Single VDTA Based Dual Mode Single Input Multioutput Biquad Filter
Directory of Open Access Journals (Sweden)
Rajeshwari Pandey
2016-01-01
Full Text Available This paper presents a dual mode, single input multioutput (SIMO biquad filter configuration using single voltage differencing transconductance amplifier (VDTA, three capacitors, and a grounded resistor. The proposed topology can be used to synthesize low pass (LP, high pass (HP, and band pass (BP filter functions. It can be configured as voltage mode (VM or current mode (CM structure with appropriate input excitation choice. The angular frequency (ω0 of the proposed structure can be controlled independently of quality factor (Q0. Workability of the proposed biquad configuration is demonstrated through PSPICE simulations using 0.18 μm TSMC CMOS process parameters.
Identification of single-input-single-output quantum linear systems
Levitt, Matthew; GuÅ£ǎ, Mǎdǎlin
2017-03-01
The purpose of this paper is to investigate system identification for single-input-single-output general (active or passive) quantum linear systems. For a given input we address the following questions: (1) Which parameters can be identified by measuring the output? (2) How can we construct a system realization from sufficient input-output data? We show that for time-dependent inputs, the systems which cannot be distinguished are related by symplectic transformations acting on the space of system modes. This complements a previous result of Guţă and Yamamoto [IEEE Trans. Autom. Control 61, 921 (2016), 10.1109/TAC.2015.2448491] for passive linear systems. In the regime of stationary quantum noise input, the output is completely determined by the power spectrum. We define the notion of global minimality for a given power spectrum, and characterize globally minimal systems as those with a fully mixed stationary state. We show that in the case of systems with a cascade realization, the power spectrum completely fixes the transfer function, so the system can be identified up to a symplectic transformation. We give a method for constructing a globally minimal subsystem direct from the power spectrum. Restricting to passive systems the analysis simplifies so that identifiability may be completely understood from the eigenvalues of a particular system matrix.
Single-input Multiple-output Tunable Log-domain Current-mode Universal Filter
Directory of Open Access Journals (Sweden)
P. Prommee
2013-06-01
Full Text Available This paper describes the design of a current-mode single-input multiple-output (SIMO universal filter based on the log-domain filtering concept. The circuit is a direct realization of a first-order differential equation for obtaining the lossy integrator circuit. Lossless integrators are realized by log-domain lossy integrators. The proposed filter comprises only two grounded capacitors and twenty-four transistors. This filter suits to operate in very high frequency (VHF applications. The pole-frequency of the proposed filter can be controlled over five decade frequency range through bias currents. The pole-Q can be independently controlled with the pole-frequency. Non-ideal effects on the filter are studied in detail. A validated BJT model is used in the simulations operated by a single power supply, as low as 2.5 V. The simulation results using PSpice are included to confirm the good performances and are in agreement with the theory.
A Direct Algorithm for Pole Placement by State-derivative Feedback for Single-input Linear Systems
Directory of Open Access Journals (Sweden)
Taha H. S. Abdelaziz
2003-01-01
Full Text Available This paper deals with the direct solution of the pole placement problem for single-input linear systems using state-derivative feedback. This pole placement problem is always solvable for any controllable systems if all eigenvalues of the original system are nonzero. Then any arbitrary closed-loop poles can be placed in order to achieve the desired system performance. The solving procedure results in a formula similar to the Ackermann formula. Its derivation is based on the transformation of a linear single-input system into Frobenius canonical form by a special coordinate transformation, then solving the pole placement problem by state derivative feedback. Finally the solution is extended also for single-input time-varying control systems. The simulation results are included to show the effectiveness of the proposed approach.
Single-Input Six-Output Voltage-Mode Filter Using Universal Voltage Conveyors
Minarcik, Martin; Vrba, Kamil
In this letter a new structure of multifunctional frequency filter using a universal voltage conveyor (UVC) is presented. The multifunctional circuit can realize a low-pass, high-pass and band-pass filter. All types of frequency filter can be realized as inverting or non-inverting. Advantages of the proposed structure are the independent control of the quality factor at the cut-off frequency and the low output impedance of output terminals. The computer simulations and measuring of particular frequency filters are depicted.
Quantized, piecewise linear filter network
DEFF Research Database (Denmark)
Sørensen, John Aasted
1993-01-01
A quantization based piecewise linear filter network is defined. A method for the training of this network based on local approximation in the input space is devised. The training is carried out by repeatedly alternating between vector quantization of the training set into quantization classes...... and equalization of the quantization classes linear filter mean square training errors. The equalization of the mean square training errors is carried out by adapting the boundaries between neighbor quantization classes such that the differences in mean square training errors are reduced...
A Comb Filter Design Method Using Linear Phase FIR Filter
Sugiura, Yosuke; Kawamura, Arata; Iiguni, Youji
This paper proposes a comb filter design method which utilizes two linear phase FIR filters for flexibly adjusting the comb filter's frequency response. The first FIR filter is used to individually adjust the notch gains, which denote the local minimum gains of the comb filter's frequency response. The second FIR filter is used to design the elimination bandwidths for individual notch gains. We also derive an efficient comb filter by incorporating these two FIR filters with an all-pass filter which is used in a conventional comb filter to accurately align the nulls with the undesired harmonic frequencies. Several design examples of the derived comb filter show the effectiveness of the proposed comb filter design method.
Compact Spectrometers Based on Linear Variable Filters
National Aeronautics and Space Administration — Demonstrate a linear-variable spectrometer with an H2RG array. Linear Variable Filter (LVF) spectrometers provide attractive resource benefits – high optical...
Linear Regression Based Real-Time Filtering
Directory of Open Access Journals (Sweden)
Misel Batmend
2013-01-01
Full Text Available This paper introduces real time filtering method based on linear least squares fitted line. Method can be used in case that a filtered signal is linear. This constraint narrows a band of potential applications. Advantage over Kalman filter is that it is computationally less expensive. The paper further deals with application of introduced method on filtering data used to evaluate a position of engraved material with respect to engraving machine. The filter was implemented to the CNC engraving machine control system. Experiments showing its performance are included.
Supervised scale-regularized linear convolutionary filters
DEFF Research Database (Denmark)
Loog, Marco; Lauze, Francois Bernard
2017-01-01
We start by demonstrating that an elementary learning task—learning a linear filter from training data by means of regression—can be solved very efficiently for feature spaces of very high dimensionality. In a second step, firstly, acknowledging that such high-dimensional learning tasks typically...... filter. In particular, we demonstrate that it clearly outperforms the de facto standard Tikhonov regularization, which is the one employed in ridge regression or Wiener filtering....
Signal enhancement with variable span linear filters
Benesty, Jacob; Jensen, Jesper R
2016-01-01
This book introduces readers to the novel concept of variable span speech enhancement filters, and demonstrates how it can be used for effective noise reduction in various ways. Further, the book provides the accompanying Matlab code, allowing readers to easily implement the main ideas discussed. Variable span filters combine the ideas of optimal linear filters with those of subspace methods, as they involve the joint diagonalization of the correlation matrices of the desired signal and the noise. The book shows how some well-known filter designs, e.g. the minimum distortion, maximum signal-to-noise ratio, Wiener, and tradeoff filters (including their new generalizations) can be obtained using the variable span filter framework. It then illustrates how the variable span filters can be applied in various contexts, namely in single-channel STFT-based enhancement, in multichannel enhancement in both the time and STFT domains, and, lastly, in time-domain binaural enhancement. In these contexts, the properties of ...
Signal Enhancement with Variable Span Linear Filters
DEFF Research Database (Denmark)
Benesty, Jacob; Christensen, Mads Græsbøll; Jensen, Jesper Rindom
This book introduces readers to the novel concept of variable span speech enhancement filters, and demonstrates how it can be used for effective noise reduction in various ways. Further, the book provides the accompanying Matlab code, allowing readers to easily implement the main ideas discussed....... Variable span filters combine the ideas of optimal linear filters with those of subspace methods, as they involve the joint diagonalization of the correlation matrices of the desired signal and the noise. The book shows how some well-known filter designs, e.g. the minimum distortion, maximum signal......-to-noise ratio, Wiener, and tradeoff filters (including their new generalizations) can be obtained using the variable span filter framework. It then illustrates how the variable span filters can be applied in various contexts, namely in single-channel STFT-based enhancement, in multichannel enhancement in both...
Signal Enhancement with Variable Span Linear Filters
DEFF Research Database (Denmark)
Benesty, Jacob; Christensen, Mads Græsbøll; Jensen, Jesper Rindom
. Variable span filters combine the ideas of optimal linear filters with those of subspace methods, as they involve the joint diagonalization of the correlation matrices of the desired signal and the noise. The book shows how some well-known filter designs, e.g. the minimum distortion, maximum signal...... the time and STFT domains, and, lastly, in time-domain binaural enhancement. In these contexts, the properties of these filters are analyzed in terms of their noise reduction capabilities and desired signal distortion, and the analyses are validated and further explored in simulations....
Ultra compact spectrometer using linear variable filters
Dami, M.; De Vidi, R.; Aroldi, G.; Belli, F.; Chicarella, L.; Piegari, A.; Sytchkova, A.; Bulir, J.; Lemarquis, F.; Lequime, M.; Abel Tibérini, L.; Harnisch, B.
2017-11-01
The Linearly Variable Filters (LVF) are complex optical devices that, integrated in a CCD, can realize a "single chip spectrometer". In the framework of an ESA Study, a team of industries and institutes led by SELEX-Galileo explored the design principles and manufacturing techniques, realizing and characterizing LVF samples based both on All-Dielectric (AD) and Metal-Dielectric (MD) Coating Structures in the VNIR and SWIR spectral ranges. In particular the achieved performances on spectral gradient, transmission bandwidth and Spectral Attenuation (SA) are presented and critically discussed. Potential improvements will be highlighted. In addition the results of a feasibility study of a SWIR Linear Variable Filter are presented with the comparison of design prediction and measured performances. Finally criticalities related to the filter-CCD packaging are discussed. The main achievements reached during these activities have been: - to evaluate by design, manufacturing and test of LVF samples the achievable performances compared with target requirements; - to evaluate the reliability of the projects by analyzing their repeatability; - to define suitable measurement methodologies
Time signal filtering by relative neighborhood graph localized linear approximation
DEFF Research Database (Denmark)
Sørensen, John Aasted
1994-01-01
A time signal filtering algorithm based on the relative neighborhood graph (RNG) used for localization of linear filters is proposed. The filter is constructed from a training signal during two stages. During the first stage an RNG is constructed. During the second stage, localized linear filters...
A family of quantization based piecewise linear filter networks
DEFF Research Database (Denmark)
Sørensen, John Aasted
1992-01-01
A family of quantization-based piecewise linear filter networks is proposed. For stationary signals, a filter network from this family is a generalization of the classical Wiener filter with an input signal and a desired response. The construction of the filter network is based on quantization...... of the input signal x(n) into quantization classes. With each quantization class is associated a linear filter. The filtering at time n is carried out by the filter belonging to the actual quantization class of x(n ) and the filters belonging to the neighbor quantization classes of x(n) (regularization...
Dense grid sibling frames with linear phase filters
Abdelnour, Farras
2013-09-01
We introduce new 5-band dyadic sibling frames with dense time-frequency grid. Given a lowpass filter satisfying certain conditions, the remaining filters are obtained using spectral factorization. The analysis and synthesis filterbanks share the same lowpass and bandpass filters but have different and oversampled highpass filters. This leads to wavelets approximating shift-invariance. The filters are FIR, have linear phase, and the resulting wavelets have vanishing moments. The filters are designed using spectral factorization method. The proposed method leads to smooth limit functions with higher approximation order, and computationally stable filterbanks.
Non-linear and signal energy optimal asymptotic filter design
Directory of Open Access Journals (Sweden)
Josef Hrusak
2003-10-01
Full Text Available The paper studies some connections between the main results of the well known Wiener-Kalman-Bucy stochastic approach to filtering problems based mainly on the linear stochastic estimation theory and emphasizing the optimality aspects of the achieved results and the classical deterministic frequency domain linear filters such as Chebyshev, Butterworth, Bessel, etc. A new non-stochastic but not necessarily deterministic (possibly non-linear alternative approach called asymptotic filtering based mainly on the concepts of signal power, signal energy and a system equivalence relation plays an important role in the presentation. Filtering error invariance and convergence aspects are emphasized in the approach. It is shown that introducing the signal power as the quantitative measure of energy dissipation makes it possible to achieve reasonable results from the optimality point of view as well. The property of structural energy dissipativeness is one of the most important and fundamental features of resulting filters. Therefore, it is natural to call them asymptotic filters. The notion of the asymptotic filter is carried in the paper as a proper tool in order to unify stochastic and non-stochastic, linear and nonlinear approaches to signal filtering.
Adaptive ensemble Kalman filtering of non-linear systems
Directory of Open Access Journals (Sweden)
Tyrus Berry
2013-07-01
Full Text Available A necessary ingredient of an ensemble Kalman filter (EnKF is covariance inflation, used to control filter divergence and compensate for model error. There is an on-going search for inflation tunings that can be learned adaptively. Early in the development of Kalman filtering, Mehra (1970, 1972 enabled adaptivity in the context of linear dynamics with white noise model errors by showing how to estimate the model error and observation covariances. We propose an adaptive scheme, based on lifting Mehra's idea to the non-linear case, that recovers the model error and observation noise covariances in simple cases, and in more complicated cases, results in a natural additive inflation that improves state estimation. It can be incorporated into non-linear filters such as the extended Kalman filter (EKF, the EnKF and their localised versions. We test the adaptive EnKF on a 40-dimensional Lorenz96 model and show the significant improvements in state estimation that are possible. We also discuss the extent to which such an adaptive filter can compensate for model error, and demonstrate the use of localisation to reduce ensemble sizes for large problems.
Linear filtering of systems with memory and application to finance
Directory of Open Access Journals (Sweden)
2006-01-01
Full Text Available We study the linear filtering problem for systems driven by continuous Gaussian processes V ( 1 and V ( 2 with memory described by two parameters. The processes V ( j have the virtue that they possess stationary increments and simple semimartingale representations simultaneously. They allow for straightforward parameter estimations. After giving the semimartingale representations of V ( j by innovation theory, we derive Kalman-Bucy-type filtering equations for the systems. We apply the result to the optimal portfolio problem for an investor with partial observations. We illustrate the tractability of the filtering algorithm by numerical implementations.
Novel programmable microwave photonic filter with arbitrary filtering shape and linear phase.
Zhu, Xiaoqi; Chen, Feiya; Peng, Huanfa; Chen, Zhangyuan
2017-04-17
We propose and demonstrate a novel optical frequency comb (OFC) based microwave photonic filter which is able to realize arbitrary filtering shape with linear phase response. The shape of filter response is software programmable using finite impulse response (FIR) filter design method. By shaping the OFC spectrum using a programmable waveshaper, we can realize designed amplitude of FIR taps. Positive and negative sign of FIR taps are achieved by balanced photo-detection. The double sideband (DSB) modulation and symmetric distribution of filter taps are used to maintain the linear phase condition. In the experiment, we realize a fully programmable filter in the range from DC to 13.88 GHz. Four basic types of filters (lowpass, highpass, bandpass and bandstop) with different bandwidths, cut-off frequencies and central frequencies are generated. Also a triple-passband filter is realized in our experiment. To the best of our knowledge, it is the first demonstration of a programmable multiple passband MPF with linear phase response. The experiment shows good agreement with the theoretical result.
Group Lifting Structures For Multirate Filter Banks, II: Linear Phase Filter Banks
Energy Technology Data Exchange (ETDEWEB)
Brislawn, Christopher M [Los Alamos National Laboratory
2008-01-01
The theory of group lifting structures is applied to linear phase lifting factorizations for the two nontrivial classes of two-channel linear phase perfect reconstruction filter banks, the whole-and half-sample symmetric classes. Group lifting structures defined for the reversible and irreversible classes of whole-and half-sample symmetric filter banks are shown to satisfy the hypotheses of the uniqueness theorem for group lifting structures. It follows that linear phase lifting factorizations of whole-and half-sample symmetric filter banks are therefore independent of the factorization methods used to compute them. These results cover the specification of user-defined whole-sample symmetric filter banks in Part 2 of the ISO JPEG 2000 standard.
Linear variable optical filter-based ultraviolet microspectrometer
Emadi, A.; Wu, H.; De Graaf, G.; Enoksson, P.; Higino Correia, J.; Wolffenbuttel, R.
2012-01-01
An IC-compatible linear variable optical filter (LVOF) for application in the UV spectral range between 310 and 400 nm has been fabricated using resist reflow and an optimized dry-etching. The LVOF is mounted on the top of a commercially available CMOS camera to result in a UV microspectrometer. A
IR Microspectrometers based on Linear-Variable Optical Filters
Emadi, A.; Wu, H.; De Graaf, G.; Wolffenbuttel, R.F.
2013-01-01
This paper presents the design, fabrication and characterization of Infra-Red (IR) Linear Variable Optical Filter (LVOF)-based micro-spectrometers. Two LVOF microspectrometer designs have been realized: one for operating in the 1400 nm to 2500 nm wavelength range and another between 3000 nm and 5000
Human visual modeling and image deconvolution by linear filtering
International Nuclear Information System (INIS)
Larminat, P. de; Barba, D.; Gerber, R.; Ronsin, J.
1978-01-01
The problem is the numerical restoration of images degraded by passing through a known and spatially invariant linear system, and by the addition of a stationary noise. We propose an improvement of the Wiener's filter to allow the restoration of such images. This improvement allows to reduce the important drawbacks of classical Wiener's filter: the voluminous data processing, the lack of consideration of the vision's characteristivs which condition the perception by the observer of the restored image. In a first paragraph, we describe the structure of the visual detection system and a modelling method of this system. In the second paragraph we explain a restoration method by Wiener filtering that takes the visual properties into account and that can be adapted to the local properties of the image. Then the results obtained on TV images or scintigrams (images obtained by a gamma-camera) are commented [fr
Holography, tomography and 3D microscopy as linear filtering operations
Coupland, J. M.; Lobera, J.
2008-07-01
In this paper, we characterize 3D optical imaging techniques as 3D linear shift-invariant filtering operations. From the Helmholtz equation that is the basis of scalar diffraction theory, we show that the scattered field, or indeed a holographic reconstruction of this field, can be considered to be the result of a linear filtering operation applied to a source distribution. We note that if the scattering is weak, the source distribution is independent of the scattered field and a holographic reconstruction (or in fact any far-field optical imaging system) behaves as a 3D linear shift-invariant filter applied to the refractive index contrast (which effectively defines the object). We go on to consider tomographic techniques that synthesize images from recordings of the scattered field using different illumination conditions. In our analysis, we compare the 3D response of monochromatic optical tomography with the 3D imagery offered by confocal microscopy and scanning white light interferometry (using quasi-monochromatic illumination) and explain the circumstances under which these approaches are equivalent. Finally, we consider the 3D response of polychromatic optical tomography and in particular the response of spectral optical coherence tomography and scanning white light interferometry.
Holography, tomography and 3D microscopy as linear filtering operations
International Nuclear Information System (INIS)
Coupland, J M; Lobera, J
2008-01-01
In this paper, we characterize 3D optical imaging techniques as 3D linear shift-invariant filtering operations. From the Helmholtz equation that is the basis of scalar diffraction theory, we show that the scattered field, or indeed a holographic reconstruction of this field, can be considered to be the result of a linear filtering operation applied to a source distribution. We note that if the scattering is weak, the source distribution is independent of the scattered field and a holographic reconstruction (or in fact any far-field optical imaging system) behaves as a 3D linear shift-invariant filter applied to the refractive index contrast (which effectively defines the object). We go on to consider tomographic techniques that synthesize images from recordings of the scattered field using different illumination conditions. In our analysis, we compare the 3D response of monochromatic optical tomography with the 3D imagery offered by confocal microscopy and scanning white light interferometry (using quasi-monochromatic illumination) and explain the circumstances under which these approaches are equivalent. Finally, we consider the 3D response of polychromatic optical tomography and in particular the response of spectral optical coherence tomography and scanning white light interferometry
Filtering Non-Linear Transfer Functions on Surfaces.
Heitz, Eric; Nowrouzezahrai, Derek; Poulin, Pierre; Neyret, Fabrice
2014-07-01
Applying non-linear transfer functions and look-up tables to procedural functions (such as noise), surface attributes, or even surface geometry are common strategies used to enhance visual detail. Their simplicity and ability to mimic a wide range of realistic appearances have led to their adoption in many rendering problems. As with any textured or geometric detail, proper filtering is needed to reduce aliasing when viewed across a range of distances, but accurate and efficient transfer function filtering remains an open problem for several reasons: transfer functions are complex and non-linear, especially when mapped through procedural noise and/or geometry-dependent functions, and the effects of perspective and masking further complicate the filtering over a pixel's footprint. We accurately solve this problem by computing and sampling from specialized filtering distributions on the fly, yielding very fast performance. We investigate the case where the transfer function to filter is a color map applied to (macroscale) surface textures (like noise), as well as color maps applied according to (microscale) geometric details. We introduce a novel representation of a (potentially modulated) color map's distribution over pixel footprints using Gaussian statistics and, in the more complex case of high-resolution color mapped microsurface details, our filtering is view- and light-dependent, and capable of correctly handling masking and occlusion effects. Our approach can be generalized to filter other physical-based rendering quantities. We propose an application to shading with irradiance environment maps over large terrains. Our framework is also compatible with the case of transfer functions used to warp surface geometry, as long as the transformations can be represented with Gaussian statistics, leading to proper view- and light-dependent filtering results. Our results match ground truth and our solution is well suited to real-time applications, requires only a few
AESOP- INTERACTIVE DESIGN OF LINEAR QUADRATIC REGULATORS AND KALMAN FILTERS
Lehtinen, B.
1994-01-01
AESOP was developed to solve a number of problems associated with the design of controls and state estimators for linear time-invariant systems. The systems considered are modeled in state-variable form by a set of linear differential and algebraic equations with constant coefficients. Two key problems solved by AESOP are the linear quadratic regulator (LQR) design problem and the steady-state Kalman filter design problem. AESOP is designed to be used in an interactive manner. The user can solve design problems and analyze the solutions in a single interactive session. Both numerical and graphical information are available to the user during the session. The AESOP program is structured around a list of predefined functions. Each function performs a single computation associated with control, estimation, or system response determination. AESOP contains over sixty functions and permits the easy inclusion of user defined functions. The user accesses these functions either by inputting a list of desired functions in the order they are to be performed, or by specifying a single function to be performed. The latter case is used when the choice of function and function order depends on the results of previous functions. The available AESOP functions are divided into several general areas including: 1) program control, 2) matrix input and revision, 3) matrix formation, 4) open-loop system analysis, 5) frequency response, 6) transient response, 7) transient function zeros, 8) LQR and Kalman filter design, 9) eigenvalues and eigenvectors, 10) covariances, and 11) user-defined functions. The most important functions are those that design linear quadratic regulators and Kalman filters. The user interacts with AESOP when using these functions by inputting design weighting parameters and by viewing displays of designed system response. Support functions obtain system transient and frequency responses, transfer functions, and covariance matrices. AESOP can also provide the user
Implementation of non-linear filters for iterative penalized maximum likelihood image reconstruction
International Nuclear Information System (INIS)
Liang, Z.; Gilland, D.; Jaszczak, R.; Coleman, R.
1990-01-01
In this paper, the authors report on the implementation of six edge-preserving, noise-smoothing, non-linear filters applied in image space for iterative penalized maximum-likelihood (ML) SPECT image reconstruction. The non-linear smoothing filters implemented were the median filter, the E 6 filter, the sigma filter, the edge-line filter, the gradient-inverse filter, and the 3-point edge filter with gradient-inverse filter, and the 3-point edge filter with gradient-inverse weight. A 3 x 3 window was used for all these filters. The best image obtained, by viewing the profiles through the image in terms of noise-smoothing, edge-sharpening, and contrast, was the one smoothed with the 3-point edge filter. The computation time for the smoothing was less than 1% of one iteration, and the memory space for the smoothing was negligible. These images were compared with the results obtained using Bayesian analysis
Noise Reduction of Measurement Data using Linear Digital Filters
Directory of Open Access Journals (Sweden)
Hitzmann B.
2007-12-01
Full Text Available In this paper Butterworth, Chebyshev (Type I and II and Elliptic digital filters are designed for signal noise reduction. On-line data measurements of substrate concentration from E. coli fed-batch cultivation process are used. Application of the designed filters leads to a successful noise reduction of on-line glucose measurements. The digital filters presented here are simple, easy to implement and effective - the used filters allow for a smart compromise between signal information and noise corruption.
The research of parallel-coupled linear-phase superconducting filter
Energy Technology Data Exchange (ETDEWEB)
Zhang, Tianliang; Zhou, Liguo; Yang, Kai, E-mail: kyang@uestc.edu.cn; Luo, Chao; Jiang, Mingyan; Dang, Wei; Ren, Xiangyang
2015-12-15
Highlights: • Parallel-connected linear phase filter can be achieved when the group delays of sub-networks compensate each other. • We give the coupling and routing diagrams of four linear phase filters with self-synthesized coupling matrixes, and verified the correctness of theory data and the feasibility of the circuit design. • There are a variety of topological coupling and routing diagrams for a same order filter. • We give a reasonable arrangement of design steps for high-order parallel-coupled linear phase filter. - Abstract: This paper presents a research on the mechanism of a linear phase filter constructed with parallel-connected sub-networks, considering that linear phase characteristic of a filter can be achieved when the group delays of sub-networks compensate each other. This paper also gives several coupling and routing diagrams of linear phase filters with different parallel-connected networks, and then the coupling matrixes of three 8-order filters and one 10-order filter are synthesized. One of the coupling matrixes is utilized to design a 8-order parallel-connected network high temperature superconducting (HTS) linear phase filter with two pairs of transmission zeros, so as to verify the correctness of theory data and the feasibility of the circuit design for the proposed 8-order and higher order parallel-connected network linear phase filter. The HTS linear phase filter is designed on YBCO/LaAlO{sub 3}/YBCO superconducting substrate, at 77 K, the measured center frequency is 2000 MHz with a bandwidth of 30 MHz, the insertion loss is less than 0.3 dB and the reflection is better than −12.5 dB in passband. The group delay is less than ±5 ns over the 60% passband, which shows that the filter has a good linear phase characteristic.
Noise Reduction with Optimal Variable Span Linear Filters
DEFF Research Database (Denmark)
Jensen, Jesper Rindom; Benesty, Jacob; Christensen, Mads Græsbøll
2016-01-01
of eigenvectors stemming from a joint diagonalization of the covariance matrices of the signal of interest and the noise. The resulting filters are flexible in that it is possible to trade off distortion of the desired signal for improved noise reduction. This tradeoff is controlled by the number of eigenvectors...... included in forming the filter. Using these concepts, a number of different filter designs are considered, like minimum distortion, Wiener, maximum SNR, and tradeoff filters. Interestingly, all these can be expressed as special cases of variable span filters. We also derive expressions for the speech...... distortion and noise reduction of the various filter designs. Moreover, we consider an alternative approach, wherein the filter is designed for extracting an estimate of the noise signal, which can then be extracted from the observed signals, which is referred to as the indirect approach. Simulations...
A brief overview of speech enhancement with linear filtering
DEFF Research Database (Denmark)
Benesty, Jacob; Christensen, Mads Græsbøll; Jensen, Jesper Rindom
2014-01-01
as a signal vector estimation problem, i.e., with a filter matrix, where the estimate is obtained by means of a matrix-vector product of the filter matrix and the noisy signal vector. In this framework, minimum distortion, minimum variance distortionless response (MVDR), tradeoff, maximum signal......-to-noise ratio (SNR), and Wiener filters are derived from the conventional speech enhancement approach and the recently introduced orthogonal decomposition approach. For each of the filters, we derive their properties in terms of output SNR and speech distortion. We then demonstrate how the ideas can be applied...
Applications of Kalman filters based on non-linear functions to numerical weather predictions
Directory of Open Access Journals (Sweden)
G. Galanis
2006-10-01
Full Text Available This paper investigates the use of non-linear functions in classical Kalman filter algorithms on the improvement of regional weather forecasts. The main aim is the implementation of non linear polynomial mappings in a usual linear Kalman filter in order to simulate better non linear problems in numerical weather prediction. In addition, the optimal order of the polynomials applied for such a filter is identified. This work is based on observations and corresponding numerical weather predictions of two meteorological parameters characterized by essential differences in their evolution in time, namely, air temperature and wind speed. It is shown that in both cases, a polynomial of low order is adequate for eliminating any systematic error, while higher order functions lead to instabilities in the filtered results having, at the same time, trivial contribution to the sensitivity of the filter. It is further demonstrated that the filter is independent of the time period and the geographic location of application.
Linear filtering with Ornstein–Ulhenbeck process as noise
Indian Academy of Sciences (India)
Elliott R J 1982 Stochastic calculus and applications (New York: Springer). Fujisaki M, Kallianpur G, Kunita H 1972 Stochastic differential equations for the nonlinear filtering problem. Osaka J. Math. 9: 19–40. Gawarecki L, Mandrekar V 2000 On the Zakai equation of filtering with Gaussian noise. Stochas- tics in finite and ...
Non-linear DSGE Models, The Central Difference Kalman Filter, and The Mean Shifted Particle Filter
DEFF Research Database (Denmark)
Andreasen, Martin Møller
. The second contribution of this paper is to derive a new particle filter which we term the Mean Shifted Particle Filter (MSPFb). We show that the MSPFb outperforms the standard Particle Filter by delivering more precise state estimates, and in general the MSPFb has lower Monte Carlo variation in the reported...
Generation of Long Waves using Non-Linear Digital Filters
DEFF Research Database (Denmark)
Høgedal, Michael; Frigaard, Peter; Christensen, Morten
1994-01-01
transform of the 1st order surface elevation and subsequently inverse Fourier transformed. Hence, the methods are unsuitable for real-time applications, for example where white noise are filtered digitally to obtain a wave spectrum with built-in stochastic variabillity. In the present paper an approximative...... method for including the correct 2nd order bound terms in such applications is presented. The technique utilizes non-liner digital filters fitted to the appropriate transfer function is derived only for bounded 2nd order subharmonics, as they laboratory experiments generally are considered the most...
Design and Efficiency Analysis of one Class of Uniform Linear Phase FIR Filter Banks
Directory of Open Access Journals (Sweden)
R. D. Pantić
2013-11-01
Full Text Available One class of uniform linear phase filter banks with different numbers of band-pass channels will be considered in this study, concentrating on 5, 9 and 17-band filter banks and their mutual comparison concerning delay and implementation complexity. Designed banks are based on the FIR filters and frequency response masking technique and are also compared to the banks with direct realization considering complementarity and delay.
Lisano, Michael E.
2007-01-01
Recent literature in applied estimation theory reflects growing interest in the sigma-point (also called unscented ) formulation for optimal sequential state estimation, often describing performance comparisons with extended Kalman filters as applied to specific dynamical problems [c.f. 1, 2, 3]. Favorable attributes of sigma-point filters are described as including a lower expected error for nonlinear even non-differentiable dynamical systems, and a straightforward formulation not requiring derivation or implementation of any partial derivative Jacobian matrices. These attributes are particularly attractive, e.g. in terms of enabling simplified code architecture and streamlined testing, in the formulation of estimators for nonlinear spaceflight mechanics systems, such as filter software onboard deep-space robotic spacecraft. As presented in [4], the Sigma-Point Consider Filter (SPCF) algorithm extends the sigma-point filter algorithm to the problem of consider covariance analysis. Considering parameters in a dynamical system, while estimating its state, provides an upper bound on the estimated state covariance, which is viewed as a conservative approach to designing estimators for problems of general guidance, navigation and control. This is because, whether a parameter in the system model is observable or not, error in the knowledge of the value of a non-estimated parameter will increase the actual uncertainty of the estimated state of the system beyond the level formally indicated by the covariance of an estimator that neglects errors or uncertainty in that parameter. The equations for SPCF covariance evolution are obtained in a fashion similar to the derivation approach taken with standard (i.e. linearized or extended) consider parameterized Kalman filters (c.f. [5]). While in [4] the SPCF and linear-theory consider filter (LTCF) were applied to an illustrative linear dynamics/linear measurement problem, in the present work examines the SPCF as applied to
On Optimal Linear Filtering of Speech for Near-End Listening Enhancement
DEFF Research Database (Denmark)
Taal, Cees H.; Jensen, Jesper; Leijon, Arne
2013-01-01
In this letter the focus is on linear filtering of speech before degradation due to additive background noise. The goal is to design the filter such that the speech intelligibility index (SII) is maximized when the speech is played back in a known noisy environment. Moreover, a power constraint i...
A Study of Combined-type Active Filter using Linear Power Amplifier
Moriya, Rieko; Yamamura, Naoki; Ishida, Muneaki; Hori, Takamasa
In recent years, along with the increase of the power converter used in home information equipments and home electric appliances, the harmonic current in the single-phase utility line generated from the converter causes a problem to electronic equipments. An active filter is one of the effective solutions for this problem. But the conventional type active filters utilize voltage source PWM inverter, which requires high switching frequency in order to compensate high order harmonic current in general. Using high switching frequency, this type inverter generates the electromagnetic noise and gives interference to other electronic equipments. So we propose the new type active filter using linear power amplifier with no switching operation. We have already reported that this type of active filter is useful for suppressing the higher harmonic current effectively. However the efficiency of this type active filter is very low. So we study on the reduction of the capacity of linear power amplifier by using combined type active filter in this paper. By combining the active filter that used linear power amplifier, and a partial-switching type active filter operating at low switching frequency, we show by theoretical and experimental results that the proposed active filter is effect to suppress the higher harmonic current in a single-phase utility line.
A Frequency Domain Analysis of the Linear Discrete Kalman Filter
1980-03-01
Non-Linear Measurements N• Non-linear measurements arise when observations are made in one coordinate sustem and the model requires that •he state be...Program available in most computer iibraries is generallw easw to use. However, the FFT Programs generallw require an exact Power of 2 for the number of...Research. Logistics Quartgeiy, Vol. 15, pp 157-168, June, 1968. 1 15, Harris, F.J,, "On the use of Windows for Harmonic Analisis with the Discrete
Directory of Open Access Journals (Sweden)
Ebrahim Borzabadi
2012-01-01
Full Text Available The aim of this paper is the introduction of a CMOS OTA basic block that its transconductance gain can be electronically and linearly tuned. This transconductance is proportional to the square root of the bias current. To achieve the maximum output voltage and create a wide range of linear transconductance the CMOS OTA has been used.Then the variation of the transconductance and its effects on the performance of Continuous-time filters has been considered. The novelty of this paper is to show that how the transconductance of a first-Order filter is transformed to high pass and low pass filters and the transfer function of a second-order filter is transformed into high pass, low pass , band pass and band rejection filters. The performance of the proposed circuit is discussed and confirmed through MATLAB and PSPICE-simulation results.
Proposal of Switching Power Amplifier Using Small Capacity Linear Amplifier and LC Filter
Kamada, Jo; Funato, Hirohito; Ogasawara, Satoshi
The higher efficiency and the low noise in output voltage and current has been required in some applications, i.e. audio-video equipment, medical equipment and so on. This paper proposes a power amplifier in which a PWM inverter is used as a main circuit. In the proposed power amplifier, a hybrid filter composed of a simple and general LC filter and a small capacity linear amplifier is connected to the output of the inverter. The linear amplifier is inserted in series to the filter capacitor to improve the filtering effect of the LC filter. Switching ripples and LC resonances are considerably suppressed by controlling the amplifier using the proposed method and a low distortion switching power amplifier is realized. The effects of the proposal circuit are verified by simulations and experiments. As a result, the proposed circuit achieves low noise about THD=0.68% in simulation and THD=1.7% in experiment.
Linear filtering with Ornstein–Ulhenbeck process as noise
Indian Academy of Sciences (India)
We consider a linear ﬁltering model (with feedback) when the observation noise is an Ornstein–Ulhenbeck (OU) process with parameter . The coefﬁcients appearing in the model are all assumed to be bounded. In addition, the coefﬁcients appearing in the observation equation are also assumed to be differentiable.
Design of Finite Word Length Linear-Phase FIR Filters in the Logarithmic Number System Domain
Directory of Open Access Journals (Sweden)
Syed Asad Alam
2014-01-01
Full Text Available Logarithmic number system (LNS is an attractive alternative to realize finite-length impulse response filters because of multiplication in the linear domain being only addition in the logarithmic domain. In the literature, linear coefficients are directly replaced by the logarithmic equivalent. In this paper, an approach to directly optimize the finite word length coefficients in the LNS domain is proposed. This branch and bound algorithm is implemented based on LNS integers and several different branching strategies are proposed and evaluated. Optimal coefficients in the minimax sense are obtained and compared with the traditional finite word length representation in the linear domain as well as using rounding. Results show that the proposed method naturally provides smaller approximation error compared to rounding. Furthermore, they provide insights into finite word length properties of FIR filters coefficients in the LNS domain and show that LNS FIR filters typically provide a better approximation error compared to a standard FIR filter.
Czech Academy of Sciences Publication Activity Database
Slavík, Radan; Kulishov, M.; Park, Y.; Azana, J.
2009-01-01
Roč. 34, č. 7 (2009), s. 1045-1047 ISSN 0146-9592 R&D Projects: GA ČR(CZ) GA102/07/0999; GA AV ČR KJB200670601 Institutional research plan: CEZ:AV0Z20670512 Keywords : optical fibre filters Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.059, year: 2009
Rotationally invariant pattern recognition by use of linear and nonlinear cascaded filters
Wu, Ning; Alcock, Robin D.; Halliwell, Neil A.; Coupland, Jeremy M.
2005-07-01
We discuss the merits of using single-layer (linear and nonlinear) and multiple-layer (nonlinear) filters for rotationally invariant and noise-tolerant pattern recognition. The capability of each approach is considered with reference to a two-class, rotation-invariant, character recognition problem. The minimum average correlation energy (MACE) filter is a linear filter that is generally accepted to be optimal for detecting signals that are free from noise. Here it is found that an optimized MACE filter cannot differentiate between the characters E and F in a rotation-invariant manner. We have found, however, that this task is possible when a single optimized linear filter is used to achieve the required response when a nonlinear threshold function is included after the filter. We show that this structure can be cascaded to form a multiple-layer, cascaded filter and that the capability of such a system is enhanced by its increased noise tolerance in the character recognition problem. Finally, we show the capability of a two-layer cascade as a means to detect different species of bacteria in images obtained from a phase-contrast microscope.
A novel method of drift-scanning stars suppression based on the standardized linear filter
Lin, Jianlin; Ping, Xijian; Hou, Guanghua; Ma, Debao
2011-11-01
A large number of stars in the drift-scanning star image have interfered with the detection of small target, this paper proposes an adaptive linear filtering method to achieve the small target detection by suppressing the stars. Firstly, the characteristics of stars, interest target and noise three different representative objects in the star image are analyzed, then the standardized linear filter is constructed to suppress the stars. For the purpose of decreasing the influence region of stars filtering uniformly, a gradient linear filter is constructed to modify the stars suppression method with the standardized linear filter. Then the filter parameter selection method is given. Finally, a multi-frame target track experiment on the real drift-scanning data is made to testify the validity of the proposed method. With the processing results of different methods, it has been showed that the proposed method for suppressing stars with different length and lean angle has a better effect, higher robustness and easier application than the others.
Energy Technology Data Exchange (ETDEWEB)
Pike, D.H.; Morrison, G.W.; Westley, G.W.
1977-10-01
The feasibility of using modern state estimation techniques (specifically Kalman Filtering and Linear Smoothing) to detect losses of material from material balance areas is evaluated. It is shown that state estimation techniques are not only feasible but in most situations are superior to existing methods of analysis. The various techniques compared include Kalman Filtering, linear smoothing, standard control charts, and average cumulative summation (CUSUM) charts. Analysis results indicated that the standard control chart is the least effective method for detecting regularly occurring losses. An improvement in the detection capability over the standard control chart can be realized by use of the CUSUM chart. Even more sensitivity in the ability to detect losses can be realized by use of the Kalman Filter and the linear smoother. It was found that the error-covariance matrix can be used to establish limits of error for state estimates. It is shown that state estimation techniques represent a feasible and desirable method of theft detection. The technique is usually more sensitive than the CUSUM chart in detecting losses. One kind of loss which is difficult to detect using state estimation techniques is a single isolated loss. State estimation procedures are predicated on dynamic models and are well-suited for detecting losses which occur regularly over several accounting periods. A single isolated loss does not conform to this basic assumption and is more difficult to detect.
A highly linear fully integrated powerline filter for biopotential acquisition systems.
Alzaher, Hussain A; Tasadduq, Noman; Mahnashi, Yaqub
2013-10-01
Powerline interference is one of the most dominant problems in detection and processing of biopotential signals. This work presents a new fully integrated notch filter exhibiting high linearity and low power consumption. High filter linearity is preserved utilizing active-RC approach while IC implementation is achieved through replacing passive resistors by R-2R ladders achieving area saving of approximately 120 times. The filter design is optimized for low power operation using an efficient circuit topology and an ultra-low power operational amplifier. Fully differential implementation of the proposed filter shows notch depth of 43 dB (78 dB for 4th-order) with THD of better than -70 dB while consuming about 150 nW from 1.5 V supply.
Lifted linear phase filter banks and the polyphase-with-advance representation
Energy Technology Data Exchange (ETDEWEB)
Brislawn, C. M. (Christopher M.); Wohlberg, B. E. (Brendt E.)
2004-01-01
A matrix theory is developed for the noncausal polyphase-with-advance representation that underlies the theory of lifted perfect reconstruction filter banks and wavelet transforms as developed by Sweldens and Daubechies. This theory provides the fundamental lifting methodology employed in the ISO/IEC JPEG-2000 still image coding standard, which the authors helped to develop. Lifting structures for polyphase-with-advance filter banks are depicted in Figure 1. In the analysis bank of Figure 1(a), the first lifting step updates x{sub 0} with a filtered version of x{sub 1} and the second step updates x{sub 1} with a filtered version of x{sub 0}; gain factors 1/K and K normalize the lowpass- and highpass-filtered output subbands. Each of these steps is inverted by the corresponding operations in the synthesis bank shown in Figure 1(b). Lifting steps correspond to upper- or lower-triangular matrices, S{sub i}(z), in a cascade-form decomposition of the polyphase analysis matrix, H{sub a}(z). Lifting structures can also be implemented reversibly (i.e., losslessly in fixed-precision arithmetic) by rounding the lifting updates to integer values. Our treatment of the polyphase-with-advance representation develops an extensive matrix algebra framework that goes far beyond the results of. Specifically, we focus on analyzing and implementing linear phase two-channel filter banks via linear phase lifting cascade schemes. Whole-sample symmetric (WS) and half-sample symmetric (HS) linear phase filter banks are characterized completely in terms of the polyphase-with-advance representation. The theory benefits significantly from a number of new group-theoretic structures arising in the polyphase-with-advance matrix algebra from the lifting factorization of linear phase filter banks.
DEFF Research Database (Denmark)
Cimoli, Bruno; Johansen, Tom Keinicke; Olmos, Juan Jose Vegas
2018-01-01
We report a high performance linear phase low pass filter (LPF) designed for partial response (PR) modulations. For the implementation, we adopted microstrip technology and a variant of the standard stepped‐impedance technique. Defected ground structures (DGS) are used for increasing...... the characteristic impedance of transmission lines. Experimental results prove that the proposed filter can successfully modulate a non‐return‐to‐zero (NRZ) signal into a five levels PR one....
Design of Filter for a Class of Switched Linear Neutral Systems
Directory of Open Access Journals (Sweden)
Caiyun Wu
2013-01-01
Full Text Available This paper is concerned with the filtering problem for a class of switched linear neutral systems with time-varying delays. The time-varying delays appear not only in the state but also in the state derivatives. Based on the average dwell time approach and the piecewise Lyapunov functional technique, sufficient conditions are proposed for the exponential stability of the filtering error dynamic system. Then, the corresponding solvability condition for a desired filter satisfying a weighted performance is established. All the conditions obtained are delay-dependent. Finally, two numerical examples are given to illustrate the effectiveness of the proposed theory.
Asymptotic Parameter Estimation for a Class of Linear Stochastic Systems Using Kalman-Bucy Filtering
Directory of Open Access Journals (Sweden)
Xiu Kan
2012-01-01
Full Text Available The asymptotic parameter estimation is investigated for a class of linear stochastic systems with unknown parameter θ:dXt=(θα(t+β(tXtdt+σ(tdWt. Continuous-time Kalman-Bucy linear filtering theory is first used to estimate the unknown parameter θ based on Bayesian analysis. Then, some sufficient conditions on coefficients are given to analyze the asymptotic convergence of the estimator. Finally, the strong consistent property of the estimator is discussed by comparison theorem.
Optimal Linear Filters for Pulse Height Measurements in the Presence of Noise
Energy Technology Data Exchange (ETDEWEB)
Nygaard, K.
1966-07-15
For measurements of nuclear pulse height spectra a linear filter is used between the pulse amplifier and the pulse height recorder so as to improve the signal/noise ratio. The problem of finding the optimal filter is investigated with emphasis on technical realizability. The maximum available signal/noise ratio is theoretically calculated on the basis of all the information which can be found in the output of the pulse amplifier, and on an assumed a priori knowledge of the pulse time of arrival. It is then shown that the maximum available signal/noise ratio can be obtained with practical measurements without any a priori knowledge of pulse time of arrival, and a general description of the optimal linear filter is given. The solution is unique, technically realizable, and based solely on data (noise power spectrum and pulse shape) which can be measured at the output terminals of the pulse amplifier used.
Optimal Linear Filters for Pulse Height Measurements in the Presence of Noise
International Nuclear Information System (INIS)
Nygaard, K.
1966-07-01
For measurements of nuclear pulse height spectra a linear filter is used between the pulse amplifier and the pulse height recorder so as to improve the signal/noise ratio. The problem of finding the optimal filter is investigated with emphasis on technical realizability. The maximum available signal/noise ratio is theoretically calculated on the basis of all the information which can be found in the output of the pulse amplifier, and on an assumed a priori knowledge of the pulse time of arrival. It is then shown that the maximum available signal/noise ratio can be obtained with practical measurements without any a priori knowledge of pulse time of arrival, and a general description of the optimal linear filter is given. The solution is unique, technically realizable, and based solely on data (noise power spectrum and pulse shape) which can be measured at the output terminals of the pulse amplifier used
Energy Technology Data Exchange (ETDEWEB)
Sun, Winston Y. [Univ. of California, Berkeley, CA (United States)
1993-04-01
This thesis solves the problem of finding the optimal linear noise-reduction filter for linear tomographic image reconstruction. The optimization is data dependent and results in minimizing the mean-square error of the reconstructed image. The error is defined as the difference between the result and the best possible reconstruction. Applications for the optimal filter include reconstructions of positron emission tomographic (PET), X-ray computed tomographic, single-photon emission tomographic, and nuclear magnetic resonance imaging. Using high resolution PET as an example, the optimal filter is derived and presented for the convolution backprojection, Moore-Penrose pseudoinverse, and the natural-pixel basis set reconstruction methods. Simulations and experimental results are presented for the convolution backprojection method.
Estimation of time-varying reactivity by the H∞ optimal linear filter
International Nuclear Information System (INIS)
Suzuki, Katsuo; Shimazaki, Junya; Watanabe, Koiti
1995-01-01
The problem of estimating the time-varying net reactivity from flux measurements is solved for a point reactor kinetics model using a linear filtering technique in an H ∞ settings. In order to sue this technique, an appropriate dynamical model of the reactivity is constructed that can be embedded into the reactor model as one of its variables. A filter, which minimizes the H ∞ norm of the estimation error power spectrum, operates on neutron density measurements corrupted by noise and provides an estimate of the dynamic net reactivity. Computer simulations are performed to reveal the basic characteristics of the H ∞ optimal filter. The results of the simulation indicate that the filter can be used to determine the time-varying reactivity from neutron density measurements that have been corrupted by noise
Non-linear DSGE Models and The Central Difference Kalman Filter
DEFF Research Database (Denmark)
Andreasen, Martin Møller
This paper introduces a Quasi Maximum Likelihood (QML) approach based on the Cen- tral Difference Kalman Filter (CDKF) to estimate non-linear DSGE models with potentially non-Gaussian shocks. We argue that this estimator can be expected to be consistent and asymptotically normal for DSGE models...
The maximally achievable accuracy of linear optimal regulators and linear optimal filters
Kwakernaak, H.; Sivan, Raphael
1972-01-01
A linear system with a quadratic cost function, which is a weighted sum of the integral square regulation error and the integral square input, is considered. What happens to the integral square regulation error as the relative weight of the integral square input reduces to zero is investigated. In
Linear filters as a method of real-time prediction of geomagnetic activity
International Nuclear Information System (INIS)
McPherron, R.L.; Baker, D.N.; Bargatze, L.F.
1985-01-01
Important factors controlling geomagnetic activity include the solar wind velocity, the strength of the interplanetary magnetic field (IMF), and the field orientation. Because these quantities change so much in transit through the solar wind, real-time monitoring immediately upstream of the earth provides the best input for any technique of real-time prediction. One such technique is linear prediction filtering which utilizes past histories of the input and output of a linear system to create a time-invariant filter characterizing the system. Problems of nonlinearity or temporal changes of the system can be handled by appropriate choice of input parameters and piecewise approximation in various ranges of the input. We have created prediction filters for all the standard magnetic indices and tested their efficiency. The filters show that the initial response of the magnetosphere to a southward turning of the IMF peaks in 20 minutes and then again in 55 minutes. After a northward turning, auroral zone indices and the midlatitude ASYM index return to background within 2 hours, while Dst decays exponentially with a time constant of about 8 hours. This paper describes a simple, real-time system utilizing these filters which could predict a substantial fraction of the variation in magnetic activity indices 20 to 50 minutes in advance
Energy Technology Data Exchange (ETDEWEB)
Sakurai, K.; Shima, H. [OYO Corp., Tokyo (Japan)
1996-10-01
This paper proposes a modeling method of one-dimensional complex resistivity using linear filter technique which has been extended to the complex resistivity. In addition, a numerical test of inversion was conducted using the monitoring results, to discuss the measured frequency band. Linear filter technique is a method by which theoretical potential can be calculated for stratified structures, and it is widely used for the one-dimensional analysis of dc electrical exploration. The modeling can be carried out only using values of complex resistivity without using values of potential. In this study, a bipolar method was employed as a configuration of electrodes. The numerical test of one-dimensional complex resistivity inversion was conducted using the formulated modeling. A three-layered structure model was used as a numerical model. A multi-layer structure with a thickness of 5 m was analyzed on the basis of apparent complex resistivity calculated from the model. From the results of numerical test, it was found that both the chargeability and the time constant agreed well with those of the original model. A trade-off was observed between the chargeability and the time constant at the stage of convergence. 3 refs., 9 figs., 1 tab.
Park, Kihong
2013-02-01
In this paper, we study a two-hop relaying network consisting of one source, one destination, and three amplify-and-forward (AF) relays with multiple antennas. To compensate for the capacity prelog factor loss of 1/2$ due to the half-duplex relaying, alternate transmission is performed among three relays, and the inter-relay interference due to the alternate relaying is aligned to make additional degrees of freedom. In addition, suboptimal linear filter designs at the nodes are proposed to maximize the achievable sum rate for different fading scenarios when the destination utilizes a minimum mean-square error filter. © 1967-2012 IEEE.
Feedback Linearization Control of a Shunt Active Power Filter Using a Fuzzy Controller
Directory of Open Access Journals (Sweden)
Tianhua Li
2013-09-01
Full Text Available In this paper, a novel feedback linearization based sliding mode controlled parallel active power filter using a fuzzy controller is presented in a three-phase three-wire grid. A feedback linearization control with fuzzy parameter self-tuning is used to implement the DC side voltage regulation while a novel integral sliding mode controller is applied to reduce the total harmonic distortion of the supply current. Since traditional unit synchronous sinusoidal signal calculation methods are not applicable when the supply voltage contains harmonics, a novel unit synchronous sinusoidal signal computing method based on synchronous frame transforming theory is presented to overcome this disadvantage. The simulation results verify that the DC side voltage is very stable for the given value and responds quickly to the external disturbance. A comparison is also made to show the advantages of the novel unit sinusoidal signal calculating method and the super harmonic treatment property of the designed active power filter.
Evaluation of non-linear adaptive smoothing filter by digital phantom
International Nuclear Information System (INIS)
Sato, Kazuhiro; Ishiya, Hiroki; Oshita, Ryosuke; Yanagawa, Isao; Goto, Mitsunori; Mori, Issei
2008-01-01
As a result of the development of multi-slice CT, diagnoses based on three-dimensional reconstruction images and multi-planar reconstruction have spread. For these applications, which require high z-resolution, thin slice imaging is essential. However, because z-resolution is always based on a trade-off with image noise, thin slice imaging is necessarily accompanied by an increase in noise level. To improve the quality of thin slice images, a non-linear adaptive smoothing filter has been developed, and is being widely applied to clinical use. We developed a digital bar pattern phantom for the purpose of evaluating the effect of this filter and attempted evaluation from an addition image of the bar pattern phantom and the image of the water phantom. The effect of this filter was changed in a complex manner by the contrast and spatial frequency of the original image. We have confirmed the reduced effect of image noise in the low frequency component of the image, but decreased contrast or increased quantity of noise in the image of the high frequency component. This result represents the effect of change in the adaptation of this filter. The digital phantom was useful for this evaluation, but to understand the total effect of filtering, much improvement of the shape of the digital phantom is required. (author)
Morphology filter bank for extracting nodular and linear patterns in medical images.
Hashimoto, Ryutaro; Uchiyama, Yoshikazu; Uchimura, Keiichi; Koutaki, Gou; Inoue, Tomoki
2017-04-01
Using image processing to extract nodular or linear shadows is a key technique of computer-aided diagnosis schemes. This study proposes a new method for extracting nodular and linear patterns of various sizes in medical images. We have developed a morphology filter bank that creates multiresolution representations of an image. Analysis bank of this filter bank produces nodular and linear patterns at each resolution level. Synthesis bank can then be used to perfectly reconstruct the original image from these decomposed patterns. Our proposed method shows better performance based on a quantitative evaluation using a synthesized image compared with a conventional method based on a Hessian matrix, often used to enhance nodular and linear patterns. In addition, experiments show that our method can be applied to the followings: (1) microcalcifications of various sizes in mammograms can be extracted, (2) blood vessels of various sizes in retinal fundus images can be extracted, and (3) thoracic CT images can be reconstructed while removing normal vessels. Our proposed method is useful for extracting nodular and linear shadows or removing normal structures in medical images.
Effects of noise, nonlinear processing, and linear filtering on perceived music quality.
Arehart, Kathryn H; Kates, James M; Anderson, Melinda C
2011-03-01
The purpose of this study was to determine the relative impact of different forms of hearing aid signal processing on quality ratings of music. Music quality was assessed using a rating scale for three types of music: orchestral classical music, jazz instrumental, and a female vocalist. The music stimuli were subjected to a wide range of simulated hearing aid processing conditions including, (1) noise and nonlinear processing, (2) linear filtering, and (3) combinations of noise, nonlinear, and linear filtering. Quality ratings were measured in a group of 19 listeners with normal hearing and a group of 15 listeners with sensorineural hearing impairment. Quality ratings in both groups were generally comparable, were reliable across test sessions, were impacted more by noise and nonlinear signal processing than by linear filtering, and were significantly affected by the genre of music. The average quality ratings for music were reasonably well predicted by the hearing aid speech quality index (HASQI), but additional work is needed to optimize the index to the wide range of music genres and processing conditions included in this study.
DEFF Research Database (Denmark)
Mohd. Azam, Sazuan Nazrah
2017-01-01
In this paper, we used the modified quadruple tank system that represents a multi-input-multi-output (MIMO) system as an example to present the realization of a linear discrete-time state space model and to obtain the state estimation using Kalman filter in a methodical mannered. First, an existing...... part of the Kalman filter is used to estimates the current state, based on the model and the measurements. The static and dynamic Kalman filter is compared and all results is demonstrated through simulations....... dynamics of the system of stochastic differential equations is linearized to produce the deterministic-stochastic linear transfer function. Then the linear transfer function is discretized to produce a linear discrete-time state space model that has a deterministic and a stochastic component. The filtered...
Directory of Open Access Journals (Sweden)
M. L. Kleptsyna
2001-01-01
Full Text Available The optimal filtering problem for multidimensional continuous possibly non-Markovian, Gaussian processes, observed through a linear channel driven by a Brownian motion, is revisited. Explicit Volterra type filtering equations involving the covariance function of the filtered process are derived both for the conditional mean and for the covariance of the filtering error. The solution of the filtering problem is applied to obtain a Cameron-Martin type formula for Laplace transforms of a quadratic functional of the process. Particular cases for which the results can be further elaborated are investigated.
Fast Kalman-like filtering for large-dimensional linear and Gaussian state-space models
Ait-El-Fquih, Boujemaa
2015-08-13
This paper considers the filtering problem for linear and Gaussian state-space models with large dimensions, a setup in which the optimal Kalman Filter (KF) might not be applicable owing to the excessive cost of manipulating huge covariance matrices. Among the most popular alternatives that enable cheaper and reasonable computation is the Ensemble KF (EnKF), a Monte Carlo-based approximation. In this paper, we consider a class of a posteriori distributions with diagonal covariance matrices and propose fast approximate deterministic-based algorithms based on the Variational Bayesian (VB) approach. More specifically, we derive two iterative KF-like algorithms that differ in the way they operate between two successive filtering estimates; one involves a smoothing estimate and the other involves a prediction estimate. Despite its iterative nature, the prediction-based algorithm provides a computational cost that is, on the one hand, independent of the number of iterations in the limit of very large state dimensions, and on the other hand, always much smaller than the cost of the EnKF. The cost of the smoothing-based algorithm depends on the number of iterations that may, in some situations, make this algorithm slower than the EnKF. The performances of the proposed filters are studied and compared to those of the KF and EnKF through a numerical example.
Saha, S K; Dutta, R; Choudhury, R; Kar, R; Mandal, D; Ghoshal, S P
2013-01-01
In this paper, opposition-based harmony search has been applied for the optimal design of linear phase FIR filters. RGA, PSO, and DE have also been adopted for the sake of comparison. The original harmony search algorithm is chosen as the parent one, and opposition-based approach is applied. During the initialization, randomly generated population of solutions is chosen, opposite solutions are also considered, and the fitter one is selected as a priori guess. In harmony memory, each such solution passes through memory consideration rule, pitch adjustment rule, and then opposition-based reinitialization generation jumping, which gives the optimum result corresponding to the least error fitness in multidimensional search space of FIR filter design. Incorporation of different control parameters in the basic HS algorithm results in the balancing of exploration and exploitation of search space. Low pass, high pass, band pass, and band stop FIR filters are designed with the proposed OHS and other aforementioned algorithms individually for comparative optimization performance. A comparison of simulation results reveals the optimization efficacy of the OHS over the other optimization techniques for the solution of the multimodal, nondifferentiable, nonlinear, and constrained FIR filter design problems.
Directory of Open Access Journals (Sweden)
S. K. Saha
2013-01-01
Full Text Available In this paper, opposition-based harmony search has been applied for the optimal design of linear phase FIR filters. RGA, PSO, and DE have also been adopted for the sake of comparison. The original harmony search algorithm is chosen as the parent one, and opposition-based approach is applied. During the initialization, randomly generated population of solutions is chosen, opposite solutions are also considered, and the fitter one is selected as a priori guess. In harmony memory, each such solution passes through memory consideration rule, pitch adjustment rule, and then opposition-based reinitialization generation jumping, which gives the optimum result corresponding to the least error fitness in multidimensional search space of FIR filter design. Incorporation of different control parameters in the basic HS algorithm results in the balancing of exploration and exploitation of search space. Low pass, high pass, band pass, and band stop FIR filters are designed with the proposed OHS and other aforementioned algorithms individually for comparative optimization performance. A comparison of simulation results reveals the optimization efficacy of the OHS over the other optimization techniques for the solution of the multimodal, nondifferentiable, nonlinear, and constrained FIR filter design problems.
Decentralized Observer with a Consensus Filter for Distributed Discrete-Time Linear Systems
Acikmese, Behcet; Mandic, Milan
2011-01-01
This paper presents a decentralized observer with a consensus filter for the state observation of a discrete-time linear distributed systems. In this setup, each agent in the distributed system has an observer with a model of the plant that utilizes the set of locally available measurements, which may not make the full plant state detectable. This lack of detectability is overcome by utilizing a consensus filter that blends the state estimate of each agent with its neighbors' estimates. We assume that the communication graph is connected for all times as well as the sensing graph. It is proven that the state estimates of the proposed observer asymptotically converge to the actual plant states under arbitrarily changing, but connected, communication and sensing topologies. As a byproduct of this research, we also obtained a result on the location of eigenvalues, the spectrum, of the Laplacian for a family of graphs with self-loops.
Joint polarization tracking and channel equalization based on radius-directed linear Kalman filter
Zhang, Qun; Yang, Yanfu; Zhong, Kangping; Liu, Jie; Wu, Xiong; Yao, Yong
2018-01-01
We propose a joint polarization tracking and channel equalization scheme based on radius-directed linear Kalman filter (RD-LKF) by introducing the butterfly finite-impulse-response (FIR) filter in our previously proposed RD-LKF method. Along with the fast polarization tracking, it can also simultaneously compensate the inter-symbol interference (ISI) effects including residual chromatic dispersion and polarization mode dispersion. Compared with the conventional radius-directed equalizer (RDE) algorithm, it is demonstrated experimentally that three times faster convergence speed, one order of magnitude better tracking capability, and better BER performance is obtained in polarization division multiplexing 16 quadrature amplitude modulation system. Besides, the influences of the algorithm parameters on the convergence and the tracking performance are investigated by numerical simulation.
Dual linear structured support vector machine tracking method via scale correlation filter
Li, Weisheng; Chen, Yanquan; Xiao, Bin; Feng, Chen
2018-01-01
Adaptive tracking-by-detection methods based on structured support vector machine (SVM) performed well on recent visual tracking benchmarks. However, these methods did not adopt an effective strategy of object scale estimation, which limits the overall tracking performance. We present a tracking method based on a dual linear structured support vector machine (DLSSVM) with a discriminative scale correlation filter. The collaborative tracker comprised of a DLSSVM model and a scale correlation filter obtains good results in tracking target position and scale estimation. The fast Fourier transform is applied for detection. Extensive experiments show that our tracking approach outperforms many popular top-ranking trackers. On a benchmark including 100 challenging video sequences, the average precision of the proposed method is 82.8%.
Suman, S.; Kumar, A.; Singh, G. K.
2015-04-01
In this paper, a new method for the design of variable bandwidth linear-phase finite impulse response filters using Bernstein polynomial Multiwavelets is proposed. In this method, approximation has been achieved by linearly combining the fixed coefficient linear phase filters with Bernstein multiwavelets, which are used to tune bandwidth of the filter. Optimisation has been achieved by minimising the mean square error between the desired and actual filter response which leads to a system of linear equations. The matrix elements can be expressed in form of Toeplitz-plus-Hankel matrix, which reduces the computational complexity. The simulation results illustrate significant improvement in errors in passband (ep), and stopband (es) as compared to earlier published work.
H-/H∞ structural damage detection filter design using an iterative linear matrix inequality approach
International Nuclear Information System (INIS)
Chen, B; Nagarajaiah, S
2008-01-01
The existence of damage in different members of a structure can be posed as a fault detection problem. It is also necessary to isolate structural members in which damage exists, which can be posed as a fault isolation problem. It is also important to detect the time instants of occurrence of the faults/damage. The structural damage detection filter developed in this paper is a model-based fault detection and isolation (FDI) observer suitable for detecting and isolating structural damage. In systems, possible faults, disturbances and noise are coupled together. When system disturbances and sensor noise cannot be decoupled from faults/damage, the detection filter needs to be designed to be robust to disturbances as well as sensitive to faults/damage. In this paper, a new H - /H ∞ and iterative linear matrix inequality (LMI) technique is developed and a new stabilizing FDI filter is proposed, which bounds the H ∞ norm of the transfer function from disturbances to the output residual and simultaneously does not degrade the component of the output residual due to damage. The reduced-order error dynamic system is adopted to form bilinear matrix inequalities (BMIs), then an iterative LMI algorithm is developed to solve the BMIs. The numerical example and experimental verification demonstrate that the proposed algorithm can successfully detect and isolate structural damage in the presence of measurement noise
Yu, Xu; Lin, Jun-Yu; Jiang, Feng; Du, Jun-Wei; Han, Ji-Zhong
2018-01-01
Cross-domain collaborative filtering (CDCF) solves the sparsity problem by transferring rating knowledge from auxiliary domains. Obviously, different auxiliary domains have different importance to the target domain. However, previous works cannot evaluate effectively the significance of different auxiliary domains. To overcome this drawback, we propose a cross-domain collaborative filtering algorithm based on Feature Construction and Locally Weighted Linear Regression (FCLWLR). We first construct features in different domains and use these features to represent different auxiliary domains. Thus the weight computation across different domains can be converted as the weight computation across different features. Then we combine the features in the target domain and in the auxiliary domains together and convert the cross-domain recommendation problem into a regression problem. Finally, we employ a Locally Weighted Linear Regression (LWLR) model to solve the regression problem. As LWLR is a nonparametric regression method, it can effectively avoid underfitting or overfitting problem occurring in parametric regression methods. We conduct extensive experiments to show that the proposed FCLWLR algorithm is effective in addressing the data sparsity problem by transferring the useful knowledge from the auxiliary domains, as compared to many state-of-the-art single-domain or cross-domain CF methods.
Li, Shengbo Eben; Li, Guofa; Yu, Jiaying; Liu, Chang; Cheng, Bo; Wang, Jianqiang; Li, Keqiang
2018-01-01
Detection and tracking of objects in the side-near-field has attracted much attention for the development of advanced driver assistance systems. This paper presents a cost-effective approach to track moving objects around vehicles using linearly arrayed ultrasonic sensors. To understand the detection characteristics of a single sensor, an empirical detection model was developed considering the shapes and surface materials of various detected objects. Eight sensors were arrayed linearly to expand the detection range for further application in traffic environment recognition. Two types of tracking algorithms, including an Extended Kalman filter (EKF) and an Unscented Kalman filter (UKF), for the sensor array were designed for dynamic object tracking. The ultrasonic sensor array was designed to have two types of fire sequences: mutual firing or serial firing. The effectiveness of the designed algorithms were verified in two typical driving scenarios: passing intersections with traffic sign poles or street lights, and overtaking another vehicle. Experimental results showed that both EKF and UKF had more precise tracking position and smaller RMSE (root mean square error) than a traditional triangular positioning method. The effectiveness also encourages the application of cost-effective ultrasonic sensors in the near-field environment perception in autonomous driving systems.
Rigatos, Gerasimos G
2016-06-01
It is proven that the model of the p53-mdm2 protein synthesis loop is a differentially flat one and using a diffeomorphism (change of state variables) that is proposed by differential flatness theory it is shown that the protein synthesis model can be transformed into the canonical (Brunovsky) form. This enables the design of a feedback control law that maintains the concentration of the p53 protein at the desirable levels. To estimate the non-measurable elements of the state vector describing the p53-mdm2 system dynamics, the derivative-free non-linear Kalman filter is used. Moreover, to compensate for modelling uncertainties and external disturbances that affect the p53-mdm2 system, the derivative-free non-linear Kalman filter is re-designed as a disturbance observer. The derivative-free non-linear Kalman filter consists of the Kalman filter recursion applied on the linearised equivalent of the protein synthesis model together with an inverse transformation based on differential flatness theory that enables to retrieve estimates for the state variables of the initial non-linear model. The proposed non-linear feedback control and perturbations compensation method for the p53-mdm2 system can result in more efficient chemotherapy schemes where the infusion of medication will be better administered.
Minimum Symbol Error Rate Detection in Single-Input Multiple-Output Channels with Markov Noise
DEFF Research Database (Denmark)
Christensen, Lars P.B.
2005-01-01
Minimum symbol error rate detection in Single-Input Multiple- Output(SIMO) channels with Markov noise is presented. The special case of zero-mean Gauss-Markov noise is examined closer as it only requires knowledge of the second-order moments. In this special case, it is shown that optimal detection...
Sukarno; Law, Cheryl Suwen; Santos, Abel
2017-06-08
We present the first realisation of linear variable bandpass filters in nanoporous anodic alumina (NAA-LVBPFs) photonic crystal structures. NAA gradient-index filters (NAA-GIFs) are produced by sinusoidal pulse anodisation and used as photonic crystal platforms to generate NAA-LVBPFs. The anodisation period of NAA-GIFs is modified from 650 to 850 s to systematically tune the characteristic photonic stopband of these photonic crystals across the UV-visible-NIR spectrum. Then, the nanoporous structure of NAA-GIFs is gradually widened along the surface under controlled conditions by wet chemical etching using a dip coating approach aiming to create NAA-LVBPFs with finely engineered optical properties. We demonstrate that the characteristic photonic stopband and the iridescent interferometric colour displayed by these photonic crystals can be tuned with precision across the surface of NAA-LVBPFs by adjusting the fabrication and etching conditions. Here, we envisage for the first time the combination of the anodisation period and etching conditions as a cost-competitive, facile, and versatile nanofabrication approach that enables the generation of a broad range of unique LVBPFs covering the spectral regions. These photonic crystal structures open new opportunities for multiple applications, including adaptive optics, hyperspectral imaging, fluorescence diagnostics, spectroscopy, and sensing.
Phase unwrapping algorithm using polynomial phase approximation and linear Kalman filter.
Kulkarni, Rishikesh; Rastogi, Pramod
2018-02-01
A noise-robust phase unwrapping algorithm is proposed based on state space analysis and polynomial phase approximation using wrapped phase measurement. The true phase is approximated as a two-dimensional first order polynomial function within a small sized window around each pixel. The estimates of polynomial coefficients provide the measurement of phase and local fringe frequencies. A state space representation of spatial phase evolution and the wrapped phase measurement is considered with the state vector consisting of polynomial coefficients as its elements. Instead of using the traditional nonlinear Kalman filter for the purpose of state estimation, we propose to use the linear Kalman filter operating directly with the wrapped phase measurement. The adaptive window width is selected at each pixel based on the local fringe density to strike a balance between the computation time and the noise robustness. In order to retrieve the unwrapped phase, either a line-scanning approach or a quality guided strategy of pixel selection is used depending on the underlying continuous or discontinuous phase distribution, respectively. Simulation and experimental results are provided to demonstrate the applicability of the proposed method.
Houts, R. C.; Burlage, D. W.
1972-01-01
A time domain technique is developed to design finite-duration impulse response digital filters using linear programming. Two related applications of this technique in data transmission systems are considered. The first is the design of pulse shaping digital filters to generate or detect signaling waveforms transmitted over bandlimited channels that are assumed to have ideal low pass or bandpass characteristics. The second is the design of digital filters to be used as preset equalizers in cascade with channels that have known impulse response characteristics. Example designs are presented which illustrate that excellent waveforms can be generated with frequency-sampling filters and the ease with which digital transversal filters can be designed for preset equalization.
Sullivan, Shane Z.; Schmitt, Paul D.; DeWalt, Emma L.; Muir, Ryan D.; Simpson, Garth J.
2013-03-01
Photon counting represents the Poisson limit in signal to noise, but can often be complicated in imaging applications by detector paralysis, arising from the finite rise / fall time of the detector upon photon absorption. We present here an approach for reducing dead-time by generating a deconvolution digital filter based on optimizing the Fisher linear discriminant. In brief, two classes are defined, one in which a photon event is initiated at the origin of the digital filter, and one in the photon event is non-coincident with the filter origin. Linear discriminant analysis (LDA) is then performed to optimize the digital filter that best resolves the coincident and non-coincident training set data.1 Once trained, implementation of the filter can be performed quickly, significantly reducing dead-time issues and measurement bias in photon counting applications. Experimental demonstration of the LDA-filter approach was performed in fluorescence microscopy measurements using a highly convolved impulse response with considerable ringing. Analysis of the counts supports the capabilities of the filter in recovering deconvolved impulse responses under the conditions considered in the study. Potential additional applications and possible limitations are also considered.
Impact of a flattening filter free linear accelerator on structural shielding design
International Nuclear Information System (INIS)
Jank, Julia; Kragl, Gabriele; Georg, Dietmar; Medical University of Vienna
2014-01-01
Purpose: The present study aimed to assess the effects of a flattening filter free medical accelerator on structural shielding demands of a treatment vault of a medical linear accelerator. We tried to answer the question, to what extent the required thickness of the shielding barriers can be reduced if instead of the standard flattened photon beams unflattened ones are used. Material and Methods: We chose both an experimental as well as a theoretical approach. On the one hand we measured photon dose rates at protected places outside the treatment room and compared the obtained results for flattened and unflattened beams. On the other hand we complied with international guidelines for adequate treatment vault design and calculated the shielding barriers according to the therein given specifications. Measurements were performed with an Elekta Precise trademark linac providing nominal photon energies of 6 and 10 MV. This machine underwent already earlier some modifications in order to be able to operate both with and without a flattening filter. Photon dose rates were measured with a LB133-1 dose rate meter manufactured by Berthold. To calculate the thickness of shielding barriers we referred to the Austrian standard OeNORM S 5216 and to the US American NCRP Report No. 151. Results: We determined a substantial photon dose rate reduction for all measurement points and photon energies. For unflattened 6 MV beams a reduction factor ranging from 1.4 to 1.8 was identified. The corresponding values for unflattened 10 MV beams were 2.1 and 3.2. The performed shielding calculations indicated the same tendency: For all relevant radiation components we found a reduction in shielding thickness when unflattened beams were used. The required thickness of primary barriers was reduced up to 8.0%, the thickness of secondary barriers up to 11.4%, respectively. Conclusions: For an adequate dimensioning of treatment vault shielding barriers it is by no means irrelevant if the
An OTA-C filter for ECG acquisition systems with highly linear range and less passband attenuation
Jihai, Duan; Chuang, Lan; Weilin, Xu; Baolin, Wei
2015-05-01
A fifth order operational transconductance amplifier-C (OTA-C) Butterworth type low-pass filter with highly linear range and less passband attenuation is presented for wearable bio-telemetry monitoring applications in a UWB wireless body area network. The source degeneration structure applied in typical small transconductance circuit is improved to provide a highly linear range for the OTA-C filter. Moreover, to reduce the passband attenuation of the filter, a cascode structure is employed as the output stage of the OTA. The OTA-based circuit is operated in weak inversion due to strict power limitation in the biomedical chip. The filter is fabricated in a SMIC 0.18-μm CMOS process. The measured results for the filter have shown a passband gain of -6.2 dB, while the -3-dB frequency is around 276 Hz. For the 0.8 VPP sinusoidal input at 100 Hz, a total harmonic distortion (THD) of -56.8 dB is obtained. An electrocardiogram signal with noise interference is fed into this chip to validate the function of the designed filter. Project supported by the National Natural Science Foundation of China (Nos. 61161003, 61264001, 61166004) and the Guangxi Natural Science Foundation (No. 2013GXNSFAA019333).
Directory of Open Access Journals (Sweden)
Muhammad Ammirrul Atiqi Mohd Zainuri
2016-05-01
Full Text Available This paper presents improvement of a harmonics extraction algorithm, known as the fundamental active current (FAC adaptive linear element (ADALINE neural network with the integration of photovoltaic (PV to shunt active power filters (SAPFs as active current source. Active PV injection in SAPFs should reduce dependency on grid supply current to supply the system. In addition, with a better and faster harmonics extraction algorithm, the SAPF should perform well, especially under dynamic PV and load conditions. The role of the actual injection current from SAPF after connecting PVs will be evaluated, and the better effect of using FAC ADALINE will be confirmed. The proposed SAPF was simulated and evaluated in MATLAB/Simulink first. Then, an experimental laboratory prototype was also developed to be tested with a PV simulator (CHROMA 62100H-600S, and the algorithm was implemented using a TMS320F28335 Digital Signal Processor (DSP. From simulation and experimental results, significant improvements in terms of total harmonic distortion (THD, time response and reduction of source power from grid have successfully been verified and achieved.
Spatial filtering self-velocimeter for vehicle application using a CMOS linear image sensor
He, Xin; Zhou, Jian; Nie, Xiaoming; Long, Xingwu
2015-03-01
The idea of using a spatial filtering velocimeter (SFV) to measure the velocity of a vehicle for an inertial navigation system is put forward. The presented SFV is based on a CMOS linear image sensor with a high-speed data rate, large pixel size, and built-in timing generator. These advantages make the image sensor suitable to measure vehicle velocity. The power spectrum of the output signal is obtained by fast Fourier transform and is corrected by a frequency spectrum correction algorithm. This velocimeter was used to measure the velocity of a conveyor belt driven by a rotary table and the measurement uncertainty is ˜0.54%. Furthermore, it was also installed on a vehicle together with a laser Doppler velocimeter (LDV) to measure self-velocity. The measurement result of the designed SFV is compared with that of the LDV. It is shown that the measurement result of the SFV is coincident with that of the LDV. Therefore, the designed SFV is suitable for a vehicle self-contained inertial navigation system.
International Nuclear Information System (INIS)
Viana, Rodrigo S.S.; Tardelli, Tiago C.; Yoriyaz, Helio; Jackowski, Marcel P.
2011-01-01
In recent years, a new technique for in vivo spectrographic imaging of stable isotopes was presented as Neutron Stimulated Emission Computed Tomography (NSECT). In this technique, a fast neutrons beam stimulates stable nuclei in a sample, which emit characteristic gamma radiation. The photon energy is unique and is used to identify the emitting nuclei. The emitted gamma energy spectra can be used for reconstruction of the target tissue image and for determination of the tissue elemental composition. Due to the stochastic nature of photon emission process by irradiated tissue, one of the most suitable algorithms for tomographic reconstruction is the Expectation-Maximization (E-M) algorithm, once on its formulation are considered simultaneously the probabilities of photons emission and detection. However, a disadvantage of this algorithm is the introduction of noise in the reconstructed image as the number of iterations increases. This increase can be caused either by features of the algorithm itself or by the low sampling rate of projections used for tomographic reconstruction. In this work, a linear filter in the frequency domain was used in order to improve the quality of the reconstructed images. (author)
Directory of Open Access Journals (Sweden)
Alexander W. Koch
2013-09-01
Full Text Available This paper presents a low-cost hyperspectral measurement setup in a new application based on fluorescence detection in the visible (Vis wavelength range. The aim of the setup is to take hyperspectral fluorescence images of viscous materials. Based on these images, fluorescent and non-fluorescent impurities in the viscous materials can be detected. For the illumination of the measurement object, a narrow-band high-power light-emitting diode (LED with a center wavelength of 370 nm was used. The low-cost acquisition unit for the imaging consists of a linear variable filter (LVF and a complementary metal oxide semiconductor (CMOS 2D sensor array. The translucent wavelength range of the LVF is from 400 nm to 700 nm. For the confirmation of the concept, static measurements of fluorescent viscous materials with a non-fluorescent impurity have been performed and analyzed. With the presented setup, measurement surfaces in the micrometer range can be provided. The measureable minimum particle size of the impurities is in the nanometer range. The recording rate for the measurements depends on the exposure time of the used CMOS 2D sensor array and has been found to be in the microsecond range.
Energy Technology Data Exchange (ETDEWEB)
Viana, Rodrigo S.S.; Tardelli, Tiago C.; Yoriyaz, Helio, E-mail: hyoriyaz@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Jackowski, Marcel P., E-mail: mjack@ime.usp.b [University of Sao Paulo (USP), SP (Brazil). Dept. of Computer Science
2011-07-01
In recent years, a new technique for in vivo spectrographic imaging of stable isotopes was presented as Neutron Stimulated Emission Computed Tomography (NSECT). In this technique, a fast neutrons beam stimulates stable nuclei in a sample, which emit characteristic gamma radiation. The photon energy is unique and is used to identify the emitting nuclei. The emitted gamma energy spectra can be used for reconstruction of the target tissue image and for determination of the tissue elemental composition. Due to the stochastic nature of photon emission process by irradiated tissue, one of the most suitable algorithms for tomographic reconstruction is the Expectation-Maximization (E-M) algorithm, once on its formulation are considered simultaneously the probabilities of photons emission and detection. However, a disadvantage of this algorithm is the introduction of noise in the reconstructed image as the number of iterations increases. This increase can be caused either by features of the algorithm itself or by the low sampling rate of projections used for tomographic reconstruction. In this work, a linear filter in the frequency domain was used in order to improve the quality of the reconstructed images. (author)
Ultrafast all-optical clock recovery based on phase-only linear optical filtering
DEFF Research Database (Denmark)
Maram, Reza; Kong, Deming; Galili, Michael
2014-01-01
We report on a novel technique for all-optical clock recovery from RZ OOK data based on phase-only filtering, significantly enhancing the recovered clock quality and energy-efficiency compared to the use of a Fabry-Perot filter.......We report on a novel technique for all-optical clock recovery from RZ OOK data based on phase-only filtering, significantly enhancing the recovered clock quality and energy-efficiency compared to the use of a Fabry-Perot filter....
International Nuclear Information System (INIS)
Cui Jie; Chen Lei; Liu Yi; Zhao Peng; Niu Xu
2014-01-01
A broadband monolithic linear single pole, eight throw (SP8T) switch has been fabricated in 180 nm thin film silicon-on-insulator (SOI) CMOS technology with a quad-band GSM harmonic filter in integrated passive devices (IPD) technology, which is developed for cellular applications. The antenna switch module (ASM) features 1.2 dB insertion loss with filter on 2G bands and 0.4 dB insertion loss in 3G bands, less than −45 dB isolation and maximum −103 dB intermodulation distortion for mobile front ends by applying distributed architecture and adaptive supply voltage generator. (semiconductor integrated circuits)
A Differential 4-Path Highly Linear Widely Tunable On-Chip Band-Pass Filter
Ghaffari, A.; Klumperink, Eric A.M.; Nauta, Bram
2010-01-01
Abstract A passive switched capacitor RF band-pass filter with clock controlled center frequency is realized in 65nm CMOS. An off-chip transformer which acts as a balun, improves filter-Q and realizes impedance matching. The differential architecture reduces clock-leakage and suppresses selectivity
Joint Linear Filter Design in Multiuser Cooperative Nonregenerative MIMO Relay Systems
Directory of Open Access Journals (Sweden)
Gen Li
2009-01-01
Full Text Available This paper addresses the filter design issues for multiuser cooperative nonregenerative MIMO relay systems in both downlink and uplink scenarios. Based on the formulated signal model, the filter matrix optimization is first performed for direct path and relay path respectively, aiming to minimize the mean squared error (MSE. To be more specific, for the relay path, we derive the local optimal filter scheme at the base station and the relay station jointly in the downlink scenario along with a more practical suboptimal scheme, and then a closed-form joint local optimal solution in the uplink scenario is exploited. Furthermore, the optimal filter for the direct path is also presented by using the exiting results of conventional MIMO link. After that, several schemes are proposed for cooperative scenario to combine the signals from both paths. Numerical results show that the proposed schemes can reduce the bit error rate (BER significantly.
National Research Council Canada - National Science Library
Yablonovitch, Eli
2000-01-01
.... The equipment purchased under this grant has permitted UCLA to purchase a number of broad-band optical components, including especially some unique code division multiplexing filters that permitted...
Variance-to-mean method generalized by linear difference filter technique
International Nuclear Information System (INIS)
Hashimoto, Kengo; Ohsaki, Hiroshi; Horiguchi, Tetsuo; Yamane, Yoshihiro; Shiroya, Seiji
1998-01-01
The conventional variance-to-mean method (Feynman-α method) seriously suffers the divergency of the variance under such a transient condition as a reactor power drift. Strictly speaking, then, the use of the Feynman-α is restricted to a steady state. To apply the method to more practical uses, it is desirable to overcome this kind of difficulty. For this purpose, we propose an usage of higher-order difference filter technique to reduce the effect of the reactor power drift, and derive several new formulae taking account of the filtering. The capability of the formulae proposed was demonstrated through experiments in the Kyoto University Critical Assembly. The experimental results indicate that the divergency of the variance can be effectively suppressed by the filtering technique, and that the higher-order filter becomes necessary with increasing variation rate in power
Subramanian, Aneesh C.
2012-11-01
This paper investigates the role of the linear analysis step of the ensemble Kalman filters (EnKF) in disrupting the balanced dynamics in a simple atmospheric model and compares it to a fully nonlinear particle-based filter (PF). The filters have a very similar forecast step but the analysis step of the PF solves the full Bayesian filtering problem while the EnKF analysis only applies to Gaussian distributions. The EnKF is compared to two flavors of the particle filter with different sampling strategies, the sequential importance resampling filter (SIRF) and the sequential kernel resampling filter (SKRF). The model admits a chaotic vortical mode coupled to a comparatively fast gravity wave mode. It can also be configured either to evolve on a so-called slow manifold, where the fast motion is suppressed, or such that the fast-varying variables are diagnosed from the slow-varying variables as slaved modes. Identical twin experiments show that EnKF and PF capture the variables on the slow manifold well as the dynamics is very stable. PFs, especially the SKRF, capture slaved modes better than the EnKF, implying that a full Bayesian analysis estimates the nonlinear model variables better. The PFs perform significantly better in the fully coupled nonlinear model where fast and slow variables modulate each other. This suggests that the analysis step in the PFs maintains the balance in both variables much better than the EnKF. It is also shown that increasing the ensemble size generally improves the performance of the PFs but has less impact on the EnKF after a sufficient number of members have been used.
Development of a new linearly variable edge filter (LVEF)-based compact slit-less mini-spectrometer
Mahmoud, Khaled; Park, Seongchong; Lee, Dong-Hoon
2018-02-01
This paper presents the development of a compact charge-coupled detector (CCD) spectrometer. We describe the design, concept and characterization of VNIR linear variable edge filter (LVEF)- based mini-spectrometer. The new instrument has been realized for operation in the 300 nm to 850 nm wavelength range. The instrument consists of a linear variable edge filter in front of CCD array. Low-size, light-weight and low-cost could be achieved using the linearly variable filters with no need to use any moving parts for wavelength selection as in the case of commercial spectrometers available in the market. This overview discusses the main components characteristics, the main concept with the main advantages and limitations reported. Experimental characteristics of the LVEFs are described. The mathematical approach to get the position-dependent slit function of the presented prototype spectrometer and its numerical de-convolution solution for a spectrum reconstruction is described. The performance of our prototype instrument is demonstrated by measuring the spectrum of a reference light source.
Briem, Jochen; Mader, Marco; Reiter, Daniel; Amirpour, Raul; Grözing, Markus; Berroth, Manfred
2017-09-01
This paper presents an electrical, fully integrated, high quality (Q) factor GmC bandpass filter (BPF) stage for a wireless 27 MHz direct conversion receiver for a bendable sensor system-in-foil (Briem et al., 2016). The core of the BPF with a Q factor of more than 200 is an operational transconductance amplifier (OTA) with a high linearity at an input range of up to 300 mVpp, diff. The OTA's signal-to-noise-and-distortion-ratio (SNDR) of more than 80 dB in the mentioned range is achieved by stabilizing its transconductance Gm with a respective feedback loop and a source degeneration resistors RDG. The filter stage can be tuned and is tolerant to global and local process variations due to offset and common-mode feedback (CMFB) control circuits. The results are determined by periodic steady state (PSS) simulations at more than 200 global and local process variation parameter and temperature points and corner simulations. It is expected, that the parasitic elements of the layout have no significant influence on the filter behaviour. The current consumption of the whole filter stage is less than 600 µA.
Theoretical analysis of highly linear tunable filters using Switched-Resistor techniques
Jiraseree-amornkun, Amorn; Jiraseree-Amornkun, A.; Worapishet, Apisak; Klumperink, Eric A.M.; Nauta, Bram; Surakampontorn, Wanlop
2008-01-01
Abstract—In this paper, an in-depth analysis of switched-resistor (S-R) techniques for implementing low-voltage low-distortion tunable active-RC filters is presented. The S-R techniques make use of switch(es) with duty-cycle-controlled clock(s) to achieve tunability of the effective resistance and,
Light Advancement and Delay by Linear Filters With Close to Zero Resonant Transmittance
Czech Academy of Sciences Publication Activity Database
Slavík, Radan; Čtyroký, Jiří
2008-01-01
Roč. 26, č. 23 (2008), s. 3708-3713 ISSN 0733-8724 R&D Projects: GA ČR(CZ) GA102/07/0999; GA AV ČR KJB200670601 Institutional research plan: CEZ:AV0Z20670512 Keywords : optical fibre filters Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.736, year: 2008
Directory of Open Access Journals (Sweden)
Fayçal Ben Hmida
2010-01-01
Full Text Available This paper presents a new recursive filter to joint fault and state estimation of a linear time-varying discrete systems in the presence of unknown disturbances. The method is based on the assumption that no prior knowledge about the dynamical evolution of the fault and the disturbance is available. As the fault affects both the state and the output, but the disturbance affects only the state system. Initially, we study the particular case when the direct feedthrough matrix of the fault has full rank. In the second case, we propose an extension of the previous case by considering the direct feedthrough matrix of the fault with an arbitrary rank. The resulting filter is optimal in the sense of the unbiased minimum-variance (UMV criteria. A numerical example is given in order to illustrate the proposed method.
Directory of Open Access Journals (Sweden)
Mohamed G. Egila
2016-12-01
Full Text Available This paper presents a proposed design for analyzing electrocardiography (ECG signals. This methodology employs highpass least-square linear phase Finite Impulse Response (FIR filtering technique to filter out the baseline wander noise embedded in the input ECG signal to the system. Discrete Wavelet Transform (DWT was utilized as a feature extraction methodology to extract the reduced feature set from the input ECG signal. The design uses back propagation neural network classifier to classify the input ECG signal. The system is implemented on Xilinx 3AN-XC3S700AN Field Programming Gate Array (FPGA board. A system simulation has been done. The design is compared with some other designs achieving total accuracy of 97.8%, and achieving reduction in utilizing resources on FPGA implementation.
Zhang, Shengzhi; Yu, Shuai; Liu, Chaojun; Yuan, Xuebing; Liu, Sheng
2016-02-20
To provide a long-time reliable orientation, sensor fusion technologies are widely used to integrate available inertial sensors for the low-cost orientation estimation. In this paper, a novel dual-linear Kalman filter was designed for a multi-sensor system integrating MEMS gyros, an accelerometer, and a magnetometer. The proposed filter precludes the impacts of magnetic disturbances on the pitch and roll which the heading is subjected to. The filter can achieve robust orientation estimation for different statistical models of the sensors. The root mean square errors (RMSE) of the estimated attitude angles are reduced by 30.6% under magnetic disturbances. Owing to the reduction of system complexity achieved by smaller matrix operations, the mean total time consumption is reduced by 23.8%. Meanwhile, the separated filter offers greater flexibility for the system configuration, as it is possible to switch on or off the second stage filter to include or exclude the magnetometer compensation for the heading. Online experiments were performed on the homemade miniature orientation determination system (MODS) with the turntable. The average RMSE of estimated orientation are less than 0.4° and 1° during the static and low-dynamic tests, respectively. More realistic tests on two-wheel self-balancing vehicle driving and indoor pedestrian walking were carried out to evaluate the performance of the designed MODS when high accelerations and angular rates were introduced. Test results demonstrate that the MODS is applicable for the orientation estimation under various dynamic conditions. This paper provides a feasible alternative for low-cost orientation determination.
Directory of Open Access Journals (Sweden)
Shengzhi Zhang
2016-02-01
Full Text Available To provide a long-time reliable orientation, sensor fusion technologies are widely used to integrate available inertial sensors for the low-cost orientation estimation. In this paper, a novel dual-linear Kalman filter was designed for a multi-sensor system integrating MEMS gyros, an accelerometer, and a magnetometer. The proposed filter precludes the impacts of magnetic disturbances on the pitch and roll which the heading is subjected to. The filter can achieve robust orientation estimation for different statistical models of the sensors. The root mean square errors (RMSE of the estimated attitude angles are reduced by 30.6% under magnetic disturbances. Owing to the reduction of system complexity achieved by smaller matrix operations, the mean total time consumption is reduced by 23.8%. Meanwhile, the separated filter offers greater flexibility for the system configuration, as it is possible to switch on or off the second stage filter to include or exclude the magnetometer compensation for the heading. Online experiments were performed on the homemade miniature orientation determination system (MODS with the turntable. The average RMSE of estimated orientation are less than 0.4° and 1° during the static and low-dynamic tests, respectively. More realistic tests on two-wheel self-balancing vehicle driving and indoor pedestrian walking were carried out to evaluate the performance of the designed MODS when high accelerations and angular rates were introduced. Test results demonstrate that the MODS is applicable for the orientation estimation under various dynamic conditions. This paper provides a feasible alternative for low-cost orientation determination.
Optimal Linear Filters. 2. Pulse Time Measurements in the Presence of Noise
Energy Technology Data Exchange (ETDEWEB)
Nygaard, K.
1966-09-15
The problem of calculating the maximum available timing information contained in nuclear pulses in the presence of noise is solved theoretically. Practical experiments show that the theoretical values can be obtained by very simple, but untraditional, means. An output pulse from a practical filter connected to a charge sensitive amplifier with a Ge(Li) detector showed a rise time of 30 ns and a noise level of less than 5 keV. The time jitter measured was inversely proportional to the pulse height and less than 30 ns for 10 keV pulses. With the timing filter shown solid state detectors can be classified somewhere between Nal scintillators and organic scintillators with respect to time resolution.
Optimal Linear Filters. 2. Pulse Time Measurements in the Presence of Noise
International Nuclear Information System (INIS)
Nygaard, K.
1966-09-01
The problem of calculating the maximum available timing information contained in nuclear pulses in the presence of noise is solved theoretically. Practical experiments show that the theoretical values can be obtained by very simple, but untraditional, means. An output pulse from a practical filter connected to a charge sensitive amplifier with a Ge(Li) detector showed a rise time of 30 ns and a noise level of less than 5 keV. The time jitter measured was inversely proportional to the pulse height and less than 30 ns for 10 keV pulses. With the timing filter shown solid state detectors can be classified somewhere between Nal scintillators and organic scintillators with respect to time resolution
Cat Swarm Optimization algorithm for optimal linear phase FIR filter design.
Saha, Suman Kumar; Ghoshal, Sakti Prasad; Kar, Rajib; Mandal, Durbadal
2013-11-01
In this paper a new meta-heuristic search method, called Cat Swarm Optimization (CSO) algorithm is applied to determine the best optimal impulse response coefficients of FIR low pass, high pass, band pass and band stop filters, trying to meet the respective ideal frequency response characteristics. CSO is generated by observing the behaviour of cats and composed of two sub-models. In CSO, one can decide how many cats are used in the iteration. Every cat has its' own position composed of M dimensions, velocities for each dimension, a fitness value which represents the accommodation of the cat to the fitness function, and a flag to identify whether the cat is in seeking mode or tracing mode. The final solution would be the best position of one of the cats. CSO keeps the best solution until it reaches the end of the iteration. The results of the proposed CSO based approach have been compared to those of other well-known optimization methods such as Real Coded Genetic Algorithm (RGA), standard Particle Swarm Optimization (PSO) and Differential Evolution (DE). The CSO based results confirm the superiority of the proposed CSO for solving FIR filter design problems. The performances of the CSO based designed FIR filters have proven to be superior as compared to those obtained by RGA, conventional PSO and DE. The simulation results also demonstrate that the CSO is the best optimizer among other relevant techniques, not only in the convergence speed but also in the optimal performances of the designed filters. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Three-Dimensional Terahertz Coded-Aperture Imaging Based on Single Input Multiple Output Technology.
Chen, Shuo; Luo, Chenggao; Deng, Bin; Wang, Hongqiang; Cheng, Yongqiang; Zhuang, Zhaowen
2018-01-19
As a promising radar imaging technique, terahertz coded-aperture imaging (TCAI) can achieve high-resolution, forward-looking, and staring imaging by producing spatiotemporal independent signals with coded apertures. In this paper, we propose a three-dimensional (3D) TCAI architecture based on single input multiple output (SIMO) technology, which can reduce the coding and sampling times sharply. The coded aperture applied in the proposed TCAI architecture loads either purposive or random phase modulation factor. In the transmitting process, the purposive phase modulation factor drives the terahertz beam to scan the divided 3D imaging cells. In the receiving process, the random phase modulation factor is adopted to modulate the terahertz wave to be spatiotemporally independent for high resolution. Considering human-scale targets, images of each 3D imaging cell are reconstructed one by one to decompose the global computational complexity, and then are synthesized together to obtain the complete high-resolution image. As for each imaging cell, the multi-resolution imaging method helps to reduce the computational burden on a large-scale reference-signal matrix. The experimental results demonstrate that the proposed architecture can achieve high-resolution imaging with much less time for 3D targets and has great potential in applications such as security screening, nondestructive detection, medical diagnosis, etc.
Three-Dimensional Terahertz Coded-Aperture Imaging Based on Single Input Multiple Output Technology
Directory of Open Access Journals (Sweden)
Shuo Chen
2018-01-01
Full Text Available As a promising radar imaging technique, terahertz coded-aperture imaging (TCAI can achieve high-resolution, forward-looking, and staring imaging by producing spatiotemporal independent signals with coded apertures. In this paper, we propose a three-dimensional (3D TCAI architecture based on single input multiple output (SIMO technology, which can reduce the coding and sampling times sharply. The coded aperture applied in the proposed TCAI architecture loads either purposive or random phase modulation factor. In the transmitting process, the purposive phase modulation factor drives the terahertz beam to scan the divided 3D imaging cells. In the receiving process, the random phase modulation factor is adopted to modulate the terahertz wave to be spatiotemporally independent for high resolution. Considering human-scale targets, images of each 3D imaging cell are reconstructed one by one to decompose the global computational complexity, and then are synthesized together to obtain the complete high-resolution image. As for each imaging cell, the multi-resolution imaging method helps to reduce the computational burden on a large-scale reference-signal matrix. The experimental results demonstrate that the proposed architecture can achieve high-resolution imaging with much less time for 3D targets and has great potential in applications such as security screening, nondestructive detection, medical diagnosis, etc.
Boettiger, Alistair N; Wittemyer, George; Starfield, Richard; Volrath, Fritz; Douglas-Hamilton, Iain; Getz, Wayne M
2011-08-01
Understanding the environmental factors influencing animal movements is fundamental to theoretical and applied research in the field of movement ecology. Studies relating fine-scale movement paths to spatiotemporally structured landscape data, such as vegetation productivity or human activity, are particularly lacking despite the obvious importance of such information to understanding drivers of animal movement. In part, this may be because few approaches provide the sophistication to characterize the complexity of movement behavior and relate it to diverse, varying environmental stimuli. We overcame this hurdle by applying, for the first time to an ecological question, a finite impulse-response signal-filtering approach to identify human and natural environmental drivers of movements of 13 free-ranging African elephants (Loxodonta africana) from distinct social groups collected over seven years. A minimum mean-square error (MMSE) estimation criterion allowed comparison of the predictive power of landscape and ecological model inputs. We showed that a filter combining vegetation dynamics, human and physical landscape features, and previous movement outperformed simpler filter structures, indicating the importance of both dynamic and static landscape features, as well as habit, on movement decisions taken by elephants. Elephant responses to vegetation productivity indices were not uniform in time or space, indicating that elephant foraging strategies are more complex than simply gravitation toward areas of high productivity. Predictions were most frequently inaccurate outside protected area boundaries near human settlements, suggesting that human activity disrupts typical elephant movement behavior. Successful management strategies at the human-elephant interface, therefore, are likely to be context specific and dynamic. Signal processing provides a promising approach for elucidating environmental factors that drive animal movements over large time and spatial
Deraemaeker, A.; Worden, K.
2018-05-01
This paper discusses the possibility of using the Mahalanobis squared-distance to perform robust novelty detection in the presence of important environmental variability in a multivariate feature vector. By performing an eigenvalue decomposition of the covariance matrix used to compute that distance, it is shown that the Mahalanobis squared-distance can be written as the sum of independent terms which result from a transformation from the feature vector space to a space of independent variables. In general, especially when the size of the features vector is large, there are dominant eigenvalues and eigenvectors associated with the covariance matrix, so that a set of principal components can be defined. Because the associated eigenvalues are high, their contribution to the Mahalanobis squared-distance is low, while the contribution of the other components is high due to the low value of the associated eigenvalues. This analysis shows that the Mahalanobis distance naturally filters out the variability in the training data. This property can be used to remove the effect of the environment in damage detection, in much the same way as two other established techniques, principal component analysis and factor analysis. The three techniques are compared here using real experimental data from a wooden bridge for which the feature vector consists in eigenfrequencies and modeshapes collected under changing environmental conditions, as well as damaged conditions simulated with an added mass. The results confirm the similarity between the three techniques and the ability to filter out environmental effects, while keeping a high sensitivity to structural changes. The results also show that even after filtering out the environmental effects, the normality assumption cannot be made for the residual feature vector. An alternative is demonstrated here based on extreme value statistics which results in a much better threshold which avoids false positives in the training data, while
Wan, Yuhang; Carlson, John A; Kesler, Benjamin A; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A; Lim, Sung Jun; Smith, Andrew M; Dallesasse, John M; Cunningham, Brian T
2016-07-08
A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid's absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics.
Havens, Timothy C.; Cummings, Ian; Botts, Jonathan; Summers, Jason E.
2017-05-01
The linear ordered statistic (LOS) is a parameterized ordered statistic (OS) that is a weighted average of a rank-ordered sample. LOS operators are useful generalizations of aggregation as they can represent any linear aggregation, from minimum to maximum, including conventional aggregations, such as mean and median. In the fuzzy logic field, these aggregations are called ordered weighted averages (OWAs). Here, we present a method for learning LOS operators from training data, viz., data for which you know the output of the desired LOS. We then extend the learning process with regularization, such that a lower complexity or sparse LOS can be learned. Hence, we discuss what 'lower complexity' means in this context and how to represent that in the optimization procedure. Finally, we apply our learning methods to the well-known constant-false-alarm-rate (CFAR) detection problem, specifically for the case of background levels modeled by long-tailed distributions, such as the K-distribution. These backgrounds arise in several pertinent imaging problems, including the modeling of clutter in synthetic aperture radar and sonar (SAR and SAS) and in wireless communications.
DEFF Research Database (Denmark)
Taeed, Fazel; Salam, Z.; Ayob, S.
2012-01-01
In this paper, the single-input fuzzy logic controller (FLC) (SIFLC) for boost converter output-voltage regulation is proposed. The SIFLC utilizes the signed distance method that reduces the multidimensional rule table to 1-D with only one input variable, i.e., distance d. The simplification allows...... for the control surface to be approximated by a piecewise linear. It is shown that, despite the simplicity of SIFLC, its control performance is almost equivalent to that of the conventional FLC. As a proof of concept, the SIFLC is implemented using the Altera EP2C35F672C6N field-programmable gate array (FPGA......) and applied on a 50-W boost converter. The SIFLC is compared to the proportional-integral controller; the simulation and practical results indicate that SIFLC exhibits excellent performance for step load and input reference changes. Another feature of this work is the absence of an external analog...
Directory of Open Access Journals (Sweden)
Zeyu Shi
2017-01-01
Full Text Available Active power filter (APF is the most popular device in regulating power quality issues. Currently, most literatures ignored the impact of grid impedance and assumed the load voltage is ideal, which had not described the system accurately. In addition, the controllers applied PI control; thus it is hard to improve the compensation quality. This paper establishes a precise model which consists of APF, load, and grid impedance. The Bode diagram of traditional simplified model is obviously different with complete model, which means the descriptions of the system based on the traditional simplified model are inaccurate and incomplete. And then design exact feedback linearization and quasi-sliding mode control (FBL-QSMC is based on precise model in inner current loop. The system performances in different parameters are analyzed and dynamic performance of proposed algorithm is compared with traditional PI control algorithm. At last, simulations are taken in three cases to verify the performance of proposed control algorithm. The results proved that the proposed feedback linearization and quasi-sliding mode control algorithm has fast response and robustness; the compensation performance is superior to PI control obviously, which also means the complete modeling and proposed control algorithm are correct.
Akhbari, Mahsa; Shamsollahi, Mohammad B; Jutten, Christian; Armoundas, Antonis A; Sayadi, Omid
2016-02-01
In this paper we propose an efficient method for denoising and extracting fiducial point (FP) of ECG signals. The method is based on a nonlinear dynamic model which uses Gaussian functions to model ECG waveforms. For estimating the model parameters, we use an extended Kalman filter (EKF). In this framework called EKF25, all the parameters of Gaussian functions as well as the ECG waveforms (P-wave, QRS complex and T-wave) in the ECG dynamical model, are considered as state variables. In this paper, the dynamic time warping method is used to estimate the nonlinear ECG phase observation. We compare this new approach with linear phase observation models. Using linear and nonlinear EKF25 for ECG denoising and nonlinear EKF25 for fiducial point extraction and ECG interval analysis are the main contributions of this paper. Performance comparison with other EKF-based techniques shows that the proposed method results in higher output SNR with an average SNR improvement of 12 dB for an input SNR of -8 dB. To evaluate the FP extraction performance, we compare the proposed method with a method based on partially collapsed Gibbs sampler and an established EKF-based method. The mean absolute error and the root mean square error of all FPs, across all databases are 14 ms and 22 ms, respectively, for our proposed method, with an advantage when using a nonlinear phase observation. These errors are significantly smaller than errors obtained with other methods. For ECG interval analysis, with an absolute mean error and a root mean square error of about 22 ms and 29 ms, the proposed method achieves better accuracy and smaller variability with respect to other methods.
International Nuclear Information System (INIS)
Saba, V.; Setayeshi, S.; Ghannadi-Maragheh, M.
2011-01-01
We have developed an algorithm for real-time detection and complete correction of the patient motion effects during single photon emission computed tomography. The algorithm is based on a linear prediction filter (LPC). The new prediction of projection data algorithm (PPDA) detects most motions-such as those of the head, legs, and hands-using comparison of the predicted and measured frame data. When the data acquisition for a specific frame is completed, the accuracy of the acquired data is evaluated by the PPDA. If patient motion is detected, the scanning procedure is stopped. After the patient rests in his or her true position, data acquisition is repeated only for the corrupted frame and the scanning procedure is continued. Various experimental data were used to validate the motion detection algorithm; on the whole, the proposed method was tested with approximately 100 test cases. The PPDA shows promising results. Using the PPDA enables us to prevent the scanner from collecting disturbed data during the scan and replaces them with motion-free data by real-time rescanning for the corrupted frames. As a result, the effects of patient motion is corrected in real time. (author)
A single-input, single-output electromagnetically-transduced microresonator array
International Nuclear Information System (INIS)
Sabater, A B; Hunkler, A G; Rhoads, J F
2014-01-01
Resonant microsystems have found broad applicability in environmental and inertial sensing, signal filtering and timing applications. Despite this breadth in utility, a common constraint on these devices is throughput, or the total amount of information that they can process. In recent years, elastically-coupled arrays of microresonators have been used to increase the throughput in sensing contexts, but these arrays are often more complicated to design than their isolated counterparts, due to the potential for collective behaviors (such as vibration localization) to arise. An alternative solution to the throughput constraint is to use arrays of electromagnetically-transduced microresonators. These arrays can be designed such that the mechanical resonances are spaced far apart and the mechanical coupling between the microresonators is insignificant. Thus, when the entire array is actuated and sensed, a resonance in the electrical response can be directly correlated to a specific microresonator vibrating, as collective behaviors have been avoided. This work details the design, analysis and experimental characterization of an electromagnetically-transduced microresonator array in both low- and atmospheric-pressure environments, and demonstrates that the system could be used as a sensor in ambient conditions. While this device has direct application as a resonant-based sensor that requires only a single source and measurement system to track multiple resonances, with simple modification, this array could find uses in tunable oscillator and frequency multiplexing contexts. (paper)
Directory of Open Access Journals (Sweden)
Руслан Володимирович Власенко
2016-07-01
Full Text Available Electricity quality improving is extremely relevant nowadays. With such industrial loads as induction motors, induction furnaces, welding machines, controlled or uncontrolled rectifiers, frequency converters and others reactive power, harmonics and unbalance are generated in power grid. Reactive power, higher harmonic currents and asymmetry loads influence the functioning of electric devices and electrical mains. An effective technical solution is the use of new compensating devices, that is active power filters. The emergence of consumers with a unit capacity of four wire networks requires a new approach to building system control active power filter. When designing the active power filter control system the current flowing in the neutral wire must be taken into account. To assess the power balance in the four wire active power filter, scientists have proposed to apply pqr theory of power based on the Clarke transformation. There are different topologies of three-phase four wire active power filters. A visual simulation of Matlab / Simulink model with an active power filter based on pqr theory of power has been created. A method of pulse width modulation with four control channels was used as pulses forming systems with transistor keys. Operating conditions of three-phase four wire active power filter with asymmetry, non-sinosoidal voltage source and asymmetric load have been studied. The correction taking into account the means improving the active power filter has been offered as pqr theory of power does not take into account non-sinosoidal voltage
Directory of Open Access Journals (Sweden)
S.N.M.P. Simamora
2014-10-01
Full Text Available Efficiency condition occurs when the value of the used outputs compared to the resource total that has been used almost close to the value 1 (absolute environment. An instrument to achieve efficiency if the power output level has decreased significantly in the life of the instrument used, if it compared to the previous condition, when the instrument is not equipped with additional systems (or proposed model improvement. Even more effective if the inputs model that are used in unison to achieve a homogeneous output. On this research has been designed and implemented the automatic control system for models of single input-dual-output, wherein the sampling instruments used are lamp and fan. Source voltage used is AC (alternate-current and tested using quantitative research methods and instrumentation (with measuring instruments are observed. The results obtained demonstrate the efficiency of the instrument experienced a significant current model of single-input-dual-output applied separately instrument trials such as lamp and fan when it compared to the condition or state before. And the result show that the design has been built, can also run well.
DEFF Research Database (Denmark)
Maram, Reza; Kong, Deming; Galili, Michael
2016-01-01
We propose a novel approach for all-optical return-to-zero (RZ) to non-return-to-zero (NRZ) telecommunication data format conversion based on linear spectral phase manipulation of an RZ data signal. The operation principle is numerically analyzed and experimentally validated through successful...... format conversion of a 640 Gbit/s coherent RZ signal into the equivalent NRZ time-domain data using a simple phase filter implemented by a commercial optical waveshaper. (C) 2015 Optical Society of America...
Electronically Tunable Resistorless Mixed Mode Biquad Filters
Yesil, A.; Kacar, F.
2013-01-01
This paper presents a new realization of elec¬tronically tunable mixed mode (including transadmittance- and voltage-modes) biquad filter with single input, three outputs or three inputs, single output using voltage differ-encing transconductance amplifier (VDTA), a recently introduced active element. It can simultaneously realize standard filtering signals: low-pass, band-pass and high-pass or by selecting input terminals, it can realize all five different filtering signals: low-pass, band-pa...
Szadkowski, Zbigniew; Fraenkel, E. D.; van den Berg, Ad M.
2013-10-01
We present the FPGA/NIOS implementation of an adaptive finite impulse response (FIR) filter based on linear prediction to suppress radio frequency interference (RFI). This technique will be used for experiments that observe coherent radio emission from extensive air showers induced by ultra-high-energy cosmic rays. These experiments are designed to make a detailed study of the development of the electromagnetic part of air showers. Therefore, these radio signals provide information that is complementary to that obtained by water-Cherenkov detectors which are predominantly sensitive to the particle content of an air shower at ground. The radio signals from air showers are caused by the coherent emission due to geomagnetic and charge-excess processes. These emissions can be observed in the frequency band between 10-100 MHz. However, this frequency range is significantly contaminated by narrow-band RFI and other human-made distortions. A FIR filter implemented in the FPGA logic segment of the front-end electronics of a radio sensor significantly improves the signal-to-noise ratio. In this paper we discuss an adaptive filter which is based on linear prediction. The coefficients for the linear predictor (LP) are dynamically refreshed and calculated in the embedded NIOS processor, which is implemented in the same FPGA chip. The Levinson recursion, used to obtain the filter coefficients, is also implemented in the NIOS and is partially supported by direct multiplication in the DSP blocks of the logic FPGA segment. Tests confirm that the LP can be an alternative to other methods involving multiple time-to-frequency domain conversions using an FFT procedure. These multiple conversions draw heavily on the power consumption of the FPGA and are avoided by the linear prediction approach. Minimization of the power consumption is an important issue because the final system will be powered by solar panels. The FIR filter has been successfully tested in the Altera development kits
Bit-rate-transparent optical RZ-to-NRZ format conversion based on linear spectral phase filtering
DEFF Research Database (Denmark)
Maram, Reza; Da Ros, Francesco; Guan, Pengyu
2017-01-01
We propose a novel and strikingly simple design for all-optical bit-rate-transparent RZ-to-NRZ conversion based on optical phase filtering. The proposed concept is experimentally validated through format conversion of a 640 Gbit/s coherent RZ signal to NRZ signal.......We propose a novel and strikingly simple design for all-optical bit-rate-transparent RZ-to-NRZ conversion based on optical phase filtering. The proposed concept is experimentally validated through format conversion of a 640 Gbit/s coherent RZ signal to NRZ signal....
Iglesias, Marco
2017-11-26
In this work, we present the ensemble-marginalized Kalman filter (EnMKF), a sequential algorithm analogous to our previously proposed approach [1,2], for estimating the state and parameters of linear parabolic partial differential equations in initial-boundary value problems when the boundary data are noisy. We apply EnMKF to infer the thermal properties of building walls and to estimate the corresponding heat flux from real and synthetic data. Compared with a modified Ensemble Kalman Filter (EnKF) that is not marginalized, EnMKF reduces the bias error, avoids the collapse of the ensemble without needing to add inflation, and converges to the mean field posterior using $50\\\\%$ or less of the ensemble size required by EnKF. According to our results, the marginalization technique in EnMKF is key to performance improvement with smaller ensembles at any fixed time.
International Nuclear Information System (INIS)
Souza, Anderson Sorgatti de
2017-01-01
Teletherapy, radiation therapy with linear accelerators, for cancer treatment has being used for years with good clinical results.Since the 90's the removal of the flattening filter, item placed at the gantry of the machine, has shown better results for the treatment of some cancers thus being extensively studied. Treatments with Intensity Modulated Radiotherapy (IMRT) and Stereotaxic Radiotherapy (SRT) were more efficient without the flattening filter. Varian Oncology released the TrueBeam in 2012, a accelerator capable of operating with or without the flattening filter. The aim of this work is to access homogeneity of the percentage depth dose (PDP) and beam quality index (TPR20/10), two important parameters used in patient dose calculations. The data used for analysis were obtained with the Israelita Albert Einstein Hospital (HIAE), Real Portugues Hospital (RHP) and 3 more institutions located in the United States. The statistical data analysis allowed to observe the parameters behaviors. In general, they were very homogeneous, with errors smaller than 1% confirming the conformance of the TrueBeam accelerators. (author)
International Nuclear Information System (INIS)
Pike, D.H.; Morrison, G.W.
1979-01-01
An approach to loss detection is presented which combines the optimal loss detection capability of state estimation techniques with a controllable unit accounting approach. The state estimation theory makes use of a linear system model which is capable of modeling the interaction of various controllable unit areas within a given facility. An example is presented which illustrates the increase in loss detection probability which is realizable with state estimation techniques. Comparisons are made with a Shewhart Control Chart and the CUSUM statistic
International Nuclear Information System (INIS)
Almberg, S. S.; Frengen, J.; Lindmo, T.
2012-01-01
Purpose: To compare dosimetric characteristics of 6 MV photon fields originating from a linear accelerator operating with (FF) and without (FFF) a flattening-filter. The main objective is to establish a FFF model that results in similar depth-dose and build-up profiles as the original FF model, and subsequently estimate and compare out-of-field dose distributions. Methods: The EGSnrc Monte Carlo user codes BEAMnrc and DOSXYZnrc are used for photon beam simulations of an Elekta linear accelerator and dose calculations in a water phantom, respectively. Three beam models were analyzed: (1) the conventional linear accelerator with the flattening-filter in place and incident electron energy 6.45 MeV (FF 6.45 MeV), (2) similar flattening-filter-free model (FFF 6.45 MeV), and (3) as (2) but with increased electron energy (FFF 8.0 MeV). The field size 5 × 5 cm 2 was used for characterization of dose output, depth dose profiles, and photon spectrum. The field size 40 × 40 cm 2 was used for characterization of cross-field photon energy, photon fluence, and dose distributions. Out-of-field dose distributions were analyzed in both in-plane and cross-plane directions for 5 × 5 cm 2 and 10 × 10 cm 2 fields. Results: Comparable depth dose distributions, including the build-up region, for FF and FFF fields were achieved by increasing the electron energy from 6.45 MeV to 8.0 MeV for the FFF beam. The FFF beams result in reduced out-of-field dose compared to the FF beam: the reduction was most apparent in the cross-plane direction and more pronounced by the FFF 8.0 MeV beam compared to the FFF 6.45 MeV beam. Differences in out-of-field dose due to direction (in-plane vs cross-plane) were up to 40% for the FF beam; this effect was significantly reduced for the FFF beams. As the flattening-filter is a major source of contaminating electrons, superficial out-of-field dose was expected, and was found to be, reduced for FFF beams. Conclusions: The build-up and depth
International Nuclear Information System (INIS)
Suwono.
1978-01-01
A linear gate providing a variable gate duration from 0,40μsec to 4μsec was developed. The electronic circuity consists of a linear circuit and an enable circuit. The input signal can be either unipolar or bipolar. If the input signal is bipolar, the negative portion will be filtered. The operation of the linear gate is controlled by the application of a positive enable pulse. (author)
Approximately Liner Phase IIR Digital Filter Banks
Directory of Open Access Journals (Sweden)
J. D. Ćertić
2013-11-01
Full Text Available In this paper, uniform and nonuniform digital filter banks based on approximately linear phase IIR filters and frequency response masking technique (FRM are presented. Both filter banks are realized as a connection of an interpolated half-band approximately linear phase IIR filter as a first stage of the FRM design and an appropriate number of masking filters. The masking filters are half-band IIR filters with an approximately linear phase. The resulting IIR filter banks are compared with linear-phase FIR filter banks exhibiting similar magnitude responses. The effects of coefficient quantization are analyzed.
International Nuclear Information System (INIS)
Riaz, Nadeem; Wiersma, Rodney; Mao Weihua; Xing Lei; Shanker, Piyush; Gudmundsson, Olafur; Widrow, Bernard
2009-01-01
Intra-fraction tumor tracking methods can improve radiation delivery during radiotherapy sessions. Image acquisition for tumor tracking and subsequent adjustment of the treatment beam with gating or beam tracking introduces time latency and necessitates predicting the future position of the tumor. This study evaluates the use of multi-dimensional linear adaptive filters and support vector regression to predict the motion of lung tumors tracked at 30 Hz. We expand on the prior work of other groups who have looked at adaptive filters by using a general framework of a multiple-input single-output (MISO) adaptive system that uses multiple correlated signals to predict the motion of a tumor. We compare the performance of these two novel methods to conventional methods like linear regression and single-input, single-output adaptive filters. At 400 ms latency the average root-mean-square-errors (RMSEs) for the 14 treatment sessions studied using no prediction, linear regression, single-output adaptive filter, MISO and support vector regression are 2.58, 1.60, 1.58, 1.71 and 1.26 mm, respectively. At 1 s, the RMSEs are 4.40, 2.61, 3.34, 2.66 and 1.93 mm, respectively. We find that support vector regression most accurately predicts the future tumor position of the methods studied and can provide a RMSE of less than 2 mm at 1 s latency. Also, a multi-dimensional adaptive filter framework provides improved performance over single-dimension adaptive filters. Work is underway to combine these two frameworks to improve performance.
Hu, L; Liang, M; Mouraux, A; Wise, R G; Hu, Y; Iannetti, G D
2011-12-01
Across-trial averaging is a widely used approach to enhance the signal-to-noise ratio (SNR) of event-related potentials (ERPs). However, across-trial variability of ERP latency and amplitude may contain physiologically relevant information that is lost by across-trial averaging. Hence, we aimed to develop a novel method that uses 1) wavelet filtering (WF) to enhance the SNR of ERPs and 2) a multiple linear regression with a dispersion term (MLR(d)) that takes into account shape distortions to estimate the single-trial latency and amplitude of ERP peaks. Using simulated ERP data sets containing different levels of noise, we provide evidence that, compared with other approaches, the proposed WF+MLR(d) method yields the most accurate estimate of single-trial ERP features. When applied to a real laser-evoked potential data set, the WF+MLR(d) approach provides reliable estimation of single-trial latency, amplitude, and morphology of ERPs and thereby allows performing meaningful correlations at single-trial level. We obtained three main findings. First, WF significantly enhances the SNR of single-trial ERPs. Second, MLR(d) effectively captures and measures the variability in the morphology of single-trial ERPs, thus providing an accurate and unbiased estimate of their peak latency and amplitude. Third, intensity of pain perception significantly correlates with the single-trial estimates of N2 and P2 amplitude. These results indicate that WF+MLR(d) can be used to explore the dynamics between different ERP features, behavioral variables, and other neuroimaging measures of brain activity, thus providing new insights into the functional significance of the different brain processes underlying the brain responses to sensory stimuli.
Design of adaptive control systems by means of self-adjusting transversal filters
Merhav, S. J.
1986-01-01
The design of closed-loop adaptive control systems based on nonparametric identification was addressed. Implementation is by self-adjusting Least Mean Square (LMS) transversal filters. The design concept is Model Reference Adaptive Control (MRAC). Major issues are to preserve the linearity of the error equations of each LMS filter, and to prevent estimation bias that is due to process or measurement noise, thus providing necessary conditions for the convergence and stability of the control system. The controlled element is assumed to be asymptotically stable and minimum phase. Because of the nonparametric Finite Impulse Response (FIR) estimates provided by the LMS filters, a-priori information on the plant model is needed only in broad terms. Following a survey of control system configurations and filter design considerations, system implementation is shown here in Single Input Single Output (SISO) format which is readily extendable to multivariable forms. In extensive computer simulation studies the controlled element is represented by a second-order system with widely varying damping, natural frequency, and relative degree.
Han, Dahai; Zhang, Min; Li, Qing
2017-08-01
The experiment is designed and taken to measure the link gain in a single-input multiple-output ultraviolet (UV) communication system with diversity reception, and the correlation of multichannel is also taken into account. Theoretical and experimental research on the multireceiver UV communication system suggests that diversity reception is an effective way to gain high BER performance even if the link gain correlation is non-negligible (with normal level correlation coefficient). The link gain of diversity reception is compared particularly with the gain from expanding the detecting area to find its boundary for performance improvement and the distance limit between receivers. The experimental results provide more reliable guidelines for receiver design in UVC systems and other scattering wireless optical communication channels with diversity reception applied such as multiple-input multiple-output.
Generic Kalman Filter Software
Lisano, Michael E., II; Crues, Edwin Z.
2005-01-01
The Generic Kalman Filter (GKF) software provides a standard basis for the development of application-specific Kalman-filter programs. Historically, Kalman filters have been implemented by customized programs that must be written, coded, and debugged anew for each unique application, then tested and tuned with simulated or actual measurement data. Total development times for typical Kalman-filter application programs have ranged from months to weeks. The GKF software can simplify the development process and reduce the development time by eliminating the need to re-create the fundamental implementation of the Kalman filter for each new application. The GKF software is written in the ANSI C programming language. It contains a generic Kalman-filter-development directory that, in turn, contains a code for a generic Kalman filter function; more specifically, it contains a generically designed and generically coded implementation of linear, linearized, and extended Kalman filtering algorithms, including algorithms for state- and covariance-update and -propagation functions. The mathematical theory that underlies the algorithms is well known and has been reported extensively in the open technical literature. Also contained in the directory are a header file that defines generic Kalman-filter data structures and prototype functions and template versions of application-specific subfunction and calling navigation/estimation routine code and headers. Once the user has provided a calling routine and the required application-specific subfunctions, the application-specific Kalman-filter software can be compiled and executed immediately. During execution, the generic Kalman-filter function is called from a higher-level navigation or estimation routine that preprocesses measurement data and post-processes output data. The generic Kalman-filter function uses the aforementioned data structures and five implementation- specific subfunctions, which have been developed by the user on
Statistically-Efficient Filtering in Impulsive Environments: Weighted Myriad Filters
Directory of Open Access Journals (Sweden)
Gonzalez Juan G
2002-01-01
Full Text Available Linear filtering theory has been largely motivated by the characteristics of Gaussian signals. In the same manner, the proposed Myriad Filtering methods are motivated by the need for a flexible filter class with high statistical efficiency in non-Gaussian impulsive environments that can appear in practice. Myriad filters have a solid theoretical basis, are inherently more powerful than median filters, and are very general, subsuming traditional linear FIR filters. The foundation of the proposed filtering algorithms lies in the definition of the myriad as a tunable estimator of location derived from the theory of robust statistics. We prove several fundamental properties of this estimator and show its optimality in practical impulsive models such as the -stable and generalized- . We then extend the myriad estimation framework to allow the use of weights. In the same way as linear FIR filters become a powerful generalization of the mean filter, filters based on running myriads reach all of their potential when a weighting scheme is utilized. We derive the "normal" equations for the optimal myriad filter, and introduce a suboptimal methodology for filter tuning and design. The strong potential of myriad filtering and estimation in impulsive environments is illustrated with several examples.
Sharpening minimum-phase filters
Jovanovic Dolecek, G.; Fernandez-Vazquez, A.
2013-02-01
The minimum-phase requirement restricts that filter has all its zeros on or inside the unit circle. As a result the filter does not have a linear phase. It is well known that the sharpening technique can be used to simultaneous improvements of both the pass-band and stop-band of a linear-phase FIR filters and cannot be used for other types of filters. In this paper we demonstrate that the sharpening technique can also be applied to minimum-phase filters, after small modification. The method is illustrated with one practical examples of design.
CSIR Research Space (South Africa)
Cilliers, Jacques E
2009-09-01
Full Text Available stream_source_info Cilliers_2009.pdf.txt stream_content_type text/plain stream_size 19532 Content-Encoding UTF-8 stream_name Cilliers_2009.pdf.txt Content-Type text/plain; charset=UTF-8 On the Trade-off Between Mainlobe... that the mismatched filters have been designed by minimization of the 100L -norm. From Fig. 1, Fig. 2 and Fig. 3 it can clearly be seen that the sidelobe level increases as the samples adjacent to the peak are reduced. The optimization process is thus trading...
Implementation of feedback-linearization-modelled induction motor ...
Indian Academy of Sciences (India)
RABI NARAYAN MISHRA
2017-11-27
Nov 27, 2017 ... single input introduced here is an error (speed and torque) instead of two inputs, error and change in error, as in the conventional NFC. ... Feedback linearization; induction motor; neuro-fuzzy controller; stationary reference frame. 1. Introduction ... replacing costly, heavy DC motor drive. However, FOC.
Netherton, Tucker; Li, Yuting; Nitsch, Paige; Shaitelman, Simona; Balter, Peter; Gao, Song; Klopp, Ann; Muruganandham, Manickam; Court, Laurence
2018-04-02
Using a new linear accelerator with high dose rate (800 MU/min), fast MLC motions (5.0 cm/s), fast gantry rotation (15 s/rotation), and 1 cm wide MLCs, we aimed to quantify the effects of complexity, arc number, and fractionation on interplay for breast and lung treatments under target motion. To study lung interplay, eight VMAT plans (1-6 arcs) and four-nine-field sliding-window IMRT plans varying in complexity were created. For the breast plans, four-four-field sliding-window IMRT plans were created. Using the Halcyon 1.0 linear accelerator, each plan was delivered five times each under sinusoidal breathing motion to a phantom with 20 implanted MOSFET detectors; MOSFET dose (cGy), delivery time, and MU/cGy values were recorded. Maximum and mean dose deviations were calculated from MOSFET data. The number of MOSFETs with at least 19 of 20 detectors agreeing with their expected dose within 5% per fraction was calculated across 10 6 iterations to model dose deviation as function of fraction number for all plan variants. To put interplay plans into clinical context, additional IMRT and VMAT plans were created and delivered for the sites of head and neck, prostate, whole brain, breast, pelvis, and lung. Average modulation and interplay effect were compared to those from conventional linear accelerators, as reported from previous studies. The mean beam modulation for plans created for the Halcyon 1.0 linear accelerator was 2.9 MU/cGy (two- to four-field IMRT breast plans), 6.2 MU/cGy (at least five-field IMRT), and 3.6 MU/cGy (four-arc VMAT). To achieve treatment plan objectives, Halcyon 1.0 VMAT plans require more arcs and modulation than VMAT on conventional linear accelerators. Maximum and mean dose deviations increased with increasing plan complexity under tumor motion for breast and lung treatments. Concerning VMAT plans under motion, maximum, and mean dose deviations were higher for one arc than for two arcs regardless of plan complexity. For plan variants
Energy Technology Data Exchange (ETDEWEB)
O’Connor, J. Michael; Pretorius, P. Hendrik; Johnson, Karen; King, Michael A., E-mail: Michael.King@umassmed.edu [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States)
2013-12-15
minimal external hardware and software modification through a single input channel, while still recording cardiac gating signals.
Energy Technology Data Exchange (ETDEWEB)
Page, Ralph H.; Doty, Patrick F.
2017-08-01
The various technologies presented herein relate to a tiled filter array that can be used in connection with performance of spatial sampling of optical signals. The filter array comprises filter tiles, wherein a first plurality of filter tiles are formed from a first material, the first material being configured such that only photons having wavelengths in a first wavelength band pass therethrough. A second plurality of filter tiles is formed from a second material, the second material being configured such that only photons having wavelengths in a second wavelength band pass therethrough. The first plurality of filter tiles and the second plurality of filter tiles can be interspersed to form the filter array comprising an alternating arrangement of first filter tiles and second filter tiles.
Supplementary High-Input Impedance Voltage-Mode Universal Biquadratic Filter Using DVCCs
Directory of Open Access Journals (Sweden)
Jitendra Mohan
2012-01-01
Full Text Available To further extend the existing knowledge on voltage-mode universal biquadratic filter, in this paper, a new biquadratic filter circuit with single input and multiple outputs is proposed, employing three differential voltage current conveyors (DVCCs, three resistors, and two grounded capacitors. The proposed circuit realizes all the standard filter functions, that is, high-pass, band-pass, low-pass, notch, and all-pass filters simultaneously. The circuit enjoys the feature of high-input impedance, orthogonal control of resonance angular frequency (o, and quality factor (Q via grounded resistor and the use of grounded capacitors which is ideal for IC implementation.
A Multifunction Filter for Realizing Gain Variable Low-Pass and Band-Pass Responses
Directory of Open Access Journals (Sweden)
Halil ALPASLAN
2010-02-01
Full Text Available The second generation current conveyors (CCIIs as active circuit devices are widely used for designing current-mode (CM filters. In this paper, a single input multi output filter employing only plus-type CCIIs (CCII+s and grounded capacitors, and for providing variable gain low-pass and band-pass responses, is suggested. The proposed filter is free from critical passive component matching conditions. Therefore, it is suitable for integrated circuit (IC technology. Further, developed filter configuration can be easily realized with commercially available active devices such as AD844s. The circuit performance is demonstrated by means of SPICE simulation and experimental test results.
The Rao-Blackwellized Particle Filter: A Filter Bank Implementation
Directory of Open Access Journals (Sweden)
Karlsson Rickard
2010-01-01
Full Text Available For computational efficiency, it is important to utilize model structure in particle filtering. One of the most important cases occurs when there exists a linear Gaussian substructure, which can be efficiently handled by Kalman filters. This is the standard formulation of the Rao-Blackwellized particle filter (RBPF. This contribution suggests an alternative formulation of this well-known result that facilitates reuse of standard filtering components and which is also suitable for object-oriented programming. Our RBPF formulation can be seen as a Kalman filter bank with stochastic branching and pruning.
Current-Processing Current-Controlled Universal Biquad Filter
Directory of Open Access Journals (Sweden)
S. V. Singh
2012-04-01
Full Text Available This paper presents a current-processing current-controlled universal biquad filter. The proposed filter employs only two current controlled current conveyor transconductance amplifiers (CCCCTAs and two grounded capacitors. The proposed configuration can be used either as a single input three outputs (SITO or as three inputs single output (TISO filter. The circuit realizes all five different standard filter functions i.e. low-pass (LP, band-pass (BP, high-pass (HP, band-reject (BR and all-pass (AP. The circuit enjoys electronic control of quality factor through the single bias current without disturbing pole frequency. Effects of non-idealities are also discussed. The circuit exhibits low active and passive sensitivity figures. The validity of proposed filter is verified through computer simulations using PSPICE.
Energy Technology Data Exchange (ETDEWEB)
Souza, Anderson Sorgatti de
2017-11-01
Teletherapy, radiation therapy with linear accelerators, for cancer treatment has being used for years with good clinical results.Since the 90's the removal of the flattening filter, item placed at the gantry of the machine, has shown better results for the treatment of some cancers thus being extensively studied. Treatments with Intensity Modulated Radiotherapy (IMRT) and Stereotaxic Radiotherapy (SRT) were more efficient without the flattening filter. Varian Oncology released the TrueBeam in 2012, a accelerator capable of operating with or without the flattening filter. The aim of this work is to access homogeneity of the percentage depth dose (PDP) and beam quality index (TPR20/10), two important parameters used in patient dose calculations. The data used for analysis were obtained with the Israelita Albert Einstein Hospital (HIAE), Real Portugues Hospital (RHP) and 3 more institutions located in the United States. The statistical data analysis allowed to observe the parameters behaviors. In general, they were very homogeneous, with errors smaller than 1% confirming the conformance of the TrueBeam accelerators. (author)
Analog filters in nanometer CMOS
Uhrmann, Heimo; Zimmermann, Horst
2014-01-01
Starting from the basics of analog filters and the poor transistor characteristics in nanometer CMOS 10 high-performance analog filters developed by the authors in 120 nm and 65 nm CMOS are described extensively. Among them are gm-C filters, current-mode filters, and active filters for system-on-chip realization for Bluetooth, WCDMA, UWB, DVB-H, and LTE applications. For the active filters several operational amplifier designs are described. The book, furthermore, contains a review of the newest state of research on low-voltage low-power analog filters. To cover the topic of the book comprehensively, linearization issues and measurement methods for the characterization of advanced analog filters are introduced in addition. Numerous elaborate illustrations promote an easy comprehension. This book will be of value to engineers and researchers in industry as well as scientists and Ph.D students at universities. The book is also recommendable to graduate students specializing on nanoelectronics, microelectronics ...
Linear systems optimal and robust control
Sinha, Alok
2007-01-01
Introduction Overview Contents of the Book State Space Description of a Linear System Transfer Function of a Single Input/Single Output (SISO) System State Space Realizations of a SISO System SISO Transfer Function from a State Space Realization Solution of State Space Equations Observability and Controllability of a SISO System Some Important Similarity Transformations Simultaneous Controllability and Observability Multiinput/Multioutput (MIMO) Systems State Space Realizations of a Transfer Function Matrix Controllability and Observability of a MIMO System Matrix-Fraction Description (MFD) MFD of a Transfer Function Matrix for the Minimal Order of a State Space Realization Controller Form Realization from a Right MFD Poles and Zeros of a MIMO Transfer Function Matrix Stability Analysis State Feedback Control and Optimization State Variable Feedback for a Single Input System Computation of State Feedback Gain Matrix for a Multiinput System State Feedback Gain Matrix for a Multi...
Mook, H.W.
1999-01-01
The invention relates to a Wien filter provided with electrodes for generating an electric field, and magnetic poles for generating a magnetic field, said electrodes and magnetic poles being positioned around and having a finite length along a filter axis, and being positioned around the filter axis
Directory of Open Access Journals (Sweden)
Y. A. Bladyko
2010-01-01
Full Text Available The paper contains definition of a smoothing factor which is suitable for any rectifier filter. The formulae of complex smoothing factors have been developed for simple and complex passive filters. The paper shows conditions for application of calculation formulae and filters.
Sutton, J.B.; Torrey, J.V.P.
1958-08-26
A process is described for reconditioning fused alumina filters which have become clogged by the accretion of bismuth phosphate in the filter pores, The method consists in contacting such filters with faming sulfuric acid, and maintaining such contact for a substantial period of time.
Evaluation of Linear and Non-Linear Control Schemes Applied to a Hydraulic Servo System
DEFF Research Database (Denmark)
Andersen, Torben Ole; Hansen, Michael Rygaard; Pedersen, Henrik Clemmensen
2005-01-01
is used as test facility acting as load for the hydraulic servo system. An experimentally verified non-linear model of the complete system has been developed and used to design a series of both linear and non-linear control schemes. The controllers from each category are compared with respect to design......Due to the innovation of low-cost electronics such as sensors, microcontrollers etc., the focus on highperformance motion control is increasing. This work focuses on position control of single-input single-output hydraulic servo-systems in general. A hydraulically actuated robotic manipulator...
Evaluation of Linear and Non-Linear Control Schemes Applied to a Hydraulic Servo System
DEFF Research Database (Denmark)
Andersen, Torben Ole; Hansen, Michael Rygaard; Pedersen, Henrik Clemmensen
2005-01-01
Due to the innovation of low-cost electronics such as sensors, microcontrollers etc., the focus on highperformance motion control is increasing. This work focuses on position control of single-input single-output hydraulic servo-systems in general. A hydraulically actuated robotic manipulator...... is used as test facility acting as load for the hydraulic servo system. An experimentally verified non-linear model of the complete system has been developed and used to design a series of both linear and non-linear control schemes. The controllers from each category are compared with respect to design...
Electronically Tunable Resistorless Mixed Mode Biquad Filters
Directory of Open Access Journals (Sweden)
A. Yesil
2013-12-01
Full Text Available This paper presents a new realization of elec¬tronically tunable mixed mode (including transadmittance- and voltage-modes biquad filter with single input, three outputs or three inputs, single output using voltage differ-encing transconductance amplifier (VDTA, a recently introduced active element. It can simultaneously realize standard filtering signals: low-pass, band-pass and high-pass or by selecting input terminals, it can realize all five different filtering signals: low-pass, band-pass, high-pass, band-stop and all-pass. The proposed filter circuit offers the following attractive feature: no requirement of invert-ing type input signal which is require no addition circuit, critical component matching conditions are not required in the design, the circuit parameters ω0 and Q can be set orthogonally or independently through adjusting the bias currents of the VDTAs, the proposed circuit employs two active and minimum numbers of passive components. Fur-thermore, this filter was investigated from the point of view of limited frequency range, stability conditions, effects of parasitic elements and effects of non-ideal and sensitivity. Thus, taking these effects and conditions into considera¬tion, working conditions and boundaries of this filter are determined. We also performed Monte Carlo, THD and noise analyses. Simulation results are given to confirm theoretical analyses.
Non-linear Post Processing Image Enhancement
Hunt, Shawn; Lopez, Alex; Torres, Angel
1997-01-01
A non-linear filter for image post processing based on the feedforward Neural Network topology is presented. This study was undertaken to investigate the usefulness of "smart" filters in image post processing. The filter has shown to be useful in recovering high frequencies, such as those lost during the JPEG compression-decompression process. The filtered images have a higher signal to noise ratio, and a higher perceived image quality. Simulation studies comparing the proposed filter with the optimum mean square non-linear filter, showing examples of the high frequency recovery, and the statistical properties of the filter are given,
International Nuclear Information System (INIS)
Shiba, Kazuo; Nagao, Koji; Akiyama, Toshio; Tanaka, Fumikazu; Osumi, Akira; Hirao, Yasuhiro.
1997-01-01
The filter unit is used by attaching to a dustproof mask, and used in a radiation controlled area such as in a nuclear power plant. The filter unit comprises sheet-like front and back filtering members disposed vertically in parallel, a spacer for keeping the filtering members to a predetermined distance and front and back covering members for covering the two filtering members respectively. An electrostatic filter prepared by applying resin-fabrication to a base sheet comprising 100% by weight of organic fibers as fiber components, for example, wool felt, synthetic fiber non-woven fabric, wool and synthetic fiber blend non-woven fabric and then electrifying the resin is used for the filtering members. Then, residue of ashes can be eliminated substantially or completely after burning them. (I.N.)
Mook, H.W.
1999-01-01
The invention relates to a Wien filter provided with electrodes for generating an electric field, and magnetic poles for generating a magnetic field, said electrodes and magnetic poles being positioned around and having a finite length along a filter axis, and being positioned around the filter axis such that electric and magnetic forces induced by the respective fields and exerted on an electrically charged particle moving substantially along the fileter axis at a certain velocity
Filter and Filter Bank Design for Image Texture Recognition
Energy Technology Data Exchange (ETDEWEB)
Randen, Trygve
1997-12-31
The relevance of this thesis to energy and environment lies in its application to remote sensing such as for instance sea floor mapping and seismic pattern recognition. The focus is on the design of two-dimensional filters for feature extraction, segmentation, and classification of digital images with textural content. The features are extracted by filtering with a linear filter and estimating the local energy in the filter response. The thesis gives a review covering broadly most previous approaches to texture feature extraction and continues with proposals of some new techniques. 143 refs., 59 figs., 7 tabs.
Combined invariants to linear filtering and rotation
Czech Academy of Sciences Publication Activity Database
Flusser, Jan; Zitová, Barbara
1999-01-01
Roč. 13, č. 8 (1999), s. 1123-1136 ISSN 0218-0014 R&D Projects: GA ČR GA102/96/1694; GA ČR GA106/97/0827 Institutional research plan: AV0Z1075907 Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.500, year: 1999 http:// library .utia.cas.cz/prace/990162.pdf
Adaptable Iterative and Recursive Kalman Filter Schemes
Zanetti, Renato
2014-01-01
Nonlinear filters are often very computationally expensive and usually not suitable for real-time applications. Real-time navigation algorithms are typically based on linear estimators, such as the extended Kalman filter (EKF) and, to a much lesser extent, the unscented Kalman filter. The Iterated Kalman filter (IKF) and the Recursive Update Filter (RUF) are two algorithms that reduce the consequences of the linearization assumption of the EKF by performing N updates for each new measurement, where N is the number of recursions, a tuning parameter. This paper introduces an adaptable RUF algorithm to calculate N on the go, a similar technique can be used for the IKF as well.
Energy Technology Data Exchange (ETDEWEB)
Porter, Reid B [Los Alamos National Laboratory; Hush, Don [Los Alamos National Laboratory
2009-01-01
Just as linear models generalize the sample mean and weighted average, weighted order statistic models generalize the sample median and weighted median. This analogy can be continued informally to generalized additive modeels in the case of the mean, and Stack Filters in the case of the median. Both of these model classes have been extensively studied for signal and image processing but it is surprising to find that for pattern classification, their treatment has been significantly one sided. Generalized additive models are now a major tool in pattern classification and many different learning algorithms have been developed to fit model parameters to finite data. However Stack Filters remain largely confined to signal and image processing and learning algorithms for classification are yet to be seen. This paper is a step towards Stack Filter Classifiers and it shows that the approach is interesting from both a theoretical and a practical perspective.
Performance comparison of various time variant filters
Energy Technology Data Exchange (ETDEWEB)
Kuwata, M. [JEOL Engineering Co. Ltd., Akishima, Tokyo (Japan); Husimi, K.
1996-07-01
This paper describes the advantage of the trapezoidal filter used in semiconductor detector system comparing with the other time variant filters. The trapezoidal filter is the compose of a rectangular pre-filter and a gated integrator. We indicate that the best performance is obtained by the differential-integral summing type rectangular pre-filter. This filter is not only superior in performance, but also has the useful feature that the rising edge of the output waveform is linear. We introduce an example of this feature used in a high-energy experiment. (author)
International Nuclear Information System (INIS)
Vanin, V.R.
1990-01-01
The multidetector systems for high resolution gamma spectroscopy are presented. The observable parameters for identifying nuclides produced simultaneously in the reaction are analysed discussing the efficiency of filter systems. (M.C.K.)
Intelligibility of bandpass filtered speech: The effect of filter types.
Amir, Noam; Kishon-Rabin, Liat
2017-12-01
Many studies have examined the contribution of different spectral bands to speech intelligibility, measuring recognition scores of filtered speech stimuli. For a given filter bandwidth, the influence of filter properties on such experiments has been studied mainly with respect to transition band slopes. The objective of the present study was to determine whether nominal transition band slope is a sufficient characterization of filter properties. Several types of filters, both finite impulse response and infinite impulse response types were examined in three experiments to determine if details of the transition band behavior, as well as group delay properties, had any influence on recognition scores. The results of a total of 72 participants showed that for 1/3 octave passbands, differences between filters having the same nominal transition band slopes, but of different types, were large and statistically significant. Linearity of phase response, however, did not influence the results. Further experiments using passband widths of 1/2 and 2/3 octaves revealed that only for the latter the difference in recognition scores between filter types ceased to be significant. These results have important implications for studies which involve filtered speech as well as models that employ different types of filters to emulate peripheral auditory processing.
Stochastic processes and filtering theory
Jazwinski, Andrew H
1970-01-01
This unified treatment of linear and nonlinear filtering theory presents material previously available only in journals, and in terms accessible to engineering students. Its sole prerequisites are advanced calculus, the theory of ordinary differential equations, and matrix analysis. Although theory is emphasized, the text discusses numerous practical applications as well.Taking the state-space approach to filtering, this text models dynamical systems by finite-dimensional Markov processes, outputs of stochastic difference, and differential equations. Starting with background material on probab
A quantum extended Kalman filter
International Nuclear Information System (INIS)
Emzir, Muhammad F; Woolley, Matthew J; Petersen, Ian R
2017-01-01
In quantum physics, a stochastic master equation (SME) estimates the state (density operator) of a quantum system in the Schrödinger picture based on a record of measurements made on the system. In the Heisenberg picture, the SME is a quantum filter. For a linear quantum system subject to linear measurements and Gaussian noise, the dynamics may be described by quantum stochastic differential equations (QSDEs), also known as quantum Langevin equations, and the quantum filter reduces to a so-called quantum Kalman filter. In this article, we introduce a quantum extended Kalman filter (quantum EKF), which applies a commutative approximation and a time-varying linearization to systems of nonlinear QSDEs. We will show that there are conditions under which a filter similar to a classical EKF can be implemented for quantum systems. The boundedness of estimation errors and the filtering problem with ‘state-dependent’ covariances for process and measurement noises are also discussed. We demonstrate the effectiveness of the quantum EKF by applying it to systems that involve multiple modes, nonlinear Hamiltonians, and simultaneous jump-diffusive measurements. (paper)
Current-Mode Universal Filters Employing Single FDCCII
Directory of Open Access Journals (Sweden)
F. Kacar
2012-12-01
Full Text Available In this study, to realize current-mode multifunction filters, three new circuit configurations are presented. The circuits include fully differential current conveyor (FDCCII and four passive components. First proposed circuit is a universal filter with single-input and three-outputs, which can simultaneously realize current mode low-pass, band-pass and high-pass filter responses employing all grounded passive components. The last two proposed are universal filters with three-inputs single-output, which can realize current mode low-pass, band-pass, high-pass, band-stop and all-pass filter responses employing single FDCCII. Furthermore, each of the proposed circuits still enjoys realization using a minimum number of active and passive components. First and last of the proposed circuits have no requirement with the component choice conditions to realize specific filtering functions. No parameter matching condition is required. Active and passive sensitivities of filters are investigated and calculated 5 percentage hangings. Simulation results are found in close agreement with the theoretical results.
Tsang, W. L.; Glover, J. D.; Bach, R. E.
1981-01-01
Two off-line schemes are proposed for the identification of unknown noise covariance matrices Q and R of a discrete-time dynamic system. The first scheme is based on a maximum a posteriori cost function utilizing smoothed state estimates, while the second is based on a maximum likelihood cost function utilizing filtered state estimates. Sensitivity of the cost functions to Q and R is analyzed for the following cases: (1) single-input single-output systems; (2) multiinput single-output systems; and (3) single-input multioutput systems with a diagonal R. Identifiability criteria are presented for the cases considered and demonstrated by examples.
Directory of Open Access Journals (Sweden)
Karl Friston
2010-01-01
Full Text Available We describe a Bayesian filtering scheme for nonlinear state-space models in continuous time. This scheme is called Generalised Filtering and furnishes posterior (conditional densities on hidden states and unknown parameters generating observed data. Crucially, the scheme operates online, assimilating data to optimize the conditional density on time-varying states and time-invariant parameters. In contrast to Kalman and Particle smoothing, Generalised Filtering does not require a backwards pass. In contrast to variational schemes, it does not assume conditional independence between the states and parameters. Generalised Filtering optimises the conditional density with respect to a free-energy bound on the model's log-evidence. This optimisation uses the generalised motion of hidden states and parameters, under the prior assumption that the motion of the parameters is small. We describe the scheme, present comparative evaluations with a fixed-form variational version, and conclude with an illustrative application to a nonlinear state-space model of brain imaging time-series.
Computing the Minimum-Phase Filter using the QL-Factorization
DEFF Research Database (Denmark)
Hansen, Morten; Christensen, Lars P.B.; Winther, Ole
2010-01-01
the exact convergence rate and an upper bound for a simple Single-Input Single-Output system with filter length = 2 Finally, this upper bound is used to derive an approximation of the convergence rate for systems of arbitrary length. Implementation-wise, the method has the advantage of being numerically...... stable and straight forward to extend to the Multiple-Input Multiple-Output case. Furthermore, due to the existence of fast QL-factorization methods, it is possible to compute the filters efficiently....
Adaptive filtering prediction and control
Goodwin, Graham C
2009-01-01
Preface1. Introduction to Adaptive TechniquesPart 1. Deterministic Systems2. Models for Deterministic Dynamical Systems3. Parameter Estimation for Deterministic Systems4. Deterministic Adaptive Prediction5. Control of Linear Deterministic Systems6. Adaptive Control of Linear Deterministic SystemsPart 2. Stochastic Systems7. Optimal Filtering and Prediction8. Parameter Estimation for Stochastic Dynamic Systems9. Adaptive Filtering and Prediction10. Control of Stochastic Systems11. Adaptive Control of Stochastic SystemsAppendicesA. A Brief Review of Some Results from Systems TheoryB. A Summary o
Kalman filtering with real-time applications
Chui, Charles K
2017-01-01
This new edition presents a thorough discussion of the mathematical theory and computational schemes of Kalman filtering. The filtering algorithms are derived via different approaches, including a direct method consisting of a series of elementary steps, and an indirect method based on innovation projection. Other topics include Kalman filtering for systems with correlated noise or colored noise, limiting Kalman filtering for time-invariant systems, extended Kalman filtering for nonlinear systems, interval Kalman filtering for uncertain systems, and wavelet Kalman filtering for multiresolution analysis of random signals. Most filtering algorithms are illustrated by using simplified radar tracking examples. The style of the book is informal, and the mathematics is elementary but rigorous. The text is self-contained, suitable for self-study, and accessible to all readers with a minimum knowledge of linear algebra, probability theory, and system engineering. Over 100 exercises and problems with solutions help de...
Linear Algebra and Linear Models
Indian Academy of Sciences (India)
Linear Algebra and Linear. Models. Kalyan Das. Linear Algebra and linear Models. (2nd Edn) by R P Bapat. Hindustan Book Agency, 1999 pp.xiii+180, Price: Rs.135/-. This monograph provides an introduction to the basic aspects of the theory oflinear estima- tion and that of testing linear hypotheses. The primary objective ...
1987-01-01
Biomedical Optical Company of America's suntiger lenses eliminate more than 99% of harmful light wavelengths. NASA derived lenses make scenes more vivid in color and also increase the wearer's visual acuity. Distant objects, even on hazy days, appear crisp and clear; mountains seem closer, glare is greatly reduced, clouds stand out. Daytime use protects the retina from bleaching in bright light, thus improving night vision. Filtering helps prevent a variety of eye disorders, in particular cataracts and age related macular degeneration.
Shilov, Georgi E
1977-01-01
Covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional space. Problems with hints and answers.
Sander, K F
1964-01-01
Linear Network Theory covers the significant algebraic aspect of network theory, with minimal reference to practical circuits. The book begins the presentation of network analysis with the exposition of networks containing resistances only, and follows it up with a discussion of networks involving inductance and capacity by way of the differential equations. Classification and description of certain networks, equivalent networks, filter circuits, and network functions are also covered. Electrical engineers, technicians, electronics engineers, electricians, and students learning the intricacies
Nonlinear Kalman Filtering in Affine Term Structure Models
DEFF Research Database (Denmark)
Christoffersen, Peter; Dorion, Christian; Jacobs, Kris
2014-01-01
The extended Kalman filter, which linearizes the relationship between security prices and state variables, is widely used in fixed-income applications. We investigate whether the unscented Kalman filter should be used to capture nonlinearities and compare the performance of the Kalman filter...... performs well when compared with the much more computationally intensive particle filter. These findings suggest that the unscented Kalman filter may be a good approach for a variety of problems in fixed-income pricing....
A Robust Control Framework for Malware Filtering
Bloem, Michael; Alpcan, Tansu; Basar, Tamer
2009-01-01
We study and develop a robust control framework for malware filtering and network security. We investigate the malware filtering problem by capturing the tradeoff between increased security on one hand and continued usability of the network on the other. We analyze the problem using a linear control system model with a quadratic cost structure and develop algorithms based on H infinity-optimal control theory. A dynamic feedback filter is derived and shown via numerical analysis to be an impro...
A comparative study of filter based texture operators using Mahalanobis distance
Grigorescu, S.E.; Petkov, N.; Kruizinga, P.; Sanfeliu, A; Villanueva, JJ; Vanrell, M; Alquezar, R; Huang, T; Serra, J
2000-01-01
Texture feature extraction operators, which comprise linear filtering, eventually followed by post-processing, are considered. The filters used are Laws’ masks, filters derived from well-known discrete transforms, and Gabor filters. The post-processing step comprises non-linear point operations
Hamming, Richard W
1997-01-01
Digital signals occur in an increasing number of applications: in telephone communications; in radio, television, and stereo sound systems; and in spacecraft transmissions, to name just a few. This introductory text examines digital filtering, the processes of smoothing, predicting, differentiating, integrating, and separating signals, as well as the removal of noise from a signal. The processes bear particular relevance to computer applications, one of the focuses of this book.Readers will find Hamming's analysis accessible and engaging, in recognition of the fact that many people with the s
Directory of Open Access Journals (Sweden)
Nima Tabatabaei
2018-04-01
Full Text Available Conventional infrared thermography techniques, including pulsed and lock-in thermography, have shown great potential for non-destructive evaluation of broad spectrum of materials, spanning from metals to polymers to biological tissues. However, performance of these techniques is often limited due to the diffuse nature of thermal wave fields, resulting in an inherent compromise between inspection depth and depth resolution. Recently, matched-filter thermography has been introduced as a means for overcoming this classic limitation to enable depth-resolved subsurface thermal imaging and improving axial/depth resolution. This paper reviews the basic principles and experimental results of matched-filter thermography: first, mathematical and signal processing concepts related to matched-fileting and pulse compression are discussed. Next, theoretical modeling of thermal-wave responses to matched-filter thermography using two categories of pulse compression techniques (linear frequency modulation and binary phase coding are reviewed. Key experimental results from literature demonstrating the maintenance of axial resolution while inspecting deep into opaque and turbid media are also presented and discussed. Finally, the concept of thermal coherence tomography for deconvolution of thermal responses of axially superposed sources and creation of depth-selective images in a diffusion-wave field is reviewed.
Hood, John Linsley
2013-01-01
The Art of Linear Electronics presents the principal aspects of linear electronics and techniques in linear electronic circuit design. The book provides a wide range of information on the elucidation of the methods and techniques in the design of linear electronic circuits. The text discusses such topics as electronic component symbols and circuit drawing; passive and active semiconductor components; DC and low frequency amplifiers; and the basic effects of feedback. Subjects on frequency response modifying circuits and filters; audio amplifiers; low frequency oscillators and waveform generato
Ridge filter design for carbon radiotherapy
International Nuclear Information System (INIS)
Gata-Danil, G.; Parajpan, M.; Timoshenko, G.
2008-01-01
The design of a ridge filter intended for forming the uniform spread-out Bragg peak within a tumor at carbon radiotherapy is described. The computation of the ridge filter shape was carried out by an analytical algorithm and tested by MC simulation (GEANT4 code). Two kinds of the ridge filter were considered: stationary and movable. The influence on a ridge filter shape of the carbon beam energy and type of relative biological effectiveness dependence on the carbon ion linear energy transfer in tissue were examined
Directory of Open Access Journals (Sweden)
Hua-Pin Chen
2010-01-01
Full Text Available This paper introduces a novel voltage-mode multifunction biquadratic filter with single input and four outputs using two plus-type differential difference current conveyors (DDCCs and four grounded passive components. The filter can realize inverting highpass, inverting bandpass, noninverting lowpass, and noninverting bandpass filter responses, simultaneously. It still maintains the following advantages: (i using grounded capacitors attractive for integration and absorbing shunt parasitic capacitance, (ii using grounded resistors at all X terminals of DDCCs suitable for the variations of filter parameters and absorbing series parasitic resistances at all X terminals of DDCCs, (iii high-input impedance good for cascadability, (iv no need to change the filter topology, (v no need to component-matching conditions, (vi low active and passive sensitivity performances, and (vii simpler configuration due to the use of plus-type DDCCs only. HSPICE and MATLAB simulations results are provided to demonstrate the theoretical analysis.
Clutter filter design for ultrasound color flow imaging.
Bjaerum, Steinar; Torp, Hans; Kristoffersen, Kjell
2002-02-01
For ultrasound color flow images with high quality, it is important to suppress the clutter signals originating from stationary and slowly moving tissue sufficiently. Without sufficient clutter rejection, low velocity blood flow cannot be measured, and estimates of higher velocities will have a large bias. The small number of samples available (8 to 16) makes clutter filtering in color flow imaging a challenging problem. In this paper, we review and analyze three classes of filters: finite impulse response (FIR), infinite impulse response (IIR), and regression filters. The quality of the filters was assessed based on the frequency response, as well as on the bias and variance of a mean blood velocity estimator using an autocorrelation technique. For FIR filters, the frequency response was improved by allowing a non-linear phase response. By estimating the mean blood flow velocity from two vectors filtered in the forward and backward direction, respectively, the standard deviation was significantly lower with a minimum phase filter than with a linear phase filter. For IIR filters applied to short signals, the transient part of the output signal is important. We analyzed zero, step, and projection initialization, and found that projection initialization gave the best filters. For regression filters, polynomial basis functions provide effective clutter suppression. The best filters from each of the three classes gave comparable bias and variance of the mean blood velocity estimates. However, polynomial regression filters and projection-initialized IIR filters had a slightly better frequency response than could be obtained with FIR filters.
Linearization Method and Linear Complexity
Tanaka, Hidema
We focus on the relationship between the linearization method and linear complexity and show that the linearization method is another effective technique for calculating linear complexity. We analyze its effectiveness by comparing with the logic circuit method. We compare the relevant conditions and necessary computational cost with those of the Berlekamp-Massey algorithm and the Games-Chan algorithm. The significant property of a linearization method is that it needs no output sequence from a pseudo-random number generator (PRNG) because it calculates linear complexity using the algebraic expression of its algorithm. When a PRNG has n [bit] stages (registers or internal states), the necessary computational cost is smaller than O(2n). On the other hand, the Berlekamp-Massey algorithm needs O(N2) where N(≅2n) denotes period. Since existing methods calculate using the output sequence, an initial value of PRNG influences a resultant value of linear complexity. Therefore, a linear complexity is generally given as an estimate value. On the other hand, a linearization method calculates from an algorithm of PRNG, it can determine the lower bound of linear complexity.
Malvar-He-Cutler Linear Image Demosaicking
Directory of Open Access Journals (Sweden)
Pascal Getreuer
2011-08-01
Full Text Available Image demosaicking (or demosaicing is the interpolation problem of estimating complete color information for an image that has been captured through a color filter array (CFA, particularly on the Bayer pattern. In this paper we review a simple linear method using 5 x 5 filters, proposed by Malvar, He, and Cutler in 2004, that shows surprisingly good results.
3D Wavelet-Based Filter and Method
Moss, William C.; Haase, Sebastian; Sedat, John W.
2008-08-12
A 3D wavelet-based filter for visualizing and locating structural features of a user-specified linear size in 2D or 3D image data. The only input parameter is a characteristic linear size of the feature of interest, and the filter output contains only those regions that are correlated with the characteristic size, thus denoising the image.
Said-Houari, Belkacem
2017-01-01
This self-contained, clearly written textbook on linear algebra is easily accessible for students. It begins with the simple linear equation and generalizes several notions from this equation for the system of linear equations and introduces the main ideas using matrices. It then offers a detailed chapter on determinants and introduces the main ideas with detailed proofs. The third chapter introduces the Euclidean spaces using very simple geometric ideas and discusses various major inequalities and identities. These ideas offer a solid basis for understanding general Hilbert spaces in functional analysis. The following two chapters address general vector spaces, including some rigorous proofs to all the main results, and linear transformation: areas that are ignored or are poorly explained in many textbooks. Chapter 6 introduces the idea of matrices using linear transformation, which is easier to understand than the usual theory of matrices approach. The final two chapters are more advanced, introducing t...
Manning, Robert M.
1991-01-01
The dynamic and composite nature of propagation impairments that are incurred on Earth-space communications links at frequencies in and above 30/20 GHz Ka band, i.e., rain attenuation, cloud and/or clear air scintillation, etc., combined with the need to counter such degradations after the small link margins have been exceeded, necessitate the use of dynamic statistical identification and prediction processing of the fading signal in order to optimally estimate and predict the levels of each of the deleterious attenuation components. Such requirements are being met in NASA's Advanced Communications Technology Satellite (ACTS) Project by the implementation of optimal processing schemes derived through the use of the Rain Attenuation Prediction Model and nonlinear Markov filtering theory.
Stoll, R R
1968-01-01
Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand
International Nuclear Information System (INIS)
Yan, Hai; Zou, Yi; Yang, Chun-Ju; Chakravarty, Swapnajit; Wang, Zheng; Tang, Naimei; Chen, Ray T.; Fan, Donglei
2015-01-01
A method for the dense integration of high sensitivity photonic crystal (PC) waveguide based biosensors is proposed and experimentally demonstrated on a silicon platform. By connecting an additional PC waveguide filter to a PC microcavity sensor in series, a transmission passband is created, containing the resonances of the PC microcavity for sensing purpose. With proper engineering of the passband, multiple high sensitivity PC microcavity sensors can be integrated into microarrays and be interrogated simultaneously between a single input and a single output port. The concept was demonstrated with a 2-channel L55 PC biosensor array containing PC waveguide filters. The experiment showed that the sensors on both channels can be monitored simultaneously from a single output spectrum. Less than 3 dB extra loss for the additional PC waveguide filter is observed
Energy Technology Data Exchange (ETDEWEB)
Yan, Hai, E-mail: hai.yan@utexas.edu; Zou, Yi; Yang, Chun-Ju [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, 10100 Burnet Rd., Austin, Texas 78758 (United States); Chakravarty, Swapnajit, E-mail: swapnajit.chakravarty@omegaoptics.com [Omega Optics, Inc., 8500 Shoal Creek Blvd., Austin, Texas 78757 (United States); Wang, Zheng [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, 10100 Burnet Rd., Austin, Texas 78758 (United States); Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712 (United States); Tang, Naimei; Chen, Ray T., E-mail: raychen@uts.cc.utexas.edu [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, 10100 Burnet Rd., Austin, Texas 78758 (United States); Omega Optics, Inc., 8500 Shoal Creek Blvd., Austin, Texas 78757 (United States); Fan, Donglei [Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712 (United States); Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States)
2015-03-23
A method for the dense integration of high sensitivity photonic crystal (PC) waveguide based biosensors is proposed and experimentally demonstrated on a silicon platform. By connecting an additional PC waveguide filter to a PC microcavity sensor in series, a transmission passband is created, containing the resonances of the PC microcavity for sensing purpose. With proper engineering of the passband, multiple high sensitivity PC microcavity sensors can be integrated into microarrays and be interrogated simultaneously between a single input and a single output port. The concept was demonstrated with a 2-channel L55 PC biosensor array containing PC waveguide filters. The experiment showed that the sensors on both channels can be monitored simultaneously from a single output spectrum. Less than 3 dB extra loss for the additional PC waveguide filter is observed.
Liesen, Jörg
2015-01-01
This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...
Searle, Shayle R
2012-01-01
This 1971 classic on linear models is once again available--as a Wiley Classics Library Edition. It features material that can be understood by any statistician who understands matrix algebra and basic statistical methods.
Berberian, Sterling K
2014-01-01
Introductory treatment covers basic theory of vector spaces and linear maps - dimension, determinants, eigenvalues, and eigenvectors - plus more advanced topics such as the study of canonical forms for matrices. 1992 edition.
Solow, Daniel
2014-01-01
This text covers the basic theory and computation for a first course in linear programming, including substantial material on mathematical proof techniques and sophisticated computation methods. Includes Appendix on using Excel. 1984 edition.
The Theory of Linear Prediction
Vaidyanathan, PP
2007-01-01
Linear prediction theory has had a profound impact in the field of digital signal processing. Although the theory dates back to the early 1940s, its influence can still be seen in applications today. The theory is based on very elegant mathematics and leads to many beautiful insights into statistical signal processing. Although prediction is only a part of the more general topics of linear estimation, filtering, and smoothing, this book focuses on linear prediction. This has enabled detailed discussion of a number of issues that are normally not found in texts. For example, the theory of vecto
Künzi, R.
2015-06-15
Power converters require passive low-pass filters which are capable of reducing voltage ripples effectively. In contrast to signal filters, the components of power filters must carry large currents or withstand large voltages, respectively. In this paper, three different suitable filter struc tures for d.c./d.c. power converters with inductive load are introduced. The formulas needed to calculate the filter components are derived step by step and practical examples are given. The behaviour of the three discussed filters is compared by means of the examples. P ractical aspects for the realization of power filters are also discussed.
Filter replacement lifetime prediction
Hamann, Hendrik F.; Klein, Levente I.; Manzer, Dennis G.; Marianno, Fernando J.
2017-10-25
Methods and systems for predicting a filter lifetime include building a filter effectiveness history based on contaminant sensor information associated with a filter; determining a rate of filter consumption with a processor based on the filter effectiveness history; and determining a remaining filter lifetime based on the determined rate of filter consumption. Methods and systems for increasing filter economy include measuring contaminants in an internal and an external environment; determining a cost of a corrosion rate increase if unfiltered external air intake is increased for cooling; determining a cost of increased air pressure to filter external air; and if the cost of filtering external air exceeds the cost of the corrosion rate increase, increasing an intake of unfiltered external air.
A Game Theoretic Fault Detection Filter
Chung, Walter H.; Speyer, Jason L.
1995-01-01
The fault detection process is modelled as a disturbance attenuation problem. The solution to this problem is found via differential game theory, leading to an H(sub infinity) filter which bounds the transmission of all exogenous signals save the fault to be detected. For a general class of linear systems which includes some time-varying systems, it is shown that this transmission bound can be taken to zero by simultaneously bringing the sensor noise weighting to zero. Thus, in the limit, a complete transmission block can he achieved, making the game filter into a fault detection filter. When we specialize this result to time-invariant system, it is found that the detection filter attained in the limit is identical to the well known Beard-Jones Fault Detection Filter. That is, all fault inputs other than the one to be detected (the "nuisance faults") are restricted to an invariant subspace which is unobservable to a projection on the output. For time-invariant systems, it is also shown that in the limit, the order of the state-space and the game filter can be reduced by factoring out the invariant subspace. The result is a lower dimensional filter which can observe only the fault to be detected. A reduced-order filter can also he generated for time-varying systems, though the computational overhead may be intensive. An example given at the end of the paper demonstrates the effectiveness of the filter as a tool for fault detection and identification.
2003-02-01
Moen PureTouch filters remove impurities from tap water without removing fluoride. These carbon block filters consist of finely powdered activated carbon that is combined with a plastic binder material and heated to form a hollow cylinder. The blocks are further wrapped with material to improve performance and reduce clogging. The filters are available with different filtering capabilities (Table 1). The filters mount in the faucet spout or under the sink.
Olive, David J
2017-01-01
This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response trans...
Edwards, Harold M
1995-01-01
In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject
Physichal parameters for wedge filters used in radiotherapy
International Nuclear Information System (INIS)
Strunga, Emil
1995-01-01
Wedge filters using in radiotherapy up two important problems: attenuation of gamma rays introduced by the presence of wedge filters and spinning of isodoses curves plate. Depending of irradiation geometry, characterised by D w , - source filter distance, D c - source dose's estimate point distance, a - side of irradiation field; nature and size filter: α - wedge angle, μ - linear adsorption coefficient, ε - filter cover attenuation w - filter side, and nature of target volume characterised by μ' - linear absorption coefficient of medium has been estimated absorption factor of wedge filter (k w ) for two irradiation geometry: and spinning angle of isodose plate (Θ): 3) tg θ (μD w (μ'D c - 2 Calculated values has been compared with the experimental measured values, for a cobaltotherapy unit Rokus-M, and the result was that between the two series of dates it is a good concordance
Jammed-array wideband sawtooth filter.
Tan, Zhongwei; Wang, Chao; Goda, Keisuke; Malik, Omer; Jalali, Bahram
2011-11-21
We present an all-optical passive low-cost spectral filter that exhibits a high-resolution periodic sawtooth spectral pattern without the need for active optoelectronic components. The principle of the filter is the partial masking of a phased array of virtual light sources with multiply jammed diffraction orders. We utilize the filter's periodic linear map between frequency and intensity to demonstrate fast sensitive interrogation of fiber Bragg grating sensor arrays and ultrahigh-frequency electrical sawtooth waveform generation. © 2011 Optical Society of America
EXPLICIT LEAST-DEGREE BOUNDARY FILTERS FOR DISCONTINUOUS GALERKIN*
Nguyen, Dang-Manh; Peters, Jörg
2017-01-01
Convolving the output of Discontinuous Galerkin (DG) computations using spline filters can improve both smoothness and accuracy of the output. At domain boundaries, these filters have to be one-sided for non-periodic boundary conditions. Recently, position-dependent smoothness-increasing accuracy-preserving (PSIAC) filters were shown to be a superset of the well-known one-sided RLKV and SRV filters. Since PSIAC filters can be formulated symbolically, PSIAC filtering amounts to forming linear products with local DG output and so offers a more stable and efficient implementation. The paper introduces a new class of PSIAC filters NP0 that have small support and are piecewise constant. Extensive numerical experiments for the canonical hyperbolic test equation show NP0 filters outperform the more complex known boundary filters. NP0 filters typically reduce the L∞ error in the boundary region below that of the interior where optimally superconvergent symmetric filters of the same support are applied. NP0 filtering can be implemented as forming linear combinations of the data with short rational weights. Exact derivatives of the convolved output are easy to compute. PMID:29081643
International Nuclear Information System (INIS)
Hoffmann, L.; Shukla, A.; Peter, M.; Barbiellini, B.; Manuel, A.A.
1993-01-01
We present linear and non-linear filters to solve the ill-posed inverse problem and we use them to extract relevant information from positron lifetime and 2D-angular correlation of the annihilation radiation of positrons in solids. A general optimal linear filter is first derived. Then a second linear approach, based on Bayes' theorem, is described. We show that these two linear approaches are indeed equivalent. Two non-linear methods are then discussed. The first is a Bayesian approach which makes use of the maximum entropy principle. The second is an iterative method derived from the general optimal linear filter. Applications of these filtering techniques to positron lifetime decay curves illustrate how lifetimes shorter than the instrumental resolution can be extracted. Finally, we apply the iterative non-linear filter to the problem of the ridge-like Fermi surface on the high temperature superconducting compound YBa 2 Cu 3 O 7-δ . For the first time a direct measurement of the ridge width through a Brillouin zone is obtained. It is compared with results of band structure calculations. (orig.)
Karloff, Howard
1991-01-01
To this reviewer’s knowledge, this is the first book accessible to the upper division undergraduate or beginning graduate student that surveys linear programming from the Simplex Method…via the Ellipsoid algorithm to Karmarkar’s algorithm. Moreover, its point of view is algorithmic and thus it provides both a history and a case history of work in complexity theory. The presentation is admirable; Karloff's style is informal (even humorous at times) without sacrificing anything necessary for understanding. Diagrams (including horizontal brackets that group terms) aid in providing clarity. The end-of-chapter notes are helpful...Recommended highly for acquisition, since it is not only a textbook, but can also be used for independent reading and study. —Choice Reviews The reader will be well served by reading the monograph from cover to cover. The author succeeds in providing a concise, readable, understandable introduction to modern linear programming. —Mathematics of Computing This is a textbook intend...
HEPA Filter Vulnerability Assessment
International Nuclear Information System (INIS)
GUSTAVSON, R.D.
2000-01-01
This assessment of High Efficiency Particulate Air (HEPA) filter vulnerability was requested by the USDOE Office of River Protection (ORP) to satisfy a DOE-HQ directive to evaluate the effect of filter degradation on the facility authorization basis assumptions. Within the scope of this assessment are ventilation system HEPA filters that are classified as Safety-Class (SC) or Safety-Significant (SS) components that perform an accident mitigation function. The objective of the assessment is to verify whether HEPA filters that perform a safety function during an accident are likely to perform as intended to limit release of hazardous or radioactive materials, considering factors that could degrade the filters. Filter degradation factors considered include aging, wetting of filters, exposure to high temperature, exposure to corrosive or reactive chemicals, and exposure to radiation. Screening and evaluation criteria were developed by a site-wide group of HVAC engineers and HEPA filter experts from published empirical data. For River Protection Project (RPP) filters, the only degradation factor that exceeded the screening threshold was for filter aging. Subsequent evaluation of the effect of filter aging on the filter strength was conducted, and the results were compared with required performance to meet the conditions assumed in the RPP Authorization Basis (AB). It was found that the reduction in filter strength due to aging does not affect the filter performance requirements as specified in the AB. A portion of the HEPA filter vulnerability assessment is being conducted by the ORP and is not part of the scope of this study. The ORP is conducting an assessment of the existing policies and programs relating to maintenance, testing, and change-out of HEPA filters used for SC/SS service. This document presents the results of a HEPA filter vulnerability assessment conducted for the River protection project as requested by the DOE Office of River Protection
Evaluation of harmonic detection methods for active power filter applications
DEFF Research Database (Denmark)
Asiminoaei, Lucian; Blaabjerg, Frede; Hansen, Steffan
2005-01-01
In the attempt to minimize the harmonic disturbances created by the non-linear loads the choice of the active power filters comes out to improve the filtering efficiency and to solve many issues existing with classical passive filters. One of the key points for a proper implementation of an active...... implementation issues. The conclusions are collected and a comparison is given at the end, which is useful in deciding the future hardware setup implementation. The comparison shows that the choice of numerical filtering is a key factor for obtaining good accuracies and dynamics for an active filter....
Adaptive Filtering Using Recurrent Neural Networks
Parlos, Alexander G.; Menon, Sunil K.; Atiya, Amir F.
2005-01-01
A method for adaptive (or, optionally, nonadaptive) filtering has been developed for estimating the states of complex process systems (e.g., chemical plants, factories, or manufacturing processes at some level of abstraction) from time series of measurements of system inputs and outputs. The method is based partly on the fundamental principles of the Kalman filter and partly on the use of recurrent neural networks. The standard Kalman filter involves an assumption of linearity of the mathematical model used to describe a process system. The extended Kalman filter accommodates a nonlinear process model but still requires linearization about the state estimate. Both the standard and extended Kalman filters involve the often unrealistic assumption that process and measurement noise are zero-mean, Gaussian, and white. In contrast, the present method does not involve any assumptions of linearity of process models or of the nature of process noise; on the contrary, few (if any) assumptions are made about process models, noise models, or the parameters of such models. In this regard, the method can be characterized as one of nonlinear, nonparametric filtering. The method exploits the unique ability of neural networks to approximate nonlinear functions. In a given case, the process model is limited mainly by limitations of the approximation ability of the neural networks chosen for that case. Moreover, despite the lack of assumptions regarding process noise, the method yields minimum- variance filters. In that they do not require statistical models of noise, the neural- network-based state filters of this method are comparable to conventional nonlinear least-squares estimators.
Stabilization of positive linear discrete-time systems by using a Brauer's theorem.
Cantó, Begoña; Cantó, Rafael; Kostova, Snezhana
2014-01-01
The stabilization problem of positive linear discrete-time systems (PLDS) by linear state feedback is considered. A method based on a Brauer's theorem is proposed for solving the problem. It allows us to modify some eigenvalues of the system without changing the rest of them. The problem is studied for the single-input single-output (SISO) and for multi-input multioutput (MIMO) cases and sufficient conditions for stability and positivity of the closed-loop system are proved. The results are illustrated by numerical examples and the proposed method is used in stochastic systems.
Stabilization of Positive Linear Discrete-Time Systems by Using a Brauer’s Theorem
Directory of Open Access Journals (Sweden)
Begoña Cantó
2014-01-01
Full Text Available The stabilization problem of positive linear discrete-time systems (PLDS by linear state feedback is considered. A method based on a Brauer’s theorem is proposed for solving the problem. It allows us to modify some eigenvalues of the system without changing the rest of them. The problem is studied for the single-input single-output (SISO and for multi-input multioutput (MIMO cases and sufficient conditions for stability and positivity of the closed-loop system are proved. The results are illustrated by numerical examples and the proposed method is used in stochastic systems.
Displacement measurement system for linear array detector
International Nuclear Information System (INIS)
Zhang Pengchong; Chen Ziyu; Shen Ji
2011-01-01
It presents a set of linear displacement measurement system based on encoder. The system includes displacement encoders, optical lens and read out circuit. Displacement read out unit includes linear CCD and its drive circuit, two amplifier circuits, second order Butterworth low-pass filter and the binarization circuit. The coding way is introduced, and various parts of the experimental signal waveforms are given, and finally a linear experimental test results are given. The experimental results are satisfactory. (authors)
HEPA filter monitoring program
Kirchner, K. N.; Johnson, C. M.; Aiken, W. F.; Lucerna, J. J.; Barnett, R. L.; Jensen, R. T.
1986-07-01
The testing and replacement of HEPA filters, widely used in the nuclear industry to purify process air, are costly and labor-intensive. Current methods of testing filter performance, such as differential pressure measurement and scanning air monitoring, allow determination of overall filter performance but preclude detection of incipient filter failure such as small holes in the filters. Using current technology, a continual in-situ monitoring system was designed which provides three major improvements over current methods of filter testing and replacement. The improvements include: cost savings by reducing the number of intact filters which are currently being replaced unnecessarily; more accurate and quantitative measurement of filter performance; and reduced personnel exposure to a radioactive environment by automatically performing most testing operations.
DEFF Research Database (Denmark)
Drecourt, J.-P.; Madsen, H.; Rosbjerg, Dan
2006-01-01
This paper reviews two different approaches that have been proposed to tackle the problems of model bias with the Kalman filter: the use of a colored noise model and the implementation of a separate bias filter. Both filters are implemented with and without feedback of the bias into the model state...... are illustrated on a simple one-dimensional groundwater problem. The results show that the presented filters outperform the standard Kalman filter and that the implementations with bias feedback work in more general conditions than the implementations without feedback. 2005 Elsevier Ltd. All rights reserved........ The colored noise filter formulation is extended to correct both time correlated and uncorrelated model error components. A more stable version of the separate filter without feedback is presented. The filters are implemented in an ensemble framework using Latin hypercube sampling. The techniques...
Kalyashova, Zoya N.
2017-11-01
A new approach to UV holographic filter's manufacturing, when the filters are the volume reflection holograms, working in UV region in the second Bragg diffraction order, is offered. The method is experimentally realized for wavelength of 266 nm.
Energy Technology Data Exchange (ETDEWEB)
Poirier, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Duignan, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
2015-03-12
The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). The low filter flux through the ARP has limited the rate at which radioactive liquid waste can be treated. Recent filter flux has averaged approximately 5 gallons per minute (gpm). Salt Batch 6 has had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. In addition, at the time the testing started, SRR was assessing the impact of replacing the 0.1 micron filter with a 0.5 micron filter. This report describes testing of MST filterability to investigate the impact of filter pore size and MST particle size on filter flux and testing of filter enhancers to attempt to increase filter flux. The authors constructed a laboratory-scale crossflow filter apparatus with two crossflow filters operating in parallel. One filter was a 0.1 micron Mott sintered SS filter and the other was a 0.5 micron Mott sintered SS filter. The authors also constructed a dead-end filtration apparatus to conduct screening tests with potential filter aids and body feeds, referred to as filter enhancers. The original baseline for ARP was 5.6 M sodium salt solution with a free hydroxide concentration of approximately 1.7 M.3 ARP has been operating with a sodium concentration of approximately 6.4 M and a free hydroxide concentration of approximately 2.5 M. SRNL conducted tests varying the concentration of sodium and free hydroxide to determine whether those changes had a significant effect on filter flux. The feed slurries for the MST filterability tests were composed of simple salts (NaOH, NaNO_{2}, and NaNO_{3}) and MST (0.2 – 4.8 g/L). The feed slurry for the filter enhancer tests contained simulated salt batch 6 supernate, MST, and filter enhancers.
DEFF Research Database (Denmark)
Kirwan, John R; Boers, Maarten; Hewlett, Sarah
2014-01-01
OBJECTIVE: The Outcome Measures in Rheumatology (OMERACT) Filter provides guidelines for the development and validation of outcome measures for use in clinical research. The "Truth" section of the OMERACT Filter presupposes an explicit framework for identifying the relevant core outcomes that are......OBJECTIVE: The Outcome Measures in Rheumatology (OMERACT) Filter provides guidelines for the development and validation of outcome measures for use in clinical research. The "Truth" section of the OMERACT Filter presupposes an explicit framework for identifying the relevant core outcomes...
R. Bharadwaj; A. Patel, S. Chokdeepanich, Ph.D.; G.G. Chase, Ph.D.
2008-01-01
Coalescing filters are widely used throughout industry and improved performance will reduce droplet emissions and operating costs. Experimental observations show orientation of micro fibers in filter media effect the permeability and the separation efficiency of the filter media. In this work two methods are used to align the fibers to alter the filter structure. The results show that axially aligned fiber media improve quality factor on the order of 20% and cutting media on an angle from a t...
Machine learning of radial basis function neural network based on Kalman filter: Introduction
Directory of Open Access Journals (Sweden)
Vuković Najdan L.
2014-01-01
Full Text Available This paper analyzes machine learning of radial basis function neural network based on Kalman filtering. Three algorithms are derived: linearized Kalman filter, linearized information filter and unscented Kalman filter. We emphasize basic properties of these estimation algorithms, demonstrate how their advantages can be used for optimization of network parameters, derive mathematical models and show how they can be applied to model problems in engineering practice.
Gates-Anderson, Dianne D.; Kidd, Scott D.; Bowers, John S.; Attebery, Ronald W.
2003-01-01
A low viscosity resin is delivered into a spent HEPA filter or other waste. The resin is introduced into the filter or other waste using a vacuum to assist in the mass transfer of the resin through the filter media or other waste.
Sellers, Cheryl L [Peoria, IL; Nordyke, Daniel S [Arlington Heights, IL; Crandell, Richard A [Morton, IL; Tomlins, Gregory [Peoria, IL; Fei, Dong [Peoria, IL; Panov, Alexander [Dunlap, IL; Lane, William H [Chillicothe, IL; Habeger, Craig F [Chillicothe, IL
2008-12-09
According to an exemplary embodiment of the present disclosure, a system for removing matter from a filtering device includes a gas pressurization assembly. An element of the assembly is removably attachable to a first orifice of the filtering device. The system also includes a vacuum source fluidly connected to a second orifice of the filtering device.
Linearity Testing of Photovoltaic Cells
Energy Technology Data Exchange (ETDEWEB)
Pinegar, S.; Nalley, D.; Emery, K.
2006-01-01
Photovoltaic devices are rated in terms of their power output or efficiency with respect to a specific spectrum, total irradiance, and temperature. In order to rate photovoltaic devices, a reference detector whose response is linear with total irradiance is needed. This procedure documents a procedure to determine if a detector is linear over the irradiance range of interest. Testing the short circuit current versus the total irradiance is done by illuminating a reference cell candidate with two lamps that are fitted with programmable filter wheels. The purpose is to reject nonlinear samples as determined by national and international standards from being used as primary reference cells. A calibrated linear reference cell tested by the two lamp method yields a linear result.
Bourlès, Henri
2013-01-01
Linear systems have all the necessary elements (modeling, identification, analysis and control), from an educational point of view, to help us understand the discipline of automation and apply it efficiently. This book is progressive and organized in such a way that different levels of readership are possible. It is addressed both to beginners and those with a good understanding of automation wishing to enhance their knowledge on the subject. The theory is rigorously developed and illustrated by numerous examples which can be reproduced with the help of appropriate computation software. 60 exe
Significance-aware filtering for nonlinear acoustic echo cancellation
Hofmann, Christian; Huemmer, Christian; Guenther, Michael; Kellermann, Walter
2016-12-01
This article summarizes and extends the recently proposed concept of Significance-Aware (SA) filtering for nonlinear acoustic echo cancellation. The core idea of SA filtering is to decompose the estimation of the nonlinear echo path into beneficially interacting subsystems, each of which can be adapted with high computational efficiency. The previously proposed SA Hammerstein Group Models (SA-HGMs) decompose the nonlinear acoustic echo path into a direct-path part, modeled by a Hammerstein Group Model (HGM) and a complementary part, modeled by a very efficient Hammerstein model. In this article, we furthermore propose a novel Equalization-based SA (ESA) structure, where the echo path is equalized by a linear filter to allow for an estimation of the loudspeaker nonlinearities by very small and efficient models. Additionally, we provide a novel in-depth analysis of the computational complexity of the previously proposed SA and the novel ESA filters and compare both SA filtering approaches to each other, to adaptive HGMs, and to linear filters, where fast partitioned-block frequency-domain realizations of the competing filter structures are considered. Finally, the echo reduction performance of the proposed SA filtering approaches is verified using real recordings from a commercially available smartphone. Beyond the scope of previous publications on SA-HGMs, the ability of the SA filters to generalize for double-talk situations is explicitly considered as well. The low complexity as well as the good echo reduction performance of both SA filters illustrate the potential of SA filtering in practice.
Reduction of Linear Programming to Linear Approximation
Vaserstein, Leonid N.
2006-01-01
It is well known that every Chebyshev linear approximation problem can be reduced to a linear program. In this paper we show that conversely every linear program can be reduced to a Chebyshev linear approximation problem.
Hong, Jiasheng; Medina, Francisco; Martiacuten, Ferran
2018-01-01
This book presents and discusses strategies for the design and implementation of common-mode suppressed balanced microwave filters, including, narrowband, wideband, and ultra-wideband filters This book examines differential-mode, or balanced, microwave filters by discussing several implementations of practical realizations of these passive components. Topics covered include selective mode suppression, designs based on distributed and semi-lumped approaches, multilayer technologies, defect ground structures, coupled resonators, metamaterials, interference techniques, and substrate integrated waveguides, among others. Divided into five parts, Balanced Microwave Filters begins with an introduction that presents the fundamentals of balanced lines, circuits, and networks. Part 2 covers balanced transmission lines with common-mode noise suppression, including several types of common-mode filters and the application of such filters to enhance common-mode suppression in balanced bandpass filters. Next, Part 3 exa...
International Nuclear Information System (INIS)
Wada, Tadamasa; Hiraki, Akimitsu.
1993-01-01
A filter material formed by joining glass clothes to both surfaces of a glass fiber non-woven fabric is used. The filter material is disposed at the inside of a square filter material support frame made of stainless steel. The filter material is attached in a zig-zag manner in the flowing direction of the exhaust gases so as to increase the filtration area. Separators, for example, made of stainless steel are inserted between the filter materials. The separator is corrugated so as to sandwich and support the filter materials from both sides by the ridged crests. The longitudinal bottom of the separator formed by corrugating it defines a flow channel of the exhaustion gases. The longitudinal bottom is also used as a channel for back blowing air. With such a constitution, combustion gases of radioactive miscellaneous solid wastes can be completely filtered. In addition, a back wash can be conducted under high temperature. (I.N.)
International Nuclear Information System (INIS)
Hackney, S.
1980-01-01
A filter changing unit has a door which interlocks with the door of a filter chamber so as to prevent contamination of the outer surfaces of the doors by radioactive material collected on the filter element and a movable support which enables a filter chamber thereonto to be stored within the unit in such a way that the doors of the unit and the filter chamber can be replaced. The door pivots and interlocks with another door by means of a bolt, a seal around the periphery lip of the first door engages the periphery of the second door to seal the gap. A support pivots into a lower filter element storage position. Inspection windows and glove ports are provided. The unit is releasably connected to the filter chamber by bolts engaging in a flange provided around an opening. (author)
Synthesis of Band Filters and Equalizers Using Microwav FIR Techniques
Energy Technology Data Exchange (ETDEWEB)
Deibele, C.; /Fermilab
2000-01-01
It is desired to design a passive bandpass filter with both a linear phase and flat magnitude response within the band and also has steep skirts. Using the properties of both coupled lines and elementary FIR (Finite Impulse Response) signal processing techniques can produce a filter of adequate phase response and magnitude control. The design procedure will first be described and then a sample filter will then be synthesized and results shown.
Computer-Generated Holographic Matched Filters
Butler, Steven Frank
This dissertation presents techniques for the use of computer-generated holograms (CGH) for matched filtering. An overview of the supporting technology is provided. Included are techniques for modifying existing CGH algorithms to serve as matched filters in an optical correlator. It shows that matched filters produced in this fashion can be modified to improve the signal-to-noise and efficiency over that possible with conventional holography. The effect and performance of these modifications are demonstrated. In addition, a correction of film non-linearity in continuous -tone filter production is developed. Computer simulations provide quantitative and qualitative demonstration of theoretical principles, with specific examples validated in optical hardware. Conventional and synthetic holograms, both bleached and unbleached, are compared.
Q-Method Extended Kalman Filter
Zanetti, Renato; Ainscough, Thomas; Christian, John; Spanos, Pol D.
2012-01-01
A new algorithm is proposed that smoothly integrates non-linear estimation of the attitude quaternion using Davenport s q-method and estimation of non-attitude states through an extended Kalman filter. The new method is compared to a similar existing algorithm showing its similarities and differences. The validity of the proposed approach is confirmed through numerical simulations.
Adaptive Filtering for Non-Gaussian Processes
DEFF Research Database (Denmark)
Kidmose, Preben
2000-01-01
A new stochastic gradient robust filtering method, based on a non-linear amplitude transformation, is proposed. The method requires no a priori knowledge of the characteristics of the input signals and it is insensitive to the signals distribution and to the stationarity of the signals. A simulat...
Application of biological filters in water treatment systems
Hurley, T. L.; Bambenek, R. A.
1973-01-01
Silver chloride placed on or close to barrier kills bacteria as they arrive. Dead bacteria accumulate linearly, whereas previously, live bacteria accumulated exponentially. During continuous 30-day tests, no bacteriological contamination was found downstream of filters with silver chloride added.
Preconditioning Filter Bank Decomposition Using Structured Normalized Tight Frames
Directory of Open Access Journals (Sweden)
Martin Ehler
2015-01-01
Full Text Available We turn a given filter bank into a filtering scheme that provides perfect reconstruction, synthesis is the adjoint of the analysis part (so-called unitary filter banks, all filters have equal norm, and the essential features of the original filter bank are preserved. Unitary filter banks providing perfect reconstruction are induced by tight generalized frames, which enable signal decomposition using a set of linear operators. If, in addition, frame elements have equal norm, then the signal energy is spread through the various filter bank channels in some uniform fashion, which is often more suitable for further signal processing. We start with a given generalized frame whose elements allow for fast matrix vector multiplication, as, for instance, convolution operators, and compute a normalized tight frame, for which signal analysis and synthesis still preserve those fast algorithmic schemes.
Filter material charging apparatus for filter assembly for radioactive contaminants
International Nuclear Information System (INIS)
Goldsmith, J.M.; O'Nan, A. Jr.
1977-01-01
A filter charging apparatus for a filter assembly is described. The filter assembly includes a housing with at least one filter bed therein and the filter charging apparatus for adding filter material to the filter assembly includes a tank with an opening therein, the tank opening being disposed in flow communication with opposed first and second conduit means, the first conduit means being in flow communication with the filter assembly housing and the second conduit means being in flow communication with a blower means. Upon activation of the blower means, the blower means pneumatically conveys the filter material from the tank to the filter housing
Directory of Open Access Journals (Sweden)
X. Yang
2009-07-01
Full Text Available A new class of ensemble filters, called the Diffuse Ensemble Filter (DEnF, is proposed in this paper. The DEnF assumes that the forecast errors orthogonal to the first guess ensemble are uncorrelated with the latter ensemble and have infinite variance. The assumption of infinite variance corresponds to the limit of "complete lack of knowledge" and differs dramatically from the implicit assumption made in most other ensemble filters, which is that the forecast errors orthogonal to the first guess ensemble have vanishing errors. The DEnF is independent of the detailed covariances assumed in the space orthogonal to the ensemble space, and reduces to conventional ensemble square root filters when the number of ensembles exceeds the model dimension. The DEnF is well defined only in data rich regimes and involves the inversion of relatively large matrices, although this barrier might be circumvented by variational methods. Two algorithms for solving the DEnF, namely the Diffuse Ensemble Kalman Filter (DEnKF and the Diffuse Ensemble Transform Kalman Filter (DETKF, are proposed and found to give comparable results. These filters generally converge to the traditional EnKF and ETKF, respectively, when the ensemble size exceeds the model dimension. Numerical experiments demonstrate that the DEnF eliminates filter collapse, which occurs in ensemble Kalman filters for small ensemble sizes. Also, the use of the DEnF to initialize a conventional square root filter dramatically accelerates the spin-up time for convergence. However, in a perfect model scenario, the DEnF produces larger errors than ensemble square root filters that have covariance localization and inflation. For imperfect forecast models, the DEnF produces smaller errors than the ensemble square root filter with inflation. These experiments suggest that the DEnF has some advantages relative to the ensemble square root filters in the regime of small ensemble size, imperfect model, and copious
Fault tolerant control for switched linear systems
Du, Dongsheng; Shi, Peng
2015-01-01
This book presents up-to-date research and novel methodologies on fault diagnosis and fault tolerant control for switched linear systems. It provides a unified yet neat framework of filtering, fault detection, fault diagnosis and fault tolerant control of switched systems. It can therefore serve as a useful textbook for senior and/or graduate students who are interested in knowing the state-of-the-art of filtering, fault detection, fault diagnosis and fault tolerant control areas, as well as recent advances in switched linear systems.
Frequency weighting filter design for automotive ride comfort evaluation
Du, Feng
2016-07-01
Few study gives guidance to design weighting filters according to the frequency weighting factors, and the additional evaluation method of automotive ride comfort is not made good use of in some countries. Based on the regularities of the weighting factors, a method is proposed and the vertical and horizontal weighting filters are developed. The whole frequency range is divided several times into two parts with respective regularity. For each division, a parallel filter constituted by a low- and a high-pass filter with the same cutoff frequency and the quality factor is utilized to achieve section factors. The cascading of these parallel filters obtains entire factors. These filters own a high order. But, low order filters are preferred in some applications. The bilinear transformation method and the least P-norm optimal infinite impulse response(IIR) filter design method are employed to develop low order filters to approximate the weightings in the standard. In addition, with the window method, the linear phase finite impulse response(FIR) filter is designed to keep the signal from distorting and to obtain the staircase weighting. For the same case, the traditional method produces 0.330 7 m • s-2 weighted root mean square(r.m.s.) acceleration and the filtering method gives 0.311 9 m • s-2 r.m.s. The fourth order filter for approximation of vertical weighting obtains 0.313 9 m • s-2 r.m.s. Crest factors of the acceleration signal weighted by the weighting filter and the fourth order filter are 3.002 7 and 3.011 1, respectively. This paper proposes several methods to design frequency weighting filters for automotive ride comfort evaluation, and these developed weighting filters are effective.
Laicer, Castro; Rasimick, Brian; Green, Zachary
2012-01-01
Cabin environmental control is an important issue for a successful Moon mission. Due to the unique environment of the Moon, lunar dust control is one of the main problems that significantly diminishes the air quality inside spacecraft cabins. Therefore, this innovation was motivated by NASA s need to minimize the negative health impact that air-suspended lunar dust particles have on astronauts in spacecraft cabins. It is based on fabrication of a hybrid filter comprising nanofiber nonwoven layers coated on porous polymer membranes with uniform cylindrical pores. This design results in a high-efficiency gas particulate filter with low pressure drop and the ability to be easily regenerated to restore filtration performance. A hybrid filter was developed consisting of a porous membrane with uniform, micron-sized, cylindrical pore channels coated with a thin nanofiber layer. Compared to conventional filter media such as a high-efficiency particulate air (HEPA) filter, this filter is designed to provide high particle efficiency, low pressure drop, and the ability to be regenerated. These membranes have well-defined micron-sized pores and can be used independently as air filters with discreet particle size cut-off, or coated with nanofiber layers for filtration of ultrafine nanoscale particles. The filter consists of a thin design intended to facilitate filter regeneration by localized air pulsing. The two main features of this invention are the concept of combining a micro-engineered straight-pore membrane with nanofibers. The micro-engineered straight pore membrane can be prepared with extremely high precision. Because the resulting membrane pores are straight and not tortuous like those found in conventional filters, the pressure drop across the filter is significantly reduced. The nanofiber layer is applied as a very thin coating to enhance filtration efficiency for fine nanoscale particles. Additionally, the thin nanofiber coating is designed to promote capture of
Variational Bayesian Filtering
Czech Academy of Sciences Publication Activity Database
Šmídl, Václav; Quinn, A.
2008-01-01
Roč. 56, č. 10 (2008), s. 5020-5030 ISSN 1053-587X R&D Projects: GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : Bayesian filtering * particle filtering * Variational Bayes Subject RIV: BC - Control Systems Theory Impact factor: 2.335, year: 2008 http://library.utia.cas.cz/separaty/2008/AS/smidl-variational bayesian filtering.pdf
Development of simple fixed linear predictors for use in speech ...
African Journals Online (AJOL)
Development of simple fixed linear predictors for use in speech compression. ... A very popular method used for compression is Linear Prediction Coding (LPC), by using the Linear Prediction Model. The development of simple ... Various speech signals are used to test the performance of both filters within a DPCM system.
Nanofiber Filters Eliminate Contaminants
2009-01-01
With support from Phase I and II SBIR funding from Johnson Space Center, Argonide Corporation of Sanford, Florida tested and developed its proprietary nanofiber water filter media. Capable of removing more than 99.99 percent of dangerous particles like bacteria, viruses, and parasites, the media was incorporated into the company's commercial NanoCeram water filter, an inductee into the Space Foundation's Space Technology Hall of Fame. In addition to its drinking water filters, Argonide now produces large-scale nanofiber filters used as part of the reverse osmosis process for industrial water purification.
Independent task Fourier filters
Caulfield, H. John
2001-11-01
Since the early 1960s, a major part of optical computing systems has been Fourier pattern recognition, which takes advantage of high speed filter changes to enable powerful nonlinear discrimination in `real time.' Because filter has a task quite independent of the tasks of the other filters, they can be applied and evaluated in parallel or, in a simple approach I describe, in sequence very rapidly. Thus I use the name ITFF (independent task Fourier filter). These filters can also break very complex discrimination tasks into easily handled parts, so the wonderful space invariance properties of Fourier filtering need not be sacrificed to achieve high discrimination and good generalizability even for ultracomplex discrimination problems. The training procedure proceeds sequentially, as the task for a given filter is defined a posteriori by declaring it to be the discrimination of particular members of set A from all members of set B with sufficient margin. That is, we set the threshold to achieve the desired margin and note the A members discriminated by that threshold. Discriminating those A members from all members of B becomes the task of that filter. Those A members are then removed from the set A, so no other filter will be asked to perform that already accomplished task.
Randomized Filtering Algorithms
DEFF Research Database (Denmark)
Katriel, Irit; Van Hentenryck, Pascal
2008-01-01
of AllDifferent and is generalization, the Global Cardinality Constraint. The first delayed filtering scheme is a Monte Carlo algorithm: its running time is superior, in the worst case, to that of enforcing are consistency after every domain event, while its filtering effectiveness is analyzed......Filtering every global constraint of a CPS to are consistency at every search step can be costly and solvers often compromise on either the level of consistency or the frequency at which are consistency is enforced. In this paper we propose two randomized filtering schemes for dense instances...
Nonparametric likelihood based estimation of linear filters for point processes
DEFF Research Database (Denmark)
Hansen, Niels Richard
2015-01-01
We consider models for multivariate point processes where the intensity is given nonparametrically in terms of functions in a reproducing kernel Hilbert space. The likelihood function involves a time integral and is consequently not given in terms of a finite number of kernel evaluations. The main...... the implementation relies crucially on the use of sparse matrices. As an illustration we consider neuron network modeling, and we use this example to investigate how the computational costs of the approximations depend on the resolution of the time discretization. The implementation is available in the R package...
Impulse control in Kalman-like filtering problems
Directory of Open Access Journals (Sweden)
Michael V. Basin
1998-01-01
Full Text Available This paper develops the impulse control approach to the observation process in Kalman-like filtering problems, which is based on impulsive modeling of the transition matrix in an observation equation. The impulse control generates the jumps of the estimate variance from its current position down to zero and, as a result, enables us to obtain the filtering equations for the Kalman estimate with zero variance for all post-jump time moments. The filtering equations for the estimates with zero variances are obtained in the conventional linear filtering problem and in the case of scalar nonlinear state and nonlinear observation equations.
Word-serial Architectures for Filtering and Variable Rate Decimation
Directory of Open Access Journals (Sweden)
Eugene Grayver
2002-01-01
Full Text Available A new flexible architecture is proposed for word-serial filtering and variable rate decimation/interpolation. The architecture is targeted for low power applications requiring medium to low data rate and is ideally suited for implementation on either an ASIC or an FPGA. It combines the small size and low power of an ASIC with the programmability and flexibility of a DSP. An efficient memory addressing scheme eliminates the need for power hungry shift registers and allows full reconfiguration. The decimation ratio, filter length and filter coefficients can all be changed in real time. The architecture takes advantage of coefficient symmetries in linear phase filters and in polyphase components.
Distortion-invariant pattern recognition with nonlinear correlation filters
Martínez-Díaz, Saúl; Kober, Vitaly
2008-08-01
Classical correlation-based methods for pattern recognition are very sensitive to geometrical distortions of objects to be recognized. Besides, most captured images are corrupted by noise. In this work we use novel nonlinear composite filters for distortion-invariant pattern recognition. The filters are designed with an iterative algorithm to reject a background noise and to achieve a desired discrimination capability. The recognition performance of the proposed filters is compared with that of linear composite filters in terms of noise robustness and discrimination capability. Computer simulation results are provided and discussed.
Digital filters in radio detectors of the Pierre Auger Observatory
Szadkowski, Zbigniew; Głas, Dariusz
2016-09-01
Ultra-high energy cosmic rays (UHECR) are the most energetic observable particles in Universe. The main challenge in detecting such energetic particles is very small flux. Most experiments focus on detecting Extensive Air Showers (EAS), initiated by primary UHECR particle in interaction with particles of the atmosphere. One of the observation method is detecting the radio emission from the EAS. This emission was theoretically suggested in 1960's, but technological development allow successful detection only in the last several years. This detection technique is used by Auger Engineering Radio Array (AERA). Most of the emission can be observed in frequency band 30 - 80 MHz, however this range is contaminated by radio frequency interferences (RFI). These contaminations must be reduced to decrease false trigger rate. Currently, there are two kind of digital filters used in AERA. One of them is median filter, based on Fast Fourier Transform. Second one is the notch filter, which is a composition of four infinite impulse response filters. Those filters have properly work in AERA radio detectors for many years. Dynamic progress in electronics allows to use more sophisticated algorithms of RFI reduction. Planned modernization of the AERA radio detectors' electronic allows to use finte impulse response (FIR) filters, which can fast adapt to environment conditions. These filters are: Least Mean Squares (LMS) filter and filter based on linear prediction (LP). Tests of new kind of filters are promising and show that FIR filters can be used in next generation radio detectors in AERA experiment.
Quantum image median filtering in the spatial domain
Li, Panchi; Liu, Xiande; Xiao, Hong
2018-03-01
Spatial filtering is one principal tool used in image processing for a broad spectrum of applications. Median filtering has become a prominent representation of spatial filtering because its performance in noise reduction is excellent. Although filtering of quantum images in the frequency domain has been described in the literature, and there is a one-to-one correspondence between linear spatial filters and filters in the frequency domain, median filtering is a nonlinear process that cannot be achieved in the frequency domain. We therefore investigated the spatial filtering of quantum image, focusing on the design method of the quantum median filter and applications in image de-noising. To this end, first, we presented the quantum circuits for three basic modules (i.e., Cycle Shift, Comparator, and Swap), and then, we design two composite modules (i.e., Sort and Median Calculation). We next constructed a complete quantum circuit that implements the median filtering task and present the results of several simulation experiments on some grayscale images with different noise patterns. Although experimental results show that the proposed scheme has almost the same noise suppression capacity as its classical counterpart, the complexity analysis shows that the proposed scheme can reduce the computational complexity of the classical median filter from the exponential function of image size n to the second-order polynomial function of image size n, so that the classical method can be speeded up.
Reconstruction algorithm for error diffused halftones using binary permutation filters
Kim, Yeong-Taeg; Arce, Gonzalo R.
1994-09-01
This paper describes an inverse halftoning algorithm to reconstruct a continuous-tone image given its error diffused halftone. We develop a modular class of non-linear filters, denoted as a class of binary permutation filters, which can reconstruct the continuous-tone information preserving image details and edges which provide important visual cues. The proposed non- linear reconstruction algorithm is based on the space-rank ordering of the halftone samples, which is provided by the multiset permutation of the `on' pixels in a halftone observation window. By varying the space-rank order information utilized in the estimate, for a given window size, we obtain a wide range of filters. A constrained LMS type algorithm is employed to design optimal reconstruction filters which minimize the reconstruction mean squared error. We present simulations showing that the proposed class of filters is modular, robust to image source characteristics, and that the results produce high visual quality image reconstruction.
Restricted Kalman Filtering Theory, Methods, and Application
Pizzinga, Adrian
2012-01-01
In statistics, the Kalman filter is a mathematical method whose purpose is to use a series of measurements observed over time, containing random variations and other inaccuracies, and produce estimates that tend to be closer to the true unknown values than those that would be based on a single measurement alone. This Brief offers developments on Kalman filtering subject to general linear constraints. There are essentially three types of contributions: new proofs for results already established; new results within the subject; and applications in investment analysis and macroeconomics, where th
Alternating minimisation for glottal inverse filtering
Rodrigo Bleyer, Ismael; Lybeck, Lasse; Auvinen, Harri; Airaksinen, Manu; Alku, Paavo; Siltanen, Samuli
2017-06-01
A new method is proposed for solving the glottal inverse filtering (GIF) problem. The goal of GIF is to separate an acoustical speech signal into two parts: the glottal airflow excitation and the vocal tract filter. To recover such information one has to deal with a blind deconvolution problem. This ill-posed inverse problem is solved under a deterministic setting, considering unknowns on both sides of the underlying operator equation. A stable reconstruction is obtained using a double regularization strategy, alternating between fixing either the glottal source signal or the vocal tract filter. This enables not only splitting the nonlinear and nonconvex problem into two linear and convex problems, but also allows the use of the best parameters and constraints to recover each variable at a time. This new technique, called alternating minimization glottal inverse filtering (AM-GIF), is compared with two other approaches: Markov chain Monte Carlo glottal inverse filtering (MCMC-GIF), and iterative adaptive inverse filtering (IAIF), using synthetic speech signals. The recent MCMC-GIF has good reconstruction quality but high computational cost. The state-of-the-art IAIF method is computationally fast but its accuracy deteriorates, particularly for speech signals of high fundamental frequency (F0). The results show the competitive performance of the new method: With high F0, the reconstruction quality is better than that of IAIF and close to MCMC-GIF while reducing the computational complexity by two orders of magnitude.
Multilevel ensemble Kalman filter
Chernov, Alexey
2016-01-06
This work embeds a multilevel Monte Carlo (MLMC) sampling strategy into the Monte Carlo step of the ensemble Kalman filter (EnKF). In terms of computational cost vs. approximation error the asymptotic performance of the multilevel ensemble Kalman filter (MLEnKF) is superior to the EnKF s.
CSIR Research Space (South Africa)
Du Plessis, WP
2009-10-01
Full Text Available A new synthesis procedure for interdigital filters with shorted-pin feeds is developed by relating the coupling factors and external Qs to the physical structure of the filter. This new procedure is easily understood and applied, extremely flexible...
DEFF Research Database (Denmark)
Khazraj, Hesam; Silva, Filipe Miguel Faria da; Bak, Claus Leth
2016-01-01
Dynamic State Estimation (DSE) is a critical tool for analysis, monitoring and planning of a power system. The concept of DSE involves designing state estimation with Extended Kalman Filter (EKF) or Unscented Kalman Filter (UKF) methods, which can be used by wide area monitoring to improve......-linear state estimator is developed in MatLab to solve states by applying the unscented Kalman filter (UKF) and Extended Kalman Filter (EKF) algorithm. Finally, a DSE model is built for a 14 bus power system network to evaluate the proposed algorithm for the networks.This article will focus on comparing...
Linearity measurement for image-intensified CCD
Zhao, Yuhuan; Zhang, Liwei; Yan, Feng; Gu, Yongqiang; Wan, Liying
2010-10-01
To the characteristic of the ultraviolet CCD (UV ICCD), technique of the linearity measurement of the UV ICCD camera is studied based on the theory of radiometry. Approach of linearity measurement is discussed, and a kind of measurement system of the UV ICCD has been developed based on the method of neutral density filter. It is very important that the transmittance of the filter is independent of the wavelength in the method of neutral density filter. Black metal screen mesh with different transmittance is used in our system, and calibration of the filters' transmittance in different working positions has been done. Meanwhile, to assure the uniform of the received radiation on the target of the detector at any test points, an integrating sphere is placed behind the neutral filter to balance light. The whole measurement system mainly consists of a deuterium lamp with high stabilization, the attenuation film with transmission, integrating sphere, optical guide and electro-shift platform. Auto control is realized via special software during the test. With this instrument, the linearity of the UV ICCD was measured. Experimental results show that the nonlinearity of the UV ICCD under fixed-gain is less than 2% and the uncertainty of measurement system is less than 4%.
China exported birefringent filter
Li, Ting; Mao, Weijun; Lu, Haitian; Zhu, Yong
2001-09-01
Since 1960s, Nanjing Astronomical Instrument Research center of CAS have been developing the birefringent filters for China solar observatories, the most famous one in the world is the 0.15Å(0.12Å)/5324Å(4861Å) filter for the 35cm Solar Magnetic Field Telescope of the Huairou Solar Station of Beijing Observatory. The big success in the field of Lyot filter has been proved by the international solar physics circle, since 1988, Japanese and Korean astronomers have been paying a lot of orders for making Lyot filters from China, up to now we have exported 11 sets of such sophisticated optical instruments, they have been used for routine solar observations in the observatories and planetaria in the two countries. We also begin to repair old Lyot filters made by Germany and France from foreign countries, as India and Germany.
Tepper, Frederick [Sanford, FL; Kaledin, Leonid [Port Orange, FL
2009-10-13
Aluminum hydroxide fibers approximately 2 nanometers in diameter and with surface areas ranging from 200 to 650 m.sup.2/g have been found to be highly electropositive. When dispersed in water they are able to attach to and retain electronegative particles. When combined into a composite filter with other fibers or particles they can filter bacteria and nano size particulates such as viruses and colloidal particles at high flux through the filter. Such filters can be used for purification and sterilization of water, biological, medical and pharmaceutical fluids, and as a collector/concentrator for detection and assay of microbes and viruses. The alumina fibers are also capable of filtering sub-micron inorganic and metallic particles to produce ultra pure water. The fibers are suitable as a substrate for growth of cells. Macromolecules such as proteins may be separated from each other based on their electronegative charges.
Energy Technology Data Exchange (ETDEWEB)
Garcia, Marcelo H.F. [Poland Quimica Ltda., Duque de Caxias, RJ (Brazil)
2004-07-01
Drilling fluids filter cakes are based on a combination of properly graded dispersed particles and polysaccharide polymers. High efficiency filter cakes are formed by these combination , and their formation on wellbore walls during the drilling process has, among other roles, the task of protecting the formation from instantaneous or accumulative invasion of drilling fluid filtrate, granting stability to well and production zones. Filter cake minimizes contact between drilling fluid filtrate and water, hydrocarbons and clay existent in formations. The uniform removal of the filter cake from the entire interval is a critical factor of the completion process. The main methods used to breaking filter cake are classified into two groups, external or internal, according to their removal mechanism. The aim of this work is the presentation of these mechanisms as well their efficiency. (author)
Towards low power N-Path filters for flexible RF-Channel selection
Klumperink, Eric A.M.; Soer, M.C.M.; Struiksma, R.E.; van Vliet, Frank Edward; Nauta, Bram
2015-01-01
N-path filters can offer high-linearity high-Q channel selection filtering at a flexibly programmable RF center frequency, which is highly wanted for Software Defined Radio. Relying on capacitors and MOSFET switches, driven by digital non-overlapping clocks, N-path filters fit well to CMOS and
Towards Low Power N-Path filters for flexible RF-channel selection
Klumperink, Eric A.M.; Soer, M.C.M.; Struiksma, R.E.; van Vliet, Frank Edward; Nauta, Bram
2015-01-01
N-path filters can offer high-linearity high-Q channel selection filtering at a flexibly programmable RF center frequency, which is highly wanted for Software Defined Radio. Relying on capacitors and MOSFET switches, driven by digital non-overlapping clocks, N-path filters fit well to CMOS and
DEFF Research Database (Denmark)
Wang, Dong; Lu, Kaiyuan; Rasmussen, Peter Omand
2017-01-01
filters exhibit almost linear relationship between the cutoff frequency of the PLL filter and its proportional-integral (PI) gains, which can ease the realization of speed filters with adaptive cutoff frequency for improving the speed transient performance. The proposed filters are verified experimentally......High quality speed information is one of the key issues in machine sensorless drives, which often requires proper filtering of the estimated speed. This paper comparatively studies typical low-pass filters (LPF) and phase-locked loop (PLL) type filters with respect to ramp speed reference tracking...... and steady-state performances, as well as the achievement of adaptive cutoff frequency control. An improved LPF-based filter structure with no ramping and steady-state errors caused by filter parameter quantization effects is proposed, which is suitable for applying LPF for sensorless drives of AC machines...
Development of a Linear Flow Channel Reactor for sulphur removal ...
African Journals Online (AJOL)
2013-09-23
Sep 23, 2013 ... Channel Reactor in an acid mine drainage passive treatment environment have been undertaken in field studies. Keywords: floating sulphur biofilms, acid mine drainage, AMD passive treatment, linear flow channel reactor, sulphur .... then filtered through a 0.45 µm nylon filter before being passed through ...
Consys Linear Control System Design Software Package
International Nuclear Information System (INIS)
Diamantidis, Z.
1987-01-01
This package is created in order to help engineers, researchers, students and all who work on linear control systems. The software includes all time and frequency domain analysises, spectral analysises and networks, active filters and regulators design aids. The programmes are written on Hewlett Packard computer in Basic 4.0
Predicting the efficiency of deposit removal during filter backwash
African Journals Online (AJOL)
selection techniques using multivariate linear regression provide a relatively simple way of determining which of a number of possible parameters are significantly correlated with filter backwash performance and whether the cor- relations are positive or negative. Multiple linear regres- sion was used to analyse the data from ...
Ceramic fiber reinforced filter
Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.
1991-01-01
A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.
Frequency Spectrum Based Low-Area Low-Power Parallel FIR Filter Design
Directory of Open Access Journals (Sweden)
Jin-Gyun Chung
2002-09-01
Full Text Available Parallel (or block FIR digital filters can be used either for high-speed or low-power (with reduced supply voltage applications. Traditional parallel filter implementations cause linear increase in the hardware cost with respect to the block size. Recently, an efficient parallel FIR filter implementation technique requiring a less-than linear increase in the hardware cost was proposed. This paper makes two contributions. First, the filter spectrum characteristics are exploited to select the best fast filter structures. Second, a novel block filter quantization algorithm is introduced. Using filter benchmarks, it is shown that the use of the appropriate fast FIR filter structures and the proposed quantization scheme can result in reduction in the number of binary adders up to 20%.
Linear Algebra and Smarandache Linear Algebra
Vasantha, Kandasamy
2003-01-01
The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and vector spaces over finite p...
Chen, Wai-Kai
2003-01-01
A bestseller in its first edition, The Circuits and Filters Handbook has been thoroughly updated to provide the most current, most comprehensive information available in both the classical and emerging fields of circuits and filters, both analog and digital. This edition contains 29 new chapters, with significant additions in the areas of computer-aided design, circuit simulation, VLSI circuits, design automation, and active and digital filters. It will undoubtedly take its place as the engineer's first choice in looking for solutions to problems encountered in the design, analysis, and behavi
Detection of Harmonic Occurring using Kalman Filtering
DEFF Research Database (Denmark)
Hussain, Dil Muhammad Akbar; Shoro, Ghulam Mustafa; Imran, Raja Muhammed
2014-01-01
As long as the load to a power system is linear which has been the case before 80's, typically no harmonics are produced. However, the modern power electronic equipment for controlled power consumption produces harmonic disturbances, these devices/equipment possess nonlinear voltage/current chara...... using Kalman filter. This may be very useful for example to quickly switching on certain filters based on the harmonic present. We are using a unique technique to detect the occurrence of harmonics......./current characteristic. These harmonics are not to be allowed to grow beyond a certain limit to avoid any grave consequence to the customer’s main supply. Filters can be implemented at the power source or utility location to eliminate these harmonics. In this paper we detect the instance at which these harmonics occur...
Generalized Linear Covariance Analysis
Carpenter, James R.; Markley, F. Landis
2014-01-01
This talk presents a comprehensive approach to filter modeling for generalized covariance analysis of both batch least-squares and sequential estimators. We review and extend in two directions the results of prior work that allowed for partitioning of the state space into solve-for'' and consider'' parameters, accounted for differences between the formal values and the true values of the measurement noise, process noise, and textita priori solve-for and consider covariances, and explicitly partitioned the errors into subspaces containing only the influence of the measurement noise, process noise, and solve-for and consider covariances. In this work, we explicitly add sensitivity analysis to this prior work, and relax an implicit assumption that the batch estimator's epoch time occurs prior to the definitive span. We also apply the method to an integrated orbit and attitude problem, in which gyro and accelerometer errors, though not estimated, influence the orbit determination performance. We illustrate our results using two graphical presentations, which we call the variance sandpile'' and the sensitivity mosaic,'' and we compare the linear covariance results to confidence intervals associated with ensemble statistics from a Monte Carlo analysis.
Kalman Filter Constraint Tuning for Turbofan Engine Health Estimation
Simon, Dan; Simon, Donald L.
2005-01-01
Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints are often neglected because they do not fit easily into the structure of the Kalman filter. Recently published work has shown a new method for incorporating state variable inequality constraints in the Kalman filter, which has been shown to generally improve the filter s estimation accuracy. However, the incorporation of inequality constraints poses some risk to the estimation accuracy as the Kalman filter is theoretically optimal. This paper proposes a way to tune the filter constraints so that the state estimates follow the unconstrained (theoretically optimal) filter when the confidence in the unconstrained filter is high. When confidence in the unconstrained filter is not so high, then we use our heuristic knowledge to constrain the state estimates. The confidence measure is based on the agreement of measurement residuals with their theoretical values. The algorithm is demonstrated on a linearized simulation of a turbofan engine to estimate engine health.
A Matched Filter For Communicating With Chaos
Corron, Ned J.; Blakely, Jonathan N.
2011-04-01
In conventional communication systems, a matched filter provides optimal receiver performance in the presence of noise. As such, matched filters are highly desirable, yet they are practical only when a relatively small number of known basis functions are used to represent information. For communications using chaotic waveforms, the unpredictable and nonrepeating nature of chaos suggests the basis functions are uncertain and ever changing, which would preclude the use of a simple matched filter. Consequently, it is widely accepted that the performance of chaos communications lags that of conventional, no chaotic systems. In this paper, we show this assumption is not necessarily true. We describe a simple, low-dimensional chaotic oscillator that admits an exact analytic solution containing a single fixed basis function. The solution is written as the linear convolution of a symbol sequence and the basis function, similar to how conventional communications waveforms are usually represented. Despite the linear nature of the solution, waveform returns sampled at regular switching times are conjugate to a shift map, proving the oscillator is chaotic. A matched filter for the basis function is defined and used to extract symbolic information from the chaotic wave-form. Its performance in additive white Gaussian noise is comparable to that of binary phase-shift keying (BPSK). The oscillator and its matched filter have potential application in Hayes-type chaos communications where a message signal is encoded in the symbolic dynamics via small perturbation control. The discovery of a practical matched filter for chaos finally provides a coherent receiver to complement this elegant encoding scheme.
Science of Test Measurement Accuracy - Data Sampling and Filter Selection during Data Acquisition
2015-06-01
filter order (related to number of poles) without allowing ripple in the passband frequency range. The Chebyshev filter (Figure 3b) obtains its excellent...sharp roll-off characteristic by allowing passband ripple. In comparison, the Bessel filter (Figure 3c) has no ripple in the passband , but roll-off...has significant non-linear group delay in higher order filters Bessel optimizes quickness to respond, has no passband ripple and has constant
2000-01-01
28. I Kohila keskkoolis kohaspetsiifiline skulptuur ja performance "Filter". Kooli 130. aastapäeva tähistava ettevõtmise eesotsas oli skulptor Paul Rodgers ja kaks viimase klassi noormeest ئ Marko Heinmäe, Hendrik Karm.
International Nuclear Information System (INIS)
Dupoux, J.
1975-01-01
The composition of dust filters used in cleanup systems for radioactive gaseous effluents is described as well as the technical controls, especially efficiency measured by a soda fluorescein aerosol [fr
International Nuclear Information System (INIS)
Helmberger, T.
2007-01-01
Fulminant pulmonary embolism is one of the major causes of death in the Western World. In most cases, deep leg and pelvic venous thrombosis are the cause. If an anticoagulant/thrombotic therapy is no longer possible or ineffective, a vena cava filter implant may be indicated if an embolism is threatening. Implantation of the filter is a simple and safe intervention. Nevertheless, it is necessary to take into consideration that the data base for determining the indications for this treatment are very limited. Currently, a reduction in the risk of thromboembolism with the use of filters of about 30%, of recurrences of almost 5% and fatal pulmonary embolism of 1% has been reported, with a risk of up to 20% of filter induced vena cava thrombosis. (orig.) [de
Perspectives on Nonlinear Filtering
Law, Kody
2015-01-07
The solution to the problem of nonlinear filtering may be given either as an estimate of the signal (and ideally some measure of concentration), or as a full posterior distribution. Similarly, one may evaluate the fidelity of the filter either by its ability to track the signal or its proximity to the posterior filtering distribution. Hence, the field enjoys a lively symbiosis between probability and control theory, and there are plenty of applications which benefit from algorithmic advances, from signal processing, to econometrics, to large-scale ocean, atmosphere, and climate modeling. This talk will survey some recent theoretical results involving accurate signal tracking with noise-free (degenerate) dynamics in high-dimensions (infinite, in principle, but say d between 103 and 108 , depending on the size of your application and your computer), and high-fidelity approximations of the filtering distribution in low dimensions (say d between 1 and several 10s).
DEFF Research Database (Denmark)
Tugwell, Peter; Boers, Maarten; D'Agostino, Maria-Antonietta
2014-01-01
OBJECTIVE: The Outcome Measures in Rheumatology (OMERACT) Filter provides guidelines for the development and validation of outcome measures for use in clinical research. The "Truth" section of the OMERACT Filter requires that criteria be met to demonstrate that the outcome instrument meets...... the criteria for content, face, and construct validity. METHODS: Discussion groups critically reviewed a variety of ways in which case studies of current OMERACT Working Groups complied with the Truth component of the Filter and what issues remained to be resolved. RESULTS: The case studies showed...... that there is broad agreement on criteria for meeting the Truth criteria through demonstration of content, face, and construct validity; however, several issues were identified that the Filter Working Group will need to address. CONCLUSION: These issues will require resolution to reach consensus on how Truth...
... pet dander and other irritating allergens from the air. Along with other methods to reduce allergens, such ... controlling the amount of allergens circulating in the air. HEPA filters can be found in most air ...
Kumar, Prithvi R. (Inventor); Abare, Wayne (Inventor)
1989-01-01
A filter for a switching power supply. The filter includes a common mode inductor with coil configurations allowing differential mode current from a dc source to pass through but attenuating common mode noise from the power supply so that the noise does not reach the dc source. The invention also includes the use of feed through capacitors at the switching power supply input terminals to provide further high-frequency noise attenuation.
International Nuclear Information System (INIS)
Murray, J.E.; Estabrook, K.G.; Milam, D.; Sell, W.D.; Van Wonterghem, R.M.; Feil, M.D.; Rubenchick, A.M.
1996-01-01
Experiments and calculations indicate that the threshold pressure in spatial filters for distortion of a transmitted pulse scales approximately as I O.2 and (F number-sign) 2 over the intensity range from 10 14 to 2xlO 15 W/CM 2 . We also demonstrated an interferometric diagnostic that will be used to measure the scaling relationships governing pinhole closure in spatial filters
Directory of Open Access Journals (Sweden)
Eloísa Berbel Manaia
2013-06-01
Full Text Available Nowadays, concern over skin cancer has been growing more and more, especially in tropical countries where the incidence of UVA/B radiation is higher. The correct use of sunscreen is the most efficient way to prevent the development of this disease. The ingredients of sunscreen can be organic and/or inorganic sun filters. Inorganic filters present some advantages over organic filters, such as photostability, non-irritability and broad spectrum protection. Nevertheless, inorganic filters have a whitening effect in sunscreen formulations owing to the high refractive index, decreasing their esthetic appeal. Many techniques have been developed to overcome this problem and among them, the use of nanotechnology stands out. The estimated amount of nanomaterial in use must increase from 2000 tons in 2004 to a projected 58000 tons in 2020. In this context, this article aims to analyze critically both the different features of the production of inorganic filters (synthesis routes proposed in recent years and the permeability, the safety and other characteristics of the new generation of inorganic filters.
Filter design for molecular factor computing using wavelet functions.
Li, Xiaoyong; Xu, Zhihong; Cai, Wensheng; Shao, Xueguang
2015-06-23
Molecular factor computing (MFC) is a new strategy that employs chemometric methods in an optical instrument to obtain analytical results directly using an appropriate filter without data processing. In the present contribution, a method for designing an MFC filter using wavelet functions was proposed for spectroscopic analysis. In this method, the MFC filter is designed as a linear combination of a set of wavelet functions. A multiple linear regression model relating the concentration to the wavelet coefficients is constructed, so that the wavelet coefficients are obtained by projecting the spectra onto the selected wavelet functions. These wavelet functions are selected by optimizing the model using a genetic algorithm (GA). Once the MFC filter is obtained, the concentration of a sample can be calculated directly by projecting the spectrum onto the filter. With three NIR datasets of corn, wheat and blood, it was shown that the performance of the designed filter is better than that of the optimized partial least squares models, and commonly used signal processing methods, such as background correction and variable selection, were not needed. More importantly, the designed filter can be used as an MFC filter in designing MFC-based instruments. Copyright © 2015 Elsevier B.V. All rights reserved.
Sensory Pollution from Bag Filters, Carbon Filters and Combinations
DEFF Research Database (Denmark)
Bekö, Gabriel; Clausen, Geo; Weschler, Charles J.
2008-01-01
Used ventilation filters are a major source of sensory pollutants in air handling systems. The objective of the present study was to evaluate the net effect that different combinations of filters had on perceived air quality after 5 months of continuous filtration of outdoor suburban air. A panel...... that contained AC and a synthetic fiber cartridge filter that contained AC. Air that had passed through used filters was most acceptable for those sets in which an AC filter was used downstream of the particle filter. Comparable air quality was achieved with the stand-alone bag filter that contained AC...
Directory of Open Access Journals (Sweden)
Jan eKneissler
2015-04-01
Full Text Available Predictive coding appears to be one of the fundamental working principles of brain processing. Amongst other aspects, brains often predict the sensory consequences of their own actions. Predictive coding resembles Kalman filtering, where incoming sensory information is filtered to produce prediction errors for subsequent adaptation and learning. However, to generate prediction errors given motor commands, a suitable temporal forward model is required to generate predictions. While in engineering applications, it is usually assumed that this forward model is known, the brain has to learn it. When filtering sensory input and learning from the residual signal in parallel, a fundamental problem arises: the system can enter a delusional loop when filtering the sensory information using an overly trusted forward model. In this case, learning stalls before accurate convergence because uncertainty about the forward model is not properly accommodated. We present a Bayes-optimal solution to this generic and pernicious problem for the case of linear forward models, which we call Predictive Inference and Adaptive Filtering (PIAF. PIAF filters incoming sensory information and learns the forward model simultaneously. We show that PIAF is formally related to Kalman filtering and to the Recursive Least Squares linear approximation method, but combines these procedures in a Bayes optimal fashion. Numerical evaluations confirm that the delusional loop is precluded and that the learning of the forward model is more than ten-times faster when compared to a naive combination of Kalman filtering and Recursive Least Squares.
Choosing and using astronomical filters
Griffiths, Martin
2014-01-01
As a casual read through any of the major amateur astronomical magazines will demonstrate, there are filters available for all aspects of optical astronomy. This book provides a ready resource on the use of the following filters, among others, for observational astronomy or for imaging: Light pollution filters Planetary filters Solar filters Neutral density filters for Moon observation Deep-sky filters, for such objects as galaxies, nebulae and more Deep-sky objects can be imaged in much greater detail than was possible many years ago. Amateur astronomers can take
Face identification with frequency domain matched filtering in mobile environments
Lee, Dong-Su; Woo, Yong-Hyun; Yeom, Seokwon; Kim, Shin-Hwan
2012-06-01
Face identification at a distance is very challenging since captured images are often degraded by blur and noise. Furthermore, the computational resources and memory are often limited in the mobile environments. Thus, it is very challenging to develop a real-time face identification system on the mobile device. This paper discusses face identification based on frequency domain matched filtering in the mobile environments. Face identification is performed by the linear or phase-only matched filter and sequential verification stages. The candidate window regions are decided by the major peaks of the linear or phase-only matched filtering outputs. The sequential stages comprise a skin-color test and an edge mask filtering test, which verify color and shape information of the candidate regions in order to remove false alarms. All algorithms are built on the mobile device using Android platform. The preliminary results show that face identification of East Asian people can be performed successfully in the mobile environments.
Application of supergeneralized matched filters to target classification
Heidary, Kaveh; Caulfield, H. John
2005-01-01
The matched filter (MF) is the optimum linear operator for distinguishing between a fixed signal and noise, given the noise statistics. A generalized matched filter (GMF) is a linear filter that can handle the more difficult problem of a multiple-example signal set, and it reduces to a MF when the signal set has only one member. A supergeneralized matched filter (SGMF) is a set of GMFs and a procedure to combine their results nonlinearly to handle the multisignal problem even better. Obviously the SGMF contains the GMF as a special case. An algorithm for training SGMFs is presented, and it is shown that the algorithm performs quite well even for extremely difficult classification problems.
Multilevel ensemble Kalman filtering
Hoel, Haakon
2016-01-08
The ensemble Kalman filter (EnKF) is a sequential filtering method that uses an ensemble of particle paths to estimate the means and covariances required by the Kalman filter by the use of sample moments, i.e., the Monte Carlo method. EnKF is often both robust and efficient, but its performance may suffer in settings where the computational cost of accurate simulations of particles is high. The multilevel Monte Carlo method (MLMC) is an extension of classical Monte Carlo methods which by sampling stochastic realizations on a hierarchy of resolutions may reduce the computational cost of moment approximations by orders of magnitude. In this work we have combined the ideas of MLMC and EnKF to construct the multilevel ensemble Kalman filter (MLEnKF) for the setting of finite dimensional state and observation spaces. The main ideas of this method is to compute particle paths on a hierarchy of resolutions and to apply multilevel estimators on the ensemble hierarchy of particles to compute Kalman filter means and covariances. Theoretical results and a numerical study of the performance gains of MLEnKF over EnKF will be presented. Some ideas on the extension of MLEnKF to settings with infinite dimensional state spaces will also be presented.
Low-complexity wavelet filter design for image compression
Majani, E.
1994-01-01
Image compression algorithms based on the wavelet transform are an increasingly attractive and flexible alternative to other algorithms based on block orthogonal transforms. While the design of orthogonal wavelet filters has been studied in significant depth, the design of nonorthogonal wavelet filters, such as linear-phase (LP) filters, has not yet reached that point. Of particular interest are wavelet transforms with low complexity at the encoder. In this article, we present known and new parameterizations of the two families of LP perfect reconstruction (PR) filters. The first family is that of all PR LP filters with finite impulse response (FIR), with equal complexity at the encoder and decoder. The second family is one of LP PR filters, which are FIR at the encoder and infinite impulse response (IIR) at the decoder, i.e., with controllable encoder complexity. These parameterizations are used to optimize the subband/wavelet transform coding gain, as defined for nonorthogonal wavelet transforms. Optimal LP wavelet filters are given for low levels of encoder complexity, as well as their corresponding integer approximations, to allow for applications limited to using integer arithmetic. These optimal LP filters yield larger coding gains than orthogonal filters with an equivalent complexity. The parameterizations described in this article can be used for the optimization of any other appropriate objective function.
Sparse Estimation Techniques for l1 Mean and Trend Filtering
Johan, Ottersten
2015-01-01
It is often desirable to find the underlying trends in time series data. This is a wellknown signal processing problem that has many applications in areas such as financial dataanalysis, climatology, biological and medical sciences etc. Mean filtering finds a piece-wiseconstant trend in the data while trend filtering finds a piece-wise linear trend. When thesignal is noisy, the main difficulty is finding the changing points in the data. These are thepoints where the mean or the trend changes....
Group Lifting Structures For Multirate Filter Banks, I: Uniqueness Of Lifting Factorizations
Energy Technology Data Exchange (ETDEWEB)
Brislawn, Christopher M [Los Alamos National Laboratory
2008-01-01
This paper studies two-channel finite impulse response (FIR) perfect reconstruction filter banks. The connection between filter banks and wavelet transforms is well-known and will not be treated here. Figure 1 depicts the polyphase-with-advance representation of a filter bank [6]. A lifting factorization, is a factorization of polyphase matrices into upper and lower triangular lifting matrices. The existence of such decompositions via the Euclidean algorithm was shown for general FIR perfect reconstruction filter banks in [9] and was subsequently refined for linear phase filter banks in [10], [6]. These latter works were motivated by the ISO JPEG 2000 image coding standard [11], [12], [10], which specifies whole-sample symmetric (WS, or FIR type 1 linear phase) filter banks, as in Figure 2(a), in terms of half-sample symmetric (RS, or FIR type 2) lifting filters.
Kovačević, Branko; Milosavljević, Milan
2013-01-01
“Adaptive Digital Filters” presents an important discipline applied to the domain of speech processing. The book first makes the reader acquainted with the basic terms of filtering and adaptive filtering, before introducing the field of advanced modern algorithms, some of which are contributed by the authors themselves. Working in the field of adaptive signal processing requires the use of complex mathematical tools. The book offers a detailed presentation of the mathematical models that is clear and consistent, an approach that allows everyone with a college level of mathematics knowledge to successfully follow the mathematical derivations and descriptions of algorithms. The algorithms are presented in flow charts, which facilitates their practical implementation. The book presents many experimental results and treats the aspects of practical application of adaptive filtering in real systems, making it a valuable resource for both undergraduate and graduate students, and for all others interested in m...
Automated electronic filter design
Banerjee, Amal
2017-01-01
This book describes a novel, efficient and powerful scheme for designing and evaluating the performance characteristics of any electronic filter designed with predefined specifications. The author explains techniques that enable readers to eliminate complicated manual, and thus error-prone and time-consuming, steps of traditional design techniques. The presentation includes demonstration of efficient automation, using an ANSI C language program, which accepts any filter design specification (e.g. Chebyschev low-pass filter, cut-off frequency, pass-band ripple etc.) as input and generates as output a SPICE(Simulation Program with Integrated Circuit Emphasis) format netlist. Readers then can use this netlist to run simulations with any version of the popular SPICE simulator, increasing accuracy of the final results, without violating any of the key principles of the traditional design scheme.
Evaluation of harmonic detection methods for active power filter applications
DEFF Research Database (Denmark)
Asiminoaei, Lucian; Blaabjerg, Frede; Hansen, Steffan
2005-01-01
In the attempt to minimize the harmonic disturbances created by the non-linear loads the choice of the active power filters comes out to improve the filtering efficiency and to solve many issues existing with classical passive filters. One of the key points for a proper implementation of an active...... filter is to use a good method for current/voltage reference generation. There exist many implementations supported by different theories (either in time- or frequency-domain), which continuously debate their performances proposing ever better solutions. This paper gives a survey of the common used...... theories. Then, the work here proposes a simulation setup that decouples the harmonic reference generator from the active filter model and its controller. In this way the selected methods can be equally analyzed and compared with respect to their performance, which helps anticipating possible...
Nonstationary temporal Wiener filtering of gated blood pool studies
International Nuclear Information System (INIS)
King, M.A.; Miller, T.R.; Doherty, P.W.; Bianco, J.A.
1985-01-01
Temporal filtering of dynamic images can significantly improve the image quality of gated blood pool (GBP) studies and serves as a necessary preprocessing step in the formation of cardiac functional images based on derivatives of pixel time activity curves. Generally, either linear combination of the frames, or a simple frequency domain low pass filter have been employed. The work described in this paper introduces the Wiener temporal filter which adjusts to match the temporal characteristic of the image at each pixel. For temporal data degraded by signal-dependent Poisson noise, the frequency domain form of the filter is presented. Use of nonstationary temporal Wiener filtering was found to improve the quality of cines formed from GBP studies and yielded better separation of cardiac from non-cardiac regions in functional images the peak ejection and filling rates
Study of physical properties of the dynamic filter
International Nuclear Information System (INIS)
Souza, Roberto Salomon
2004-02-01
This paper presents a characterization of the physical properties of the dynamic filter of Clinac 2300 CD linear accelerator of Varian Medical Systems, installed at the Cancer National Institute (INCA), Rio de Janeiro. The 'dynamic filter factors' were measured for the 6 and 15 MV photons, in squared and rectangular fields, and compared with factors furnished at the accelerator manual and used by the planning system, IN and OUT positions, at the maximum dose depths, 5 cm, 10 cm and 29 cm, for the 6 and 15 MV photons energies. The results demonstrated that the 'dynamic filter factors' does not changes with depth and the PDP for the opened field are the same for the fields with dynamic filters. Last but not least the dynamic filters were measured and compared with the nominal angles of the accelerator and the planning system, where some discrepancies were reported
A simple filter circuit for denoising biomechanical impact signals.
Subramaniam, Suba R; Georgakis, Apostolos
2009-01-01
We present a simple scheme for denoising non-stationary biomechanical signals with the aim of accurately estimating their second derivative (acceleration). The method is based on filtering in fractional Fourier domains using well-known low-pass filters in a way that amounts to a time-varying cut-off threshold. The resulting algorithm is linear and its design is facilitated by the relationship between the fractional Fourier transform and joint time-frequency representations. The implemented filter circuit employs only three low-order filters while its efficiency is further supported by the low computational complexity of the fractional Fourier transform. The results demonstrate that the proposed method can denoise the signals effectively and is more robust against noise as compared to conventional low-pass filters.
Linear quadratic Gaussian balancing for discrete-time infinite-dimensional linear systems
Opmeer, MR; Curtain, RF
2004-01-01
In this paper, we study the existence of linear quadratic Gaussian (LQG)-balanced realizations for discrete-time infinite-dimensional systems. LQG-balanced realizations are those for which the smallest nonnegative self-adjoint solutions of the control and filter Riccati equations are equal. We show
Filters in topology optimization
DEFF Research Database (Denmark)
Bourdin, Blaise
1999-01-01
In this article, a modified (``filtered'') version of the minimum compliance topology optimization problem is studied. The direct dependence of the material properties on its pointwise density is replaced by a regularization of the density field using a convolution operator. In this setting...... it is possible to establish the existence of solutions. Moreover, convergence of an approximation by means of finite elements can be obtained. This is illustrated through some numerical experiments. The ``filtering'' technique is also shown to cope with two important numerical problems in topology optimization...
Alarm filtering and presentation
International Nuclear Information System (INIS)
Bray, M.A.
1989-01-01
This paper discusses alarm filtering and presentation in the control room of nuclear and other process control plants. Alarm generation and presentation is widely recognized as a general process control problem. Alarm systems often fail to provide meaningful alarms to operators. Alarm generation and presentation is an area in which computer aiding is feasible and provides clear benefits. Therefore, researchers have developed several computerized alarm filtering and presentation approaches. This paper discusses problems associated with alarm generation and presentation. Approaches to improving the alarm situation and installation issues of alarm system improvements are discussed. The impact of artificial intelligence (AI) technology on alarm system improvements is assessed. (orig.)
... News Physician Resources Professions Site Index A-Z Linear Accelerator A linear accelerator (LINAC) customizes high energy x-rays or ... ensured? What is this equipment used for? A linear accelerator (LINAC) is the device most commonly used ...
Defect detection in textured materials using optimized filters.
Kumar, A; Pang, G H
2002-01-01
The problem of automated defect detection in textured materials is investigated. A new approach for defect detection using linear FIR filters with optimized energy separation is proposed. The performance of different feature separation criteria with reference to fabric defects has been evaluated. The issues relating to the design of optimal filters for supervised and unsupervised web inspection are addressed. A general web inspection system based on the optimal filters is proposed. The experiments on this new approach have yielded excellent results. The low computational requirement confirms the usefulness of the approach for industrial inspection.
FIR Filter Sharpening by Frequency Masking and Pipelining-Interleaving Technique
Directory of Open Access Journals (Sweden)
CIRIC, M. P.
2014-11-01
Full Text Available This paper focuses on the improvements of digital filters with a highly sharp transition zone on the Xilinx FPGA chips by combining a sharpening method based on the amplitude change function and frequency masking and PI (Pipelining-Interleaving techniques. A linear phase requires digital filter realizations with Finite Impulse Response (FIR filters. On the other hand, a drawback of FIR filters applications is a low computational efficiency, especially in applications such as filter sharpening techniques, because this technique uses processing the data by repeated passes through the same filter. Computational efficiency of FIR filters can be significantly improved by using some of the multirate techniques, and such a degree of computation savings cannot be achieved in multirate implementations of IIR (Infinite Impulse Response filters. This paper shows the realization of a filter sharpening method with FIR filters combined with frequency masking and PI (Pipelining-Interleaving technique in order to effectively realize the filter with improved characteristic. This realization at the same time keeps the good features of FIR filters such as the linear phase characteristic.
Foundations of linear and generalized linear models
Agresti, Alan
2015-01-01
A valuable overview of the most important ideas and results in statistical analysis Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linear statistical models. The book presents a broad, in-depth overview of the most commonly used statistical models by discussing the theory underlying the models, R software applications, and examples with crafted models to elucidate key ideas and promote practical model building. The book begins by illustrating the fundamentals of linear models,
Beck, H P; Boissat, C; Davis, R; Duval, P Y; Etienne, F; Fede, E; Francis, D; Green, P; Hemmer, F; Jones, R; MacKinnon, J; Mapelli, Livio P; Meessen, C; Mommsen, R K; Mornacchi, Giuseppe; Nacasch, R; Negri, A; Pinfold, James L; Polesello, G; Qian, Z; Rafflin, C; Scannicchio, D A; Stanescu, C; Touchard, F; Vercesi, V
1999-01-01
An overview of the studies for the ATLAS Event Filter is given. The architecture and the high level design of the DAQ-1 prototype is presented. The current status if the prototypes is briefly given. Finally, future plans and milestones are given. (11 refs).
Spectral Ensemble Kalman Filters
Czech Academy of Sciences Publication Activity Database
Mandel, Jan; Kasanický, Ivan; Vejmelka, Martin; Fuglík, Viktor; Turčičová, Marie; Eben, Kryštof; Resler, Jaroslav; Juruš, Pavel
2014-01-01
Roč. 11, - (2014), EMS2014-446 [EMS Annual Meeting /14./ & European Conference on Applied Climatology (ECAC) /10./. 06.10.2014-10.10.2014, Prague] R&D Projects: GA ČR GA13-34856S Grant - others:NSF DMS -1216481 Institutional support: RVO:67985807 Keywords : data assimilation * spectral filter Subject RIV: DG - Athmosphere Sciences, Meteorology
Young, A. T.
1984-01-01
Problems associated with achieving precision in photometric measurements of stars are examined. The thermal stabilization of glass and interference filters and the determination of correct analytic representations of bandwidth effects in data reduction are particularly discussed. Spectral sampling requirements are also addressed.
Energy Technology Data Exchange (ETDEWEB)
Mitchell, M A; Bergman, W; Haslam, J; Brown, E P; Sawyer, S; Beaulieu, R; Althouse, P; Meike, A
2012-04-30
Potential benefits of ceramic filters in nuclear facilities: (1) Short term benefit for DOE, NRC, and industry - (a) CalPoly HTTU provides unique testing capability to answer questions for DOE - High temperature testing of materials, components, filter, (b) Several DNFSB correspondences and presentations by DNFSB members have highlighted the need for HEPA filter R and D - DNFSB Recommendation 2009-2 highlighted a nuclear facility response to an evaluation basis earthquake followed by a fire (aka shake-n-bake) and CalPoly has capability for a shake-n-bake test; (2) Intermediate term benefit for DOE and industry - (a) Filtration for specialty applications, e.g., explosive applications at Nevada, (b) Spin-off technologies applicable to other commercial industries; and (3) Long term benefit for DOE, NRC, and industry - (a) Across industry, strong desire for better performance filter, (b) Engineering solution to safety problem will improve facility safety and decrease dependence on associated support systems, (c) Large potential life-cycle cost savings, and (d) Facilitates development and deployment of LLNL process innovations to allow continuous ventilation system operation during a fire.
Sitaram, Mahesh I; Padiyar, KR; Ramanarayanan, V
1998-01-01
Active filters have long been in use for the filtering of power system load harmonics. In this paper, the digital simulation results of a hybrid active power filter system for a rectifier load are presented. The active filter is used for filtering higher order harmonics as the dominant harmonics are filtered by the passive filter. This reduces the rating of the active filter significantly. The DC capacitor voltage of the active filter is controlled using a PI controller.
Performance Analysis of Local Ensemble Kalman Filter
Tong, Xin T.
2018-03-01
Ensemble Kalman filter (EnKF) is an important data assimilation method for high-dimensional geophysical systems. Efficient implementation of EnKF in practice often involves the localization technique, which updates each component using only information within a local radius. This paper rigorously analyzes the local EnKF (LEnKF) for linear systems and shows that the filter error can be dominated by the ensemble covariance, as long as (1) the sample size exceeds the logarithmic of state dimension and a constant that depends only on the local radius; (2) the forecast covariance matrix admits a stable localized structure. In particular, this indicates that with small system and observation noises, the filter error will be accurate in long time even if the initialization is not. The analysis also reveals an intrinsic inconsistency caused by the localization technique, and a stable localized structure is necessary to control this inconsistency. While this structure is usually taken for granted for the operation of LEnKF, it can also be rigorously proved for linear systems with sparse local observations and weak local interactions. These theoretical results are also validated by numerical implementation of LEnKF on a simple stochastic turbulence in two dynamical regimes.
Razgulin, A. V.; Sazonova, S. V.
2017-09-01
A novel statement of the Fourier filtering problem based on the use of matrix Fourier filters instead of conventional multiplier filters is considered. The basic properties of the matrix Fourier filtering for the filters in the Hilbert-Schmidt class are established. It is proved that the solutions with a finite energy to the periodic initial boundary value problem for the quasi-linear functional differential diffusion equation with the matrix Fourier filtering Lipschitz continuously depend on the filter. The problem of optimal matrix Fourier filtering is formulated, and its solvability for various classes of matrix Fourier filters is proved. It is proved that the objective functional is differentiable with respect to the matrix Fourier filter, and the convergence of a version of the gradient projection method is also proved.
Numerical study of canister filters with alternatives filter cap configurations
Mohammed, A. N.; Daud, A. R.; Abdullah, K.; Seri, S. M.; Razali, M. A.; Hushim, M. F.; Khalid, A.
2017-09-01
Air filtration system and filter play an important role in getting a good quality air into turbo machinery such as gas turbine. The filtration system and filter has improved the quality of air and protect the gas turbine part from contaminants which could bring damage. During separation of contaminants from the air, pressure drop cannot be avoided but it can be minimized thus helps to reduce the intake losses of the engine [1]. This study is focused on the configuration of the filter in order to obtain the minimal pressure drop along the filter. The configuration used is the basic filter geometry provided by Salutary Avenue Manufacturing Sdn Bhd. and two modified canister filter cap which is designed based on the basic filter model. The geometries of the filter are generated by using SOLIDWORKS software and Computational Fluid Dynamics (CFD) software is used to analyse and simulates the flow through the filter. In this study, the parameters of the inlet velocity are 0.032 m/s, 0.063 m/s, 0.094 m/s and 0.126 m/s. The total pressure drop produce by basic, modified filter 1 and 2 is 292.3 Pa, 251.11 Pa and 274.7 Pa. The pressure drop reduction for the modified filter 1 is 41.19 Pa and 14.1% lower compared to basic filter and the pressure drop reduction for modified filter 2 is 17.6 Pa and 6.02% lower compared to the basic filter. The pressure drops for the basic filter are slightly different with the Salutary Avenue filter due to limited data and experiment details. CFD software are very reliable in running a simulation rather than produces the prototypes and conduct the experiment thus reducing overall time and cost in this study.
A phase-equalized digital multirate filter for 50 Hz signal processing
Energy Technology Data Exchange (ETDEWEB)
Vainio, O. [Tampere University of Technology, Signal Processing Laboratory, Tampere (Finland)
1997-12-31
A new multistage digital filter is proposed for 50 Hz line frequency signal processing in zero-crossing detectors and synchronous power systems. The purpose of the filter is to extract the fundamental sinusoidal signal from noise and impulsive disturbances so that the output is accurately in phase with the primary input signal. This is accomplished with a cascade of a median filter, a linear-phase FIR filter, and a phase corrector. A 10 kHz output timing resolution is achieved by up-sampling with a customized interpolation filter. (orig.) 15 refs.
A generalized adaptive mathematical morphological filter for LIDAR data
Cui, Zheng
Airborne Light Detection and Ranging (LIDAR) technology has become the primary method to derive high-resolution Digital Terrain Models (DTMs), which are essential for studying Earth's surface processes, such as flooding and landslides. The critical step in generating a DTM is to separate ground and non-ground measurements in a voluminous point LIDAR dataset, using a filter, because the DTM is created by interpolating ground points. As one of widely used filtering methods, the progressive morphological (PM) filter has the advantages of classifying the LIDAR data at the point level, a linear computational complexity, and preserving the geometric shapes of terrain features. The filter works well in an urban setting with a gentle slope and a mixture of vegetation and buildings. However, the PM filter often removes ground measurements incorrectly at the topographic high area, along with large sizes of non-ground objects, because it uses a constant threshold slope, resulting in "cut-off" errors. A novel cluster analysis method was developed in this study and incorporated into the PM filter to prevent the removal of the ground measurements at topographic highs. Furthermore, to obtain the optimal filtering results for an area with undulating terrain, a trend analysis method was developed to adaptively estimate the slope-related thresholds of the PM filter based on changes of topographic slopes and the characteristics of non-terrain objects. The comparison of the PM and generalized adaptive PM (GAPM) filters for selected study areas indicates that the GAPM filter preserves the most "cut-off" points removed incorrectly by the PM filter. The application of the GAPM filter to seven ISPRS benchmark datasets shows that the GAPM filter reduces the filtering error by 20% on average, compared with the method used by the popular commercial software TerraScan. The combination of the cluster method, adaptive trend analysis, and the PM filter allows users without much experience in
Digital Filters for Low Frequency Equalization
DEFF Research Database (Denmark)
Tyril, Marni; Abildgaard, J.; Rubak, Per
2001-01-01
Digital filters with high resolution in the low-frequency range are studied. Specifically, for a given computational power, traditional IIR filters are compared with warped FIR filters, warped IIR filters, and modified warped FIR filters termed warped individual z FIR filters (WizFIR). The results...... indicate that IIR filters are the most effective in a number of situations....
Kalman Filtering with Inequality Constraints for Turbofan Engine Health Estimation
Simon, Dan; Simon, Donald L.
2003-01-01
Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints (which may be based on physical considerations) are often neglected because they do not fit easily into the structure of the Kalman filter. This paper develops two analytic methods of incorporating state variable inequality constraints in the Kalman filter. The first method is a general technique of using hard constraints to enforce inequalities on the state variable estimates. The resultant filter is a combination of a standard Kalman filter and a quadratic programming problem. The second method uses soft constraints to estimate state variables that are known to vary slowly with time. (Soft constraints are constraints that are required to be approximately satisfied rather than exactly satisfied.) The incorporation of state variable constraints increases the computational effort of the filter but significantly improves its estimation accuracy. The improvement is proven theoretically and shown via simulation results. The use of the algorithm is demonstrated on a linearized simulation of a turbofan engine to estimate health parameters. The turbofan engine model contains 16 state variables, 12 measurements, and 8 component health parameters. It is shown that the new algorithms provide improved performance in this example over unconstrained Kalman filtering.
Testing particle filters on convective scale dynamics
Haslehner, Mylene; Craig, George. C.; Janjic, Tijana
2014-05-01
Particle filters have been developed in recent years to deal with highly nonlinear dynamics and non Gaussian error statistics that also characterize data assimilation on convective scales. In this work we explore the use of the efficient particle filter (P.v. Leeuwen, 2011) for convective scale data assimilation application. The method is tested in idealized setting, on two stochastic models. The models were designed to reproduce some of the properties of convection, for example the rapid development and decay of convective clouds. The first model is a simple one-dimensional, discrete state birth-death model of clouds (Craig and Würsch, 2012). For this model, the efficient particle filter that includes nudging the variables shows significant improvement compared to Ensemble Kalman Filter and Sequential Importance Resampling (SIR) particle filter. The success of the combination of nudging and resampling, measured as RMS error with respect to the 'true state', is proportional to the nudging intensity. Significantly, even a very weak nudging intensity brings notable improvement over SIR. The second model is a modified version of a stochastic shallow water model (Würsch and Craig 2013), which contains more realistic dynamical characteristics of convective scale phenomena. Using the efficient particle filter and different combination of observations of the three field variables (wind, water 'height' and rain) allows the particle filter to be evaluated in comparison to a regime where only nudging is used. Sensitivity to the properties of the model error covariance is also considered. Finally, criteria are identified under which the efficient particle filter outperforms nudging alone. References: Craig, G. C. and M. Würsch, 2012: The impact of localization and observation averaging for convective-scale data assimilation in a simple stochastic model. Q. J. R. Meteorol. Soc.,139, 515-523. Van Leeuwen, P. J., 2011: Efficient non-linear data assimilation in geophysical
Hydrodynamics of microbial filter feeding
DEFF Research Database (Denmark)
Nielsen, Lasse Tor; Asadzadeh, Seyed Saeed; Dölger, Julia
2017-01-01
Microbial filter feeders are an important group of grazers, significant to the microbial loop, aquatic food webs, and biogeochemical cycling. Our understanding of microbial filter feeding is poor, and, importantly, it is unknown what force microbial filter feeders must generate to process adequate...... amounts of water. Also, the trade-off in the filter spacing remains unexplored, despite its simple formulation: A filter too coarse will allow suitably sized prey to pass unintercepted, whereas a filter too fine will cause strong flow resistance. We quantify the feeding flow of the filter......-feeding choanoflagellate Diaphanoeca grandis using particle tracking, and demonstrate that the current understanding of microbial filter feeding is inconsistent with computational fluid dynamics (CFD) and analytical estimates. Both approaches underestimate observed filtration rates by more than an order of magnitude...
Basin, M.; Maldonado, J. J.; Zendejo, O.
2016-07-01
This paper proposes new mean-square filter and parameter estimator design for linear stochastic systems with unknown parameters over linear observations, where unknown parameters are considered as combinations of Gaussian and Poisson white noises. The problem is treated by reducing the original problem to a filtering problem for an extended state vector that includes parameters as additional states, modelled as combinations of independent Gaussian and Poisson processes. The solution to this filtering problem is based on the mean-square filtering equations for incompletely polynomial states confused with Gaussian and Poisson noises over linear observations. The resulting mean-square filter serves as an identifier for the unknown parameters. Finally, a simulation example shows effectiveness of the proposed mean-square filter and parameter estimator.
Energy Technology Data Exchange (ETDEWEB)
Laboure, Vincent M., E-mail: vincent.laboure@tamu.edu [Nuclear Engineering Department, Texas A& M University, College Station, TX 77843 (United States); McClarren, Ryan G., E-mail: rgm@tamu.edu [Nuclear Engineering Department, Texas A& M University, College Station, TX 77843 (United States); Hauck, Cory D., E-mail: hauckc@ornl.gov [Computational and Applied Mathematics Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Department of Mathematics, University of Tennessee Knoxville, TN 37996-1320 (United States)
2016-09-15
In this work, we provide a fully-implicit implementation of the time-dependent, filtered spherical harmonics (FP{sub N}) equations for non-linear, thermal radiative transfer. We investigate local filtering strategies and analyze the effect of the filter on the conditioning of the system, showing in particular that the filter improves the convergence properties of the iterative solver. We also investigate numerically the rigorous error estimates derived in the linear setting, to determine whether they hold also for the non-linear case. Finally, we simulate a standard test problem on an unstructured mesh and make comparisons with implicit Monte Carlo (IMC) calculations.
On fractional filtering versus conventional filtering in economics
Nigmatullin, Raoul R.; Omay, Tolga; Baleanu, Dumitru
2010-04-01
In this study, we compare the Hodrick-Prescott Filter technique with the Fractional filtering technique that has recently started to be used in various applied sciences like physics, engineering, and biology. We apply these filtering techniques to quarterly GDP data from Turkey for the period 1988:1-2003:2. The filtered series are analyzed using Minimum Square Error (MSE) and real life evidence. In the second part of the study, we use simulated data to analyze the statistical properties of the aforementioned filtering techniques.
Law, Kody
2016-01-06
This talk will pertain to the filtering of partially observed diffusions, with discrete-time observations. It is assumed that only biased approximations of the diffusion can be obtained, for choice of an accuracy parameter indexed by l. A multilevel estimator is proposed, consisting of a telescopic sum of increment estimators associated to the successive levels. The work associated to O( 2) mean-square error between the multilevel estimator and average with respect to the filtering distribution is shown to scale optimally, for example as O( 2) for optimal rates of convergence of the underlying diffusion approximation. The method is illustrated on some toy examples as well as estimation of interest rate based on real S&P 500 stock price data.
Hydrodynamics of microbial filter feeding
DEFF Research Database (Denmark)
Nielsen, Lasse Tor; Asadzadeh, Seyed Saeed; Dölger, Julia
2017-01-01
Microbial filter feeders are an important group of grazers, significant to the microbial loop, aquatic food webs, and biogeochemical cycling. Our understanding of microbial filter feeding is poor, and, importantly, it is unknown what force microbial filter feeders must generate to process adequate...
Controlling flow conditions of test filters in iodine filters
International Nuclear Information System (INIS)
Holmberg, R.; Laine, J.
1979-03-01
Several different iodine filter and test filter designs and experience gained from their operation are presented. For the flow experiments, an iodine filter system equipped with flow regulating and measuring devices was built. In the experiments the influence of the packing method of the iodine sorption material and the influence of the flow regulating and measuring divices upon the flow conditions in the test filters was studied. On the basis of the experiments it has been shown that the flows through the test filters always can be adjusted to a correct value if there only is a high enough pressure difference available across the test filter ducting. As a result of the research, several different methods are presented with which the flows through the test filters in both operating and future iodine sorption system can easily be measured and adjusted to their correct values. (author)
Nonlinear diffusion filtering methods locally adapted to data features
Kollár, Michal; Čunderlík, Róbert; Mikula, Karol
2017-04-01
The contribution deals with nonlinear diffusion filtering methods on a planar surface. These methods represent an extension of the simple linear diffusion filtering by the nonlinear diffusivity coefficient. This coefficient represents a function which depends on data features such as gradient and local or global extrema of data. In the case of the regularized surface Perona-Malik model, method mostly used in image processing, the diffusivity coefficient represents the edge detector function. If we use the nonlinear diffusion filtering influenced by the Laplace operator, local extrema detector function affects the diffusion process. We use a finite-volume method to approximate numerically the nonlinear parabolic partial differential equation on uniform rectangle grid and finite difference method to approximate gradients and Laplacians. Numerical experiments present nonlinear diffusion filtering of artificial data and real measurements in upcoming filtering software with real-time filtered data visualization widget. Real measurements represent GOCE satellite observations, satellite-only MDT data, and high-resolution altimetry-derived gravity data. They aim to point out the main advantage of the nonlinear diffusion models which, on the contrary to linear models, preserve important structures of processed data.
Low-Rank Kalman Filtering in Subsurface Contaminant Transport Models
El Gharamti, Mohamad
2010-12-01
Understanding the geology and the hydrology of the subsurface is important to model the fluid flow and the behavior of the contaminant. It is essential to have an accurate knowledge of the movement of the contaminants in the porous media in order to track them and later extract them from the aquifer. A two-dimensional flow model is studied and then applied on a linear contaminant transport model in the same porous medium. Because of possible different sources of uncertainties, the deterministic model by itself cannot give exact estimations for the future contaminant state. Incorporating observations in the model can guide it to the true state. This is usually done using the Kalman filter (KF) when the system is linear and the extended Kalman filter (EKF) when the system is nonlinear. To overcome the high computational cost required by the KF, we use the singular evolutive Kalman filter (SEKF) and the singular evolutive extended Kalman filter (SEEKF) approximations of the KF operating with low-rank covariance matrices. The SEKF can be implemented on large dimensional contaminant problems while the usage of the KF is not possible. Experimental results show that with perfect and imperfect models, the low rank filters can provide as much accurate estimates as the full KF but at much less computational cost. Localization can help the filter analysis as long as there are enough neighborhood data to the point being analyzed. Estimating the permeabilities of the aquifer is successfully tackled using both the EKF and the SEEKF.
Pilot production of the wedge filter for the TBI (total body irradiation)
International Nuclear Information System (INIS)
Ikezaki, Hiromi; Ikeda, Ikuo; Maruyama, Yasushi; Nako, Yasunobu; Tonari, Ayako; Kusuda, Junko; Takayama, Makoto
2007-01-01
Total body irradiation (TBI) is performed by various methods, such as a long SSD method and a translational couch method. For patient safety in carrying out TBI, the patient should be placed on the supine position and prone position near the floor. TBI is performed from 2 opposite ports (AP/PA) with a linear accelerator (10 MV X-ray). We experimented with a wedge filter for TBI created by us, which makes dose distribution to a floor uniform. The wedge filter, made of iron alloy, was attached to the linear accelerator. In designing the wedge filter, thickness of the lead-made wedge filter can be calculated numerically from the ratio of linear attenuation coefficient of iron alloy and lead. In measuring the dose profile for a phantom of 20 cm thick, dose homogeneity less than 10% was proved by the wedge filter for TBI. (author)
Ensemble clustering in deterministic ensemble Kalman filters
Directory of Open Access Journals (Sweden)
Javier Amezcua
2012-07-01
Full Text Available Ensemble clustering (EC can arise in data assimilation with ensemble square root filters (EnSRFs using non-linear models: an M-member ensemble splits into a single outlier and a cluster of M–1 members. The stochastic Ensemble Kalman Filter does not present this problem. Modifications to the EnSRFs by a periodic resampling of the ensemble through random rotations have been proposed to address it. We introduce a metric to quantify the presence of EC and present evidence to dispel the notion that EC leads to filter failure. Starting from a univariate model, we show that EC is not a permanent but transient phenomenon; it occurs intermittently in non-linear models. We perform a series of data assimilation experiments using a standard EnSRF and a modified EnSRF by a resampling though random rotations. The modified EnSRF thus alleviates issues associated with EC at the cost of traceability of individual ensemble trajectories and cannot use some of algorithms that enhance performance of standard EnSRF. In the non-linear regimes of low-dimensional models, the analysis root mean square error of the standard EnSRF slowly grows with ensemble size if the size is larger than the dimension of the model state. However, we do not observe this problem in a more complex model that uses an ensemble size much smaller than the dimension of the model state, along with inflation and localisation. Overall, we find that transient EC does not handicap the performance of the standard EnSRF.
A Short Note on t-filters, I-filters and Extended Filters on Residuated Lattices
Czech Academy of Sciences Publication Activity Database
Víta, Martin
2015-01-01
Roč. 271, 15 July (2015), s. 168-171 ISSN 0165-0114 R&D Projects: GA ČR GAP202/10/1826 Institutional support: RVO:67985807 Keywords : t-filters * I-filters * extended filters * residuated lattices Subject RIV: BA - General Mathematics Impact factor: 2.098, year: 2015
From spiking neuron models to linear-nonlinear models.
Directory of Open Access Journals (Sweden)
Srdjan Ostojic
Full Text Available Neurons transform time-varying inputs into action potentials emitted stochastically at a time dependent rate. The mapping from current input to output firing rate is often represented with the help of phenomenological models such as the linear-nonlinear (LN cascade, in which the output firing rate is estimated by applying to the input successively a linear temporal filter and a static non-linear transformation. These simplified models leave out the biophysical details of action potential generation. It is not a priori clear to which extent the input-output mapping of biophysically more realistic, spiking neuron models can be reduced to a simple linear-nonlinear cascade. Here we investigate this question for the leaky integrate-and-fire (LIF, exponential integrate-and-fire (EIF and conductance-based Wang-Buzsáki models in presence of background synaptic activity. We exploit available analytic results for these models to determine the corresponding linear filter and static non-linearity in a parameter-free form. We show that the obtained functions are identical to the linear filter and static non-linearity determined using standard reverse correlation analysis. We then quantitatively compare the output of the corresponding linear-nonlinear cascade with numerical simulations of spiking neurons, systematically varying the parameters of input signal and background noise. We find that the LN cascade provides accurate estimates of the firing rates of spiking neurons in most of parameter space. For the EIF and Wang-Buzsáki models, we show that the LN cascade can be reduced to a firing rate model, the timescale of which we determine analytically. Finally we introduce an adaptive timescale rate model in which the timescale of the linear filter depends on the instantaneous firing rate. This model leads to highly accurate estimates of instantaneous firing rates.
Min-Max Design of FIR Digital Filters by Semidefinite Programming
Nagahara, Masaaki
2013-01-01
In this article we consider two problems: FIR (Finite Impulse Response) approximation of IIR (Infinite Impulse Response) filters and inverse FIR filtering of FIR or IIR filters. By means of Kalman-Yakubovich-Popov (KYP) lemma and its generalization (GKYP), the problems are reduced to semidefinite programming described in linear matrix inequalities (LMIs). MATLAB codes for these design methods are given. An design example shows the effectiveness of these methods.
Multi-template Scale-Adaptive Kernelized Correlation Filters
Bibi, Adel Aamer
2015-12-07
This paper identifies the major drawbacks of a very computationally efficient and state-of-the-art-tracker known as the Kernelized Correlation Filter (KCF) tracker. These drawbacks include an assumed fixed scale of the target in every frame, as well as, a heuristic update strategy of the filter taps to incorporate historical tracking information (i.e. simple linear combination of taps from the previous frame). In our approach, we update the scale of the tracker by maximizing over the posterior distribution of a grid of scales. As for the filter update, we prove and show that it is possible to use all previous training examples to update the filter taps very efficiently using fixed-point optimization. We validate the efficacy of our approach on two tracking datasets, VOT2014 and VOT2015.
Kalman filter data assimilation: targeting observations and parameter estimation.
Bellsky, Thomas; Kostelich, Eric J; Mahalov, Alex
2014-06-01
This paper studies the effect of targeted observations on state and parameter estimates determined with Kalman filter data assimilation (DA) techniques. We first provide an analytical result demonstrating that targeting observations within the Kalman filter for a linear model can significantly reduce state estimation error as opposed to fixed or randomly located observations. We next conduct observing system simulation experiments for a chaotic model of meteorological interest, where we demonstrate that the local ensemble transform Kalman filter (LETKF) with targeted observations based on largest ensemble variance is skillful in providing more accurate state estimates than the LETKF with randomly located observations. Additionally, we find that a hybrid ensemble Kalman filter parameter estimation method accurately updates model parameters within the targeted observation context to further improve state estimation.
Applications of adaptive filters in active noise control
Darlington, Paul
The active reduction of acoustic noise is achieved by the addition of a cancelling acoustic signal to the unwanted sound. Successful definition of the cancelling signal amounts to a system identification problem. Recent advances in adaptive signal processing have allowed this problem to be tackled using adaptive filters, which offer significant advantages over conventional solutions. The extension of adaptive noise cancelling techniques, which were developed in the electrical signal conditioning context, to the control of acoustic systems is studied. An analysis is presented of the behavior of the Widrow-Hoff LMS adaptive noise canceller with a linear filter in its control loop. The active control of plane waves propagating axially in a hardwalled duct is used as a motivating model problem. The model problem also motivates the study of the effects of feedback around an LMS adaptive filter. An alternative stochastic gradient algorithm for controlling adaptive filters in the presence of feedback is presented.
Fractional fourier-based filter for denoising elastograms.
Subramaniam, Suba R; Hon, Tsz K; Georgakis, Apostolos; Papadakis, George
2010-01-01
In ultrasound elastography, tissue axial strains are obtained through the differentiation of axial displacements. However, the application of the gradient operator amplifies the noise present in the displacement rendering unreadable axial strains. In this paper a novel denoising scheme based on repeated filtering in consecutive fractional Fourier transform domains is proposed for the accurate estimation of axial strains. The presented method generates a time-varying cutoff threshold that can accommodate the discrete non-stationarities present in the displacement signal. This is achieved by means of a filter circuit which is composed of a small number of ordinary linear low-pass filters and appropriate fractional Fourier transforms. We show that the proposed method can improve the contrast-to-noise ratio (CNR(e)) of the elastogram outperforming conventional low-pass filters.
Filtering and control for classes of two-dimensional systems
Wu, Ligang
2015-01-01
This book focuses on filtering, control and model-reduction problems for two-dimensional (2-D) systems with imperfect information. The time-delayed 2-D systems covered have system parameters subject to uncertain, stochastic and parameter-varying changes. After an initial introduction of 2-D systems and the ideas of linear repetitive processes, the text is divided into two parts detailing: · general theory and methods of analysis and optimal synthesis for 2-D systems; and · application of the general theory to the particular case of differential/discrete linear repetitive processes. The methods developed provide a framework for stability and performance analysis, optimal and robust controller and filter design and model approximation for the systems considered. Solutions to the design problems are couched in terms of linear matrix inequalities. For readers interested in the state of the art in linear filtering, control and model reduction, Filtering and Control for Classes of ...
DSP based adaptive hysteresis-band current controlled active filter ...
African Journals Online (AJOL)
The use of non-linear loads critically affects the quality of supply by drawing harmonic currents and reactive power from the electrical distribution system. Active power filters are the most viable solution for solving such power quality problems in compliance with the harmonic standards. This article presents a digital signal ...
Load compensation for single phase system using series active filter ...
African Journals Online (AJOL)
In this paper a new control strategy for series active filter has been proposed for improvement of power quality problems in single phase system. Since the non linear loads in the system comprises of both voltage source harmonic and current source harmonic loads and the dominancy of each type of load varies from time to ...
Classifying Linear Canonical Relations
Lorand, Jonathan
2015-01-01
In this Master's thesis, we consider the problem of classifying, up to conjugation by linear symplectomorphisms, linear canonical relations (lagrangian correspondences) from a finite-dimensional symplectic vector space to itself. We give an elementary introduction to the theory of linear canonical relations and present partial results toward the classification problem. This exposition should be accessible to undergraduate students with a basic familiarity with linear algebra.
Energy Technology Data Exchange (ETDEWEB)
Peterson, David; Stofleth, Jerome H.; Saul, Venner W.
2017-07-11
Linear shaped charges are described herein. In a general embodiment, the linear shaped charge has an explosive with an elongated arrowhead-shaped profile. The linear shaped charge also has and an elongated v-shaped liner that is inset into a recess of the explosive. Another linear shaped charge includes an explosive that is shaped as a star-shaped prism. Liners are inset into crevices of the explosive, where the explosive acts as a tamper.
Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.
1982-01-01
The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.
Cigarette Smoke Cadmium Breakthrough from Traditional Filters: Implications for Exposure
Pappas, R. Steven; Fresquez, Mark R.; Watson, Clifford H.
2015-01-01
Cadmium, a carcinogenic metal, is highly toxic to renal, skeletal, nervous, respiratory, and cardiovascular systems. Accurate and precise quantification of mainstream smoke cadmium levels in cigarette smoke is important because of exposure concerns. The two most common trapping techniques for collecting mainstream tobacco smoke particulate for analysis are glass fiber filters and electrostatic precipitators. We observed that a significant portion of total cadmium passed through standard glass fiber filters that are used to trap particulate matter. We therefore developed platinum traps to collect the cadmium that passed through the filters and tested a variety of cigarettes with different physical parameters for quantities of cadmium that passed though the filters. We found less than 1% cadmium passed through electrostatic precipitators. In contrast, cadmium that passed through 92 mm glass fiber filters on a rotary smoking machine was significantly higher, ranging from 3.5% to 22.9% of total smoke cadmium deliveries. Cadmium passed through 44 mm filters typically used on linear smoking machines to an even greater degree, ranging from 13.6% to 30.4% of the total smoke cadmium deliveries. Differences in the cadmium that passed through from the glass fiber filters and electrostatic precipitator could be explained in part if cadmium resides in the smaller mainstream smoke aerosol particle sizes. Differences in particle size distribution could have toxicological implications and could help explain the pulmonary and cardiovascular cadmium uptake in smokers. PMID:25313385
Practical Gammatone-Like Filters for Auditory Processing
Directory of Open Access Journals (Sweden)
R. F. Lyon
2007-12-01
Full Text Available This paper deals with continuous-time filter transfer functions that resemble tuning curves at particular set of places on the basilar membrane of the biological cochlea and that are suitable for practical VLSI implementations. The resulting filters can be used in a filterbank architecture to realize cochlea implants or auditory processors of increased biorealism. To put the reader into context, the paper starts with a short review on the gammatone filter and then exposes two of its variants, namely, the differentiated all-pole gammatone filter (DAPGF and one-zero gammatone filter (OZGF, filter responses that provide a robust foundation for modeling cochlea transfer functions. The DAPGF and OZGF responses are attractive because they exhibit certain characteristics suitable for modeling a variety of auditory data: level-dependent gain, linear tail for frequencies well below the center frequency, asymmetry, and so forth. In addition, their form suggests their implementation by means of cascades of N identical two-pole systems which render them as excellent candidates for efficient analog or digital VLSI realizations. We provide results that shed light on their characteristics and attributes and which can also serve as Ã¢Â€Âœdesign curvesÃ¢Â€Â for fitting these responses to frequency-domain physiological data. The DAPGF and OZGF responses are essentially a Ã¢Â€Âœmissing linkÃ¢Â€Â between physiological, electrical, and mechanical models for auditory filtering.
Performance Analysis of Handover Measurements and Layer 3 Filtering for UTRAN LTE
DEFF Research Database (Denmark)
Anas, Mohmmad; Calabrese, Francesco Davide; Östling, Per-Erik
2007-01-01
B domain L3 filtering has been studied by using a dynamic system level simulator for a 3GPP UTRAN LTE recommended scenario. The results suggest that RSS measurement with linear or dB domain L3 filtering is a better criterion for handover in terms of reduced number of handovers for a small penalty...
A CMOS transconductance-C filter technique for very high frequencies
Nauta, Bram
1992-01-01
CMOS circuits for integrated analog filters at very high frequencies, based on transconductance-C integrators, are presented. First a differential transconductance element based on CMOS inverters is described. With this circuit a linear, tunable integrator for very-high-frequency integrated filters
Tunable n-path notch filters for blocker suppression: modeling and verification
Ghaffari, A.; Klumperink, Eric A.M.; Nauta, Bram
2013-01-01
N-path switched-RC circuits can realize filters with very high linearity and compression point while they are tunable by a clock frequency. In this paper, both differential and single-ended N-path notch filters are modeled and analyzed. Closed-form equations provide design equations for the main
International Nuclear Information System (INIS)
Zhao, Yibo; Jiang, Yi; Feng, Jiuchao; Wu, Lifu
2016-01-01
Highlights: • A novel nonlinear Wiener adaptive filters based on the backslash operator are proposed. • The identification approach to the memristor-based chaotic systems using the proposed adaptive filters. • The weight update algorithm and convergence characteristics for the proposed adaptive filters are derived. - Abstract: Memristor-based chaotic systems have complex dynamical behaviors, which are characterized as nonlinear and hysteresis characteristics. Modeling and identification of their nonlinear model is an important premise for analyzing the dynamical behavior of the memristor-based chaotic systems. This paper presents a novel nonlinear Wiener adaptive filtering identification approach to the memristor-based chaotic systems. The linear part of Wiener model consists of the linear transversal adaptive filters, the nonlinear part consists of nonlinear adaptive filters based on the backslash operator for the hysteresis characteristics of the memristor. The weight update algorithms for the linear and nonlinear adaptive filters are derived. Final computer simulation results show the effectiveness as well as fast convergence characteristics. Comparing with the adaptive nonlinear polynomial filters, the proposed nonlinear adaptive filters have less identification error.
Multilevel ensemble Kalman filtering
Hoel, Hakon
2016-06-14
This work embeds a multilevel Monte Carlo sampling strategy into the Monte Carlo step of the ensemble Kalman filter (EnKF) in the setting of finite dimensional signal evolution and noisy discrete-time observations. The signal dynamics is assumed to be governed by a stochastic differential equation (SDE), and a hierarchy of time grids is introduced for multilevel numerical integration of that SDE. The resulting multilevel EnKF is proved to asymptotically outperform EnKF in terms of computational cost versus approximation accuracy. The theoretical results are illustrated numerically.
Advances in Collaborative Filtering
Koren, Yehuda; Bell, Robert
The collaborative filtering (CF) approach to recommenders has recently enjoyed much interest and progress. The fact that it played a central role within the recently completed Netflix competition has contributed to its popularity. This chapter surveys the recent progress in the field. Matrix factorization techniques, which became a first choice for implementing CF, are described together with recent innovations. We also describe several extensions that bring competitive accuracy into neighborhood methods, which used to dominate the field. The chapter demonstrates how to utilize temporal models and implicit feedback to extend models accuracy. In passing, we include detailed descriptions of some the central methods developed for tackling the challenge of the Netflix Prize competition.
M2 FILTER FOR SPECKLE NOISE SUPPRESSION IN BREAST ULTRASOUND IMAGES
Directory of Open Access Journals (Sweden)
E.S. Samundeeswari
2016-11-01
Full Text Available Breast cancer, commonly found in women is a serious life threatening disease due to its invasive nature. Ultrasound (US imaging method plays an effective role in screening early detection and diagnosis of Breast cancer. Speckle noise generally affects medical ultrasound images and also causes a number of difficulties in identifying the Region of Interest. Suppressing speckle noise is a challenging task as it destroys fine edge details. No specific filter is designed yet to get a noise free BUS image that is contaminated by speckle noise. In this paper M2 filter, a novel hybrid of linear and nonlinear filter is proposed and compared to other spatial filters with 3×3 kernel size. The performance of the proposed M2 filter is measured by statistical quantity parameters like MSE, PSNR and SSI. The experimental analysis clearly shows that the proposed M2 filter outperforms better than other spatial filters by 2% high PSNR values with regards to speckle suppression.
Cyclic Wiener Filtering Algorithm in Discrete Cosine Transform Domain for Vibration Signal
Directory of Open Access Journals (Sweden)
Zhang Feng
2016-01-01
Full Text Available In order to solve the problem that the effect of using cyclic Wiener filter directly to remove the noise on the non-stationary vibration signal is poor, the paper applies discrete cosine transform to the cyclic Wiener filter, proposing the cyclic Wiener filtering algorithm in discrete cosine transform domain for the vibration signal. Using the energy concentration characteristic of discrete cosine transform and the linear phase characteristic of cyclic Wiener filtering, the paper adopts the method of combining both of them with segmented processing to give full play to the performance of the Wiener filter and achieves a better filtering effect with a lower filter order. Combining with industrial field turbine vibration signal, paper makes a simulation analysis for this algorithm. The result of simulation shows that the algorithm has a good noise filtering effect, and the filtered signal has no obvious phase distortion. So, the algorithm is suitable for removing noise on vibration signal and the filtering effect is better than just using cyclic Wiener filter or DCT filter only.
Duthel, Thomas; Fritzsche, Daniel; Michael, Falk; Schäffer, Christian G.; Breuer, Dirk
2006-11-01
A quasi-analytic synthesis algorithm is presented to determine the coefficients of nonrecursive optical delay line filters with approximately constant or linear dispersion. These filters can be used to compensate the dispersion and dispersion slope effects in high-speed optical transmission systems. The synthesis of the coefficients is based on a rigorous analysis of the impact of transfer function on the filter's dispersion behavior. The advantages of this algorithm are that filters of arbitrary order have similar dispersion shapes and that the dispersion values of the filters can be adjusted by controlling a single parameter instead of optimizing all the filter coefficients independently. The realized dispersion shapes are reproducible, and no iterative algorithms are needed for the calculation. The abilities of the synthesized filters are proven in system simulations at 40 Gb/s. Therefore, filters of different orders were investigated in the static case (i.e., with a fixed dispersion) and the dynamic case, where the dispersion of the filter is adapted to the requirements of the simulated optical transmission channel. In addition, the influences of the filter's free spectral range and of the utilized bandwidth inside a filter period were investigated. To the best of our knowledge, both the analytical synthesis approach and the investigation of the optimal filter configuration are presented for the first time.
Hagedorn, Peter
1982-01-01
Thoroughly revised and updated, the second edition of this concise text provides an engineer's view of non-linear oscillations, explaining the most important phenomena and solution methods. Non-linear descriptions are important because under certain conditions there occur large deviations from the behaviors predicted by linear differential equations. In some cases, completely new phenomena arise that are not possible in purely linear systems. The theory of non-linear oscillations thus has important applications in classical mechanics, electronics, communications, biology, and many other branches of science. In addition to many other changes, this edition has a new section on bifurcation theory, including Hopf's theorem.
Leukodepletion blood filters: filter design and mechanisms of leukocyte removal.
Dzik, S
1993-04-01
Modern leukocyte removal filters have been developed after years of refinement in design. Current filters are composite filters in which synthetic microfiber material is prepared as a nonwoven web. The filter material may be surface modified to alter surface tension or charge to improve performance. The housing design promotes effective contact of blood with the filter material and decreases shear forces. The exact mechanisms by which these filters remove leukocytes from blood components are uncertain, but likely represent a combination of both physical and biological processes whose contributions to leukocyte removal are interdependent. Small-pore microfiber webs result in barrier phenomena that permit retention of individual cells and increase the total adsorptive area of the filter. Modifications in surface charge can increase or decrease cell attraction to the fibers. Optimum interfacial surface tensions between blood cells, plasma, and filter fibers not only permit effective blood flow through small fiber pores, but also facilitate cell contact with the material. Barrier retention is a common mechanism for all modern leukocyte-removal filters and applies to all leukocyte subtypes. Because barrier retention does not depend on cell viability, it is operative for cells of any age and will retain any nondeformable cell, including whole nuclei from lymphocytes or monocytes. Barrier retention is supplemented by retention by adhesion. RBCs, lymphocytes, monocytes, granulocytes, and platelets differ in their relative adhesiveness to filter fibers. Different adhesive mechanisms are used in filters designed for RBCs compared with filters designed for platelets. Although lymphocytes, monocytes, and granulocytes can adhere directly to filter fibers, the biological mechanisms underlying cell adhesion may differ for these cell types. These differences may depend on expression of cell adhesion molecules. In the case of filtration of fresh RBCs, platelet-leukocyte interaction
Schuster, B G; Osetek, D J
1978-02-01
Current methods for evaluating the performance and reliability of high-efficiency air cleaning systems use forward light-scattering photometers and DOP aerosol. This method is limited to measuring protection factors of 10(4) or 10(5) and has poor sensitivity to particles less than .3 micron. More accurate determination of system performance could be made by measuring two filter stages with a single test. Because of the large protection factors of a two-stage system, it is necessary to use high challenge aerosol concentrations and long downstream sampling times. Concentrations were measured using an intra-cavity laser light-scattering aerosol spectrometer which is capable of detection of single particles ranging in size from 0.07 to 3.00 micron diameter. The results of several tests with challenge aerosols of both NaCl and DOP yielded protection factors ranging from 1.4 x 10(7) to 3.0 x 10(9) for two HEPA filters in series.
Nanoparticle optical notch filters
Kasinadhuni, Pradeep Kumar
Developing novel light blocking products involves the design of a nanoparticle optical notch filter, working on the principle of localized surface plasmon resonance (LSPR). These light blocking products can be used in many applications. One such application is to naturally reduce migraine headaches and light sensitivity. Melanopsin ganglion cells present in the retina of the human eye, connect to the suprachiasmatic nucleus (SCN-the body's clock) in the brain, where they participate in the entrainment of the circadian rhythms. As the Melanopsin ganglion cells are involved in triggering the migraine headaches in photophobic patients, it is necessary to block the part of visible spectrum that activates these cells. It is observed from the action potential spectrum of the ganglion cells that they absorb light ranging from 450-500nm (blue-green part) of the visible spectrum with a λmax (peak sensitivity) of around 480nm (blue line). Currently prescribed for migraine patients is the FL-41 coating, which blocks a broad range of wavelengths, including wavelengths associated with melanopsin absorption. The nanoparticle optical notch filter is designed to block light only at 480nm, hence offering an effective prescription for the treatment of migraine headaches.
Optimized FIR filters for digital pulse compression of biphase codes with low sidelobes
Sanal, M.; Kuloor, R.; Sagayaraj, M. J.
In miniaturized radars where power, real estate, speed and low cost are tight constraints and Doppler tolerance is not a major concern biphase codes are popular and FIR filter is used for digital pulse compression (DPC) implementation to achieve required range resolution. Disadvantage of low peak to sidelobe ratio (PSR) of biphase codes can be overcome by linear programming for either single stage mismatched filter or two stage approach i.e. matched filter followed by sidelobe suppression filter (SSF) filter. Linear programming (LP) calls for longer filter lengths to obtain desirable PSR. Longer the filter length greater will be the number of multipliers, hence more will be the requirement of logic resources used in the FPGAs and many time becomes design challenge for system on chip (SoC) requirement. This requirement of multipliers can be brought down by clustering the tap weights of the filter by kmeans clustering algorithm at the cost of few dB deterioration in PSR. The cluster centroid as tap weight reduces logic used in FPGA for FIR filters to a great extent by reducing number of weight multipliers. Since k-means clustering is an iterative algorithm, centroid for weights cluster is different in different iterations and causes different clusters. This causes difference in clustering of weights and sometimes even it may happen that lesser number of multiplier and lesser length of filter provide better PSR.
Optical systolic solutions of linear algebraic equations
Neuman, C. P.; Casasent, D.
1984-01-01
The philosophy and data encoding possible in systolic array optical processor (SAOP) were reviewed. The multitude of linear algebraic operations achievable on this architecture is examined. These operations include such linear algebraic algorithms as: matrix-decomposition, direct and indirect solutions, implicit and explicit methods for partial differential equations, eigenvalue and eigenvector calculations, and singular value decomposition. This architecture can be utilized to realize general techniques for solving matrix linear and nonlinear algebraic equations, least mean square error solutions, FIR filters, and nested-loop algorithms for control engineering applications. The data flow and pipelining of operations, design of parallel algorithms and flexible architectures, application of these architectures to computationally intensive physical problems, error source modeling of optical processors, and matching of the computational needs of practical engineering problems to the capabilities of optical processors are emphasized.
Adaptive ship autopilot with wave filter
Directory of Open Access Journals (Sweden)
Steinar Sælid
1983-01-01
Full Text Available This paper is concerned with analysis and design of an adaptive autopilot for ships. The design is based on a low and high frequency model of the vessel motion adequate to ship steering. The low frequency model describes the vessel response to rudder control and slowly varying environmental forces. The high frequency model represents the wave induced oscillatory part of the yaw motion. The models are used in a Kalman filter and the rudder control is computed from linear quadratic theory based on the low frequency part of the vector. This yields a very effective filtering of the wave component of the yaw motion. Proper operation of this filter/controller structure requires knowledge of the vessel model parameters and the dominating wave frequency. The vessel parameters are estimated on line by a recursive prediction error method. In order to reduce the computing requirements, the state estimator is operated using scheduled gains. This results in an easy and robust design. The convergence properties are investigated by using the method of Ljung. The performance is confirmed by simulation experiments.
Target Response Adaptation for Correlation Filter Tracking
Bibi, Adel Aamer
2016-09-16
Most correlation filter (CF) based trackers utilize the circulant structure of the training data to learn a linear filter that best regresses this data to a hand-crafted target response. These circularly shifted patches are only approximations to actual translations in the image, which become unreliable in many realistic tracking scenarios including fast motion, occlusion, etc. In these cases, the traditional use of a single centered Gaussian as the target response impedes tracker performance and can lead to unrecoverable drift. To circumvent this major drawback, we propose a generic framework that can adaptively change the target response from frame to frame, so that the tracker is less sensitive to the cases where circular shifts do not reliably approximate translations. To do that, we reformulate the underlying optimization to solve for both the filter and target response jointly, where the latter is regularized by measurements made using actual translations. This joint problem has a closed form solution and thus allows for multiple templates, kernels, and multi-dimensional features. Extensive experiments on the popular OTB100 benchmark show that our target adaptive framework can be combined with many CF trackers to realize significant overall performance improvement (ranging from 3 %-13.5% in precision and 3.2 %-13% in accuracy), especially in categories where this adaptation is necessary (e.g. fast motion, motion blur, etc.). © Springer International Publishing AG 2016.
Reconfigurable Mixed Mode Universal Filter
Directory of Open Access Journals (Sweden)
Neelofer Afzal
2014-01-01
Full Text Available This paper presents a novel mixed mode universal filter configuration capable of working in voltage and transimpedance mode. The proposed single filter configuration can be reconfigured digitally to realize all the five second order filter functions (types at single output port. Other salient features of proposed configuration include independently programmable filter parameters, full cascadability, and low sensitivity figure. However, all these features are provided at the cost of quite large number of active elements. It needs three digitally programmable current feedback amplifiers and three digitally programmable current conveyors. Use of six active elements is justified by introducing three additional reduced hardware mixed mode universal filter configurations and its comparison with reported filters.
Cosmic statistics on linear scales
Papai, Peter
We use the formalism of Szapudi (2004) to derive full explicit expressions for the linear two-point correlation function, including redshift space distortions and large angle effects. We take into account a non-perturbative geometric term in the Jacobian, which is still linear in terms of the dynamics. This term had been identified previously (Kaiser, 1987; Hamilton and Culhane, 1996), but has been neglected in all subsequent explicit calculations of the linear redshift space two-point correlation function. Our results represent a significant correction to previous explicit expressions and608are in excellent agreement with our measurements in the Hubble Volume Simulation. We measure the matter probability distribution function (PDF) via counts in cells in a volume limited subsample of the Sloan Digital Sky Survey (SDSS) Luminous Red Galaxy Catalog on scales from 30 h-1 Mpc to 150 h-1Mpc and estimate the linear integrated Sachs-Wolfe (ISW) effect produced by supervoids and superclusters in the tail of the PDF. We characterize the PDF by the variance, S3, and S4, and study in simulations the systematic effects due to finite volume, survey shape and redshift distortion. We compare our measurement to the prediction of ΛCDM with linear bias and find a good agreement. We use the moments to approximate the tail of the PDF with analytic functions. A simple Gaussian model for the superstructures appears to be consistent with the claim by Granett et al. (2008) that density fluctuations on 100 h-1Mpc scales produce hot and cold spots with DeltaT ≈ 10mu K on the cosmic microwave background. We calculate the full density and ISW profiles of spherical superstructures. We find that the Gaussian assumptions capable of describing N-body simulations and simulated ISW maps remarkably well on large scales. We construct an ISW map based on locations of superstructures identified previously in the SDSS Luminous Red Galaxy sample. A matched filter analysis of the cosmic microwave
Image defog algorithm based on open close filter and gradient domain recursive bilateral filter
Liu, Daqian; Liu, Wanjun; Zhao, Qingguo; Fei, Bowen
2017-11-01
To solve the problems of fuzzy details, color distortion, low brightness of the image obtained by the dark channel prior defog algorithm, an image defog algorithm based on open close filter and gradient domain recursive bilateral filter, referred to as OCRBF, was put forward. The algorithm named OCRBF firstly makes use of weighted quad tree to obtain more accurate the global atmospheric value, then exploits multiple-structure element morphological open and close filter towards the minimum channel map to obtain a rough scattering map by dark channel prior, makes use of variogram to correct the transmittance map,and uses gradient domain recursive bilateral filter for the smooth operation, finally gets recovery images by image degradation model, and makes contrast adjustment to get bright, clear and no fog image. A large number of experimental results show that the proposed defog method in this paper can be good to remove the fog , recover color and definition of the fog image containing close range image, image perspective, the image including the bright areas very well, compared with other image defog algorithms,obtain more clear and natural fog free images with details of higher visibility, what's more, the relationship between the time complexity of SIDA algorithm and the number of image pixels is a linear correlation.
DSP Control of Line Hybrid Active Filter
DEFF Research Database (Denmark)
Dan, Stan George; Benjamin, Doniga Daniel; Magureanu, R.
2005-01-01
Active Power Filters have been intensively explored in the past decade. Hybrid active filters inherit the efficiency of passive filters and the improved performance of active filters, and thus constitute a viable improved approach for harmonic compensation. In this paper a parallel hybrid filter...... is studied for current harmonic compensation. The hybrid filter is formed by a single tuned Le filter and a small-rated power active filter, which are directly connected in series without any matching transformer. Thus the required rating of the active filter is much smaller than a conventional standalone...... active filter. Simulation and experimental results obtained in laboratory confirmed the validity and effectiveness of the control....
Digital filtering in nuclear medicine
International Nuclear Information System (INIS)
Miller, T.R.; Sampathkumaran, S.
1982-01-01
Digital filtering is a powerful mathematical technique in computer analysis of nuclear medicine studies. The basic concepts of object-domain and frequency-domain filtering are presented in simple, largely nonmathemaical terms. Computational methods are described using both the Fourier transform and convolution techniques. The frequency response is described and used to represent the behavior of several classes of filters. These concepts are illustrated with examples drawn from a variety of important applications in nuclear medicine
Advanced simulation of digital filters
Doyle, Gerald S.
1980-01-01
Approved for public release; distribution is unlimited An Advanced Simulation of Digital Filters has been implemented on the IBM/67 computer utilizing Tektronix hardware and software. The program package is appropriate for persons beginning their study of digital signal processing or for filter analysis. The ASDF programs provide the user with an interactive method by which filter pole and zero locations can be manipulated. Graphical output on both the Tektronix graphics screen and the ...
Multi-filter spectrophotometry simulations
Callaghan, Kim A. S.; Gibson, Brad K.; Hickson, Paul
1993-01-01
To complement both the multi-filter observations of quasar environments described in these proceedings, as well as the proposed UBC 2.7 m Liquid Mirror Telescope (LMT) redshift survey, we have initiated a program of simulated multi-filter spectrophotometry. The goal of this work, still very much in progress, is a better quantitative assessment of the multiband technique as a viable mechanism for obtaining useful redshift and morphological class information from large scale multi-filter surveys.
A Novel Approach to the Design of Oversampling Low-Delay Complex-Modulated Filter Bank Pairs
Directory of Open Access Journals (Sweden)
Daniel Alfsmann
2009-01-01
Full Text Available In this contribution we present a method to design prototype filters of oversampling uniform complex-modulated FIR filter bank pairs. Especially, we present a noniterative two-step procedure: (i design of analysis prototype filter with minimum group delay and approximately linear-phase frequency response in the passband and the transition band and (ii Design of synthesis prototype filter such that the filter bank pairs distortion function approximates a linear-phase allpass function. Both aliasing and imaging are controlled by introducing sophisticated stopband constraints in both steps. Moreover, we investigate the delay properties of oversampling uniform complex-modulated FIR filter bank pairs in order to achieve the lowest possible filter bank delay. An illustrative design example demonstrates the potential of the design approach.
Adaptive filtering and change detection
Gustafsson, Fredrik
2003-01-01
Adaptive filtering is a classical branch of digital signal processing (DSP). Industrial interest in adaptive filtering grows continuously with the increase in computer performance that allows ever more conplex algorithms to be run in real-time. Change detection is a type of adaptive filtering for non-stationary signals and is also the basic tool in fault detection and diagnosis. Often considered as separate subjects Adaptive Filtering and Change Detection bridges a gap in the literature with a unified treatment of these areas, emphasizing that change detection is a natural extensi
The intractable cigarette 'filter problem'.
Harris, Bradford
2011-05-01
When lung cancer fears emerged in the 1950s, cigarette companies initiated a shift in cigarette design from unfiltered to filtered cigarettes. Both the ineffectiveness of cigarette filters and the tobacco industry's misleading marketing of the benefits of filtered cigarettes have been well documented. However, during the 1950s and 1960s, American cigarette companies spent millions of dollars to solve what the industry identified as the 'filter problem'. These extensive filter research and development efforts suggest a phase of genuine optimism among cigarette designers that cigarette filters could be engineered to mitigate the health hazards of smoking. This paper explores the early history of cigarette filter research and development in order to elucidate why and when seemingly sincere filter engineering efforts devolved into manipulations in cigarette design to sustain cigarette marketing and mitigate consumers' concerns about the health consequences of smoking. Relevant word and phrase searches were conducted in the Legacy Tobacco Documents Library online database, Google Patents, and media and medical databases including ProQuest, JSTOR, Medline and PubMed. 13 tobacco industry documents were identified that track prominent developments involved in what the industry referred to as the 'filter problem'. These reveal a period of intense focus on the 'filter problem' that persisted from the mid-1950s to the mid-1960s, featuring collaborations between cigarette producers and large American chemical and textile companies to develop effective filters. In addition, the documents reveal how cigarette filter researchers' growing scientific knowledge of smoke chemistry led to increasing recognition that filters were unlikely to offer significant health protection. One of the primary concerns of cigarette producers was to design cigarette filters that could be economically incorporated into the massive scale of cigarette production. The synthetic plastic cellulose acetate
Nagare, Mukund B; Patil, Bhushan D; Holambe, Raghunath S
2017-02-01
B-Mode ultrasound images are degraded by inherent noise called Speckle, which creates a considerable impact on image quality. This noise reduces the accuracy of image analysis and interpretation. Therefore, reduction of speckle noise is an essential task which improves the accuracy of the clinical diagnostics. In this paper, a Multi-directional perfect-reconstruction (PR) filter bank is proposed based on 2-D eigenfilter approach. The proposed method used for the design of two-dimensional (2-D) two-channel linear-phase FIR perfect-reconstruction filter bank. In this method, the fan shaped, diamond shaped and checkerboard shaped filters are designed. The quadratic measure of the error function between the passband and stopband of the filter has been used an objective function. First, the low-pass analysis filter is designed and then the PR condition has been expressed as a set of linear constraints on the corresponding synthesis low-pass filter. Subsequently, the corresponding synthesis filter is designed using the eigenfilter design method with linear constraints. The newly designed 2-D filters are used in translation invariant pyramidal directional filter bank (TIPDFB) for reduction of speckle noise in ultrasound images. The proposed 2-D filters give better symmetry, regularity and frequency selectivity of the filters in comparison to existing design methods. The proposed method is validated on synthetic and real ultrasound data which ensures improvement in the quality of ultrasound images and efficiently suppresses the speckle noise compared to existing methods.
Linearly constrained minimax optimization
DEFF Research Database (Denmark)
Madsen, Kaj; Schjær-Jacobsen, Hans
1978-01-01
We present an algorithm for nonlinear minimax optimization subject to linear equality and inequality constraints which requires first order partial derivatives. The algorithm is based on successive linear approximations to the functions defining the problem. The resulting linear subproblems...... are solved in the minimax sense subject to the linear constraints. This ensures a feasible-point algorithm. Further, we introduce local bounds on the solutions of the linear subproblems, the bounds being adjusted automatically, depending on the quality of the linear approximations. It is proved...... that the algorithm will always converge to the set of stationary points of the problem, a stationary point being defined in terms of the generalized gradients of the minimax objective function. It is further proved that, under mild regularity conditions, the algorithm is identical to a quadratically convergent...
Blyth, T S
2002-01-01
Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be of particular interest to readers:...
Two-stage nonlinear filter for processing of scintigrams
International Nuclear Information System (INIS)
Pistor, P.; Hoener, J.; Walch, G.
1973-01-01
Linear filters which have been successfully used to process scintigrams can be modified in a meaningful manner by a preceding non-linear point operator, the Anscombe-transform. The advantages are: The scintigraphic noise becomes quasi-stationary and thus independent of the image. By these means the noise can be readily allowed for in the design of the convolutional operators. Transformed images with a stationary signal-to-noise ratio and a non-constant background t correspond to untransformed images with a signal-to-noise ratio that varies in certain limits. The filter chain automatically adapts to these changes. Our filter has the advantage over the majority of space-varying filters of being realizable by Fast Fourier Transform techniques. These advantages have to be paid for by reduced signal amplitude to background ratios. If the background is known, this shortcoming can be easily by-passed by processing trendfree scintigrams. If not, the filter chain should be completed by a third operator which reverses the Anscombe-transform. The Anscombe-transform influences the signal-to-noise ratio of cold spots and of hot spots in a different way. It remains an open question if this fact can be utilized to directly influence the detectability of the different kinds of spots
Noise Shaping Filter Compensating PWM Distortion for Fully Digital Amplifier
Yoneya, Akihiko
The full-digital audio amplifiers have several merits such as a high power enabling a small size of the amplifier and digital implementation of the signal processing which allows desired precision of the processing except for the final stage switching amplifiers. Unfortunately, the pulse width modulation (PWM) causes signal distortions because of the non-linearity of the modulation from the viewpoint of the transient response. This paper proposes a compensation method of the PWM distortion with feedback approach. In the noise-shaping filter of the delta-sigma modulator to calculate the pulse codes for the PWM, the distortion caused by the PWM is evaluated and fed it back to compensate the distortion. Eventually the filter is implemented as a state-variable filter with non-linear feedback from the quantizer. The calculation of the filter elements is also described. By using proposed filters, PWM signals with small distortions and small floor noise can be obtained to realize high-fidelity audio amplifiers.
Design of Optimal Quincunx Filter Banks for Image Coding
Directory of Open Access Journals (Sweden)
Chen Yi
2007-01-01
Full Text Available Two new optimization-based methods are proposed for the design of high-performance quincunx filter banks for the application of image coding. These new techniques are used to build linear-phase finite-length-impulse-response (FIR perfect-reconstruction (PR systems with high coding gain, good frequency selectivity, and certain prescribed vanishing-moment properties. A parametrization of quincunx filter banks based on the lifting framework is employed to structurally impose the PR and linear-phase conditions. Then, the coding gain is maximized subject to a set of constraints on vanishing moments and frequency selectivity. Examples of filter banks designed using the newly proposed methods are presented and shown to be highly effective for image coding. In particular, our new optimal designs are shown to outperform three previously proposed quincunx filter banks in 72% to 95% of our experimental test cases. Moreover, in some limited cases, our optimal designs are even able to outperform the well-known (separable 9/7 filter bank (from the JPEG-2000 standard.
Bridging the ensemble Kalman filter and particle filters
Energy Technology Data Exchange (ETDEWEB)
Stordal, Andreas Stoerksen; Karlsen, Hans A.; Naevdal, Geir; Skaug, Hans J.; Valles, Brice
2009-12-15
The nonlinear filtering problem occurs in many scientific areas. Sequential Monte Carlo solutions with the correct asymptotic behavior such as particle filters exist but they are computationally too expensive when working with high-dimensional systems. The ensemble Kalman filter is a more robust method that has shown promising results with a small sample size but the samples are not guaranteed to come from the true posterior distribution. By approximating the model error with Gaussian kernels we get the advantage of both a Kalman correction and a weighting step. The resulting Gaussian mixture filter has the advantage of both a local Kalman type correction and the weighting/re sampling step of a particle filter. The Gaussian mixture approximation relies on a tunable bandwidth parameter which often has to be kept quite large in order to avoid weight collapse in high dimensions. As a result, the Kalman correction is too large to capture highly non-Gaussian posterior distributions. In this paper we have extended the Gaussian mixture filter (Hoteit et al., 2008b) and also made the connection to particle filters more transparent. In particular we introduce a tuning parameter for the importance weights. In the last part of the paper we have performed a simulation experiment with the Lorenz40 model where our method has been compared to the EnKF and a full implementation of a particle filter. The results clearly indicate that the new method has advantages compared to the standard EnKF. (Author)
Efficient Non Linear Loudspeakers
DEFF Research Database (Denmark)
Petersen, Bo R.; Agerkvist, Finn T.
2006-01-01
Loudspeakers have traditionally been designed to be as linear as possible. However, as techniques for compensating non linearities are emerging, it becomes possible to use other design criteria. This paper present and examines a new idea for improving the efficiency of loudspeakers at high levels...... by changing the voice coil layout. This deliberate non-linear design has the benefit that a smaller amplifier can be used, which has the benefit of reducing system cost as well as reducing power consumption....
Matrices and linear transformations
Cullen, Charles G
1990-01-01
""Comprehensive . . . an excellent introduction to the subject."" - Electronic Engineer's Design Magazine.This introductory textbook, aimed at sophomore- and junior-level undergraduates in mathematics, engineering, and the physical sciences, offers a smooth, in-depth treatment of linear algebra and matrix theory. The major objects of study are matrices over an arbitrary field. Contents include Matrices and Linear Systems; Vector Spaces; Determinants; Linear Transformations; Similarity: Part I and Part II; Polynomials and Polynomial Matrices; Matrix Analysis; and Numerical Methods. The first
Gómez-Rodríguez, F.; Linares-Barranco, A.; Paz, R.; Miró-Amarante, L.; Jiménez, G.; Civit, A.
2007-05-01
Address Event Representation (AER) is an emergent neuromorphic interchip communication protocol that allows real-time virtual massive connectivity among huge number of neurons located on different chips.[1] By exploiting high speed digital communication circuits (with nano-seconds timing), synaptic neural connections can be time multiplexed, while neural activity signals (with mili-seconds timings) are sampled at low frequencies. Neurons generate "events" according to their activity levels. That is, more active neurons generate more events per unit time and access the interchip communication channel more frequently than neurons with low activity. In Neuromorphic system development, AER brings some advantages to develop real-time image processing system: (1) AER represents the information like time continuous stream not like a frame; (2) AER sends the most important information first (although this depends on the sender); (3) AER allows to process information as soon as it is received. When AER is used in artificial vision field, each pixel is considered like a neuron, so pixel's intensity is represented like a sequence of events; modifying the number and the frequency of these events, it is possible to make some image filtering. In this paper we present four image filters using AER: (a) Noise addition and suppression, (b) brightness modification, (c) single moving object tracking and (d) geometrical transformations (rotation, translation, reduction and magnification). For testing and debugging, we use USB-AER board developed by Robotic and Technology of Computers Applied to Rehabilitation (RTCAR) research group. This board is based on an FPGA, devoted to manage the AER functionality. This board also includes a micro-controlled for USB communication, 2 Mbytes RAM and 2 AER ports (one for input and one for output).
Faraway, Julian J
2014-01-01
A Hands-On Way to Learning Data AnalysisPart of the core of statistics, linear models are used to make predictions and explain the relationship between the response and the predictors. Understanding linear models is crucial to a broader competence in the practice of statistics. Linear Models with R, Second Edition explains how to use linear models in physical science, engineering, social science, and business applications. The book incorporates several improvements that reflect how the world of R has greatly expanded since the publication of the first edition.New to the Second EditionReorganiz
Carr, Joseph
1996-01-01
The linear IC market is large and growing, as is the demand for well trained technicians and engineers who understand how these devices work and how to apply them. Linear Integrated Circuits provides in-depth coverage of the devices and their operation, but not at the expense of practical applications in which linear devices figure prominently. This book is written for a wide readership from FE and first degree students, to hobbyists and professionals.Chapter 1 offers a general introduction that will provide students with the foundations of linear IC technology. From chapter 2 onwa
Superconducting linear accelerator cryostat
International Nuclear Information System (INIS)
Ben-Zvi, I.; Elkonin, B.V.; Sokolowski, J.S.
1984-01-01
A large vertical cryostat for a superconducting linear accelerator using quarter wave resonators has been developed. The essential technical details, operational experience and performance are described. (author)
Ensemble unscented Kalman filter for state inference in continuous–discrete systems
Directory of Open Access Journals (Sweden)
Bin Liu
2014-05-01
Full Text Available The authors consider non-linear state filtering problem in continuous–discrete systems, where the system dynamics is modelled by a stochastic differential equation, and noisy measurements of the system are obtained at discrete time instances. A novel particle method is proposed based on sequential importance sampling. This approach uses a bank of the continuous–discrete unscented Kalman filters (CDUKFs to obtain the importance proposal distribution, retaining the advantage of the CDUKF in continuous–discrete systems as well as the accuracy of particle filter in highly non-linear systems. Simulation results show that the algorithm outperforms some other benchmarks substantially in estimation accuracy.
Particle Kalman Filtering: A Nonlinear Framework for Ensemble Kalman Filters
Hoteit, Ibrahim
2010-09-19
Optimal nonlinear filtering consists of sequentially determining the conditional probability distribution functions (pdf) of the system state, given the information of the dynamical and measurement processes and the previous measurements. Once the pdfs are obtained, one can determine different estimates, for instance, the minimum variance estimate, or the maximum a posteriori estimate, of the system state. It can be shown that, many filters, including the Kalman filter (KF) and the particle filter (PF), can be derived based on this sequential Bayesian estimation framework. In this contribution, we present a Gaussian mixture‐based framework, called the particle Kalman filter (PKF), and discuss how the different EnKF methods can be derived as simplified variants of the PKF. We also discuss approaches to reducing the computational burden of the PKF in order to make it suitable for complex geosciences applications. We use the strongly nonlinear Lorenz‐96 model to illustrate the performance of the PKF.
Digital notch filter based active damping for LCL filters
DEFF Research Database (Denmark)
Yao, Wenli; Yang, Yongheng; Zhang, Xiaobin
2015-01-01
LCL filters are widely used in Pulse Width Modulation (PWM) inverters. However, it also introduces a pair of unstable resonant poles that may challenge the controller stability. The passive damping is a convenient possibility to tackle the resonance problem at the cost of system overall efficiency....... In this paper, a notch filter based active damping without the requirement of additional sensors is proposed, where the inverter current is employed as the feedback variable. Firstly, a design method of the notch filter for active damping is presented. The entire system stability has then been investigated......, which has revealed that negative variations of the resonant frequency can seriously affect the system stability. In order to make the controller more robust against grid impedance variations, the notch filter frequency is thus designed smaller than the LCL filter resonant frequency, which is done...
Application of DFT Filter Banks and Cosine Modulated Filter Banks in Filtering
Lin, Yuan-Pei; Vaidyanathan, P. P.
1994-01-01
None given. This is a proposal for a paper to be presented at APCCAS '94 in Taipei, Taiwan. (From outline): This work is organized as follows: Sec. II is devoted to the construction of the new 2m channel under-decimated DFT filter bank. Implementation and complexity of this DFT filter bank are discussed therein. IN a similar manner, the new 2m channel cosine modulated filter bank is discussed in Sec. III. Design examples are given in Sec. IV.
Application of Constrained Linear MPC to a Spray Dryer
Petersen, Lars Norbert; Poulsen, Niels Kjølstad; Niemann, Hans Henrik; Utzen, Christer; Jørgensen, John Bagterp
2014-01-01
In this paper we develop a linear model predictive control (MPC) algorithm for control of a two stage spray dryer. The states are estimated by a stationary Kalman filter. A non-linear first-principle engineering model is developed to simulate the spray drying process. The model is validated against experimental data and able to precisely predict the temperatures, the air humidity and the residual moisture in the dryer. The MPC controls these variables to the target and reject disturbances. Sp...
Scattering-angle based filtering of the waveform inversion gradients
Alkhalifah, Tariq Ali
2014-11-22
Full waveform inversion (FWI) requires a hierarchical approach to maneuver the complex non-linearity associated with the problem of velocity update. In anisotropic media, the non-linearity becomes far more complex with the potential trade-off between the multiparameter description of the model. A gradient filter helps us in accessing the parts of the gradient that are suitable to combat the potential non-linearity and parameter trade-off. The filter is based on representing the gradient in the time-lag normalized domain, in which the low scattering angle of the gradient update is initially muted out in the FWI implementation, in what we may refer to as a scattering angle continuation process. The result is a low wavelength update dominated by the transmission part of the update gradient. In this case, even 10 Hz data can produce vertically near-zero wavenumber updates suitable for a background correction of the model. Relaxing the filtering at a later stage in the FWI implementation allows for smaller scattering angles to contribute higher-resolution information to the model. The benefits of the extended domain based filtering of the gradient is not only it\\'s ability in providing low wavenumber gradients guided by the scattering angle, but also in its potential to provide gradients free of unphysical energy that may correspond to unrealistic scattering angles.
A New Filter Design Method for Disturbed Multilayer Hopfield Neural Networks
Directory of Open Access Journals (Sweden)
AHN, C. K.
2011-05-01
Full Text Available This paper investigates the passivity based filtering problem for multilayer Hopfield neural networks with external disturbance. A new passivity based filter design method for multilayer Hopfield neural networks is developed to ensure that the filtering error system is exponentially stable and passive from the external disturbance vector to the output error vector. The unknown gain matrix is obtained by solving a linear matrix inequality (LMI, which can be easily facilitated by using some standard numerical packages. An illustrative example is given to demonstrate the effectiveness of the proposed filter.
On Passband and Stopband CIC Improvements Using a Second Order IIR Filter
Directory of Open Access Journals (Sweden)
Gordana Jovanovic Dolecek
2012-03-01
Full Text Available This paper proposes an efficient second order IIR filter which considerably improves the passband as well as the stopband of the Cascaded-Integrator-Comb (CIC filter. Using the polyphase decomposition of the proposed filte, all filtering can be moved to a lower rate, which is D times less than the high input rate, where D is the decimation factor. The overall phase response of the compensated CIC is approximately linear in the passband. The design parameters are the number of cascaded CIC filter N, the decimator factor D, the passband frequency wp, and a weighted parameter a.
Mean-square filter design for stochastic polynomial systems with Gaussian and Poisson noises
Basin, Michael; Rodriguez-Ramirez, Pablo
2014-07-01
This paper addresses the mean-square finite-dimensional filtering problem for polynomial system states with both, Gaussian and Poisson, white noises over linear observations. A constructive procedure is established to design the mean-square filtering equations for system states described by polynomial equations of an arbitrary finite degree. An explicit closed form of the designed filter is obtained in case of a third-order polynomial system. The theoretical result is complemented with an illustrative example verifying performance of the designed filter.
Bessel smoothing filter for spectral-element mesh
Trinh, P. T.; Brossier, R.; Métivier, L.; Virieux, J.; Wellington, P.
2017-06-01
Smoothing filters are extremely important tools in seismic imaging and inversion, such as for traveltime tomography, migration and waveform inversion. For efficiency, and as they can be used a number of times during inversion, it is important that these filters can easily incorporate prior information on the geological structure of the investigated medium, through variable coherent lengths and orientation. In this study, we promote the use of the Bessel filter to achieve these purposes. Instead of considering the direct application of the filter, we demonstrate that we can rely on the equation associated with its inverse filter, which amounts to the solution of an elliptic partial differential equation. This enhances the efficiency of the filter application, and also its flexibility. We apply this strategy within a spectral-element-based elastic full waveform inversion framework. Taking advantage of this formulation, we apply the Bessel filter by solving the associated partial differential equation directly on the spectral-element mesh through the standard weak formulation. This avoids cumbersome projection operators between the spectral-element mesh and a regular Cartesian grid, or expensive explicit windowed convolution on the finite-element mesh, which is often used for applying smoothing operators. The associated linear system is solved efficiently through a parallel conjugate gradient algorithm, in which the matrix vector product is factorized and highly optimized with vectorized computation. Significant scaling behaviour is obtained when comparing this strategy with the explicit convolution method. The theoretical numerical complexity of this approach increases linearly with the coherent length, whereas a sublinear relationship is observed practically. Numerical illustrations are provided here for schematic examples, and for a more realistic elastic full waveform inversion gradient smoothing on the SEAM II benchmark model. These examples illustrate well the
Kalman Filtered Compressed Sensing
Vaswani, Namrata
2008-01-01
We consider the problem of reconstructing time sequences of spatially sparse signals (with unknown and time-varying sparsity patterns) from a limited number of linear "incoherent" measurements, in real-time. The signals are sparse in some transform domain referred to as the sparsity basis. For a single spatial signal, the solution is provided by Compressed Sensing (CS). The question that we address is, for a sequence of sparse signals, can we do better than CS, if (a) the sparsity pattern of ...
1D and 2D economical FIR filters generated by Chebyshev polynomials of the first kind
Dragoljub Pavlović, Vlastimir; Stanojko Dončov, Nebojša; Gradimir Ćirić, Dejan
2013-11-01
Christoffel-Darboux formula for Chebyshev continual orthogonal polynomials of the first kind is proposed to find a mathematical solution of approximation problem of a one-dimensional (1D) filter function in the z domain. Such an approach allows for the generation of a linear phase selective 1D low-pass digital finite impulse response (FIR) filter function in compact explicit form by using an analytical method. A new difference equation and structure of corresponding linear phase 1D low-pass digital FIR filter are given here. As an example, one extremely economic 1D FIR filter (with four adders and without multipliers) is designed by the proposed technique and its characteristics are presented. Global Christoffel-Darboux formula for orthonormal Chebyshev polynomials of the first kind and for two independent variables for generating linear phase symmetric two-dimensional (2D) FIR digital filter functions in a compact explicit representative form, by using an analytical method, is proposed in this paper. The formula can be most directly applied for mathematically solving the approximation problem of a filter function of even and odd order. Examples of a new class of extremely economic linear phase symmetric selective 2D FIR digital filters obtained by the proposed approximation technique are presented.
Superresolution restoration of an image sequence: adaptive filtering approach.
Elad, M; Feuer, A
1999-01-01
This paper presents a new method based on adaptive filtering theory for superresolution restoration of continuous image sequences. The proposed methodology suggests least squares (LS) estimators which adapt in time, based on adaptive filters, least mean squares (LMS) or recursive least squares (RLS). The adaptation enables the treatment of linear space and time-variant blurring and arbitrary motion, both of them assumed known. The proposed new approach is shown to be of relatively low computational requirements. Simulations demonstrating the superresolution restoration algorithms are presented.
A decentralized square root information filter/smoother
Bierman, G. J.; Belzer, M. R.
1985-01-01
A number of developments has recently led to a considerable interest in the decentralization of linear least squares estimators. The developments are partly related to the impending emergence of VLSI technology, the realization of parallel processing, and the need for algorithmic ways to speed the solution of dynamically decoupled, high dimensional estimation problems. A new method is presented for combining Square Root Information Filters (SRIF) estimates obtained from independent data sets. The new method involves an orthogonal transformation, and an information matrix filter 'homework' problem discussed by Schweppe (1973) is generalized. The employed SRIF orthogonal transformation methodology has been described by Bierman (1977).
Estimating Transformation Length in Linear- to Minimum-Phase Transformation Using Cepstrums
DEFF Research Database (Denmark)
Bysted, Tommy Kristensen
1997-01-01
response of the minimum-phase FIR-filter. The transformation length estimation is made using the absolute value of the dominating zero in the linear-phase FIR-filter and the maximum allowed amplitude and phase deviation of the disturbing function. Two examples are given. The first one verifies...
Estimation filters for missile tracking with airborne laser
Clemons, T. M., III; Chang, K. C.
2006-05-01
This paper examines the use of various estimation filters on the highly non-linear problem of tracking a ballistic missile during boost phase from a moving airborne platform. The aircraft receives passive bearing data from an IR sensor and range data from a laser rangefinder. The aircraft is assumed to have a laser weapon system that requires highly accurate bearing information in order to keep the laser on target from a distance of 100-200 km. The tracking problem is made more difficult due to the changing acceleration of the missile, especially during stage drop-off and ignition. The Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), 'bootstrap' Particle Filter (PF), and the Gaussian Sum Particle Filter (GSPF) are explored using different values for sensor accuracy in bearing and range, and various degrees of uncertainty of the target and platform dynamic. Scenarios were created using Satellite Toolkit © for trajectories from a Southeast Asia launch with associated sensor observations. MATLAB © code modified from the ReBEL Toolkit © was used to run the EKF, UKF, PF, and GSPF sensor track filters. Mean Square Error results are given for tracking during the period when the target is in view of the radar and IR sensors. This paper provides insight into the accuracy requirements of the sensors and the suitability of the given estimators.
Iterated unscented Kalman filter for phase unwrapping of interferometric fringes.
Xie, Xianming
2016-08-22
A fresh phase unwrapping algorithm based on iterated unscented Kalman filter is proposed to estimate unambiguous unwrapped phase of interferometric fringes. This method is the result of combining an iterated unscented Kalman filter with a robust phase gradient estimator based on amended matrix pencil model, and an efficient quality-guided strategy based on heap sort. The iterated unscented Kalman filter that is one of the most robust methods under the Bayesian theorem frame in non-linear signal processing so far, is applied to perform simultaneously noise suppression and phase unwrapping of interferometric fringes for the first time, which can simplify the complexity and the difficulty of pre-filtering procedure followed by phase unwrapping procedure, and even can remove the pre-filtering procedure. The robust phase gradient estimator is used to efficiently and accurately obtain phase gradient information from interferometric fringes, which is needed for the iterated unscented Kalman filtering phase unwrapping model. The efficient quality-guided strategy is able to ensure that the proposed method fast unwraps wrapped pixels along the path from the high-quality area to the low-quality area of wrapped phase images, which can greatly improve the efficiency of phase unwrapping. Results obtained from synthetic data and real data show that the proposed method can obtain better solutions with an acceptable time consumption, with respect to some of the most used algorithms.
Hyperconnected attribute filters based on k-flat zones.
Ouzounis, Georgios K; Wilkinson, Michael H F
2011-02-01
In this paper, we present a new method for attribute filtering, combining contrast and structural information. Using hyperconnectivity based on k-flat zones, we improve the ability of attribute filters to retain internal details in detected objects. Simultaneously, we improve the suppression of small, unwanted detail in the background. We extend the theory of attribute filters to hyperconnectivity and provide a fast algorithm to implement the new method. The new version is only marginally slower than the standard Max-Tree algorithm for connected attribute filters, and linear in the number of pixels or voxels. It is two orders of magnitude faster than anisotropic diffusion. The method is implemented in the form of a filtering rule suitable for handling both increasing (size) and nonincreasing (shape) attributes. We test this new framework on nonincreasing shape filters on both 2D images from astronomy, document processing, and microscopy, and 3D CT scans, and show increased robustness to noise while maintaining the advantages of previous methods.
Method and apparatus for selective filtering of ions
Page, Jason S [Kennewick, WA; Tang, Keqi [Richland, WA; Smith, Richard D [Richland, WA
2009-04-07
An adjustable, low mass-to-charge (m/z) filter is disclosed employing electrospray ionization to block ions associated with unwanted low m/z species from entering the mass spectrometer and contributing their space charge to down-stream ion accumulation steps. The low-mass filter is made by using an adjustable potential energy barrier from the conductance limiting terminal electrode of an electrodynamic ion funnel, which prohibits species with higher ion mobilities from being transmitted. The filter provides a linear voltage adjustment of low-mass filtering from m/z values from about 50 to about 500. Mass filtering above m/z 500 can also be performed; however, higher m/z species are attenuated. The mass filter was evaluated with a liquid chromatography-mass spectrometry analysis of an albumin tryptic digest and resulted in the ability to block low-mass, "background" ions which account for 40-70% of the total ion current from the ESI source during peak elution.
Random set particle filter for bearings-only multitarget tracking
Vihola, Matti
2005-05-01
The random set approach to multitarget tracking is a theoretically sound framework that covers joint estimation of the number of targets and the state of the targets. This paper describes a particle filter implementation of the random set multitarget filter. The contribution of this paper to the random set tracking framework is the formulation of a measurement model where each sensor report is assumed to contain at most one measurement. The implemented filter was tested in synthetic bearings-only tracking scenarios containing up to two targets in the presence of false alarms and missed measurements. The estimated target state consisted of 2D position and velocity components. The filter was capable to track the targets fairly well despite of the missing measurements and the relatively high false alarm rates. In addition, the filter showed robustness against wrong parameter values of false alarm rates. The results that were obtained during the limited tests of the filter show that the random set framework has potential for challenging tracking situations. On the other hand, the computational burden of the described implementation is quite high and increases approximately linearly with respect to the expected number of targets.
Implicit LES using adaptive filtering
Sun, Guangrui; Domaradzki, Julian A.
2018-04-01
In implicit large eddy simulations (ILES) numerical dissipation prevents buildup of small scale energy in a manner similar to the explicit subgrid scale (SGS) models. If spectral methods are used the numerical dissipation is negligible but it can be introduced by applying a low-pass filter in the physical space, resulting in an effective ILES. In the present work we provide a comprehensive analysis of the numerical dissipation produced by different filtering operations in a turbulent channel flow simulated using a non-dissipative, pseudo-spectral Navier-Stokes solver. The amount of numerical dissipation imparted by filtering can be easily adjusted by changing how often a filter is applied. We show that when the additional numerical dissipation is close to the subgrid-scale (SGS) dissipation of an explicit LES the overall accuracy of ILES is also comparable, indicating that periodic filtering can replace explicit SGS models. A new method is proposed, which does not require any prior knowledge of a flow, to determine the filtering period adaptively. Once an optimal filtering period is found, the accuracy of ILES is significantly improved at low implementation complexity and computational cost. The method is general, performing well for different Reynolds numbers, grid resolutions, and filter shapes.
International Nuclear Information System (INIS)
Carroll, J.T.
1985-01-01
The Level 3 stage in CDF online filtering is currently under development. This system should support a flexible division between online and offline software filters within the constraints of the full data acquisition system. Multimicroprocessor (MMP) structures like the ACP system used by CDF could be improved with multi-rank architectures to meet SSC requirements
Chopped filter for nuclear spectroscopy
International Nuclear Information System (INIS)
Koyama, J.
1980-12-01
Some of the theoretical and practical factors affecting the energy resolution of a spectrometry system are considered, specially those related to t he signal-to-noise ratio, and a time-variant filter with the transfer function of the theoretical optimum filter, during its active time, is proposed. A prototype has been tested and experimental results are presented. (Author) [pt
Mobile filters in nuclear engineering
International Nuclear Information System (INIS)
Meuter, R.
1979-01-01
The need for filters with high efficiencies which may be used at any place originated in nuclear power plants. Filters of this type, called Filtermobil, have been developed by Sulzer. They have been used successfully in nuclear plants for several years. (orig.) [de
Tunable Multiband Microwave Photonic Filters
Directory of Open Access Journals (Sweden)
Mable P. Fok
2017-11-01
Full Text Available The increasing demand for multifunctional devices, the use of cognitive wireless technology to solve the frequency resource shortage problem, as well as the capabilities and operational flexibility necessary to meet ever-changing environment result in an urgent need of multiband wireless communications. Spectral filter is an essential part of any communication systems, and in the case of multiband wireless communications, tunable multiband RF filters are required for channel selection, noise/interference removal, and RF signal processing. Unfortunately, it is difficult for RF electronics to achieve both tunable and multiband spectral filtering. Recent advancements of microwave photonics have proven itself to be a promising candidate to solve various challenges in RF electronics including spectral filtering, however, the development of multiband microwave photonic filtering still faces lots of difficulties, due to the limited scalability and tunability of existing microwave photonic schemes. In this review paper, we first discuss the challenges that were facing by multiband microwave photonic filter, then we review recent techniques that have been developed to tackle the challenge and lead to promising developments of tunable microwave photonic multiband filters. The successful design and implementation of tunable microwave photonic multiband filter facilitate the vision of dynamic multiband wireless communications and radio frequency signal processing for commercial, defense, and civilian applications.
Diabatic initialization using recursive filters
Lynch, Peter; Huang, Xiang-Yu
1994-10-01
Several initialization schemes based on recursive filters are formulated and tested with a numerical weather prediction model, HIRLAM. These have an advantage over schemes which use non-recursive filters in that they derive the initialized values from a diabatic trajectory passing through the original analysis. The changes to the analysed fields are comparable in size to typical observational errors. A non-recursive implementation of the recursive filters makes the new initialization schemes as easy to use as the original non-recursive filter schemes. It also allows use of higher-order filters without added cost. An initialization method using a 6th order filter is compared to a scheme based on an non-recursive optimal filter, and is found to produce similar results for less than half the computational cost. If the sole aim is noise suppression, a filter whose output validates later than the initial time may be used. The advantage of this is that computation time is further reduced and phase error completely eliminated.
Derivative free filtering using Kalmtool
DEFF Research Database (Denmark)
Bayramoglu, Enis; Hansen, Søren; Ravn, Ole
2010-01-01
In this paper we present a toolbox enabling easy evaluation and comparison of different filtering algorithms. The toolbox is called Kalmtool 4 and is a set of MATLAB tools for state estimation of nonlinear systems. The toolbox contains functions for extended Kalman filtering as well as for DD1 fi...
Czech Academy of Sciences Publication Activity Database
Kroupa, Tomáš
2008-01-01
Roč. 159, č. 14 (2008), s. 1773-1787 ISSN 0165-0114 R&D Projects: GA MŠk 1M0572; GA AV ČR KJB100300502 Institutional research plan: CEZ:AV0Z10750506 Keywords : filter * prime filter * fuzzy class theory Subject RIV: BA - General Mathematics Impact factor: 1.833, year: 2008
International Nuclear Information System (INIS)
Rogner, H.H.
1989-01-01
The submitted sections on linear programming are extracted from 'Theorie und Technik der Planung' (1978) by W. Blaas and P. Henseler and reformulated for presentation at the Workshop. They consider a brief introduction to the theory of linear programming and to some essential aspects of the SIMPLEX solution algorithm for the purposes of economic planning processes. 1 fig
International Nuclear Information System (INIS)
Richter, B.
1985-01-01
A report is given on the goals and progress of the SLAC Linear Collider. The author discusses the status of the machine and the detectors and give an overview of the physics which can be done at this new facility. He also gives some ideas on how (and why) large linear colliders of the future should be built
Linear Logical Voting Protocols
DEFF Research Database (Denmark)
DeYoung, Henry; Schürmann, Carsten
2012-01-01
. In response, we promote linear logic as a high-level language for both specifying and implementing voting protocols. Our linear logical specifications of the single-winner first-past-the-post (SW- FPTP) and single transferable vote (STV) protocols demonstrate that this approach leads to concise...
International Nuclear Information System (INIS)
Rowe, C.H.; Wilton, M.S. de.
1979-01-01
An improved recirculating electron beam linear accelerator of the racetrack type is described. The system comprises a beam path of four straight legs with four Pretzel bending magnets at the end of each leg to direct the beam into the next leg of the beam path. At least one of the beam path legs includes a linear accelerator. (UK)
Semidefinite linear complementarity problems
International Nuclear Information System (INIS)
Eckhardt, U.
1978-04-01
Semidefinite linear complementarity problems arise by discretization of variational inequalities describing e.g. elastic contact problems, free boundary value problems etc. In the present paper linear complementarity problems are introduced and the theory as well as the numerical treatment of them are described. In the special case of semidefinite linear complementarity problems a numerical method is presented which combines the advantages of elimination and iteration methods without suffering from their drawbacks. This new method has very attractive properties since it has a high degree of invariance with respect to the representation of the set of all feasible solutions of a linear complementarity problem by linear inequalities. By means of some practical applications the properties of the new method are demonstrated. (orig.) [de
Axler, Sheldon
2015-01-01
This best-selling textbook for a second course in linear algebra is aimed at undergrad math majors and graduate students. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions. No prerequisites are assumed other than the ...
Linear discriminant analysis of structure within African eggplant 'Shum'
African Journals Online (AJOL)
A MANOVA preceded linear discriminant analysis, to model each of 61 variables, as predicted by clusters and experiment to filter out non-significant traits. Four distinct clusters emerged, with a cophenetic relation coefficient of 0.87 (P<0.01). Canonical variates that best predicted the observed clusters include petiole length, ...
Handbook on linear motor application
International Nuclear Information System (INIS)
1988-10-01
This book guides the application for Linear motor. It lists classification and speciality of Linear Motor, terms of linear-induction motor, principle of the Motor, types on one-side linear-induction motor, bilateral linear-induction motor, linear-DC Motor on basic of the motor, linear-DC Motor for moving-coil type, linear-DC motor for permanent-magnet moving type, linear-DC motor for electricity non-utility type, linear-pulse motor for variable motor, linear-pulse motor for permanent magneto type, linear-vibration actuator, linear-vibration actuator for moving-coil type, linear synchronous motor, linear electromagnetic motor, linear electromagnetic solenoid, technical organization and magnetic levitation and linear motor and sensor.
Linear Covariance Analysis and Epoch State Estimators
Markley, F. Landis; Carpenter, J. Russell
2014-01-01
This paper extends in two directions the results of prior work on generalized linear covariance analysis of both batch least-squares and sequential estimators. The first is an improved treatment of process noise in the batch, or epoch state, estimator with an epoch time that may be later than some or all of the measurements in the batch. The second is to account for process noise in specifying the gains in the epoch state estimator. We establish the conditions under which the latter estimator is equivalent to the Kalman filter.
Filtered region of interest cone-beam rotational angiography
International Nuclear Information System (INIS)
Schafer, Sebastian; Noeel, Peter B.; Walczak, Alan M.; Hoffmann, Kenneth R.
2010-01-01
Purpose: Cone-beam rotational angiography (CBRA) is widely used in the modern clinical settings. In a number of procedures, the area of interest is often considerably smaller than the field of view (FOV) of the detector, subjecting the patient to potentially unnecessary x-ray dose. The authors therefore propose a filter-based method to reduce the dose in the regions of low interest, while supplying high image quality in the region of interest (ROI). Methods: For such procedures, the authors propose a method of filtered region of interest (FROI)-CBRA. In the authors' approach, a gadolinium filter with a circular central opening is placed into the x-ray beam during image acquisition. The central region is imaged with high contrast, while peripheral regions are subjected to a substantial lower intensity and dose through beam filtering. The resulting images contain a high contrast/intensity ROI, as well as a low contrast/intensity peripheral region, and a transition region in between. To equalize the two regions' intensities, the first projection of the acquisition is performed with and without the filter in place. The equalization relationship, based on Beer's law, is established through linear regression using corresponding filtered and nonfiltered data. The transition region is equalized based on radial profiles. Results: Evaluations in 2D and 3D show no visible difference between conventional FROI-CBRA projection images and reconstructions in the ROI. CNR evaluations show similar image quality in the ROI, with a reduced CNR in the reconstructed peripheral region. In all filtered projection images, the scatter fraction inside the ROI was reduced. Theoretical and experimental dose evaluations show a considerable dose reduction; using a ROI half the original FOV reduces the dose by 60% for the filter thickness of 1.29 mm. Conclusions: These results indicate the potential of FROI-CBRA to reduce the dose to the patient while supplying the physician with the desired
On Ensemble Nonlinear Kalman Filtering with Symmetric Analysis Ensembles
Luo, Xiaodong
2010-09-19
The ensemble square root filter (EnSRF) [1, 2, 3, 4] is a popular method for data assimilation in high dimensional systems (e.g., geophysics models). Essentially the EnSRF is a Monte Carlo implementation of the conventional Kalman filter (KF) [5, 6]. It is mainly different from the KF at the prediction steps, where it is some ensembles, rather then the means and covariance matrices, of the system state that are propagated forward. In doing this, the EnSRF is computationally more efficient than the KF, since propagating a covariance matrix forward in high dimensional systems is prohibitively expensive. In addition, the EnSRF is also very convenient in implementation. By propagating the ensembles of the system state, the EnSRF can be directly applied to nonlinear systems without any change in comparison to the assimilation procedures in linear systems. However, by adopting the Monte Carlo method, the EnSRF also incurs certain sampling errors. One way to alleviate this problem is to introduce certain symmetry to the ensembles, which can reduce the sampling errors and spurious modes in evaluation of the means and covariances of the ensembles [7]. In this contribution, we present two methods to produce symmetric ensembles. One is based on the unscented transform [8, 9], which leads to the unscented Kalman filter (UKF) [8, 9] and its variant, the ensemble unscented Kalman filter (EnUKF) [7]. The other is based on Stirling’s interpolation formula (SIF), which results in the divided difference filter (DDF) [10]. Here we propose a simplified divided difference filter (sDDF) in the context of ensemble filtering. The similarity and difference between the sDDF and the EnUKF will be discussed. Numerical experiments will also be conducted to investigate the performance of the sDDF and the EnUKF, and compare them to a well‐established EnSRF, the ensemble transform Kalman filter (ETKF) [2].
International Nuclear Information System (INIS)
Verkerk, C.
1978-01-01
Present day electronic detectors used in high energy physics make it possible to obtain high event rates and it is likely that future experiments will face even higher data rates than at present. The complexity of the apparatus increases very rapidly with time and also the criteria for selecting desired events become more and more complex. So complex in fact that the fast trigger system cannot be designed to fully cope with it. The interesting events become thus contaminated with multitudes of uninteresting ones. To distinguish the 'good' events from the often overwhelming background of other events one has to resort to computing techniques. Normally this selection is made in the first part of the analysis of the events, analysis normally performed on a powerful scientific computer. This implies however that many uninteresting or background events have to be recorded during the experiment for subsequent analysis. A number of undesired consequences result; and these constitute a sufficient reason for trying to perform the selection at an earlier stage, in fact ideally before the events are recorded on magnetic tape. This early selection is called 'on-line filtering' and it is the topic of the present lectures. (Auth.)
Detection of masses in mammograms by analysis of gradient vector convergence using sector filter
International Nuclear Information System (INIS)
Fakhari, Y.; Karimian, A.; Mohammadbeigi, M.
2012-01-01
Although mammography is the main diagnostic method for breast cancer, but the interpretation of mammograms is a difficult task and depends on the experience and skill of the radiologists. Computer Aided Detection (CADe) systems have been proposed to help radiologist in interpretation of mammograms. In this paper a novel filter called Sector filter is proposed to detect masses. This filter works based on the analysis of convergence of gradient vectors toward the center of filter. Using this filter, rounded convex regions, which are more likely to be pertained to a mass, could be detected in a gray scale image. After applying this filter on the images with two scales and their linear combination suspicious points were selected by a specific process. After implementation of the proposed method, promising results were achieved. The performance of the proposed method in this research was competitive or in some cases even better than that of other suggested methods in the literature. (authors)
Direct quantification of airborne nanoparticles composition by TXRF after collection on filters
Motellier, S.; Lhaute, K.; Guiot, A.; Golanski, L.; Geoffroy, C.; Tardif, F.
2011-07-01
Direct TXRF analysis of nanoparticles deposited on filters was evaluated. Standard filters spiked with known amounts of NP were produced using an atomizer which generates an aerosol from a NP containing-liquid suspension. Polycarbonate filters provided the highest fluorescence signals and black polycarbonate filters containing chromium were further selected, Cr being used as internal standard for elemental quantification of the filter contaminants. Calibration curves were established for various NP (TiO2, ZnO, CeO2, Al2O3). Good linearity was observed. Low limits of detection were in the tens to the hundreds of ngs per filter, the method being less adapted to Al2O3 due to the poor TXRF sensitivity for light elements. The analysis of MW-CNTs was attempted by quantification of their metal (Fe) catalyst impurities. Problems like CNT dispersion in liquids, quantification of the deposited quantity and high Fe-background contamination.
Shmaliy, Yuriy S.; Ibarra-Manzano, Oscar
2012-12-01
We address p-shift finite impulse response optimal (OFIR) and unbiased (UFIR) algorithms for predictive filtering ( p > 0), filtering ( p = 0), and smoothing filtering ( p designed for linear time-invariant state-space signal models with white Gaussian noise. The OFIR filter self-determines the initial mean square state function by solving the discrete algebraic Riccati equation. The UFIR one represented both in the batch and iterative Kalman-like forms does not require the noise covariances and initial errors. An example of applications is given for smoothing and predictive filtering of a two-state polynomial model. Based upon this example, we show that exact optimality is redundant when N ≫ 1 and still a nice suboptimal estimate can fairly be provided with a UFIR filter at a much lower cost.
Tay, D H; Kingsbury, N G
1993-01-01
An approach to designing multidimensional linear-phase FIR diamond subband filters having the perfect reconstruction property is presented. It is based on a transformation of variables technique and is equivalent to the generalized McClellan transformation. Methods for designing a whole class of transformation are given. The approach consists of two parts; design of the transformation and design of the 1-D filters. The use of Lagrange halfband filters to design the 1-D filters is discussed. The modification of a particular Lagrange halfband filter which gives a pair of simple 1-D filters that are almost similar to each other in their frequency characteristics but still form a perfect reconstruction pair is presented. The design technique is extended to other types of two-channel sampling lattice and subband shapes, in particular, the parallelogram and the diagonally quadrant subband cases. Several numerical design examples are presented to illustrate the flexibility of the design method.
Linear ubiquitination in immunity.
Shimizu, Yutaka; Taraborrelli, Lucia; Walczak, Henning
2015-07-01
Linear ubiquitination is a post-translational protein modification recently discovered to be crucial for innate and adaptive immune signaling. The function of linear ubiquitin chains is regulated at multiple levels: generation, recognition, and removal. These chains are generated by the linear ubiquitin chain assembly complex (LUBAC), the only known ubiquitin E3 capable of forming the linear ubiquitin linkage de novo. LUBAC is not only relevant for activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) in various signaling pathways, but importantly, it also regulates cell death downstream of immune receptors capable of inducing this response. Recognition of the linear ubiquitin linkage is specifically mediated by certain ubiquitin receptors, which is crucial for translation into the intended signaling outputs. LUBAC deficiency results in attenuated gene activation and increased cell death, causing pathologic conditions in both, mice, and humans. Removal of ubiquitin chains is mediated by deubiquitinases (DUBs). Two of them, OTULIN and CYLD, are constitutively associated with LUBAC. Here, we review the current knowledge on linear ubiquitination in immune signaling pathways and the biochemical mechanisms as to how linear polyubiquitin exerts its functions distinctly from those of other ubiquitin linkage types. © 2015 The Authors. Immunological Reviews Published by John Wiley & Sons Ltd.
Schneider, Hans
1989-01-01
Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t
International Nuclear Information System (INIS)
Krivonos, S.O.; Sorin, A.S.
1994-06-01
We show that the Zamolodchikov's and Polyakov-Bershadsky nonlinear algebras W 3 and W (2) 3 can be embedded as subalgebras into some linear algebras with finite set of currents. Using these linear algebras we find new field realizations of W (2) 3 and W 3 which could be a starting point for constructing new versions of W-string theories. We also reveal a number of hidden relationships between W 3 and W (2) 3 . We conjecture that similar linear algebras can exist for other W-algebra as well. (author). 10 refs
Linearity in Process Languages
DEFF Research Database (Denmark)
Nygaard, Mikkel; Winskel, Glynn
2002-01-01
The meaning and mathematical consequences of linearity (managing without a presumed ability to copy) are studied for a path-based model of processes which is also a model of affine-linear logic. This connection yields an affine-linear language for processes, automatically respecting open......-map bisimulation, in which a range of process operations can be expressed. An operational semantics is provided for the tensor fragment of the language. Different ways to make assemblies of processes lead to different choices of exponential, some of which respect bisimulation....
Systematized linear epidermolytic hyperkeratosis.
Kumar, Piyush; Kumar, Rajesh; Mandal, Rajesh Kumar; Hassan, Shahid
2014-01-15
A 5-year-old boy presented with widespread asymptomatic hyperpigmented verrucous plaques since 3 months of age. The lesions were distributed in a linear manner along Blaschko's lines on trunk and extremities and were accentuated in flexures and around joints. There was no history of blistering or redness and no other family member was affected. Ichthyosis hystrix (of Curth and Macklin) and generalized linear/mosaic epidermolytic hyperkeratosis (EHK) were considered in the differential diagnosis. Biopsy from both trunk lesion and lesion on knee revealed characteristic epidermolytic hyperkeratosis, thereby clinching the diagnosis of systematized linear EHK.
Weisberg, Sanford
2013-01-01
Praise for the Third Edition ""...this is an excellent book which could easily be used as a course text...""-International Statistical Institute The Fourth Edition of Applied Linear Regression provides a thorough update of the basic theory and methodology of linear regression modeling. Demonstrating the practical applications of linear regression analysis techniques, the Fourth Edition uses interesting, real-world exercises and examples. Stressing central concepts such as model building, understanding parameters, assessing fit and reliability, and drawing conclusions, the new edition illus
Amir-Moez, A R; Sneddon, I N
1962-01-01
Elements of Linear Space is a detailed treatment of the elements of linear spaces, including real spaces with no more than three dimensions and complex n-dimensional spaces. The geometry of conic sections and quadric surfaces is considered, along with algebraic structures, especially vector spaces and transformations. Problems drawn from various branches of geometry are given.Comprised of 12 chapters, this volume begins with an introduction to real Euclidean space, followed by a discussion on linear transformations and matrices. The addition and multiplication of transformations and matrices a
Simplified design of filter circuits
Lenk, John
1999-01-01
Simplified Design of Filter Circuits, the eighth book in this popular series, is a step-by-step guide to designing filters using off-the-shelf ICs. The book starts with the basic operating principles of filters and common applications, then moves on to describe how to design circuits by using and modifying chips available on the market today. Lenk's emphasis is on practical, simplified approaches to solving design problems.Contains practical designs using off-the-shelf ICsStraightforward, no-nonsense approachHighly illustrated with manufacturer's data sheets
Gas cleaning with Granular Filters
Natvig, Ingunn Roald
2007-01-01
The panel bed filter (PBF) is a granular filter patented by A. M. Squires in the late sixties. PBFs consist of louvers with stationary, granular beds. Dust is deposited in the top layers and on the bed surface when gas flows through. PBFs are resistant to high temperatures, variations in the gas flow and hot particles. The filter is cleaned by releasing a pressure pulse in the opposite direction of the bulk flow (a puff back pulse). A new louver geometry patented by A. M. Squires is the filte...
Advanced simulation of digital filters
Doyle, G. S.
1980-09-01
An Advanced Simulation of Digital Filters has been implemented on the IBM 360/67 computer utilizing Tektronix hardware and software. The program package is appropriate for use by persons beginning their study of digital signal processing or for filter analysis. The ASDF programs provide the user with an interactive method by which filter pole and zero locations can be manipulated. Graphical output on both the Tektronix graphics screen and the Versatec plotter are provided to observe the effects of pole-zero movement.
ADVANCED HOT GAS FILTER DEVELOPMENT
Energy Technology Data Exchange (ETDEWEB)
E.S. Connolly; G.D. Forsythe
2000-09-30
DuPont Lanxide Composites, Inc. undertook a sixty-month program, under DOE Contract DEAC21-94MC31214, in order to develop hot gas candle filters from a patented material technology know as PRD-66. The goal of this program was to extend the development of this material as a filter element and fully assess the capability of this technology to meet the needs of Pressurized Fluidized Bed Combustion (PFBC) and Integrated Gasification Combined Cycle (IGCC) power generation systems at commercial scale. The principal objective of Task 3 was to build on the initial PRD-66 filter development, optimize its structure, and evaluate basic material properties relevant to the hot gas filter application. Initially, this consisted of an evaluation of an advanced filament-wound core structure that had been designed to produce an effective bulk filter underneath the barrier filter formed by the outer membrane. The basic material properties to be evaluated (as established by the DOE/METC materials working group) would include mechanical, thermal, and fracture toughness parameters for both new and used material, for the purpose of building a material database consistent with what is being done for the alternative candle filter systems. Task 3 was later expanded to include analysis of PRD-66 candle filters, which had been exposed to actual PFBC conditions, development of an improved membrane, and installation of equipment necessary for the processing of a modified composition. Task 4 would address essential technical issues involving the scale-up of PRD-66 candle filter manufacturing from prototype production to commercial scale manufacturing. The focus would be on capacity (as it affects the ability to deliver commercial order quantities), process specification (as it affects yields, quality, and costs), and manufacturing systems (e.g. QA/QC, materials handling, parts flow, and cost data acquisition). Any filters fabricated during this task would be used for product qualification tests
Pragmatic circuits signals and filters
Eccles, William
2006-01-01
Pragmatic Circuits: Signals and Filters is built around the processing of signals. Topics include spectra, a short introduction to the Fourier series, design of filters, and the properties of the Fourier transform. The focus is on signals rather than power. But the treatment is still pragmatic. For example, the author accepts the work of Butterworth and uses his results to design filters in a fairly methodical fashion. This third of three volumes finishes with a look at spectra by showing how to get a spectrum even if a signal is not periodic. The Fourier transform provides a way of dealing wi
Face Recognition using Gabor Filters
Directory of Open Access Journals (Sweden)
Sajjad MOHSIN
2011-01-01
Full Text Available An Elastic Bunch Graph Map (EBGM algorithm is being proposed in this research paper that successfully implements face recognition using Gabor filters. The proposed system applies 40 different Gabor filters on an image. As aresult of which 40 images with different angles and orientation are received. Next, maximum intensity points in each filtered image are calculated and mark them as Fiducial points. The system reduces these points in accordance to distance between them. The next step is calculating the distances between the reduced points using distance formula. At last, the distances are compared with database. If match occurs, it means that the image is recognized.
Control and filtering for semi-Markovian jump systems
Li, Fanbiao; Wu, Ligang
2017-01-01
This book presents up-to-date research developments and novel methodologies on semi-Markovian jump systems (S-MJS). It presents solutions to a series of problems with new approaches for the control and filtering of S-MJS, including stability analysis, sliding mode control, dynamic output feedback control, robust filter design, and fault detection. A set of newly developed techniques such as piecewise analysis method, positively invariant set approach, event-triggered method, and cone complementary linearization approaches are presented. Control and Filtering for Semi-Markovian Jump Systems is a comprehensive reference for researcher and practitioners working in control engineering, system sciences and applied mathematics, and is also a useful source of information for senior undergraduates and graduates in these areas. The readers will benefit from some new concepts, new models and new methodologies with practical significance in control engineering and signal processing.
Maximum Correntropy Unscented Kalman Filter for Spacecraft Relative State Estimation.
Liu, Xi; Qu, Hua; Zhao, Jihong; Yue, Pengcheng; Wang, Meng
2016-09-20
A new algorithm called maximum correntropy unscented Kalman filter (MCUKF) is proposed and applied to relative state estimation in space communication networks. As is well known, the unscented Kalman filter (UKF) provides an efficient tool to solve the non-linear state estimate problem. However, the UKF usually plays well in Gaussian noises. Its performance may deteriorate substantially in the presence of non-Gaussian noises, especially when the measurements are disturbed by some heavy-tailed impulsive noises. By making use of the maximum correntropy criterion (MCC), the proposed algorithm can enhance the robustness of UKF against impulsive noises. In the MCUKF, the unscented transformation (UT) is applied to obtain a predicted state estimation and covariance matrix, and a nonlinear regression method with the MCC cost is then used to reformulate the measurement information. Finally, the UT is adopted to the measurement equation to obtain the filter state and covariance matrix. Illustrative examples demonstrate the superior performance of the new algorithm.
Narrow bandpass tunable terahertz filter based on photonic crystal cavity.
He, Jinglong; Liu, Pingan; He, Yalan; Hong, Zhi
2012-02-20
We have fabricated a very narrow bandpass tunable terahertz (THz) filter based on a one-dimensional photonic crystal cavity. Since the filter consists of silicon wafers and air spacers, it has a very high quality factor of about 1500. The full width at half maximum (FWHM) of the passband is only about 200 MHz, and the peak transmission is higher than -4 dB. Besides, the central frequency can be tuned rapidly over the entire bandgap with the length of cavity adjusted by a motorized linear stage. Further analytical calculations indicate that a high-Q tunable filter with both high peak transmission and wide tunable range is possible if thinner silicon layers are used. © 2012 Optical Society of America
Observation Quality Control with a Robust Ensemble Kalman Filter
Roh, Soojin
2013-12-01
Current ensemble-based Kalman filter (EnKF) algorithms are not robust to gross observation errors caused by technical or human errors during the data collection process. In this paper, the authors consider two types of gross observational errors, additive statistical outliers and innovation outliers, and introduce a method to make EnKF robust to gross observation errors. Using both a one-dimensional linear system of dynamics and a 40-variable Lorenz model, the performance of the proposed robust ensemble Kalman filter (REnKF) was tested and it was found that the new approach greatly improves the performance of the filter in the presence of gross observation errors and leads to only a modest loss of accuracy with clean, outlier-free, observations.
Stabilizing the thermal lattice Boltzmann method by spatial filtering.
Gillissen, J J J
2016-10-01
We propose to stabilize the thermal lattice Boltzmann method by filtering the second- and third-order moments of the collision operator. By means of the Chapman-Enskog expansion, we show that the additional numerical diffusivity diminishes in the low-wavnumber limit. To demonstrate the enhanced stability, we consider a three-dimensional thermal lattice Boltzmann system involving 33 discrete velocities. Filtering extends the linear stability of this thermal lattice Boltzmann method to 10-fold smaller transport coefficients. We further demonstrate that the filtering does not compromise the accuracy of the hydrodynamics by comparing simulation results to reference solutions for a number of standardized test cases, including natural convection in two dimensions.
Design and control of hybrid active power filters
Lam, Chi-Seng
2014-01-01
Design and Control of Hybrid Active Power Filters presents an overview of the current quality problems and their compensators. To get a balance between the system cost and performance, hybrid active power filters (HAPFs) are valuable. The book presents the coverage of resonance phenomena prevention capability, filtering performance and system robustness analysis of HAPF; nonlinear inverter current slope characteristics and their linear operation region requirement analysis of the hysteresis PWM for the HAPF; minimum inverter capacity design procedure of HAPF, adaptive dc-link voltage controller for the HAPF and the real design example of a 220V 10kVA HAPF, in which the system performance analysis method, minimum dc voltage deduction concept and adaptive dc voltage idea can be further extended into the other active compensators, such as APF, static synchronous compensator STATCOM, etc. This book will benefit researchers, graduate students, and electrical power engineers in the field of power-quality compensati...
Robust filtering and fault detection of switched delay systems
Wang, Dong; Wang, Wei
2013-01-01
Switched delay systems appear in a wide field of applications including networked control systems, power systems, memristive systems. Though the large amount of ideas with respect to such systems have generated, until now, it still lacks a framework to focus on filter design and fault detection issues which are relevant to life safety and property loss. Beginning with the comprehensive coverage of the new developments in the analysis and control synthesis for switched delay systems, the monograph not only provides a systematic approach to designing the filter and detecting the fault of switched delay systems, but it also covers the model reduction issues. Specific topics covered include: (1) Arbitrary switching signal where delay-independent and delay-dependent conditions are presented by proposing a linearization technique. (2) Average dwell time where a weighted Lyapunov function is come up with dealing with filter design and fault detection issues beside taking model reduction problems. The monograph is in...
Remotely operated top loading filter housing
International Nuclear Information System (INIS)
Ross, M.J.; Carter, J.A.
1989-01-01
A high-efficiency particulate air (HEPA) filter system was developed for the Fuel Processing Facility at the Idaho Chemical Processing Plant. The system utilizes commercially available HEPA filters and allows in-cell filters to be maintained using operator-controlled remote handling equipment. The remote handling tasks include transport of filters before and after replacement, removal and replacement of the filter from the housing, and filter containment
Concrete ensemble Kalman filters with rigorous catastrophic filter divergence.
Kelly, David; Majda, Andrew J; Tong, Xin T
2015-08-25
The ensemble Kalman filter and ensemble square root filters are data assimilation methods used to combine high-dimensional, nonlinear dynamical models with observed data. Ensemble methods are indispensable tools in science and engineering and have enjoyed great success in geophysical sciences, because they allow for computationally cheap low-ensemble-state approximation for extremely high-dimensional turbulent forecast models. From a theoretical perspective, the dynamical properties of these methods are poorly understood. One of the central mysteries is the numerical phenomenon known as catastrophic filter divergence, whereby ensemble-state estimates explode to machine infinity, despite the true state remaining in a bounded region. In this article we provide a breakthrough insight into the phenomenon, by introducing a simple and natural forecast model that transparently exhibits catastrophic filter divergence under all ensemble methods and a large set of initializations. For this model, catastrophic filter divergence is not an artifact of numerical instability, but rather a true dynamical property of the filter. The divergence is not only validated numerically but also proven rigorously. The model cleanly illustrates mechanisms that give rise to catastrophic divergence and confirms intuitive accounts of the phenomena given in past literature.
Selection of task-dependent diffusion filters for the post-processing of SPECT images
International Nuclear Information System (INIS)
Beekman, Freek J.; Slijpen, Eddy T.P.; Niessen, Wiro J.
1998-01-01
Iterative reconstruction from single photon emission computed tomography (SPECT) data requires regularization to avoid noise amplification and edge artefacts in the reconstructed image. This is often accomplished by stopping the iteration process at a relatively low number of iterations or by post-filtering the reconstructed image. The aim of this paper is to develop a method to automatically select an optimal combination of stopping iteration number and filters for a particular imaging situation. To this end different error measures between the distribution of a phantom and a corresponding filtered SPECT image are minimized for different iteration numbers. As a study example, simulated data representing a brain study are used. For post-reconstruction filtering, the performance of 3D linear diffusion (Gaussian filtering) and edge preserving 3D nonlinear diffusion (Catte scheme) is investigated. For reconstruction methods which model the image formation process accurately, error measures between the phantom and the filtered reconstruction are significantly reduced by performing a high number of iterations followed by optimal filtering compared with stopping the iterative process early. Furthermore, this error reduction can be obtained over a wide range of iteration numbers. Only a negligibly small additional reduction of the errors is obtained by including spatial variance in the filter kernel. Compared with Gaussian filtering, Catte diffusion can further reduce the error in some cases. For the examples considered, using accurate image formation models during iterative reconstruction is far more important than the choice of the filter. (author)
BAND GAP EFFECTS IN PERIODIC CHAIN WITH LOCAL LINEAR OR NON-LINEAR OSCILLATORS
DEFF Research Database (Denmark)
Lazarov, Boyan Stefanov; Jensen, Jakob Søndergaard
2007-01-01
The propagation of waves in periodic systems with alternating properties has been of great interest to engineers and physicists. They exhibit unique dynamic characteristics that enable them to act as filters. Waves can propagate within specific bands of frequencies called pass bands, and attenuate...... within bands of frequencies called stop bands. Stop bands in structures with periodic or random inclusions are located mainly in the high frequency range, as the wave length has to be comparable with the distance between the alternating parts. Wave attenuation is also possible in structures with locally...... attached linear oscillators. The stop band is located around the resonant frequency of the local oscillators, and thus a stop band can be created in the lower frequency range. In this paper, wave propagation in one-dimensional infinite periodic chains with attached linear and non-linear local oscillators...
Regenerable Carbon Filter, Phase I
National Aeronautics and Space Administration — A Regenerable Carbon Filter (RCF) is proposed for the removal of carbonaceous particulate matter produced in Environmental Control and Life Support (ECLS) processes....
Buffers and vegetative filter strips
Matthew J. Helmers; Thomas M. Isenhart; Michael G. Dosskey; Seth M. Dabney
2008-01-01
This chapter describes the use of buffers and vegetative filter strips relative to water quality. In particular, we primarily discuss the herbaceous components of the following NRCS Conservation Practice Standards.
Dimensional reduction in nonlinear filtering
Park, J. H.; Sowers, R. B.; Sri Namachchivaya, N.
2010-02-01
The theory of nonlinear filtering forms the framework of many data assimilation problems. When the rates of change of different variables differ by orders of magnitude, efficient data assimilation can be accomplished by constructing nonlinear filtering equations for the coarse-grained signal. We consider the conditional law of a signal given the observations in a multi-scale context. In particular, we study how scaling interacts with filtering via stochastic averaging. This is an extension of our previous work (Park et al 2008 Stoch. Dyn. 8 543-60) where the observation process depended only on the fast variable, so the filter became independent of the observation in the limit. Here, we investigate a more realistic setting in which the observation depends on both the slow and the fast variables. Paper dedicated to Professor Manfred Denker on the occasion of his 65th birthday.
Calculation of reactivity using a finite impulse response filter
Energy Technology Data Exchange (ETDEWEB)
Suescun Diaz, Daniel [COPPE/UFRJ, Programa de Engenharia Nuclear, Caixa Postal 68509, CEP 21941-914, RJ (Brazil); Senra Martinez, Aquilino [COPPE/UFRJ, Programa de Engenharia Nuclear, Caixa Postal 68509, CEP 21941-914, RJ (Brazil)], E-mail: aquilino@lmp.ufrj.br; Carvalho Da Silva, Fernando [COPPE/UFRJ, Programa de Engenharia Nuclear, Caixa Postal 68509, CEP 21941-914, RJ (Brazil)
2008-03-15
A new formulation is presented in this paper to solve the inverse kinetics equation. This method is based on the Laplace transform of the point kinetics equations, resulting in an expression equivalent to the inverse kinetics equation as a function of the power history. Reactivity can be written in terms of the summation of convolution with response to impulse, characteristic of a linear system. For its digital form the Z-transform is used, which is the discrete version of the Laplace transform. This new method of reactivity calculation has very special features, amongst which it can be pointed out that the linear part is characterized by a filter named finite impulse response (FIR). The FIR filter will always be, stable and non-varying in time, and, apart from this, it can be implemented in the non-recursive form. This type of implementation does not require feedback, allowing the calculation of reactivity in a continuous way.
Filtering and control of stochastic jump hybrid systems
Yao, Xiuming; Zheng, Wei Xing
2016-01-01
This book presents recent research work on stochastic jump hybrid systems. Specifically, the considered stochastic jump hybrid systems include Markovian jump Ito stochastic systems, Markovian jump linear-parameter-varying (LPV) systems, Markovian jump singular systems, Markovian jump two-dimensional (2-D) systems, and Markovian jump repeated scalar nonlinear systems. Some sufficient conditions are first established respectively for the stability and performances of those kinds of stochastic jump hybrid systems in terms of solution of linear matrix inequalities (LMIs). Based on the derived analysis conditions, the filtering and control problems are addressed. The book presents up-to-date research developments and novel methodologies on stochastic jump hybrid systems. The contents can be divided into two parts: the first part is focused on robust filter design problem, while the second part is put the emphasis on robust control problem. These methodologies provide a framework for stability and performance analy...
Gravitation search algorithm: Application to the optimal IIR filter design
Directory of Open Access Journals (Sweden)
Suman Kumar Saha
2014-01-01
Full Text Available This paper presents a global heuristic search optimization technique known as Gravitation Search Algorithm (GSA for the design of 8th order Infinite Impulse Response (IIR, low pass (LP, high pass (HP, band pass (BP and band stop (BS filters considering various non-linear characteristics of the filter design problems. This paper also adopts a novel fitness function in order to improve the stop band attenuation to a great extent. In GSA, law of gravity and mass interactions among different particles are adopted for handling the non-linear IIR filter design optimization problem. In this optimization technique, searcher agents are the collection of masses and interactions among them are governed by the Newtonian gravity and the laws of motion. The performances of the GSA based IIR filter designs have proven to be superior as compared to those obtained by real coded genetic algorithm (RGA and standard Particle Swarm Optimization (PSO. Extensive simulation results affirm that the proposed approach using GSA outperforms over its counterparts not only in terms of quality output, i.e., sharpness at cut-off, smaller pass band ripple, higher stop band attenuation, but also the fastest convergence speed with assured stability.
Effect of humidity on the filter pressure drop
International Nuclear Information System (INIS)
Vendel, J.; Letourneau, P.
1995-01-01
The effects of humidity on the filter pressure drop have been reported in some previous studies in which it is difficult to draw definite conclusions. These studies show contradictory effects of humidity on the pressure drop probably due to differences in the hygroscopicity of the test aerosols. The objective of this paper is to present experimental results on the evolution of the filter pressure drop versus mass loading, for different test aerosols and relative humidities. Present results are compared to those found in various publication. An experimental device has been designed to measure filter pressure drop as the function of the areal density for relative humidity varying in the range of 9 % to 85 %. Experiments have been conducted with hygroscopic: (CsOH) and nonhygroscopic aerosols (TiO 2 ). Cesium hydroxyde (CsOH) of size of 2 μ M AMMD has been generated by an ultrasonic generator and the 0.7 μm AMMD titanium oxyde has been dispersed by a open-quotes turn-tableclose quotes generator. As it is noted in the BISWAS'publication [3], present results show, in the case of nonhygroscopic aerosols, a linear relationship of pressure drop to mass loading. For hygroscopic aerosols two cases must be considered: for relative humidity below the deliquescent point of the aerosol, the relationship of pressure drop to mass loading remains linear; above the deliquescent point, the results show a sudden increase in the pressure drop and the mass capacity of the filter is drastically reduced
Effect of humidity on the filter pressure drop
Energy Technology Data Exchange (ETDEWEB)
Vendel, J.; Letourneau, P. [Institut de Protection et de Surete Nucleaire, Gif-sur-Yvette (France)
1995-02-01
The effects of humidity on the filter pressure drop have been reported in some previous studies in which it is difficult to draw definite conclusions. These studies show contradictory effects of humidity on the pressure drop probably due to differences in the hygroscopicity of the test aerosols. The objective of this paper is to present experimental results on the evolution of the filter pressure drop versus mass loading, for different test aerosols and relative humidities. Present results are compared to those found in various publication. An experimental device has been designed to measure filter pressure drop as the function of the areal density for relative humidity varying in the range of 9 % to 85 %. Experiments have been conducted with hygroscopic: (CsOH) and nonhygroscopic aerosols (TiO{sub 2}). Cesium hydroxyde (CsOH) of size of 2 {mu} M AMMD has been generated by an ultrasonic generator and the 0.7 {mu}m AMMD titanium oxyde has been dispersed by a {open_quotes}turn-table{close_quotes} generator. As it is noted in the BISWAS`publication [3], present results show, in the case of nonhygroscopic aerosols, a linear relationship of pressure drop to mass loading. For hygroscopic aerosols two cases must be considered: for relative humidity below the deliquescent point of the aerosol, the relationship of pressure drop to mass loading remains linear; above the deliquescent point, the results show a sudden increase in the pressure drop and the mass capacity of the filter is drastically reduced.
Using Kalman Filters to Reduce Noise from RFID Location System
Xavier, José; Reis, Luís Paulo; Petry, Marcelo
2014-01-01
Nowadays, there are many technologies that support location systems involving intrusive and nonintrusive equipment and also varying in terms of precision, range, and cost. However, the developers some time neglect the noise introduced by these systems, which prevents these systems from reaching their full potential. Focused on this problem, in this research work a comparison study between three different filters was performed in order to reduce the noise introduced by a location system based on RFID UWB technology with an associated error of approximately 18 cm. To achieve this goal, a set of experiments was devised and executed using a miniature train moving at constant velocity in a scenario with two distinct shapes—linear and oval. Also, this train was equipped with a varying number of active tags. The obtained results proved that the Kalman Filter achieved better results when compared to the other two filters. Also, this filter increases the performance of the location system by 15% and 12% for the linear and oval paths respectively, when using one tag. For a multiple tags and oval shape similar results were obtained (11–13% of improvement). PMID:24592186
Fluid-filled dynamic bowtie filter: a feasibility study
Shunhavanich, Picha; Hsieh, Scott S.; Pelc, Norbert J.
2015-03-01
By varying its thickness to compensate for the different path length through the patient as a function of fan angle, a pre-patient bowtie filter modulates flux distribution to reduce patient dose, scatter, and detector dynamic range, and to improve image quality. A dynamic bowtie filter is superior to its traditional, static counterpart in its ability to adjust its thickness along different fan and view angles to suit a specific patient and task. Among the proposed dynamic bowtie designs, the piecewise-linear and the digital beam attenuators offer more flexibility than conventional filters, but rely on analog positioning of a limited number of wedges. In this work, we introduce a new approach with digital control, called the fluid-filled dynamic bowtie filter. It is a two-dimensional array of small binary elements (channels filled or unfilled with attenuating liquid) in which the cumulative thickness along the x-ray path contributes to the bowtie's total attenuation. Using simulated data from a pelvic scan, the performance is compared with the piecewise-linear attenuator. The fluid-filled design better matches the desired target attenuation profile and delivers a 4.2x reduction in dynamic range. The variance of the reconstruction (or noise map) can also be more homogeneous. In minimizing peak variance, the fluid-filled attenuator shows a 3% improvement. From the initial simulation results, the proposed design has more control over the flux distribution as a function of both fan and view angles.
Ion trajectories quadrupole mass filters
International Nuclear Information System (INIS)
Ursu, D.; Lupsa, N.; Muntean, F.
1994-01-01
The present paper aims at bringing some contributions to the understanding of ion motion in quadrupole mass filters. The theoretical treatment of quadrupole mass filter is intended to be a concise derivation of the important physical relationships using Mathieu functions. A simple iterative method of numerical computation has been used to simulate ion trajectories in an ideal quadrupole field. Finally, some examples of calculation are presented with the aid of computer graphics. (Author) 14 Figs., 1 Tab., 20 Refs
Current Conveyor Based Multifunction Filter
Manish Kumar; M.C. Srivastava; Umesh Kumar
2010-01-01
The paper presents a current conveyor based multifunction filter. The proposed circuit can be realized as low pass, high pass, band pass and elliptical notch filter. The circuit employs two balanced output current conveyors, four resistors and two grounded capacitors, ideal for integration. It has only one output terminal and the number of input terminals may be used. Further, there is no requirement for component matching in the circuit. The parameter resonance frequency (\\omega_0) and bandw...
Filter Fabrics for Airport Drainage.
1979-09-01
pneumatically filling a woven polypropylene stocking with sand and vibrating it into a prebored hole, while another method uses a polyester nonwoven fabric...Selected Nonwoven Filter Fabrics," Letter Report, June 1977, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss. 18. BalL, J. E...woven and nonwoven plastic filter fabric. It has been developed based on limited field performance observations and the laboratory test evaluation of
Mean-field Ensemble Kalman Filter
Law, Kody
2015-01-07
A proof of convergence of the standard EnKF generalized to non-Gaussian state space models is provided. A density-based deterministic approximation of the mean-field limiting EnKF (MFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF for d < 2 . The fidelity of approximation of the true distribution is also established using an extension of total variation metric to random measures. This is limited by a Gaussian bias term arising from non-linearity/non-Gaussianity of the model, which arises in both deterministic and standard EnKF. Numerical results support and extend the theory.
Sparse PDF maps for non-linear multi-resolution image operations
Hadwiger, Markus
2012-11-01
We introduce a new type of multi-resolution image pyramid for high-resolution images called sparse pdf maps (sPDF-maps). Each pyramid level consists of a sparse encoding of continuous probability density functions (pdfs) of pixel neighborhoods in the original image. The encoded pdfs enable the accurate computation of non-linear image operations directly in any pyramid level with proper pre-filtering for anti-aliasing, without accessing higher or lower resolutions. The sparsity of sPDF-maps makes them feasible for gigapixel images, while enabling direct evaluation of a variety of non-linear operators from the same representation. We illustrate this versatility for antialiased color mapping, O(n) local Laplacian filters, smoothed local histogram filters (e.g., median or mode filters), and bilateral filters. © 2012 ACM.
Ensemble Kalman filtering with residual nudging
Luo, X.
2012-10-03
Covariance inflation and localisation are two important techniques that are used to improve the performance of the ensemble Kalman filter (EnKF) by (in effect) adjusting the sample covariances of the estimates in the state space. In this work, an additional auxiliary technique, called residual nudging, is proposed to monitor and, if necessary, adjust the residual norms of state estimates in the observation space. In an EnKF with residual nudging, if the residual norm of an analysis is larger than a pre-specified value, then the analysis is replaced by a new one whose residual norm is no larger than a pre-specified value. Otherwise, the analysis is considered as a reasonable estimate and no change is made. A rule for choosing the pre-specified value is suggested. Based on this rule, the corresponding new state estimates are explicitly derived in case of linear observations. Numerical experiments in the 40-dimensional Lorenz 96 model show that introducing residual nudging to an EnKF may improve its accuracy and/or enhance its stability against filter divergence, especially in the small ensemble scenario.
Ensemble Kalman filtering with residual nudging
Directory of Open Access Journals (Sweden)
Xiaodong Luo
2012-10-01
Full Text Available Covariance inflation and localisation are two important techniques that are used to improve the performance of the ensemble Kalman filter (EnKF by (in effect adjusting the sample covariances of the estimates in the state space. In this work, an additional auxiliary technique, called residual nudging, is proposed to monitor and, if necessary, adjust the residual norms of state estimates in the observation space. In an EnKF with residual nudging, if the residual norm of an analysis is larger than a pre-specified value, then the analysis is replaced by a new one whose residual norm is no larger than a pre-specified value. Otherwise, the analysis is considered as a reasonable estimate and no change is made. A rule for choosing the pre-specified value is suggested. Based on this rule, the corresponding new state estimates are explicitly derived in case of linear observations. Numerical experiments in the 40-dimensional Lorenz 96 model show that introducing residual nudging to an EnKF may improve its accuracy and/or enhance its stability against filter divergence, especially in the small ensemble scenario.
Data-Reusing Adaptive Filtering Algorithms with Adaptive Error Constraint
Young-Seok Choi
2016-01-01
We present a family of data-reusing and affine projection algorithms. For identification of a noisy linear finite impulse response channel, a partial knowledge of a channel, especially noise, can be used to improve the performance of the adaptive filter. Motivated by this fact, the proposed scheme incorporates an estimate of a knowledge of noise. A constraint, called the adaptive noise constraint, estimates an unknown information of noise. By imposing this constraint on a...
Experience with three percutaneous vena cava filters
International Nuclear Information System (INIS)
McCowan, T.C.; Ferris, E.J.; Harshfield, D.L.; Hassell, D.R.; Baker, M.L.
1987-01-01
Twenty-one Kimray-Greenfield, 33 bird's nest, and 19 Amplatz vena cava filters were placed percutaneously. The Kimray-Greenfield filter was the most difficult to insert. The major problem was the insertion site, which required venipuncture with a 24-F catheter. Minor hemorrhage was frequent, and femoral vein thrombosis occurred in four patients. No migration, caval thrombosis, or pulmonary emboli were seen after Kimray-Greenfield filter placement. The bird's nest filter was relatively easy to insert, although in two cases the filter prongs could not be adequately seated in the wall of the inferior vena cava. Three patients with bird's nest filters had thrombosis below the filter, and three filters migrated to the heart. One migrated filter could not be removed. One patient had multiple small pulmonary emboli at autopsy. No other pulmonary emboli after filter placement were noted. The Amplatz filter was the easiest of the three filters to insert. Only one patient with an Amplatz filter had thrombosis of the vena cava below the filter. No filter migrations were documented, and no recurrent pulmonary emboli were found on clinical or radiologic follow-up. The Amplatz vena cava filter is easier to place than percutaneous Kimray-Greenfield or bird's nest filters, has a low complication rate, and has proven to be clinically effective in preventing pulmonary emboli
Parametric Adaptive Matched Filter for Multistatic MIMO Radar (Preprint)
2016-11-04
linear predictor. Using this, the P th order filter has the form y(n) = D −1/2 P ( P∑ k=0 AHP (k)x(n− k − P )) (27) where n = 0, 1, ..., N − P − 1 and...MULTISTATIC MIMO RADAR (PREPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6.1 Tariq Qureshi, Muralidhar...elements and Nr ≥ 1 receive elements. The transmitting and receiving elements are arranged as uniformly spaced linear arrays (ULAs) that are aligned to
Blyth, T S
2002-01-01
Most of the introductory courses on linear algebra develop the basic theory of finite dimensional vector spaces, and in so doing relate the notion of a linear mapping to that of a matrix. Generally speaking, such courses culminate in the diagonalisation of certain matrices and the application of this process to various situations. Such is the case, for example, in our previous SUMS volume Basic Linear Algebra. The present text is a continuation of that volume, and has the objective of introducing the reader to more advanced properties of vector spaces and linear mappings, and consequently of matrices. For readers who are not familiar with the contents of Basic Linear Algebra we provide an introductory chapter that consists of a compact summary of the prerequisites for the present volume. In order to consolidate the student's understanding we have included a large num ber of illustrative and worked examples, as well as many exercises that are strategi cally placed throughout the text. Solutions to the ex...
Estimation of Sideslip Angle Based on Extended Kalman Filter
Directory of Open Access Journals (Sweden)
Yupeng Huang
2017-01-01
Full Text Available The sideslip angle plays an extremely important role in vehicle stability control, but the sideslip angle in production car cannot be obtained from sensor directly in consideration of the cost of the sensor; it is essential to estimate the sideslip angle indirectly by means of other vehicle motion parameters; therefore, an estimation algorithm with real-time performance and accuracy is critical. Traditional estimation method based on Kalman filter algorithm is correct in vehicle linear control area; however, on low adhesion road, vehicles have obvious nonlinear characteristics. In this paper, extended Kalman filtering algorithm had been put forward in consideration of the nonlinear characteristic of the tire and was verified by the Carsim and Simulink joint simulation, such as the simulation on the wet cement road and the ice and snow road with double lane change. To test and verify the effect of extended Kalman filtering estimation algorithm, the real vehicle test was carried out on the limit test field. The experimental results show that the accuracy of vehicle sideslip angle acquired by extended Kalman filtering algorithm is obviously higher than that acquired by Kalman filtering in the area of the nonlinearity.
Human vision combines oriented filters to compute edges.
Georgeson, M A
1992-09-22
The experiments examined the perceived spatial structure of plaid patterns, composed of two or three sinusoidal gratings of the same spatial frequency, superimposed at different orientations. Perceived structure corresponded well with the pattern of zero crossings in the output of a circular spatial filter applied to the image. This lends some support to Marr & Hildreth's (Proc. R. Soc. Lond. B 207, 187 (1980)) theory of edge detection as a model for human vision, but with a very different implementation. The perceived structure of two-component plaids was distorted by prior exposure to a masking or adapting grating, in a way that was perceptually equivalent to reducing the contrast of one of the plaid components. This was confirmed by finding that the plaid distortion could be nulled by increasing the contrast of the masked or adapted component. A corresponding reduction of perceived contrast for single gratings was observed after adaptation and in some masking conditions. I propose the outlines of a model for edge finding in human vision. The plaid components are processed through cortical, orientation-selective filters that are subject to attenuation by forward masking and adaptation. The outputs of these oriented filters are then linearly summed to emulate circular filtering, and zero crossings (zcs) in the combined output are used to determine edge locations. Masking or adapting to a grating attenuates some oriented filters more than others, and although this changes only the effective contrast of the components, it results in a geometric distortion at the zc level after different filters have been combined. The orientation of zcs may not correspond at all with the orientation of Fourier components, but they are correctly predicted by this two-stage model. The oriented filters are not 'orientation detectors', but are precursors to a more subtle stage that locates and represents spatial features.
International Nuclear Information System (INIS)
Khalil, M.M.; Higazy, M.E.; Elgazzar, A.; Omar, A.M.; Mahdy, A.
2004-01-01
Background: One of the noticed limitations of Quantitative Gated SPECT (QCS, Cedar Sinai, Los Anglos) program is processing data from patients with small left ventricles. Detector response and photon scatter are major contributors for this limitation which can be partially corrected by Restoration filters i.e. Metz. The objective of this study is to compare between Metz filter and the commonly used Butter worth filter in the calculation of the End-Diastolic Volume (EDV), End-Systolic Volume (ESV) and Ejection Fraction (EF), taking the Gated Blood Pool as a reference for EF estimation. Methods: Thirty six patients with small left ventricles were selected, EDV<86 mL as calculated by QGS with Butter worth filter of cutoff value 0.40 cycle/cm. Tc-99m tetrofosmin gated SPECT was performed for all patients and gated blood pool was done for a subgroup of 17 patients (47%). Two phantom studies were performed to optimize the order of the Metz filter. The first one was a cardiac phantom in air and the Full Width at Half Maximum (FWHM) of the mid-ventricular short axis slice was calculated and considered as the reference value. The second one was the same cardiac phantom in a chest simulating-cylinder(Data Spectrum Corporation) The projection data were reconstructed ten times using the Metz orders from (1 to 10). The point spread function was calculated by a point source in a water phantom at a depth of 15 cm. For each reconstruction, the FWHM of the reconstructed mid-short axis slice was calculated. A regression line between the order of the Metz filter and the FWHM was plotted and the regression equation was calculated. From the linear fit, the order of the Metz filter that corresponded to the reference value of FWHM was calculated. Results: The order calculated from the linear fit was 7. The mean EDV and ESV as calculated using Metz filter were significantly higher than that by using Butter worth filter (76.5±17.7 mL. vs. 63.2±15.5 mL. and 29.7±12.8 mL vs. 20.5±11.4 m
Grégoire, G.
2014-12-01
This chapter deals with the multiple linear regression. That is we investigate the situation where the mean of a variable depends linearly on a set of covariables. The noise is supposed to be gaussian. We develop the least squared method to get the parameter estimators and estimates of their precisions. This leads to design confidence intervals, prediction intervals, global tests, individual tests and more generally tests of submodels defined by linear constraints. Methods for model's choice and variables selection, measures of the quality of the fit, residuals study, diagnostic methods are presented. Finally identification of departures from the model's assumptions and the way to deal with these problems are addressed. A real data set is used to illustrate the methodology with software R. Note that this chapter is intended to serve as a guide for other regression methods, like logistic regression or AFT models and Cox regression.
Banach, S
1987-01-01
This classic work by the late Stefan Banach has been translated into English so as to reach a yet wider audience. It contains the basics of the algebra of operators, concentrating on the study of linear operators, which corresponds to that of the linear forms a1x1 + a2x2 + ... + anxn of algebra.The book gathers results concerning linear operators defined in general spaces of a certain kind, principally in Banach spaces, examples of which are: the space of continuous functions, that of the pth-power-summable functions, Hilbert space, etc. The general theorems are interpreted in various mathematical areas, such as group theory, differential equations, integral equations, equations with infinitely many unknowns, functions of a real variable, summation methods and orthogonal series.A new fifty-page section (``Some Aspects of the Present Theory of Banach Spaces'''') complements this important monograph.
Linear programming using Matlab
Ploskas, Nikolaos
2017-01-01
This book offers a theoretical and computational presentation of a variety of linear programming algorithms and methods with an emphasis on the revised simplex method and its components. A theoretical background and mathematical formulation is included for each algorithm as well as comprehensive numerical examples and corresponding MATLAB® code. The MATLAB® implementations presented in this book are sophisticated and allow users to find solutions to large-scale benchmark linear programs. Each algorithm is followed by a computational study on benchmark problems that analyze the computational behavior of the presented algorithms. As a solid companion to existing algorithmic-specific literature, this book will be useful to researchers, scientists, mathematical programmers, and students with a basic knowledge of linear algebra and calculus. The clear presentation enables the reader to understand and utilize all components of simplex-type methods, such as presolve techniques, scaling techniques, pivoting ru...
DEFF Research Database (Denmark)
Høskuldsson, Agnar
1996-01-01
Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four of these cri......Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four...... the basic problems in determining the dimension of linear models. Then each of the eight measures are treated. The results are illustrated by examples....
International Nuclear Information System (INIS)
Mamyrin, B.A.; Shmikk, D.V.
1979-01-01
A description and operating principle of a linear mass reflectron with V-form trajectory of ion motion -a new non-magnetic time-of-flight mass spectrometer with high resolution are presented. The ion-optical system of the device consists of an ion source with ionization by electron shock, of accelerating gaps, reflector gaps, a drift space and ion detector. Ions move in the linear mass refraction along the trajectories parallel to the axis of the analyzer chamber. The results of investigations into the experimental device are given. With an ion drift length of 0.6 m the device resolution is 1200 with respect to the peak width at half-height. Small-sized mass spectrometric transducers with high resolution and sensitivity may be designed on the base of the linear mass reflectron principle
DEFF Research Database (Denmark)
Bekö, Gabriel; Fadeyi, M.O.; Clausen, Geo
2009-01-01
was judged to be significantly better than the air downstream of the 6-month-old F7 filter, and was comparable to that from an unused F7 filter. Additionally, the combination filters removed more ozone from the air than the F7 filter, with their respective fractional removal efficiencies roughly scaling......As ventilation filters accumulate particles removed from the airstream, they become emitters of sensory pollutants that degrade indoor air quality. Previously we demonstrated that an F7 bag-type filter that incorporates activated carbon (a "combination filter") reduces this adverse effect compared...... to an equivalent filter without carbon. The aim of the present study was to examine how the amount of activated carbon (AC) used in combination filters affects their ability to remove both sensory offending pollutants and ozone. A panel evaluated the air downstream of four different filters after each had...
Application of linear systems theory to characterize coherence scanning interferometry
Mandal, Rahul; Palodhi, Kanik; Coupland, Jeremy; Leach, Richard; Mansfield, Daniel
2012-04-01
This paper considers coherence scanning interferometry as a linear filtering operation that is characterised by a point spread function in the space domain or equivalently a transfer function in the frequency domain. The applicability of the theory is discussed and the effects of these functions on the measured interferograms, and their influence on the resulting surface measurements, are described. The practical characterisation of coherence scanning interferometers using a spherical reference artefact is then considered and a new method to compensate measurement errors, based on a modified inverse filter, is demonstrated.
Derivative-Free Distributed Filtering for MIMO Robotic Systems under Delays and Packet Drops
Directory of Open Access Journals (Sweden)
Gerasimos G. Rigatos
2013-02-01
Full Text Available This paper presents an approach to distributed state estimation-based control of nonlinear MIMO systems, capable of incorporating delayed measurements in the estimation algorithm while also being robust to packet losses. First, the paper examines the problem of distributed nonlinear filtering over a communication/sensors network, and the use of the estimated state vector in a control loop. As a possible filtering approach, an extended information filter (EIF is proposed. The extended information filter requires the computation of Jacobians which in the case of high order nonlinear dynamical systems can be a cumbersome procedure, while it also introduces cumulative errors to the state estimation due to the approximative linearization performed in the Taylor series expansion of the system's nonlinear model. To overcome the aforementioned weaknesses of the extended information filter, a derivative-free approach to extended information filtering has been proposed. Distributed filtering is now based on a derivative-free implementation of Kalman filtering which is shown to be applicable to MIMO nonlinear dynamical systems. In the proposed derivative-free extended information filtering, the system is first subject to a linearization transformation that makes use of the differential flatness theory. It is shown how the proposed distributed filtering method can succeed in compensation of random delays and packet drops which may appear during the transmission of measurements and of state vector estimates, thus assuring a reliable performance of the distributed filtering-based control scheme. Evaluation tests are carried out on benchmark MIMO nonlinear systems, such as multi-DOF robotic manipulators.
The role of model dynamics in ensemble Kalman filter performance for chaotic systems
Ng, G.-H.C.; McLaughlin, D.; Entekhabi, D.; Ahanin, A.
2011-01-01
The ensemble Kalman filter (EnKF) is susceptible to losing track of observations, or 'diverging', when applied to large chaotic systems such as atmospheric and ocean models. Past studies have demonstrated the adverse impact of sampling error during the filter's update step. We examine how system dynamics affect EnKF performance, and whether the absence of certain dynamic features in the ensemble may lead to divergence. The EnKF is applied to a simple chaotic model, and ensembles are checked against singular vectors of the tangent linear model, corresponding to short-term growth and Lyapunov vectors, corresponding to long-term growth. Results show that the ensemble strongly aligns itself with the subspace spanned by unstable Lyapunov vectors. Furthermore, the filter avoids divergence only if the full linearized long-term unstable subspace is spanned. However, short-term dynamics also become important as non-linearity in the system increases. Non-linear movement prevents errors in the long-term stable subspace from decaying indefinitely. If these errors then undergo linear intermittent growth, a small ensemble may fail to properly represent all important modes, causing filter divergence. A combination of long and short-term growth dynamics are thus critical to EnKF performance. These findings can help in developing practical robust filters based on model dynamics. ?? 2011 The Authors Tellus A ?? 2011 John Wiley & Sons A/S.
Linearly Adjustable International Portfolios
International Nuclear Information System (INIS)
Fonseca, R. J.; Kuhn, D.; Rustem, B.
2010-01-01
We present an approach to multi-stage international portfolio optimization based on the imposition of a linear structure on the recourse decisions. Multiperiod decision problems are traditionally formulated as stochastic programs. Scenario tree based solutions however can become intractable as the number of stages increases. By restricting the space of decision policies to linear rules, we obtain a conservative tractable approximation to the original problem. Local asset prices and foreign exchange rates are modelled separately, which allows for a direct measure of their impact on the final portfolio value.
Linearly Adjustable International Portfolios
Fonseca, R. J.; Kuhn, D.; Rustem, B.
2010-09-01
We present an approach to multi-stage international portfolio optimization based on the imposition of a linear structure on the recourse decisions. Multiperiod decision problems are traditionally formulated as stochastic programs. Scenario tree based solutions however can become intractable as the number of stages increases. By restricting the space of decision policies to linear rules, we obtain a conservative tractable approximation to the original problem. Local asset prices and foreign exchange rates are modelled separately, which allows for a direct measure of their impact on the final portfolio value.
International Nuclear Information System (INIS)
Barkman, W.E.; Adams, W.Q.; Berrier, B.R.
1978-01-01
A linear induction motor has been operated on a test bed with a feedback pulse resolution of 5 nm (0.2 μin). Slewing tests with this slide drive have shown positioning errors less than or equal to 33 nm (1.3 μin) at feedrates between 0 and 25.4 mm/min (0-1 ipm). A 0.86-m (34-in)-stroke linear motor is being investigated, using the SPACO machine as a test bed. Initial results were encouraging, and work is continuing to optimize the servosystem compensation
Hogben, Leslie
2013-01-01
With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters.New to the Second EditionSeparate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of