02-23

    Raman scattering plays a key role in unraveling the quantum dynamics of graphene, perhaps the most promising material of recent times. It is crucial to correctly interpret the meaning of the spectra. It is therefore very surprising that the widely accepted understanding of Raman scattering, i.e., Kramers-Heisenberg-Dirac theory, has never been applied to graphene. Doing so here, a remarkable mechanism we term"transition sliding" is uncovered, explaining the uncommon brightness of overtones in graphene. Graphene's dispersive and fixed Raman bands, missing bands, defect density and laser frequency dependence of band intensities, widths of overtone bands, Stokes, anti-Stokes anomalies, and other known properties emerge simply and directly.

  5. Applications of inverse and algebraic scattering theories

    Energy Technology Data Exchange (ETDEWEB)

    Amos, K. [Qinghua Univ., Beijing, BJ (China). Dept. of Physics

    1997-06-01

    Inverse scattering theories, algebraic scattering theory and exactly solvable scattering potentials are diverse ways by which scattering potentials can be defined from S-functions specified by fits to fixed energy, quantal scattering data. Applications have been made in nuclear (heavy ion and nucleon-nucleus scattering), atomic and molecular (electron scattering from simple molecules) systems. Three inverse scattering approaches are considered in detail; the semiclassical WKB and fully quantal Lipperheide-Fiedeldey method, than algebraic scattering theory is applied to heavy ion scattering and finally the exactly solvable Ginocchio potentials. Some nuclear results are ambiguous but the atomic and molecular inversion potentials are in good agreement with postulated forms. 21 refs., 12 figs.

  6. Advanced electromagnetics and scattering theory

    CERN Document Server

    2015-01-01

    This book present the lecture notes used in two courses that the late Professor Kasra Barkeshli had offered at Sharif University of Technology, namely, Advanced Electromagnetics and Scattering Theory. The prerequisite for the sequence is vector calculus and electromagnetic fields and waves. Some familiarity with Green's functions and integral equations is desirable but not necessary. The book  provides a brief but concise introduction to classical topics in the field. It is divided into three parts including annexes. Part I covers principle of electromagnetic theory. The discussion starts with a review of the Maxwell's equations in differential and integral forms and basic boundary conditions. The solution of inhomogeneous wave equation and various field representations including Lorentz's potential functions and the Green's function method are discussed next. The solution of Helmholtz equation and wave harmonics follow. Next, the book presents plane wave propagation in dielectric and lossy media and various...

  7. Introductory theory of neutron scattering

    International Nuclear Information System (INIS)

    Gunn, J.M.F.

    1986-12-01

    The paper comprises a set of six lecture notes which were delivered to the summer school on 'Neutron Scattering at a pulsed source', Rutherford Laboratory, United Kingdom, 1986. The lectures concern the physical principles of neutron scattering. The topics of the lectures include: diffraction, incoherent inelastic scattering, connection with the Schroedinger equation, magnetic scattering, coherent inelastic scattering, and surfaces and neutron optics. (UK)

  8. Scattering by two spheres: Theory and experiment

    DEFF Research Database (Denmark)

    Bjørnø, Irina; Jensen, Leif Bjørnø

    1998-01-01

    of suspended sediments. The scattering properties of single regular-shaped particles have been studied in depth by several authors in the past. However, single particle scattering cannot explain all features of scattering by suspended sediment. When the concentration of particles exceeds a certain limit...... on three issues: (1) to develop a simplified theory for scattering by two elastical spheres; (2) to measure the scattering by two spheres in a water tank, and (3) to compare the theoretical/numerical results with the measured data. A number of factors influencing multiple scattering, including...

  9. Light-scattering theory of diffraction.

    Science.gov (United States)

    Guo, Wei

    2010-03-01

    Since diffraction is a scattering process in principle, light propagation through one aperture in a screen is discussed in the light-scattering theory. Through specific calculation, the expression of the electric field observed at an observation point is obtained and is used not only to explain why Kirchhoff's diffraction theory is a good approximation when the screen is both opaque and sufficiently thin but also to demonstrate that the mathematical and physical problems faced by Kirchhoff's theory are avoided in the light-scattering theory.

  10. "Phonon" scattering beyond perturbation theory

    Science.gov (United States)

    Qiu, WuJie; Ke, XueZhi; Xi, LiLi; Wu, LiHua; Yang, Jiong; Zhang, WenQing

    2016-02-01

    Searching and designing materials with intrinsically low lattice thermal conductivity (LTC) have attracted extensive consideration in thermoelectrics and thermal management community. The concept of part-crystalline part-liquid state, or even part-crystalline part-amorphous state, has recently been proposed to describe the exotic structure of materials with chemical- bond hierarchy, in which a set of atoms is weakly bonded to the rest species while the other sublattices retain relatively strong rigidity. The whole system inherently manifests the coexistence of rigid crystalline sublattices and fluctuating noncrystalline substructures. Representative materials in the unusual state can be classified into two categories, i.e., caged and non-caged ones. LTCs in both systems deviate from the traditional T -1 relationship ( T, the absolute temperature), which can hardly be described by small-parameter-based perturbation approaches. Beyond the classical perturbation theory, an extra rattling-like scattering should be considered to interpret the liquid-like and sublattice-amorphization-induced heat transport. Such a kind of compounds could be promising high-performance thermoelectric materials, due to the extremely low LTCs. Other physical properties for these part-crystalline substances should also exhibit certain novelty and deserve further exploration.

  11. Experimental confirmation of neoclassical Compton scattering theory

    Energy Technology Data Exchange (ETDEWEB)

    Aristov, V. V., E-mail: aristov@iptm.ru [Russian Academy of Sciences, Institute of Microelectronics Technology and High Purity Materials (Russian Federation); Yakunin, S. N. [National Research Centre “Kurchatov Institute” (Russian Federation); Despotuli, A. A. [Russian Academy of Sciences, Institute of Microelectronics Technology and High Purity Materials (Russian Federation)

    2013-12-15

    Incoherent X-ray scattering spectra of diamond and silicon crystals recorded on the BESSY-2 electron storage ring have been analyzed. All spectral features are described well in terms of the neoclassical scattering theory without consideration for the hypotheses accepted in quantum electrodynamics. It is noted that the accepted tabular data on the intensity ratio between the Compton and Rayleigh spectral components may significantly differ from the experimental values. It is concluded that the development of the general theory (considering coherent scattering, incoherent scattering, and Bragg diffraction) must be continued.

  12. Scattering theory of stochastic electromagnetic light waves.

    Science.gov (United States)

    Wang, Tao; Zhao, Daomu

    2010-07-15

    We generalize scattering theory to stochastic electromagnetic light waves. It is shown that when a stochastic electromagnetic light wave is scattered from a medium, the properties of the scattered field can be characterized by a 3 x 3 cross-spectral density matrix. An example of scattering of a spatially coherent electromagnetic light wave from a deterministic medium is discussed. Some interesting phenomena emerge, including the changes of the spectral degree of coherence and of the spectral degree of polarization of the scattered field.

  13. On the microscopic foundation of scattering theory

    International Nuclear Information System (INIS)

    Moser, T.

    2007-01-01

    The aim of the thesis is to give a contribution to the microscopic foundation of scattering theory, i. e. to show, how the asymptotic formalism of scattering theory with objects like the S-matrix as well the initial and final asymptotics ψ in and ψ out can be derived from a microscopic description of the basic system. First the final statistics from a N-particle system through farly distant surfaces is derived. Thereafter we confine us to the 1-particle scattering and apply the final statistics in order to derive the scattering cross section from a microscopical description of the scattering situation. The basing dynamics are Bohm's mechanics, a theory on the motion of point particles, which reproduces all results of nonrelativistic quantum mechanics

  14. Wavepacket scattering in potential theory

    International Nuclear Information System (INIS)

    Weber, T.A.; Hammer, C.L.

    1977-01-01

    A contour integration technique is developed which enforces the initial conditions for wavepacket-potential scattering. The expansion coefficients for the exact energy eigenstate expansion are automatically expressed in terms of the plane wave expansion coefficients of the initial wavepacket, thereby simplifying what is usually a tedious, mathematical process. The method is applicable regardless of the initial spatial separation of the wavepacket from the scattering center

  15. Electromagnetic theory of plasma light scattering

    International Nuclear Information System (INIS)

    Bobin, J.L.

    1969-01-01

    The theory of light scattering by a plasma is formulated using Klimontovich's microscopic distribution functions and Landau method to solve linear kinetic equations. First, Salpeter's derivation and results are given for the spectrum of light scattered by a collisionless plasma. Then, the influence of collision is investigated through B.G.K. kinetic equation. (author) [fr

  16. Rayleigh scattering in coupled microcavities: theory.

    Science.gov (United States)

    Vörös, Zoltán; Weihs, Gregor

    2014-12-03

    In this paper we theoretically study how structural disorder in coupled semiconductor heterostructures influences single-particle scattering events that would otherwise be forbidden by symmetry. We extend the model of Savona (2007 J. Phys.: Condens. Matter 19 295208) to describe Rayleigh scattering in coupled planar microcavity structures, and find that effective filter theories can be ruled out.

  17. On three-particle scattering theory

    International Nuclear Information System (INIS)

    Kuz'michev, V.E.

    1977-01-01

    The approach proposed earlier by the author to three-particle scattering theory is discussed. This approach may prove to be useful for studying certain problems in the physics of few-nucleon systems. The corresponding equations for the partial components of the amplitudes and the potentials are obtained in the N-d scattering case

  18. Introducing Scattering Theory with a Computer

    Science.gov (United States)

    Merrill, John R.

    1973-01-01

    Discusses a new method of presenting the scattering theory, including classical explanation of cross sections, quantum mechanical expressions for phase shifts, and use of a computer to solve problems. (CC)

  19. Scattering theory of molecules, atoms and nuclei

    CERN Document Server

    Canto, L Felipe

    2012-01-01

    The aim of the book is to give a coherent and comprehensive account of quantum scattering theory with applications to atomic, molecular and nuclear systems. The motivation for this is to supply the necessary theoretical tools to calculate scattering observables of these many-body systems. Concepts which are seemingly different for atomic/molecular scattering from those of nuclear systems, are shown to be the same once physical units such as energy and length are diligently clarified. Many-body resonances excited in nuclear systems are the same as those in atomic systems and come under the name

  20. Topics in elementary scattering theory

    International Nuclear Information System (INIS)

    Imrie, D.C.

    1980-01-01

    In these lectures a summary is given of some of the fundamental ideas and formalism used to describe and understand the interactions of elementary particles. A brief review of relativistic kinematics is followed by a discussion of Lorentz-invariant variables for describing two-body processes, phase space and plots, such as the Dalitz plot, which can be used to study some aspects of the dynamics of an interaction, relatively free from kinematic complications. A general description of scattering and decay is given and then, more specifically, some aspects of two-body interactions in the absence of spin are discussed. Finally, complications that arise when particle spin has to be taken into account are considered. (U.K.)

  1. Bit-string scattering theory

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, H.P.

    1990-01-29

    We construct discrete space-time coordinates separated by the Lorentz-invariant intervals h/mc in space and h/mc{sup 2} in time using discrimination (XOR) between pairs of independently generated bit-strings; we prove that if this space is homogeneous and isotropic, it can have only 1, 2 or 3 spacial dimensions once we have related time to a global ordering operator. On this space we construct exact combinatorial expressions for free particle wave functions taking proper account of the interference between indistinguishable alternative paths created by the construction. Because the end-points of the paths are fixed, they specify completed processes; our wave functions are born collapsed''. A convenient way to represent this model is in terms of complex amplitudes whose squares give the probability for a particular set of observable processes to be completed. For distances much greater than h/mc and times much greater than h/mc{sup 2} our wave functions can be approximated by solutions of the free particle Dirac and Klein-Gordon equations. Using a eight-counter paradigm we relate this construction to scattering experiments involving four distinguishable particles, and indicate how this can be used to calculate electromagnetic and weak scattering processes. We derive a non-perturbative formula relating relativistic bound and resonant state energies to mass ratios and coupling constants, equivalent to our earlier derivation of the Bohr relativistic formula for hydrogen. Using the Fermi-Yang model of the pion as a relativistic bound state containing a nucleon-antinucleon pair, we find that (G{sub {pi}N}{sup 2}){sup 2} = (2m{sub N}/m{sub {pi}}){sup 2} {minus} 1. 21 refs., 1 fig.

  2. Bit-string scattering theory

    International Nuclear Information System (INIS)

    Noyes, H.P.

    1990-01-01

    We construct discrete space-time coordinates separated by the Lorentz-invariant intervals h/mc in space and h/mc 2 in time using discrimination (XOR) between pairs of independently generated bit-strings; we prove that if this space is homogeneous and isotropic, it can have only 1, 2 or 3 spacial dimensions once we have related time to a global ordering operator. On this space we construct exact combinatorial expressions for free particle wave functions taking proper account of the interference between indistinguishable alternative paths created by the construction. Because the end-points of the paths are fixed, they specify completed processes; our wave functions are ''born collapsed''. A convenient way to represent this model is in terms of complex amplitudes whose squares give the probability for a particular set of observable processes to be completed. For distances much greater than h/mc and times much greater than h/mc 2 our wave functions can be approximated by solutions of the free particle Dirac and Klein-Gordon equations. Using a eight-counter paradigm we relate this construction to scattering experiments involving four distinguishable particles, and indicate how this can be used to calculate electromagnetic and weak scattering processes. We derive a non-perturbative formula relating relativistic bound and resonant state energies to mass ratios and coupling constants, equivalent to our earlier derivation of the Bohr relativistic formula for hydrogen. Using the Fermi-Yang model of the pion as a relativistic bound state containing a nucleon-antinucleon pair, we find that (G πN 2 ) 2 = (2m N /m π ) 2 - 1. 21 refs., 1 fig

  3. Scattering theory of the linear Boltzmann operator

    International Nuclear Information System (INIS)

    Hejtmanek, J.

    1975-01-01

    In time dependent scattering theory we know three important examples: the wave equation around an obstacle, the Schroedinger and the Dirac equation with a scattering potential. In this paper another example from time dependent linear transport theory is added and considered in full detail. First the linear Boltzmann operator in certain Banach spaces is rigorously defined, and then the existence of the Moeller operators is proved by use of the theorem of Cook-Jauch-Kuroda, that is generalized to the case of a Banach space. (orig.) [de

  4. Haag-Ruelle scattering theory as a scattering theory in different spaces of states

    International Nuclear Information System (INIS)

    Koshmanenko, V.D.

    1979-01-01

    The aim of the paper is the extraction of the abstract content from the Haag-Ruelle theory, i.e. to find out the total mathematical scheme of the theory without the account of physical axiomatics. It is shown that the Haag-Ruelle scattering theory may be naturally included into the scheme of the abstract theory of scattering with the pair of spaces, the wave operators being determined by the method of bilinear functionals. A number of trivial features of the scattering operator is found in the abstract theory. The concrete prospects of the application of the data obtained are outlined in the problem of the scattering of the field quantum theory

  5. Scattering theory some old and new problems

    CERN Document Server

    Yafaev, Dmitri R

    2000-01-01

    Scattering theory is, roughly speaking, perturbation theory of self-adjoint operators on the (absolutely) continuous spectrum. It has its origin in mathematical problems of quantum mechanics and is intimately related to the theory of partial differential equations. Some recently solved problems, such as asymptotic completeness for the Schrödinger operator with long-range and multiparticle potentials, as well as open problems, are discussed. Potentials for which asymptotic completeness is violated are also constructed. This corresponds to a new class of asymptotic solutions of the time-dependent Schrödinger equation. Special attention is paid to the properties of the scattering matrix, which is the main observable of the theory. The book is addressed to readers interested in a deeper study of the subject.

  6. Theory of neutron scattering in disordered alloys

    International Nuclear Information System (INIS)

    Yussouff, M.; Mookerjee, A.

    1984-08-01

    A comprehensive theory of thermal neutron scattering in disordered alloys is presented here. We consider in detail the case of substitutional random binary alloy with random changes in mass and force constants; and for all values of the concentration. The cluster CPA formalism in argumented space developed here is free from analytical difficulties for the Green function, performs correct averaging over random atomic scattering lengths and employs a self-consistent medium for the calculations. For easy computation, we describe the graphical representation of the resolvent where the approximation steps can be depicted as closed paths in augmented space. Our results for scattering cross sections, both coherent and incoherent, include new types of terms and these lead to asymmetric line shapes for the coherent scattering. (author)

  7. Effective string theory and QCD scattering amplitudes

    International Nuclear Information System (INIS)

    Makeenko, Yuri

    2011-01-01

    QCD string is formed at distances larger than the confinement scale and can be described by the Polchinski-Strominger effective string theory with a nonpolynomial action, which has nevertheless a well-defined semiclassical expansion around a long-string ground state. We utilize modern ideas about the Wilson-loop/scattering-amplitude duality to calculate scattering amplitudes and show that the expansion parameter in the effective string theory is small in the Regge kinematical regime. For the amplitudes we obtain the Regge behavior with a linear trajectory of the intercept (d-2)/24 in d dimensions, which is computed semiclassically as a momentum-space Luescher term, and discuss an application to meson scattering amplitudes in QCD.

  8. The Bateman method for multichannel scattering theory

    International Nuclear Information System (INIS)

    Kim, Y. E.; Kim, Y. J.; Zubarev, A. L.

    1997-01-01

    Accuracy and convergence of the Bateman method are investigated for calculating the transition amplitude in multichannel scattering theory. This approximation method is applied to the calculation of elastic amplitude. The calculated results are remarkably accurate compared with those of exactly solvable multichannel model

  9. Quantum scattering from classical field theory

    International Nuclear Information System (INIS)

    Gould, T.M.; Poppitz, E.R.

    1995-01-01

    We show that scattering amplitudes between initial wave packet states and certain coherent final states can be computed in a systematic weak coupling expansion about classical solutions satisfying initial-value conditions. The initial-value conditions are such as to make the solution of the classical field equations amenable to numerical methods. We propose a practical procedure for computing classical solutions which contribute to high energy two-particle scattering amplitudes. We consider in this regard the implications of a recent numerical simulation in classical SU(2) Yang-Mills theory for multiparticle scattering in quantum gauge theories and speculate on its generalization to electroweak theory. We also generalize our results to the case of complex trajectories and discuss the prospects for finding a solution to the resulting complex boundary value problem, which would allow the application of our method to any wave packet to coherent state transition. Finally, we discuss the relevance of these results to the issues of baryon number violation and multiparticle scattering at high energies. ((orig.))

  10. Theory of Multiple Coulomb Scattering from Extended Nuclei

    Science.gov (United States)

    Cooper, L. N.; Rainwater, J.

    1954-08-01

    Two independent methods are described for calculating the multiple scattering distribution for projected angle scattering resulting when very high energy charged particles traverse a thick scatterer. The results are compared with the theories of Moliere and Olbert.

  11. Testing special relativity theory using Compton scattering

    International Nuclear Information System (INIS)

    Contreras S, H.; Hernandez A, L.; Baltazar R, A.; Escareno J, E.; Mares E, C. A.; Hernandez V, C.; Vega C, H. R.

    2010-10-01

    The validity of the special relativity theory has been tested using the Compton scattering. Since 1905 several experiments has been carried out to show that time, mass, and length change with the velocity, in this work the Compton scattering has been utilized as a simple way to show the validity to relativity. The work was carried out through Monte Carlo calculations and experiments with different gamma-ray sources and a gamma-ray spectrometer with a 3 x 3 NaI (Tl) detector. The pulse-height spectra were collected and the Compton edge was observed. This information was utilized to determine the relationship between the electron's mass and energy using the Compton -knee- position, the obtained results were contrasted with two collision models between photon and electron, one model was built using the classical physics and another using the special relativity theory. It was found that calculations and experiments results fit to collision model made using the special relativity. (Author)

  12. THEORY OF ELECTRON-DEUTERON SCATTERING

    Energy Technology Data Exchange (ETDEWEB)

    Durand, L. III

    1963-06-15

    Information on the electromagnetic form factors of the neutron is obtained from the theory of inelastic electrondeuteron scattering. Problems in the analysis of these experiments that are related to the detailed structure of the deuteron and to the strong final state interactions between the emergent nucleons are considered. Problems arising from an ambiguity in the sign of the Dirac or charge form factor are also discussed. (C.E.S.)

  13. Scattering amplitudes in open superstring theory

    Energy Technology Data Exchange (ETDEWEB)

    Schlotterer, Oliver

    2011-07-15

    The present thesis deals with the theme field of the scattering amplitudes in theories of open superstrings. Especially two different formalisms for the handling of superstrings are introduced and applied for the calaculation of tree-level amplitudes - the Ramond- Neveu-Schwarz (RNS) and the Pure-Spinor (PS) formalism. The RNS approach is proved as flexible in order to describe compactification of the initially ten flat space-time dimensions to four dimensions. We solve the technical problems, which result from the interacting basing world-sheet theory with conformal symmetry. This is used to calculate phenomenologically relevant scattering amplitudes of gluons and quarks as well as production rates of massive harmonic vibrations, which were already identified as virtual exchange particles on the massless level. In the case of a low string mass scale in the range of some Tev the string-specific signatures in parton collisions can be observed in the near future in the LHC experiment at CERN and indicated as first experimental proof of the string theory. THose string effects occur universally for a wide class of string ground states respectively internal geometries and represent an elegant way to avoid the so-called landscape problem of the string theory. A further theme complex in this thesis is based on the PS formalism, which allows a manifestly supersymmetric treatment of scattering amplitudes in ten space-time dimension with sixteen supercharges. We introduce a family of superfields, which occur in massless amplitudes of the open string and can be naturally identified with diagrams of three-valued knots. Thereby we reach not only a compact superspace representation of the n-point field-theory amplitude but can also write the complete superstring n-point amplitude as minimal linear combination of partial amplitudes of the field theory as well as hypergeometric functions. The latter carry the string effects and are analyzed from different perspectives, above all

  14. Scattering amplitudes in open superstring theory

    International Nuclear Information System (INIS)

    Schlotterer, Oliver

    2011-01-01

    The present thesis deals with the theme field of the scattering amplitudes in theories of open superstrings. Especially two different formalisms for the handling of superstrings are introduced and applied for the calaculation of tree-level amplitudes - the Ramond- Neveu-Schwarz (RNS) and the Pure-Spinor (PS) formalism. The RNS approach is proved as flexible in order to describe compactification of the initially ten flat space-time dimensions to four dimensions. We solve the technical problems, which result from the interacting basing world-sheet theory with conformal symmetry. This is used to calculate phenomenologically relevant scattering amplitudes of gluons and quarks as well as production rates of massive harmonic vibrations, which were already identified as virtual exchange particles on the massless level. In the case of a low string mass scale in the range of some Tev the string-specific signatures in parton collisions can be observed in the near future in the LHC experiment at CERN and indicated as first experimental proof of the string theory. THose string effects occur universally for a wide class of string ground states respectively internal geometries and represent an elegant way to avoid the so-called landscape problem of the string theory. A further theme complex in this thesis is based on the PS formalism, which allows a manifestly supersymmetric treatment of scattering amplitudes in ten space-time dimension with sixteen supercharges. We introduce a family of superfields, which occur in massless amplitudes of the open string and can be naturally identified with diagrams of three-valued knots. Thereby we reach not only a compact superspace representation of the n-point field-theory amplitude but can also write the complete superstring n-point amplitude as minimal linear combination of partial amplitudes of the field theory as well as hypergeometric functions. The latter carry the string effects and are analyzed from different perspectives, above all

  15. On diffusion process generators and scattering theory

    International Nuclear Information System (INIS)

    Demuth, M.

    1980-01-01

    In scattering theory the existence of wave operators is one of the mainly interesting points. For two selfadjoint operators K and H defined in separable Hilbertspaces H tilde and H' tilde, respectively, the usual two space wave operator is defined by Ωsub(+-)(H,J,K) = s-lim esup(itH)Jesup(-itK)Psup(ac), t → +-infinity, if these limits exist. J is the identification operator mapping H tilde into H' tilde. Psup(ac) is the orthogonal projection onto the absolutely continuous subspace of K. The objective is to prove the existence and completeness of the wave operator for K and K+V where K is a diffusion process generator and V a singular perturbation. Because generators of diffusion processes can be obtained by extension of second order differential operators with variable coefficients the result connects hard-core potential problems and wave operator existence for diffusion process generators including scattering theory for second order elliptic differential operators by means of the stochastic process theory and stochastic differential equation solutions. (author)

  16. Multiple scattering theory for space filling potentials

    International Nuclear Information System (INIS)

    Butler, W.H.; Brown, R.G.; Nesbet, R.K.

    1990-01-01

    Multiple scattering theory (MST) provides an efficient technique for solving the wave equation for the special case of muffin-tin potentials. Here MST is extended to treat space filling non-muffin tin potentials and its validity, accuracy and efficiency are tested by application of the two dimensional empty lattice test. For this test it is found that the traditional formulation of MST does not coverage as the number of partial waves is increased. A simple modification of MST, however, allows this problem to be solved exactly and efficiently. 15 refs., 3 tabs

  17. Scattering theory for open quantum systems

    International Nuclear Information System (INIS)

    Behrndt, Jussi

    2006-01-01

    Quantum systems which interact with their environment are often modeled by maximal dissipative operators or so-called Pseudo-Hamiltonians. In this paper the scattering theory for such open systems is considered. First it is assumed that a single maximal dissipative operator A D in a Hilbert space H is used to describe an open quantum system. In this case the minimal self-adjoint dilation K of A D can be regarded as the Hamiltonian of a closed system which contains the open system {A D ,h}, but since K is necessarily not semibounded from below, this model is difficult to interpret from a physical point of view. In the second part of the paper an open quantum system is modeled with a family {A(μ)} of maximal dissipative operators depending on energy μ, and it is shown that the open system can be embedded into a closed system where the Hamiltonian is semibounded. Surprisingly it turns out that the corresponding scattering matrix can be completely recovered from scattering matrices of single Pseudo-Hamiltonians as in the first part of the paper. The general results are applied to a class of Sturm-Liouville operators arising in dissipative and quantum transmitting Schroedinger-Poisson systems. (orig.)

  18. Coulomb interaction in multiple scattering theory

    International Nuclear Information System (INIS)

    Ray, L.; Hoffmann, G.W.; Thaler, R.M.

    1980-01-01

    The treatment of the Coulomb interaction in the multiple scattering theories of Kerman-McManus-Thaler and Watson is examined in detail. By neglecting virtual Coulomb excitations, the lowest order Coulomb term in the Watson optical potential is shown to be a convolution of the point Coulomb interaction with the distributed nuclear charge, while the equivalent Kerman-McManus-Thaler Coulomb potential is obtained from an averaged, single-particle Coulombic T matrix. The Kerman-McManus-Thaler Coulomb potential is expressed as the Watson Coulomb term plus additional Coulomb-nuclear and Coulomb-Coulomb cross terms, and the omission of the extra terms in usual Kerman-McManus-Thaler applications leads to negative infinite total reaction cross section predictions and incorrect pure Coulomb scattering limits. Approximations are presented which eliminate these anomalies. Using the two-potential formula, the full projectile-nucleus T matrix is separated into two terms, one resulting from the distributed nuclear charge and the other being a Coulomb distorted nuclear T matrix. It is shown that the error resulting from the omission of the Kerman-McManus-Thaler Coulomb terms is effectively removed when the pure Coulomb T matrix in Kerman-McManus-Thaler is replaced by the analogous quantity in the Watson approach. Using the various approximations, theoretical angular distributions are obtained for 800 MeV p+ 208 Pb elastic scattering and compared with experimental data

  19. Scattering theory for open quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Behrndt, Jussi [Technische Univ. Berlin (Germany). Inst. fuer Mathematik; Malamud, Mark M. [Donetsk National University (Ukraine). Dept. of Mathematics; Neidhardt, Hagen [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) im Forschungsverbund Berlin e.V. (Germany)

    2006-07-01

    Quantum systems which interact with their environment are often modeled by maximal dissipative operators or so-called Pseudo-Hamiltonians. In this paper the scattering theory for such open systems is considered. First it is assumed that a single maximal dissipative operator A{sub D} in a Hilbert space H is used to describe an open quantum system. In this case the minimal self-adjoint dilation K of A{sub D} can be regarded as the Hamiltonian of a closed system which contains the open system {l_brace}A{sub D},h{r_brace}, but since K is necessarily not semibounded from below, this model is difficult to interpret from a physical point of view. In the second part of the paper an open quantum system is modeled with a family {l_brace}A({mu}){r_brace} of maximal dissipative operators depending on energy {mu}, and it is shown that the open system can be embedded into a closed system where the Hamiltonian is semibounded. Surprisingly it turns out that the corresponding scattering matrix can be completely recovered from scattering matrices of single Pseudo-Hamiltonians as in the first part of the paper. The general results are applied to a class of Sturm-Liouville operators arising in dissipative and quantum transmitting Schroedinger-Poisson systems. (orig.)

  20. Semiclassical scattering in Yang-Mills theory

    International Nuclear Information System (INIS)

    Gould, T.M.; Poppitz, E.R.

    1994-01-01

    A classical solution to the Yang-Mills theory is given a semiclassical interpretation. The boundary value problem on a complex time contour which arises from the semiclassical approximation to multiparticle scattering amplitudes is reviewed and applied to the case of Yang-Mills theory. The solution describes a classically forbidden transition between states with a large average number of particles in the limit g→0. It dominates a transition probability with a semiclassical suppression factor equal to twice the action of the well-known BPST instanton. Hence, it is relevant to the problem of high-energy tunnelling. It describes transitions of unit topological charge for an appropriate time contour. Therefore, it may have a direct interpretation in terms of fermion-number violating processes in electroweak theory. The solution describes a transition between an initial state with parametrically fewer particles than the final state. Thus, it may be relevant to the study of semiclassical initial-state corrections in the limit of a small number of initial particles. The implications of these results for multiparticle production in electroweak theory are also discussed. (orig.)

  1. Linear systems formulation of scattering theory for rough surfaces with arbitrary incident and scattering angles.

    Science.gov (United States)

    Krywonos, Andrey; Harvey, James E; Choi, Narak

    2011-06-01

    Scattering effects from microtopographic surface roughness are merely nonparaxial diffraction phenomena resulting from random phase variations in the reflected or transmitted wavefront. Rayleigh-Rice, Beckmann-Kirchhoff. or Harvey-Shack surface scatter theories are commonly used to predict surface scatter effects. Smooth-surface and/or paraxial approximations have severely limited the range of applicability of each of the above theoretical treatments. A recent linear systems formulation of nonparaxial scalar diffraction theory applied to surface scatter phenomena resulted first in an empirically modified Beckmann-Kirchhoff surface scatter model, then a generalized Harvey-Shack theory that produces accurate results for rougher surfaces than the Rayleigh-Rice theory and for larger incident and scattered angles than the classical Beckmann-Kirchhoff and the original Harvey-Shack theories. These new developments simplify the analysis and understanding of nonintuitive scattering behavior from rough surfaces illuminated at arbitrary incident angles.

  2. Transic time measures in scattering theory

    International Nuclear Information System (INIS)

    MacMillan, L.W.; Osborn, T.A.

    1980-01-01

    This paper studies the time evolution of state vectors that are the solutions of the time-dependent Schroedinger equation, characterized by a Hamiltonian h. We employ trace-theorem methods to prove that the transit time of state vectors through a finite space region, Σ, may be used to construct a family in the energy variable, epsilon, of unique, positive, trace-class operators. The matrix elements of these operators, give the transit time of any vector through Σ, It is proved that the trace of these operators, for a fixed energy epsilon, provide a function which simultaneously gives the sum of all orbital transit times through region Σ and represents the state density of all vectors that have support on Σ and energy epsilon. We use the transit-time operators to recover the usual theory of time delay for single-channel scattering systems. In the process we extend the known results on time delay to include scattering by fixed impurities in a periodic medium

  3. The theory behind the full scattering profile

    Science.gov (United States)

    Feder, Idit; Duadi, Hamootal; Fixler, Dror

    2018-02-01

    Optical methods for extracting properties of tissues are commonly used. These methods are non-invasive, cause no harm to the patient and are characterized by high speed. The human tissue is a turbid media hence it poses a challenge for different optical methods. In addition the analysis of the emitted light requires calibration for achieving accuracy information. Most of the methods analyze the reflected light based on their phase and amplitude or the transmitted light. We suggest a new optical method for extracting optical properties of cylindrical tissues based on their full scattering profile (FSP), which means the angular distribution of the reemitted light. The FSP of cylindrical tissues is relevant for biomedical measurement of fingers, earlobes or pinched tissues. We found the iso-pathlength (IPL) point, a point on the surface of the cylinder medium where the light intensity remains constant and does not depend on the reduced scattering coefficient of the medium, but rather depends on the spatial structure and the cylindrical geometry. However, a similar behavior was also previously reported in reflection from a semi-infinite medium. Moreover, we presented a linear dependency between the radius of the tissue and the point's location. This point can be used as a self-calibration point and thus improve the accuracy of optical tissue measurements. This natural phenomenon has not been investigated before. We show this phenomenon theoretically, based on the diffusion theory, which is supported by our simulation results using Monte Carlo simulation.

  4. Treatment of divergent expansions in scattering theory

    International Nuclear Information System (INIS)

    Gersten, A.; Malin, S.

    1978-01-01

    One of the biggest obstacles in applying quantum field theory to realistic scattering problems are the divergencies of pertubation expansions for large coupling constants and the divergencies of partial wave expansions for massless particles exchanges. There exist, however, methods of summation of the divergent expansions which can lead to significant application in physics. In this paper we treat the problem of summing such expansions using three methods: (i) a generalization of the Pade approximation to the multivariable case. The suggested definition is unique and preserves unitarity. (ii) The summation of divergent partial waves for arbitrary spins. (iii) A successful application of a series inversion to the 3 P 1 nucleon-nucleon phase shift up to 200 MeV. (orig./WL) [de

  5. Scattering theory for self-adjoint extensions

    International Nuclear Information System (INIS)

    Kuperin, Yu.A.; Pavlov, B.S.; Kurasov, P.B.; Makarov, K.A.; Melnikov, Yu. B.; Yevstratov, V.V

    1989-01-01

    In this paper a new approach is suggested to the construction of a wide class of exactly solvable quantum-mechanical models of scattering, quantum-mechanical models of solids and an exactly solvable quantum-stochastical model. For most of the models the spectral analysis is performed in an explicit form, for many body problems it is reduced to one-dimensional integral equations. The construction of all models is based on a new version of extension theory, which uses the boundary forms for abstract operators. This version gives a simple and general method to join the pair of operators, one of them abstract, and the other one differential. The solvability of these models is based on Krein's formula for quasiresolvents

  6. Multiple scattering theory for superconducting heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ujfalussy, Balazs [Wigner Research Centre for Physics, Budapest (Hungary)

    2016-07-01

    We generalize the screened Korringa-Kohn-Rostoker method for solving the corresponding Kohn-Sham-Bogoliubov-de Gennes equations for surfaces and interfaces. As an application of the theory, we study the quasiparticle spectrum of Au overlayers on a Nb(100) host. We find that within the superconducting gap region, the quasiparticle spectrum consists of Andreev bound states with a dispersion which is closely connected to the underlying electronic structure of the overlayer. We also find that the spectrum has a strongly k-dependent induced gap. The properties of the gap are discussed in relation to the thickness of the overlayer, and it is shown that certain states do not participate in the Andreev scattering process. From the thickness dependence of the gap size we calculate the superconducting critical temperature of Au/Nb(100) heterostructures what we compare with with experiments. Moreover, predictions are made for similar heterostructures of other compounds.

  7. Eigenfunction expansions and scattering theory in rigged Hilbert spaces

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Cubillo, F [Dpt. de Analisis Matematico, Universidad de Valladolid. Facultad de Ciencias, 47011 Valladolid (Spain)], E-mail: fgcubill@am.uva.es

    2008-08-15

    The work reviews some mathematical aspects of spectral properties, eigenfunction expansions and scattering theory in rigged Hilbert spaces, laying emphasis on Lippmann-Schwinger equations and Schroedinger operators.

  8. Resonances, scattering theory and rigged Hilbert spaces

    International Nuclear Information System (INIS)

    Parravicini, G.; Gorini, V.; Sudarshan, E.C.G.

    1979-01-01

    The problem of decaying states and resonances is examined within the framework of scattering theory in a rigged Hilbert space formalism. The stationary free, in, and out eigenvectors of formal scattering theory, which have a rigorous setting in rigged Hilbert space, are considered to be analytic functions of the energy eigenvalue. The value of these analytic functions at any point of regularity, real or complex, is an eigenvector with eigenvalue equal to the position of the point. The poles of the eigenvector families give origin to other eigenvectors of the Hamiltonian; the singularities of the out eigenvector family are the same as those of the continued S matrix, so that resonances are seen as eigenvectors of the Hamiltonian with eigenvalue equal to their location in the complex energy plane. Cauchy theorem then provides for expansions in terms of complete sets of eigenvectors with complex eigenvalues of the Hamiltonian. Applying such expansions to the survival amplitude of a decaying state, one finds that resonances give discrete contributions with purely exponential time behavior; the background is of course present, but explicitly separated. The resolvent of the Hamiltonian, restricted to the nuclear space appearing in the rigged Hilbert space, can be continued across the absolutely continuous spectrum; the singularities of the continuation are the same as those of the out eigenvectors. The free, in and out eigenvectors with complex eigenvalues and those corresponding to resonances can be approximated by physical vectors in the Hilbert space, as plane waves can. The need for having some further physical information in addition to the specification of the total Hamiltonian is apparent in the proposed framework. The formalism is applied to the Lee-Friedrichs model. 48 references

  9. Review of the particle scattering theory in rocket technique application

    International Nuclear Information System (INIS)

    Wang Fuheng; Ma Fang

    1990-01-01

    Three calculation methods of scattering cross section have been discussed. Particle scattering theory and its concrete calculation, existing problems and further development have been also studied. The developement of theoretical aspects of particles scattering in rocket exhaust plume was concerned in this paper

  10. General time-dependent formulation of quantum scattering theory

    International Nuclear Information System (INIS)

    Althorpe, Stuart C.

    2004-01-01

    We derive and explain the key ideas behind a time-dependent formulation of quantum scattering theory, applicable generally to systems with a finite-range scattering potential. The scattering is initiated and probed by plane wave packets, which are localized just outside the range of the potential. The asymptotic limits of conventional scattering theory (initiation in the remote past; detection in the remote future) are not taken. Instead, the differential cross section (DCS) is obtained by projecting the scattered wave packet onto the probe plane wave packets. The projection also yields a time-dependent version of the DCS. Cuts through the wave packet, just as it exits the scattering potential, yield time-dependent and time-independent angular distributions that give a close-up picture of the scattering which complements the DCS. We have previously applied the theory to interpret experimental cross sections of chemical reactions [e.g., S. C. Althorpe, F. Fernandez-Alonso, B. D. Bean, J. D. Ayers, A. E. Pomerantz, R. N. Zare, and E. Wrede, Nature (London) 416, 67 (2002)]. This paper gives the derivation of the theory, and explains its relation to conventional scattering theory. For clarity, the derivation is restricted to spherical-particle scattering, though it may readily be extended to general multichannel systems. We illustrate the theory using a simple application to hard-sphere scattering

  11. Introduction to the theory of thermal neutron scattering

    CERN Document Server

    Squires, G L

    2012-01-01

    Since the advent of the nuclear reactor, thermal neutron scattering has proved a valuable tool for studying many properties of solids and liquids, and research workers are active in the field at reactor centres and universities throughout the world. This classic text provides the basic quantum theory of thermal neutron scattering and applies the concepts to scattering by crystals, liquids and magnetic systems. Other topics discussed are the relation of the scattering to correlation functions in the scattering system, the dynamical theory of scattering and polarisation analysis. No previous knowledge of the theory of thermal neutron scattering is assumed, but basic knowledge of quantum mechanics and solid state physics is required. The book is intended for experimenters rather than theoreticians, and the discussion is kept as informal as possible. A number of examples, with worked solutions, are included as an aid to the understanding of the text.

  12. Intermediate energy nucleon-deuteron scattering theory.

    Science.gov (United States)

    Wilson, J. W.

    1973-01-01

    Sloan's conclusion (1969) that terms of the multiple-scattering series beyond single scattering contribute only to S- and P-wave amplitudes in an S-wave separable model is examined. A comparison of experiments with the calculation at 146 MeV shows that the conclusion is valid in nucleon-deuteron scattering applications.

  13. Ultrastrong Coupling Few-Photon Scattering Theory

    Science.gov (United States)

    Shi, Tao; Chang, Yue; García-Ripoll, Juan José

    2018-04-01

    We study the scattering of individual photons by a two-level system ultrastrongly coupled to a waveguide. The scattering is elastic for a broad range of couplings and can be described with an effective U (1 )-symmetric Hamiltonian. This simple model allows the prediction of scattering resonance line shapes, validated up to α =0.3 , and close to the Toulouse point α =1 /2 , where inelastic scattering becomes relevant. Our predictions model experiments with superconducting circuits [P. Forn-Díaz et al., Nat. Phys. 13, 39 (2017), 10.1038/nphys3905] and can be extended to study multiphoton scattering.

  14. A multislice theory of electron inelastic scattering in a solid

    International Nuclear Information System (INIS)

    Wang, Z.L.

    1989-01-01

    A multislice theory is proposed to solve Yoshioka's coupling equations for elastic and inelastic scattered high-energy electrons in a solid. This method is capable, in principle, of including the non-periodic crystal structures and the electron multiple scattering among all the excited states in the calculations. It is proved that the proposed theory for calculating the energy-filtered inelastic images, based on the physical optics approach, is equivalent to the quantum-mechanical theory under some approximations. The basic theory of simulating the energy-filtered inelastic image of core-shell losses and thermal diffuse scattering is outlined. (orig.)

  15. Certain theories of multiple scattering in random media of discrete scatterers

    International Nuclear Information System (INIS)

    Olsen, R.L.; Kharadly, M.M.Z.; Corr, D.G.

    1976-01-01

    New information is presented on the accuracy of the heuristic approximations in two important theories of multiple scattering in random media of discrete scatterers: Twersky's ''free-space'' and ''two-space scatterer'' formalisms. Two complementary approaches, based primarily on a one-dimensional model and the one-dimensional forms of the theories, are used. For scatterer distributions of low average density, the ''heuristic'' asymptotic forms for the coherent field and the incoherent intensity are compared with asymptotic forms derived from a systematic analysis of the multiple scattering processes. For distributions of higher density, both in the average number of scatterers per wavelength and in the degree of packing of finite-size scatterers, the analysis is carried out ''experimentally'' by means of a Monte Carlo computer simulation. Approximate series expressions based on the systematic approach are numerically evaluated along with the heuristic expressions. The comparison (for both forward- and back-scattered field moments) is made for the worst-case conditions of strong multiple scattering for which the theories have not previously been evaluated. Several significant conclusions are drawn which have certain practical implications: in application of the theories to describe some of the scattering phenomena which occur in the troposphere, and in the further evaluation of the theories using experiments on physical models

  16. Classical theory of atom-surface scattering: The rainbow effect

    Science.gov (United States)

    Miret-Artés, Salvador; Pollak, Eli

    2012-07-01

    The scattering of heavy atoms and molecules from surfaces is oftentimes dominated by classical mechanics. A large body of experiments have gathered data on the angular distributions of the scattered species, their energy loss distribution, sticking probability, dependence on surface temperature and more. For many years these phenomena have been considered theoretically in the framework of the “washboard model” in which the interaction of the incident particle with the surface is described in terms of hard wall potentials. Although this class of models has helped in elucidating some of the features it left open many questions such as: true potentials are clearly not hard wall potentials, it does not provide a realistic framework for phonon scattering, and it cannot explain the incident angle and incident energy dependence of rainbow scattering, nor can it provide a consistent theory for sticking. In recent years we have been developing a classical perturbation theory approach which has provided new insight into the dynamics of atom-surface scattering. The theory includes both surface corrugation as well as interaction with surface phonons in terms of harmonic baths which are linearly coupled to the system coordinates. This model has been successful in elucidating many new features of rainbow scattering in terms of frictions and bath fluctuations or noise. It has also given new insight into the origins of asymmetry in atomic scattering from surfaces. New phenomena deduced from the theory include friction induced rainbows, energy loss rainbows, a theory of super-rainbows, and more. In this review we present the classical theory of atom-surface scattering as well as extensions and implications for semiclassical scattering and the further development of a quantum theory of surface scattering. Special emphasis is given to the inversion of scattering data into information on the particle-surface interactions.

  17. Quantum scattering theory on the momentum lattice

    International Nuclear Information System (INIS)

    Rubtsova, O. A.; Pomerantsev, V. N.; Kukulin, V. I.

    2009-01-01

    A new approach based on the wave-packet continuum discretization method recently developed by the present authors for solving quantum-mechanical scattering problems for atomic and nuclear scattering processes and few-body physics is described. The formalism uses the complete continuum discretization scheme in terms of the momentum stationary wave-packet basis, which leads to formulation of the scattering problem on a lattice in the momentum space. The solution of the few-body scattering problem can be found in the approach from linear matrix equations with nonsingular matrix elements, averaged on energy over lattice cells. The developed approach is illustrated by the solution of numerous two- and three-body scattering problems with local and nonlocal potentials below and well above the three-body breakup threshold.

  18. Diffractive scattering on nuclei in multiple scattering theory with inelastic screening

    International Nuclear Information System (INIS)

    Zoller, V.R.

    1988-01-01

    The cross sections for the diffractive scattering of hadrons on nuclei are calculated in the two-channel approximation of multiple scattering theory. In contrast to the standard Glauber approach, it is not assumed that the nucleon scattering profile is a Gaussian or that the Regge radius of the hadron is small compared to the nuclear radius. The AGK Reggeon diagrammatic technique is used to calculate the topological cross sections and the cross sections for coherent and incoherent diffractive dissociation and quasielastic scattering. The features of hadron-nucleus scattering at superhigh energies are discussed

  19. Point sources and multipoles in inverse scattering theory

    CERN Document Server

    Potthast, Roland

    2001-01-01

    Over the last twenty years, the growing availability of computing power has had an enormous impact on the classical fields of direct and inverse scattering. The study of inverse scattering, in particular, has developed rapidly with the ability to perform computational simulations of scattering processes and led to remarkable advances in a range of applications, from medical imaging and radar to remote sensing and seismic exploration. Point Sources and Multipoles in Inverse Scattering Theory provides a survey of recent developments in inverse acoustic and electromagnetic scattering theory. Focusing on methods developed over the last six years by Colton, Kirsch, and the author, this treatment uses point sources combined with several far-reaching techniques to obtain qualitative reconstruction methods. The author addresses questions of uniqueness, stability, and reconstructions for both two-and three-dimensional problems.With interest in extracting information about an object through scattered waves at an all-ti...

  20. Application of Van Hove theory to fast neutron inelastic scattering

    International Nuclear Information System (INIS)

    Stanicicj, V.

    1974-11-01

    The Vane Hove general theory of the double differential scattering cross section has been used to derive the particular expressions of the inelastic fast neutrons scattering kernel and scattering cross section. Since the considered energies of incoming neutrons being less than 10 MeV, it enables to use the Fermi gas model of nucleons. In this case it was easy to derive an analytical expression for the time-dependent correlation function of the nucleus. Further, by using an impulse approximation and a short-collision time approach, it was possible to derive the analytical expression of the scattering kernel and scattering cross section for the fast neutron inelastic scattering. The obtained expressions have been used for Fe nucleus. It has been shown a surprising agreement with the experiments. The main advantage of this theory is in its simplicity for some practical calculations and for some theoretical investigations of nuclear processes

  1. Theory of deep inelastic lepton-hadron scattering

    International Nuclear Information System (INIS)

    Geyer, B.; Robaschik, D.; Wieczorek, E.

    1979-01-01

    The description of deep inelastic lepton-nucleon scattering in the lowest order of the electromagnetic and weak coupling constants leads to a study of virtual Compton amplitudes and their absorptive parts. Some aspects of quantum chromodynamics are discussed. Deep inelastic scattering enables a central quantity of quantum field theory, namely the light cone behaviour of the current commutator. The moments of structure functions are used for the description of deep inelastic scattering. (author)

  2. On the dissipative Lax-Phillips scattering theory

    International Nuclear Information System (INIS)

    Neidhardt, H.

    1987-01-01

    The paper is devoted to the characterization of all possible scattering matrices occurring in a dissipative Lax-Phillips scattering theory. The characterization is obtained in terms of an analytically unitary synthesis of a strongly measurable contraction-valued function which generalizes the notion of Darlingtom synthesis

  3. On iteration-separable method on the multichannel scattering theory

    International Nuclear Information System (INIS)

    Zubarev, A.L.; Ivlieva, I.N.; Podkopaev, A.P.

    1975-01-01

    The iteration-separable method for solving the equations of the Lippman-Schwinger type is suggested. Exponential convergency of the method of proven. Numerical convergency is clarified on the e + H scattering. Application of the method to the theory of multichannel scattering is formulated

  4. Variational, projection methods and Pade approximants in scattering theory

    International Nuclear Information System (INIS)

    Turchetti, G.

    1980-12-01

    Several aspects on the scattering theory are discussed in a perturbative scheme. The Pade approximant method plays an important role in such a scheme. Solitons solutions are also discussed in this same scheme. (L.C.) [pt

  5. Scattering theory in quantum mechanics. Physical principles and mathematical methods

    International Nuclear Information System (INIS)

    Amrein, W.O.; Jauch, J.M.; Sinha, K.B.

    1977-01-01

    A contemporary approach is given to the classical topics of physics. The purpose is to explain the basic physical concepts of quantum scattering theory, to develop the necessary mathematical tools for their description, to display the interrelation between the three methods (the Schroedinger equation solutions, stationary scattering theory, and time dependence) to derive the properties of various quantities of physical interest with mathematically rigorous methods

  6. Light scattering by nonspherical particles theory, measurements, and applications

    CERN Document Server

    Mishchenko, Michael I; Travis, Larry D

    1999-01-01

    There is hardly a field of science or engineering that does not have some interest in light scattering by small particles. For example, this subject is important to climatology because the energy budget for the Earth's atmosphere is strongly affected by scattering of solar radiation by cloud and aerosol particles, and the whole discipline of remote sensing relies largely on analyzing the parameters of radiation scattered by aerosols, clouds, and precipitation. The scattering of light by spherical particles can be easily computed using the conventional Mie theory. However, most small solid part

  7. General algebraic theory of identical particle scattering

    International Nuclear Information System (INIS)

    Bencze, G.; Redish, E.F.

    1978-01-01

    We consider the nonrelativistic N-body scattering problem for a system of particles in which some subsets of the particles are identical. We demonstrate how the particle identity can be included in a general class of linear integral equations for scattering operators or components of scattering operators. The Yakubovskii, Yakubovskii--Narodestkii, Rosenberg, and Bencze--Redish--Sloan equations are included in this class. Algebraic methods are used which rely on the properties of the symmetry group of the system. Operators depending only on physically distinguishable labels are introduced and linear integral equations for them are derived. This procedure maximally reduces the number of coupled equations while retaining the connectivity properties of the original equations

  8. Theory of Thomson scattering in inhomogeneous media.

    Science.gov (United States)

    Kozlowski, P M; Crowley, B J B; Gericke, D O; Regan, S P; Gregori, G

    2016-04-12

    Thomson scattering of laser light is one of the most fundamental diagnostics of plasma density, temperature and magnetic fields. It relies on the assumption that the properties in the probed volume are homogeneous and constant during the probing time. On the other hand, laboratory plasmas are seldom uniform and homogeneous on the temporal and spatial dimensions over which data is collected. This is particularly true for laser-produced high-energy-density matter, which often exhibits steep gradients in temperature, density and pressure, on a scale determined by the laser focus. Here, we discuss the modification of the cross section for Thomson scattering in fully-ionized media exhibiting steep spatial inhomogeneities and/or fast temporal fluctuations. We show that the predicted Thomson scattering spectra are greatly altered compared to the uniform case, and may lead to violations of detailed balance. Therefore, careful interpretation of the spectra is necessary for spatially or temporally inhomogeneous systems.

  9. Scattering theory of infrared divergent Pauli-Fierz Hamiltonians

    CERN Document Server

    Derezinski, J

    2003-01-01

    We consider in this paper the scattering theory of infrared divergent massless Pauli-Fierz Hamiltonians. We show that the CCR representations obtained from the asymptotic field contain so-called {\\em coherent sectors} describing an infinite number of asymptotically free bosons. We formulate some conjectures leading to mathematically well defined notion of {\\em inclusive and non-inclusive scattering cross-sections} for Pauli-Fierz Hamiltonians. Finally we give a general description of the scattering theory of QFT models in the presence of coherent sectors for the asymptotic CCR representations.

  10. The theory of deeply inelastic scattering

    International Nuclear Information System (INIS)

    Bluemlein, J.

    2012-01-01

    The nucleon structure functions probed in deep-inelastic scattering at large virtualities form an important tool to test Quantum Chromdynamics (QCD) through precision measurements of the strong coupling constant α s (M Z 2 ) and the different parton distribution functions. The exact knowledge of these quantities is also of importance for all precision measurements at hadron colliders. During the last two decades very significant progress has been made in performing precision calculations. We review the theoretical status reached for both unpolarized and polarized lepton-hadron scattering based on perturbative QCD. (orig.)

  11. Relativistic scattering theory of charged spinless particles

    International Nuclear Information System (INIS)

    Alt, E.O.; Hannemann, M.

    1986-01-01

    In the context of relativistic quantum mechanics the scattering is discussed of two and three charged spinless particles. The corresponding transition operators are shown to satisfy four-dimensional Lippmann-Schwinger and eight-dimensional Faddeev-type equations, respectively. A simplified model of two particles with Coulomb interaction can be solved exactly. Calculations have been made of (i) the partial wave S-matrix from which the bound state spectrum has been extracted; the latter agrees with a fourth-order result of Schwinger; (ii) the full scattering amplitude which in the weak-field limit coincides with the expression derived by Fried et al. from eikonalized QED. (author)

  12. The theory of deeply inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, J.

    2012-08-31

    The nucleon structure functions probed in deep-inelastic scattering at large virtualities form an important tool to test Quantum Chromdynamics (QCD) through precision measurements of the strong coupling constant {alpha}{sub s}(M{sub Z}{sup 2}) and the different parton distribution functions. The exact knowledge of these quantities is also of importance for all precision measurements at hadron colliders. During the last two decades very significant progress has been made in performing precision calculations. We review the theoretical status reached for both unpolarized and polarized lepton-hadron scattering based on perturbative QCD. (orig.)

  13. On the inverse problem of dissipative scattering theory. 3

    International Nuclear Information System (INIS)

    Neidhardt, H.

    1988-01-01

    Considering a scattering theory in the class of contractions on Hilbert spaces one solves the inverse problem in an operaor-theoretical manner. The solution is obtained underthe very general assumptions that the free evolutions are different for different time directions that not only the perturbed or full evolutions but also the free evolutions are given by contractions. It is shown that the class of contractive Hankel operators can be viewed as a set of scattering operators. This implies the possibility that the scattering operator can be compact. Moreover, the result is applied to the so-called Lax-Phillips scattering theory with losses restoring a result of B.S. Pavlov on the completion of this theory in a quite different manner. 15 refs

  14. Impact parameter dynamics in quantum theory in large angle scattering

    International Nuclear Information System (INIS)

    Andriyanov, A.A.

    1975-01-01

    High energy behaviour of a free particle Green's function is studied for construction of the scattering amplitude. The main part of the Green's function is determined by eikonal scattering along the mean moment and by the total scattering along the transfered momentum. This ''impact'' approximation may be included as a first approximation in the iteration scheme for the scattering amplitude along the mean momentum, i.e. the ''impact'' perturbation theory. With the help of the ''impact'' approximation an expansion of the scattering amplitude in the impact parameter depending on interaction is obtained. These expansions are more correct than the eikonal expansions at large angle scattering. The results are illustrated grafically foe the exponential and the Yukawa potentials

  15. Application of multiple scattering theory in electron dosimetry

    International Nuclear Information System (INIS)

    Oliveira, M.J.G.S. de.

    1984-01-01

    A theoretical model, based on the Fermi-Eyges scattering theory, which takes into account the different heterogeneous media, is proposed. Heterogeneous phantoms were built in order to obtain curves of distribution of the absorbed dose. The agreement between the theoretical and experimental data prove that presented theory model is useful to describe the absorbed dose in homogeneous media. (M.A.C.) [pt

  16. Scattering theory and effective medium approximations to heterogeneous materials

    International Nuclear Information System (INIS)

    Gubernatis, J.E.

    1977-01-01

    The formal analogy existing between problems studied in the microscopic theory of disordered alloys and problems concerned with the effective (macroscopic) behavior of heterogeneous materials is discussed. Attention is focused on (1) analogous approximations (effective medium approximations) developed for the microscopic problems by scattering theory concepts and techniques, but for the macroscopic problems principally by intuitive means, (2) the link, provided by scattering theory, of the intuitively developed approximations to a well-defined perturbative analysis, (3) the possible presence of conditionally convergent integrals in effective medium approximations

  17. Multiple scattering of polarized light: comparison of Maxwell theory and radiative transfer theory.

    Science.gov (United States)

    Voit, Florian; Hohmann, Ansgar; Schäfer, Jan; Kienle, Alwin

    2012-04-01

    For many research areas in biomedical optics, information about scattering of polarized light in turbid media is of increasing importance. Scattering simulations within this field are mainly performed on the basis of radiative transfer theory. In this study a polarization sensitive Monte Carlo solution of radiative transfer theory is compared to exact Maxwell solutions for all elements of the scattering Müller matrix. Different scatterer volume concentrations are modeled as a multitude of monodisperse nonabsorbing spheres randomly positioned in a cubic simulation volume which is irradiated with monochromatic incident light. For all Müller matrix elements effects due to dependent scattering and multiple scattering are analysed. The results are in overall good agreement between the two methods with deviations related to dependent scattering being prominent for high volume concentrations and high scattering angles.

  18. Reassessment of the theory of stimulated Raman scattering

    Science.gov (United States)

    Fralick, G. C.; Deck, R. T.

    1985-01-01

    A modification of the standard theory of stimulated Raman scattering (SRS) first proposed by Sparks (1974, 1975) is analyzed and shown to incorporate a possibly important physical effect; however, its original formulation is incorrect. The analysis is based on an exact numerical integration of the coupled equations of the modified theory, the results of which are compared with both the conventional theory of SRS and with one set of experimental data. A reformulation of the modified theory is suggested that leads to a gain which is in somewhat better agreement with the data than is the conventional theory.

  19. A Theory of Radar Scattering by the Moon

    Science.gov (United States)

    Senior, T. B. A.; Siegel, K. M.

    1959-01-01

    A theory is described in which the moon is regarded as a "quasi-smooth" scatterer at radar frequencies. A scattered pulse is then composed of a number of individual returns each of which is provided by a single scattering area. In this manner it is possible to account for all the major features of the pulse, and the evidence in favor of the theory is presented. From a study of the measured power received at different frequencies, it is shown that the scattering area nearest to the earth is the source of a specular return, and it is then possible to obtain information about the material of which the area is composed. The electromagnetic constants are derived and their significance discussed.

  20. A Theory of Exoplanet Transits with Light Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Tyler D., E-mail: tydrobin@ucsc.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2017-02-20

    Exoplanet transit spectroscopy enables the characterization of distant worlds, and will yield key results for NASA's James Webb Space Telescope . However, transit spectra models are often simplified, omitting potentially important processes like refraction and multiple scattering. While the former process has seen recent development, the effects of light multiple scattering on exoplanet transit spectra have received little attention. Here, we develop a detailed theory of exoplanet transit spectroscopy that extends to the full refracting and multiple scattering case. We explore the importance of scattering for planet-wide cloud layers, where the relevant parameters are the slant scattering optical depth, the scattering asymmetry parameter, and the angular size of the host star. The latter determines the size of the “target” for a photon that is back-mapped from an observer. We provide results that straightforwardly indicate the potential importance of multiple scattering for transit spectra. When the orbital distance is smaller than 10–20 times the stellar radius, multiple scattering effects for aerosols with asymmetry parameters larger than 0.8–0.9 can become significant. We provide examples of the impacts of cloud/haze multiple scattering on transit spectra of a hot Jupiter-like exoplanet. For cases with a forward and conservatively scattering cloud/haze, differences due to multiple scattering effects can exceed 200 ppm, but shrink to zero at wavelength ranges corresponding to strong gas absorption or when the slant optical depth of the cloud exceeds several tens. We conclude with a discussion of types of aerosols for which multiple scattering in transit spectra may be important.

  1. Multiple scattering theory of radiative transfer in inhomogeneous atmospheres.

    Science.gov (United States)

    Kanal, M.

    1973-01-01

    In this paper we treat the multiple scattering theory of radiative transfer in plane-parallel inhomogeneous atmospheres. The treatment presented here may be adopted to model atmospheres characterized by an optical depth dependent coherent scattering phase function. For the purpose of illustration we consider the semi-infinite medium in which the absorption property of the atmosphere is characterized by an exponential function. The methodology employed here is the extension of the case treated previously by the author for homogeneous atmospheres.

  2. True many-particle scattering theory in oscillator representation

    International Nuclear Information System (INIS)

    Smirnov, Yu.F.; Shirokov, A.M.

    1988-01-01

    The scattering theory in oscillator representation in case of true multiparticle scattering (TMS) is generalized. All necessary expressions to construct a wave function of several particles system in a discrete or continuous spectra at TMS approximation are obtained. Essential advantage of the method suggested lies in the fact that the most difficult part: construction and diagonolization of the Hamiltonian cutted matrix is to be carried out only once, and then the wave function can be calculated at any designed energy. 23 refs

  3. Scattering theory approach to electrodynamic Casimir forces

    International Nuclear Information System (INIS)

    Rahi, Sahand Jamal; Kardar, Mehran; Emig, Thorsten; Graham, Noah; Jaffe, Robert L.

    2009-01-01

    We give a comprehensive presentation of methods for calculating the Casimir force to arbitrary accuracy, for any number of objects, arbitrary shapes, susceptibility functions, and separations. The technique is applicable to objects immersed in media other than vacuum, nonzero temperatures, and spatial arrangements in which one object is enclosed in another. Our method combines each object's classical electromagnetic scattering amplitude with universal translation matrices, which convert between the bases used to calculate scattering for each object, but are otherwise independent of the details of the individual objects. The method is illustrated by rederiving the Lifshitz formula for infinite half-spaces, by demonstrating the Casimir-Polder to van der Waals crossover, and by computing the Casimir interaction energy of two infinite, parallel, perfect metal cylinders either inside or outside one another. Furthermore, it is used to obtain new results, namely, the Casimir energies of a sphere or a cylinder opposite a plate, all with finite permittivity and permeability, to leading order at large separation.

  4. Scattering theory for one-dimensional step potentials

    International Nuclear Information System (INIS)

    Ruijsenaars, S.N.M.; Bongaarts, P.J.M.

    1977-01-01

    The scattering theory is treated for the one-dimensional Dirac equation with potentials that are bounded, measurable, real-valued functions on the real line, having constant values, not necessarily the same, on the left and on the right side of a compact interval. Such potentials appear in the Klein paradox. It is shown that appropriately modified wave operators exist and that the corresponding S-operator is unitary. The connection between time-dependent scattering theory and time-independent scattering theory in terms of incoming and outgoing plane wave solutions is established and some further properties are proved. All results and their proofs have a straightforward translation to the one-dimensional Schroedinger equation with the same class of step potentials

  5. Electron-positron scattering and gauge theories

    International Nuclear Information System (INIS)

    Davier, M.

    1983-07-01

    Recent results from high-energy e + e - colliding facilities are reviewed in the context of gauge theories. First QCD analyses are discussed and difficulties are seen to arise from the interplay between perturbative QCD and non-perturbative fragmentation processes. Many results have been recently obtained on weak electromagnetic interference, strengthening our faith in the standard SU(2) x U(1) theory: however some pieces are still missing and looked for. Finally, vigourous searches are pursued to find clues for physics beyond the SU(3) x SU(2) x U(1) framework: among those supersymmetric particles are being actively hunted in a large variety of situations

  6. Scattering of decuplet baryons in chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Haidenbauer, J. [Institut fuer Kernphysik, Institute for Advanced Simulation and Juelich Center for Hadron Physics, Juelich (Germany); Petschauer, S.; Kaiser, N.; Weise, W. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Meissner, Ulf G. [Institut fuer Kernphysik, Institute for Advanced Simulation and Juelich Center for Hadron Physics, Juelich (Germany); Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany)

    2017-11-15

    A formalism for treating the scattering of decuplet baryons in chiral effective field theory is developed. The minimal Lagrangian and potentials in leading-order SU(3) chiral effective field theory for the interactions of octet baryons (B) and decuplet baryons (D) for the transitions BB → BB, BB <-> DB, DB → DB, BB <-> DD, DB <-> DD, and DD → DD are provided. As an application of the formalism we compare with results from lattice QCD simulations for ΩΩ and NΩ scattering. Implications of our results pertinent to the quest for dibaryons are discussed. (orig.)

  7. Multiple scattering theory of X-ray absorption. A review

    International Nuclear Information System (INIS)

    Fonda, L.

    1991-11-01

    We review the basic elements of the theory of X-ray absorption using the tools provided by the theory of multiple scattering. A momentum space approach of clear physical insight is used where the final formulas expressing EXAFS and XANES, i.e. the structures appearing in the absorption coefficient above the edge of a deep core level threshold, are given in terms of eigenstates of the photoelectron momentum. A simple graphic representation is given for the multiple scattering function. (author). 38 refs, 4 figs, 1 tab

  8. Some aspects of transition radiation and scattering theory

    International Nuclear Information System (INIS)

    Ginzburg, V.L.; Tsytovich, V.N.

    1978-01-01

    Some aspects of transition radiation and transition scattering theory are considered. The transition radiation in vacuum is analysed in the presence of a strong magnetic field. It is shown, that the constant electro-magnetic field makes vacuum similar to the uniaxial ferrodielectric. The appearance of the transition radiation in the nonstationary medium is discussed when its properties in the medium change abruptly in time. It is obtained, that both types of the transition radiation for nonrelativistic particles (on an abrupt boundary of the two media interface and under an abrupt change in time of the medium properties) differ quantitatively (on the order of the value). The role of the radiation transition and scattering in plasma physics has been elucidated from different points. Four most important features of these processes are pointed out. Particularly, essential is shown to be the type of the transition scattering when one plasma wave, being the dielectric constant wave transforms into another one also a plasma wave. In the processes of the transition scattering an essential part is played by the effects of the space dispersion, particularly when the scattering takes place on the small velocity particles. Finally besides transition scattering there exists in plasma or in some cases prevails a Thomson scattering. In this case an important role in plasma is played by the interference between the Thomson and the transition scattering

  9. Theory of inelastic effects in resonant atom-surface scattering

    International Nuclear Information System (INIS)

    Evans, D.K.

    1983-01-01

    The progress of theoretical and experimental developments in atom-surface scattering is briefly reviewed. The formal theory of atom-surface resonant scattering is reviewed and expanded, with both S and T matrix approaches being explained. The two-potential formalism is shown to be useful for dealing with the problem in question. A detailed theory based on the S-matrix and the two-potential formalism is presented. This theory takes account of interactions between the incident atoms and the surface phonons, with resonant effects being displayed explicitly. The Debye-Waller attenuation is also studied. The case in which the atom-surface potential is divided into an attractive part V/sub a/ and a repulsive part V/sub r/ is considered at length. Several techniques are presented for handling the scattering due to V/sub r/, for the case in which V/sub r/ is taken to be the hard corrugated surface potential. The theory is used to calculate the scattered intensities for the system 4 He/LiF(001). A detailed comparison with experiment is made, with polar scans, azimuthal scans, and time-of-flight measurements being considered. The theory is seen to explain the location and signature of resonant features, and to provide reasonable overall agreement with the experimental results

  10. Light scattering by multiple spheres: comparison between Maxwell theory and radiative-transfer-theory calculations.

    Science.gov (United States)

    Voit, Florian; Schäfer, Jan; Kienle, Alwin

    2009-09-01

    We present a methodology to compare results of classical radiative transfer theory against exact solutions of Maxwell theory for a high number of spheres. We calculated light propagation in a cubic scattering region (20 x 20 x 20 microm(3)) consisting of different concentrations of polystyrene spheres in water (diameter 2 microm) by an analytical solution of Maxwell theory and by a numerical solution of radiative transfer theory. The relative deviation of differential as well as total scattering cross sections obtained by both approaches was evaluated for each sphere concentration. For the considered case, we found that deviations due to radiative transfer theory remain small, even for concentrations up to ca. 20 vol. %.

  11. More effective field theory for non-relativistic scattering

    International Nuclear Information System (INIS)

    Kaplan, D.B.

    1997-01-01

    An effective field theory treatment of nucleon-nucleon scattering at low energy shows much promise and could prove to be a useful tool in the study of nuclear matter at both ordinary and extreme densities. The analysis is complicated by the existence a large length scale - the scattering length -which arises due to couplings in the short distance theory being near critical values. I show how this can be dealt with by introducing an explicit s-channel state in the effective field theory. The procedure is worked out analytically in a toy example. I then demonstrate that a simple effective field theory excellently reproduces the 1 S 0 np phase shift up to the pion production threshold. (orig.)

  12. Variational methods in electron-atom scattering theory

    CERN Document Server

    Nesbet, Robert K

    1980-01-01

    The investigation of scattering phenomena is a major theme of modern physics. A scattered particle provides a dynamical probe of the target system. The practical problem of interest here is the scattering of a low­ energy electron by an N-electron atom. It has been difficult in this area of study to achieve theoretical results that are even qualitatively correct, yet quantitative accuracy is often needed as an adjunct to experiment. The present book describes a quantitative theoretical method, or class of methods, that has been applied effectively to this problem. Quantum mechanical theory relevant to the scattering of an electron by an N-electron atom, which may gain or lose energy in the process, is summarized in Chapter 1. The variational theory itself is presented in Chapter 2, both as currently used and in forms that may facilitate future applications. The theory of multichannel resonance and threshold effects, which provide a rich structure to observed electron-atom scattering data, is presented in Cha...

  13. Quantum scattering theory of a single-photon Fock state in three-dimensional spaces.

    Science.gov (United States)

    Liu, Jingfeng; Zhou, Ming; Yu, Zongfu

    2016-09-15

    A quantum scattering theory is developed for Fock states scattered by two-level systems in three-dimensional free space. It is built upon the one-dimensional scattering theory developed in waveguide quantum electrodynamics. The theory fully quantizes the incident light as Fock states and uses a non-perturbative method to calculate the scattering matrix.

  14. Convergent close-coupling method: a `complete scattering theory`?

    Energy Technology Data Exchange (ETDEWEB)

    Bray, I; Fursa, D V

    1995-09-01

    It is demonstrated that a single convergent close-coupling (CCC) calculation of 100 eV electron impact on the ground state of helium is able to provide accurate elastic and inelastic (n {<=} 3 levels) differential cross sections, as well as singly-, doubly-, and triply-, differential ionization cross sections. Hence, it is suggested that the CCC theory deserve the title of a `complete scattering theory`. 28 refs., 5 figs.

  15. Scattering theory of superconductive tunneling in quantum junctions

    International Nuclear Information System (INIS)

    Shumeiko, V.S.; Bratus', E.N.

    1997-01-01

    A consistent theory of superconductive tunneling in single-mode junctions within a scattering formulation of Bogolyubov-de Gennes quantum mechanics is presented. The dc Josephson effect and dc quasiparticle transport in the voltage-biased junctions are considered. Elastic quasiparticle scattering by the junction determines the equilibrium Josephson current. The origin of Andreev bound states in tunnel junctions and their role in equilibrium Josephson transport are discussed. In contrast, quasiparticle tunneling in voltage-biased junctions is determined by inelastic scattering. A general expression for inelastic scattering amplitudes is derived and the quasiparticle current is calculated at all voltages with emphasis on a discussion of the properties of sub gap tunnel current and the nature of subharmonic gap structure

  16. Theory of direct scattering of neutral and charged atoms

    Science.gov (United States)

    Franco, V.

    1979-01-01

    The theory for direct elastic and inelastic collisions between composite atomic systems formulated within the framework of the Glauber approximation is presented. It is shown that the phase-shift function is the sum of a point Coulomb contribution and of an expression in terms of the known electron-hydrogen-atom and proton-hydrogen-atom phase shift function. The scattering amplitude is reexpressed, the pure Coulomb scattering in the case of elastic collisions between ions is isolated, and the exact optical profile function is approximated by a first-order expansion in Glauber theory which takes into account some multiple collisions. The approximate optical profile function terms corresponding to interactions involving one and two electrons are obtained in forms of Meijer G functions and as a one-dimensional integral, and for collisions involving one or two neutral atoms, the scattering amplitude is further reduced to a simple closed-form expression.

  17. Discrete inverse scattering theory and the continuum limit

    International Nuclear Information System (INIS)

    Berryman, J.G.; Greene, R.R.

    1978-01-01

    The class of satisfactory difference approximations for the Schroedinger equation in discrete inverse scattering theory is shown smaller than previously supposed. A fast algorithm (analogous to the Levinson algorithm for Toeplitz matrices) is found for solving the discrete inverse problem. (Auth.)

  18. Elastic scattering of protons at the nucleus 6He in the Glauber multiple scattering theory

    International Nuclear Information System (INIS)

    Prmantayeva, B.A.; Temerbayev, A.A.; Tleulessova, I.K.; Ibrayeva, E.T.

    2011-01-01

    Calculation is submitted for the differential cross sections of elastic p 6 He-scattering at energies of 70 and 700 MeV/nucleon within the framework of the Glauber theory of multiple diffraction scattering. We used the three-particle wave functions: α-n-n with realistic intercluster potentials. The sensitivity of elastic scattering to the proton-nuclear interaction and the structure of nuclei had been investigated. It is shown that the contribution of small components of the wave function as well as the multiplicity of the scattering operator Ω should be considered to describe a cross-section in broad angular range . A comparison with available experimental data was made. (author)

  19. Modern Theory of Gratings Resonant Scattering: Analysis Techniques and Phenomena

    CERN Document Server

    Sirenko, Yuriy K

    2010-01-01

    Diffraction gratings are one of the most popular objects of analysis in electromagnetic theory. The requirements of applied optics and microwave engineering lead to many new problems and challenges for the theory of diffraction gratings, which force us to search for new methods and tools for their resolution. In Modern Theory of Gratings, the authors present results of the electromagnetic theory of diffraction gratings that will constitute the base of further development of this theory, which meet the challenges provided by modern requirements of fundamental and applied science. This volume covers: spectral theory of gratings (Chapter 1) giving reliable grounds for physical analysis of space-frequency and space-time transformations of the electromagnetic field in open periodic resonators and waveguides; authentic analytic regularization procedures (Chapter 2) that, in contradistinction to the traditional frequency-domain approaches, fit perfectly for the analysis of resonant wave scattering processes; paramet...

  20. Scattering and short-distance properties in field theory models

    International Nuclear Information System (INIS)

    Iagolnitzer, D.

    1987-01-01

    The aim of constructive field theory is not only to define models but also to establish their general properties of physical interest. We here review recent works on scattering and on short-distance properties for weakly coupled theories with mass gap such as typically P(φ) in dimension 2, φ 4 in dimension 3 and the (renormalizable, asymptotically free) massive Gross-Neveu (GN) model in dimension 2. Many of the ideas would apply similarly to other (possibly non renormalizable) theories that might be defined in a similar way via phase-space analysis

  1. Diffraction and angular momentum effects in semiclassical atomic scattering theory

    International Nuclear Information System (INIS)

    Russek, A.

    1979-01-01

    The semiclassical scattering theory of Mott and Massey and Ford and Wheeler is here extended to multichannel scattering as occurs at a crossing or pseudocrossing of the transient molecule formed by the colliding atoms. The generalized theory incorporates both interference and diffraction phenomena, but the emphasis in this work is on diffraction. For small-angle scattering, diffraction effects become broader, not narrower, as the collision energy increases: ΔbΔtau > or = h[E/sub inc//(2m)]/sup 1/2/ relates the uncertainties in impact parameter b and reduced scattering angle tau = E/sub inc/theta, and determines the range in b required to resolve a structure in the deflection function of height Δtau. In the kilovolt range of collision energies, the effects of local maxima and minima in the deflection function are washed out, and the Airy-function approximation of Ford and Wheeler is inappropriate to describe the differential cross section. More generally, it is shown that at keV collision energies the stationary-phase approximation, heretofore essential in the reduction to the semiclassical limit, breaks down in the vicinity of a level crossing. An approximate theorem is proposed which remains valid in this region and elsewhere reduces to the standard stationary-phase approximation. Several illustrative examples are considered. A separate development treats the effect on the differential scattering cross section of a change in electronic angular momentum when electronic excitation occurs

  2. A complex angular momentum theory of modified Coulomb scattering

    International Nuclear Information System (INIS)

    Thylwe, K.E.; Connor, J.N.L.

    1985-01-01

    The paper develops an exact complex angular momentum (CAM) theory of elastic scattering for a complex optical potential with a Coulombic tail. The present CAM theory avoids complications due to the long range nature of the Coulombic potential in a straightforward way. The Sommerfeld-Watson transformation together with a travelling wave (near-side far-side) decomposition, is used to obtain an exact representation for the scattering amplitude f(theta) in terms of a background integral fsub(B)(theta) and a series of subamplitudes fsup((+-))sub(n)(theta). New exact representations are derived for fsub(B)(theta) when the scattering matrix element S(lambda) possesses local symmetries of the type S(-lambda)=S(lambda)exp(+-2iπlambda) and S(-lambda)=S(lambda). The exact results obtained in this paper unify the CAM theory of scattering for Coulombic and short range potentials and are especially suitable for the introduction of semiclassical approximations. (author)

  3. Deep inelastic scattering in an asymptotically free gauge theory

    International Nuclear Information System (INIS)

    Fujiwara, Tsutomu

    1977-01-01

    This paper reviews the success of the asymptotically free gauge theory which describes the deep inelastic lepton-hadron scattering. The asymptotically free gauge theory was discussed as well as the reason why the parton has the nature like free particles by the aid of the field theory. The asymptotically free gauge theory (AFGT) gives the prediction that the Bjorken scaling gives rise to logarithmic violation. The theory was applied to the exchange processes of single photon and two photons. First, this paper describes the approaches to the Bjorken scaling. The approaches are the discussion of the scaling law dependent on the model and the discussion of the scaling law independent of the model. The field theoretical treatment in described. This is called the method of the renormalization group introduced by Wilson. The asymptotically free gauge theory was formed on the basis of the Callan-Symanzik equation (CSE) and of the Weinberg's power counting theorem. The exact Bjorken scaling does not hold in the quantum field theory, at least there must be logarithmic violation. The pattern of the scaling violation cannot be clarified by the present data. Discussions concerning two gamma process are presented. The measurement of the photon-photon scattering process will give the judgement whether the prediction of the AFGT is correct or not. (Kato, T.)

  4. Small-angle scattering theory revisited: Photocurrent and spatial localization

    DEFF Research Database (Denmark)

    Basse, N.P.; Zoletnik, S.; Michelsen, Poul

    2005-01-01

    In this paper theory on collective scattering measurements of electron density fluctuations in fusion plasmas is revisited. We present the first full derivation of the expression for the photocurrent beginning at the basic scattering concepts. Thereafter we derive detailed expressions for the auto......- and crosspower spectra obtained from measurements. These are discussed and simple simulations made to elucidate the physical meaning of the findings. In this context, the known methods of obtaining spatial localization are discussed and appraised. Where actual numbers are applied, we utilize quantities from two...

  5. General theory of intensity correlation on light scattering

    International Nuclear Information System (INIS)

    Villaeys, A.A.

    1978-01-01

    A general theory for spatio-temporal intensity correlations measurements for a scattered beam is developed. A completely quantum mechanical description for both excitation and detection set up is used. This description is essentially valid for weak incident light beams and single photon absorption processes. From a unified point of view both, stationary as well as, time resolved experiments are described. The interest for such experiments in the study of processes like resonance raman scattering and resonance fluorescence is emphasized. Also an observable coherent contribution associated to different final levels of the target-atoms or molecules is obtained a result which cannot be reached by intensity measurements

  6. Rigorous results in quantum theory of stimulated Raman scattering

    International Nuclear Information System (INIS)

    Rupasov, V.I.

    1993-01-01

    The modern theory of stimulated Raman scattering (SRS) of light in resonant media is based on the investigations of appropriate integrable models of the classical field theory by means of the inverse problem method. But, strictly speaking, Raman scattering is a pure spontaneous process and, hence, it is necessary to take into account a quantum nature of the phenomenon. Moreover, there are some questions and problems, for example, the problem of scattered photons statistics, which can be studied only within the framework of the quantum field theory. We have developed an exact quantum theory of SRS for the case of point-like geometry of resonant media (two-level atoms or harmonic oscillators) of the radius r much-lt λ 0 , where λ 0 is the typical wavelength of the light, but all our results are also valid for the case of short extended medium of the length L much-lt l p (l p is the typical size of pulses) when the spatially homogeneous approximation is valid

  7. Scattering amplitudes in four- and six-dimensional gauge theories

    International Nuclear Information System (INIS)

    Schuster, Theodor

    2014-01-01

    We study scattering amplitudes in quantum chromodynamics (QCD), N=4 super Yang-Mills (SYM) theory and the six-dimensional N=(1,1) SYM theory, focusing on the symmetries of and relations between the tree-level scattering amplitudes in these three gauge theories. We derive the tree level and one-loop color decomposition of an arbitrary QCD amplitude into primitive amplitudes. Furthermore, we derive identities spanning the null space among the primitive amplitudes. We prove that every color ordered tree amplitude of massless QCD can be obtained from gluon-gluino amplitudes of N=4 SYM theory. Furthermore, we derive analytical formulae for all gluon-gluino amplitudes relevant for QCD. We compare the numerical efficiency and accuracy of evaluating these closed analytic formulae for color ordered QCD tree amplitudes to a numerically efficient implementation of the Berends-Giele recursion. We derive the symmetries of massive tree amplitudes on the coulomb branch of N=4 SYM theory, which in turn can be obtained from N=(1,1) SYM theory by dimensional reduction. Furthermore, we investigate the tree amplitudes of N=(1, 1) SYM theory and explain how analytical formulae can be obtained from a numerical implementation of the supersymmetric BCFW recursion relation and investigate a potential uplift of the massless tree amplitudes of N=4 SYM theory. Finally we study an alternative to dimensional regularization of N=4 SYM theory. The infrared divergences are regulated by masses obtained from a Higgs mechanism. The corresponding string theory set-up suggests that the amplitudes have an exact dual conformal symmetry. We confirm this expectation and illustrate the calculational advantages of the massive regulator by explicit calculations.

  8. Chapter 8. Elementary notions on the quantum theory of potential scattering

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Elementary notions in quantum theory of potential scattering are exposed: stationary states of scattering, calculus of cross section, scattering by central potential, phase shift method. In complement, these questions are studied: free particle (stationary states of well defined kinetic momentum); phenomenological description of collisions with absorption; elementary examples of application of the scattering theory [fr

  9. Status of effective field theory of NN scattering

    International Nuclear Information System (INIS)

    Beane, S.R.

    1998-06-01

    There exist many nucleon-nucleon potentials which reproduce phase shifts and nuclear properties with remarkable accuracy. Three fundamental features are shared by these potential models: (1) pions are important at long distances, (2) there is a source of intermediate-range attraction, and (3) there is a source of short-distance repulsion. However, in general, distinct physical mechanisms in these models account for the same feature of the nuclear force. Agreement with experiment is maintained in spite of these differences because of the large number of fit parameters. Systematic approaches to the scattering of strongly interacting particles, such as chiral perturbation theory, are based on the ideas of effective field theory (EFT). The author reviews recent progress in developing a systematic power counting scheme for scattering processes involving more than one nucleon

  10. Intra-beam Scattering Theory and RHIC Experiments

    International Nuclear Information System (INIS)

    Wei, J.; Fedotov, A.; Fischer, W.; Malitsky, N.; Parzen, G.; Qiang, J.

    2005-01-01

    Intra-beam scattering is the leading mechanism limiting the luminosity in heavy-ion storage rings like the Relativistic Heavy Ion Collider (RHIC). The multiple Coulomb scattering among the charged particles causes transverse emittance growth and longitudinal beam de-bunching and beam loss, compromising machine performance during collision. Theoretically, the original theories developed by Piwinski, Bjorken, and Mtingwa only describe the rms beam size growth of an unbounded Gaussian distribution. Equations based on the Fokker-Planck approach are developed to further describe the beam density profile evolution and beam loss. During the 2004 RHIC heavy-ion operation, dedicated IBS experiments were performed to bench-mark the rms beam size growth, beam loss, and profile evolution both for a Gaussian-like and a longitudinal hollow beam. This paper summarizes the IBS theory and discusses the experimental bench-marking results

  11. Scattering theory in quantum mechanics and asymptotic completeness

    International Nuclear Information System (INIS)

    Combes, J.M.

    1977-07-01

    A trial for describing the status of the scattering theory in quantum mechanics is given. The S matrix being defined, its unitarity is a consequence of the asymptotic completeness relation which is one of the mean problems discussed. It is shown that the multichannel scattering theory can be reformulated in the two Hilbert space formalism with a suitable choice of H 0 and J (one-body problem and N-body systems). Time-dependent methods try to solve directly the existence problem for wave-operators without recourse to resolvent methods. Emphasis is put on the fact that the success of such a method can be traced to its semi-classical aspect in the sense that the stationary phase method is a special way to single-out from the quantum dynamics the contribution of classical orbits

  12. Classical scattering cross section in sputtering transport theory

    International Nuclear Information System (INIS)

    Zhang Zhulin

    2002-01-01

    For Lindhard scaling interaction potential scattering commonly used in sputtering theory, the authors analyzed the great difference between Sigmund's single power and the double power cross sections calculated. The double power cross sections can give a much better approximation to the Born-Mayer scattering in the low energy region (m∼0.1). In particular, to solve the transport equations by K r -C potential interaction given by Urbassek few years ago, only the double power cross sections (m∼0.1) can yield better approximate results for the number of recoils. Therefore, the Sigmund's single power cross section might be replaced by the double power cross sections in low energy collision cascade theory

  13. Exponential time-dependent perturbation theory in rotationally inelastic scattering

    International Nuclear Information System (INIS)

    Cross, R.J.

    1983-01-01

    An exponential form of time-dependent perturbation theory (the Magnus approximation) is developed for rotationally inelastic scattering. A phase-shift matrix is calculated as an integral in time over the anisotropic part of the potential. The trajectory used for this integral is specified by the diagonal part of the potential matrix and the arithmetic average of the initial and final velocities and the average orbital angular momentum. The exponential of the phase-shift matrix gives the scattering matrix and the various cross sections. A special representation is used where the orbital angular momentum is either treated classically or may be frozen out to yield the orbital sudden approximation. Calculations on Ar+N 2 and Ar+TIF show that the theory generally gives very good agreement with accurate calculations, even where the orbital sudden approximation (coupled-states) results are seriously in error

  14. Siegert pseudostate formulation of scattering theory: two-channel case

    CERN Document Server

    Sitnikov, G V

    2003-01-01

    Siegert pseudostates (SPS) are a finite basis representation of Siegert states (SS) for finite-range potentials. This paper presents a generalization of the SPS formulation of scattering theory, originally developed by Tolstikhin, Ostrovsky, and Nakamura ÝPhys. Rev. A 58, 2077 (1998)¿ for s-wave scattering in the one-channel case, to s-wave scattering in the two-channel case. This includes the investigation of the properties of orthogonality and completeness of two-channel SPS and the derivation of the SPS expansions for the two- channel Green function, wave function, and scattering matrix. Similar to the one-channel case, two types of expansions for the scattering matrix are obtained: one has a form of a sum and requires the knowledge of both the SPS eigenvalues and eigenfunctions, while the other has a form of a product and involves the eigenvalues only. As the size of the basis tends to infinity, the product formulas obtained here in terms of SPS coincide with those given by Le Couteur ÝProc. R. Soc. Lo...

  15. Theory of deep inelastic neutron scattering: Hard-core perturbation theory

    International Nuclear Information System (INIS)

    Silver, R.N.

    1988-01-01

    Details are presented of a new many-body theory for deep inelastic neutron scattering (DINS) experiments to measure momentum distributions in quantum fluids and solids. The high-momentum and energy-transfer scattering law in helium is shown to be a convolution of the impulse approximation with a final-state broadening function which depends on the scattering phase shifts and the radial distribution function. The predicted broadening satisfies approximate Y scaling, is neither Lorentzian nor Gaussian, and obeys the f, ω 2 , and ω 3 sum rules. The derivation uses a combination of Liouville perturbation theory, projection superoperators, and semiclassical methods which I term ''hard-core perturbation theory.'' A review is presented of the predictions of prior theories for DINS experiments in relation to the present work. A subsequent paper will present massive numerical predictions and a discussion of DINS experiments on superfluid 4 He

  16. Advanced methods for scattering amplitudes in gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Peraro, Tiziano

    2014-09-24

    We present new techniques for the evaluation of multi-loop scattering amplitudes and their application to gauge theories, with relevance to the Standard Model phenomenology. We define a mathematical framework for the multi-loop integrand reduction of arbitrary diagrams, and elaborate algebraic approaches, such as the Laurent expansion method, implemented in the software Ninja, and the multivariate polynomial division technique by means of Groebner bases.

  17. Benchmark calculations of thermal reaction rates. I - Quantal scattering theory

    Science.gov (United States)

    Chatfield, David C.; Truhlar, Donald G.; Schwenke, David W.

    1991-01-01

    The thermal rate coefficient for the prototype reaction H + H2 yields H2 + H with zero total angular momentum is calculated by summing, averaging, and numerically integrating state-to-state reaction probabilities calculated by time-independent quantum-mechanical scattering theory. The results are very carefully converged with respect to all numerical parameters in order to provide high-precision benchmark results for confirming the accuracy of new methods and testing their efficiency.

  18. Advanced methods for scattering amplitudes in gauge theories

    International Nuclear Information System (INIS)

    Peraro, Tiziano

    2014-01-01

    We present new techniques for the evaluation of multi-loop scattering amplitudes and their application to gauge theories, with relevance to the Standard Model phenomenology. We define a mathematical framework for the multi-loop integrand reduction of arbitrary diagrams, and elaborate algebraic approaches, such as the Laurent expansion method, implemented in the software Ninja, and the multivariate polynomial division technique by means of Groebner bases.

  19. Theory of inelastic scattering and absorption of X-rays

    CERN Document Server

    Veenendaal, Michel van

    2015-01-01

    This comprehensive, self-contained guide to X-ray spectroscopy will equip you with everything you need to begin extracting the maximum amount of information available from X-ray spectra. Key topics such as the interaction between X-rays and matter, the basic theory of spectroscopy, and selection and sum rules, are introduced from the ground up, providing a solid theoretical grounding. The book also introduces core underlying concepts such as atomic structure, solid-state effects, the fundamentals of tensor algebra and group theory, many-body interactions, scattering theory, and response functions, placing spectroscopy within a broader conceptual framework, and encouraging a deep understanding of this essential theoretical background. Suitable for graduate students, researchers, materials scientists and optical engineers, this is the definitive guide to the theory behind this powerful and widely used technique.

  20. Scattering amplitudes in gauge theories with and without supersymmetry

    International Nuclear Information System (INIS)

    Ochirov, Alexander

    2014-01-01

    This thesis aims at providing better understanding of the perturbative expansion of gauge theories with and without supersymmetry. At tree level, the BCFW recursion relations are analyzed with respect to their validity for general off-shell objects in Yang-Mills theory, which is a significant step away from their established zone of applicability. Unphysical poles constitute a new potential problem in addition to the boundary behavior issue, common to the on-shell case as well. For an infinite family of massive fermion currents, both obstacles are shown to be avoided under the certain conditions, which provides a natural recursion relation. At one loop, scattering amplitudes can be calculated from unitarity cuts through their expansion into known scalar integrals with free coefficients. A powerful method to obtain these coefficients, namely spinor integration, is discussed and rederived in a somewhat novel form. It is then used to compute analytically the infinite series of one-loop gluon amplitudes in N = 1 super-Yang-Mills theory with exactly three negative helicities. The final part of this thesis concerns the intriguing relationship between gluon and graviton scattering amplitudes, which involves a beautiful duality between the color and kinematic content of gauge theories. This BCJ duality is extended to include particles in the fundamental representation of the gauge group, which is shown to relieve the restriction of the BCJ construction to factorizable gravities and thus give access to amplitudes in generic (super-)gravity theories. (author) [fr

  1. Electron-electron scattering in the Weinberg-Salam theory

    International Nuclear Information System (INIS)

    Hirashima, Hideharu

    1988-01-01

    The Weinberg theory is generally believed to have been established in recent years. At distances smaller than 10 -16 cm, the strength of weak interactions becomes almost equal to that of the electromagnetic interactions. The grand unified theories proposed so far are based on the idea that the coupling constants for the Abelian U(1) field, the non-Abelian SU(2) field and the non-Abelian SU(3) color field depend on momentum transfer, or distance. At distances smaller than 10 -29 cm, weak electromagnetic and strong interactions are assumed to become almost the same strength. The question here is whether nature has no new features in the vast range from 10 -16 cm (10 2 GeV) to 10 -29 cm (10 15 GeV) and whether the substructure of quark or lepton can be expected to be revealed at the next accelerator energy region. The Weinberger-Salam theory may lose its validity even in near future experiments. In any case, it must be overhauled from various aspects. From this point of view, by using the Weinberger-Salam theory, calculation of the differential cross section for elastic electron-electron scattering is re-examined to make clear the difference with the results of QED. In addition, as an example of experiments which could investigate the Weinberger-Salam theory more in detail, a short account is given of the elastic scattering of polarized electrons from a polarized electron target. (Nogami, K.)

  2. Physics of pitch angle scattering and velocity diffusion. I - Theory

    Science.gov (United States)

    Karimabadi, H.; Krauss-Varban, D.; Terasawa, T.

    1992-01-01

    A general theory for the pitch angle scattering and velocity diffusion of particles in the field of a spectrum of waves in a magnetized plasma is presented. The test particle theory is used to analyze the particle motion. The form of diffusion surfaces is examined, and analytical expressions are given for the resonance width and bounce frequency. The resonance widths are found to vary strongly as a function of harmonic number. The resulting diffusion can be quite asymmetric with respect to pitch angle of 90 deg. The conditions for the onset of pitch angle scattering and energy diffusion are explained in detail. Some of the known shortcomings of the standard quasi-linear theory are also addressed, and ways to overcome them are shown. In particular, the often stated quasi-linear gap at 90 deg is found to exist only under very special cases. For instance, oblique wave propagation can easily remove the gap. The conditions for the existence of the gap are described in great detail. A new diffusion equation which takes into account the finite resonance widths is also discussed. The differences between this new theory and the standard resonance broadening theory is explained.

  3. Purely elastic scattering theories and their ultraviolet limits

    International Nuclear Information System (INIS)

    Klassen, T.R.; Chicago Univ., IL; Melzer, E.

    1990-01-01

    We use the thermodynamic Bethe ansatz to find the finite-size corrections to the ground-state energy in an arbitrary (1+1)-dimensional purely elastic scattering theory. The leading finite-size effects are characterized by tilde c=c-12d 0 , where c and d 0 are the central charge and the lowest scaling dimension, respectively, of the (possibly nonunitary) CFT describing the ultraviolet limit of the massive scattering theory. After presenting the purely elastic S-matrix theories that emerged in recent discussions of perturbed CFTs, we calculate their finite-size scaling coefficient tilde c. Our results show that the UV limits of the 'minimal' S-matrix theories are the unperturbed CFTs in question. On the other hand, the S-matrices which have been suggested to describe affine Toda field theories, differing from the minimal S-matrices by coupling-dependent factors, are seen to have free bosonic CFTs as their UV limits. We also discuss some interesting properties of tilde c. In particular, we suggest that tilde c is a measure of the number of degrees of freedom of an arbitrary two-dimensional CFT. (orig.)

  4. Semiclassical perturbation theory for diffraction in heavy atom surface scattering.

    Science.gov (United States)

    Miret-Artés, Salvador; Daon, Shauli; Pollak, Eli

    2012-05-28

    The semiclassical perturbation theory formalism of Hubbard and Miller [J. Chem. Phys. 78, 1801 (1983)] for atom surface scattering is used to explore the possibility of observation of heavy atom diffractive scattering. In the limit of vanishing ℏ the semiclassical theory is shown to reduce to the classical perturbation theory. The quantum diffraction pattern is sensitive to the characteristics of the beam of incoming particles. Necessary conditions for observation of quantum diffraction are derived for the angular width of the incoming beam. An analytic expression for the angular distribution as a function of the angular and momentum variance of the incoming beam is obtained. We show both analytically and through some numerical results that increasing the angular width of the incident beam leads to decoherence of the quantum diffraction peaks and one approaches the classical limit. However, the incoherence of the beam in the parallel direction does not destroy the diffraction pattern. We consider the specific example of Ar atoms scattered from a rigid LiF(100) surface.

  5. Scattering theory of space-time non-commutative abelian gauge field theory

    International Nuclear Information System (INIS)

    Rim, Chaiho; Yee, Jaehyung

    2005-01-01

    The unitary S-matrix for space-time non-commutative quantum electrodynamics is constructed using the *-time ordering which is needed in the presence of derivative interactions. Based on this S-matrix, we formulate the perturbation theory and present the Feynman rule. We then apply this perturbation analysis to the Compton scattering process to the lowest order and check the gauge invariance of the scattering amplitude at this order.

  6. Multiple-scattering theory. New developments and applications

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Arthur

    2007-12-04

    Multiple-scattering theory (MST) is a very efficient technique for calculating the electronic properties of an assembly of atoms. It provides explicitly the Green function, which can be used in many applications such as magnetism, transport and spectroscopy. This work gives an overview on recent developments of multiple-scattering theory. One of the important innovations is the multiple scattering implementation of the self-interaction correction approach, which enables realistic electronic structure calculations of systems with localized electrons. Combined with the coherent potential approximation (CPA), this method can be applied for studying the electronic structure of alloys and as well as pseudo-alloys representing charge and spin disorder. This formalism is extended to finite temperatures which allows to investigate phase transitions and thermal fluctuations in correlated materials. Another novel development is the implementation of the self-consistent non-local CPA approach, which takes into account charge correlations around the CPA average and chemical short range order. This formalism is generalized to the relativistic treatment of magnetically ordered systems. Furthermore, several improvements are implemented to optimize the computational performance and to increase the accuracy of the KKR Green function method. The versatility of the approach is illustrated in numerous applications. (orig.)

  7. Multiple-scattering theory. New developments and applications

    International Nuclear Information System (INIS)

    Ernst, Arthur

    2007-01-01

    Multiple-scattering theory (MST) is a very efficient technique for calculating the electronic properties of an assembly of atoms. It provides explicitly the Green function, which can be used in many applications such as magnetism, transport and spectroscopy. This work gives an overview on recent developments of multiple-scattering theory. One of the important innovations is the multiple scattering implementation of the self-interaction correction approach, which enables realistic electronic structure calculations of systems with localized electrons. Combined with the coherent potential approximation (CPA), this method can be applied for studying the electronic structure of alloys and as well as pseudo-alloys representing charge and spin disorder. This formalism is extended to finite temperatures which allows to investigate phase transitions and thermal fluctuations in correlated materials. Another novel development is the implementation of the self-consistent non-local CPA approach, which takes into account charge correlations around the CPA average and chemical short range order. This formalism is generalized to the relativistic treatment of magnetically ordered systems. Furthermore, several improvements are implemented to optimize the computational performance and to increase the accuracy of the KKR Green function method. The versatility of the approach is illustrated in numerous applications. (orig.)

  8. Interactions and scattering in d = 1 string theory

    International Nuclear Information System (INIS)

    Sengupta, A.M.; Mandal, G.; Wadia, S.R.

    1991-01-01

    This paper discusses two results: the authors calculate the two-point function of the density fluctuations to o(g st 2 ) in the fermionic formulation of the d = 1 string theory and compare with the o(g st 2 ) result from the candidate collective field Hamiltonian. The latter result is divergent, showing the inequivalence of the two theories. The authors find out the corrections to the collective field Hamiltonian (both in the form of infinite counterterms and additional finite pieces) needed to match with the fermion theory. The authors study tree-level scattering processes between bosons due to the localized interaction near the boundary (in a region of order √ α'). The reflection problem at the boundary is treated by an analytic continuation of the time-of-flight variable

  9. Effective field theory and unitarity in vector boson scattering

    International Nuclear Information System (INIS)

    Sekulla, Marco; Kilian, Wolfgang; Ohl, Thorsten; Reuter, Juergen

    2016-10-01

    Weak vector boson scattering at high energies will be one of the key measurements in current and upcoming LHC runs. It is most sensitive to any new physics associated with electroweak symmetry breaking. However, a conventional EFT analysis will fail at high energies. To address this problem, we present a parameter-free prescription valid for arbitrary perturbative and non-perturbative models: the T-matrix unitarization. We describe its implementation as an asymptotically consistent reference model matched to the low-energy effective theory. We show examples of typical observables of vector-boson scattering at the LHC in our unitarized framework. For many strongly-coupled models like composite Higgs models, dimension-8 operators might be actually the leading operators. In addition to those longitudinal and transversal dimension eight EFT operators, the effects of generic tensor and scalar resonances within simplified models are considered.

  10. Scattering Properties of Ground-State 23Na Vapor Using Generalized Scattering Theory

    Science.gov (United States)

    Al-Harazneh, A. A.; Sandouqa, A. S.; Joudeh, B. R.; Ghassib, H. B.

    2018-04-01

    The scattering properties of ground-state 23Na vapor are investigated within the framework of the Galitskii-Migdal-Feynman formalism. Viewed as a generalized scattering theory, this formalism is used to calculate the medium phase shifts. The scattering properties of the system—the total, viscosity, spin-exchange, and average cross sections—are then computed using these phase shifts according to standard recipes. The total cross section is found to exhibit the Ramsauer-Townsend effect as well as resonance peaks. These peaks are caused by the large difference between the potentials for electronic spin-singlet and spin-triplet states. They represent quasi-bound states in the system. The results obtained for the complex spin-exchange cross sections are particularly highlighted because of their importance in the spectroscopy of the Na2 dimer. So are the results for the scattering lengths pertaining to both singlet and triplet states. Wherever possible, comparison is made with other published results.

  11. Three-nucleon scattering by using chiral perturbation theory potential

    International Nuclear Information System (INIS)

    Kamata, Hiroyuki

    2003-01-01

    Three-nucleon scattering problems are studied by using two-nucleon and three-nucleon potentials derived from chiral perturbation theory. The three-nucleon term is shown to appear in the effective potential of the rank of next-to-next-to-leading order (NNLO). New three-nucleon forces are taken into consideration in addition to the conventional Fujita-Miyazawa (FM) type three-nucleon potential. Two-nucleon potential of the chiral perturbation theory is as precise as the conventional ones in low energy region. The FM type three-nucleon force which explains Sagara discrepancy in high energy region is introduced automatically. Concerning the Ay puzzle, the results seems to behave as if the puzzle has been solved at the level of NLO, but at the NNLO (without three-nucleon force) level the result is similar to the cases of conventional potential indicating the need of three-nucleon force. In contrast to the FM type three-nucleon force, five free parameters exist in the new D and E type three-nucleon forces introduced by the NNLO, but they are reduced to two independent parameters by antisymmetrization, which are found to be sensitive to the coupling energy of tritons and to the nd scattering length (spin doublet state). Parameters determined from them cannot give satisfactory answer to the A y puzzle. It seems, however, too hasty to conclude that A y puzzle cannot be solved by the chiral perturbation theory. (S. Funahashi)

  12. Inverse scattering theory foundations of tomography with diffracting wavefields

    International Nuclear Information System (INIS)

    Devaney, A.J.

    1987-01-01

    The underlying mathematical models employed in reflection and transmission computed tomography using diffracting wavefields (called diffraction tomography) are reviewed and shown to have a rigorous basis in inverse scattering theory. In transmission diffraction tomography the underlying wave model is shown to be the Rytov approximation to the complex phase of the wavefield transmitted by the object being probed while in reflection diffraction tomography the underlying wave model is shown to be the Born approximation to the backscattered wavefield from the object. In both cases the goal of the reconstruction process is the determination of the objects's complex index of refraction as a function of position r/sup →/ and, possibly, the frequency ω of the probing wavefield. By use of these approximations the reconstruction problem for both transmission and reflection diffraction tomography can be cast into the simple and elegant form of linearized inverse scattering theory. Linearized inverse scattering theory is shown to lead directly to generalized projection-slice theorems for both reflection and transmission diffraction tomography that provide a simple mathematical relationship between the object's complex index of refraction (the unknown) and the data (the complex phase of the transmitted wave or the complex amplitude of the reflected wave). The conventional projection-slice theorem of X-ray CT is shown to result from the generalized projection-slice theorem for transmission diffraction tomography in the limit of vanishing wavelength (in the absence of wave effects). Fourier based and back-projection type reconstruction algorithms are shown to be directly derivable from the generalized projection-slice theorems

  13. On the complex angular momentum theory of scattering

    International Nuclear Information System (INIS)

    Thylwe, K.-E.

    1983-01-01

    A contribution to the theory of complex angular momentum techniques in the field of atomic and molecular collisions is given. A new, flexible representation of the scattering amplitude on the basis of realistic assumptions for the behaviour of the S matrix in the complex angular momentum plane is derived. The representation has the form of a sum of steepest-descent integrals, S-matrix residue terms and a symmetry-type background integral. The flexibility is due to the presence of two integer parameters which may be chosen conveniently so as to make the residue sums sufficiently convergent and to minimise the total number of important terms. (author)

  14. An integral for second-order multiple scattering perturbation theory

    International Nuclear Information System (INIS)

    Hoffman, G.G.

    1997-01-01

    This paper presents the closed form evaluation of a six-dimensional integral. The integral arises in the application to many-electron systems of a multiple scattering perturbation expansion at second order when formulated in fourier space. The resulting function can be used for the calculation of both the electron density and the effective one-electron potential in an SCF calculations. The closed form expression derived here greatly facilitates these calculations. In addition, the evaluated integral can be used for the computation of second-order corrections to the open-quotes optimized Thomas-Fermi theory.close quotes 10 refs., 2 figs

  15. One-particle reducibility in effective scattering theory

    International Nuclear Information System (INIS)

    Vereshagin, V.

    2016-01-01

    To construct the reasonable renormalization scheme suitable for the effective theories one needs to resolve the “problem of couplings” because the number of free parameters in a theory should be finite. Otherwise the theory would loose its predictive power. In the case of effective theory already the first step on this way shows the necessity to solve the above-mentioned problem for the 1-loop 2-leg function traditionally called self energy. In contrast to the customary renormalizable models the corresponding Feynman graph demonstrates divergencies that require introducing of an infinite number of prescriptions. In the recent paper [1] it has been shown that the way out of this difficulty requires the revision of the notion of one-particle reducibility. The point is that in effective scattering theory one can introduce two different notions: the graphic reducibility and the analytic one. Below we explain the main ideas of the paper [1] and recall some notions and definitions introduced earlier in [2] and [3

  16. Scattering and Gaussian Fluctuation Theory for Semiflexible Polymers

    Directory of Open Access Journals (Sweden)

    Xiangyu Bu

    2016-09-01

    Full Text Available The worm-like chain is one of the best theoretical models of the semiflexible polymer. The structure factor, which can be obtained by scattering experiment, characterizes the density correlation in different length scales. In the present review, the numerical method to compute the static structure factor of the worm-like chain model and its general properties are demonstrated. Especially, the chain length and persistence length involved multi-scale nature of the worm-like chain model are well discussed. Using the numerical structure factor, Gaussian fluctuation theory of the worm-like chain model can be developed, which is a powerful tool to analyze the structure stability and to predict the spinodal line of the system. The microphase separation of the worm-like diblock copolymer is considered as an example to demonstrate the usage of Gaussian fluctuation theory.

  17. Classical theory of rotational rainbow scattering from uncorrugated surfaces

    International Nuclear Information System (INIS)

    Khodorkovsky, Yuri; Averbukh, Ilya Sh; Pollak, Eli

    2010-01-01

    A classical perturbation theory is developed to study rotational rainbow scattering of molecules from uncorrugated frozen surfaces. Considering the interaction of the rigid rotor with the translational motion towards the surface to be weak allows for a perturbative treatment, in which the known zeroth order motion is that of a freely rotating molecule hitting a surface. Using perturbation theory leads to explicit expressions for the angular momentum deflection function with respect to the initial orientational angle of the rotor that are valid for any magnitude of the initial angular momentum. The rotational rainbows appear as peaks both in the final angular momentum and rotational energy distributions, as well as peaks in the angular distribution, although the surface is assumed to be uncorrugated. The derived analytic expressions are compared with numerical simulation data. Even when the rotational motion is significantly coupled to the translational motion, the predictions of the perturbative treatment remain qualitatively correct.

  18. Application and development of the Schwinger multichannel scattering theory and the partial differential equation theory of electron-molecule scattering

    Science.gov (United States)

    Weatherford, Charles A.

    1993-01-01

    One version of the multichannel theory for electron-target scattering based on the Schwinger variational principle, the SMC method, requires the introduction of a projection parameter. The role of the projection parameter a is investigated and it is shown that the principal-value operator in the SMC equation is Hermitian regardless of the value of a as long as it is real and nonzero. In a basis that is properly orthonormalizable, the matrix representation of this operator is also Hermitian. The use of such basis is consistent with the Schwinger variational principle because the Lippmann-Schwinger equation automatically builds in the correct boundary conditions. Otherwise, an auxiliary condition needs to be introduced, and Takatsuka and McKoy's original value of a is one of the three possible ways to achieve Hermiticity. In all cases but one, a can be uncoupled from the Hermiticity condition and becomes a free parameter. An equation for a based on the variational stability of the scattering amplitude is derived; its solution has an interesting property that the scattering amplitude from a converged SMC calculation is independent of the choice of a even though the SMC operator itself is a-dependent. This property provides a sensitive test of the convergence of the calculation. For a static-exchange calculation, the convergence requirement only depends on the completeness of the one-electron basis, but for a general multichannel case, the a-invariance in the scattering amplitude requires both the one-electron basis and the N plus 1-electron basis to be complete. The role of a in the SMC equation and the convergence property are illustrated using two examples: e-CO elastic scattering in the static-exchange approximation, and a two-state treatment of the e-H2 Chi(sup 1)Sigma(sub g)(+) yields b(sup 3)Sigma(sub u)(+) excitation.

  19. Scattering Theory for Open Quantum Systems with Finite Rank Coupling

    International Nuclear Information System (INIS)

    Behrndt, Jussi; Malamud, Mark M.; Neidhardt, Hagen

    2007-01-01

    Quantum systems which interact with their environment are often modeled by maximal dissipative operators or so-called Pseudo-Hamiltonians. In this paper the scattering theory for such open systems is considered. First it is assumed that a single maximal dissipative operator A D in a Hilbert space is used to describe an open quantum system. In this case the minimal self-adjoint dilation of A D can be regarded as the Hamiltonian of a closed system which contains the open system, but since K-tilde is necessarily not semibounded from below, this model is difficult to interpret from a physical point of view. In the second part of the paper an open quantum system is modeled with a family {A(μ)} of maximal dissipative operators depending on energy μ, and it is shown that the open system can be embedded into a closed system where the Hamiltonian is semibounded. Surprisingly it turns out that the corresponding scattering matrix can be completely recovered from scattering matrices of single pseudo-Hamiltonians as in the first part of the paper. The general results are applied to a class of Sturm-Liouville operators arising in dissipative and quantum transmitting Schroedinger-Poisson systems

  20. Enhanced Thomson scattering theory applied to eight experiments

    International Nuclear Information System (INIS)

    Simon, A.; Short, R.W.; Seka, W.; Goldman, L.M.

    1985-01-01

    The onset of an instability, such as the 2ω/sub p/ at the n/sub c//4 surface, usually leads to wave breaking and the emission of hot electron pulses which can profoundly influence instability thresholds and scattering behavior elsewhere in the plasma. In particular, enhanced Thomson scattering (via the plasma line) can occur, and this has been used to explain the observation of the SRS instability well below the theoretical threshold. A simple model of the hot electron pulses based on measured values of the hot and cold electron temperatures, T/sub h/ and T/sub c/, has yielded good agreement with experimental observation of the Raman spectral frequency bands. The agreement has continued, even for experiments which are clearly above the SRS threshold, with the enhanced noise likely acting as a ''seed'' for the SRS growth. We will show details of the successful comparison of this theory with six experiments carried out on SHIVA, ARGUS, NOVETTE(2), and GDL(2), and also with an upscattering feature seen at Garching. In addition, a recent experiment using 6 beams of OMEGA (at 0.35μ) will be discussed, and compared with the theory. The report is comprised of viewgraphs of the talks

  1. BQP-completeness of scattering in scalar quantum field theory

    Directory of Open Access Journals (Sweden)

    Stephen P. Jordan

    2018-01-01

    Full Text Available Recent work has shown that quantum computers can compute scattering probabilities in massive quantum field theories, with a run time that is polynomial in the number of particles, their energy, and the desired precision. Here we study a closely related quantum field-theoretical problem: estimating the vacuum-to-vacuum transition amplitude, in the presence of spacetime-dependent classical sources, for a massive scalar field theory in (1+1 dimensions. We show that this problem is BQP-hard; in other words, its solution enables one to solve any problem that is solvable in polynomial time by a quantum computer. Hence, the vacuum-to-vacuum amplitude cannot be accurately estimated by any efficient classical algorithm, even if the field theory is very weakly coupled, unless BQP=BPP. Furthermore, the corresponding decision problem can be solved by a quantum computer in a time scaling polynomially with the number of bits needed to specify the classical source fields, and this problem is therefore BQP-complete. Our construction can be regarded as an idealized architecture for a universal quantum computer in a laboratory system described by massive phi^4 theory coupled to classical spacetime-dependent sources.

  2. Coupled channel theory of pion--deuteron reaction applied to threshold scattering

    International Nuclear Information System (INIS)

    Mizutani, T.; Koltun, D.S.

    1977-01-01

    Scattering and absorption of pions by a nuclear target are treated together in a coupled channel theory. The theory is developed explicitly for the problem of pion scattering and absorption by a deuteron. The equations are presented in terms of the integral equations of three-body scattering theory. The method is then applied in an approximate from to calculate the contribution of pion absorption to the scattering length for pion--deuteron scattering. The sensitivity of the calculated results to the model assumptions and approximations is investigated

  3. Scattering theory of nonlinear thermoelectricity in quantum coherent conductors.

    Science.gov (United States)

    Meair, Jonathan; Jacquod, Philippe

    2013-02-27

    We construct a scattering theory of weakly nonlinear thermoelectric transport through sub-micron scale conductors. The theory incorporates the leading nonlinear contributions in temperature and voltage biases to the charge and heat currents. Because of the finite capacitances of sub-micron scale conducting circuits, fundamental conservation laws such as gauge invariance and current conservation require special care to be preserved. We do this by extending the approach of Christen and Büttiker (1996 Europhys. Lett. 35 523) to coupled charge and heat transport. In this way we write relations connecting nonlinear transport coefficients in a manner similar to Mott's relation between the linear thermopower and the linear conductance. We derive sum rules that nonlinear transport coefficients must satisfy to preserve gauge invariance and current conservation. We illustrate our theory by calculating the efficiency of heat engines and the coefficient of performance of thermoelectric refrigerators based on quantum point contacts and resonant tunneling barriers. We identify, in particular, rectification effects that increase device performance.

  4. Approach to the nonrelatiVistic scattering theory based on the causality superposition and unitarity principles

    International Nuclear Information System (INIS)

    Gajnutdinov, R.Kh.

    1983-01-01

    Possibility is studied to build the nonrelativistic scattering theory on the base of the general physical principles: causality, superposition, and unitarity, making no use of the Schroedinger formalism. The suggested approach is shown to be more general than the nonrelativistic scattering theory based on the Schroedinger equation. The approach is applied to build a model ofthe scattering theory for a system which consists of heavy nonrelativistic particles and a light relativistic particle

  5. Nonrelativistic multichannel quantum scattering theory in a two Hilbert space formulation

    International Nuclear Information System (INIS)

    Chandler, C.

    1977-08-01

    A two-Hilbert-space form of an abstract scattering theory specifically applicable to multichannel quantum scattering problems is outlined. General physical foundations of the theory are reviewed. Further topics discussed include the invariance principle, asymptotic completeness of the wave operators, representations of the scattering operator in terms of transition operators and fundamental equations that these transition operators satisfy. Outstanding problems, including the difficulties of including Coulomb interactions in the theory, are pointed out. (D.P.)

  6. Scattering process in the Scalar Duffin-Kemmer-Petiau gauge theory

    International Nuclear Information System (INIS)

    Beltran, J; M Pimentel, B; E Soto, D

    2016-01-01

    In this work we calculate the cross section of the scattering process of the Duffin-Kemmer-Petiau theory coupling with the Maxwell’s electromagnetic field. Specifically, we find the propagator of the free theory, the scattering amplitudes and cross sections at Born level for the Moeller and Compton scattering process of this model. For this purpose we use the analytic representation for free propagators and take account the framework of the Causal Perturbation Theory of Epstein and Glaser. (paper)

  7. On the theory of inelastic scattering of slow electrons by surface excitations: 2. Thin film formalism

    International Nuclear Information System (INIS)

    Nkoma, J.S.

    1982-08-01

    A quantum-mechanical theory for the inelastic scattering of slow electrons (ISSE) by surface excitations in a thin film is developed. The scattered wave function inside the thin film is obtained by solving the inhomogeneous Schroedinger equation, and it is found to contain terms which show that the back scattered intensity is smaller than the forward scattered intensity. A scattering cross-section for forward scattering is derived and is found to be dependent on transmission factors, wavevectors and fluctuations of the scattering potential. (author)

  8. Dark matter effective field theory scattering in direct detection experiments

    Energy Technology Data Exchange (ETDEWEB)

    Schneck, K.; Cabrera, B.; Cerdeño, D. G.; Mandic, V.; Rogers, H. E.; Agnese, R.; Anderson, A. J.; Asai, M.; Balakishiyeva, D.; Barker, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Brandt, D.; Brink, P. L.; Bunker, R.; Caldwell, D. O.; Calkins, R.; Chagani, H.; Chen, Y.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, P.; Daal, M.; Di Stefano, P. C. F.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Godfrey, G. L.; Golwala, S. R.; Hall, J.; Harris, H. R.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jardin, D. M.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Leder, A.; Loer, B.; Lopez Asamar, E.; Lukens, P.; Mahapatra, R.; McCarthy, K. A.; Mirabolfathi, N.; Moffatt, R. A.; Morales Mendoza, J. D.; Oser, S. M.; Page, K.; Page, W. A.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Ricci, Y.; Roberts, A.; Saab, T.; Sadoulet, B.; Sander, J.; Schnee, R. W.; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Toback, D.; Upadhyayula, S.; Villano, A. N.; Welliver, B.; Wilson, J. S.; Wright, D. H.; Yang, X.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.

    2015-05-18

    We examine the consequences of the effective field theory (EFT) of dark matter–nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.

  9. Unified connected theory of few-body reaction mechanisms in N-body scattering theory

    Science.gov (United States)

    Polyzou, W. N.; Redish, E. F.

    1978-01-01

    A unified treatment of different reaction mechanisms in nonrelativistic N-body scattering is presented. The theory is based on connected kernel integral equations that are expected to become compact for reasonable constraints on the potentials. The operators T/sub +-//sup ab/(A) are approximate transition operators that describe the scattering proceeding through an arbitrary reaction mechanism A. These operators are uniquely determined by a connected kernel equation and satisfy an optical theorem consistent with the choice of reaction mechanism. Connected kernel equations relating T/sub +-//sup ab/(A) to the full T/sub +-//sup ab/ allow correction of the approximate solutions for any ignored process to any order. This theory gives a unified treatment of all few-body reaction mechanisms with the same dynamic simplicity of a model calculation, but can include complicated reaction mechanisms involving overlapping configurations where it is difficult to formulate models.

  10. Surface hopping, transition state theory and decoherence. I. Scattering theory and time-reversibility.

    Science.gov (United States)

    Jain, Amber; Herman, Michael F; Ouyang, Wenjun; Subotnik, Joseph E

    2015-10-07

    We provide an in-depth investigation of transmission coefficients as computed using the augmented-fewest switches surface hopping algorithm in the low energy regime. Empirically, microscopic reversibility is shown to hold approximately. Furthermore, we show that, in some circumstances, including decoherence on top of surface hopping calculations can help recover (as opposed to destroy) oscillations in the transmission coefficient as a function of energy; these oscillations can be studied analytically with semiclassical scattering theory. Finally, in the spirit of transition state theory, we also show that transmission coefficients can be calculated rather accurately starting from the curve crossing point and running trajectories forwards and backwards.

  11. C*-algebraic scattering theory and explicitly solvable quantum field theories

    International Nuclear Information System (INIS)

    Warchall, H.A.

    1985-01-01

    A general theoretical framework is developed for the treatment of a class of quantum field theories that are explicitly exactly solvable, but require the use of C*-algebraic techniques because time-dependent scattering theory cannot be constructed in any one natural representation of the observable algebra. The purpose is to exhibit mechanisms by which inequivalent representations of the observable algebra can arise in quantum field theory, in a setting free of other complications commonly associated with the specification of dynamics. One of two major results is the development of necessary and sufficient conditions for the concurrent unitary implementation of two automorphism groups in a class of quasifree representations of the algebra of the canonical commutation relations (CCR). The automorphism groups considered are induced by one-parameter groups of symplectic transformations on the classical phase space over which the Weyl algebra of the CCR is built; each symplectic group is conjugate by a fixed symplectic transformation to a one-parameter unitary group. The second result, an analog to the Birman--Belopol'skii theorem in two-Hilbert-space scattering theory, gives sufficient conditions for the existence of Moller wave morphisms in theories with time-development automorphism groups of the above type. In a paper which follows, this framework is used to analyze a particular model system for which wave operators fail to exist in any natural representation of the observable algebra, but for which wave morphisms and an associated S matrix are easily constructed

  12. Analytical properties and behaviour of scattering amplitude at high energies in the localizable quantum field theory

    International Nuclear Information System (INIS)

    Lazur, V.Yu.; Khimich, I.V.

    1977-01-01

    Analytical properties of the elastic πN-scattering amplitude in in the cos THETA are proved in the Lehmann ellipse. The instrument for establishing analytical properties of the scattering amplitude in the cos THETA is the Jost-Lehmann-Dyson integral representation proved in terms of the localizable quantum field theory containing the strictly localizable theory and theory of moderate growth as particular cases. On this basis the Greenberg-Low restriction is obtained in frames of this class theories for the πN-scattering amplitude. This result gives a possibility to prove the ordinary dispersion relations with a finite number of subtraction in frames of the localizable quantum field theory

  13. Quantum theory of scattering of atoms and diatomic molecules by solid surfaces

    International Nuclear Information System (INIS)

    Liu, W.S.

    1973-01-01

    The unitary treatment, based on standard t-matrix theory, of the quantum theory of scattering of atoms by solid surfaces, is extended to the scattering of particles having internal degrees of freedom by perfect harmonic crystalline surfaces. The diagonal matrix element of the interaction potential which enters into the quantum scattering theory is obtained to represent the potential for the specular beam. From the two-potential formula, the scattering intensities for the diffracted beams and the inelastic beams with or without internal transitions of the particles are obtained by solving the equation for the t-matrix elements. (author)

  14. On the algebraic scattering theory for heavy ions

    International Nuclear Information System (INIS)

    Amos, K.; Kiedeldey, H.; Morrison, I.; Allen, L.J.

    1989-01-01

    Algebraic potentials from SO(3,1) and SO(3,2) representations of scattering functions are deduced by matching to scattering functions obtained by fitting 12 C- 12 C elastic scattering differential cross-sections. Their variations with energy suggest a simple mapping between algebraic and coordinate space interactions. 13 refs., 5 figs., 2 tabs

  15. Theory of Thomson scattering in a strong magnetic field, 2. [Relativistic quantum theory, cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, T [Ibaraki Univ., Mito (Japan). Dept. of Physics

    1975-07-01

    A relativistic quantum theory is formulated for the Compton scattering by electrons in a strong magnetic field. It is shown that the relativistic quantum (Klein-Nishina) cross section in the center of drift system reduces exactly to the classical Thomson cross section in the limit h..omega../2..pi..<scattering in the direction of the magnetic field by an electron in the ground state.

  16. Modern integral equation techniques for quantum reactive scattering theory

    International Nuclear Information System (INIS)

    Auerbach, S.M.

    1993-11-01

    Rigorous calculations of cross sections and rate constants for elementary gas phase chemical reactions are performed for comparison with experiment, to ensure that our picture of the chemical reaction is complete. We focus on the H/D+H 2 → H 2 /DH + H reaction, and use the time independent integral equation technique in quantum reactive scattering theory. We examine the sensitivity of H+H 2 state resolved integral cross sections σ v'j',vj (E) for the transitions (v = 0,j = 0) to (v' = 1,j' = 1,3), to the difference between the Liu-Siegbahn-Truhlar-Horowitz (LSTH) and double many body expansion (DMBE) ab initio potential energy surfaces (PES). This sensitivity analysis is performed to determine the origin of a large discrepancy between experimental cross sections with sharply peaked energy dependence and theoretical ones with smooth energy dependence. We find that the LSTH and DMBE PESs give virtually identical cross sections, which lends credence to the theoretical energy dependence

  17. WIMP-nucleus scattering in chiral effective theory

    Science.gov (United States)

    Cirigliano, Vincenzo; Graesser, Michael L.; Ovanesyan, Grigory

    2012-10-01

    We discuss long-distance QCD corrections to the WIMP-nucleon(s) interactions in the framework of chiral effective theory. For scalar-mediated WIMP-quark interactions, we calculate all the next-to-leading-order corrections to the WIMP-nucleus elastic cross-section, including two-nucleon amplitudes and recoil-energy dependent shifts to the single-nucleon scalar form factors. As a consequence, the scalar-mediated WIMP-nucleus cross-section cannot be parameterized in terms of just two quantities, namely the neutron and proton scalar form factors at zero momentum transfer, but additional parameters appear, depending on the short-distance WIMP-quark interaction. Moreover, multiplicative factorization of the cross-section into particle, nuclear and astro-particle parts is violated. In practice, while the new effects are of the natural size expected by chiral power counting, they become very important in those regions of parameter space where the leading order WIMP-nucleus amplitude is suppressed, including the so-called "isospin-violating dark matter" regime. In these regions of parameter space we find order-of-magnitude corrections to the total scattering rates and qualitative changes to the shape of recoil spectra.

  18. Imaging Internal Structure of Long Bones Using Wave Scattering Theory.

    Science.gov (United States)

    Zheng, Rui; Le, Lawrence H; Sacchi, Mauricio D; Lou, Edmond

    2015-11-01

    An ultrasonic wavefield imaging method is developed to reconstruct the internal geometric properties of long bones using zero-offset data acquired axially on the bone surface. The imaging algorithm based on Born scattering theory is implemented with the conjugate gradient iterative method to reconstruct an optimal image. In the case of a multilayered velocity model, ray tracing through a smooth medium is used to calculate the traveled distance and traveling time. The method has been applied to simulated and real data. The results indicate that the interfaces of the top cortex are accurately imaged and correspond favorably to the original model. The reconstructed bottom cortex below the marrow is less accurate mainly because of the low signal-to-noise ratio. The current imaging method has successfully recovered the top cortical layer, providing a potential tool to investigate the internal structures of long bone cortex for osteoporosis assessment. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  19. Multiple-scattering theory with a truncated basis set

    International Nuclear Information System (INIS)

    Zhang, X.; Butler, W.H.

    1992-01-01

    Multiple-scattering theory (MST) is an extremely efficient technique for calculating the electronic structure of an assembly of atoms. The wave function in MST is expanded in terms of spherical waves centered on each atom and indexed by their orbital and azimuthal quantum numbers, l and m. The secular equation which determines the characteristic energies can be truncated at a value of the orbital angular momentum l max , for which the higher angular momentum phase shifts, δ l (l>l max ), are sufficiently small. Generally, the wave-function coefficients which are calculated from the secular equation are also truncated at l max . Here we point out that this truncation of the wave function is not necessary and is in fact inconsistent with the truncation of the secular equation. A consistent procedure is described in which the states with higher orbital angular momenta are retained but with their phase shifts set to zero. We show that this treatment gives smooth, continuous, and correctly normalized wave functions and that the total charge density calculated from the corresponding Green function agrees with the Lloyd formula result. We also show that this augmented wave function can be written as a linear combination of Andersen's muffin-tin orbitals in the case of muffin-tin potentials, and can be used to generalize the muffin-tin orbital idea to full-cell potentals

  20. Study on Scattering Theory and Perturbative Quantum Chromodynamics: case of quark-antiquark Top pair production

    International Nuclear Information System (INIS)

    Randriamisy, H.D.E.

    2014-01-01

    Nowadays, the study of scattering and production of particles occupies an important place in subatomic physics research. The main ongoing experiments concern high-energy scattering in the colliders, the scattering theory based on quantum field theory is used for the theoretical study. The work presented in this thesis is located in this framework, in fact it concerns a study on the scattering theory and Perturbative Quantum Chromodynamics. We used the path integral formalism of quantum field theory and perturbation theory. As we considered the higher order corrections in perturbative developments, the renormalization theory with the method of dimensional regularization was also used. As an application, the case of the Top quark production was considered. As main results, we can quote the obtention of the cross section of quark-antiquark top pair production up to second order. [fr

  1. Light Scattering by Optically Soft Particles Theory and Applications

    CERN Document Server

    Sharma, Subodh K

    2006-01-01

    The present monograph deals with a particular class of approximation methods in the context of light scattering by small particles. This class of approximations has been termed as eikonal or soft particle approximations. The eikonal approximation was studied extensively in the potential scattering and then adopted in optical scattering problems. In this context, the eikonal and other soft particle approximations pertain to scatterers whose relative refractive index compared to surrounding medium is close to unity. The study of these approximations is very important because soft particles occur abundantly in nature. For example, the particles that occur in ocean optics, biomedical optics, atmospheric optics and in many industrial applications can be classified as soft particles. This book was written in recognition of the long-standing and current interest in the field of scattering approximations for soft particles. It should prove to be a useful addition for researchers in the field of light scattering.

  2. Some questions in non-relativistic quantum scattering theory

    International Nuclear Information System (INIS)

    Amrein, W.O.

    1974-01-01

    This paper is mainly concerned with two problems: Is the set of scattering states identical with the subspace of absolute continuity of the Hamiltonian, H; and In what sense do the scattering states become free as t→+-infinity. Can one define wave operators. Other mathmatical problems are: Asymptotic behavior of momentum observables in the Heisenberg picture, asymptotic completeness of the wave operators, and unitarity of the scattering operator. (G.T.H.)

  3. On low energy scattering theory with Coulomb potentials

    International Nuclear Information System (INIS)

    Gibson, A.G.

    1985-09-01

    The scattering length is a very useful characteristic of the scattering phenomena. But in the presence of a combined potential (e.g. in nuclear physics, when Coulomb, the polarization and the strong potentials are to be added), the analytical definition of the scattering length in not unambigous and strictly defined. This problem is discussed in detail, the various alternatives are examined and compared. A practical suggestion is given for the proper choice of the definition and for the calculation of scattering length. Numerical solutions of the Schroedinger equation are compared with the results of different definitions. Some questions of application to nuclear physics are discussed. (D.Gy.)

  4. Nucleon-nucleon scattering in the functional quantum theory of the non-linear spinor field

    International Nuclear Information System (INIS)

    Philipp, W.

    1975-01-01

    The nucleon-nucleon and nucleon-antinucleon scattering cross sections are calculated in the frame of the functional quantum field theory by means of two different approximation methods: averaging by integration of indefinite integrals and pulse averaging. The results for nucleon-nucleon scattering are compared with experimental data, with calculations using a modified functional scalar product and with results in first order perturbation theory (V-A-coupling). As for elastic nucleon-antinucleon scattering, the S matrix is investigated for crossing symmetry. Scattering of 'nucleons' of different mass results in different cross sections even in the lowest-order approximation. (BJ) [de

  5. Nonlinear theory of scattering by localized potentials in metals

    Energy Technology Data Exchange (ETDEWEB)

    Howard, I A [Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); March, N H [Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Oxford University, Oxford (United Kingdom); Echenique, P M [Donostia International Physics Center (DIPC), 20018 San Sebastian, Basque Country (Spain); Departamento de Fisica de Materiales and Centro Mixto CSIC-UPV/EHU, Facultad de Quimicas, UPV/EHU, Apartado 1072, 20080, San Sebastian (Spain)

    2003-11-14

    In early work, March and Murray gave a perturbation theory of the Dirac density matrix {gamma}(r, r') generated by a localized potential V(r) embedded in an initially uniform Fermi gas to all orders in V(r). For potentials sufficiently slowly varying in space, they summed the resulting series for r' = r to regain the Thomas-Fermi density {rho}(r) {proportional_to} [{mu} - V(r)]{sup 3/2}, with {mu} the chemical potential of the Fermi gas. For an admittedly simplistic repulsive central potential V(r) = vertical bar A vertical bar exp(-cr), it is first shown here that what amounts to the sum of the March-Murray series for the s-wave (only) contribution to the density, namely {rho}{sub s}(r, {mu}), can be obtained in closed form. Furthermore, for specific numerical values of A and c in this exponential potential, the long-range behaviour of {rho}{sub s}(r, {mu}) is related to the zero-potential form of March and Murray, which merely suffers a {mu}-dependent phase shift. This result is interpreted in relation to the recent high density screening theorem of Zaremba, Nagy and Echenique. A brief discussion of excess electrical resistivity caused by nonlinear scattering in a Fermi gas is added; this now involves an off-diagonal local density of states. Finally, for periodic lattices, contact is made with the quantum-mechanical defect centre models of Koster and Slater (1954 Phys. Rev. 96 1208) and of Beeby (1967 Proc. R. Soc. A 302 113), and also with the semiclassical approximation of Friedel (1954 Adv. Phys. 3 446). In appendices, solvable low-dimensional models are briefly summarized.

  6. Elastic and quasielastic scattering of light nuclei in the theory of multiple scattering

    International Nuclear Information System (INIS)

    Ismatov, E.I.; Kuterbekov, K.A.; Dzhuraev, Sh.Kh.; Ehsaniyazov, Sh.P.; Zholdasova, S.M.

    2005-01-01

    In the work the calculation method for diffraction scattering amplitudes of light nuclei by heavy nuclei is developed. For A 1 A 2 -scattering effects of pair-, three-fold, and four-fold screenings are estimated. It is shown, that in amplitude calculations for A 1 A 2 elastic scattering it is enough come to nothing more than accounting of total screenings in the first order. Analysis of nucleus-nucleus scattering sensitive characteristics to choice of single-particle nuclear densities parametrization is carried out

  7. Finite-measuring approximation of operators of scattering theory in representation of wave packets

    International Nuclear Information System (INIS)

    Kukulin, V.I.; Rubtsova, O.A.

    2004-01-01

    Several types of the packet quantization of the continuos spectrum in the scattering theory quantum problems are considered. Such a quantization leads to the convenient finite-measuring (i.e. matrix) approximation of the integral operators in the scattering theory and it makes it possible to reduce the solution of the singular integral equations, complying with the scattering theory, to the convenient purely algebraic equations on the analytical basis, whereby all the singularities are separated in the obvious form. The main attention is paid to the problems of the method practical realization [ru

  8. Quantum Theory of (H,H{Sub 2}) Scattering: Approximate Treatments of Reactive Scattering

    Science.gov (United States)

    Tang, K. T.; Karplus, M.

    1970-10-01

    A quantum mechanical study is made of reactive scattering in the (H, H{sub 2}) system. The problem is formulated in terms of a form of the distorted-wave Born approximation (DWBA) suitable for collisions in which all particles have finite mass. For certain incident energies, differential and total cross sections, as well as other attributes of the reactive collisions, (e.g. reaction configuration), are determined. Two limiting models in the DWBA formulation are compared; in one, the molecule is unperturbed by the incoming atom and in the other, the molecule adiabatically follows the incoming atom. For thermal incident energies and semi-empirical interaction potential employed, the adiabatic model seems to be more appropriate. Since the DWBA method is too complicated for a general study of the (H, H{sub 2}) reaction, a much simpler approximation method, the “linear model” is developed. This model is very different in concept from treatments in which the three atoms are constrained to move on a line throughout the collision. The present model includes the full three-dimensional aspect of the collision and it is only the evaluation of the transition matrix element itself that is simplified. It is found that the linear model, when appropriately normalized, gives results in good agreement with that of the DWBA method. By application of this model, the energy dependence, rotational state of dependence and other properties of the total and differential reactions cross sections are determined. These results of the quantum mechanical treatment are compared with the classical calculation for the same potential surface. The most important result is that, in agreement with the classical treatment, the differential cross sections are strongly backward peaked at low energies and shifts in the forward direction as the energy increases. Finally, the implications of the present calculations for a theory of chemical kinetics are discussed.

  9. Comparison of the GHSSmooth and the Rayleigh-Rice surface scatter theories

    Science.gov (United States)

    Harvey, James E.; Pfisterer, Richard N.

    2016-09-01

    The scalar-based GHSSmooth surface scatter theory results in an expression for the BRDF in terms of the surface PSD that is very similar to that provided by the rigorous Rayleigh-Rice (RR) vector perturbation theory. However it contains correction factors for two extreme situations not shared by the RR theory: (i) large incident or scattered angles that result in some portion of the scattered radiance distribution falling outside of the unit circle in direction cosine space, and (ii) the situation where the relevant rms surface roughness, σrel, is less than the total intrinsic rms roughness of the scattering surface. Also, the RR obliquity factor has been discovered to be an approximation of the more general GHSSmooth obliquity factor due to a little-known (or long-forgotten) implicit assumption in the RR theory that the surface autocovariance length is longer than the wavelength of the scattered radiation. This assumption allowed retaining only quadratic terms and lower in the series expansion for the cosine function, and results in reducing the validity of RR predictions for scattering angles greater than 60°. This inaccurate obliquity factor in the RR theory is also the cause of a complementary unrealistic "hook" at the high spatial frequency end of the predicted surface PSD when performing the inverse scattering problem. Furthermore, if we empirically substitute the polarization reflectance, Q, from the RR expression for the scalar reflectance, R, in the GHSSmooth expression, it inherits all of the polarization capabilities of the rigorous RR vector perturbation theory.

  10. A numerical assessment of rough surface scattering theories. I - Horizontal polarization. II - Vertical polarization

    Science.gov (United States)

    Rodriguez, Ernesto; Kim, Yunjin; Durden, Stephen L.

    1992-01-01

    A numerical evaluation is presented of the regime of validity for various rough surface scattering theories against numerical results obtained by employing the method of moments. The contribution of each theory is considered up to second order in the perturbation expansion for the surface current. Considering both vertical and horizontal polarizations, the unified perturbation method provides best results among all theories weighed.

  11. On the microscopic foundation of scattering theory; Zur mikroskopischen Begruendung der Streutheorie

    Energy Technology Data Exchange (ETDEWEB)

    Moser, T.

    2007-02-26

    The aim of the thesis is to give a contribution to the microscopic foundation of scattering theory, i. e. to show, how the asymptotic formalism of scattering theory with objects like the S-matrix as well the initial and final asymptotics {psi}{sub in} and {psi}{sub out} can be derived from a microscopic description of the basic system. First the final statistics from a N-particle system through farly distant surfaces is derived. Thereafter we confine us to the 1-particle scattering and apply the final statistics in order to derive the scattering cross section from a microscopical description of the scattering situation. The basing dynamics are Bohm's mechanics, a theory on the motion of point particles, which reproduces all results of nonrelativistic quantum mechanics.

  12. On the theory of ultracold neutrons scattering by Davydov solitons

    International Nuclear Information System (INIS)

    Brizhik, L.S.

    1984-01-01

    Elastic coherent scattering of ultracold neutrons by Davydov solitons in one-dimensional periodic molecular chains without account of thermal oscillations of chain atoms is studied. It is shown that the expression for the differential cross section of the elastic neutron scattering by Davydov soliton breaks down into two components. One of them corresponds to scattering by a resting soliton, the other is proportional to the soliton velocity and has a sharp maximum in the direction of mirror reflection of neutrons from the chain

  13. Variational divergence in wave scattering theory with Kirchhoffean trial functions

    Science.gov (United States)

    Bird, J. F.

    1986-01-01

    In a recent study of variational improvement of the Kirchhoff approximation for electromagnetic scattering by rough surfaces, a key ingredient in the variational principle was found to diverge for important configurations (e.g., backscatter) if the polarization had any vertical component. The cause and a cure of this divergence are discussed here. The divergence is demonstrated to occur for arbitrary perfectly conducting scatterers and its universal characterstics are determined, by means of a general divergence criterion that is derived. A variational cure for the divergence is prescribed, and it is tested successfully on a standard scattering model.

  14. Wave scattering theory and the absorption problem for a black hole

    International Nuclear Information System (INIS)

    Sanchez, N.

    1977-01-01

    The general problem of scattering and absorption of waves from a Schwarzschild black hole is investigated. A scattering absorption amplitude is introduced. The unitarity theorem for this problem is derived from the wave equation and its boundary conditions. The formulation of the problem, within the formal scattering theory approach, is also given. The existence of a singularity in space-time is related explicitly to the presence of a nonzero absorption cross section. Another derivation of the unitarity theorem for our problem is given by operator methods. The reciprocity relation is also proved; that is, for the scattering of waves the black hole is a reciprocal system. Finally, the elastic scattering problem is considered, and the elastic scattering amplitude is calculated for high frequencies and small scattering angles

  15. Singularity in the Laboratory Frame Angular Distribution Derived in Two-Body Scattering Theory

    Science.gov (United States)

    Dick, Frank; Norbury, John W.

    2009-01-01

    The laboratory (lab) frame angular distribution derived in two-body scattering theory exhibits a singularity at the maximum lab scattering angle. The singularity appears in the kinematic factor that transforms the centre of momentum (cm) angular distribution to the lab angular distribution. We show that it is caused in the transformation by the…

  16. The structure of double scattering in old-fashioned perturbation theory

    International Nuclear Information System (INIS)

    Caneschi, L.; Halliday, I.G.; Schwimmer, A.

    1978-01-01

    The authors study in old-fashioned perturbation theory the time orderings that are relevant for the exchange of two Regge poles (ladders). They determine how the phase of double scattering is established in the Mandelstam diagram. The analysis clarifies the intermediate state structure of the multiple-scattering expansion and the role of the unitarity constraints. (Auth.)

  17. Renormalized multiple-scattering theory of photoelectron diffraction

    International Nuclear Information System (INIS)

    Biagini, M.

    1993-01-01

    The current multiple-scattering cluster techniques for the calculation of x-ray photoelectron and Auger-electron diffraction patterns consume much computer time in the intermediate-energy range (200--1000 eV); in fact, because of the large value of the electron mean free path and of the large forward-scattering amplitude at such energies, the electron samples a relatively large portion of the crystal, so that the number of paths to be considered becomes dramatically high. An alternative method is developed in the present paper: instead of calculating the individual contribution from each single path, the scattering matrix of each plane parallel to the surface is calculated with a renormalization process that calculates every scattering event in the plane up to infinite order. Similarly the scattering between two planes is calculated up to infinite order, and the double-plane scattering matrix is introduced. The process may then be applied to the calculation of a larger set of atomic layers. The advantage of the method is that a relatively small number of internuclear vectors have been used to obtain convergence in the calculation

  18. Multislice theory of fast electron scattering incorporating atomic inner-shell ionization

    International Nuclear Information System (INIS)

    Dwyer, C.

    2005-01-01

    It is demonstrated how atomic inner-shell ionization can be incorporated into a multislice theory of fast electron scattering. The resulting theory therefore accounts for both inelastic scattering due to inner-shell ionization and dynamical elastic scattering. The theory uses a description of the ionization process based on the angular momentum representation for both the initial and final states of the atomic electron. For energy losses near threshold, only a small number of independent states of the ejected atomic electron need to be considered, reducing demands on computing time, and eliminating the need for tabulated inelastic scattering factors. The theory is used to investigate the influence of the collection aperture size on the spatial origin of the silicon K-shell EELS signal generated by a STEM probe. The validity of a so-called local approximation is also considered

  19. Modeling of high‐frequency seismic‐wave scattering and propagation using radiative transfer theory

    Science.gov (United States)

    Zeng, Yuehua

    2017-01-01

    This is a study of the nonisotropic scattering process based on radiative transfer theory and its application to the observation of the M 4.3 aftershock recording of the 2008 Wells earthquake sequence in Nevada. Given a wide range of recording distances from 29 to 320 km, the data provide a unique opportunity to discriminate scattering models based on their distance‐dependent behaviors. First, we develop a stable numerical procedure to simulate nonisotropic scattering waves based on the 3D nonisotropic scattering theory proposed by Sato (1995). By applying the simulation method to the inversion of M 4.3 Wells aftershock recordings, we find that a nonisotropic scattering model, dominated by forward scattering, provides the best fit to the observed high‐frequency direct S waves and S‐wave coda velocity envelopes. The scattering process is governed by a Gaussian autocorrelation function, suggesting a Gaussian random heterogeneous structure for the Nevada crust. The model successfully explains the common decay of seismic coda independent of source–station locations as a result of energy leaking from multiple strong forward scattering, instead of backscattering governed by the diffusion solution at large lapse times. The model also explains the pulse‐broadening effect in the high‐frequency direct and early arriving S waves, as other studies have found, and could be very important to applications of high‐frequency wave simulation in which scattering has a strong effect. We also find that regardless of its physical implications, the isotropic scattering model provides the same effective scattering coefficient and intrinsic attenuation estimates as the forward scattering model, suggesting that the isotropic scattering model is still a viable tool for the study of seismic scattering and intrinsic attenuation coefficients in the Earth.

  20. Dissipative Lax-Phillips scattering theory and the characteristic function of a contraction

    International Nuclear Information System (INIS)

    Neidhardt, H.

    1987-01-01

    The paper deals with the problem to characterize all those contractions admitting a dissipative Lax-Phillips scattering theory. The characterization is given in terms of the characteristic function of contraction and its unitary part. Moreover, the problem is considered and solved to describe all those completely contractions which can be orthogonally enlarged by a unitary operator such that the sum admits an orthogonal dissipative Lax-Phillips scattering theory

  1. Meson-baryon scattering in manifestly Lorentz invariant chiral perturbation theory

    International Nuclear Information System (INIS)

    Mai, Maxim; Bruns, Peter C.; Kubis, Bastian; Meissner, Ulf-G.

    2011-01-01

    We analyze meson-baryon scattering lengths in the framework of covariant baryon chiral perturbation theory at leading one-loop order. We compute the complete set of matching relations between the dimension-two low-energy constants in the two- and three-flavor formulations of the theory. We derive new two-flavor low-energy theorems for pion-hyperon scattering that can be tested in lattice simulations.

  2. Aspects of meson-baryon scattering in three- and two-flavor chiral perturbation theory

    International Nuclear Information System (INIS)

    Mai, Maxim; Bruns, Peter C.; Kubis, Bastian; Meissner, Ulf-G.

    2009-01-01

    We analyze meson-baryon scattering lengths in the framework of covariant baryon chiral perturbation theory at leading one-loop order. We compute the complete set of matching relations between the dimension-two low-energy constants in the two- and three-flavor formulations of the theory. We derive new two-flavor low-energy theorems for pion-hyperon scattering that can be tested in lattice simulations.

  3. The Aharonov–Bohm effect in scattering theory

    International Nuclear Information System (INIS)

    Sitenko, Yu.A.; Vlasii, N.D.

    2013-01-01

    The Aharonov–Bohm effect is considered as a scattering event with nonrelativistic charged particles of the wavelength which is less than the transverse size of an impenetrable magnetic vortex. The quasiclassical WKB method is shown to be efficient in solving this scattering problem. We find that the scattering cross section consists of two terms, one describing the classical phenomenon of elastic reflection and another one describing the quantum phenomenon of diffraction; the Aharonov–Bohm effect is manifested as a fringe shift in the diffraction pattern. Both the classical and the quantum phenomena are independent of the choice of a boundary condition at the vortex edge, providing that probability is conserved. We show that a propagation of charged particles can be controlled by altering the flux of a magnetic vortex placed on their way. -- Highlights: •Aharonov–Bohm effect as a scattering event. •Impenetrable magnetic vortex of nonzero transverse size. •Scattering cross section is independent of a self-adjoint extension employed. •Classical phenomenon of elastic reflection and quantum phenomenon of diffraction. •Aharonov–Bohm effect as a fringe shift in the diffraction pattern

  4. A dynamic elastic and inelastic scattering theory of high-energy electrons

    International Nuclear Information System (INIS)

    Wang Zhonglin

    1990-01-01

    A review is given on the applications of elastic multislice theory for simulating the images and diffractions of reflection electron microscopy. The limitation of this theory is illustrated according to some experimental observations. A generalized elastic and inelastic multislice theory is then introduced from quantum mechanics; its applications for approaching inelastic plasmon excitation and phonon excitation (or thermal diffuse scattering) are discussed. The energy-filtered inelastic high resolution images can be simulated based on this theory

  5. Exact multiple scattering theory of two-nucleus collisions including the Pauli principle

    International Nuclear Information System (INIS)

    Gurvitz, S.A.

    1981-01-01

    Exact equations for two-nucleus scattering are derived in which the effects of the Pauli principle are fully included. Our method exploits a modified equation for the scattering of two identical nucleons, which is obtained at the beginning. Considering proton-nucleus scattering we found that the resulting amplitude has two components, one resembling a multiple scattering series for distinguishable particles, and the other a distorted (A-1) nucleon cluster exchange. For elastic pA scattering the multiple scattering amplitude is found in the form of an optical potential expansion. We show that the Kerman-McManus-Thaler theory of the optical potential could be easily modified to include the effects of antisymmetrization of the projectile with the target nucleons. Nucleus-nucleus scattering is studied first for distinguishable target and beam nucleus. Afterwards the Pauli principle is included, where only the case of deuteron-nucleus scattering is discussed in detail. The resulting amplitude has four components. Two of them correspond to modified multiple scattering expansions and the others are distorted (A-1)- and (A-2)- nucleon cluster exchange. The result for d-A scattering is extended to the general case of nucleus-nucleus scattering. The equations are simple to use and as such constitute an improvement over existing schemes

  6. Theory of Raman scattering in coupled electron-phonon systems

    Science.gov (United States)

    Itai, K.

    1992-01-01

    The Raman spectrum is calculated for a coupled conduction-electron-phonon system in the zero-momentum-transfer limit. The Raman scattering is due to electron-hole excitations and phonons as well. The phonons of those branches that contribute to the electron self-energy and the correction of the electron-phonon vertex are assumed to have flat energy dispersion (the Einstein phonons). The effect of electron-impurity scattering is also incorporated. Both the electron-phonon interaction and the electron-impurity interaction cause the fluctuation of the electron distribution between different parts of the Fermi surface, which results in overdamped zero-sound modes of various symmetries. The scattering cross section is obtained by solving the Bethe-Salpeter equation. The spectrum shows a lower threshold at the smallest Einstein phonon energy when only the electron-phonon interaction is taken into consideration. When impurities are also taken into consideration, the threshold disappears.

  7. Siegert pseudostate formulation of scattering theory: Nonzero angular momenta in the one-channel case

    International Nuclear Information System (INIS)

    Batishchev, Pavel A.; Tolstikhin, Oleg I.

    2007-01-01

    The Siegert pseudostate (SPS) formulation of scattering theory, originally developed by Tolstikhin, Ostrovsky, and Nakamura [Phys. Rev. A, 58, 2077 (1998)] for s-wave scattering in a spherically symmetric finite-range potential, is generalized to nonzero angular momenta. The orthogonality and completeness properties of SPSs are established and SPS expansions for the outgoing-wave Green's function, physical states, and scattering matrix are obtained. The present formulation completes the theory of SPSs in the one-channel case, making its application to three-dimensional problems possible. The results are illustrated by calculations for several model potentials

  8. Application of Mie theory to assess structure of spheroidal scattering in backscattering geometries.

    Science.gov (United States)

    Chalut, Kevin J; Giacomelli, Michael G; Wax, Adam

    2008-08-01

    Inverse light scattering analysis seeks to associate measured scattering properties with the most probable theoretical scattering distribution. Although Mie theory is a spherical scattering model, it has been used successfully for discerning the geometry of spheroidal scatterers. The goal of this study was an in-depth evaluation of the consequences of analyzing the structure of spheroidal geometries, which are relevant to cell and tissue studies in biology, by employing Mie-theory-based inverse light scattering analysis. As a basis for this study, the scattering from spheroidal geometries was modeled using T-matrix theory and used as test data. In a previous study, we used this technique to investigate the case of spheroidal scatterers aligned with the optical axis. In the present study, we look at a broader scope which includes the effects of aspect ratio, orientation, refractive index, and incident light polarization. Over this wide range of parameters, our results indicate that this method provides a good estimate of spheroidal structure.

  9. Sigma set scattering equations in nuclear reaction theory

    International Nuclear Information System (INIS)

    Kowalski, K.L.; Picklesimer, A.

    1982-01-01

    The practical applications of partially summed versions of the Rosenberg equations involving only special subsets (sigma sets) of the physical amplitudes are investigated with special attention to the Pauli principle. The requisite properties of the transformations from the pair labels to the set of partitions labeling the sigma set of asymptotic channels are established. New, well-defined, scattering integral equations for the antisymmetrized transition operators are found which possess much less coupling among the physically distinct channels than hitherto expected for equations with kernels of equal complexity. In several cases of physical interest in nuclear physics, a single connected-kernel equation is obtained for the relevant antisymmetrized elastic scattering amplitude

  10. Scattering by ensembles of small particles experiment, theory and application

    Science.gov (United States)

    Gustafson, B. A. S.

    1980-01-01

    A hypothetical self consistent picture of evolution of prestellar intertellar dust through a comet phase leads to predictions about the composition of the circum-solar dust cloud. Scattering properties of thus resulting conglomerates with a bird's-nest type of structure are investigated using a micro-wave analogue technique. Approximate theoretical methods of general interest are developed which compared favorably with the experimental results. The principal features of scattering of visible radiation by zodiacal light particles are reasonably reproduced. A component which is suggestive of (ALPHA)-meteoroids is also predicted.

  11. Hybrid Theory of Electron-Hydrogenic Systems Elastic Scattering

    Science.gov (United States)

    Bhatia, A. K.

    2007-01-01

    Accurate electron-hydrogen and electron-hydrogenic cross sections are required to interpret fusion experiments, laboratory plasma physics and properties of the solar and astrophysical plasmas. We have developed a method in which the short-range and long-range correlations can be included at the same time in the scattering equations. The phase shifts have rigorous lower bounds and the scattering lengths have rigorous upper bounds. The phase shifts in the resonance region can be used to calculate very accurately the resonance parameters.

  12. Scattering by ensembles of small particles experiment, theory and application

    International Nuclear Information System (INIS)

    Gustafson, B.Aa.S.

    1980-01-01

    A hypothetical selfconsistent picture of evolution of prestellar interstellar dust through a comet phase leades to predictions about the composition of the circum-solar dust cloud. Scattering properties of thus resulting conglomerates with a bird's-nest type of structure are investigated using a micro-wave analogue technique. Approximate theoretical methods of general interest are developed which compared favorably with the experimental results. The principal features of scattering of visible radiation by zodiacal light particles are reasonably reproduced. A component which is suggestive of β-meteoroids is also predicted. (author)

  13. Unified quantum theory of elastic and inelastic atomic scattering from a physisorbed monolayer solid

    DEFF Research Database (Denmark)

    Bruch, L. W.; Hansen, Flemming Yssing; Dammann, Bernd

    2017-01-01

    A unified quantum theory of the elastic and inelastic scattering of low energy He atoms by a physisorbed monolayer solid in the one-phonon approximation is given. It uses a time-dependent wave packet with phonon creation and annihilation components and has a self-consistent feedback between...... the wave functions for elastic and inelastic scattered atoms. An attenuation of diffraction scattering by inelastic processes thus is inherent in the theory. The atomic motion and monolayer vibrations in the harmonic approximation are treated quantum mechanically and unitarity is preserved. The evaluation...... of specific one-phonon events includes contributions from diffuse inelastic scattering in other phonon modes. Effects of thermally excited phonons are included using a mean field approximation. The theory is applied to an incommensurate Xe/Pt(111) monolayer (incident energy Ei = 4-16 meV), a commensurate Xe...

  14. Multiple scattering theory for non-local and multichannel potentials

    Czech Academy of Sciences Publication Activity Database

    Natoli, C.R.; Krüger, P.; Hatada, K.; Hayakawa, K.; Sébilleau, D.; Šipr, Ondřej

    2012-01-01

    Roč. 24, č. 36 (2012), s. 1-20 ISSN 0953-8984 Institutional research plan: CEZ:AV0Z10100521 Keywords : multichannel scattering * correlation s * density matrix Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.355, year: 2012

  15. Upper and lower bounds in nonrelativistic scattering theory

    International Nuclear Information System (INIS)

    Darewych, J.W.; Pooran, R.

    1980-01-01

    We consider the problem of determining rigorous upper and lower bounds to the difference between the exact and approximate scattering phase shift, for the case of central potential scattering. The present work is based on the Kato identities and the phase-amplitude formalism of potential scattering developed by Calogero. For nonstationary approximations, a new first-order (in small quantities) bound is established which is particularly useful for partial waves other than s waves. Similar, but second-order, bounds are established for approximations which are stationary. Some previous results, based on the use of the Lippman--Schwinger equation are generalized, and some new bounds are established. These are illustrated, and compared to previous results, by a simple example. We discuss the advantages and disadvantages of the present results in comparison to those derived previously. Finally, we present the generalization of some of the present formalism to the case of many-channel scattering involving many-particle systems, and discuss some of the difficulties of their practical implementation

  16. Transition scattering in electrodynamics and general relativity theory

    Energy Technology Data Exchange (ETDEWEB)

    Ginzburg, V L; Tsytovich, V N [AN SSSR, Moscow. Fizicheskij Inst.

    1975-01-01

    The question of transition scattering is discussed, i.e., the production of an electromagnetic wave when a permittivity wave or a gravitational wave fall upon the region with a static electromagnetic field (the field of charge, of an electric or magnetic dipole, and so on).

  17. Quasielastic neutron scattering in biology: Theory and applications.

    Science.gov (United States)

    Vural, Derya; Hu, Xiaohu; Lindner, Benjamin; Jain, Nitin; Miao, Yinglong; Cheng, Xiaolin; Liu, Zhuo; Hong, Liang; Smith, Jeremy C

    2017-01-01

    Neutrons scatter quasielastically from stochastic, diffusive processes, such as overdamped vibrations, localized diffusion and transitions between energy minima. In biological systems, such as proteins and membranes, these relaxation processes are of considerable physical interest. We review here recent methodological advances and applications of quasielastic neutron scattering (QENS) in biology, concentrating on the role of molecular dynamics simulation in generating data with which neutron profiles can be unambiguously interpreted. We examine the use of massively-parallel computers in calculating scattering functions, and the application of Markov state modeling. The decomposition of MD-derived neutron dynamic susceptibilities is described, and the use of this in combination with NMR spectroscopy. We discuss dynamics at very long times, including approximations to the infinite time mean-square displacement and nonequilibrium aspects of single-protein dynamics. Finally, we examine how neutron scattering and MD can be combined to provide information on lipid nanodomains. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Density of states calculations and multiple-scattering theory for photons

    International Nuclear Information System (INIS)

    Moroz, A.

    1994-05-01

    The density of states for a finite or an infinite cluster of scatterers in the case of both, electrons and photons, can be represented in a general form as the sum over all Krein-Friedel contributions of individual scatterers and a contribution due to the presence of multiple scatterers. The latter is given by the sum over all periodic orbits between different scatterers. General three dimensional multiple-scattering theory for electromagnetic waves in the presence of scatterers of arbitrary shape is presented. Vector structure constants are calculated and general rules for obtaining them from known scalar structure constants are given. The KKR equations for photons are explicitly written down. (author). 22 refs., 2 figs

  19. Apocrypha of standard scattering theory (SST) and quantum mechanics of the de Broglie wave packet

    International Nuclear Information System (INIS)

    Ignatovich, V.K.

    2001-01-01

    It is shown that the Standard Scattering Theory (SST) does not correspond to the principles of Standard Quantum Mechanics (SQM). A more consistent theory is formulated. Some new results are obtained. Reflection and transmission of the de Broglie wave packet by thin layers of matter is considered

  20. Role of potential scattering in the Shiba-Rusinov theory of the magnetic impurities in superconductors

    International Nuclear Information System (INIS)

    Okabe, Y.; Nagi, A.D.S.

    1983-01-01

    The Shiba-Rusinov theory of magnetic impurities in a superconductor is investigated, with special attention paid to the role of the potential scattering term in the electron-impurity interaction. The meaning of Anderson's theorem in the Shiba-Rusinov theory is discussed

  1. Chemical shift of neutron resonances and some ideas on neutron resonances and scattering theory

    International Nuclear Information System (INIS)

    Ignatovich, V.K.; )

    2002-01-01

    The dependence of positions of neutron resonances in nuclei in condensed matter on chemical environment is considered. A possibility of theoretical description of neutron resonances, different from R-matrix theory is investigated. Some contradictions of standard scattering theory are discussed and a new approach without these contradictions is formulated [ru

  2. Computing the scattering properties of participating media using Lorenz-Mie theory

    DEFF Research Database (Denmark)

    2007-01-01

    This source code implements Lorenz-Mie theory using the formulas presented in the SIGGRAPH 2007 paper: J. R. Frisvad, N. J. Christensen, and H. W. Jensen: "Computing the Scattering Properties of Participating Media Using Lorenz-Mie Theory". Copyright (c) ACM 2007. This is the author's version...

  3. Pitch angle scattering of relativistic electrons from stationary magnetic waves: Continuous Markov process and quasilinear theory

    International Nuclear Information System (INIS)

    Lemons, Don S.

    2012-01-01

    We develop a Markov process theory of charged particle scattering from stationary, transverse, magnetic waves. We examine approximations that lead to quasilinear theory, in particular the resonant diffusion approximation. We find that, when appropriate, the resonant diffusion approximation simplifies the result of the weak turbulence approximation without significant further restricting the regime of applicability. We also explore a theory generated by expanding drift and diffusion rates in terms of a presumed small correlation time. This small correlation time expansion leads to results valid for relatively small pitch angle and large wave energy density - a regime that may govern pitch angle scattering of high-energy electrons into the geomagnetic loss cone.

  4. A theory of low energy π-3He elastic scattering

    International Nuclear Information System (INIS)

    Geffen, F.M.M. van.

    1991-01-01

    The main aim of this work is the construction of a first-order optical potential for the scattering of pions by 3 He at low energy with as few approximations as possible. In particular the Fermi motion is treated extremely carefully by using microscopic 3 He wave functions and by performing the complete Fermi-integral. Differential cross-sections and analyzing powers have been calculated. In a detailed comparison between the first-order optical with one which results from using the semi-factored approximation, it became clear that the latter has the following shortcomings: 1. the dependence of the subenergy on the pion-nucleus scattering angle, and 2. the independence of this energy on the relative motion of the spectator nucleons. (author). 101 refs.; 15 figs.; 3 tabs

  5. Second order classical perturbation theory for atom surface scattering: Analysis of asymmetry in the angular distribution

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yun, E-mail: zhou.yun.x@gmail.com; Pollak, Eli, E-mail: eli.pollak@weizmann.ac.il [Chemical Physics Department, Weizmann Institute of Science, 76100 Rehovot (Israel); Miret-Artés, Salvador, E-mail: s.miret@iff.csic.es [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid (Spain)

    2014-01-14

    A second order classical perturbation theory is developed and applied to elastic atom corrugated surface scattering. The resulting theory accounts for experimentally observed asymmetry in the final angular distributions. These include qualitative features, such as reduction of the asymmetry in the intensity of the rainbow peaks with increased incidence energy as well as the asymmetry in the location of the rainbow peaks with respect to the specular scattering angle. The theory is especially applicable to “soft” corrugated potentials. Expressions for the angular distribution are derived for the exponential repulsive and Morse potential models. The theory is implemented numerically to a simplified model of the scattering of an Ar atom from a LiF(100) surface.

  6. An introduction to some mathematical aspects of scattering theory in models of quantum fields

    International Nuclear Information System (INIS)

    Albeverio, S.

    1974-01-01

    An elementary introduction is given to some results, problems and methods of the recent study of scattering in models developed in connection with constructive quantum field theory. A deliberate effort has been made to be understandable also for mathematicians having some notions of non-relativistic quantum mechanics but no specific previous knowledge of quantum field theory. The Fock space, the free fields and the free Hamiltonian are introduced and the singular perturbation problem posed by local relativistic interaction is discussed. Scattering theory is first discussed for the simplified cases of space cut-off interactions and of translation invariant interactions with persistent vacuum. The Wightman-Haag-Ruelle axiomatic framework is given as a guide for the construction of models with local, relativistic interactions and of the corresponding scattering theory. The verification of the axioms is carried through in a class of models with local relativistic interactions in two-dimensional space-time. (Auth.)

  7. Second order classical perturbation theory for atom surface scattering: analysis of asymmetry in the angular distribution.

    Science.gov (United States)

    Zhou, Yun; Pollak, Eli; Miret-Artés, Salvador

    2014-01-14

    A second order classical perturbation theory is developed and applied to elastic atom corrugated surface scattering. The resulting theory accounts for experimentally observed asymmetry in the final angular distributions. These include qualitative features, such as reduction of the asymmetry in the intensity of the rainbow peaks with increased incidence energy as well as the asymmetry in the location of the rainbow peaks with respect to the specular scattering angle. The theory is especially applicable to "soft" corrugated potentials. Expressions for the angular distribution are derived for the exponential repulsive and Morse potential models. The theory is implemented numerically to a simplified model of the scattering of an Ar atom from a LiF(100) surface.

  8. Relativistic scattering theory of two charged spinless particles

    International Nuclear Information System (INIS)

    Alt, E.O.; Hannemann

    1985-01-01

    In the framework of a relativistic quantum mechanics, the authors calculate for two spinless particles with Coulomb interaction exactly the partial-wave S-matrix and the full scattering amplitude. From the former they can extract the exact binding energies which, when expanded in powers of α, reproduce in the hydrogenic case the fourth-order result of a previous study. In the weak field limit, the latter coincides with the amplitude derived by another study from QED in eikonal approximation

  9. Multiple and dependent scattering by densely packed discrete spheres: Comparison of radiative transfer and Maxwell theory

    International Nuclear Information System (INIS)

    Ma, L.X.; Tan, J.Y.; Zhao, J.M.; Wang, F.Q.; Wang, C.A.

    2017-01-01

    The radiative transfer equation (RTE) has been widely used to deal with multiple scattering of light by sparsely and randomly distributed discrete particles. However, for densely packed particles, the RTE becomes questionable due to strong dependent scattering effects. This paper examines the accuracy of RTE by comparing with the exact electromagnetic theory. For an imaginary spherical volume filled with randomly distributed, densely packed spheres, the RTE is solved by the Monte Carlo method combined with the Percus–Yevick hard model to consider the dependent scattering effect, while the electromagnetic calculation is based on the multi-sphere superposition T-matrix method. The Mueller matrix elements of the system with different size parameters and volume fractions of spheres are obtained using both methods. The results verify that the RTE fails to deal with the systems with a high-volume fraction due to the dependent scattering effects. Apart from the effects of forward interference scattering and coherent backscattering, the Percus–Yevick hard sphere model shows good accuracy in accounting for the far-field interference effects for medium or smaller size parameters (up to 6.964 in this study). For densely packed discrete spheres with large size parameters (equals 13.928 in this study), the improvement of dependent scattering correction tends to deteriorate. The observations indicate that caution must be taken when using RTE in dealing with the radiative transfer in dense discrete random media even though the dependent scattering correction is applied. - Highlights: • The Muller matrix of randomly distributed, densely packed spheres are investigated. • The effects of multiple scattering and dependent scattering are analyzed. • The accuracy of radiative transfer theory for densely packed spheres is discussed. • Dependent scattering correction takes effect at medium size parameter or smaller. • Performance of dependent scattering correction

  10. The theory of neutron scattering from mixed harmonic solids

    International Nuclear Information System (INIS)

    Warner, M.; Lovesey, S.W.; Smith, J.

    1982-12-01

    The dynamic structure factor for incoherent neutron scattering from light mass particles substituted in a solid is calculated for two model systems. One model is appropriate for a dilute concentration of light particles in a matrix, and the second is a binary system with various masses and force constants. The exact calculations are used to assess the value of approximation schemes for the dynamic structure factor which exploit the separation of time scales in the motions of the light and the heavier lattice particles. (author)

  11. Contributions to the theory of electron spectroscopy. Applications of the relativistic multiple-scattering theory

    International Nuclear Information System (INIS)

    Henk, J.

    2004-01-01

    Electron spectroscopy provides access to fundamental properties of solids, such as the geometric, electronic, and the magnetic structure. The latter are necessary for the understanding of a variety of basic but nevertheless important effects. The present work outlines recently developed theoretical approaches to electron spectroscopies. Most of the collected results rely on first-principles calculations, as formulated in multiple-scattering theory, and are contrasted with experimental findings. One topic involves spin- and angle-resolved photoelectron spectroscopy which is addressed for magnetic surfaces and ultrathin films. Exemplary results comprise magnetic dichroism in both valence-band and core-level photoemission as well as the temperature dependence of magnetic properties of ultrathin films. Another topic is spin-dependent ballistic transport through planar tunnel junctions, focusing here on the zero-bias anomaly. In most of the cases, spin-orbit coupling (SOC) is an essential ingredient and, hence, favors a relativistic description. Prominent effects of SOC are illustrated by means of the electronic structure of rare gases adsorbed on a substrate and by the splitting of surface states on Au(111). Concerning magnetism, the magnetic anisotropy of Ni films on Cu(001) is discussed, focusing in particular on the spin reorientation transition induced by lattice distortions in ultrathin films. (orig.)

  12. Concise formulation of the three-dimensional multiple-scattering theory.

    Science.gov (United States)

    Oyhenart, Laurent; Vignéras, Valérie

    2012-08-01

    The scattering of an electromagnetic wave by a set of dielectric and metallic spheres is a well-known physical problem. We show a mathematical simplification of the multiple-scattering theory. In this paper, we will establish the multiple-scattering equation in two different ways. Through the study of the equation form, we can choose the simplest spherical wave expansion for calculations. Then, we propose concise expressions of the Mie scattering coefficients and translation coefficients for both polarizations. With these simplified expressions, large spheres are studied without loss of accuracy. Far-field expressions, cross-sections, and the scattering matrix are also simplified. Thus, we obtain formulas that can be easily understood from a physical point of view.

  13. Theory and approach of information retrievals from electromagnetic scattering and remote sensing

    CERN Document Server

    Jin, Ya-Qiu

    2006-01-01

    Covers several hot topics in current research of electromagnetic scattering, and radiative transfer in complex and random media, polarimetric scattering and SAR imagery technology, data validation and information retrieval from space-borne remote sensing, computational electromagnetics, etc.Including both forward modelling and inverse problems, analytic theory and numerical approachesAn overall summary of the author's works during most recent yearsAlso presents some insight for future research topics.

  14. Absorption line profiles in a moving atmosphere - A single scattering linear perturbation theory

    Science.gov (United States)

    Hays, P. B.; Abreu, V. J.

    1989-01-01

    An integral equation is derived which linearly relates Doppler perturbations in the spectrum of atmospheric absorption features to the wind system which creates them. The perturbation theory is developed using a single scattering model, which is validated against a multiple scattering calculation. The nature and basic properties of the kernels in the integral equation are examined. It is concluded that the kernels are well behaved and that wind velocity profiles can be recovered using standard inversion techniques.

  15. Analysis of critical neutron- scattering data from iron and dynamical scaling theory

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1970-01-01

    Experimental three- axis spectrometer data of critical neutron- scattering data from Fe are reanalyzed and compared with the recent theoretical prediction by P. Resibois and C. Piette. The reason why the spin- diffusion parameter did not obey the prediction of dynamical scaling theory is indicated....... Double- axis spectrometer data have previously been interpreted in terms of a non- Lorentzian susceptibility. It is shown that with proper corrections for the inelasticity of the scattering the data are consistent with a Lorentzian form of susceptibility....

  16. Review on Raman scattering in semiconductor nanowires: I. theory

    Science.gov (United States)

    Cantarero, Andrés

    2013-01-01

    Raman scattering is a nondestructive technique that is able to supply information on the crystal and electronic structures, strain, temperature, phonon-phonon, and electron-phonon interaction. In the particular case of semiconductor nanowires, Raman scattering provides additional information related to surfaces. Although correct, a theoretical approach to analyze the surface optical modes loses critical information when retardation is neglected. A comparison of the retarded and unretarded approaches clarifies the role of the electric and magnetic polarization in the Raman selection rules. Since most III-V compounds growing in the zincblende phase change their crystal structure to wurtzite when growing as nanowires, the polariton description will be particularized for these two important crystal phases. Confined phonons exist in cylindrical nanowires and couple with longitudinal and transverse modes due to the presence of the nanowire's surface. This coupling vanishes in the case of rotational symmetry. The boundary conditions of the electromagnetic fields on small-size nanowires (antenna effect) have a dramatic effect on the polarization properties of a Raman spectrum.

  17. Optical model theory of elastic electron- and positron-atom scattering at intermediate energies

    International Nuclear Information System (INIS)

    Joachain, C.J.

    1977-01-01

    It is stated that the basic idea of the optical model theory is to enable analysis of the elastic scattering of a particle from a complex target by replacing the complicated interactions between the beam and the target by an optical potential, or pseudopotential, in which the incident particle moves. Once the optical potential is determined the original many-body elastic scattering problem reduces to a one-body situation. The resulting optical potential is, however, a very complicated operator, and the formal expressions obtained from first principles for the optical potential can only be evaluated approximately in a few simple cases, such as high energy elastic hadron-nucleus scattering, for the the optical potential can be expressed in terms of two-body hadron-nucleon amplitudes, and the non-relativistic elastic scattering of fast charged particles by atoms. The elastic scattering of an electron or positron by a neutral atom at intermediate energies is here considered. Exchange effects between the projectile and the atomic electrons are considered; also absorption and polarisation effects. Applications of the full-wave optical model have so far only been made to the elastic scattering of fast electrons and positrons by atomic H, He, Ne, and Ar. Agreements of the optical model results with absolute measurements of differential cross sections for electron scattering are very good, an agreement that improves as the energy increases, but deteriorates quickly as the incident energy becomes lower than 50 eV for atomic H or 100 eV for He. For more complex atoms the optical model calculations also appear very encouraging. With regard to positron-atom elastic scattering the optical model results for positron-He scattering differ markedly at small angles from the corresponding electron-He values. It would be interesting to have experimental angular distributions of positron-atom elastic scattering in order to check predictions of the optical model theory. (U.K.)

  18. Eikonal propagators and high-energy parton-parton scattering in gauge theories

    International Nuclear Information System (INIS)

    Meggiolaro, Enrico

    2001-01-01

    In this paper we consider 'soft' high-energy parton-parton scattering processes in gauge theories, i.e., elastic scattering processes involving partons at very high squared energies s in the center of mass and small squared transferred momentum t (s→∞, t 2 ). By a direct resummation of perturbation theory in the limit we are considering, we derive expressions for the truncated-connected quark (antiquark) propagator in an external gluon field, as well as for the residue at the pole of the full unrenormalized propagator, both for scalar and fermion gauge theories. These are the basic ingredients to derive high-energy parton-parton scattering amplitudes, using the LSZ reduction formulae and a functional integral approach. The above procedure is also extended to include the case in which at least one of the partons is a gluon. The meaning and the validity of the results are discussed

  19. Deep inelastic lepton-nucleus scattering from the light-cone quantum field theory

    International Nuclear Information System (INIS)

    Boqiang Ma; Ji Sun

    1990-01-01

    We show that for deep inelastic lepton-nucleus scattering, the conditions which validate the impulse approximation are hardly satisfied when using ordinary instant form dynamics in the rest frame of the nucleus, whereas they are well satisfied when using instant form dynamics in the infinite-momentum frame, or using light-front form dynamics in an ordinary frame. Therefore a reliable theoretical treatment of deep inelastic lepton-nucleus scattering should be performed in the time-ordered perturbation theory in the infinite-momentum frame, or its equivalent, the light-cone perturbation theory in an ordinary frame. To this end, we extend the light-cone quantum field theory to the baryon-meson field to establish a relativistic composite model of nuclei. We then apply the impulse approximation to deep inelastic lepton-nucleus scattering in this model.(author)

  20. Lax-Phillips scattering theory with two Hilbert spaces V(x)=0((1)/|x|β), β>1

    International Nuclear Information System (INIS)

    Brambila Paz, F.

    1988-10-01

    A scattering theory for the wave equation with a perturbation with compact support was developed by Lax and Phillips in 1967. Using Enss approach Phillips developed a Lax-Phillips scattering theory for perturbations V such that V(x)=0((1)/|x| β ), β>2. In this paper we develop a scattering theory for more general perturbations V, i.e. for V(x)=0((1)/|x| β ), β>1. (author). 8 refs

  1. Electron-deuteron scattering in a relativistic theory of hadrons

    International Nuclear Information System (INIS)

    Phillips, D.

    1998-11-01

    The author reviews a three-dimensional formalism that provides a systematic way to include relativistic effects including relativistic kinematics, the effects of negative-energy states, and the boosts of the two-body system in calculations of two-body bound-states. He then explains how to construct a conserved current within this relativistic three-dimensional approach. This general theoretical framework is specifically applied to electron-deuteron scattering both in impulse approximation and when the ρπγ meson-exchange current is included. The experimentally-measured quantities A, B, and T 20 are calculated over the kinematic range that is probed in Jefferson Lab experiments. The role of both negative-energy states and meson retardation appears to be small in the region of interest

  2. Quantum theory of scattering of channeled electrons and positrons in a crystal

    International Nuclear Information System (INIS)

    Bazylev, V.A.; Goloviznin, V.V.

    1982-01-01

    The quantum theory of elastic scattering of electrons and positrons on plane or axial channeling in a thin crystal is developed. The role of coherent (without phonon excitation) and incoherent scattering by atoms of the plane (chain) is investigated. It is shown that incoherent scattering which leads to dechanneling cannot be reduced to scattering by an isolated atom. Allowance for ordered arrangement of the atoms in the plane (chain) of the crystal leads to suppression of the motion levels. It is also shown that on movement of a particle along the plane in directions strongly differing from those of the principal axes, the scattering is incoherent and is determined by thermal vibrations of the nuclei. As the direction of the particle momentum approaches those of the principal axes, the role of coherent scattering without recoil by the crystal lattice nuclei increases and may become dicisive. The probability of large- angle scattering increases relatively in this case. Under certain conditions coherent scattering may become resonant [ru

  3. A manifestly reciprocal theory of scattering in the presence of elastic media

    International Nuclear Information System (INIS)

    Wurmser, D.

    1996-01-01

    The role of elastic waves in the scattering problem is examined in the context of modern field theory. This effort builds upon a previously published, and since successfully applied formalism for solving the acoustic and electromagnetic scattering problems. It specifically addresses the scattering of acoustic waves from a fluid-solid interface, as well as the scattering of elastodynamic waves from surfaces satisfying the zero-displacement, stress-free, and solid endash solid boundary conditions. Expressions for the change in the scattering amplitude due to a perturbation in the scattering surface are derived directly from the requirement of time reversal symmetry (also known as reciprocity). These results constitute formal statements of the composite (or two-scale) model. In a typical application, the perturbation usually corresponds to Bragg scattering and is treated statistically, while the reference surface provides tilt, shadowing, and multiple scattering, and is usually treated deterministically. Used in this way, the new formalism effectively allows existing numerical and operator expansion methods to be used to calculate the scattering from rougher and/or higher dimensional surfaces than would otherwise be possible. An alternate application of the formalism is illustrated using the fluid-solid boundary as an example. A new manifestly reciprocal expression for the scattering amplitude is presented, as are the small slope and open-quote open-quote local close-quote close-quote two-scale approximations for this problem. (By local, it is meant that only local phenomena such as the tilt of the reference surface are automatically included. However, since the result is manifestly reciprocal, it is fairly straightforward to incorporate a non-local effect such as shadowing.) During the course of the discussion, the classical scattering problem is reexamined from an entirely new perspective

  4. Generalized theory of resonance scattering (GTRS) using the translational addition theorem for spherical wave functions.

    Science.gov (United States)

    Mitri, Farid

    2014-11-01

    The generalized theory of resonance scattering (GTRS) by an elastic spherical target in acoustics is extended to describe the arbitrary scattering of a finite beam using the addition theorem for the spherical wave functions of the first kind under a translation of the coordinate origin. The advantage of the proposed method over the standard discrete spherical harmonics transform previously used in the GTRS formalism is the computation of the off-axial beam-shape coefficients (BSCs) stemming from a closed-form partial-wave series expansion representing the axial BSCs in spherical coordinates. With this general method, the arbitrary acoustical scattering can be evaluated for any particle shape and size, whether the particle is partially or completely illuminated by the incident beam. Numerical examples for the axial and off-axial resonance scattering from an elastic sphere placed arbitrarily in the field of a finite circular piston transducer with uniform vibration are provided. Moreover, the 3-D resonance directivity patterns illustrate the theory and reveal some properties of the scattering. Numerous applications involving the scattering phenomenon in imaging, particle manipulation, and the characterization of multiphase flows can benefit from the present analysis because all physically realizable beams radiate acoustical waves from finite transducers as opposed to waves of infinite extent.

  5. Path integral theory and deep inelastic scattering of nuclei

    International Nuclear Information System (INIS)

    Neto, J.L.

    1981-10-01

    A formalism, based on Feynman's path integral, is developed and used in the theory of deep inelastic collisions of nuclei. Having shown how to express the propagator of the Wigner function of an isolated system as a (double) path integral in phase space, random processes are considered and the influence functional in interacting systems is discussed. A semi-classical description for the reduced Wigner and a generalized Langevin equation are given. Finally, the formalism is used in a random matrix model for deep inelastic collisions. (U.K.)

  6. Scattering theory for explicitely time-dependent interactions

    International Nuclear Information System (INIS)

    Perusch, M.

    1982-01-01

    Multiple ionization of hydrogen atoms has got increased attention in recent years in connection with high-power lasers. Due to the strong external electromagnetic fields, perturbation theory is no longer valid. The expression for the multiple ionization probability contains the projections of the time-dependent Hamilton operators and the Moeller operators. The main point of the present work is a proof of existence and completeness of the Moeller operators. The proof of existence and completeness is given. The final chapter contains a physical interpretation and discussion of the multiple ionization probability. (G.Q.)

  7. Nucleon-nucleon scattering in the functional quantum theory of the nonlinear spinor field

    International Nuclear Information System (INIS)

    Haegele, G.

    1979-01-01

    The author calculates the S matrix for the elastic nucleon-nucleon scattering in the lowest approximation using the quantum theory of nonlinear spinor fields with special emphasis to the ghost configuration of this theory. Introducing a general scalar product a new functional channel calculus is considered. From the results the R and T matrix elements and the differential and integral cross sections are derived. (HSI)

  8. Scattering lengths in SU(2) gauge theory with two fundamental fermions

    DEFF Research Database (Denmark)

    Arthur, R.; Drach, V.; Hansen, Martin Rasmus Lundquist

    2014-01-01

    We investigate non perturbatively scattering properties of Goldstone Bosons in an SU(2) gauge theory with two Wilson fermions in the fundamental representation. Such a theory can be used to build extensions of the Standard Model that unifies Technicolor and pseudo Goldstone composite Higgs models...... the expected chiral symmetry breaking pattern. We then discuss how to compute them on the lattice and give preliminary results using finite size methods....

  9. ΔΔ intermediate state in 1S0NN scattering from effective field theory

    International Nuclear Information System (INIS)

    Savage, M.J.

    1997-01-01

    We examine the role of the ΔΔ intermediate state in NN scattering in the 1 S 0 channel. The computation is performed at lowest order in an effective-field theory involving local four-fermion operators and one-pion exchange using dimensional regularization with minimal subtraction (MS). As first discussed by Weinberg, in the theory with only nucleons, the large-scattering length in this channel requires a small scale for the local N 4 operators. When Δ close-quote s are included (but without pions) a large-scattering length can be obtained from operators with a scale √(2M N (M Δ -M N )), but fine-tuning is required. The coefficients of the contact terms involving the Δ fields are not uniquely determined but for reasonable values one finds that, in general, NN scattering computed in the theory with Δ close-quote s looks like that computed in the theory without Δ close-quote s. The leading effect of the Δ close-quote s is to change the coefficients of the four-nucleon contact terms between the theories with and without Δ close-quote s. Further, the decoupling of the Δ close-quote s in the limit of large mass and strong coupling is clearly demonstrated. When pions are included, the typical scale for the contact terms is ∼100MeV, both with and without Δ close-quote s and is not set by √(2M N (M Δ -M N )). For reasonable values of contact terms that reproduce the scattering length and effective range (at lowest order) the phase shift is not well reproduced over a larger momentum range as is found in the theory without Δ close-quote s at lowest order. copyright 1997 The American Physical Society

  10. Theory of Raman scattering by surface polaritons in a four media system

    International Nuclear Information System (INIS)

    Nkoma, J.S.

    1988-08-01

    The method of linear response theory is used to determine the response functions for surface polaritons in a four media system (or bounded bilayer). The dispersion relation is found when the pole of the derived response function vanishes. The expressions for the scattered intensity for both back and forward scattering are derived. The scattered intensity depends on a polarization which is the result of the coupling of the incident light to the vibrational coordinates and electric fields associated with electric-dipole-active lattice vibrations in the bilayer. Expressions for the Raman cross-section by surface polaritons in the four media system are derived for both back and forward scattering. Numerical results are presented by using parameters for a sapphire substrate-(GaP-GaAs) bilayer-vacuum system. (author). 28 refs, 5 figs

  11. Mass and scattering length inequalities in QCD and QCD-like theories

    International Nuclear Information System (INIS)

    Nussinov, S.; Pennsylvania Univ., Philadelphia; Sathiapalan, B.

    1985-01-01

    Some observations about mass scattering length inequalities in QCD-like theories are presented. It is shown that the Weingarten mass inequality can be used to argue that global vector symmetries are unbroken in such theories. For QCD, in the limit Nsub(c)->infinite, it is shown that Msub(baryon)>=1/2Nsub(c)Msub(meson), provided there are at least Nsub(c) degenerate flavors of quarks. It is argued that when there are not bound states in a scattering channel, the mass inequalities can be used to derive inequalities beteen scattering lengths. Some rigorous inequalities for two and higher point functions for operators bilinear in currents are derived, and used to extract inequalities between quartic coupling constants. (orig.)

  12. Self-consistent theory of hadron-nucleus scattering. Application to pion physics

    International Nuclear Information System (INIS)

    Johnson, M.B.

    1980-01-01

    The requirement of using self-consistent amplitudes to evaluate microscopically the scattering of strongly interacting particles from nuclei is developed. Application of the idea to a simple model of pion-nucleus scattering is made. Numerical results indicate that the expansion of the optical potential converges when evaluated in terms of fully self-consistent quantities. A comparison of the results to a recent determination of the spreading interaction in the phenomenological isobar-hole model shows that the theory accounts for the sign and magnitude of the real and imaginary part of the spreading interaction with no adjusted parameters. The self-consistnt theory has a strong density dependence, and the consequences of this for pion-nucleus scattering are discussed. 18 figures, 1 table

  13. Equivalence of meson scattering amplitudes in strong coupling lattice and flat space string theory

    Directory of Open Access Journals (Sweden)

    Adi Armoni

    2018-03-01

    Full Text Available We consider meson scattering in the framework of the lattice strong coupling expansion. In particular we derive an expression for the 4-point function of meson operators in the planar limit of scalar Chromodynamics. Interestingly, in the naive continuum limit the expression coincides with an independently known result, that of the worldline formalism. Moreover, it was argued by Makeenko and Olesen that (assuming confinement the resulting scattering amplitude in momentum space is the celebrated expression proposed by Veneziano several decades ago. This motivates us to also use holography in order to argue that the continuum expression for the scattering amplitude is related to the result obtained from flat space string theory. Our results hint that at strong coupling and large-Nc the naive continuum limit of the lattice formalism can be related to a flat space string theory.

  14. Perturbation theory for the effective diffusion constant in a medium of random scatterers

    International Nuclear Information System (INIS)

    Dean, D S; Drummond, I T; Horgan, R R; Lefevre, A

    2004-01-01

    We develop perturbation theory and physically motivated resummations of the perturbation theory for the problem of a tracer particle diffusing in a random medium. The random medium contains point scatterers of density ρ uniformly distributed throughout the material. The tracer is a Langevin particle subjected to the quenched random force generated by the scatterers. Via our perturbative analysis, we determine when the random potential can be approximated by a Gaussian random potential. We also develop a self-similar renormalization group approach based on thinning out the scatterers; this scheme is similar to that used with success for diffusion in Gaussian random potentials and agrees with known exact results. To assess the accuracy of this approximation scheme, its predictions are confronted with results obtained by numerical simulation

  15. Equivalence of meson scattering amplitudes in strong coupling lattice and flat space string theory

    Science.gov (United States)

    Armoni, Adi; Ireson, Edwin; Vadacchino, Davide

    2018-03-01

    We consider meson scattering in the framework of the lattice strong coupling expansion. In particular we derive an expression for the 4-point function of meson operators in the planar limit of scalar Chromodynamics. Interestingly, in the naive continuum limit the expression coincides with an independently known result, that of the worldline formalism. Moreover, it was argued by Makeenko and Olesen that (assuming confinement) the resulting scattering amplitude in momentum space is the celebrated expression proposed by Veneziano several decades ago. This motivates us to also use holography in order to argue that the continuum expression for the scattering amplitude is related to the result obtained from flat space string theory. Our results hint that at strong coupling and large-Nc the naive continuum limit of the lattice formalism can be related to a flat space string theory.

  16. Semiclassical multi-phonon theory for atom-surface scattering: Application to the Cu(111) system.

    Science.gov (United States)

    Daon, Shauli; Pollak, Eli

    2015-05-07

    The semiclassical perturbation theory of Hubbard and Miller [J. Chem. Phys. 80, 5827 (1984)] is further developed to include the full multi-phonon transitions in atom-surface scattering. A practically applicable expression is developed for the angular scattering distribution by utilising a discretized bath of oscillators, instead of the continuum limit. At sufficiently low surface temperature good agreement is found between the present multi-phonon theory and the previous one-, and two-phonon theory derived in the continuum limit in our previous study [Daon, Pollak, and Miret-Artés, J. Chem. Phys. 137, 201103 (2012)]. The theory is applied to the measured angular distributions of Ne, Ar, and Kr scattered from a Cu(111) surface. We find that the present multi-phonon theory substantially improves the agreement between experiment and theory, especially at the higher surface temperatures. This provides evidence for the importance of multi-phonon transitions in determining the angular distribution as the surface temperature is increased.

  17. Theory of atom displacements induced by fast electron elastic scattering in solids

    International Nuclear Information System (INIS)

    Cruz, C. M.; Pinera, I.; Abreu, Y.; Leyva, A.

    2006-01-01

    Present contribution deals with the theoretical description of the conditions favoring the occurrence of single fast electron elastic scattering in solids, leading to the displacement of atoms from their crystalline sites. Firstly, the Moliere-Bethe-Goudsmit-Saunderson theory of Multiple Electron Scattering is applied, determining the limiting angle θ l over which the single electron elastic scattering prevails over the multiple one, leading to the evaluation of the total macroscopic cross-section for single electron elastic scattering on the basis of the Mott-Rutherford differential cross-section. On the basis of single electron elastic scattering by atoms in the solid matrix, it was determined the relative number of Atom Displacements produced by the Gamma Radiation as a primary act, as well as the energy and linear momentum of the ejected atoms. The statistical distributions of single electron elastic scattering and of those inducing Atom Displacements at different electron initial energies in comparison with the others electron inelastic scattering channels are discussed, where the statistical sampling methods on the basis of the rejection one where applied simulating different practical situations. (Full text)

  18. Theory of phonon inelastic atom--surface scattering. I. Quantum mechanical treatment of collision dynamics

    International Nuclear Information System (INIS)

    Choi, B.H.; Poe, R.T.

    1985-01-01

    We present a systematic formulation of the atom--surface scattering dynamics which includes the vibrational states of the atoms in the solid (phonons). The properties of the total scattering wave function of the system, a representation of the interaction potential matrix, and the characteristics of the independent physical solutions are all derived from the translational invariance of the full Hamiltonian. The scattering equations in the integral forms as well as the related Green functions were also obtained. The configurational representations of the Green functions, in particular, are quite different from those of the conventional scattering theory where the collision partners are spatially localized. Various versions of the integral expression of scattering, transition, and reactance matrices were also obtained. They are useful for introducing approximation schemes. From the present formulation, some specific theoretical schemes which are more realistic compared to those that have been employed so far and at the same time capable of yielding effective ab initio computation are derived in the following paper. The time reversal invariance and the microscopic reversibility of the atom--surface scattering were discussed. The relations between the in and outgoing scattering wave functions which are satisfied in the atom--surface system and important in the transition matrix methods were presented. The phonon annihilation and creation, and the adsorption and desorption of the atom are related through the time reversal invariance, and thus the microscopic reversibility can be tested by the experiment

  19. Formal scattering theory approach to S-matrix relations in supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Amado, R.D.; Cannata, F.; Dedonder, J.P.

    1988-01-01

    Combining the methods of scattering theory and supersymmetric quantum mechanics we obtain relations between the S matrix and its supersymmetric partner. These relations involve only asymptotic quantities and do not require knowledge of the dynamical details. For example, for coupled channels with no threshold differences the relations involve the asymptotic normalization constant of the bound state removed by supersymmetry

  20. Two-group neutron transport theory in adjacent space with lineary anisotropic scattering

    International Nuclear Information System (INIS)

    Maiorino, J.R.

    1978-01-01

    A solution method for two-group neutron transport theory with anisotropic scattering is introduced by the combination of case method (expansion method of self singular function) and the invariant imbedding (invariance principle). The numerical results for the Milne problem in light water and borated water is presented to demonstrate the avalibility of the method [pt

  1. Coulomb correction to the screening angle of the Moliere multiple scattering theory

    International Nuclear Information System (INIS)

    Kuraev, E.A.; Voskresenskaya, O.O.; Tarasov, A.V.

    2012-01-01

    Coulomb correction to the screening angular parameter of the Moliere multiple scattering theory is found. Numerical calculations are presented in the range of nuclear charge 4 ≤ Z ≤ 82. Comparison with the Moliere result for the screening angle reveals up to 30% deviation from it for sufficiently heavy elements of the target material

  2. Off-critical statistical models: factorized scattering theories and bootstrap program

    International Nuclear Information System (INIS)

    Mussardo, G.

    1992-01-01

    We analyze those integrable statistical systems which originate from some relevant perturbations of the minimal models of conformal field theories. When only massive excitations are present, the systems can be efficiently characterized in terms of the relativistic scattering data. We review the general properties of the factorizable S-matrix in two dimensions with particular emphasis on the bootstrap principle. The classification program of the allowed spins of conserved currents and of the non-degenerate S-matrices is discussed and illustrated by means of some significant examples. The scattering theories of several massive perturbations of the minimal models are fully discussed. Among them are the Ising model, the tricritical Ising model, the Potts models, the series of the non-unitary minimal models M 2,2n+3 , the non-unitary model M 3,5 and the scaling limit of the polymer system. The ultraviolet limit of these massive integrable theories can be exploited by the thermodynamics Bethe ansatz, in particular the central charge of the original conformal theories can be recovered from the scattering data. We also consider the numerical method based on the so-called conformal space truncated approach which confirms the theoretical results and allows a direct measurement of the scattering data, i.e. the masses and the S-matrix of the particles in bootstrap interaction. The problem of computing the off-critical correlation functions is discussed in terms of the form-factor approach

  3. Doublet channel neutron-deuteron scattering in leading order effective field theory

    OpenAIRE

    B. BlankleiderFlinders U.; J. Gegelia(INFN)

    2015-01-01

    The doublet channel neutron-deuteron scattering amplitude is calculated in leading order effective field theory (EFT). It is shown that this amplitude does not depend on a constant contact interaction three-body force. Satisfactory agreement with available data is obtained when only two-body forces are included.

  4. P-odd effects in the e-d scattering in the vector-like theories

    International Nuclear Information System (INIS)

    Gakh, G.I.

    1979-01-01

    P-odd effects in elastic electron-deuteron scattering, due to the weak neutral currents, are analyzed in the framework of the vector-like theories. Considered is the case of the most general form of the P-invariance breaking in the elastic e - d scattering amplitude in both the leptonic and hadronic vertices. It is found that in the vector-like theories the parity violation in the electro-deuteron elastic scattering is confined in the hadronic vertex, while in the Weinberg-Salam model it is confined in the leptonic vertex. In the vector-like theories the asymmetry in the scattering of longitudinally polarized electrons by nonpolarized deuterons depends on the electromagnetic and weak form factors of a deuteron, whereas in the Weinberg-Salam model it does not depend on the structure of the deuteron. In the Weinberg-Salam model the asymmetry is independent on the T-violating form factors of the deuteron, whereas such a dependence is present in the vector-like theories

  5. On the loop-loop scattering amplitudes in Abelian and non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Meggiolaro, Enrico

    2005-01-01

    The high-energy elastic scattering amplitude of two colour-singlet qq-bar pairs is governed by the correlation function of two Wilson loops, which follow the classical straight lines for quark (antiquark) trajectories. This quantity is expected to be free of IR divergences, differently from what happens for the parton-parton elastic scattering amplitude, described, in the high-energy limit, by the expectation value of two Wilson lines. We shall explicitly test this IR finiteness by a direct non-perturbative computation of the loop-loop scattering amplitudes in the (pedagogic, but surely physically interesting) case of quenched QED. The results obtained for the Abelian case will be generalized to the case of a non-Abelian gauge theory with Nc colours, but stopping to the order O(g4) in perturbation theory. In connection with the above-mentioned IR finiteness, we shall also discuss some analytic properties of the loop-loop scattering amplitudes in both Abelian and non-Abelian gauge theories, when going from Minkowskian to Euclidean theory, which can be relevant to the still unsolved problem of the s-dependence of hadron-hadron total cross-sections

  6. Continuum orbital approximations in weak-coupling theories for inelastic electron scattering

    International Nuclear Information System (INIS)

    Peek, J.M.; Mann, J.B.

    1977-01-01

    Two approximations, motivated by heavy-particle scattering theory, are tested for weak-coupling electron-atom (ion) inelastic scattering theory. They consist of replacing the one-electron scattering orbitals by their Langer uniform approximations and the use of an average trajectory approximation which entirely avoids the necessity for generating continuum orbitals. Numerical tests for a dipole-allowed and a dipole-forbidden event, based on Coulomb-Born theory with exchange neglected, reveal the error trends. It is concluded that the uniform approximation gives a satisfactory prediction for traditional weak-coupling theories while the average approximation should be limited to collision energies exceeding at least twice the threshold energy. The accuracy for both approximations is higher for positive ions than for neutral targets. Partial-wave collision-strength data indicate that greater care should be exercised in using these approximations to predict quantities differential in the scattering angle. An application to the 2s 2 S-2p 2 P transition in Ne VIII is presented

  7. Recursion rules for scattering amplitudes in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Kim, C.; Nair, V.P.

    1997-01-01

    We present a functional derivation of recursion rules for scattering amplitudes in a non-Abelian gauge theory in a form valid to arbitrary loop order. The tree-level and one-loop recursion rules are explicitly displayed. copyright 1997 The American Physical Society

  8. Theory of Inclusive Scattering of Polarized Electrons by Polarized $^{3}$He and the Neutron Form Factors

    OpenAIRE

    Atti, C. Ciofi degli; Pace, E.; Salmé, G.

    1993-01-01

    The theory of inclusive lepton scattering of polarized leptons by polarized J = 1/2 hadrons is presented and the origin of different expressions for the polarized nuclear response function appearing in the literature is explained. The sensitivity of the longitudinal asymmetry upon the neutron form factors is investigated.

  9. Topics in Nonsupersymmetric Scattering Amplitudes in Gauge and Gravity Theories

    Science.gov (United States)

    Nohle, Joshua David

    In Chapters 1 and 2, we introduce and review the duality between color and kinematics in Yang-Mills theory uncovered by Bern, Carrasco and Johansson (BCJ). In Chapter 3, we provide evidence in favor of the conjectured duality between color and kinematics for the case of nonsupersymmetric pure Yang-Mills amplitudes by constructing a form of the one-loop four-point amplitude of this theory that makes the duality manifest. Our construction is valid in any dimension. We also describe a duality-satisfying representation for the two-loop four-point amplitude with identical four-dimensional external helicities. We use these results to obtain corresponding gravity integrands for a theory containing a graviton, dilaton, and antisymmetric tensor, simply by replacing color factors with specified diagram numerators. Using this, we give explicit forms of ultraviolet divergences at one loop in four, six, and eight dimensions, and at two loops in four dimensions. In Chapter 4, we extend the four-point one-loop nonsupersymmetric pure Yang-Mills discussion of Chapter 3 to include fermions and scalars circulating in the loop with all external gluons. This gives another nontrivial loop-level example showing that the duality between color and kinematics holds in nonsupersymmetric gauge theory. The construction is valid in any spacetime dimension and written in terms of formal polarization vectors. We also convert these expressions into a four-dimensional form with explicit external helicity states. Using this, we compare our results to one-loop duality-satisfying amplitudes that are already present in literature. In Chapter 5, we switch from the topic of color-kinematics duality to discuss the recently renewed interest in the soft behavior of gravitons and gluons. Specifically, we discuss the subleading low-energy behavior. Cachazo and Strominger recently proposed an extension of the soft-graviton theorem found by Weinberg. In addition, they proved the validity of their extension at

  10. Three dimensional classical theory of rainbow scattering of atoms from surfaces

    International Nuclear Information System (INIS)

    Pollak, Eli; Miret-Artes, Salvador

    2010-01-01

    Graphical abstract: In this work, we extend to three dimensions our previous stochastic classical theory on surface rainbow scattering. The stochastic phonon bath is modeled in terms of linear coupling of the phonon modes to the motion of the scattered particle. We take into account the three polarizations of the phonons. Closed formulae are derived for the angular and energy loss distributions. They are readily implemented when assuming that the vertical interaction with the surface is described by a Morse potential. The hard wall limit of the theory is derived and applied to some model corrugated potentials. We find that rainbow structure of the scattered angular distribution reflects the underlying symmetries of the surface. We also distinguish between 'normal rainbows' and 'super rainbows'. The latter occur when the two eigenvalues of the Hessian of the corrugation function vanish simultaneously. - Abstract: In this work, we extend to three dimensions our previous stochastic classical theory on surface rainbow scattering. The stochastic phonon bath is modeled in terms of linear coupling of the phonon modes to the motion of the scattered particle. We take into account the three polarizations of the phonons. Closed formulae are derived for the angular and energy loss distributions. They are readily implemented when assuming that the vertical interaction with the surface is described by a Morse potential. The hard wall limit of the theory is derived and applied to some model corrugated potentials. We find that rainbow structure of the scattered angular distribution reflects the underlying symmetries of the surface. We also distinguish between 'normal rainbows' and 'super rainbows'. The latter occur when the two eigenvalues of the Hessian of the corrugation function vanish simultaneously.

  11. Three dimensional classical theory of rainbow scattering of atoms from surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pollak, Eli, E-mail: eli.pollak@weizmann.ac.il [Chemical Physics Department, Weizmann Institute of Science, 76100 Rehovoth (Israel); Miret-Artes, Salvador [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid (Spain)

    2010-10-05

    Graphical abstract: In this work, we extend to three dimensions our previous stochastic classical theory on surface rainbow scattering. The stochastic phonon bath is modeled in terms of linear coupling of the phonon modes to the motion of the scattered particle. We take into account the three polarizations of the phonons. Closed formulae are derived for the angular and energy loss distributions. They are readily implemented when assuming that the vertical interaction with the surface is described by a Morse potential. The hard wall limit of the theory is derived and applied to some model corrugated potentials. We find that rainbow structure of the scattered angular distribution reflects the underlying symmetries of the surface. We also distinguish between 'normal rainbows' and 'super rainbows'. The latter occur when the two eigenvalues of the Hessian of the corrugation function vanish simultaneously. - Abstract: In this work, we extend to three dimensions our previous stochastic classical theory on surface rainbow scattering. The stochastic phonon bath is modeled in terms of linear coupling of the phonon modes to the motion of the scattered particle. We take into account the three polarizations of the phonons. Closed formulae are derived for the angular and energy loss distributions. They are readily implemented when assuming that the vertical interaction with the surface is described by a Morse potential. The hard wall limit of the theory is derived and applied to some model corrugated potentials. We find that rainbow structure of the scattered angular distribution reflects the underlying symmetries of the surface. We also distinguish between 'normal rainbows' and 'super rainbows'. The latter occur when the two eigenvalues of the Hessian of the corrugation function vanish simultaneously.

  12. Hybrid theory and calculation of e-N2 scattering. [quantum mechanics - nuclei (nuclear physics)

    Science.gov (United States)

    Chandra, N.; Temkin, A.

    1975-01-01

    A theory of electron-molecule scattering was developed which was a synthesis of close coupling and adiabatic-nuclei theories. The theory is shown to be a close coupling theory with respect to vibrational degrees of freedom but is a adiabatic-nuclei theory with respect to rotation. It can be applied to any number of partial waves required, and the remaining ones can be calculated purely in one or the other approximation. A theoretical criterion based on fixed-nuclei calculations and not on experiment can be given as to which partial waves and energy domains require the various approximations. The theory allows all cross sections (i.e., pure rotational, vibrational, simultaneous vibration-rotation, differential and total) to be calculated. Explicit formulae for all the cross sections are presented.

  13. SCATTER

    International Nuclear Information System (INIS)

    Broome, J.

    1965-11-01

    The programme SCATTER is a KDF9 programme in the Egtran dialect of Fortran to generate normalized angular distributions for elastically scattered neutrons from data input as the coefficients of a Legendre polynomial series, or from differential cross-section data. Also, differential cross-section data may be analysed to produce Legendre polynomial coefficients. Output on cards punched in the format of the U.K. A. E. A. Nuclear Data Library is optional. (author)

  14. Comparisons of some scattering theories with recent scatterometer measurements. [sea roughness radar model

    Science.gov (United States)

    Fung, A. K.; Dome, G.; Moore, R. K.

    1977-01-01

    The paper compares the predictions of two different types of sea scatter theories with recent scatterometer measurements which indicate the variations of the backscattering coefficient with polarization, incident angle, wind speed, and azimuth angle. Wright's theory (1968) differs from that of Chan and Fung (1977) in two major aspects: (1) Wright uses Phillips' sea spectrum (1966) while Chan and Fung use that of Mitsuyasu and Honda, and (2) Wright uses a modified slick sea slope distribution by Cox and Munk (1954) while Chan and Fung use the slick sea slope distribution of Cox and Munk defined with respect to the plane perpendicular to the look direction. Satisfactory agreements between theory and experimental data are obtained when Chan and Fung's model is used to explain the wind and azimuthal dependence of the scattering coefficient.

  15. Analytical multiple scattering correction to the Mie theory: Application to the analysis of the lidar signal

    Science.gov (United States)

    Flesia, C.; Schwendimann, P.

    1992-01-01

    The contribution of the multiple scattering to the lidar signal is dependent on the optical depth tau. Therefore, the radar analysis, based on the assumption that the multiple scattering can be neglected is limited to cases characterized by low values of the optical depth (tau less than or equal to 0.1) and hence it exclude scattering from most clouds. Moreover, all inversion methods relating lidar signal to number densities and particle size must be modified since the multiple scattering affects the direct analysis. The essential requests of a realistic model for lidar measurements which include the multiple scattering and which can be applied to practical situations follow. (1) Requested are not only a correction term or a rough approximation describing results of a certain experiment, but a general theory of multiple scattering tying together the relevant physical parameter we seek to measure. (2) An analytical generalization of the lidar equation which can be applied in the case of a realistic aerosol is requested. A pure analytical formulation is important in order to avoid the convergency and stability problems which, in the case of numerical approach, are due to the large number of events that have to be taken into account in the presence of large depth and/or a strong experimental noise.

  16. Relativistic theory of particles in a scattering flow III: photon transport.

    Science.gov (United States)

    Achterberg, A.; Norman, C. A.

    2018-06-01

    We use the theory developed in Achterberg & Norman (2018a) and Achterberg & Norman (2018b) to calculate the stress due to photons that are scattered elastically by a relativistic flow. We show that the energy-momentum tensor of the radiation takes the form proposed by Eckart (1940). In particular we show that no terms associated with a bulk viscosity appear if one makes the diffusion approximation for radiation transport and treats the radiation as a separate fluid. We find only shear (dynamic) viscosity terms and heat flow terms in our expression for the energy-momentum tensor. This conclusion holds quite generally for different forms of scattering: Krook-type integral scattering, diffusive (Fokker-Planck) scattering and Thomson scattering. We also derive the transport equation in the diffusion approximation that shows the effects of the flow on the photon gas in the form of a combination of adiabatic heating and an irreversible heating term. We find no diffusive changes to the comoving number density and energy density of the scattered photons, in contrast with some published results in Radiation Hydrodynamics. It is demonstrated that these diffusive corrections to the number- and energy density of the photons are in fact higher-order terms that can (and should) be neglected in the diffusion approximation. Our approach eliminates these terms at the root of the expansion that yields the anisotropic terms in the phase-space density of particles and photons, the terms responsible for the photon viscosity.

  17. Bend-imitating theory and electron scattering in sharply-bent quantum nanowires

    International Nuclear Information System (INIS)

    Vakhnenko, O.O.

    2011-01-01

    The concept of bend-imitating description as applied to the one-electron quantum mechanics in sharply-bent ideal electron waveguides and its development into a self consistent theory are presented. In the framework of bend-imitating approach, the investigation of the electron scattering in a doubly-bent 2D quantum wire with S-like bend has been made, and the explicit dependences of the transmission and reflection coefficients on geometrical parameters of a structure, as well as on the electron energy, have been obtained. The total elimination of the mixing between the scattering channels of a S-like bent quantum wire is predicted.

  18. High-energy scattering of particles with anomalous magnetic moments in quantum field theory

    International Nuclear Information System (INIS)

    Nguen Suan Khan; Pervushin, V.N.

    1976-01-01

    Eikonal type representations taking into account the anomalous magnetic moments of nucleons are obtained for the amplitude of pion-nucleon and nucleon-nucleon scattering in the asymptotic region s → infinity, (t) (<<) s in the framework of nonrenormalizable quantum field theory. The anomalous magnetic moment leads to additional terms in the amplitude which describe the spin flips in the scattering process. It is shown that the renormalization problem does not arise in the asymptotics s → infinity. As an application the Coulomb interference is considered

  19. A multislice theory of electron scattering in crystals including backscattering and inelastic effects.

    Science.gov (United States)

    Spiegelberg, Jakob; Rusz, Ján

    2015-12-01

    In the framework of the slice transition operator technique, a general multislice theory for electron scattering in crystals is developed. To achieve this generalization, we combine the approaches for inelastic scattering derived by Yoshioka [J. Phys. Soc. Jpn. 12, 6 (1957)] and backscattering based on the formalism of Chen and Van Dyck [Ultramicroscopy 70, 29-44 (1997)]. A computational realization of the obtained equations is suggested. The proposed computational scheme is tested on elastic backscattering of electrons, where we consider single backscattering in analogy to the computational scheme proposed by Chen and Van Dyck. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Full-potential multiple scattering theory with space-filling cells for bound and continuum states.

    Science.gov (United States)

    Hatada, Keisuke; Hayakawa, Kuniko; Benfatto, Maurizio; Natoli, Calogero R

    2010-05-12

    We present a rigorous derivation of a real-space full-potential multiple scattering theory (FP-MST) that is free from the drawbacks that up to now have impaired its development (in particular the need to expand cell shape functions in spherical harmonics and rectangular matrices), valid both for continuum and bound states, under conditions for space partitioning that are not excessively restrictive and easily implemented. In this connection we give a new scheme to generate local basis functions for the truncated potential cells that is simple, fast, efficient, valid for any shape of the cell and reduces to the minimum the number of spherical harmonics in the expansion of the scattering wavefunction. The method also avoids the need for saturating 'internal sums' due to the re-expansion of the spherical Hankel functions around another point in space (usually another cell center). Thus this approach provides a straightforward extension of MST in the muffin-tin (MT) approximation, with only one truncation parameter given by the classical relation l(max) = kR(b), where k is the electron wavevector (either in the excited or ground state of the system under consideration) and R(b) is the radius of the bounding sphere of the scattering cell. Moreover, the scattering path operator of the theory can be found in terms of an absolutely convergent procedure in the l(max) --> ∞ limit. Consequently, this feature provides a firm ground for the use of FP-MST as a viable method for electronic structure calculations and makes possible the computation of x-ray spectroscopies, notably photo-electron diffraction, absorption and anomalous scattering among others, with the ease and versatility of the corresponding MT theory. Some numerical applications of the theory are presented, both for continuum and bound states.

  1. Large-angle theory for pion-nucleus scattering at high energies

    International Nuclear Information System (INIS)

    Hoock, D.W. Jr.

    1978-01-01

    An approximate solution for high-energy, projectile-nucleus, multiple scattering is developed from the exact Watson series and applied to pion scattering for 12 C and 4 He. Agreement with measured differential cross sections available from the literature for the range 150 to 260 MeV pion laboratory energies is surprisingly good. The approximation method expands the propagators of the Watson series about the transverse component of the momentum transfer. Contributions of each of the first two terms to double scattering from a Gaussian potential are compared to the exact solution. The purely plane-wave propagation produces a scattering amplitude that agrees to order (k 0 a) -1 with the exact solution at the forward and backward directions at high energies. The second (off-axis) propagation term produces an amplitude that is one order smaller at forward angles and two orders smaller at 180 0 than the exact amplitude. At intermediate angles it is of the same order. The general multiple-scattering series is approximated with selection of plane-wave propagation as the fundamental process at large and small angles. This model suggests that a single nucleon accepts most of the momentum transfer for backward scattering. The resulting multiple-scattering formula agrees with the well-known high-energy eikonal theory at small angles and the backward-angle scattering formula of Chen at exactly 180 0 . A lowest-order formula that includes off-axis propagation is also derived. Predicted differential cross sections are found to be sensitive to nucleon motion and binding. For 4 He the effect of the nuclear potential on the pion kinetic energy is also examined and found to produce significant changes in the predicted cross sections

  2. Rayleigh theory of ultrasound scattering applied to liquid-filled contrast nanoparticles.

    Science.gov (United States)

    Flegg, M B; Poole, C M; Whittaker, A K; Keen, I; Langton, C M

    2010-06-07

    We present a novel modified theory based upon Rayleigh scattering of ultrasound from composite nanoparticles with a liquid core and solid shell. We derive closed form solutions to the scattering cross-section and have applied this model to an ultrasound contrast agent consisting of a liquid-filled core (perfluorooctyl bromide, PFOB) encapsulated by a polymer shell (poly-caprolactone, PCL). Sensitivity analysis was performed to predict the dependence of the scattering cross-section upon material and dimensional parameters. A rapid increase in the scattering cross-section was achieved by increasing the compressibility of the core, validating the incorporation of high compressibility PFOB; the compressibility of the shell had little impact on the overall scattering cross-section although a more compressible shell is desirable. Changes in the density of the shell and the core result in predicted local minima in the scattering cross-section, approximately corresponding to the PFOB-PCL contrast agent considered; hence, incorporation of a lower shell density could potentially significantly improve the scattering cross-section. A 50% reduction in shell thickness relative to external radius increased the predicted scattering cross-section by 50%. Although it has often been considered that the shell has a negative effect on the echogeneity due to its low compressibility, we have shown that it can potentially play an important role in the echogeneity of the contrast agent. The challenge for the future is to identify suitable shell and core materials that meet the predicted characteristics in order to achieve optimal echogenity.

  3. J-matrix method of scattering in one dimension: The nonrelativistic theory

    International Nuclear Information System (INIS)

    Alhaidari, A.D.; Bahlouli, H.; Abdelmonem, M.S.

    2009-01-01

    We formulate a theory of nonrelativistic scattering in one dimension based on the J-matrix method. The scattering potential is assumed to have a finite range such that it is well represented by its matrix elements in a finite subset of a basis that supports a tridiagonal matrix representation for the reference wave operator. Contrary to our expectation, the 1D formulation reveals a rich and highly nontrivial structure compared to the 3D formulation. Examples are given to demonstrate the utility and accuracy of the method. It is hoped that this formulation constitutes a viable alternative to the classical treatment of 1D scattering problem and that it will help unveil new and interesting applications.

  4. Theory of the particle matrix elements for Helium atom scattering in surfaces

    International Nuclear Information System (INIS)

    Khater, A.; Toennies, J.P.

    2000-01-01

    Full text.A brief review is presented for the recent development of the theory of the particle transition matrix elements, basic to the cross section for Helium and inert particle scattering at thermal energies in solid surfaces. the Jackson and Mott matrix elements are presented and discussed for surface scattering processes, habitually classified as elastic and inelastic. Modified transition matrix elements, introduced originally to account for the cut-off effects, are presented in a direct and simple manner. the Debye-Waller factor is introduced and discussed. A recent calculation for the particle transition matrix elements is presented for the specular and inelastic transition matrix elements and the corresponding inelastic scattering cross section is compared in detail to experimental data. the specular and inelastic transition matrix elements are found to be intrinsically similar owing to the intermediate role of a proposed virtual particle squeezed state near the surface

  5. Scattering theory on the lattice and with a Monte Carlo method

    International Nuclear Information System (INIS)

    Kroeger, H.; Moriarty, K.J.M.; Potvin, J.

    1990-01-01

    We present an alternative time-dependent method of calculating the S matrix in quantum systems governed by a Hamiltonian. In the first step one constructs a new Hamiltonian that describes the physics of scattering at energy E with a reduced number of degrees of freedom. Its matrix elements are computed with a Monte Carlo projector method. In the second step the scattering matrix is computed algebraically via diagonalization and exponentiation of the new Hamiltonian. Although we have in mind applications in many-body systems and quantum field theory, the method should be applicable and useful in such diverse areas as atomic and molecular physics, nuclear physics, high-energy physics and solid-state physics. As an illustration of the method, we compute s-wave scattering of two nucleons in a nonrelativistic potential model (Yamaguchi potential), for which the S matrix is known exactly

  6. Translation-invariant global charges in a local scattering theory of massless particles

    International Nuclear Information System (INIS)

    Strube, D.

    1989-01-01

    The present thesis is dedicated to the study for specifically translation-invariant charges in the framework of a Wightman field theory without mass gap. The aim consists thereby in the determination of the effect of the charge operator on asymptotic scattering states of massless particles. In the first section the most important results in the massive case and of the present thesis in the massless case are presented. The object of the second section is the construction of asymptotic scattering states. In the third section the charge operator, which is first only defined on strictly local vectors, is extended to these scattering states, on which it acts additively. Finally an infinitesimal transformation of scalar asymptotic fields is determined. By this for the special case of translation-invariant generators and scalar massless asymptotic fields the same results is present as in the massive case. (orig./HSI) [de

  7. A multiple scattering theory for EM wave propagation in a dense random medium

    Science.gov (United States)

    Karam, M. A.; Fung, A. K.; Wong, K. W.

    1985-01-01

    For a dense medium of randomly distributed scatterers an integral formulation for the total coherent field has been developed. This formulation accounts for the multiple scattering of electromagnetic waves including both the twoand three-particle terms. It is shown that under the Markovian assumption the total coherent field and the effective field have the same effective wave number. As an illustration of this theory, the effective wave number and the extinction coefficient are derived in terms of the polarizability tensor and the pair distribution function for randomly distributed small spherical scatterers. It is found that the contribution of the three-particle term increases with the particle size, the volume fraction, the frequency and the permittivity of the particle. This increase is more significant with frequency and particle size than with other parameters.

  8. Accurate Calculations of Rotationally Inelastic Scattering Cross Sections Using Mixed Quantum/Classical Theory.

    Science.gov (United States)

    Semenov, Alexander; Babikov, Dmitri

    2014-01-16

    For computational treatment of rotationally inelastic scattering of molecules, we propose to use the mixed quantum/classical theory, MQCT. The old idea of treating translational motion classically, while quantum mechanics is used for rotational degrees of freedom, is developed to the new level and is applied to Na + N2 collisions in a broad range of energies. Comparison with full-quantum calculations shows that MQCT accurately reproduces all, even minor, features of energy dependence of cross sections, except scattering resonances at very low energies. The remarkable success of MQCT opens up wide opportunities for computational predictions of inelastic scattering cross sections at higher temperatures and/or for polyatomic molecules and heavier quenchers, which is computationally close to impossible within the full-quantum framework.

  9. Realization of low-scattering metamaterial shell based on cylindrical wave expanding theory.

    Science.gov (United States)

    Wu, Xiaoyu; Hu, Chenggang; Wang, Min; Pu, Mingbo; Luo, Xiangang

    2015-04-20

    In this paper, we demonstrate the design of a low-scattering metamaterial shell with strong backward scattering reduction and a wide bandwidth at microwave frequencies. Low echo is achieved through cylindrical wave expanding theory, and such shell only contains one metamaterial layer with simultaneous low permittivity and permeability. Cut-wire structure is selected to realize the low electromagnetic (EM) parameters and low loss on the resonance brim region. The full-model simulations show good agreement with theoretical calculations, and illustrate that near -20dB reduction is achieved and the -10 dB bandwidth can reach up to 0.6 GHz. Compared with the cloak based on transformation electromagnetics, the design possesses advantage of simpler requirement of EM parameters and is much easier to be implemented when only backward scattering field is cared.

  10. πK scattering in chiral perturbation theory to one loop

    International Nuclear Information System (INIS)

    Bernard, V.; Kaiser, N.; Strasbourg-1 Univ., 67; Meissner, U.G.

    1991-01-01

    We evaluate the πK scattering amplitude at next-to-leading order in the framework of chiral perturbation theory. All low-energy constants appearing in the effective lagrangian of the pseudoscalars have previously been determined. We calculate the scattering lengths of the S- and P-waves as well as the expansion parameters around the point ν triple bond (s-u)/4M K = t = 0 in the unphysical region. Furthermore, phase-shifts of the low partial ways are presented and compared to the data. In most cases, the chiral predictions are comparable to the trends set by the empirical information. For a precise comparison, however, more accurate experimental determinations of the πK scattering process at low and moderate energies would be necessary. We urge the experimenters to perform these. (orig.)

  11. Nonlinear scattering from a plasma column. I - Theory. II Special cases

    Science.gov (United States)

    Crawford, F. W.; Harker, K. J.

    1983-01-01

    The scattered signal excited by nonlinear mixing of two plane waves normally incident on an infinitely long column of plasma is investigated. A general solution is obtained for the polarization in which the electric field vectors of the waves are perpendicular to the column axis and the column is assumed to be radically inhomogeneous. This general theory is then applied to the special cases of the inhomogeneous column in the long-wavelength limit, and the homogeneous column both for the general case and in the long-wavelength limit. It is determined that dipole and quadrupole components should predominate in the polar radiation pattern for the long-wavelength case. The special case of second harmonic generation due to a single incident wave is analyzed in detail. Nonlinear scattering coefficients are computed, and the corresponding polar radiation patterns are determined. The findings of this study are employed to evaluate the feasibility of observing nonlinear scattering from meteor trails.

  12. Discrete ordinate theory of radiative transfer. 2: Scattering from maritime haze

    Science.gov (United States)

    Kattawar, G. W.; Plass, G. N.; Catchings, F. E.

    1971-01-01

    Discrete ordinate theory was used to calculate the reflected and transmitted radiance of photons which have interacted with plane parallel maritime haze layers. The results are presented for three solar zenith angles, three values of the surface albedo, and a range of optical thicknesses from very thin to very thick. The diffuse flux at the lower boundary and the cloud albedo were tabulated. The forward peak and other features in the single scattered phase function caused the radiance in many cases to be very different from that for Rayleigh scattering. The variation of the radiance with both the zenith or nadir angle and the azimuthal angle is more marked, and the relative limb darkening under very thick layers is greater, for haze than for Rayleigh scattering. The downward diffuse flux at the lower boundary for A = O is always greater and the cloud albedo is always less for haze than for Rayleigh layers.

  13. High-energy scattering in strongly coupled N=4 super Yang-Mills theory

    International Nuclear Information System (INIS)

    Sprenger, Martin

    2014-11-01

    This thesis concerns itself with the analytic structure of scattering amplitudes in strongly coupled N=4 super Yang-Mills theory (abbreviated N = 4 SYM) in the multi-Regge limit. Through the AdS/CFT-correspondence observables in strongly coupled N = 4 SYM are accessible via dual calculations in a weakly coupled string theory on an AdS 5 x S 5 -geometry, in which observables can be calculated using standard perturbation theory. In particular, the calculation of the leading order of the n-gluon amplitude in N = 4 SYM at strong coupling corresponds to the calculation of a minimal surface embedded into AdS 5 . This surface ends on the concatenation of the gluon momenta, which is a light-like curve. The calculation of the minimal surface area can be reduced to finding the solution of a set of non-linear, coupled integral equations, which have no analytic solution in arbitrary kinematics. In this thesis, we therefore specialise to the multi-Regge limit, the n-particle generalisation of the Regge limit. This limit is especially interesting as even in the description of scattering amplitudes in weakly coupled N = 4 SYM in this limit a certain set of Feynman diagrams has to be resummed. This description organises itself into orders of logarithms of the energy involved in the scattering process. In this expansion each order in logarithms includes terms from every order in the coupling constant and therefore contains information about the strong coupling sector of the theory, albeit in a very specific way. This raises the central question of this thesis, which is how much of the analytic structure of the scattering amplitudes in the multi-Regge limit is preserved as we go to the strong coupling regime. We show that the equations governing the area of the minimal surface simplify drastically in the multi-Regge limit, which allows us to obtain analytic results for the scattering amplitudes. We develop an algorithm for the calculation of scattering amplitudes in the multi

  14. Deep inelastic scattering near the endpoint in soft-collinear effective theory

    International Nuclear Information System (INIS)

    Chay, Junegone; Kim, Chul

    2007-01-01

    We apply the soft-collinear effective theory to deep inelastic scattering near the endpoint region. The forward scattering amplitude and the structure functions are shown to factorize as a convolution of the Wilson coefficients, the jet functions, and the parton distribution functions. The behavior of the parton distribution functions near the endpoint region is considered. It turns out that it evolves with the Altarelli-Parisi kernel even in the endpoint region, and the parton distribution function can be factorized further into a collinear part and the soft Wilson line. The factorized form for the structure functions is obtained by the two-step matching, and the radiative corrections or the evolution for each factorized part can be computed in perturbation theory. We present the radiative corrections of each factorized part to leading order in α s , including the zero-bin subtraction for the collinear part

  15. Coupled wave equations theory of surface-enhanced femtosecond stimulated Raman scattering.

    Science.gov (United States)

    McAnally, Michael O; McMahon, Jeffrey M; Van Duyne, Richard P; Schatz, George C

    2016-09-07

    We present a coupled wave semiclassical theory to describe plasmonic enhancement effects in surface-enhanced femtosecond stimulated Raman scattering (SE-FSRS). A key result is that the plasmon enhanced fields which drive the vibrational equation of motion for each normal mode results in dispersive lineshapes in the SE-FSRS spectrum. This result, which reproduces experimental lineshapes, demonstrates that plasmon-enhanced stimulated Raman methods provide unique sensitivity to a plasmonic response. Our derived SE-FSRS theory shows a plasmonic enhancement of |gpu|(2)ImχR(ω)gst (2)/ImχR(ω), where |gpu|(2) is the absolute square of the plasmonic enhancement from the Raman pump, χR(ω) is the Raman susceptibility, and gst is the plasmonic enhancement of the Stokes field in SE-FSRS. We conclude with a discussion on potential future experimental and theoretical directions for the field of plasmonically enhanced coherent Raman scattering.

  16. Hidden Fermi liquid, scattering rate saturation, and Nernst effect: a dynamical mean-field theory perspective.

    Science.gov (United States)

    Xu, Wenhu; Haule, Kristjan; Kotliar, Gabriel

    2013-07-19

    We investigate the transport properties of a correlated metal within dynamical mean-field theory. Canonical Fermi liquid behavior emerges only below a very low temperature scale T(FL). Surprisingly the quasiparticle scattering rate follows a quadratic temperature dependence up to much higher temperatures and crosses over to saturated behavior around a temperature scale T(sat). We identify these quasiparticles as constituents of the hidden Fermi liquid. The non-Fermi-liquid transport above T(FL), in particular the linear-in-T resistivity, is shown to be a result of a strongly temperature dependent band dispersion. We derive simple expressions for the resistivity, Hall angle, thermoelectric power and Nernst coefficient in terms of a temperature dependent renormalized band structure and the quasiparticle scattering rate. We discuss possible tests of the dynamical mean-field theory picture of transport using ac measurements.

  17. Spectral parameters for scattering amplitudes in N=4 super Yang-Mills theory

    International Nuclear Information System (INIS)

    Ferro, Livia; Łukowski, Tomasz; Meneghelli, Carlo; Plefka, Jan; Staudacher, Matthias

    2014-01-01

    Planar N=4 Super Yang-Mills theory appears to be a quantum integrable four-dimensional conformal theory. This has been used to find equations believed to describe its exact spectrum of anomalous dimensions. Integrability seemingly also extends to the planar space-time scattering amplitudes of the N=4 model, which show strong signs of Yangian invariance. However, in contradistinction to the spectral problem, this has not yet led to equations determining the exact amplitudes. We propose that the missing element is the spectral parameter, ubiquitous in integrable models. We show that it may indeed be included into recent on-shell approaches to scattering amplitude integrands, providing a natural deformation of the latter. Under some constraints, Yangian symmetry is preserved. Finally we speculate that the spectral parameter might also be the regulator of choice for controlling the infrared divergences appearing when integrating the integrands in exactly four dimensions

  18. Scattering theory for lattice phi4sub(D+1) theory

    International Nuclear Information System (INIS)

    Garczynski, W.

    1983-01-01

    Feynman rules are derived for a lattice version of the phi 4 sub(D+1) theory. The lattice values are transcribed, via a quasicontinual representation, into a continuous, non-local in spatial variables field theory, which is then quantized by the path integral method. (orig.)

  19. Structural dynamics of surfaces by ultrafast electron crystallography: experimental and multiple scattering theory.

    Science.gov (United States)

    Schäfer, Sascha; Liang, Wenxi; Zewail, Ahmed H

    2011-12-07

    Recent studies in ultrafast electron crystallography (UEC) using a reflection diffraction geometry have enabled the investigation of a wide range of phenomena on the femtosecond and picosecond time scales. In all these studies, the analysis of the diffraction patterns and their temporal change after excitation was performed within the kinematical scattering theory. In this contribution, we address the question, to what extent dynamical scattering effects have to be included in order to obtain quantitative information about structural dynamics. We discuss different scattering regimes and provide diffraction maps that describe all essential features of scatterings and observables. The effects are quantified by dynamical scattering simulations and examined by direct comparison to the results of ultrafast electron diffraction experiments on an in situ prepared Ni(100) surface, for which structural dynamics can be well described by a two-temperature model. We also report calculations for graphite surfaces. The theoretical framework provided here allows for further UEC studies of surfaces especially at larger penetration depths and for those of heavy-atom materials. © 2011 American Institute of Physics

  20. Renormalization effects on neutrino--electron scattering in the Weinberg-Salam theory of leptons

    International Nuclear Information System (INIS)

    Salomonson, P.; Ueda, Y.

    1975-01-01

    The renormalization program for nu-bar/sub mu/-e (or ν/sub mu/-e) scattering is formulated in the Weinberg-Salam theory. The explicit calculation is carried out in the one-loop approximation. With the aid of the continuous-dimension regularization method, both ultraviolet and infrared divergences can be removed in the unitary gauge. Numerical results are discussed

  1. Hybrid theory calculation of electron-N2 scattering at 5 and 10 eV

    Science.gov (United States)

    Chandra, N.; Temkin, A.

    1976-01-01

    Hybrid theory results pertaining to e-N2 scattering have been evaluated for differential elastic and first vibrational excitation cross sections at 5 and 10 eV. Comparison with the recent experiment of Chutjian, Srivastava, and Trajmar is good (1976), although there is an indication that the calculated nonresonant (adiabatic-nuclei) contribution is somewhat too small. A short discussion engendered by this point is given.

  2. Quantum theory of dynamic multiple light scattering in fluctuating disordered media

    International Nuclear Information System (INIS)

    Skipetrov, S. E.

    2007-01-01

    We formulate a quantum theory of dynamic multiple light scattering in fluctuating disordered media and calculate the fluctuation and the autocorrelation function of the photon number operator for light transmitted through a disordered slab. The effect of disorder on the information capacity of a quantum communication channel operating in a disordered environment is estimated, and the use of squeezed light in diffusing-wave spectroscopy is discussed

  3. Lepton--lepton scattering in a spontaneously broken gauge theory satisfying strong interaction duality

    International Nuclear Information System (INIS)

    Dicus, D.A.; Teplitz, V.L.; Young, J.E.

    1974-01-01

    A spontaneously broken gauge theory of leptons (e, μ, ν/sub e'/, ν/sub μ/) is constructed in which the two-body scattering amplitudes are dual. The resultant model leads to suppression of ν/sub μ/ + e → ν/sub μ/ + e and predictions for ν/sub e/ + e → ν/sub e/ + e and e + e → μ + μ - that are distinctly different from those of both the conventional V--A theory and the Weinberg-Salam model. (U.S.)

  4. Computing the scattering properties of participating media using Lorenz-Mie theory

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall; Christensen, Niels Jørgen; Jensen, Henrik Wann

    2007-01-01

    is capable of handling both absorbing host media and non-spherical particles, which significantly extends the classes of media and materials that can be modeled. We use the theory to compute optical properties for different types of ice and ocean water, and we derive a novel appearance model for milk...... parameterized by the fat and protein contents. Our results show that we are able to match measured scattering properties in cases where the classical Lorenz-Mie theory breaks down, and we can compute properties for media that cannot be measured using existing techniques in computer graphics....

  5. Topological cross sections in hadron-nucleus collisions and multiple scattering theory

    International Nuclear Information System (INIS)

    Zoller, V.R.

    1987-01-01

    The multiple scattering theory supplemented with cutting rules of Abramovsky, V.A., Gribov, V.N., Kancheli, O.V. is applied to calculation of the hadron-nucleus interaction cross sections. In contrast to standard Glauber approach neither smalness of the interaction radius compared to the nuclear radii nor Gaussian form of the hN-interaction profile function are assumed. The theory of the supercritical pomeron are used. However all the results are more general and do not depend on the parametrization of the pomeron pole amplitude. The region of validity of the widely used approximate formulae for topological and total hA-interaction cross sections are discussed

  6. Comparison of Geant4 multiple Coulomb scattering models with theory for radiotherapy protons.

    Science.gov (United States)

    Makarova, Anastasia; Gottschalk, Bernard; Sauerwein, Wolfgang

    2017-07-06

    Usually, Monte Carlo models are validated against experimental data. However, models of multiple Coulomb scattering (MCS) in the Gaussian approximation are exceptional in that we have theories which are probably more accurate than the experiments which have, so far, been done to test them. In problems directly sensitive to the distribution of angles leaving the target, the relevant theory is the Molière/Fano/Hanson variant of Molière theory (Gottschalk et al 1993 Nucl. Instrum. Methods Phys. Res. B 74 467-90). For transverse spreading of the beam in the target itself, the theory of Preston and Koehler (Gottschalk (2012 arXiv:1204.4470)) holds. Therefore, in this paper we compare Geant4 simulations, using the Urban and Wentzel models of MCS, with theory rather than experiment, revealing trends which would otherwise be obscured by experimental scatter. For medium-energy (radiotherapy) protons, and low-Z (water-like) target materials, Wentzel appears to be better than Urban in simulating the distribution of outgoing angles. For beam spreading in the target itself, the two models are essentially equal.

  7. Strong coupling expansion for scattering phases in hamiltonian lattice field theories. Pt. 1. The (d+1)-dimensional Ising model

    International Nuclear Information System (INIS)

    Dahmen, Bernd

    1994-01-01

    A systematic method to obtain strong coupling expansions for scattering quantities in hamiltonian lattice field theories is presented. I develop the conceptual ideas for the case of the hamiltonian field theory analogue of the Ising model, in d space and one time dimension. The main result is a convergent series representation for the scattering states and the transition matrix. To be explicit, the special cases of d=1 and d=3 spatial dimensions are discussed in detail. I compute the next-to-leading order approximation for the phase shifts. The application of the method to investigate low-energy scattering phenomena in lattice gauge theory and QCD is proposed. ((orig.))

  8. Using scattering theory to compute invariant manifolds and numerical results for the laser-driven Hénon-Heiles system.

    Science.gov (United States)

    Blazevski, Daniel; Franklin, Jennifer

    2012-12-01

    Scattering theory is a convenient way to describe systems that are subject to time-dependent perturbations which are localized in time. Using scattering theory, one can compute time-dependent invariant objects for the perturbed system knowing the invariant objects of the unperturbed system. In this paper, we use scattering theory to give numerical computations of invariant manifolds appearing in laser-driven reactions. In this setting, invariant manifolds separate regions of phase space that lead to different outcomes of the reaction and can be used to compute reaction rates.

  9. Theory of magnetic neutron small-angle scattering using the dynamical theory of diffraction instead of the Born approximation. I

    International Nuclear Information System (INIS)

    Schaerpf, O.

    1978-01-01

    Two ways are given for solving the problem of the dependence of the refraction on the direction of magnetization on both sides of the refractive boundary, one applying the Halpern magnetic scattering vector, the other applying the dynamical theory of diffraction. They lead to different results. Experimental investigation of refraction by magnetic boundaries shows no dependence of the angle of deflection on the relative angles of magnetization in adjacent domains. This behaviour is only described correctly by the dynamical theory, which far from Laue reflections leads to a treatment by the Schoedinger equation with a spin-dependent potential dependent on the average continuous homogenous magnetic induction, both for the law of refraction and for the precession of the spin. The results of this treatment are discussed as a consequence of the behaviour of the spin of the neutrons. This gives some insight about how and why, with refraction, the intensities of the direct and deflected beams depend on the magnetization directions in adjacent domains. The dynamical theory also shows that the Halpern magnetic scattering vector applies only with Laue or Bragg reflections and not with transmission far from those reflections. (Auth.)

  10. Diffuse reflectance relations based on diffusion dipole theory for large absorption and reduced scattering.

    Science.gov (United States)

    Bremmer, Rolf H; van Gemert, Martin J C; Faber, Dirk J; van Leeuwen, Ton G; Aalders, Maurice C G

    2013-08-01

    Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to the radiative transfer equation, implying that it is limited to tissues where the reduced scattering coefficient dominates over the absorption coefficient. Nevertheless, up to absorption coefficients of 20  mm-1 at reduced scattering coefficients of 1 and 11.5  mm-1, we observed excellent agreement (r2=0.994) between reflectance measurements of phantoms and the diffuse reflectance equation proposed by Zonios et al. [Appl. Opt.38, 6628-6637 (1999)], derived as an approximation to one of the diffusion dipole equations of Farrell et al. [Med. Phys.19, 879-888 (1992)]. However, two parameters were fitted to all phantom experiments, including strongly absorbing samples, implying that the reflectance equation differs from diffusion theory. Yet, the exact diffusion dipole approximation at high reduced scattering and absorption also showed agreement with the phantom measurements. The mathematical structure of the diffuse reflectance relation used, derived by Zonios et al. [Appl. Opt.38, 6628-6637 (1999)], explains this observation. In conclusion, diffuse reflectance relations derived as an approximation to the diffusion dipole theory of Farrell et al. can analyze reflectance ratios accurately, even for much larger absorption than reduced scattering coefficients. This allows calibration of fiber-probe set-ups so that the object's diffuse reflectance can be related to its absorption even when large. These findings will greatly expand the application of diffuse reflection spectroscopy. In medicine, it may allow the use of blue/green wavelengths and measurements on whole blood, and in forensic science, it may allow inclusion of objects such as blood stains and cloth at crime

  11. Probing mesoscopic crystals with electrons: One-step simultaneous inelastic and elastic scattering theory

    Science.gov (United States)

    Nazarov, Vladimir U.; Silkin, Vyacheslav M.; Krasovskii, Eugene E.

    2017-12-01

    Inelastic scattering of the medium-energy (˜10 -100 eV) electrons underlies the method of the high-resolution electron energy-loss spectroscopy (HREELS), which has been successfully used for decades to characterize pure and adsorbate-covered surfaces of solids. With the emergence of graphene and other quasi-two-dimensional (Q2D) crystals, HREELS could be expected to become the major experimental tool to study this class of materials. We, however, identify a critical flaw in the theoretical picture of the HREELS of Q2D crystals in the context of the inelastic scattering only ("energy-loss functions" formalism), in contrast to its justifiable use for bulk solids and surfaces. The shortcoming is the neglect of the elastic scattering, which we show is inseparable from the inelastic one, and which, affecting the spectra dramatically, must be taken into account for the meaningful interpretation of the experiment. With this motivation, using the time-dependent density functional theory for excitations, we build a theory of the simultaneous inelastic and elastic electron scattering at Q2D crystals. We apply this theory to HREELS of graphene, revealing an effect of the strongly coupled excitation of the π +σ plasmon and elastic diffraction resonances. Our results open a path to the theoretically interpretable study of the excitation processes in crystalline mesoscopic materials by means of HREELS, with its supreme resolution on the meV energy scale, which is far beyond the capacity of the now overwhelmingly used EELS in transmission electron microscopy.

  12. Low-energy electron scattering from CO. 2: Ab-initio study using the frame-transformation theory

    Science.gov (United States)

    Chandra, N.

    1976-01-01

    The Wigner-Eisenbud R matrix method has been combined with the frame transformation theory to study electron scattering from molecular systems. The R matrix, calculated at the boundary point of the molecular core radius, has been transformed to the space frame in order to continue the solution of the scattering equations in the outer region where rotational motion of the nuclei is taken into account. This procedure has been applied to a model calculation of thermal energy electron scattering from CO.

  13. Bipartite field theories: from D-brane probes to scattering amplitudes

    Science.gov (United States)

    Franco, Sebastián

    2012-11-01

    We introduce and initiate the investigation of a general class of 4d, {N}=1 quiver gauge theories whose Lagrangian is defined by a bipartite graph on a Riemann surface, with or without boundaries. We refer to such class of theories as Bipartite Field Theories (BFTs). BFTs underlie a wide spectrum of interesting physical systems, including: D3-branes probing toric Calabi-Yau 3-folds, their mirror configurations of D6-branes, cluster integrable systems in (0 + 1) dimensions and leading singularities in scattering amplitudes for {N}=4 SYM. While our discussion is fully general, we focus on models that are relevant for scattering amplitudes. We investigate the BFT perspective on graph modifications, the emergence of Calabi-Yau manifolds (which arise as the master and moduli spaces of BFTs), the translation between square moves in the graph and Seiberg duality and the identification of dual theories by means of the underlying Calabi-Yaus, the phenomenon of loop reduction and the interpretation of the boundary operator for cells in the positive Grassmannian as higgsing in the BFT. We develop a technique based on generalized Kasteleyn matrices that permits an efficient determination of the Calabi-Yau geometries associated to arbitrary graphs. Our techniques allow us to go beyond the planar limit by both increasing the number of boundaries of the graphs and the genus of the underlying Riemann surface. Our investigation suggests a central role for Calabi-Yau manifolds in the context of leading singularities, whose full scope is yet to be uncovered.

  14. To the theory of X-ray and electron dynamic scattering in defect-containing crystals

    International Nuclear Information System (INIS)

    Chukhovskij, F.N.

    1982-01-01

    The novel approach to the X-ray and electron dynamic scattering theory based on the dynamic equations ''in the dispersion surface representation'' is formulated. The formally exact solution of two-wave diffraction scattering problem is obtained using the scattering matrix, the obvious expression for which is found. The general formulae describing the plane wave diffraction scattering in absorbing crystals in the weak distortion range has been obtained. The formulae allows one to determine the total change sign of the displacement function Δα(x,y)=2πg vectorx(R vector (r vector) 1 -R vector(r vector) 2 ) on the base of the known sign of the mean deflection magnitude in a crystal as a whole from the exact Bragg position (g vector - the inverse lattice vector, R vector - the displacement field vector, t - the crystal thickness, R vector(r vector) 1 =R vector (r) ar z=t, R vector(r vector) 2 =R(r) at z=0). In the quasiclassical approximation the formation of the diffraction image of a dislocation positioned in such a way that the dislocation axis is parallel to the diffraction reflection vector is considered for the incident plane and spherical waves

  15. Several problems of the theory of transition radiation and transition scattering

    International Nuclear Information System (INIS)

    Ginzburg, V.L.; Tsytovich, V.N.

    1979-01-01

    The process of transition radiation is a very general one. It appears if some source, which does not have a proper frequency (for example a point charge, multipole etc), is moving with a constant velocity in an inhomogeneous and/or nonstationary medium. In the case of a periodic medium the transition radiation has some special peculiarities and is called the resonance transition radiation or transition scattering. Transition scattering occurs particularly in the case when some wave of dielectric permittivity acts on a nonmoving (fixed) charge. The processes of transition radiation and transition scattering have analogies outside electrodynamics similarly to the Vavilov-Cherenkov emission. The latter occurs also for a source moving with a constant velocity but in a homogeneous medium (and only if the velocity of the source exceeds the wave phase velocity in the medium). The present review is dealing with several problems of the theory of transition radiation and transition scattering. Attention is paid mainly to the formulation of the problems and to revealing characterisic features and peculiarities of the phenomena described. (Auth.)

  16. A study on basic theory for CDCC method for three-body model of deuteron scattering

    International Nuclear Information System (INIS)

    Kawai, Mitsuji

    1988-01-01

    Recent studies have revealed that the CDCC method is valid for treating the decomposition process involved in deuteron scattering on the basis of a three-body model. However, theoretical support has not been developed for this method. The present study is aimed at determining whether a solution by the CDCC method can be obtained 'correctly' from a 'realistic' model Hamiltonian for deuteron scattering. Some researchers have recently pointed out that there are some problems with the conventional CDCC calculation procedure in view of the general scattering theory. These problems are associated with asymptotic froms of the wave functions, convergence of calculations, and boundary conditions. Considerations show that the problem with asymptotic forms of the wave function is not a fatal defect, though some compromise is necessary. The problem with the convergence of calculations is not very serious either. Discussions are made of the handling of boundary conditions. Thus, the present study indicates that the CDCC method can be applied satisfactorily to actual deuteron scattering, and that the model wave function for the CDCC method is consistent with the model Hamiltonian. (Nogami, K.)

  17. Time-dependent Second Order Scattering Theory for Weather Radar with a Finite Beam Width

    Science.gov (United States)

    Kobayashi, Satoru; Tanelli, Simone; Im, Eastwood; Ito, Shigeo; Oguchi, Tomohiro

    2006-01-01

    Multiple scattering effects from spherical water particles of uniform diameter are studied for a W-band pulsed radar. The Gaussian transverse beam-profile and the rectangular pulse-duration are used for calculation. An second-order analytical solution is derived for a single layer structure, based on a time-dependent radiative transfer theory as described in the authors' companion paper. When the range resolution is fixed, increase in footprint radius leads to increase in the second order reflectivity that is defined as the ratio of the second order return to the first order one. This feature becomes more serious as the range increases. Since the spaceborne millimeter-wavelength radar has a large footprint radius that is competitive to the mean free path, the multiple scattering effect must be taken into account for analysis.

  18. On the theory of inelastic scattering of slow electrons by surface excitations: 1. Half-space formalism

    International Nuclear Information System (INIS)

    Nkoma, J.S.

    1982-08-01

    A quantum-mechanical theory for the inelastic scattering of slow electrons (ISSE) by surface excitations is developed within the half-space model. The process of transmission of incident electrons into the crystal is described by the homogeneous Schroedinger equation, while the scattering process inside the crystal is described by an inhomogeneous Schroedinger equation. The scattering cross-section for ISSE by surface excitations is derived and is found to be small since it is dependent on an inverse sum of wavevectors which is large. It is also dependent on the fluctuations in the scattering potential. (author)

  19. Quantum theory of the laser radiation scattering by electrons in magnetic fields

    International Nuclear Information System (INIS)

    Rochlin, H.

    1981-08-01

    A system composed of an electron in a static magnetic field interacting with the quantized electromagnetic field, within the electric-dipole and the nonrelativistic approximations (with a cutoff in momentum space) is considered. The Heisenberg equations are solved exactly and the time evolution of the electric field is determined. This result is then used to obtain the spectrum of the scattered radiation when the initial state of the field is coherent, aplying the theory of photodetection. This theory is thoroughly discussed. Several expressions proposed in the literature for the time-dependent spectrum are compared and conditions for the equivalence of these expressions are analyzed. Moreover, inaccuracies in previous treatments of the theory of photodetection are corrected. The results allow the line shape of the scattered radiation to be analyzed for magnetic fields up to 10 12 G. The quantization of the eletromagnetic field allows one to consider the role of the natural line width, which becomes important near ressonance. In particular, it is analyzed the dependence of the line width with the magnetic field. This treatment includes the renormalization of the electron mass, which keeps the results finite when the cutoff goes to infinity. (Author) [pt

  20. Scattering Theory on Surface Majorana Fermions by an Impurity in ^{3}He-B.

    Science.gov (United States)

    Tsutsumi, Yasumasa

    2017-04-07

    We have formulated the scattering theory on Majorana fermions emerging in the surface bound state of the superfluid ^{3}He B phase (^{3}He-B) by an impurity. By applying the theory to the electron bubble, which is regarded as the impurity, trapped below a free surface of ^{3}He-B, the observed mobility of the electron bubble [J. Phys. Soc. Jpn. 82, 124607 (2013)JUPSAU0031-901510.7566/JPSJ.82.124607] is quantitatively reproduced. The mobility is suppressed in low temperatures from the expected value in the bulk ^{3}He-B by the contribution from the surface Majorana fermions. By contrast, the mobility does not depend on the trapped depth of the electron bubble in spite of the spatial variation of the wave function of the surface Majorana fermions. Our formulated theory demonstrates the depth-independent mobility by considering intermediate states in the scattering process. Therefore, we conclude that the experiment has succeeded in observing Majorana fermions in the surface bound state.

  1. Time-dependent, many-body scattering theory and nuclear reaction applications

    International Nuclear Information System (INIS)

    Levin, F.S.

    1977-01-01

    The channel component state form of the channel coupling array theory of many-body scattering is briefly reviewed. These states obey a non-hermitian matrix equation whose exact solution yields the Schroedinger eigenstates, eigenvalues and scattering amplitudes. A time-dependent formulation of the theory is introduced in analogy to the time-dependent Schrodinger equation and several consequences of the development are noted. These include an interaction picture, a single (matrix) S operator, and the usual connection between the t = 0 time-dependent and the time-independent scattering states. Finally, the channel component states (psi/sub j/) are shown to have the useful property that only psi/sub j/ has (two-body) outgoing waves in channel j: psi/sub m/, m not equal to j, is asymptotically zero in two-body channel j. This formalism is then considered as a means for direct nuclear reaction analysis. Typical bound state approximations are introduced and it is shown that a DWBA amplitude occurs in only one channel. The non-time-reversal invariance of the approximate theory is noted. Results of calculations based on a realistic model for two sets of light-ion induced, one-particle transfer reactions are discussed and compared with the coupled reaction channel (CRC) results using the CRC procedure of Cotanch and Vincent. Angular distributions for the two calculational methods are found to be similar in shape and magnitude. Higher ordercorrections are small as are time-reversal non-invariant effects. Post- and prior-type CRC calculations are seen to differ; the latter are closer to the full CRC results

  2. Spectral and scattering theory for translation invariant models in quantum field theory

    DEFF Research Database (Denmark)

    Rasmussen, Morten Grud

    This thesis is concerned with a large class of massive translation invariant models in quantum field theory, including the Nelson model and the Fröhlich polaron. The models in the class describe a matter particle, e.g. a nucleon or an electron, linearly coupled to a second quantised massive scalar...... by the physically relevant choices. The translation invariance implies that the Hamiltonian may be decomposed into a direct integral over the space of total momentum where the fixed momentum fiber Hamiltonians are given by , where denotes total momentum and is the Segal field operator. The fiber Hamiltonians...

  3. Fermion-fermion scattering in quantum field theory with superconducting circuits.

    Science.gov (United States)

    García-Álvarez, L; Casanova, J; Mezzacapo, A; Egusquiza, I L; Lamata, L; Romero, G; Solano, E

    2015-02-20

    We propose an analog-digital quantum simulation of fermion-fermion scattering mediated by a continuum of bosonic modes within a circuit quantum electrodynamics scenario. This quantum technology naturally provides strong coupling of superconducting qubits with a continuum of electromagnetic modes in an open transmission line. In this way, we propose qubits to efficiently simulate fermionic modes via digital techniques, while we consider the continuum complexity of an open transmission line to simulate the continuum complexity of bosonic modes in quantum field theories. Therefore, we believe that the complexity-simulating-complexity concept should become a leading paradigm in any effort towards scalable quantum simulations.

  4. How well can the Chew-Low theory reproduce pion-nucleon scattering

    International Nuclear Information System (INIS)

    Bajaj, K.K.; Nogami, Y.

    1975-01-01

    When the Chew-Low theory for the πN interaction is used as a basis for studying the π-nucleus interaction, it is required to fit the free πN scattering data well. In this respect many calculations so far done are unsatisfactory. We show that an excellent fit is obtained within the existing Chew-Low framework if the inelasticity together with recoil and the crossing term are taken into account, and we comment on a recent work by Dover et al

  5. Dynamic scattering theory for dark-field electron holography of 3D strain fields.

    Science.gov (United States)

    Lubk, Axel; Javon, Elsa; Cherkashin, Nikolay; Reboh, Shay; Gatel, Christophe; Hÿtch, Martin

    2014-01-01

    Dark-field electron holography maps strain in crystal lattices into reconstructed phases over large fields of view. Here we investigate the details of the lattice strain-reconstructed phase relationship by applying dynamic scattering theory both analytically and numerically. We develop efficient analytic linear projection rules for 3D strain fields, facilitating a straight-forward calculation of reconstructed phases from 3D strained materials. They are used in the following to quantify the influence of various experimental parameters like strain magnitude, specimen thickness, excitation error and surface relaxation. © 2013 Elsevier B.V. All rights reserved.

  6. Small-angle neutron scattering from multilamellar lipid bilayers: Theory, model, and experiment

    DEFF Research Database (Denmark)

    Lemmich, Jesper; Mortensen, Kell; Ipsen, John Hjorth

    1996-01-01

    Small-angle neutron scattering data obtained from fully hydrated, multilamellar phospholipid bilayers with deuterated acyl chains of different length are presented and analyzed within a paracrystalline theory and a geometric model that permit the bilayer structure to be determined under conditions...... of temperature for the lamellar repeat distance, the hydrophobic bilayer thickness, as well as the thickness of the aqueous and polar head group region. In addition to these geometric parameters the analysis permits determination of molecular cross-sectional area, number of interlamellar water molecules, as well...

  7. Derivation of the chemical-equilibrium rate coefficient using scattering theory

    Science.gov (United States)

    Mickens, R. E.

    1977-01-01

    Scattering theory is applied to derive the equilibrium rate coefficient for a general homogeneous chemical reaction involving ideal gases. The reaction rate is expressed in terms of the product of a number of normalized momentum distribution functions, the product of the number of molecules with a given internal energy state, and the spin-averaged T-matrix elements. An expression for momentum distribution at equilibrium for an arbitrary molecule is presented, and the number of molecules with a given internal-energy state is represented by an expression which includes the partition function.

  8. V-T theory for the self-intermediate scattering function in a monatomic liquid.

    Science.gov (United States)

    Wallace, Duane C; Chisolm, Eric D; De Lorenzi-Venneri, Giulia

    2017-02-08

    In V-T theory the atomic motion is harmonic vibrations in a liquid-specific potential energy valley, plus transits, which move the system rapidly among the multitude of such valleys. In its first application to the self intermediate scattering function (SISF), V-T theory produced an accurate account of molecular dynamics (MD) data at all wave numbers q and time t. Recently, analysis of the mean square displacement (MSD) resolved a crossover behavior that was not observed in the SISF study. Our purpose here is to apply the more accurate MSD calibration to the SISF, and assess the results. We derive and discuss the theoretical equations for vibrational and transit contributions to the SISF. The time evolution is divided into three successive intervals: the vibrational interval when the vibrational contribution alone accurately accounts for the MD data; the crossover when the vibrational contribution saturates and the transit contribution becomes resolved; and the diffusive interval when the transit contribution alone accurately accounts for the MD data. The resulting theoretical error is extremely small at all q and t. V-T theory is compared to mode-coupling theories for the MSD and SISF, and to recent developments in Brownian motion experiments and theory.

  9. The Uniform geometrical Theory of Diffraction for elastodynamics: Plane wave scattering from a half-plane.

    Science.gov (United States)

    Djakou, Audrey Kamta; Darmon, Michel; Fradkin, Larissa; Potel, Catherine

    2015-11-01

    Diffraction phenomena studied in electromagnetism, acoustics, and elastodynamics are often modeled using integrals, such as the well-known Sommerfeld integral. The far field asymptotic evaluation of such integrals obtained using the method of steepest descent leads to the classical Geometrical Theory of Diffraction (GTD). It is well known that the method of steepest descent is inapplicable when the integrand's stationary phase point coalesces with its pole, explaining why GTD fails in zones where edge diffracted waves interfere with incident or reflected waves. To overcome this drawback, the Uniform geometrical Theory of Diffraction (UTD) has been developed previously in electromagnetism, based on a ray theory, which is particularly easy to implement. In this paper, UTD is developed for the canonical elastodynamic problem of the scattering of a plane wave by a half-plane. UTD is then compared to another uniform extension of GTD, the Uniform Asymptotic Theory (UAT) of diffraction, based on a more cumbersome ray theory. A good agreement between the two methods is obtained in the far field.

  10. V-T theory for the self-intermediate scattering function in a monatomic liquid

    International Nuclear Information System (INIS)

    Wallace, Duane C; Chisolm, Eric D; De Lorenzi-Venneri, Giulia

    2017-01-01

    In V-T theory the atomic motion is harmonic vibrations in a liquid-specific potential energy valley, plus transits, which move the system rapidly among the multitude of such valleys. In its first application to the self intermediate scattering function (SISF), V-T theory produced an accurate account of molecular dynamics (MD) data at all wave numbers q and time t . Recently, analysis of the mean square displacement (MSD) resolved a crossover behavior that was not observed in the SISF study. Our purpose here is to apply the more accurate MSD calibration to the SISF, and assess the results. We derive and discuss the theoretical equations for vibrational and transit contributions to the SISF. The time evolution is divided into three successive intervals: the vibrational interval when the vibrational contribution alone accurately accounts for the MD data; the crossover when the vibrational contribution saturates and the transit contribution becomes resolved; and the diffusive interval when the transit contribution alone accurately accounts for the MD data. The resulting theoretical error is extremely small at all q and t . V-T theory is compared to mode-coupling theories for the MSD and SISF, and to recent developments in Brownian motion experiments and theory. (paper)

  11. The exact theory for scattering of waves by thick holes in a slab and other objects with non-separable geometries

    NARCIS (Netherlands)

    Hoenders, B. J.

    2011-01-01

    The theory for scattering of electromagnetic waves is developed for scattering objects for which the natural modes of the field inside the object do not couple one-to-one with those outside the scatterer. Key feature of the calculation of the scattered fields is the introduction of a new set of

  12. Shear-induced breaking of cages in colloidal glasses: Scattering experiments and mode coupling theory

    Energy Technology Data Exchange (ETDEWEB)

    Amann, Christian P., E-mail: Christian.2.Amann@uni-konstanz.de; Fuchs, Matthias, E-mail: Matthias.Fuchs@uni-konstanz.de [Fachbereich Physik, Universität Konstanz, 78457 Konstanz (Germany); Denisov, Dmitry; Dang, Minh Triet; Schall, Peter [Van der Waals-Zeeman Institute, University of Amsterdam, Amsterdam (Netherlands); Struth, Bernd [Deutsches Elektronen-Synchrotron, Hamburg (Germany)

    2015-07-21

    We employ x-ray scattering on sheared colloidal suspensions and mode coupling theory to study structure factor distortions of glass-forming systems under shear. We find a transition from quadrupolar elastic distortion at small strains to quadrupolar and hexadecupolar modes in the stationary state. The latter are interpreted as signatures of plastic rearrangements in homogeneous, thermalized systems. From their transient evolution with strain, we identify characteristic strain and length-scale values where these plastic rearrangements dominate. This characteristic strain coincides with the maximum of the shear stress versus strain curve, indicating the proliferation of plastic flow. The hexadecupolar modes dominate at the wavevector of the principal peak of the equilibrium structure factor that is related to the cage-effect in mode coupling theory. We hence identify the structural signature of plastic flow of glasses.

  13. Shear-induced breaking of cages in colloidal glasses: Scattering experiments and mode coupling theory

    International Nuclear Information System (INIS)

    Amann, Christian P.; Fuchs, Matthias; Denisov, Dmitry; Dang, Minh Triet; Schall, Peter; Struth, Bernd

    2015-01-01

    We employ x-ray scattering on sheared colloidal suspensions and mode coupling theory to study structure factor distortions of glass-forming systems under shear. We find a transition from quadrupolar elastic distortion at small strains to quadrupolar and hexadecupolar modes in the stationary state. The latter are interpreted as signatures of plastic rearrangements in homogeneous, thermalized systems. From their transient evolution with strain, we identify characteristic strain and length-scale values where these plastic rearrangements dominate. This characteristic strain coincides with the maximum of the shear stress versus strain curve, indicating the proliferation of plastic flow. The hexadecupolar modes dominate at the wavevector of the principal peak of the equilibrium structure factor that is related to the cage-effect in mode coupling theory. We hence identify the structural signature of plastic flow of glasses

  14. Shear-induced breaking of cages in colloidal glasses: Scattering experiments and mode coupling theory.

    Science.gov (United States)

    Amann, Christian P; Denisov, Dmitry; Dang, Minh Triet; Struth, Bernd; Schall, Peter; Fuchs, Matthias

    2015-07-21

    We employ x-ray scattering on sheared colloidal suspensions and mode coupling theory to study structure factor distortions of glass-forming systems under shear. We find a transition from quadrupolar elastic distortion at small strains to quadrupolar and hexadecupolar modes in the stationary state. The latter are interpreted as signatures of plastic rearrangements in homogeneous, thermalized systems. From their transient evolution with strain, we identify characteristic strain and length-scale values where these plastic rearrangements dominate. This characteristic strain coincides with the maximum of the shear stress versus strain curve, indicating the proliferation of plastic flow. The hexadecupolar modes dominate at the wavevector of the principal peak of the equilibrium structure factor that is related to the cage-effect in mode coupling theory. We hence identify the structural signature of plastic flow of glasses.

  15. Dynamic neutron scattering from conformational dynamics. I. Theory and Markov models.

    Science.gov (United States)

    Lindner, Benjamin; Yi, Zheng; Prinz, Jan-Hendrik; Smith, Jeremy C; Noé, Frank

    2013-11-07

    The dynamics of complex molecules can be directly probed by inelastic neutron scattering experiments. However, many of the underlying dynamical processes may exist on similar timescales, which makes it difficult to assign processes seen experimentally to specific structural rearrangements. Here, we show how Markov models can be used to connect structural changes observed in molecular dynamics simulation directly to the relaxation processes probed by scattering experiments. For this, a conformational dynamics theory of dynamical neutron and X-ray scattering is developed, following our previous approach for computing dynamical fingerprints of time-correlation functions [F. Noé, S. Doose, I. Daidone, M. Löllmann, J. Chodera, M. Sauer, and J. Smith, Proc. Natl. Acad. Sci. U.S.A. 108, 4822 (2011)]. Markov modeling is used to approximate the relaxation processes and timescales of the molecule via the eigenvectors and eigenvalues of a transition matrix between conformational substates. This procedure allows the establishment of a complete set of exponential decay functions and a full decomposition into the individual contributions, i.e., the contribution of every atom and dynamical process to each experimental relaxation process.

  16. The hybrid model for sampling multiple elastic scattering angular deflections based on Goudsmit-Saunderson theory

    Directory of Open Access Journals (Sweden)

    Wasaye Muhammad Abdul

    2017-01-01

    Full Text Available An algorithm for the Monte Carlo simulation of electron multiple elastic scattering based on the framework of SuperMC (Super Monte Carlo simulation program for nuclear and radiation process is presented. This paper describes efficient and accurate methods by which the multiple scattering angular deflections are sampled. The Goudsmit-Saunderson theory of multiple scattering has been used for sampling angular deflections. Differential cross-sections of electrons and positrons by neutral atoms have been calculated by using Dirac partial wave program ELSEPA. The Legendre coefficients are accurately computed by using the Gauss-Legendre integration method. Finally, a novel hybrid method for sampling angular distribution has been developed. The model uses efficient rejection sampling method for low energy electrons (500 mean free paths. For small path lengths, a simple, efficient and accurate analytical distribution function has been proposed. The later uses adjustable parameters determined from the fitting of Goudsmith-Saunderson angular distribution. A discussion of the sampling efficiency and accuracy of this newly developed algorithm is given. The efficiency of rejection sampling algorithm is at least 50 % for electron kinetic energies less than 500 keV and longer path lengths (>500 mean free paths. Monte Carlo Simulation results are then compared with measured angular distributions of Ross et al. The comparison shows that our results are in good agreement with experimental measurements.

  17. Dynamic scattering theory for dark-field electron holography of 3D strain fields

    International Nuclear Information System (INIS)

    Lubk, Axel; Javon, Elsa; Cherkashin, Nikolay; Reboh, Shay; Gatel, Christophe; Hÿtch, Martin

    2014-01-01

    Dark-field electron holography maps strain in crystal lattices into reconstructed phases over large fields of view. Here we investigate the details of the lattice strain–reconstructed phase relationship by applying dynamic scattering theory both analytically and numerically. We develop efficient analytic linear projection rules for 3D strain fields, facilitating a straight-forward calculation of reconstructed phases from 3D strained materials. They are used in the following to quantify the influence of various experimental parameters like strain magnitude, specimen thickness, excitation error and surface relaxation. - Author-Highlights: • We derive a simple dynamic scattering formalism for dark field electron holography based on a perturbative two-beam theory. • The formalism facilitates the projection of 3D strain fields by a simple weighting integral. • The weighted projection depends analytically on the diffraction order, the excitation error and the specimen thickness. • The weighting integral formalism represents an important prerequisite towards the development of tomographic strain reconstruction techniques

  18. Resonance effects in elastic cross sections for electron scattering on pyrimidine: Experiment and theory.

    Science.gov (United States)

    Regeta, Khrystyna; Allan, Michael; Winstead, Carl; McKoy, Vincent; Mašín, Zdeněk; Gorfinkiel, Jimena D

    2016-01-14

    We measured differential cross sections for elastic (rotationally integrated) electron scattering on pyrimidine, both as a function of angle up to 180(∘) at electron energies of 1, 5, 10, and 20 eV and as a function of electron energy in the range 0.1-14 eV. The experimental results are compared to the results of the fixed-nuclei Schwinger variational and R-matrix theoretical methods, which reproduce satisfactorily the magnitudes and shapes of the experimental cross sections. The emphasis of the present work is on recording detailed excitation functions revealing resonances in the excitation process. Resonant structures are observed at 0.2, 0.7, and 4.35 eV and calculations for different symmetries confirm their assignment as the X̃(2)A2, Ã(2)B1, and B̃(2)B1 shape resonances. As a consequence of superposition of coherent resonant amplitudes with background scattering the B̃(2)B1 shape resonance appears as a peak, a dip, or a step function in the cross sections recorded as a function of energy at different scattering angles and this effect is satisfactorily reproduced by theory. The dip and peak contributions at different scattering angles partially compensate, making the resonance nearly invisible in the integral cross section. Vibrationally integrated cross sections were also measured at 1, 5, 10 and 20 eV and the question of whether the fixed-nuclei cross sections should be compared to vibrationally elastic or vibrationally integrated cross section is discussed.

  19. Solution of the nonlinear inverse scattering problem by T-matrix completion. I. Theory.

    Science.gov (United States)

    Levinson, Howard W; Markel, Vadim A

    2016-10-01

    We propose a conceptually different method for solving nonlinear inverse scattering problems (ISPs) such as are commonly encountered in tomographic ultrasound imaging, seismology, and other applications. The method is inspired by the theory of nonlocality of physical interactions and utilizes the relevant formalism. We formulate the ISP as a problem whose goal is to determine an unknown interaction potential V from external scattering data. Although we seek a local (diagonally dominated) V as the solution to the posed problem, we allow V to be nonlocal at the intermediate stages of iterations. This allows us to utilize the one-to-one correspondence between V and the T matrix of the problem. Here it is important to realize that not every T corresponds to a diagonal V and we, therefore, relax the usual condition of strict diagonality (locality) of V. An iterative algorithm is proposed in which we seek T that is (i) compatible with the measured scattering data and (ii) corresponds to an interaction potential V that is as diagonally dominated as possible. We refer to this algorithm as to the data-compatible T-matrix completion. This paper is Part I in a two-part series and contains theory only. Numerical examples of image reconstruction in a strongly nonlinear regime are given in Part II [H. W. Levinson and V. A. Markel, Phys. Rev. E 94, 043318 (2016)10.1103/PhysRevE.94.043318]. The method described in this paper is particularly well suited for very large data sets that become increasingly available with the use of modern measurement techniques and instrumentation.

  20. Many-body theory of charge transfer in hyperthermal atomic scattering

    International Nuclear Information System (INIS)

    Marston, J.B.; Andersson, D.R.; Behringer, E.R.; Cooper, B.H.; DiRubio, C.A.; Kimmel, G.A.; Richardson, C.

    1993-01-01

    We use the Newns-Anderson Hamiltonian to describe many-body electronic processes that occur when hyperthermal alkali atoms scatter off metallic surfaces. Following Brako and Newns, we expand the electronic many-body wave function in the number of particle-hole pairs (we keep terms up to and including a single particle-hole pair). We extend their earlier work by including level crossings, excited neutrals, and negative ions. The full set of equations of motion is integrated numerically, without further approximations, to obtain the many-body amplitudes as a function of time. The velocity and work-function dependence of final-state quantities such as the distribution of ion charges and excited atomic occupancies are compared with experiment. In particular, experiments that scatter alkali ions off clean Cu(001) surfaces in the energy range 5--1600 eV constrain the theory quantitatively. The neutralization probability of Na + ions shows a minimum at intermediate velocity in agreement with the theory. This behavior contrasts with that of K + , which shows virtually no neutralization, and with Li + , which exhibits a monotonically increasing neutral fraction with decreasing velocity. Particle-hole excitations are left behind in the metal during a fraction of the collision events; this dissipated energy is predicted to be quite small (on the order of tenths of an electron volt). Indeed, classical trajectory simulations of the surface dynamics account well for the observed energy loss, and thus provide some justification for our truncation of the equations of motion at the single particle-hole pair level. Li + scattering experiments off low work-function surfaces provide qualitative information on the importance of many-body effects. At sufficiently low work function, the negative ions predicted to occur are in fact observed

  1. Solution of equation for imaginary part of forward scattering amplitude for theories with lambdaphisup(n) interaction

    International Nuclear Information System (INIS)

    Arbuzov, B.A.; D'yakonov, V.Yu.; Rochev, V.E.

    1975-01-01

    Solution of equations for imaginary part of forward scattering amplitude in ladder approximation for theories with lambdaphisup(n),n(>=)4 interaction have been obtained. Two types of diagrams have been considered for lambdaphisup(n) renormalizable theory. It is shown, that the leading singularity is the branch point, which gives the power asymptotics with accuracy up to logarithms. The unrenormalizable theory with n(>=)5 lead to exponentially rising asymptotics

  2. Theory of nuclear reactions, with applications to heavy ion scattering reactions

    International Nuclear Information System (INIS)

    Youssef, M.S.A.

    1981-01-01

    Nuclear science to day, has gained its stature through the pioneer work of both theorists and experimentalists within its two main divisions, Nuclear Reaction and Nuclear Structure theories. Our main interest in this theoretical work in nuclear reaction theory is focused on three topics, come under the headings of three parts which are the constituents of the present paper. Part 1 is concerned with ''Contributions to the theory of Threshold phenomena in nuclear reactions; cluster threshold states in heavy ion reactions''. Part II is devoted to ''Hermiticity of the Laplacian operator, R-matrix theories and direct interaction theory'', while part xII is ascribed to ''Heavy ion transfer reactions and scattering''. The aforementioned selected topics are the backbones of this thesis, which starts with general introduction giving a brief account about the material included in. In each part, investiqations are given in an extended manner through several chapters. Finally, the thesis is ended eith the chapter on ''General Discussions and Conclusions''. Appendices, references, and figure captions are found at the end of each part, the matter which we believe to facilitate much the reading through of the thesis. The first two parts are based (to some extent) on the same formal background (R-matrix, Kapur-Peierls-theories) and they converge to solve some physical problems originating from flux conservation laws in nuclear reactions, while the third part is indirect related to the first two; in principle it joins the other two parts under computational aspects. All of them after all, form the solidarity of the material included in the thesis. (author)

  3. High-Frequency Guided Wave Scattering by a Partly Through-Thickness Hole Based on 3D Theory

    International Nuclear Information System (INIS)

    Zhang Hai-Yan; Xu Jian; Ma Shi-Wei

    2015-01-01

    We present a theoretical investigation of the scattering of high frequency S0 Lamb mode from a circular blind hole defect in a plate based on the 3D theory. The S0 wave is incident at the frequency above the A1 mode cut-off frequency, in which the popular approximate plate theories are inapplicable. Due to the non-symmetric blind hole defect, the scattered fields will contain higher order converted modes in addition to the fundamental S0 and A0 modes. The far-field scattering amplitudes of various propagating Lamb modes for different hole sizes are inspected. The results are compared with those of lower frequencies and some different phenomena are found. Two-dimensional Fourier transform (2DFT) results of transient scattered Lamb and SH wave signals agree well with the analytical dispersion curves, which check the validity of the solutions from another point of view. (paper)

  4. Spectrometer for Particle Characterization With a New Multiple-Scattering Theory, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — There are two major commercial types of light-scattering particle size analyzers: Static Light Scattering and Dynamic Light Scattering. They are expensive, delicate,...

  5. Symmetry relationships for multiple scattering of polarized light in turbid spherical samples: theory and a Monte Carlo simulation.

    Science.gov (United States)

    Otsuki, Soichi

    2016-02-01

    This paper presents a theory describing totally incoherent multiple scattering of turbid spherical samples. It is proved that if reciprocity and mirror symmetry hold for single scattering by a particle, they also hold for multiple scattering in spherical samples. Monte Carlo simulations generate a reduced effective scattering Mueller matrix, which virtually satisfies reciprocity and mirror symmetry. The scattering matrix was factorized by using the symmetric decomposition in a predefined form, as well as the Lu-Chipman polar decomposition, approximately into a product of a pure depolarizer and vertically oriented linear retarding diattenuators. The parameters of these components were calculated as a function of the polar angle. While the turbid spherical sample is a pure depolarizer at low polar angles, it obtains more functions of the retarding diattenuator with increasing polar angle.

  6. Rearrangement and convergence improvement of the Born series in scattering theory on the basis of orthogonal projections

    International Nuclear Information System (INIS)

    Kukulin, V.I.; Pomerantsev, V.N.

    1976-01-01

    Method of rearrangement of the Born series in scattering theory is proposed which uses the corthogonal projecting pseudopotentials (OPP) proposed recently. It is proved vigorously that the rearranged Born series will converge for all negative and small positive energy value seven in the presence of bound states. Method of correct introduction of scattering operators in orthogonal subspaces is displayed. Comparison of the OPP method with the projection technique developed by Feschbach is given. Physical applications of the method formulated are discussed

  7. Theory of disorder-induced coherent scattering and light localization in slow-light photonic crystal waveguides

    International Nuclear Information System (INIS)

    Patterson, M; Hughes, S

    2010-01-01

    We introduce a theoretical formalism to describe disorder-induced extrinsic scattering in slow light photonic crystal waveguides. This work details and extends the optical scattering theory used in a recent issue of Physics Review Letters (Patterson et al 2009 Phys. Rev. Lett. 102 253903) to describe coherent scattering phenomena and successfully explain related experimental measurements. Our presented theory, which combines Green function and coupled mode methods, allows us to self-consistently account for arbitrary multiple scattering for the propagating electric field and recover experimental features such as resonances near the band edge. The technique is fully three-dimensional and can calculate the effects of disorder on the propagating field over thousands of unit cells. As an application of this theory, we explore various sample lengths and disordered instances, and demonstrate the profound effect of multiple scattering in the waveguide transmission. The spectra yield rich features associated with disorder-induced localization and multiple scattering, which are shown to be exacerbated in the slow light propagation regime

  8. Pion-nucleon scattering in covariant baryon chiral perturbation theory with explicit Delta resonances

    Energy Technology Data Exchange (ETDEWEB)

    Yao, De-Liang [Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); Siemens, D. [Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Bernard, V. [Groupe de Physique Théorique, Institut de Physique Nucléaire, UMR 8606,CNRS, University Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex (France); Epelbaum, E. [Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Gasparyan, A.M. [Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum (Germany); SSC RF ITEP, Bolshaya Cheremushkinskaya 25, 117218 Moscow (Russian Federation); Gegelia, J. [Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); Tbilisi State University, 0186 Tbilisi (Georgia); Krebs, H. [Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Meißner, Ulf-G. [Helmholtz Institut für Strahlen- und Kernphysik andBethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn (Germany); Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2016-05-05

    We present the results of a third order calculation of the pion-nucleon scattering amplitude in a chiral effective field theory with pions, nucleons and delta resonances as explicit degrees of freedom. We work in a manifestly Lorentz invariant formulation of baryon chiral perturbation theory using dimensional regularization and the extended on-mass-shell renormalization scheme. In the delta resonance sector, the on mass-shell renormalization is realized as a complex-mass scheme. By fitting the low-energy constants of the effective Lagrangian to the S- and P-partial waves a satisfactory description of the phase shifts from the analysis of the Roy-Steiner equations is obtained. We predict the phase shifts for the D and F waves and compare them with the results of the analysis of the George Washington University group. The threshold parameters are calculated both in the delta-less and delta-full cases. Based on the determined low-energy constants, we discuss the pion-nucleon sigma term. Additionally, in order to determine the strangeness content of the nucleon, we calculate the octet baryon masses in the presence of decuplet resonances up to next-to-next-to-leading order in SU(3) baryon chiral perturbation theory. The octet baryon sigma terms are predicted as a byproduct of this calculation.

  9. Scattering of fermions in the Yukawa theory coupled to unimodular gravity

    International Nuclear Information System (INIS)

    Gonzalez-Martin, S.; Martin, C.P.

    2018-01-01

    We compute the lowest order gravitational UV divergent radiative corrections to the S matrix element of the fermion + fermion → fermion + fermion scattering process in the massive Yukawa theory, coupled either to Unimodular Gravity or to General Relativity. We show that both Unimodular Gravity and General Relativity give rise to the same UV divergent contribution in Dimensional Regularization. This is a nontrivial result, since in the classical action of Unimodular Gravity coupled to the Yukawa theory, the graviton field does not couple neither to the mass operator nor to the Yukawa operator. This is unlike the General Relativity case. The agreement found points in the direction that Unimodular Gravity and General Relativity give rise to the same quantum theory when coupled to matter, as long as the Cosmological Constant vanishes. Along the way we have come across another unexpected cancellation of UV divergences for both Unimodular Gravity and General Relativity, resulting in the UV finiteness of the one-loop and κy 2 order of the vertex involving two fermions and one graviton only. (orig.)

  10. Perturbation Theory for Scattering from Multilayers with Randomly Rough Fractal Interfaces: Remote Sensing Applications

    Directory of Open Access Journals (Sweden)

    Pasquale Imperatore

    2017-12-01

    Full Text Available A general, approximate perturbation method, able to provide closed-form expressions of scattering from a layered structure with an arbitrary number of rough interfaces, has been recently developed. Such a method provides a unique tool for the characterization of radar response patterns of natural rough multilayers. In order to show that, here, for the first time in a journal paper, we describe the application of the developed perturbation theory to fractal interfaces; we then employ the perturbative method solution to analyze the scattering from real-world layered structures of practical interest in remote sensing applications. We focus on the dependence of normalized radar cross section on geometrical and physical properties of the considered scenarios, and we choose two classes of natural stratifications: wet paleosoil covered by a low-loss dry sand layer and a sea-ice layer above water with dry snow cover. Results are in accordance with the experimental evidence available in the literature for the low-loss dry sand layer, and they may provide useful indications about the actual ability of remote sensing instruments to perform sub-surface sensing for different sensor and scene parameters.

  11. Perturbation Theory for Scattering from Multilayers with Randomly Rough Fractal Interfaces: Remote Sensing Applications.

    Science.gov (United States)

    Imperatore, Pasquale; Iodice, Antonio; Riccio, Daniele

    2017-12-27

    A general, approximate perturbation method, able to provide closed-form expressions of scattering from a layered structure with an arbitrary number of rough interfaces, has been recently developed. Such a method provides a unique tool for the characterization of radar response patterns of natural rough multilayers. In order to show that, here, for the first time in a journal paper, we describe the application of the developed perturbation theory to fractal interfaces; we then employ the perturbative method solution to analyze the scattering from real-world layered structures of practical interest in remote sensing applications. We focus on the dependence of normalized radar cross section on geometrical and physical properties of the considered scenarios, and we choose two classes of natural stratifications: wet paleosoil covered by a low-loss dry sand layer and a sea-ice layer above water with dry snow cover. Results are in accordance with the experimental evidence available in the literature for the low-loss dry sand layer, and they may provide useful indications about the actual ability of remote sensing instruments to perform sub-surface sensing for different sensor and scene parameters.

  12. Inverse scattering and solitons in An-1 affine Toda field theories

    International Nuclear Information System (INIS)

    Beggs, E.J.; Johnson, P.R.

    1997-01-01

    We implement the inverse scattering method in the case of the A n affine Toda field theories, by studying the space-time evolution of simple poles in the underlying loop group. We find the known single-soliton solutions, as well as additional solutions with non-linear modes of oscillation around the standard solution, by studying the particularly simple case where the residue at the pole is a rank-one projection. We show that these solutions with extra modes have the same mass and topological charges as the standard solutions, so we do not shed any light on the missing topological charge problem in these models. From the monodromy matrix it is shown that these solutions have the same higher conserved charges as the standard solutions. We also show that the integrated energy-momentum density can be calculated from the central extension of the loop group. (orig.)

  13. Tetraquark resonances computed with static lattice QCD potentials and scattering theory

    Directory of Open Access Journals (Sweden)

    Bicudo Pedro

    2018-01-01

    Full Text Available We study tetraquark resonances with lattice QCD potentials computed for two static quarks and two dynamical quarks, the Born-Oppenheimer approximation and the emergent wave method of scattering theory. As a proof of concept we focus on systems with isospin I = 0, but consider different relative angular momenta l of the heavy b quarks. We compute the phase shifts and search for S and T matrix poles in the second Riemann sheet. We predict a new tetraquark resonance for l = 1, decaying into two B mesons, with quantum numbers I(JP = 0(1−, mass m=10576−4+4 MeV and decay width Γ=112−103+90 MeV.

  14. Sudden rotation reactive scattering: Theory and application to 3-D H+H2

    International Nuclear Information System (INIS)

    Bowman, J.M.; Lee, K.T.

    1980-01-01

    An approximate quantum mechanical theory of reactive scattering is presented and applied to the H+H 2 reaction in three dimensions. Centrifugal sudden and rotational sudden approximations are made in each arrangement channel, however, vibrational states are treated in a fully coupled manner. Matching of arrangement channel wave functions is done where the arrangement channel centrifugal potentials are equal. This matching is particularly appropriate for collinearly favored reactions. Integral and differential cross sections are calculated for the H+H 2 reaction for H 2 in the ground and first excited vibrational states. These calculations employ the Porter--Karplus potential energy surface mainly to allow for comparisons with previous accurate and approximate quantal and quasiclassical calculations

  15. Algorithms and computer codes for atomic and molecular quantum scattering theory. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, L. (ed.)

    1979-01-01

    The goals of this workshop are to identify which of the existing computer codes for solving the coupled equations of quantum molecular scattering theory perform most efficiently on a variety of test problems, and to make tested versions of those codes available to the chemistry community through the NRCC software library. To this end, many of the most active developers and users of these codes have been invited to discuss the methods and to solve a set of test problems using the LBL computers. The first volume of this workshop report is a collection of the manuscripts of the talks that were presented at the first meeting held at the Argonne National Laboratory, Argonne, Illinois June 25-27, 1979. It is hoped that this will serve as an up-to-date reference to the most popular methods with their latest refinements and implementations.

  16. Hydrogen Balmer alpha intensity distributions and line profiles from multiple scattering theory using realistic geocoronal models

    Science.gov (United States)

    Anderson, D. E., Jr.; Meier, R. R.; Hodges, R. R., Jr.; Tinsley, B. A.

    1987-01-01

    The H Balmer alpha nightglow is investigated by using Monte Carlo models of asymmetric geocoronal atomic hydrogen distributions as input to a radiative transfer model of solar Lyman-beta radiation in the thermosphere and atmosphere. It is shown that it is essential to include multiple scattering of Lyman-beta radiation in the interpretation of Balmer alpha airglow data. Observations of diurnal variation in the Balmer alpha airglow showing slightly greater intensities in the morning relative to evening are consistent with theory. No evidence is found for anything other than a single sinusoidal diurnal variation of exobase density. Dramatic changes in effective temperature derived from the observed Balmer alpha line profiles are expected on the basis of changing illumination conditions in the thermosphere and exosphere as different regions of the sky are scanned.

  17. The Green Function cellular method and its relation to multiple scattering theory

    International Nuclear Information System (INIS)

    Butler, W.H.; Zhang, X.G.; Gonis, A.

    1992-01-01

    This paper investigates techniques for solving the wave equation which are based on the idea of obtaining exact local solutions within each potential cell, which are then joined to form a global solution. The authors derive full potential multiple scattering theory (MST) from the Lippmann-Schwinger equation and show that it as well as a closely related cellular method are techniques of this type. This cellular method appears to have all of the advantages of MST and the added advantage of having a secular matrix with only nearest neighbor interactions. Since this cellular method is easily linearized one can rigorously reduce electronic structure calculation to the problem of solving a nearest neighbor tight-binding problem

  18. Light-by-Light Scattering Constraint on Born-Infeld Theory.

    Science.gov (United States)

    Ellis, John; Mavromatos, Nick E; You, Tevong

    2017-06-30

    The recent measurement by ATLAS of light-by-light scattering in LHC Pb-Pb collisions is the first direct evidence for this basic process. We find that it excludes a range of the mass scale of a nonlinear Born-Infeld extension of QED that is ≲100  GeV, a much stronger constraint than those derived previously. In the case of a Born-Infeld extension of the standard model in which the U(1)_{Y} hypercharge gauge symmetry is realized nonlinearly, the limit on the corresponding mass reach is ∼90  GeV, which, in turn, imposes a lower limit of ≳11  TeV on the magnetic monopole mass in such a U(1)_{Y} Born-Infeld theory.

  19. Algorithms and computer codes for atomic and molecular quantum scattering theory. Volume I

    International Nuclear Information System (INIS)

    Thomas, L.

    1979-01-01

    The goals of this workshop are to identify which of the existing computer codes for solving the coupled equations of quantum molecular scattering theory perform most efficiently on a variety of test problems, and to make tested versions of those codes available to the chemistry community through the NRCC software library. To this end, many of the most active developers and users of these codes have been invited to discuss the methods and to solve a set of test problems using the LBL computers. The first volume of this workshop report is a collection of the manuscripts of the talks that were presented at the first meeting held at the Argonne National Laboratory, Argonne, Illinois June 25-27, 1979. It is hoped that this will serve as an up-to-date reference to the most popular methods with their latest refinements and implementations

  20. Optimal inequalities for the subtraction functions of the proton Compton scattering dispersion theory

    International Nuclear Information System (INIS)

    Caprini, I.

    1982-06-01

    Upper and lower bounds upon the subtraction functions required in the dispersion theory of the proton Compton process are derived in a framework wbich optimally exploits the gauge invariance, the fixed-t analyticity and the s-u crossing properties of the scattering amplitudes, together with the consequences of the s, u-channel unitarity. The bounds, which are expressed only in terms of measurable s, u-channel physical quantities, without any reference to model dependent annihilation channel contributions, appear to be quite restrictive for some values of the momentum transfer t. The results are significant for removing the sign ambiguity of the pion decay constant. Fsub(p) and for the estimation of the electromagnetic polarizabilities of the proton. (author)

  1. Role of physisorption states in molecular scattering: a semilocal density-functional theory study on O2/Ag(111).

    Science.gov (United States)

    Goikoetxea, I; Meyer, J; Juaristi, J I; Alducin, M; Reuter, K

    2014-04-18

    We simulate the scattering of O2 from Ag(111) with classical dynamics simulations performed on a six-dimensional potential energy surface calculated within semilocal density-functional theory. The enigmatic experimental trends that originally required the conjecture of two types of repulsive walls, arising from a physisorption and chemisorption part of the interaction potential, are fully reproduced. Given the inadequate description of the physisorption properties in semilocal density-functional theory, our work casts severe doubts on the prevalent notion to use molecular scattering data as indirect evidence for the existence of such states.

  2. Size-dependent Measurements of the Scattering Properties of Planetary Regolith Analogs: A Challenge to Theory

    Science.gov (United States)

    Piatek, J. L.; Hapke, B. W.; Nelson, R. M.; Hale, A. S.; Smythe, W. D.

    2003-01-01

    The nature of the scattering of light is thought to be well understood when the medium is made up of independent scatterers that are much larger than the wavelength of that light. This is not the case when the size of the scattering objects is similar to or smaller than the wavelength or the scatterers are not independent. In an attempt to examine the applicability of independent particle scattering models, to planetary regoliths, a dataset of experimental results were compared with theoretical predictions.

  3. Analysis of Heuristic Uniform Theory of Diffraction Coefficients for Electromagnetic Scattering Prediction

    Directory of Open Access Journals (Sweden)

    Diego Tami

    2018-01-01

    Full Text Available We discuss three sets of heuristic coefficients used in uniform theory of diffraction (UTD to characterize the electromagnetic scattering in realistic urban scenarios and canonical examples of diffraction by lossy conducting wedges using the three sets of heuristic coefficients and the Malyuzhinets solution as reference model. We compare not only the results of the canonical models but also their implementation in real outdoor scenarios. To predict the coverage of mobile networks, we used propagation models for outdoor environments by using a 3D ray-tracing model based on a brute-force algorithm for ray launching and a propagation model based on image theory. To evaluate each set of coefficients, we analyzed the mean and standard deviation of the absolute error between estimates and measured data in Ottawa, Canada; Valencia, Spain; and Cali, Colombia. Finally, we discuss the path loss prediction for each set of heuristic UTD coefficients in outdoor environment, as well as the comparison with the canonical results.

  4. Boson-fermion and boson-boson scattering in a Yang-Mills theory at high energy: Sixth-order perturbation theory

    International Nuclear Information System (INIS)

    McCoy, B.M.; Wu, T.T.

    1976-01-01

    Our previous study of Yang-Mills fields is extended by calculating the high-energy behavior of the boson-fermion and of the boson-boson amplitude in sixth-order perturbation theory. In the isovector and isoscalar channels of both these processes the behavior of the amplitude is the same as that found in fermion-fermion scattering

  5. Coherent light scattering of heterogeneous randomly rough films and effective medium in the theory of electromagnetic wave multiple scattering

    Energy Technology Data Exchange (ETDEWEB)

    Berginc, G [THALES, 2 avenue Gay-Lussac 78995 ELANCOURT (France)

    2013-11-30

    We have developed a general formalism based on Green's functions to calculate the coherent electromagnetic field scattered by a random medium with rough boundaries. The approximate expression derived makes it possible to determine the effective permittivity, which is generalised for a layer of an inhomogeneous random medium with different types of particles and bounded with randomly rough interfaces. This effective permittivity describes the coherent propagation of an electromagnetic wave in a random medium with randomly rough boundaries. We have obtained an expression, which contains the Maxwell – Garnett formula at the low-frequency limit, and the Keller formula; the latter has been proved to be in good agreement with experiments for particles whose dimensions are larger than a wavelength. (coherent light scattering)

  6. Estimates of oceanic surface wind speed and direction using orthogonal beam scatterometer measurements and comparison of recent sea scattering theories

    Science.gov (United States)

    Moore, R. K.; Fung, A. K.; Dome, G. J.; Birrer, I. J.

    1978-01-01

    The wind direction properties of radar backscatter from the sea were empirically modelled using a cosine Fourier series through the 4th harmonic in wind direction (referenced to upwind). A comparison with 1975 JONSWAP (Joint North Sea Wave Project) scatterometer data, at incidence angles of 40 and 65, indicates that effects to third and fourth harmonics are negligible. Another important result is that the Fourier coefficients through the second harmonic are related to wind speed by a power law expression. A technique is also proposed to estimate the wind speed and direction over the ocean from two orthogonal scattering measurements. A comparison between two different types of sea scatter theories, one type presented by the work of Wright and the other by that of Chan and Fung, was made with recent scatterometer measurements. It demonstrates that a complete scattering model must include some provisions for the anisotropic characteristics of the sea scatter, and use a sea spectrum which depends upon wind speed.

  7. Scattering from extended targets in range-dependent fluctuating ocean-waveguides with clutter from theory and experiments.

    Science.gov (United States)

    Jagannathan, Srinivasan; Küsel, Elizabeth T; Ratilal, Purnima; Makris, Nicholas C

    2012-08-01

    Bistatic, long-range measurements of acoustic scattered returns from vertically extended, air-filled tubular targets were made during three distinct field experiments in fluctuating continental shelf waveguides. It is shown that Sonar Equation estimates of mean target-scattered intensity lead to large errors, differing by an order of magnitude from both the measurements and waveguide scattering theory. The use of the Ingenito scattering model is also shown to lead to significant errors in estimating mean target-scattered intensity in the field experiments because they were conducted in range-dependent ocean environments with large variations in sound speed structure over the depth of the targets, scenarios that violate basic assumptions of the Ingenito model. Green's theorem based full-field modeling that describes scattering from vertically extended tubular targets in range-dependent ocean waveguides by taking into account nonuniform sound speed structure over the target's depth extent is shown to accurately describe the statistics of the targets' scattered field in all three field experiments. Returns from the man-made targets are also shown to have a very different spectral dependence from the natural target-like clutter of the dominant fish schools observed, suggesting that judicious multi-frequency sensing may often provide a useful means of distinguishing fish from man-made targets.

  8. 21 CFR 888.3030 - Single/multiple component metallic bone fixation appliances and accessories.

    Science.gov (United States)

    2010-04-01

    ... appliances and accessories. 888.3030 Section 888.3030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT....3030 Single/multiple component metallic bone fixation appliances and accessories. (a) Identification. Single/multiple component metallic bone fixation appliances and accessories are devices intended to be...

  9. High-energy behavior of fermion-meson and meson-meson scattering in a supersymmetric field theory

    International Nuclear Information System (INIS)

    Opoien, J.W.

    1978-01-01

    The high-energy behavior of fermion-boson and boson-boson scattering amplitudes of a supersymmetric field theory containing a spin-1/2 fermion field, a scalar field, and a pseudoscalar field is investigated. The results can be easily modified to apply to the Yukawa model and the neutral version of the linear sigma model. The results are also compared to those of fermion-fermion scattering in the same model. In the leading-logarithm approximation, ladders with fermions running along the sides in the t channel and mesons as rungs dominate in each order of two classes of diagrams. The sum of the dominant series give rise to fixed Regge cuts for all amplitudes in each of the three theories. All amplitudes in the supersymmetric theory possess a definite signature factor, while the amplitudes for fermion-fermion and fermion-antifermion scattering in the Y model and the sigma model lack it. The results of the supersymmetric theory are also compared to the results of the spontaneously broken non-Abelian gauge theory

  10. SANS [small-angle neutron scattering] evaluation of the RPA [random phase approximation] theory for binary homopolymer mixtures

    International Nuclear Information System (INIS)

    Bates, F.S.; Koehler, W.C.; Wignall, G.D.; Fetters, L.J.

    1986-12-01

    A well characterized binary mixture of normal (protonated) and perdeuterated monodisperse 1,2 polybutenes has been studied by small-angle neutron scattering (SANS). For scattering wavevectors q greater than the inverse radius-of-gyration R/sub g/ -1 , the SANS intensity is quantitatively predicted by the random phase approximation (RPA) theory of deGennes over all measured values of the segment-segment interaction parameter Chi. In the region (Chi s-Chi)Chi s -1 > 0.5 the interaction parameter determined using the RPA theory for q > R/sub g/ -1 is greater than that calculated from the zero-angle intensity based on an Ornstein-Zernike plot, where Chi s represents the limit of single phase stability. These findings indicate a correlation between the critical fluctuation length ξ and R/sub g/ which is not accounted for by the RPA theory

  11. Scattering of a light wave by a thin fiber on or near a prism: experiment and analytical theory.

    Science.gov (United States)

    Tajima, Fumiaki; Nishiyama, Yoshio

    2012-06-01

    We have performed an experiment of the scattering of the near field on a prism created by a laser wave, evanescent wave (EW), or plane wave (PW) of an incident angle slightly larger than or smaller than the critical angle, by a thin fiber of subwavelength diameter set above the prism, and we made an analytical theory of an adapted model for the experiment. We have been able to analyze the experimental data exactly by the model theory better than any other theory we have ever known. The importance of the multiple interaction of the wave between the fiber and the surface and also the close similarity of the scattering characteristics between the EW and the PW mentioned above have been acknowledged by the analysis of the data obtained.

  12. Full correction of scattering effects by using the radiative transfer theory for improved quantitative analysis of absorbing species in suspensions.

    Science.gov (United States)

    Steponavičius, Raimundas; Thennadil, Suresh N

    2013-05-01

    Sample-to-sample photon path length variations that arise due to multiple scattering can be removed by decoupling absorption and scattering effects by using the radiative transfer theory, with a suitable set of measurements. For samples where particles both scatter and absorb light, the extracted bulk absorption spectrum is not completely free from nonlinear particle effects, since it is related to the absorption cross-section of particles that changes nonlinearly with particle size and shape. For the quantitative analysis of absorbing-only (i.e., nonscattering) species present in a matrix that contains a particulate species that absorbs and scatters light, a method to eliminate particle effects completely is proposed here, which utilizes the particle size information contained in the bulk scattering coefficient extracted by using the Mie theory to carry out an additional correction step to remove particle effects from bulk absorption spectra. This should result in spectra that are equivalent to spectra collected with only the liquid species in the mixture. Such an approach has the potential to significantly reduce the number of calibration samples as well as improve calibration performance. The proposed method was tested with both simulated and experimental data from a four-component model system.

  13. Interaction of a high-order Bessel beam with a submerged spherical ultrasound contrast agent shell - Scattering theory.

    Science.gov (United States)

    Mitri, F G

    2010-03-01

    Acoustic scattering properties of ultrasound contrast agents are useful in extending existing or developing new techniques for biomedical imaging applications. A useful first step in this direction is to investigate the acoustic scattering of a new class of acoustic beams, known as helicoidal high-order Bessel beams, to improve the understanding of their scattering characteristics by an ultrasound contrast agent, which at present is very limited. The transverse acoustic scattering of a commercially available albuminoidal ultrasound contrast agent shell filled with air or a denser gas such as perfluoropropane and placed in a helicoidal Bessel beam of any order is examined numerically. The shell is assumed to possess an outer radius a=3.5 microns and a thickness of approximately 105 nm. Moduli of the total and resonance transverse acoustic scattering form functions are numerically evaluated in the bandwidth 0scattering of a helicoidal Bessel beam of order m1 so that the dynamics of contrast agents would be significantly altered. The main finding of the present theory is the suppression or enhancement for a particular resonance that may be used to advantage in imaging with ultrasound contrast agents for clinical applications. 2009 Elsevier B.V. All rights reserved.

  14. Proton scattering from Li isotopes in the context of the Glauber theory. nuclear structure and interaction mechanisms

    International Nuclear Information System (INIS)

    Ibrayeva, E.T.; Prmantayeva, B. A.; Kuterbekov, K. A.; Temerbayev, A. A.; Tleulessova, I. K.; Zhigalova, A.

    2012-01-01

    The purpose of the present work is studying the structure of various isotopes of lithium 6 , 7 , 8 , 9 Li and the mechanism of their interaction with protons in the processes of elastic scattering. Differential cross sections and analyzing powers for elastic proton scattering from nuclei of Li are calculated in the context of the Glauber diffraction theory. Comparison of the result of calculations with the experimental data has allowed to draw conclusions on the structure of the given nuclei and their interaction mechanisms. (Authors)

  15. Laser-induced stimulated Raman scattering in the forward direction of a droplet - Comparison of Mie theory with geometrical optics

    Science.gov (United States)

    Srivastava, Vandana; Jarzembski, Maurice A.

    1991-01-01

    This paper uses Mie theory to treat electromagnetic scattering and to evaluate field enhancement in the forward direction of a small droplet irradiated by a high-energy beam and compares the results of calculations with the field-enhancement evaluation obtained via geometrical optics treatment. Results of this comparison suggest that the field enhancement located at the critical ring region encircling the axis in the forward direction of the droplet can support laser-induced Raman scattering. The results are supported by experimental observations of the interaction of a 120-micron-diam water droplet with a high-energy Nd:YAG laser beam.

  16. Spin-density correlations in the dynamic spin-fluctuation theory: Comparison with polarized neutron scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, N.B., E-mail: melnikov@cs.msu.su [Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Reser, B.I., E-mail: reser@imp.uran.ru [Miheev Institute of Metal Physics, Ural Branch of Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation); Paradezhenko, G.V., E-mail: gparadezhenko@cs.msu.su [Lomonosov Moscow State University, Moscow 119991 (Russian Federation)

    2016-08-01

    To study the spin-density correlations in the ferromagnetic metals above the Curie temperature, we relate the spin correlator and neutron scattering cross-section. In the dynamic spin-fluctuation theory, we obtain explicit expressions for the effective and local magnetic moments and spatial spin-density correlator. Our theoretical results are demonstrated by the example of bcc Fe. The effective and local moments are found in good agreement with results of polarized neutron scattering experiment over a wide temperature range. The calculated short-range order is small (up to 4 Å) and slowly decreases with temperature.

  17. N-body quantum scattering theory in two Hilbert spaces. VII. Real-energy limits

    International Nuclear Information System (INIS)

    Chandler, C.; Gibson, A.G.

    1994-01-01

    A study is made of the real-energy limits of approximate solutions of the Chandler--Gibson equations, as well as the real-energy limits of the approximate equations themselves. It is proved that (1) the approximate time-independent transition operator T π (z) and an auxiliary operator M π (z), when restricted to finite energy intervals, are trace class operators and have limits in trace norm for almost all values of the real energy; (2) the basic dynamical equation that determines the operator M π (z), when restricted to the space of trace class operators, has a real-energy limit in trace norm for almost all values of the real energy; (3) the real-energy limit of M π (z) is a solution of the real-energy limit equation; (4) the diagonal (on-shell) elements of the kernels of the real-energy limit of T π (z) and of all solutions of the real-energy limit equation exactly equal the on-shell transition operator, implying that the real-energy limit equation uniquely determines the physical transition amplitude; and (5) a sequence of approximate on-shell transition operators converges strongly to the exact on-shell transition operator. These mathematically rigorous results are believed to be the most general of their type for nonrelativistic N-body quantum scattering theories

  18. Rayleigh Scattering Density Measurements, Cluster Theory, and Nucleation Calculations at Mach 10

    Science.gov (United States)

    Balla, R. Jeffrey; Everhart, Joel L.

    2012-01-01

    In an exploratory investigation, quantitative unclustered laser Rayleigh scattering measurements of density were performed in the air in the NASA Langley Research Center's 31 in. Mach 10 wind tunnel. A review of 20 previous years of data in supersonic and Mach 6 hypersonic flows is presented where clustered signals typically overwhelmed molecular signals. A review of nucleation theory and accompanying nucleation calculations are also provided to interpret the current observed lack of clustering. Data were acquired at a fixed stagnation temperature near 990Kat five stagnation pressures spanning 2.41 to 10.0 MPa (350 to 1454 psi) using a pulsed argon fluoride excimer laser and double-intensified charge-coupled device camera. Data averaged over 371 images and 210 pixels along a 36.7mmline measured freestream densities that agree with computed isentropic-expansion densities to less than 2% and less than 6% at the highest and lowest densities, respectively. Cluster-free Mach 10 results are compared with previous clustered Mach 6 and condensation-free Mach 14 results. Evidence is presented indicating vibrationally excited oxygen and nitrogen molecules are absorbed as the clusters form, release their excess energy, and inhibit or possibly reverse the clustering process. Implications for delaying clustering and condensation onset in hypersonic and hypervelocity facilities are discussed.

  19. Regularization and the potential of effective field theory in nucleon-nucleon scattering

    International Nuclear Information System (INIS)

    Phillips, D.R.

    1998-04-01

    This paper examines the role that regularization plays in the definition of the potential used in effective field theory (EFT) treatments of the nucleon-nucleon interaction. The author considers N N scattering in S-wave channels at momenta well below the pion mass. In these channels (quasi-)bound states are present at energies well below the scale m π 2 /M expected from naturalness arguments. He asks whether, in the presence of such a shallow bound state, there is a regularization scheme which leads to an EFT potential that is both useful and systematic. In general, if a low-lying bound state is present then cutoff regularization leads to an EFT potential which is useful but not systematic, and dimensional regularization with minimal subtraction leads to one which is systematic but not useful. The recently-proposed technique of dimensional regularization with power-law divergence subtraction allows the definition of an EFT potential which is both useful and systematic

  20. Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering.

    Science.gov (United States)

    Roelli, Philippe; Galland, Christophe; Piro, Nicolas; Kippenberg, Tobias J

    2016-02-01

    The exceptional enhancement of Raman scattering by localized plasmonic resonances in the near field of metallic nanoparticles, surfaces or tips (SERS, TERS) has enabled spectroscopic fingerprinting down to the single molecule level. The conventional explanation attributes the enhancement to the subwavelength confinement of the electromagnetic field near nanoantennas. Here, we introduce a new model that also accounts for the dynamical nature of the plasmon-molecule interaction. We thereby reveal an enhancement mechanism not considered before: dynamical backaction amplification of molecular vibrations. We first map the system onto the canonical Hamiltonian of cavity optomechanics, in which the molecular vibration and the plasmon are parametrically coupled. We express the vacuum optomechanical coupling rate for individual molecules in plasmonic 'hot-spots' in terms of the vibrational mode's Raman activity and find it to be orders of magnitude larger than for microfabricated optomechanical systems. Remarkably, the frequency of commonly studied molecular vibrations can be comparable to or larger than the plasmon's decay rate. Together, these considerations predict that an excitation laser blue-detuned from the plasmon resonance can parametrically amplify the molecular vibration, leading to a nonlinear enhancement of Raman emission that is not predicted by the conventional theory. Our optomechanical approach recovers known results, provides a quantitative framework for the calculation of cross-sections, and enables the design of novel systems that leverage dynamical backaction to achieve additional, mode-selective enhancements. It also provides a quantum mechanical framework to analyse plasmon-vibrational interactions in terms of molecular quantum optomechanics.

  1. Generalized theory of resonance excitation by sound scattering from an elastic spherical shell in a nonviscous fluid.

    Science.gov (United States)

    Mitri, Farid G

    2012-08-01

    This work presents the general theory of resonance scattering (GTRS) by an elastic spherical shell immersed in a nonviscous fluid and placed arbitrarily in an acoustic beam. The GTRS formulation is valid for a spherical shell of any size and material regardless of its location relative to the incident beam. It is shown here that the scattering coefficients derived for a spherical shell immersed in water and placed in an arbitrary beam equal those obtained for plane wave incidence. Numerical examples for an elastic shell placed in the field of acoustical Bessel beams of different types, namely, a zero-order Bessel beam and first-order Bessel vortex and trigonometric (nonvortex) beams are provided. The scattered pressure is expressed using a generalized partial-wave series expansion involving the beam-shape coefficients (BSCs), the scattering coefficients of the spherical shell, and the half-cone angle of the beam. The BSCs are evaluated using the numerical discrete spherical harmonics transform (DSHT). The far-field acoustic resonance scattering directivity diagrams are calculated for an albuminoidal shell immersed in water and filled with perfluoropropane gas, by subtracting an appropriate background from the total far-field form function. The properties related to the arbitrary scattering are analyzed and discussed. The results are of particular importance in acoustical scattering applications involving imaging and beam-forming for transducer design. Moreover, the GTRS method can be applied to investigate the scattering of any beam of arbitrary shape that satisfies the source-free Helmholtz equation, and the method can be readily adapted to viscoelastic spherical shells or spheres.

  2. Sound extinction by fish schools: forward scattering theory and data analysis.

    Science.gov (United States)

    Raveau, M; Feuillade, C

    2015-02-01

    A model used previously to study collective back scattering from fish schools [Feuillade et al., J. Acoust. Soc. Am. 99(1), 196-208 (1996)], is used to analyze the forward scattering properties of these objects. There is an essential physical difference between back and forward scattering from fish schools. Strong frequency dependent interference effects, which affect the back scattered field amplitude, are absent in the forward scattering case. This is critically important for data analysis. There is interest in using back scattering and transmission data from fish schools to study their size, the species and abundance of fish, and fish behavior. Transmission data can be processed to determine the extinction of the field by a school. The extinction of sound depends on the forward scattering characteristics of the school, and data inversion to provide information about the fish should be based upon a forward scattering paradigm. Results are presented of an analysis of transmission data obtained in September 1995 during an experiment performed in the Gulf of Lion in the Mediterranean Sea [Diachok, J. Acoust. Soc. Am. 105(4), 2107-2128 (1999)]. The analysis shows that using forward scattering leads to significantly larger estimates of fish abundance than previous analysis based upon back scattering approaches.

  3. Path-integral theory of the scattering of 4He atoms at the surface of liquid 4He

    International Nuclear Information System (INIS)

    Swanson, D.R.; Edwards, D.O.

    1988-01-01

    The path-integral theory of the scattering of a 4 He atom near the free surface of liquid 4 He, which was originally formulated by Echenique and Pendry, has been recalculated with use of a physically realistic static potential and atom-ripplon interaction outside the liquid. The static potential and atom-ripplon interaction are based on the variational calculation of Edwards and Fatouros. An important assumption in the path-integral theory is the ''impulse approximation'': that the motion of the scattered atom is very fast compared with the motion of the surface due to ripplons. This is found to be true only for ripplons with wave vectors smaller than q/sub m/∼0.2 A/sup -1/. If ripplons above q/sub m/ made an important contribution to the scattering of the atom there would be a substantial dependence of the elastic reflection coefficient on the angle of incidence of the atom. Since this is not observed experimentally, it is argued that ripplons above q/sub m/ give a negligible effect and should be excluded from the calculation. With this modification the theory gives a good fit to the experimental reflection coefficient as a function of the momentum and angle of incidence of the atom. The new version of the theory indicates that there is a substantial probability that an atom may reach the surface of the liquid without exciting any ripplons. The theory is not valid when the atom enters the liquid but analysis of the experiments shows that, once inside the liquid, the atom has a negligible chance of being scattered out again

  4. Theory of inelastic multiphonon scattering and carrier capture by defects in semiconductors: Application to capture cross sections

    Science.gov (United States)

    Barmparis, Georgios D.; Puzyrev, Yevgeniy S.; Zhang, X.-G.; Pantelides, Sokrates T.

    2015-12-01

    Inelastic scattering and carrier capture by defects in semiconductors are the primary causes of hot-electron-mediated degradation of power devices, which holds up their commercial development. At the same time, carrier capture is a major issue in the performance of solar cells and light-emitting diodes. A theory of nonradiative (multiphonon) inelastic scattering by defects, however, is nonexistent, while the theory for carrier capture by defects has had a long and arduous history. Here we report the construction of a comprehensive theory of inelastic scattering by defects, with carrier capture being a special case. We distinguish between capture under thermal equilibrium conditions and capture under nonequilibrium conditions, e.g., in the presence of an electrical current or hot carriers where carriers undergo scattering by defects and are described by a mean free path. In the thermal-equilibrium case, capture is mediated by a nonadiabatic perturbation Hamiltonian, originally identified by Huang and Rhys and by Kubo, which is equal to linear electron-phonon coupling to first order. In the nonequilibrium case, we demonstrate that the primary capture mechanism is within the Born-Oppenheimer approximation (adiabatic transitions), with coupling to the defect potential inducing Franck-Condon electronic transitions, followed by multiphonon dissipation of the transition energy, while the nonadiabatic terms are of secondary importance (they scale with the inverse of the mass of typical atoms in the defect complex). We report first-principles density-functional-theory calculations of the capture cross section for a prototype defect using the projector-augmented wave, which allows us to employ all-electron wave functions. We adopt a Monte Carlo scheme to sample multiphonon configurations and obtain converged results. The theory and the results represent a foundation upon which to build engineering-level models for hot-electron degradation of power devices and the performance

  5. Resonance scattering by auroral N2+: steady state theory and observations from Svalbard

    Directory of Open Access Journals (Sweden)

    O. Jokiaho

    2009-09-01

    Full Text Available Studies of auroral energy input at high latitudes often depend on observations of emissions from the first negative band of ionised nitrogen. However, these emissions are affected by solar resonance scattering, which makes photometric and spectrographic measurements difficult to interpret. This work is a statistical study from Longyearbyen, Svalbard, Norway, during the solar minimum between January and March 2007, providing a good coverage in shadow height position and precipitation conditions. The High Throughput Imaging Echelle Spectrograph (HiTIES measured three bands of N2+ 1N (0,1, (1,2 and (2,3, and one N2 2P band (0,3 in the magnetic zenith. The brightness ratios of the N2+ bands are compared with a theoretical treatment with excellent results. Balance equations for all important vibrational levels of the three lowest electronic states of the N2+ molecule are solved for steady-state, and the results combined with ion chemistry modelling. Brightnesses of the (0,1, (1,2 and (2,3 bands of N2+ 1N are calculated for a range of auroral electron energies, and different values of shadow heights. It is shown that in sunlit aurora, the brightness of the (0,1 band is enhanced, with the scattered contribution increasing with decreasing energy of precipitation (10-fold enhancements for energies of 100 eV. The higher vibrational bands are enhanced even more significantly. In sunlit aurora the observed 1N (1,2/(0,1 and (2,3/(0,1 ratios increase as a function of decreasing precipitation energy, as predicted by theory. In non-sunlit aurora the N2+ species have a constant proportionality to neutral N2. The ratio of 2P(0,3/1N(0,1 in the morning hours shows a pronounced decrease, indicating enhancement of N2+ 1N emission. Finally we study the relationship of all emissions and their ratios to rotational temperatures. A clear effect is observed on rotational development of the bands. It is possible that greatly enhanced rotational temperatures may be a

  6. THEORY AND SIMULATIONS OF REFRACTIVE SUBSTRUCTURE IN RESOLVED SCATTER-BROADENED IMAGES

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Michael D. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Gwinn, Carl R., E-mail: mjohnson@cfa.harvard.edu [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)

    2015-06-01

    At radio wavelengths, scattering in the interstellar medium distorts the appearance of astronomical sources. Averaged over a scattering ensemble, the result is a blurred image of the source. However, Narayan and Goodman and Goodman and Narayan showed that for an incomplete average, scattering introduces refractive substructure in the image of a point source that is both persistent and wideband. We show that this substructure is quenched but not smoothed by an extended source. As a result, when the scatter-broadening is comparable to or exceeds the unscattered source size, the scattering can introduce spurious compact features into images. In addition, we derive efficient strategies to numerically compute realistic scattered images, and we present characteristic examples from simulations. Our results show that refractive substructure is an important consideration for ongoing missions at the highest angular resolutions, and we discuss specific implications for RadioAstron and the Event Horizon Telescope.

  7. Variation of the critical slab thickness with the degree of strongly anisotropic scattering in one-speed neutron transport theory

    International Nuclear Information System (INIS)

    Yildiz, C.

    1998-01-01

    The critical slab problem is studied in one-speed neutron transport theory using a linearly anisotropic kernel which combines forward and backward scattering. It is shown that, the recently observed non-monotonic variation of the thickness also exists in this strongly anisotropic case. In addition, the influence of the linear anisotropy on the critical thickness is analysed in detail. Numerical analysis for the critical thickness are performed using the spherical harmonics method and results are tabulated for selected illustrative cases as a function of different degrees of anisotropic scattering. Finally, some results are discussed and compared with those already obtained by other methods, the agreement is satisfactory. The spherical harmonic method gives generally accurate results in one dimensional geometry, and it is very suitable for the numerical solution of the neutron transport equation with linearly anisotropic scattering

  8. Renormalization group and relations between scattering amplitudes in a theory with different mass scales

    International Nuclear Information System (INIS)

    Gulov, A.V.; Skalozub, V.V.

    2000-01-01

    In the Yukawa model with two different mass scales the renormalization group equation is used to obtain relations between scattering amplitudes at low energies. Considering fermion-fermion scattering as an example, a basic one-loop renormalization group relation is derived which gives possibility to reduce the problem to the scattering of light particles on the external field substituting a heavy virtual state. Applications of the results to problem of searching new physics beyond the Standard Model are discussed [ru

  9. On theory of π-mesons low-energy scattering on the deuterons

    International Nuclear Information System (INIS)

    Zubarev, A.L.; Irgaziev, B.F.; Podkopaev, A.P.; Fridman, A.A.

    1979-01-01

    The pion-deuteron scattering length is calculated using the equations derived by application of Shwinger variational principle to the strongly coupled channel method. The dependence upon the πN-scattering lengths, effective radii and shape of the NN potential is studied. The πN interaction is described by local potentials. The contribution given by closed channels to the πd-scattering length is shown to be of 30 %

  10. Second-order multiple-scattering theory associated with backscattering enhancement for a millimeter wavelength weather radar with a finite beam width

    Science.gov (United States)

    Kobayashi, Satoru; Tanelli, Simone; Im, Eastwood

    2005-01-01

    Effects of multiple scattering on reflectivity are studied for millimeter wavelength weather radars. A time-independent vector theory, including up to second-order scattering, is derived for a single layer of hydrometeors of a uniform density and a uniform diameter. In this theory, spherical waves with a Gaussian antenna pattern are used to calculate ladder and cross terms in the analytical scattering theory. The former terms represent the conventional multiple scattering, while the latter terms cause backscattering enhancement in both the copolarized and cross-polarized components. As the optical thickness of the hydrometeor layer increases, the differences from the conventional plane wave theory become more significant, and essentially, the reflectivity of multiple scattering depends on the ratio of mean free path to radar footprint radius. These results must be taken into account when analyzing radar reflectivity for use in remote sensing.

  11. Scattering by non-spherical particles of size comparable to a wavelength - A new semi-empirical theory. [atmospheric radiative transfer

    Science.gov (United States)

    Pollack, J. B.; Cuzzi, J. N.

    1978-01-01

    Mie theory, which is generally used to describe the scattering behavior of particles at a certain wavelength, is only rigorously correct for spherical particles. Particles found as atmospheric constituents, with the exception of cloud droplets, are, however, decidedly nonspherical. An investigation is, therefore, conducted regarding the significant ways in which the scattering behavior of irregularly shaped particles differs from that of spheres. A systematic method is formulated for treating the real scalar scattering behavior. A description is presented of a new semiempirical theory based on simple physical principles and data obtained in laboratory measurements, which successfully reproduces the single scattering phase function for a wide range of particle shapes, sizes, and refractive indices.

  12. Strong coupling expansion for scattering phases in hamiltonian lattice field theories. Pt. 2. SU(2) gauge theory in (2+1) dimensions

    International Nuclear Information System (INIS)

    Dahmen, B.

    1994-12-01

    A recently proposed method for a strong coupling analysis of scattering phenomena in hamiltonian lattice field theories is applied to the SU(2) Yang-Mills model in (2 + 1) dimensions. The calculation is performed up to second order in the hopping parameter. All relevant quantities that characterize the collision between the lightest glueballs in the elastic region - cross section, phase shifts, resonance parameters - are determined. (orig.)

  13. Prospects of using the second-order perturbation theory of the MP2 type in the theory of electron scattering by polyatomic molecules

    Czech Academy of Sciences Publication Activity Database

    Čársky, Petr

    2015-01-01

    Roč. 191, č. 2015 (2015), s. 191-192 ISSN 1551-7616 R&D Projects: GA MŠk OC09079; GA MŠk(CZ) OC10046; GA ČR GA202/08/0631 Grant - others:COST(XE) CM0805; COST(XE) CM0601 Institutional support: RVO:61388955 Keywords : electron-scattering * calculation of cross sections * second-order perturbation theory Subject RIV: CF - Physical ; Theoretical Chemistry

  14. The organic surface of 5145 Pholus: Constraints set by scattering theory

    Science.gov (United States)

    Wilson, Peter D.; Sagan, Carl; Thompson, W. Reid

    1994-01-01

    No known body in the Solar System has a spectrum redder than that of object 5145 Pholus. We use Hapke scattering theory and optical constants measured in this laboratory to examine the ability of mixtures of a number of organic solids and ices to reproduce the observed spectrum and phase variation. The primary materials considered are poly-HCN, kerogen, Murchison organic extract, Titan tholin, ice tholin, and water ice. In a computer grid search of over 10 million models, we find an intraparticle mixture of 15% Titan tholin, 10% poly-HCN, and 75% water ice with 10-micrometers particles to provide an excellent fit. Replacing water ice with ammonia ice improves the fits significantly while using a pure hydrocarbon tholin, Tholin alpha, instead of Titan tholin makes only modest improvements. All acceptable fits require Titan tholin or some comparable material to provide the steep slope in the visible, and poly-HCN or some comparable material to provide strong absorption in the near-infrared. A pure Titan tholin surface with 16-micrometers particles, as well as all acceptable Pholus models, fit the present spectrophotometric data for the transplutonian object 1992 QB(sub 1). The feasibility of gas-phase chemistry to generate material like Titan tholin on such small objects is examined. An irradiated transient atmosphere arising from sublimating ices may generate at most a few centimeters of tholin over the lifetime of the Solar System, but this is insignificant compared to the expected lag deposit of primordial contaminants left behind by the sublimating ice. Irradiation of subsurface N2/CH4 or NH3/CH4 ice by cosmic rays may generate approximately 20 cm of tholin in the upper 10 m of regolith in the same time scale but the identity of this tholin to its gas-phase equivalent has not been demonstrated.

  15. Multiple scattering of MeV ions: Comparison between the analytical theory and Monte-Carlo and molecular dynamics simulations

    International Nuclear Information System (INIS)

    Mayer, M.; Arstila, K.; Nordlund, K.; Edelmann, E.; Keinonen, J.

    2006-01-01

    Angular and energy distributions due to multiple small angle scattering were calculated with different models, namely from the analytical Szilagyi theory, the Monte-Carlo code MCERD in binary collision approximation and the molecular dynamics code MDRANGE, for 2 MeV 4 He in Au at backscattering geometry and for 20 MeV 127 I recoil analysis of carbon. The widths and detailed shapes of the distributions are compared, and reasons for deviations between the different models are discussed

  16. STAX-2, Neutron Scattering Cross-Sections by Optical Model and Moldauer Theory with Hauser-Feshbach

    International Nuclear Information System (INIS)

    Tomita, Y.

    1972-01-01

    1 - Nature of physical problem solved: The program calculates neutron scattering cross sections by means of the optical model and Moldauer's theory, and can search for potential parameters which reproduce measured cross sections. The Hauser-Feshbach calculation is also possible. 2 - Restrictions on the complexity of the problem: The maximum number of levels is 25. The largest value of the orbital angular momentum is 10

  17. On the Scalar Scattering Theory for Thin-Film Solar Cells

    NARCIS (Netherlands)

    Jäger, K.

    2012-01-01

    Nano-textured interfaces between two media of different refractive indices scatter light. The angular distribution and the intensity of the scattered light are deter- mined by the geometry of the nano-textures and the difference of the refractive indices of the two media. Thin-film silicon solar

  18. Eikonal multiple scattering model within the framework of Feynman's positron theory

    International Nuclear Information System (INIS)

    Tekou, A.

    1986-07-01

    The Bethe Salpeter equation for nucleon-nucleon, nucleon-nucleus and nucleus-nucleus scattering is eikonalized. Multiple scattering series is obtained. Contributions of three body interations are included. The model presented below may be used to investigate atomic collisions. (author)

  19. All orders transport theory from the multiple scattering expansion of the self-energy. The central cuts

    International Nuclear Information System (INIS)

    Gagnon, J.S.; Fillion-Gourdeau, F.; Sangyong Jeong; RIKEN Research Center, Upton, NY

    2006-01-01

    We use the full multiple scattering expansion of the retarded self-energy to obtain the gain and loss rates present in the Kadanoff-Baym relativistic transport equation. The rates we obtain include processes with any number of particles. As a first approximation, we only consider central cuts in the self-energies, but otherwise our results are general. We specialize to the case of scalar field theory to compare with lowest order results. The main application of this work is relativistic transport theory of very dense systems, such as the quark-gluon plasma or the early universe, where multi-particle interactions are important. (author)

  20. Electromagnetic corrections to ππ scattering lengths: some lessons for the construction of effective hadronic field theories

    International Nuclear Information System (INIS)

    Maltman, K.

    1998-01-01

    Using the framework of effective chiral Lagrangians, we show that, in order to correctly implement electromagnetism (EM), as generated from the Standard Model, into effective hadronic theories (such as meson-exchange models) it is insufficient to consider only graphs in the low-energy effective theory containing explicit photon lines. The Standard Model requires the presence of contact interactions in the effective theory which are electromagnetic in origin, but which involve no photons in the effective theory. We illustrate the problems which can result from a ''standard'' EM subtraction: i.e., from assuming that removing all contributions in the effective theory generated by graphs with explicit photon lines fully removes EM effects, by considering the case of the s-wave ππ scattering lengths. In this case it is shown that such a subtraction procedure would lead to the incorrect conclusion that the strong interaction isospin-breaking contributions to these quantities were large when, in fact, they are known to vanish at leading order in m d -m u . The leading EM contact corrections for the channels employed in the extraction of the I=0,2 s-wave ππ scattering lengths from experiment are also evaluated. (orig.)

  1. Forward scattering of polarized light from a turbid slab: theory and Monte Carlo simulations.

    Science.gov (United States)

    Otsuki, Soichi

    2016-12-20

    It is proved that if reciprocity and mirror symmetry hold for single scattering by a particle, they also hold for multiple scattering in turbid slab media. Monte Carlo simulations generate a reduced effective Mueller matrix for forward scattering, which satisfies reciprocity and mirror symmetry, but satisfies only reciprocity if the medium contains chiral components. The scattering matrix was factorized by using the Lu-Chipman polar decomposition, which affords the polarization parameters as a function of the radial distance from the center. The depolarization coefficients decrease with increasing distance, whereas the scattering-induced linear diattenuation and retardance become larger in the middle-distance range. The optical rotation for a chiral medium increases with increasing distance.

  2. Compton scattering on the proton, neutron, and deuteron in chiral perturbation theory to O(Q{sup 4})

    Energy Technology Data Exchange (ETDEWEB)

    S.R. Beane; M. Malheiro; J.A. McGovern; D.R. Phillips; U. van Kolck

    2004-03-01

    We study Compton scattering in systems with A=1 and 2 using chiral perturbation theory up to fourth order. For the proton we fit the two undetermined parameters in the O(Q{sup 4}) {gamma}p amplitude of McGovern to experimental data in the region {omega}, {radical}|t| {le} 180 MeV, obtaining a {chi}{sup 2}/d.o.f. of 133/113. This yields a model-independent extraction of proton polarizabilities based solely on low-energy data: {alpha}{sub p} = (12.1 {+-} 1.1 (stat.)){sub -0.5}{sup +0.5} (theory) and {beta}{sub p} = (3.4 {+-} 1.1 (stat.)){sub -0.1}{sup +0.1} (theory), both in units of 10{sup -4} fm{sup 3}. We also compute Compton scattering on deuterium to O(Q{sup 4}). The {gamma}d amplitude is a sum of one- and two-nucleon mechanisms, and contains two undetermined parameters, which are related to the isoscalar nucleon polarizabilities. We fit data points from three recent {gamma}d scattering experiments with a {chi}{sup 2}/d.o.f. = 26.3/20, and find {alpha}{sub N} = 8.9 {+-} 1.5 (stat.){sub -0.9}{sup +4.7} (theory) and {beta}{sub N} = 2.2 {+-} 1.5 (stat.){sub -0.9}{sup +1.2} (theory), again in units of 10{sup -4} fm{sup 3}.

  3. Transfer by anisotropic scattering between subsets of the unit sphere of directions in linear transport theory

    International Nuclear Information System (INIS)

    Trombetti, T.

    1990-01-01

    The exact kernel method is presented for linear transport problems with azimuth-dependent angular fluxes. It is based on the evaluation of average scattering densities (ASD's) that fully describe the neutron (or particle) transfer between subsets of the unit sphere of directions by anisotropic scattering. Reciprocity and other ASD functional properties are proved and combined with the symmetry properties of suitable SN quadrature sets. This greatly reduces the number of independent ASD's to be computed and stored. An approach for performing ASD computations with reciprocity checks is presented. ASD expressions of the scattering source for typical 2D geometries are explicitly given. (author)

  4. Delayed coherent quantum feedback from a scattering theory and a matrix product state perspective

    Science.gov (United States)

    Guimond, P.-O.; Pletyukhov, M.; Pichler, H.; Zoller, P.

    2017-12-01

    We study the scattering of photons propagating in a semi-infinite waveguide terminated by a mirror and interacting with a quantum emitter. This paradigm constitutes an example of coherent quantum feedback, where light emitted towards the mirror gets redirected back to the emitter. We derive an analytical solution for the scattering of two-photon states, which is based on an exact resummation of the perturbative expansion of the scattering matrix, in a regime where the time delay of the coherent feedback is comparable to the timescale of the quantum emitter’s dynamics. We compare the results with numerical simulations based on matrix product state techniques simulating the full dynamics of the system, and extend the study to the scattering of coherent states beyond the low-power limit.

  5. One-dimensional theory and simulation of acceleration in relativistic electron beam Raman scattering

    International Nuclear Information System (INIS)

    Abe, T.

    1986-01-01

    Raman scattering by a parallel relativistic electron beam was examined analytically and by using the numerical simulation. Incident wave energy can be transferred not only to the scattered electromagnetic wave but also to the beam. That is, the beam can be accelerated by the Doppler-shifted plasma oscillation accompanied by the scattered wave. The energy conversion rates for them were obtained. They increase with the γ value of the electron beam. For the larger γ values of the beam, the energy of the incident wave is mainly transferred to the beam, while in smaller γ, the energy conversion rate to the scattered wave is about 0.2 times that to the beam. Even in smaller γ, the total energy conversion rate is about 0.1

  6. An analytical theory of radio-wave scattering from meteoric ionization - I. Basic equation

    Czech Academy of Sciences Publication Activity Database

    Pecina, Petr

    2016-01-01

    Roč. 455, č. 2 (2016), s. 2200-2206 ISSN 0035-8711 Institutional support: RVO:67985815 Keywords : scattering * radar astronomy * meteorites Subject RIV: BN - Astronomy , Celestial Mechanics, Astrophysics Impact factor: 4.961, year: 2016

  7. Precise tests of x-ray scattering theories in the Compton regime

    International Nuclear Information System (INIS)

    Dunford, R. W.; Gemmell, D. S.; Kanter, E. P.; Kraessig, B.; Southworth, S. H.; Young, L.

    1999-01-01

    The authors report two experiments intended to test the accuracy of state-of-the-art theoretical predictions for x-ray scattering from low-Z atoms. The first one deals with the differential x-ray scattering cross sections in Ne and He from 11-22 keV and the Ne Compton-to-Rayleigh scattering ratio in this energy range. It was found that, in order to be consistent with the experimental results, an accurate description at low Z must include nonlocal exchange, electron correlation, and dynamic effects. The second experiment concerns the ratio of helium double-to-single ionization for Compton scattering in the 8-28 keV energy range where published experimental and theoretical results so far fail to give a consistent picture. The progress of the experiment and the data analysis is reported

  8. The theory of electromagnetic wave scattering by density fluctuations in nonequilibrium plasma

    International Nuclear Information System (INIS)

    Pavlenko, V.N.; Panchenko, V.G.

    1993-01-01

    Scattering of electromagnetic waves by density fluctuations in a magnetized plasma in the presence of the external pump field is investigated. The spectral density of electron density fluctuations is calculated. The pump wave is supposed to decay into a lower hybrid wave and low frequency oscillations (ion-acoustic wave, modified convective cell and ion-cyclotron wave with ion-temperature anisotropy). When the pump wave amplitude tends to the threshold strength of the electric field, the scattering cross section increases anomalously, i.e. there is the critical opalescence. The differential scattering cross section dependence on the pump amplitude and ion temperature anisotropy is obtained in the region above the parametric instability threshold. For characteristic parameters of fusion and space plasmas it is shown that the pump field terms considerably surmount the thermal noise contribution to the scattering cross section

  9. Scattering theory for one-dimensional systems with ∫dx V(x) = 0

    International Nuclear Information System (INIS)

    Bolle, D.; Gesztesy, F.; Klaus, M.

    1984-01-01

    Low-energy scattering for Schroedinger operators of the type H=- Δ + V in L 2 (IR) with ∫sub(R)dx V(x) = 0 is considered. The possibility of zero-energy eigenstates of H is taken into account explicitly. In particular, a Laurent expansion for the transition operator and recursion relations for its coefficients are provided and the leading behavior of the scattering operator is given all in possible cases

  10. A semiclassical method in the theory of light scattering by semiconductor quantum dots

    International Nuclear Information System (INIS)

    Lang, I. G.; Korovin, L. I.; Pavlov, S. T.

    2008-01-01

    A semiclassical method is proposed for the theoretical description of elastic light scattering by arbitrary semiconductor quantum dots under conditions of size quantization. This method involves retarded potentials and allows one to dispense with boundary conditions for electric and magnetic fields. Exact results for the Umov-Poynting vector at large distances from quantum dots in the case of monochromatic and pulsed irradiation and formulas for differential scattering cross sections are obtained

  11. Electromagnetic scattering from microwave absorbers - Laboratory verification of the coupled wave theory

    Science.gov (United States)

    Gasiewski, A. J.; Jackson, D. M.

    1992-01-01

    W-band measurements of the bistatic scattering function of some common microwave absorbing structures, including periodic wedge-type and pyramid-type iron-epoxy calibration loads and flat carbon-foam 'Echosorb' samples, were made using a network analyzer interface to a focused-lens scattering range. Swept frequency measurements over the 75-100 GHz band revealed specular and Bragg reflection characteristics in the measured data.

  12. Classical scattering theory of waves from the view point of an eigenvalue problem and application to target identification

    International Nuclear Information System (INIS)

    Bottcher, C.; Strayer, M.R.; Werby, M.F.

    1993-01-01

    The Helmholtz-Poincare Wave Equation (H-PWE) arises in many areas of classical wave scattering theory. In particular it can be found for the cases of acoustical scattering from submerged bounded objects and electromagnetic scattering from objects. The extended boundary integral equations (EBIE) method is derived from considering both the exterior and interior solutions of the H-PWE's. This coupled set of expressions has the advantage of not only offering a prescription for obtaining a solution for the exterior scattering problem, but it also obviates the problem of irregular values corresponding to fictitious interior eigenvalues. Once the coupled equations are derived, they can by obtained in matrix form be expanding all relevant terms in partial wave expansions, including a biorthogonal expansion of the Green function. However some freedom of choice in the choice of the surface expansion is available since the unknown surface quantities may be expanded in a variety of ways to long as closure is obtained. Out of many possible choices, we develop an optimal method to obtain such expansions which is based on the optimum eigenfunctions related to the surface of the object. In effect, we convert part of the problem (that associated with the Fredholms integral equation of the first kind) an eigenvalue problem of a related Hermition operator. The methodology will be explained in detail and examples will be presented

  13. Simultaneous distribution between the deflection angle and the lateral displacement under the Moliere theory of multiple scattering

    Energy Technology Data Exchange (ETDEWEB)

    Nakatsuka, Takao [Okayama Shoka University, Laboratory of Information Science, Okayama (Japan); Okei, Kazuhide [Kawasaki Medical School, Dept. of Information Sciences, Kurashiki (Japan); Iyono, Atsushi [Okayama university of Science, Dept. of Fundamental Science, Faculty of Science, Okayama (Japan); Bielajew, Alex F. [Univ. of Michigan, Dept. Nuclear Engineering and Radiological Sciences, Ann Arbor, MI (United States)

    2015-12-15

    Simultaneous distribution between the deflection angle and the lateral displacement of fast charged particles traversing through matter is derived by applying numerical inverse Fourier transforms on the Fourier spectral density solved analytically under the Moliere theory of multiple scattering, taking account of ionization loss. Our results show the simultaneous Gaussian distribution at the region of both small deflection angle and lateral displacement, though they show the characteristic contour patterns of probability density specific to the single and the double scatterings at the regions of large deflection angle and/or lateral displacement. The influences of ionization loss on the distribution are also investigated. An exact simultaneous distribution is derived under the fixed energy condition based on a well-known model of screened single scattering, which indicates the limit of validity of the Moliere theory applied to the simultaneous distribution. The simultaneous distribution will be valuable for improving the accuracy and the efficiency of experimental analyses and simulation studies relating to charged particle transports. (orig.)

  14. Study on the relationship between PM2.5 concentration and visibility in Beijing based on light scattering theory

    Science.gov (United States)

    Yang, YuFeng; Li, Ting

    2018-02-01

    The study of the relationship between transmittance visibility and PM2.5 concentration under the haze conditions has important theoretical significance for Free Space Optical communication (FSO). In this paper, the influence of PM2.5 concentration on the transmittance, attenuation coefficient and visibility was studied by light scattering theory, and the results by Mie theory and Monte Carlo method were analyzed. At the same time, the effect of PM2.5 particle size distribution on visibility was also analyzed, and the visibility calculated by light scattering method was compared with the visibility measured in Beijing from 2014 to 2016. The result shows that the higher PM2.5 concentration is the more obvious the multiple scattering effect is. When the mass concentration of PM2.5 is constant, the larger the geometric mean of the particle diameter is, the larger the visibility is. By comparing the visibility measured and the visibility calculated, we can see that when PM2.5 concentration is higher than 100μg/m3 , PM2.5 is the main factor affecting the visibility; and when PM2.5 concentration is lower than 100μg/m3, other factors (such as PM10, wind speed, air pressure and gas molecules) should also need to be considered.

  15. Applications of the Hybrid Theory to the Scattering of Electrons from HE+ and Li++ and Resonances in these Systems

    Science.gov (United States)

    Bhatia, Anand K.

    2008-01-01

    Applications of the hybrid theory to the scattering of electrons from Ile+ and Li++ and resonances in these systems, A. K. Bhatia, NASA/Goddard Space Flight Center- The Hybrid theory of electron-hydrogen elastic scattering [I] is applied to the S-wave scattering of electrons from He+ and Li++. In this method, both short-range and long-range correlations are included in the Schrodinger equation at the same time. Phase shifts obtained in this calculation have rigorous lower bounds to the exact phase shifts and they are compared with those obtained using the Feshbach projection operator formalism [2], the close-coupling approach [3], and Harris-Nesbet method [4]. The agreement among all the calculations is very good. These systems have doubly-excited or Feshbach resonances embedded in the continuum. The resonance parameters for the lowest ' S resonances in He and Li+ are calculated and they are compared with the results obtained using the Feshbach projection operator formalism [5,6]. It is concluded that accurate resonance parameters can be obtained by the present method, which has the advantage of including corrections due to neighboring resonances and the continuum in which these resonances are embedded.

  16. Scattering theory of ballistic-electron-emission microscopy at nonepitaxial interfaces

    International Nuclear Information System (INIS)

    Smith, D. L.; Kozhevnikov, M.; Lee, E. Y.; Narayanamurti, V.

    2000-01-01

    We present an interface scattering model to describe ballistic-electron-emission microscopy (BEEM) at nonepitaxial metal/semiconductor interfaces. The model starts with a Hamiltonian consisting of the sum of two terms: one term, H 0 , describes an ideal interface for which the interface parallel component of wave vector is a good quantum number, and the second term, δH, describes interfacial scattering centers. The eigenstates of H 0 consist of an incident and a reflected part in the metal and a transmitted part in the semiconductor. The three components of each eigenstate have the same interface parallel wave vector. Because tunneling preferentially weights forward-directed states, the interface parallel component of wave vector is small for the H 0 eigenstates that are initially populated with high probability in BEEM. δH scatters electrons between the eigenstates of H 0 . The scattering conserves energy, but not the interface parallel wave vector. In the final state of the scattering process, states with a large interface parallel wave vector can be occupied with reasonable probability. If scattering is weak, so that the parallel wave vector is nearly conserved, the calculated collector current into conduction-band valleys with zero parallel wave vector at the minimum, such as the Γ valley for GaAs(100), is much larger than the calculated collector current into conduction-band valleys with a large parallel wave vector at the minimum, such as the L valleys for GaAs(100). However, if scattering is strong, the injected electron flux distribution is redistributed and valleys with zero interface transverse wave vector at their energy minimum are not preferentially weighted. Instead, the weighting varies as the density of final states for the scattering process so that, for example, the calculated L-channel collector current is much larger than the calculated Γ-channel collector current for GaAs(100). Interfacial scattering reduces the overall magnitude of the

  17. Surface-enhanced Raman scattering and density functional theory study of 1,4-benzenedithiol and its silver complexes.

    Science.gov (United States)

    Shao, Yangfan; Li, Chongyang; Feng, Yuanming; Lin, Wang

    2013-12-01

    This paper experimentally and theoretically investigated Raman and surface-enhanced Raman scattering (SERS) of 1,4-benzenedithiol (1,4-BDT). Density functional theory methods were used to study Raman scattering spectra of isolated 1,4-BDT and 1,4-BDT-Agn (n=2,4,6) complexes with B3LYP/6-311+g(d)(C,H,S)/Lanl2dz(Ag) basis set. A full assignment of the Raman spectrum of 1,4-BDT has been made based on the DFT analysis. The calculated data showed good agreement with experimental observations. The adsorption sites, metal cluster size, and HOMO-LUMO energies are discussed to give insight in the SERS mechanisms for 1,4-BDT molecules. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Scattering of atoms by solid surfaces: A CCGM theory of diffraction by a one-dimensional stationary periodic wall

    International Nuclear Information System (INIS)

    Goodman, F.O.; Scribani, L.

    1981-01-01

    The CCGM theory of elastic atom--surface scattering, proposed by Cabrera, Celli, Goodman, and Manson [Surf. Sci. 19, 67 (1970)], is applied to the now-popular corrugated wall model of the scattering. Instead of the original ''hard'' wall, a ''softer'' wall, with finite potential step height, is used. The CCGM soft-wall results are compared with corresponding exact hard-wall results, for corrugations of the sinusoidal type and of other types, for example those with nondifferentiable corrugation functions. It is concluded that the CCGM soft-wall results agree well with the exact hard-wall results provided that neither the dimensionless corrugation amplitude nor the dimensionless atom wave number is too large, although no explanation of the reason for this agreement is given. The results are important because a typical exact calculation may be far more time consuming than is a typical CCGM calculation, particularly for the ''nastier'' corrugation functions

  19. Mode coupling theory analysis of electrolyte solutions: Time dependent diffusion, intermediate scattering function, and ion solvation dynamics.

    Science.gov (United States)

    Roy, Susmita; Yashonath, Subramanian; Bagchi, Biman

    2015-03-28

    A self-consistent mode coupling theory (MCT) with microscopic inputs of equilibrium pair correlation functions is developed to analyze electrolyte dynamics. We apply the theory to calculate concentration dependence of (i) time dependent ion diffusion, (ii) intermediate scattering function of the constituent ions, and (iii) ion solvation dynamics in electrolyte solution. Brownian dynamics with implicit water molecules and molecular dynamics method with explicit water are used to check the theoretical predictions. The time dependence of ionic self-diffusion coefficient and the corresponding intermediate scattering function evaluated from our MCT approach show quantitative agreement with early experimental and present Brownian dynamic simulation results. With increasing concentration, the dispersion of electrolyte friction is found to occur at increasingly higher frequency, due to the faster relaxation of the ion atmosphere. The wave number dependence of intermediate scattering function, F(k, t), exhibits markedly different relaxation dynamics at different length scales. At small wave numbers, we find the emergence of a step-like relaxation, indicating the presence of both fast and slow time scales in the system. Such behavior allows an intriguing analogy with temperature dependent relaxation dynamics of supercooled liquids. We find that solvation dynamics of a tagged ion exhibits a power law decay at long times-the decay can also be fitted to a stretched exponential form. The emergence of the power law in solvation dynamics has been tested by carrying out long Brownian dynamics simulations with varying ionic concentrations. The solvation time correlation and ion-ion intermediate scattering function indeed exhibit highly interesting, non-trivial dynamical behavior at intermediate to longer times that require further experimental and theoretical studies.

  20. Pion–nucleon scattering: from chiral perturbation theory to Roy–Steiner equations

    International Nuclear Information System (INIS)

    Kubis, Bastian; Hoferichter, Martin; Elvira, Jacobo Ruiz de; Meißner, Ulf-G.

    2016-01-01

    Ever since Weinberg’s seminal predictions of the pion–nucleon scattering amplitudes at threshold, this process has been of central interest for the study of chiral dynamics involving nucleons. The scattering lengths or the pion–nucleon σ-term are fundamental quantities characterizing the explicit breaking of chiral symmetry by means of the light quark masses. On the other hand, pion–nucleon dynamics also strongly affects the long-range part of nucleon–nucleon potentials, and hence has a far-reaching impact on nuclear physics. We discuss the fruitful combination of dispersion-theoretical methods, in the form of Roy–Steiner equations, with chiral dynamics to determine pion–nucleon scattering amplitudes at low energies with high precision.

  1. Pion-nucleon scattering: from chiral perturbation theory to Roy-Steiner equations

    Science.gov (United States)

    Kubis, Bastian; Hoferichter, Martin; de Elvira, Jacobo Ruiz; Meißner, Ulf-G.

    2016-11-01

    Ever since Weinberg's seminal predictions of the pion-nucleon scattering amplitudes at threshold, this process has been of central interest for the study of chiral dynamics involving nucleons. The scattering lengths or the pion-nucleon σ-term are fundamental quantities characterizing the explicit breaking of chiral symmetry by means of the light quark masses. On the other hand, pion-nucleon dynamics also strongly affects the long-range part of nucleon-nucleon potentials, and hence has a far-reaching impact on nuclear physics. We discuss the fruitful combination of dispersion-theoretical methods, in the form of Roy-Steiner equations, with chiral dynamics to determine pion-nucleon scattering amplitudes at low energies with high precision.*

  2. Field-based dynamic light scattering microscopy: theory and numerical analysis.

    Science.gov (United States)

    Joo, Chulmin; de Boer, Johannes F

    2013-11-01

    We present a theoretical framework for field-based dynamic light scattering microscopy based on a spectral-domain optical coherence phase microscopy (SD-OCPM) platform. SD-OCPM is an interferometric microscope capable of quantitative measurement of amplitude and phase of scattered light with high phase stability. Field-based dynamic light scattering (F-DLS) analysis allows for direct evaluation of complex-valued field autocorrelation function and measurement of localized diffusive and directional dynamic properties of biological and material samples with high spatial resolution. In order to gain insight into the information provided by F-DLS microscopy, theoretical and numerical analyses are performed to evaluate the effect of numerical aperture of the imaging optics. We demonstrate that sharp focusing of fields affects the measured diffusive and transport velocity, which leads to smaller values for the dynamic properties in the sample. An approach for accurately determining the dynamic properties of the samples is discussed.

  3. Measurement of pressure ridges in SAR images of sea ice - Preliminary results on scattering theory

    Science.gov (United States)

    Vesecky, J. F.; Smith, M. P.; Daida, J. M.; Samadani, R.; Camiso, J. C.

    1992-01-01

    Sea ice ridges and keels (hummocks and bummocks) are important in sea ice research for both scientific and practical reasons. A long-term objective is to make quantitative measurements of sea ice ridges using synthetic aperture radar (SAR) images. The preliminary results of a scattering model for sea ice ridge are reported. The approach is through the ridge height variance spectrum Psi(K), where K is the spatial wavenumber, and the two-scale scattering model. The height spectrum model is constructed to mimic height statistics observed with an airborne optical laser. The spectrum model is used to drive a two-scale scattering model. Model results for ridges observed at C- and X-band yield normalized radar cross sections that are 10 to 15 dB larger than the observed cross sections of multiyear ice over the range of angles of incidence from 10 to 70 deg.

  4. Galilei-invariant theory of low energy pion-nucleus scattering

    International Nuclear Information System (INIS)

    Mach, R.

    1980-01-01

    The scattering of a particle by a system of bound scatterers is investigated and reasons are given why the optical model and other models based on the standard impulse approximation violate the Galilei invariance. It is shown how this deficiency can be removed. Further, the validity of factojzation approximation is studied. In the case of Galilei-invariant models, there exists a unique combination of effective target particle momenta in the initial and final states, by means of which the optical potential can be expressed in factorized form (elementary scattering matrix by form factor of the composed target) while the error caused by the factorization procedure is of the order of projectile over target particle mass squared

  5. Three-body coupled-channel theory of scattering and breakup of light and heavy ions

    International Nuclear Information System (INIS)

    Kamimura, M.; Kameyama, H.; Kawai, M.; Sakuragi, Y.; Iseri, Y.; Yahiro, M.; Tanifuji, M.

    1986-09-01

    It is shown that the method of coupled discretized continuum channels (CDCC) based on the three-body model for direct reactions is very successful in explaining the following, recently developed experiments using deuteron, 6 Li and 7 Li projectiles whose breakup threshold energies are very low: (i) Precise measurement of all the possible analyzing powers in elastic scattering of polarized deuteron at 56 MeV, (ii) scattering of polarized deuteron at intermediate energies, (iii) deuteron projectile breakup at 56 MeV, (iv) scattering of polarized 7 Li at 20 and 44 MeV and (v) projectile breakup of 6 Li at 178 MeV and 7 Li at 70 MeV. The CDCC analyses of those data are made transparently with no adjustable parameters. (author)

  6. Possible effect of static surface disorder on diffractive scattering of H2 from Ru(0001): Comparison between theory and experiment.

    Science.gov (United States)

    Kroes, G J; Wijzenbroek, Mark; Manson, J R

    2017-12-28

    Specific features of diffractive scattering of H 2 from metal surfaces can serve as fingerprints of the reactivity of the metal towards H 2 , and in principle theory-experiment comparisons for molecular diffraction can help with the validation of semi-empirical functionals fitted to experiments of sticking of H 2 on metals. However, a recent comparison of calculated and Debye-Waller (DW) extrapolated experimental diffraction probabilities, in which the theory was done on the basis of a potential energy surface (PES) accurately describing sticking to Ru(0001), showed substantial discrepancies, with theoretical and experimental probabilities differing by factors of 2 and 3. We demonstrate that assuming a particular amount of random static disorder to be present in the positions of the surface atoms, which can be characterized through a single parameter, removes most of the discrepancies between experiment and theory. Further improvement might be achievable by improving the accuracy of the DW extrapolation, the model of the H 2 rotational state distribution in the experimental beams, and by fine-tuning the PES. However, the question of whether the DW model is applicable to attenuation of diffractive scattering in the presence of a sizable van der Waals well (depth ≈ 50 meV) should also receive attention, in addition to the question of whether the amount of static surface disorder effectively assumed in the modeling by us could have been present in the experiments.

  7. Galileo-invariant theory of low energy pion-nucleus scattering. III

    International Nuclear Information System (INIS)

    Mach, R.

    1983-01-01

    Using two versions of the Galileo-invariant optical model, π - - 4 He elastic scattering cross sections were calculated in the energy interval 50 to 260 MeV. Level shifts and widths of several light π-mesoatoms were estimated in the Born approximation. Whereas the (A+1)-body model appears to be more suitable in the resonance region, the two-body model yields surprisingly good results for both the low-energy scattering and the characteristics of π-mesoatoms. (author)

  8. Theory of Two-Magnon Raman Scattering in Iron Pnictides and Chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C. C.

    2011-08-15

    Although the parent iron-based pnictides and chalcogenides are itinerant antiferromagnets, the use of local moment picture to understand their magnetic properties is still widespread. We study magnetic Raman scattering from a local moment perspective for various quantum spin models proposed for this new class of superconductors. These models vary greatly in the level of magnetic frustration and show a vastly different two-magnon Raman response. Light scattering by two-magnon excitations thus provides a robust and independent measure of the underlying spin interactions. In accord with other recent experiments, our results indicate that the amount of magnetic frustration in these systems may be small.

  9. Nucleon-deuteron scattering with Δ-isobar excitation: Perturbation theory

    International Nuclear Information System (INIS)

    Deltuva, A.; Chmielewski, K.; Sauer, P.U.

    2003-01-01

    A perturbative approach for the description of elastic and inelastic nucleon-deuteron scattering is developed. Its validity is discussed. The aim of the perturbative approach is the isolation of details of different reaction mechanisms. The dynamics is based on a two-baryon potential allowing for the excitation of a nucleon to a Δ isobar. The coupled-channel potential yields an effective three-nucleon force in three-nucleon scattering. The purely nucleonic reference potential is the charge-dependent CD-Bonn potential

  10. Wave scattering theory a series approach based on the Fourier transformation

    CERN Document Server

    Eom, Hyo J

    2001-01-01

    The book provides a unified technique of Fourier transform to solve the wave scattering, diffraction, penetration, and radiation problems where the technique of separation of variables is applicable. The book discusses wave scattering from waveguide discontinuities, various apertures, and coupling structures, often encountered in electromagnetic, electrostatic, magnetostatic, and acoustic problems. A system of simultaneous equations for the modal coefficients is formulated and the rapidly-convergent series solutions amenable to numerical computation are presented. The series solutions find practical applications in the design of microwave/acoustic transmission lines, waveguide filters, antennas, and electromagnetic interference/compatibilty-related problems.

  11. Hydrogen dynamics in Na3AlH6: A combined density functional theory and quasielastic neutron scattering study

    DEFF Research Database (Denmark)

    Voss, Johannes; Shi, Qing; Jacobsen, Hjalte Sylvest

    2007-01-01

    alanate with TiCl3, and here we study hydrogen dynamics in doped and undoped Na3AlH6 using a combination of density functional theory calculations and quasielastic neutron scattering. The hydrogen dynamics is found to be vacancy mediated and dominated by localized jump events, whereas long-range bulk......Understanding the elusive catalytic role of titanium-based additives on the reversible hydrogenation of complex hydrides is an essential step toward developing hydrogen storage materials for the transport sector. Improved bulk diffusion of hydrogen is one of the proposed effects of doping sodium...... defect motion in sodium alanate could result from vacancy-mediated sodium diffusion....

  12. Point defect dynamics in sodium aluminum hydrides - a combined quasielastic neutron scattering and density functional theory study

    DEFF Research Database (Denmark)

    Shi, Qing; Voss, Johannes; Jacobsen, H.S.

    2007-01-01

    we study hydrogen dynamics in undoped and TiCl3-doped samples of NaAlH4 and Na3AlH6 using a combination of density functional theory calculations and quasielastic neutron scattering. Hydrogen dynamics is found to be limited and mediated by hydrogen vacancies in both alanate phases, requiring......Understanding the catalytic role of titanium-based additives on the reversible hydrogenation of complex metal hydrides is an essential step towards developing hydrogen storage materials for the transport sector. Improved bulk diffusion of hydrogen is one of the proposed catalytic effects, and here...

  13. Quantal theory of heavy ion scattering in a three-dimensional TDHF model

    International Nuclear Information System (INIS)

    Cusson, R.Y.

    1977-01-01

    The fast Fourier transform and the predictor corrector method are used to solve the time-dependent Hartree-Fock equations. The equations are then used to calculate the electric scattering of heavy ions, concentrating on 16 O + 16 O and 14 N + 12 C

  14. Incoherent neutron-scattering determination of hydrogen content : Theory and modeling

    NARCIS (Netherlands)

    Perego, R.C.; Blaauw, M.

    2005-01-01

    Hydrogen concentrations of 0 up to 350?mg/kg in a titanium alloy have been determined at National Institute of Standards and Technology (NIST) with neutron incoherent scattering (NIS) and with cold neutron prompt gamma activation analysis. The latter is a well-established technique, while the former

  15. Diffuse reflectance relations based on diffusion dipole theory for large absorption and reduced scattering

    NARCIS (Netherlands)

    Bremmer, Rolf H.; van Gemert, Martin J. C.; Faber, Dirk J.; van Leeuwen, Ton G.; Aalders, Maurice C. G.

    2013-01-01

    Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to

  16. Theory of near-critical-angle scattering from a curved interface

    International Nuclear Information System (INIS)

    Fiedler-Ferrari, N.; Nussenzveig, H.M.; Wiscombe, W.J.

    1990-01-01

    A new type of diffraction effect, different from the standard semiclassical ones (rainbow, glory, forward peak, orbiting), takes place near the critical angle for total reflection at a curved interface between two homogeneous media. A theoretical treatment of this new effects is given for Mie scattering, e.g., light scattering by an air bubble in water; it can readily be extended to more general curved interface problems in a variety of different fields (quantum mechanics, acoustics, seismic waves). The relatively slowly-varying Mie diffraction pattern associated with near-critical scattering is obscured by rapid fine-structure oscillations due to interference with unrelated farside contributions. These contributions are evaluated and subtracted from the Mie amplitudes to yield the relevant nearside effects. A zero-order transitional CAM (complex angular momentum) approximation to the nearside amplitude is developed. The most important contributions arise from partial and total reflection, represented by two new diffraction integrals, designated Fresnel-Fock and Pearcey-Fock respectively. Also discussed are the WKB approximation, a known physical optics approximation and a new modified version of this approximation: they are compared with the exact nearside Mie amplitude obtained by numerical partial-wave summation, at scatterer size parameters (circumference/wavelength) ranging from 1,000 to 10,000. (author)

  17. On the theory of elastic scattering of spin polarized electrons from ferromagnets

    International Nuclear Information System (INIS)

    Helman, J.S.

    1984-01-01

    The first Born approximation supposedly inadequate for dealing with elastic scattering of spin polarized electrons on ferromagnets is reconsidered. It is found that when used in conjunction with a spin dependent pseudopotential, it can describe the gross features of the ansisotropy. (Author) [pt

  18. On the theory of elastic scattering of spin polarized electrons from ferromagnets

    International Nuclear Information System (INIS)

    Helman, J.S.; Baltenspenger, W.

    1984-01-01

    The first Born approximation supposedly inadequate for dealing with the elastic scattering of spin polarized electrons on ferromagnets is reconsidered. It is found that when used in conjunction with a spin dependent pseudo-potential, it can describe the gross features of the anisotropy. (author) [pt

  19. Observation of pressure ridges in SAR images of sea ice: Scattering theory and comparison with observations

    Science.gov (United States)

    Vesecky, J. F.; Daida, J. M.; Shuchman, R. A.; Onstott, R. H.; Camiso, J. C.

    1993-01-01

    Ridges and keels (hummocks and bummocks) in sea ice flows are important in sea ice research for both scientific and practical reasons. Sea ice movement and deformation is driven by internal and external stresses on the ice. Ridges and keels play important roles in both cases because they determine the external wind and current stresses via drag coefficients. For example, the drag coefficient over sea ice can vary by a factor of several depending on the fluid mechanical roughness length of the surface. This roughness length is thought to be strongly dependent on the ridge structures present. Thus, variations in ridge and keel structure can cause gradients in external stresses which must be balanced by internal stresses and possibly fracture of the ice. Ridging in sea ice is also a sign of fracture. In a practical sense, large ridges form the biggest impediment to surface travel over the ice or penetration through sea ice by ice-strengthened ships. Ridges also play an important role in the damage caused by sea ice to off-shore structures. Hence, observation and measurement of sea ice ridges is an important component of sea ice remote sensing. The research reported here builds on previous work, estimating the characteristics of ridges and leads in sea ice from SAR images. Our objective is to develop methods for quantitative measurement of sea ice ridges from SAR images. To make further progress, in particular, to estimate ridge height, a scattering model for ridges is needed. Our research approach for a ridge scattering model begins with a survey of the geometrical properties of ridges and a comparison with the characteristics of the surrounding ice. For this purpose we have used airborne optical laser (AOL) data collected during the 1987 Greenland Sea Experiment. These data were used to generate a spatial wavenumber spectrum for height variance for a typical ridge - the typical ridge is the average over 10 large ridges. Our first-order model radar scattering includes

  20. Coherent band excitations in CePd3: A comparison of neutron scattering and ab initio theory.

    Science.gov (United States)

    Goremychkin, Eugene A; Park, Hyowon; Osborn, Raymond; Rosenkranz, Stephan; Castellan, John-Paul; Fanelli, Victor R; Christianson, Andrew D; Stone, Matthew B; Bauer, Eric D; McClellan, Kenneth J; Byler, Darrin D; Lawrence, Jon M

    2018-01-12

    In common with many strongly correlated electron systems, intermediate valence compounds are believed to display a crossover from a high-temperature regime of incoherently fluctuating local moments to a low-temperature regime of coherent hybridized bands. We show that inelastic neutron scattering measurements of the dynamic magnetic susceptibility of CePd 3 provides a benchmark for ab initio calculations based on dynamical mean field theory. The magnetic response is strongly momentum dependent thanks to the formation of coherent f-electron bands at low temperature, with an amplitude that is strongly enhanced by local particle-hole interactions. The agreement between experiment and theory shows that we have a robust first-principles understanding of the temperature dependence of f-electron coherence. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  1. Coherent band excitations in CePd3: A comparison of neutron scattering and ab initio theory

    Energy Technology Data Exchange (ETDEWEB)

    Goremychkin, Eugene A. [Joint Institute for Nuclear Research, Dubna (Russia). Frank Laboratory of Neutron Physics; Park, Hyowon [Argonne National Lab. (ANL), Argonne, IL (United States). Materials Science Division; Univ. of Chicago, IL (United States). Department of Physics; Osborn, Raymond [Argonne National Lab. (ANL), Argonne, IL (United States); Rosenkranz, Stephan [Argonne National Lab. (ANL), Argonne, IL (United States); Castellan, John-Paul [Argonne National Lab. (ANL), Argonne, IL (United States); Karlsruhe Institute of Technology (Germany). Institute for Solid State Physics; Fanelli, Victor R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Instrument and Source Division; Christianson, Andrew D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Quantum Condensed Matter Division; Stone, Matthew B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Quantum Condensed Matter Division; Bauer, Eric D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McClellan, Kenneth J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Byler, Darrin D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lawrence, Jon M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of California, Irvine, CA (United States). Dept. of Physics and Astronomy

    2018-01-12

    In common with many strongly correlated electron systems, intermediate valence compounds are believed to display a crossover from a high-temperature regime of incoherently fluctuating local moments to a low-temperature regime of coherent hybridized bands. In this work, we show that inelastic neutron scattering measurements of the dynamic magnetic susceptibility of CePd3 provides a benchmark for ab initio calculations based on dynamical mean field theory. The magnetic response is strongly momentum dependent thanks to the formation of coherent f-electron bands at low temperature, with an amplitude that is strongly enhanced by local particle-hole interactions. Finally, the agreement between experiment and theory shows that we have a robust first-principles understanding of the temperature dependence of f-electron coherence.

  2. A Non-Perturbative, Finite Particle Number Approach to Relativistic Scattering Theory

    Energy Technology Data Exchange (ETDEWEB)

    Lindesay, James V

    2001-05-11

    We present integral equations for the scattering amplitudes of three scalar particles, using the Faddeev channel decomposition, which can be readily extended to any finite number of particles of any helicity. The solution of these equations, which have been demonstrated to be calculable, provide a non-perturbative way of obtaining relativistic scattering amplitudes for any finite number of particles that are Lorentz invariant, unitary, cluster decomposable and reduce unambiguously in the non-relativistic limit to the non-relativistic Faddeev equations. The aim of this program is to develop equations which explicitly depend upon physically observable input variables, and do not require ''renormalization'' or ''dressing'' of these parameters to connect them to the boundary states.

  3. Recent developments of the MARC/PN transport theory code including a treatment of anisotropic scatter

    International Nuclear Information System (INIS)

    Fletcher, J.K.

    1987-12-01

    The computer code MARC/PN provides a solution of the multigroup transport equation by expanding the flux in spherical harmonics. The coefficients of the series so obtained satisfy linked first order differential equations, and on eliminating terms associated with odd parity harmonics a second order system results which can be solved by established finite difference or finite element techniques. This report describes modifications incorporated in MARC/PN to allow for anisotropic scattering, and the modelling of irregular exterior boundaries in the finite element option. The latter development leads to substantial reductions in problem size, particularly for three dimensions. Also, links to an interactive graphics mesh generator (SUPERTAB) have been added. The final section of the report contains results from problems showing the effects of anisotropic scatter and the ability of the code to model irregular geometries. (author)

  4. Quantum theory of laser radiation scattering by electrons in magnetic fields

    International Nuclear Information System (INIS)

    Rochlin, H.; Davidovich, L.

    1982-01-01

    A system consisting of an electron in a static magnetic field, interacting with the quantized electromagnetic field, within the non-relativistic and electric dipole approximations (with a cutoff in momentum space) is considered. The Heisenberg equations of motion are solved exactly and the time evolution of the electric field is determined. The power spectrum of the scattered radiation is calculated, when the electromagnetic field is initially in a coherent state. The results for the line shape of the scattered radiation are shown to be valid for magnetic fields up to 10 12 G. The quantization of the electromagnetic field allows one to consider effects of the natural linewidth and its dependence on the magnetic field. The renormalization of the electron mass is included in these treatment, and the results remain finite when the cutoff goes to infinity. (Author) [pt

  5. Multiple scattering wavelength dependent backscattering of kaolin dust in the IR: Measurements and theory

    Science.gov (United States)

    Ben-David, Avishai

    1992-01-01

    Knowing the optical properties of aerosol dust is important for designing electro-optical systems and for modeling the effect on propagation of light in the atmosphere. As CO2 lidar technology becomes more advanced and is used for multiwavelength measurements, information on the wavelength dependent backscattering of aerosol dust particles is required. The volume backscattering coefficient of aerosols in the IR is relatively small. Thus, only a few field measurements of backscattering, usually at only a few wavelengths, are reported in the literature. We present spectral field measurements of backscattering of kaolin dust in the 9-11 micron wavelength range. As the quantity of dust increases, multiple scattering contributes more to the measured backscattered signal. The measurements show the effect of the dust quantity of the spectral backscatter measurements. A simple analytical two stream radiative transfer model is applied to confirm the measurements and to give insight to the multiple scattering spectra of backscattering.

  6. A semiclassical distorted wave theory of inclusive nucleon inelastic scattering to continuum

    International Nuclear Information System (INIS)

    Kawai, M.; Luo, Y.L.

    1989-01-01

    A semiclassical model is presented for the one step process of the inclusive nucleon inelastic scattering to the continuum. In the model, we use distorted waves for describing the motion of the incident and the exit nucleon, and the Thomas-Fermi model for the initial and the final states of the target nucleus. The averaged two-body cross section inside the nucleus is given by Kikuchi-Kawai expression. The model gives a closed form formula for the double differential cross section. No free parameter is included. We apply the model to the inclusive nucleon inelastic scattering from Al, Sn and Bi at 62 MeV, and Ni at 164 MeV. The angular distribution experimental data are reproduced very well except for small and large angle regions. The calculated energy spectra agree with the experimental data very well in the middle angle region and at high exit energies. (author)

  7. Scattering from Model Nonspherical Particles Theory and Applications to Environmental Physics

    CERN Document Server

    Borghese, Ferdinando; Saija, Rosalba

    2007-01-01

    The scattering of electromagnetic radiation by nonspherical particles has become an increasingly important research topic over the past 20 years. Instead of handling anisotropic particles of arbitrary shape, the authors consider the more amenable problem of aggregates of spherical particles. This is often a very satisfactory approach as the optical response of nonspherical particles depends more on their general symmetry and the quantity of refractive material than on the precise details of their shape. The book addresses a wide spectrum of applications, ranging from scattering properties of water droplets containing pollutants, atmospheric aerosols and ice crystals to the modeling of cosmic dust grains as aggregates. In this extended second edition the authors have encompassed all the new topics arising from their recent studies of cosmic dust grains. Thus many chapters were deeply revised and new chapters were added. The new material spans The description of the state of polarization of electromagnetic wave...

  8. Quantum theory of atom-surface scattering: exact solutions and evaluation of approximations

    International Nuclear Information System (INIS)

    Chiroli, C.; Levi, A.C.

    1976-01-01

    In a recent article a hard corrugated surface was proposed as a simple model for atom-surface scattering. The problem was not solved exactly, however, but several alternative approximations were considered. Since these three similar, but inequivalent, approximations were proposed, the problem arose to evaluate these approximations in order to choose between them. In the present letter some exact calculations are presented which make this choice rationally possible. (Auth.)

  9. Eigenvalues and eigenvectors of the translation matrices of spherical waves of multiple-scattering theory

    International Nuclear Information System (INIS)

    Torrini, M.

    1983-01-01

    The exponential nature of the translation matrix G of spherical free waves has been set forth in a previous paper.The explicit expression of the exponential form of the translation matrix is given here, once the eigenvectros and the eigenvalues of G have been found. In addition, the eigenproblem relative to the matrix which transforms outgoing waves scattered by a centre in a set of spherical free waves centered at a different point is solved

  10. Multiple scattering theory and applications for intermediate energy reactions of nuclei

    International Nuclear Information System (INIS)

    Ludeking, L.D.

    1979-01-01

    Interactions of two composite clusters are treated in a multiple scattering framework whereby many-particle operators are decomposed into a systematic and finite series such that there is an ordered sequestering according to particle rank. Thus, an N-body operator is written as the superposition of all distinct groupings of interactions that occur between particle pairs, triplets, quartets, etc., such that all groupings contain at least one particle from each of the composite systems. It is demonstrated how the transition operator, a reaction operator, and an optical potential may be described in this context. The general structure of such decompositions is shown, and the connection to the standard multiple-scattering prescriptions, delineated. The direct reaction amplitude for stripping and pickup is described, and the two potential formula of Gell-Mann and Goldberger is derived. The multiple scattering formalism for direct reactions is constructed in the eikonal approximation. The sensitivity of the transition cross section to the target density and nucleon-nucleon density correlations are examined in this framework. The limitations of the zero-range approximation to the deuteron vertex function are examined by comparison with the finite-range vertex function at a range of energies. 25 figures, 5 tables

  11. Theory of two-magnon Raman scattering in alkaline iron selenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.S. [Department of Physics, Yanshan University, Qinhuangdao 006004 (China); Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan (China); Zhang, A.M. [Department of Physics, Renmin University of China, Beijing 100872 (China); Xu, T.F. [Department of Physics, Yanshan University, Qinhuangdao 006004 (China); Wu, W.C., E-mail: wu@phy.ntnu.edu.tw [Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan (China)

    2014-11-15

    Highlights: • Two-magnon Raman scattering is theoretically studied for alkaline iron selenides. • Underlying spin interactions of the √(5)×√(5) AF superstructure are investigated in details. • Optimal set of exchange parameters is revealed when fitting to experiments. - Abstract: Motivated by the recent experiment of two-magnon Raman scattering in alkaline iron selenide superconductors (Zhang et al., 2012), we investigate in details the underlying spin interactions of the √(5)×√(5) antiferromagnetic superstructure. Based on the linear spin wave approximation, the Fleury-London (FL) two-magnon Raman cross-sections are calculated. By comparing theoretical results with the Raman data in both A{sub g} and B{sub g} channels, an optimal set of exchange parameters which are consistent with the fitting to the neutron scattering data are obtained. It reveals that the experimentally observed broad and asymmetric peaks around 1600 cm{sup −1} are dominantly originated from quasiparticle excitations in two nearly degenerate magnon bands in the (0,±π) and (±π,0) directions. The result thus supports that the magnetic properties in alkaline iron selenide AFe{sub 1.6+x}Se{sub 6} superconductors can be basically described by the quantum spin model with up to third nearest-neighbor exchange couplings.

  12. Light Scattering Tests of Fundamental Theories of Transport Properties in the Critical Region

    Science.gov (United States)

    Gammon, R. W.; Moldover, M. R.

    1985-01-01

    The objective of this program is to measure the decay rates of critical density fluctuations in a simple fluid (xenon) very near its liquid-vapor critical point using laser light scattering and photon correlation spectroscopy. Such experiments have been severely limited on Earth by the presence of gravity which causes large density gradients in the sample when the compressibility diverges approaching the critical point. The goal is to measure decay rates deep in the critical region where the scaled wavevector is the order of 1000. This will require loading the sample to 0.01% of the critical density and taking data as close as 3 microKelvin to the critical temperature (Tc = 289.72 K). Other technical problems have to be addressed such as multiple scattering and the effect of wetting layers. The ability to avoid multiple scattering by using a thin sample (100 microns) was demonstrated, as well as a temperature history which can avoid wetting layers satisfactory temperature control and measurement, and accurate sample loading. Thus the questions of experimental art are solved leaving the important engineering tasks of mounting the experiment to maintain alignment during flight and automating the state-of-the-art temperature bridges for microcomputer control of the experiment.

  13. A bond-order theory on the phonon scattering by vacancies in two-dimensional materials.

    Science.gov (United States)

    Xie, Guofeng; Shen, Yulu; Wei, Xiaolin; Yang, Liwen; Xiao, Huaping; Zhong, Jianxin; Zhang, Gang

    2014-05-28

    We theoretically investigate the phonon scattering by vacancies, including the impacts of missing mass and linkages (τ(V)(-1)) and the variation of the force constant of bonds associated with vacancies (τ(A)(-1)) by the bond-order-length-strength correlation mechanism. We find that in bulk crystals, the phonon scattering rate due to change of force constant τ(A)(-1) is about three orders of magnitude lower than that due to missing mass and linkages τ(V)(-1). In contrast to the negligible τ(A)(-1) in bulk materials, τ(A)(-1) in two-dimensional materials can be 3-10 folds larger than τ(V)(-1). Incorporating this phonon scattering mechanism to the Boltzmann transport equation derives that the thermal conductivity of vacancy defective graphene is severely reduced even for very low vacancy density. High-frequency phonon contribution to thermal conductivity reduces substantially. Our findings are helpful not only to understand the severe suppression of thermal conductivity by vacancies, but also to manipulate thermal conductivity in two-dimensional materials by phononic engineering.

  14. Improved Off-Shell Scattering Amplitudes in String Field Theory and New Computational Methods

    CERN Document Server

    Park, I Y; Bars, Itzhak

    2004-01-01

    We report on new results in Witten's cubic string field theory for the off-shell factor in the 4-tachyon amplitude that was not fully obtained explicitly before. This is achieved by completing the derivation of the Veneziano formula in the Moyal star formulation of Witten's string field theory (MSFT). We also demonstrate detailed agreement of MSFT with a number of on-shell and off-shell computations in other approaches to Witten's string field theory. We extend the techniques of computation in MSFT, and show that the j=0 representation of SL(2,R) generated by the Virasoro operators $L_{0},L_{\\pm1}$ is a key structure in practical computations for generating numbers. We provide more insight into the Moyal structure that simplifies string field theory, and develop techniques that could be applied more generally, including nonperturbative processes.

  15. Covariant spectator theory of $np$ scattering:\\\\ Effective range expansions and relativistic deuteron wave functions

    Energy Technology Data Exchange (ETDEWEB)

    Franz Gross, Alfred Stadler

    2010-09-01

    We present the effective range expansions for the 1S0 and 3S1 scattering phase shifts, and the relativistic deuteron wave functions that accompany our recent high precision fits (with \\chi^2/N{data} \\simeq 1) to the 2007 world np data below 350 MeV. The wave functions are expanded in a series of analytical functions (with the correct asymptotic behavior at both large and small arguments) that can be Fourier-transformed from momentum to coordinate space and are convenient to use in any application. A fortran subroutine to compute these wave functions can be obtained from the authors.

  16. Galileo-invariant theory of low energy pion-nucleus scattering

    International Nuclear Information System (INIS)

    Mach, R.

    1980-01-01

    Two classes of Galileo-invariant optical models are constructed for pion elastic scattering by nuclei. The first, the two-body model, has been obtained assuming that the pion-bound nucleon dynamics is determined by the pion-nucleon kinetic energy. In deriving the second model, the (A+1)-body dynamics has been taken into account. The technique of effective nucleon momenta maintains the nonlocal propagation of the pion-target nucleon subsystem through the nucleus in contrast with the standard static approximation

  17. Galileo-invariant theory of low energy pion-nucleus scattering. II

    International Nuclear Information System (INIS)

    Mach, R.

    1983-01-01

    Two classes of Galileo-invariant optical models are constructed for pion elastic scattering by nuclei. The former, the two-body model, was obtained assuming that the pion-bound nucleon dynamics is determined by the pion-nucleon kinetic energy. In deriving the latter model, the (A+1)-body dynamics was taken into account. The technique of effective nucleon momenta maintains the nonlocal propagation of the pion-target nucleon subsystem through the nucleus in contrast with the standard static approximation. (author)

  18. Factorization properties and spurious solutions in N-body scattering theories

    International Nuclear Information System (INIS)

    Vanzani, V.

    1979-01-01

    The origin of spurious solutions in N-body scattering equations is discussed. It is shown that spurious solutions are expected because of specific factorization properties of the homogeneous equations. The equations proposed by Rosenberg, by Mitra, Gillespie, Sugar and Panchapakesan, by Takahashi and Mishima, by Alessandrini, by Sasakawa, by Sloan, Bencze and Redish, by Weinberg and van Winter and by Avishai are considered. It is explicitly shown that spurious multipliers arise from repeated employment of resolvent equations or, equiValently, from generalized iteration procedure

  19. Dynamical basis sets for algebraic variational calculations in quantum-mechanical scattering theory

    Science.gov (United States)

    Sun, Yan; Kouri, Donald J.; Truhlar, Donald G.; Schwenke, David W.

    1990-01-01

    New basis sets are proposed for linear algebraic variational calculations of transition amplitudes in quantum-mechanical scattering problems. These basis sets are hybrids of those that yield the Kohn variational principle (KVP) and those that yield the generalized Newton variational principle (GNVP) when substituted in Schlessinger's stationary expression for the T operator. Trial calculations show that efficiencies almost as great as that of the GNVP and much greater than the KVP can be obtained, even for basis sets with the majority of the members independent of energy.

  20. Gravitational Rutherford scattering and Keplerian orbits for electrically charged bodies in heterotic string theory

    International Nuclear Information System (INIS)

    Villanueva, J. R.; Olivares, Marco

    2015-01-01

    Properties of the motion of electrically charged particles in the background of the Gibbons–Maeda–Garfinkle–Horowitz–Strominger black hole is presented in this paper. Radial and angular motions are studied analytically for different values of the fundamental parameter. Therefore, gravitational Rutherford scattering and Keplerian orbits are analyzed in detail. Finally, this paper complements previous work by Fernando for null geodesics (Phys Rev D 85:024033, 2012), Olivares and Villanueva (Eur Phys J C 73:2659, 2013) and Blaga (Automat Comp Appl Math 22:41–48, 2013; Serb Astron 190:41, 2015) for time-like geodesics

  1. Field-theoretic model of Harari's two component phenomenological theory of high energy hadron scattering

    International Nuclear Information System (INIS)

    Dymski, T.C.

    1976-01-01

    For high energy scattering of pseudoscalar particles on spin 1 / 2 particles, the transition amplitude (for a given signature) is constructed as an infinite sum over spin of boson exchange graphs of the Feynman type, each of which has impact parameters up to some value R completely removed. This amplitude is advanced as a field theoretic realization of the nondiffractive component of Harari's dual absorption model. Comparing with π/sup +-/p→π/sup +-/p and π - p→π 0 n data shows that the imaginary parts of both helicity amplitudes are excellent, for either signature

  2. Theory of neutron scattering by atomic electrons: jj-coupling scheme

    International Nuclear Information System (INIS)

    Balcar, E.; Lovesey, S.W.; Uppsala Univ.

    1991-02-01

    Expressions are reported for the matrix element of the neutron-electron interaction for atomic electrons in a j n configuration, appropriate for palladium and platinum group compounds and rare earth and actinide materials. For the latter, f-electron systems, an isolated ion is a realistic approximation. Compact expressions are provided, together with tables of reduced matrix elements, for elastic and inelastic structure factors, and compared with the corresponding Russell-Saunders expressions. Inelastic scattering by two f-electrons, including non-equivalent states, is presented in detail. (author)

  3. Gravitational Rutherford scattering and Keplerian orbits for electrically charged bodies in heterotic string theory

    Energy Technology Data Exchange (ETDEWEB)

    Villanueva, J.R. [Universidad de Valparaiso, Instituto de Fisica y Astronomia, Valparaiso (Chile); Centro de Astrofisica de Valparaiso, Valparaiso (Chile); Olivares, Marco [Universidad Diego Portales, Avenida Ejercito Libertador 441, Facultad de Ingenieria, Santiago (Chile)

    2015-11-15

    Properties of the motion of electrically charged particles in the background of the Gibbons-Maeda-Garfinkle-Horowitz-Strominger black hole is presented in this paper. Radial and angular motions are studied analytically for different values of the fundamental parameter. Therefore, gravitational Rutherford scattering and Keplerian orbits are analyzed in detail. Finally, this paper complements previous work by Fernando for null geodesics (Phys Rev D 85:024033, 2012), Olivares and Villanueva (Eur Phys J C 73:2659, 2013) and Blaga (Automat Comp Appl Math 22:41-48, 2013; Serb Astron 190:41, 2015) for time-like geodesics. (orig.)

  4. S-wave Kπ scattering in chiral perturbation theory with resonances

    International Nuclear Information System (INIS)

    Jamin, Matthias; Oller, Jose Antonio; Pich, Antonio

    2000-01-01

    We present a detailed analysis of S-wave Kπ scattering up to 2 GeV, making use of the resonance chiral Lagrangian predictions together with a suitable unitarisation method. Our approach incorporates known theoretical constraints at low and high energies. The present experimental status, with partly conflicting data from different experiments, is discussed. Our analysis allows to resolve some experimental ambiguities, but better data are needed in order to determine the cross-section in the higher-energy range. Our best fits are used to determine the masses and widths of the relevant scalar resonances in this energy region

  5. Theory of the Influence of Phonon-Phonon and Electron-Phonon Interactions on the Scattering of Neutrons by Crystals

    International Nuclear Information System (INIS)

    Kokkedee, J.J.J.

    1963-01-01

    As predicted by harmonic theory the coherent inelastic spectrums of neutrons, scattered by a single, non-conducting crystal, for a particular angle of scattering consists of a number of delta-function peaks superposed on a continuous background. The peaks correspond to one-phonon processes in which one phonon is absorbed or emitted by the neutron; the background arises from multi-phonon processes. When anharmonic forces (phonon-phonon interactions) are present, the delta-function peaks are broadened into finite peaks, while their central frequencies are shifted with respect to the harmonic values. In the case of a metal there is in addition to phonon-phonon interactions an interaction between phonons and conduction electrons, which also gives a contribution to the displacement and broadening oftheone-phononpeaks. Continuing earlier work of Van Hove (sho considered the relatively simple case of a non-conductin crystal in its ground state (T = 0 o K) ), we have studied the shifts and widths of the scattering peaks as a 'result of the above-mentioned interactions by means of many particle perturbation theory, making extensive use of diagram techniques. Prerequisite to the entire discussion is the assumption that, independent of the strength of the interactions, the width of each peak is small compared to the value of the frequency at its centre; only then the peaks can be considered as being well defined with respect to the background to higher order in the interactions. This condition is expected to be fulfilled for temperatures which are not too high and values of the phonon wave vector which are not too large. Our procedure yields closed formulae for the partial scattering function describing the peaks, which can be evaluated to arbitrarily high accuracy. In particular an expansion for calculating the line shift and line width in powers of u/d and in terms of simple connected diagrams is obtained (u is an average atomic or ionic displacement, d is the smallest

  6. Extraction of chemical information of suspensions using radiative transfer theory to remove multiple scattering effects: application to a model multicomponent system.

    Science.gov (United States)

    Steponavičius, Raimundas; Thennadil, Suresh N

    2011-03-15

    The effectiveness of a scatter correction approach based on decoupling absorption and scattering effects through the use of the radiative transfer theory to invert a suitable set of measurements is studied by considering a model multicomponent suspension. The method was used in conjunction with partial least-squares regression to build calibration models for estimating the concentration of two types of analytes: an absorbing (nonscattering) species and a particulate (absorbing and scattering) species. The performances of the models built by this approach were compared with those obtained by applying empirical scatter correction approaches to diffuse reflectance, diffuse transmittance, and collimated transmittance measurements. It was found that the method provided appreciable improvement in model performance for the prediction of both types of analytes. The study indicates that, as long as the bulk absorption spectra are accurately extracted, no further empirical preprocessing to remove light scattering effects is required.

  7. Multiple Scattering Theory for Spectroscopies : a Guide to Multiple Scattering Computer Codes : Dedicated to C. R. Natoli on the Occasion of his 75th Birthday

    CERN Document Server

    Hatada, Keisuke; Ebert, Hubert

    2018-01-01

    This edited book, based on material presented at the EU Spec Training School on Multiple Scattering Codes and the following MSNano Conference, is divided into two distinct parts. The first part, subtitled “basic knowledge”, provides the basics of the multiple scattering description in spectroscopies, enabling readers to understand the physics behind the various multiple scattering codes available for modelling spectroscopies. The second part, “extended knowledge”, presents “state- of-the-art” short chapters on specific subjects associated with improving of the actual description of spectroscopies within the multiple scattering formalism, such as inelastic processes, or precise examples of modelling.

  8. Scattering in quantum field theory: the M.P.S.A. approach in complex momentum space

    International Nuclear Information System (INIS)

    Bros, J.

    1981-02-01

    In this course, we intend to show how 'Many-Particle Structure Analysis' (M.P.S.A.) can be worked out in the standard field-theoretical framework, by using integral relations in complex momentum space involving 'l-particle irreducible kernels'. The ultimate purpose of this approach is to obtain the best possible knowledge of the singularities (location, nature, type of ramification) and of the ambient holomorphy (or meromorphy) domains of the n-point Green functions and scattering amplitudes, and at the same time to derive analytic structural equations for them which display the global organization of these singularities. The generation of Landau singularities for integrals and Fredholm resolvents, taken on cycles in complex space, will be explained on the basis of the Picard-Lefschetz formula (presented and used in simple situations). Among various results described, we present and analyse a structural equation for the six-point function (and for the 3 → 3 particle scattering function), valid in a domain containing the three-particle normal threshold

  9. Self-consistent theory of hadron-nucleus scattering. Application to pion physics

    International Nuclear Information System (INIS)

    Johnson, M.B.

    1981-01-01

    The first part of this set of two seminars will consist of a review of several of the important accomplishments made in the last few years in the field of pion-nucleus physics. Next I discuss some questions raised by these accomplishments and show that for some very natural reasons the commonly employed theoretical methods cannot be applied to answer these questions. This situation leads to the idea of self-consistency, which is first explained in a general context. The remainder of the seminars are devoted to illustrating the idea within a simple multiple-scattering model for the case of pion scattering. An evaluation of the effectiveness of the self-consistent requirment to produce a solution to the model is made, and a few of the questions raised by recent accomplishments in the field of pion physics are addressed in the model. Finally, the results of the model calculation are compared to experimental data and implications of the results discussed. (orig./HSI)

  10. General point dipole theory for periodic metasurfaces: magnetoelectric scattering lattices coupled to planar photonic structures.

    Science.gov (United States)

    Chen, Yuntian; Zhang, Yan; Femius Koenderink, A

    2017-09-04

    We study semi-analytically the light emission and absorption properties of arbitrary stratified photonic structures with embedded two-dimensional magnetoelectric point scattering lattices, as used in recent plasmon-enhanced LEDs and solar cells. By employing dyadic Green's function for the layered structure in combination with the Ewald lattice summation to deal with the particle lattice, we develop an efficient method to study the coupling between planar 2D scattering lattices of plasmonic, or metamaterial point particles, coupled to layered structures. Using the 'array scanning method' we deal with localized sources. Firstly, we apply our method to light emission enhancement of dipole emitters in slab waveguides, mediated by plasmonic lattices. We benchmark the array scanning method against a reciprocity-based approach to find that the calculated radiative rate enhancement in k-space below the light cone shows excellent agreement. Secondly, we apply our method to study absorption-enhancement in thin-film solar cells mediated by periodic Ag nanoparticle arrays. Lastly, we study the emission distribution in k-space of a coupled waveguide-lattice system. In particular, we explore the dark mode excitation on the plasmonic lattice using the so-called array scanning method. Our method could be useful for simulating a broad range of complex nanophotonic structures, i.e., metasurfaces, plasmon-enhanced light emitting systems and photovoltaics.

  11. Recent Advances in Development and Applications of the Mixed Quantum/Classical Theory for Inelastic Scattering.

    Science.gov (United States)

    Babikov, Dmitri; Semenov, Alexander

    2016-01-28

    A mixed quantum/classical approach to inelastic scattering (MQCT) is developed in which the relative motion of two collision partners is treated classically, and the rotational and vibrational motion of each molecule is treated quantum mechanically. The cases of molecule + atom and molecule + molecule are considered including diatomics, symmetric-top rotors, and asymmetric-top rotor molecules. Phase information is taken into consideration, permitting calculations of elastic and inelastic, total and differential cross sections for excitation and quenching. The method is numerically efficient and intrinsically parallel. The scaling law of MQCT is favorable, which enables calculations at high collision energies and for complicated molecules. Benchmark studies are carried out for several quite different molecular systems (N2 + Na, H2 + He, CO + He, CH3 + He, H2O + He, HCOOCH3 + He, and H2 + N2) in a broad range of collision energies, which demonstrates that MQCT is a viable approach to inelastic scattering. At higher collision energies it can confidently replace the computationally expensive full-quantum calculations. At low collision energies and for low-mass systems results of MQCT are less accurate but are still reasonable. A proposal is made for blending MQCT calculations at higher energies with full-quantum calculations at low energies.

  12. The absence of intraband scattering in a consistent theory of Gilbert damping in pure metallic ferromagnets.

    Science.gov (United States)

    Edwards, D M

    2016-03-02

    Damping of magnetization dynamics in a ferromagnetic metal, arising from spin-orbit coupling, is usually characterised by the Gilbert parameter α. Recent calculations of this quantity, using a formula due to Kambersky, find that it is infinite for a perfect crystal owing to an intraband scattering term which is of third order in the spin-orbit parameter ξ. This surprising result conflicts with recent work by Costa and Muniz who study damping numerically by direct calculation of the dynamical transverse susceptibility in the presence of spin-orbit coupling. We resolve this inconsistency by following the approach of Costa and Muniz for a slightly simplified model where it is possible to calculate α analytically. We show that to second order in ξ one retrieves the Kambersky result for α, but to higher order one does not obtain any divergent intraband terms. The present work goes beyond that of Costa and Muniz by pointing out the necessity of including the effect of long-range Coulomb interaction in calculating damping for large ξ. A direct derivation of the Kambersky formula is given which shows clearly the restriction of its validity to second order in ξ so that no intraband scattering terms appear. This restriction has an important effect on the damping over a substantial range of impurity content and temperature. The experimental situation is discussed.

  13. Medium energy nucleon-nucleus scattering theory by semi-classical distorted wave approximation

    Energy Technology Data Exchange (ETDEWEB)

    Ogata, Kazuyuki [Kyushu Univ., Fukuoka (Japan)

    1998-07-01

    The semiclassical distorted wave model (SCDW) is one of the quantum mechanical models for nucleon inelastic and charge exchange scattering at intermediate energies. SCDW can reproduce the double differential inclusive cross sections for multi-step direct processes quite well in the angular and outgoing energy regions where the model is expected to work. But the model hitherto assumed on-the-energy-shell (on-shell) nucleon-nucleon scattering in the nucleus, neglecting the difference in the distorting potentials for the incoming and the outgoing particles and also the Q-value in the case of (p,n) reactions. There had also been a problem in the treatment of the exchange of colliding nucleons. Now we modify the model to overcome those problems and put SCDW on sounder theoretical foundations. The modification results in slight reduction (increase) of double differential cross sections at forward (backward) angles. We also examine the effect of the in-medium modification of N-N cross sections in SCDW and find it small. A remedy of the disagreement at very small and large angles in terms of the Wigner transform of the single particle density matrix is also discussed. This improvement gives very promising results. (author)

  14. An exploration in acoustic radiation force experienced by cylindrical shells via resonance scattering theory.

    Science.gov (United States)

    Rajabi, Majid; Behzad, Mehdi

    2014-04-01

    In nonlinear acoustic regime, a body insonified by a sound field is known to experience a steady force that is called the acoustic radiation force (RF). This force is a second-order quantity of the velocity potential function of the ambient medium. Exploiting the sufficiency of linear solution representation of potential function in RF formulation, and following the classical resonance scattering theorem (RST) which suggests the scattered field as a superposition of the resonant field and a background (non-resonant) component, we will show that the radiation force is a composition of three components: background part, resonant part and their interaction. Due to the nonlinearity effects, each part contains the contribution of pure partial waves in addition to their mutual interaction. The numerical results propose the residue component (i.e., subtraction of the background component from the RF) as a good indicator of the contribution of circumferential surface waves in RF. Defining the modal series of radiation force function and its components, it will be shown that within each partial wave, the resonance contribution can be synthesized as the Breit-Wigner form for adequately none-close resonant frequencies. The proposed formulation may be helpful essentially due to its inherent value as a canonical subject in physical acoustics. Furthermore, it may make a tunnel through the circumferential resonance reducing effects on radiation forces. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Radiative transfer theory for active remote sensing of a layer of small ellipsoidal scatterers. [of vegetation

    Science.gov (United States)

    Tsang, L.; Kubacsi, M. C.; Kong, J. A.

    1981-01-01

    The radiative transfer theory is applied within the Rayleigh approximation to calculate the backscattering cross section of a layer of randomly positioned and oriented small ellipsoids. The orientation of the ellipsoids is characterized by a probability density function of the Eulerian angles of rotation. The radiative transfer equations are solved by an iterative approach to first order in albedo. In the half space limit the results are identical to those obtained via the approach of Foldy's and distorted Born approximation. Numerical results of the theory are illustrated using parameters encountered in active remote sensing of vegetation layers. A distinctive characteristic is the strong depolarization shown by vertically aligned leaves.

  16. The classical field limit of scattering theory for non-relativistic many-boson systems. Pt. 1

    International Nuclear Information System (INIS)

    Ginibre, J.

    1979-01-01

    We study the classical field limit of non-relativistic many-boson theories in space dimension n >= 3. When h → 0, the correlation functions, which are the averages of products of bounded functions of field operators at different times taken in suitable states, converge to the corresponding functions of the appropriate solutions of the classical field equation, and the quantum fluctuations, are described by the equation obtained by linearizing the field equation around the classical solution. These properties were proved by Hepp for suitably regular potentials and in finite time intervals. Using a general theory of existence of global solutions and a general scattering theory for the clasical equation, we extend these results in two directions: (1) we consider more singular potentials, (2) more imortant, we prove that for dispersive classical solutions, the h → 0 limit is uniform in time in an appropriate representation of the field operators. As a consequence we obtain the convergence of suitable matrix elements of the wave operators and, if asymptotic completeness holds, of the S-matrix. (orig.) [de

  17. High-energy scattering of particles with anomalous magnetic moments in the quantum field theory. πN scattering and Coulomb interference

    International Nuclear Information System (INIS)

    Nguen Suan Khan; Pervushin, V.N.

    1975-01-01

    An eikonal representation has been obtained for the amplitude of the πN-scattering in the asymptotic form into account the anomalous nucleon magnetic moment leads to the introduction of the additive term in to the eikonal phase which is responsible for the spin flip in the scattering process. The Coulomb interference is considered

  18. The Fourier-grid formalism: philosophy and application to scattering problems using R-matrix theory

    International Nuclear Information System (INIS)

    Layton, E.G.

    1993-01-01

    The Fourier-grid (FG) method is a recent L 2 variational treatment of the quantum mechanical eigenvalue problem that does not require the use of a set of basis functions; it is rather a discrete variable representation approach. In this article we restate the FG philosophy in more general terms, examine and compare this method with other approaches to the eigenvalue problem, and begin the development of an FG R-matrix method for scattering. The philosophy of the FG method is to use the simplest representation for each of the kinetic and potential energy operators of the Hamiltonian, and use a generalized Fourier transform to put the matrix elements of one of the above operators in the same representation as the other, so the Hamiltonian has a single representation. (author)

  19. Theory of X-ray scattering by strongly distorted aging alloys with lamellar distribution of inclusions

    International Nuclear Information System (INIS)

    Barabash, R.I.; Krivoglaz, M.A.; AN Ukrainskoj SSR, Kiev. Inst. Metallofiziki)

    1981-01-01

    The X-ray scattering by strongly distorted heterogeneous alloys containing inclusions of new phase particles is discussed. Two models describing the lamellar structure with various orientation of inclusion axes in different layers are studied. In the first model the dimensions of inclusions are small in comparison with the layer thickness and they are randomly distributed in it, in the second model lamellar inclusions stretch through the whole layer. It is shown that in both models the Debye broadened line intensity distribution consists of overlapping Lorentz curves. A case of inclusions oriented along directions [100] and layers perpendicular to axes [110] is analyzed in detail. The results obtained for this case are compared with experimental results for the Cu-Be alloy

  20. Quantum theory of stimulated Raman scattering in an inhomogeneously broadened three-level gaseous system

    International Nuclear Information System (INIS)

    Gupta, P.S.; Dash, J.

    1990-01-01

    A quantum-statistical treatment of stimulated Raman scattering in a gaseous system is presented using a density-matrix formalism. The molecular (atomic) system is described by three energy levels. Both the atomic system and the radiation fields are quantized. The effects of atomic motion and detuning are incorporated in the analysis. Higher order nonlinearities and loss terms are included to render the problem more realistic. The equations of motion describing the photon statistics of pump and Stokes fields are obtained. The equation without detailed balance is solved in the steady state by a slowly varying function technique in the case of two variables. The steady state characteristics of the Stokes field are studied. The coherence properties and occurrence of antibunching phenomena are studied for different initial distributions. (author). 4 figs., 22 refs

  1. Quantum mechanical reactive scattering theory for simple chemical reactions: Recent developments in methodology and applications

    International Nuclear Information System (INIS)

    Miller, W.H.

    1989-08-01

    It has recently been discovered that the S-matrix version of the Kohn variational principle is free of the ''Kohn anomalies'' that have plagued other versions and prevented its general use. This has made a major contribution to heavy particle reactive (and also to electron-atom/molecule) scattering which involve non-local (i.e., exchange) interactions that prevent solution of the coupled channel equations by propagation methods. This paper reviews the methodology briefly and presents a sample of integral and differential cross sections that have been obtained for the H + H 2 → H 2 +H and D + H 2 → HD + H reactions in the high energy region (up to 1.2 eV translational energy) relevant to resonance structures reported in recent experiments. 35 refs., 11 figs

  2. Line-shape theory and molecular dynamics in collision-induced light scattering

    International Nuclear Information System (INIS)

    Balucani, U.; Tognetti, V.; Vallauri, R.

    1979-01-01

    Molecular-dynamics studies in argon at 148 amagats are presented for gaining information on the dynamical properties responsible for the depolarized light scattering from simple fluids. The total and pair-correlation functions are computed within the simple dipole--induced-dipole model of polarizability anisotropy. The pair spectral shape is derived. These results are compared with a theoretical analysis based on a continued-fraction approach. The necessary frequency moments are calculated both in the low-density limit and taking into account first-order density corrections, and compared with the molecular-dynamics data. The agreement between the theoretical spectra and molecular-dynamics data shows the validity of the memory-function approach. The comparison with the real experimental results allows one to test the relevant physical contributions to the polarizability anisotropy

  3. Anomalous singularities in the complex Kohn variational principle of quantum scattering theory

    International Nuclear Information System (INIS)

    Lucchese, R.R.

    1989-01-01

    Variational principles for symmetric complex scattering matrices (e.g., the S matrix or the T matrix) based on the Kohn variational principle have been thought to be free from anomalous singularities. We demonstrate that singularities do exist for these variational principles by considering single and multichannel model problems based on exponential interaction potentials. The singularities are found by considering simultaneous variations in two nonlinear parameters in the variational calculation (e.g., the energy and the cutoff function for the irregular continuum functions). The singularities are found when the cutoff function for the irregular continuum functions extends over a range of the radial coordinate where the square-integrable basis set does not have sufficient flexibility. Effects of these singularities generally should not appear in applications of the complex Kohn method where a fixed variational basis set is considered and only the energy is varied

  4. Neutron-proton scattering at next-to-next-to-leading order in Nuclear Lattice Effective Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon, Jose Manuel [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Thomas Jefferson National Accelerator Facility, Theory Center, Newport News, VA (United States); Du, Dechuan; Laehde, Timo A.; Li, Ning; Lu, Bing-Nan; Luu, Thomas [Institute for Advanced Simulation, Institut fuer Kernphysik, and Juelich Center for Hadron Physics, Forschungszentrum Juelich, Juelich (Germany); Klein, Nico [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Lee, Dean [North Carolina State University, Department of Physics, Raleigh, NC (United States); Meissner, Ulf G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Institute for Advanced Simulation, Institut fuer Kernphysik, and Juelich Center for Hadron Physics, Forschungszentrum Juelich, Juelich (Germany); Forschungszentrum Juelich, JARA - High Performance Computing, Juelich (Germany)

    2017-05-15

    We present a systematic study of neutron-proton scattering in Nuclear Lattice Effective Field Theory (NLEFT), in terms of the computationally efficient radial Hamiltonian method. Our leading-order (LO) interaction consists of smeared, local contact terms and static one-pion exchange. We show results for a fully non-perturbative analysis up to next-to-next-to-leading order (NNLO), followed by a perturbative treatment of contributions beyond LO. The latter analysis anticipates practical Monte Carlo simulations of heavier nuclei. We explore how our results depend on the lattice spacing a, and estimate sources of uncertainty in the determination of the low-energy constants of the next-to-leading-order (NLO) two-nucleon force. We give results for lattice spacings ranging from a = 1.97 fm down to a = 0.98 fm, and discuss the effects of lattice artifacts on the scattering observables. At a = 0.98 fm, lattice artifacts appear small, and our NNLO results agree well with the Nijmegen partial-wave analysis for S-wave and P-wave channels. We expect the peripheral partial waves to be equally well described once the lattice momenta in the pion-nucleon coupling are taken to coincide with the continuum dispersion relation, and higher-order (N3LO) contributions are included. We stress that for center-of-mass momenta below 100 MeV, the physics of the two-nucleon system is independent of the lattice spacing. (orig.)

  5. Conformational effect on small angle neutron scattering behavior of interacting polyelectrolyte solutions: a perspective of integral equation theory.

    Science.gov (United States)

    Shew, Chwen-Yang; Do, Changwoo; Hong, Kunlun; Liu, Yun; Porcar, Lionel; Smith, Gregory S; Chen, Wei-Ren

    2012-07-14

    We present small angle neutron scattering (SANS) measurements of deuterium oxide (D(2)O) solutions of linear and star sodium poly(styrene sulfonate) (NaPSS) as a function of polyelectrolyte concentration. Emphasis is on understanding the dependence of their SANS coherent scattering cross section I(Q) on the molecular architecture of single polyelectrolyte. The key finding is that for a given concentration, star polyelectrolytes exhibit more pronounced characteristic peaks in I(Q), and the position of the first peak occurs at a smaller Q compared to their linear counterparts. Based on a model of integral equation theory, we first compare the SANS experimental I(Q) of salt-free polyelectrolyte solutions with that predicted theoretically. Having seen their satisfactory qualitative agreement, the dependence of counterion association behavior on polyelectrolyte geometry and concentration is further explored. Our predictions reveal that the ionic environment of polyelectrolyte exhibits a strong dependence on polyelectrolyte geometry at lower polyelectrolyte concentration. However, when both linear and star polyelectrolytes exceed their overlap concentrations, the spatial distribution of counterion is found to be essentially insensitive to polyelectrolyte geometry due to the steric effect.

  6. Classical theory for the in-plane scattering of atoms from corrugated surfaces: application to the Ar-Ag(111) system.

    Science.gov (United States)

    Pollak, Eli; Miret-Artés, Salvador

    2009-05-21

    A classical Wigner in-plane atom surface scattering perturbation theory within the generalized Langevin equation formalism is proposed and discussed with applications to the Ar-Ag(111) system. The theory generalizes the well-known formula of Brako as well as the "washboard model." Explicit expressions are derived for the joint angular and final momentum distributions, joint final energy, and angular distributions as well as average energy losses to the surface. The theory provides insight into the intertwining between the energy loss and angular dependence of the scattering. At low energies the energy loss in the horizontal direction is expected to be large, leading to a shift of the maximum of the angular distribution to subspecular angles, while at high energies the energy loss in the vertical direction dominates, leading to a superspecular maximum in the angular distribution. The same effect underlies the negative slope of the average final (relative) energy versus scattering angle at low energies which becomes positive at high energies. The theory also predicts that the full width at half maximum of the angular distribution varies as the square root of the temperature. We show how the theory provides insight into the experimental results for scattering of Ar from the Ag(111) surface.

  7. Probing scalar effective field theories with the soft limits of scattering amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, Antonio [School of Physics and Astronomy, University of Nottingham,University Park, Nottingham, NG7 2RD United Kingdom (United Kingdom); Stefanyszyn, David [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, Groningen, 9747 AG The (Netherlands); Wilson, Toby [School of Physics and Astronomy, University of Nottingham,University Park, Nottingham, NG7 2RD United Kingdom (United Kingdom)

    2017-04-04

    We investigate the soft behaviour of scalar effective field theories (EFTs) when there is a number of distinct derivative power counting parameters, ρ{sub 1}<ρ{sub 2}<…<ρ{sub Q}. We clarify the notion of an enhanced soft limit and use these to extend the scope of on-shell recursion techniques for scalar EFTs. As an example, we perform a detailed study of theories with two power counting parameters, ρ{sub 1}=1 and ρ{sub 2}=2, that include the shift symmetric generalised galileons. We demonstrate that the minimally enhanced soft limit uniquely picks out the Dirac-Born-Infeld (DBI) symmetry, including DBI galileons. For the exceptional soft limit we uniquely pick out the special galileon within the class of theories under investigation. We study the DBI galileon amplitudes more closely, verifying the validity of the recursion techniques in generating the six point amplitude, and explicitly demonstrating the invariance of all amplitudes under DBI galileon duality.

  8. Hybrid Theory of P-Wave Electron-Hydrogen Elastic Scattering

    Science.gov (United States)

    Bhatia, Anand

    2012-01-01

    We report on a study of electron-hydrogen scattering, using a combination of a modified method of polarized orbitals and the optical potential formalism. The calculation is restricted to P waves in the elastic region, where the correlation functions are of Hylleraas type. It is found that the phase shifts are not significantly affected by the modification of the target function by a method similar to the method of polarized orbitals and they are close to the phase shifts calculated earlier by Bhatia. This indicates that the correlation function is general enough to include the target distortion (polarization) in the presence of the incident electron. The important fact is that in the present calculation, to obtain similar results only 35-term correlation function is needed in the wave function compared to the 220-term wave function required in the above-mentioned previous calculation. Results for the phase shifts, obtained in the present hybrid formalism, are rigorous lower bounds to the exact phase shifts.

  9. Transverse magnetoresistance induced by electron-surface scattering on thin gold films: Experiment and theory

    International Nuclear Information System (INIS)

    Oyarzún, Simón; Henríquez, Ricardo; Suárez, Marco Antonio; Moraga, Luis; Kremer, Germán; Munoz, Raúl C.

    2014-01-01

    We report new experimental data regarding the transverse magnetoresistance measured in a family of thin gold films of different thickness with the electric field E oriented perpendicular to the magnetic field B (both fields contained within the plane of the film), as well as a theoretical description of size effects based upon a solution of Boltzmann Transport Equation. The measurements were performed at low temperatures T (4 K ≤ T ≤ 50 K) under magnetic field strengths B (1.5 T ≤ B ≤ 9 T). The magnetoresistance signal can be univocally identified as arising from electron-surface scattering, for the Hall mobility at 4 K depends linearly on film thickness. The magnetoresistance signal exhibits a marked thickness dependence, and its curvature as a function of magnetic field B varies with film thickness. The theoretical description of the magnetic field dependence of the magnetoresistance requires a Hall field that varies with the thickness of the film; this Hall field is tuned to reproduce the experimental data.

  10. Transverse magnetoresistance induced by electron-surface scattering on thin gold films: Experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Oyarzún, Simón [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne CEDEX (France); Henríquez, Ricardo [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Casilla 110-V, Valparaíso (Chile); Suárez, Marco Antonio; Moraga, Luis [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Blanco Encalada 2008, Casilla 487-3, Santiago 8370449 (Chile); Kremer, Germán [Bachillerato, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800024 (Chile); Munoz, Raúl C., E-mail: ramunoz@ing.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Blanco Encalada 2008, Casilla 487-3, Santiago 8370449 (Chile)

    2014-01-15

    We report new experimental data regarding the transverse magnetoresistance measured in a family of thin gold films of different thickness with the electric field E oriented perpendicular to the magnetic field B (both fields contained within the plane of the film), as well as a theoretical description of size effects based upon a solution of Boltzmann Transport Equation. The measurements were performed at low temperatures T (4 K ≤ T ≤ 50 K) under magnetic field strengths B (1.5 T ≤ B ≤ 9 T). The magnetoresistance signal can be univocally identified as arising from electron-surface scattering, for the Hall mobility at 4 K depends linearly on film thickness. The magnetoresistance signal exhibits a marked thickness dependence, and its curvature as a function of magnetic field B varies with film thickness. The theoretical description of the magnetic field dependence of the magnetoresistance requires a Hall field that varies with the thickness of the film; this Hall field is tuned to reproduce the experimental data.

  11. Fully-relativistic full-potential multiple scattering theory: A pathology-free scheme

    Science.gov (United States)

    Liu, Xianglin; Wang, Yang; Eisenbach, Markus; Stocks, G. Malcolm

    2018-03-01

    The Green function plays an essential role in the Korringa-Kohn-Rostoker(KKR) multiple scattering method. In practice, it is constructed from the regular and irregular solutions of the local Kohn-Sham equation and robust methods exist for spherical potentials. However, when applied to a non-spherical potential, numerical errors from the irregular solutions give rise to pathological behaviors of the charge density at small radius. Here we present a full-potential implementation of the fully-relativistic KKR method to perform ab initio self-consistent calculation by directly solving the Dirac differential equations using the generalized variable phase (sine and cosine matrices) formalism Liu et al. (2016). The pathology around the origin is completely eliminated by carrying out the energy integration of the single-site Green function along the real axis. By using an efficient pole-searching technique to identify the zeros of the well-behaved Jost matrices, we demonstrated that this scheme is numerically stable and computationally efficient, with speed comparable to the conventional contour energy integration method, while free of the pathology problem of the charge density. As an application, this method is utilized to investigate the crystal structures of polonium and their bulk properties, which is challenging for a conventional real-energy scheme. The noble metals are also calculated, both as a test of our method and to study the relativistic effects.

  12. Critical test of vibrational dephasing theories in solids using spontaneous Raman scattering in isotopically mixed crystals

    International Nuclear Information System (INIS)

    Marks, S.; Cornelius, P.A.; Harris, C.B.

    1980-01-01

    A series of experiments have been conducted in order to evaluate the relative importance of several recent theories of vibrational dephasing in solids. The theories are discussed briefly, and are used to interpret the temperature dependence of the C--H and C--D stretch bands in the spontaneous Raman spectra of h 14 - and d 14 -1,2,4,5-tetramethyl benzene (durene). The infrared spectra of these same molecules are also reported in the region of the combination bands involving C--H (or C--D) stretches and low-frequency modes. The results support the applicability of the model of Harris et al., [C. B. Harris, R. M. Shelby and P. A. Cornelius, Phys. Rev. Lett. 38, 1415 (1977); Chem Phys. Lett. 57, 8 (1978); R. M. Shelby, C. B. Harris, and P. A. Cornelius, J. Chem. Phys. 70, 34 (1979)], based on energy exchange in anharmonically coupled low-frequency modes. This theory is then used, in connection with Raman spectra obtained in isotopically mixed samples of durene, to elucidate the vibrational dynamics underlying the dephasing. It is found that the results are consistent with the hypothesis that some low-frequency modes in this molecule are significantly delocalized or ''excitonic'' in character, and that this delocalization may be studied by means of Raman spectroscopy on the low-frequency modes themselves, as well as by exchange analysis of the coupled high-frequency modes. These conclusions represent a generalization and extension of the previously published exchange model [R. M. Shelby, C. B. Harris, and P. A. Cornelius, J. Chem Phys. 70, 34 (1979)

  13. A variational approach to operator and matrix Pade approximation. Applications to potential scattering and field theory

    International Nuclear Information System (INIS)

    Mery, P.

    1977-01-01

    The operator and matrix Pade approximation are defined. The fact that these approximants can be derived from the Schwinger variational principle is emphasized. In potential theory, using this variational aspect it is shown that the matrix Pade approximation allow to reproduce the exact solution of the Lippman-Schwinger equation with any required accuracy taking only into account the knowledge of the first two coefficients in the Born expansion. The deep analytic structure of this variational matrix Pade approximation (hyper Pade approximation) is discussed

  14. Basic and heavy ion scattering in time dependent Hartree-Fock Theory

    International Nuclear Information System (INIS)

    Weiss, M.S.

    1984-01-01

    Time Dependent Hartree-Fock theory, TDHF, is the most sophisticated, microscopic approach to nuclear dynamics yet practiced. Although it is far from a description of nature it does allow us to examine multiply interactive many-body systems semi quantum mechanically and to visualize otherwise covert processes. Some of the properties of the TDHF equations are stated leaving the interested reader to one of several excellent review articles for the derivations. Some of the applications to the collision of heavy ions are briefly described

  15. Pionic atoms, the relativistic mean-field theory and the pion-nucleon scattering lenghts

    International Nuclear Information System (INIS)

    Goudsmit, P.F.A.; Leisi, H.J.; Matsinos, E.

    1991-01-01

    Analysing pionic-atom data of isoscalar nuclei within the relativistic mean-field (RMF) theory, we determine the pseudoscalar πNN mixing parameter x=0.24±0.06 (syst.) and the strength of the nuclear scalar meson field for pions, S π =-34±14 (syst.) MeV. We show that these values are compatible with the elementary π-N interaction. Our RMF model provides a solution to the long-standing problem of the s-wave repulsion. (orig.)

  16. Scattering of massless vector, tensor, and other particles in string theory at high energy

    International Nuclear Information System (INIS)

    Antonov, E.N.

    1990-01-01

    The 2 → 2 and 2 → 3 processes are studied in the multi-Regge kinematics for gluons and gravitons, the first excited states of the open and closed strings. The factorization of the corresponding amplitudes is demonstrated. Explicit relations generalizing the Low-Gribov expressions are obtained in the kinematics where one of the external particles is produced with small transverse momentum. The expressions in the limit α' → 0 coincide with the results of Yang-Mills theory and gravitation at high energies

  17. Possibility of a 4He2 bound state, effective range theory, and very low energy He--He scattering

    International Nuclear Information System (INIS)

    Uang, Y.; Stwalley, W.C.

    1982-01-01

    The best available intermolecular potential for helium by Aziz, Nain, Carley, Taylor, and McConville is shown here for the first time to have a 4 He 2 bound state. Two numerical analyses, namely, eigenvalue solution and effective range theory, are used to support this conclusion. Unlike usual chemically bound species, the binding energy of this very weakly bound level is found to be only 8.3 x 10 -4 K, which is four orders of magnitude smaller than the potential well depth epsilon = 10.8 K. The scattering length for He+He collisions, determined from effective range theory, is used to calculate the elastic cross section in the very low energy limit. The results (1.878 x 10 5 A 2 for 4 He+ 4 He and 6.035 x 10 2 A for 3 He+ 3 He) are consistent with measurements at the lowest velocities yet attained. In terms of the estimated uncertainties of the parameters of the potential of Aziz and co-workers, it is shown that it is very likely that a bound state of the 4 He 2 molecule does in fact exist

  18. Sound propagation in dilute suspensions of spheres: Analytical comparison between coupled phase model and multiple scattering theory.

    Science.gov (United States)

    Valier-Brasier, Tony; Conoir, Jean-Marc; Coulouvrat, François; Thomas, Jean-Louis

    2015-10-01

    Sound propagation in dilute suspensions of small spheres is studied using two models: a hydrodynamic model based on the coupled phase equations and an acoustic model based on the ECAH (ECAH: Epstein-Carhart-Allegra-Hawley) multiple scattering theory. The aim is to compare both models through the study of three fundamental kinds of particles: rigid particles, elastic spheres, and viscous droplets. The hydrodynamic model is based on a Rayleigh-Plesset-like equation generalized to elastic spheres and viscous droplets. The hydrodynamic forces for elastic spheres are introduced by analogy with those of droplets. The ECAH theory is also modified in order to take into account the velocity of rigid particles. Analytical calculations performed for long wavelength, low dilution, and weak absorption in the ambient fluid show that both models are strictly equivalent for the three kinds of particles studied. The analytical calculations show that dilatational and translational mechanisms are modeled in the same way by both models. The effective parameters of dilute suspensions are also calculated.

  19. The application of density functional theory to the analysis of small-angle neutron scattering of concentrated microemulsion with nonionic surfactant

    International Nuclear Information System (INIS)

    Korneta, W.; Lopez Quintela, M.A.; Liz, L.

    1993-09-01

    The experimental results obtained by the static small-angle neutron scattering technique for the microemulsion consisting of 40% in volume of nonionic surfactant pentaethylene-glycol-4-octylphenylether, equal volumes of heavy water and decane, and additives (the salt KCl, the anionic surfactant SDS and butanol) are presented and discussed. The universal features of obtained scattering intensity plots are determined. The shape of the peak present in all scattering spectra was fitted by the universal function derived from the density functional theory. The persistence length of surfactant sheet used in many density functional theories of microemulsions is determined and the effect of different additives on this length is shown. (author). 10 refs, 2 figs

  20. Reactive scattering theory for molecular transitions in time-dependent fields

    International Nuclear Information System (INIS)

    Peskin, U.; Miller, W.H.

    1995-01-01

    A new approach is introduced for computing probabilities of molecular transitions in time-dependent fields. The method is based on the stationary (t,t') representation of the Schroedinger equation and is shown to be equivalent to infinite order time-dependent perturbation theory. Bound-to-bound (i.e., photoexcitation) and bound-to-continuum (i.e., photoreaction) transitions are regarded as reactive collisions with the ''time coordinate'' as the reaction coordinate in an extended Hilbert space. A numerical method based on imposing absorbing boundary conditions for the time coordinate in a discrete variable representation framework is introduced. A single operation of the Green's operator provides all the state-specific transition probabilities as well as partial state-resolved (inclusive) reaction probabilities. Illustrative numerical applications are given for model systems