WorldWideScience

Sample records for single-drop microextraction combined

  1. Determination of bisphenol A in thermal printing papers treated by alkaline aqueous solution using the combination of single-drop microextraction and HPLC.

    Science.gov (United States)

    Gao, Leihong; Zou, Jing; Liu, Haihong; Zeng, Jingbin; Wang, Yiru; Chen, Xi

    2013-04-01

    A method for the quantitative determination of bisphenol A in thermal printing paper was developed and validated. Bisphenol A was extracted from the paper samples using 2% NaOH solution, then the extracted analyte was enriched using single-drop microextraction followed by HPLC analysis. Several parameters relating to the single-drop microextraction efficiency including extraction solvent, extraction temperature and time, stirring rate, and pH of donor phase were studied and optimized. Spiked recovery of bisphenol A at 20 and 5 mg/g was found to be 95.8 and 108%, and the method detection limit and method quantification limit was 0.03 and 0.01 mg/g, respectively. Under the optimized conditions, the proposed method was applied to the determination of bisphenol A in seven types of thermal printing paper samples, and the concentration of bisphenol A was found in the range of 0.53-20.9 mg/g. The considerably minimum usage of organic solvents (5 μL 1-octanol) and high enrichment factor (189-197) in the sample preparation are the two highlighted advantages in comparison with previously published works. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Determination of Trace Amounts of Lead with ETAAS After Single Drop Microextraction and Dispersive Liquid Liquid Microextraction Methods

    Directory of Open Access Journals (Sweden)

    Efeçınar M.

    2013-04-01

    Full Text Available Two liquid-phase microextraction procedures, single-drop microextraction (SDME and dispersive liquid–liquid microextraction (DLLME, have been developed for the determination of lead by electrothermal atomic absorption spectrometry (ETAAS. Both methods were based on the formation of lead iodide-Rhodamine B complex which is in phosphoric acid medium. In the presence of KI, anionic lead iodide was complexed with Rhodamine B as an ion-association complex. Several factors that may be affected on the SDME and DLLME methods were optimized. In the optimum experimental conditions, the limit of detection (3s and the enhancement factor were 0.008 μgL−1 and 152 for SDME and 0.0129 μgL−1 and 89 for DLLME respectively. The relative standard deviation (RSD for eight replicate determinations of 0.25 μgL−1 Pb was 4.6% for SDME and 0.5 μgL−1 Pb was 2.9% for DLLME. The developed methods were validated by the analysis of certified reference materials, and applied successfully to the determination of lead in several water and food samples.

  3. Headspace single-drop microextraction coupled to microvolume UV-vis spectrophotometry for iodine determination

    International Nuclear Information System (INIS)

    Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos

    2009-01-01

    Headspace single-drop microextraction has been combined with microvolume UV-vis spectrophotometry for iodine determination. Matrix separation and preconcentration of iodide following in situ volatile iodine generation and extraction into a microdrop of N,N'-dimethylformamide is performed. An exhaustive characterization of the microextraction system and the experimental variables affecting iodine generation from iodide was carried out. The procedure employed consisted of exposing 2.5 μL of N,N'-dimethylformamide to the headspace of a 10 mL acidic (H 2 SO 4 2 mol L -1 ) aqueous solution containing 1.7 mol L -1 Na 2 SO 4 for 7 min. Addition of 1 mL of H 2 O 2 1 mol L -1 for in situ iodine generation was performed. The limit of detection was determined as 0.69 μg L -1 . The repeatability, expressed as relative standard deviation, was 4.7% (n = 6). The calibration working range was from 5 to 200 μg L -1 (r 2 = 0.9991). The large preconcentration factor obtained, ca. 623 in only 7 min, compensate for the 10-fold loss in sensitivity caused by the decreased optical path, which results in improved detection limits as compared to spectrophotometric measurements carried out with conventional sample cells. The method was successfully applied to the determination of iodine in water, pharmaceutical and food samples

  4. Immersed single-drop microextraction interfaced with sequential injection analysis for determination of Cr(VI) in natural waters by electrothermal-atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Pena, Francisco; Lavilla, Isela; Bendicho, Carlos

    2008-01-01

    Single-drop microextraction (SDME) and sequential injection analysis have been hyphenated for ultratrace metal determination by Electrothermal-Atomic Absorption Spectrometry (ETAAS). The novel method was targeted on extraction of the Cr(VI)-APDC chelate and encompasses the potential of SDME as a miniaturized and virtually solvent-free preconcentration technique, the ability of sequential injection analysis to handle samples and the versatility of furnace autosamplers for introducing microliter samples in ETAAS. The variables influencing the microextraction of Cr(VI) onto an organic solvent drop, i.e., type of organic solvent, microextraction time, stirring rate of the sample solution, drop volume, immersion depth of the drop, salting-out effect, temperature of the sample, concentration of the complexing agent and pH of the sample solution were fully investigated. For a 5 and 20 min microextraction time, the preconcentration factors were 20 and 70, respectively. The detection limit was 0.02 μg/L of Cr(VI) and the repeatability expressed as relative standard deviation was 7%. The SDME-SIA-ETAAS technique was validated against BCR CRM 544 (lyophilized solution) and applied to ultrasensitive determination of Cr(VI) in natural waters

  5. Immersed single-drop microextraction interfaced with sequential injection analysis for determination of Cr(VI) in natural waters by electrothermal-atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Pena, Francisco; Lavilla, Isela [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Facultad de Quimica, Universidad de Vigo, Campus As Lagoas-Marcosende, s/n, 36310 Vigo (Spain); Bendicho, Carlos [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Facultad de Quimica, Universidad de Vigo, Campus As Lagoas-Marcosende, s/n, 36310 Vigo (Spain)], E-mail: bendicho@uvigo.es

    2008-04-15

    Single-drop microextraction (SDME) and sequential injection analysis have been hyphenated for ultratrace metal determination by Electrothermal-Atomic Absorption Spectrometry (ETAAS). The novel method was targeted on extraction of the Cr(VI)-APDC chelate and encompasses the potential of SDME as a miniaturized and virtually solvent-free preconcentration technique, the ability of sequential injection analysis to handle samples and the versatility of furnace autosamplers for introducing microliter samples in ETAAS. The variables influencing the microextraction of Cr(VI) onto an organic solvent drop, i.e., type of organic solvent, microextraction time, stirring rate of the sample solution, drop volume, immersion depth of the drop, salting-out effect, temperature of the sample, concentration of the complexing agent and pH of the sample solution were fully investigated. For a 5 and 20 min microextraction time, the preconcentration factors were 20 and 70, respectively. The detection limit was 0.02 {mu}g/L of Cr(VI) and the repeatability expressed as relative standard deviation was 7%. The SDME-SIA-ETAAS technique was validated against BCR CRM 544 (lyophilized solution) and applied to ultrasensitive determination of Cr(VI) in natural waters.

  6. Single-drop microextraction for the determination of manganese in seafood and water samples

    International Nuclear Information System (INIS)

    Lemos, V.A.; Vieira, U.S.

    2013-01-01

    We describe a method for single drop microextraction of manganese from fish, mollusk, and from natural waters using the reagent 1-(2-pyridylazo)-2-naphthol as the complexing agent and chloroform as the fluid extractor. After extraction, the analyte was directly submitted to graphite furnace electrothermal atomic absorption spectrometry. Once optimized, the method has a detection limit of 30 ng L -1 , a limit of quantification of 100 ng L -1 , and an enrichment factor of 16. Its accuracy was verified by applying the procedure to the following certified reference materials: apple leaves, spinach leaves, bovine liver, and mussel tissue. The procedure was also successfully applied to the determination of manganese in seafood and natural waters. (author)

  7. Coumarins as turn on/off fluorescent probes for detection of residual acetone in cosmetics following headspace single-drop microextraction.

    Science.gov (United States)

    Cabaleiro, N; de la Calle, I; Bendicho, C; Lavilla, I

    2014-11-01

    In this work, a new method based on headspace-single drop microextraction for the determination of residual acetone in cosmetics by microfluorospectrometry is proposed. Acetone causes fluorescence changes in a 2.5 µL-ethanolic drop (40% v/v) containing 3.10(-4) mol L(-1) 7-hydroxy-4-methylcoumarin ('turn off') or 6.10(-6) mol L(-1) 7-diethylamino-4-methylcoumarin ('turn on'). Polarity and ability to form hydrogen bonds of short chain alcohols (polar protic solvents) were crucial in order to observe these changes in the presence of acetone (polar aprotic solvent). Parameters related with the HS-SDME procedure were studied, namely headspace volume, composition, volume and temperature of drop, microextraction time, stirring rate, mass and temperature of sample, as well as the effect of potential interferents (alcohols and fragrances). The high volatility of acetone allows its extraction from an untreated cosmetic sample within 3 min. A detection limit of 0.26 µg g(-1) and repeatability, expressed as relative standard deviation, around 5% were reached. Accuracy of the proposed methodology was evaluated by means of recovery studies. The method was successfully used to analyze different cosmetics. Simplicity and high sample throughput can be highlighted. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Headspace liquid-phase microextraction of methamphetamine and amphetamine in urine by an aqueous drop

    International Nuclear Information System (INIS)

    He Yi; Vargas, Angelica; Kang, Youn-Jung

    2007-01-01

    This study developed a headspace liquid-phase microextraction (LPME) method by using a single aqueous drop in combination with high performance liquid chromatography (HPLC)-UV detection for the determination of methamphetamine (MAP) and amphetamine (AP) in urine samples. The analytes, volatile and basic, were released from sample matrix into the headspace first, and then protonated and dissolved in an aqueous H 3 PO 4 drop hanging in the headspace by a HPLC syringe. After extraction, this drop was directly injected into HPLC. Parameters affecting extraction efficiency were investigated and optimized. This method showed good linearity in the investigated concentration range of 1.0-1500 μg L -1 , repeatability of the extraction (R.S.D. -1 for both analytes). Enrichment factors of about 400-fold and 220-fold were achieved for MAP and AP, respectively, at optimum conditions. The feasibility of the method was demonstrated by analyzing human urine samples

  9. Headspace liquid-phase microextraction of methamphetamine and amphetamine in urine by an aqueous drop

    Energy Technology Data Exchange (ETDEWEB)

    He Yi [Department of Sciences, John Jay College of Criminal Justice, City University of New York, 445 W 59th Street, New York, NY 10019 (United States)]. E-mail: yhe@jjay.cuny.edu; Vargas, Angelica [Department of Sciences, John Jay College of Criminal Justice, City University of New York, 445 W 59th Street, New York, NY 10019 (United States); Kang, Youn-Jung [Department of Sciences, John Jay College of Criminal Justice, City University of New York, 445 W 59th Street, New York, NY 10019 (United States)

    2007-04-25

    This study developed a headspace liquid-phase microextraction (LPME) method by using a single aqueous drop in combination with high performance liquid chromatography (HPLC)-UV detection for the determination of methamphetamine (MAP) and amphetamine (AP) in urine samples. The analytes, volatile and basic, were released from sample matrix into the headspace first, and then protonated and dissolved in an aqueous H{sub 3}PO{sub 4} drop hanging in the headspace by a HPLC syringe. After extraction, this drop was directly injected into HPLC. Parameters affecting extraction efficiency were investigated and optimized. This method showed good linearity in the investigated concentration range of 1.0-1500 {mu}g L{sup -1}, repeatability of the extraction (R.S.D. < 5%, n = 6), and low detection limits (0.3 {mu}g L{sup -1} for both analytes). Enrichment factors of about 400-fold and 220-fold were achieved for MAP and AP, respectively, at optimum conditions. The feasibility of the method was demonstrated by analyzing human urine samples.

  10. Speciation and determination of inorganic mercury and methylmercury by headspace single drop microextraction and electrothermal atomic absorption spectrometry in water and fish

    Energy Technology Data Exchange (ETDEWEB)

    Sarica, Deniz Yurtsever [Scientific and Technological Research Council of Turkey, Ankara Test and Analysis Laboratory, TUeBITAK/ATAL, Besevler, Ankara (Turkey); Tuerker, Ali Rehber [Science Faculty, Department of Chemistry, Gazi University, Ankara (Turkey)

    2012-05-15

    In this study, headspace single drop microextraction (HS-SDME) method in combination with electrothermal atomic absorption spectrometry (ETAAS) method was developed and validated for the speciation and determination of inorganic mercury (iHg) and methylmercury (MeHg). MeHg and iHg species were reduced to volatile methylmercury hydride (CH{sub 3}HgH) and elemental mercury, respectively, in the presence of NaBH{sub 4} and trapped onto a drop of acceptor phase in the tip of a microsyringe. Thiourea and ammonium pyrrolydinedithiocarbamate (APDC) were tested as the acceptor phase. The experimental parameters of the method such as microextraction time, temperature, NaBH{sub 4} concentration, acceptor phase concentration, and pH of the medium were investigated to obtain distinctive conditions for mercury species. Possible interference effects have also been investigated. In order to validation of the method, analytical figures of merits such as accuracy, precision, limit of detection (LOD), limit of quantitation (LOQ), and linear working range have been evaluated. Accuracy of the method has been verified by analyzing certified reference materials (BCR 453 Tuna fish) and spiked samples. The proposed method was applied for the speciation and determination of mercury species in water and fish samples. Mercury species (MeHg and iHg) have been determined in the real samples with a relative error less than 10%. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Miniaturized and green method for determination of chemical oxygen demand using UV-induced oxidation with hydrogen peroxide and single drop microextraction

    International Nuclear Information System (INIS)

    Akhoundzadeh, Jeyran; Chamsaz, Mahmoud; Costas, Marta; Lavilla, Isela; Bendicho, Carlos

    2013-01-01

    We report on a green method for the determination of low levels of chemical oxygen demand. It is based on the combination of (a) UV-induced oxidation with hydrogen peroxide, (b) headspace single-drop microextraction with in-drop precipitation, and (c) micro-turbidimetry. The generation of CO 2 after photolytic oxidation followed by its sequestration onto a microdrop of barium hydroxide gives rise to a precipitate of barium carbonate which is quantified by turbidimetry. UV-light induced oxidation was studied in the absence and presence of H 2 O 2 , ultrasound, and ferrous ion. Determinations of chemical oxygen demand were performed using potassium hydrogen phthalate as a model compound. The optimized method gives a calibration curve that is linear between 3.4 and 20 mg L −1 oxygen. The detection limit was 1.2 mg L −1 of oxygen, and the repeatability (as relative standard deviation) was around 5 %. The method was successfully applied to the determination of chemical oxygen demand in different natural waters and a synthetic wastewater. (author)

  12. Optimization of a single-drop microextraction method for multielemental determination by electrothermal vaporization inductively coupled plasma mass spectrometry following in situ vapor generation

    International Nuclear Information System (INIS)

    Gil, Sandra; Loos-Vollebregt, Margaretha T.C. de; Bendicho, Carlos

    2009-01-01

    A headspace single-drop microextraction (HS-SDME) method has been developed in combination with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) for the simultaneous determination of As, Sb, Bi, Pb, Sn and Hg in aqueous solutions. Vapor generation is carried out in a 40 mL volume closed-vial containing a solution with the target analytes in hydrochloric acid and potassium ferricyanide medium. Hydrides (As, Sb, Bi, Pb, Sn) and Hg vapor are trapped onto an aqueous single drop (3 μL volume) containing Pd(II), followed by the subsequent injection in the ETV. Experimental variables such as medium composition, sodium tetrahydroborate (III) volume and concentration, stirring rate, extraction time, sample volume, ascorbic acid concentration and palladium amount in the drop were fully optimized. The limits of detection (LOD) (3σ criterion) of the proposed method for As, Sb, Bi, Pb, Sn and Hg were 0.2, 0.04, 0.01, 0.07, 0.09 and 0.8 μg/L, respectively. Enrichment factors of 9, 85, 138, 130, 37 and 72 for As, Sb, Bi, Pb, Sn and Hg, respectively, were achieved in 210 s. The relative standard deviations (N = 5) ranged from 4 to 8%. The proposed HS-SDME-ETV-ICP-MS method has been applied for the determination of As, Sb, Bi, Pb, Sn and Hg in NWRI TM-28.3 certified reference material.

  13. Rapid detection of atrazine and metolachlor in farm soils: gas chromatography-mass spectrometry-based analysis using the bubble-in-drop single drop microextraction enrichment method.

    Science.gov (United States)

    Williams, D Bradley G; George, Mosotho J; Marjanovic, Ljiljana

    2014-08-06

    Tracking of metolachlor and atrazine herbicides in agricultural soils, from spraying through to harvest, was conducted using our recently reported "bubble-in-drop single-drop microextraction" method. The method showed good linearity (R(2) = 0.999 and 0.999) in the concentration range of 0.01-1.0 ng/mL with LOD values of 0.01 and 0.02 ng/mL for atrazine and metolachlor, respectively. Sonication methods were poor at releasing these herbicides from the soil matrixes, while hot water extraction readily liberated them, providing an efficient accessible alternative to sonication techniques. Good recoveries of 97% and 105% were shown for atrazine and metolachlor, respectively, from the soil. The spiking protocol was also investigated, resulting in a traceless spiking method. We demonstrate a very sensitive technique by which to assess, for example, the length of residence of pesticides in given soils and thus risk of exposure.

  14. Direct immersion single drop micro-extraction method for multi-class pesticides analysis in mango using GC-MS.

    Science.gov (United States)

    Pano-Farias, Norma S; Ceballos-Magaña, Silvia G; Muñiz-Valencia, Roberto; Jurado, Jose M; Alcázar, Ángela; Aguayo-Villarreal, Ismael A

    2017-12-15

    Due the negative effects of pesticides on environment and human health, more efficient and environmentally friendly methods are needed. In this sense, a simple, fast, free from memory effects and economical direct-immersion single drop micro-extraction (SDME) method and GC-MS for multi-class pesticides determination in mango samples was developed. Sample pre-treatment using ultrasound-assisted solvent extraction and factors affecting the SDME procedure (extractant solvent, drop volume, stirring rate, ionic strength, time, pH and temperature) were optimized using factorial experimental design. This method presented high sensitive (LOD: 0.14-169.20μgkg -1 ), acceptable precision (RSD: 0.7-19.1%), satisfactory recovery (69-119%) and high enrichment factors (20-722). Several obtained LOQs are below the MRLs established by the European Commission; therefore, the method could be applied for pesticides determination in routing analysis and custom laboratories. Moreover, this method has shown to be suitable for determination of some of the studied pesticides in lime, melon, papaya, banana, tomato, and lettuce. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Liquid phase microextraction of pesticides: a review on current methods

    International Nuclear Information System (INIS)

    Farajzadeh, Mir Ali; Sorouraddin, Saeed Mohammad; Mogaddam, Mohammad Reza Afshar

    2014-01-01

    Liquid phase microextraction (LPME) enables analytes to be extracted with a few microliters of an organic solvent. LPME is a technique for sample preparation that is extremely simple, affordable and virtually a solvent-free. It can provide a high degree of selectivity and enrichment by eliminating carry-over between single runs. A variety of solvents are known for the extraction of the various analytes. These features have led to the development of techniques such as single drop microextraction, hollow fiber LPME, dispersive liquid-liquid microextraction, and others. LPME techniques have been applied to the analysis of pharmaceuticals, food, beverages, and pesticides. This review covers the history of LPME methods, and then gives a comprehensive collection of their application to the preconcentration and determination of pesticides in various matrices. Specific sections cover (a) sample treatment techniques in general, (b) single-drop microextraction, (c) extraction based on the use of ionic liquids, (d) solidified floating organic drop microextraction, and various other techniques. (author)

  16. Sensitive determination of mercury by a miniaturized spectrophotometer after in situ single-drop microextraction

    International Nuclear Information System (INIS)

    Yang Fangwen; Liu Rui; Tan Zhiqiang; Wen Xiaodong; Zheng Chengbin; Lv Yi

    2010-01-01

    An in situ single-drop microextraction (SDME) method was developed for trace mercury determination by a miniaturized spectrophotometer, in which a simple and cheap light-emitting diode (LED) was employed as the light source, and a handheld charge coupled device (CCD) was served as the detector. A droplet of 0.006% dithizone-CCl 4 (m/v) was used as extraction phase and hanged on a rolled PTFE tube. LED light was adjusted carefully to pass through the centre of the droplet and the entrance slit of the CCD detector. The radiation intensities of 475 nm before and after SDME (I 0 and I i ) were recorded for quantification. Under the optimum conditions, the system provided a linear range of 2-50 μg L -1 , with a correlation coefficient of 0.9983 and a limit of detection (3σ) of 0.2 μg L -1 . The enrichment factor was about 69. The present method showed the merits of high sensitivity, simplicity, rapidity, low reagent consumption and field analysis potential. Finally, this method was successfully applied for the determination of the total mercury in spiked tap water sample, spiked river water sample and certified reference material (GBW (E) 080393, simulated water).

  17. Sensitive determination of mercury by a miniaturized spectrophotometer after in situ single-drop microextraction.

    Science.gov (United States)

    Yang, Fangwen; Liu, Rui; Tan, Zhiqiang; Wen, Xiaodong; Zheng, Chengbin; Lv, Yi

    2010-11-15

    An in situ single-drop microextraction (SDME) method was developed for trace mercury determination by a miniaturized spectrophotometer, in which a simple and cheap light-emitting diode (LED) was employed as the light source, and a handheld charge coupled device (CCD) was served as the detector. A droplet of 0.006% dithizone-CCl(4) (m/v) was used as extraction phase and hanged on a rolled PTFE tube. LED light was adjusted carefully to pass through the centre of the droplet and the entrance slit of the CCD detector. The radiation intensities of 475 nm before and after SDME (I(0) and I(i)) were recorded for quantification. Under the optimum conditions, the system provided a linear range of 2-50 μg L(-1), with a correlation coefficient of 0.9983 and a limit of detection (3σ) of 0.2 μg L(-1). The enrichment factor was about 69. The present method showed the merits of high sensitivity, simplicity, rapidity, low reagent consumption and field analysis potential. Finally, this method was successfully applied for the determination of the total mercury in spiked tap water sample, spiked river water sample and certified reference material (GBW (E) 080393, simulated water). Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Ionic liquid-based single-drop microextraction/gas chromatographic/mass spectrometric determination of benzene, toluene, ethylbenzene and xylene isomers in waters.

    Science.gov (United States)

    Aguilera-Herrador, Eva; Lucena, Rafael; Cárdenas, Soledad; Valcárcel, Miguel

    2008-08-01

    The direct coupling between ionic liquid-based single-drop microextraction and gas chromatography/mass spectrometry is proposed for the rapid and simple determination of benzene, toluene, ethylbenzene and xylenes isomers (BTEX) in water samples. The extraction procedure exploits not only the high affinity of the selected ionic liquid (1-methyl-3-octyl-imidazolium hexaflourophosphate) to these aromatic compounds but also its special properties like viscosity, low vapour pressure and immiscibility with water. All the variables involved in the extraction process have been studied in depth. The developed method allows the determination of these single-ring compounds in water under the reference concentration level fixed by the international legislation. In this case, limits of detection were in the range 20 ng L(-1) (obtained for benzene) and 91 ng L(-1) (for o-xylene). The repeatability of the proposed method, expressed as RSD (n=5), varied between 3.0% (o-xylene) and 5.2% (toluene).

  19. Applications of Liquid-Phase Microextraction in the Sample Preparation of Environmental Solid Samples

    Directory of Open Access Journals (Sweden)

    Helena Prosen

    2014-05-01

    Full Text Available Solvent extraction remains one of the fundamental sample preparation techniques in the analysis of environmental solid samples, but organic solvents are toxic and environmentally harmful, therefore one of the possible greening directions is its miniaturization. The present review covers the relevant research from the field of application of microextraction to the sample preparation of environmental solid samples (soil, sediments, sewage sludge, dust etc. published in the last decade. Several innovative liquid-phase microextraction (LPME techniques that have emerged recently have also been applied as an aid in sample preparation of these samples: single-drop microextraction (SDME, hollow fiber-liquid phase microextraction (HF-LPME, dispersive liquid-liquid microextraction (DLLME. Besides the common organic solvents, surfactants and ionic liquids are also used. However, these techniques have to be combined with another technique to release the analytes from the solid sample into an aqueous solution. In the present review, the published methods were categorized into three groups: LPME in combination with a conventional solvent extraction; LPME in combination with an environmentally friendly extraction; LPME without previous extraction. The applicability of these approaches to the sample preparation for the determination of pollutants in solid environmental samples is discussed, with emphasis on their strengths, weak points and environmental impact.

  20. Applications of liquid-phase microextraction in the sample preparation of environmental solid samples.

    Science.gov (United States)

    Prosen, Helena

    2014-05-23

    Solvent extraction remains one of the fundamental sample preparation techniques in the analysis of environmental solid samples, but organic solvents are toxic and environmentally harmful, therefore one of the possible greening directions is its miniaturization. The present review covers the relevant research from the field of application of microextraction to the sample preparation of environmental solid samples (soil, sediments, sewage sludge, dust etc.) published in the last decade. Several innovative liquid-phase microextraction (LPME) techniques that have emerged recently have also been applied as an aid in sample preparation of these samples: single-drop microextraction (SDME), hollow fiber-liquid phase microextraction (HF-LPME), dispersive liquid-liquid microextraction (DLLME). Besides the common organic solvents, surfactants and ionic liquids are also used. However, these techniques have to be combined with another technique to release the analytes from the solid sample into an aqueous solution. In the present review, the published methods were categorized into three groups: LPME in combination with a conventional solvent extraction; LPME in combination with an environmentally friendly extraction; LPME without previous extraction. The applicability of these approaches to the sample preparation for the determination of pollutants in solid environmental samples is discussed, with emphasis on their strengths, weak points and environmental impact.

  1. Combination of electromembrane extraction and liquid-phase microextraction in a single step: Simultaneous group separation of acidic and basic drugs

    DEFF Research Database (Denmark)

    Huang, Chuixiu; Seip, Knut Fredrik; Gjelstad, Astrid

    2015-01-01

    at high concentration. This approach was further investigated from human plasma. Extraction recoveries were strongly dependent on dilution of plasma with buffer and on extraction time. Finally, this simultaneous EME/LPME approach was evaluated in combination with liquid chromatography (LC......Electromembrane extraction (EME) and liquid-phase microextraction (LPME) were combined in a single step for the first time to realize simultaneous and clear group separation of basic and acidic drugs. Using 2-nitrophenyl octyl ether as the supported liquid membrane (SLM) for EME and dihexyl ether...

  2. Reversed-phase single drop microextraction followed by high-performance liquid chromatography with fluorescence detection for the quantification of synthetic phenolic antioxidants in edible oil samples.

    Science.gov (United States)

    Farajmand, Bahman; Esteki, Mahnaz; Koohpour, Elham; Salmani, Vahid

    2017-04-01

    The reversed-phase mode of single drop microextraction has been used as a preparation method for the extraction of some phenolic antioxidants from edible oil samples. Butylated hydroxyl anisole, tert-butylhydroquinone and butylated hydroxytoluene were employed as target compounds for this study. High-performance liquid chromatography followed by fluorescence detection was applied for final determination of target compounds. The most interesting feature of this study is the application of a disposable insulin syringe with some modification for microextraction procedure that efficiently improved the volume and stability of the solvent microdrop. Different parameters such as the type and volume of solvent, sample stirring rate, extraction temperature, and time were investigated and optimized. Analytical performances of the method were evaluated under optimized conditions. Under the optimal conditions, relative standard deviations were between 4.4 and 10.2%. Linear dynamic ranges were 20-10 000 to 2-1000 μg/g (depending on the analytes). Detection limits were 5-670 ng/g. Finally, the proposed method was successfully used for quantification of the antioxidants in some edible oil samples prepared from market. Relative recoveries were achieved from 88 to 111%. The proposed method had a simplicity of operation, low cost, and successful application for real samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems.

    Science.gov (United States)

    An, Jiwoo; Trujillo-Rodríguez, María J; Pino, Verónica; Anderson, Jared L

    2017-06-02

    The development of rapid, convenient, and high throughput sample preparation approaches such as liquid phase microextraction techniques have been continuously developed over the last decade. More recently, significant attention has been given to the replacement of conventional organic solvents used in liquid phase microextraction techniques in order to reduce toxic waste and to improve selectivity and/or extraction efficiency. With these objectives, non-conventional solvents have been explored in liquid phase microextraction and aqueous biphasic systems. The utilized non-conventional solvents include ionic liquids, magnetic ionic liquids, and deep eutectic solvents. They have been widely used as extraction solvents or additives in various liquid phase microextraction modes including dispersive liquid-liquid microextraction, single-drop microextraction, hollow fiber-liquid phase microextraction, as well as in aqueous biphasic systems. This review provides an overview into the use of non-conventional solvents in these microextraction techniques in the past 5 years (2012-2016). Analytical applications of the techniques are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Liquid-phase microextraction and fibre-optics-based cuvetteless CCD-array micro-spectrophotometry for trace analysis

    International Nuclear Information System (INIS)

    Sharma, Nisha; Pillai, Aradhana K.K.V.; Pathak, Neeraj; Jain, Archana; Verma, Krishna K.

    2009-01-01

    Liquid-phase microextraction (LPME) has been investigated for trace analysis in the present work in conjunction with fibre-optic-based micro-spectrophotometry which accommodates sample volume of 1 μL placed between the two ends of optical fibres. Methods have been evolved for the determination of (i) 1-100 μM and 0.5-20 μM of thiols by single drop microextraction (SDME) and LPME in 25 μL of the organic solvent, respectively, involving their reaction with the Ellman reagent and ion pair microextraction of thiolate ion formed; (ii) 70 μg to 7 mg L -1 of chlorine/chlorine dioxide by headspace in-drop reaction with alternative reagents, viz., mixed phenylhydrazine-4-sulphonic acid and N-(1-naphthyl)ethylenediamine dihydrochloride, o-dianisidine, o-tolidine, and N,N-diethyl-p-phenylenediamine; (iii) 0.2-4 mg L -1 of ammonia by reaction with 2,4-dinitro-1-fluorobenzene to give 2,4-dinitroaniline which was diazotized and coupled with 1-naphthylamine, the resulting dye was subjected to preconcentration by solid-phase extraction and LPME; and (iv) 25-750 μg L -1 of iodide/total iodine by oxidation of iodide by 2-iodosobenzoate, microextraction of iodine in organic solvent, and re-extraction into aqueous starch-iodide reagent drop held in the organic phase. LPME using 25-30 μL of organic solvent was found to produce more sensitive results than SDME. The cuvetteless spectrophotometry as used in combination with sample handling techniques produced limits of detection of analytes which were better than obtained by previously reported spectrophotometry.

  5. Rapid analysis of Fructus forsythiae essential oil by ionic liquids-assisted microwave distillation coupled with headspace single-drop microextraction followed by gas chromatography–mass spectrometry

    International Nuclear Information System (INIS)

    Jiao, Jiao; Ma, Dan-Hui; Gai, Qing-Yan; Wang, Wei; Luo, Meng; Fu, Yu-Jie; Ma, Wei

    2013-01-01

    Graphical abstract: -- Highlights: •A new ILAMD-HS-SDME method is developed for the microextraction of essential oil. •ILs used as destruction agent of plant cell walls and microwave absorption medium. •Parameters affecting the extraction efficiency are optimized by Box–Behnken design. •Procedure benefits: similar constituents, shorter duration and smaller sample amount. •ILAMD-HS-SDME followed by GC–MS is a promising technique in analytical fields. -- Abstract: A rapid, green and effective miniaturized sample preparation and analytical technique, i.e. ionic liquids-assisted microwave distillation coupled with headspace single-drop microextraction (ILAMD-HS-SDME) followed by gas chromatography–mass spectrometry (GC–MS) was developed for the analysis of essential oil (EO) in Fructus forsythiae. In this work, ionic liquids (ILs) were not only used as the absorption medium of microwave irradiation but also as the destruction agent of plant cell walls. 1-Ethyl-3-methylimidazolium acetate ([C 2 mim]OAc) was chosen as the optimal ILs. Moreover, n-heptadecane (2.0 μL) was selected as the appropriate suspended solvent for the extraction and concentration of EO. Extraction conditions of the proposed method were optimized using the relative peak area of EO constituents as the index, and the optimal operational parameters were obtained as follows: irradiation power (300 W), sample mass (0.7 g), mass ratio of ILs to sample (2.4), temperature (78 °C) and time (3.4 min). In comparison to previous reports, the proposed method was faster and required smaller sample amount but could equally monitor all EO constituents with no significant differences

  6. Rapid analysis of Fructus forsythiae essential oil by ionic liquids-assisted microwave distillation coupled with headspace single-drop microextraction followed by gas chromatography–mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Jiao [State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040 (China); Ma, Dan-Hui [College of Life Sciences, Northeast Forestry University, Harbin 150040 (China); Gai, Qing-Yan; Wang, Wei; Luo, Meng [State Engineering Laboratory of Bio-Resource Eco-Utilization, Northeast Forestry University, Harbin 150040 (China); Fu, Yu-Jie, E-mail: yujie_fu2002@yahoo.com [State Engineering Laboratory of Bio-Resource Eco-Utilization, Northeast Forestry University, Harbin 150040 (China); Ma, Wei, E-mail: mawei@hljucm.net [State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040 (China); School of Pharmaceutical, Heilongjiang University of Chinese Medicine, Harbin 150040 (China)

    2013-12-04

    Graphical abstract: -- Highlights: •A new ILAMD-HS-SDME method is developed for the microextraction of essential oil. •ILs used as destruction agent of plant cell walls and microwave absorption medium. •Parameters affecting the extraction efficiency are optimized by Box–Behnken design. •Procedure benefits: similar constituents, shorter duration and smaller sample amount. •ILAMD-HS-SDME followed by GC–MS is a promising technique in analytical fields. -- Abstract: A rapid, green and effective miniaturized sample preparation and analytical technique, i.e. ionic liquids-assisted microwave distillation coupled with headspace single-drop microextraction (ILAMD-HS-SDME) followed by gas chromatography–mass spectrometry (GC–MS) was developed for the analysis of essential oil (EO) in Fructus forsythiae. In this work, ionic liquids (ILs) were not only used as the absorption medium of microwave irradiation but also as the destruction agent of plant cell walls. 1-Ethyl-3-methylimidazolium acetate ([C{sub 2}mim]OAc) was chosen as the optimal ILs. Moreover, n-heptadecane (2.0 μL) was selected as the appropriate suspended solvent for the extraction and concentration of EO. Extraction conditions of the proposed method were optimized using the relative peak area of EO constituents as the index, and the optimal operational parameters were obtained as follows: irradiation power (300 W), sample mass (0.7 g), mass ratio of ILs to sample (2.4), temperature (78 °C) and time (3.4 min). In comparison to previous reports, the proposed method was faster and required smaller sample amount but could equally monitor all EO constituents with no significant differences.

  7. Rapid determination of caffeine in one drop of beverages and foods using drop-to-drop solvent microextraction with gas chromatography/mass spectrometry.

    Science.gov (United States)

    Shrivas, Kamlesh; Wu, Hui-Fen

    2007-11-02

    A simple and rapid sample cleanup and preconcentration method for the quantitative determination of caffeine in one drop of beverages and foods by gas chromatography/mass spectrometry (GC/MS) has been proposed using drop-to-drop solvent microextraction (DDSME). The best optimum experimental conditions for DDSME were: chloroform as the extraction solvent, 5 min extraction time, 0.5 microL exposure volume of the extraction phase and no salt addition at room temperature. The optimized methodology exhibited good linearity between 0.05 and 5.0 microg/mL with correlation coefficient of 0.980. The relative standard deviation (RSD) and limits of detection (LOD) of the DDSME/GC/MS method were 4.4% and 4.0 ng/mL, respectively. Relative recovery of caffeine in beverages and foods were found to be 96.6-101%, which showing good reliability of this method. This DDSME excludes the major disadvantages of conventional method of caffeine extraction, like large amount of organic solvent and sample consumption and long sample pre-treatment process. So, this approach proves that the DDSME/GC/MS technique can be applied as a simple, fast and feasible diagnosis tool for environmental, food and biological application for extremely small amount of real sample analysis.

  8. Trace analysis of three antihistamines in human urine by on-line single drop liquid-liquid-liquid microextraction coupled to sweeping micellar electrokinetic chromatography and its application to pharmacokinetic study.

    Science.gov (United States)

    Gao, Wenhua; Chen, Yunsheng; Chen, Gaopan; Xi, Jing; Chen, Yaowen; Yang, Jianying; Xu, Ning

    2012-09-01

    A rapid and efficient dual preconcentration method of on-line single drop liquid-liquid-liquid microextraction (SD-LLLME) coupled to sweeping micellar electrokinetic chromatography (MEKC) was developed for trace analysis of three antihistamines (mizolastine, chlorpheniramine and pheniramine) in human urine. Three analytes were firstly extracted from donor phase (4 mL urine sample) adjusted to alkaline condition (0.5 M NaOH). The unionized analytes were subsequently extracted into a drop of n-octanol layered over the urine sample, and then into a microdrop of acceptor phase (100 mM H(3)PO(4)) suspended from a capillary inlet. The enriched acceptor phase was on-line injected into capillary with a height difference and then analyzed directly by sweeping MEKC. Good linear relationships were obtained for all analytes in a range of 6.25 × 10(-6) to 2.5 × 10(-4)g/L with correlation coefficients (r) higher than 0.987. The proposed method achieved limits of detections (LOD) varied from 1.2 × 10(-7) to 9.5 × 10(-7)g/L based on a signal-to-noise of 3 (S/N=3) with 751- to 1372-fold increases in detection sensitivity for analytes, and it was successfully applied to the pharmacokinetic study of three antihistamines in human urine after an oral administration. The results demonstrated that this method was a promising combination for the rapid trace analysis of antihistamines in human urine with the advantages of operation simplicity, high enrichment factor and little solvent consumption. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Liquid phase microextraction for the analysis of trace elements and their speciation

    International Nuclear Information System (INIS)

    Hu, Bin; He, Man; Chen, Beibei; Xia, Linbo

    2013-01-01

    Trace/ultra-trace elements and their speciation analysis in complex matrices usually require sample preparation procedures to achieve sample clean-up and analyte preconcentration. Sample preparation is often the bottleneck in trace elements and their speciation analysis which has a direct impact on accuracy, precision and limits of detection and is often the rate-determining step of the analytical process. Recent trends in sample preparation include miniaturization, automation, high-throughput performance and reduction in solvent/sample consumption and operation time. Liquid-phase microextraction (LPME) technique as a novel and promising alternative in sample preparation can meet these requirements and has become a very efficient sample preparation technique. This review updates the state of art of LPME for trace elements and their speciation analysis and discusses its promising prospects. The major thrust of the article highlights the applications of LPME including single-drop microextraction (SDME), hollow fiber-liquid phase microextraction (HF-LPME), dispersive liquid liquid microextraction (DLLME) and solidified floating organic drop microextraction (SFODME) to the fields of elemental and their speciation analysis by atomic spectrometry-based methods, especially inductively coupled plasma mass spectrometry. General and specific concepts, different extraction formats and characteristics of LPME are described and compared, along with examples of recent innovations and applications presented to demonstrate its potential for trace elements and their speciation analysis in biological and environmental fields. Moreover, the application potential and an outlook on the combination of LPME and atomic spectrometry-based techniques for inorganic analysis are commentated. - Highlights: • The state of art of LPME for trace elements and their speciation analysis is updated. • Different extraction formats of LPME are described. • The application potential and future

  10. On-line liquid phase micro-extraction based on drop-in-plug sequential injection lab-at-valve platform for metal determination

    Energy Technology Data Exchange (ETDEWEB)

    Mitani, Constantina [Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University, Thessaloniki 54124 (Greece); Anthemidis, Aristidis N., E-mail: anthemid@chem.auth.gr [Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University, Thessaloniki 54124 (Greece)

    2013-04-10

    Highlights: ► Drop-in-plug micro-extraction based on SI-LAV platform for metal preconcentration. ► Automatic liquid phase micro-extraction coupled with FAAS. ► Organic solvents with density higher than water are used. ► Lead determination in environmental water and urine samples. -- Abstract: A novel automatic on-line liquid phase micro-extraction method based on drop-in-plug sequential injection lab-at-valve (LAV) platform was proposed for metal preconcentration and determination. A flow-through micro-extraction chamber mounted at the selection valve was adopted without the need of sophisticated lab-on-valve components. Coupled to flame atomic absorption spectrometry (FAAS), the potential of this lab-at-valve scheme is demonstrated for trace lead determination in environmental and biological water samples. A hydrophobic complex of lead with ammonium pyrrolidine dithiocarbamate (APDC) was formed on-line and subsequently extracted into an 80 μL plug of chloroform. The extraction procedure was performed by forming micro-droplets of aqueous phase into the plug of the extractant. All critical parameters that affect the efficiency of the system were studied and optimized. The proposed method offered good performance characteristics and high preconcentration ratios. For 10 mL sample consumption an enhancement factor of 125 was obtained. The detection limit was 1.8 μg L{sup −1} and the precision expressed as relative standard deviation (RSD) at 50.0 μg L{sup −1} of lead was 2.9%. The proposed method was evaluated by analyzing certified reference materials and applied for lead determination in natural waters and urine samples.

  11. A selective and sensitive optical sensor for dissolved ammonia detection via agglomeration of fluorescent Ag nanoclusters and temperature gradient headspace single drop microextraction.

    Science.gov (United States)

    Dong, Jiang Xue; Gao, Zhong Feng; Zhang, Ying; Li, Bang Lin; Li, Nian Bing; Luo, Hong Qun

    2017-05-15

    In this paper, a simple sensor platform is presented for highly selective and sensitive detection of dissolved ammonia in aqueous solutions without pretreatment based on temperature gradient headspace single drop microextraction (HS-SDME) technique, and fluorescence and UV-vis spectrophotometry are utilized with the Ag nanoclusters (Ag NCs) functioned by citrate and glutathione as the probe. The sensing mechanism is based on the volatility of ammonia gas and the active response of Ag NCs to pH change caused by the introduction of ammonia. High pH can make the Ag NCs agglomerate and lead to the obvious decrease of fluorescence intensity and absorbance of Ag NCs solution. Moreover, the presented method exhibits a remarkably high selectivity toward dissolved ammonia over most of inorganic ions and amino acid, and shows a good linear range of 10-350μM (0.14-4.9mgNL -1 ) with a low detection limit of 336nM (4.70μgNL -1 ) at a signal-to-noise ratio of 3. In addition, the practical applications of the sensor have been successfully demonstrated by detecting dissolved ammonia in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Zeini Jahromi, Elham; Bidari, Araz; Assadi, Yaghoub; Milani Hosseini, Mohammad Reza; Jamali, Mohammad Reza

    2007-01-01

    Dispersive liquid-liquid microextraction (DLLME) technique was successfully used as a sample preparation method for graphite furnace atomic absorption spectrometry (GF AAS). In this extraction method, 500 μL methanol (disperser solvent) containing 34 μL carbon tetrachloride (extraction solvent) and 0.00010 g ammonium pyrrolidine dithiocarbamate (chelating agent) was rapidly injected by syringe into the water sample containing cadmium ions (interest analyte). Thereby, a cloudy solution formed. The cloudy state resulted from the formation of fine droplets of carbon tetrachloride, which have been dispersed, in bulk aqueous sample. At this stage, cadmium reacts with ammonium pyrrolidine dithiocarbamate, and therefore, hydrophobic complex forms which is extracted into the fine droplets of carbon tetrachloride. After centrifugation (2 min at 5000 rpm), these droplets were sedimented at the bottom of the conical test tube (25 ± 1 μL). Then a 20 μL of sedimented phase containing enriched analyte was determined by GF AAS. Some effective parameters on extraction and complex formation, such as extraction and disperser solvent type and their volume, extraction time, salt effect, pH and concentration of the chelating agent have been optimized. Under the optimum conditions, the enrichment factor 125 was obtained from only 5.00 mL of water sample. The calibration graph was linear in the rage of 2-20 ng L -1 with detection limit of 0.6 ng L -1 . The relative standard deviation (R.S.D.s) for ten replicate measurements of 20 ng L -1 of cadmium was 3.5%. The relative recoveries of cadmium in tap, sea and rivers water samples at spiking level of 5 and 10 ng L -1 are 108, 95, 87 and 98%, respectively. The characteristics of the proposed method have been compared with cloud point extraction (CPE), on-line liquid-liquid extraction, single drop microextraction (SDME), on-line solid phase extraction (SPE) and co-precipitation based on bibliographic data. Therefore, DLLME combined with

  13. Liquid-phase microextraction approaches combined with atomic detection: A critical review

    International Nuclear Information System (INIS)

    Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos

    2010-01-01

    Liquid-phase microextraction (LPME) displays unique characteristics such as excellent preconcentration capability, simplicity, low cost, sample cleanup and integration of steps. Even though LPME approaches have the potential to be combined with almost every analytical technique, their use in combination with atomic detection techniques has not been exploited until recently. A comprehensive review dealing with the applications of liquid-phase microextraction combined with atomic detection techniques is presented. Theoretical features, possible strategies for these combinations as well as the effect of key experimental parameters influencing method development are addressed. Finally, a critical comparison of the different LPME approaches in terms of enrichment factors achieved, extraction efficiency, precision, selectivity and simplicity of operation is provided.

  14. Ultrasound-assisted single-drop microextraction for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Almeida, Jorge S.; Anunciação, Taiana A.; Brandão, Geovani C.; Dantas, Alailson F.; Lemos, Valfredo A.

    2015-01-01

    This work presents an ultrasound-assisted single-drop microextraction procedure for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry. Some initial tests showed that the best extraction efficiency was obtained when using ultrasound instead of mechanical agitation, indicating that acoustic cavitation improved the extraction process. Nitric, hydrochloric and acetic acids were evaluated for use in the extraction process, and HNO 3 gave the best results. A two-level full-factorial design was applied to investigate the best conditions for the extraction of Cd from the oil samples. The influences of the sonication amplitude, time and temperature of the extraction were evaluated. The results of the design revealed that all of the variables had a significant effect on the experimental results. Afterward, a Box–Behnken design was applied to determine the optimum conditions for the determination of cadmium in vegetable oil samples. According to a multivariate study, the optimum conditions were as follows: sonication amplitude of 60%, extraction time of 15 min, extraction temperature of 46 °C and 0.1 mol L −1 HNO 3 as the extractor solution. Under optimized conditions, the developed method allows for the determination of Cd in oil samples with a limit of quantification of 7.0 ng kg −1 . Addition and recovery experiments were performed in vegetable oil samples to evaluate the accuracy of the method, and the recoveries obtained varied from 90% to 115%. The samples were also analyzed after the acid digestion procedure, and the paired t-test (95% confidence level) did not show significant differences from the proposed method. - Highlights: • The determination of cadmium in vegetable oils was developed using UA-SDME. • HR-CS ET-AAS was employed as a detection technique with direct drop sampling. • The procedure allowed for a reduction in the consumption of reagents and samples

  15. Sensitive determination of cadmium using solidified floating organic drop microextraction-slotted quartz tube-flame atomic absorption spectroscopy.

    Science.gov (United States)

    Akkaya, Erhan; Chormey, Dotse Selali; Bakırdere, Sezgin

    2017-09-20

    In this study, solidified floating organic drop microextraction (SFODME) by 1-undecanol was combined with slotted quartz tube flame atomic absorption spectrometry (SQT-FAAS) for the determination of cadmium at trace levels. Formation of a complex with 4,4'-dimethyl-2,2'-bipyridine facilitated the extraction of cadmium from aqueous solutions. Several chemical variables were optimized in order to obtain high extraction outputs. Parameters such as concentration of the ligand, pH, and amount of buffer solution were optimized to enhance the formation of cadmium complex. The SFODME method was assisted by dispersion of extractor solvent into aqueous solutions using 2-propanol. Under the optimum extraction and instrumental conditions, the limit of detection and limit of quantitation values obtained for cadmium using the combined methods (SFODME-SQT-FAAS) were found to be 0.4 and 1.3 μg L -1 , respectively. Matrix effects on the method were also examined for tap water and wastewater, and spiked recovery results were found to be very satisfactory. Graphical Abstract SFODME-SQT-FAAS system for sensitive determination of cadmium.

  16. Combined discrete nebulization and microextraction process for molybdenum determination by flame atomic absorption spectrometry (FAAS)

    International Nuclear Information System (INIS)

    Oviedo, Jenny A.; Jesus, Amanda M.D. de; Fialho, Lucimar L.; Pereira-Filho, Edenir R.

    2014-01-01

    Simple and sensitive procedures for the extraction/preconcentration of molybdenum based on vortex-assisted solidified floating organic drop microextraction (VA-SFODME) and cloud point combined with flame absorption atomic spectrometry (FAAS) and discrete nebulization were developed. The influence of the discrete nebulization on the sensitivity of the molybdenum preconcentration processes was studied. An injection volume of 200 μ resulted in a lower relative standard deviation with both preconcentration procedures. Enrichment factors of 31 and 67 and limits of detection of 25 and 5 μ L -1 were obtained for cloud point and VA-SFODME, respectively. The developed procedures were applied to the determination of Mo in mineral water and multivitamin samples. (author)

  17. Nanofluid of zinc oxide nanoparticles in ionic liquid for single drop liquid microextraction of fungicides in environmental waters prior to high performance liquid chromatographic analysis.

    Science.gov (United States)

    Amde, Meseret; Tan, Zhi-Qiang; Liu, Rui; Liu, Jing-Fu

    2015-05-22

    Using a nanofluid obtained by dispersing ZnO nanoparticles (ZnO NPs) in 1-hexyl-3-methylimidazolium hexafluorophosphate, new single drop microextraction method was developed for simultaneous extraction of three fungicides (chlorothalonil, kresoxim-methyl and famoxadone) in water samples prior to their analysis by high performance liquid chromatography (HPLC-VWD). The parameters affecting the extraction efficiency such as amount of ZnO NPs in the nanofluid, solvent volume, extraction time, stirring rate, pH and ionic strength of the sample solution were optimized. Under the optimized conditions, the limits of detection were in the range of 0.13-0.19ng/mL, the precision of the method assessed with intra-day and inter-day relative standard deviations were water samples including lake water, river water, as well as effluent and influent of wastewater treatment plant, with recoveries in the range of 74.94-96.11% at 5ng/mL spiking level. Besides to being environmental friendly, the high enrichment factor and the data quality obtained with the proposed method demonstrated its potential for application in multi residue analysis of fungicides in actual water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Ionic liquid-based single-drop microextraction followed by liquid chromatography-ultraviolet spectrophotometry detection to determine typical UV filters in surface water samples.

    Science.gov (United States)

    Vidal, Lorena; Chisvert, Alberto; Canals, Antonio; Salvador, Amparo

    2010-04-15

    A user-friendly and inexpensive ionic liquid-based single-drop microextraction (IL-SDME) procedure has been developed to preconcentrate trace amounts of six typical UV filters extensively used in cosmetic products (i.e., 2-hydroxy-4-methoxybenzophenone, isoamyl 4-methoxycinnamate, 3-(4'-methylbenzylidene)camphor, 2-ethylhexyl 2-cyano-3,3-diphenylacrylate, 2-ethylhexyl 4-dimethylaminobenzoate and 2-ethylhexyl 4-methoxycinnamate) from surface water samples prior to analysis by liquid chromatography-ultraviolet spectrophotometry detection (LC-UV). A two-stage multivariate optimization approach was developed by means of a Plackett-Burman design for screening and selecting the significant variables involved in the SDME procedure, which were later optimized by means of a circumscribed central composite design. The studied variables were drop volume, sample volume, agitation speed, ionic strength, extraction time and ethanol quantity. Owing to particularities, ionic liquid type and pH of the sample were optimized separately. Under optimized experimental conditions (i.e., 10 microL of 1-hexyl-3-methylimidazolium hexafluorophosphate, 20 mL of sample containing 1% (v/v) ethanol and NaCl free adjusted to pH 2, 37 min extraction time and 1300 rpm agitation speed) enrichment factors up to ca. 100-fold were obtained depending on the target analyte. The method gave good levels of repeatability with relative standard deviations varying between 2.8 and 8.8% (n=6). Limits of detection were found in the low microg L(-1) range, varying between 0.06 and 3.0 microg L(-1) depending on the target analyte. Recovery studies from different types of surface water samples collected during the winter period, which were analysed and confirmed free of all target analytes, ranged between 92 and 115%, showing that the matrix had a negligible effect upon extraction. Finally, the proposed method was applied to the analysis of different water samples (taken from two beaches, two swimming pools and a

  19. Ultrasound-assisted single-drop microextraction for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Jorge S.; Anunciação, Taiana A. [Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Campus Universitário de Ondina, Salvador, Bahia 40170-280 (Brazil); Brandão, Geovani C. [Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Campus Universitário de Ondina, Salvador, Bahia 40170-280 (Brazil); INCT de Energia e Ambiente, Instituto de Química, Universidade Federal da Bahia, Campus Universitário de Ondina, Salvador, Bahia 40170-280 (Brazil); Dantas, Alailson F. [Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Campus Universitário de Ondina, Salvador, Bahia 40170-280 (Brazil); Lemos, Valfredo A. [Laboratório de Química Analítica (LQA), Universidade Estadual do Sudoeste da Bahia, Campus de Jequié, Jequié, Bahia 45506-191 (Brazil); and others

    2015-05-01

    This work presents an ultrasound-assisted single-drop microextraction procedure for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry. Some initial tests showed that the best extraction efficiency was obtained when using ultrasound instead of mechanical agitation, indicating that acoustic cavitation improved the extraction process. Nitric, hydrochloric and acetic acids were evaluated for use in the extraction process, and HNO{sub 3} gave the best results. A two-level full-factorial design was applied to investigate the best conditions for the extraction of Cd from the oil samples. The influences of the sonication amplitude, time and temperature of the extraction were evaluated. The results of the design revealed that all of the variables had a significant effect on the experimental results. Afterward, a Box–Behnken design was applied to determine the optimum conditions for the determination of cadmium in vegetable oil samples. According to a multivariate study, the optimum conditions were as follows: sonication amplitude of 60%, extraction time of 15 min, extraction temperature of 46 °C and 0.1 mol L{sup −1} HNO{sub 3} as the extractor solution. Under optimized conditions, the developed method allows for the determination of Cd in oil samples with a limit of quantification of 7.0 ng kg{sup −1}. Addition and recovery experiments were performed in vegetable oil samples to evaluate the accuracy of the method, and the recoveries obtained varied from 90% to 115%. The samples were also analyzed after the acid digestion procedure, and the paired t-test (95% confidence level) did not show significant differences from the proposed method. - Highlights: • The determination of cadmium in vegetable oils was developed using UA-SDME. • HR-CS ET-AAS was employed as a detection technique with direct drop sampling. • The procedure allowed for a reduction in the consumption of reagents and

  20. Microwave-assisted headspace single-drop microextration of chlorobenzenes from water samples

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, Lorena [Departamento de Quimica Analitica, Nutricion y Bromatologia, Universidad de Alicante, P.O. Box 99, E-03080 Alicante (Spain); Domini, Claudia E. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Universidad de Alicante, P.O. Box 99, E-03080 Alicante (Spain); Grane, Nuria [Departamento de Quimica Analitica, Nutricion y Bromatologia, Universidad de Alicante, P.O. Box 99, E-03080 Alicante (Spain); Psillakis, Elefteria [Department of Environmental Engineering, Technical University of Crete, Polytechneioupolis, GR-73100 Chania, Crete (Greece); Canals, Antonio [Departamento de Quimica Analitica, Nutricion y Bromatologia, Universidad de Alicante, P.O. Box 99, E-03080 Alicante (Spain)]. E-mail: a.canals@ua.es

    2007-05-29

    A one-step and in-situ sample preparation method used for quantifying chlorobenzene compounds in water samples has been developed, coupling microwave and headspace single-drop microextraction (MW-HS-SDME). The chlorobenzenes in water samples were extracted directly onto an ionic liquid single-drop in headspace mode under the aid of microwave radiation. For optimization, a Plackett-Burman screening design was initially used, followed by a mixed-level factorial design. The factors considered were: drop volume, aqueous sample volume, stirring speed, ionic strength, extraction time, ionic liquid type, microwave power and length of the Y-shaped glass-tube. The optimum experimental conditions found from this statistical evaluation were: a 5 {mu}L microdrop of 1-hexyl-3-methylimidazolium hexafluorophosphate exposed for 20 min to the headspace of a 30 mL aqueous sample, irradiated by microwaves at 200 W and placed in a 50 mL spherical flask connected to a 25 cm Y-shaped glass-tube. Under the optimised experimental conditions, the response of a high performance liquid chromatographic system was found to be linear over the range studied and with correlation coefficients ranging between 0.9995 and 0.9999. The method showed a good level of repeatability, with relative standard deviations varying between 2.3 and 8.3% (n = 5). Detection limits were found in the low {mu}g L{sup -1} range varying between 0.016 and 0.039 {mu}g L{sup -1}. Overall, the performance of the proposed method demonstrated the favourable effect of microwave sample irradiation upon HS-SDME. Finally, recovery studies from different types of environmental water samples revealed that matrix had little effect upon extraction.

  1. Microwave-assisted headspace single-drop microextration of chlorobenzenes from water samples

    International Nuclear Information System (INIS)

    Vidal, Lorena; Domini, Claudia E.; Grane, Nuria; Psillakis, Elefteria; Canals, Antonio

    2007-01-01

    A one-step and in-situ sample preparation method used for quantifying chlorobenzene compounds in water samples has been developed, coupling microwave and headspace single-drop microextraction (MW-HS-SDME). The chlorobenzenes in water samples were extracted directly onto an ionic liquid single-drop in headspace mode under the aid of microwave radiation. For optimization, a Plackett-Burman screening design was initially used, followed by a mixed-level factorial design. The factors considered were: drop volume, aqueous sample volume, stirring speed, ionic strength, extraction time, ionic liquid type, microwave power and length of the Y-shaped glass-tube. The optimum experimental conditions found from this statistical evaluation were: a 5 μL microdrop of 1-hexyl-3-methylimidazolium hexafluorophosphate exposed for 20 min to the headspace of a 30 mL aqueous sample, irradiated by microwaves at 200 W and placed in a 50 mL spherical flask connected to a 25 cm Y-shaped glass-tube. Under the optimised experimental conditions, the response of a high performance liquid chromatographic system was found to be linear over the range studied and with correlation coefficients ranging between 0.9995 and 0.9999. The method showed a good level of repeatability, with relative standard deviations varying between 2.3 and 8.3% (n = 5). Detection limits were found in the low μg L -1 range varying between 0.016 and 0.039 μg L -1 . Overall, the performance of the proposed method demonstrated the favourable effect of microwave sample irradiation upon HS-SDME. Finally, recovery studies from different types of environmental water samples revealed that matrix had little effect upon extraction

  2. Ultrasensitive determination of mercury in human saliva by atomic fluorescence spectrometry based on solidified floating organic drop microextraction

    International Nuclear Information System (INIS)

    Yuan, C.-G.; Wang, J.; Jin, Y.

    2012-01-01

    We report on a new, rapid and simple method for the determination of ultra-trace quantities of mercury ion in human saliva. It is based on solidified floating organic drop microextraction and detection by cold vapor atomic fluorescence spectrometry (CV-AFS). Mercury ion was complexed with diethyldithiocarbamate, and the hydrophobic complex was then extracted into fine droplets of 1-undecanol. By cooling in an ice bath after extraction, the droplets in solution solidify to form a single ball floating on the surface of solution. The solidified micro drop containing the mercury complex was then transferred for determination by CV-AFS. The effects of pH value, concentration of chelating reagent, quantity of 1-undecanol, sample volume, equilibration temperature and time were investigated. Under the optimum conditions, the preconcentration of a 25-mL sample is accomplished with an enrichment factor of 182. The limit of detection is 2.5 ng L -1 . The relative standard deviation for seven replicate determinations at 0.1 ng mL -1 level is 4.1%. The method was applied to the determination of mercury in saliva samples collected from four volunteers. Two volunteers having dental amalgam fillings had 0.4 ng mL -1 mercury in their saliva, whereas mercury was not detectable in the saliva of two volunteers who had no dental fillings. (author)

  3. Headspace Hanging Drop Liquid Phase Microextraction and Gas Chromatography-Mass Spectrometry for the Analysis of Flavors from Clove Buds

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Mi Jin; Shin, Yeon Jae; Oh, Se Yeon; Kim, Nam Sun; Kim, Kun; Lee, Dong Sun [Seoul Women' s University, Seoul (Korea, Republic of)

    2006-02-15

    A novel sample pretreatment technique, headspace hanging drop liquid phase microextraction (HS-LPME) was studied and applied to the determination of flavors from solid clove buds by gas chromatography-mass spectrometry (GC-MS). Several parameters affecting on HS-LPME such as organic solvent drop volume, extraction time, extraction temperature and phase ratio were investigated. 1-Octanol was selected as the extracting solvent, drop size was fixed to 0.6 μL. 60 min extraction time at 25 .deg. C was chosen. HS-LPME has the good efficiency demonstrated by the higher partition equilibrium constant (K{sub lh}) values and concentration factor (CF) values. The limits of detection (LOD) were 1.5-3.2 ng. The amounts of eugenol, β-caryophyllene and eugenol acetate from the clove bud sample were 1.90 mg/g, 1.47 mg/g and 7.0 mg/g, respectively. This hanging drop based method is a simple, fast and easy sample enrichment technique using minimal solvent. HSLPME is an alternative sample preparation method for the analysis of volatile aroma compounds by GC-MS.

  4. Ultrasound-assisted single-drop microextraction for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry

    Science.gov (United States)

    Almeida, Jorge S.; Anunciação, Taiana A.; Brandão, Geovani C.; Dantas, Alailson F.; Lemos, Valfredo A.; Teixeira, Leonardo S. G.

    2015-05-01

    This work presents an ultrasound-assisted single-drop microextraction procedure for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry. Some initial tests showed that the best extraction efficiency was obtained when using ultrasound instead of mechanical agitation, indicating that acoustic cavitation improved the extraction process. Nitric, hydrochloric and acetic acids were evaluated for use in the extraction process, and HNO3 gave the best results. A two-level full-factorial design was applied to investigate the best conditions for the extraction of Cd from the oil samples. The influences of the sonication amplitude, time and temperature of the extraction were evaluated. The results of the design revealed that all of the variables had a significant effect on the experimental results. Afterward, a Box-Behnken design was applied to determine the optimum conditions for the determination of cadmium in vegetable oil samples. According to a multivariate study, the optimum conditions were as follows: sonication amplitude of 60%, extraction time of 15 min, extraction temperature of 46 °C and 0.1 mol L- 1 HNO3 as the extractor solution. Under optimized conditions, the developed method allows for the determination of Cd in oil samples with a limit of quantification of 7.0 ng kg- 1. Addition and recovery experiments were performed in vegetable oil samples to evaluate the accuracy of the method, and the recoveries obtained varied from 90% to 115%. The samples were also analyzed after the acid digestion procedure, and the paired t-test (95% confidence level) did not show significant differences from the proposed method.

  5. Liquid-phase microextraction combined with graphite furnace atomic absorption spectrometry: A review.

    Science.gov (United States)

    de la Calle, Inmaculada; Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos

    2016-09-14

    An overview of the combination of liquid-phase microextraction (LPME) techniques with graphite furnace atomic absorption spectrometry (GFAAS) is reported herein. The high sensitivity of GFAAS is significantly enhanced by its association with a variety of miniaturized solvent extraction approaches. LPME-GFAAS thus represents a powerful combination for determination of metals, metalloids and organometallic compounds at (ultra)trace level. Different LPME modes used with GFAAS are briefly described, and the experimental parameters that show an impact in those microextraction processes are discussed. Special attention is paid to those parameters affecting GFAAS analysis. Main issues found when coupling LPME and GFAAS, as well as those strategies reported in the literature to solve them, are summarized. Relevant applications published on the topic so far are included. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Determination of methylmercury by electrothermal atomic absorption spectrometry using headspace single-drop microextraction with in situ hydride generation

    Energy Technology Data Exchange (ETDEWEB)

    Gil, Sandra [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Universidad de Vigo, Facultad de Ciencias (Quimica), As Lagoas-Marcosende s/n, 36200 Vigo (Spain); Fragueiro, Sandra [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Universidad de Vigo, Facultad de Ciencias (Quimica), As Lagoas-Marcosende s/n, 36200 Vigo (Spain); Lavilla, Isela [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Universidad de Vigo, Facultad de Ciencias (Quimica), As Lagoas-Marcosende s/n, 36200 Vigo (Spain); Bendicho, Carlos [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Universidad de Vigo, Facultad de Ciencias (Quimica), As Lagoas-Marcosende s/n, 36200 Vigo (Spain)]. E-mail: bendicho@uvigo.es

    2005-01-10

    A new method is proposed for preconcentration and matrix separation of methylmercury prior to its determination by electrothermal atomic absorption spectrometry (ETAAS). Generation of methylmercury hydride (MeHgH) from a 5-ml solution is carried out in a closed vial and trapped onto an aqueous single drop (3-{mu}l volume) containing Pd(II) or Pt(IV) (50 and 10 mg/l, respectively). The hydrogen evolved in the headspace (HS) after decomposition of sodium tetrahydroborate (III) injected for hydride generation caused the formation of finely dispersed Pd(0) or Pt(0) in the drop, which in turn, were responsible for the sequestration of MeHgH. A preconcentration factor of ca. 40 is achieved with both noble metals used as trapping agents. The limit of detection of methylmercury was 5 and 4 ng/ml (as Hg) with Pd(II) or Pt(IV) as trapping agents, and the precision expressed as relative standard deviation was about 7%. The preconcentration system was fully characterised through optimisation of the following variables: Pd(II) or Pt(IV) concentration in the drop, extraction time, pH of the medium, temperatures of both sample solution and drop, concentration of salt in the sample solution, sodium tetrahydroborate (III) concentration in the drop and stirring rate. The method has been successfully validated against two fish certified reference materials (CRM 464 tuna fish and CRM DORM-2 dogfish muscle) following selective extraction of methylmercury in 2 mol/l HCl medium.

  7. Determination of methylmercury by electrothermal atomic absorption spectrometry using headspace single-drop microextraction with in situ hydride generation

    International Nuclear Information System (INIS)

    Gil, Sandra; Fragueiro, Sandra; Lavilla, Isela; Bendicho, Carlos

    2005-01-01

    A new method is proposed for preconcentration and matrix separation of methylmercury prior to its determination by electrothermal atomic absorption spectrometry (ETAAS). Generation of methylmercury hydride (MeHgH) from a 5-ml solution is carried out in a closed vial and trapped onto an aqueous single drop (3-μl volume) containing Pd(II) or Pt(IV) (50 and 10 mg/l, respectively). The hydrogen evolved in the headspace (HS) after decomposition of sodium tetrahydroborate (III) injected for hydride generation caused the formation of finely dispersed Pd(0) or Pt(0) in the drop, which in turn, were responsible for the sequestration of MeHgH. A preconcentration factor of ca. 40 is achieved with both noble metals used as trapping agents. The limit of detection of methylmercury was 5 and 4 ng/ml (as Hg) with Pd(II) or Pt(IV) as trapping agents, and the precision expressed as relative standard deviation was about 7%. The preconcentration system was fully characterised through optimisation of the following variables: Pd(II) or Pt(IV) concentration in the drop, extraction time, pH of the medium, temperatures of both sample solution and drop, concentration of salt in the sample solution, sodium tetrahydroborate (III) concentration in the drop and stirring rate. The method has been successfully validated against two fish certified reference materials (CRM 464 tuna fish and CRM DORM-2 dogfish muscle) following selective extraction of methylmercury in 2 mol/l HCl medium

  8. Simultaneous extraction and determination of albendazole and triclabendazole by a novel syringe to syringe dispersive liquid phase microextraction-solidified floating organic drop combined with high performance liquid chromatography.

    Science.gov (United States)

    Asadi, Mohammad; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad

    2016-08-17

    A syringe to syringe dispersive liquid phase microextraction-solidified floating organic drop was introduced and used for the simultaneous extraction of trace amounts of albendazole and triclabendazole from different matrices. The extracted analytes were determined by high performance liquid chromatography along with fluorescence detection. The analytical parameters affecting the microextraction efficiency including the nature and volume of the extraction solvent, sample volume, sample pH, ionic strength and the cycles of extraction were optimized. The calibration curves were linear in the range of 0.1-30.0 μg L(-1) and 0.2-30.0 μg L(-1) with determination coefficients of 0.9999 and 0.9998 for albendazole and triclabendazole respectively. The detection limits defined as three folds of the signal to noise ratio were found to be 0.02 μg L(-1) for albendazole and 0.06 μg L(-1) for triclabendazole. The inter-day and intra-day precision (RSD%) for both analytes at three concentration levels (0.5, 2.0 and 10.0 μg L(-1)) were in the range of 6.3-10.1% and 5.0-7.5% respectively. The developed method was successfully applied to determine albendazole and triclabendazole in water, cow milk, honey, and urine samples. Copyright © 2016. Published by Elsevier B.V.

  9. Liquid-phase microextraction combined with graphite furnace atomic absorption spectrometry: A review

    Energy Technology Data Exchange (ETDEWEB)

    Calle, Inmaculada de la; Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos, E-mail: bendicho@uvigo.es

    2016-09-14

    An overview of the combination of liquid-phase microextraction (LPME) techniques with graphite furnace atomic absorption spectrometry (GFAAS) is reported herein. The high sensitivity of GFAAS is significantly enhanced by its association with a variety of miniaturized solvent extraction approaches. LPME-GFAAS thus represents a powerful combination for determination of metals, metalloids and organometallic compounds at (ultra)trace level. Different LPME modes used with GFAAS are briefly described, and the experimental parameters that show an impact in those microextraction processes are discussed. Special attention is paid to those parameters affecting GFAAS analysis. Main issues found when coupling LPME and GFAAS, as well as those strategies reported in the literature to solve them, are summarized. Relevant applications published on the topic so far are included. - Highlights: • We review the LPME-GFAAS combination in a comprehensive way. • A brief description of main LPME modes is included. • Effect of experimental parameters in the performance of LPME-GFAAS is discussed. • Main applications for trace element analysis and speciation are reviewed.

  10. Liquid-phase microextraction combined with graphite furnace atomic absorption spectrometry: A review

    International Nuclear Information System (INIS)

    Calle, Inmaculada de la; Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos

    2016-01-01

    An overview of the combination of liquid-phase microextraction (LPME) techniques with graphite furnace atomic absorption spectrometry (GFAAS) is reported herein. The high sensitivity of GFAAS is significantly enhanced by its association with a variety of miniaturized solvent extraction approaches. LPME-GFAAS thus represents a powerful combination for determination of metals, metalloids and organometallic compounds at (ultra)trace level. Different LPME modes used with GFAAS are briefly described, and the experimental parameters that show an impact in those microextraction processes are discussed. Special attention is paid to those parameters affecting GFAAS analysis. Main issues found when coupling LPME and GFAAS, as well as those strategies reported in the literature to solve them, are summarized. Relevant applications published on the topic so far are included. - Highlights: • We review the LPME-GFAAS combination in a comprehensive way. • A brief description of main LPME modes is included. • Effect of experimental parameters in the performance of LPME-GFAAS is discussed. • Main applications for trace element analysis and speciation are reviewed.

  11. Elemental analysis by surface-enhanced Laser-Induced Breakdown Spectroscopy combined with liquid–liquid microextraction

    International Nuclear Information System (INIS)

    Aguirre, M.A.; Legnaioli, S.; Almodóvar, F.; Hidalgo, M.; Palleschi, V.; Canals, A.

    2013-01-01

    In this work, the possibility of using Laser-Induced Breakdown Spectrometry (LIBS) combined with liquid–liquid microextraction techniques is evaluated as a simple and fast method for trace elemental analysis. Two different strategies for LIBS analysis of manganese contained in microdroplets of extraction solvent (Triton X-114) are studied: (i) analysis by direct laser irradiation of microdroplets; and (ii) analysis by laser irradiation of microdroplets dried on metallic substrates (surface-enhanced LIBS — SENLIBS). Experiments were carried out using synthetic samples with different concentrations of manganese in a 10% w/w Triton X-114 matrix. The analysis by direct laser irradiation of microdroplets showed low precision, sensitivity and poor linearity across the concentration range evaluated (R 2 −1 of Mn. - Highlights: ► LIBS combined with microextraction procedures for trace analysis is proposed. ► The proposed combination depends on LIBS ability to analyze sample microvolumes. ► A surface-enhanced LIBS methodology for microdroplet analysis was evaluated. ► Results indicate this combination to be promising for trace analysis in liquids

  12. Comparison of solidification of floating drop and homogenous liquid-liquid microextractions for the extraction of two plasticizers from the water kept in PET-bottles.

    Science.gov (United States)

    Yamini, Yadollah; Ghambarian, Mahnaz; Khalili-Zanjani, Mohammad Reza; Faraji, Mohammad; Shariati, Shahab

    2009-09-01

    Two approaches based on solidification of floating drop microextraction (SFDME) and homogenous liquid-liquid microextraction (HLLE) were compared for the extraction and preconcentration of di-(2-ethylhexyl) phthalate (DEHP) and di-(2-ethylhexyl) adipate (DEHA) from the mineral water samples. In SFDME, a floated drop of the mixture of acetophenone/1-undecanol (1:8) was exposed on the surface of the aqueous solution and extraction was permitted to occur. In HLLE, a homogenous ternary solvent system was used by water/methanol/chloroform and the phase separation phenomenon occurred by salt addition. Under the optimal conditions, the LODs for the two target plasticizers (DEHA and DEHP), obtained by SFDME-GC-FID and HLLE-GC-FID, were ranged from 0.03 to 0.01 microg/L and 0.02 to 0.01 microg/L, respectively. HLLE provided higher preconcentration factors (472.5- and 551.2-fold) within the shorter extraction time as well as better RSDs (4.5-6.9%). While, in SFDME, high preconcentration factors in the range of 162-198 and good RSDs in the range of 5.2-9.6% were obtained. Both methods were applied for the analysis of two plasticizers in different water samples and two target plasticizers were found in the bottled mineral water after the expiring time and the boiling water was exposed to a polyethylene vial.

  13. Spectrophotometric determination of iron species using a combination of artificial neural networks and dispersive liquid–liquid microextraction based on solidification of floating organic drop

    International Nuclear Information System (INIS)

    Moghadam, Masoud Rohani; Shabani, Ali Mohammad Haji; Dadfarnia, Shayessteh

    2011-01-01

    Highlights: ► Combination of DLLME-SFO/fiber optic-linear array detection/chemometric methods. ► Simultaneous determination of complexes with overlapping spectra. ► A novel DLLME-SFO method is proposed for extraction of iron species. ► The extracted iron species are simultaneous determined using PC-ANNs. ► The enhancement factor of 162 and 125 are achieved for Fe 3+ and Fe 2+ , respectively. - Abstract: A dispersive liquid–liquid microextraction based on solidification of floating organic drop (DLLME-SFO) and artificial neural networks method was developed for the simultaneous separation/preconcentration and speciation of iron in water samples. In this method, an appropriate mixture of ethanol (as the disperser solvent) and 1-undecanol (as the extracting solvent) containing appropriate amount of 2-thenoyltrifluoroacetone (TTA) (as the complexing agent) was injected rapidly into the water sample containing iron (II) and iron (III) species. At this step, the iron species interacted with the TTA and extracted into the 1-undecanol. After the phase separation, the absorbance of the extracted irons was measured in the wavelength region of 450–600 nm. The artificial neural networks were then applied for simultaneous determination of individual iron species. Under optimum conditions, the calibration graphs were linear in the range of 95–1070 μg L −1 and 31–350 μg L −1 with detection limits of 25 and 8 μg L −1 for iron (II) and iron (III), respectively. The relative standard deviations (R.S.D., n = 6) were lower than 4.2%. The enhancement factor of 162 and 125 were obtained for Fe 3+ and Fe 2+ ions, respectively. The procedure was applied to power plant drum water and several potable water samples; and accuracy was assessed through the recovery experiments and independent analysis by graphite furnace atomic absorption spectrometry.

  14. Speciation and determination of ultra trace amounts of chromium by solidified floating organic drop microextraction (SFODME) and graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Moghadam, Masoud Rohani [Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741 (Iran, Islamic Republic of); Dadfarnia, Shayessteh, E-mail: sdadfarnia@yazduni.ac.ir [Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741 (Iran, Islamic Republic of); Haji Shabani, Ali Mohammad [Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741 (Iran, Islamic Republic of)

    2011-02-15

    Solidified floating organic drop microextraction (SFODME) method in combination with graphite furnace atomic absorption spectrometry (GFAAS) has been used for the determination of chromium species in water and urine samples. 1-undecanol containing 2-thenoyltrifluoroacetone (TTA) was used as a selective chelating agent for the extraction of Cr(III). The total Cr was determined after the reduction of Cr(VI) to Cr(III) with hydroxylamine. The concentration of Cr(VI) was determined from the difference between the concentration of total chromium and the Cr(III). Several variables such as the sample pH, concentration of TTA, salt concentration, extraction time and the sample volume were investigated in detail. Under the optimum conditions, the limit of detection of the proposed method was 0.006 {mu}g l{sup -1} for Cr(III) and the relative standard deviation for six replicate determinations at 0.1 {mu}g l{sup -1} Cr(III) was 5.1%. The proposed method was successfully applied for the determination of chromium species in tap water, well water, mineral water, and urine samples.

  15. Optimization of dispersive liquid-phase microextraction based on solidified floating organic drop combined with high-performance liquid chromatography for the analysis of glucocorticoid residues in food.

    Science.gov (United States)

    Huang, Yuan; Zheng, Zhiqun; Huang, Liying; Yao, Hong; Wu, Xiao Shan; Li, Shaoguang; Lin, Dandan

    2017-05-10

    A rapid, simple, cost-effective dispersive liquid-phase microextraction based on solidified floating organic drop (SFOD-LPME) was developed in this study. Along with high-performance liquid chromatography, we used the developed approach to determine and enrich trace amounts of four glucocorticoids, namely, prednisone, betamethasone, dexamethasone, and cortisone acetate, in animal-derived food. We also investigated and optimized several important parameters that influenced the extraction efficiency of SFOD-LPME. These parameters include the extractant species, volumes of extraction and dispersant solvents, sodium chloride addition, sample pH, extraction time and temperature, and stirring rate. Under optimum experimental conditions, the calibration graph exhibited linearity over the range of 1.2-200.0ng/ml for the four analytes, with a reasonable linearity(r 2 : 0.9990-0.9999). The enrichment factor was 142-276, and the detection limits was 0.39-0.46ng/ml (0.078-0.23μg/kg). This method was successfully applied to analyze actual food samples, and good spiked recoveries of over 81.5%-114.3% were obtained. Copyright © 2017. Published by Elsevier B.V.

  16. Impact of a single drop on the same liquid: formation, growth and disintegration of jets

    Science.gov (United States)

    Agbaglah, G. Gilou; Deegan, Robert

    2015-11-01

    One of the simplest splashing scenarios results from the impact of a single drop on on the same liquid. The traditional understanding of this process is that the impact generates a jet that later breaks up into secondary droplets. Recently it was shown that even this simplest of scenarios is more complicated than expected because multiple jets can be generated from a single impact event and there are bifurcations in the multiplicity of jets. First, we study the formation, growth and disintegration of jets following the impact of a drop on a thin film of the same liquid using a combination of numerical simulations and linear stability theory. We obtain scaling relations from our simulations and use these as inputs to our stability analysis. We also use experiments and numerical simulations of a single drop impacting on a deep pool to examine the bifurcation from a single jet into two jets. Using high speed X-ray imaging methods we show that vortex separation within the drop leads to the formation of a second jet long after the formation of the ejecta sheet.

  17. Ultrasonic characterization of single drops of liquids

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Dipen N. (Los Alamos, NM)

    1998-01-01

    Ultrasonic characterization of single drops of liquids. The present invention includes the use of two closely spaced transducers, or one transducer and a closely spaced reflector plate, to form an interferometer suitable for ultrasonic characterization of droplet-size and smaller samples without the need for a container. The droplet is held between the interferometer elements, whose distance apart may be adjusted, by surface tension. The surfaces of the interferometer elements may be readily cleansed by a stream of solvent followed by purified air when it is desired to change samples. A single drop of liquid is sufficient for high-quality measurement. Examples of samples which may be investigated using the apparatus and method of the present invention include biological specimens (tear drops; blood and other body fluid samples; samples from tumors, tissues, and organs; secretions from tissues and organs; snake and bee venom, etc.) for diagnostic evaluation, samples in forensic investigations, and detection of drugs in small quantities.

  18. Ultrasonic characterization of single drops of liquids

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, D.N.

    1998-04-14

    Ultrasonic characterization of single drops of liquids is disclosed. The present invention includes the use of two closely spaced transducers, or one transducer and a closely spaced reflector plate, to form an interferometer suitable for ultrasonic characterization of droplet-size and smaller samples without the need for a container. The droplet is held between the interferometer elements, whose distance apart may be adjusted, by surface tension. The surfaces of the interferometer elements may be readily cleansed by a stream of solvent followed by purified air when it is desired to change samples. A single drop of liquid is sufficient for high-quality measurement. Examples of samples which may be investigated using the apparatus and method of the present invention include biological specimens (tear drops; blood and other body fluid samples; samples from tumors, tissues, and organs; secretions from tissues and organs; snake and bee venom, etc.) for diagnostic evaluation, samples in forensic investigations, and detection of drugs in small quantities. 5 figs.

  19. A novel solidified floating organic drop microextraction method for preconcentration and determination of copper ions by flow injection flame atomic absorption spectrometry in water samples

    Directory of Open Access Journals (Sweden)

    Arpa Şahin Ç.

    2013-04-01

    Full Text Available A simple, rapid and inexpensive solidified floating organic drop microextraction (SFODME and flow injection flame atomic absorption spectrometric determination (FI-FAAS method for copper was developed. 3-amino-7-dimethylamino-2-methylphenazine (Neutral red, NR was used as the complexing agent. Several factors affecting the microextraction efficiency, such as, pH, NR and sodium dodecylbenzenesulfonate (SDBS concentration, extraction time, stirring rate, and temperature were investigated and optimized. Under optimized experimental conditions an enrichment factor of 541 was obtained for 100 mL of sample solution. The calibration graph was linear in the range of 0.5 – 20.0 ng mL–1 and the limit of detection (3s was 0.18 ng mL–1, the limit of quantification (10s was 0.58 ng mL–1. The relative standard deviation (RSD for 10 replicate measurements of 10 ng mL–1 copper was 2.7%. The developed method was successfully applied to the extraction and determination of copper in different certified reference materials (Estuarine water, Slew 3 and fortified water, TM 23.2 and real water samples and satisfactory results were obtained.

  20. Pressure Drop Correlations of Single-Phase and Two-Phase Flow in Rolling Tubes

    International Nuclear Information System (INIS)

    Xia-xin Cao; Chang-qi Yan; Pu-zhen Gao; Zhong-ning Sun

    2006-01-01

    A series of experimental studies of frictional pressure drop for single phase and two-phase bubble flow in smooth rolling tubes were carried out. The tube inside diameters were 15 mm, 25 mm and 34.5 mm respectively, the rolling angles of tubes could be set as 10 deg. and 20 deg., and the rolling periods could be set as 5 s, 10 s and 15 s. Combining with the analysis of single-phase water motion, it was found that the traditional correlations for calculating single-phase frictional coefficient were not suitable for the rolling condition. Based on the experimental data, a new correlation for calculating single-phase frictional coefficient under rolling condition was presented, and the calculations not only agreed well with the experimental data, but also could display the periodically dynamic characteristics of frictional coefficients. Applying the new correlation to homogeneous flow model, two-phase frictional pressure drop of bubble flow in rolling tubes could be calculated, the results showed that the relative error between calculation and experimental data was less than ± 25%. (authors)

  1. Combining spray nozzle simulators with meshes: characterization of rainfall intensity and drop properties

    Science.gov (United States)

    Carvalho, Sílvia C. P.; de Lima, João L. M. P.; de Lima, M. Isabel P.

    2013-04-01

    Rainfall simulators can be a powerful tool to increase our understanding of hydrological and geomorphological processes. Nevertheless, rainfall simulators' design and operation might be rather demanding, for achieving specific rainfall intensity distributions and drop characteristics. The pressurized simulators have some advantages over the non-pressurized simulators: drops do not rely on gravity to reach terminal velocity, but are sprayed out under pressure; pressurized simulators also yield a broad range of drop sizes in comparison with drop-formers simulators. The main purpose of this study was to explore in the laboratory the potential of combining spray nozzle simulators with meshes in order to change rainfall characteristics (rainfall intensity and diameters and fall speed of drops). Different types of spray nozzles were tested, such as single full-cone and multiple full-cone nozzles. The impact of the meshes on the simulated rain was studied by testing different materials (i.e. plastic and steel meshes), square apertures and wire thicknesses, and different vertical distances between the nozzle and the meshes underneath. The diameter and fall speed of the rain drops were measured using a Laser Precipitation Monitor (Thies Clima). The rainfall intensity range and coefficients of uniformity of the sprays and the drop size distribution, fall speed and kinetic energy were analysed. Results show that when meshes intercept drop trajectories the spatial distribution of rainfall intensity and the drop size distribution are affected. As the spray nozzles generate typically small drop sizes and narrow drop size distributions, meshes can be used to promote the formation of bigger drops and random their landing positions.

  2. Direct solid-phase microextraction combined with gas and liquid chromatography for the determination of lidocaine in human urine

    NARCIS (Netherlands)

    Koster, E.H M; Hofman, N.S K; de Jong, G.J.

    Solid-phase microextraction (SPME) has been combined with gas chromatography (GC) and liquid chromatography (LC) for the determination of lidocaine in human urine. A polydimethylsiloxane (PDMS) coated fibre was directly immersed into buffered urine. Extraction conditions such as time, pH, ionic

  3. Microextraction sample preparation techniques in biomedical analysis.

    Science.gov (United States)

    Szultka, Malgorzata; Pomastowski, Pawel; Railean-Plugaru, Viorica; Buszewski, Boguslaw

    2014-11-01

    Biologically active compounds are found in biological samples at relatively low concentration levels. The sample preparation of target compounds from biological, pharmaceutical, environmental, and food matrices is one of the most time-consuming steps in the analytical procedure. The microextraction techniques are dominant. Metabolomic studies also require application of proper analytical technique for the determination of endogenic metabolites present in biological matrix on trace concentration levels. Due to the reproducibility of data, precision, relatively low cost of the appropriate analysis, simplicity of the determination, and the possibility of direct combination of those techniques with other methods (combination types on-line and off-line), they have become the most widespread in routine determinations. Additionally, sample pretreatment procedures have to be more selective, cheap, quick, and environmentally friendly. This review summarizes the current achievements and applications of microextraction techniques. The main aim is to deal with the utilization of different types of sorbents for microextraction and emphasize the use of new synthesized sorbents as well as to bring together studies concerning the systematic approach to method development. This review is dedicated to the description of microextraction techniques and their application in biomedical analysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The effect of surfactant on headspace single drop microextraction for the determination of some volatile aroma compounds in citronella grass and lemongrass leaves by gas chromatography

    Science.gov (United States)

    A rapid method for the determination of some volatile aromatic compounds (VACs), including citronellal, citronellol, neral, geranial, geraniol, and eugenol in citronella grass and lemongrass leaves, was developed using surfactant as a surface tension modifier while performing headspace single drop m...

  5. Determination of trihalomethanes in waters by ionic liquid-based single drop microextraction/gas chromatographic/mass spectrometry.

    Science.gov (United States)

    Aguilera-Herrador, Eva; Lucena, Rafael; Cárdenas, Soledad; Valcárcel, Miguel

    2008-10-31

    A simple, rapid, solventless method for the determination of trihalomethanes (THMs) (chloroform, bromodichloromethane, dibromochloromethane and bromoform) in water samples is presented. The analytes are extracted from the headspace of the aqueous matrix into a 2 microL drop of the ionic liquid 1-octyl-3-methyl-imidazolium hexafluorophosphate working at 30 degrees C for 30 min. The separation and detection of the target compounds is accomplished by gas chromatography/mass spectrometry owing to the use of an interface that efficiently transfers the analytes extracted in the ionic liquid drop to the gas chromatograph while preventing the ionic liquid from entering the column. The detection limits obtained are below the values compelled by the legislation, ranging from 0.5 microg L(-1) for chloroform and bromodichloromethane to 0.9 microg L(-1) for dibromochloromethane. The use of ionic liquid in the extraction procedure avoids the use of organic solvents and leads to relative standard deviations that range from 3.1% to 4.8%.

  6. A novel solidified floating organic drop microextraction method for preconcentration and determination of copper ions by flow injection flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Sahin, Cigdem Arpa; Tokgoez, Ilknur

    2010-01-01

    A rapid, simple and cost effective solidified floating organic drop microextraction (SFODME) and flow injection flame atomic absorption spectrometric determination (FI-FAAS) method for copper was developed. In this method, a free microdrop of 1-undecanol containing 1,5-diphenyl carbazide (DPC) as the complexing agent was transferred to the surface of an aqueous sample including Cu(II) ions, while being agitated by a stirring bar in the bulk of the solution. Under the proper stirring conditions, the suspended microdrop can remain at the top-center position of the aqueous sample. After the completion of the extraction, the sample vial was cooled by placing it in a refrigerator for 10 min. The solidified microdrop was then transferred into a conical vial, where it melted immediately and diluted to 300 μL with ethanol. Finally, copper ions in 200 μL of diluted solution were determined by FI-FAAS. Several factors affecting the microextraction efficiency, such as type of extraction solvent, pH, complexing agent concentration, extraction time, stirring rate, sample volume and temperature were investigated and optimized. Under optimized conditions for 100 mL of solution, the preconcentration factor was 333 and the enrichment factor was 324. The limit of detection (3 s) was 0.4 ng mL -1 , the limit of quantification (10 s) was 1.1 ng mL -1 and the relative standard deviation (RSD) for 10 replicate measurements of 10 ng mL -1 copper was 0.9%. The proposed method was successfully applied to the determination of copper in different water samples.

  7. Dispersive liquid-liquid microextraction based on solidification of floating organic drop for simultaneous separation/preconcentration of nickel, cobalt and copper prior to determination by electrothermal atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Mooud Amirkavei

    2013-01-01

    Full Text Available A dispersive liquid-liquid microextraction based on solidification of floating organic drop for simultaneous extraction of trace amounts of nickel, cobalt and copper followed by their determination with electrothermal atomic absorption spectrometry was developed. 300 µL of acetone and 1-undecanol was injected into an aqueous sample containing diethyldithiocarbamate complexes of metal ions. For a sample volume of 10 mL, enrichment factors of 277, 270 and 300 and detection limits of 1.2, 1.1 and 1 ng L-1 for nickel, cobalt and copper were obtained, respectively. The method was applied to the extraction and determination of these metals in different water samples.

  8. Liquid-phase microextraction with solidification of the organic floating drop for the preconcentration and determination of mercury traces by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Garcia, I.; Rivas, R.E.; Hernandez-Cordoba, M. [Faculty of Chemistry, University of Murcia, Department of Analytical Chemistry, Murcia (Spain)

    2010-04-15

    A procedure for the determination of traces of mercury by liquid-phase microextraction based on solidification of a floating organic droplet for separation and electrothermal atomic absorption spectrometry for final measurement has been developed. For this purpose, 50 {mu}L of pre-heated (50 C) undecanoic acid (UA), are added to 25 mL of aqueous sample solution at pH 5. The mixture, maintained at 50 C, is stirred for 10 min using a high stirring rate in order to fragment the UA drop into droplets, thus favoring the extraction process. Next, the vial is immersed in an ice bath, which results in the solidification of the UA drop that is easily separated. Injection into the atomizer is carried out after gentle heating. The pyrolytic atomizers are coated with electrolytically reduced palladium that acts as an effective chemical modifier for more than 500 firings. Under the optimized conditions, the detection limit was 70 ng L{sup -1} mercury with an enrichment factor of 430. The relative standard deviation of the measurements was in the 2.1-3.5% range. Recovery studies applied to the determination of mercuric ions in bottled and tap water samples were in the 92-104% range. (orig.)

  9. Directional Transport of a Liquid Drop between Parallel-Nonparallel Combinative Plates.

    Science.gov (United States)

    Huang, Yao; Hu, Liang; Chen, Wenyu; Fu, Xin; Ruan, Xiaodong; Xie, Haibo

    2018-04-17

    Liquids confined between two parallel plates can perform the function of transmission, support, or lubrication in many practical applications, due to which to maintain liquids stable within their working area is very important. However, instabilities may lead to the formation of leaking drops outside the bulk liquid, thus it is necessary to transport the detached drops back without overstepping the working area and causing destructive leakage to the system. In this study, we report a novel and facile method to solve this problem by introducing the wedgelike geometry into the parallel gap to form a parallel-nonparallel combinative construction. Transport performances of this structure were investigated. The criterion for self-propelled motion was established, which seemed more difficult to meet than that in the nonparallel gap. Then, we performed a more detailed investigation into the drop dynamics under squeezing and relaxing modes because the drops can surely return in hydrophilic combinative gaps, whereas uncertainties arose in gaps with a weak hydrophobic character. Therefore, through exploration of the transition mechanism of the drop motion state, a crucial factor named turning point was discovered and supposed to be directly related to the final state of the drops. On the basis of the theoretical model of turning point, the criterion to identify whether a liquid drop returns to the parallel part under squeezing and relaxing modes was achieved. These criteria can provide guidance on parameter selection and structural optimization for the combinative gap, so that the destructive leakage in practical productions can be avoided.

  10. Simultaneous extraction and quantification of lamotrigine, phenobarbital, and phenytoin in human plasma and urine samples using solidified floating organic drop microextraction and high-performance liquid chromatography.

    Science.gov (United States)

    Asadi, Mohammad; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad; Abbasi, Bijan

    2015-07-01

    A novel and simple method based on solidified floating organic drop microextraction followed by high-performance liquid chromatography with ultraviolet detection has been developed for simultaneous preconcentration and determination of phenobarbital, lamotrigine, and phenytoin in human plasma and urine samples. Factors affecting microextraction efficiency such as the type and volume of the extraction solvent, sample pH, extraction time, stirring rate, extraction temperature, ionic strength, and sample volume were optimized. Under the optimum conditions (i.e. extraction solvent, 1-undecanol (40 μL); sample pH, 8.0; temperature, 25°C; stirring rate, 500 rpm; sample volume, 7 mL; potassium chloride concentration, 5% and extraction time, 50 min), the limits of detection for phenobarbital, lamotrigine, and phenytoin were 1.0, 0.1, and 0.3 μg/L, respectively. Also, the calibration curves for phenobarbital, lamotrigine, and phenytoin were linear in the concentration range of 2.0-300.0, 0.3-200.0, and 1.0-200.0 μg/L, respectively. The relative standard deviations for six replicate extractions and determinations of phenobarbital, lamotrigine, and phenytoin at 50 μg/L level were less than 4.6%. The method was successfully applied to determine phenobarbital, lamotrigine, and phenytoin in plasma and urine samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Glyoxal and methylglyoxal as urinary markers of diabetes. Determination using a dispersive liquid-liquid microextraction procedure combined with gas chromatography-mass spectrometry.

    Science.gov (United States)

    Pastor-Belda, M; Fernández-García, A J; Campillo, N; Pérez-Cárceles, M D; Motas, M; Hernández-Córdoba, M; Viñas, P

    2017-08-04

    Glyoxal (GO) and methylglyoxal (MGO) are α-oxoaldehydes that can be used as urinary diabetes markers. In this study, their levels were measured using a sample preparation procedure based on salting-out assisted liquid-liquid extraction (SALLE) and dispersive liquid-liquid microextraction (DLLME) combined with gas chromatography-mass spectrometry (GC-MS). The effect of the derivatization reaction with 2,3-diaminonaphthalene, the addition of acetonitrile and sodium chloride to urine, and the DLLME step using the acetonitrile extract as dispersant solvent and carbon tetrachloride as extractant solvent were carefully optimized. Quantification was performed by the internal standard method, using 5-bromo-2-chloroanisole. The intraday and interday precisions were lower than 6%. Limits of detection were 0.12 and 0.06ngmL -1 , and enrichment factors 140 and 130 for GO and MGO, respectively. The concentrations of these α-oxoaldehydes in urine were between 0.9 and 35.8ngg -1 levels (creatinine adjusted). A statistical comparison of the analyte contents of urine samples from non-diabetic and diabetic patients pointed to significant differences (P=0.046, 24 subjects investigated), particularly regarding MGO, which was higher in diabetic patients. The novelty of this study compared with previous procedures lies in the treatment of the urine sample by SALLE based on the addition of acetonitrile and sodium chloride to the urine. The DLLME procedure is performed with a sedimented drop of the extractant solvent, without a surfactant reagent, and using acetonitrile as dispersant solvent. Separation of the analytes was performed using GC-MS detection, being the analytes unequivocal identified. The proposed procedure is the first microextraction method applied to the analysis of urine samples from diabetic and non-diabetic patients that allows a clear differentiation between both groups using a simple analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A Method Based on Ultrasound-assisted Solidification of Floating Drop Microextraction Technique for the Spectrophotometric Determination of Curcumin in Turmeric Powder

    Directory of Open Access Journals (Sweden)

    Abbas Afkhami

    2017-06-01

    Full Text Available A method based on the ultrasound-assisted solidification of floating drop microextraction technique was developed for the spectrophotometric and spectrofluorimetric determination of curcumin in turmeric powder. In this work a small volume of an organic solvent was floated on the surface of an aqueous solution. After sonication the organic solvent is solidified and separated. The effect of extraction parameters such as type and the volume of organic solvent, temperature, salt addition and exposure time, on the extraction recovery was investigated and optimized. Finally, the method droplet was used for the determination of analyte. Under the optimum extraction conditions, a linear range of 0.006–30 μg mL-1 and a relative standard deviation (RSD of 2.72% for curcumin wasachieved. Limits of detection of 7 and 2 ng mL-1 curcumin was obtained for the spectrophotometric and spectrofluometric methods, respectively. The obtained results show that the application of this method can be successful for the analysis of curcumin in turmeric powder samples.

  13. Combined discrete nebulization and microextraction process for molybdenum determination by flame atomic absorption spectrometry (FAAS); Avaliacao da combinacao da nebulizacao discreta e processos de microextracao aplicados a determinacao de molibdenio por espectrometria de absorcao atomica com chama (FAAS)

    Energy Technology Data Exchange (ETDEWEB)

    Oviedo, Jenny A.; Jesus, Amanda M.D. de; Fialho, Lucimar L.; Pereira-Filho, Edenir R., E-mail: erpf@ufscar.br [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Quimica

    2014-04-15

    Simple and sensitive procedures for the extraction/preconcentration of molybdenum based on vortex-assisted solidified floating organic drop microextraction (VA-SFODME) and cloud point combined with flame absorption atomic spectrometry (FAAS) and discrete nebulization were developed. The influence of the discrete nebulization on the sensitivity of the molybdenum preconcentration processes was studied. An injection volume of 200 μ resulted in a lower relative standard deviation with both preconcentration procedures. Enrichment factors of 31 and 67 and limits of detection of 25 and 5 μ L{sup -1} were obtained for cloud point and VA-SFODME, respectively. The developed procedures were applied to the determination of Mo in mineral water and multivitamin samples. (author)

  14. Introducing a new and rapid microextraction approach based on magnetic ionic liquids: Stir bar dispersive liquid microextraction

    International Nuclear Information System (INIS)

    Chisvert, Alberto; Benedé, Juan L.; Anderson, Jared L.; Pierson, Stephen A.; Salvador, Amparo

    2017-01-01

    With the aim of contributing to the development and improvement of microextraction techniques, a novel approach combining the principles and advantages of stir bar sorptive extraction (SBSE) and dispersive liquid-liquid microextraction (DLLME) is presented. This new approach, termed stir bar dispersive liquid microextraction (SBDLME), involves the addition of a magnetic ionic liquid (MIL) and a neodymium-core magnetic stir bar into the sample allowing the MIL coat the stir bar due to physical forces (i.e., magnetism). As long as the stirring rate is maintained at low speed, the MIL resists rotational (centrifugal) forces and remains on the stir bar surface in a manner closely resembling SBSE. By increasing the stirring rate, the rotational forces surpass the magnetic field and the MIL disperses into the sample solution in a similar manner to DLLME. After extraction, the stirring is stopped and the MIL returns to the stir bar without the requirement of an additional external magnetic field. The MIL-coated stir bar containing the preconcentrated analytes is thermally desorbed directly into a gas chromatographic system coupled to a mass spectrometric detector (TD-GC-MS). This novel approach opens new insights into the microextraction field, by using the benefits provided by SBSE and DLLME simultaneously, such as automated thermal desorption and high surface contact area, respectively, but most importantly, it enables the use of tailor-made solvents (i.e., MILs). To prove its utility, SBDLME has been used in the extraction of lipophilic organic UV filters from environmental water samples as model analytical application with excellent analytical features in terms of linearity, enrichment factors (67–791), limits of detection (low ng L −1 ), intra- and inter-day repeatability (RSD<15%) and relative recoveries (87–113%, 91–117% and 89–115% for river, sea and swimming pool water samples, respectively). - Highlights: • A new microextraction method combining the

  15. Clinical observation of Qiming granule combined with Dextran and Hypromellose eye drops for dry eye

    Directory of Open Access Journals (Sweden)

    Jin-Lan Wan

    2013-09-01

    Full Text Available AIM: To observe the efficacy of Qiming granule combined with Dextran and Hypromellose eye drops in treatment of dry eye.METHODS: A randomized, parallel-control approach was adopted, 100 cases of dry eye patients were divided into treatment group and control group equally, observation on the treatment of 3 months. The treatment group was applied Dextran and Hypromellose eye drops combined with oral Qiming granule, simply Dextran and Hypromellose eye drops for control group. Before and after treatment, tear secretion volume, break-up time, corneal fluorescein staining and symptom were observed.RESULTS: After treatment, there was statistical significance for the break-up time, SⅠt and corneal fluorescein staining in both groups when compared with before treatment(PPCONCLUSION: The combined Dextran and Hypromellose eye drops and Qiming granule perform better than Dextran and Hypromellose eye drops only in treatment of dry eye.

  16. Simultaneous Determination of Parathion, Malathion, Diazinon, and Pirimiphos Methyl in Dried Medicinal Plants Using Solid-Phase Microextraction Fibre Coated with Single-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Reza Ahmadkhaniha

    2012-01-01

    Full Text Available A reliable and sensitive headspace solid-phase microextraction gas chromatography-mass spectrometry method for simultaneous determination of different organophosphorus pesticides in dried medicinal plant samples is described. The analytes were extracted by single-walled carbon nanotubes as a new solid-phase microextraction adsorbent. The developed method showed good performance. For diazinon and pirimiphos methyl calibration, curves were linear (r2≥0.993 over the concentration ranges from 1.5 to 300 ng g−1, and the limit of detection at signal-to-noise ratio of 3 was 0.3 ng g−1. For parathion and malathion, the linear range and limit of detection were 2.5–300 (r2≥0.991 and 0.5 ng g−1, respectively. In addition, a comparative study between the single-walled carbon nanotubes and a commercial polydimethylsiloxane fibre for the determination of target analytes was carried out. Single-walled carbon nanotubes fibre showed higher extraction capacity, better thermal stability (over 350∘C, and longer lifespan (over 250 times than the commercial polydimethylsiloxane fibre. The developed method was successfully applied to determine target organophosphorus pesticides in real samples.

  17. Ligandless, ion pair-based and ultrasound assisted emulsification solidified floating organic drop microextraction for simultaneous preconcentration of ultra-trace amounts of gold and thallium and determination by GFAAS.

    Science.gov (United States)

    Fazelirad, Hamid; Taher, Mohammad Ali

    2013-01-15

    In the present work, a new, simple and efficient method for simultaneous preconcentration of ultra-trace amounts of gold and thallium is developed using an ion pair based-ultrasound assisted emulsification-solidified floating organic drop microextraction procedure before graphite furnace atomic absorption spectrometry determination. This methodology was used to preconcentrate the ion pairs formed between AuCl(4)(-) and TlCl(4)(-) and [C(23)H(42)]N(+) in a microliter-range volume of 1-undecanol. Several factors affecting the microextraction efficiency, such as HCl volume, type and volume of extraction solvent, sonication time, sample volume, temperature, ionic strength and [C(23)H(42)]NCl volume were investigated and optimized. Under the optimized conditions, the enrichment factor of 441 and 443 and calibration graphs of 2.2-89 and 22.2-667 ng L(-1) for gold and thallium were obtained, respectively. The intra- and inter-day precision of ± 4.4 and ± 4.9% for Au and ± 4.8 and ± 5.4% for Tl were obtained. The detection limit was 0.66 ng L(-1) for Au and 4.67 ng L(-1) for Tl. The results show that the liquid-liquid pretreatment using ion pair forming, is sensitive, rapid, simple and safe method for the simultaneous preconcentration of gold and thallium. The method was successfully applied for determination of gold and thallium in natural water and hair samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Determination of diflubenzuron and chlorbenzuron in fruits by combining acetonitrile-based extraction with dispersive liquid-liquid microextraction followed by high-performance liquid chromatography.

    Science.gov (United States)

    Ruan, Chunqiang; Zhao, Xiang; Liu, Chenglan

    2015-09-01

    In this study, a simple and low-organic-solvent-consuming method combining an acetonitrile-partitioning extraction procedure followed by "quick, easy, cheap, effective, rugged and safe" cleanup with ionic-liquid-based dispersive liquid-liquid microextraction and high-performance liquid chromatography with diode array detection was developed for the determination of diflubenzuron and chlorbenzuron in grapes and pears. Ionic-liquid-based dispersive liquid-liquid microextraction was performed using the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate as the extractive solvent and acetonitrile extract as the dispersive solvent. The main factors influencing the efficiency of the dispersive liquid-liquid microextraction were evaluated, including the extractive solvent type and volume and the dispersive solvent volume. The validation parameters indicated the suitability of the method for routine analyses of benzoylurea insecticides in a large number of samples. The relative recoveries at three spiked levels ranged between 98.6 and 109.3% with relative standard deviations of less than 5.2%. The limit of detection was 0.005 mg/kg for the two insecticides. The proposed method was successfully used for the rapid determination of diflubenzuron and chlorbenzuron residues in real fruit samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Silica- and germania-based dual-ligand sol-gel organic-inorganic hybrid sorbents combining superhydrophobicity and π-π interaction. The role of inorganic substrate in sol-gel capillary microextraction.

    Science.gov (United States)

    Seyyal, Emre; Malik, Abdul

    2017-04-29

    Principles of sol-gel chemistry were utilized to create silica- and germania-based dual-ligand surface-bonded sol-gel coatings providing enhanced performance in capillary microextraction (CME) through a combination of ligand superhydrophobicity and π-π interaction. These organic-inorganic hybrid coatings were prepared using sol-gel precursors with bonded perfluorododecyl (PF-C 12 ) and phenethyl (PhE) ligands. Here, the ability of the PF-C 12 ligand to provide enhanced hydrophobic interaction was advantageously combined with π-π interaction capability of the PhE moiety to attain the desired sorbent performance in CME. The effect of the inorganic sorbent component on microextraction performance of was explored by comparing microextraction characteristics of silica- and germania-based sol-gel sorbents. The germania-based dual-ligand sol-gel sorbent demonstrated superior CME performance compared to its silica-based counterpart. Thermogravimetric analysis (TGA) of the created silica- and germania-based dual-ligand sol-gel sorbents suggested higher carbon loading on the germania-based sorbent. This might be indicative of more effective condensation of the organic ligand-bearing sol-gel-active chemical species to the germania-based sol-gel network (than to its silica-based counterpart) evolving in the sol solution. The type and concentration of the organic ligands were varied in the sol-gel sorbents to fine-tune extraction selectivity toward different classes of analytes. Specific extraction (SE) values were used for an objective comparison of the prepared sol-gel CME sorbents. The sorbents with higher content of PF-C 12 showed remarkable affinity for aliphatic hydrocarbons. Compared to their single-ligand sol-gel counterparts, the dual-ligand sol-gel coatings demonstrated significantly superior CME performance in the extraction of alkylbenzenes, providing up to ∼65.0% higher SE values. The prepared sol-gel CME coatings provided low ng L -1 limit of detections (LOD

  20. The yield drop at or below 423 K in Zr single crystals and in Ti

    International Nuclear Information System (INIS)

    Ferron, A.; Malik, L.M.; Dickson, J.I.

    1979-01-01

    Yield drops were obtained in interrupted tensile and compression tests performed on zirconium single crystals between 262 and 362 K. Near 295 K, where most tests were performed, a minimum yield drop was obtained for an aging performed near the internal stress. For positive stress relaxations and a constant aging time, this yield drop increased linearly with the stress relaxed during aging. This result indicates a significant portion of the yield drop is caused by dislocations gliding to pinning points, which are most probably forest dislocations. A similar behaviour was observed for polycrystalline titanium at 423 K. The yield drops observed in the single crystals at 295 K, after aging at zero stress, increased linearly with the logarithm of the aging time in contrast to the time-independent Haasen-Kelly effect observed in polycrystalline material. (auth)

  1. Clinical observation of Qiming granule combined with Dextran and Hypromellose eye drops for dry eye

    OpenAIRE

    Jin-Lan Wan; Ming-Chang Zhang

    2013-01-01

    AIM: To observe the efficacy of Qiming granule combined with Dextran and Hypromellose eye drops in treatment of dry eye.METHODS: A randomized, parallel-control approach was adopted, 100 cases of dry eye patients were divided into treatment group and control group equally, observation on the treatment of 3 months. The treatment group was applied Dextran and Hypromellose eye drops combined with oral Qiming granule, simply Dextran and Hypromellose eye drops for control group. Before and after tr...

  2. Corneal pharmacokinetics of the 2% diacerein eye drops between multiple administration and single administration

    OpenAIRE

    Ke Yang; Shi-Wei Chen; Xin-Yan Dou; Zhi-Rui Zhang; Xin Jin; Hong-Min Zhang

    2018-01-01

    AIM: To compare the pharmacokinetic differences of the 2% diacerein eye drops between conjunctival sac multiple administration and single administration in the cornea, and to provide the experimental basis for clinicians to use the conjunctival sac multiple administration.METHODS: Male Kunming mice were randomly divided into the multiple administration group and the single administration group. The multiple administration group were given diacerein eye drop every 2min(3 times in total). The c...

  3. Rapid determination of the volatile components in tobacco by ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction with gas chromatography-mass spectrometry.

    Science.gov (United States)

    Yang, Yanqin; Chu, Guohai; Zhou, Guojun; Jiang, Jian; Yuan, Kailong; Pan, Yuanjiang; Song, Zhiyu; Li, Zuguang; Xia, Qian; Lu, Xinbo; Xiao, Weiqiang

    2016-03-01

    An ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction was first employed to determine the volatile components in tobacco samples. The method combined the advantages of ultrasound, microwave, and headspace solid-phase microextraction. The extraction, separation, and enrichment were performed in a single step, which could greatly simplify the operation and reduce the whole pretreatment time. In the developed method, several experimental parameters, such as fiber type, ultrasound power, and irradiation time, were optimized to improve sampling efficiency. Under the optimal conditions, there were 37, 36, 34, and 36 components identified in tobacco from Guizhou, Hunan, Yunnan, and Zimbabwe, respectively, including esters, heterocycles, alkanes, ketones, terpenoids, acids, phenols, and alcohols. The compound types were roughly the same while the contents were varied from different origins due to the disparity of their growing conditions, such as soil, water, and climate. In addition, the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction method was compared with the microwave-assisted extraction coupled to headspace solid-phase microextraction and headspace solid-phase microextraction methods. More types of volatile components were obtained by using the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction method, moreover, the contents were high. The results indicated that the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction technique was a simple, time-saving and highly efficient approach, which was especially suitable for analysis of the volatile components in tobacco. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Preconcentration of valsartan by dispersive liquid-liquid microextraction based on solidification of floating organic drop and its determination in urine sample: Central composite design.

    Science.gov (United States)

    Pebdani, Arezou Amiri; Shabani, Ali Mohammad Haji; Dadfarnia, Shayesteh; Talebianpoor, Mohammad Sharif; Khodadoust, Saeid

    2016-05-01

    In this work, a fast, easy, and efficient dispersive liquid-liquid microextraction method based on solidification of floating organic drop followed by high-performance liquid chromatography with UV detection was developed for the separation/preconcentration and determination of the drug valsartan. Experimental design was applied for the optimization of the effective variables (such as volume of extracting and dispersing solvents, ionic strength, and pH) on the extraction efficiency of valsartan from urine samples. The optimized values were 250.0 μL ethanol, 65.0 μL 1-dodecanol, 4.0% w/v NaCl, pH 3.8, 1.0 min extraction time, and 4.0 min centrifugation at 4000 rpm min(-1) . The linear response (r(2) = 0.997) was obtained in the range of 0.013-10.0 μg mL(-1) with a limit of detection of 4.0 ng mL(-1) and relative standard deviations of less than 5.0 % (n = 6). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. ASSERT validation against the Stern Laboratories' single-phase pressure drop tests

    International Nuclear Information System (INIS)

    Waddington, G.M.; Kiteley, J.C.; Carver, M.B.

    1995-01-01

    This paper describes the preliminary validation of ASSERT-IV against the single-phase pressure drop tests from the 37-element CHF (critical heat flux) experiments conducted at Stern Laboratories, and shows how this study fits into the overall ASSERT validation plan. The effects on the pressure drop of several friction and form loss models are evaluated, including the geometry-based K-factor model. The choice of friction factor has a small effect on the predicted channel pressure drop, compared to the form loss model choice. Using the uniform K-factors of Hameed, the computed pressure drops are in excellent agreement with the experimental results from the nominal pressure tube tests. For future ASSERT applications, either Hameed's uniform K-factors or the geometry-based model using Idelchik's thick-edged orifice equation are recommended, as are the friction factor correlations of Colebrook-White, Selander, and Aly and Groeneveld. More analysis of the geometry-based K-factor model is required. (author). 23 refs., 4 tabs., 9 figs

  6. Single and two-phase flow pressure drop for CANFLEX bundle

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan; Jun, Ji Su; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Dimmick, G R; Bullock, D E [Atomic Energy of Canada Limited, Ontario (Canada)

    1999-12-31

    Friction factor and two-phase flow frictional multiplier for a CANFLEX bundle are newly developed and presented in this paper. CANFLEX as a 43-element fuel bundle has been developed jointly by AECL/KAERI to provide greater operational flexibility for CANDU reactor operators and designers. Friction factor and two-phase flow frictional multiplier have been developed by using the experimental data of pressure drops obtained from two series of Freon-134a (R-134a) CHF tests with a string of simulated CANFLEX bundles in a single phase and a two-phase flow conditions. The friction factor for a CANFLEX bundle is found to be about 20% higher than that of Blasius for a smooth circular pipe. The pressure drop predicted by using the new correlations of friction factor and two-phase frictional multiplier are well agreed with the experimental pressure drop data of CANFLEX bundle within {+-} 5% error. 11 refs., 5 figs. (Author)

  7. Single and two-phase flow pressure drop for CANFLEX bundle

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan; Jun, Ji Su; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Dimmick, G. R.; Bullock, D. E. [Atomic Energy of Canada Limited, Ontario (Canada)

    1998-12-31

    Friction factor and two-phase flow frictional multiplier for a CANFLEX bundle are newly developed and presented in this paper. CANFLEX as a 43-element fuel bundle has been developed jointly by AECL/KAERI to provide greater operational flexibility for CANDU reactor operators and designers. Friction factor and two-phase flow frictional multiplier have been developed by using the experimental data of pressure drops obtained from two series of Freon-134a (R-134a) CHF tests with a string of simulated CANFLEX bundles in a single phase and a two-phase flow conditions. The friction factor for a CANFLEX bundle is found to be about 20% higher than that of Blasius for a smooth circular pipe. The pressure drop predicted by using the new correlations of friction factor and two-phase frictional multiplier are well agreed with the experimental pressure drop data of CANFLEX bundle within {+-} 5% error. 11 refs., 5 figs. (Author)

  8. Dispersive liquid-liquid microextraction (DLLME combined with graphite furnace atomic absorption spectrometry (GFAAS for determination of trace Cu and Zn in water Samples

    Directory of Open Access Journals (Sweden)

    Ghorbani A.

    2014-07-01

    Full Text Available Dispersive liquid-liquid microextraction (DLLME combined with graphite furnace atomic absorption spectrometry (GFAAS was proposed for the determination of trace amounts of Copper and Zinc ions using 8-hydroxyquinoline (8-HQ as chelating agent. Several factors influencing the microextraction efficiency of Cu and Zn and their subsequent determinations, such as pH, extraction and disperser solvent type and their volume, concentration of the chelating agent and extraction time were studied, and the optimized experimental conditions were established. After extraction, the enrichment factors were 25 and 26 for Cu and Zn, respectively. The detection limits of the method were 0.025 and 0.0033 μg/L for Cu and Zn, and the relative standard deviations (R.S.D for five determinations of 1 ng/ml Cu and Zn were 8.51% and 7.41%, respectively.

  9. The role of antimicrobial drops Okomistin® in combined chronic blepharoconjunctivitis treatment

    Directory of Open Access Journals (Sweden)

    Igor Anatilevich Makarov

    2015-12-01

    Full Text Available Purpose. The evaluation of antimicrobial drops Okomistin® efficacy in combined treatment of chronic blepharoconjunctivitis. Material and methods. 80 patients (160 eyes with chronic blepharoconjunctivitis were monitored. Demodex acne was found in eyelids of 72 eyes, the growth of saprophytic microflora in 28 cases. The complex of treatment and prevention measures consisted of daily compresses of Сalendula aqueous solution, instillations of Okomistin® eye drops, artificial tears. In the research group, the ultrasound eyelid margin micromassage was performed, and eyelid D’Arsonval therapy in demodex acne cases. Results. More rapid acute illness relief was observed in the eyes of patients in whom physiotherapy treatment was performed. Okomistin® instillations allow achieving sterile conjunctival culture in 3-5 days. Combined therapy helps to restore meibomian gland function, to achieve long-term disease remission. Conclusions. Combined use of the Okomistin®, physiotherapy, hygiene procedures, artificial tears is an effective and safe treatment method for chronic blepharoconjunctivitis combined treatment.

  10. Introducing a new and rapid microextraction approach based on magnetic ionic liquids: Stir bar dispersive liquid microextraction.

    Science.gov (United States)

    Chisvert, Alberto; Benedé, Juan L; Anderson, Jared L; Pierson, Stephen A; Salvador, Amparo

    2017-08-29

    With the aim of contributing to the development and improvement of microextraction techniques, a novel approach combining the principles and advantages of stir bar sorptive extraction (SBSE) and dispersive liquid-liquid microextraction (DLLME) is presented. This new approach, termed stir bar dispersive liquid microextraction (SBDLME), involves the addition of a magnetic ionic liquid (MIL) and a neodymium-core magnetic stir bar into the sample allowing the MIL coat the stir bar due to physical forces (i.e., magnetism). As long as the stirring rate is maintained at low speed, the MIL resists rotational (centrifugal) forces and remains on the stir bar surface in a manner closely resembling SBSE. By increasing the stirring rate, the rotational forces surpass the magnetic field and the MIL disperses into the sample solution in a similar manner to DLLME. After extraction, the stirring is stopped and the MIL returns to the stir bar without the requirement of an additional external magnetic field. The MIL-coated stir bar containing the preconcentrated analytes is thermally desorbed directly into a gas chromatographic system coupled to a mass spectrometric detector (TD-GC-MS). This novel approach opens new insights into the microextraction field, by using the benefits provided by SBSE and DLLME simultaneously, such as automated thermal desorption and high surface contact area, respectively, but most importantly, it enables the use of tailor-made solvents (i.e., MILs). To prove its utility, SBDLME has been used in the extraction of lipophilic organic UV filters from environmental water samples as model analytical application with excellent analytical features in terms of linearity, enrichment factors (67-791), limits of detection (low ng L -1 ), intra- and inter-day repeatability (RSD<15%) and relative recoveries (87-113%, 91-117% and 89-115% for river, sea and swimming pool water samples, respectively). Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Separation/preconcentration and determination of vanadium with dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO) and electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Asadollahi, Tahereh; Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji

    2010-06-30

    A novel dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO) for separation/preconcentration of ultra trace amount of vanadium and its determination with the electrothermal atomic absorption spectrometry (ETAAS) was developed. The DLLME-SFO behavior of vanadium (V) using N-benzoyl-N-phenylhydroxylamine (BPHA) as complexing agent was systematically investigated. The factors influencing the complex formation and extraction by DLLME-SFO method were optimized. Under the optimized conditions: 100 microL, 200 microL and 25 mL of extraction solvent (1-undecanol), disperser solvent (acetone) and sample volume, respectively, an enrichment factor of 184, a detection limit (based on 3S(b)/m) of 7 ng L(-1) and a relative standard deviation of 4.6% (at 500 ng L(-1)) were obtained. The calibration graph using the preconcentration system for vanadium was linear from 20 to 1000 ng L(-1) with a correlation coefficient of 0.9996. The method was successfully applied for the determination of vanadium in water and parsley. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Mass transfer intensification of nanofluid single drops with effect of temperature

    Energy Technology Data Exchange (ETDEWEB)

    Saien, Javad; Zardoshti, Mahdi [Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of)

    2015-11-15

    The hydrodynamics and mass transfer of organic nanofluid single drops in liquid-liquid extraction process were investigated within temperature range of 20 to 40 .deg. C. Nanofluid drops of toluene+acetic acid, containing surface modified magnetite nanoparticles (NPs) with concentration within the range of (0.0005-0.005) wt%, were conducted in aqueous continuous phase. The rate of solute mass transfer was generally enhanced with NPs until about 0.002wt%, and small drops benefited more. The enhancement reached 184.1% with 0.002 wt% of NPs at 40 .deg. C; however, adding more NPs led to the mass transfer to either remain constant or face a reduction, depending on the applied temperature. The mass transfer coefficient was nicely reproduced using a developed correlation for enhancement factor of molecular diffusivity as a function of Reynolds and Schmidt numbers.

  13. Determination of ten pyrethroids in various fruit juices: comparison of dispersive liquid-liquid microextraction sample preparation and QuEChERS method combined with dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Zhang, Yaohai; Zhang, Xuelian; Jiao, Bining

    2014-09-15

    Dispersive liquid-liquid microextraction (DLLME) sample preparation and the quick, easy, cheap, effective, rugged and safe (QuEChERS) method combined with DLLME were developed and compared for the analysis of ten pyrethroids in various fruit juices using gas chromatography-electron capture detection (GC-ECD). QuEChERS-DLLME method has found its widespread applications to all the fruit juices including those samples with more complex matrices (orange, lemon, kiwi and mango) while DLLME was confined to the fruit juices with simpler matrices (apple, pear, grape and peach). The two methods provided acceptable recoveries and repeatability. In addition, the applicabilities of two methods were demonstrated with the real samples and further confirmed by gas chromatography-mass spectrometry (GC-MS). Copyright © 2014. Published by Elsevier Ltd.

  14. Maghemite nanoparticle-decorated hollow fiber electromembrane extraction combined with dispersive liquid-liquid microextraction for the determination of thymol from Carum copticum

    DEFF Research Database (Denmark)

    Khajeh, Mostafa; Pedersen-Bjergaard, Stig; Bohlooli, Mousa

    2017-01-01

    BACKGROUND A novel technique using maghemite nanoparticle-decorated hollow fibers to assist electromembrane extraction is proposed. Electromembrane extraction combined with dispersive liquid–liquid microextraction (EME-DLLME) was applied for the extraction of thymol from Carum copticum, followed...... by gas chromatography with flame ionization detection (GC-FID). RESULTS The use of maghemite nanoparticle-decorated hollow fibers was found to improve the extraction efficiency of thymol significantly. Important operational parameters, including pH of acceptor phase, extraction time, voltage...

  15. Nanocoating cellulose paper based microextraction combined with nanospray mass spectrometry for rapid and facile quantitation of ribonucleosides in human urine.

    Science.gov (United States)

    Wan, Lingzhong; Zhu, Haijing; Guan, Yafeng; Huang, Guangming

    2017-07-01

    A rapid and facile analytical method for quantification of ribonucleosides in human urine was developed by the combination of nanocoating cellulose paper based microextraction and nanoelectrospray ionization-tandem mass spectrometry (nESI-MS/MS). Cellulose paper used for microextraction was modified by nano-precision deposition of uniform ultrathin zirconia gel film using a sol-gel process. Due to the large surface area of the cellulose paper and the strong affinity between zirconia and the cis-diol compounds, the target analytes were selectively extracted from the complex matrix. Thus, the detection sensitivity was greatly improved. Typically, the nanocoating cellulose paper was immersed into the diluted urine for selective extraction of target analytes, then the extracted analytes were subjected to nESI-MS/MS detection. The whole analytical procedure could be completed within 10min. The method was evaluated by the determination of ribonucleosides (adenosine, cytidine, uridine, guanosine) in urine sample. The signal intensities of the ribonuclesides extracted by the nanocoating cellulose paper were greatly enhanced by 136-459-folds compared with the one of the unmodified cellulose paper based microextraction. The limits of detection (LODs) and the limits of quantification (LOQs) of the four ribonucleosides were in the range of 0.0136-1.258μgL -1 and 0.0454-4.194μgL -1 , respectively. The recoveries of the target nucleosides from spiked human urine were in the range of 75.64-103.49% with the relative standard deviations (RSDs) less than 9.36%. The results demonstrate the potential of the proposed method for rapid and facile determination of endogenous ribonucleosides in urine sample. Copyright © 2017. Published by Elsevier B.V.

  16. Determining octanol-water partition coefficients for extremely hydrophobic chemicals by combining "slow stirring" and solid-phase microextraction.

    Science.gov (United States)

    Jonker, Michiel T O

    2016-06-01

    Octanol-water partition coefficients (KOW ) are widely used in fate and effects modeling of chemicals. Still, high-quality experimental KOW data are scarce, in particular for very hydrophobic chemicals. This hampers reliable assessments of several fate and effect parameters and the development and validation of new models. One reason for the limited availability of experimental values may relate to the challenging nature of KOW measurements. In the present study, KOW values for 13 polycyclic aromatic hydrocarbons were determined with the gold standard "slow-stirring" method (log KOW 4.6-7.2). These values were then used as reference data for the development of an alternative method for measuring KOW . This approach combined slow stirring and equilibrium sampling of the extremely low aqueous concentrations with polydimethylsiloxane-coated solid-phase microextraction fibers, applying experimentally determined fiber-water partition coefficients. It resulted in KOW values matching the slow-stirring data very well. Therefore, the method was subsequently applied to a series of 17 moderately to extremely hydrophobic petrochemical compounds. The obtained KOW values spanned almost 6 orders of magnitude, with the highest value measuring 10(10.6) . The present study demonstrates that the hydrophobicity domain within which experimental KOW measurements are possible can be extended with the help of solid-phase microextraction and that experimentally determined KOW values can exceed the proposed upper limit of 10(9) . Environ Toxicol Chem 2016;35:1371-1377. © 2015 SETAC. © 2015 SETAC.

  17. Controlling charge on levitating drops.

    Science.gov (United States)

    Hilger, Ryan T; Westphall, Michael S; Smith, Lloyd M

    2007-08-01

    Levitation technologies are used in containerless processing of materials, as microscale manipulators and reactors, and in the study of single drops and particles. Presented here is a method for controlling the amount and polarity of charge on a levitating drop. The method uses single-axis acoustic levitation to trap and levitate a single, initially neutral drop with a diameter between 400 microm and 2 mm. This drop is then charged in a controllable manner using discrete packets of charge in the form of charged drops produced by a piezoelectric drop-on-demand dispenser equipped with a charging electrode. The magnitude of the charge on the dispensed drops can be adjusted by varying the voltage applied to the charging electrode. The polarity of the charge on the added drops can be changed allowing removal of charge from the trapped drop (by neutralization) and polarity reversal. The maximum amount of added charge is limited by repulsion of like charges between the drops in the trap. This charging scheme can aid in micromanipulation and the study of charged drops and particles using levitation.

  18. Simple method for the determination of personal care product ingredients in lettuce by ultrasound-assisted extraction combined with solid-phase microextraction followed by GC-MS.

    Science.gov (United States)

    Cabrera-Peralta, Jerónimo; Peña-Alvarez, Araceli

    2018-05-01

    A simple method for the simultaneous determination of personal care product ingredients: galaxolide, tonalide, oxybenzone, 4-methylbenzyliden camphor, padimate-o, 2-ethylhexyl methoxycinnamate, octocrylene, triclosan, and methyl triclosan in lettuce by ultrasound-assisted extraction combined with solid-phase microextraction followed by gas chromatography with mass spectrometry was developed. Lettuce was directly extracted by ultrasound-assisted extraction with methanol, this extract was combined with water, extracted by solid-phase microextraction in immersion mode, and analyzed by gas chromatography with mass spectrometry. Good linear relationships (25-250 ng/g, R 2  > 0.9702) and low detection limits (1.0-25 ng/g) were obtained for analytes along with acceptable precision for almost all analytes (RSDs < 20%). The validated method was applied for the determination of personal care product ingredients in commercial lettuce and lettuces grown in soil and irrigated with the analytes, identifying the target analytes in leaves and roots of the latter. This procedure is a miniaturized and environmentally friendly proposal which can be a useful tool for quality analysis in lettuce. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Corneal pharmacokinetics of the 2% diacerein eye drops between multiple administration and single administration

    Directory of Open Access Journals (Sweden)

    Ke Yang

    2018-04-01

    Full Text Available AIM: To compare the pharmacokinetic differences of the 2% diacerein eye drops between conjunctival sac multiple administration and single administration in the cornea, and to provide the experimental basis for clinicians to use the conjunctival sac multiple administration.METHODS: Male Kunming mice were randomly divided into the multiple administration group and the single administration group. The multiple administration group were given diacerein eye drop every 2min(3 times in total. The concentrations of the metabolites of diacerein in the cornea were measured by high performance liquid chromatography after given eye drop 5, 15, 30, 60, 120, and 180min. The pharmacokinetic parameters were calculated by pharmacokinetic software(DAS2.1.1. RESULTS: The metabolites of diacerein, rhein, was detected in the cornea at each time point. The concentration of the metabolite of diacerein in the cornea was 318.678±40.88, 210.02±25.66, 188.83±31.74, 112.24±11.70, 90.28±22.01 and 57.67±13.71μg/g after given eye drop 5, 15, 30, 60, 120, and 180min in the multiple administration group. The concentration in the single administration group was 145.17±19.29, 97.95±10.49, 71.18±18.70, 39.11±2.44, 18.10±2.34 and 9.08±2.04μg/g respectively. The concentration of rhein in the cornea was the highest at 5min after the administration in the two groups. The concentration of the multiple administration group was higher than that in the single administration group at 5, 15, 30, 60, 120, and 180min(PCONCLUSION: Compared with the single administration, the conjunctival sac multiple administration has the advantages of high drug concentration and long duration. Therefor the conjunctival sac multiple administration is a more effective method to treat acute infectious corneal diseases.

  20. Pseudo-stir bar hollow fiber solid/liquid phase microextraction combined with anodic stripping voltammetry for determination of lead and cadmium in water samples

    Directory of Open Access Journals (Sweden)

    Zarrin Es’haghi

    2014-11-01

    Full Text Available A new procedure is presented for the determination of low concentrations of lead and cadmium in water samples. Ligand assisted pseudo-stir bar hollow fiber solid/liquid phase microextraction using sol–gel sorbent reinforced with carbon nanotubes was combined with differential pulse anodic stripping voltammetry for simultaneous determination of cadmium and lead in tap water, and Darongar river water samples. In the present work, differential pulse anodic stripping voltammetry (DPASV using a hanging mercury drop electrode (HMDE was used in order to determine the ultra trace level of lead and cadmium ions in real samples. This method is based on accumulation of lead and cadmium ions on the electrode using different ligands; Quinolin-8-ol, 5,7-diiodo quinoline-8-ol, 4,5-diphenyl-1H-imidazole-2(3H-one and 2-{[2-(2-Hydroxy-ethylamino-ethylamino]-methyl}-phenol as the complexing agent. The optimized conditions were obtained. The relationship between the peak current versus concentration was linear over the range of 0.05–500 ng mL−1 for Cd (II and Pb (II. The limits of detection for lead and cadmium were 0.015 ng mL−1 and 0.012 ng mL−1, respectively. Under the optimized conditions, the pre-concentration factors are 2440 and 3710 for Cd (II and Pb (II in 5 mL of water sample, respectively.

  1. Steam explosions of single drops of pure and alloyed molten aluminum

    International Nuclear Information System (INIS)

    Nelson, L.S.

    1995-01-01

    Studies of steam explosion phenomena have been performed related to the hypothetical meltdown of the core and other components of aluminum alloy-fueled production reactors. Our objectives were to characterise the triggers, if any, required to initiate these explosions and to determine the energetics and chemical processes associated with these events. Three basic studies have been carried out with 1-10 g single drops of molten aluminum or aluminum-based alloys: untriggered experiments in which drops of melt were released into water; triggered experiments in which thermal-type steam explosions occurred; and one triggered experiment in which an ignition-type steam explosion occurred. In untriggered experiments, spontaneous steam explosions never occurred during the free fall through water of single drops of pure Al or of the alloys studied here. Moreover, spontaneous explosions never occurred upon or during contact of the globules with several underwater surfaces. When Li was present in the alloy, H 2 was generated as a stream of bubbles as the globules fell through the water, and also as they froze on the bottom surface of the chamber. The triggered experiments were performed with pure Al and the 6061 alloy. Bare bridgewire discharges and those focused with cylindrical reflectors produced a small first bubble that collapsed and was followed by a larger second bubble. When the bridgewire was discharged at one focus of an ellipsoidal reflector, a melt drop at the other focus triggered only very mildly in spite of a 30-fold increase in peak pressure above that of the bridgewire discharge without the reflector. Experiments were also performed with globules of high purity Al in which the melt release temperature was progressively increased. Moderate thermal-type explosions were produced over the temperature range 1273-1673 K. At about 1773 K, however, one experiment produced a brilliant flash of light and bubble growth about an order of magnitude faster than normal; it

  2. Speciation of chromium by dispersive liquid–liquid microextraction followed by laser-induced breakdown spectrometry detection (DLLME–LIBS)

    OpenAIRE

    Gaubeur, Ivanise; Aguirre Pastor, Miguel Ángel; Kovachev, Nikolay; Hidalgo Núñez, Montserrat; Canals Hernández, Antonio

    2015-01-01

    In this study, an analytical methodology based on a combination of dispersive liquid–liquid microextraction with laser-induced breakdown spectrometry was evaluated for simultaneous pre-concentration, speciation and detection of Cr. The microextraction procedure was based on the injection of appropriated quantities of 1-undecanol and ethanol into a sample solution containing the complexes formed between Cr(VI) and diethyldithiocarbamate (DDTC). The main experimental factors affecting the compl...

  3. Model experiment and numerical simulation of drop impact response of multilayer-combinational container

    International Nuclear Information System (INIS)

    Xie Ruoze; Zhong Weizhou; Wan Qiang; Huang Xicheng; Zhang Fangju

    2015-01-01

    The drop impact process of multilayer-combinational container was simulated experimentally using a gas gun, and the normal impact and oblique impact of scaled models were tested. The experiments of scaled models were simulated numerically, and the stress distribution and plastic deformation in the tested structures during collision process were obtained. The results were compared with the experiment data. It was shown that the impact work mainly converted into plastic work due to the plastic deformation of the cushion wood and the plastic hinge in the buckled steel shell. The plastic deformation mainly happened at the collided end of the scaled models, and there was no plastic deformation found far from the collided end. The compressive stress-strain curve of the wood in texture direction can be used to simulate numerically the drop impact process of multilayer-combinational container. (authors)

  4. Determination of 1,3-dichloro-2-propanol and 3-chloro-1,2-propandiol in soy sauce by headspace derivatization solid-phase microextraction combined with gas chromatography-mass spectrometry.

    Science.gov (United States)

    Lee, Maw-Rong; Chiu, Tzu-Chun; Dou, Jianpeng

    2007-05-22

    This study proposes a method for identifying 1,3-dichloro-2-propanol and 3-chloro-1,2-propandiol in aqueous matrices by using headspace on-fiber derivatization following solid-phase microextraction combined with gas chromatography-mass spectrometry. The optimized SPME experimental procedures for extracting 1,3-dichloro-2-propanol and 3-chloro-1,2-propandiol in aqueous solutions involved a 85 microm polyacrylate-coated fiber at pH 6, a sodium chloride concentration of 0.36 g mL(-1), extraction at 50 degrees C for 15 min and desorption of analytes at 260 degrees C for 3 min. Headspace derivatization was conducted in a laboratory-made design with N-methyl-N-(trimethylsilyl)-trifluoroacetamide vapor following solid-phase microextraction by using 3 microL N-methyl-N-(trimethylsilyl)-trifluoroacetamide at an oil bath temperature of 230 degrees C for 40 s. This method had good repeatability (R.S.D.s or = 0.9972) for ultrapure water and soy sauce samples that were spiked with two analytes. Detection limits were obtained at the ng mL(-1). The result demonstrated that headspace on-fiber derivatization following solid-phase microextraction was a simple, fast and accurate technique for identifying trace 1,3-dichloro-2-propanol and 3-chloro-1,2-propandiol in soy sauce.

  5. Fatigue influences lower extremity angular velocities during a single-leg drop vertical jump

    OpenAIRE

    Tamura, Akihiro; Akasaka, Kiyokazu; Otsudo, Takahiro; Shiozawa, Junya; Toda, Yuka; Yamada, Kaori

    2017-01-01

    [Purpose] Fatigue alters lower extremity landing strategies and decreases the ability to attenuate impact during landing. The purpose of this study was to reveal the influence of fatigue on dynamic alignment and joint angular velocities in the lower extremities during a single leg landing. [Subjects and Methods] The 34 female college students were randomly assigned to either the fatigue or control group. The fatigue group performed single-leg drop vertical jumps before, and after, the fatigue...

  6. Switchable polarity solvent for liquid phase microextraction of Cd(II) as pyrrolidinedithiocarbamate chelates from environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Erkan, E-mail: kimyager_erkan@hotmail.com; Soylak, Mustafa, E-mail: soylak@erciyes.edu.tr

    2015-07-30

    A switchable polarity solvent was synthesized from triethylamine (TEA)/water/CO{sub 2} (Dry ice) via proton transfer reaction has been used for the microextraction of cadmium(II) as pyrrolidinedithiocarbamate (APDC) chelate. Cd(II)-APDC chelate was extracted into the switchable polarity solvent drops by adding 2 mL 10 M sodium hydroxide solution. Analytical parameters affecting the complex formation and microextraction efficiency such as pH, amount of ligand, volume of switchable polarity solvent and NaOH, sample volume were optimized. The effects of foreign ions were found tolerably. Under optimum conditions, the detection limit was 0.16 μg L{sup −1} (3Sb/m, n = 7) and the relative standard deviation was 5.4% (n = 7). The method was validated by the analysis of certified reference materials (TMDA-51.3 fortified water, TMDA-53.3 fortified water and SPS-WW2 waste water, 1573a Tomato Leaves and Oriental Basma Tobacco Leaves (INCT-OBTL-5)) and addition/recovery tests. The method was successfully applied to determination of cadmium contents of water, vegetable, fruit and cigarette samples. - Highlights: • Switchable polarity solvent was synthesized from triethylamine (TEA)/water/CO{sub 2}. • The switchable polarity solvent has been used for the microextraction of cadmium(II). • The important factors were optimized. • The method was applied to determination of cadmium in real samples.

  7. First drop dissimilarity in drop-on-demand inkjet devices

    International Nuclear Information System (INIS)

    Famili, Amin; Palkar, Saurabh A.; Baldy, William J. Jr.

    2011-01-01

    As inkjet printing technology is increasingly applied in a broader array of applications, careful characterization of its method of use is critical due to its inherent sensitivity. A common operational mode in inkjet technology known as drop-on-demand ejection is used as a way to deliver a controlled quantity of material to a precise location on a target. This method of operation allows ejection of individual or a sequence (burst) of drops based on a timed trigger event. This work presents an examination of sequences of drops as they are ejected, indicating a number of phenomena that must be considered when designing a drop-on-demand inkjet system. These phenomena appear to be driven by differences between the first ejected drop in a burst and those that follow it and result in a break-down of the linear relationship expected between driving amplitude and drop mass. This first drop, as quantified by high-speed videography and subsequent image analysis, can be different in morphology, trajectory, velocity, and volume from subsequent drops within a burst. These findings were confirmed orthogonally by both volume and mass measurement techniques which allowed quantitation down to single drops.

  8. Ultrasound assisted dispersive liquid-liquid microextraction coupled with high performance liquid chromatography designated for bioavailability studies of felodipine combinations in rat plasma.

    Science.gov (United States)

    Ahmed, Sameh; Atia, Noha N; Bakr Ali, Marwa Fathy

    2017-03-01

    Felodipine (FLD), a calcium channel antagonist, is commonly prescribed for the treatment of hypertension either with Metoprolol (MET) or Ramipril (RAM) in two different drug combinations. FLD has high plasma protein binding ability affecting its extraction recoveries from plasma samples. Hence, a specific ultrasound assisted dispersive liquid-liquid microextraction (UA-DLLME) method coupled with HPLC using photodiode array detector was developed and validated for the simultaneous determination of FLD, MET and RAM in rat plasma after oral administration of these combinations. The factors affecting UA-DLLME were carefully optimized. In this study, UA-DLLME method could provide simple and efficient plasma extraction procedures with superior recovery results. Under optimum condition, all target drugs were separated within 13min. The validation procedures was carried out in agreement with US-FDA guidelines and shown to be suitable for anticipated purposes. Linear calibration ranges were obtained in the range 0.05-2.0μgmL -1 for FLD and MET and 0.1-2.0μgmL -1 for RAM with detection limits of 0.013-0.031μgmL -1 for all the studied drug combinations. The%RSD for inter-day and intra-day precisions was in range of 0.63-3.85% and the accuracy results were in the range of 92.13-100.5%. The validated UA-DLLME-HPLC method was successfully applied for the bioavailability studies of FLD, MET and RAM. The pharmacokinetic parameters were calculated for all the investigated drugs in rats after single-dose administrations of two different drug combinations. Although FLD was bioequivalent in the two formulations, a small increase in plasma levels of MET and RAM was found in the presence of FLD. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Novel capsule phase microextraction in combination with liquid chromatography-tandem mass spectrometry for determining personal care products in environmental water.

    Science.gov (United States)

    Lakade, Sameer S; Borrull, Francesc; Furton, Kenneth G; Kabir, Abuzar; Marcé, Rosa Maria; Fontanals, Núria

    2018-05-01

    A novel sample preparation technique named capsule phase microextraction (CPME) is presented here. The technique utilizes a miniaturized microextraction capsule (MEC) as the extraction medium. The MEC consists of two conjoined porous tubular polypropylene membranes, one of which encapsulates the sorbent through sol-gel technology, while the other encapsulates a magnetic metal rod. As such, MEC integrates both the extraction and stirring mechanisms into a single device. The aim of this article is to demonstrate the application potential of CPME as sample preparation technique for the extraction of a group of personal care products (PCPs) from water matrices. Among the different sol-gel sorbent materials (UCON ® , poly(caprolactone-dimethylsiloxane-caprolactone) (PCAP-DMS-CAP) and Carbowax 20M (CW-20M)) evaluated, CW-20M MEC demonstrated the best extraction performance for the selected PCPs. The extraction conditions for sol-gel CW-20M MEC were optimized, including sample pH, stirring speed, addition of salt, extraction time, sample volume, liquid desorption solvent, and time. Under the optimal conditions, sol-gel CW-20M MEC provided recoveries, ranging between 47 and 90% for all analytes, except for ethylparaben, which showed a recovery of 26%. The method based on CPME with sol-gel CW-20M followed by liquid chromatography-tandem mass spectrometry was developed and validated for the extraction of PCPs from river water and effluent wastewater samples. When analyzing different environmental samples, some analytes such as 2,4-dihydroxybenzophenone, 2,2-dihydroxy-4-4 methoxybenzophenone and 3-benzophenone were found at low ng L -1 .

  10. Speciation of As(III) and As(V) in water samples by graphite furnace atomic absorption spectrometry after solid phase extraction combined with dispersive liquid-liquid microextraction based on the solidification of floating organic drop.

    Science.gov (United States)

    Shamsipur, Mojtaba; Fattahi, Nazir; Assadi, Yaghoub; Sadeghi, Marzieh; Sharafi, Kiomars

    2014-12-01

    A solid phase extraction (SPE) coupled with dispersive liquid-liquid microextraction based on the solidification of floating organic drop (DLLME-SFO) method, using diethyldithiphosphate (DDTP) as a proper chelating agent, has been developed as an ultra preconcentration technique for the determination of inorganic arsenic in water samples prior to graphite furnace atomic absorption spectrometry (GFAAS). Variables affecting the performance of both steps were thoroughly investigated. Under optimized conditions, 100mL of As(ΙΙΙ) solution was first concentrated using a solid phase sorbent. The extract was collected in 2.0 mL of acetone and 60.0 µL of 1-undecanol was added into the collecting solvent. The mixture was then injected rapidly into 5.0 mL of pure water for further DLLME-SFO. Total inorganic As(III, V) was extracted similarly after reduction of As(V) to As(III) with potassium iodide and sodium thiosulfate and As(V) concentration was calculated by difference. A mixture of Pd(NO3)2 and Mg(NO3)2 was used as a chemical modifier in GFAAS. The analytical characteristics of the method were determined. The calibration graph was linear in the rage of 10-100 ng L(-1) with detection limit of 2.5 ng L(-1). Repeatability (intra-day) and reproducibility (inter-day) of method based on seven replicate measurements of 80 ng L(-1) of As(ΙΙΙ) were 6.8% and 7.5%, respectively. The method was successfully applied to speciation of As(III), As(V) and determination of the total amount of As in water samples and in a certified reference material (NIST RSM 1643e). Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Feasibility of using Lokomat combined with functional electrical stimulation for the rehabilitation of foot drop

    Directory of Open Access Journals (Sweden)

    Christian B. Laursen

    2016-08-01

    Full Text Available This study investigated the clinical feasibility of combining the electromechanical gait trainer Lokomat with functional electrical therapy (LokoFET, stimulating the common peroneal nerve during the swing phase of the gait cycle to correct foot drop as an integrated part of gait therapy. Five patients with different acquired brain injuries trained with LokoFET 2-3 times a week for 3-4 weeks. Pre- and post-intervention evaluations were performed to quantify neurophysiological changes related to the patients’ foot drop impairment during the swing phase of the gait cycle. A semi-structured interview was used to investigate the therapists’ acceptance of LokoFET in clinical practice. The patients showed a significant increase in the level of activation of the tibialis anterior muscle and the maximal dorsiflexion during the swing phase, when comparing the pre- and post-intervention evaluations. This showed an improvement of function related to the foot drop impairment. The interview revealed that the therapists perceived the combined system as a useful tool in the rehabilitation of gait. However, lack of muscle selectivity relating to the FES element of LokoFET was assessed to be critical for acceptance in clinical practice.

  12. Feasibility of Using Lokomat Combined with Functional Electrical Stimulation for the Rehabilitation of Foot Drop.

    Science.gov (United States)

    Laursen, Christian B; Nielsen, Jørgen F; Andersen, Ole K; Spaich, Erika G

    2016-06-13

    This study investigated the clinical feasibility of combining the electromechanical gait trainer Lokomat with functional electrical therapy (LokoFET), stimulating the common peroneal nerve during the swing phase of the gait cycle to correct foot drop as an integrated part of gait therapy. Five patients with different acquired brain injuries trained with LokoFET 2-3 times a week for 3-4 weeks. Pre- and post-intervention evaluations were performed to quantify neurophysiological changes related to the patients' foot drop impairment during the swing phase of the gait cycle. A semi-structured interview was used to investigate the therapists' acceptance of LokoFET in clinical practice. The patients showed a significant increase in the level of activation of the tibialis anterior muscle and the maximal dorsiflexion during the swing phase, when comparing the pre- and post-intervention evaluations. This showed an improvement of function related to the foot drop impairment. The interview revealed that the therapists perceived the combined system as a useful tool in the rehabilitation of gait. However, lack of muscle selectivity relating to the FES element of LokoFET was assessed to be critical for acceptance in clinical practice.

  13. Microextraction by Packed Sorbent (MEPS and Solid-Phase Microextraction (SPME as Sample Preparation Procedures for the Metabolomic Profiling of Urine

    Directory of Open Access Journals (Sweden)

    Catarina Silva

    2014-01-01

    Full Text Available For a long time, sample preparation was unrecognized as a critical issue in the analytical methodology, thus limiting the performance that could be achieved. However, the improvement of microextraction techniques, particularly microextraction by packed sorbent (MEPS and solid-phase microextraction (SPME, completely modified this scenario by introducing unprecedented control over this process. Urine is a biological fluid that is very interesting for metabolomics studies, allowing human health and disease characterization in a minimally invasive form. In this manuscript, we will critically review the most relevant and promising works in this field, highlighting how the metabolomic profiling of urine can be an extremely valuable tool for the early diagnosis of highly prevalent diseases, such as cardiovascular, oncologic and neurodegenerative ones.

  14. Determination of organochlorine pesticides in water using dynamic hook-type liquid-phase microextraction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Pai-Shan; Huang, Shih-Pin [Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Fuh, Ming-Ren, E-mail: msfuh@mail.scu.edu.tw [Department of Chemistry, Soochow University, Taipei, Taiwan (China); Huang, Shang-Da, E-mail: sdhuang@mx.nthu.edu.tw [Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2009-08-11

    We developed a simple and efficient headspace liquid-phase microextraction (LPME) technique named dynamic hook-type liquid-phase microextraction (DHT-LPME) and used it in combination with gas chromatography-mass spectrometry (GC-MS) and an electron capture detector (ECD). Aqueous specimens of organochlorine pesticides (OCPs) were used as model compounds to demonstrate the effectiveness of the technique. In the present study, the calibration curves were linear over at least 2 orders of magnitude with R{sup 2} values of 0.997. The method detection limits (MDLs) varied from 2 to 44.0 ng L{sup -1}. The precision of DHT-LPME ranged from 6.5 to 14.4%. The relative recoveries of OCPs in rainwater were more than 84.2%. Enrichment factors (EF) in the range 275-1127 were obtained using DHT-LPME.

  15. Determination of organochlorine pesticides in water using dynamic hook-type liquid-phase microextraction

    International Nuclear Information System (INIS)

    Chen, Pai-Shan; Huang, Shih-Pin; Fuh, Ming-Ren; Huang, Shang-Da

    2009-01-01

    We developed a simple and efficient headspace liquid-phase microextraction (LPME) technique named dynamic hook-type liquid-phase microextraction (DHT-LPME) and used it in combination with gas chromatography-mass spectrometry (GC-MS) and an electron capture detector (ECD). Aqueous specimens of organochlorine pesticides (OCPs) were used as model compounds to demonstrate the effectiveness of the technique. In the present study, the calibration curves were linear over at least 2 orders of magnitude with R 2 values of 0.997. The method detection limits (MDLs) varied from 2 to 44.0 ng L -1 . The precision of DHT-LPME ranged from 6.5 to 14.4%. The relative recoveries of OCPs in rainwater were more than 84.2%. Enrichment factors (EF) in the range 275-1127 were obtained using DHT-LPME.

  16. Combination of in situ metathesis reaction with a novel "magnetic effervescent tablet-assisted ionic liquid dispersive microextraction" for the determination of endogenous steroids in human fluids.

    Science.gov (United States)

    Wu, Jia; Xu, Zilin; Pan, Yixuan; Shi, Yi; Bao, Xiujie; Li, Jun; Tong, Yu; Tang, Han; Ma, Shuyan; Wang, Xuedong; Lyu, Jianxin

    2018-05-01

    Herein, a novel magnetic effervescence tablet-assisted microextraction coupled to in situ metathesis reaction of ionic liquid (IS-META-ILDM) is presented for the determination of four endogenous steroids in human urine, pregnant women's blood, and fetal umbilical cord blood. The magnetic effervescent tablets, which were composed of Fe 3 O 4 nanoparticles, sodium carbonate (alkaline source), and tartaric acid (acidic source), were used to disperse the extractant and for convenient magnetic separation. After the effervescent reaction, in situ reaction between NH 4 PF 6 and [C 6 MIM]BF 4 was adopted to change hydrophilic ionic liquid to hydrophobic liquid, which could be separated from the aqueous phase. The newly developed method has three obvious advantages: (1) combination of effervescent dispersion and magnetic nanoparticles' retrieval is cost-effective and the dispersion and collection of the extractant can be completed almost simultaneously; (2) as compared to temperature-controlled ionic liquid dispersive microextraction and cold-induced solidified microextraction, this method avoids a heating and cooling process which significantly reduces the extraction time and energy cost; and (3) the combination of adsorption by magnetic nanoparticles with extraction by in situ metathesis reaction easily produces high recoveries for target analytes. The optimized composition of effervescent tablet and experimental parameters are as follows: 0.64 g mixture of sodium carbonate and tartaric acid, 7 mg of Fe 3 O 4 (20 nm) as magnetic sorbents, 40 μL of [C 6 MIM]BF 4 as the extraction solvent, 0.15 g NH 4 PF 6 , and 300 μL of elution solvent. Under the optimized conditions, the newly developed method provided high extraction recoveries (90.0-118.5%) and low LODs (0.14-0.17 μg L -1 ) in urine and blood samples. In total, this IS-META-ILDM method provided high extraction efficiency, fast and convenient separation, and underutilization of any organic solvent, and thus

  17. Determination of chlorophenols in landfill leachate using headspace sampling with ionic liquid-coated solid-phase microextraction fibers combined with gas chromatography–mass spectrometry

    International Nuclear Information System (INIS)

    Ho, Tse-Tsung; Chen, Chung-Yu; Li Zuguang; Yang, Thomas Ching-Cherng; Lee, Maw-Rong

    2012-01-01

    Highlights: ► Ionic liquid (IL), ([C 4 MIM][PF 6 ]), was rapid synthesized by microwave radiation. ► Trace chlorophenols in landfill leachate were extract by SPME coated IL. ► The IL-coated SPME-GC/MS method is low-cost, solvent-free and sensitive. - Abstract: A new microextraction technique based on ionic liquid solid-phase microextraction (IL-SPME) was developed for determination of trace chlorophenols (CPs) in landfill leachate. The synthesized ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([C 4 MIM][PF 6 ]), was coated onto the spent fiber of SPME for extraction of trace CPs. After extraction, the absorbed analytes were desorbed and quantified using gas chromatography–mass spectrometry (GC/MS). The term of the proposed method is as ionic liquid-coated of solid-phase microextraction combined with gas chromatography–mass spectrometry (IL-SPME-GC/MS). No carryover effect was found, and every laboratory-made ionic liquids-coated-fiber could be used for extraction at least eighty times without degradation of efficiency. The chlorophenols studied were 2,4-dichlorophenol (2,4-DP), 2,4,6-trichlorophenol (2,4,6-TCP), 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP), and pentachlorophenol (PCP). The best results of chlorophenols analysis were obtained with landfill leachate at pH 2, headspace extraction for 4 min, and thermal desorption with the gas chromatograph injector at 240 °C for 4 min. Linearity was observed from 0.1 to 1000 μg L −1 with relative standard deviations (RSD) less than 7% and recoveries were over 87%. The limit of detection (LOD) for pentachlorophenol was 0.008 μg L −1 . The proposed method was tested by analyzing landfill leachate from a sewage farm. The concentrations of chlorophenols were detected to range from 1.1 to 1.4 μg L −1 . The results demonstrate that the IL-SPME-GC/MS method is highly effective in analyzing trace chlorophenols in landfill leachate.

  18. Determination of chlorophenols in landfill leachate using headspace sampling with ionic liquid-coated solid-phase microextraction fibers combined with gas chromatography-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Tse-Tsung; Chen, Chung-Yu [Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan (China); Li Zuguang [Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan (China); College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, Zhejiang (China); Yang, Thomas Ching-Cherng [Department of Chemistry, National Kaohsiung Normal University, Kaohsiung 82444, Taiwan (China); Lee, Maw-Rong, E-mail: mrlee@dragon.nchu.edu.tw [Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan (China)

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Ionic liquid (IL), ([C{sub 4}MIM][PF{sub 6}]), was rapid synthesized by microwave radiation. Black-Right-Pointing-Pointer Trace chlorophenols in landfill leachate were extract by SPME coated IL. Black-Right-Pointing-Pointer The IL-coated SPME-GC/MS method is low-cost, solvent-free and sensitive. - Abstract: A new microextraction technique based on ionic liquid solid-phase microextraction (IL-SPME) was developed for determination of trace chlorophenols (CPs) in landfill leachate. The synthesized ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([C{sub 4}MIM][PF{sub 6}]), was coated onto the spent fiber of SPME for extraction of trace CPs. After extraction, the absorbed analytes were desorbed and quantified using gas chromatography-mass spectrometry (GC/MS). The term of the proposed method is as ionic liquid-coated of solid-phase microextraction combined with gas chromatography-mass spectrometry (IL-SPME-GC/MS). No carryover effect was found, and every laboratory-made ionic liquids-coated-fiber could be used for extraction at least eighty times without degradation of efficiency. The chlorophenols studied were 2,4-dichlorophenol (2,4-DP), 2,4,6-trichlorophenol (2,4,6-TCP), 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP), and pentachlorophenol (PCP). The best results of chlorophenols analysis were obtained with landfill leachate at pH 2, headspace extraction for 4 min, and thermal desorption with the gas chromatograph injector at 240 Degree-Sign C for 4 min. Linearity was observed from 0.1 to 1000 {mu}g L{sup -1} with relative standard deviations (RSD) less than 7% and recoveries were over 87%. The limit of detection (LOD) for pentachlorophenol was 0.008 {mu}g L{sup -1}. The proposed method was tested by analyzing landfill leachate from a sewage farm. The concentrations of chlorophenols were detected to range from 1.1 to 1.4 {mu}g L{sup -1}. The results demonstrate that the IL-SPME-GC/MS method is highly effective in

  19. In-situ ionic liquid dispersive liquid-liquid microextraction using a new anion-exchange reagent combined Fe3O4 magnetic nanoparticles for determination of pyrethroid pesticides in water samples.

    Science.gov (United States)

    Fan, Chen; Liang, You; Dong, Hongqiang; Ding, Guanglong; Zhang, Wenbing; Tang, Gang; Yang, Jiale; Kong, Dandan; Wang, Deng; Cao, Yongsong

    2017-07-04

    In this work, in-situ ionic liquid dispersive liquid-liquid microextraction combined ultrasmall Fe 3 O 4 magnetic nanoparticles was developed as a kind of pretreatment method to detect pyrethroid pesticides in water samples. New anion-exchange reagents including Na[DDTC] and Na[N(CN) 2 ] were optimized for in-situ extraction pyrethroids, which showed enhanced microextraction performance. Pyrethroids were enriched by hydrophilic ionic liquid [P 4448 ][Br] (aqueous solution, 200 μL, 0.2 mmol mL -1 ) reaction in-situ with anion-exchange reagent Na[N(CN) 2 ] (aqueous solution, 300 μL, 0.2 mmol mL -1 ) forming hydrophobic ionic liquid as extraction agent in water sample (10 mL). Ultrasmall superparamagnetic iron oxide nanoparticles (30 mg) were used to collect the mixture of ionic liquid and pyrethroids followed by elution with acetonitrile. The extraction of ionic liquid strategies was unique and efficiently fulfilled with high enrichment factors (176-213) and good recoveries (80.20-117.31%). The method was successively applied to the determination of pyrethroid pesticides in different kinds of water samples with the limits of detection ranged from 0.16 to 0.21 μg L -1 . The proposed method is actually nanometer-level microextraction (average size 80 nm) with the advantages of simplicity, rapidity, and sensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Cavity optomechanics in a levitated helium drop

    Science.gov (United States)

    Childress, L.; Schmidt, M. P.; Kashkanova, A. D.; Brown, C. D.; Harris, G. I.; Aiello, A.; Marquardt, F.; Harris, J. G. E.

    2017-12-01

    We describe a proposal for a type of optomechanical system based on a drop of liquid helium that is magnetically levitated in vacuum. In the proposed device, the drop would serve three roles: its optical whispering-gallery modes would provide the optical cavity, its surface vibrations would constitute the mechanical element, and evaporation of He atoms from its surface would provide continuous refrigeration. We analyze the feasibility of such a system in light of previous experimental demonstrations of its essential components: magnetic levitation of mm-scale and cm-scale drops of liquid He , evaporative cooling of He droplets in vacuum, and coupling to high-quality optical whispering-gallery modes in a wide range of liquids. We find that the combination of these features could result in a device that approaches the single-photon strong-coupling regime, due to the high optical quality factors attainable at low temperatures. Moreover, the system offers a unique opportunity to use optical techniques to study the motion of a superfluid that is freely levitating in vacuum (in the case of 4He). Alternatively, for a normal fluid drop of 3He, we propose to exploit the coupling between the drop's rotations and vibrations to perform quantum nondemolition measurements of angular momentum.

  1. Analysis of chlorpheniramine in human urine samples using dispersive liquid-liquid microextraction combined with high-performance liquid chromatography

    Directory of Open Access Journals (Sweden)

    Mehdi Maham

    2014-09-01

    Full Text Available A simple and environmentally friendly microextraction technique was used for determination of chlorpheniramine (CPM, an antihistamine drug, in human urine samples using dispersive liquid-liquid microextraction (DLLME followed by high performance liquid chromatography with diode array detection (HPLC-DAD. In this extraction technique, an appropriate mixture of acetonitrile (disperser solvent and carbon tetrachloride (extraction solvent was rapidly injected into the urine sample containing the target analyte. Tiny droplets of extractant were formed and dispersed into the sample solution and then sedimented at the bottom of the conical test tube by centrifugation. Under optimal conditions, the calibration curve was linear in the range of 0.055-5.5 µg mL-1, with a detection limit of 16.5 ng mL-1. This proposed method was successfully applied to the analysis of real urine samples. Low consumption of toxic organic solvents, simplicity of operation, low cost and acceptable figures of merit are the main advantages of the proposed technique.

  2. Development of liquid phase microextraction method based on solidification of floated organic drop for extraction and preconcentration of organochlorine pesticides in water samples

    International Nuclear Information System (INIS)

    Farahani, Hadi; Yamini, Yadollah; Shariati, Shahab; Khalili-Zanjani, Mohammad Reza; Mansour-Baghahi, Saeed

    2008-01-01

    A simple and efficient liquid-phase microextraction (LPME) in conjunction with gas chromatography-electron capture detector (GC-ECD) has been developed for extraction and determination of 11 organochlorine pesticides (OCPs) from water samples. In this technique a microdrop of 1-dodecanol containing pentachloronitrobenzene (internal standard) is delivered to the surface of an aqueous sample while being agitated by a stirring bar in the bulk of solution. Following completion of extraction, the sample vial was cooled by putting it into an ice bath for 5 min. Finally 2 μL of the drop was injected into the GC for analysis. Factors relevant to the extraction efficiency were studied and optimized. Under the optimized extraction conditions (extraction solvent: 1-dodecanol; extraction temperature: 65 deg. C; sodium chloride concentration: 0.25 M; microdrop and sample volumes: 8 μL and 20 mL respectively; the stirring rate: 750 rpm and the extraction time: 30 min), figures of merit of the proposed method were evaluated. The detection limits of the method were in the range of 7-19 ng L -1 and the RSD% for analysis of 2 μg L -1 of OCPs was below 7.2% (n = 5). A good linearity (r 2 ≥ 0.993) and a relatively broad dynamic linear range (25-2000 ng L -1 ) were obtained. After 30 min of extraction, preconcentration factors were in the range of 708-1337 for different organochlorine pesticides and the relative errors ranged from -10.1 to 10.9%. Finally the proposed method was successfully utilized for preconcentration and determination of OCPs in different real samples

  3. Development of liquid phase microextraction method based on solidification of floated organic drop for extraction and preconcentration of organochlorine pesticides in water samples

    Energy Technology Data Exchange (ETDEWEB)

    Farahani, Hadi [Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Yamini, Yadollah [Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of)], E-mail: yyamini@modares.ac.ir; Shariati, Shahab [Department of Chemistry, Faculty of Sciences, Islamic Azad University, Rasht Branch, Rasht (Iran, Islamic Republic of); Khalili-Zanjani, Mohammad Reza [Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Mansour-Baghahi, Saeed [Department of Water Quality Control and Laboratories, Tehran Water and Sewerage Company, Tehran (Iran, Islamic Republic of)

    2008-09-26

    A simple and efficient liquid-phase microextraction (LPME) in conjunction with gas chromatography-electron capture detector (GC-ECD) has been developed for extraction and determination of 11 organochlorine pesticides (OCPs) from water samples. In this technique a microdrop of 1-dodecanol containing pentachloronitrobenzene (internal standard) is delivered to the surface of an aqueous sample while being agitated by a stirring bar in the bulk of solution. Following completion of extraction, the sample vial was cooled by putting it into an ice bath for 5 min. Finally 2 {mu}L of the drop was injected into the GC for analysis. Factors relevant to the extraction efficiency were studied and optimized. Under the optimized extraction conditions (extraction solvent: 1-dodecanol; extraction temperature: 65 deg. C; sodium chloride concentration: 0.25 M; microdrop and sample volumes: 8 {mu}L and 20 mL respectively; the stirring rate: 750 rpm and the extraction time: 30 min), figures of merit of the proposed method were evaluated. The detection limits of the method were in the range of 7-19 ng L{sup -1} and the RSD% for analysis of 2 {mu}g L{sup -1} of OCPs was below 7.2% (n = 5). A good linearity (r{sup 2} {>=} 0.993) and a relatively broad dynamic linear range (25-2000 ng L{sup -1}) were obtained. After 30 min of extraction, preconcentration factors were in the range of 708-1337 for different organochlorine pesticides and the relative errors ranged from -10.1 to 10.9%. Finally the proposed method was successfully utilized for preconcentration and determination of OCPs in different real samples.

  4. Multiple solid-phase microextraction

    NARCIS (Netherlands)

    Koster, EHM; de Jong, GJ

    2000-01-01

    Theoretical aspects of multiple solid-phase microextraction are described and the principle is illustrated with the extraction of lidocaine from aqueous solutions. With multiple extraction under non-equilibrium conditions considerably less time is required in order to obtain an extraction yield that

  5. Combining bar adsorptive microextraction with capillary electrophoresis--application for the determination of phenolic acids in food matrices.

    Science.gov (United States)

    da Rosa Neng, Nuno; Sequeiros, Rute C P; Florêncio Nogueira, José Manuel

    2014-09-01

    In this contribution, bar adsorptive microextraction coated with a mixed-mode anion exchange/RP followed by liquid desorption was combined for the first time with a capillary electrophoresis-diode array detection system (BAμE(MAX)-LD/CE-DAD), for the determination of phenolic acids in food matrices, using chlorogenic, ferulic, cumaric, and caffeic acids as model compounds. Assays performed in aqueous media spiked at the 0.8 mg/L level yielded average recoveries up to 40% for all four phenolic acids, under optimized experimental conditions. The analytical performance showed also good precision (RSD 0.9900). By using the standard addition method, the application to food matrices such as green tea, red fruit juice, and honey allowed very good performances for the determination of minor amounts of phenolic acids. The proposed methodology proved to be a suitable alternative for the analysis of polar to ionic compounds, showing to be easy to implement, reliable, sensitive, and requiring a low sample volume to determine phenolic acids in food samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Analysis of wastewater samples by direct combination of thin-film microextraction and desorption electrospray ionization mass spectrometry.

    Science.gov (United States)

    Strittmatter, Nicole; Düring, Rolf-Alexander; Takáts, Zoltán

    2012-09-07

    An analysis method for aqueous samples by the direct combination of C18/SCX mixed mode thin-film microextraction (TFME) and desorption electrospray ionization mass spectrometry (DESI-MS) was developed. Both techniques make analytical workflow simpler and faster, hence the combination of the two techniques enables considerably shorter analysis time compared to the traditional liquid chromatography mass spectrometry (LC-MS) approach. The method was characterized using carbamazepine and triclosan as typical examples for pharmaceuticals and personal care product (PPCP) components which draw increasing attention as wastewater-derived environmental contaminants. Both model compounds were successfully detected in real wastewater samples and their concentrations determined using external calibration with isotope labeled standards. Effects of temperature, agitation, sample volume, and exposure time were investigated in the case of spiked aqueous samples. Results were compared to those of parallel HPLC-MS determinations and good agreement was found through a three orders of magnitude wide concentration range. Serious matrix effects were observed in treated wastewater, but lower limits of detection were still found to be in the low ng L(-1) range. Using an Orbitrap mass spectrometer, the technique was found to be ideal for screening purposes and led to the detection of various different PPCP components in wastewater treatment plant effluents, including beta-blockers, nonsteroidal anti-inflammatory drugs, and UV filters.

  7. Application of head-space solid-phase microextraction for the analysis of volatile metabolites emitted by Penicillium species

    DEFF Research Database (Denmark)

    Nilsson, Torben; Larsen, Thomas Ostenfeld; Montanarella, Luca

    1996-01-01

    Head-space solid-phase microextraction (HS-SPME) has been used to collect volatile organic compounds (VOCs) emitted from fungi of the genus Penicillium. Gas chromatography combined with mass spectrometry (GC-MS) was employed for the analysis of the profiles of volatile metabolites characteristic...

  8. The current role of on-line extraction approaches in clinical and forensic toxicology.

    Science.gov (United States)

    Mueller, Daniel M

    2014-08-01

    In today's clinical and forensic toxicological laboratories, automation is of interest because of its ability to optimize processes, to reduce manual workload and handling errors and to minimize exposition to potentially infectious samples. Extraction is usually the most time-consuming step; therefore, automation of this step is reasonable. Currently, from the field of clinical and forensic toxicology, methods using the following on-line extraction techniques have been published: on-line solid-phase extraction, turbulent flow chromatography, solid-phase microextraction, microextraction by packed sorbent, single-drop microextraction and on-line desorption of dried blood spots. Most of these published methods are either single-analyte or multicomponent procedures; methods intended for systematic toxicological analysis are relatively scarce. However, the use of on-line extraction will certainly increase in the near future.

  9. Role of Structural Asymmetry in Controlling Drop Spacing in Microfluidic Ladder Networks

    Science.gov (United States)

    Wang, William; Maddala, Jeevan; Vanapalli, Siva; Rengasamy, Raghunathan

    2012-02-01

    Manipulation of drop spacing is crucial to many processes in microfluidic devices including drop coalescence, detection and storage. Microfluidic ladder networks ---where two droplet-carrying parallel channels are connected by narrow bypass channels through which the motion of drops is forbidden---have been proposed as a means to control relative separation between pairs of drops. Prior studies in microfluidic ladder networks with vertical bypasses, which possess fore-aft structural symmetry, have revealed that pairs of drops can only undergo reduction in drop spacing at the ladder exit. We investigate the dynamics of drops in microfluidic ladder networks with both vertical and slanted bypasses. Our analytical results indicate that unlike symmetric ladder networks, structural asymmetry introduced by a single slanted bypass can be used to modulate the relative spacing between drops, enabling them to contract, synchronize, expand or even flip at the ladder exit. Our experiments confirm all the behaviors predicted by theory. Numerical analysis further shows that ladders containing several identical bypasses can only linearly transform the input drop spacing. Finally, we find that ladders with specific combinations of vertical and slanted bypasses can generate non-linear transformation of input drop spacing, despite the absence of drop decision-making events at the bypass junctions.

  10. Meta analysis on clinical effectiveness of Chinese medicine physiotherapy combined with tropicamide eye drops for pseudomyopia

    Directory of Open Access Journals (Sweden)

    Dan Li

    2018-05-01

    Full Text Available AIM:To evaluate the curative effect of Chinese medicine physiotherapy combined with tropicamide eye drops to treat pseudomyopia in children and adolescent. METHODS: We collected randomized controlled trials from CNKI, CBM, Wanfang database, PubMed, EMBASE and Cochrane Library in 2000-2015, and the improved Jadad scale was used to evaluate the methodology of the literature, and the data was extracted. The Review Manager 5.3 statistical software was used for meta analysis. RESULTS: A total of 5 articles were included in the analysis, with a total sample size of 836 cases. The curative effect of experimental group on pseudomyopia was better than that of control group, and the differences are statistically significant(Z=6.39, PCONCLUSION: Compared with topiramine eye drops alone, combined with traditional Chinese medicine therapy for treating pseudomyopia in children and adolescent is more effective, and is safe and reliable.

  11. Effects of menarcheal age on the anterior cruciate ligament injury risk factors during single-legged drop landing in female artistic elite gymnasts.

    Science.gov (United States)

    Kim, Kew-Wan; Lim, Bee-Oh

    2014-11-01

    Although numerous studies have demonstrated the relationship between maturation and lower extremity biomechanics during landing in team sport athletes, we are presently uninformed of any research that examined the single-legged drop landing biomechanics of gymnasts. The purpose of this study is to investigate the effects of the menarcheal age on the lower extremity biomechanics during a single-legged drop landing in female artistic elite gymnasts. Twenty-two female artistic elite gymnasts, between 9 and 36 years of age, participated in this study. The participants were divided into two groups pre- (n = 11) and post- (n = 11) menarche and asked to perform a single-legged drop landing on top of a 30 cm platform and land on a force plate. The statistical analysis consisted of the multivariate analysis with the level of significance set at p < 0.05. The post-menarche group showed a decrease in their maximum knee flexion angle and increase in their maximum knee abduction angle, maximum internal tibial rotation angle, maximum knee abduction moment, and hamstring-quadriceps muscle activity ratio compared with the pre-menarche group during the single-legged drop landing. The post-menarche group showed an increased noncontact anterior cruciate ligament injury risk, due to their greater knee loads, compared with the pre-menarche group.

  12. Drop Impact Dynamics with Sessile Drops and Geometries: Spreading, Jetting, and Fragmentation

    Science.gov (United States)

    Tilger, Christopher F.

    The tendency of surface tension to cause small parcels of fluid to form into drops allows convenient packaging, transport, dispersal of liquid phase matter. Liquid drop impacts with solids, liquids, and other drops have realized and additional future applications in biological, manufacturing, heat transfer, and combustion systems. Experiments were conducted to investigate the dynamics of multiple drop collisions, rather than the most-studied phenomenon of single drop impacts. Additional drop impacts were performed on rigid hemispheres representing sessile drops, angled substrates, and into the vertex of two tilted surfaces arranged into a vee shape. A qualitative inspection of drop-sessile drop impacts shows distinct post-impact shapes depending on the offset distance between the drops. At intermediate offset distances, distinct jets issue from the overlap region between the two drops projected areas. These jets are observed to reach their maximum extent at a critical offset distance ratio, epsilon epsilon ˜ 0.75-0.80, with substrate contact angle and W e having a lesser effect. Capillary waves that traverse the sessile drop after collision cause a lower aspect ratio liquid column to emanate from the sessile drop opposite the impact. In order to better understand the jetting phenomenon seen in the offset drop-sessile drop impacts, simpler solid geometries are investigated that elicit a similar behavior. Solid hemispheres do not show the singular jetting observed in the fluidic case, however, a simple vee formed by two intersection planar substrates do jet in a similar fashion to the fluidic case. A geometric model with partnered experiments is developed to describe the bisymmetric spread of an impacting drop on an angled substrate. This geometric model is used to guide a time of arrival based model for various features of the drop impact, which is used to predict jetting in various vee channel experiments.

  13. The shape and dynamics of the generation of the splash forms in single-phase systems after drop hitting

    Science.gov (United States)

    Sochan, Agata; Beczek, Michał; Mazur, Rafał; RyŻak, Magdalena; Bieganowski, Andrzej

    2018-02-01

    The splash phenomenon is being increasingly explored with the use of modern measurement tools, including the high-speed cameras. Recording images at a rate of several thousand frames per second facilitates parameterization and description of the dynamics of splash phases. This paper describes the impact of a single drop of a liquid falling on the surface of the same liquid. Three single-phase liquid systems, i.e., water, petrol, and diesel fuel, were examined. The falling drops were characterized by different kinetic energy values depending on the height of the fall, which ranged from 0.1 to 7.0 m. Four forms, i.e., waves, crowns, semi-closed domes, and domes, were distinguished depending on the drop energy. The analysis of the recorded images facilitated determination of the static and dynamic parameters of each form, e.g., the maximum height of each splash form, the width of the splash form at its maximum height, and the rate of growth of the splash form. We, Re, Fr, and K numbers were determined for all analyzed liquid systems. On the basis of the obtained values of dimensionless numbers, the areas of occurrence of characteristic splash forms were separated.

  14. Vortex-assisted liquid-liquid microextraction for the rapid screening of short-chain chlorinated paraffins in water.

    Science.gov (United States)

    Chang, Chia-Yu; Chung, Wu-Hsun; Ding, Wang-Hsien

    2016-01-01

    The rapid screening of trace levels of short-chain chlorinated paraffins in various aqueous samples was performed by a simple and reliable procedure based on vortex-assisted liquid-liquid microextraction combined with gas chromatography and electron capture negative ionization mass spectrometry. The optimal vortex-assisted liquid-liquid microextraction conditions for 20 mL water sample were as follows: extractant 400 μL of dichloromethane; vortex extraction time of 1 min at 2500 × g; centrifugation of 3 min at 5000 × g; and no ionic strength adjustment. Under the optimum conditions, the limit of quantitation was 0.05 μg/L. Precision, as indicated by relative standard deviations, was less than 9% for both intra- and inter-day analysis. Accuracy, expressed as the mean extraction recovery, was above 91%. The vortex-assisted liquid-liquid microextraction with gas chromatography and electron capture negative ionization mass spectrometry method was successfully applied to quantitatively extract short-chain chlorinated paraffins from samples of river water and the effluent of a wastewater treatment plant, and the concentrations ranged from 0.8 to 1.6 μg/L. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Detection of Organophosphorus Pesticides in Wheat by Ionic Liquid-Based Dispersive Liquid-Liquid Microextraction Combined with HPLC

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2018-01-01

    Full Text Available Food safety issues closely related to human health have always received widespread attention from the world society. As a basic food source, wheat is the fundamental support of human survival; therefore, the detection of pesticide residues in wheat is very necessary. In this work, the ultrasonic-assisted ionic liquid-dispersive liquid-liquid microextraction (DLLME method was firstly proposed, and the extraction and analysis of three organophosphorus pesticides were carried out by combining high-performance liquid chromatography (HPLC. The extraction efficiencies of three ionic liquids with bis(trifluoromethylsulfonylimide (Tf2N anion were compared by extracting organophosphorus in wheat samples. It was found that the use of 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonylimide ([OMIM][Tf2N] had both high enrichment efficiency and appropriate extraction recovery. Finally, the method was used for the determination of three wheat samples, and the recoveries of them were 74.8–112.5%, 71.8–104.5%, and 83.8–115.5%, respectively. The results show that the method proposed is simple, fast, and efficient, which can be applied to the extraction of organic matters in wheat samples.

  16. "Self-Shaping" of Multicomponent Drops.

    Science.gov (United States)

    Cholakova, Diana; Valkova, Zhulieta; Tcholakova, Slavka; Denkov, Nikolai; Smoukov, Stoyan K

    2017-06-13

    In our recent study we showed that single-component emulsion drops, stabilized by proper surfactants, can spontaneously break symmetry and transform into various polygonal shapes during cooling [ Denkov Nature 2015 , 528 , 392 - 395 ]. This process involves the formation of a plastic rotator phase of self-assembled oil molecules beneath the drop surface. The plastic phase spontaneously forms a frame of plastic rods at the oil drop perimeter which supports the polygonal shapes. However, most of the common substances used in industry appear as mixtures of molecules rather than pure substances. Here we present a systematic study of the ability of multicomponent emulsion drops to deform upon cooling. The observed trends can be summarized as follows: (1) The general drop-shape evolution for multicomponent drops during cooling is the same as with single-component drops; however, some additional shapes are observed. (2) Preservation of the particle shape upon freezing is possible for alkane mixtures with chain length difference Δn ≤ 4; for greater Δn, phase separation within the droplet is observed. (3) Multicomponent particles prepared from alkanes with Δn ≤ 4 plastify upon cooling due to the formation of a bulk rotator phase within the particles. (4) If a compound, which cannot induce self-shaping when pure, is mixed with a certain amount of a compound which induces self-shaping, then drops prepared from this mixture can also self-shape upon cooling. (5) Self-emulsification phenomena are also observed for multicomponent drops. In addition to the three recently reported mechanisms of self-emulsification [ Tcholakova Nat. Commun. 2017 , ( 8 ), 15012 ], a new (fourth) mechanism is observed upon freezing for alkane mixtures with Δn > 4. It involves disintegration of the particles due to a phase separation of alkanes upon freezing.

  17. Evaluation of needle trap micro-extraction and solid-phase micro-extraction: Obtaining comprehensive information on volatile emissions from in vitro cultures.

    Science.gov (United States)

    Oertel, Peter; Bergmann, Andreas; Fischer, Sina; Trefz, Phillip; Küntzel, Anne; Reinhold, Petra; Köhler, Heike; Schubert, Jochen K; Miekisch, Wolfram

    2018-05-14

    Volatile organic compounds (VOCs) emitted from in vitro cultures may reveal information on species and metabolism. Owing to low nmol L -1 concentration ranges, pre-concentration techniques are required for gas chromatography-mass spectrometry (GC-MS) based analyses. This study was intended to compare the efficiency of established micro-extraction techniques - solid-phase micro-extraction (SPME) and needle-trap micro-extraction (NTME) - for the analysis of complex VOC patterns. For SPME, a 75 μm Carboxen®/polydimethylsiloxane fiber was used. The NTME needle was packed with divinylbenzene, Carbopack X and Carboxen 1000. The headspace was sampled bi-directionally. Seventy-two VOCs were calibrated by reference standard mixtures in the range of 0.041-62.24 nmol L -1 by means of GC-MS. Both pre-concentration methods were applied to profile VOCs from cultures of Mycobacterium avium ssp. paratuberculosis. Limits of detection ranged from 0.004 to 3.93 nmol L -1 (median = 0.030 nmol L -1 ) for NTME and from 0.001 to 5.684 nmol L -1 (median = 0.043 nmol L -1 ) for SPME. NTME showed advantages in assessing polar compounds such as alcohols. SPME showed advantages in reproducibility but disadvantages in sensitivity for N-containing compounds. Micro-extraction techniques such as SPME and NTME are well suited for trace VOC profiling over cultures if the limitations of each technique is taken into account. Copyright © 2018 John Wiley & Sons, Ltd.

  18. Determination of Trichloroethylene in Water by Liquid–Liquid Microextraction Assisted Solid Phase Microextraction

    Directory of Open Access Journals (Sweden)

    Mengliang Zhang

    2015-02-01

    Full Text Available A method for the determination of trichloroethylene (TCE in water using portable gas chromatography/mass spectrometry (GC/MS was developed. A novel sample preparation method, liquid–liquid microextraction assisted solid phase microextraction (LLME–SPME, is introduced. In this method, 20 µL of hexane was added to 10 mL of TCE contaminated aqueous samples to assist headspace SPME. The extraction efficiency of SPME was significantly improved with the addition of minute amounts of organic solvents (i.e., 20 µL hexane. The absolute recoveries of TCE at different concentrations were increased from 11%–17% for the samples extracted by SPME to 29%–41% for the samples extracted by LLME–SPME. The method was demonstrated to be linear from 10 to 1000 ng mL−1 for TCE in water. The improvements on extraction efficiencies were also observed for toluene and 1, 2, 4-trichlorobenzene in water by using LLME–SPME method. The LLME–SPME method was optimized by using response surface modeling (RSM.

  19. Solid phase microextraction of diclofenac using molecularly imprinted polymer sorbent in hollow fiber combined with fiber optic-linear array spectrophotometry

    Science.gov (United States)

    Pebdani, Arezou Amiri; Shabani, Ali Mohammad Haji; Dadfarnia, Shayessteh; Khodadoust, Saeid

    2015-08-01

    A simple solid phase microextraction method based on molecularly imprinted polymer sorbent in the hollow fiber (MIP-HF-SPME) combined with fiber optic-linear array spectrophotometer has been applied for the extraction and determination of diclofenac in environmental and biological samples. The effects of different parameters such as pH, times of extraction, type and volume of the organic solvent, stirring rate and donor phase volume on the extraction efficiency of the diclofenac were investigated and optimized. Under the optimal conditions, the calibration graph was linear (r2 = 0.998) in the range of 3.0-85.0 μg L-1 with a detection limit of 0.7 μg L-1 for preconcentration of 25.0 mL of the sample and the relative standard deviation (n = 6) less than 5%. This method was applied successfully for the extraction and determination of diclofenac in different matrices (water, urine and plasma) and accuracy was examined through the recovery experiments.

  20. Ionic-liquid-based dispersive liquid-liquid microextraction combined with magnetic solid-phase extraction for the determination of aflatoxins B1 , B2 , G1 , and G2 in animal feeds by high-performance liquid chromatography with fluorescence detection.

    Science.gov (United States)

    Zhao, Jiao; Zhu, Yan; Jiao, Yang; Ning, Jinyan; Yang, Yaling

    2016-10-01

    A novel two-step extraction technique combining ionic-liquid-based dispersive liquid-liquid microextraction with magnetic solid-phase extraction was developed for the preconcentration and separation of aflatoxins in animal feedstuffs before high-performance liquid chromatography coupled with fluorescence detection. In this work, ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate was used as the extractant in dispersive liquid-liquid microextraction, and hydrophobic pelargonic acid modified Fe 3 O 4 magnetic nanoparticles as an efficient adsorbent were applied to retrieve the aflatoxins-containing ionic liquid. Notably, the target of magnetic nanoparticles was the ionic liquid rather than the aflatoxins. Because of the rapid mass transfer associated with the dispersive liquid-liquid microextraction and magnetic solid phase steps, fast extraction could be achieved. The main parameters affecting the extraction recoveries of aflatoxins were investigated and optimized. Under the optimum conditions, vortexing at 2500 rpm for 1 min in the dispersive liquid-liquid microextraction and magnetic solid-phase extraction and then desorption by sonication for 2 min with acetonitrile as eluent. The recoveries were 90.3-103.7% with relative standard deviations of 3.2-6.4%. Good linearity was observed with correlation coefficients ranged from 0.9986 to 0.9995. The detection limits were 0.632, 0.087, 0.422 and 0.146 ng/mL for aflatoxins B 1 , B2, G1, and G2, respectively. The results were also compared with the pretreatment method carried out by conventional immunoaffinity columns. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Derivatisation/solid-phase microextraction followed by gas chromatography-mass spectrometry for the analysis of phenoxy acid herbicides in aqueous samples

    DEFF Research Database (Denmark)

    Nilsson, Torben; Baglio, Daniela; Galdo-Miguez, Isabel

    1998-01-01

    Different combinations of derivatisation and solid-phase microextraction followed by gas chromatography-mass spectrometry were optimised and evaluated for the analysis of phenoxy acid herbicides in water. The most successful derivatisation approach was aqueous-phase derivatisation with benzyl...

  2. Combination of dispersive liquid-liquid microextraction with flame atomic absorption spectrometry using microsample introduction for determination of lead in water samples.

    Science.gov (United States)

    Naseri, Mohammad Taghi; Hemmatkhah, Payam; Hosseini, Mohammad Reza Milani; Assadi, Yaghoub

    2008-03-03

    The dispersive liquid-liquid microextraction (DLLME) was combined with the flame atomic absorption spectrometry (FAAS) for determination of lead in the water samples. Diethyldithiophosphoric acid (DDTP), carbon tetrachloride and methanol were used as chelating agent, extraction solvent and disperser solvent, respectively. A new FAAS sample introduction system was employed for the microvolume nebulization of the non-flammable chlorinated organic extracts. Injection of 20 microL volumes of the organic extract into an air-acetylene flame provided very sensitive spike-like and reproducible signals. Some effective parameters on the microextraction and the complex formation were selected and optimized. These parameters include extraction and disperser solvent type as well as their volume, extraction time, salt effect, pH and amount of the chelating agent. Under the optimized conditions, the enrichment factor of 450 was obtained from a sample volume of 25.0 mL. The enhancement factor, calculated as the ratio of the slopes of the calibration graphs with and without preconcentration, which was about 1000. The calibration graph was linear in the range of 1-70 microgL(-1) with a detection limit of 0.5 microgL(-1). The relative standard deviation (R.S.D.) for seven replicate measurements of 5.0 and 50 microgL(-1) of lead were 3.8 and 2.0%, respectively. The relative recoveries of lead in tap, well, river and seawater samples at the spiking level of 20 microgL(-1) ranged from 93.8 to 106.2%. The characteristics of the proposed method were compared with those of the liquid-liquid extraction (LLE), cloud point extraction (CPE), on-line and off-line solid-phase extraction (SPE) as well as co-precipitation, based on bibliographic data. Operation simplicity, rapidity, low cost, high enrichment factor, good repeatability, and low consumption of the extraction solvent at a microliter level are the main advantages of the proposed method.

  3. Non-targeted volatile profiles for the classification of the botanical origin of Chinese honey by solid-phase microextraction and gas chromatography-mass spectrometry combined with chemometrics.

    Science.gov (United States)

    Chen, Hui; Jin, Linghe; Fan, Chunlin; Wang, Wenwen

    2017-11-01

    A potential method for the discrimination and prediction of honey samples of various botanical origins was developed based on the non-targeted volatile profiles obtained by solid-phase microextraction with gas chromatography and mass spectrometry combined with chemometrics. The blind analysis of non-targeted volatile profiles was carried out using solid-phase microextraction with gas chromatography and mass spectrometry for 87 authentic honey samples from four botanical origins (acacia, linden, vitex, and rape). The number of variables was reduced from 2734 to 70 by using a series of filters. Based on the optimized 70 variables, 79.12% of the variance was explained by the first four principal components. Partial least squares discriminant analysis, naïve Bayes analysis, and back-propagation artificial neural network were used to develop the classification and prediction models. The 100% accuracy revealed a perfect classification of the botanical origins. In addition, the reliability and practicability of the models were validated by an independent set of additional 20 authentic honey samples. All 20 samples were accurately classified. The confidence measures indicated that the performance of the naïve Bayes model was better than the other two models. Finally, the characteristic volatile compounds of linden honey were tentatively identified. The proposed method is reliable and accurate for the classification of honey of various botanical origins. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Rapid pretreatment and determination of bisphenol A in water samples based on vortex-assisted liquid-liquid microextraction followed by high-performance liquid chromatography with fluorescence detection.

    Science.gov (United States)

    Yang, Xiao; Diao, Chun-Peng; Sun, Ai-Ling; Liu, Ren-Min

    2014-10-01

    A method for the rapid pretreatment and determination of bisphenol A in water samples based on vortex-assisted liquid-liquid microextraction followed by high-performance liquid chromatography with fluorescence detection was proposed in this paper. A simple apparatus consisting of a test tube and a cut-glass dropper was designed and applied to collect the floating extraction drop in liquid-liquid microextraction when low-density organic solvent was used as the extraction solvent. Solidification and melting steps that were tedious but necessary once the low-density organic solvent used as extraction solvent could be avoided by using this apparatus. Bisphenol A was selected as model pollutant and vortex-assisted liquid-liquid microextraction was employed to investigate the usefulness of the apparatus. High-performance liquid chromatography with fluorescence detection was selected as the analytical tool for the detection of bisphenol A. The linear dynamic range was from 0.10 to 100 μg/L for bisphenol A, with good squared regression coefficient (r(2) = 0.9990). The relative standard deviation (n = 7) was 4.7% and the limit of detection was 0.02 μg/L. The proposed method had been applied to the determination of bisphenol A in natural water samples and was shown to be economical, fast, and convenient. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Pressure drop and heat transfer of lithium single-phase flow under transverse magnetic field

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Aritomi, Masanori; Inoue, Akira; Matsuzaki, Mitsuo

    1996-01-01

    Pressure drop and heat transfer characteristics of a lithium single-phase flow in a rectangular channel was investigated experimentally in the presence of a magnetic field. Friction loss coefficient under non-magnetic field and skin friction coefficient under magnetic field agreed well with the Blasius formula and a simple analytical expression, respectively. Nusselt number under non-magnetic field was slightly lower than the correlation by Hartnett and Irvine. Heat transfer was enhanced by increasing magnetic field above the Hartmann number of about 200. (author)

  6. Pressure drop and heat transfer characteristics for single-phase developing flow of water in rectangular microchannels

    International Nuclear Information System (INIS)

    Mirmanto; Kenning, D B R; Lewis, J S; Karayiannis, T G

    2012-01-01

    Experiments were conducted to investigate the pressure drop and heat transfer characteristics of single-phase flow of de-ionized water in single copper microchannels of hydraulic diameters 0.438 mm, 0.561 mm and 0.635 mm. The channel length was 62 mm. The experimental conditions covered a range of mass flux from 500 to 5000 kg/m 2 s in the laminar, transitional and low Reynolds number turbulent regimes. Pressure drop was measured for adiabatic flows with fluid inlet temperatures of 30°C, 60°C and 90°C. In the heat transfer tests, the heat flux ranged from 256 kW/m 2 to 519 kW/m 2 . Friction factors and Nusselt numbers determined from the measurements were higher than for fully-developed conditions, but in reasonable agreement with predictions made using published solutions for hydrodynamically and thermally developing flow. When entrance effects, experimental uncertainties, heat losses, inlet and exit losses, thermal boundary conditions and departure from laminar flow were considered, the results indicate that equations developed for flow and heat transfer in conventional size channels are applicable for water flows in microchannels of these sizes.

  7. Effect of surfactant on single drop mass transfer for extraction of aromatics from lubricating oils

    Science.gov (United States)

    Izza, H.; Ben Abdessalam, S.; Korichi, M.

    2018-03-01

    Solvent extraction is an effective method for the reduction of the content of aromatic of lubricating oil. Frequently, with phenol, furfural, the NMP (out of N-methyl pyrrolidone). The power solvent and the selectivity can be still to increase while using surfactant as additive which facilitates the separation of phase and increases the yeild in raffinat. Liquid-liquid mass transfer coefficients for single freely rising drops in the presence of surfactant in an extraction column have been investigated. The surfactant used in this study was sodium lauryl ether sulfate (SLES). The experiments were performed by bubbling a solvent as a series of individual drops from the top of the column containing furfural-SLES solution. The column used in this experiment was made from glass with 17 mm inner diameter and a capacity of 125ml. The effects of the concentration of surfactant on the overall coefficient of mass transfer was investigated.

  8. Steam explosion studies with single drops of molten refractory materials

    International Nuclear Information System (INIS)

    Nelson, L.S.

    1980-01-01

    Laser heating, levitation melting, and metal combustion were used to prepare individual drops of molten refractory materials which simulate LWR fuel melt products. Drop temperatures ranged from approx. = 1500 to > 3000K. These drops, several millimeters in diameter, were injected into water and subjected to pressure transients (approx. = 1MPa peak pressures) generated by a submerged exploding bridgewire. Molten oxides of Fe, Al and Zr could be induced to explode with bridgewire initiation. High speed films showed the explosions with exceptional clarity, and pressure transducer records could be correlated with individual frames in the films. Pressure spikes one or two MPa high were generated whenever an explosion occurred. Debris particles were mostly spheroidal, with diameters in the range 10 to 1000 μm

  9. Photoassisted vapor generation in the presence of organic acids for ultrasensitive determination of Se by electrothermal-atomic absorption spectrometry following headspace single-drop microextraction

    International Nuclear Information System (INIS)

    Figueroa, Raul; Garcia, Monica; Lavilla, Isela; Bendicho, Carlos

    2005-01-01

    A method is described for the determination of selenium at the pg/mL level by electrothermal-atomic absorption spectrometry using in situ photogeneration of Se vapors, headspace sequestration onto an aqueous microdrop containing Pd(II) and subsequent injection in a graphite tube. Several organic acids (formic, oxalic, acetic, citric and ethylenediaminetetraacetic) have been tried for photoreduction of Se(IV) into volatile Se compounds under UV irradiation. Experimental variables such as UV irradiation time, organic acid concentration, Pd(II) concentration in the drop, sample and drop volumes, extraction time and pH were fully optimized. Low-molecular weight acids such as formic and acetic provided optimal photogeneration of volatile Se species at a 0.6 mol/L concentration. Citric and ethylenediaminetetraacetic acid allowed to use a concentration as low as 1 mmol/L, but extraction times were longer than for formic and acetic acids. Photogeneration of (CH 3 ) 2 Se from Se(IV) in the presence of acetic acid provided a detection limit of 20 pg/mL, a preconcentration factor of nearly 285 and a precision, expressed as relative standard deviation, of 4%. Analytical performance seemed to depend not only on the photogeneration efficiency obtained with each acid but also on the stability of the vapors in the headspace. The method showed a high freedom from interferences caused by saline matrices, but interferences were observed for transition metals at a relatively low concentration

  10. Negligible depletion solid-phase microextraction with radiolabeled analytes to study free concentrations and protein binding : an example with [3H]Estradiol

    NARCIS (Netherlands)

    Heringa, M.B.; Pastor, D.; Algra, J.; Vaes, W.H.J.; Hemmens, J.L.M.

    2002-01-01

    A new method is presented that enables sensitive measurement of free concentrations of radiolabeled ligands. Additionally, protein binding of radiochemicals in complex matrixes can be determined with this new technique that combines negligible depletion solid-phase microextraction (nd-SPME) with

  11. Impulsive shock induced single drop steam explosion visualized by high-speed x-ray radiography and photography - metallic melt

    International Nuclear Information System (INIS)

    Park, H. S.; Hansson, R. C.; Sehgal, B. R.

    2003-01-01

    Experimental investigation of fine fragmentation process during vapor explosion was conducted in a small-scale single drop system employing continuous high-speed X-ray radiography and photography. A molten tin drop of about 0.7 g at approximately 1000 .deg. C was dropped into a water pool, at temperatures ranging from 20 to 90 .deg. C, and the explosion was triggered by an external shock pulse of about 1 MPa. X-ray radiographs show that finely fragmented melt particles accelerates to the vapor bubble boundary and forms a particle shell during the period of vapor bubble expansion due to vapor explosions. From the photographs, it was possible to observe a number of counter-jets on the vapor boundary. For tests with highly subcooled coolant, local explosion due to external impulsive shock trigger initiates the stratified mode of explosion along the entire melt surface. For tests with lower subcooled coolant local explosions were initiated by an external impulsive shock trigger and by collapse of vapor/gas pocket attached on the top of the melt drop. Transient spatial distribution map of melt fragments during vapor explosion was obtained by a series of image processing and calibration tests

  12. Efficacy of combined pranoprofen eye drops and artificial tears on the treatment of mild to moderate dry eye syndrome after trabbeculectomy

    Directory of Open Access Journals (Sweden)

    Guang-Ming Zhao

    2015-02-01

    Full Text Available AIM:To evaluate the efficacy of combined pranoprofen eye drops and artificial tears on the treatment of mild to moderate dry eye syndrome after trabbeculectomy. METHODS: This prospective case control study included 63 cases(63 eyesof patients with mild to moderate dry eye syndrome after trabbeculectomy in our hospital from November 2013 to June 2013. All subjects were randomly divided into two groups. Observation group was treated with combined pranoprofen eye drops and artificial tears and control group received simple artificial tears marking the eyes at 1, 2, 4wk. The patient's symptoms, signs, BUT, SⅠt, and FL were observed before treatment and 1, 2, 4wk after treatment. RESULTS:After 2wk, the symptoms of observation group were improved, there was statistically significant difference(PPPPCONCLUSION: Artificial tears joint pranoprofen eye drops has good curative effect in the treatment of mild to moderate dry eye syndrome after trabbeculectomy.

  13. Capillary Thinning of Particle-laden Drops

    Science.gov (United States)

    Wagoner, Brayden; Thete, Sumeet; Jahns, Matt; Doshi, Pankaj; Basaran, Osman

    2015-11-01

    Drop formation is central in many applications such as ink-jet printing, microfluidic devices, and atomization. During drop formation, a thinning filament is created between the about-to-form drop and the fluid hanging from the nozzle. Therefore, the physics of capillary thinning of filaments is key to understanding drop formation and has been thoroughly studied for pure Newtonian fluids. The thinning dynamics is, however, altered completely when the fluid contains particles, the physics of which is not well understood. In this work, we explore the impact of solid particles on filament thinning and drop formation by using a combination of experiments and numerical simulations.

  14. Ultrasensitive, simple and solvent-free micro-assay for determining sulphite preservatives (E220-228) in foods by HS-SDME and UV-vis micro-spectrophotometry.

    Science.gov (United States)

    Gómez-Otero, E; Costas, M; Lavilla, I; Bendicho, C

    2014-03-01

    A new method based on headspace single-drop microextraction in combination with UV-vis micro-spectrophotometry has been developed for the ultrasensitive determination of banned sulphite preservatives (E220-228) in fruits and vegetables. Sample acidification was used for SO2 generation, which is collected onto a 5,5'-dithiobis-(2-nitrobenzoic acid) microdrop for spectrophotometric measurement. A careful study of this reaction was necessary, including conditions for SO2 generation from different sulphating salts, drop pH, 5,5'-dithiobis-(2-nitrobenzoic acid) concentration and potential interference effects. Variables influencing mass transfer (stirring, sample volume and addition of salt) and microextraction time were also studied. A simple sulphite extraction was carried out, and problems caused by oxidation during the extraction process were addressed. A high enrichment factor (380) allows the determination of low levels of free SO2 in fruits and vegetables (limit of detection 0.06 μg g(-1), limit of quantification 0.2 μg g(-1)) with an adequate precision (repeatability, relative standard deviation 5 %). In addition, the sulphiting process was studied through the monitoring of residual SO2 in a vegetal sample, thus showing the importance of a sensitive tool for SO2 detection at low levels.

  15. Recent Trends in Microextraction Techniques Employed in Analytical and Bioanalytical Sample Preparation

    Directory of Open Access Journals (Sweden)

    Abuzar Kabir

    2017-12-01

    Full Text Available Sample preparation has been recognized as a major step in the chemical analysis workflow. As such, substantial efforts have been made in recent years to simplify the overall sample preparation process. Major focusses of these efforts have included miniaturization of the extraction device; minimizing/eliminating toxic and hazardous organic solvent consumption; eliminating sample pre-treatment and post-treatment steps; reducing the sample volume requirement; reducing extraction equilibrium time, maximizing extraction efficiency etc. All these improved attributes are congruent with the Green Analytical Chemistry (GAC principles. Classical sample preparation techniques such as solid phase extraction (SPE and liquid-liquid extraction (LLE are being rapidly replaced with emerging miniaturized and environmentally friendly techniques such as Solid Phase Micro Extraction (SPME, Stir bar Sorptive Extraction (SBSE, Micro Extraction by Packed Sorbent (MEPS, Fabric Phase Sorptive Extraction (FPSE, and Dispersive Liquid-Liquid Micro Extraction (DLLME. In addition to the development of many new generic extraction sorbents in recent years, a large number of molecularly imprinted polymers (MIPs created using different template molecules have also enriched the large cache of microextraction sorbents. Application of nanoparticles as high-performance extraction sorbents has undoubtedly elevated the extraction efficiency and method sensitivity of modern chromatographic analyses to a new level. Combining magnetic nanoparticles with many microextraction sorbents has opened up new possibilities to extract target analytes from sample matrices containing high volumes of matrix interferents. The aim of the current review is to critically audit the progress of microextraction techniques in recent years, which has indisputably transformed the analytical chemistry practices, from biological and therapeutic drug monitoring to the environmental field; from foods to phyto

  16. Solid Phase Microextraction (SPME in Determination of Pesticide Residues in Soil Samples

    Directory of Open Access Journals (Sweden)

    Rada Đurović

    2011-01-01

    Full Text Available The basic principles and application possibilities of the methods based on solid phase microextraction (SPME in the analysis of pesticide residues in soil samples are presented in the paper. The most important experimental parameters which affect SPME efficacy inpesticide determination (type and thickness of microextraction fiber, duration of microextraction,temperature at which it is conducted, effect of addition of salts (the effect of efflorescence,temperature and time of desorption, the choice of optimal solvent for pesticide exctraction from the soil and the optimal number of extraction steps, as well as general guidelines for their optimization are also shown. In the end, current applications of SPMEmethods in the analysis of pesticide residues in soil samples are presented.

  17. Gas flow headspace liquid phase microextraction.

    Science.gov (United States)

    Yang, Cui; Qiu, Jinxue; Ren, Chunyan; Piao, Xiangfan; Li, Xifeng; Wu, Xue; Li, Donghao

    2009-11-06

    There is a trend towards the use of enrichment techniques such as microextraction in the analysis of trace chemicals. Based on the theory of ideal gases, theory of gas chromatography and the original headspace liquid phase microextraction (HS-LPME) technique, a simple gas flow headspace liquid phase microextraction (GF-HS-LPME) technique has been developed, where the extracting gas phase volume is increased using a gas flow. The system is an open system, where an inert gas containing the target compounds flows continuously through a special gas outlet channel (D=1.8mm), and the target compounds are trapped on a solvent microdrop (2.4 microL) hanging on the microsyringe tip, as a result, a high enrichment factor is obtained. The parameters affecting the enrichment factor, such as the gas flow rate, the position of the microdrop, the diameter of the gas outlet channel, the temperatures of the extracting solvent and of the sample, and the extraction time, were systematically optimized for four types of polycyclic aromatic hydrocarbons. The results were compared with results obtained from HS-LPME. Under the optimized conditions (where the extraction time and the volume of the extracting sample vial were fixed at 20min and 10mL, respectively), detection limits (S/N=3) were approximately a factor of 4 lower than those for the original HS-LPME technique. The method was validated by comparison of the GF-HS-LPME and HS-LPME techniques using data for PAHs from environmental sediment samples.

  18. Solid phase microextraction of diclofenac using molecularly imprinted polymer sorbent in hollow fiber combined with fiber optic-linear array spectrophotometry.

    Science.gov (United States)

    Pebdani, Arezou Amiri; Shabani, Ali Mohammad Haji; Dadfarnia, Shayessteh; Khodadoust, Saeid

    2015-08-05

    A simple solid phase microextraction method based on molecularly imprinted polymer sorbent in the hollow fiber (MIP-HF-SPME) combined with fiber optic-linear array spectrophotometer has been applied for the extraction and determination of diclofenac in environmental and biological samples. The effects of different parameters such as pH, times of extraction, type and volume of the organic solvent, stirring rate and donor phase volume on the extraction efficiency of the diclofenac were investigated and optimized. Under the optimal conditions, the calibration graph was linear (r(2)=0.998) in the range of 3.0-85.0 μg L(-1) with a detection limit of 0.7 μg L(-1) for preconcentration of 25.0 mL of the sample and the relative standard deviation (n=6) less than 5%. This method was applied successfully for the extraction and determination of diclofenac in different matrices (water, urine and plasma) and accuracy was examined through the recovery experiments. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Enhanced differentiation of human embryonic stem cells into cardiomyocytes by combining hanging drop culture and 5-azacytidine treatment.

    Science.gov (United States)

    Yoon, Byung Sun; Yoo, Seung Jun; Lee, Jeoung Eun; You, Seungkwon; Lee, Hoon Taek; Yoon, Hyun Soo

    2006-04-01

    Cell replacement therapy is a promising approach for the treatment of cardiac diseases. It is, however, challenged by a limited supply of appropriate cells. Therefore, we have investigated whether functional cardiomyocytes can be efficiently generated from human embryonic stem cells (hESCs). In this study, we developed an efficient protocol for the generation of functional cardiomyocytes from hESCs by combining hanging drop culture and 5-azacytidine, a well-known demethylating agent, and then evaluated the expression of cardiac-specific markers. hESCs were cultured both in the medium without or with 0.1, 1, or 10 microM of 5-azacytidine under a hanging drop culture. The expression of several cardiac-specific markers was determined by real-time PCR, RT-PCR, immunofluorescence, and confocal microscopy. To verify the structural and functional properties of hESC-derived cardiomyocytes, we performed electron microscopy and electrophysiological recording. The efficiency of beating cell generation was significantly improved in the hanging drop culture compared with that in suspension culture. Treatment of hESCs with 0.1 microM of 5-azacytidine for 1-3 days significantly increased the number of beating cells and simultaneously enhanced the expression of cardiac-specific markers. Transmission electron microscopy and electrophysiological recording showed that hESC-derived cardiomyocytes acquired structural and functional properties of cardiomyocytes. In conclusion, these results suggest that differentiation of hESCs into cardiomyocytes can be enhanced by the combination of hanging drop culture and 5-azacytidine treatment. Also the methylation status of genes related to cardiomyocyte development may play an important role in the differentiation of hESCs into cardiomyocytes.

  20. Effectiveness of Autologous Serum Eye Drops Combined With Punctal Plugs for the Treatment of Sjögren Syndrome-Related Dry Eye.

    Science.gov (United States)

    Liu, Ying; Hirayama, Masatoshi; Cui, Xin; Connell, Samuel; Kawakita, Tetsuya; Tsubota, Kazuo

    2015-10-01

    To evaluate the efficacy and safety of autologous serum (AS) eye drops combined with punctal plugs (PPs) in patients with Sjögren syndrome (SS)-related dry eye. A retrospective clinical study was performed in patients with dry eye caused by SS. We evaluated the Schirmer test value, tear breakup time (tBUT), and fluorescein and Rose Bengal (RB) staining scores at baseline, 3 months, 6 months, 1 year, and >1 year after treatment. The dry eye indexes were also evaluated in 2 subgroups, which determined by the using of PPs, including the AS + PP group and AS only group. A total of 56 eyes of 28 patients were investigated with a mean follow-up of 42.3 ± 26.1 months. After the application of AS eye drops, the Schirmer test showed no significant changes. The tBUT (2.7 ± 1.9 seconds) was significantly improved at each time point (3.9 ± 3.1, 4.5 ± 3.1, 3.7 ± 2.5, and 5.1 ± 4.0; P eye drops was found to be an effective and apparently safe treatment for SS dry eye. Furthermore, PPs in combination with AS eye drops were considered to have an additive effect on SS dry eye.

  1. Combination of solid phase extraction and dispersive liquid-liquid microextraction for separation/preconcentration of ultra trace amounts of uranium prior to its fiber optic-linear array spectrophotometry determination.

    Science.gov (United States)

    Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji; Shakerian, Farid; Shiralian Esfahani, Golnaz

    2013-12-15

    A simple and sensitive method for the separation and preconcentration of the ultra trace amounts of uranium and its determination by spectrophotometry was developed. The method is based on the combination of solid phase extraction and dispersive liquid-liquid microextraction. Thus, by passing the sample through the basic alumina column, the uranyl ion and some cations are separated from the sample matrix. The retained uranyl ion along with the cations are eluted with 5 mL of nitric acid (2 mol L(-1)) and after neutralization of the eluent, the extracted uranyl ion is converted to its anionic benzoate complex and is separated from other cations by extraction of its ion pair with malachite green into small volume of chloroform using dispersive liquid-liquid microextraction. The amount of uranium is then determined by the absorption measurement of the extracted ion pair at 621 nm using flow injection spectrophotometry. Under the optimum conditions, with 500 mL of the sample, a preconcentration factor of 1980, a detection limit of 40 ng L(-1), and a relative standard deviation of 4.1% (n=6) at 400 ng L(-1) were obtained. The method was successfully applied to the determination of uranium in mineral water, river water, well water, spring water and sea water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Bubble and Drop Nonlinear Dynamics (BDND)

    Science.gov (United States)

    Trinh, E. H.; Leal, L. Gary; Thomas, D. A.; Crouch, R. K.

    1998-01-01

    Free drops and bubbles are weakly nonlinear mechanical systems that are relatively simple to characterize experimentally in 1-G as well as in microgravity. The understanding of the details of their motion contributes to the fundamental study of nonlinear phenomena and to the measurement of the thermophysical properties of freely levitated melts. The goal of this Glovebox-based experimental investigation is the low-gravity assessment of the capabilities of a modular apparatus based on ultrasonic resonators and on the pseudo- extinction optical method. The required experimental task is the accurate measurements of the large-amplitude dynamics of free drops and bubbles in the absence of large biasing influences such as gravity and levitation fields. A single-axis levitator used for the positioning of drops in air, and an ultrasonic water-filled resonator for the trapping of air bubbles have been evaluated in low-gravity and in 1-G. The basic feasibility of drop positioning and shape oscillations measurements has been verified by using a laptop-interfaced automated data acquisition and the optical extinction technique. The major purpose of the investigation was to identify the salient technical issues associated with the development of a full-scale Microgravity experiment on single drop and bubble dynamics.

  3. Development of a New Microextraction Fiber Combined to On-Line Sample Stacking Capillary Electrophoresis UV Detection for Acidic Drugs Determination in Real Water Samples

    Science.gov (United States)

    Araujo, Lilia; Prieto, Avismelsi; Navalón, Alberto; Vílchez, José Luis; Valera, Paola; Zambrano, Ana; Dugas, Vincent

    2017-01-01

    A new analytical method coupling a (off-line) solid-phase microextraction with an on-line capillary electrophoresis (CE) sample enrichment technique was developed for the analysis of ketoprofen, naproxen and clofibric acid from water samples, which are known as contaminants of emerging concern in aquatic environments. New solid-phase microextraction fibers based on physical coupling of chromatographic supports onto epoxy glue coated needle were studied for the off-line preconcentration of these micropollutants. Identification and quantification of such acidic drugs were done by capillary zone electrophoresis (CZE) using ultraviolet diode array detection (DAD). Further enhancement of concentration sensitivity detection was achieved by on-line CE “acetonitrile stacking” preconcentration technique. Among the eight chromatographic supports investigated, Porapak Q sorbent showed higher extraction and preconcentration capacities. The screening of parameters that influence the microextraction process was carried out using a two-level fractional factorial. Optimization of the most relevant parameters was then done through a surface response three-factor Box-Behnken design. The limits of detection and limits of quantification for the three drugs ranged between 0.96 and 1.27 µg∙L−1 and 2.91 and 3.86 µg∙L−1, respectively. Recovery yields of approximately 95 to 104% were measured. The developed method is simple, precise, accurate, and allows quantification of residues of these micropollutants in Genil River water samples using inexpensive fibers. PMID:28686186

  4. Development of a New Microextraction Fiber Combined to On-Line Sample Stacking Capillary Electrophoresis UV Detection for Acidic Drugs Determination in Real Water Samples

    Directory of Open Access Journals (Sweden)

    Maria Espina-Benitez

    2017-07-01

    Full Text Available A new analytical method coupling a (off-line solid-phase microextraction with an on-line capillary electrophoresis (CE sample enrichment technique was developed for the analysis of ketoprofen, naproxen and clofibric acid from water samples, which are known as contaminants of emerging concern in aquatic environments. New solid-phase microextraction fibers based on physical coupling of chromatographic supports onto epoxy glue coated needle were studied for the off-line preconcentration of these micropollutants. Identification and quantification of such acidic drugs were done by capillary zone electrophoresis (CZE using ultraviolet diode array detection (DAD. Further enhancement of concentration sensitivity detection was achieved by on-line CE “acetonitrile stacking” preconcentration technique. Among the eight chromatographic supports investigated, Porapak Q sorbent showed higher extraction and preconcentration capacities. The screening of parameters that influence the microextraction process was carried out using a two-level fractional factorial. Optimization of the most relevant parameters was then done through a surface response three-factor Box-Behnken design. The limits of detection and limits of quantification for the three drugs ranged between 0.96 and 1.27 µg∙L−1 and 2.91 and 3.86 µg∙L−1, respectively. Recovery yields of approximately 95 to 104% were measured. The developed method is simple, precise, accurate, and allows quantification of residues of these micropollutants in Genil River water samples using inexpensive fibers.

  5. Development of a New Microextraction Fiber Combined to On-Line Sample Stacking Capillary Electrophoresis UV Detection for Acidic Drugs Determination in Real Water Samples.

    Science.gov (United States)

    Espina-Benitez, Maria; Araujo, Lilia; Prieto, Avismelsi; Navalón, Alberto; Vílchez, José Luis; Valera, Paola; Zambrano, Ana; Dugas, Vincent

    2017-07-07

    A new analytical method coupling a (off-line) solid-phase microextraction with an on-line capillary electrophoresis (CE) sample enrichment technique was developed for the analysis of ketoprofen, naproxen and clofibric acid from water samples, which are known as contaminants of emerging concern in aquatic environments. New solid-phase microextraction fibers based on physical coupling of chromatographic supports onto epoxy glue coated needle were studied for the off-line preconcentration of these micropollutants. Identification and quantification of such acidic drugs were done by capillary zone electrophoresis (CZE) using ultraviolet diode array detection (DAD). Further enhancement of concentration sensitivity detection was achieved by on-line CE "acetonitrile stacking" preconcentration technique. Among the eight chromatographic supports investigated, Porapak Q sorbent showed higher extraction and preconcentration capacities. The screening of parameters that influence the microextraction process was carried out using a two-level fractional factorial. Optimization of the most relevant parameters was then done through a surface response three-factor Box-Behnken design. The limits of detection and limits of quantification for the three drugs ranged between 0.96 and 1.27 µg∙L -1 and 2.91 and 3.86 µg∙L -1 , respectively. Recovery yields of approximately 95 to 104% were measured. The developed method is simple, precise, accurate, and allows quantification of residues of these micropollutants in Genil River water samples using inexpensive fibers.

  6. Precipitation Sensitivity to the Mean Radius of Drop Spectra: Comparison of Single- and Double-Moment Bulk Microphysical Schemes

    Directory of Open Access Journals (Sweden)

    Nemanja Kovačević

    2015-04-01

    Full Text Available In this study, two bulk microphysical schemes were compared across mean radius values of the entire drop spectra. A cloud-resolving mesoscale model was used to analyze surface precipitation characteristics. The model included the following microphysical categories: water vapour, cloud droplets, raindrops, ice crystals, snow, graupel, frozen raindrops and hail. Two bulk schemes were used: a single-moment scheme in which the mean radius was specified as a parameter and a double-moment scheme in which the mean radius of drops was calculated diagnostically with a fixed value for the cloud droplet number concentration. Experiments were conducted out for three values of the mean radius (in the single-moment scheme and two cloud droplet number concentrations (in the double-moment scheme. There were large differences in the surface precipitation for the two schemes, the simulated precipitation generated by the double-moment scheme had a higher sensitivity. The single-moment scheme generated an unrealistic collection rate of cloud droplets by raindrops and hail as well as unrealistic evaporation of rain and melting of solid hydrometeors; these processes led to inaccurate timing and amounts of surface precipitation.

  7. Recent Microextraction Techniques for Determination and Chemical Speciation of Selenium

    Directory of Open Access Journals (Sweden)

    Ibrahim Ahmed S. A.

    2017-05-01

    Full Text Available Research designed to improve extraction has led to the development of microextraction techniques (ME, which involve simple, low cost, and effective preconcentrationof analytes in various matrices. This review is concerned with the principles and theoretical background of ME, as well as the development of applications for selenium analysis during the period from 2008 to 2016. Among all ME, dispersive liquid-liquid microextraction was found to be most favorable for selenium. On the other hand, atomic absorption spectrometry was the most frequently used instrumentation. Selenium ME have rarely been coupled to spectrophotometry and X-ray spectrophotometry methods, and there is no published application of ME with electrochemical techniques. We strongly support the idea of using a double preconcentration process, which consists of microextraction prior to preconcentration, followed by selenium determination using cathodic stripping voltammetry (ME-CSV. More attention should focus on the development of accurate, precise, and green methods for selenium analysis.

  8. Determination of carbohydrates in tobacco by pressurized liquid extraction combined with a novel ultrasound-assisted dispersive liquid-liquid microextraction method.

    Science.gov (United States)

    Cai, Kai; Hu, Deyu; Lei, Bo; Zhao, Huina; Pan, Wenjie; Song, Baoan

    2015-07-02

    A novel derivatization-ultrasonic assisted-dispersive liquid-liquid microextraction (UA-DLLME) method for the simultaneous determination of 11 main carbohydrates in tobacco has been developed. The combined method involves pressurized liquid extraction (PLE), derivatization, and UA-DLLME, followed by the analysis of the main carbohydrates with a gas chromatography-flame ionization detector (GC-FID). First, the PLE conditions were optimized using a univariate approach. Then, the derivatization methods were properly compared and optimized. The aldononitrile acetate method combined with the O-methoxyoxime-trimethylsilyl method was used for derivatization. Finally, the critical variables affecting the UA-DLLME extraction efficiency were searched using fractional factorial design (FFD) and further optimized using Doehlert design (DD) of the response surface methodology. The optimum conditions were found to be 44 μL for CHCl3, 2.3 mL for H2O, 11% w/v for NaCl, 5 min for the extraction time and 5 min for the centrifugation time. Under the optimized experimental conditions, the detection limit of the method (LODs) and linear correlation coefficient were found to be in the range of 0.06-0.90 μg mL(-1) and 0.9987-0.9999. The proposed method was successfully employed to analyze three flue-cured tobacco cultivars, among which the main carbohydrate concentrations were found to be very different. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Increased medial foot loading during drop jump in subjects with patellofemoral pain

    DEFF Research Database (Denmark)

    Rathleff, Michael S; Richter, Camilla; Brushøj, Christoffer

    2014-01-01

    PURPOSE: To compare medial-to-lateral plantar forces during drop jump and single leg squat in individuals with and without patellofemoral pain. METHODS: This cross-sectional study compared 23 young adults with patellofemoral pain to 20 age- and sex-matched controls without knee pain. The plantar...... pressure distribution was collected during drop jump and single leg squat using pressure-sensitive Pedar insoles, inserted into a standard flat shoe. The primary outcome was the medial-to-lateral force, quantified as the peak force under the medial forefoot as the percentage of force under the total...... forefoot during drop jump. Secondary outcomes included peak medial-to-lateral force during single leg squat and mean forces during drop jump and single leg squat. RESULTS: The primary outcome showed that individuals with patellofemoral pain had a 22 % higher medial-to-lateral peak force during drop jump...

  10. A comparison of various modes of liquid-liquid based microextraction techniques: determination of picric acid.

    Science.gov (United States)

    Burdel, Martin; Šandrejová, Jana; Balogh, Ioseph S; Vishnikin, Andriy; Andruch, Vasil

    2013-03-01

    Three modes of liquid-liquid based microextraction techniques--namely auxiliary solvent-assisted dispersive liquid-liquid microextraction, auxiliary solvent-assisted dispersive liquid-liquid microextraction with low-solvent consumption, and ultrasound-assisted emulsification microextraction--were compared. Picric acid was used as the model analyte. The determination is based on the reaction of picric acid with Astra Phloxine reagent to produce an ion associate easily extractable by various organic solvents, followed by spectrophotometric detection at 558 nm. Each of the compared procedures has both advantages and disadvantages. The main benefit of ultrasound-assisted emulsification microextraction is that no hazardous chlorinated extraction solvents and no dispersive solvent are necessary. Therefore, this procedure was selected for validation. Under optimized experimental conditions (pH 3, 7 × 10(-5) mol/L of Astra Phloxine, and 100 μL of toluene), the calibration plot was linear in the range of 0.02-0.14 mg/L and the LOD was 7 μg/L of picric acid. The developed procedure was applied to the analysis of spiked water samples. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Combination of dispersive liquid-liquid microextraction with flame atomic absorption spectrometry using microsample introduction for determination of lead in water samples

    International Nuclear Information System (INIS)

    Naseri, Mohammad Taghi; Hemmatkhah, Payam; Hosseini, Mohammad Reza Milani; Assadi, Yaghoub

    2008-01-01

    The dispersive liquid-liquid microextraction (DLLME) was combined with the flame atomic absorption spectrometry (FAAS) for determination of lead in the water samples. Diethyldithiophosphoric acid (DDTP), carbon tetrachloride and methanol were used as chelating agent, extraction solvent and disperser solvent, respectively. A new FAAS sample introduction system was employed for the microvolume nebulization of the non-flammable chlorinated organic extracts. Injection of 20 μL volumes of the organic extract into an air-acetylene flame provided very sensitive spike-like and reproducible signals. Some effective parameters on the microextraction and the complex formation were selected and optimized. These parameters include extraction and disperser solvent type as well as their volume, extraction time, salt effect, pH and amount of the chelating agent. Under the optimized conditions, the enrichment factor of 450 was obtained from a sample volume of 25.0 mL. The enhancement factor, calculated as the ratio of the slopes of the calibration graphs with and without preconcentration, which was about 1000. The calibration graph was linear in the range of 1-70 μg L -1 with a detection limit of 0.5 μg L -1 . The relative standard deviation (R.S.D.) for seven replicate measurements of 5.0 and 50 μg L -1 of lead were 3.8 and 2.0%, respectively. The relative recoveries of lead in tap, well, river and seawater samples at the spiking level of 20 μg L -1 ranged from 93.8 to 106.2%. The characteristics of the proposed method were compared with those of the liquid-liquid extraction (LLE), cloud point extraction (CPE), on-line and off-line solid-phase extraction (SPE) as well as co-precipitation, based on bibliographic data. Operation simplicity, rapidity, low cost, high enrichment factor, good repeatability, and low consumption of the extraction solvent at a microliter level are the main advantages of the proposed method

  12. Redifferentiation of in vitro expanded adult articular chondrocytes by combining the hanging-drop cultivation method with hypoxic environment.

    Science.gov (United States)

    Martinez, Inigo; Elvenes, Jan; Olsen, Randi; Bertheussen, Kjell; Johansen, Oddmund

    2008-01-01

    The main purpose of this work has been to establish a new culturing technique to improve the chondrogenic commitment of isolated adult human chondrocytes, with the aim of being used during cell-based therapies or tissue engineering strategies. By using a rather novel technique to generate scaffold-free three-dimensional (3D) structures from in vitro expanded chondrocytes, we have explored the effects of different culture environments on cartilage formation. Three-dimensional chondrospheroids were developed by applying the hanging-drop technique. Cartilage tissue formation was attempted after combining critical factors such as serum-containing or serum-free media and atmospheric (20%) or low (2.5%) oxygen tensions. The quality of the formed microtissues was analyzed by histology, immunohistochemistry, electron microscopy, and real-time PCR, and directly compared with native adult cartilage. Our results revealed highly organized, 3D tissue-like structures developed by the hanging-drop method. All culture conditions allowed formation of 3D spheroids; however, cartilage generated under low oxygen tension had a bigger size, enhanced matrix deposition, and higher quality of cartilage formation. Real-time PCR demonstrated enhanced expression of cartilage-specific genes such us collagen type II and aggrecan in 3D cultures when compared to monolayers. Cartilage-specific matrix proteins and genes expressed in hanging-drop-developed spheroids were comparable to the expression obtained by applying the pellet culture system. In summary, our results indicate that a combination of 3D cultures of chondrocytes in hanging drops and a low oxygen environment represent an easy and convenient way to generate cartilage-like microstructures. We also show that a new specially tailored serum-free medium is suitable for in vitro cartilage tissue formation. This new methodology opens up the possibility of using autogenously produced solid 3D structures with redifferentiated chondrocytes as an

  13. Effect of coolant velocity on the fragmentation of single melt drops in water

    International Nuclear Information System (INIS)

    Cunningham, M.H.; Frost, D.L.

    1997-01-01

    Flash X-ray radiography and high-speed photography are used to investigate the effect of the coolant velocity on the fine fragmentation of molten tin drops in water. A water cannot is used to accelerate the water to a constant speed of up to 30 m/s. The water is accelerated with a double piston arrangement including a foam shock absorber to eliminate the formation of a shock wave. In this way, the effect of coolant velocity on drop breakup is investigated in the absence of the strong shock wave that is present in most earlier studies. The results show that there is a transition from thermal to hydrodynamic fragmentation through an intermediate stage in which the drops initially undergo hydrodynamic fragmentation followed by the formation of a vapour bubble. For low velocities (9 m/s) this bubble collapses, fragmenting the remainder of the drop while at greater velocities (15 m/s) the drop breaks up within the bubble before it condenses. At 22 and 28 m/s there is no vapour formation and the drop fragments due to hydrodynamic effects. Quantitative analysis of the radiographs is used to determine the mass distribution of the melt during the drop fragmentation. Comparison with earlier work in which the ambient flow is preceded by a strong shock wave indicates that the transition from thermal to hydrodynamic breakup is strongly dependent on the characteristics of the pressure field experienced by the drop. (author)

  14. A combined coalescence gene-dropping tool for evaluating genomic selection in complex scenarios (ms2gs).

    Science.gov (United States)

    Pérez-Enciso, M; Legarra, A

    2016-04-01

    We present ms2gs, a combined coalescence - gene dropping (i.e. backward-forward) simulator for complex traits. It therefore aims at combining the advantages of both approaches. It is primarily conceived for very short term, recent scenarios such as those that are of interest in animal and plant breeding. It is very flexible in terms of defining QTL architecture and SNP ascertainment bias, and it allows for easy modelling of alternative markers such as RADs. It can use real sequence or chip data or generate molecular polymorphisms via the coalescence. It can generate QTL conditional on extant molecular information, such as low-density genotyping. It models (simplistically) sequence, imputation or genotyping errors. It requires as input both genotypic data in plink or ms formats, and a pedigree that is used to perform the gene dropping. By default, it compares accuracy for BLUP, SNP ascertained data, sequence, and causal SNPs. It employs VanRaden's linear (GBLUP) and nonlinear method for incorporating molecular information. To illustrate the program, we present a small application in a half-sib population and a multiparental (MAGIC) cross. The program, manual and examples are available at https://github.com/mperezenciso/ms2gs. © 2016 Blackwell Verlag GmbH.

  15. Trace determination of five triazole fungicide residues in traditional Chinese medicine samples by dispersive solid-phase extraction combined with ultrasound-assisted dispersive liquid-liquid microextraction and UHPLC-MS/MS.

    Science.gov (United States)

    Ma, Shuping; Yuan, Xucan; Zhao, Pengfei; Sun, Hong; Ye, Xiu; Liang, Ning; Zhao, Longshan

    2017-08-01

    A novel and reliable method for determination of five triazole fungicide residues (triadimenol, tebuconazole, diniconazole, flutriafol, and hexaconazol) in traditional Chinese medicine samples was developed using dispersive solid-phase extraction combined with ultrasound-assisted dispersive liquid-liquid microextraction before ultra-high performance liquid chromatography with tandem mass spectrometry. The clean up of the extract was conducted using dispersive solid-phase extraction by directly adding sorbents into the extraction solution, followed by shaking and centrifugation. After that, a mixture of 400 μL trichloromethane (extraction solvent) and 0.5 mL of the above supernatant was injected rapidly into water for the dispersive liquid-liquid microextraction procedure. The factors affecting the extraction efficiency were optimized. Under the optimum conditions, the calibration curves showed good linearity in the range of 2.0-400 (tebuconazole, diniconazole, and hexaconazole) and 4.0-800 ng/g (triadimenol and flutriafol) with the regression coefficients higher than 0.9958. The limit of detection and limit of quantification for the present method were 0.5-1.1 and 1.8-4.0 ng/g, respectively. The recoveries of the target analytes ranged from 80.2 to 103.2%. The proposed method has been successfully applied to the analysis of five triazole fungicides in traditional Chinese medicine samples, and satisfactory results were obtained. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Sensitive Detection of Organophosphorus Pesticides in Medicinal Plants Using Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction Combined with Sweeping Micellar Electrokinetic Chromatography.

    Science.gov (United States)

    Wei, Jin-Chao; Hu, Ji; Cao, Ji-Liang; Wan, Jian-Bo; He, Cheng-Wei; Hu, Yuan-Jia; Hu, Hao; Li, Peng

    2016-02-03

    A simple, rapid, and sensitive method using ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) combined with sweeping micellar electrokinetic chromatography (sweeping-MEKC) has been developed for the determination of nine organophosphorus pesticides (chlorfenvinphos, parathion, quinalphos, fenitrothion, azinphos-ethyl, parathion-methyl, fensulfothion, methidathion, and paraoxon). The important parameters that affect the UA-DLLME and sweeping efficiency were investigated. Under the optimized conditions, the proposed method provided 779.0-6203.5-fold enrichment of the nine pesticides compared to the normal MEKC method. The limits of detection ranged from 0.002 to 0.008 mg kg(-1). The relative standard deviations of the peak area ranged from 1.2 to 6.5%, indicating the good repeatability of the method. Finally, the developed UA-DLLME-sweeping-MEKC method has been successfully applied to the analysis of the investigated pesticides in several medicinal plants, including Lycium chinense, Dioscorea opposite, Codonopsis pilosula, and Panax ginseng, indicating that this method is suitable for the determination of trace pesticide residues in real samples with complex matrices.

  17. Dispersive liquid-liquid microextraction followed by high-performance liquid chromatography-ultraviolet detection to determination of opium alkaloids in human plasma.

    Science.gov (United States)

    Ahmadi-Jouibari, Toraj; Fattahi, Nazir; Shamsipur, Mojtaba; Pirsaheb, Meghdad

    2013-11-01

    A novel, simple, rapid and sensitive dispersive liquid-liquid microextraction method based on the solidification of floating organic drop (DLLME-SFO) combined with high-performance liquid chromatography-ultraviolet detection (HPLC-UV) was used to determine opium alkaloids in human plasma. During the extraction procedure, plasma protein was precipitated by using a mixture of zinc sulfate solution and acetonitrile. Some effective parameters on extraction were studied and optimized. Under the optimum conditions (extraction solvent: 30.0 μl 1-undecanol; disperser solvent: 470 μl acetone; pH: 9; salt addition: 1%(w/v) NaCl and extraction time: 0.5 min), calibration curves are linear in the range of 1.5-1000 μgl(-1) and limit of detections (LODs) are in the range of 0.5-5 μgl(-1). The relative standard deviations (RSDs) for 100 μgl(-1) of morphine and codeine, 10.0 μgl(-1) of papaverine and 20.0 μgl(-1) of noscapine in diluted human plasma are in the range of 4.3-7.4% (n=5). Finally, the method was successfully applied in the determination of opium alkaloids in the actual human plasma samples. The relative recoveries of plasma samples spiked with alkaloids are 88-110.5%. The obtained results show that DLLME-SFO combined with HPLC-UV is a fast and simple method for the determination of opium alkaloids in human plasma. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Solid-phase microextraction for bioconcentration studies according to OECD TG 305

    Energy Technology Data Exchange (ETDEWEB)

    Duering, Rolf-Alexander; Boehm, Leonard [Land Use and Nutrition (IFZ) Justus Liebig University Giessen, Institute of Soil Science and Soil Conservation, Research Centre for BioSystems, Giessen (Germany); Schlechtriem, Christian [Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Schmallenberg (Germany)

    2012-12-15

    An important aim of the European Community Regulation on chemicals and their safe use is the identification of (very) persistent, (very) bioaccumulative, and toxic substances. In other regulatory chemical safety assessments (pharmaceuticals, biocides, pesticides), the identification of such (very) persistent, (very) bioaccumulative, and toxic substances is of increasing importance. Solid-phase microextraction is especially capable of extracting total water concentrations as well as the freely dissolved fraction of analytes in the water phase, which is available for bioconcentration in fish. However, although already well established in environmental analyses to determine and quantify analytes mainly in aqueous matrices, solid-phase microextraction is still a rather unusual method in regulatory ecotoxicological research. Here, the potential benefits and drawbacks of solid-phase microextraction are discussed as an analytical routine approach for aquatic bioconcentration studies according to OECD TG 305, with a special focus on the testing of hydrophobic organic compounds characterized by log K{sub OW}> 5. (orig.)

  19. Separation and determination of copper in bottled water samples by combination of dispersive liquid--liquid microextraction and microsample introduction flame atomic absorption spectrometry.

    Science.gov (United States)

    Citak, Demirhan; Tuzen, Mustafa

    2013-01-01

    A new and simple method for the determination of trace amounts of Cu(II) was developed by combination of dispersive liquid-liquid microextraction (DLLME) preconcentration and microsample introduction flame atomic absorption spectrometry. In this method, ethanol and chloroform were chosen as disperser and extraction solvents, respectively, and 1-nitroso-2-naphthol was used as the complexing agent. The factors affecting the extraction efficiency and determination of Cu(II), including extraction and disperser solvent nature and volume, concentration of the complexing agent, pH of the solution, extraction time, and matrix ions, were investigated. Under optimal conditions, the LOD for Cu(II) was 0.95 microg/L with a preconcentration factor of 70. The RSD was 1.9%. The accuracy of the developed DLLME method was verified by determination of Cu(II) in a certified reference material (NRCC-SLRS-4 river water). The relative error was -3.31%. The developed preconcentration procedure was successfully applied to the analysis of bottled drinking water samples.

  20. Nanostructured polypyrrole for automated and electrochemically controlled in-tube solid-phase microextraction of cationic nitrogen compounds

    International Nuclear Information System (INIS)

    Asiabi, Hamid; Yamini, Yadollah; Rezaei, Fatemeh; Seidi, Shahram

    2015-01-01

    The authors describe an efficient method for microextraction and preconcentration of trace quantities of cationic nitrogen compounds, specifically of anilines. It relies on a combination of electrochemically controlled solid-phase microextraction and on-line in-tube solid-phase microextraction (SPME) using polypyrrole-coated capillaries. Nanostructured polypyrrole was electrically deposited on the inner surface of a stainless steel tube and used as the extraction phase. It also acts as a polypyrrole electrode that was used as a cation exchanger, and a platinum electrode that was used as the anode. The solution to be extracted is passed over the inner surface of the polypyrrole electrode, upon which cations are extracted by applying a negative potential under flow conditions. This method represents an ideal technique for SPME of protonated anilines because it is fast, easily automated, solvent-free, and inexpensive. Under optimal conditions, the limits of detection are in the 0.10–0.30 μg L -1 range. The method works in the 0.10 to 300 μg L -1 concentration range. The inter- and intra-assay precisions (RSD%; for n = 3) range from 5.1 to 7.5 % and from 4.7 to 6.0 % at the concentration levels of 2, 10 and 20 μg L -1 , respectively. The EC-in-tube SPME method was successfully applied to the analysis of methyl-, 4-chloro-, 3-chloro and 3,4-dichloroanilines in (spiked) water samples. (author)

  1. Development of a dispersive liquid-liquid microextraction method for the determination of polychlorinated biphenyls in water

    International Nuclear Information System (INIS)

    Rezaei, Fatemeh; Bidari, Araz; Birjandi, Afsoon Pajand; Milani Hosseini, Mohammad Reza; Assadi, Yaghoub

    2008-01-01

    A very simple and powerful microextraction procedure, the dispersive liquid-liquid microextraction (DLLME), was used for the determination of the content of 10 polychlorinated biphenyls (PCBs) in water samples, using gas chromatography coupled with electron-capture detection (GC-ECD). The appropriate amount of acetone (disperser solvent) and chlorobenzene (extraction solvent) at the microlevel volume was used for this procedure. The conditions for the microextraction performance were investigated and optimized. The optimized method exhibited a good linearity (R 2 > 0.996) over the studied range (0.005-2 μg L -1 ), illustrating a satisfactory precision level with R.S.D. values between 4.1% and 11.0%. The values of the detection limit (S/N = 3) were found to be lower than 0.002 μg L -1 . Furthermore, a large enrichment factor for the analytes (up to a 540-fold) was achieved in a very short time for only a 5.00-mL water sample. The effectiveness of the method towards real samples was tested by analyzing well, river and seawater samples. The relative recoveries of the well, river and seawater samples, which had been spiked with different levels of PCBs were equal to 92.0-114.0%, 97.0-102.0% and 96.0-103.0%, respectively. The attained results demonstrated that DLLME combined with GC-ECD was a fast and inexpensive technique for the PCBs determination in water samples

  2. Voltage Drop in a Ferroelectric Single Layer Capacitor by Retarded Domain Nucleation.

    Science.gov (United States)

    Kim, Yu Jin; Park, Hyeon Woo; Hyun, Seung Dam; Kim, Han Joon; Kim, Keum Do; Lee, Young Hwan; Moon, Taehwan; Lee, Yong Bin; Park, Min Hyuk; Hwang, Cheol Seong

    2017-12-13

    Ferroelectric (FE) capacitor is a critical electric component in microelectronic devices. Among many of its intriguing properties, the recent finding of voltage drop (V-drop) across the FE capacitor while the positive charges flow in is especially eye-catching. This finding was claimed to be direct evidence that the FE capacitor is in negative capacitance (NC) state, which must be useful for (infinitely) high capacitance and ultralow voltage operation of field-effect transistors. Nonetheless, the NC state corresponds to the maximum energy state of the FE material, so it has been widely accepted in the community that the material alleviates that state by forming ferroelectric domains. This work reports a similar V-drop effect from the 150 nm thick epitaxial BaTiO 3 ferroelectric thin film, but the interpretation was completely disparate; the V-drop can be precisely simulated by the reverse domain nucleation and propagation of which charge effect cannot be fully compensated for by the supplied charge from the external charge source. The disappearance of the V-drop effect was also observed by repeated FE switching only up to 10 cycles, which can hardly be explained by the involvement of the NC effect. The retained reverse domain nuclei even after the subsequent poling can explain such behavior.

  3. Clinical effect observation of pranoprofen combined with deproteinized calf blood extract eye drops for moderate to severe dry eye

    Directory of Open Access Journals (Sweden)

    Jing-Hua Qiu

    2018-04-01

    Full Text Available AIM: To explore clinical effect of pranoprofen combined with deproteinized calf blood extract eye drops for moderate to severe dry eye. METHODS: A total of 84 patients(132 eyeswho received treatment at the Zhengzhou Second Hospital were selected from January 2016 to January 2017. According to random number table method they were divided into control group 42 cases(68 eyesand observation group 42 cases(64 eyes, the control group using polyvinyl alcohol eye drops with pranoprofen, observation group with pranoprofen with deproteinized extract of calf blood eye drops. Subjective and objective scores before and after treatment were recorded. RESULTS: There was no statistically significant difference on the four objective indicators of pretreatment FL, BUT, SⅠt, and vision between the two groups(P>0.05. Dry eye symptom scores of the two groups decreased after treatment, both with significantly different(PPPPCONCLUSION: The clinical effect of praprofen on the treatment of moderate to severe dry eye with the deproteinized calf blood extract is better.

  4. Meta analysis on clinical effectiveness of Chinese medicine physiotherapy combined with tropicamide eye drops for pseudomyopia

    OpenAIRE

    Dan Li; Ling Shen; En-Li Deng

    2018-01-01

    AIM:To evaluate the curative effect of Chinese medicine physiotherapy combined with tropicamide eye drops to treat pseudomyopia in children and adolescent. METHODS: We collected randomized controlled trials from CNKI, CBM, Wanfang database, PubMed, EMBASE and Cochrane Library in 2000-2015, and the improved Jadad scale was used to evaluate the methodology of the literature, and the data was extracted. The Review Manager 5.3 statistical software was used for meta analysis. RESULTS: A total of 5...

  5. Selective microextraction of carbaryl and naproxen using organic–inorganic monolithic columns containing a double molecular imprint

    International Nuclear Information System (INIS)

    Zhang, Ting; Ma, Chao; Wu, Mei; Ye, Yong; Chen, Huaixia; Huang, Jianlin

    2013-01-01

    We report on an organic–inorganic hybrid material that was double imprinted with the insecticide carbaryl and the anti-inflammatory drug naproxen by a single-step method and that can serve for selective microextraction of the two analytes. The materials, in the form of monolithic columns, were characterized by scanning electron microscopy and Fourier transform IR spectra. A simple, rapid and sensitive method was then developed for the simultaneous determination of carbaryl and naproxen in lettuce and river water using these columns for microextraction, HPLC for separation, and a diode array for UV detection. The limits of detection (at S/N = 3) and quantification (at S/N = 10) are in the ranges of 2.5 – 8.8 μg kg −1 and 2.3 – 8.0 μg L −1 for lettuce and Yangtze River water, respectively. The recoveries of this method range from 93.0 to 108 % (in case of analyzing lettuce and river water), and relative standard deviations are <8.9 %. (author)

  6. The recent developments in dispersive liquid–liquid microextraction for preconcentration and determination of inorganic analytes

    Directory of Open Access Journals (Sweden)

    H.M. Al-Saidi

    2014-12-01

    Full Text Available Recently, increasing interest on the use of dispersive liquid–liquid microextraction (DLLME developed in 2006 by Rezaee has been found in the field of separation science. DLLME is miniaturized format of liquid–liquid extraction in which acceptor-to-donor phase ratio is greatly reduced compared with other methods. In the present review, the combination of DLLME with different analytical techniques such as atomic absorption spectrometry (AAS, inductively coupled plasma-optical emission spectrometry (ICP-OES, gas chromatography (GC, and high-performance liquid chromatography (HPLC for preconcentration and determination of inorganic analytes in different types of samples will be discussed. Recent developments in DLLME, e.g., displacement-DLLME, the use of an auxiliary solvent for adjustment of density of extraction mixture, and the application of ionic liquid-based DLLME in determination of inorganic species even in the presence of high content of salts are presented in the present review. Finally, comparison of DLLME with the other liquid-phase microextraction approaches and limitations of this technique are provided.

  7. Rapid and sensitive determination of phytosterols in functional foods and medicinal herbs by using UHPLC-MS/MS with microwave-assisted derivatization combined with dual ultrasound-assisted dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Sun, Jing; Zhao, Xian-En; Dang, Jun; Sun, Xiaoyan; Zheng, Longfang; You, Jinmao; Wang, Xiao

    2017-02-01

    In this work, a hyphenated technique of dual ultrasound-assisted dispersive liquid-liquid microextraction combined with microwave-assisted derivatization followed by ultra high performance liquid chromatography tandem mass spectrometry has been developed for the determination of phytosterols in functional foods and medicinal herbs. Multiple reaction monitoring mode was used for the tandem mass spectrometry detection. A mass spectrometry sensitive reagent, 4'-carboxy-substituted rosamine, has been used as the derivatization reagent for five phytosterols, and internal standard diosgenin was used for the first time. Parameters for the dual microextraction, microwave-assisted derivatization, and ultra high performance liquid chromatography tandem mass spectrometry were all optimized in detail. Satisfactory linearity, recovery, repeatability, accuracy and precision, absence of matrix effect, extremely low limits of detection (0.005-0.015 ng/mL) and limits of quantification (0.030-0.10 ng/mL) were achieved. The proposed method was compared with previously reported methods. It showed better sensitivity, selectivity, and accuracy. The matrix effect was also significantly reduced. The proposed method was successfully applied to the determination of five phytosterols in vegetable oil (sunflower oil, olive oil, corn oil, peanut oil), milk and orange juice (soymilk, peanut milk, orange juice), and medicinal herbs (Ginseng, Ganoderma lucidum, Cordyceps, Polygonum multiflorum) for the quality control of functional foods and medicinal herbs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Pressure drop and heat transfer of a mercury single-phase flow and an air-mercury two-phase flow in a helical tube under a strong magnetic field

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Momozaki, Yoichi

    2000-01-01

    For the reduction of a large magneto-hydrodynamic (MHD) pressure drop of a liquid metal single-phase flow, a liquid metal two-phase flow cooling system has been proposed. As a fundamental study, MHD pressure drops and heat transfer characteristics of a mercury single-phase flow and an air-mercury two-phase flow were experimentally investigated. A strong transverse magnetic field relevant to the fusion reactor conditions was applied to the mercury single-phase flow and the air-mercury two-phase flow in a helically coiled tube that was inserted in the vertical bore of a solenoidal superconducting magnet. It was found that MHD pressure drops of a mercury single-phase flow in the helically coiled tube were nearly equal to those in a straight tube. The Nusselt number at an outside wall was higher than that at an inside wall both in the mercury single-phase flow in the absence and presence of a magnetic field. The Nusselt number of the mercury single-phase flow decreased, increased and again decreased with an increase in the magnetic flux density. MHD pressure drops did not decrease appreciably by injecting air into a mercury flow and changing the mercury flow into the air-mercury two-phase flow. Remarkable heat transfer enhancement did not appear by the air injection. The injection of air into the mercury flow enhanced heat transfer in the ranges of high mercury flow rate and low magnetic flux density, possibly due to the agitation effect of air bubbles. The air injection deteriorated heat transfer in the range of low mercury flow rates possibly because of the occupation of air near heating wall

  9. Magnetic silica nanomaterials for solid-phase extraction combined with dispersive liquid-liquid microextraction of ultra-trace quantities of plasticizers

    International Nuclear Information System (INIS)

    Yamini, Yadollah; Faraji, Mohammad; Adeli, Mahnaz

    2015-01-01

    We are presenting surface modified magnetic silica nanoparticles (m-Si-NPs) for use in solid-phase extraction combined with dispersive liquid-liquid microextraction (DLLME). The m-Si-NPs were surface-functionalized with octadecyl groups to give a material for the extraction of the plasticizers dibutyl phthalate, di(2-ethylhexyl) adipate and di(2-ethylhexyl) phthalate from water samples. The functionalized m-Si-NPs were characterized by scanning electron microscopy, FTIR spectroscopy, thermal gravimetric analysis, and vibrating sample magnetometry. The results showed that the m-Si-NPs were well functionalized with octadecyl groups. The effects of various experimental variables on the extraction efficiencies were investigated. The analytes were quantified by GC/FID. Under optimal conditions, the calibration plots are linear in the range from 0.01 to 100 μg∙L -1 , and very high enrichment factors (mean value ∼20,000) were obtained. As a result of the high enrichment factors, the detection limits are as low as 2–3 ng∙L -1 . The method was successfully employed to the extraction of the plasticizers from (spiked) water samples, and recoveries are in the order of 93.9 to 106.7 %. The method is low cost, fast, and very sensitive (author)

  10. CPAS Preflight Drop Test Analysis Process

    Science.gov (United States)

    Englert, Megan E.; Bledsoe, Kristin J.; Romero, Leah M.

    2015-01-01

    Throughout the Capsule Parachute Assembly System (CPAS) drop test program, the CPAS Analysis Team has developed a simulation and analysis process to support drop test planning and execution. This process includes multiple phases focused on developing test simulations and communicating results to all groups involved in the drop test. CPAS Engineering Development Unit (EDU) series drop test planning begins with the development of a basic operational concept for each test. Trajectory simulation tools include the Flight Analysis and Simulation Tool (FAST) for single bodies, and the Automatic Dynamic Analysis of Mechanical Systems (ADAMS) simulation for the mated vehicle. Results are communicated to the team at the Test Configuration Review (TCR) and Test Readiness Review (TRR), as well as at Analysis Integrated Product Team (IPT) meetings in earlier and intermediate phases of the pre-test planning. The ability to plan and communicate efficiently with rapidly changing objectives and tight schedule constraints is a necessity for safe and successful drop tests.

  11. Two-step microextraction combined with high performance liquid chromatographic analysis of pyrethroids in water and vegetable samples.

    Science.gov (United States)

    Mukdasai, Siriboon; Thomas, Chunpen; Srijaranai, Supalax

    2014-03-01

    Dispersive liquid microextraction (DLME) combined with dispersive µ-solid phase extraction (D-µ-SPE) has been developed as a new approach for the extraction of four pyrethroids (tetramethrin, fenpropathrin, deltamethrin and permethrin) prior to the analysis by high performance liquid chromatography (HPLC) with UV detection. 1-Octanol was used as the extraction solvent in DLME. Magnetic nanoparticles (Fe3O4) functionalized with 3-aminopropyl triethoxysilane (APTS) were used as the dispersive in DLME and as the adsorbent in D-µ-SPE. The extracted pyrethroids were separated within 30 min using isocratic elution with acetonitrile:water (72:28). The factors affecting the extraction efficiency were investigated. Under the optimum conditions, the enrichment factors were in the range of 51-108. Linearity was obtained in the range 0.5-400 ng mL(-1) (tetramethrin) and 5-400 ng mL(-1) (fenpropathrin, deltamethrin and permethrin) with the correlation coefficients (R(2)) greater than 0.995. Detection limits were 0.05-2 ng mL(-1) (water samples) and 0.02-2.0 ng g(-1) (vegetable samples). The relative standard deviations of peak area varied from 1.8 to 2.5% (n=10). The extraction recoveries of the four pyrethroids in field water and vegetable samples were 91.7-104.5%. The proposed method has high potential for use as a sensitive method for determination of pyrethroid residues in water and vegetable samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Speciation of mercury in water samples by dispersive liquid-liquid microextraction combined with high performance liquid chromatography-inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Jia Xiaoyu; Han Yi; Liu Xinli; Duan Taicheng; Chen Hangting

    2011-01-01

    The dispersive liquid-liquid microextraction (DLLME) combined with high performance liquid chromatography-inductively coupled plasma mass spectrometry for the speciation of mercury in water samples was described. Firstly methylmercury (MeHg + ) and mercury (Hg 2+ ) were complexed with sodium diethyldithiocarbamate, and then the complexes were extracted into carbon tetrachloride by using DLLME. Under the optimized conditions, the enrichment factors of 138 and 350 for MeHg + and Hg 2+ were obtained from only 5.00 mL sample solution. The detection limits of the analytes (as Hg) were 0.0076 ng mL -1 for MeHg + and 0.0014 ng mL -1 for Hg 2+ , respectively. The relative standard deviations for ten replicate measurements of 0.5 ng mL -1 MeHg + and Hg 2+ were 6.9% and 4.4%, respectively. Standard reference material of seawater (GBW(E)080042) was analyzed to verify the accuracy of the method and the results were in good agreement with the certified values. Finally, the developed method was successfully applied for the speciation of mercury in three environmental water samples.

  13. In-line carbon nanofiber reinforced hollow fiber-mediated liquid phase microextraction using a 3D printed extraction platform as a front end to liquid chromatography for automatic sample preparation and analysis: A proof of concept study.

    Science.gov (United States)

    Worawit, Chanatda; Cocovi-Solberg, David J; Varanusupakul, Pakorn; Miró, Manuel

    2018-08-01

    A novel concept for automation of nanostructured hollow-fiber supported microextraction, combining the principles of liquid-phase microextraction (LPME) and sorbent microextraction synergically, using mesofluidic platforms is proposed herein for the first time, and demonstrated with the determination of acidic drugs (namely, ketoprofen, ibuprofen, diclofenac and naproxen) in urine as a proof-of-concept applicability. Dispersed carbon nanofibers (CNF) are immobilized in the pores of a single-stranded polypropylene hollow fiber (CNF@HF) membrane, which is thereafter accommodated in a stereolithographic 3D-printed extraction chamber without glued components for ease of assembly. The analytical method involves continuous-flow extraction of the acidic drugs from a flowing stream donor (pH 1.7) into an alkaline stagnant acceptor (20 mmol L -1 NaOH) containing 10% MeOH (v/v) across a dihexyl ether impregnated CNF@HF membrane. The flow setup features entire automation of the microextraction process including regeneration of the organic film and on-line injection of the analyte-laden acceptor phase after downstream neutralization into a liquid chromatograph (LC) for reversed-phase core-shell column-based separation. Using a 12-cm long CNF@HF and a sample volume of 6.4 mL, linear dynamic ranges of ketoprofen, naproxen, diclofenac and ibuprofen, taken as models of non-steroidal anti-inflammatory drugs, spanned from ca. 5-15 µg L -1 to 500 µg L -1 with enhancement factors of 43-97 (against a direct injection of 10 µL standards into LC), and limits of detection from 1.6 to 4.3 µg L -1 . Relative recoveries in real urine samples ranged from 97% to 105%, thus demonstrating the reliability of the automatic CNF@HF-LPME method for in-line matrix clean-up and determination of drugs in urine at therapeutically relevant concentrations. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Analysis of volatile components from Melipona beecheii geopropolis from Southeast Mexico by headspace solid-phase microextraction.

    Science.gov (United States)

    Torres-González, Ahira; López-Rivera, Paulina; Duarte-Lisci, Georgina; López-Ramírez, Ángel; Correa-Benítez, Adriana; Rivero-Cruz, J Fausto

    2016-01-01

    A head space solid-phase microextraction method combined with gas chromatography-mass spectrometry was developed and optimised to extract and analyse volatile compounds of Melipona beecheii geopropolis. Seventy-three constituents were identified using this technique in the sample of geopropolis collected. The main compounds detected include β-fenchene (14.53-15.45%), styrene (8.72-9.98%), benzaldehyde (7.44-7.82%) and the most relevant volatile components presents at high level in the geopropolis were terpenoids (58.17%).

  15. Drop impact splashing and air entrapment

    KAUST Repository

    Thoraval, Marie-Jean

    2013-03-01

    Drop impact is a canonical problem in fluid mechanics, with numerous applications in industrial as well as natural phenomena. The extremely simple initial configuration of the experiment can produce a very large variety of fast and complex dynamics. Scientific progress was made in parallel with major improvements in imaging and computational technologies. Most recently, high-speed imaging video cameras have opened the exploration of new phenomena occurring at the micro-second scale, and parallel computing allowed realistic direct numerical simulations of drop impacts. We combine these tools to bring a new understanding of two fundamental aspects of drop impacts: splashing and air entrapment. The early dynamics of a drop impacting on a liquid pool at high velocity produces an ejecta sheet, emerging horizontally in the neck between the drop and the pool. We show how the interaction of this thin liquid sheet with the air, the drop or the pool, can produce micro-droplets and bubble rings. Then we detail how the breakup of the air film stretched between the drop and the pool for lower impact velocities can produce a myriad of micro-bubbles.

  16. Simultaneous extraction and quantification of albendazole and triclabendazole using vortex-assisted hollow-fiber liquid-phase microextraction combined with high-performance liquid chromatography.

    Science.gov (United States)

    Asadi, Mohammad; Haji Shabani, Ali Mohammad; Dadfarnia, Shayessteh

    2016-06-01

    A novel, simple, and rapid vortex-assisted hollow-fiber liquid-phase microextraction method was developed for the simultaneous extraction of albendazole and triclabendazole from various matrices before their determination by high-performance liquid chromatography with fluorescence detection. Several factors influencing the microextraction efficiency including sample pH, nature and volume of extraction solvent, ionic strength, vortex time, and sample volume were investigated and optimized. Under the optimal conditions, the limits of detection were 0.08 and 0.12 μg/L for albendazole and triclabendazole, respectively. The calibration curves were linear in the concentration ranges of 0.3-50.0 and 0.4-50.0 μg/L with the coefficients of determination of 0.9999 and 0.9995 for albendazole and triclabendazole, respectively. The interday and intraday relative standard deviations for albendazole and triclabendazole at three concentration levels (1.0, 10.0, and 30.0 μg/L) were in the range of 6.0-11.0 and 5.0-7.9%, respectively. The developed method was successfully applied to determine albendazole and triclabendazole in water, milk, honey, and urine samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Study of the mechanism of acetonitrile stacking and its application for directly combining liquid-phase microextraction with micellar electrokinetic chromatography.

    Science.gov (United States)

    Sun, Jingru; Feng, Jing; Shi, Ludi; Liu, Laping; He, Hui; Fan, Yingying; Hu, Shibin; Liu, Shuhui

    2016-08-26

    Acetonitrile stacking is an online concentration method that is distinctive due to its inclusion of a high proportion of organic solvent in sample matrices. We previously designed a universal methodology for the combination of liquid-phase microextraction (LPME) and capillary electrophoresis (CE) using acetonitrile stacking and micellar electrokinetic chromatography (MEKC) mode, thereby achieving large-volume injection of the diluted LPME extractant and the online concentration. In this report, the methodology was extended to the analysis of highly substituted hydrophobic chlorophenols in wines using diethyl carbonate as the extractant. Additionally, the mechanism of acetonitrile stacking was studied. The results indicated that the combination of LPME and MEKC exhibited good analytical performance: with ∼40-fold concentration by LPME, a 20-cm (33% of the total length) sample plug injection of an eight-fold dilution of diethyl carbonate with the organic solvent-saline solution produced enrichments higher by a factor of 260-791. Limits of qualification ranged from 5.5 to 16.0ng/mL. Acceptable reproducibilities of lower than 1.8% for migration time and 8.6% for peak areas were obtained. A dual stacking mechanism of acetonitrile stacking was revealed, involving transient isotachophoresis plus pH-junction stacking. The latter was associated with a pH shift induced by the presence of acetonitrile. The pseudo-stationary phase (Brij-35) played an important role in reducing the CE running time by weakening the isotachophoretic migration of the analyte ions following Cl(-) ions. The combination of acetonitrile stacking and nonionic micelle-based MEKC appears to be a perfect match for introducing water-immiscible LPME extractants into an aqueous CE system and can thus significantly expand the application of LPME-CE in green analytical chemistry. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Wall modified photonic crystal fibre capillaries as porous layer open tubular columns for in-capillary micro-extraction and capillary chromatography

    International Nuclear Information System (INIS)

    Kazarian, Artaches A.; Sanz Rodriguez, Estrella; Deverell, Jeremy A.; McCord, James; Muddiman, David C.; Paull, Brett

    2016-01-01

    Wall modified photonic crystal fibre capillary columns for in-capillary micro-extraction and liquid chromatographic separations is presented. Columns contained 126 internal parallel 4 μm channels, each containing a wall bonded porous monolithic type polystyrene-divinylbenzene layer in open tubular column format (PLOT). Modification longitudinal homogeneity was monitored using scanning contactless conductivity detection and scanning electron microscopy. The multichannel open tubular capillary column showed channel diameter and polymer layer consistency of 4.2 ± 0.1 μm and 0.26 ± 0.02 μm respectively, and modification of 100% of the parallel channels with the monolithic polymer. The modified multi-channel capillaries were applied to the in-capillary micro-extraction of water samples. 500 μL of water samples containing single μg L"−"1 levels of polyaromatic hydrocarbons were extracted at a flow rate of 10 μL min"−"1, and eluted in 50 μL of acetonitrile for analysis using HPLC with fluorescence detection. HPLC LODs were 0.08, 0.02 and 0.05 μg L"−"1 for acenaphthene, anthracene and pyrene, respectively, with extraction recoveries of between 77 and 103%. The modified capillaries were also investigated briefly for direct application to liquid chromatographic separations, with the retention and elution of a standard protein (cytochrome c) under isocratic conditions demonstrated, proving chromatographic potential of the new column format, with run-to-run retention time reproducibility of below 1%. - Highlights: • Novel PS-DVB modified photonic crystal fibres for in-capillary micro-extraction. • New method for micro-extraction of PAHs and HPLC-FL detection at sub-ppb levels. • Demonstration of PS-DVB modified photonic crystal fibres for capillary bioseparations.

  19. Wall modified photonic crystal fibre capillaries as porous layer open tubular columns for in-capillary micro-extraction and capillary chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Kazarian, Artaches A. [Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia); W.M. Keck FT-ICR-MS Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC (United States); Sanz Rodriguez, Estrella; Deverell, Jeremy A. [Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia); McCord, James; Muddiman, David C. [W.M. Keck FT-ICR-MS Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC (United States); Paull, Brett, E-mail: Brett.Paull@utas.edu.au [Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia); ARC Centre of Excellence for Electromaterials Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia)

    2016-01-28

    Wall modified photonic crystal fibre capillary columns for in-capillary micro-extraction and liquid chromatographic separations is presented. Columns contained 126 internal parallel 4 μm channels, each containing a wall bonded porous monolithic type polystyrene-divinylbenzene layer in open tubular column format (PLOT). Modification longitudinal homogeneity was monitored using scanning contactless conductivity detection and scanning electron microscopy. The multichannel open tubular capillary column showed channel diameter and polymer layer consistency of 4.2 ± 0.1 μm and 0.26 ± 0.02 μm respectively, and modification of 100% of the parallel channels with the monolithic polymer. The modified multi-channel capillaries were applied to the in-capillary micro-extraction of water samples. 500 μL of water samples containing single μg L{sup −1} levels of polyaromatic hydrocarbons were extracted at a flow rate of 10 μL min{sup −1}, and eluted in 50 μL of acetonitrile for analysis using HPLC with fluorescence detection. HPLC LODs were 0.08, 0.02 and 0.05 μg L{sup −1} for acenaphthene, anthracene and pyrene, respectively, with extraction recoveries of between 77 and 103%. The modified capillaries were also investigated briefly for direct application to liquid chromatographic separations, with the retention and elution of a standard protein (cytochrome c) under isocratic conditions demonstrated, proving chromatographic potential of the new column format, with run-to-run retention time reproducibility of below 1%. - Highlights: • Novel PS-DVB modified photonic crystal fibres for in-capillary micro-extraction. • New method for micro-extraction of PAHs and HPLC-FL detection at sub-ppb levels. • Demonstration of PS-DVB modified photonic crystal fibres for capillary bioseparations.

  20. Development of headspace solid-phase microextraction method for ...

    African Journals Online (AJOL)

    A headspace solid-phase microextraction (HS-SPME) method was developed as a preliminary investigation using univariate approach for the analysis of 14 multiclass pesticide residues in fruits and vegetable samples. The gas chromatography mass spectrometry parameters (desorption temperature and time, column flow ...

  1. Evaluation of Carbon Nanotubes Functionalized Polydimethylsiloxane Based Coatings for In-Tube Solid Phase Microextraction Coupled to Capillary Liquid Chromatography

    OpenAIRE

    Neus Jornet-Martínez; Pascual Serra-Mora; Yolanda Moliner-Martínez; Rosa Herráez-Hernández; Pilar Campíns-Falcó

    2015-01-01

    In the present work, the performance of carbon nanotubes (c-CNTs) functionalized polydimethylsiloxane (PDMS) based coatings as extractive phases for in-tube solid phase microextraction (IT-SPME) coupled to Capillary LC (CapLC) has been evaluated. Carboxylic-single walled carbon nanotubes (c-SWNTs) and carboxylic-multi walled carbon nanotubes (c-MWNTs) have been immobilized on the activated surface of PDMS capillary columns. The effect of different percentages of diphenyl groups in the PDMS ex...

  2. Pressure drop in flashing flow through obstructions

    International Nuclear Information System (INIS)

    Weinle, M.E.; Johnston, B.S.

    1985-01-01

    An experiment was designed to investigate the pressure drop for flashing flow across obstructions of different geometries at various flow rates. Tests were run using two different orifices to determine if the two-phase pressure drop could be characterized by the single phase loss coefficient and the general behavior of the two-phase multiplier. For the geometries studied, it was possible to correlate the multiplier in a geometry-independent fashion

  3. Pressure drop in T's in concentric ducts

    International Nuclear Information System (INIS)

    Shock, R.A.W.

    1983-02-01

    A set of experiments has been carried out to measure the pressure drop characteristics of single-phase flow in dividing and joining right-angled T's in a concentric ducting system. These have been compared with measured pressure drops in a simple round tube system. In most tests with the concentric system the number of velocity heads lost is either similar to, or more than, the value for the round tubes. (author)

  4. Determination of parabens using two microextraction methods coupled with capillary liquid chromatography-UV detection.

    Science.gov (United States)

    Chen, Chen-Wen; Hsu, Wen-Chan; Lu, Ya-Chen; Weng, Jing-Ru; Feng, Chia-Hsien

    2018-02-15

    Parabens are common preservatives and environmental hormones. As such, possible detrimental health effects could be amplified through their widespread use in foods, cosmetics, and pharmaceutical products. Thus, the determination of parabens in such products is of particular importance. This study explored vortex-assisted dispersive liquid-liquid microextraction techniques based on the solidification of a floating organic drop (VA-DLLME-SFO) and salt-assisted cloud point extraction (SA-CPE) for paraben extraction. Microanalysis was performed using a capillary liquid chromatography-ultraviolet detection system. These techniques were modified successfully to determine four parabens in 19 commercial products. The regression equations of these parabens exhibited good linearity (r 2 =0.998, 0.1-10μg/mL), good precision (RSD<5%) and accuracy (RE<5%), reduced reagent consumption and reaction times (<6min), and excellent sample versatility. VA-DLLME-SFO was also particularly convenient due to the use of a solidified extract. Thus, the VA-DLLME-SFO technique was better suited to the extraction of parabens from complex matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Simple fabrication of solid phase microextraction fiber employing nitrogen-doped ordered mesoporous polymer by in situ polymerization.

    Science.gov (United States)

    Zheng, Juan; Liang, Yeru; Liu, Shuqin; Jiang, Ruifen; Zhu, Fang; Wu, Dingcai; Ouyang, Gangfeng

    2016-01-04

    A combination of nitrogen-doped ordered mesoporous polymer (NOMP) and stainless steel wires led to highly sensitive, selective, and stable solid phase microextraction (SPME) fibers by in situ polymerization for the first time. The ordered structure of synthesized NOMP coating was illustrated by transmission electron microscopy (TEM) and X-ray diffraction (XRD), and microscopy analysis by scanning electron microscopy (SEM) confirmed a homogenous morphology of the NOMP-coated fiber. The NOMP-coated fiber was further applied for the extraction of organochlorine pesticides (OCPs) with direct-immersion solid-phase microextraction (DI-SPME) method followed by gas chromatography-mass spectrometry (GC-MS) quantification. Under the optimized conditions, low detection limits (0.023-0.77 ng L(-1)), a wide linear range (9-1500 ng L(-1)), good repeatability (3.5-8.1%, n=6) and excellent reproducibility (1.5-8.3%, n=3) were achieved. Moreover, the practical feasibility of the proposed method was evaluated by determining OCPs in environmental water samples with satisfactory recoveries. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Miniaturized preconcentration methods based on liquid-liquid extraction and their application in inorganic ultratrace analysis and speciation: A review

    International Nuclear Information System (INIS)

    Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos

    2009-01-01

    Liquid-liquid extraction (LLE) is widely used as a pre-treatment technique for separation and preconcentration of both organic and inorganic analytes from aqueous samples. Nevertheless, it has several drawbacks, such as emulsion formation or the use of large volumes of solvents, which makes LLE expensive and labour intensive. Therefore, miniaturization of conventional liquid-liquid extraction is needed. The search for alternatives to the conventional LLE using negligible volumes of extractant and the minimum number of steps has driven the development of three new miniaturized methodologies, i.e. single-drop microextraction (SDME), hollow fibre liquid-phase microextraction (HF-LPME) and dispersive liquid-liquid microextraction (DLLME). The aim of this paper is to provide an overview of these novel preconcentration approaches and their potential use in analytical labs involved in inorganic (ultra)trace analysis and speciation. Relevant applications to the determination of metal ions, metalloids, organometals and non-metals are included

  7. Single-leg drop landing motor control strategies following acute ankle sprain injury.

    Science.gov (United States)

    Doherty, C; Bleakley, C; Hertel, J; Caulfield, B; Ryan, J; Delahunt, E

    2015-08-01

    No research currently exists investigating the effect of acute injury on single-limb landing strategies. The aim of the current study was to analyze the coordination strategies of participants in the acute phase of lateral ankle sprain (LAS) injury. Thirty-seven participants with acute, first-time LAS and 19 uninjured participants completed a single-leg drop landing task on both limbs. Three-dimensional kinematic (angular displacement) and sagittal plane kinetic (moment-of-force) data were acquired for the joints of the lower extremity from 200 ms pre-initial contact (IC) to 200 ms post-IC. The peak magnitude of the vertical component of the ground reaction force (GRF) was also computed. Injured participants displayed a bilateral increase in hip flexion, with altered transverse plane kinematic profiles at the knee and ankle for both limbs (P < 0.05). This coincided with a reduction in the net-supporting flexor moment of the lower extremity (P < 0.05) and magnitude of the peak vertical GRF for the injured limb (21.82 ± 2.44 N/kg vs 24.09 ± 2.77 N/kg; P = 0.013) in injured participants compared to control participants. These results demonstrate that compensatory movement strategies are utilized by participants with acute LAS to successfully reduce the impact forces of landing. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Efficacy and tolerability of preservative-free eye drops containing a fixed combination of dorzolamide and timolol in glaucoma patients.

    Science.gov (United States)

    Renieri, Giulia; Führer, Katrin; Scheithe, Karl; Lorenz, Katrin; Pfeiffer, Norbert; Thieme, Hagen

    2010-12-01

    To evaluate the efficacy and tolerability of preservative-free eye drops (dorzolamide/timolol) in routine management of preservative-sensitive glaucoma patients. Data from 2,298 glaucoma patients requiring intraocular pressure (IOP) reduction and suffering from intolerance to benzalkonium chloride or active agents of previously used eye drops were valid for baseline and safety analysis in this prospective, open, noncomparative, multicenter, noninterventional study. Patients were treated with preservative-free dorzolamide/timolol eye drops for 12 weeks. Main efficacy endpoint was IOP reduction after 12 weeks of treatment. Two thousand forty-nine patients were considered for efficacy analysis. Tolerability was assessed by evaluating adverse drug reactions. Mean baseline IOP was 20.8 mmHg. Baseline IOP was reduced to 16.7 mmHg after 12 weeks of treatment corresponding to a mean absolute (percent) change of -4.1 mmHg (-17.3%). The proportion of patients with IOP ≤21 mmHg increased from 59.9% at baseline to 94.6% after 12 weeks. The most frequently reported ocular adverse drug reactions were burning eyes (2.4%) and hyperemia (0.9%). Local tolerability improved in 79.3% of patients compared to their previous glaucoma therapy. This observational study confirms the IOP lowering effect of preservative-free eye drops containing the fixed combination of dorzolamide/timolol in a large patient's population. The drug was well tolerated and improved the local tolerability in the vast majority of patients.

  9. Speciation of mercury in water samples by dispersive liquid-liquid microextraction combined with high performance liquid chromatography-inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Jia Xiaoyu; Han Yi; Liu Xinli [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Duan Taicheng, E-mail: tcduan@ciac.jl.cn [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022 (China); Chen Hangting, E-mail: htchen@ciac.jl.cn [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022 (China)

    2011-01-15

    The dispersive liquid-liquid microextraction (DLLME) combined with high performance liquid chromatography-inductively coupled plasma mass spectrometry for the speciation of mercury in water samples was described. Firstly methylmercury (MeHg{sup +}) and mercury (Hg{sup 2+}) were complexed with sodium diethyldithiocarbamate, and then the complexes were extracted into carbon tetrachloride by using DLLME. Under the optimized conditions, the enrichment factors of 138 and 350 for MeHg{sup +} and Hg{sup 2+} were obtained from only 5.00 mL sample solution. The detection limits of the analytes (as Hg) were 0.0076 ng mL{sup -1} for MeHg{sup +} and 0.0014 ng mL{sup -1} for Hg{sup 2+}, respectively. The relative standard deviations for ten replicate measurements of 0.5 ng mL{sup -1} MeHg{sup +} and Hg{sup 2+} were 6.9% and 4.4%, respectively. Standard reference material of seawater (GBW(E)080042) was analyzed to verify the accuracy of the method and the results were in good agreement with the certified values. Finally, the developed method was successfully applied for the speciation of mercury in three environmental water samples.

  10. Monitoring Pb in Aqueous Samples by Using Low Density Solvent on Air-Assisted Dispersive Liquid-Liquid Microextraction Coupled with UV-Vis Spectrophotometry.

    Science.gov (United States)

    Nejad, Mina Ghasemi; Faraji, Hakim; Moghimi, Ali

    2017-04-01

    In this study, AA-DLLME combined with UV-Vis spectrophotometry was developed for pre-concentration, microextraction and determination of lead in aqueous samples. Optimization of the independent variables was carried out according to chemometric methods in three steps. According to the screening and optimization study, 86 μL of 1-undecanol (extracting solvent), 12 times syringe pumps, pH 2.0, 0.00% of salt and 0.1% DDTP (chelating agent) were chosen as the optimum independent variables for microextraction and determination of lead. Under the optimized conditions, R = 0.9994, and linearity range was 0.01-100 µg mL -1 . LOD and LOQ were 3.4 and 11.6 ng mL -1 , respectively. The method was applied for analysis of real water samples, such as tap, mineral, river and waste water.

  11. Pressure drop and arterial compliance - Two arterial parameters in one measurement.

    Science.gov (United States)

    Rotman, Oren M; Zaretsky, Uri; Shitzer, Avraham; Einav, Shmuel

    2017-01-04

    Coronary artery pressure-drop and distensibility (compliance) are two major, seemingly unrelated, parameters in the cardiovascular clinical setting, which are indicative of coronary arteries patency and atherosclerosis severity. While pressure drop is related to flow, and therefore serves as a functional indicator of a stenosis severity, the arterial distensibility is indicative of the arterial stiffness, and hence the arterial wall composition. In the present study, we hypothesized that local pressure drops are dependent on the arterial distensibility, and hence can provide information on both indices. The clinical significance is that a single measurement of pressure drop could potentially provide both functional and bio-mechanical metrics of lesions, and thus assist in real-time decision making prior to stenting. The goal of the current study was to set the basis for understanding this relationship, and define the accuracy and sensitivity required from the pressure measurement system. The investigation was performed using numerical fluid-structure interaction (FSI) simulations, validated experimentally using our high accuracy differential pressure measurement system. Simplified silicone mock coronary arteries with zero to intermediate size stenoses were used, and various combinations of arterial distensibility, diameter, and flow rate were simulated. Results of hyperemic flow cases were also compared to fractional flow reserve (FFR). The results indicate the potential clinical superiority of a high accuracy pressure drop-based parameter over FFR, by: (i) being more lesion-specific, (ii) the possibility to circumvent the FFR dependency on pharmacologically-induced hyperemia, and, (iii) by providing both functional and biomechanical lesion-specific information. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Dispersive Liquid-Liquid Microextraction Combined with Ultrahigh Performance Liquid Chromatography/Tandem Mass Spectrometry for Determination of Organophosphate Esters in Aqueous Samples

    Directory of Open Access Journals (Sweden)

    Haiying Luo

    2014-01-01

    Full Text Available A new technique was established to identify eight organophosphate esters (OPEs in this work. It utilised dispersive liquid-liquid microextraction in combination with ultrahigh performance liquid chromatography/tandem mass spectrometry. The type and volume of extraction solvents, dispersion agent, and amount of NaCl were optimized. The target analytes were detected in the range of 1.0–200 µg/L with correlation coefficients ranging from 0.9982 to 0.9998, and the detection limits of the analytes were ranged from 0.02 to 0.07 µg/L (S/N=3. The feasibility of this method was demonstrated by identifying OPEs in aqueous samples that exhibited spiked recoveries, which ranged between 48.7% and 58.3% for triethyl phosphate (TEP as well as between 85.9% and 113% for the other OPEs. The precision was ranged from 3.2% to 9.3% (n=6, and the interprecision was ranged from 2.6% to 12.3% (n=5. Only 2 of the 12 selected samples were tested to be positive for OPEs, and the total concentrations of OPEs in them were 1.1 and 1.6 µg/L, respectively. This method was confirmed to be simple, fast, and accurate for identifying OPEs in aqueous samples.

  13. Hollow fibre-based liquid phase microextraction combined with high-performance liquid chromatography for the analysis of flavonoids in Echinophora platyloba DC. and Mentha piperita.

    Science.gov (United States)

    Hadjmohammadi, Mohammadreza; Karimiyan, Hanieh; Sharifi, Vahid

    2013-11-15

    A simple, inexpensive and efficient three phase hollow fibre liquid phase microextraction (HF-LPME) technique combined with HPLC was used for the simultaneous determination of flavonoids in Echinophora platyloba DC. and Mentha piperita. Different factors affecting the HF-LPME procedure were investigated and optimised. The optimised extraction conditions were as follows: 1-octanol as an organic solvent, pHdonor=2, pHacceptor=9.75, stirring rate of 1000rpm, extraction time of 80min, without addition of salt. Under these conditions, the enrichment factors ranged between 146 and 311. The values of intra and inter-day relative standard deviations (RSD) were in the range of 3.18-6.00% and 7.25-11.00%, respectively. The limits of detection (LODs) ranged between 0.5 and 7.0ngmL(-1). Among the investigated flavonoids quercetin was found in E. platyloba DC. and luteolin was found in M. piperita. Concentration of quercetin and luteolin was 0.015 and 0.025mgg(-1) respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Solid-phase extraction in combination with dispersive liquid-liquid microextraction and ultra-high performance liquid chromatography-tandem mass spectrometry analysis: the ultra-trace determination of 10 antibiotics in water samples.

    Science.gov (United States)

    Liang, Ning; Huang, Peiting; Hou, Xiaohong; Li, Zhen; Tao, Lei; Zhao, Longshan

    2016-02-01

    A novel method, solid-phase extraction combined with dispersive liquid-liquid microextraction (SPE-DLLME), was developed for ultra-preconcentration of 10 antibiotics in different environmental water samples prior to ultra-high performance liquid chromatography-tandem mass spectrometry detection. The optimized results were obtained as follows: after being adjusted to pH 4.0, the water sample was firstly passed through PEP-2 column at 10 mL min(-1), and then methanol was used to elute the target analytes for the following steps. Dichloromethane was selected as extraction solvent, and methanol/acetonitrile (1:1, v/v) as dispersive solvent. Under optimal conditions, the calibration curves were linear in the range of 1-1000 ng mL(-1) (sulfamethoxazole, cefuroxime axetil), 5-1000 ng mL(-1) (tinidazole), 10-1000 ng mL(-1) (chloramphenicol), 2-1000 ng mL(-1) (levofloxacin oxytetracycline, doxycycline, tetracycline, and ciprofloxacin) and 1-400 ng mL(-1) (sulfadiazine) with a good precision. The LOD and LOQ of the method were at very low levels, below 1.67 and 5.57 ng mL(-1), respectively. The relative recoveries of the target analytes were in the range from 64.16% to 99.80% with relative standard deviations between 0.7 and 8.4%. The matrix effect of this method showed a great decrease compared with solid-phase extraction and a significant value of enrichment factor (EF) compared with dispersive liquid-liquid microextraction. The developed method was successfully applied to the extraction and analysis of antibiotics in different water samples with satisfactory results.

  15. Curative effect of Sodium hyaluronate and bFGF eye drops after corneal rust foreign body removal operation

    Directory of Open Access Journals (Sweden)

    Jin-Xia Li1

    2013-10-01

    Full Text Available AIM: To observe the combined effect of Sodium hyaluronate eye drops and recombinant bovine basic fibroblast growth factor(bFGFeye drops on cornea epithelial repair after corneal rust foreign body extraction. METHODS: Alinety-eight cases(98 eyesof corneal rust foreign body patients were randomly distributed to combined treatment group(49 cases, 49 eyesand control group(49 cases, 49 eyes. Hyaluronate eye drops, recombinant bFGF eye drops and levofloxacin hydrochloride were applied in combined treatment group after corneal foreign body extraction. Recombinant bFGF eye drops and levofloxacin hydrochloride were applied in control group. Corneal fluorescein stain, cornea epithelial repair and local symptoms were examined thrice weekly for 2 weeks. RESULTS: General effective rate of treatment in combined group reach 96%, significantly higher than that in control group(88%, PCONCLUSION: Combined application of sodium hyaluronate eye drops and recombinant bFGF eye drops can prominently improve cornea epithelial repair after corneal lesion with proven effectiveness and safety.

  16. Jetting from impact of a spherical drop with a deep layer

    Science.gov (United States)

    Zhang, Li; Toole, Jameson; Fazzaa, Kamel; Deegan, Robert; Deegan Group Team; X-Ray Science Division, Advanced Photon Source Collaboration

    2011-11-01

    We performed an experimental study of jets during the impact of a spherical drop with a deep layer of same liquid. Using high speed optical and X-ray imaging, we observe two types of jets: the so-called ejecta sheet which emerges almost immediately after impact and the lamella which emerges later. For high Reynolds number the two jets are distinct, while for low Reynolds number the two jets combine into a single continuous jet. We also measured the emergence time, speed, and position of the ejecta sheet and found simple scaling relations for these quantities.

  17. Solid-phase microextraction

    DEFF Research Database (Denmark)

    Nilsson, Torben

    The objective of this study has been to develop new analytical methods using the rapid, simple and solvent-free extraction technique solid-phase microextraction (SPME) for the quantitative analysis of organic pollutants at trace level in drinking water and environmental samples. The dynamics...... of SPME were examined for halogenated and non-halogenated volatile hydrocarbons, and a standard method for their quantitative analysis in aqueous samples was developed and validated in inter-laboratory studies on the basis of reference material and in comparison with the traditional methods....... The influences of some possible interferences on the SPME process were examined, and new SPME probes were tested for the in situ monitoring of groundwater pollutants. Inter-laboratory studies were carried out also for the validation of SPME for the quantitative analysis of organochlorine, organonitrogen...

  18. Gender differences in rotation of the shank during single-legged drop landing and its relation to rotational muscle strength of the knee.

    Science.gov (United States)

    Kiriyama, Shinya; Sato, Haruhiko; Takahira, Naonobu

    2009-01-01

    Increased shank rotation during landing has been considered to be one of the factors for noncontact anterior cruciate ligament injuries in female athletes. There have been no known gender differences in rotational knee muscle strength, which is expected to inhibit exaggerated shank rotation. Women have less knee external rotator strength than do men. Lower external rotator strength is associated with increased internal shank rotation at the time of landing. Controlled laboratory study. One hundred sixty-nine healthy young subjects (81 female and 88 male; age, 17.0 +/- 1.0 years) volunteered to participate in this study. The subjects performed single-legged drop landings from a 20-cm height. Femoral and shank kinematics were measured using a 3D optoelectronic tracking system during the drop landings, and then the joint angles around the knee (flexion/extension, valgus/varus, and internal/external rotation) were calculated. The maximal isometric rotational muscle strength of the knee was measured at 30 degrees of knee flexion in a supine position using a dynamometer. The female subjects had significantly less external shank rotation strength than did the male subjects (P external rotation strength and the peak shank internal rotation angle during landing (r = -0.322, P external rotator strength. This may lead to large shank internal rotation movement during the single-legged drop landing. Improving strength training of the external rotator muscle may help decrease the rates of anterior cruciate ligament injury in female athletes.

  19. Solid-phase microextraction for the analysis of biological samples

    NARCIS (Netherlands)

    Theodoridis, G; Koster, EHM; de Jong, GJ

    2000-01-01

    Solid-phase microextraction (SPME) has been introduced for the extraction of organic compounds from environmental samples. This relatively new extraction technique has now also gained a lot of interest in a broad field of analysis including food, biological and pharmaceutical samples. SPME has a

  20. Three-phase hollow-fiber liquid-phase microextraction combined with HPLC-UV for the determination of isothiazolinone biocides in adhesives used for food packaging materials.

    Science.gov (United States)

    Rosero-Moreano, Milton; Canellas, Elena; Nerín, Cristina

    2014-02-01

    The present study deals with the development of a liquid microextraction procedure for enhancing the sensitivity of the determination of 2-methyl-4-isothiazolin-3-one and 5-chloro-2-methyl-4-isothiazolin-3-one in adhesives. The procedure involves a three-phase hollow-fiber liquid-phase microextraction using a semipermeable polypropylene membrane, which contained 1-octanol as the organic phase in the pores of the membrane. The donor and acceptor phases are aqueous acidic and alkaline media, respectively, and the final liquid phase (acceptor) is analyzed by HPLC coupled with diode array detection. The most appropriate conditions were extraction time 20 min, stirring speed 1400 rpm, extraction temperature 50°C. The quantification limits of the method were 0.123 and 0.490 μg/g for 2-methyl-4-isothiazolin-3-one and 5-chloro-2-methyl-4-isothiazolin-3-one, respectively. Three different adhesive samples were successfully analyzed. The procedure was compared to direct analysis using ultra high pressure liquid chromatography coupled with TOF-MS, where the identification of the compounds and the quantification values were confirmed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. High performance ceria-bismuth bilayer electrolyte low temperature solid oxide fuel cells (LT-SOFCs) fabricated by combining co-pressing with drop-coating

    KAUST Repository

    Hou, Jie

    2015-03-24

    The Sm0.075Nd0.075Ce0.85O2-δ-Er0.4Bi1.6O3 bilayer structure film, which showed an encouraging performance in LT-SOFCs, was successfully fabricated by a simple low cost technique combining one-step co-pressing with drop-coating.

  2. High performance ceria-bismuth bilayer electrolyte low temperature solid oxide fuel cells (LT-SOFCs) fabricated by combining co-pressing with drop-coating

    KAUST Repository

    Hou, Jie; Bi, Lei; Qian, Jing; Zhu, Zhiwen; Zhang, Junyu; Liu, Wei

    2015-01-01

    The Sm0.075Nd0.075Ce0.85O2-δ-Er0.4Bi1.6O3 bilayer structure film, which showed an encouraging performance in LT-SOFCs, was successfully fabricated by a simple low cost technique combining one-step co-pressing with drop-coating.

  3. New-generation bar adsorptive microextraction (BAμE) devices for a better eco-user-friendly analytical approach-Application for the determination of antidepressant pharmaceuticals in biological fluids.

    Science.gov (United States)

    Ide, A H; Nogueira, J M F

    2018-05-10

    The present contribution aims to design new-generation bar adsorptive microextraction (BAμE) devices that promote an innovative and much better user-friendly analytical approach. The novel BAμE devices were lab-made prepared having smaller dimensions by using flexible nylon-based supports (7.5 × 1.0 mm) coated with convenient sorbents (≈ 0.5 mg). This novel advance allows effective microextraction and back-extraction ('only single liquid desorption step') stages as well as interfacing enhancement with the instrumental systems dedicated for routine analysis. To evaluate the achievements of these improvements, four antidepressant agents (bupropion, citalopram, amitriptyline and trazodone) were used as model compounds in aqueous media combined with liquid chromatography (LC) systems. By using an N-vinylpyrrolidone based-polymer phase good selectivity and efficiency were obtained. Assays performed on 25 mL spiked aqueous samples, yielded average recoveries in between 67.8 ± 12.4% (bupropion) and 88.3 ± 12.1% (citalopram), under optimized experimental conditions. The analytical performance also showed convenient precision (RSD  0.9820). The application of the proposed analytical approach on biological fluids showed negligible matrix effects by using the standard addition methodology. From the data obtained, the new-generation BAμE devices presented herein provide an innovative and robust analytical cycle, are simple to prepare, cost-effective, user-friendly and compatible with the current LC autosampler systems. Furthermore, the novel devices were designed to be disposable and used together with negligible amounts of organic solvents (100 μL) during back-extraction, in compliance with the green analytical chemistry principles. In short, the new-generation BAμE devices showed to be an eco-user-friendly approach for trace analysis of priority compounds in biological fluids and a versatile alternative over other well-stablished sorption

  4. Seamless Combination of Fluorescence-Activated Cell Sorting and Hanging-Drop Networks for Individual Handling and Culturing of Stem Cells and Microtissue Spheroids.

    Science.gov (United States)

    Birchler, Axel; Berger, Mischa; Jäggin, Verena; Lopes, Telma; Etzrodt, Martin; Misun, Patrick Mark; Pena-Francesch, Maria; Schroeder, Timm; Hierlemann, Andreas; Frey, Olivier

    2016-01-19

    Open microfluidic cell culturing devices offer new possibilities to simplify loading, culturing, and harvesting of individual cells or microtissues due to the fact that liquids and cells/microtissues are directly accessible. We present a complete workflow for microfluidic handling and culturing of individual cells and microtissue spheroids, which is based on the hanging-drop network concept: The open microfluidic devices are seamlessly combined with fluorescence-activated cell sorting (FACS), so that individual cells, including stem cells, can be directly sorted into specified culturing compartments in a fully automated way and at high accuracy. Moreover, already assembled microtissue spheroids can be loaded into the microfluidic structures by using a conventional pipet. Cell and microtissue culturing is then performed in hanging drops under controlled perfusion. On-chip drop size control measures were applied to stabilize the system. Cells and microtissue spheroids can be retrieved from the chip by using a parallelized transfer method. The presented methodology holds great promise for combinatorial screening of stem-cell and multicellular-spheroid cultures.

  5. Reliability of 3-Dimensional Measures of Single-Leg Cross Drop Landing Across 3 Different Institutions: Implications for Multicenter Biomechanical and Epidemiological Research on ACL Injury Prevention.

    Science.gov (United States)

    DiCesare, Christopher A; Bates, Nathaniel A; Barber Foss, Kim D; Thomas, Staci M; Wordeman, Samuel C; Sugimoto, Dai; Roewer, Benjamin D; Medina McKeon, Jennifer M; Di Stasi, Stephanie; Noehren, Brian W; Ford, Kevin R; Kiefer, Adam W; Hewett, Timothy E; Myer, Gregory D

    2015-12-01

    Anterior cruciate ligament (ACL) injuries are physically and financially devastating but affect a relatively small percentage of the population. Prospective identification of risk factors for ACL injury necessitates a large sample size; therefore, study of this injury would benefit from a multicenter approach. To determine the reliability of kinematic and kinetic measures of a single-leg cross drop task across 3 institutions. Controlled laboratory study. Twenty-five female high school volleyball players participated in this study. Three-dimensional motion data of each participant performing the single-leg cross drop were collected at 3 institutions over a period of 4 weeks. Coefficients of multiple correlation were calculated to assess the reliability of kinematic and kinetic measures during the landing phase of the movement. Between-centers reliability for kinematic waveforms in the frontal and sagittal planes was good, but moderate in the transverse plane. Between-centers reliability for kinetic waveforms was good in the sagittal, frontal, and transverse planes. Based on these findings, the single-leg cross drop task has moderate to good reliability of kinematic and kinetic measures across institutions after implementation of a standardized testing protocol. Multicenter collaborations can increase study numbers and generalize results, which is beneficial for studies of relatively rare phenomena, such as ACL injury. An important step is to determine the reliability of risk assessments across institutions before a multicenter collaboration can be initiated.

  6. Micro-Lid For Sealing Sample Reservoirs of micro-Extraction Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a proof-of-concept micro-Lid (µLid) to tightly seal a micro-sampler or micro-extraction system. Fabrication of µLid would be conducted in the...

  7. Role of nanoparticles in analytical solid phase microextraction (SPME)

    NARCIS (Netherlands)

    Zielinska, K.; Leeuwen, van H.P.

    2013-01-01

    Solid phase microextraction (SPME) is commonly used to measure the free concentration of fairly hydrophobic substances in aqueous media on the basis of their partitioning between sample solution and a solid phase. Here we study the role of nanoparticles that may sorb the analyte in the sample

  8. Combination of solid phase extraction and dispersive liquid–liquid microextraction for separation/preconcentration of ultra trace amounts of uranium prior to its fiber optic-linear array spectrophotometry determination

    International Nuclear Information System (INIS)

    Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji; Shakerian, Farid; Shiralian Esfahani, Golnaz

    2013-01-01

    Graphical abstract: Pass the sample through the basic alumina column ⇒ elute retained uranium along with the cations ⇒ convert the uranium to its anionic benzoate complex ⇒ extract its ion pair with malachite green into small volume of chloroform by DLLME ⇒ measure its absorption at 621 nm using fiber optic-linear array detection spectrophotometry. -- Highlights: • By combination of SPE and DDLME a high preconcentration factor of 2500 was obtained. • Development of SPE-DDLME-Spectrophotometric method for det. of trace amounts of uranium. • Ultra trace amount of uranium in water samples was det. by the proposed method. • The detection limit of the proposed method is comparable to the most sensitive method. • The proposed method is a free interference spectrophotometric method for uranium det. -- Abstract: A simple and sensitive method for the separation and preconcentration of the ultra trace amounts of uranium and its determination by spectrophotometry was developed. The method is based on the combination of solid phase extraction and dispersive liquid–liquid microextraction. Thus, by passing the sample through the basic alumina column, the uranyl ion and some cations are separated from the sample matrix. The retained uranyl ion along with the cations are eluted with 5 mL of nitric acid (2 mol L −1 ) and after neutralization of the eluent, the extracted uranyl ion is converted to its anionic benzoate complex and is separated from other cations by extraction of its ion pair with malachite green into small volume of chloroform using dispersive liquid–liquid microextraction. The amount of uranium is then determined by the absorption measurement of the extracted ion pair at 621 nm using flow injection spectrophotometry. Under the optimum conditions, with 500 mL of the sample, a preconcentration factor of 1980, a detection limit of 40 ng L −1 , and a relative standard deviation of 4.1% (n = 6) at 400 ng L −1 were obtained. The method was

  9. Drop impact into a deep pool: Vortex shedding and jet formation

    KAUST Repository

    Agbaglah, Gilou; Thoraval, Marie-Jean; Thoroddsen, Sigurdur T; Zhang, Li V.; Fezzaa, Kamel; Deegan, Robert D.

    2015-01-01

    One of the simplest splashing scenarios results from the impact of a single drop on a deep pool. The traditional understanding of this process is that the impact generates an axisymmetric sheet-like jet that later breaks up into secondary droplets. Recently it was shown that even this simplest of scenarios is more complicated than expected because multiple jets can be generated from a single impact event and there are transitions in the multiplicity of jets as the experimental parameters are varied. Here, we use experiments and numerical simulations of a single drop impacting on a deep pool to examine the transition from impacts that produce a single jet to those that produce two jets. Using high-speed X-ray imaging methods we show that vortex separation within the drop leads to the formation of a second jet long after the formation of the ejecta sheet. Using numerical simulations we develop a phase diagram for this transition and show that the capillary number is the most appropriate order parameter for the transition. © 2014 Cambridge University Press.

  10. Drop impact into a deep pool: Vortex shedding and jet formation

    KAUST Repository

    Agbaglah, Gilou

    2015-01-02

    One of the simplest splashing scenarios results from the impact of a single drop on a deep pool. The traditional understanding of this process is that the impact generates an axisymmetric sheet-like jet that later breaks up into secondary droplets. Recently it was shown that even this simplest of scenarios is more complicated than expected because multiple jets can be generated from a single impact event and there are transitions in the multiplicity of jets as the experimental parameters are varied. Here, we use experiments and numerical simulations of a single drop impacting on a deep pool to examine the transition from impacts that produce a single jet to those that produce two jets. Using high-speed X-ray imaging methods we show that vortex separation within the drop leads to the formation of a second jet long after the formation of the ejecta sheet. Using numerical simulations we develop a phase diagram for this transition and show that the capillary number is the most appropriate order parameter for the transition. © 2014 Cambridge University Press.

  11. Drop coalescence and liquid flow in a single Plateau border

    Science.gov (United States)

    Cohen, Alexandre; Fraysse, Nathalie; Raufaste, Christophe

    2015-05-01

    We report a comprehensive study of the flow of liquid triggered by injecting a droplet into a liquid foam microchannel, also called a Plateau border. This drop-injected experiment reveals an intricate dynamics for the liquid redistribution, with two contrasting regimes observed, ruled either by inertia or viscosity. We devoted a previous study [A. Cohen et al., Phys. Rev. Lett. 112, 218303 (2014), 10.1103/PhysRevLett.112.218303] to the inertial imbibition regime, unexpected at such small length scales. Here we report other features of interest of the drop-injected experiment, related to the coalescence of the droplet with the liquid microchannel, to both the inertial and viscous regimes, and to the occurrence of liquid flow through the soap films as well as effects of the interfacial rheology. The transition between the two regimes is investigated and qualitatively accounted for. The relevance of our results to liquid foam drainage is tackled by considering the flow of liquid at the nodes of the network of interconnected microchannels. Extensions of our study to liquid foams are discussed.

  12. Single maximal versus combination punch kinematics.

    Science.gov (United States)

    Piorkowski, Barry A; Lees, Adrian; Barton, Gabor J

    2011-03-01

    The aim of this study was to determine the influence of punch type (Jab, Cross, Lead Hook and Reverse Hook) and punch modality (Single maximal, 'In-synch' and 'Out of synch' combination) on punch speed and delivery time. Ten competition-standard volunteers performed punches with markers placed on their anatomical landmarks for 3D motion capture with an eight-camera optoelectronic system. Speed and duration between key moments were computed. There were significant differences in contact speed between punch types (F(2,18,84.87) = 105.76, p = 0.001) with Lead and Reverse Hooks developing greater speed than Jab and Cross. There were significant differences in contact speed between punch modalities (F(2,64,102.87) = 23.52, p = 0.001) with the Single maximal (M+/- SD: 9.26 +/- 2.09 m/s) higher than 'Out of synch' (7.49 +/- 2.32 m/s), 'In-synch' left (8.01 +/- 2.35 m/s) or right lead (7.97 +/- 2.53 m/s). Delivery times were significantly lower for Jab and Cross than Hook. Times were significantly lower 'In-synch' than a Single maximal or 'Out of synch' combination mode. It is concluded that a defender may have more evasion-time than previously reported. This research could be of use to performers and coaches when considering training preparations.

  13. Gap-related trapped magnetic flux dependence between single and combined bulk superconductors

    International Nuclear Information System (INIS)

    Deng, Z.; Miki, M.; Felder, B.; Tsuzuki, K.; Shinohara, N.; Uetake, T.; Izumi, M.

    2011-01-01

    Highlights: → Rectangular YBCO bulks to realize a compact combination. → The gap effect was added to consider in the trapped flux density mapping. → The trapped-flux dependence between single and combined bulks is gap related. → It is possible to estimate the total magnetic flux of bulk combinations. - Abstract: Aiming at examining the trapped-flux dependence between single and combined bulk superconductors for field-pole applications, three rectangular Y 1.65 Ba 2 Cu 3 O 7-x (YBCO) bulks with a possibly compact combination were employed to investigate the trapped-flux characteristics of single and combined bulks with a field-cooling magnetization (FCM) method. A gap-related dependence was found between them. At lower gaps of 1 mm and 5 mm, the peak trapped fields and total magnetic flux of combined bulks are both smaller than the additive values of each single bulk, which can be ascribed to the demagnetization influences of the field around the bulk generated by the adjacent ones. While, at larger gaps like 10 mm, the situation becomes reversed. The combined bulks can attain bigger peak trapped fields as well as total magnetic flux, which indicates that the magnetic field by the bulk combination can reach higher gaps, thanks to the bigger magnetic energy compared with the single bulk. The presented results show that, on one hand, it is possible to estimate the total trapped magnetic flux of combined bulks by an approximate additive method of each single bulk while considering a demagnetization factor; on the other hand, it also means that the performance of combined bulks will be superior to the addition of each single bulk at larger gaps, thus preferable for large-scaled magnet applications.

  14. Gap-related trapped magnetic flux dependence between single and combined bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z., E-mail: zgdeng@gmail.co [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan); Miki, M.; Felder, B.; Tsuzuki, K.; Shinohara, N.; Uetake, T.; Izumi, M. [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan)

    2011-05-15

    Highlights: {yields} Rectangular YBCO bulks to realize a compact combination. {yields} The gap effect was added to consider in the trapped flux density mapping. {yields} The trapped-flux dependence between single and combined bulks is gap related. {yields} It is possible to estimate the total magnetic flux of bulk combinations. - Abstract: Aiming at examining the trapped-flux dependence between single and combined bulk superconductors for field-pole applications, three rectangular Y{sub 1.65}Ba{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) bulks with a possibly compact combination were employed to investigate the trapped-flux characteristics of single and combined bulks with a field-cooling magnetization (FCM) method. A gap-related dependence was found between them. At lower gaps of 1 mm and 5 mm, the peak trapped fields and total magnetic flux of combined bulks are both smaller than the additive values of each single bulk, which can be ascribed to the demagnetization influences of the field around the bulk generated by the adjacent ones. While, at larger gaps like 10 mm, the situation becomes reversed. The combined bulks can attain bigger peak trapped fields as well as total magnetic flux, which indicates that the magnetic field by the bulk combination can reach higher gaps, thanks to the bigger magnetic energy compared with the single bulk. The presented results show that, on one hand, it is possible to estimate the total trapped magnetic flux of combined bulks by an approximate additive method of each single bulk while considering a demagnetization factor; on the other hand, it also means that the performance of combined bulks will be superior to the addition of each single bulk at larger gaps, thus preferable for large-scaled magnet applications.

  15. Pressure drop-flow rate curves for single-phase steam in Combustion Engineering type steam generator U-tubes during severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Fynan, Douglas A.; Ahn, Kwang-Il, E-mail: kiahn@kaeri.re.kr

    2016-12-15

    Highlights: • Pressure drop-flow rate curves for superheated steam in U-tubes were generated. • Forward flow of hot steam is favored in the longer and taller U-tubes. • Reverse flow of cold steam is favored in short U-tubes. • Steam generator U-tube bundle geometry and tube diameter are important. • Need for correlation development for natural convention heat transfer coefficient. - Abstract: Characteristic pressure drop-flow rate curves are generated for all row numbers of the OPR1000 steam generators (SGs), representative of Combustion Engineering (CE) type SGs featuring square bend U-tubes. The pressure drop-flow rate curves are applicable to severe accident natural circulations of single-phase superheated steam during high pressure station blackout sequences with failed auxiliary feedwater and dry secondary side which are closely related to the thermally induced steam generator tube rupture event. The pressure drop-flow rate curves which determine the recirculation rate through the SG tubes are dependent on the tube bundle geometry and hydraulic diameter of the tubes. The larger CE type SGs have greater variation of tube length and height as a function of row number with forward flow of steam favored in the longer and taller high row number tubes and reverse flow favored in the short low row number tubes. Friction loss, natural convection heat transfer coefficients, and temperature differentials from the primary to secondary side are dominant parameters affecting the recirculation rate. The need for correlation development for natural convection heat transfer coefficients for external flow over tube bundles currently not modeled in system codes is discussed.

  16. Drop jumping. II. The influence of dropping height on the biomechanics of drop jumping

    NARCIS (Netherlands)

    Bobbert, M F; Huijing, P A; van Ingen Schenau, G J

    In the literature, athletes preparing for explosive activities are recommended to include drop jumping in their training programs. For the execution of drop jumps, different techniques and different dropping heights can be used. This study was designed to investigate for the performance of bounce

  17. Not spreading in reverse: The dewetting of a liquid film into a single drop.

    Science.gov (United States)

    Edwards, Andrew M J; Ledesma-Aguilar, Rodrigo; Newton, Michael I; Brown, Carl V; McHale, Glen

    2016-09-01

    Wetting and dewetting are both fundamental modes of motion of liquids on solid surfaces. They are critically important for processes in biology, chemistry, and engineering, such as drying, coating, and lubrication. However, recent progress in wetting, which has led to new fields such as superhydrophobicity and liquid marbles, has not been matched by dewetting. A significant problem has been the inability to study the model system of a uniform film dewetting from a nonwetting surface to a single macroscopic droplet-a barrier that does not exist for the reverse wetting process of a droplet spreading into a film. We report the dewetting of a dielectrophoresis-induced film into a single equilibrium droplet. The emergent picture of the full dewetting dynamics is of an initial regime, where a liquid rim recedes at constant speed and constant dynamic contact angle, followed by a relatively short exponential relaxation of a spherical cap shape. This sharply contrasts with the reverse wetting process, where a spreading droplet follows a smooth sequence of spherical cap shapes. Complementary numerical simulations and a hydrodynamic model reveal a local dewetting mechanism driven by the equilibrium contact angle, where contact line slip dominates the dewetting dynamics. Our conclusions can be used to understand a wide variety of processes involving liquid dewetting, such as drop rebound, condensation, and evaporation. In overcoming the barrier to studying single film-to-droplet dewetting, our results provide new approaches to fluid manipulation and uses of dewetting, such as inducing films of prescribed initial shapes and slip-controlled liquid retraction.

  18. Hollow fiber liquid phase microextraction combined with graphite furnace atomic absorption spectrometry for the determination of methylmercury in human hair and sludge samples

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Hongmei [Department of Chemistry, Wuhan University, Wuhan 430072 (China); Hu Bin [Department of Chemistry, Wuhan University, Wuhan 430072 (China)], E-mail: binhu@whu.edu.cn; Chen Beibei; Zu Wanqing [Department of Chemistry, Wuhan University, Wuhan 430072 (China)

    2008-07-15

    Two methods, based on hollow fiber liquid-liquid-liquid (three phase) microextraction (HF-LLLME) and hollow fiber liquid phase (two phase) microextraction (HF-LPME), have been developed and critically compared for the determination of methylmercury content in human hair and sludge by graphite furnace atomic absorption spectrometry (GFAAS). In HF-LPME, methylmercury was extracted into the organic phase (toluene) prior to its determination by GFAAS, while inorganic mercury remained as a free species in the sample solution. In HF-LLLME, methylmercury was first extracted into the organic phase (toluene) and then into the acceptor phase (4% thiourea in 1 mol L{sup -1} HCl) prior to its determination by GFAAS, while inorganic mercury remained in the sample solution. The total mercury was determined by inductively coupled plasma-mass spectrometry (ICP-MS), and the levels of inorganic mercury in both HF-LLLME and HF-LPME were obtained by subtracting methylmercury from total mercury. The factors affecting the microextraction of methylmercury, including organic solvent, extraction time, stirring rate and ionic strength, were investigated and the optimal extraction conditions were established for both HF-LLLPME and HF-LPME. With a consumption of 3.0 mL of the sample solution, the enrichment factors were 204 and 55 for HF-LLLPME and HF-LPME, respectively. The limits of detection (LODs) for methylmercury were 0.1 {mu}g L{sup -1} and 0.4 {mu}g L{sup -1} (as Hg) with precisions (RSDs (%), c = 5 {mu}g L{sup -1} (as Hg), n = 5) of 13% and 11% for HF-LLLPME-GFAAS and HF-LPME-GFAAS, respectively. For ICP-MS determination of total mercury, a limit of detection of 39 ng L{sup -} {sup 1} was obtained. Finally, HF-LLLME-GFAAS was applied to the determination of methylmercury content in human hair and sludge, and the recoveries for the spiked samples were in the range of 99-113%. In order to validate the method, HF-LLLME-GFAAS was also applied to the analysis of a certified reference

  19. A mix-and-read drop-based in vitro two-hybrid method for screening high-affinity peptide binders

    Science.gov (United States)

    Cui, Naiwen; Zhang, Huidan; Schneider, Nils; Tao, Ye; Asahara, Haruichi; Sun, Zhiyi; Cai, Yamei; Koehler, Stephan A.; de Greef, Tom F. A.; Abbaspourrad, Alireza; Weitz, David A.; Chong, Shaorong

    2016-01-01

    Drop-based microfluidics have recently become a novel tool by providing a stable linkage between phenotype and genotype for high throughput screening. However, use of drop-based microfluidics for screening high-affinity peptide binders has not been demonstrated due to the lack of a sensitive functional assay that can detect single DNA molecules in drops. To address this sensitivity issue, we introduced in vitro two-hybrid system (IVT2H) into microfluidic drops and developed a streamlined mix-and-read drop-IVT2H method to screen a random DNA library. Drop-IVT2H was based on the correlation between the binding affinity of two interacting protein domains and transcriptional activation of a fluorescent reporter. A DNA library encoding potential peptide binders was encapsulated with IVT2H such that single DNA molecules were distributed in individual drops. We validated drop-IVT2H by screening a three-random-residue library derived from a high-affinity MDM2 inhibitor PMI. The current drop-IVT2H platform is ideally suited for affinity screening of small-to-medium-sized libraries (103–106). It can obtain hits within a single day while consuming minimal amounts of reagents. Drop-IVT2H simplifies and accelerates the drop-based microfluidics workflow for screening random DNA libraries, and represents a novel alternative method for protein engineering and in vitro directed protein evolution. PMID:26940078

  20. Determination of Atrazine, Acetochlor, Clomazone, Pendimethalin and Oxyfluorfen in Soil by a Solid Phase Microextraction Method

    Directory of Open Access Journals (Sweden)

    Rada Đurović

    2008-01-01

    Full Text Available A solid phase microextraction (SPME method for simultaneous determination of atrazine, acetochlor, clomazone, pendimethalin and oxyfluorfen in soil samples was developed. The method is based on a combination of conventional liquid-solid procedure and a following SPME determination of the selected pesticides. Initially, various microextraction conditions, such as the fibre type, desorption temperature and time, extraction time and NaCl content, were investigated and optimized. Then, extraction efficiencies of severalsolvents (water, hexane, acetonitrile, acetone and methanol and the optimum number of extraction steps within the sample preparation step were optimized. According to the results obtained in these two sets of experiments, two successive extractions with methanol as the extraction solvent were the optimal sample preparation procedure, while the following conditions were found to be most efficient for SPME measurements: 100 μm PDMS fibre, desorption for 7 min at 2700C, 30 min extraction time and 5% NaCl content (w/v. Detection and quantification were done by gas chromatography-mass spectrometry(GC/MS. Relative standard deviation (RSD values for multiple analysis of soil samples fortified at 30 μg/kg of each pesticide were below 19%. Limits of detection (LOD for all the compounds studied were less than 2 μg/kg.

  1. RELIABILITY OF KINEMATICS AND KINETICS ASSOCIATED WITH HORIZONTAL SINGLE LEG DROP JUMP ASSESSMENT. A BRIEF REPORT

    Directory of Open Access Journals (Sweden)

    Markus Stålbom

    2007-06-01

    Full Text Available Determining the reliability of a unilateral horizontal drop jump for displacement provided the focus for this research. Eighteen male subjects were required to step off a 20cm box and land on a force plate with one leg and thereafter jump for maximal horizontal displacement on two different days. Dependent variables from the jump assessment included mean and peak vertical (V and horizontal (H ground reaction forces (GRF and impulses, horizontal displacement and contact time. The between-trial variability of all kinematic and kinetic measures was less than 7%. The most consistent measure over both trials was the horizontal displacement jumped (1.2 to 1.4% and the most variable were the contact time the first day (6.5% and peak HGRF the second day (4.3%. In all cases there was less variation associated with the second rather than the first day. In terms of test-retest variability the percent changes in the means and coefficient of variations (CVs were all under 10%. The smallest changes in the mean (0.43 %, least variation (< 2.26 % and second highest intraclass correlation co-efficient (ICC = 0.95 were found for horizontal displacement jumped. The highest ICC (0.96 was found for horizontal impulse. Given the reliability of the single leg drop jump, it may offer better prognostic and diagnostic information than that obtained with bilateral vertical jumps

  2. MUSCLE ACTIVITY RESPONSE TO EXTERNAL MOMENT DURING SINGLE-LEG DROP LANDING IN YOUNG BASKETBALL PLAYERS: THE IMPORTANCE OF BICEPS FEMORIS IN REDUCING INTERNAL ROTATION OF KNEE DURING LANDING

    Directory of Open Access Journals (Sweden)

    Meguru Fujii

    2012-06-01

    Full Text Available Internal tibial rotation with the knee close to full extension combined with valgus collapse during drop landing generally results in non-contact anterior cruciate ligament (ACL injury. The purpose of this study was to investigate the relationship between internal rotation of the knee and muscle activity from internal and external rotator muscles, and between the internal rotation of knee and externally applied loads on the knee during landing in collegiate basketball players. Our hypothesis was that the activity of biceps femoris muscle would be an important factor reducing internal knee rotation during landing. The subjects were 10 collegiate basketball students: 5 females and 5 males. The subjects performed a single-leg drop landing from a 25-cm height. Femoral and tibial kinematics were measured using a 3D optoelectronic tracking system during the drop landings, and then the knee angular motions were determined. Ground reaction forces and muscle activation patterns (lateral hamstring and medial hamstring were simultaneously measured and computed. Results indicated that lower peak internal tibial rotation angle at the time of landing was associated with greater lateral hamstring activity (r = -0.623, p < 0.001. When gender was considered, the statistically significant correlation remained only in females. There was no association between the peak internal tibial rotation angle and the knee internal rotation moment. Control of muscle activity in the lateral to medial hamstring would be an important factor in generating sufficient force to inhibit excessive internal rotation during landing. Strengthening the biceps femoris might mitigate the higher incidence of non-contact ACL injury in female athletes

  3. Gap-related trapped magnetic flux dependence between single and combined bulk superconductors

    Science.gov (United States)

    Deng, Z.; Miki, M.; Felder, B.; Tsuzuki, K.; Shinohara, N.; Uetake, T.; Izumi, M.

    2011-05-01

    Aiming at examining the trapped-flux dependence between single and combined bulk superconductors for field-pole applications, three rectangular Y 1.65Ba 2Cu 3O 7-x (YBCO) bulks with a possibly compact combination were employed to investigate the trapped-flux characteristics of single and combined bulks with a field-cooling magnetization (FCM) method. A gap-related dependence was found between them. At lower gaps of 1 mm and 5 mm, the peak trapped fields and total magnetic flux of combined bulks are both smaller than the additive values of each single bulk, which can be ascribed to the demagnetization influences of the field around the bulk generated by the adjacent ones. While, at larger gaps like 10 mm, the situation becomes reversed. The combined bulks can attain bigger peak trapped fields as well as total magnetic flux, which indicates that the magnetic field by the bulk combination can reach higher gaps, thanks to the bigger magnetic energy compared with the single bulk. The presented results show that, on one hand, it is possible to estimate the total trapped magnetic flux of combined bulks by an approximate additive method of each single bulk while considering a demagnetization factor; on the other hand, it also means that the performance of combined bulks will be superior to the addition of each single bulk at larger gaps, thus preferable for large-scaled magnet applications.

  4. Visualization study of film drops produced by bubble bursting

    International Nuclear Information System (INIS)

    Ma Chao; Bo Hanliang

    2012-01-01

    The phenomenon that bubble bursting results in drops production is common in the steam generator of the nuclear power plant, and the fine drops generated by this way is one of the most important source of the drop entrainment in the vapor stream. The visualization experiment about the film drops produced by the bursting bubbles at a free water surface was studied using a high-speed video camera. The results show that the bubble cap breaks up in a single point, within the limits of bubble size in the experiment at present. The whole process can be distinguished into four successive stages: A primary inertial drainage, the bubble cap puncture at the foot or on the top, the film rolls-up and the liquid ring appearing with the hole expanding, and fine film drops emission under the effect of destabilization of a Rayleigh-Taylor type. The expression about the bubble radius and the film drops number is obtain by fitting the experiment data at the bubble radius range from 3-25 mm. The result trend agrees well with the previous work. (authors)

  5. Dispersive liquid-liquid microextraction combined with gas chromatography-electron capture detection for the determination of polychlorinated biphenyls in soils

    International Nuclear Information System (INIS)

    Hu Jia; Fu Lingyan; Zhao Xinna; Liu Xiujuan; Wang Huili; Wang Xuedong; Dai Liyan

    2009-01-01

    In this article, dispersive liquid-liquid microextraction (DLLME) and gas chromatography-electron capture detection (GC-ECD) were presented for the extraction and determination of five polychlorinated biphenyls (PCBs) in soil samples. Acetone was used as extraction solvent for the extraction of PCBs from soil samples. In DLLME, the target analytes in the extraction solvent were rapidly transferred from the acetone extract to chlorobenzene when the extraction process began. The main advantages of this method are quick speed, high enrichment factor, high recovery and good repeatability. Under the optimum conditions, the method yields a linear calibration curve in the concentration range from 2 to 2000 μg kg -1 for PCB 52, and 0.4 to 400 μg kg -1 for other target analytes. Coefficients of correlation (r 2 ) ranged from 0.9993 to 0.9999. The repeatability was tested by spiking soil samples at a concentration level of 10 μg kg -1 for PCBs. The relative standard deviations (RSDs, n = 11) varied between 2.2% and 6.4%. The limits of detection (LODs), based on signal-to-noise (S/N) of 3, were between 0.20 and 0.50 μg kg -1 . The relative recoveries of the five PCBs from soil S1, S2 and S3 at spiking levels of 10, 20 and 50 μg kg -1 were in the range of 88.70-103.8%, 82.50-106.3% and 82.30-113.6%, respectively. Therefore, DLLME combined with GC-ECD can be successfully applied for the determination of trace PCB residues in real soil samples.

  6. Drop deformation and breakup in a partially filled horizontal rotating cylinder

    Science.gov (United States)

    White, Andrew; Pereira, Caroline; Hyacinthe, Hyaquino; Ward, Thomas

    2014-11-01

    Drop deformation and breakup due to shear flow has been studied extensively in Couette devices as well as in gravity-driven flows. In these cases shear is generated either by the moving wall or the drop's motion. For such flows the drop shape remains unperturbed at low capillary number (Ca), deforms at moderate Ca , and can experience breakup as Ca --> 1 and larger. Here single drops of NaOH(aq) will be placed in a horizontal cylindrical rotating tank partially filled with vegetable oil resulting in 10-2 saponification, can yield lower minimum surface tensions and faster adsorption than non-reactive surfactant systems. Oil films between the wall and drop as well as drop shape will be observed as rotation rates and NaOH(aq) concentration are varied. Results will be presented in the context of previous work on bubble and drop shapes and breakup. NSF CBET #1262718.

  7. Determination of multi-class herbicides in soil by liquid-solid extraction coupled with headspace solid phase microextraction method

    Directory of Open Access Journals (Sweden)

    Đurović-Pejčev Rada

    2016-01-01

    Full Text Available A method is described for simultaneous determination of five herbicides (metribuzin, acetochlor, clomazone, oxyfluorfen and dimethenamid belonging to different pesticides groups in soil samples. Developed headspace solid phase microextraction method (HS-SPME in combination with liquid-solid sample preparation (LS was optimized and applied in the analysis of some agricultural samples. Optimization of microextraction conditions, such as temperature, extraction time and sodium chloride (NaCl content was perfor-med using 100 μm polydimethyl-siloxane (PDMS fiber. The extraction effi-ciencies of methanol, methanol:acetone=1:1 and methanol:acetone:hexane= =2:2:1 and the optimum number of extraction steps during the sample prepa-ration, were tested, as well. Gas chromatography-mass spectrometry (GC-MS was used for detection and quantification, obtaining relative standard deviation (RSD below 13%, and recovery values higher than 83% for multiple analyses of soil samples fortified at 30 μg kg-1 of each herbicide. Limits of detection (LOD were less than 1.2 μg kg-1 for all the studied herbicides. [Projekat Ministarstva nauke Republike Srbije, br. TR31043 i br. III43005

  8. Highly sensitive and selective hyphenated technique (molecularly imprinted polymer solid-phase microextraction-molecularly imprinted polymer sensor) for ultra trace analysis of aspartic acid enantiomers.

    Science.gov (United States)

    Prasad, Bhim Bali; Srivastava, Amrita; Tiwari, Mahavir Prasad

    2013-03-29

    The present work is related to combination of molecularly imprinted solid-phase microextraction and complementary molecularly imprinted polymer-sensor. The molecularly imprinted polymer grafted on titanium dioxide modified silica fiber was used for microextraction, while the same polymer immobilized on multiwalled carbon nanotubes/titanium dioxide modified pencil graphite electrode served as a detection tool. In both cases, the surface initiated polymerization was found to be advantageous to obtain a nanometer thin imprinted film. The modified silica fiber exhibited high adsorption capacity and enantioselective diffusion of aspartic acid isomers into respective molecular cavities. This combination enabled double preconcentrations of d- and l-aspartic acid that helped sensing both isomers in real samples, without any cross-selectivity and matrix complications. Taking into account 6×10(4)-fold dilution of serum and 2×10(3)-fold dilution of cerebrospinal fluid required by the proposed method, the limit of detection for l-aspartic acid is 0.031ngmL(-1). Also, taking into account 50-fold dilution required by the proposed method, the limit of detection for d-aspartic acid is 0.031ngmL(-1) in cerebrospinal fluid. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Determination of triazine herbicides in juice samples by microwave-assisted ionic liquid/ionic liquid dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography.

    Science.gov (United States)

    Su, Rui; Li, Dan; Wu, Lijie; Han, Jing; Lian, Wenhui; Wang, Keren; Yang, Hongmei

    2017-07-01

    A novel microextraction method, termed microwave-assisted ionic liquid/ionic liquid dispersive liquid-liquid microextraction, has been developed for the rapid enrichment and analysis of triazine herbicides in fruit juice samples by high-performance liquid chromatography. Instead of using hazardous organic solvents, two kinds of ionic liquids, a hydrophobic ionic liquid (1-hexyl-3-methylimidazolium hexafluorophosphate) and a hydrophilic ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate), were used as the extraction solvent and dispersion agent, respectively, in this method. The extraction procedure was induced by the formation of cloudy solution, which was composed of fine drops of 1-hexyl-3-methylimidazolium hexafluorophosphate dispersed entirely into sample solution with the help of 1-butyl-3-methylimidazolium tetrafluoroborate. In addition, an ion-pairing agent (NH 4 PF 6 ) was introduced to improve recoveries of the ionic liquid phase. Several experimental parameters that might affect the extraction efficiency were investigated. Under the optimum experimental conditions, the linearity for determining the analytes was in the range of 5.00-250.00 μg/L, with the correlation coefficients of 0.9982-0.9997. The practical application of this effective and green method is demonstrated by the successful analysis of triazine herbicides in four juice samples, with satisfactory recoveries (76.7-105.7%) and relative standard deviations (lower than 6.6%). In general, this method is fast, effective, and robust to determine triazine herbicides in juice samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Sporadic frame dropping impact on quality perception

    Science.gov (United States)

    Pastrana-Vidal, Ricardo R.; Gicquel, Jean Charles; Colomes, Catherine; Cherifi, Hocine

    2004-06-01

    Over the past few years there has been an increasing interest in real time video services over packet networks. When considering quality, it is essential to quantify user perception of the received sequence. Severe motion discontinuities are one of the most common degradations in video streaming. The end-user perceives a jerky motion when the discontinuities are uniformly distributed over time and an instantaneous fluidity break is perceived when the motion loss is isolated or irregularly distributed. Bit rate adaptation techniques, transmission errors in the packet networks or restitution strategy could be the origin of this perceived jerkiness. In this paper we present a psychovisual experiment performed to quantify the effect of sporadically dropped pictures on the overall perceived quality. First, the perceptual detection thresholds of generated temporal discontinuities were measured. Then, the quality function was estimated in relation to a single frame dropping for different durations. Finally, a set of tests was performed to quantify the effect of several impairments distributed over time. We have found that the detection thresholds are content, duration and motion dependent. The assessment results show how quality is impaired by a single burst of dropped frames in a 10 sec sequence. The effect of several bursts of discarded frames, irregularly distributed over the time is also discussed.

  11. Improved detection limits for phthalates by selective solid-phase micro-extraction

    KAUST Repository

    Zia, Asif I.; Afsarimanesh, Nasrin; Xie, Li; Nag, Anindya; Al-Bahadly, I. H.; Yu, P. L.; Kosel, Jü rgen

    2016-01-01

    Presented research reports on an improved method and enhanced limits of detection for phthalates; a hazardous additive used in the production of plastics by solid-phase micro-extraction (SPME) polymer in comparison to molecularly imprinted solid

  12. Acoustically levitated dancing drops: Self-excited oscillation to chaotic shedding

    Science.gov (United States)

    Lin, Po-Cheng; I, Lin

    2016-02-01

    We experimentally demonstrate self-excited oscillation and shedding of millimeter-sized water drops, acoustically levitated in a single-node standing waves cavity, by decreasing the steady acoustic wave intensity below a threshold. The perturbation of the acoustic field by drop motion is a possible source for providing an effective negative damping for sustaining the growing amplitude of the self-excited motion. Its further interplay with surface tension, drop inertia, gravity and acoustic intensities, select various self-excited modes for different size of drops and acoustic intensity. The large drop exhibits quasiperiodic motion from a vertical mode and a zonal mode with growing coupling, as oscillation amplitudes grow, until falling on the floor. For small drops, chaotic oscillations constituted by several broadened sectorial modes and corresponding zonal modes are self-excited. The growing oscillation amplitude leads to droplet shedding from the edges of highly stretched lobes, where surface tension no longer holds the rapid expanding flow.

  13. Kinetic aspects of hollow fiber liquid-phase microextraction and electromembrane extraction

    DEFF Research Database (Denmark)

    Gjelstad, Astrid; Jensen, Henrik; Rasmussen, Knut Einar

    2012-01-01

    In this paper, extraction kinetics was investigated experimentally and theoretically in hollow fiber liquid-phase microextraction (HF-LPME) and electromembrane extraction (EME) with the basic drugs droperidol, haloperidol, nortriptyline, clomipramine, and clemastine as model analytes. In HF...

  14. Comparison of micellar extraction combined with ionic liquid based vortex-assisted liquid-liquid microextraction and modified quick, easy, cheap, effective, rugged, and safe method for the determination of difenoconazole in cowpea.

    Science.gov (United States)

    Chen, Xiaochu; Bian, Yanli; Liu, Fengmao; Teng, Peipei; Sun, Pan

    2017-10-06

    Two simple sample pretreatment for the determination of difenoconazole in cowpea was developed including micellar extraction combined with ionic liquid based vortex-assisted liquid-liquid microextraction (ME-IL-VALLME) prior to high performance liquid chromatography (HPLC), and modified quick, easy, cheap, effective, rugged, and safe method (QuEChERS) coupled with HPLC-MS/MS. In ME-IL-VALLME method, the target analyte was extracted by surfactant Tween 20 micellar solution, then the supernatant was diluted with 3mL water to decrease the solubility of micellar solution. Subsequently, the vortex-assisted liquid-liquid microextraction (VALLME) procedure was performed in the diluted extraction solution by using the ionic liquid of 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIM]PF 6 ) as the extraction solvent and Tween 20 as an emulsifier to enhance the dispersion of the water-immiscible ionic liquid into the aqueous phase. Parameters that affect the extraction have been investigated in both methods Under the optimum conditions, the limits of quantitation were 0.10 and 0.05mgkg -1 , respectively. And good linearity was achieved with the correlation coefficient higher than 0.9941. The relative recoveries ranged from 78.6 to 94.8% and 92.0 to 118.0% with the relative standard deviations (RSD) of 7.9-9.6% and 1.2-3.2%, respectively. Both methods were quick, simple and inexpensive. However, the ME-IL-VALLME method provides higher enrichment factor compared with conventional QuEChERS method. The ME-IL-VALLME method has a strong potential for the determination of difenoconazole in complex vegetable matrices with HPLC. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A novel extraction technique based on carbon nanotubes reinforced hollow fiber solid/liquid microextraction for the measurement of piroxicam and diclofenac combined with high performance liquid chromatography.

    Science.gov (United States)

    Song, Xin-Yue; Shi, Yan-Ping; Chen, Juan

    2012-10-15

    A novel design of carbon nanotubes reinforced hollow fiber solid/liquid phase microextraction (CNTs-HF-SLPME) was developed to determine piroxicam and diclofenac in different real water samples. Functionalized multi-walled carbon nanotubes (MWCNTs) were held in the pores of hollow fiber with sol-gel technology. The pores and lumen of carbon nanotubes reinforced hollow fiber were subsequently filled with a μL volume of organic solvent (1-octanol), and then the whole assembly was used for the extraction of the target analytes in direct immersion sampling mode. The target analytes were extracted from the sample by two extractants, one of which is organic solvent placed inside the pores and lumen of hollow fiber and the other one is CNTs held in the pores of hollow fiber. After extraction, the analytes were desorbed in acetonitrile and analyzed using high performance liquid chromatography. This novel extraction mode showed more excellent extraction performance in comparison with conventional hollow fiber liquid microextraction (without adding CNTs) and carbon nanotubes reinforced hollow fiber solid microextraction (CNTs held in the pores of hollow fiber, but no organic solvents placed inside the lumen of hollow fiber) under the respective optimum conditions. This method provided 47- and 184-fold enrichment factors for piroxicam and diclofenac, respectively, good inter-fiber repeatability and batch-to-batch reproducibility. Linearity was observed in the range of 20-960 μg L(-1) for piroxicam, and 10-2560 μg L(-1) for diclofenac, with correlation coefficients of 0.9985 and 0.9989, respectively. The limits of detection were 4.58 μg L(-1) for piroxicam and 0.40 μg L(-1) for diclofenac. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Drop-out probabilities of IrisPlex SNP alleles

    DEFF Research Database (Denmark)

    Andersen, Jeppe Dyrberg; Tvedebrink, Torben; Mogensen, Helle Smidt

    2013-01-01

    In certain crime cases, information about a perpetrator's phenotype, including eye colour, may be a valuable tool if no DNA profile of any suspect or individual in the DNA database matches the DNA profile found at the crime scene. Often, the available DNA material is sparse and allelic drop-out...... of true alleles is possible. As part of the validation of the IrisPlex assay in our ISO17025 accredited, forensic genetic laboratory, we estimated the probability of drop-out of specific SNP alleles using 29 and 30 PCR cycles and 25, 50 and 100 Single Base Extension (SBE) cycles. We observed no drop-out...... when the amount of DNA was greater than 125 pg for 29 cycles of PCR and greater than 62 pg for 30 cycles of PCR. With the use of a logistic regression model, we estimated the allele specific probability of drop-out in heterozygote systems based on the signal strength of the observed allele...

  17. STUDY ON SOFTENING AND DROPPING PROPERTIES OF METALIZED BURDEN INSIDE BLAST FURNACE

    Directory of Open Access Journals (Sweden)

    Bi-yang Tuo

    2014-12-01

    Full Text Available The inferences of burden metallization rate on softening-melting dropping properties were investigated through softening-melting dropping test of three kinds of metalized burden pressure drop. The results indicated that the softeningmelting temperature interval of pre-reduction mixed burden is bigger than primeval mixed burden, the melting interval narrow with the rise of metallization rate of ferric burden as well as dropping temperature interval. The average pressure drop, maximum pressure drop and softening-melting dropping properties eigenvalue decrease with the rise of metallization rate of ferric burden. Besides, the dropping temperature of burden reduces with the rise of carbon content of molten iron. The combination high metalized burden and higher carbon content of molten iron is benefit to decreasing thickness of cohesive zone and improve permeability of cohesive zone.

  18. Simultaneous determination of three purines in Alysicarpus vaginalis (L.) DC. by hollow fiber-based liquid-phase microextraction combined with high-performance liquid chromatography.

    Science.gov (United States)

    Liu, Hongjiao; Lei, Ming; Liang, Xiao; Jiang, Zhen; Guo, Xingjie

    2014-02-01

    In this paper, a three-phase hollow fiber liquid-phase microextraction (HF-LPME) method combined with high-performance liquid chromatography (HPLC) was developed for the determination of hypoxanthine (HX), xanthine (Xan) and adenine (A) and then for the first time successfully applied to the analysis of HX, Xan and A in Alysicarpus vaginalis (L.) DC. medicinal materials. Different factors affecting the HF-LPME procedure were investigated and optimized. Under optimal extraction conditions (1-octanol as organic solvent, pH of the donor and acceptor phase 10.0 and 3.5, respectively, extraction time 40 min, stirring rate 800 rpm and salt addition 10%, w/v), HX, Xan and A could be determined within the test ranges with a good correlation coefficient (r(2) > 0.9992). The limit of detection for HX, Xan and A was 153, 173 and 97 ng/mL, respectively, and the intra- and inter-day relative standard deviations were no more than 9.8%. The content of HX, Xan and A in Alysicarpus vaginalis (L.) DC. medicinal materials was 120.40, 18.37 and 62.75 µg/g, respectively. This procedure afforded a convenient, sensitive, accurate and inexpensive method with a high extraction efficiency for determination of HX, Xan and A. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Solid-state chemiluminescence assay for ultrasensitive detection of antimony using on-vial immobilization of CdSe quantum dots combined with liquid–liquid–liquid microextraction

    Energy Technology Data Exchange (ETDEWEB)

    Costas-Mora, Isabel; Romero, Vanesa; Lavilla, Isela; Bendicho, Carlos, E-mail: bendicho@uvigo.es

    2013-07-25

    Graphical abstract: -- Highlights: •Solid-state chemiluminescence based on CdSe QDs was developed. •QDs immobilization in a vial was achieved in a simple and fast way. •Antimony detection was achieved by inhibition of the CdSe QDs/H{sub 2}O{sub 2} CL reaction. •LLLME allowed improving the selectivity and sensitivity of the CL assay. •The capping ligand played a critical role in the selectivity of the CL system. -- Abstract: On-vial immobilized CdSe quantum dots (QDs) are applied for the first time as chemiluminescent probes for the detection of trace metal ions. Among 17 metal ions tested, inhibition of the chemiluminescence when CdSe QDs are oxidized by H{sub 2}O{sub 2} was observed for Sb, Se and Cu. Liquid–liquid–liquid microextraction was implemented in order to improve the selectivity and sensitivity of the chemiluminescent assay. Factors influencing both the CdSe QDs/H{sub 2}O{sub 2} chemiluminescent system and microextraction process were optimized for ultrasensitive detection of Sb(III) and total Sb. In order to investigate the mechanism by which Sb ions inhibit the chemiluminescence of the CdSe QDs/H{sub 2}O{sub 2} system, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), UV–vis absorption and fluorescence measurements were performed. The selection of the appropriate CdSe QDs capping ligand was found to be a critical issue. Immobilization of QDs caused the chemiluminescence signal to be enhanced by a factor of 100 as compared to experiments carried out with QDs dispersed in the bulk aqueous phase. Under optimized conditions, the detection limit was 6 ng L{sup −1} Sb and the repeatability expressed as relative standard deviation (N = 7) was about 1.3%. An enrichment factor of 95 was achieved within only 3 min of microextraction. Several water samples including drinking, spring, and river waters were analyzed. The proposed method was validated against CRM NWTM-27.2 fortified lake water, and a recovery study was

  20. Combining p-values in replicated single-case experiments with multivariate outcome.

    Science.gov (United States)

    Solmi, Francesca; Onghena, Patrick

    2014-01-01

    Interest in combining probabilities has a long history in the global statistical community. The first steps in this direction were taken by Ronald Fisher, who introduced the idea of combining p-values of independent tests to provide a global decision rule when multiple aspects of a given problem were of interest. An interesting approach to this idea of combining p-values is the one based on permutation theory. The methods belonging to this particular approach exploit the permutation distributions of the tests to be combined, and use a simple function to combine probabilities. Combining p-values finds a very interesting application in the analysis of replicated single-case experiments. In this field the focus, while comparing different treatments effects, is more articulated than when just looking at the means of the different populations. Moreover, it is often of interest to combine the results obtained on the single patients in order to get more global information about the phenomenon under study. This paper gives an overview of how the concept of combining p-values was conceived, and how it can be easily handled via permutation techniques. Finally, the method of combining p-values is applied to a simulated replicated single-case experiment, and a numerical illustration is presented.

  1. Graphene oxide decorated with silver nanoparticles as a coating on a stainless-steel fiber for solid-phase microextraction.

    Science.gov (United States)

    Wang, Licheng; Hou, Xiudan; Li, Jubai; Liu, Shujuan; Guo, Yong

    2015-07-01

    A novel graphene oxide decorated with silver nanoparticles coating on a stainless-steel fiber for solid-phase microextraction was prepared. Scanning electron microscopy and X-ray photoelectron spectroscopy were used to characterize the coating surface and showed that silver nanoparticles were dispersed on the wrinkled graphene oxide surface. Coupled to gas chromatography with flame ionization detection, the extraction abilities of the fiber for polycyclic aromatic hydrocarbons were examined in the headspace solid-phase microextraction mode. The extraction parameters including adsorption time, adsorption temperature, salt concentration, desorption time and desorption temperature were investigated. Under the optimized condition, wide linearity with low limits of detection from 2 to 10 ng/L was obtained. The relative standard deviations for single-fiber repeatability and fiber-to-fiber reproducibility were less than 10.6 and 17.5%, respectively. The enrichment factors were from 1712.5 to 4503.7, showing the fiber has good extraction abilities. Moreover, the fiber exhibited a good stability and could be reused for more than 120 times. The established method was also applied for determination of polycyclic aromatic hydrocarbons in two real water samples and the recoveries of analytes ranged from 84.4-116.3% with relative standard deviations less than 16.2%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A sol-gel based solid phase microextraction fiber for the analysis of aliphatic alcohols in apple juices.

    Science.gov (United States)

    Farhadi, Khalil; Maleki, Ramin; Tahmasebi, Raheleh

    2010-01-01

    A new fiber based on titania-chitin sol-gel coated on a silver wire for the headspace solid phase microextraction of aliphatic alcohols from apple juice samples was developed. The influences of fiber coating composition and microextraction conditions (extraction temperature, extraction time, and ionic strength of the sample matrix) on the fiber performance were investigated. Also, the influence of temperature and time on desorption of analytes from fiber were studied. Under the optimized conditions, a porous fiber with a high extraction capacity and good thermal stability (up to 250 degrees C) was obtained. The proposed headspace solid-phase microextraction-GC method was successfully used for the analysis of aliphatic alcohols in apple juice and concentrate samples. The recovery values were from 92.8 to 98.6%. The RSD (n=5) for all analytes were below 7.8%.

  3. Comparison of two novel in-syringe dispersive liquid-liquid microextraction techniques for the determination of iodide in water samples using spectrophotometry.

    Science.gov (United States)

    Kaykhaii, Massoud; Sargazi, Mona

    2014-01-01

    Two new, rapid methodologies have been developed and applied successfully for the determination of trace levels of iodide in real water samples. Both techniques are based on a combination of in-syringe dispersive liquid-liquid microextraction (IS-DLLME) and micro-volume UV-Vis spectrophotometry. In the first technique, iodide is oxidized with nitrous acid to the colorless anion of ICl2(-) at high concentration of hydrochloric acid. Rhodamine B is added and by means of one step IS-DLLME, the ion-pair formed was extracted into toluene and measured spectrophotometrically. Acetone is used as dispersive solvent. The second method is based on the IS-DLLME microextraction of iodide as iodide/1, 10-phenanthroline-iron((II)) chelate cation ion-pair (colored) into nitrobenzene. Methanol was selected as dispersive solvent. Optimal conditions for iodide extraction were determined for both approaches. Methods are compared in terms of analytical parameters such as precision, accuracy, speed and limit of detection. Both methods were successfully applied to determining iodide in tap and river water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. O the Electrohydrodynamics of Drop Extraction from a Conductive Liquid Meniscus

    Science.gov (United States)

    Wright, Graham Scott

    This thesis is concerned with the use of an electric field in the extraction of liquid drops from a capillary orifice or nozzle. The motivating application is ink jet printing. Current drop-on-demand ink jets use pressure pulses to eject drops. Literature on electrostatic spraying suggests that by using an electric field, drops could be produced with a wider range of sizes and speeds than is possible with pressure ejection. Previous efforts to apply electric spraying to printing or similar selective coating tasks have taken an experimental approach based on steady or periodic spraying phenomena, without attempting cycle -by-cycle drop control. The centerpiece of this thesis is a simulation tool developed to explore such possibilities. A simplified analytic model is developed as a preliminary step, yielding formulas for force and time scales that provide an appropriate basis for nondimensionalization of the governing differential equations; important dimensionless parameters are identified. The complete self-consistent model permits simulation of meniscus behavior under time -varying applied voltage or pressure, with the electric field solution continually updated as the surface changes shape. The model uses a quasi-one-dimensional hydrodynamic formulation and a two-dimensional axisymmetric boundary element solution for the electric field. The simulation is checked against experimental results for meniscus stability, resonant modes, and drop emission under electric field. The simulation faithfully captures important qualitative aspects of meniscus behavior and gives reasonable quantitative agreement within the limitations of the model. Insights gained in simulation point the way to a successful laboratory demonstration of drop extraction using a shaped voltage pulse. Drop size control is pursued in simulation using pressure and voltage pulses both alone and in combination, for both light and viscous liquids. Combining pressure and field pulses is shown to be

  5. Solid phase microextraction.

    Science.gov (United States)

    Pawliszyn, J

    2001-01-01

    Solid Phase Microextraction (SPME) uses a small volume of sorbent dispersed typically on the surface of small fibres, to isolate and concentrate analytes from sample matrix. After contact with sample, analytes are absorbed or adsorbed by the fibre phase (depending on the nature of the coating) until an equilibrium is reached in the system. The amount of an analyte extracted by the coating at equilibrium is determined by the magnitude of the partition coefficient of the analyte between the sample matrix and the coating material. After the extraction step, the fibres are transferred, with the help of a syringe-like handling device, to analytical instrument, for separation and quantitation of target analytes. This technique integrates sampling, extraction and sample introduction and is a simple way of facilitating on-site monitoring. Applications of this technique include environmental monitoring, industrial hygiene, process monitoring, clinical, forensic, food, flavour, fragrance and drug analyses, in laboratory and on-site analysis.

  6. Theory and experiments on electrohydrodynamic enhancement of evaporation from water drops

    International Nuclear Information System (INIS)

    Barthakur, N.N.

    1990-01-01

    Space charge produce by a single corona electrode was used to enhance evaporation rates from sessile drops of water. The drying curve was traced and a drop lifetime determined by a beta ray gauge which provided both sensitivity and reproducibility to the measurements. Lifetime was reduced by a factor of 3.5 to 4.7 when subjected to fluxes of 3.02x10 12 positive charges cm -2 s -1 than those from freely evaporating drops in the laboratory. A theoretical model based on mass transfer coefficient was developed to predict the drop lifetime. Calculated lifetime of drops of volume 0.1 to 0.5 ml agreed within 12 percent of the experimental values. Electric wind caused by the ionic drag is proposed to be the principal driving force for the observed enhancement of evaporation from the drops. (author). 24 refs., 2 figs., 1 tab

  7. Coalescence of liquid drops: Different models versus experiment

    KAUST Repository

    Sprittles, J. E.

    2012-01-01

    The process of coalescence of two identical liquid drops is simulated numerically in the framework of two essentially different mathematical models, and the results are compared with experimental data on the very early stages of the coalescence process reported recently. The first model tested is the "conventional" one, where it is assumed that coalescence as the formation of a single body of fluid occurs by an instant appearance of a liquid bridge smoothly connecting the two drops, and the subsequent process is the evolution of this single body of fluid driven by capillary forces. The second model under investigation considers coalescence as a process where a section of the free surface becomes trapped between the bulk phases as the drops are pressed against each other, and it is the gradual disappearance of this "internal interface" that leads to the formation of a single body of fluid and the conventional model taking over. Using the full numerical solution of the problem in the framework of each of the two models, we show that the recently reported electrical measurements probing the very early stages of the process are better described by the interface formation/disappearance model. New theory-guided experiments are suggested that would help to further elucidate the details of the coalescence phenomenon. As a by-product of our research, the range of validity of different "scaling laws" advanced as approximate solutions to the problem formulated using the conventional model is established. © 2012 American Institute of Physics.

  8. Studying the field induced breakup of acoustically levitated drops

    Science.gov (United States)

    Warschat, C.; Riedel, J.

    2017-10-01

    Coulomb fission of charged droplets (The terms drop and droplet are often used synonymous. Throughout this manuscript, to avoid confusion, the terms drop and droplet will be used for liquid spheres with radii in the millimeter range and the micrometer range, respectively. In our experiments, the first correspond to the parent drop while the latter describes the ejected progeny droplets.) is a well-studied natural phenomenon. Controlled droplet fission is already successfully employed in several technological applications. Still, since the occurring surface rupture relies on the exact understanding and description of the liquid gas boundary, some details are still under debate. Most empirical systematic studies observe falling micrometer droplets passing through the electric field inside a plate capacitor. This approach, although easily applicable and reliable, limits the experimental degrees of freedom regarding the observable time and the maximum size of the drops and can only be performed in consecutive individual observations of different subsequent drops. Here we present a novel setup to study the field induced breakup of acoustically levitated drops. The design does not bear any restrictions towards the temporal window of observation, and allows handling of drops of a tunable radius ranging from 10 μm to several millimeters and a real-time monitoring of one single drop. Our comprehensive study includes a time resolved visual inspection, laser shadowgraphy, laser induced fluorescence imaging, and ambient mass spectrometric interrogation of the nascent Taylor cone. The results shown for a millimeter sized drop, previously inaccessible for Coulomb fission experiments, are mostly comparable with previous results for smaller drops. The major difference is the time scale and the threshold potential of the drop rupture. Both values, however, resemble theoretically extrapolations to the larger radius. The technique allows for a systematic study of breakup behavior of

  9. Salting-out-enhanced ionic liquid microextraction with a dual-role solvent for simultaneous determination of trace pollutants with a wide polarity range in aqueous samples.

    Science.gov (United States)

    Gao, Man; Qu, Jingang; Chen, Kai; Jin, Lide; Dahlgren, Randy Alan; Wang, Huili; Tan, Chengxia; Wang, Xuedong

    2017-11-01

    In real aquatic environments, many occupational pollutants with a wide range of polarities coexist at nanogram to milligram per liter levels. Most reported microextraction methods focus on extracting compounds with similar properties (e.g., polarity or specific functional groups). Herein, we developed a salting-out-enhanced ionic liquid microextraction based on a dual-role solvent (SILM-DS) for simultaneous detection of tetracycline, doxycycline, bisphenol A, triclosan, and methyltriclosan, with log K ow ranging from -1.32 to 5.40 in complex milk and environmental water matrices. The disperser in the ionic-liquid-based dispersive liquid-liquid microextraction was converted to the extraction solvent in the subsequent salting-out-assisted microextraction procedures, and thus a single solvent performed a dual role as both extractant and disperser in the SILM-DS process. Acetonitrile was selected as the dual-role solvent because of its strong affinity for both ionic liquids and water, as well as the extractant in the salting-out step. Optimized experimental conditions were 115 μL [C 8 MIM][PF 6 ] as extractor, 1200 μL acetonitrile as dual-role solvent, pH 2.0, 5.0 min ultrasound extraction time, 3.0 g Na 2 SO 4 , and 3.0 min vortex extraction time. Under optimized conditions, the recoveries of the five pollutants ranged from 74.5 to 106.9%, and their LODs were 0.12-0.75 μg kg -1 in milk samples and 0.11-0.79 μg L -1 in environmental waters. Experimental precision based on relative standard deviation was 1.4-6.4% for intraday and 2.3-6.5% for interday analyses. Compared with previous methods, the prominent advantages of the newly developed method are simultaneous determination of pollutants with a wide range of polarities and a substantially reduced workload for ordinary environmental monitoring and food tests. Therefore, the new method has great application potential for simultaneous determination of trace pollutants with strongly contrasting polarities in several

  10. Comparison of dispersive liquid-liquid microextraction and hollow fiber liquid-liquid-liquid microextraction for the determination of fentanyl, alfentanil, and sufentanil in water and biological fluids by high-performance liquid chromatography.

    Science.gov (United States)

    Saraji, Mohammad; Khalili Boroujeni, Malihe; Hajialiakbari Bidgoli, Ali Akbar

    2011-06-01

    Dispersive liquid-liquid microextraction (DLLME) and hollow fiber liquid-liquid-liquid microextraction (HF-LLLME) combined with HPLC-DAD have been applied for the determination of three narcotic drugs (alfentanil, fentanyl, and sufentanil) in biological samples (human plasma and urine). Different DLLME parameters influencing the extraction efficiency such as type and volume of the extraction solvent and the disperser solvent, concentration of NaOH, and salt addition were investigated. In the HF-LLLME, the effects of important parameters including organic solvent type, concentration of NaOH as donor solution, concentration of H(2)SO(4) as acceptor phase, salt addition, stirring rate, temperature, and extraction time were investigated and optimized. The results showed that both extraction methods exhibited good linearity, precision, enrichment factor, and detection limit. Under optimal condition, the limits of detection ranged from 0.4 to 1.9 μg/L and from 1.1 to 2.3 μg/L for DLLME and HF-LLLME, respectively. For DLLME, the intra- and inter-day precisions were 1.7-6.4% and 14.2-15.9%, respectively; and for HF-LLLME were 0.7-5.2% and 3.3-10.1%, respectively. The enrichment factors were from 275 to 325 and 190 to 237 for DLLME and HF-LLLME, respectively. The applicability of the proposed methods was investigated by analyzing biological samples. For analysis of human plasma and urine samples, HF-LLLME showed higher precision, more effective sample clean-up, higher extraction efficiency, lower organic solvent consumption than DLLME.

  11. Combination of flame atomic absorption spectrometry with ligandless-dispersive liquid- liquid microextraction for preconcentration and determination of trace amount of lead in water samples

    Directory of Open Access Journals (Sweden)

    Y.M. Baghelani

    2013-05-01

    Full Text Available A new ligandless-dispersive liquid–liquid microextraction method has been developed for the separation and flame atomic absorption spectrometry determination of trace amount of lead(II ion. In the proposed approach 1,2-dicholorobenzene and ethanol were used as extraction and dispersive solvents. Factors influencing the extraction efficiency of lead, including the extraction and dispersive solvent type and volume, pH of sample solution, concentration of chloride and extraction time were studied. Under the optimal conditions, the calibration curve was linear in the range of 7.0–6000 ng mL−1 of lead with R2 = 0.9992 (n = 10 and detection limit based on three times the standard deviation of the blank (3Sb was 0.5 ng mL−1 in original solution. The relative standard deviation for eight replicate determinations of 1.0 mg mL-1 lead was ±1.6%. The high efficiency of dispersive liquid-liquid microextraction to carry out the determination of trace amounts of lead in complex matrices was demonstrated. The proposed method has been applied for determination of trace amounts of lead in water samples and satisfactory results were obtained. The accuracy was checked by analyzing a certified reference material from the National Institute of Standard and Technology, Trace elements in water (NIST CRM 1643e.

  12. Role of microextraction sampling procedures in forensic toxicology.

    Science.gov (United States)

    Barroso, Mário; Moreno, Ivo; da Fonseca, Beatriz; Queiroz, João António; Gallardo, Eugenia

    2012-07-01

    The last two decades have provided analysts with more sensitive technology, enabling scientists from all analytical fields to see what they were not able to see just a few years ago. This increased sensitivity has allowed drug detection at very low concentrations and testing in unconventional samples (e.g., hair, oral fluid and sweat), where despite having low analyte concentrations has also led to a reduction in sample size. Along with this reduction, and as a result of the use of excessive amounts of potentially toxic organic solvents (with the subsequent environmental pollution and costs associated with their proper disposal), there has been a growing tendency to use miniaturized sampling techniques. Those sampling procedures allow reducing organic solvent consumption to a minimum and at the same time provide a rapid, simple and cost-effective approach. In addition, it is possible to get at least some degree of automation when using these techniques, which will enhance sample throughput. Those miniaturized sample preparation techniques may be roughly categorized in solid-phase and liquid-phase microextraction, depending on the nature of the analyte. This paper reviews recently published literature on the use of microextraction sampling procedures, with a special focus on the field of forensic toxicology.

  13. Nonlinear dynamics of drops and bubbles and chaotic phenomena

    Science.gov (United States)

    Trinh, Eugene H.; Leal, L. G.; Feng, Z. C.; Holt, R. G.

    1994-01-01

    Nonlinear phenomena associated with the dynamics of free drops and bubbles are investigated analytically, numerically and experimentally. Although newly developed levitation and measurement techniques have been implemented, the full experimental validation of theoretical predictions has been hindered by interfering artifacts associated with levitation in the Earth gravitational field. The low gravity environment of orbital space flight has been shown to provide a more quiescent environment which can be utilized to better match the idealized theoretical conditions. The research effort described in this paper is a closely coupled collaboration between predictive and guiding theoretical activities and a unique experimental program involving the ultrasonic and electrostatic levitation of single droplets and bubbles. The goal is to develop and to validate methods based on nonlinear dynamics for the understanding of the large amplitude oscillatory response of single drops and bubbles to both isotropic and asymmetric pressure stimuli. The first specific area on interest has been the resonant coupling between volume and shape oscillatory modes isolated gas or vapor bubbles in a liquid host. The result of multiple time-scale asymptotic treatment, combined with domain perturbation and bifurcation methods, has been the prediction of resonant and near-resonant coupling between volume and shape modes leading to stable as well as chaotic oscillations. Experimental investigations of the large amplitude shape oscillation modes of centimeter-size single bubbles trapped in water at 1 G and under reduced hydrostatic pressure, have suggested the possibility of a low gravity experiment to study the direct coupling between these low frequency shape modes and the volume pulsation, sound-radiating mode. The second subject of interest has involved numerical modeling, using the boundary integral method, of the large amplitude shape oscillations of charged and uncharged drops in the presence

  14. Determination of imidazole derivatives by micellar electrokinetic chromatography combined with solid-phase microextraction using activated carbon-polymer monolith as adsorbent.

    Science.gov (United States)

    Shih, Yung-Han; Lirio, Stephen; Li, Chih-Keng; Liu, Wan-Ling; Huang, Hsi-Ya

    2016-01-08

    In this study, an effective method for the separation of imidazole derivatives 2-methylimidazole (2-MEI), 4- methylimidazole (4-MEI) and 2-acetyl-4-tetrahydroxybutylimidazole (THI) in caramel colors using cation-selective exhaustive injection and sweeping micellar electrokinetic chromatography (CSEI-sweeping-MEKC) was developed. The limits of detection (LOD) and quantitation (LOQ) for the CSEI-sweeping-MEKC method were in the range of 4.3-80μgL(-1) and 14-270μgL(-1), respectively. Meanwhile, a rapid fabrication activated carbon-polymer (AC-polymer) monolithic column as adsorbent for solid-phase microextraction (SPME) of imidazole colors was developed. Under the optimized SPME condition, the extraction recoveries for intra-day, inter-day and column-to-column were in the range of 84.5-95.1% (<6.3% RSDs), 85.6-96.1% (<4.9% RSDs), and 81.3-96.1% (<7.1% RSDs), respectively. The LODs and LOQs of AC-polymer monolithic column combined with CSEI-sweeping-MEKC method were in the range of 33.4-60.4μgL(-1) and 111.7-201.2μgL(-1), respectively. The use of AC-polymer as SPME adsorbent demonstrated the reduction of matrix effect in food samples such as soft drink and alcoholic beverage thereby benefiting successful determination of trace-level caramel colors residues using CSEI-sweeping-MEKC method. The developed AC-polymer monolithic column can be reused for more than 30 times without any significant loss in the extraction recovery for imidazole derivatives. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Effects of single and combined inoculations of selected Trichoderma ...

    African Journals Online (AJOL)

    Effects of single and combined inoculations of selected Trichoderma and Bacillus isolates on growth of dry bean and biological control of Rhizoctonia solani damping-off. ... Greenhouse trials showed that combined inoculations of T. atroviride strain 6 and B. subtilis B69 gave the highest growth promotion of bean in terms of ...

  16. Binary Solvents Dispersive Liquid-Liquid Microextraction (BS-DLLME) Method for Determination of Tramadol in Urine Using High-Performance Liquid Chromatography.

    Science.gov (United States)

    Kiarostami, Vahid; Rouini, Mohamad-Reza; Mohammadian, Razieh; Lavasani, Hoda; Ghazaghi, Mehri

    2014-02-03

    Tramadol is an opioid, synthetic analog of codeine and has been used for the treatment of acute or chronic pain may be abused. In this work, a developed Dispersive liquid liquid microextraction (DLLME) as binary solvents-based dispersive liquid-liquid microextraction (BS-DLLME) combined with high performance liquid chromatography (HPLC) with fluorescence detection (FD) was employed for determination of tramadol in the urine samples. This procedure involves the use of an appropriate mixture of binary extraction solvents (70 μL CHCl3 and 30 μL ethyl acetate) and disperser solvent (600 μL acetone) for the formation of cloudy solution in 5 ml urine sample comprising tramadol and NaCl (7.5%, w/v). After centrifuging, the small droplets of extraction solvents were precipitated. In the final step, the HPLC with fluorescence detection was used for determination of tramadol in the precipitated phase. Various factors on the efficiency of the proposed procedure were investigated and optimized. The detection limit (S/N = 3) and quantification limit (S/N = 10) were found 0.2 and 0.9 μg/L, respectively. The relative standard deviations (RSD) for the extraction of 30 μg L of tramadol was found 4.1% (n = 6). The relative recoveries of tramadol from urine samples at spiking levels of 10, 30 and 60 μg/L were in the range of 95.6 - 99.6%. Compared with other methods, this method provides good figures of merit such as good repeatability, high extraction efficiency, short analysis time, simple procedure and can be used as microextraction technique for routine analysis in clinical laboratories.

  17. Pressure drop and flow distribution characteristics of single and parallel serpentine flow fields for polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Baek, Seung Man; Kim, Charn Jung; Jeon, Dong Hyup; Nam, Jin Hyun

    2012-01-01

    This study numerically investigates pressure drop and flow distribution characteristics of serpentine flow fields (SFFs) that are designed for polymer electrolyte membrane fuel cells, which consider the Poiseuille flow with secondary pressure drop in the gas channel (GC) and the Darcy flow in the porous gas diffusion layer (GDL). The numerical results for a conventional SFF agreed well with those obtained via computational fluid dynamics simulations, thus proving the validity of the present flow network model. This model is employed to characterize various single and parallel SFFs, including multi-pass serpentine flow fields (MPSFFs). Findings reveal that under rib convection (convective flow through GDL under an interconnector rib) is an important transport process for conventional SFFs, with its intensity being significantly enhanced as GDL permeability increases. The results also indicate that under rib convection can be significantly improved by employing MPSFFs as the reactant flow field, because of the closely interlaced structure of GC regions that have different path lengths from the inlet. However, reactant flow rate through GCs proportionally decreases as under rib convection intensity increases, suggesting that proper optimization is required between the flow velocity in GCs and the under rib convection intensity in GDLs

  18. Solid-phase micro-extraction in bioanalysis, exemplified by lidocaine determination

    NARCIS (Netherlands)

    de Jong, GJ; Koster, EHM

    2000-01-01

    Solid-phase micro-extraction (SPME) is a never sample preparation technique that can be used for gaseous, liquid or solid samples in conjunction with GC, HPLC or CE (e.g. [1]). The use of SPME for the analysis of drugs in biofluids is also becoming popular (e.g. [2]). The principle is that a fused

  19. Speciation analysis of aqueous nanoparticulate diclofenac complexes by solid-phase microextraction

    NARCIS (Netherlands)

    Zielinska, K.; Leeuwen, van H.P.; Thibault, S.; Town, R.M.

    2012-01-01

    The dynamic sorption of an organic compound by nanoparticles (NPs) is analyzed by solid-phase microextraction (SPME) for the example case of the pharmaceutical diclofenac in dispersions of impermeable (silica, SiO(2)) and permeable (bovine serum albumin, BSA) NPs. It is shown that only the

  20. Coupling slots without shunt impedance drop

    International Nuclear Information System (INIS)

    Balleyguier, P.

    1996-01-01

    It is well known that coupling slots between adjacent cells in a π-mode structure reduce shunt impedance per unit length with respect to single cell cavities. To design optimized coupling slots, one has to answer the following question: for a given coupling factor, what shape, dimension, position and number of slots lead to the lowest shunt impedance drop? A numerical study using the 3D code MAFIA has been carried out. The aim was to design the 352 MHz cavities for the high intensity proton accelerator of the TRISPAL project. The result is an unexpected set of four 'petal' slots. Such slots should lead to a quasi-negligible drop in shunt impedance: about -1% on average, for particle velocity from 0.4 c to 0.8 c. (author)

  1. A pressure drop model for PWR grids

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Dong Seok; In, Wang Ki; Bang, Je Geon; Jung, Youn Ho; Chun, Tae Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    A pressure drop model for the PWR grids with and without mixing device is proposed at single phase based on the fluid mechanistic approach. Total pressure loss is expressed in additive way for form and frictional losses. The general friction factor correlations and form drag coefficients available in the open literatures are used to the model. As the results, the model shows better predictions than the existing ones for the non-mixing grids, and reasonable agreements with the available experimental data for mixing grids. Therefore it is concluded that the proposed model for pressure drop can provide sufficiently good approximation for grid optimization and design calculation in advanced grid development. 7 refs., 3 figs., 3 tabs. (Author)

  2. A pressure drop model for PWR grids

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Dong Seok; In, Wang Ki; Bang, Je Geon; Jung, Youn Ho; Chun, Tae Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A pressure drop model for the PWR grids with and without mixing device is proposed at single phase based on the fluid mechanistic approach. Total pressure loss is expressed in additive way for form and frictional losses. The general friction factor correlations and form drag coefficients available in the open literatures are used to the model. As the results, the model shows better predictions than the existing ones for the non-mixing grids, and reasonable agreements with the available experimental data for mixing grids. Therefore it is concluded that the proposed model for pressure drop can provide sufficiently good approximation for grid optimization and design calculation in advanced grid development. 7 refs., 3 figs., 3 tabs. (Author)

  3. Solid phase micro-extraction in environmental atmosphere

    International Nuclear Information System (INIS)

    Tao Ping; Wei Lifan; Tan Yun

    2002-01-01

    Solid phase micro-extraction (SPME) is an advanced technique of sample pretreatment in environmental atmosphere analysis, i.e., a sampling method of extracting volatile organic compounds from environmental gas. According to the primary survey on the theory and application of SPME, a suitable extraction tip, i.e., a coated fused silica fiber, is selected to construct a SPME apparatus. This SPME apparatus is used to extract volatile organic compounds from environmental atmosphere and a qualitative detection is conducted in gas chromatography-mass spectrometer system. Good experimental results are obtained

  4. Vortex-assisted magnetic β-cyclodextrin/attapulgite-linked ionic liquid dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography for the fast determination of four fungicides in water samples.

    Science.gov (United States)

    Yang, Miyi; Xi, Xuefei; Wu, Xiaoling; Lu, Runhua; Zhou, Wenfeng; Zhang, Sanbing; Gao, Haixiang

    2015-02-13

    A novel microextraction technique combining magnetic solid-phase microextraction (MSPME) with ionic liquid dispersive liquid-liquid microextraction (IL-DLLME) to determine four fungicides is presented in this work for the first time. The main factors affecting the extraction efficiency were optimized by the one-factor-at-a-time approach and the impacts of these factors were studied by an orthogonal design. Without tedious clean-up procedure, analytes were extracted from the sample to the adsorbent and organic solvent and then desorbed in acetonitrile prior to chromatographic analysis. Under the optimum conditions, good linearity and high enrichment factors were obtained for all analytes, with correlation coefficients ranging from 0.9998 to 1.0000 and enrichment factors ranging 135 and 159 folds. The recoveries for proposed approach were between 98% and 115%, the limits of detection were between 0.02 and 0.04 μg L(-1) and the RSDs changed from 2.96 to 4.16. The method was successfully applied in the analysis of four fungicides (azoxystrobin, chlorothalonil, cyprodinil and trifloxystrobin) in environmental water samples. The recoveries for the real water samples ranged between 81% and 109%. The procedure proved to be a time-saving, environmentally friendly, and efficient analytical technique. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Rapid determination of some beta-blockers in complicated matrices by tandem dispersive liquid-liquid microextraction followed by high performance liquid chromatography.

    Science.gov (United States)

    Hemmati, Maryam; Asghari, Alireza; Bazregar, Mohammad; Rajabi, Maryam

    2016-11-01

    In this research work, an efficient tandem dispersive liquid-liquid microextraction (TDLLME) procedure coupled with high performance liquid chromatography-ultraviolet detection (HPLC-UV) was successfully applied for the determination of beta-blockers in human plasma and pharmaceutical wastewater samples. High clean-up and preconcentration factor are easily and rapidly feasible via this novel, cheap, and safe microextraction method, leading to high quality experimental data. It consists of two sequential dispersive liquid-liquid microextraction methods, accomplished via air/ultrasonic agitation and air agitation, respectively. In order to enrich the optimal values for the mentioned procedures, the Box-Behnken design (BBD) combined with the desirability function (DF) was used. The optimum values were found to be 11.0 % (w/v) of the salt amount, an initial pH value of 12.0, 103 μL of organic extractant phase, and 45 μL of aqueous extractant phase with pH value of 2.0, resulted in reasonable recovery percentages with a logical desirability. Under optimal experimental conditions, good linear ranges (3-2000 ng mL -1 for metoprolol and 2.5-2500 ng mL -1 for propranolol with the correlation of determinations (R 2 s) higher than 0.99) and low limits of detection (0.8 and 1.0 ng mL -1 for propranolol and metoprolol, respectively) were obtainable. Also, TDLLME-HPLC-UV provided good proper repeatabilities (relative standard deviations (RSDs) below 5.7 %, n = 3) and high enrichment factors (EFs) of 75-100. Graphical abstract TDLLME of beta-blockers from complicated matrices.

  6. Water-contained surfactant-based vortex-assisted microextraction method combined with liquid chromatography for determination of synthetic antioxidants from edible oil.

    Science.gov (United States)

    Amlashi, Nadiya Ekbatani; Hadjmohammadi, Mohammad Reza; Nazari, Seyed Saman Seyed Jafar

    2014-09-26

    For the first time, a novel water-contained surfactant-based vortex-assisted microextraction method (WSVAME) was developed for the extraction of two synthetic antioxidants (t-butyl hydroquinone (TBHQ) and butylated hydroxyanisole (BHA)) from edible oil samples. The novel microextraction method is based on the injection of an aqueous solution of non-ionic surfactant, Brij-35, into the oil sample in a conical bottom glass tube to form a cloudy solution. Vortex mixing was applied to accelerate the dispersion process. After extraction and phase separation by centrifugation, the lower sediment phase was directly analyzed by HPLC. The effects of the four experimental parameters including volume and concentration of extraction solvent (aqueous solution of Brij-35), percentage of acetic acid added to the oil sample and vortex time on the extraction efficiency were studied with a full factorial design. The central composite design and multiple linear regression method were applied for the construction of the best polynomial model based on experimental recoveries. The proposed method showed good linearity within the range of 0.200-200 μg mL(-1), the square of correlation coefficient higher than 0.999 and appropriate limit of detection (0.026 and 0.020 μg mL(-1) for TBHQ and BHA, respectively), while the precision for inner-day was ≤ 3.0 (n=5) and it was ≤ 3.80 (n=5) for inter-day assay. Under the optimal condition (30 μL of 0.10 mol L(-1) Brij-35 solution as extraction solvent and vortex time 1 min), the method was successfully applied for determination of TBHQ and BHA in different commercial edible oil samples. The recoveries in all cases were above 95%, with relative standard deviations below 5%. This approach is considered as a simple, sensitive and environmentally friendly method because of biodegradability of the extraction phase and no use of organic solvent in the extraction procedure. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Using acoustics to study and stimulate the coalescence of oil drops surrounded by water

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, E.A.; Apfel, R.E. (Yale Univ., New Haven, CT (United States). Dept. of Mechanical Engineering)

    1993-08-01

    The coalescence of oil drops in water is studied using acoustic levitation and stimulated with acoustic cavitation. Unlike most earlier studies, which investigate the coalescence of a single drop with an initially planar interface, the use of acoustic radiation forces allows two drops to be brought into contact and allowed to coalesce. The acoustic technique has the advantage over other drop-drop coalescence systems in that the drops remain in contact until they coalesce without the use of solid supports to control them. Additionally, acoustic cavitation is observed to deposit sufficient energy in the oil-water interface to trigger the coalescence of a pair of 2-mm-diameter drops. This stimulation mechanism could have application to emulsion breaking. Some of the factors that affect spontaneous and stimulated coalescence are investigated.

  8. Water Penetration through a Superhydrophobic Mesh During a Drop Impact

    Science.gov (United States)

    Ryu, Seunggeol; Sen, Prosenjit; Nam, Youngsuk; Lee, Choongyeop

    2017-01-01

    When a water drop impacts a mesh having submillimeter pores, a part of the drop penetrates through the mesh if the impact velocity is sufficiently large. Here we show that different surface wettability, i.e., hydrophobicity and superhydrophobicity, leads to different water penetration dynamics on a mesh during drop impact. We show, despite the water repellence of a superhydrophobic surface, that water can penetrate a superhydrophobic mesh more easily (i.e., at a lower impact velocity) over a hydrophobic mesh via a penetration mechanism unique to a superhydrophobic mesh. On a superhydrophobic mesh, the water penetration can occur during the drop recoil stage, which appears at a lower impact velocity than the critical impact velocity for water penetration right upon impact. We propose that this unique water penetration on a superhydrophobic mesh can be attributed to the combination of the hydrodynamic focusing and the momentum transfer from the water drop when it is about to bounce off the surface, at which point the water drop retrieves most of its kinetic energy due to the negligible friction on superhydrophobic surfaces.

  9. A 1:1 pharmaceutical cocrystal of myricetin in combination with uncommon piracetam conformer: X-ray single crystal analysis and mechanochemical synthesis

    Science.gov (United States)

    Sowa, Michał; Ślepokura, Katarzyna; Matczak-Jon, Ewa

    2014-01-01

    Combination of two Active Pharmaceutical Ingredients, myricetin and piracetam, yields a 1:1 cocrystal characterized by X-ray single-crystal and powder diffraction, Raman spectroscopy, 1H NMR, thermal analysis (DSC and TG-DTA) methods. Constituents of the cocrystalline phase were also investigated in terms of Hirshfeld surfaces. Compounds in their neutral forms cocrystallize in the Pna21 space group of orthorhombic system. Notably, piracetam adopts an uncommon conformation, not encountered in its cocrystals previously described. In the crystal lattice, a three-dimensional hydrogen-bonded network is observed, including formation of a 2D molecular scaffolding motif. A scale-up procedure is readily available with use of solvent-drop grinding method, in which application of a variety of common solvents leads to formation of the cocrystal, as confirmed by XRPD and Raman spectroscopy.

  10. Spectrum analysis of a voltage source converter due to semiconductor voltage drops

    DEFF Research Database (Denmark)

    Rasmussen, Tonny Wederberg; Eltouki, Mustafa

    2017-01-01

    It is known that power electronic voltage source converters are non-ideal. This paper presents a state-of-the-art review on the effect of semiconductor voltage drop on the output voltage spectrum, using single-phase H-bridge two-level converter topology with natural sampled pulse width modulation....... The paper describes the analysis of output voltage spectrum, when the semiconductor voltage drop is added. The results of the analysis of the spectral contribution including and excluding semiconductor voltage drop reveal a good agreement between the theoretical results, simulations and laboratory...

  11. The effect of spacer grid critical component on pressure drop under both single and two phase flow conditions

    International Nuclear Information System (INIS)

    Han, B.; Yang, B.W.; Zhang, H.; Mao, H.; Zha, Y.

    2016-01-01

    As pressure drop is one of the most critical thermal hydraulic parameters for spacer grids the accurate estimation of it is the key to the design and development of spacer grids. Most of the available correlations for pressure drop do not contain any real geometrical parameters that characterize the grid effect. The main functions for spacer grid are structural support and flow mixing. Once the boundary sublayer near the rod bundle is disturbed, the liquid forms swirls or flow separation that affect pressure drop. However, under two phase flow conditions, due to the existence of steam bubble, the complexity for spacer grid are multiplied and pressure drop calculation becomes much more challenging. The influence of the dimple location, distance of mixing vane to the nearest strip, and the effect of inter-subchannel mixing among neighboring subchannels on pressure drop and downstream flow fields are analyzed in this paper. Based on this study, more detailed space grid geometry parameters are recommended for adding into the correlation when predicting pressure drop.

  12. The leaf volatile constituents of Isatis tinctoria by Solid-Phase Microextraction and Gas chromatography/Mass Spectrometry.

    Science.gov (United States)

    Condurso, Cettina; Verzera, Antonella; Romeo, Vincenza; Ziino, Marisa; Trozzi, Alessandra; Ragusa, Salvatore

    2006-08-01

    The leaf volatile constituents of Isatis tinctoria L. (Brassicaceae) have been studied by Solid-Phase Microextraction and Gas chromatography/Mass Spectrometry (SPME/GC-MS). Seventy components were fully characterized by mass spectra, linear retention indices, and injection of standards; the average composition (ppm) as single components and classes of substances is reported. Aliphatic hydrocarbons, acids, alcohols, aldehydes and esters, aromatic aldehydes, esters and ethers, furans, isothiocyanates and thiocyanates, sulfurated compounds, nitriles, terpenes and sesquiterpenes were identified. Leaf volatiles in Isatis tinctoria L. were characterized by a high amount of isothiocyanates which accounted for about 40 % of the total volatile fraction. Isothiocyanates are important and characteristic flavour compounds in Brassica vegetables and the cancer chemo-protective attributes are recently responsible for their growing interest.

  13. Searching for sharp drops in the incidence of pandemic A/H1N1 influenza by single year of age.

    Directory of Open Access Journals (Sweden)

    Jessica Hartman Jacobs

    Full Text Available During the 2009 H1N1 pandemic (pH1N1, morbidity and mortality sparing was observed among the elderly population; it was hypothesized that this age group benefited from immunity to pH1N1 due to cross-reactive antibodies generated from prior infection with antigenically similar influenza viruses. Evidence from serologic studies and genetic similarities between pH1N1 and historical influenza viruses suggest that the incidence of pH1N1 cases should drop markedly in age cohorts born prior to the disappearance of H1N1 in 1957, namely those at least 52-53 years old in 2009, but the precise range of ages affected has not been delineated.To test for any age-associated discontinuities in pH1N1 incidence, we aggregated laboratory-confirmed pH1N1 case data from 8 jurisdictions in 7 countries, stratified by single year of age, sex (when available, and hospitalization status. Using single year of age population denominators, we generated smoothed curves of the weighted risk ratio of pH1N1 incidence, and looked for sharp drops at varying age bandwidths, defined as a significantly negative second derivative. Analyses stratified by hospitalization status and sex were used to test alternative explanations for observed discontinuities. We found that the risk of laboratory-confirmed infection with pH1N1 declines with age, but that there was a statistically significant leveling off or increase in risk from about 45 to 50 years of age, after which a sharp drop in risk occurs until the late fifties. This trend was more pronounced in hospitalized cases and in women and was independent of the choice in smoothing parameters. The age range at which the decline in risk accelerates corresponds to the cohort born between 1951-1959 (hospitalized and 1953-1960 (not hospitalized.The reduced incidence of pH1N1 disease in older individuals shows a detailed age-specific pattern consistent with protection conferred by exposure to influenza A/H1N1 viruses circulating before 1957.

  14. Binary Solvents Dispersive Liquid—Liquid Microextraction (BS-DLLME) Method for Determination of Tramadol in Urine Using High-Performance Liquid Chromatography

    Science.gov (United States)

    2014-01-01

    Background Tramadol is an opioid, synthetic analog of codeine and has been used for the treatment of acute or chronic pain may be abused. In this work, a developed Dispersive liquid liquid microextraction (DLLME) as binary solvents-based dispersive liquid-liquid microextraction (BS-DLLME) combined with high performance liquid chromatography (HPLC) with fluorescence detection (FD) was employed for determination of tramadol in the urine samples. This procedure involves the use of an appropriate mixture of binary extraction solvents (70 μL CHCl3 and 30 μL ethyl acetate) and disperser solvent (600 μL acetone) for the formation of cloudy solution in 5 ml urine sample comprising tramadol and NaCl (7.5%, w/v). After centrifuging, the small droplets of extraction solvents were precipitated. In the final step, the HPLC with fluorescence detection was used for determination of tramadol in the precipitated phase. Results Various factors on the efficiency of the proposed procedure were investigated and optimized. The detection limit (S/N = 3) and quantification limit (S/N = 10) were found 0.2 and 0.9 μg/L, respectively. The relative standard deviations (RSD) for the extraction of 30 μg L of tramadol was found 4.1% (n = 6). The relative recoveries of tramadol from urine samples at spiking levels of 10, 30 and 60 μg/L were in the range of 95.6 – 99.6%. Conclusions Compared with other methods, this method provides good figures of merit such as good repeatability, high extraction efficiency, short analysis time, simple procedure and can be used as microextraction technique for routine analysis in clinical laboratories. PMID:24495475

  15. The Comparing the Leg Muscles Electromyography during Single Leg Drop Landing in Pesplanus and Normal Men

    Directory of Open Access Journals (Sweden)

    mostafa bazvand

    2016-03-01

    Full Text Available Objective: pesplanus is one of the changes that brings about changes in muscle activation patterns. Being aware of muscles activity changes in various standing positions among pesplanus patients provides insights into preventing lower extremity injuries in this population. The aim of this study was to compare leg muscles electromyography during various standing positions in pesplanus and normal subjects. Methods: 60 healthy male university students, 30 subjects with pesplanus deformity (with average age 23/54±3/57 year, average height 175/34±7/62 cm, average weight 74/87±10/72 kg and 30 normal subjects (with average age 22/97±2/38 year, average height 176/6±5/59 cm, average weight 73/58±8/36 kg participated in this comparative study. Deformity of pesplanus was assessed with navicular drop test. Each subject performed single-leg landing dropping from 30cm height onto a force platform where muscles activity was recorded with EMG device. For data analysis, Matlab and Spss softwares were used and independent sample t-test was used to compare the dependent variables at a significance level of P &le 0/05. Results: Significant differences were observed between the two groups for the activities of the longus peroneus and anterior tibialis muscles ( p&le0/05 while no significant differences were observed in other muscles. Conclusion: The changes in the normal structure of the foot might affect muscle activities during standing, which can cause changes in the injury patterns. Therefore, it is proposed that focusing on corrective exercises and therapy plan can reduce these risks.

  16. Analysis of the rod drop accident for Angra-1

    International Nuclear Information System (INIS)

    Veloso, M.A.; Atayde, P.A.

    1989-01-01

    The aim of this work is to present a rod drop accident analysis for the third cycle of the Angra-1 nuclear power plant operating in the automatic control mode. In this analysis all possible configurations for dropped rods caused by a single failure in the controller circuits have been considered. The dropped rod worths, power distributions and excore detector tilts were determined by using the Siemens/KWU neutronic code system, in particular the MEDIUM2, PINPOW and DETILT codes. The transient behaviour of the plant during the rod drop event was simulated with the SACI2/MOD0 code, developed at CDTN. Determinations related to the DNBR design limit were conducted by utilizing the CDTN PANTERA-1P subchannel code. The transient analysis indicated that for dropped rod worths greater than about 425 pcm reactor trip from negative neutron flux rate will take place independently of core conditions. In the range from 0 to 425 pcm large power overshoots may occur as a consequence of the automatic control system action. The magnitude of the maximum power peaking during the event increases with the dropped rod worth, as far as the control bank is able to compensate the initial reactivity decrease. Thermal-hydraulic evaluations carried out with the PANTERA-1P code show that for all the relevant dropped rod worths the minimum DNBR will remain above a limit value of 1.365. Even if this conservative limit is met, the calculated nuclear power peaking factors, F N AH , will be at least 6% higher than the allowable F N AH -values. Therefore, the DNBR design margin will be preserved at the event of rod drop. (author)

  17. Improved detection limits for phthalates by selective solid-phase micro-extraction

    KAUST Repository

    Zia, Asif I.

    2016-03-30

    Presented research reports on an improved method and enhanced limits of detection for phthalates; a hazardous additive used in the production of plastics by solid-phase micro-extraction (SPME) polymer in comparison to molecularly imprinted solid-phase extraction (MISPE) polymer. The polymers were functionalized on an interdigital capacitive sensor for selective binding of phthalate molecules from a complex mixture of chemicals. Both polymers owned predetermined selectivity by formation of valuable molecular recognition sites for Bis (2-ethylhexyl) phthalate (DEHP). Polymers were immobilized on planar electrochemical sensor fabricated on a single crystal silicon substrate with 500 nm sputtered gold electrodes fabricated using MEMS fabrication techniques. Impedance spectra were obtained using electrochemical impedance spectroscopy (EIS) to determine sample conductance for evaluation of phthalate concentration in the spiked sample solutions with various phthalate concentrations. Experimental results revealed that the ability of SPME polymer to adsorb target molecules on the sensing surface is better than that of MISPE polymer for phthalates in the sensing system. Testing the extracted samples using high performance liquid chromatography with photodiode array detectors validated the results.

  18. Study of the aroma formation and transformation during the manufacturing process of oolong tea by solid-phase micro-extraction and gas chromatography-mass spectrometry combined with chemometrics.

    Science.gov (United States)

    Ma, Chengying; Li, Junxing; Chen, Wei; Wang, Wenwen; Qi, Dandan; Pang, Shi; Miao, Aiqing

    2018-06-01

    Oolong tea is a typical semi-fermented tea and is famous for its unique aroma. The aim of this study was to compare the volatile compounds during manufacturing process to reveal the formation of aroma. In this paper, a method was developed based on head-space solid phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS) combined with chemometrics to assess volatile profiles during manufacturing process (fresh leaves, sun-withered leaves, rocked leaves and leaves after de-enzyming). A total of 24 aroma compounds showing significant differences during manufacturing process were identified. Subsequently, according to these aroma compounds, principal component analysis and hierarchical cluster analysis showed that the four samples were clearly distinguished from each other, which suggested that the 24 identified volatile compounds can represent the changes of volatile compounds during the four steps. Additionally, sun-withering, rocking and de-enzyming can influence the variations of volatile compounds in different degree, and we found the changes of volatile compounds in withering step were less than other two manufacturing process, indicating that the characteristic volatile compounds of oolong tea might be mainly formed in rocking stage by biological reactions and de-enzyming stage through thermal chemical transformations rather than withering stage. This study suggested that HS-SPME/GC-MS combined with chemometrics methods is accurate, sensitive, fast and ideal for rapid routine analysis of the aroma compounds changes in oolong teas during manufacturing processing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Bubbles in solvent microextraction: the influence of intentionally introduced bubbles on extraction efficiency.

    Science.gov (United States)

    Williams, D Bradley G; George, Mosotho J; Meyer, Riaan; Marjanovic, Ljiljana

    2011-09-01

    Significant improvements to microdrop extractions of triazine pesticides are realized by the intentional incorporation of an air bubble into the solvent microdroplet used in this microextraction technique. The increase is attributed partly to greater droplet surface area resulting from the air bubble being incorporated into the solvent droplet as opposed to it sitting thereon and partly to thin film phenomena. The method is useful at nanogram/liter levels (LOD 0.002-0.012 μg/L, LOQ 0.007-0.039 μg/L), is precise (7-12% at 10 μg/L concentration level), and is validated against certified reference materials containing 0.5 and 5.0 μg/L analyte. It tolerates water and fruit juice as matrixes without serious matrix effects. This new development brings a simple, inexpensive, and efficient preconcentration technique to bear which rivals solid phase microextraction methods.

  20. Staying, dropping or switching : The impacts of bank mergers on small firms

    NARCIS (Netherlands)

    Degryse, H.A.; Masschelein, N.; Mitchell, J.

    2011-01-01

    Assessing the impacts of bank mergers on small firms requires separating borrowers with single versus multiple banking relationships and distinguishing the three alternatives of “staying,” “dropping,” and “switching” of relationships. Single-relationship borrowers who “switch” to another bank

  1. Solid phase microextraction capillary gas chromatography combined with furnace atomization plasma emission spectrometry for speciation of mercury in fish tissues

    International Nuclear Information System (INIS)

    Grinberg, Patricia; Campos, Reinaldo C.; Mester, Zoltan; Sturgeon, Ralph E.

    2003-01-01

    The use of solid phase microextraction in conjunction with tandem gas chromatography-furnace atomization plasma emission spectrometry (SPME-GC-FAPES) was evaluated for the determination of methylmercury and inorganic mercury in fish tissue. Samples were digested with methanolic potassium hydroxide, derivatized with sodium tetraethylborate and extracted by SPME. After the SPME extraction, species were separated by GC and detected by FAPES. All experimental parameters were optimized for best separation and analytical response. A repeatability precision of typically 2% can be achieved with long-term (3 months) reproducibility precision of 4.3%. Certified Reference Materials DORM-2, DOLT-2 and TORT-2 from the National Research Council of Canada were analyzed to verify the accuracy of this technique. Detection limits of 1.5 ng g -1 for methylmercury and 0.7 ng g -1 for inorganic mercury in biological tissues were obtained

  2. Microextraction Techniques Coupled to Liquid Chromatography with Mass Spectrometry for the Determination of Organic Micropollutants in Environmental Water Samples

    Directory of Open Access Journals (Sweden)

    Mª Esther Torres Padrón

    2014-07-01

    Full Text Available Until recently, sample preparation was carried out using traditional techniques, such as liquid–liquid extraction (LLE, that use large volumes of organic solvents. Solid-phase extraction (SPE uses much less solvent than LLE, although the volume can still be significant. These preparation methods are expensive, time-consuming and environmentally unfriendly. Recently, a great effort has been made to develop new analytical methodologies able to perform direct analyses using miniaturised equipment, thereby achieving high enrichment factors, minimising solvent consumption and reducing waste. These microextraction techniques improve the performance during sample preparation, particularly in complex water environmental samples, such as wastewaters, surface and ground waters, tap waters, sea and river waters. Liquid chromatography coupled to tandem mass spectrometry (LC/MS/MS and time-of-flight mass spectrometric (TOF/MS techniques can be used when analysing a broad range of organic micropollutants. Before separating and detecting these compounds in environmental samples, the target analytes must be extracted and pre-concentrated to make them detectable. In this work, we review the most recent applications of microextraction preparation techniques in different water environmental matrices to determine organic micropollutants: solid-phase microextraction SPME, in-tube solid-phase microextraction (IT-SPME, stir bar sorptive extraction (SBSE and liquid-phase microextraction (LPME. Several groups of compounds are considered organic micropollutants because these are being released continuously into the environment. Many of these compounds are considered emerging contaminants. These analytes are generally compounds that are not covered by the existing regulations and are now detected more frequently in different environmental compartments. Pharmaceuticals, surfactants, personal care products and other chemicals are considered micropollutants. These

  3. Solid phase microextraction speciation analysis of triclosan in aqueous mediacontaining sorbing nanoparticles

    NARCIS (Netherlands)

    Zielinska, K.

    2014-01-01

    Solid phase microextraction (SPME) is applied in the speciation analysis of the hydrophobic compound triclosan in an aqueous medium containing sorbing SiO2 nanoparticles (NPs). It is found that these NPs, as well as their complexes with triclosan, partition between the bulk medium and the solid

  4. Electrohydrodynamics of suspension of liquid drops in AC fields

    Science.gov (United States)

    Abdul Halim, Md.; Esmaeeli, Asghar

    2012-11-01

    Manipulation of liquid drops by an externally applied electric field is currently the focus of increased attention because of its relevance in a broad range of industrial processes. The effect of a uniform DC electric field on a solitary drop is well studied; however, less is know about the impact of electric field on suspension of liquid drops, and very little information is available on the impact of AC field on a single or a suspension of drops. Here we report the results of Direct Numerical Simulations of electrohydrodynamics of suspension of liquid drops. The governing equations are solved using a front tracking/finite difference technique, in conjunction with Taylor's leaky dielectric model. The imposed electric potential comprises of two parts, a time-independent base and a time-dependent part. The goal is to explore the relative importance of these two components in setting the statistically steady state behavior of the suspension. To this end, we report the results of three sets of simulations, where (i) the time-dependent part act as a perturbation on the base potential, (ii) the two components are of the same order, and (iii) the time-dependent part is much larger than the base potential. The problem is studied as a function of the governing nondimensional parameters.

  5. A dispersive liquid--liquid microextraction methodology for copper (II) in environmental samples prior to determination using microsample injection flame atomic absorption spectrometry.

    Science.gov (United States)

    Alothman, Zeid A; Habila, Mohamed; Yilmaz, Erkan; Soylak, Mustafa

    2013-01-01

    A simple, environmentally friendly, and efficient dispersive liquid-liquid microextraction method combined with microsample injection flame atomic absorption spectrometry was developed for the separation and preconcentration of Cu(II). 2-(5-Bromo-2-pyridylazo)-5-(diethylamino)phenol (5-Br-PADAP) was used to form a hydrophobic complex of Cu(II) ions in the aqueous phase before extraction. To extract the Cu(II)-5-Br-PADAP complex from the aqueous phase to the organic phase, 2.0 mL of acetone as a disperser solvent and 200 microL of chloroform as an extraction solvent were used. The influences of important analytical parameters, such as the pH, types and volumes of the extraction and disperser solvents, amount of chelating agent, sample volume, and matrix effects, on the microextraction procedure were evaluated and optimized. Using the optimal conditions, the LOD, LOQ, preconcentration factor, and RSD were determined to be 1.4 microg/L, 4.7 microg/L, 120, and 6.5%, respectively. The accuracy of the proposed method was investigated using standard addition/recovery tests. The analysis of certified reference materials produced satisfactory analytical results. The developed method was applied for the determination of Cu in real samples.

  6. Simplified analytical solutions for free drops during NCT for radioactive material packagings

    International Nuclear Information System (INIS)

    Gupta, N.K.

    1997-01-01

    To ensure structural integrity during normal conditions of transport (NCT), Federal regulations in 10CFR71.71 require that the nuclear material package designs be evaluated for the effects of free drops. The vessel stress acceptance criteria for these drops are given in Regulatory Guide 7.6 and ASME Section III Code. During initial phases of the package design, the effects of the NCT free drops can be evaluated by simplified analytical solutions which will ensure that the safety margins specified in R. G. 7.6 are met. These safety margins can be verified during the final stages of the package design with dynamic analyses using finite element methods. This paper calculates the maximum impact open-quotes gclose quotes loading on the vessels using single degree of freedom models for different drop orientations. Only end, bottom, and corner drops are analyzed for cylindrical packages or packages with cylindrical ends

  7. In-syringe-stirring: A novel approach for magnetic stirring-assisted dispersive liquid–liquid microextraction

    International Nuclear Information System (INIS)

    Horstkotte, Burkhard; Suárez, Ruth; Solich, Petr; Cerdà, Víctor

    2013-01-01

    Graphical abstract: -- Highlights: •We propose a new automatic magnetic stirring assisted dispersive liquid–liquid microextraction. •It allows the extraction of aluminum from seawater and freshwater samples within less than 4 min. •The method was applicable to the natural samples. -- Abstract: For the first time, the use of a magnetic stirrer within the syringe of an automated syringe pump and the resulting possible analytical applications are described. A simple instrumentation following roughly the one from sequential injection analyzer systems is used in combination with an adaptor, which is placed onto the barrel of a glass syringe. Swirling around the longitudinal axis of the syringe and holding two strong neodymium magnets, it causes a rotating magnetic field and serves as driver for a magnetic stirring bar placed inside of the syringe. In a first study it was shown that this approach leads to a sealed but also automatically adaptable reaction vessel, the syringe, in which rapid and homogeneous mixing of sample with the required reagents within short time can be carried out. In a second study in-a-syringe magnetic stirring-assisted dispersive liquid–liquid microextraction (MSA-DLLME) was demonstrated by the application of the analyzer system to fluorimetric determination of aluminum in seawater samples using lumogallion. A linear working range up to 1.1 μmol L −1 and a limit of detection of 6.1 nmol L −1 were found. An average recovery of 106.0% was achieved for coastal seawaters with a reproducibility of 4.4%. The procedure lasted 210 s including syringe cleaning and only 150 μL of hexanol and 4.1 mL of sample were required

  8. [Optimize dropping process of Ginkgo biloba dropping pills by using design space approach].

    Science.gov (United States)

    Shen, Ji-Chen; Wang, Qing-Qing; Chen, An; Pan, Fang-Lai; Gong, Xing-Chu; Qu, Hai-Bin

    2017-07-01

    In this paper, a design space approach was applied to optimize the dropping process of Ginkgo biloba dropping pills. Firstly, potential critical process parameters and potential process critical quality attributes were determined through literature research and pre-experiments. Secondly, experiments were carried out according to Box-Behnken design. Then the critical process parameters and critical quality attributes were determined based on the experimental results. Thirdly, second-order polynomial models were used to describe the quantitative relationships between critical process parameters and critical quality attributes. Finally, a probability-based design space was calculated and verified. The verification results showed that efficient production of Ginkgo biloba dropping pills can be guaranteed by operating within the design space parameters. The recommended operation ranges for the critical dropping process parameters of Ginkgo biloba dropping pills were as follows: dropping distance of 5.5-6.7 cm, and dropping speed of 59-60 drops per minute, providing a reference for industrial production of Ginkgo biloba dropping pills. Copyright© by the Chinese Pharmaceutical Association.

  9. Lambda-dropping

    DEFF Research Database (Denmark)

    Danvy, Olivier; Schultz, Ulrik Pagh

    1997-01-01

    Lambda-lifting a functional program transforms it into a set of recursive equations. We present the symmetric transformation: lambda-dropping. Lambda-dropping a set of recursive equations restores block structure and lexical scope.For lack of scope, recursive equations must carry around all...... the parameters that any of their callees might possibly need. Both lambda-lifting and lambda-dropping thus require one to compute a transitive closure over the call graph:• for lambda-lifting: to establish the Def/Use path of each free variable (these free variables are then added as parameters to each...... of the functions in the call path);• for lambda-dropping: to establish the Def/Use path of each parameter (parameters whose use occurs in the same scope as their definition do not need to be passed along in the call path).Without free variables, a program is scope-insensitive. Its blocks are then free...

  10. Carrier mediated hollow fiber liquid phase microextraction combined with HPLC-UV for preconcentration and determination of some tetracycline antibiotics.

    Science.gov (United States)

    Shariati, Shahab; Yamini, Yadollah; Esrafili, Ali

    2009-02-01

    In the present study, a simple and efficient preconcentration method was developed using carrier mediated three phase liquid phase microextraction prior to HPLC-UV for simultaneous extraction and determination of trace amounts of highly hydrophilic tetracycline antibiotics including tetracycline (TCN), oxytetracycline (OTCN) and doxycycline (DCN) in bovine milk, human plasma and water samples. For extraction, 11.0 mL of the aqueous sample containing TCNs and 0.05 M Na(2)HPO(4) (9.10.995). Finally, applicability of the proposed method was successfully confirmed by extraction and determination of the drugs in water and plasma samples as well as in bovine milk samples with low and high fat contents. Comparing to the traditional methods, the proposed method exhibits high sensitivity and high preconcentration factors as well as good precision. The extraction setup is simple and due to active transport of analytes, high cleanup effect and good selectivity are obtained in extraction process.

  11. High throughput single-cell and multiple-cell micro-encapsulation.

    Science.gov (United States)

    Lagus, Todd P; Edd, Jon F

    2012-06-15

    Microfluidic encapsulation methods have been previously utilized to capture cells in picoliter-scale aqueous, monodisperse drops, providing confinement from a bulk fluid environment with applications in high throughput screening, cytometry, and mass spectrometry. We describe a method to not only encapsulate single cells, but to repeatedly capture a set number of cells (here we demonstrate one- and two-cell encapsulation) to study both isolation and the interactions between cells in groups of controlled sizes. By combining drop generation techniques with cell and particle ordering, we demonstrate controlled encapsulation of cell-sized particles for efficient, continuous encapsulation. Using an aqueous particle suspension and immiscible fluorocarbon oil, we generate aqueous drops in oil with a flow focusing nozzle. The aqueous flow rate is sufficiently high to create ordering of particles which reach the nozzle at integer multiple frequencies of the drop generation frequency, encapsulating a controlled number of cells in each drop. For representative results, 9.9 μm polystyrene particles are used as cell surrogates. This study shows a single-particle encapsulation efficiency P(k=1) of 83.7% and a double-particle encapsulation efficiency P(k=2) of 79.5% as compared to their respective Poisson efficiencies of 39.3% and 33.3%, respectively. The effect of consistent cell and particle concentration is demonstrated to be of major importance for efficient encapsulation, and dripping to jetting transitions are also addressed. Continuous media aqueous cell suspensions share a common fluid environment which allows cells to interact in parallel and also homogenizes the effects of specific cells in measurements from the media. High-throughput encapsulation of cells into picoliter-scale drops confines the samples to protect drops from cross-contamination, enable a measure of cellular diversity within samples, prevent dilution of reagents and expressed biomarkers, and amplify

  12. Ocular penetration and pharmacokinetics of topical clarithromycin eye drops to rabbits.

    Science.gov (United States)

    Zhang, Junjie; Wang, Liya; Zhou, Jing; Zhang, Li; Xia, Huiyun; Zhou, Tianyang; Zhang, Hongmin

    2014-02-01

    To evaluate the ocular pharmacokinetics of clarithromycin (CLA) eye drops topically applied to the corneas of rabbits. One 50-μL drop of CLA (0.25%) was administered to each New Zealand white rabbit in a single dose group, and one 50-μL drop of CLA was administered 6 times at 5-min intervals to each rabbit in a loading dose group. The effect of debridement on corneal penetration was also investigated in a de-epithelium group. The drug concentrations in the cornea and aqueous humor (AH) were assayed using high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS) analysis. Maximum CLA levels were achieved in the corneas and AH at 15 and 60 min, respectively, in the intact epithelium eyes in the single dose group (24.54±10.64 μg/g and 0.78±0.22 μg/mL, respectively, mean±the standard error of the mean, n=8). In the loading dose group, 30 min after the last application, the CLA level in the corneas reached 92.26±17.62 μg/g. In the loading dose group, the drug levels in the corneas and AH were significantly increased compared with the drug levels in the corneas with the intact epithelium and de-epithelium eyes in the single dose group at the corresponding time points (Pcorneas and AH for the intact eyes were 103.28 and 132.61 min, respectively. Therapeutic CLA levels can be achieved in rabbit corneas after topically applying the drug with eye drops.

  13. Two-phase flow and pressure drop in T-junctions with horizontal run and vertical branch

    International Nuclear Information System (INIS)

    Katsaounis, A.

    1987-01-01

    Visual observations of single- and two-phase dividing flow and pressure drop measurements were performed in T-junctions with horizontal run and vertical branch. Both tees used were geometrically similar, in a scale of 1:4. The measurements were performed for plug/slug and stratified flow pattern regime in horizontal tube. Based on the single-phase form-resistance pressure drop correlation of Gardel a corresponded calculation model was developed for the two-phase flow verified by the own measurements. (orig.) [de

  14. Critical micelle concentration values for different surfactants measured with solid-phase microextraction fibers

    NARCIS (Netherlands)

    Haftka, Joris J H; Scherpenisse, Peter; Oetter, G??nter; Hodges, Geoff; Eadsforth, Charles V.; Kotthoff, Matthias; Hermens, Joop L M

    The amphiphilic nature of surfactants drives the formation of micelles at the critical micelle concentration (CMC). Solid-phase microextraction (SPME) fibres were used in the present study to measure CMC values of twelve nonionic, anionic, cationic and zwitterionic surfactants. The SPME derived CMC

  15. Falling drops skating on a film of air

    Science.gov (United States)

    Rubinstein, Shmuel

    2012-02-01

    When a raindrop hits a window, the surface immediately becomes wet as the water spreads. Indeed, this common observation of a drop impacting a surface is ubiquitous in our everyday experience. I will show that the impact of a drop on a surface is a much richer, more complex phenomenon than our simple experience may suggests: To completely wet the surface the drop must first expel all the air beneath it; however, this does not happened instantaneously. Instead, a very thin film of air, only a few tens of nanometers thick, remains trapped between the falling drop and the surface as the fluid spreads. The thin film of air serves to lubricate the drop enabling the fluid to skate laterally outward at strikingly high velocities. Simultaneously, the wetting fluid spreads inward at a much slower velocity, trapping a bubble of air within the drop. However, these events occur at diminutive length scales and fleeting time scales; therefore, to visualize them we develop new imaging modalities that are sensitive to the behavior right at the surface and that have time resolution superior to even the very fastest cameras. These imaging techniques reveal that the ultimate wetting of the surface occurs through a completely new mechanism, the breakup of the thin film of air through a spinodal like dewetting process that breaks the cylindrical symmetry of the impact and drives an anomalously rapid spreading of a wetting front. These results are in accord with recent theoretical predictions and challenge the prevailing paradigm in which contact between the liquid and solid occurs immediately, and spreading is dominated by the dynamics of a single contact line.

  16. Sample preparation with solid phase microextraction and exhaustive extraction approaches: Comparison for challenging cases.

    Science.gov (United States)

    Boyacı, Ezel; Rodríguez-Lafuente, Ángel; Gorynski, Krzysztof; Mirnaghi, Fatemeh; Souza-Silva, Érica A; Hein, Dietmar; Pawliszyn, Janusz

    2015-05-11

    In chemical analysis, sample preparation is frequently considered the bottleneck of the entire analytical method. The success of the final method strongly depends on understanding the entire process of analysis of a particular type of analyte in a sample, namely: the physicochemical properties of the analytes (solubility, volatility, polarity etc.), the environmental conditions, and the matrix components of the sample. Various sample preparation strategies have been developed based on exhaustive or non-exhaustive extraction of analytes from matrices. Undoubtedly, amongst all sample preparation approaches, liquid extraction, including liquid-liquid (LLE) and solid phase extraction (SPE), are the most well-known, widely used, and commonly accepted methods by many international organizations and accredited laboratories. Both methods are well documented and there are many well defined procedures, which make them, at first sight, the methods of choice. However, many challenging tasks, such as complex matrix applications, on-site and in vivo applications, and determination of matrix-bound and free concentrations of analytes, are not easily attainable with these classical approaches for sample preparation. In the last two decades, the introduction of solid phase microextraction (SPME) has brought significant progress in the sample preparation area by facilitating on-site and in vivo applications, time weighted average (TWA) and instantaneous concentration determinations. Recently introduced matrix compatible coatings for SPME facilitate direct extraction from complex matrices and fill the gap in direct sampling from challenging matrices. Following introduction of SPME, numerous other microextraction approaches evolved to address limitations of the above mentioned techniques. There is not a single method that can be considered as a universal solution for sample preparation. This review aims to show the main advantages and limitations of the above mentioned sample

  17. Ultrasound assisted extraction combined with dispersive liquid-liquid microextraction (US-DLLME)-a fast new approach to measure phthalate metabolites in nails.

    Science.gov (United States)

    Alves, Andreia; Vanermen, Guido; Covaci, Adrian; Voorspoels, Stefan

    2016-09-01

    A new, fast, and environmentally friendly method based on ultrasound assisted extraction combined with dispersive liquid-liquid microextraction (US-DLLME) was developed and optimized for assessing the levels of seven phthalate metabolites (including the mono(ethyl hexyl) phthalate (MEHP), mono(2-ethyl-5-hydroxyhexyl) phthalate (5-OH-MEHP), mono(2-ethyl-5-oxohexyl) phthalate (5-oxo-MEHP), mono-n-butyl phthalate (MnBP), mono-isobutyl phthalate (MiBP), monoethyl phthalate (MEP), and mono-benzyl phthalate (MBzP)) in human nails by UPLC-MS/MS. The optimization of the US-DLLME method was performed using a Taguchi combinatorial design (L9 array). Several parameters such as extraction solvent, solvent volume, extraction time, acid, acid concentration, and vortex time were studied. The optimal extraction conditions achieved were 180 μL of trichloroethylene (extraction solvent), 2 mL trifluoroacetic acid in methanol (2 M), 2 h extraction and 3 min vortex time. The optimized method had a good precision (6-17 %). The accuracy ranged from 79 to 108 % and the limit of method quantification (LOQm) was below 14 ng/g for all compounds. The developed US-DLLME method was applied to determine the target metabolites in 10 Belgian individuals. Levels of the analytes measured in nails ranged between <12 and 7982 ng/g. The MEHP, MBP isomers, and MEP were the major metabolites and detected in every sample. Miniaturization (low volumes of organic solvents used), low costs, speed, and simplicity are the main advantages of this US-DLLME based method. Graphical Abstract Extraction and phase separation of the US-DLLME procedure.

  18. Cold vapor-solid phase microextraction using amalgamation in different Pd-based substrates combined with direct thermal desorption in a modified absorption cell for the determination of Hg by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Romero, Vanesa; Costas-Mora, Isabel; Lavilla, Isela; Bendicho, Carlos

    2011-01-01

    In this work, different Pd-based substrates (i.e. Pd wire, Pd-coated stainless steel wire and Pd-coated SiO 2 ) are tried for microextraction of Hg prior to its release into a modified quartz T-cell so as to develop a cost-effective, sensitive and easy-to-handle coupling between solid-phase microextraction (SPME) and atomic absorption spectrometry. The new design allows a direct sample injection from the SPME device into a quartz T-cell thus avoiding analyte dilution. Mercury amalgamation onto a Pd wire provided the best performance in respect to sensitivity and fiber lifetime, but Pd wires could not be implemented in the SPME device due to their poor mechanical characteristics. On the contrary, Pd-coated SiO 2 fibers could be easily adapted to the typical sampling device used for SPME. Narrow time-dependent absorption signal profiles that could be integrated within 25 s were obtained. The detection limit was 90 pg mL -1 of Hg, and the repeatability expressed as relative standard deviation was 4.3%.

  19. Hollow fiber-based liquid phase microextraction combined with high-performance liquid chromatography for extraction and determination of some antidepressant drugs in biological fluids.

    Science.gov (United States)

    Esrafili, Ali; Yamini, Yadollah; Shariati, Shahab

    2007-12-05

    The applicability of hollow fiber-based liquid phase microextraction (HF-LPME) was evaluated for the extraction and preconcentration of three antidepressant drugs (amitriptyline, imipramine and sertraline) prior to their determination by HPLC-UV. The target drugs were extracted from 11.0 mL of aqueous solution with pH 12.0 (source phase) into an organic extracting solvent (n-dodecane) impregnated in the pores of a hollow fiber and finally back extracted into 24 microL of aqueous solution located inside the lumen of the hollow fiber and adjusted to pH 2.1 using 0.1M of H3PO4 (receiving phase). The extraction was performed due to pH gradient between the inside and outside of the hollow fiber membrane. In order to obtain high extraction efficiency, the parameters affecting the HF-LPME including pH of the source and receiving phases, the type of organic phase, ionic strength and volume of the source phase, stirring rate and extraction time were studied and optimized. Under the optimized conditions, enrichment factors up to 300 were achieved and the relative standard deviation (R.S.D.%) of the method was in the range of 2-12%. The calibration curves were obtained in the range of 5-500 microg L(-1) with reasonable linearity (R2>0.998) and the limits of detection (LODs) ranged between 0.5 and 0.7 microg L(-1) (based on S/N=3). Finally, the applicability of the proposed method was evaluated by extraction and determination of the drugs in urine, plasma and tap water samples. The results indicated that hollow fiber microextraction method has excellent clean-up and high-preconcentration factor and can be served as a simple and sensitive method for monitoring of antidepressant drugs in the biological samples.

  20. Effects of push/pull perfusion and ultrasonication on the extraction efficiencies of phthalate esters in sports drink samples using on-line hollow-fiber liquid-phase microextraction.

    Science.gov (United States)

    Chao, Yu-Ying; Lee, Chien-Hung; Chien, Tzu-Yang; Shih, Yu-Hsuan; Lu, Yin-An; Kuo, Ting-Hsuan; Huang, Yeou-Lih

    2013-08-28

    In previous studies, we developed a process, on-line ultrasound-assisted push/pull perfusion hollow-fiber liquid-phase microextraction (UA-PPP-HF-LPME), combining the techniques of push/pull perfusion (PPP) and ultrasonication with hollow-fiber liquid-phase microextraction (HF-LPME), to achieve rapid extraction of acidic phenols from water samples. In this present study, we further evaluated three more-advanced and novel effects of PPP and ultrasonication on the extraction efficiencies of neutral high-molecular-weight phthalate esters (HPAEs) in sports drinks. First, we found that inner-fiber fluid leakage occurs only in push-only perfusion-based and pull-only perfusion-based HF-LPME, but not in the PPP mode. Second, we identified a significant negative interaction between ultrasonication and temperature. Third, we found that the extraction time of the newly proposed system could be shortened by more than 93%. From an investigation of the factors affecting UA-PPP-HF-LPME, we established optimal extraction conditions and achieved acceptable on-line enrichment factors of 92-146 for HPAEs with a sampling time of just 2 min.

  1. Liquid drops attract or repel by the inverted Cheerios effect.

    Science.gov (United States)

    Karpitschka, Stefan; Pandey, Anupam; Lubbers, Luuk A; Weijs, Joost H; Botto, Lorenzo; Das, Siddhartha; Andreotti, Bruno; Snoeijer, Jacco H

    2016-07-05

    Solid particles floating at a liquid interface exhibit a long-ranged attraction mediated by surface tension. In the absence of bulk elasticity, this is the dominant lateral interaction of mechanical origin. Here, we show that an analogous long-range interaction occurs between adjacent droplets on solid substrates, which crucially relies on a combination of capillarity and bulk elasticity. We experimentally observe the interaction between droplets on soft gels and provide a theoretical framework that quantitatively predicts the interaction force between the droplets. Remarkably, we find that, although on thick substrates the interaction is purely attractive and leads to drop-drop coalescence, for relatively thin substrates a short-range repulsion occurs, which prevents the two drops from coming into direct contact. This versatile interaction is the liquid-on-solid analog of the "Cheerios effect." The effect will strongly influence the condensation and coarsening of drops on soft polymer films, and has potential implications for colloidal assembly and mechanobiology.

  2. Dynamics of deforming drops

    OpenAIRE

    Bouwhuis, W.

    2015-01-01

    Liquid drops play a dominant role in numerous industrial applications, such as spray coating, spray painting, inkjet printing, lithography processes, and spraying/sprinkling in agriculture or gardening. In all of these examples, the generation, flight, impact, and spreading of drops are separate stages of the corresponding industrial processes, which are all thoroughly studied for many years. This thesis focuses on drop dynamics, impact phenomena, Leidenfrost drops, and pouring flows. Based o...

  3. Experimental Investigation of the Effect of Particle Shape on Frictional Pressure drop in Particulate Debris Bed

    International Nuclear Information System (INIS)

    Park, Jin Ho; Kim, Eun Ho; Park, Hyun Sun

    2014-01-01

    To ensure the long-term cooling of corium in the reactor cavity, it is important to ensure the coolant ingression into the internally heat generated corium debris bed which is governed by pressure drop in porous media. For this reason, it is necessary to understand pressure drop mechanisms in porous bed to verify the feasibility of water penetration into particulate debris bed. According to the previous investigations on molten fuel-coolant interaction (FCI) experiments, it was found that quenched particulate debris bed was composed of irregular shape particles. Therefore, empirical or semiempirical models based on the Ergun equation (Ergun, 1952) for single-phase flow in porous media composed of single sized spherical particle were developed to consider the effect of particle shape on frictional pressure drop by means of adding a shape factor or modifying the Ergun constants etc. (Leva, 1959, Handley and Heggs, 1968, Macdonald, 1979, Foumeny et al., 1996). An experimental investigate on single-phase frictional pressure drop of water in packed bed was conducted in the transparent cylindrical test section with the inner diameter of 100 mm and the height of 700 mm to study the effect of particle shape on frictional pressure drop in porous media. This paper reports the experimental data for spherical particles with the diameter of 2 mm and 5 mm and cylindrical particles with ED of 2 mm and 5 mm. And also, the experimental data compared with the models to predict frictional pressure drop in particulate bed. The conclusions are summarized as follows. As a result of the experiment to measure frictional pressure drop in particulate bed composed of cylindrical particles the models predict the experimental data well within 22.11 % except the Handley and Heggs model when ED is applied to the models

  4. Experimental Investigation of the Effect of Particle Shape on Frictional Pressure drop in Particulate Debris Bed

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho; Kim, Eun Ho; Park, Hyun Sun [POSTECH, Pohang (Korea, Republic of)

    2014-10-15

    To ensure the long-term cooling of corium in the reactor cavity, it is important to ensure the coolant ingression into the internally heat generated corium debris bed which is governed by pressure drop in porous media. For this reason, it is necessary to understand pressure drop mechanisms in porous bed to verify the feasibility of water penetration into particulate debris bed. According to the previous investigations on molten fuel-coolant interaction (FCI) experiments, it was found that quenched particulate debris bed was composed of irregular shape particles. Therefore, empirical or semiempirical models based on the Ergun equation (Ergun, 1952) for single-phase flow in porous media composed of single sized spherical particle were developed to consider the effect of particle shape on frictional pressure drop by means of adding a shape factor or modifying the Ergun constants etc. (Leva, 1959, Handley and Heggs, 1968, Macdonald, 1979, Foumeny et al., 1996). An experimental investigate on single-phase frictional pressure drop of water in packed bed was conducted in the transparent cylindrical test section with the inner diameter of 100 mm and the height of 700 mm to study the effect of particle shape on frictional pressure drop in porous media. This paper reports the experimental data for spherical particles with the diameter of 2 mm and 5 mm and cylindrical particles with ED of 2 mm and 5 mm. And also, the experimental data compared with the models to predict frictional pressure drop in particulate bed. The conclusions are summarized as follows. As a result of the experiment to measure frictional pressure drop in particulate bed composed of cylindrical particles the models predict the experimental data well within 22.11 % except the Handley and Heggs model when ED is applied to the models.

  5. Scanning drop sensor

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jian; Xiang, Chengxiang; Gregoire, John

    2017-05-09

    Electrochemical experiments are performed on a collection of samples by suspending a drop of electrolyte solution between an electrochemical experiment probe and one of the samples that serves as a test sample. During the electrochemical experiment, the electrolyte solution is added to the drop and an output solution is removed from the drop. The probe and collection of samples can be moved relative to one another so the probe can be scanned across the samples.

  6. Drop splashing: the role of surface wettability and liquid viscosity

    Science.gov (United States)

    Almohammadi, Hamed; Amirfazli, Alidad; -Team

    2017-11-01

    There are seemingly contradictory results in the literature about the role of surface wettability and drop viscosity for the splashing behavior of a drop impacting onto a surface. Motivated by such issues, we conducted a systematic experimental study where splashing behavior for a wide range of the liquid viscosity (1-100 cSt) and surface wettability (hydrophilic to hydrophobic) are examined. The experiments were performed for the liquids with both low and high surface tensions ( 20 and 72 mN/m). We found that the wettability affects the splashing threshold at high or low contact angle values. At the same drop velocity, an increase of the viscosity (up to 4 cSt) promotes the splashing; while, beyond such value, any increase in viscosity shows the opposite effect. It is also found that at a particular combination of liquid surface tension and viscosity (e.g. silicone oil, 10 cSt), an increase in the drop velocity changes the splashing to spreading. We relate such behaviors to the thickness, shape, and the velocity of the drop's lamella. Finally, to predict the splashing, we developed an empirical correlation which covers all of the previous reported data, hence clarifying the ostensible existing contradictions.

  7. Epileptic negative drop attacks in atypical benign partial epilepsy: a neurophysiological study.

    Science.gov (United States)

    Hirano, Yoshiko; Oguni, Hirokazu; Osawa, Makiko

    2009-03-01

    We conducted a computer-assisted polygraphic analysis of drop attacks in a child with atypical benign partial epilepsy (ABPE) to investigate neurophysiological characteristics. The patient was a six-year two-month-old girl, who had started to have focal motor seizures, later combined with daily epileptic negative myoclonus (ENM) and drop attacks, causing multiple injuries. We studied episodes of ENM and drop attacks using video-polygraphic and computer-assisted back-averaging analysis. A total of 12 ENM episodes, seven involving the left arm (ENMlt) and five involving both arms (ENMbil), and five drop attacks were captured for analysis. All episodes were time-locked to spike-and-wave complexes (SWC) arising from both centro-temporo-parietal (CTP) areas. The latency between the onset of SWC and ENMlt, ENMbil, and drop attacks reached 68 ms, 42 ms, and 8 ms, respectively. The height of the spike as well as the slow-wave component of SWC for drop attacks were significantly larger than that for both ENMlt and ENMbil (p negative myoclonus involving not only upper proximal but also axial muscles, causing the body to fall. Thus, drop attacks in ABPE are considered to be epileptic negative drop attacks arising from bilateral CTP foci and differ from drop attacks of a generalized origin seen in Lennox-Gastaut syndrome and myoclonic-astatic epilepsy.

  8. [Keratomycosis due to Fusarium oxysporum treated with the combination povidone iodine eye drops and oral fluconazole].

    Science.gov (United States)

    Diongue, K; Sow, A S; Nguer, M; Seck, M C; Ndiaye, M; Badiane, A S; Ndiaye, J M; Ndoye, N W; Diallo, M A; Diop, A; Ndiaye, Y D; Dieye, B; Déme, A; Ndiaye, I M; Ndir, O; Ndiaye, D

    2015-12-01

    In developing countries where systemic antifungal are often unavailable, treatment of filamentous fungi infection as Fusarium is sometimes very difficult to treat. We report the case of a keratomycosis due to Fusarium oxysporum treated by povidone iodine eye drops and oral fluconazole. The diagnosis of abscess in the cornea was retained after ophthalmological examination for a 28-year-old man with no previous ophthalmological disease, addressed to the Ophthalmological clinic at the University Hospital Le Dantec in Dakar for a left painful red eye with decreased visual acuity lasting for 15 days. The patient did not receive any foreign body into the eye. Samples by corneal scraping were made for microbiological analysis and the patient was hospitalized and treated with a reinforced eye drops based treatment (ceftriaxone+gentamicin). The mycological diagnosis revealed the presence of a mold: F. oxysporum, which motivated the replacement of the initial treatment by eye drops containing iodized povidone solution at 1% because of the amphotericin B unavailability. Due to the threat of visual loss, oral fluconazole was added to the local treatment with eye drops povidone iodine. The outcome was favorable with a healing abscess and visual acuity amounted to 1/200th. Furthermore, we noted sequels such as pannus and pillowcase. The vulgarization of efficient topical antifungal in developing countries would be necessary to optimize fungal infection treatment. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. One-step displacement dispersive liquid-liquid microextraction coupled with graphite furnace atomic absorption spectrometry for the selective determination of methylmercury in environmental samples.

    Science.gov (United States)

    Liang, Pei; Kang, Caiyan; Mo, Yajun

    2016-01-01

    A novel method for the selective determination of methylmercury (MeHg) was developed by one-step displacement dispersive liquid-liquid microextraction (D-DLLME) coupled with graphite furnace atomic absorption spectrometry. In the proposed method, Cu(II) reacted with diethyldithiocarbamate (DDTC) to form Cu-DDTC complex, which was used as the chelating agent instead of DDTC for the dispersive liquid-liquid microextraction (DLLME) of MeHg. Because the stability of MeHg-DDTC is higher than that of Cu-DDTC, MeHg can displace Cu from the Cu-DDTC complex and be preconcentrated in a single DLLME procedure. MeHg could be extracted into the extraction solvent phase at pH 6 while Hg(II) remained in the sample solution. Potential interference from co-existing metal ions with lower DDTC complex stability was largely eliminated without the need of any masking reagent. Under the optimal conditions, the limit of detection of this method was 13.6ngL(-1) (as Hg), and an enhancement factor of 81 was achieved with a sample volume of 5.0mL. The proposed method was successfully applied for the determination of trace MeHg in some environmental samples with satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Scanning drop sensor

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Shinde, Aniketa A.; Guevarra, Dan W.; Jones, Ryan J.; Marcin, Martin R.; Mitrovic, Slobodan

    2017-05-09

    Electrochemical or electrochemical and photochemical experiments are performed on a collection of samples by suspending a drop of electrolyte solution between an electrochemical experiment probe and one of the samples that serves as a test sample. During the electrochemical experiment, the electrolyte solution is added to the drop and an output solution is removed from the drop. The probe and collection of samples can be moved relative to one another so the probe can be scanned across the samples.

  11. Sessile Drop Evaporation and Leidenfrost Phenomenon

    OpenAIRE

    A. K. Mozumder; M. R. Ullah; A. Hossain; M. A. Islam

    2010-01-01

    Problem statement: Quenching and cooling are important process in manufacturing industry for controlling the mechanical properties of materials, where evaporation is a vital mode of heat transfer. Approach: This study experimentally investigated the evaporation of sessile drop for four different heated surfaces of Aluminum, Brass, Copper and Mild steel with a combination of four different liquids as Methanol, Ethanol, Water and NaCl solution. The time of evaporation for the droplet on the hot...

  12. Predictors of postoperative hemoglobin drop after laparoscopic myomectomy.

    Science.gov (United States)

    Watrowski, Rafał; Jäger, Christoph; Forster, Johannes

    2017-01-01

    Laparoscopic myomectomy (LM) can be associated with significant bleeding. To identify factors influencing the postoperative hemoglobin (Hb) drop after LM. This is a retrospective, single-center study. We evaluated data of 150 consecutive patients undergoing LM due to intramural myomas between 2010 and 2015. The median age of the patients was 37 (23-53) years. The mean diameter of the largest myoma was 5.7 ±2.3 (1.5-12) cm. The mean surgical time was 83 ±38 (35-299) min. The median number of sutures was 3 (1-11). The mean postoperative Hb drop was 1.6 ±1.2 (0-6) g/dl, and the mean estimated blood loss was 261 ±159 (50-1700) ml. In the univariate analysis, the postoperative Hb drop correlated with the duration of surgery (p < 0.001), diameter of the largest myoma (p < 0.001), cumulative myoma weight (p < 0.001), and number of sutures (p < 0.001), but not with patients' age or number of intramural myomas. In the multivariable analysis, the surgical time ( β = 0.395, p < 0.001), diameter of the largest myoma ( β = 0.292, p = 0.03) and preoperative Hb concentration ( β = 0.299, p < 0.001) predicted the postoperative Hb change. Surgical time and dominant myoma diameter are independent predictors of the postoperative Hb drop after LM.

  13. Numerical study of the impact of a drop containing a bubble

    Science.gov (United States)

    Wei, Yu; Thoraval, Marie-Jean

    2017-11-01

    The impact of a drop has many applications from inkjet printing to the spreading of crops diseases. This fundamental phenomenon has therefore attracted a lot of interest from different fields. However, they have mostly focused on the simplest case of a drop containing a single fluid. In inkjet printing and in the deposition process of thermal barrier coatings, some bubbles can be present in the drop when it impacts on the solid surface. The presence of the bubble can produce some additional splashing, and affect the quality of the deposited material. Only a few studies have looked at this problem, and many questions still need to be investigated. Generally, there are three possibilities when a drop containing a bubble impacts onto a solid surface, namely the bubble stays in drop, the bubble bursts and a counter jet forms. We have performed axisymmetric numerical simulations with the open source code Gerris to study this vertical jet. We have systematically varied several parameters, including the impact velocity, the bubble size, the vertical position of the bubble, and the liquid properties. We were thus able to characterize under which condition the bubble leads to splashing and the velocity of the produced jet.

  14. Optimisation of ultrasound-assisted reverse micelles dispersive liquid-liquid micro-extraction by Box-Behnken design for determination of acetoin in butter followed by high performance liquid chromatography.

    Science.gov (United States)

    Roosta, Mostafa; Ghaedi, Mehrorang; Daneshfar, Ali

    2014-10-15

    A novel approach, ultrasound-assisted reverse micelles dispersive liquid-liquid microextraction (USA-RM-DLLME) followed by high performance liquid chromatography (HPLC) was developed for selective determination of acetoin in butter. The melted butter sample was diluted and homogenised by n-hexane and Triton X-100, respectively. Subsequently, 400μL of distilled water was added and the microextraction was accelerated by 4min sonication. After 8.5min of centrifugation, sedimented phase (surfactant-rich phase) was withdrawn by microsyringe and injected into the HPLC system for analysis. The influence of effective variables was optimised using Box-Behnken design (BBD) combined with desirability function (DF). Under optimised experimental conditions, the calibration graph was linear over the range of 0.6-200mgL(-1). The detection limit of method was 0.2mgL(-1) and coefficient of determination was 0.9992. The relative standard deviations (RSDs) were less than 5% (n=5) while the recoveries were in the range of 93.9-107.8%. Copyright © 2014. Published by Elsevier Ltd.

  15. Fixed combinations in the pragmatic management of hypertension: focus on aliskiren and hydrochlorothiazide as a single pill

    Directory of Open Access Journals (Sweden)

    Michel Burnier

    2010-05-01

    Full Text Available Michel BurnierService of Nephrology and Hypertension, University Hospital, Lausanne, SwitzerlandAbstract: A majority of hypertensive patients need more than one antihypertensive drug to control their blood pressure. For this reason, most guidelines have introduced the possibility of prescribing fixed-dose combination therapies as first-line treatment in hypertension. Today, the concept of fixed-dose combinations has evolved and the term single pill combination might become more appropriate to reflect the large choice of drug combinations available on the market. Recently, a new single pill combination has been launched which combines the first direct renin inhibitor aliskiren and low doses of hydrochlorothiazide. This paper reviews the potential advantages of single pill combinations and presents the first results obtained with the aliskiren/HCTZ single pill combination in hypertension.Keywords: hypertension, drug adherence, combination therapies, diuretics, renin inhibition

  16. D.R.O.P. The Durable Reconnaissance and Observation Platform

    Science.gov (United States)

    McKenzie, Clifford; Parness, Aaron

    2012-01-01

    The Durable Reconnaissance and Observation Platform (DROP) is a prototype robotic platform with the ability to climb concrete surfaces up to 85deg at a rate of 25cm/s, make rapid horizontal to vertical transitions, carry an audio/visual reconnaissance payload, and survive impacts from 3 meters. DROP is manufactured using a combination of selective laser sintering (SLS) and shape deposition manufacturing (SDM) techniques. The platform uses a two-wheel, two-motor design that delivers high mobility with low complexity. DROP extends microspine climbing technology from linear to rotary applications, providing improved transition ability, increased speeds, and simpler body mechanics while maintaining microspines ability to opportunistically grip rough surfaces. Various aspects of prototype design and performance are discussed, including the climbing mechanism, body design, and impact survival.

  17. Halloysite nanotubes-titanium dioxide as a solid-phase microextraction coating combined with negative corona discharge-ion mobility spectrometry for the determination of parathion.

    Science.gov (United States)

    Saraji, Mohammad; Jafari, Mohammad Taghi; Mossaddegh, Mehdi

    2016-07-05

    Halloysite nanotubes-titanium dioxide (HNTs-TiO2) as a biocompatible environmentally friendly solid-phase microextraction (SPME) fiber coating was prepared. HNTs-TiO2 was chemically coated on the surface of a fused-silica fiber using a sol-gel process. Parathion as an organophosphorus pesticide was selected as a model compound to investigate the extraction efficiency of the fiber. The extracted analyte was detected by negative corona discharge-ion mobility spectrometer (NCD-IMS). The effective parameters on the extraction efficiency, such as salt effect, extraction temperature and extraction time were investigated and optimized. The extraction efficiency of HNTs-TiO2 fiber was compared with bare-silica (sol-gel based coating without HNTs-TiO2), HNTs, carbon nanotubes and commercial SPME fibers (PA, PDMS, and PDMS-DVB). The HNTs-TiO2 fiber showed highest extraction efficiency among the studied fibers. The intra- and inter-day relative standard deviations were found to be 4.3 and 6.3%, respectively. The limit of detection and limit of quantification values were 0.03 and 0.1 μg L(-1), respectively. The dynamic range of the method was in the range of 0.1-25 μg L(-1). The spiking recoveries were between 85 (±9) and 97 (±6). The SPME-HNTs-TiO2 combined with NCD-IMS was successfully applied for the determination of parathion in apple, strawberry, celery and water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Dynamic response of an electrostatically actuated microbeam to drop-table test

    International Nuclear Information System (INIS)

    Ouakad, Hassen M; Younis, Mohammad I; Alsaleem, Fadi

    2012-01-01

    In this paper, we present a theoretical and experimental investigation into the dynamic response of an electrostatically actuated microbeam when subjected to drop-table test. For the theoretical part, a reduced-order model based on an Euler–Bernoulli beam model is utilized. The model accounts for the electrostatic bias on the microbeam and the shock pulse of the drop-table test. Simulation results are presented showing the combined effect of electrostatic force and mechanical shock in triggering early pull-in instability of the cantilever microbeams. The analytical simulation results are validated by finite-element results for the static response. Dynamic pull-in threshold as a function of the mechanical shock amplitude is shown over a wide range of shock spanning hundreds of thousands of g up to zero g. For the experimental part, a micromachined cantilever beam made of gold of length 50 µm is subjected to drop-table tests while being biased by electrostatic loads. Several experimental data are shown demonstrating the phenomenon of collapse due to the combined shock and electrostatic forces. It is also demonstrated that by biasing short and too stiff microbeams with electrostatic voltages, their stiffness is weakened. This lowers their threshold of collapse considerably to the range of acceleration that enables testing them with in-house shock testing equipments, such as drop-table tests. (paper)

  19. Experimental validation of plugging during drop formation in a T-junction.

    Science.gov (United States)

    Abate, Adam R; Mary, Pascaline; van Steijn, Volkert; Weitz, David A

    2012-04-21

    At low capillary number, drop formation in a T-junction is dominated by interfacial effects: as the dispersed fluid flows into the drop maker nozzle, it blocks the path of the continuous fluid; this leads to a pressure rise in the continuous fluid that, in turn, squeezes on the dispersed fluid, inducing pinch-off of a drop. While the resulting drop volume predicted by this "squeezing" mechanism has been validated for a range of systems, as of yet, the pressure rise responsible for the actual pinch-off has not been observed experimentally. This is due to the challenge of measuring the pressures in a T-junction with the requisite speed, accuracy, and localization. Here, we present an empirical study of the pressures in a T-junction during drop formation. Using Laplace sensors, pressure probes we have developed, we confirm the central ideas of the squeezing mechanism; however, we also uncover other findings, including that the pressure of the dispersed fluid is not constant but rather oscillates in anti-phase with that of the continuous fluid. In addition, even at the highest capillary number for which monodisperse drops can be formed, pressure oscillations persist, indicating that drop formation in confined geometries does not transition to an entirely shear-driven mechanism, but to a mechanism combining squeezing and shearing.

  20. Ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction combined with electrothermal atomic absorption spectrometry for a sensitive determination of cadmium in water samples

    International Nuclear Information System (INIS)

    Li Shengqing; Cai Shun; Hu Wei; Chen Hao; Liu Hanlan

    2009-01-01

    A new method was developed for the determination of cadmium in water samples using ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction (IL-based USA-DLLME) followed by electrothermal atomic absorption spectrometry (ETAAS). The IL-based USA-DLLME procedure is free of volatile organic solvents, and there is no need for a dispersive solvent, in contrast to conventional DLLME. The ionic liquid, 1-hexyl-3-methylimidazolium hexafluorophosphate (HMIMPF 6 ), was quickly disrupted by an ultrasonic probe for 1 min and dispersed in water samples like a cloud. At this stage, a hydrophobic cadmium-DDTC complex was formed and extracted into the fine droplets of HMIMPF 6 . After centrifugation, the concentration of the enriched cadmium in the sedimented phase was determined by ETAAS. Some effective parameters of the complex formation and microextraction, such as the concentration of the chelating agent, the pH, the volume of the extraction solvent, the extraction time, and the salt effect, have been optimized. Under optimal conditions, a high extraction efficiency and selectivity were reached for the extraction of 1.0 ng of cadmium in 10.0 mL of water solution employing 73 μL of HMIMPF 6 as the extraction solvent. The enrichment factor of the method is 67. The detection limit was 7.4 ng L - 1 , and the characteristic mass (m 0 , 0.0044 absorbance) of the proposed method was 0.02 pg for cadmium (Cd). The relative standard deviation (RSD) for 11 replicates of 50 ng L - 1 Cd was 3.3%. The method was applied to the analysis of tap, well, river, and lake water samples and the Environmental Water Reference Material GSBZ 50009-88 (200921). The recoveries of spiked samples were in the range of 87.2-106%.

  1. Risk identification for quality on stage of pharmaceutical development of combined eye drops for glaucoma treatment

    Directory of Open Access Journals (Sweden)

    Олександр Миколайович Якубчук

    2015-12-01

    Full Text Available Aim: To identify the possible risks associated with critical quality attribute of combined eye drops for the treatment of glaucoma using of common risk evaluation methodologies for plannig a drug quality on the stage of pharmaceutical development. Methods: The paper used method of causal analysis. The maximal number of factors has been define to identify potential factors that provide most significant impact on the drug quality and Ishikawa diagram - graphical representation of causes and effects has been built.Results: Analysis allowed to organize the possible factors affecting the drug quality in the generalized categories: quality control methods, medicines and excipients, primary packaging, proper manufacturing conditions and the stage of the process. The most important factors that are carriers of the risk factors and may lead to negative effects have been identified for the generalized categories.Conclusions: Determined at the stage of pharmaceutical development potential critical quality attribute of AFI, excipients and primary packaging, critical parameters of the process, provide a better understanding, reduction and adoption of risk in subsequent stages of the life cycle of the drug

  2. Simultaneous Pre-Concentration of Cadmium and Lead in Environmental Water Samples with Dispersive Liquid-Liquid Microextraction and Determination by Inductively Coupled Plasma-Atomic Emission Spectrometry

    Directory of Open Access Journals (Sweden)

    M. Salahinejad

    2013-06-01

    Full Text Available The dispersive liquid–liquid microextraction (DLLME method for determination of Pb+2 and Cd+2 ions in the environmental water samples was combined with inductively coupled plasma-atomic emission spectrometry (ICP-AES. Ammonium pyrrolidine dithiocarbamate (APDC, chloroform and ethanol were used as chelating agent, extraction solvent and disperser solvent, respectively. Some effective parameters on the microextraction and the complex formation were selected and optimized. These parameters included extraction and disperser solvent type as well as their volume, extraction time, salt effect, pH, sample volume and amount of the chelating agent.   Under the optimum conditions, the enrichment factor of 75 and 105 for Cd+2 and Pb+2 ions respectively was obtained from only 5.00mL of water sample. The detection limit (S/N=3 was 12 and 0.8ngmL−1 for Pb and Cd respectively. The relative standard deviation (RSDs for five replicate measurements of 0.50 mgL−1 of lead and cadmium was 6.5 and 4.4 % respectively. Mineral, tap, river, sea, dam and spiked water samples were analyzed for Cd and Pb amount.

  3. Monte Carlo studies of nuclei and quantum liquid drops

    International Nuclear Information System (INIS)

    Pandharipande, V.R.; Pieper, S.C.

    1989-01-01

    The progress in application of variational and Green's function Monte Carlo methods to nuclei is reviewed. The nature of single-particle orbitals in correlated quantum liquid drops is discussed, and it is suggested that the difference between quasi-particle and mean-field orbitals may be of importance in nuclear structure physics. 27 refs., 7 figs., 2 tabs

  4. Monte Carlo studies of nuclei and quantum liquid drops

    Energy Technology Data Exchange (ETDEWEB)

    Pandharipande, V.R.; Pieper, S.C.

    1989-01-01

    The progress in application of variational and Green's function Monte Carlo methods to nuclei is reviewed. The nature of single-particle orbitals in correlated quantum liquid drops is discussed, and it is suggested that the difference between quasi-particle and mean-field orbitals may be of importance in nuclear structure physics. 27 refs., 7 figs., 2 tabs.

  5. Optimal formation of genetically modified and functional pancreatic islet spheroids by using hanging-drop strategy.

    Science.gov (United States)

    Kim, H J; Alam, Z; Hwang, J W; Hwang, Y H; Kim, M J; Yoon, S; Byun, Y; Lee, D Y

    2013-03-01

    Rejection and hypoxia are important factors causing islet loss at an early stage after pancreatic islet transplantation. Recently, islets have been dissociated into single cells for reaggregation into so-called islet spheroids. Herein, we used a hanging-drop strategy to form islet spheroids to achieve functional equivalence to intact islets. To obtain single islet cells, we dissociated islets with trypsin-EDTA digestion for 10 minutes. To obtain spheroids, we dropped various numbers of single cells (125, 250, or 500 cells/30 μL drop) onto a Petri dish, that was inverted for incubation in humidified air containing 5% CO(2) at 37 °C for 7 days. The aggregated spheroids in the droplets were harvested for further culture. The size of the aggregated islet spheroids depended on the number of single cells (125-500 cells/30 μL droplet). Their morphology was similar to that of intact islets without any cellular damage. When treated with various concentrations of glucose to evaluate responsiveness, their glucose-mediated stimulation index value was similar to that of intact islets, an observation that was attributed to strong cell-to-cell interactions in islet spheroids. However, islet spheroids aggregated in general culture dishes showed abnormal glucose responsiveness owing to weak cell-to-cell interactions. Cell-to-cell interactions in islet spheroids were confirmed with an anti-connexin-36 monoclonal antibody. Finally, nonviral poly(ethylene imine)-mediated interleukin-10 cytokine gene delivered beforehand into dissociated single cells before formation of islet spheroids increased the gene transfection efficacy and interleukin-10 secretion from islet spheroids >4-fold compared with intact islets. These results demonstrated the potential application of genetically modified, functional islet spheroids with of controlled size and morphology using an hanging-drop technique. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Molecular dynamics study of the vaporization of an ionic drop

    Science.gov (United States)

    Galamba, N.

    2010-09-01

    The melting of a microcrystal in vacuum and subsequent vaporization of a drop of NaCl were studied through molecular dynamics simulations with the Born-Mayer-Huggins-Tosi-Fumi rigid-ion effective potential. The vaporization was studied for a single isochor at increasing temperatures until the drop completely vaporized, and gaseous NaCl formed. Examination of the vapor composition shows that the vapor of the ionic drop and gaseous NaCl are composed of neutral species, the most abundant of which, ranging from simple NaCl monomers (ion pairs) to nonlinear polymers, (NanCln)n=2-4. The enthalpies of sublimation, vaporization, and dissociation of the different vapor species are found to be in reasonable agreement with available experimental data. The decrease of the enthalpy of vaporization of the vapor species, with the radius of the drop decrease, accounts for a larger fraction of trimers and tetramers than that inferred from experiments. Further, the rhombic dimer is significantly more abundant than its linear isomer although the latter increases with the temperature. The present results suggest that both trimers and linear dimers may be important to explain the vapor pressure of molten NaCl at temperatures above 1500 K.

  7. Fragment size distribution in viscous bag breakup of a drop

    Science.gov (United States)

    Kulkarni, Varun; Bulusu, Kartik V.; Plesniak, Michael W.; Sojka, Paul E.

    2015-11-01

    In this study we examine the drop size distribution resulting from the fragmentation of a single drop in the presence of a continuous air jet. Specifically, we study the effect of Weber number, We, and Ohnesorge number, Oh on the disintegration process. The regime of breakup considered is observed between 12 phase Doppler anemometry. Both the number and volume fragment size probability distributions are plotted. The volume probability distribution revealed a bi-modal behavior with two distinct peaks: one corresponding to the rim fragments and the other to the bag fragments. This behavior was suppressed in the number probability distribution. Additionally, we employ an in-house particle detection code to isolate the rim fragment size distribution from the total probability distributions. Our experiments showed that the bag fragments are smaller in diameter and larger in number, while the rim fragments are larger in diameter and smaller in number. Furthermore, with increasing We for a given Ohwe observe a large number of small-diameter drops and small number of large-diameter drops. On the other hand, with increasing Oh for a fixed We the opposite is seen.

  8. Drop rebound after impact: the role of the receding contact angle.

    Science.gov (United States)

    Antonini, C; Villa, F; Bernagozzi, I; Amirfazli, A; Marengo, M

    2013-12-31

    Data from the literature suggest that the rebound of a drop from a surface can be achieved when the wettability is low, i.e., when contact angles, measured at the triple line (solid-liquid-air), are high. However, no clear criterion exists to predict when a drop will rebound from a surface and which is the key wetting parameter to govern drop rebound (e.g., the "equilibrium" contact angle, θeq, the advancing and the receding contact angles, θA and θR, respectively, the contact angle hysteresis, Δθ, or any combination of these parameters). To clarify the conditions for drop rebound, we conducted experimental tests on different dry solid surfaces with variable wettability, from hydrophobic to superhydrophobic surfaces, with advancing contact angles 108° contact angles 89° contact angle is the key wetting parameter that influences drop rebound, along with surface hydrophobicity: for the investigated impact conditions (drop diameter 2.4 contact angles higher than 100°. Also, the drop rebound time decreased by increasing the receding contact angle. It was also shown that in general care must be taken when using statically defined wetting parameters (such as advancing and receding contact angles) to predict the dynamic behavior of a liquid on a solid surface because the dynamics of the phenomenon may affect surface wetting close to the impact point (e.g., as a result of the transition from the Cassie-Baxter to Wenzel state in the case of the so-called superhydrophobic surfaces) and thus affect the drop rebound.

  9. Quantitation of (R)- and (S)-linalool in beer using solid phase microextraction (SPME) in combination with a stable isotope dilution assay (SIDA).

    Science.gov (United States)

    Steinhaus, Martin; Fritsch, Helge T; Schieberle, Peter

    2003-11-19

    A stable isotope dilution assay (SIDA) was developed for the quantitation of both linalool enantiomers using synthesized [2H(2)]R/S-linalool as the internal standard. For enrichment of the target compound from beer, a solid phase microextraction method (SPME) was developed. In comparison to the more time-consuming extraction/distillation cleanup of the beer samples, the results obtained by SPME/SIDA were very similar, even under nonequilibration conditions. Analysis of five different types of beer showed significant differences in the linalool concentrations, which were clearly correlated with the intensity of the hoppy aroma note as evaluated by a sensory panel. In addition, significant differences in the R/S ratios were measured in the beers. The SPME/SIDA yielded exact data independently from headspace sampling parameters, such as exposure time or ionic strength of the solution.

  10. Rapid determination of some psychotropic drugs in complex matrices by tandem dispersive liquid-liquid microextraction followed by high performance liquid chromatography.

    Science.gov (United States)

    Asghari, Alireza; Fahimi, Ebrahim; Bazregar, Mohammad; Rajabi, Maryam; Boutorabi, Leila

    2017-05-01

    Simple and rapid determinations of some psychotropic drugs in some pharmaceutical wastewater and human plasma samples were successfully accomplished via the tandem dispersive liquid-liquid microextraction combined with high performance liquid chromatography-ultraviolet detection (TDLLME-HPLC-UV). TDLLME of the three psychotropic drugs clozapine, chlorpromazine, and thioridazine was easily performed through two consecutive dispersive liquid-liquid microextractions. By performing this convenient method, proper sample preconcentrations and clean-ups were achieved in just about 7min. In order to achieve the best extraction efficiency, the effective parameters involved were optimized. The optimal experimental conditions consisted of 100μL of CCl 4 (as the extraction organic solvent), and the pH values of 13 and 2 for the donor and acceptor phases, respectively. Under these optimum experimental conditions, the proposed TDLLME-HPLC-UV technique provided a good linearity in the range of 5-3000ngmL -1 for the three psychotropic drugs with the correlation of determinations (R 2 s) higher than 0.996. The limits of quantification (LOQs) and limits of detection (LODs) obtained were 5.0ngmL -1 and 1.0-1.5ngmL -1 , respectively. Also the proper enrichment factors (EFs) of 96, 99, and 88 for clozapine, chlorpromazine, and thioridazine, respectively, and good extraction repeatabilities (relative standard deviations below 9.3%, n=5) were obtained. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Cutting a drop of water pinned by wire loops using a superhydrophobic surface and knife.

    Directory of Open Access Journals (Sweden)

    Ryan Yanashima

    Full Text Available A water drop on a superhydrophobic surface that is pinned by wire loops can be reproducibly cut without formation of satellite droplets. Drops placed on low-density polyethylene surfaces and Teflon-coated glass slides were cut with superhydrophobic knives of low-density polyethylene and treated copper or zinc sheets, respectively. Distortion of drop shape by the superhydrophobic knife enables a clean break. The driving force for droplet formation arises from the lower surface free energy for two separate drops, and it is modeled as a 2-D system. An estimate of the free energy change serves to guide when droplets will form based on the variation of drop volume, loop spacing and knife depth. Combining the cutting process with an electrofocusing driving force could enable a reproducible biomolecular separation without troubling satellite drop formation.

  12. A star-shaped polythiophene dendrimer coating for solid-phase microextraction of triazole agrochemicals.

    Science.gov (United States)

    Abolghasemi, Mir Mahdi; Habibiyan, Rahim; Jaymand, Mehdi; Piryaei, Marzieh

    2018-02-14

    A nanostructured star-shaped polythiophene dendrimer was prepared and used as a fiber coating for headspace solid phase microextraction of selected triazolic pesticides (tebuconazole, hexaconazole, penconazole, diniconazole, difenoconazole, triticonazole) from water samples. The dendrimer with its large surface area was characterized by thermogravimetric analysis, UV-Vis spectroscopy and field emission scanning electron microscopy. It was placed on a stainless steel wire for use in SPME. The experimental conditions for fiber coating, extraction, stirring rate, ionic strength, pH value, desorption temperature and time were optimized. Following thermal desorption, the pesticides were quantified by GC-MS. Under optimum conditions, the repeatability (RSD) for one fiber (for n = 3) ranges from 4.3 to 5.6%. The detection limits are between 8 and 12 pg mL -1 . The method is fast, inexpensive (in terms of equipment), and the fiber has high thermal stability. Graphical abstract Schematic presentation of a nanostructured star-shaped polythiophene dendrimer for use in headspace solid phase microextraction of the triazolic pesticides (tebuconazole, hexaconazole, penconazole, diniconazole, difenoconazole, triticonazole). They were then quantified by gas chromatography-mass spectrometry.

  13. Interaction Between Graphene-Coated SiC Single Crystal and Liquid Copper

    Science.gov (United States)

    Homa, M.; Sobczak, N.; Sobczak, J. J.; Kudyba, A.; Bruzda, G.; Nowak, R.; Pietrzak, K.; Chmielewski, M.; Strupiński, W.

    2018-05-01

    The wettability of graphene-coated SiC single crystal (CGn/SiCsc) by liquid Cu (99.99%) was investigated by a sessile drop method in vacuum conditions at temperature of 1100 °C. The graphene layer was produced via a chemical vapor deposition routine using 4H-SiC single crystal cut out from 6″ wafer. A dispensed drop technique combined with a non-contact heating of a couple of materials was applied. The Cu drop was squeezed from a graphite capillary and deposited on the substrate directly in a vacuum chamber. The first Cu drop did not wet the CGn/SiCsc substrate and showed a lack of adhesion to the substrate: the falling Cu drop only touched the substrate forming a contact angle of θ 0 = 121° and then immediately rolled like a ball along the substrate surface. After settling near the edge of the substrate in about 0.15 s, the Cu drop formed an asymmetric shape with the right and left contact angles of different values ( θ R = 86° and θ L = 70°, respectively), while in the next 30 min, θ R and θ L achieved the same final value of 52°. The second Cu drop was put down on the displacement path of the first drop, and immediately after the deposition, it also did not wet the substrate ( θ = 123°). This drop kept symmetry and the primary position, but its wetting behavior was unusual: both θ R and θ L decreased in 17 min to the value of 23° and next, they increased to a final value of 65°. Visual observations revealed a presence of 2.5-mm-thick interfacial phase layer reactively formed under the second drop. Scanning electron microscopy (SEM) investigations revealed the presence of carbon-enriched precipitates on the top surface of the first Cu drop. These precipitates were identified by the Raman spectroscopy as double-layer graphene. The Raman spectrum taken from the substrate far from the drop revealed the presence of graphene, while that obtained from the first drop displacement path exhibited a decreased intensity of 2D peak. The results of SEM

  14. Interaction Between Graphene-Coated SiC Single Crystal and Liquid Copper

    Science.gov (United States)

    Homa, M.; Sobczak, N.; Sobczak, J. J.; Kudyba, A.; Bruzda, G.; Nowak, R.; Pietrzak, K.; Chmielewski, M.; Strupiński, W.

    2018-04-01

    The wettability of graphene-coated SiC single crystal (CGn/SiCsc) by liquid Cu (99.99%) was investigated by a sessile drop method in vacuum conditions at temperature of 1100 °C. The graphene layer was produced via a chemical vapor deposition routine using 4H-SiC single crystal cut out from 6″ wafer. A dispensed drop technique combined with a non-contact heating of a couple of materials was applied. The Cu drop was squeezed from a graphite capillary and deposited on the substrate directly in a vacuum chamber. The first Cu drop did not wet the CGn/SiCsc substrate and showed a lack of adhesion to the substrate: the falling Cu drop only touched the substrate forming a contact angle of θ 0 = 121° and then immediately rolled like a ball along the substrate surface. After settling near the edge of the substrate in about 0.15 s, the Cu drop formed an asymmetric shape with the right and left contact angles of different values (θ R = 86° and θ L = 70°, respectively), while in the next 30 min, θ R and θ L achieved the same final value of 52°. The second Cu drop was put down on the displacement path of the first drop, and immediately after the deposition, it also did not wet the substrate (θ = 123°). This drop kept symmetry and the primary position, but its wetting behavior was unusual: both θ R and θ L decreased in 17 min to the value of 23° and next, they increased to a final value of 65°. Visual observations revealed a presence of 2.5-mm-thick interfacial phase layer reactively formed under the second drop. Scanning electron microscopy (SEM) investigations revealed the presence of carbon-enriched precipitates on the top surface of the first Cu drop. These precipitates were identified by the Raman spectroscopy as double-layer graphene. The Raman spectrum taken from the substrate far from the drop revealed the presence of graphene, while that obtained from the first drop displacement path exhibited a decreased intensity of 2D peak. The results of SEM

  15. Custom-Made Foot Orthoses Decrease Medial Foot Loading During Drop Jump in Individuals With Patellofemoral Pain

    DEFF Research Database (Denmark)

    Rathleff, Michael S; Richter, Camilla; Brushøj, Christoffer

    2016-01-01

    OBJECTIVE: To investigate the effect of foot orthoses on medial-to-lateral plantar forces during drop jump and single leg squat, and second, to explore the self-reported change in symptoms after 12 weeks of wearing the orthoses in individuals with patellofemoral pain (PFP). DESIGN: Cohort study...... with 12 weeks of follow-up. SETTING: Hospital setting. PARTICIPANTS: 23 adults with PFP. INTERVENTIONS: Custom-made foot orthoses. MAIN OUTCOME MEASURES: Foot loading (plantar pressure) was collected from the most painful side during drop jump and single leg squat using pressure sensitive Pedar insoles....... Primary outcome was the medial-to-lateral peak force under the forefoot during drop jump. The PFP syndrome severity score was used to measure self-reported improvement from baseline to follow-up. RESULTS: Orthoses were associated with a significant 2.9%-point (95% confidence intervals: 0.7-5.1) reduction...

  16. Two-phase flow boiling pressure drop in small channels

    International Nuclear Information System (INIS)

    Sardeshpande, Madhavi V.; Shastri, Parikshit; Ranade, Vivek V.

    2016-01-01

    Highlights: • Study of typical 19 mm steam generator tube has been undertaken in detail. • Study of two phase flow boiling pressure drop, flow instability and identification of flow regimes using pressure fluctuations is the main focus of present work. • Effect of heat and mass flux on pressure drop and void fraction was studied. • Flow regimes identified from pressure fluctuations data using FFT plots. • Homogeneous model predicted pressure drop well in agreement. - Abstract: Two-phase flow boiling in small channels finds a variety of applications in power and process industries. Heat transfer, boiling flow regimes, flow instabilities, pressure drop and dry out are some of the key issues related to two-phase flow boiling in channels. In this work, the focus is on pressure drop in two-phase flow boiling in tubes of 19 mm diameter. These tubes are typically used in steam generators. Relatively limited experimental database is available on 19 mm ID tube. Therefore, in the present work, the experimental set-up is designed for studying flow boiling in 19 mm ID tube in such a way that any of the different flow regimes occurring in a steam generator tube (from pre-heating of sub-cooled water to dry-out) can be investigated by varying inlet conditions. The reported results cover a reasonable range of heat and mass flux conditions such as 9–27 kW/m 2 and 2.9–5.9 kg/m 2 s respectively. In this paper, various existing correlations are assessed against experimental data for the pressure drop in a single, vertical channel during flow boiling of water at near-atmospheric pressure. A special feature of these experiments is that time-dependent pressures are measured at four locations along the channel. The steady-state pressure drop is estimated and the identification of boiling flow regimes is done with transient characteristics using time series analysis. Experimental data and corresponding results are compared with the reported correlations. The results will be

  17. Hanging drop crystal growth apparatus

    Science.gov (United States)

    Naumann, Robert J. (Inventor); Witherow, William K. (Inventor); Carter, Daniel C. (Inventor); Bugg, Charles E. (Inventor); Suddath, Fred L. (Inventor)

    1990-01-01

    This invention relates generally to control systems for controlling crystal growth, and more particularly to such a system which uses a beam of light refracted by the fluid in which crystals are growing to detect concentration of solutes in the liquid. In a hanging drop apparatus, a laser beam is directed onto drop which refracts the laser light into primary and secondary bows, respectively, which in turn fall upon linear diode detector arrays. As concentration of solutes in drop increases due to solvent removal, these bows move farther apart on the arrays, with the relative separation being detected by arrays and used by a computer to adjust solvent vapor transport from the drop. A forward scattering detector is used to detect crystal nucleation in drop, and a humidity detector is used, in one embodiment, to detect relative humidity in the enclosure wherein drop is suspended. The novelty of this invention lies in utilizing angular variance of light refracted from drop to infer, by a computer algorithm, concentration of solutes therein. Additional novelty is believed to lie in using a forward scattering detector to detect nucleating crystallites in drop.

  18. On-line electrochemically controlled in-tube solid phase microextraction of inorganic selenium followed by hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Asiabi, Hamid [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Yamini, Yadollah, E-mail: yyamini@modares.ac.ir [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Seidi, Shahram [Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Shamsayei, Maryam; Safari, Meysam; Rezaei, Fatemeh [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of)

    2016-05-30

    In this work, for the first time, a rapid, simple and sensitive microextraction procedure is demonstrated for the matrix separation, preconcentration and determination of inorganic selenium species in water samples using an electrochemically controlled in-tube solid phase microextraction (EC-in-tube SPME) followed by hydride generation atomic absorption spectrometry (HG-AAS). In this approach, in which EC-in-tube SPME and HG-AAS system were combined, the total analysis time, was decreased and the accuracy, repeatability and sensitivity were increased. In addition, to increases extraction efficiency, a novel nanostructured composite coating consisting of polypyrrole (PPy) doped with ethyleneglycol dimethacrylate (EGDMA) was prepared on the inner surface of a stainless-steel tube by a facile electrodeposition method. To evaluate the offered setup and the new PPy-EGDMA coating, it was used to extract inorganic selenium species in water samples. Extraction of inorganic selenium species was carried out by applying a positive potential through the inner surface of coated in-tube under flow conditions. Under the optimized conditions, selenium was detected in amounts as small as 4.0 parts per trillion. The method showed good linearity in the range of 0.012–200 ng mL{sup −1}, with coefficients of determination better than 0.9996. The intra- and inter-assay precisions (RSD%, n = 5) were in the range of 2.0–2.5% and 2.7–3.2%, respectively. The validated method was successfully applied for the analysis of inorganic selenium species in some water samples and satisfactory results were obtained. - Graphical abstract: An electrochemically controlled in-tube solid phase microextraction followed by hydride generation atomic absorption spectrometry was developed for extraction and determination ultra-trace amounts of Se in aqueous solutions. - Highlights: • A nanostructured composite coating consisting of PPy doped with EGDMA was prepared. • The coating was

  19. The hydrodynamics of segmented two-phase flow in a circular tube with rapidly dissolving drops.

    Science.gov (United States)

    Leary, Thomas F; Ramachandran, Arun

    2017-05-03

    This article discusses boundary integral simulations of dissolving drops flowing through a cylindrical tube for large aspect ratio drops. The dynamics of drop dissolution is determined by three dimensionless parameters: λ, the viscosity of the drop fluid relative to the suspending fluid; Ca, the capillary number defining the ratio of the hydrodynamic force to the interfacial tension force; and k, a dissolution constant based on the velocity of dissolution. For a single dissolving drop, the velocity in the upstream region is greater than the downstream region, and for sufficiently large k, the downstream velocity can be completely reversed, particularly at low Ca. The upstream end of the drop travels faster and experiences greater deformation than the downstream end. The film thickness, δ, between the drop and the tube wall is governed by a delicate balance between dissolution and changes in the outer fluid velocity resulting from a fixed pressure drop across the tube and mass continuity. Therefore, δ, and consequently, the drop average velocity, can increase, decrease or be relatively invariant in time. For two drops flowing in succession, while low Ca drops maintain a nearly constant separation distance during dissolution, at sufficiently large Ca, for all values of k, dissolution increases the separation distance between drops. Under these conditions, the liquid segments between two adjacent drops can no longer be considered as constant volume stirred tanks. These results will guide the choices of geometry and operating parameters that will facilitate the characterization of fast gas-liquid reactions via two-phase segmented flows.

  20. Sensitive determination of bisphenol A and bisphenol F in canned food using a solid-phase microextraction fibre coated with single-walled carbon nanotubes before GC/MS.

    Science.gov (United States)

    Rastkari, N; Ahmadkhaniha, R; Yunesian, M; Baleh, L J; Mesdaghinia, A

    2010-10-01

    A reliable and sensitive method for simultaneous determination of bisphenol A (BPA) and bisphenol F (BPF) in canned food by gas chromatography-mass spectrometry (GC/MS) is described after extraction and pre-concentration by a new solid-phase microextraction (SPME) adsorbent. The potential of single-walled carbon nanotubes (SWCNTs) as SPME adsorbent for the pre-concentration of environmental contaminants has been investigated in recent years. This work was carried out to investigate the feasibility of SWCNTs as a headspace SPME adsorbent for the determination of bisphenol derivatives in canned food. Potential factors affecting the extraction efficiency, including extraction time, extraction temperature, desorption time, desorption temperature, and salinity were optimized. Calibration curves were linear (r(2)> or = 0.994) over the concentration range from 0.30 to 60 microg kg(-1). For both target analytes, the limit of detection (LOD) at signal-to-noise (S/N) ratio of 3 was 0.10 microg kg(-1). In addition, a comparative study between the SWCNT and a commercial polydimethylsiloxane (PDMS) SPME fibre for the determination of bisphenol derivatives in canned food was conducted. SWCNT fibre showed higher extraction capacity, better thermal stability (over 350 degrees C) and longer life span (over 150 times) than the commercial PDMS fibre. The method was successfully applied to determine BPA in canned food samples which were purchased from local markets. BPA was found in some of the samples within the concentration range from 0.5 to 5.2 microg kg(-1).

  1. A precise goniometer/tensiometer using a low cost single-board computer

    Science.gov (United States)

    Favier, Benoit; Chamakos, Nikolaos T.; Papathanasiou, Athanasios G.

    2017-12-01

    Measuring the surface tension and the Young contact angle of a droplet is extremely important for many industrial applications. Here, considering the booming interest for small and cheap but precise experimental instruments, we have constructed a low-cost contact angle goniometer/tensiometer, based on a single-board computer (Raspberry Pi). The device runs an axisymmetric drop shape analysis (ADSA) algorithm written in Python. The code, here named DropToolKit, was developed in-house. We initially present the mathematical framework of our algorithm and then we validate our software tool against other well-established ADSA packages, including the commercial ramé-hart DROPimage Advanced as well as the DropAnalysis plugin in ImageJ. After successfully testing for various combinations of liquids and solid surfaces, we concluded that our prototype device would be highly beneficial for industrial applications as well as for scientific research in wetting phenomena compared to the commercial solutions.

  2. Trace determination of volatile polycyclic aromatic hydrocarbons in natural waters by magnetic ionic liquid-based stir bar dispersive liquid microextraction.

    Science.gov (United States)

    Benedé, Juan L; Anderson, Jared L; Chisvert, Alberto

    2018-01-01

    In this work, a novel hybrid approach called stir bar dispersive liquid microextraction (SBDLME) that combines the advantages of stir bar sorptive extraction (SBSE) and dispersive liquid-liquid microextraction (DLLME) has been employed for the accurate and sensitive determination of ten polycyclic aromatic hydrocarbons (PAHs) in natural water samples. The extraction is carried out using a neodymium stir bar magnetically coated with a magnetic ionic liquid (MIL) as extraction device, in such a way that the MIL is dispersed into the solution at high stirring rates. Once the stirring is ceased, the MIL is magnetically retrieved onto the stir bar, and subsequently subjected to thermal desorption (TD) coupled to a gas chromatography-mass spectrometry (GC-MS) system. The main parameters involved in TD, as well as in the extraction step affecting the extraction efficiency (i.e., MIL amount, extraction time and ionic strength) were evaluated. Under the optimized conditions, the method was successfully validated showing good linearity, limits of detection and quantification in the low ng L -1 level, good intra- and inter-day repeatability (RSD < 13%) and good enrichment factors (18 - 717). This sensitive analytical method was applied to the determination of trace amounts of PAHs in three natural water samples (river, tap and rainwater) with satisfactory relative recovery values (84-115%), highlighting that the matrices under consideration do not affect the extraction process. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Preconcentration of lead using solidification of floating organic drop and its determination by electrothermal atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Mahmoud Chamsaz

    2013-07-01

    Full Text Available A simple microextraction method based on solidification of a floating organic drop (SFOD was developed for preconcentration of lead prior to its determination by electrothermal atomic absorption spectrometry (ETAAS. Ammonium pyrolidinedithiocarbamate (APDC was used as complexing agent, and the formed complex was extracted into a 20 μL of 1-undecanol. The extracted complex was diluted with ethanol and injected into a graphite furnace. An orthogonal array design (OAD with OA16 (45 matrix was employed to study the effects of different parameters such as pH, APDC concentration, stirring rate, sample solution temperature and the exposure time on the extraction efficiency. Under the optimized experimental conditions the limit of detection (based on 3 s and the enhancement factor were 0.058 μg L−1 and 113, respectively. The relative standard deviation (RSD for 8 replicate determinations of 1 μg L−1 of Pb was 8.8%. The developed method was validated by the analysis of certified reference materials and was successfully applied to the determination of lead in water and infant formula base powder samples.

  4. An Effective Method to Detect Volatile Intermediates Generated in the Bioconversion of Coal to Methane by Gas Chromatography-Mass Spectrometry after In-Situ Extraction Using Headspace Solid-Phase Micro-Extraction under Strict Anaerobic Conditions.

    Science.gov (United States)

    Liu, Jianmin; Wang, Baoyu; Tai, Chao; Wu, Li; Zhao, Han; Guan, Jiadong; Chen, Linyong

    2016-01-01

    Bioconversion of coal to methane has gained increased attention in recent decades because of its economic and environmental advantages. However, the mechanism of this process is difficult to study in depth, partly because of difficulties associated with the analysis of intermediates generated in coal bioconversion. In this investigation, we report on an effective method to analyze volatile intermediates generated in the bioconversion of coal under strict anaerobic conditions. We conduct in-situ extraction of intermediates using headspace solid-phase micro-extraction followed by detection by gas chromatography-mass spectrometry. Bioconversion simulation equipment was modified and combined with a solid-phase micro-extraction device. In-situ extraction could be achieved by using the combined units, to avoid a breakdown in anaerobic conditions and to maintain the experiment continuity. More than 30 intermediates were identified qualitatively in the conversion process, and the variation in trends of some typical intermediates has been discussed. Volatile organic acids (C2-C7) were chosen for a quantitative study of the intermediates because of their importance during coal bioconversion to methane. Fiber coating, extraction time, and solution acidity were optimized in the solid-phase micro-extraction procedure. The pressure was enhanced during the bioconversion process to investigate the influence of headspace pressure on analyte extraction. The detection limits of the method ranged from 0.0006 to 0.02 mmol/L for the volatile organic acids and the relative standard deviations were between 4.6% and 11.5%. The volatile organic acids (C2-C7) generated in the bioconversion process were 0.01-1.15 mmol/L with a recovery range from 80% to 105%. The developed method is useful for further in-depth research on the bioconversion of coal to methane.

  5. Extensible automated dispersive liquid–liquid microextraction

    Energy Technology Data Exchange (ETDEWEB)

    Li, Songqing; Hu, Lu; Chen, Ketao; Gao, Haixiang, E-mail: hxgao@cau.edu.cn

    2015-05-04

    Highlights: • An extensible automated dispersive liquid–liquid microextraction was developed. • A fully automatic SPE workstation with a modified operation program was used. • Ionic liquid-based in situ DLLME was used as model method. • SPE columns packed with nonwoven polypropylene fiber was used for phase separation. • The approach was applied to the determination of benzoylurea insecticides in water. - Abstract: In this study, a convenient and extensible automated ionic liquid-based in situ dispersive liquid–liquid microextraction (automated IL-based in situ DLLME) was developed. 1-Octyl-3-methylimidazolium bis[(trifluoromethane)sulfonyl]imide ([C{sub 8}MIM]NTf{sub 2}) is formed through the reaction between [C{sub 8}MIM]Cl and lithium bis[(trifluoromethane)sulfonyl]imide (LiNTf{sub 2}) to extract the analytes. Using a fully automatic SPE workstation, special SPE columns packed with nonwoven polypropylene (NWPP) fiber, and a modified operation program, the procedures of the IL-based in situ DLLME, including the collection of a water sample, injection of an ion exchange solvent, phase separation of the emulsified solution, elution of the retained extraction phase, and collection of the eluent into vials, can be performed automatically. The developed approach, coupled with high-performance liquid chromatography–diode array detection (HPLC–DAD), was successfully applied to the detection and concentration determination of benzoylurea (BU) insecticides in water samples. Parameters affecting the extraction performance were investigated and optimized. Under the optimized conditions, the proposed method achieved extraction recoveries of 80% to 89% for water samples. The limits of detection (LODs) of the method were in the range of 0.16–0.45 ng mL{sup −1}. The intra-column and inter-column relative standard deviations (RSDs) were <8.6%. Good linearity (r > 0.9986) was obtained over the calibration range from 2 to 500 ng mL{sup −1}. The proposed

  6. Extensible automated dispersive liquid–liquid microextraction

    International Nuclear Information System (INIS)

    Li, Songqing; Hu, Lu; Chen, Ketao; Gao, Haixiang

    2015-01-01

    Highlights: • An extensible automated dispersive liquid–liquid microextraction was developed. • A fully automatic SPE workstation with a modified operation program was used. • Ionic liquid-based in situ DLLME was used as model method. • SPE columns packed with nonwoven polypropylene fiber was used for phase separation. • The approach was applied to the determination of benzoylurea insecticides in water. - Abstract: In this study, a convenient and extensible automated ionic liquid-based in situ dispersive liquid–liquid microextraction (automated IL-based in situ DLLME) was developed. 1-Octyl-3-methylimidazolium bis[(trifluoromethane)sulfonyl]imide ([C 8 MIM]NTf 2 ) is formed through the reaction between [C 8 MIM]Cl and lithium bis[(trifluoromethane)sulfonyl]imide (LiNTf 2 ) to extract the analytes. Using a fully automatic SPE workstation, special SPE columns packed with nonwoven polypropylene (NWPP) fiber, and a modified operation program, the procedures of the IL-based in situ DLLME, including the collection of a water sample, injection of an ion exchange solvent, phase separation of the emulsified solution, elution of the retained extraction phase, and collection of the eluent into vials, can be performed automatically. The developed approach, coupled with high-performance liquid chromatography–diode array detection (HPLC–DAD), was successfully applied to the detection and concentration determination of benzoylurea (BU) insecticides in water samples. Parameters affecting the extraction performance were investigated and optimized. Under the optimized conditions, the proposed method achieved extraction recoveries of 80% to 89% for water samples. The limits of detection (LODs) of the method were in the range of 0.16–0.45 ng mL −1 . The intra-column and inter-column relative standard deviations (RSDs) were <8.6%. Good linearity (r > 0.9986) was obtained over the calibration range from 2 to 500 ng mL −1 . The proposed method opens a new avenue

  7. Vibration-Induced Climbing of Drops

    Science.gov (United States)

    Brunet, P.; Eggers, J.; Deegan, R. D.

    2007-10-01

    We report an experimental study of liquid drops moving against gravity, when placed on a vertically vibrating inclined plate, which is partially wetted by the drop. The frequency of vibrations ranges from 30 to 200 Hz, and, above a threshold in vibration acceleration, drops experience an upward motion. We attribute this surprising motion to the deformations of the drop, as a consequence of an up or down symmetry breaking induced by the presence of the substrate. We relate the direction of motion to contact angle measurements. This phenomenon can be used to move a drop along an arbitrary path in a plane, without special surface treatments or localized forcing.

  8. Analysis of honeybush tea (Cyclopia spp.) volatiles by comprehensive two-dimensional gas chromatography using a single-stage thermal modulator.

    Science.gov (United States)

    Ntlhokwe, Gaalebalwe; Tredoux, Andreas G J; Górecki, Tadeusz; Edwards, Matthew; Vestner, Jochen; Muller, Magdalena; Erasmus, Lené; Joubert, Elizabeth; Christel Cronje, J; de Villiers, André

    2017-07-01

    The applicability of comprehensive two-dimensional gas chromatography (GC×GC) using a single-stage thermal modulator was explored for the analysis of honeybush tea (Cyclopia spp.) volatile compounds. Headspace solid phase micro-extraction (HS-SPME) was used in combination with GC×GC separation on a non-polar × polar column set with flame ionisation (FID) detection for the analysis of fermented Cyclopia maculata, Cyclopia subternata and Cyclopia genistoides tea infusions of a single harvest season. Method optimisation entailed evaluation of the effects of several experimental parameters on the performance of the modulator, the choice of columns in both dimensions, as well as the HS-SPME extraction fibre. Eighty-four volatile compounds were identified by co-injection of reference standards. Principal component analysis (PCA) showed clear differentiation between the species based on their volatile profiles. Due to the highly reproducible separations obtained using the single-stage thermal modulator, multivariate data analysis was simplified. The results demonstrate both the complexity of honeybush volatile profiles and the potential of GC×GC separation in combination with suitable data analysis techniques for the investigation of the relationship between sensory properties and volatile composition of these products. The developed method therefore offers a fast and inexpensive methodology for the profiling of honeybush tea volatiles. Graphical abstract Surface plot obtained for the GC×GC-FID analysis of honeybush tea volatiles.

  9. D.R.O.P: The Durable Reconnaissance and Observation Platform

    Science.gov (United States)

    McKenzie, Clifford; Parness, Aaron

    2011-01-01

    Robots can provide a remote presence in areas that are either inaccessible or too dangerous for humans. However, robots are often limited by their ability to adapt to the terrain or resist environmental factors. The Durable Reconnaissance and Observation Platform (DROP) is a lightweight robot that addresses these challenges with the capability to survive falls from significant heights, carry a useable payload, and traverse a variety of surfaces, including climbing vertical surfaces like wood, stone, and concrete. DROP is manufactured using a combination of rapid prototyping and shape deposition manufacturing. It uses microspine technology to create a new wheel-like design for vertical climbing. To date, DROP has successfully engaged several vertical surfaces, hanging statically without assistance, and traversed horizontal surfaces at approximately 30 cm/s. Unassisted vertical climbing is capable on surfaces up to 85deg at a rate of approximately 25cm*s(sup -1). DROP can also survive falls from up to 3 meters and has the ability to be thrown off of and onto rooftops. Future efforts will focus on improving the microspine wheels, selecting more resilient materials, customizing the controls, and performing more rigorous and quantifiable testing.

  10. Molecular dynamics study of the vaporization of an ionic drop.

    Science.gov (United States)

    Galamba, N

    2010-09-28

    The melting of a microcrystal in vacuum and subsequent vaporization of a drop of NaCl were studied through molecular dynamics simulations with the Born-Mayer-Huggins-Tosi-Fumi rigid-ion effective potential. The vaporization was studied for a single isochor at increasing temperatures until the drop completely vaporized, and gaseous NaCl formed. Examination of the vapor composition shows that the vapor of the ionic drop and gaseous NaCl are composed of neutral species, the most abundant of which, ranging from simple NaCl monomers (ion pairs) to nonlinear polymers, (Na(n)Cl(n))(n=2-4). The enthalpies of sublimation, vaporization, and dissociation of the different vapor species are found to be in reasonable agreement with available experimental data. The decrease of the enthalpy of vaporization of the vapor species, with the radius of the drop decrease, accounts for a larger fraction of trimers and tetramers than that inferred from experiments. Further, the rhombic dimer is significantly more abundant than its linear isomer although the latter increases with the temperature. The present results suggest that both trimers and linear dimers may be important to explain the vapor pressure of molten NaCl at temperatures above 1500 K.

  11. Drop Tower Physics

    Science.gov (United States)

    Dittrich, William A.

    2014-01-01

    The drop towers of yesteryear were used to make lead shot for muskets, as described in "The Physics Teacher" in April 2012. However, modern drop towers are essentially elevators designed so that the cable can "break" on demand, creating an environment with microgravity for a short period of time, currently up to nine seconds at…

  12. Direct comparison of unloading compliance and potential drop techniques in J-integral testing

    International Nuclear Information System (INIS)

    McGowan, J.J.; Nanstad, R.K.

    1984-01-01

    Single-specimen J-integral testing is performed commonly with the unloading compliance technique. Use of modern instrumentation techniques and powerful desktop computers have made this technique a standard. However, this testing technique is slow and tedious, with the loading rate fixed at a slow quasi-static rate. For these reasons the dc potential drop technique was investigated for crack length measurement during a J-integral test. For direct comparison, both unloading compliance and potential drop were used simultaneously during a J-integral test. The results showed good agreement between the techniques. However, the potential drop technique showed an offset in crack length due to plastic blunting processes. Taking this offset into account, J/sub Ic/ values calculated by both techniques compared well

  13. Multivariate study of parameters in the determination of pesticide residues in apple by headspace solid phase microextraction coupled to gas chromatography-mass spectrometry using experimental factorial design.

    Science.gov (United States)

    Abdulra'uf, Lukman Bola; Tan, Guan Huat

    2013-12-15

    Solid-phase microextraction (SPME) is a solvent-less sample preparation method which combines sample preparation, isolation, concentration and enrichment into one step. In this study, multivariate strategy was used to determine the significance of the factors affecting the solid phase microextraction of pesticide residues (fenobucarb, diazinon, chlorothalonil and chlorpyrifos) using a randomised factorial design. The interactions and effects of temperature, time and salt addition on the efficiency of the extraction of the pesticide residues were evaluated using 2(3) factorial designs. The analytes were extracted with 100 μm PDMS fibres according to the factorial design matrix and desorbed into a gas chromatography-mass spectrometry detector. The developed method was applied for the analysis of apple samples and the limits of detection were between 0.01 and 0.2 μg kg(-)(1), which were lower than the MRLs for apples. The relative standard deviations (RSD) were between 0.1% and 13.37% with average recovery of 80-105%. The linearity ranges from 0.5-50 μg kg(-)(1) with correlation coefficient greater than 0.99. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Sensing dissolved sediment porewater concentrations of persistent and bioaccumulative poolutants using disposable solid-phase microextraction fibers

    NARCIS (Netherlands)

    Mayer, P.; Vaes, W.H.J.; Wijnker, F.; Legierse, K.C.H.M.; Kraaij, R.H.; Tolls, J.; Hermens, J.L.M.

    2000-01-01

    Polymer coated glass fibers were applied as disposable samplers to measure dissolved concentrations of persistent and bioaccumulative pollutants (PBPs) in sediment porewater. The method is called matrix solid-phase microextraction (matrix-SPME), because it utilizes the entire sediment matrix as a

  15. Dynamic speciation analysis of atrazine in aqueous latex nanoparticle dispersions using solid phase microextraction (SPME)

    NARCIS (Netherlands)

    Benhabib, K.; Town, R.M.; Leeuwen, van H.P.

    2009-01-01

    Solid phase microextraction (SPME) is applied in the dynamic speciation analysis of the pesticide atrazine in an aqueous medium containing sorbing latex nanoparticles. It is found that the overall rate of extraction of the analyte is faster than in the absence of nanoparticles and governed by the

  16. Fixed-Dose Combination Drug Approvals, Patents and Market Exclusivities Compared to Single Active Ingredient Pharmaceuticals.

    Science.gov (United States)

    Hao, Jing; Rodriguez-Monguio, Rosa; Seoane-Vazquez, Enrique

    2015-01-01

    Fixed-dose combinations (FDC) contain two or more active ingredients. The effective patent and exclusivity life of FDC compared to single active ingredient has not been assessed. Trends in FDA approved FDC in the period 1980-2012 and time lag between approval of FDC and single active ingredients in the combination were assessed, and the effective patent and exclusivity life of FDC was compared with their single active ingredients. New molecular entities (NMEs), new therapeutic biologics license applications (BLAs) and FDC data were collected from the FDA Orange Book and Drugs@FDA. Analysis included FDC containing one or more NMEs or BLAs at first FDA approval (NMEs-FDC) and only already marketed drugs (Non-NMEs-FDC). Descriptive, Kruskal-Wallis and Wilcoxon Rank Sum analyses were performed. During the study period, the FDA approved 28 NMEs-FDC (3.5% of NMEs) and 117 non-NMEs-FDC. FDC approvals increased from 12 in the 1980s to 59 in the 2000s. Non-NMEs-FDC entered the market at a median of 5.43 years (interquartile range 1.74, 10.31) after first FDA approval of single active ingredients in the combination. The Non-NMEs-FDC entered the market at a median of 2.33 years (-7.55, 2.39) before approval of generic single active ingredient. Non-NME-FDC added a median of 9.70 (2.75, 16.24) years to the patent and exclusivity life of the single active ingredients in the combination. FDC approvals significantly increased over the last twenty years. Pharmaceutical companies market FDC drugs shortly before the generic versions of the single ingredients enter the market extending the patent and exclusivity life of drugs included in the combination.

  17. Fixed-Dose Combination Drug Approvals, Patents and Market Exclusivities Compared to Single Active Ingredient Pharmaceuticals.

    Directory of Open Access Journals (Sweden)

    Jing Hao

    Full Text Available Fixed-dose combinations (FDC contain two or more active ingredients. The effective patent and exclusivity life of FDC compared to single active ingredient has not been assessed.Trends in FDA approved FDC in the period 1980-2012 and time lag between approval of FDC and single active ingredients in the combination were assessed, and the effective patent and exclusivity life of FDC was compared with their single active ingredients.New molecular entities (NMEs, new therapeutic biologics license applications (BLAs and FDC data were collected from the FDA Orange Book and Drugs@FDA. Analysis included FDC containing one or more NMEs or BLAs at first FDA approval (NMEs-FDC and only already marketed drugs (Non-NMEs-FDC. Descriptive, Kruskal-Wallis and Wilcoxon Rank Sum analyses were performed.During the study period, the FDA approved 28 NMEs-FDC (3.5% of NMEs and 117 non-NMEs-FDC. FDC approvals increased from 12 in the 1980s to 59 in the 2000s. Non-NMEs-FDC entered the market at a median of 5.43 years (interquartile range 1.74, 10.31 after first FDA approval of single active ingredients in the combination. The Non-NMEs-FDC entered the market at a median of 2.33 years (-7.55, 2.39 before approval of generic single active ingredient. Non-NME-FDC added a median of 9.70 (2.75, 16.24 years to the patent and exclusivity life of the single active ingredients in the combination.FDC approvals significantly increased over the last twenty years. Pharmaceutical companies market FDC drugs shortly before the generic versions of the single ingredients enter the market extending the patent and exclusivity life of drugs included in the combination.

  18. Drop "impact" on an airfoil surface.

    Science.gov (United States)

    Wu, Zhenlong

    2018-05-17

    Drop impact on an airfoil surface takes place in drop-laden two-phase flow conditions such as rain and icing, which are encountered by wind turbines or airplanes. This phenomenon is characterized by complex nonlinear interactions that manifest rich flow physics and pose unique modeling challenges. In this article, the state of the art of the research about drop impact on airfoil surface in the natural drop-laden two-phase flow environment is presented. The potential flow physics, hazards, characteristic parameters, droplet trajectory calculation, drop impact dynamics and effects are discussed. The most key points in establishing the governing equations for a drop-laden flow lie in the modeling of raindrop splash and water film. The various factors affecting the drop impact dynamics and the effects of drop impact on airfoil aerodynamic performance are summarized. Finally, the principle challenges and future research directions in the field as well as some promising measures to deal with the adverse effects of drop-laden flows on airfoil performance are proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effect of bundle junction face and misalignment on the pressure drops across a randomly loaded and aligned 12 bundles in CANDU fuel channel

    Energy Technology Data Exchange (ETDEWEB)

    Suk, H. C.; Sim, K. S.; Chang, C. H.; Lee, Y. O. [Korea Atomic Energy Reaearch Institute, Taejon (Korea, Republic of)

    1996-06-01

    The pressure drop of twelve fuel bundle string in the CANDU-6 fuel channel is equal to the sum of the eleven junction pressure losses, the bundle string entrance and exit pressure losses, the skin friction pressure loss, and other appendage pressure losses, where the junction loss is dependent on the bundle and faces and angular alignments of the junctions. The results of the single junction pressure drop tests in a short rig show that the most probable pressure drop of the eleven junction was analytically equal to the eleven times of average pressure drop of all the possible single junction pressure drops, and also that the largest and smallest junction pressure drops across the eleven junctions probably occurred only with BA and BB type junctions, respectively, where A and B denote the bundle end sides with an end-plates on which a company monogram is stamped and unstamped, respectively. 5 refs., 7 figs., 1 tab. (author).

  20. Application of solid-phase microextraction in analytical toxicology.

    Science.gov (United States)

    Pragst, Fritz

    2007-08-01

    Solid-phase microextraction (SPME) is a miniaturized and solvent-free sample preparation technique for chromatographic-spectrometric analysis by which the analytes are extracted from a gaseous or liquid sample by absorption in, or adsorption on, a thin polymer coating fixed to the solid surface of a fiber, inside an injection needle or inside a capillary. In this paper, the present state of practical performance and of applications of SPME to the analysis of blood, urine, oral fluid and hair in clinical and forensic toxicology is reviewed. The commercial coatings for fibers or needles have not essentially changed for many years, but there are interesting laboratory developments, such as conductive polypyrrole coatings for electrochemically controlled SPME of anions or cations and coatings with restricted-access properties for direct extraction from whole blood or immunoaffinity SPME. In-tube SPME uses segments of commercial gas chromatography (GC) capillaries for highly efficient extraction by repeated aspiration-ejection cycles of the liquid sample. It can be easily automated in combination with liquid chromatography but, as it is very sensitive to capillary plugging, it requires completely homogeneous liquid samples. In contrast, fiber-based SPME has not yet been performed automatically in combination with high-performance liquid chromatography. The headspace extractions on fibers or needles (solid-phase dynamic extraction) combined with GC methods are the most advantageous versions of SPME because of very pure extracts and the availability of automatic samplers. Surprisingly, substances with quite high boiling points, such as tricyclic antidepressants or phenothiazines, can be measured by headspace SPME from aqueous samples. The applicability and sensitivity of SPME was essentially extended by in-sample or on-fiber derivatization. The different modes of SPME were applied to analysis of solvents and inhalation narcotics, amphetamines, cocaine and metabolites

  1. Vortex flow in acoustically levitated drops

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Z.L.; Xie, W.J. [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China); Wei, B., E-mail: bbwei@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2011-08-29

    The internal flow of acoustically levitated water drops is investigated experimentally. This study reveals a kind of vortex flow which rotates in the meridional plane of the levitated drop. The magnitude of fluid velocity is nearly vanishing at the drop center, whereas it increases toward the free surface of a levitated drop until the maximum value of about 80 mm/s. A transition of streamline shapes from concentric circles to ellipses takes place at the distance of about 1.2 mm from the drop center. The fluid velocity distribution is plotted as a function of polar angle for seven characteristic streamlines. -- Highlights: → We experimentally observe the internal flow of acoustically levitated water drops. → We present a fascinating structure of vortex flow inside the levitated water drop. → This vortex flow rotates around the drop center in the meridional plane. → Velocity distribution information of this vortex flow is quantitatively analyzed.

  2. Vortex flow in acoustically levitated drops

    International Nuclear Information System (INIS)

    Yan, Z.L.; Xie, W.J.; Wei, B.

    2011-01-01

    The internal flow of acoustically levitated water drops is investigated experimentally. This study reveals a kind of vortex flow which rotates in the meridional plane of the levitated drop. The magnitude of fluid velocity is nearly vanishing at the drop center, whereas it increases toward the free surface of a levitated drop until the maximum value of about 80 mm/s. A transition of streamline shapes from concentric circles to ellipses takes place at the distance of about 1.2 mm from the drop center. The fluid velocity distribution is plotted as a function of polar angle for seven characteristic streamlines. -- Highlights: → We experimentally observe the internal flow of acoustically levitated water drops. → We present a fascinating structure of vortex flow inside the levitated water drop. → This vortex flow rotates around the drop center in the meridional plane. → Velocity distribution information of this vortex flow is quantitatively analyzed.

  3. Selective determination of inorganic cobalt in nutritional supplements by ultrasound-assisted temperature-controlled ionic liquid dispersive liquid phase microextraction and electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Berton, Paula; Martinis, Estefanía M.; Martinez, Luis D.; Wuilloud, Rodolfo G.

    2012-01-01

    Highlights: ► Synergy of ultrasound energy and TILDLME technique for improved metal extraction. ► Highly selective determination of inorganic Co species at trace levels. ► Speciation analysis of Co in several nutritional supplements with highly complex matrices. ► Development of an environmentally friendly microextraction technique with minimal waste production and sample consumption. - Abstract: In the present work, a simple and rapid analytical method based on application of ionic liquids (ILs) for inorganic Co(II) species (iCo) microextraction in a variety of nutrient supplements was developed. Inorganic Co was initially chelated with 1-nitroso-2-naphtol (1N2N) reagent followed by a modern technique named ultrasound-assisted temperature-controlled ionic liquid dispersive liquid phase microextraction (USA-TILDLME). The extraction was performed with 1-hexyl-3-methylimidazolium hexafluorophosphate [C 6 mim][PF 6 ] with the aid of ultrasound to improve iCo recovery. Finally, the iCo-enriched IL phase was solubilized in methanol and directly injected into an electrothermal atomic absorption spectrometer (ETAAS). Several parameters that could influence iCo microextraction and detection were carefully studied. Since the main difficulty in these samples is caused by high concentrations of potential interfering ions, different approaches were evaluated to eliminate interferences. The limit of detection (LOD) was 5.4 ng L −1 , while the relative standard deviation (RSD) was 4.7% (at 0.5 μg L −1 Co level and n = 10), calculated from the peak height of absorbance signals. Selective microextraction of iCo species was achieved only by controlling the pH value during the procedure. The method was thus successfully applied for determination of iCo species in nutritional supplements.

  4. Selective determination of inorganic cobalt in nutritional supplements by ultrasound-assisted temperature-controlled ionic liquid dispersive liquid phase microextraction and electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Berton, Paula; Martinis, Estefania M. [Analytical Chemistry Research and Development Group (QUIANID), (LISAMEN-CCT-CONICET-Mendoza), Av. Ruiz Leal S/N Parque General San Martin, M 5502 IRA Mendoza (Argentina); Martinez, Luis D. [INQUISAL-CONICET, Departamento de Quimica Analitica, Facultad de Quimica, Bioquimica y Farmacia, Universidad Nacional de San Luis, San Luis (Argentina); Wuilloud, Rodolfo G., E-mail: rwuilloud@mendoza-conicet.gob.ar [Analytical Chemistry Research and Development Group (QUIANID), (LISAMEN-CCT-CONICET-Mendoza), Av. Ruiz Leal S/N Parque General San Martin, M 5502 IRA Mendoza (Argentina); Instituto de Ciencias Basicas, Universidad Nacional de Cuyo, Mendoza (Argentina)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Synergy of ultrasound energy and TILDLME technique for improved metal extraction. Black-Right-Pointing-Pointer Highly selective determination of inorganic Co species at trace levels. Black-Right-Pointing-Pointer Speciation analysis of Co in several nutritional supplements with highly complex matrices. Black-Right-Pointing-Pointer Development of an environmentally friendly microextraction technique with minimal waste production and sample consumption. - Abstract: In the present work, a simple and rapid analytical method based on application of ionic liquids (ILs) for inorganic Co(II) species (iCo) microextraction in a variety of nutrient supplements was developed. Inorganic Co was initially chelated with 1-nitroso-2-naphtol (1N2N) reagent followed by a modern technique named ultrasound-assisted temperature-controlled ionic liquid dispersive liquid phase microextraction (USA-TILDLME). The extraction was performed with 1-hexyl-3-methylimidazolium hexafluorophosphate [C{sub 6}mim][PF{sub 6}] with the aid of ultrasound to improve iCo recovery. Finally, the iCo-enriched IL phase was solubilized in methanol and directly injected into an electrothermal atomic absorption spectrometer (ETAAS). Several parameters that could influence iCo microextraction and detection were carefully studied. Since the main difficulty in these samples is caused by high concentrations of potential interfering ions, different approaches were evaluated to eliminate interferences. The limit of detection (LOD) was 5.4 ng L{sup -1}, while the relative standard deviation (RSD) was 4.7% (at 0.5 {mu}g L{sup -1} Co level and n = 10), calculated from the peak height of absorbance signals. Selective microextraction of iCo species was achieved only by controlling the pH value during the procedure. The method was thus successfully applied for determination of iCo species in nutritional supplements.

  5. Drop impact into a deep pool: vortex shedding and jet formation

    NARCIS (Netherlands)

    Agbaglah, G.; Thoraval, Marie-Jean; Thoroddsen, S.T.; Zhang, L.V.; Fezzaa, K.; Deegan, R.D.

    2015-01-01

    One of the simplest splashing scenarios results from the impact of a single drop on a deep pool. The traditional understanding of this process is that the impact generates an axisymmetric sheet-like jet that later breaks up into secondary droplets. Recently it was shown that even this simplest of

  6. Luminescence screening of enrofloxacin and ciprofloxacin residues in swine liver after dispersive liquid - liquid microextraction cleanup

    Science.gov (United States)

    A rapid luminescence method was developed to screen residues of enrofloxacin (ENRO) and its metabolite, ciprofloxacin (CIPRO), in swine liver. Target analytes were extracted in acetonitrile-2.5% trifluoroacetic acid-NaCl, cleaned up by dispersive liquid-liquid microextraction (DLLME), and finally de...

  7. Marine sediment pore-water profiles of phosphate d18O using a refined micro-extraction

    DEFF Research Database (Denmark)

    Goldhammer, Tobias; Max, Thomas; Brunner, Benjamin

    2011-01-01

    and small amounts of marine porewaters available for analysis. We obtained porewater profiles of Pi oxygen isotopes using a refined protocol based on the original micro-extraction designed by Colman (2002). This refined and customized method allows the conversion of ultra-low quantities (0.5 – 1 μmol...

  8. Chemical composition of the essential oils of Citrus sinensis cv. valencia and a quantitative structure-retention relationship study for the prediction of retention indices by multiple linear regression

    Directory of Open Access Journals (Sweden)

    Larijani Kambiz

    2011-01-01

    Full Text Available The chemical composition of the volatile fraction obtained by head-space solid phase microextraction (HS-SPME, single drop microextraction (SDME and the essential oil obtained by cold-press from the peels of C. sinensis cv. valencia were analyzed employing gas chromatography-flame ionization detector (GC-FID and gas chromatography-mass spectrometry (GC-MS. The main components were limonene (61.34 %, 68.27 %, 90.50 %, myrcene (17.55 %, 12.35 %, 2.50 %, sabinene (6.50 %, 7.62 %, 0.5 % and α-pinene (0 %, 6.65 %, 1.4 % respectively obtained by HS-SPME, SDME and cold-press. Then a quantitative structure-retention relationship (QSRR study for the prediction of retention indices (RI of the compounds was developed by application of structural descriptors and the multiple linear regression (MLR method. Principal components analysis was used to select the training set. A simple model with low standard errors and high correlation coefficients was obtained. The results illustrated that linear techniques such as MLR combined with a successful variable selection procedure are capable of generating an efficient QSRR model for prediction of the retention indices of different compounds. This model, with high statistical significance (R2 train = 0.983, R2 test = 0.970, Q2 LOO = 0.962, Q2 LGO = 0.936, REP(% = 3.00, could be used adequately for the prediction and description of the retention indices of the volatile compounds.

  9. Direct solid phase microextraction combined with gas chromatography - Mass spectrometry for the determination of biogenic amines in wine.

    Science.gov (United States)

    Papageorgiou, Myrsini; Lambropoulou, Dimitra; Morrison, Calum; Namieśnik, Jacek; Płotka-Wasylka, Justyna

    2018-06-01

    A direct method based on immersion solid phase microextraction (DI-SPME) gas chromatography mass-spectrometry (GC-MS) was optimized and validated for the determination of 16 biogenic amines in Polish wines. In the analysis two internal standards were used: 1,7-diaminoheptane and bis-3-aminopropylamine. The method allows for simultaneous extraction and derivatization, providing a simple and fast mode of extraction and enrichment. Different parameters which affect the extraction procedure were studied and optimized including ionic strength (0-25%), fiber materials (PDMS/DVB, PDMS/DVD + OC, Polyacrylate, Carboxen/PDMS and DVB/CAR/PDMS) and timings of the extraction, derivatization and desorption processes. Validation studies confirmed the linearity, sensitivity, precision and accuracy of the method. The method was successfully applied to the analysis of 44 wine samples originating from several regions of Poland and 3 wine samples from other countries. Analysis showed that many of the samples contained all examined biogenic amines. The method, assessed using an Eco-Scale tool with satisfactory results, was found to be green in terms of hazardous chemicals and solvents usage, energy consumption and production of waste. Therefore the proposed method can be safely used in the wine industry for routine analysis of BAs in wine samples with a minimal detrimental impact on human health and the environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Triggering and Energetics of a Single Drop Vapor Explosion: The Role of Entrapped Non-Condensable Gases

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Roberta Concilio [Royal Institute of Technology, Stockholm (Sweden)

    2009-11-15

    The present work pertains to a research program to study Molten Fuel-Coolant Interactions (MFCI), which may occur in a nuclear power plant during a hypothetical severe accident. Dynamics of the hot liquid (melt) droplet and the volatile liquid (coolant) were investigated in the MISTEE (Micro-Interactions in Steam Explosion Experiments) facility by performing well-controlled, externally triggered, single-droplet experiments, using a high-speed visualization system with synchronized digital cinematography and continuous X-ray radiography. The current study is concerned with the MISTEE-NCG test campaign, in which a considerable amount of non-condensable gases (NCG) are present in the film that enfolds the molten droplet. The SHARP images for the MISTEE-NCG tests were analyzed and special attention was given to the morphology (aspect ratio) and dynamics of the air/ vapor bubble, as well as the melt drop preconditioning. Energetics of the vapor explosion (conversion ratio) were also evaluated. The MISTEE.NCG tests showed two main aspects when compared to the MISTEE test series (without entrapped air). First, analysis showed that the melt preconditioning still strongly depends on the coolant subcooling. Second, in respect to the energetics, the tests consistently showed a reduced conversion ratio compared to that of the MISTEE test series

  11. Overcoming the challenges of conventional dispersive liquid-liquid microextraction: analysis of THMs in chlorinated swimming pools.

    Science.gov (United States)

    Faraji, Hakim; Helalizadeh, Masoumeh; Kordi, Mohammad Reza

    2018-01-01

    A rapid, simple, and sensitive approach to the analysis of trihalomethanes (THMs) in swimming pool water samples has been developed. The main goal of this study was to overcome or to improve the shortcomings of conventional dispersive liquid-liquid microextraction (DLLME) and to maximize the realization of green analytical chemistry principles. The method involves a simple vortex-assisted microextraction step, in the absence of the dispersive solvent, followed by salting-out effect for the elimination of the centrifugation step. A bell-shaped device and a solidifiable solvent were used to simplify the extraction solvent collection after phase separation. Optimization of the independent variables was performed by using chemometric methods in three steps. The method was statistically validated based on authentic guidance documents. The completion time for extraction was less than 8 min, and the limits of detection were in the range between 4 and 72 ng L -1 . Using this method, good linearity and precision were achieved. The results of THMs determination in different real samples showed that in some cases the concentration of total THMs was more than threshold values of THMs determined by accredited healthcare organizations. This method indicated satisfactory analytical figures of merit. Graphical Abstract A novel green microextraction technique for overcoming the challenges of conventional DLLME. The proposed procedure complies with the principles of green/sustainable analytical chemistry, comprising decreasing the sample size, making easy automation of the process, reducing organic waste, diminishing energy consumption, replacing toxic reagents with safer reagents, and enhancing operator safety.

  12. Ordered mesoporous carbon film as an effective solid-phase microextraction coating for determination of benzene series from aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hui [Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); School of Geography Science, Nantong University, Nantong 226001 (China); Li, Jiansheng, E-mail: lijsh@mail.njust.edu.cn [Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Jiang, Mingyue; Lu, Rui; Shen, Jinyou; Sun, Xiuyun; Han, Weiqing [Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Wang, Lianjun, E-mail: wanglj@mail.njust.edu.cn [Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2015-08-12

    The present work reports preparation of ordered mesoporous carbon (OMC) film supported on a graphite fiber as a new type of solid-phase microextraction (SPME) fiber for determination of benzene series from aqueous media. The strategy for the supported OMC film preparation was combined dip-coating technology with solvent evaporation-induced self-assembly (EISA) approach. A graphite fiber was immersed in an ethanol solution containing phenolic resin and Pluronic triblock copolymer. Upon solvent evaporation and subsequent pyrolysis under 700 °C, the phenolic resin and the surfactant self-assembled on the surface of the graphite fiber to form smooth OMC film. X-ray diffraction (XRD), transmission electron microscopy (TEM) and nitrogen isothermal adsorption results indicate that the resultant OMC film possesses well-ordered two dimensional hexagonal mesostructure with pore diameters of 4.5 nm and BET surfaces of 630 m{sup 2}/g. Scanning electron microscopy (SEM) studies show the supported OMC film with thickness at 8.5 μm is continuous and defect-free. The SPME efficiency of the OMC fiber was evaluated by analysis of five benzene series (benzene, toluene, ethylbenzene, p-xylene and m-xylene) from water samples by gas chromatography-flame ionization detection (GC-FID). The analysis results indicate that the prepared OMC fiber has wide linear ranges (0.5–500 μg/L), low detection limits (0.01–0.05 μg/L) and good repeatabilities (4.0–5.8% for one fiber, 2.9–8.7% for fiber-to-fiber). Compared with commercial counterparts, the OMC fiber exhibits improved extraction efficiency for benzene series and PAHs. - Highlights: • Ordered mesoporous carbon film supported on graphite fiber was first reported as solid-phase microextraction coating. • The strategy for the film preparation was combined dip-coating technology with evaporation-induced self-assembly approach. • The obtained fiber showed enhanced thermal stability and organic solvents resistance. • The

  13. Coalescence collision of liquid drops I: Off-center collisions of equal-size drops

    Directory of Open Access Journals (Sweden)

    Alejandro Acevedo-Malavé

    2011-09-01

    Full Text Available The Smoothed Particle Hydrodynamics method (SPH is used here to model off-center collisions of equal-size liquid drops in a three-dimensional space. In this study the Weber number is calculated for several conditions of the droplets dynamics and the velocity vector fields formed inside the drops during the collision process are shown. For the permanent coalescence the evolution of the kinetic and internal energy is shown and also the approaching to equilibrium of the resulting drop. Depending of the Weber number three possible outcomes for the collision of droplets is obtained: permanent coalescence, flocculation and fragmentation. The fragmentation phenomena are modeled and the formation of small satellite drops can be seen. The ligament that is formed follows the “end pinching” mechanism and it is transformed into a flat structure.

  14. Tunable all-optical photonic crystal channel drop filter for DWDM systems

    Science.gov (United States)

    Habibiyan, H.; Ghafoori-Fard, H.; Rostami, A.

    2009-06-01

    In this paper we propose a tunable channel drop filter in a two-dimensional photonic crystal, based on coupled-cavity waveguides with alternating small and large defects and an electromagnetically induced transparency phenomenon. By utilizing this phenomenon a narrower linewidth is obtained and also the frequency of the dropped signal becomes tunable. Simulation results show that the proposed filter is suitable for dense wavelength-division multiplexing (DWDM) systems with 0.8 nm channel spacing. Using this novel component, two ultrasmall eight-channel double-sided and single-sided demultiplexers are introduced. The properties of these devices are investigated using the finite-difference time-domain method. For the single-sided device, transmission loss is 1.5 ± 0.5 dB, the cross-talk level between adjacent channels is better than -18 dB and the average 3 dB optical passband is 0.36 nm. Using planar silicon-on-insulator technology, the physical area for the single-sided component is 700 µm2 and for the double-sided component is 575 µm2. To the best of our knowledge, these are the smallest all-optical demultiplexers with this spectral resolution reported to date. Malfunction of the proposed device due to fabrication errors is modeled and its tunable characteristic is demonstrated.

  15. Photon-counting-based diffraction phase microscopy combined with single-pixel imaging

    Science.gov (United States)

    Shibuya, Kyuki; Araki, Hiroyuki; Iwata, Tetsuo

    2018-04-01

    We propose a photon-counting (PC)-based quantitative-phase imaging (QPI) method for use in diffraction phase microscopy (DPM) that is combined with a single-pixel imaging (SPI) scheme (PC-SPI-DPM). This combination of DPM with the SPI scheme overcomes a low optical throughput problem that has occasionally prevented us from obtaining quantitative-phase images in DPM through use of a high-sensitivity single-channel photodetector such as a photomultiplier tube (PMT). The introduction of a PMT allowed us to perform PC with ease and thus solved a dynamic range problem that was inherent to SPI. As a proof-of-principle experiment, we performed a comparison study of analogue-based SPI-DPM and PC-SPI-DPM for a 125-nm-thick indium tin oxide (ITO) layer coated on a silica glass substrate. We discuss the basic performance of the method and potential future modifications of the proposed system.

  16. Drop Characteristics of non-Newtonian Impinging Jets at High Generalized Bird-Carreau Jet Reynolds Numbers

    Science.gov (United States)

    Sojka, Paul E.; Rodrigues, Neil S.

    2015-11-01

    The current study investigates the drop characteristics of three Carboxymethylcellulose (CMC) sprays produced by the impingement of two liquid jets. The three water-based solutions used in this work (0.5 wt.-% CMC-7MF, 0.8 wt.-% CMC-7MF, and 1.4 wt.-% CMC-7MF) exhibited strong shear-thinning, non-Newtonian behavior - characterized by the Bird-Carreau rheological model. A generalized Bird-Carreau jet Reynolds number was used as the primary parameter to characterize the drop size and the drop velocity, which were measured using Phase Doppler Anemometry (PDA). PDA optical configuration enabled a drop size measurement range of approximately 2.3 to 116.2 μm. 50,000 drops were measured at each test condition to ensure statistical significance. The arithmetic mean diameter (D10) , Sauter mean diameter (D32) , and mass median diameter (MMD) were used as representative diameters to characterize drop size. The mean axial drop velocity Uz -mean along with its root-mean square Uz -rms were used to characterize drop velocity. Incredibly, measurements for all three CMC liquids and reference DI water sprays seemed to follow a single curve for D32 and MMD drop diameters in the high generalized Bird-Carreau jet Reynolds number range considered in this work (9.21E +03

  17. Pressure drop of magnetohydrodynamic two-phase annular flow in rectangular channel

    International Nuclear Information System (INIS)

    Kumamaru, Hiroshige; Fujiwara, Yoshiki; Ogita, Kenji

    1999-01-01

    Numerical calculations have been performed on magnetohydrodynamic (MHD) two-phase annular flow in a rectangular channel with a small aspect ratio, i.e.a small ratio of the channel side perpendicular to the applied magnetic field and the side parallel to the field. Results of the present calculation agree nearly with Inoue et al.'s experimental results in the region of large liquid Reynolds numbers and large Hartmann numbers. Calculation results also show that the pressure drop ratio, i.e. the ratio of pressure drop of two-phase flow to that of single-phase flow under the same liquid flow rate and applied magnetic field, becomes lower than ∼0.02 for conditions of a fusion reactor plant. (author)

  18. Camphor-Crataegus berry extract combination dose-dependently reduces tilt induced fall in blood pressure in orthostatic hypotension.

    Science.gov (United States)

    Belz, G G; Butzer, R; Gaus, W; Loew, D

    2002-10-01

    In order to test the efficacy of a combination of natural D-camphor and an extract of fresh crataegus berries (Korodin Herz-Kreislauf-Tropfen) on orthostatic hypotension, two similar, controlled, randomized studies were carried out in a balanced crossover design in 24 patients each with orthostatic dysregulation. The camphor-crataegus berry combination (CCC) was orally administered as a single regimen in 3 different dosages of 5 drops, 20 drops and 80 drops; a placebo with 20 drops of a 60% alcoholic solution served as control. Orthostatic hypotension was assessed with the tilt table test before and after medication. Source data of both studies were pooled and meta-analytically evaluated for all 48 patients. CCC drops decreased the orthostatic fall in blood pressure versus placebo, as almost uniformly established at all times by mean arterial pressure and diastolic blood pressure. Mean arterial pressure demonstrated the very fast onset of action by a clearly dose-dependent statistically significant effect even after 1-minute orthostasis. Increase of mean arterial pressure as compared to the orthostasis test before medication was on average 4.5 mmHg. CCC affected diastolic blood pressure after 1 minute of orthostasis in all dosages as compared to placebo. A statistically significant effect of the highest dose of 80 drops on diastolic blood pressure could be demonstrated after 1-, 3-, and 5-minute orthostasis. The hemodynamic findings of a stabilizing effect on arterial pressure in orthostasis corroborate the long-term medical experience with CCC and justify the indication orthostatic hypotension.

  19. Dynamics of deforming drops

    NARCIS (Netherlands)

    Bouwhuis, W.

    2015-01-01

    Liquid drops play a dominant role in numerous industrial applications, such as spray coating, spray painting, inkjet printing, lithography processes, and spraying/sprinkling in agriculture or gardening. In all of these examples, the generation, flight, impact, and spreading of drops are separate

  20. Drop weld thermal injuries to the middle ear.

    LENUS (Irish Health Repository)

    Keogh, I J

    2009-01-01

    Drop weld injuries to the tympanic membrane and middle ear caused by hot sparks or molten slag are a rare but significant injury. Steel workers and welders who are regularly exposed to flying sparks and molten metal slag are predisposed. This type of transtympanic thermal injury occurs when the slag literally drops into the external auditory canal and burns through the tympanic membrane. A spectrum of severity of injury occurs which includes chronic tympanic membrane perforation, chronic otorrhoea, facial nerve injury and deafness. Chronic tympanic membrane perforation is the most common sequelae and is perhaps one of the most challenging of all perforations to repair The combination of direct thermal injury and foreign body reaction results in continuing or recurrent suppuration. The foreign body reaction is due to the embedding of metal slag in the promontorial mucosa. We present a case of drop weld injury to the left tympanic membrane, resulting in chronic middle ear inflammation, otorrhoea and tympanic perforation. CAT scan clearly demonstrated a metallic promontorial foreign body with localised bone erosion. We emphasise the importance of removing these foreign bodies and recommend a cartilage reinforced underlay tympanoplasty technique to repair these perforations. Transtympanic thermal trauma is a preventable occupational injury, which is best, avoided by earplugs and increased awareness.

  1. Heat transfer and pressure drop of condensation of hydrocarbons in tubes

    Science.gov (United States)

    Fries, Simon; Skusa, Severin; Luke, Andrea

    2018-03-01

    The heat transfer coefficient and pressure drop are investigated for propane. Two different mild steel plain tubes and saturation pressures are considered for varying mass flux and vapour quality. The pressure drop is compared to the Friedel-Correlation with two different approaches to determine the friction factor. The first is calculation as proposed by Friedel and the second is through single phase pressure drop investigations. For lower vapour qualities the experimental results are in better agreement with the approach of the calculated friction factor. For higher vapour qualities the experimental friction factor is more precise. The pressure drop increases for a decreasing tube diameter and saturation pressure. The circumferential temperature profile and heat transfer coefficients are shown for a constant vapour quality at varying mass fluxes. The subcooling is highest for the bottom of the tube and lowest for the top. The average subcooling as well as the circumferential deviation decreases for rising mass fluxes. The averaged heat transfer coefficients are compared to the model proposed by Thome and Cavallini. The experimental results are in good agreement with both correlations, however the trend is better described with the correlation from Thome. The experimental heat transfer coefficients are under predicted by Thome and over predicted by Cavallini.

  2. Electrohydrodynamics of a viscous drop with inertia.

    Science.gov (United States)

    Nganguia, H; Young, Y-N; Layton, A T; Lai, M-C; Hu, W-F

    2016-05-01

    Most of the existing numerical and theoretical investigations on the electrohydrodynamics of a viscous drop have focused on the creeping Stokes flow regime, where nonlinear inertia effects are neglected. In this work we study the inertia effects on the electrodeformation of a viscous drop under a DC electric field using a novel second-order immersed interface method. The inertia effects are quantified by the Ohnesorge number Oh, and the electric field is characterized by an electric capillary number Ca_{E}. Below the critical Ca_{E}, small to moderate electric field strength gives rise to steady equilibrium drop shapes. We found that, at a fixed Ca_{E}, inertia effects induce larger deformation for an oblate drop than a prolate drop, consistent with previous results in the literature. Moreover, our simulations results indicate that inertia effects on the equilibrium drop deformation are dictated by the direction of normal electric stress on the drop interface: Larger drop deformation is found when the normal electric stress points outward, and smaller drop deformation is found otherwise. To our knowledge, such inertia effects on the equilibrium drop deformation has not been reported in the literature. Above the critical Ca_{E}, no steady equilibrium drop deformation can be found, and often the drop breaks up into a number of daughter droplets. In particular, our Navier-Stokes simulations show that, for the parameters we use, (1) daughter droplets are larger in the presence of inertia, (2) the drop deformation evolves more rapidly compared to creeping flow, and (3) complex distribution of electric stresses for drops with inertia effects. Our results suggest that normal electric pressure may be a useful tool in predicting drop pinch-off in oblate deformations.

  3. von Kármán Vortex Street within an Impacting Drop

    KAUST Repository

    Thoraval, Marie-Jean

    2012-06-29

    The splashing of a drop impacting onto a liquid pool produces a range of different sized microdroplets. At high impact velocities, the most significant source of these droplets is a thin liquid jet emerging at the start of the impact from the neck that connects the drop to the pool. We use ultrahigh-speed video imaging in combination with high-resolution numerical simulations to show how this ejecta gives way to irregular splashing. At higher Reynolds numbers, its base becomes unstable, shedding vortex rings into the liquid from the free surface in an axisymmetric von Kármán vortex street, thus breaking the ejecta sheet as it forms.

  4. von Kármán Vortex Street within an Impacting Drop

    KAUST Repository

    Thoraval, Marie-Jean; Takehara, Kohsei; Etoh, Takeharu Goji; Popinet, Sté phane; Ray, Pascal; Josserand, Christophe; Zaleski, Sté phane; Thoroddsen, Sigurdur T

    2012-01-01

    The splashing of a drop impacting onto a liquid pool produces a range of different sized microdroplets. At high impact velocities, the most significant source of these droplets is a thin liquid jet emerging at the start of the impact from the neck that connects the drop to the pool. We use ultrahigh-speed video imaging in combination with high-resolution numerical simulations to show how this ejecta gives way to irregular splashing. At higher Reynolds numbers, its base becomes unstable, shedding vortex rings into the liquid from the free surface in an axisymmetric von Kármán vortex street, thus breaking the ejecta sheet as it forms.

  5. Adding the 'heart' to hanging drop networks for microphysiological multi-tissue experiments.

    Science.gov (United States)

    Rismani Yazdi, Saeed; Shadmani, Amir; Bürgel, Sebastian C; Misun, Patrick M; Hierlemann, Andreas; Frey, Olivier

    2015-11-07

    Microfluidic hanging-drop networks enable culturing and analysis of 3D microtissue spheroids derived from different cell types under controlled perfusion and investigating inter-tissue communication in multi-tissue formats. In this paper we introduce a compact on-chip pumping approach for flow control in hanging-drop networks. The pump includes one pneumatic chamber located directly above one of the hanging drops and uses the surface tension at the liquid-air-interface for flow actuation. Control of the pneumatic protocol provides a wide range of unidirectional pulsatile and continuous flow profiles. With the proposed concept several independent hanging-drop networks can be operated in parallel with only one single pneumatic actuation line at high fidelity. Closed-loop medium circulation between different organ models for multi-tissue formats and multiple simultaneous assays in parallel are possible. Finally, we implemented a real-time feedback control-loop of the pump actuation based on the beating of a human iPS-derived cardiac microtissue cultured in the same system. This configuration allows for simulating physiological effects on the heart and their impact on flow circulation between the organ models on chip.

  6. Development of a Dispersive Liquid–Liquid Microextraction Technique for the Extraction and Spectrofluorimetric Determination of Fluoxetine in Pharmaceutical Formulations and Human Urine

    Directory of Open Access Journals (Sweden)

    Ahad Bavili Tabrizi

    2012-06-01

    Full Text Available Purpose: Fluoxetine is the most prescribed antidepressant drug worldwide. In this work, a new dispersive liquid–liquid microextraction (DLLME method combined with spectrofluorimetry has been developed for the extraction and determination of FLX in pharmaceutical formulations and human urine. Methods: For FLX determination, the pH of a 10 mL of sample solution containing FLX, was adjusted to 11.0. Then, 800 μL of ethanol containing 100 μL of chloroform was injected rapidly into the sample solution. A cloudy solution was formed and FLX extracted into the fine droplets of chloroform. After centrifugation, the extraction solvent was sedimented and supernatant aqueous phase was readily decanted. The remained organic phase was diluted with ethanol and its fluorescence was measured at 292±3 nm after excitation at 234±3 nm. Results: Some important parameters influencing microextraction efficiency were investigated. Under the optimum extraction conditions, a linear calibration curve in the range of 10 to 800 ng/mL with a correlation coefficient of r2 = 0.9993 was obtained. Limit of detection (LOD and limit of quantification (LOQ were found to be 2.78 and 9.28 ng/mL, respectively. The relative standard deviations (RSDs were less than 4%. Average recoveries for spiked samples were 93–104%. Conclusion: The proposed method gives a very rapid, simple, sensitive, wide dynamic range and low–cost procedure for the determination of FLX.

  7. Determination of transformation products of unsymmetrical dimethylhydrazine in water using vacuum-assisted headspace solid-phase microextraction.

    Science.gov (United States)

    Orazbayeva, Dina; Kenessov, Bulat; Psillakis, Elefteria; Nassyrova, Dayana; Bektassov, Marat

    2018-06-22

    A new, sensitive and simple method based on vacuum-assisted headspace solid-phase microextraction (Vac-HSSPME) followed by gas chromatography-mass-spectrometry (GC-MS), is proposed for the quantification of rocket fuel unsymmetrical dimethylhydrazine (UDMH) transformation products in water samples. The target transformation products were: pyrazine, 1-methyl-1H-pyrazole, N-nitrosodimethylamine, N,N-dimethylformamide, 1-methyl-1Н-1,2,4-triazole, 1-methyl-imidazole and 1H-pyrazole. For these analytes and within shorter sampling times, Vac-HSSPME yielded detection limits (0.5-100 ng L -1 ) 3-10 times lower than those reported for regular HSSPME. Vac-HSSPME sampling for 30 min at 50 °C yielded the best combination of analyte responses and their standard deviations (24 h). Finally, multiple Vac-HSSME proved to be an efficient tool for controlling the matrix effect and quantifying UDMH transformation products. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Applications of Liquid-Phase Microextraction in the Sample Preparation of Environmental Solid Samples

    OpenAIRE

    Helena Prosen

    2014-01-01

    Solvent extraction remains one of the fundamental sample preparation techniques in the analysis of environmental solid samples, but organic solvents are toxic and environmentally harmful, therefore one of the possible greening directions is its miniaturization. The present review covers the relevant research from the field of application of microextraction to the sample preparation of environmental solid samples (soil, sediments, sewage sludge, dust etc.) published in the last decade. Several...

  9. Rapid screening of oxytetracycline residue in catfish muscle by dispersive liquid-liquid microextraction and europium-sensitized luminescence

    Science.gov (United States)

    Oxytetracycline (OTC) residue in catfish muscle was screened by dispersive liquid-liquid microextraction (DLLME) and europium-sensitized luminescence (ESL). After extraction in EDTA, HCl, and acetonitrile, cleanup was carried out by DLLME, and ESL was measured at microgram = 385 nm and wavelength = ...

  10. Impact analysis of spent fuel dry casks under accidental drop scenarios

    International Nuclear Information System (INIS)

    Braverman, J.I.; Morante, R.J.; Xu, J.; Hofmayer, C.H.; Shaukat, S.K.

    2003-01-01

    A series of analyses were performed to assess the structural response of spent nuclear fuel dry casks subjected to various handling and on-site transfer events. The results of these analyses are being used by the Nuclear Regulatory Commission (NRC) to perform a probabilistic risk assessment (PRA). Although the PRA study is being performed for a specific nuclear plant, the PRA study is also intended to provide a framework for a general methodology that could also be applied to other dry cask systems at other nuclear plants. The dry cask system consists of a transfer cask, used for handling and moving the multi-purpose canister (MPC) that contains the fuel, and a storage cask, used to store the MPC and fuel on a concrete pad at the site. This paper describes the analyses of the casks for two loading events. The first loading consists of dropping the transfer cask while it is lowered by a crane to a concrete floor at ground elevation. The second loading consists of dropping the storage cask while it is being transferred to the concrete storage pad outdoors. Three dimensional finite element models of the transfer cask and storage cask, containing the MPC and fuel, were utilized to perform the drop analyses. These models were combined with finite element models of the target structures being impacted. The transfer cask drop analyses considered various drop heights for the cask impacting the reinforced concrete floor at ground level. The finite element model of the target included a section of the concrete floor and concrete wall supporting the floor. The storage cask drop analyses evaluated a 30.5 cm (12 in.) drop of the cask impacting three different surfaces: reinforced concrete, asphalt, and gravel. (author)

  11. Magnetically focused liquid drop radiator

    Science.gov (United States)

    Botts, Thomas E.; Powell, James R.; Lenard, Roger

    1986-01-01

    A magnetically focused liquid drop radiator for application in rejecting rgy from a spacecraft, characterized by a magnetizable liquid or slurry disposed in operative relationship within the liquid droplet generator and its fluid delivery system, in combination with magnetic means disposed in operative relationship around a liquid droplet collector of the LDR. The magnetic means are effective to focus streams of droplets directed from the generator toward the collector, thereby to assure that essentially all of the droplets are directed into the collector, even though some of the streams may be misdirected as they leave the generator. The magnetic focusing means is also effective to suppress splashing of liquid when the droplets impinge on the collector.

  12. Effect of non-uniform Hall parameter on the electrode voltage drop in Faraday-type combustion MHD generators

    International Nuclear Information System (INIS)

    Gupta, G.P.; Rohatgi, V.K.

    1982-01-01

    Following a simplified approach, an expression is derived for the gas-dynamic voltage drop in a finitely segmented Faraday-type combustion MHD generator, taking into account the non-uniform Hall parameter across the channel. Combining the electrical sheath voltage drop, discussed briefly, with the gas-dynamic voltage drop, the effect of a non-uniform Hall parameter on the electrode voltage drop is studied using the theoretical and experimental input parameters of the Indian MHD channel test. The condition for the validity of the usual assumption of uniform Hall parameter across the channel is pointed out. Analysis of the measured electrode voltage drop predicts the real gas conductivity in the core to be in the range of 60 to 75 per cent of the theoretically calculated core conductivity. (author)

  13. Measurement and characterization of lift forces on drops and bubbles in microchannels

    Science.gov (United States)

    Stan, Claudiu; Guglielmini, Laura; Ellerbee, Audrey; Caviezel, Daniel; Whitesides, George; Stone, Howard

    2013-11-01

    The transverse motion of drops and bubbles within liquids flowing in pipes and channels is determined by the combination of several types of hydrodynamic lift forces with external forces. In microfluidic channels, lift forces have been used to position and sort particles with high efficiency and high accuracy. We measured lift forces on drops and bubbles and discriminated between different lift mechanisms under conditions characterized by low particle capillary numbers (0.0003 bubbles. We will present new experimental data that supports a dynamic interfacial mechanism for the second type of lift force, and discuss possible avenues for creating an analytical model for it.

  14. Single-trial lie detection using a combined fNIRS-polygraph system

    Science.gov (United States)

    Bhutta, M. Raheel; Hong, Melissa J.; Kim, Yun-Hee; Hong, Keum-Shik

    2015-01-01

    Deception is a human behavior that many people experience in daily life. It involves complex neuronal activities in addition to several physiological changes in the body. A polygraph, which can measure some of the physiological responses from the body, has been widely employed in lie-detection. Many researchers, however, believe that lie detection can become more precise if the neuronal changes that occur in the process of deception can be isolated and measured. In this study, we combine both measures (i.e., physiological and neuronal changes) for enhanced lie-detection. Specifically, to investigate the deception-related hemodynamic response, functional near-infrared spectroscopy (fNIRS) is applied at the prefrontal cortex besides a commercially available polygraph system. A mock crime scenario with a single-trial stimulus is set up as a deception protocol. The acquired data are classified into “true” and “lie” classes based on the fNIRS-based hemoglobin-concentration changes and polygraph-based physiological signal changes. Linear discriminant analysis is utilized as a classifier. The results indicate that the combined fNIRS-polygraph system delivers much higher classification accuracy than that of a singular system. This study demonstrates a plausible solution toward single-trial lie-detection by combining fNIRS and the polygraph. PMID:26082733

  15. Single-trial lie detection using a combined fNIRS-polygraph system

    Directory of Open Access Journals (Sweden)

    M. Raheel eBhutta

    2015-06-01

    Full Text Available Deception is a human behavior that many people experience in daily life. It involves complex neuronal activities in addition to several physiological changes in the body. A polygraph, which can measure some of the physiological responses from the body, has been widely employed in lie-detection. Many researchers, however, believe that lie detection can become more precise if the neuronal changes that occur in the process of deception can be isolated and measured. In this study, we combine both measures (i.e., physiological and neuronal changes for enhanced lie-detection. Specifically, to investigate the deception-related hemodynamic response, functional near-infrared spectroscopy (fNIRS is applied at the prefrontal cortex besides a commercially available polygraph system. A mock crime scenario with a single-trial stimulus is set up as a deception protocol. The acquired data are classified into true and lie classes based on the fNIRS-based hemoglobin-concentration changes and polygraph-based physiological signal changes. Linear discriminant analysis is utilized as a classifier. The results indicate that the combined fNIRS-polygraph system delivers much higher classification accuracy than that of a singular system. This study demonstrates a plausible solution toward single-trial lie-detection by combining fNIRS and the polygraph.

  16. Chromatographic analysis of methylglyoxal and other α-dicarbonyls using gas-diffusion microextraction.

    Science.gov (United States)

    Santos, Christiane M; Valente, Inês M; Gonçalves, Luís M; Rodrigues, José A

    2013-12-07

    Many α-dicarbonyl compounds such as methylglyoxal, diacetyl and pentane-2,3-dione are important quality markers of processed foods. They are produced by enzymatic and chemical processes, the Maillard reaction is the most known chemical route for α-dicarbonyl formation. In the case of methylglyoxal, there are obstacles to be overcome when analysing this compound due to its high reactivity, low volatility and low concentration. The use of extraction techniques based on the volatilization of methylglyoxal (like solid-phase microextraction) showed to be ineffective for the methylglyoxal extraction from aqueous solutions. Therefore, derivatization is typically applied to increase analyte's volatility. In this work a new methodology for the extraction and analysis of methylglyoxal and also diacetyl and pentane-2,3-dione from selected food matrices is presented. It is based on a gas-diffusion microextraction step followed by high performance liquid chromatographic analysis. It was successfully applied to port wines, black tea and soy sauce. Methylglyoxal, diacetyl and pentane-2,3-dione were quantified in the following concentration ranges: 0.24-1.74 mg L(-1), 0.1-1.85 mg L(-1) and 0.023-0.15 mg L(-1), respectively. The main advantages over existing methodologies are its simplicity in terms of sample handling, not requiring any chemical modification of the α-dicarbonyls prior to the extraction, low reagent consumption and short time of analysis.

  17. Measurement of subcooled boiling pressure drop and local heat transfer coefficient in horizontal tube under LPLF conditions

    International Nuclear Information System (INIS)

    Baburajan, P.K.; Bisht, G.S.; Gupta, S.K.; Prabhu, S.V.

    2013-01-01

    Highlights: ► Measured subcooled boiling pressure drop and local heat transfer coefficient in horizontal tubes. ► Infra-red thermal imaging is used for wall temperature measurement. ► Developed correlations for pressure drop and local heat transfer coefficient. -- Abstract: Horizontal flow is commonly encountered in boiler tubes, refrigerating equipments and nuclear reactor fuel channels of pressurized heavy water reactors (PHWR). Study of horizontal flow under low pressure and low flow (LPLF) conditions is important in understanding the nuclear core behavior during situations like LOCA (loss of coolant accidents). In the present work, local heat transfer coefficient and pressure drop are measured in a horizontal tube under LPLF conditions of subcooled boiling. Geometrical parameters covered in this study are diameter (5.5 mm, 7.5 mm and 9.5 mm) and length (550 mm, 750 mm and 1000 mm). The operating parameters varied are mass flux (450–935 kg/m 2 s) and inlet subcooling (29 °C, 50 °C and 70 °C). Infra-red thermography is used for the measurement of local wall temperature to estimate the heat transfer coefficient in single phase and two phase flows with water as the working medium at atmospheric pressure. Correlation for single phase diabatic pressure drop ratio (diabatic to adiabatic) as a function of viscosity ratio (wall temperature to fluid temperature) is presented. Correlation for pressure drop under subcooled boiling conditions as a function of Boiling number (Bo) and Jakob number (Ja) is obtained. Correlation for single phase heat transfer coefficient in the thermal developing region is presented as a function of Reynolds number (Re), Prandtl number (Pr) and z/d (ratio of axial length of the test section to diameter). Correlation for two phase heat transfer coefficient under subcooled boiling condition is developed as a function of boiling number (Bo), Jakob number (Ja) and Prandtl number (Pr)

  18. Turbulence, bubbles and drops

    NARCIS (Netherlands)

    van der Veen, Roeland

    2016-01-01

    In this thesis, several questions related to drop impact and Taylor-Couette turbulence are answered. The deformation of a drop just before impact can cause a bubble to be entrapped. For many applications, such as inkjet printing, it is crucial to control the size of this entrapped bubble. To study

  19. Optimization of the solid-phase microextraction method in the determination of Ixodes ricinus (L.) volatiles

    Czech Academy of Sciences Publication Activity Database

    Zahradníčková, Helena; Bouman, Edwin Arien Poul

    2006-01-01

    Roč. 29, č. 2 (2006), s. 236-241 ISSN 1615-9306 R&D Projects: GA ČR(CZ) GA206/04/0751 Institutional research plan: CEZ:AV0Z50070508; CEZ:AV0Z60220518 Keywords : GC/MS * Ixodes ricinus * solid-phase microextraction Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.535, year: 2006

  20. Baseline toxicity of a chlorobenzene mixture and total body residues measured and estimated with solid-phase microextraction

    NARCIS (Netherlands)

    Leslie, H.A.; Hermens, J.L.; Kraak, M.H.S.

    2004-01-01

    Body residues of compounds with a narcotic mode of action that exceed critical levels result in baseline toxicity in organisms. Previous studies have shown that internal concentrations in organisms also can be estimated by way of passive sampling. In this experiment, solid-phase microextraction

  1. Bio-dispersive liquid liquid microextraction based on nano rhaminolipid aggregates combined with magnetic solid phase extraction using Fe3O4@PPy magnetic nanoparticles for the determination of methamphetamine in human urine.

    Science.gov (United States)

    Haeri, Seyed Ammar; Abbasi, Shahryar; Sajjadifar, Sami

    2017-09-15

    In the present investigation, extraction and preconcentration of methamphetamine in human urine samples was carried out using a novel bio-dispersive liquid liquid microextraction (Bio-DLLME) technique coupled with magnetic solid phase extraction (MSPE). Bio-DLLME is a kind of microextraction technique based nano-materials which have potential capabilities in many application fields. Bio-DLLME is based on the use of a binary part system consisting of methanol and nano rhaminolipid biosurfactant. Use of this binary mixture is ecologically accepted due to their specificity, biocompatibility and biodegradable nature. The potential of nano rhaminolipid biosurfactant as a biological agent in the extraction of organic compounds has been investigated in recent years. They are able to partition at the oil/water interfaces and reduce the interfacial tension in order to increase solubility of hydrocarbons. The properties of the prepared Fe 3 O 4 @PPy magnetic nanoparticles were characterized using Fourier transform infrared spectroscopy and X-ray diffraction methods The influences of the experimental parameters on the quantitative recovery of analyte were investigated. Under optimized conditions, the enrichment factor was 310, the calibration graph was linear in the methamphetamine concentration range from 1 to 60μgL -1 , with a correlation coefficient of 0.9998. The relative standard deviations for six replicate measurements was 5.2%. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Room temperature ionic liquids enhanced the speciation of Cr(VI) and Cr(III) by hollow fiber liquid phase microextraction combined with flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Chujie, E-mail: cjzeng@126.com [Department of Chemistry and Material, Yulin Normal College, Yulin, Guangxi 537000 (China); Lin, Yao; Zhou, Neng; Zheng, Jiaoting; Zhang, Wei [Department of Chemistry and Material, Yulin Normal College, Yulin, Guangxi 537000 (China)

    2012-10-30

    Highlights: Black-Right-Pointing-Pointer First reported enhancement effect of RTILs in HF-LPME for the speciation of chromium. Black-Right-Pointing-Pointer The addition of RTILs led to 3.5 times improvement of the sensitivity of Cr(VI). Black-Right-Pointing-Pointer The proposed method is a simplicity, sensitivity, low cost, green method. - Abstract: A new method for the speciation of Cr(VI) and Cr(III) based on enhancement effect of room temperature ionic liquids (RTILs) for hollow fiber liquid phase microextraction (HF-LPME) combined with flame atomic absorption spectrometry (FAAS) was developed. Room temperature ionic liquids (RTILs) and diethyldithiocarbamate (DDTC) were used enhancement reagents and chelating reagent, respectively. The addition of room temperature ionic liquids led to 3.5 times improvement in the determination of Cr(VI). In this method, Cr(VI) reacts with DDTC yielding a hydrophobic complex, which is subsequently extracted into the lumen of hollow fiber, whereas Cr(III) is remained in aqueous solutions. The extraction organic phase was injected into FAAS for the determination of Cr(VI). Total Cr concentration was determined after oxidizing Cr(III) to Cr(VI) in the presence of KMnO{sub 4} and using the extraction procedure mentioned above. Cr(III) was calculated by subtracting of Cr(VI) from the total Cr. Under optimized conditions, a detection limit of 0.7 ng mL{sup -1} and an enrichment factor of 175 were achieved. The relative standard deviation (RSD) was 4.9% for Cr(VI) (40 ng mL{sup -1}, n = 5). The proposed method was successfully applied to the speciation of chromium in natural water samples with satisfactory results.

  3. Room temperature ionic liquids enhanced the speciation of Cr(VI) and Cr(III) by hollow fiber liquid phase microextraction combined with flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Zeng, Chujie; Lin, Yao; Zhou, Neng; Zheng, Jiaoting; Zhang, Wei

    2012-01-01

    Highlights: ► First reported enhancement effect of RTILs in HF-LPME for the speciation of chromium. ► The addition of RTILs led to 3.5 times improvement of the sensitivity of Cr(VI). ► The proposed method is a simplicity, sensitivity, low cost, green method. - Abstract: A new method for the speciation of Cr(VI) and Cr(III) based on enhancement effect of room temperature ionic liquids (RTILs) for hollow fiber liquid phase microextraction (HF-LPME) combined with flame atomic absorption spectrometry (FAAS) was developed. Room temperature ionic liquids (RTILs) and diethyldithiocarbamate (DDTC) were used enhancement reagents and chelating reagent, respectively. The addition of room temperature ionic liquids led to 3.5 times improvement in the determination of Cr(VI). In this method, Cr(VI) reacts with DDTC yielding a hydrophobic complex, which is subsequently extracted into the lumen of hollow fiber, whereas Cr(III) is remained in aqueous solutions. The extraction organic phase was injected into FAAS for the determination of Cr(VI). Total Cr concentration was determined after oxidizing Cr(III) to Cr(VI) in the presence of KMnO 4 and using the extraction procedure mentioned above. Cr(III) was calculated by subtracting of Cr(VI) from the total Cr. Under optimized conditions, a detection limit of 0.7 ng mL −1 and an enrichment factor of 175 were achieved. The relative standard deviation (RSD) was 4.9% for Cr(VI) (40 ng mL −1 , n = 5). The proposed method was successfully applied to the speciation of chromium in natural water samples with satisfactory results.

  4. A solid-phase microextraction-gas chromatographic approach combined with triple quadrupole mass spectrometry for the assay of carbamate pesticides in water samples.

    Science.gov (United States)

    Cavaliere, Brunella; Monteleone, Marcello; Naccarato, Attilio; Sindona, Giovanni; Tagarelli, Antonio

    2012-09-28

    A simple and sensitive method was developed for the quantification of five carbamate pesticides in water samples using solid phase microextraction (SPME) combined with gas chromatography-triple quadrupole mass spectrometry (GC-QqQ-MS). The performance of five SPME fibers was tested in univariate mode whereas the other variables affecting the efficiency of SPME analysis were optimized by the multivariate approach of design of experiment (DoE) and, in particular, a central composite design (CCD) was applied. The optimum working conditions in terms of response values were achieved by performing analysis with polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber in immersion mode for 45min at room temperature with addition of NaCl (10%). The multivariate chemometric approach was also used to explore the chromatographic behavior of the carbamates and to evaluate the importance of each variable investigated. An overall appraisement of results shows that the factor which gave a statistically significant effect on the response was only the injection temperature. Identification and quantification of carbamates was performed by using a gas chromatography-triple quadrupole mass spectrometry (GC-QqQ-MS) system in multiple reaction monitoring (MRM) acquisition. Since the choice of internal standard represented a crucial step in the development of method to achieve good reproducibility and robustness for the entire analytical protocol, three compounds (2,3,5-trimethacarb, 4-bromo-3,5-dimethylphenyl-n-methylcarbamate (BDMC) and carbaryl-d7) were evaluated as internal standards. Both precision and accuracy of the proposed protocol tested at concentration of 0.08, 5 and 3 μg l⁻¹ offered values ranging from 70.8% and 115.7% (except for carbaryl at 3 μg l⁻¹) and from 1.0% and 9.0% for accuracy and precision, respectively. Moreover, LOD and LOQ values ranging from 0.04 to 1.7 ng l⁻¹ and from 0.64 to 2.9 ng l⁻¹, respectively, can be considered very satisfactory. Copyright

  5. Analysis of Trace Pharmaceuticals and Related Compounds in Municipal Wastewaters by Preconcentration, Chromatography, Derivatization, and Separation Methods

    Directory of Open Access Journals (Sweden)

    Petra Camilla Lindholm

    2014-05-01

    Full Text Available A significant portion of pharmaceuticals and other organic chemicals consumed by people and animals are released into municipal wastewater treatment plants. Most of them are degraded during the wastewater treatment processes, but some of them degrade only partially and may be widely transported and dispersed into the aquatic environment. This is why efficient and fast analytical methods are needed for detection of organic compounds in wastewaters at trace levels. Because wastewaters often consist of complex matrices and high-molecular mass materials, e.g., lignocellulosic biomass, which may bring challenges to the sample preparation procedures, efficient pre-concentration methods such as solid phase extraction (SPE solid phase microextraction (SPME, or single drop microextraction (SDME are needed. The most common analysis methods are gas chromatography (GC and liquid chromatography (LC coupled with tandem mass spectrometry (MS/MS. The aim of this review is to give an overview of chromatographic and spectroscopic methods when characterizing low- and medium-molecular weight organic pollutants, mainly focusing on pharmaceuticals, biocides, and personal care products in environmental matrices.

  6. Axisymmetric Liquid Hanging Drops

    Science.gov (United States)

    Meister, Erich C.; Latychevskaia, Tatiana Yu

    2006-01-01

    The geometry of drops hanging on a circular capillary can be determined by numerically solving a dimensionless differential equation that is independent on any material properties, which enables one to follow the change of the height, surface area, and contact angle of drops hanging on a particular capillary. The results show that the application…

  7. Ionic liquid ultrasound assisted dispersive liquid-liquid microextraction method for preconcentration of trace amounts of rhodium prior to flame atomic absorption spectrometry determination

    Energy Technology Data Exchange (ETDEWEB)

    Molaakbari, Elaheh [Chemistry Department, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Young Research Society, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Mostafavi, Ali, E-mail: mostafavi.ali@gmail.com [Chemistry Department, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Afzali, Daryoush [Environment and Nanochemistry Department, Research Institute of Environmental Science, International Center for Science, High Technology and Environmental Science, Kerman (Iran, Islamic Republic of); Mineral Industries Research Center, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of)

    2011-01-30

    In this article, we consider ionic liquid based ultrasound-assisted dispersive liquid-liquid microextraction of trace amounts of rhodium from aqueous samples and show that this is a fast and reliable sample pre-treatment for the determination of rhodium ions by flame atomic absorption spectrometry. The Rh(III) was transferred into its complex with 2-(5-bromo-2-pyridylazo)-5-diethylamino phenol as a chelating agent, and an ultrasonic bath with the ionic liquid, 1-octyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide at room temperature was used to extract the analyte. The centrifuged rhodium complex was then enriched in the form of ionic liquid droplets and prior to its analysis by flame atomic absorption spectrometry, 300 {mu}L ethanol was added to the ionic liquid-rich phase. Finally, the influence of various parameters on the recovery of Rh(III) was optimized. Under optimum conditions, the calibration graph was linear in the range of 4.0-500.0 ng mL{sup -1}, the detection limit was 0.37 ng mL{sup -1} (3S{sub b}/m, n = 7) and the relative standard deviation was {+-}1.63% (n = 7, C = 200 ng mL{sup -1}). The results show that ionic liquid based ultrasound assisted dispersive liquid-liquid microextraction, combined with flame atomic absorption spectrometry, is a rapid, simple, sensitive and efficient analytical method for the separation and determination of trace amounts of Rh(III) ions with minimum organic solvent consumption.

  8. Insights from the pollination drop proteome and the ovule transcriptome of Cephalotaxus at the time of pollination drop production.

    Science.gov (United States)

    Pirone-Davies, Cary; Prior, Natalie; von Aderkas, Patrick; Smith, Derek; Hardie, Darryl; Friedman, William E; Mathews, Sarah

    2016-05-01

    Many gymnosperms produce an ovular secretion, the pollination drop, during reproduction. The drops serve as a landing site for pollen, but also contain a suite of ions and organic compounds, including proteins, that suggests diverse roles for the drop during pollination. Proteins in the drops of species of Chamaecyparis, Juniperus, Taxus, Pseudotsuga, Ephedra and Welwitschia are thought to function in the conversion of sugars, defence against pathogens, and pollen growth and development. To better understand gymnosperm pollination biology, the pollination drop proteomes of pollination drops from two species of Cephalotaxus have been characterized and an ovular transcriptome for C. sinensis has been assembled. Mass spectrometry was used to identify proteins in the pollination drops of Cephalotaxus sinensis and C. koreana RNA-sequencing (RNA-Seq) was employed to assemble a transcriptome and identify transcripts present in the ovules of C. sinensis at the time of pollination drop production. About 30 proteins were detected in the pollination drops of both species. Many of these have been detected in the drops of other gymnosperms and probably function in defence, polysaccharide metabolism and pollen tube growth. Other proteins appear to be unique to Cephalotaxus, and their putative functions include starch and callose degradation, among others. Together, the proteins appear either to have been secreted into the drop or to occur there due to breakdown of ovular cells during drop production. Ovular transcripts represent a wide range of gene ontology categories, and some may be involved in drop formation, ovule development and pollen-ovule interactions. The proteome of Cephalotaxus pollination drops shares a number of components with those of other conifers and gnetophytes, including proteins for defence such as chitinases and for carbohydrate modification such as β-galactosidase. Proteins likely to be of intracellular origin, however, form a larger component of drops

  9. Ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometric for selenium speciation in foods and beverages.

    Science.gov (United States)

    Tuzen, Mustafa; Pekiner, Ozlem Zeynep

    2015-12-01

    A rapid and environmentally friendly ultrasound assisted ionic liquid dispersive liquid liquid microextraction (USA-IL-DLLME) was developed for the speciation of inorganic selenium in beverages and total selenium in food samples by using graphite furnace atomic absorption spectrometry. Some analytical parameters including pH, amount of complexing agent, extraction time, volume of ionic liquid, sample volume, etc. were optimized. Matrix effects were also investigated. Enhancement factor (EF) and limit of detection (LOD) for Se(IV) were found to be 150 and 12 ng L(-1), respectively. The relative standard deviation (RSD) was found 4.2%. The accuracy of the method was confirmed with analysis of LGC 6010 Hard drinking water and NIST SRM 1573a Tomato leaves standard reference materials. Optimized method was applied to ice tea, soda and mineral water for the speciation of Se(IV) and Se(VI) and some food samples including beer, cow's milk, red wine, mixed fruit juice, date, apple, orange, grapefruit, egg and honey for the determination of total selenium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Deltamethrin Binding to Triatoma infestans (Hemiptera: Reduviidae) Lipoproteins. Analysis by Solvent Bar Microextraction Coupled to Gas Chromatography.

    Science.gov (United States)

    Dulbecco, A B; Mijailovsky, S J; Girotti, J R; Juárez, M P

    2015-11-01

    The binding of deltamethrin (DLM) to the hemipteran Triatoma infestans (Klug) hemolymph lipoproteins was evaluated in vitro. After DLM incubation with the insect hemolymph, lipoproteins were fractioned by ultracentrifugation. DLM binding was analyzed by a microextractive technique-solvent bar microextraction-a solventless methodology to extract DLM from each lipoprotein fraction. This is a novel use of the technique applied to extract an insecticide from an insect fluid. Capillary gas chromatography with microelectron capture detection was used to detect DLM bound by the T. infestans hemolymph lipoproteins and to identify the preferred DLM carrier. We show that Lp and VHDLp I lipoproteins are mainly responsible for DLM transport in T. infestans, both in DLM-resistant and DLM-susceptible bugs. Our results also indicate that DLM amounts transported are not related to DLM susceptibility. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. CANFLEX fuel bundle junction pressure drop

    International Nuclear Information System (INIS)

    Chung, H. J.; Chung, C. H.; Jun, J. S.; Hong, S. D.; Chang, S. K.; Kim, B. D.

    1996-11-01

    This report describes the junction pressure drop test results which are to used to determine the alignment angle between bundles to achieve the most probable fuel string pressure drop for randomly aligned bundles for use in the fuel string total pressure drop test. (author). 4 tabs., 17 figs

  12. CANFLEX fuel bundle junction pressure drop

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H. J.; Chung, C. H.; Jun, J. S.; Hong, S. D.; Chang, S. K.; Kim, B. D.

    1996-11-01

    This report describes the junction pressure drop test results which are to used to determine the alignment angle between bundles to achieve the most probable fuel string pressure drop for randomly aligned bundles for use in the fuel string total pressure drop test. (author). 4 tabs., 17 figs.

  13. 49 CFR 178.603 - Drop test.

    Science.gov (United States)

    2010-10-01

    ... used for the hydrostatic pressure or stacking test. Exceptions for the number of steel and aluminum..., non-resilient, flat and horizontal surface. (e) Drop height. Drop heights, measured as the vertical... than flat drops, the center of gravity of the test packaging must be vertically over the point of...

  14. Analysis of Piroxicam in Pharmaceutical Formulation and Human Urine by Dispersive Liquid–Liquid Microextraction Combined with Spectrophotometry

    Directory of Open Access Journals (Sweden)

    Nakisa Seyyedeh Tutunchi

    2013-02-01

    Full Text Available Purpose: Piroxicam, is non–steroidal anti–inflammatory and analgesic agent, which is widely used in the treatment of patients with rheumatologic disorders. A new analytical approach based on the dispersive liquid–liquid microextraction (DLLME has been developed for the extraction and determination of PX in pharmaceutical preparation and human urine. Methods: From the PX standard solution or solutions prepared from real samples, aliquot volumes were pipetted into centrifuge tubes and mixed with acetate buffer at pH 3.0 and NaCl solution. The contents were subjected to the DLLME, so 700 μL of methanol containing 70 μL of chloroform was injected rapidly into a sample solution. A cloudy solution was rapidly produced and the PX extracted into dispersed fine droplets. The mixture was centrifuged, thus these fine droplets of chloroform were settled. The supernatant aqueous phase was readily decanted, then the remained organic phase was diluted with ethanol and the absorbance measured at 355 ± 3 nm against a reagent blank. Results: The main factors affecting the extraction efficiency such as pH, extraction and disperser solvent types and etc. were studied and optimized systematically. Under optimized conditions, the calibration graphs were linear over the range of 0.2 to 4.8 μg/mL. The limit of detection and relative standard deviation were found to be 0.058 μg/mL and 2.83%, respectively. Relative recoveries in the spiked samples ranged from 97 to 110%. Conclusion: Using the developed method PX can be analyzed in pharmaceutical formulation and human urine sample in a simpler, cheaper and more rapid manner.

  15. Rapid in situ growth of oriented titanium-nickel oxide composite nanotubes arrays coated on a nitinol wire as a solid-phase microextraction fiber coupled to HPLC-UV.

    Science.gov (United States)

    Zhen, Qi; Zhang, Min; Song, Wenlan; Wang, Huiju; Wang, Xuemei; Du, Xinzhen

    2016-10-01

    An oriented titanium-nickel oxide composite nanotubes coating was in situ grown on a nitinol wire by direct electrochemical anodization in ethylene glycol with ammonium fluoride and water for the first time. The morphology and composition of the resulting coating showed that the anodized nitinol wire provided a titania-rich coating. The titanium-nickel oxide composite nanotubes coated fiber was used for solid-phase microextraction of different aromatic compounds coupled to high-performance liquid chromatography with UV detection. The titanium-nickel oxide composite nanotubes coating exhibited high extraction capability, good selectivity, and rapid mass transfer for weakly polar UV filters. Thereafter the important parameters affecting extraction efficiency were investigated for solid-phase microextraction of UV filters. Under the optimized conditions, the calibration curves were linear in the range of 0.1-300 μg/L for target UV filters with limits of detection of 0.019-0.082 μg/L. The intraday and interday precision of the proposed method with the single fiber were 5.3-7.2 and 5.9-7.9%, respectively, and the fiber-to-fiber reproducibility ranged from 6.3 to 8.9% for four fibers fabricated in different batches. Finally, its applicability was evaluated by the extraction and determination of target UV filters in environmental water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Liquid-gas mass transfer at drop structures

    DEFF Research Database (Denmark)

    Matias, Natércia; Nielsen, Asbjørn Haaning; Vollertsen, Jes

    2017-01-01

    -water mass transfer, little is known about hydrogen sulfide emission under highly turbulent conditions (e.g., drop structures, hydraulic jumps). In this study, experimental work was carried out to analyze the influence of characteristics of drops on reaeration. Physical models were built, mimicking typical...... sewer drop structures and allowing different types of drops, drop heights, tailwater depths and flow rates. In total, 125 tests were performed. Based on their results, empirical expressions translating the relationship between the mass transfer of oxygen and physical parameters of drop structures were...... established. Then, by applying the two-film theory with two-reference substances, the relation to hydrogen sulfide release was defined. The experiments confirmed that the choice of the type of drop structure is critical to determine the uptake/emission rates. By quantifying the air-water mass transfer rates...

  17. Nonlinear oscillations of inviscid free drops

    Science.gov (United States)

    Patzek, T. W.; Benner, R. E., Jr.; Basaran, O. A.; Scriven, L. E.

    1991-01-01

    The present analysis of free liquid drops' inviscid oscillations proceeds through solution of Bernoulli's equation to obtain the free surface shape and of Laplace's equation for the velocity potential field. Results thus obtained encompass drop-shape sequences, pressure distributions, particle paths, and the temporal evolution of kinetic and surface energies; accuracy is verified by the near-constant drop volume and total energy, as well as the diminutiveness of mass and momentum fluxes across drop surfaces. Further insight into the nature of oscillations is provided by Fourier power spectrum analyses of mode interactions and frequency shifts.

  18. Adding the ‘heart’ to hanging drop networks for microphysiological multi-tissue experiments†

    Science.gov (United States)

    Yazdi, Saeed Rismani; Shadmani, Amir; Bürgel, Sebastian C.; Misun, Patrick M.; Hierlemann, Andreas; Frey, Olivier

    2017-01-01

    Microfluidic hanging-drop networks enable culturing and analysis of 3D microtissue spheroids derived from different cell types under controlled perfusion and investigating inter-tissue communication in multi-tissue formats. In this paper we introduce a compact on-chip pumping approach for flow control in hanging-drop networks. The pump includes one pneumatic chamber located directly above one of the hanging drops and uses the surface tension at the liquid–air-interface for flow actuation. Control of the pneumatic protocol provides a wide range of unidirectional pulsatile and continuous flow profiles. With the proposed concept several independent hanging-drop networks can be operated in parallel with only one single pneumatic actuation line at high fidelity. Closed-loop medium circulation between different organ models for multi-tissue formats and multiple simultaneous assays in parallel are possible. Finally, we implemented a real-time feedback control-loop of the pump actuation based on the beating of a human iPS-derived cardiac microtissue cultured in the same system. This configuration allows for simulating physiological effects on the heart and their impact on flow circulation between the organ models on chip. PMID:26401602

  19. An analytical evaluation for the pressure drop characteristics of bottom nozzle flow holes

    International Nuclear Information System (INIS)

    Yang, S. G.; Kim, H. J.; Lim, H. T.; Park, E. J.; Jeon, K. L.

    2002-01-01

    An analytical evaluation for the bottom nozzle flow holes was performed to find a best design concept in terms of pressure drop. For this analysis, Computational Fluid Dynamics (CFD), FLUENT 5.5, code was selected as an analytical evaluation tool. The applicability of CFD code was verified by benchmarking study with Vibration Investigation of Small-scale Test Assemblies (VISTA) test data in several flow conditions and typical flow hole shape. From this verification, the analytical data were benchmarked roughly within 17% to the VISTA test data. And, overall trend under various flow conditions looked very similar between both cases. Based on the evaluated results using CFD code, it is concluded that the deburring and multiple chamfer hole features at leading edge are the excellent design concept to decrease pressure drop across bottom nozzle plate. The deburring and multiple chamfer hole features at leading edge on the bottom nozzle plate have 12% and 17% pressure drop benefit against a single chamfer hole feature on the bottom nozzle plate, respectively. These design features are meaningful and applicable as a low pressure drop design concept of bottom nozzle for Pressurized Water Reactor (PWR) fuel assembly

  20. Determination of parathion in biological fluids by means of direct Solid Phase Microextraction.

    OpenAIRE

    Gallardo, Eugenia; Barroso, Mário; Margalho, C.; Cruz, Angelines; Vieira, Duarte Nuno; López-Rivadulla, Manuel

    2010-01-01

    A new and simple procedure for the determination of parathion in human whole blood and urine using direct immersion (DI) solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS) is presented. This technique was developed using only 100 ìL of sample, and ethion was used as internal standard (IS). A 65-ìm Carbowax/divinylbenzene (CW/DVB) SPME fibre was selected for sampling, and the main parameters affecting the SPME process such as extraction ...

  1. Fully-automated in-syringe dispersive liquid-liquid microextraction for the determination of caffeine in coffee beverages.

    Science.gov (United States)

    Frizzarin, Rejane M; Maya, Fernando; Estela, José M; Cerdà, Víctor

    2016-12-01

    A novel fully-automated magnetic stirring-assisted lab-in-syringe analytical procedure has been developed for the fast and efficient dispersive liquid-liquid microextraction (DLLME) of caffeine in coffee beverages. The procedure is based on the microextraction of caffeine with a minute amount of dichloromethane, isolating caffeine from the sample matrix with no further sample pretreatment. Selection of the relevant extraction parameters such as the dispersive solvent, proportion of aqueous/organic phase, pH and flow rates have been carefully evaluated. Caffeine quantification was linear from 2 to 75mgL(-1), with detection and quantification limits of 0.46mgL(-1) and 1.54mgL(-1), respectively. A coefficient of variation (n=8; 5mgL(-1)) of a 2.1% and a sampling rate of 16h(-1), were obtained. The procedure was satisfactorily applied to the determination of caffeine in brewed, instant and decaf coffee samples, being the results for the sample analysis validated using high-performance liquid chromatography. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The Drop Tower Bremen -Experiment Operation

    Science.gov (United States)

    Könemann, Thorben; von Kampen, Peter; Rath, Hans J.

    The idea behind the drop tower facility of the Center of Applied Space Technology and Micro-gravity (ZARM) in Bremen is to provide an inimitable technical opportunity of a daily access to short-term weightlessness on earth. In this way ZARM`s european unique ground-based microgravity laboratory displays an excellent economic alternative for research in space-related conditions at low costs comparable to orbital platforms. Many national and international ex-perimentalists motivated by these prospects decide to benefit from the high-quality and easy accessible microgravity environment only provided by the Drop Tower Bremen. Corresponding experiments in reduced gravity could open new perspectives of investigation methods and give scientists an impressive potential for a future technology and multidisciplinary applications on different research fields like Fundamental Physics, Astrophysics, Fluid Dynamics, Combus-tion, Material Science, Chemistry and Biology. Generally, realizing microgravity experiments at ZARM`s drop tower facility meet new requirements of the experimental hardware and may lead to some technical constraints in the setups. In any case the ZARM Drop Tower Operation and Service Company (ZARM FAB mbH) maintaining the drop tower facility is prepared to as-sist experimentalists by offering own air-conditioned laboratories, clean rooms, workshops and consulting engineers, as well as scientific personal. Furthermore, ZARM`s on-site apartment can be used for accommodations during the experiment campaigns. In terms of approaching drop tower experimenting, consulting of experimentalists is mandatory to successfully accomplish the pursued drop or catapult capsule experiment. For this purpose there will be a lot of expertise and help given by ZARM FAB mbH in strong cooperation to-gether with the experimentalists. However, in comparison to standard laboratory setups the drop or catapult capsule setup seems to be completely different at first view. While defining a

  3. Pendent_Drop: An ImageJ Plugin to Measure the Surface Tension from an Image of a Pendent Drop

    Directory of Open Access Journals (Sweden)

    Adrian Daerr

    2016-01-01

    Full Text Available The pendent drop method for surface tension measurement consists in analysing the shape of an axisymmetric drop hanging from a capillary tube. This software is an add-on for the public domain image processing software ImageJ which matches a theoretical profile to the contour of a pendent drop, either interactively or by automatically minimising the mismatch. It provides an estimate of the surface tension, drop volume and surface area from the best matching parameters. It can be used in a headless setup. It is hosted on http://fiji.sc/List_of_update_sites with the source code on https://github.com/adaerr/pendent-drop

  4. Use of microextraction by packed sorbent directly coupled to an electron ionization single quadrupole mass spectrometer as an alternative for non-separative determinations.

    Science.gov (United States)

    Casas Ferreira, Ana María; Moreno Cordero, Bernardo; Pérez Pavón, José Luis

    2017-02-01

    Sometimes it is not necessary to separate the individual compounds of a sample to resolve an analytical problem, it is enough to obtain a signal profile of the sample formed by all the components integrating it. Within this strategy, electronic noses based on the direct coupling of a headspace sampler with a mass spectrometer (HS-MS) have been proposed. Nevertheless, this coupling is not suitable for the analysis of non-volatile compounds. In order to propose an alternative to HS-MS determinations for non-volatile compounds, here we present the first 'proof of concept' use of the direct coupling of microextraction by packed sorbents (MEPS) to a mass spectrometer device using an electron ionization (EI) and a single quadrupole as ionization source and analyzer, respectively. As target compounds, a set of analytes with different physic-chemical properties were evaluated (2-ethyl-1-hexanol, styrene, 2-heptanone, among others). The use of MEPS extraction present many advantages, such as it is fast, simple, easy to automate and requires small volumes of sample and organic solvents. Moreover, MEPS cartridges are re-usable as samples can be extracted more than 100 times using the same syringe. In order to introduce into the system all the elution volume from the MEPS extraction, a programmable temperature vaporizer (PTV) is proposed as the injector device. Results obtained with the proposed methodology (MEPS-PTV/MS) were compared with the ones obtained based on the separative scheme, i.e. using gas chromatography separation (MEPS-PTV-GC/MS), and both methods provided similar results. Limits of detection were found to be between 3.26 and 146.6μgL -1 in the non-separative scheme and between 0.02 and 1.72μgL -1 when the separative methodology was used. Repeatability and reproducibility were evaluated with values below 17% in all cases. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. A hanging drop culture method to study terminal erythroid differentiation.

    Science.gov (United States)

    Gutiérrez, Laura; Lindeboom, Fokke; Ferreira, Rita; Drissen, Roy; Grosveld, Frank; Whyatt, David; Philipsen, Sjaak

    2005-10-01

    To design a culture method allowing the quantitative and qualitative analysis of terminal erythroid differentiation. Primary erythroid progenitors derived either from mouse tissues or from human umbilical cord blood were differentiated using hanging drop cultures and compared to methylcellulose cultures. Cultured cells were analyzed by FACS to assess differentiation. We describe a practical culture method by adapting the previously described hanging drop culture system to conditions allowing terminal differentiation of primary erythroid progenitors. Using minimal volumes of media and small numbers of cells, we obtained quantitative terminal erythroid differentiation within two days of culture in the case of murine cells and 4 days in the case of human cells. The established methods for ex vivo culture of primary erythroid progenitors, such as methylcellulose-based burst-forming unit-erythroid (BFU-E) and colony-forming unit-erythroid (CFU-E) assays, allow the detection of committed erythroid progenitors but are of limited value to study terminal erythroid differentiation. We show that the application of hanging drop cultures is a practical alternative that, in combination with clonogenic assays, enables a comprehensive assessment of the behavior of primary erythroid cells ex vivo in the context of genetic and drug-induced perturbations.

  6. Multiple headspace-solid-phase microextraction: An application to quantification of mushroom volatiles

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Rosaria; Tedone, Laura; De Grazia, Selenia [Dipartimento Farmaco-chimico, University of Messina, viale Annunziata, 98168 Messina (Italy); Dugo, Paola [Dipartimento Farmaco-chimico, University of Messina, viale Annunziata, 98168 Messina (Italy); Centro Integrato di Ricerca (C.I.R.), Università Campus-Biomedico, Via Álvaro del Portillo, 21, 00128 Roma (Italy); Mondello, Luigi, E-mail: lmondello@unime.it [Dipartimento Farmaco-chimico, University of Messina, viale Annunziata, 98168 Messina (Italy); Centro Integrato di Ricerca (C.I.R.), Università Campus-Biomedico, Via Álvaro del Portillo, 21, 00128 Roma (Italy)

    2013-04-03

    Highlights: ► Multiple headspace extraction-solid phase microextraction (MHS-SPME) has been applied to the analysis of Agaricus bisporus. ► Mushroom flavor is characterized by the presence of compounds with a 8-carbon atoms skeleton. ► Formation of 8-carbon compounds involves a unique fungal biochemical pathway. ► The MHS-SPME allowed to determine quantitatively 5 target analytes of A. bisporus for the first time. -- Abstract: Multiple headspace-solid phase microextraction (MHS-SPME) followed by gas chromatography/mass spectrometry (GC–MS) and flame ionization detection (GC–FID) was applied to the identification and quantification of volatiles released by the mushroom Agaricus bisporus, also known as champignon. MHS-SPME allows to perform quantitative analysis of volatiles from solid matrices, free of matrix interferences. Samples analyzed were fresh mushrooms (chopped and homogenized) and mushroom-containing food dressings. 1-Octen-3-ol, 3-octanol, 3-octanone, 1-octen-3-one and benzaldehyde were common constituents of the samples analyzed. Method performance has been tested through the evaluation of limit of detection (LoD, range 0.033–0.078 ng), limit of quantification (LoQ, range 0.111–0.259 ng) and analyte recovery (92.3–108.5%). The results obtained showed quantitative differences among the samples, which can be attributed to critical factors, such as the degree of cell damage upon sample preparation, that are here discussed. Considerations on the mushrooms biochemistry and on the basic principles of MHS analysis are also presented.

  7. Multiple headspace-solid-phase microextraction: An application to quantification of mushroom volatiles

    International Nuclear Information System (INIS)

    Costa, Rosaria; Tedone, Laura; De Grazia, Selenia; Dugo, Paola; Mondello, Luigi

    2013-01-01

    Highlights: ► Multiple headspace extraction-solid phase microextraction (MHS-SPME) has been applied to the analysis of Agaricus bisporus. ► Mushroom flavor is characterized by the presence of compounds with a 8-carbon atoms skeleton. ► Formation of 8-carbon compounds involves a unique fungal biochemical pathway. ► The MHS-SPME allowed to determine quantitatively 5 target analytes of A. bisporus for the first time. -- Abstract: Multiple headspace-solid phase microextraction (MHS-SPME) followed by gas chromatography/mass spectrometry (GC–MS) and flame ionization detection (GC–FID) was applied to the identification and quantification of volatiles released by the mushroom Agaricus bisporus, also known as champignon. MHS-SPME allows to perform quantitative analysis of volatiles from solid matrices, free of matrix interferences. Samples analyzed were fresh mushrooms (chopped and homogenized) and mushroom-containing food dressings. 1-Octen-3-ol, 3-octanol, 3-octanone, 1-octen-3-one and benzaldehyde were common constituents of the samples analyzed. Method performance has been tested through the evaluation of limit of detection (LoD, range 0.033–0.078 ng), limit of quantification (LoQ, range 0.111–0.259 ng) and analyte recovery (92.3–108.5%). The results obtained showed quantitative differences among the samples, which can be attributed to critical factors, such as the degree of cell damage upon sample preparation, that are here discussed. Considerations on the mushrooms biochemistry and on the basic principles of MHS analysis are also presented

  8. Dispersive liquid-phase microextraction with solidification of floating organic droplet coupled with high-performance liquid chromatography for the determination of Sudan dyes in foodstuffs and water samples.

    Science.gov (United States)

    Chen, Bo; Huang, Yuming

    2014-06-25

    Dispersive liquid-phase microextraction with solidification of floating organic drop (SFO-DLPME) is one of the most interesting sample preparation techniques developed in recent years. In this paper, a new, rapid, and efficient SFO-DLPME coupled with high-performance liquid chromatography (HPLC) was established for the extraction and sensitive detection of banned Sudan dyes, namely, Sudan I, Sudan II, Sudan III, and Sudan IV, in foodstuff and water samples. Various factors, such as the type and volume of extractants and dispersants, pH and volume of sample solution, extraction time and temperature, ion strength, and humic acid concentration, were investigated and optimized to achieve optimal extraction of Sudan dyes in one single step. After optimization of extraction conditions using 1-dodecanol as an extractant and ethanol as a dispersant, the developed procedure was applied for extraction of the target Sudan dyes from 2 g of food samples and 10 mL of the spiked water samples. Under the optimized conditions, all Sudan dyes could be easily extracted by the proposed SFO-DLPME method. Limits of detection of the four Sudan dyes obtained were 0.10-0.20 ng g(-1) and 0.03 μg L(-1) when 2 g of foodstuff samples and 10 mL of water samples were adopted, respectively. The inter- and intraday reproducibilities were below 4.8% for analysis of Sudan dyes in foodstuffs. The method was satisfactorily used for the detection of Sudan dyes, and the recoveries of the target for the spiked foodstuff and water samples ranged from 92.6 to 106.6% and from 91.1 to 108.6%, respectively. These results indicated that the proposed method is simple, rapid, sensitive, and suitable for the pre-concentration and detection of the target dyes in foodstuff samples.

  9. Total Site Heat Integration Considering Pressure Drops

    Directory of Open Access Journals (Sweden)

    Kew Hong Chew

    2015-02-01

    Full Text Available Pressure drop is an important consideration in Total Site Heat Integration (TSHI. This is due to the typically large distances between the different plants and the flow across plant elevations and equipment, including heat exchangers. Failure to consider pressure drop during utility targeting and heat exchanger network (HEN synthesis may, at best, lead to optimistic energy targets, and at worst, an inoperable system if the pumps or compressors cannot overcome the actual pressure drop. Most studies have addressed the pressure drop factor in terms of pumping cost, forbidden matches or allowable pressure drop constraints in the optimisation of HEN. This study looks at the implication of pressure drop in the context of a Total Site. The graphical Pinch-based TSHI methodology is extended to consider the pressure drop factor during the minimum energy requirement (MER targeting stage. The improved methodology provides a more realistic estimation of the MER targets and valuable insights for the implementation of the TSHI design. In the case study, when pressure drop in the steam distribution networks is considered, the heating and cooling duties increase by 14.5% and 4.5%.

  10. The components of the adsorption potential drop at the Ga and In-Ga electrodes in three solvents: a calculation with allowance for hydrophily of the Ag(111) single crystal face

    International Nuclear Information System (INIS)

    Emets, V.V.; Damaskin, B.B.; Kazarinov, V.E.

    1996-01-01

    The components of adsorption potential drop on the Ga and In-Ga electrodes in water, DMPA and DSMO, taking into account hydrophily of Ag(111) single crystal face in the framework of the metal-solvent contact modified model, have been recalculated. The data obtained are compared with the previously acquired ones. It is pointed out that corrections for the components of adsorptional potential relating to account of Ag(111) face hydrophily are not negligible. 8 refs., 1 tab

  11. Drop size measurements in Venturi scrubbers

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Alonso, D.; Azzopardi, B.J. [Nottingham Univ. (United Kingdom). Dept. of Chemical Engineering; Goncalves, J.A.S.; Coury, J.R. [Universidade Federal de Sao Carlos (Brazil). Departamento de Engenharia Quimica

    2001-07-01

    Venturi scrubbers are high efficiency gas cleaners in which suspended particles are removed from gas streams by drops formed by liquid atomisation, usually in the Venturi throat. The size of the drops formed are of fundamental importance to the performance of the equipment, both in terms of pressure drop and dust removal efficiency. In this study, drop sizes in a cylindrical laboratory-scale Venturi scrubber were measured using a laser diffraction technique. Gas velocity and liquid to gas ratios varied from 50 to 90 m/s and 0.5 to 2.0 1/m{sup 3}, respectively. Water was injected using two different arrangements: either as jets in the throat or as a film just upstream of the convergence. Drop size measurements were performed at three positions in the case of jet injection: two located along the throat, and the last one at the end of the diffuser. The present data shows that the Sauter mean diameter of the spray can be well correlated by the equation of Boll et al. (J. Air Pollut. Control Assoc. 24 (1974) 932). Drop size distributions are satisfactorily represented by a Rosin-Rammler function. This paper also provides a simple method for calculating the parameters of the Rosin-Rammler function. As a result of this work, drop sizes in Venturi scrubbers can be estimated with much higher accuracy. (Author)

  12. Experimental Heat Transfer, pressure drop, and Flow Visualization of R-134a in Vertical Mini/Micro Tubes

    OpenAIRE

    Owhaib, Wahib

    2007-01-01

    For the application of minichannel heat exchangers, it is necessary to have accurate design tools for predicting heat transfer and pressure drop. Until recently, this type of heat exchangers was not well studied, and in the scientific literature there were large discrepancies between results reported by different investigators. The present thesis aims to add to the knowledge of the fundamentals of single- and two-phase flow heat transfer and pressure drop in narrow channels, thereby aiding in...

  13. Single-leg drop landing movement strategies 6 months following first-time acute lateral ankle sprain injury.

    Science.gov (United States)

    Doherty, C; Bleakley, C; Hertel, J; Caulfield, B; Ryan, J; Delahunt, E

    2015-12-01

    No research exists predicating a link between acute ankle sprain injury-affiliated movement patterns and those of chronic ankle instability (CAI) populations. The aim of the current study was to perform a biomechanical analysis of participants, 6 months after they sustained a first-time acute lateral ankle sprain (LAS) injury to establish this link. Fifty-seven participants with a 6-month history of first-time LAS and 20 noninjured participants completed a single-leg drop landing task on both limbs. Three-dimensional kinematic (angular displacement) and sagittal plane kinetic (moment of force) data were acquired for the joints of the lower extremity, from 200 ms pre-initial contact (IC) to 200 ms post-IC. Individual joint stiffnesses and the peak magnitude of the vertical component of the ground reaction force (GRF) were also computed. LAS participants displayed increases in hip flexion and ankle inversion on their injured limb (P < 0.05); this coincided with a reduction in the net flexion-extension moment at the hip joint, with an increase in its stiffness (P < 0.05). There was no difference in the magnitude of the peak vertical GRF for either limb compared with controls. These results demonstrate that altered movement strategies persist in participants, 6 months following acute LAS, which may precipitate the onset of CAI. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Applicability of solid-phase microextraction combined with gas chromatography atomic emission detection (GC-MIP AED) for the determination of butyltin compounds in sediment samples

    Energy Technology Data Exchange (ETDEWEB)

    Carpinteiro, J.; Rodriguez, I.; Cela, R. [Universidad de Santiago de Compostela, Departamento de Quimica Analitica, Nutricion y Bromatologia, Instituto de Investigacion y Analisis Alimentario, Santiago de Compostela 15782 (Spain)

    2004-11-01

    The performance of solid-phase microextraction (SPME) applied to the determination of butyltin compounds in sediment samples is systematically evaluated. Matrix effects and influence of blank signals on the detection limits of the method are studied in detail. The interval of linear response is also evaluated in order to assess the applicability of the method to sediments polluted with butyltin compounds over a large range of concentrations. Advantages and drawbacks of including an SPME step, instead of the classic liquid-liquid extraction of the derivatized analytes, in the determination of butyltin compounds in sediment samples are considered in terms of achieved detection limits and experimental effort. Analytes were extracted from the samples by sonication using glacial acetic acid. An aliquot of the centrifuged extract was placed on a vial where compounds were ethylated and concentrated on a PDMS fiber using the headspace mode. Determinations were carried out using GC-MIP AED. (orig.)

  15. Facile and sensitive determination of N-nitrosamines in food samples by high-performance liquid chromatography via combining fluorescent labeling with dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Lu, Shuaimin; Wu, Di; Li, Guoliang; Lv, Zhengxian; Gong, Peiwei; Xia, Lian; Sun, Zhiwei; Chen, Guang; Chen, Xuefeng; You, Jinmao; Wu, Yongning

    2017-11-01

    The intake of N-nitrosamines (NAs) from foodstuffs is considered to be an important influence factor for several cancers. But the rapid and sensitive screening of NAs remains a challenge in the field of food safety. Inspired by that, a sensitive and rapid method was demonstrated for determination of five NAs (Nitrosopyrrolidine, Nitrosodimethylamine, Nitrosodiethylamine, Nitrosodipropylamine and Nitrosodibutylamine) using dispersive liquid-liquid microextraction (DLLME) followed by high-performance liquid chromatography with fluorescence detection (HPLC-FLD). The NAs were firstly denitrosated and labeled by 2-(11H-benzo[a]carbazol-11-yl) ethyl carbonochloridate (BCEC-Cl) and finally enriched by DLLME. Furthermore, the main DLLME conditions were optimized systematically. Under the optimal conditions, satisfactory limits of detection (LODs) were obtained with a range of 0.01-0.07ngg -1 , which were significantly lower than the reported methods. The developed method showed many merits including rapidity, simplicity, high sensitivity and excellent selectivity, which shows a broad prospect in food safety analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Sepsis from dropped clips at laparoscopic cholecystectomy

    International Nuclear Information System (INIS)

    Hussain, Sarwat

    2001-01-01

    We report seven patients in whom five dropped surgical clips and two gallstones were visualized in the peritoneal cavity, on radiological studies. In two, subphrenic abscesses and empyemas developed as a result of dropped clips into the peritoneal cavity during or following laparoscopic cholecystectomy. In one of these two, a clip was removed surgically from the site of an abscess. In two other patients dropped gallstones, and in three, dropped clips led to no complications. These were seen incidentally on studies done for other indications. Abdominal abscess secondary to dropped gallstones is a well-recognized complication of laparoscopic cholecystectomy (LC). We conclude that even though dropped surgical clips usually do not cause problems, they should be considered as a risk additional to other well-known causes of post-LC abdominal sepsis

  17. Stress-induced insomnia treated with kava and valerian: singly and in combination.

    Science.gov (United States)

    Wheatley, David

    2001-06-01

    Kava and valerian are herbal remedies that are claimed to have anxiolytic and sedative properties respectively, without dependence potential or any appreciable side effects. In this pilot study, 24 patients suffering from stress-induced insomnia were treated for 6 weeks with kava (LI-150), 120 mg daily. This was followed by a 2-week 'wash-out' period off treatment, and then, five patients having dropped out, 19 received valerian (LI-156), 600 mg daily, for another 6 weeks. Then there was a further 2-week period off treatment, and a final 6 weeks of treatment of these 19 patients with the two compounds combined (kava + valerian). Stress was measured in three areas: social, personal and life events; insomnia in three areas also: time to fall asleep, hours slept and waking mood. Total stress severity was significantly relieved by both compounds individually (p effects on kava, 10 (53%) on valerian and 10 (53%) on the combination. The 'commonest' effect was vivid dreams with kava + valerian (4 cases (21%)) and with valerian alone (3 cases (16%)), followed by gastric discomfort and dizziness with kava (3 cases each (3 %)). These results are considered to be extremely promising but further studies may be required to determine the relative roles of the two compounds for such indications. Copyright 2001 John Wiley & Sons, Ltd.

  18. Determination of organoarsenicals in the environment by solid-phase microextraction-gas chromatography-mass spectrometry.

    Energy Technology Data Exchange (ETDEWEB)

    Szostek, B.; Aldstadt, J. H.; Environmental Research

    1998-05-22

    The development of a method for the analysis of organoarsenic compounds that combines dithiol derivatization with solid-phase microextraction (SPME) sample preparation and gas chromatography-mass spectrometry (GC-MS) is described. Optimization focused on a SPME-GC-MS procedure for determination of 2-chlorovinylarsonous acid (CVAA), the primary decomposition product of the chemical warfare agent known as Lewisite. Two other organoarsenic compounds of environmental interest, dimethylarsinic acid and phenylarsonic acid, were also studied. A series of dithiol compounds was examined for derivatization of the arsenicals, and the best results were obtained either with 1,3-propanedithiol or 1,2-ethanedithiol. The derivatization procedure, fiber type, and extraction time were optimized. For CVAA, calibration curves were linear over three orders of magnitude and limits-of-detection were <6x10{sup -9} M in solution, the latter a more than 400x improvement compared to conventional solvent extraction GC-MS methods. A precision of <10% R.S.D. was typical for the SPME-GC-MS procedure. The method was applied to a series of water samples and soil/sediment extracts, as well as to aged soil samples that had been contaminated with Lewisite.

  19. Fixed-dose combinations of drugs versus single-drug formulations for treating pulmonary tuberculosis

    Science.gov (United States)

    Gallardo, Carmen R; Rigau Comas, David; Valderrama Rodríguez, Angélica; Roqué i Figuls, Marta; Parker, Lucy Anne; Caylà, Joan; Bonfill Cosp, Xavier

    2016-01-01

    Background People who are newly diagnosed with pulmonary tuberculosis (TB) typically receive a standard first-line treatment regimen that consists of two months of isoniazid, rifampicin, pyrazinamide, and ethambutol followed by four months of isoniazid and rifampicin. Fixed-dose combinations (FDCs) of these drugs are widely recommended. Objectives To compare the efficacy, safety, and acceptability of anti-tuberculosis regimens given as fixed-dose combinations compared to single-drug formulations for treating people with newly diagnosed pulmonary tuberculosis. Search methods We searched the Cochrane Infectious Disease Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL, published in the Cochrane Library, Issue 11 2015); MEDLINE (1966 to 20 November 2015); EMBASE (1980 to 20 November 2015); LILACS (1982 to 20 November 2015); the metaRegister of Controlled Trials; and the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP), without language restrictions, up to 20 November 2015. Selection criteria Randomized controlled trials that compared the use of FDCs with single-drug formulations in adults (aged 15 years or more) newly diagnosed with pulmonary TB. Data collection and analysis Two review authors independently assessed studies for inclusion, and assessed the risk of bias and extracted data from the included trials. We used risk ratios (RRs) for dichotomous data and mean differences (MDs) for continuous data with 95% confidence intervals (CIs). We attempted to assess the effect of treatment for time-to-event measures with hazard ratios and their 95% CIs. We used the Cochrane 'Risk of bias' assessment tool to determine the risk of bias in included trials. We used the fixed-effect model when there was little heterogeneity and the random-effects model with moderate heterogeneity. We used an I² statistic value of 75% or greater to denote significant heterogeneity, in which case we did not perform a

  20. Combination of structured illumination and single molecule localization microscopy in one setup

    Science.gov (United States)

    Rossberger, Sabrina; Best, Gerrit; Baddeley, David; Heintzmann, Rainer; Birk, Udo; Dithmar, Stefan; Cremer, Christoph

    2013-09-01

    Understanding the positional and structural aspects of biological nanostructures simultaneously is as much a challenge as a desideratum. In recent years, highly accurate (20 nm) positional information of optically isolated targets down to the nanometer range has been obtained using single molecule localization microscopy (SMLM), while highly resolved (100 nm) spatial information has been achieved using structured illumination microscopy (SIM). In this paper, we present a high-resolution fluorescence microscope setup which combines the advantages of SMLM with SIM in order to provide high-precision localization and structural information in a single setup. Furthermore, the combination of the wide-field SIM image with the SMLM data allows us to identify artifacts produced during the visualization process of SMLM data, and potentially also during the reconstruction process of SIM images. We describe the SMLM-SIM combo and software, and apply the instrument in a first proof-of-principle to the same region of H3K293 cells to achieve SIM images with high structural resolution (in the 100 nm range) in overlay with the highly accurate position information of localized single fluorophores. Thus, with its robust control software, efficient switching between the SMLM and SIM mode, fully automated and user-friendly acquisition and evaluation software, the SMLM-SIM combo is superior over existing solutions.

  1. Micro-splashing by drop impacts

    KAUST Repository

    Thoroddsen, Sigurdur T; Takehara, Kohsei; Etoh, Takeharugoji

    2012-01-01

    We use ultra-high-speed video imaging to observe directly the earliest onset of prompt splashing when a drop impacts onto a smooth solid surface. We capture the start of the ejecta sheet travelling along the solid substrate and show how it breaks up immediately upon emergence from the underneath the drop. The resulting micro-droplets are much smaller and faster than previously reported and may have gone unobserved owing to their very small size and rapid ejection velocities, which approach 100 m s-1, for typical impact conditions of large rain drops. We propose a phenomenological mechanism which predicts the velocity and size distribution of the resulting microdroplets. We also observe azimuthal undulations which may help promote the earliest breakup of the ejecta. This instability occurs in the cusp in the free surface where the drop surface meets the radially ejected liquid sheet. © 2012 Cambridge University Press.

  2. Micro-splashing by drop impacts

    KAUST Repository

    Thoroddsen, Sigurdur T.

    2012-07-18

    We use ultra-high-speed video imaging to observe directly the earliest onset of prompt splashing when a drop impacts onto a smooth solid surface. We capture the start of the ejecta sheet travelling along the solid substrate and show how it breaks up immediately upon emergence from the underneath the drop. The resulting micro-droplets are much smaller and faster than previously reported and may have gone unobserved owing to their very small size and rapid ejection velocities, which approach 100 m s-1, for typical impact conditions of large rain drops. We propose a phenomenological mechanism which predicts the velocity and size distribution of the resulting microdroplets. We also observe azimuthal undulations which may help promote the earliest breakup of the ejecta. This instability occurs in the cusp in the free surface where the drop surface meets the radially ejected liquid sheet. © 2012 Cambridge University Press.

  3. Pressure drop in ET-RR-1

    International Nuclear Information System (INIS)

    Khattab, M.; Mina, A.R.

    1990-01-01

    Measurements of pressure drop through a bundle comprising 16 rods and their lower arrangement grid as well as orifices similar to those of ET-RR-1 core have been done. Experiments are carried out under adiabatic turbulent flow conditions at about 35 degree C. Bundle Reynolds number range is 4 x 10 -2 x 10. Orifices of diameters 4.5, 3.25 or 2.5 cm. are mounted underneath the bundle. The bundle and lower grid pressure drop coefficients are 3.75 and 1.8 respectively. Orifices pressure drop coefficients are 2.65, 19.67 and 53.55 respectively. The ratio of bundle pressure drop to that of 4.5 cm. Orifice diameter is 1.415. The pressure drop coefficients are utilizer to calculate flow through bundles. The flow rate per bundle is 39.1, 20.4 or 13.1 m 3 /hr. Depending on orifice diameter

  4. VOLATILE COMPOUNDS OF LITHRAEA CAUSTICA (LITRE) DETERMINATED BY SOLID PHASE MICRO-EXTRACTION (SPME)

    OpenAIRE

    GARBARINO, JUAN A; SALVATORE, GIUSEPPE; PIVANOVO, MARISA; CHAMY, MARÍA CRISTINA; NICOLETTI, MARCELLO; DE IOANNES, ALFREDO

    2002-01-01

    The head space of the aerial parts of Lithraea caustica was analyzed by Solid Phase Micro-Extraction (SPME) technique, obtaining as main volatile compounds the monoterpenes, myrcene, a -pinene, , p-cymene and limonene, as well as the sesquiterpene caryophylene. De las partes áereas de Lithraea caustica y usando la técnica de Micro-Extracción en Fase Sólida (MEFS), fueron identificados y cuantificados los principales compuestos volátiles: los monoterpenos, mirceno, a -pineno, p-cimeno y lim...

  5. Pressure Drop and Catalytic Dehydrogenation of NaBH{sub 4} Solution Across Pin Fin Structures in a Microchannel Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ki Moon [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of); Choi, Seok Hyun [Key Valve Technologies Ltd., Siheung (Korea, Republic of); Lee, Hee Joon [Kookmin Univ., Seoul (Korea, Republic of)

    2017-06-15

    Dehydrogenation from the hydrolysis of a sodium borohydride (NaBH{sub 4}) solution has been of interest owing to its high theoretical hydrogen storage capacity (10.8 wt.%) and potentially safe operation. An experimental study has been performed on the catalytic reaction rate and pressure drop of a NaBH4 solution over both a single microchannel with a hydraulic diameter of 300 μm and a staggered array of micro pin fins in the microchannel with hydraulic diameter of 50 μm. The catalytic reaction rates and pressure drops were obtained under Reynolds numbers from 1 to 60 and solution concentrations from 5 to 20 wt.%. Moreover, reacting flows were visualized using a high-speed camera with a macro zoom lens. As a result, both the amount of hydrogenation and pressure drop are 2.45 times and 1.5 times larger in a pin fin microchannel array than in a single microchannel, respectively.

  6. Drop trampoline

    Science.gov (United States)

    Chantelot, Pierre; Coux, Martin; Clanet, Christophe; Quere, David

    2017-11-01

    Superhydrophobic substrates inspired from the lotus leaf have the ability to reflect impacting water drops. They do so very efficiently and contact lasts typically 10 ms for millimetric droplets. Yet unlike a lotus leaf most synthetic substrates are rigid. Focusing on the interplay between substrate flexibility and liquid repellency might allow us to understand the dynamic properties of natural surfaces. We perform liquid marbles impacts at velocity V onto thin ( 0.01 mm) stretched circular PDMS membranes. We obtain contact time reductions of up to 70%. The bouncing mechanism is drastically modified compared to that on a rigid substrate: the marble leaves the substrate while it is still spread in a disk shape as it is kicked upwards by the membrane. We show that the bouncing is controlled by an interplay between the dynamics of the drop and the membrane.

  7. Drop Spreading with Random Viscosity

    Science.gov (United States)

    Xu, Feng; Jensen, Oliver

    2016-11-01

    Airway mucus acts as a barrier to protect the lung. However as a biological material, its physical properties are known imperfectly and can be spatially heterogeneous. In this study we assess the impact of these uncertainties on the rate of spreading of a drop (representing an inhaled aerosol) over a mucus film. We model the film as Newtonian, having a viscosity that depends linearly on the concentration of a passive solute (a crude proxy for mucin proteins). Given an initial random solute (and hence viscosity) distribution, described as a Gaussian random field with a given correlation structure, we seek to quantify the uncertainties in outcomes as the drop spreads. Using lubrication theory, we describe the spreading of the drop in terms of a system of coupled nonlinear PDEs governing the evolution of film height and the vertically-averaged solute concentration. We perform Monte Carlo simulations to predict the variability in the drop centre location and width (1D) or area (2D). We show how simulation results are well described (at much lower computational cost) by a low-order model using a weak disorder expansion. Our results show for example how variability in the drop location is a non-monotonic function of the solute correlation length increases. Engineering and Physical Sciences Research Council.

  8. Thermocapillary reorientation of Janus drops

    Science.gov (United States)

    Rosales, Rodolfo; Saenz, Pedro

    2017-11-01

    Janus drops, named after the Ancient Roman two-faced god, are liquid drops formed from two immiscible fluids. Experimental observations indicate that a Janus drop may re-orientate in response to an applied external thermal gradient due to the Marangoni effect. Depending on the angle between the interior interface and the direction of the temperature gradient, disparities in the physical properties of the constituent liquids may lead to asymmetries in the thermocapillary flow. As a result, the drop will move along a curved path until a torque-free configuration is achieved, point after which it will continue on a straight trajectory. Here, we present the results of a theoretical investigation of this realignment phenomenon in the Stokes regime and in the limit of non-deformable interfaces. A 3D semi-analytical method in terms of polar spherical harmonics is developed to characterize and rationalize the hydrodynamic response (forces and torques), flow (velocity and temperature distribution) and trajectory of a Janus drop moving during the temperature-driven reorientation process. Furthermore, we discuss how this phenomenon may be exploited to develop dynamically reconfigurable micro-lenses. This work was partially supported by the US National Science Foundation through Grants DMS-1614043 and DMS-1719637.

  9. THE INFLUENCE OF HIP STRENGTH ON KNEE KINEMATICS DURING A SINGLE-LEGGED MEDIAL DROP LANDING AMONG COMPETITIVE COLLEGIATE BASKETBALL PLAYERS.

    Science.gov (United States)

    Suzuki, Hidetomo; Omori, Go; Uematsu, Daisuke; Nishino, Katsutoshi; Endo, Naoto

    2015-10-01

    A smaller knee flexion angle and larger knee valgus angle during weight-bearing activities have been identified as risk factors for non-contact anterior cruciate ligament (ACL) injuries. To prevent such injuries, attention has been focused on the role of hip strength in knee motion control. However, gender differences in the relationship between hip strength and knee kinematics during weight-bearing activities in the frontal plane have not been evaluated. The purpose of this study was to determine the influence of hip strength on knee kinematics in both genders during a single-legged landing task in the frontal plane. The hypotheses were that 1) subjects with a greater hip strength would demonstrate larger knee flexion and smaller knee valgus and internal rotation angles and 2) no gender differences would exist during the single-legged landing task. Forty-three Japanese collegiate basketball players (20 males, 23 females) participated in this study. Three-dimensional motion analysis was used to evaluate knee kinematics during a single-legged medial drop landing (SML). A hand-held dynamometer was used to assess hip extensor (HEXT), abductor (HAB), and external rotator (in two positions: seated position [SHER] and prone [PHER]) isometric strength. Spearman rank correlation coefficients (ρ) were determined for correlations between hip strength and knee kinematics at initial contact (IC) and peak (PK) during SML (p genders. Hip strength may, therefore, play an important role in knee motion control during sports activities, suggesting that increased hip strength may help to prevent non-contact ACL injuries in athletes of both genders. Moreover, gender-specific programs may be needed to control abnormal knee motion, as the influence of hip strength on knee kinematics may differ based on gender. 3.

  10. Solvent-free sample preparation by headspace solid-phase microextraction applied to the tracing of n-butyl nitrite abuse.

    Science.gov (United States)

    Tytgat, J; Daenens, P

    1996-01-01

    The most common alkyl nitrites encountered in forensic toxicology are iso-butyl, n-butyl and iso-pentyl(amyl) nitrites. All have become popular as an aphrodisiac, especially among the homosexual population. Alkyl nitrites are a volatile and unstable group of compounds, which hydrolyse in aqueous matrices to the alcohol and nitrite ion. Here we describe a fast, clean and sensitive procedure for the detection of hydrolysed n-butyl nitrite in whole human blood using a new, solvent-free sampling technique, the headspace solid-phase micro-extraction (HSPME), combined with GC/FID analysis. Sample preparation was investigated using two different stationary phases (100 microns polydimethylsiloxane and 85 microns polyacrylate), coating a fused silica fibre. The effect of different sampling times at fixed temperatures was also studied. Our results demonstrate that the HSPME/GC/FID procedure allows tracing of n-butyl nitrite abuse and detects hydrolysed n-butyl nitrite, i.e., released n-butanol, in whole blood at the 1 ng/mL level.

  11. Combination of solvent extractants for dispersive liquid-liquid microextraction of fungicides from water and fruit samples by liquid chromatography with tandem mass spectrometry.

    Science.gov (United States)

    Pastor-Belda, Marta; Garrido, Isabel; Campillo, Natalia; Viñas, Pilar; Hellín, Pilar; Flores, Pilar; Fenoll, José

    2017-10-15

    A multiresidue method was developed to determine twenty-five fungicides belonging to three different chemical families, oxazoles, strobilurins and triazoles, in water and fruit samples, using dispersive liquid-liquid microextraction (DLLME) and liquid chromatography/tandem mass spectrometry (LC-MS 2 ). Solid-liquid extraction with acetonitrile was used for the analysis in fruits, the extract being used as dispersant solvent in DLLME. Since some of the analytes showed high affinity for chloroform and the others were more efficiently extracted with undecanol, a mixture of both solvents was used as extractant in DLLME. After evaporation of CHCl 3 , the enriched phase was analyzed. Enrichment factors in the 23-119 and 12-60 ranges were obtained for waters and fruits, respectively. The approach was most sensitive for metominostrobin with limits of quantification of 1ngL -1 and 5ngkg -1 in waters and fruits, respectively, while a similar sensitivity was attained for tebuconazole in fruits. Recoveries of the fungicides varied between 86 and 116%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Hollow fiber based liquid-phase microextraction for the determination of mercury traces in water samples by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Garcia, Ignacio; Rivas, Ricardo E. [Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence ' Campus Mare Nostrum' , University of Murcia, E-30071 Murcia (Spain); Hernandez-Cordoba, Manuel, E-mail: hcordoba@um.es [Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence ' Campus Mare Nostrum' , University of Murcia, E-30071 Murcia (Spain)

    2012-09-19

    Highlight: Black-Right-Pointing-Pointer Hg (II) traces are preconcentrated by means of a three-phase liquid microextraction system. Black-Right-Pointing-Pointer PAN and ammonium iodide are used in the donor and acceptor phase, respectively. Black-Right-Pointing-Pointer Hollow-fiber pores are continuously fed with toluene placed in the lumen. Black-Right-Pointing-Pointer Mercuric ions can be measured in waters below the {mu}g L{sup -1} level. - Abstract: A three-phase liquid microextraction procedure for the determination of mercury at low concentrations is discussed. To the aqueous sample placed at pH 7 by means of a phosphate buffer, 0.002% (m/v) 1-(2-pyridylazo)-2-naphthol (PAN) is incorporated, and the mixture submitted to microextraction with a hollow-fiber impregnated with toluene and whose lumen contains a 0.05 mol L{sup -1} ammonium iodide solution. The final measurement of the extract is carried out by electrothermal atomic absorption spectrometry (300 Degree-Sign C and 1100 Degree-Sign C for the calcination and atomization temperatures, respectively). The pyrolytic graphite atomizer is coated electrolytically with palladium. An enrichment factor of 270, which results in a 0.06 {mu}g L{sup -1} mercury for the detection limit is obtained. The relative standard deviation at the 1 {mu}g L{sup -1} mercury level is 3.2% (n = 5). The reliability of the procedure is verified by analyzing waters as well as six certified reference materials.

  13. Determination of trace Cd, Cu, Fe, Pb and Zn in diesel and gasoline by inductively coupled plasma mass spectrometry after sample clean up with hollow fiber solid phase microextraction system

    International Nuclear Information System (INIS)

    Nomngongo, Philiswa N.; Ngila, J. Catherine

    2014-01-01

    This study reports a simple and efficient method for the determination of trace Cd, Cu, Fe, Pb and Zn in diesel and gasoline samples by inductively coupled plasma mass spectrometry after matrix removal and analyte pre-concentration using hollow fiber-solid phase microextraction (HF–SPME). The optimization of HF-SPME procedure was carried out using two-level full factorial and central composite designs. Four factors (variables), that are, sample solution pH, acceptor phase amount, extraction time and eluent concentration were optimized. Under the optimized experimental conditions, the precision was ≤ 3% (C = 10 μg L −1 , n = 15), limits of detection and quantification ranged from 0.1 to 0.3 μg L −1 and 0.3–0.9 μg L −1 , respectively, and the maximum preconcentration factor was 30. The HF-SPME method was applied for the determination of trace metals in real gasoline and diesel samples. - Highlights: • Hollow fiber solid phase microextraction of metal ions in diesel and gasoline • Use of hollow fiber-supported sol–gel combined with cation exchange resin • Optimization of HF-SPME using multivariate techniques • Determination of Cd, Cu, Fe, Pb and Zn using ICP–MS • Relatively low LOD and LOQ

  14. Sensitive determination of three aconitum alkaloids and their metabolites in human plasma by matrix solid-phase dispersion with vortex-assisted dispersive liquid-liquid microextraction and HPLC with diode array detection.

    Science.gov (United States)

    Wang, Xiaozhong; Li, Xuwen; Li, Lanjie; Li, Min; Liu, Ying; Wu, Qian; Li, Peng; Jin, Yongri

    2016-05-01

    A simple and sensitive method for determination of three aconitum alkaloids and their metabolites in human plasma was developed using matrix solid-phase dispersion combined with vortex-assisted dispersive liquid-liquid microextraction and high-performance liquid chromatography with diode array detection. The plasma sample was directly purified by matrix solid-phase dispersion and the eluate obtained was concentrated and further clarified by vortex-assisted dispersive liquid-liquid microextraction. Some important parameters affecting the extraction efficiency, such as type and amount of dispersing sorbent, type and volume of elution solvent, type and volume of extraction solvent, salt concentration as well as sample solution pH, were investigated in detail. Under optimal conditions, the proposed method has good repeatability and reproducibility with intraday and interday relative standard deviations lower than 5.44 and 5.75%, respectively. The recoveries of the aconitum alkaloids ranged from 73.81 to 101.82%, and the detection limits were achieved within the range of 1.6-2.1 ng/mL. The proposed method offered the advantages of good applicability, sensitivity, simplicity, and feasibility, which makes it suitable for the determination of trace amounts of aconitum alkaloids in human plasma samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Determination of trace Cd, Cu, Fe, Pb and Zn in diesel and gasoline by inductively coupled plasma mass spectrometry after sample clean up with hollow fiber solid phase microextraction system

    Energy Technology Data Exchange (ETDEWEB)

    Nomngongo, Philiswa N.; Ngila, J. Catherine, E-mail: jcngila@uj.ac.za

    2014-08-01

    This study reports a simple and efficient method for the determination of trace Cd, Cu, Fe, Pb and Zn in diesel and gasoline samples by inductively coupled plasma mass spectrometry after matrix removal and analyte pre-concentration using hollow fiber-solid phase microextraction (HF–SPME). The optimization of HF-SPME procedure was carried out using two-level full factorial and central composite designs. Four factors (variables), that are, sample solution pH, acceptor phase amount, extraction time and eluent concentration were optimized. Under the optimized experimental conditions, the precision was ≤ 3% (C = 10 μg L{sup −1}, n = 15), limits of detection and quantification ranged from 0.1 to 0.3 μg L{sup −1} and 0.3–0.9 μg L{sup −1}, respectively, and the maximum preconcentration factor was 30. The HF-SPME method was applied for the determination of trace metals in real gasoline and diesel samples. - Highlights: • Hollow fiber solid phase microextraction of metal ions in diesel and gasoline • Use of hollow fiber-supported sol–gel combined with cation exchange resin • Optimization of HF-SPME using multivariate techniques • Determination of Cd, Cu, Fe, Pb and Zn using ICP–MS • Relatively low LOD and LOQ.

  16. Polyaniline-nylon-6 electrospun nanofibers for headspace adsorptive microextraction

    International Nuclear Information System (INIS)

    Bagheri, Habib; Aghakhani, Ali

    2012-01-01

    Highlights: ► Polyaniline–polyamide nanofiber mat was fabricated by electrospinning technology. ► Electrospun nanofiber was used for extraction of chlorobenzenes from aquatic media. ► A method based on headspace adsorptive microextraction and GC–MS was developed. - Abstract: A headspace adsorptive microextraction technique was developed using a novel polyaniline-nylon-6 (PANI-N6) nanofiber sheet, fabricated by electrospinning. The homogeneity and the porosity of the prepared PANI-N6 sheet were studied using the scanning electron microscopy (SEM) and nanofibers diameters were found to be around 200 nm. The novel nanofiber sheet was examined as an extracting medium to isolate some selected chlorobenzenes (CBs), as model compounds, from aquatic media. The extracted analytes were desorbed using μL-amounts of solvent and eventually an aliquot of extractant was injected into gas chromatography–mass spectrometry (GC–MS). Various parameters affecting the extraction and desorption processes were optimized. The developed method proved to be convenient and offers sufficient sensitivity and a good reproducibility. Limits of detection achieved for CBs with the developed analytical procedure ranged from 19 to 33 ng L −1 , while limits of quantification were from 50 to 60 ng L −1 . The relative standard deviations (RSD) at a concentration level of 0.1 ng mL −1 and 1 ng mL −1 were in the range of 8–14% and 5–11% (n = 3), respectively. The calibration curves of analytes were investigated in the range of 50–1000 ng L −1 and R 2 between 0.9739 and 0.9932 were obtained. The developed method was successfully applied to the extraction of selected CBs from tap and river water samples. The relative recovery (RR) percentage obtained for the spiked real water samples at 0.1 ng mL −1 and 1 ng mL −1 level were 93–103% and 95–104%, respectively. The whole procedure showed to be conveniently applicable and quite easy to handle.

  17. Polyaniline-nylon-6 electrospun nanofibers for headspace adsorptive microextraction

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Habib, E-mail: bagheri@sharif.edu [Environmental and Bio-Analytical Laboratories, Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran (Iran, Islamic Republic of); Aghakhani, Ali [Environmental and Bio-Analytical Laboratories, Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran (Iran, Islamic Republic of)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Polyaniline-polyamide nanofiber mat was fabricated by electrospinning technology. Black-Right-Pointing-Pointer Electrospun nanofiber was used for extraction of chlorobenzenes from aquatic media. Black-Right-Pointing-Pointer A method based on headspace adsorptive microextraction and GC-MS was developed. - Abstract: A headspace adsorptive microextraction technique was developed using a novel polyaniline-nylon-6 (PANI-N6) nanofiber sheet, fabricated by electrospinning. The homogeneity and the porosity of the prepared PANI-N6 sheet were studied using the scanning electron microscopy (SEM) and nanofibers diameters were found to be around 200 nm. The novel nanofiber sheet was examined as an extracting medium to isolate some selected chlorobenzenes (CBs), as model compounds, from aquatic media. The extracted analytes were desorbed using {mu}L-amounts of solvent and eventually an aliquot of extractant was injected into gas chromatography-mass spectrometry (GC-MS). Various parameters affecting the extraction and desorption processes were optimized. The developed method proved to be convenient and offers sufficient sensitivity and a good reproducibility. Limits of detection achieved for CBs with the developed analytical procedure ranged from 19 to 33 ng L{sup -1}, while limits of quantification were from 50 to 60 ng L{sup -1}. The relative standard deviations (RSD) at a concentration level of 0.1 ng mL{sup -1} and 1 ng mL{sup -1} were in the range of 8-14% and 5-11% (n = 3), respectively. The calibration curves of analytes were investigated in the range of 50-1000 ng L{sup -1} and R{sup 2} between 0.9739 and 0.9932 were obtained. The developed method was successfully applied to the extraction of selected CBs from tap and river water samples. The relative recovery (RR) percentage obtained for the spiked real water samples at 0.1 ng mL{sup -1} and 1 ng mL{sup -1} level were 93-103% and 95-104%, respectively. The whole procedure showed

  18. Blood drop patterns: Formation and applications.

    Science.gov (United States)

    Chen, Ruoyang; Zhang, Liyuan; Zang, Duyang; Shen, Wei

    2016-05-01

    The drying of a drop of blood or plasma on a solid substrate leads to the formation of interesting and complex patterns. Inter- and intra-cellular and macromolecular interactions in the drying plasma or blood drop are responsible for the final morphologies of the dried patterns. Changes in these cellular and macromolecular components in blood caused by diseases have been suspected to cause changes in the dried drop patterns of plasma and whole blood, which could be used as simple diagnostic tools to identify the health of humans and livestock. However, complex physicochemical driving forces involved in the pattern formation are not fully understood. This review focuses on the scientific development in microscopic observations and pattern interpretation of dried plasma and whole blood samples, as well as the diagnostic applications of pattern analysis. Dried drop patterns of plasma consist of intricate visible cracks in the outer region and fine structures in the central region, which are mainly influenced by the presence and concentration of inorganic salts and proteins during drying. The shrinkage of macromolecular gel and its adhesion to the substrate surface have been thought to be responsible for the formation of the cracks. Dried drop patterns of whole blood have three characteristic zones; their formation as functions of drying time has been reported in the literature. Some research works have applied engineering treatment to the evaporation process of whole blood samples. The sensitivities of the resultant patterns to the relative humidity of the environment, the wettability of the substrates, and the size of the drop have been reported. These research works shed light on the mechanisms of spreading, evaporation, gelation, and crack formation of the blood drops on solid substrates, as well as on the potential applications of dried drop patterns of plasma and whole blood in diagnosis. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  19. Influence of decontamination of the WWER-440 primary circuit equipment on pressure drop in the reactor

    International Nuclear Information System (INIS)

    Kritsky, V.; Rodionov, Y.; Beresina, I.

    2003-01-01

    Over 40 reactor cycles at four WWER-440 type reactors have been analyzed in order to explain the increase of the pressure drop under certain combination of conditions. It is shown that the staff radiation exposure and the dose rate at first circuit segments are inversely correlated with the value of the pressure drop at the reactor, which is connected with the mechanism of redistribution of deposits and radioactive nuclides between the reactor and the rest part of the circuit. The influence of pH T on the formation of the dose rate from equipment and the change of pressure drop in the reactor WWER-440 is studied. The optimal range of pH T values for these parameters is determined to be 6.95-7.05 and these values are within the range of the water chemistry standards. The correlation between the changes of pressure drop and the number of decontaminated steam generators is established. This correlation shows that the pressure drop at the reactor grows with the increase of steam generators decontaminated during a preventive maintenance

  20. Hydrophilic interaction chromatography combined with dispersive liquid-liquid microextraction as a preconcentration tool for the simultaneous determination of the panel of underivatized neurotransmitters in human urine samples.

    Science.gov (United States)

    Konieczna, Lucyna; Roszkowska, Anna; Niedźwiecki, Maciej; Bączek, Tomasz

    2016-01-29

    A simple and sensitive method using dispersive liquid-liquid microextraction (DLLME) followed by liquid chromatography coupled to mass spectrometry (LC-MS) with a hydrophilic interaction chromatography (HILIC) column was developed for the simultaneous determination of 13 compounds of different polarities, comprising monoamine neurotransmitters (dopamine, norepinephrine, epinephrine and serotonin) along with their respective precursors and metabolites, in human urine samples. The microextraction procedure was based on the fast injection of a mixture of ethanol (disperser solvent) and dichloromethane (extraction solvent) into a human urine sample, forming a cloudy solution in the Eppendorf tube. After centrifugation, the sedimented phase was collected and subsequently analyzed by LC-HILIC-MS in about 12min without a derivatization step. The separation was performed on an XBridge Amide™ BEH column 3.0×100mm, 3.5mm and the mobile phase consisted of phase A: 10mM ammonium formate buffer in water pH 3.0 and phase B: 10 mM ammonium formate buffer in acetonitrile, under gradient program elution. Tyrosine, tryptophan, 5-hydroxytryptophan, dopamine, epinephrine, norepinephrine, serotonin, 3-methoxytyramine, 5-hydroxyindole-3-acetic acid, 3,4-dihydroxy-l-phenylalanine and norvaline (internal standard) were detected in the positive ionization mode. While vanillylmandelic acid, homovanillic acid, 3,4-dihydroxyphenylacetic acid and 3,4-dihydroxybenzylamine (internal standard) were detected in the negative ionization mode. Parameters influencing DLLME and LC-HILIC-MS were investigated. Under the optimum conditions, the proposed method exhibited a low detection limit (5-10ngmL(-1)), and good linearity with R between 0.9991 and 0.9998. The recoveries in human urine samples were 99.0%±3.6%. for the 13 studied biogenic amines with intra- and inter-day RSDs of 0.24-9.55% and 0.31-10.0%, respectively. The developed DLLME-LC-MS method could be successfully applied for the

  1. Dispersive microextraction based on water-coated Fe₃O₄ followed by gas chromatography-mass spectrometry for determination of 3-monochloropropane-1,2-diol in edible oils.

    Science.gov (United States)

    Zhao, Qin; Wei, Fang; Xiao, Neng; Yu, Qiong-Wei; Yuan, Bi-Feng; Feng, Yu-Qi

    2012-06-01

    In the present work, we developed a novel dispersive microextraction technique by combining the advantages of liquid-phase microextraction (LPME) and magnetic solid-phase extraction (MSPE). In this method, trace amount of water directly absorbed on bare Fe₃O₄ to form water-coated Fe₃O₄ (W-Fe₃O₄) and rapid extraction can be achieved while W-Fe₃O₄ dispersed in the sample solution. The analyte adsorbed W-Fe₃O₄ can be easily collected and isolated from sample solution by application of a magnet. It was worth noting that in the proposed method water was used as extractant and Fe₃O₄ served as the supporter and retriever of water. The performance of the method was evaluated by extraction of 3-monochloropropane-1,2-diol (3-MCPD) from edible oils. The extracted 3-MCPD was then derived by a silylanization reagent (1-trimethylsilylimidazole) before gas chromatography-mass spectrometry (GC-MS) analysis. Several parameters that affected the extraction and derivatization efficiency were investigated. Our results showed that the limit of detection for 3-MCPD was 1.1 ng/g. The recoveries in spiked oil samples were in the range of 70.0-104.9% with the RSDs less than 5.6% (intra-day) and 6.4% (inter-day). Taken together, the simple, rapid and cost-effective method developed in current study, offers a potential application for the extraction and preconcentration of hydrophilic analytes from complex fatty samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Creation of a contusion injury in rabbit skeletal muscle using a drop-mass technique

    Directory of Open Access Journals (Sweden)

    Margaret N. Deane

    2013-08-01

    Full Text Available This study reports our experience in developing a simple, minor injury. After reviewing the literature, a ‘drop-mass’ method was selected where a 201 g, elongated oval-shaped weight was dropped up to 15 times through a 1 m tube onto the left vastus lateralis of New Zealand white rabbits. To determine the extent of injury and degree of healing, biopsies were obtained six days after injury from the healing vastus lateralis of each animal. The tissue was fixed in formal saline, embedded in wax, cut and stained with haematoxylin and eosin (H&E and phosphotungstic acid haematoxylin (PTAH and examined by light microscopy (LM. The ‘optimal’ injury was created after seven drops, where quite severe, mild and moderately severe trauma was caused to muscle in the juxta-bone, mid and sub-dermal regions respectively. In each region, the muscle exhibited features of healing six days after injury. The ‘drop-mass’ technique appears to cause a contusion within a single muscle of at least three degrees of severity. This previously unreported observation is of particular importance to other researchers wishing to investigate contusion injury in other animal models.

  3. Bag breakup of low viscosity drops in the presence of a continuous air jet

    International Nuclear Information System (INIS)

    Kulkarni, V.; Sojka, P. E.

    2014-01-01

    This work examines the breakup of a single drop of various low viscosity fluids as it deforms in the presence of continuous horizontal air jet. Such a fragmentation typically occurs after the bulk liquid has disintegrated upon exiting the atomizer and is in the form of an ensemble of drops which undergo further breakup. The drop deformation and its eventual disintegration is important in evaluating the efficacy of a particular industrial process, be it combustion in automobile engines or pesticide spraying in agricultural applications. The interplay between competing influences of surface tension and aerodynamic disruptive forces is represented by the Weber number, We, and Ohnesorge number, Oh, and used to describe the breakup morphology. The breakup pattern considered in our study corresponds to that of a bag attached to a toroidal ring which occurs from ∼12 2 ), is found to match well with experimental data ([L.-P. Hsiang and G. M. Faeth, Int. J. Multiphase Flow 21(4), 545–560 (1995)] and [R. S. Brodkey, “Formation of drops and bubbles,” in The Phenomena of Fluid Motions (Addison-Wesley, Reading, 1967)]). An exponential growth in the radial extent of the deformed drop and the streamline dimension of the bag is predicted by a theoretical model and confirmed by experimental findings. These quantities are observed to strongly depend on We. However, their dependence on Oh is weak

  4. Determination of desipramine in biological samples using liquid-liquid-liquid microextraction combined with in-syringe derivatization, gas chromatography, and nitrogen/phosphorus detection.

    Science.gov (United States)

    Saraji, Mohammad; Mehrafza, Narges; Bidgoli, Ali Akbar Hajialiakbari; Jafari, Mohammad Taghi

    2012-10-01

    A method was established for the determination of desipramine in biological samples using liquid-liquid-liquid microextraction followed by in-syringe derivatization and gas chromatography-nitrogen phosphorus detection. The extraction method was based on the use of two immiscible organic solvents. n-Dodecane was impregnated in the pores of the hollow fiber and methanol was placed inside the lumen of the fiber as the acceptor phase. Acetic anhydride was used as the reagent for the derivatization of the analyte inside the syringe barrel. Parameters that affect the extraction efficiency (composition of donor and acceptor phase, ionic strength, sample temperature, and extraction time) as well as derivatization efficiency (amount of acetic anhydride and reaction time and temperature) were investigated. The limit of detection was 0.02 μg/L with intra and interday RSDs of 2.6 and 7.7%, respectively. The linearity of the method was in the range of 0.2-20 μg/L (r(2) = 0.9986). The method was successfully applied to determine desipramine in human plasma and urine. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Studies on MHD pressure drop and heat transfer of helium-lithium annular-mist flow in a transverse magnetic field

    International Nuclear Information System (INIS)

    Inoue, Akira; Aritomi, Masanori; Takahashi, Minoru; Matsuzaki, Mitsuo; Narita, Yoshihito; Yano, Toshikazu.

    1987-01-01

    Pressure drop and heat transfer coefficient of helium-lithium annular-mist flow in a rectangular duct were investigated experimentally under a transverse magnetic field at system pressure of 0.2 MPa. A ratio of MHD pressure drop to that of non-magnetic field increases with magnetic flux density and a mass flow rate ratio of lithium to helium in low helium velocity region. However, as increasing the helium velocity, the increment of MHD pressure drop with the magnetic flux density is much reduced and then becomes almost zero. At this condition, the MHD pressure drop of the annular-mist flow becomes much smaller than that of lithium single phase flow with the same lithium mass flow at the high magnetic flux density. Heat transfer coefficient ratio of the helium-lithium annular-mist flow to helium single phase in the non-magnetic field is well correlated by a ratio of the mass flow rate of lithium to helium. The heat transfer coefficient in the magnetic field increases with the magnetic flux density and then terminates at a certain value depending on the mass flow rate ratio and the helium velocity. These characteristics of the MHD pressure drop and the heat transfer in the magnetic field suggest that the helium-lithium annular-mist flow is effectively applicable to cooling of the high heat flux wall in a strong magnetic field like a first wall of a magnetic confinement fusion reactors. (author)

  6. Investigation of the quality of stored red blood cells after simulated air drop in the maritime environment.

    Science.gov (United States)

    Meli, Athinoula; Hancock, Vicky; Doughty, Heidi; Smedley, Steve; Cardigan, Rebecca; Wiltshire, Michael

    2018-02-01

    Maritime medical capability may be compromised by blood resupply. Air-dropped red blood cells (RBCs) is a possible mitigation factor. This study set out to evaluate RBC storage variables after a simulated parachute air drop into the sea, as limited data exist. The air load construction for the air drop of blood was subject to static drop assessment to simulate a worst-case parachute drop scenario. One control and two test Golden Hour shipping containers were each packaged with 10 RBC units. The control box was not dropped; Test Boxes 1 and 2 were further reinforced with waterproof boxes and underwent a simulated air drop on Day 7 or Day 8 postdonation, respectively. One day after the drop and once a week thereafter until Day 43 of storage, RBCs from each box were sampled and tested for full blood counts, hemolysis, adenosine triphosphate, 2,3-diphosphoglycerate, pH, extracellular potassium, glucose, lactate, deformability, and RBC microvesicles. The packaging configuration completed the air drop with no water ingress or physical damage. All units met UK specifications for volume, hemoglobin, and hemolysis. There were no significant differences for any of the variables studied between RBCs in the control box compared to RBCs in Test Boxes 1 and 2 combined over storage. The test proved that the packaging solution and the impact of a maritime air drop as performed in this study, on Day 7 or Day 8 postdonation, did not affect the in vitro quality of RBCs in SAGM over storage for 35 days. © 2017 AABB.

  7. Low Density Solvent-Based Dispersive Liquid-Liquid Microextraction for the Determination of Synthetic Antioxidants in Beverages by High-Performance Liquid Chromatography

    Science.gov (United States)

    Çabuk, Hasan; Köktürk, Mustafa

    2013-01-01

    A simple and efficient method was established for the determination of synthetic antioxidants in beverages by using dispersive liquid-liquid microextraction combined with high-performance liquid chromatography with ultraviolet detection. Butylated hydroxy toluene, butylated hydroxy anisole, and tert-butylhydroquinone were the antioxidants evaluated. Experimental parameters including extraction solvent, dispersive solvent, pH of sample solution, salt concentration, and extraction time were optimized. Under optimal conditions, the extraction recoveries ranged from 53 to 96%. Good linearity was observed by the square of correlation coefficients ranging from 0.9975 to 0.9997. The relative standard deviations ranged from 1.0 to 5.2% for all of the analytes. Limits of detection ranged from 0.85 to 2.73 ng mL−1. The method was successfully applied for determination of synthetic antioxidants in undiluted beverage samples with satisfactory recoveries. PMID:23853535

  8. Low Density Solvent-Based Dispersive Liquid-Liquid Microextraction for the Determination of Synthetic Antioxidants in Beverages by High-Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Hasan Çabuk

    2013-01-01

    Full Text Available A simple and efficient method was established for the determination of synthetic antioxidants in beverages by using dispersive liquid-liquid microextraction combined with high-performance liquid chromatography with ultraviolet detection. Butylated hydroxy toluene, butylated hydroxy anisole, and tert-butylhydroquinone were the antioxidants evaluated. Experimental parameters including extraction solvent, dispersive solvent, pH of sample solution, salt concentration, and extraction time were optimized. Under optimal conditions, the extraction recoveries ranged from 53 to 96%. Good linearity was observed by the square of correlation coefficients ranging from 0.9975 to 0.9997. The relative standard deviations ranged from 1.0 to 5.2% for all of the analytes. Limits of detection ranged from 0.85 to 2.73 ng mL−1. The method was successfully applied for determination of synthetic antioxidants in undiluted beverage samples with satisfactory recoveries.

  9. A new combined method of stable isotope-labeling derivatization-ultrasound-assisted dispersive liquid-liquid microextraction for the determination of neurotransmitters in rat brain microdialysates by ultra high performance liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Zheng, Longfang; Zhao, Xian-En; Zhu, Shuyun; Tao, Yanduo; Ji, Wenhua; Geng, Yanling; Wang, Xiao; Chen, Guang; You, Jinmao

    2017-06-01

    In this work, for the first time, a new hyphenated technique of stable isotope-labeling derivatization-ultrasound-assisted dispersive liquid-liquid microextraction has been developed for the simultaneous determination of monoamine neurotransmitters (MANTs) and their biosynthesis precursors and metabolites. The developed method was based on ultra high performance liquid chromatography tandem mass spectrometry detection using multiple-reaction monitoring mode. A pair of mass spectrometry sensitizing reagents, d 0 -10-methyl-acridone-2-sulfonyl chloride and d 3 -10-methyl-acridone-2-sulfonyl chloride, as stable isotope probes was utilized to facilely label neurotransmitters, respectively. The heavy labeled MANTs standards were prepared and used as internal standards for quantification to minimize the matrix effects in mass spectrometry analysis. Low toxic bromobenzene (extractant) and acetonitrile (dispersant) were utilized in microextraction procedure. Under the optimized conditions, good linearity was observed with the limits of detection (S/N>3) and limits of quantification (S/N>10) in the range of 0.002-0.010 and 0.015-0.040nmol/L, respectively. Meanwhile, it also brought acceptable precision (4.2-8.8%, peak area RSDs %) and accuracy (recovery, 96.9-104.1%) results. This method was successfully applied to the simultaneous determination of monoamine neurotransmitters and their biosynthesis precursors and metabolites in rat brain microdialysates of Parkinson's disease and normal rats. This provided a new method for the neurotransmitters related studies in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Combination of structured illumination and single molecule localization microscopy in one setup

    International Nuclear Information System (INIS)

    Rossberger, Sabrina; Best, Gerrit; Birk, Udo; Cremer, Christoph; Baddeley, David; Heintzmann, Rainer; Dithmar, Stefan

    2013-01-01

    Understanding the positional and structural aspects of biological nanostructures simultaneously is as much a challenge as a desideratum. In recent years, highly accurate (20 nm) positional information of optically isolated targets down to the nanometer range has been obtained using single molecule localization microscopy (SMLM), while highly resolved (100 nm) spatial information has been achieved using structured illumination microscopy (SIM). In this paper, we present a high-resolution fluorescence microscope setup which combines the advantages of SMLM with SIM in order to provide high-precision localization and structural information in a single setup. Furthermore, the combination of the wide-field SIM image with the SMLM data allows us to identify artifacts produced during the visualization process of SMLM data, and potentially also during the reconstruction process of SIM images. We describe the SMLM–SIM combo and software, and apply the instrument in a first proof-of-principle to the same region of H3K293 cells to achieve SIM images with high structural resolution (in the 100 nm range) in overlay with the highly accurate position information of localized single fluorophores. Thus, with its robust control software, efficient switching between the SMLM and SIM mode, fully automated and user-friendly acquisition and evaluation software, the SMLM–SIM combo is superior over existing solutions. (special issue article)

  11. Hydrothermal waves in evaporating sessile drops

    OpenAIRE

    Brutin, D.; Rigollet, F.; Niliot, C. Le

    2009-01-01

    Drop evaporation is a simple phenomena but still unclear concerning the mechanisms of evaporation. A common agreement of the scientific community based on experimental and numerical work evidences that most of the evaporation occurs at the triple line. However, the rate of evaporation is still empirically predicted due to the lack of knowledge on the convection cells which develop inside the drop under evaporation. The evaporation of sessile drop is more complicated than it appears due to the...

  12. Rat pancreatic islet size standardization by the "hanging drop" technique.

    Science.gov (United States)

    Cavallari, G; Zuellig, R A; Lehmann, R; Weber, M; Moritz, W

    2007-01-01

    Rejection and hypoxia are the main factors that limit islet engraftment in the recipient liver in the immediate posttransplant period. Recently authors have reported a negative relationship of graft function and islet size, concluding that small islets are superior to large islets. Islets can be dissociated into single cells and reaggregated into so called "pseudoislets," which are functionally equivalent to intact islets but exhibit reduced immunogenicity. The aim of our study was develop a technique that enabled one to obtain pseudoislets of defined, preferably small, dimensions. Islets were harvested from Lewis rats by the collagenase digestion procedure. After purification, the isolated islets were dissociated into single cells by trypsin digestion. Fractions with different cell numbers were seeded into single drops onto cell culture dishes, which were inverted and incubated for 5 to 8 days under cell culture conditions. Newly formed pseudoislets were analyzed for dimension, morphology, and cellular composition. The volume of reaggregated pseudoislets strongly correlated with the cell number (r(2) = .995). The average diameter of a 250-cell aggregate was 95 +/- 8 microm (mean +/- SD) compared with 122 +/- 46 microm of freshly isolated islets. Islet cell loss may be minimized by performing reaggregation in the presence of medium glucose (11 mmol/L) and the GLP-1 analogue Exendin-4. Morphology, cellular composition, and architecture of reaggregated islets were comparable to intact islets. The "hanging drop" culture method allowed us to obtain pseudoislets of standardized size and regular shape, which did not differ from intact islets in terms of cellular composition or architecture. Further investigations are required to minimize cell loss and test in vivo function of transplanted pseudoislets.

  13. Simultaneous determination of six synthetic phenolic antioxidants in edible oils using dispersive liquid-liquid microextraction followed by high-performance liquid chromatography with diode array detection.

    Science.gov (United States)

    Xu, Shuangjiao; Liu, Liangliang; Wang, Yanqin; Zhou, Dayun; Kuang, Meng; Fang, Dan; Yang, Weihua; Wei, Shoujun; Xiao, Aiping; Ma, Lei

    2016-08-01

    A simple, rapid, organic-solvent- and sample-saving pretreatment technique, called dispersive liquid-liquid microextraction, was developed for the determination of six synthetic phenolic antioxidants from edible oils before high-performance liquid chromatography with diode array detection. The entire procedure was composed of a two-step microextraction and a centrifugal process and could be finished in about 5 min, only consuming only 25 mg of sample and 1 mL of the organic solvent for each extraction. The influences of several important parameters on the microextraction efficiency were thoroughly investigated. Recovery assays for oil samples were spiked at three concentration levels, 50, 100 and 200 mg/kg, and provided recoveries in the 86.3-102.5% range with a relative standard deviation below 3.5%. The intra-day and inter-day precisions for the analysis were less than 3.8%. The proposed method was successfully applied for the determination of synthetic phenolic antioxidants in different oil samples, and satisfactory results were obtained. Thus, the developed method represents a viable alternative for the quality control of synthetic phenolic antioxidant concentrations in edible oils. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The Measurement of the Surface Energy of Solids by Sessile Drop Accelerometry

    Science.gov (United States)

    Calvimontes, Alfredo

    2018-05-01

    A new physical method, the sessile drop accelerometry (SDACC) for the study and measurement of the interfacial energies of solid-liquid-gas systems, is tested and discussed in this study. The laboratory instrument and technique—a combination of a drop shape analyzer with high-speed camera and a laboratory drop tower- and the evaluation algorithms, were designed to calculate the interfacial energies as a function of the geometrical changes of a sessile droplet shape due to the effect of "switching off" gravity during the experiment. The method bases on Thermodynamics of Interfaces and differs from the conventional approach of the two hundred-years-old Young's equation in that it assumes a thermodynamic equilibrium between interfaces, rather than a balance of tensions on a point of the solid-liquid-gas contour line. A comparison of the mathematical model that supports the method with the widely accepted Young`s equation is discussed in detail in this study. The method opens new possibilities to develop surface characterization procedures by submitting the solid-liquid-system to artificial generated and uniform force fields.

  15. Parametric resonance in acoustically levitated water drops

    International Nuclear Information System (INIS)

    Shen, C.L.; Xie, W.J.; Wei, B.

    2010-01-01

    Liquid drops can be suspended in air with acoustic levitation method. When the sound pressure is periodically modulated, the levitated drop is usually forced into an axisymmetric oscillation. However, a transition from axisymmetric oscillation into sectorial oscillation occurs when the modulation frequency approaches some specific values. The frequency of the sectorial oscillation is almost exactly half of the modulation frequency. It is demonstrated that this transition is induced by the parametric resonance of levitated drop. The natural frequency of sectorial oscillation is found to decrease with the increase of drop distortion extent.

  16. Parametric resonance in acoustically levitated water drops

    Energy Technology Data Exchange (ETDEWEB)

    Shen, C.L.; Xie, W.J. [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China); Wei, B., E-mail: bbwei@nwpu.edu.c [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2010-05-10

    Liquid drops can be suspended in air with acoustic levitation method. When the sound pressure is periodically modulated, the levitated drop is usually forced into an axisymmetric oscillation. However, a transition from axisymmetric oscillation into sectorial oscillation occurs when the modulation frequency approaches some specific values. The frequency of the sectorial oscillation is almost exactly half of the modulation frequency. It is demonstrated that this transition is induced by the parametric resonance of levitated drop. The natural frequency of sectorial oscillation is found to decrease with the increase of drop distortion extent.

  17. Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry.

    Science.gov (United States)

    Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek

    2013-12-20

    Solid phase microextraction find increasing applications in the sample preparation step before chromatographic determination of analytes in samples with a complex composition. These techniques allow for integrating several operations, such as sample collection, extraction, analyte enrichment above the detection limit of a given measuring instrument and the isolation of analytes from sample matrix. In this work the information about novel methodological and instrumental solutions in relation to different variants of solid phase extraction techniques, solid-phase microextraction (SPME), stir bar sorptive extraction (SBSE) and magnetic solid phase extraction (MSPE) is presented, including practical applications of these techniques and a critical discussion about their advantages and disadvantages. The proposed solutions fulfill the requirements resulting from the concept of sustainable development, and specifically from the implementation of green chemistry principles in analytical laboratories. Therefore, particular attention was paid to the description of possible uses of novel, selective stationary phases in extraction techniques, inter alia, polymeric ionic liquids, carbon nanotubes, and silica- and carbon-based sorbents. The methodological solutions, together with properly matched sampling devices for collecting analytes from samples with varying matrix composition, enable us to reduce the number of errors during the sample preparation prior to chromatographic analysis as well as to limit the negative impact of this analytical step on the natural environment and the health of laboratory employees. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Saving Single-rooted Teeth with Combined Endodontic-periodontal Lesions.

    Science.gov (United States)

    Pico-Blanco, Alexandre; Castelo-Baz, Pablo; Caneiro-Queija, Leticia; Liñares-González, Antonio; Martin-Lancharro, Pablo; Blanco-Carrión, Juan

    2016-12-01

    Teeth affected by combined endodontic-periodontal lesions are usually considered by all prognosis classifications as hopeless teeth. The development of new biomaterials combined with modern endodontic and periodontal regeneration techniques may improve dental prognosis and maintain the affected teeth. Moreover, 1 of the replacement options for those teeth, dental implants, has shown an increasing number of biological and technical complications. Five patients were included in this case series study. Full periodontal and radiographic examination revealed generalized chronic periodontitis. Moreover, endodontic-periodontal lesions affecting single-rooted teeth were detected in those patients with tissue destruction beyond the apex. After splinting those teeth, conventional endodontic and nonsurgical periodontal treatment was performed. Three months later, periodontal regeneration was applied at those teeth in order to reconstruct supporting tissues and to improve dental prognosis. After a follow-up period ranging from 14 months to 17 years, it was observed that all teeth remain asymptomatic and in normal function. No signs of apical pathosis were observed, and the periodontium was stable. All patients were included in a strict maintenance program to check the periodontal and apical status. This case series shows that it is possible to change the prognosis of teeth affected by combined endodontic-periodontal lesions, even if the periodontal support is destroyed beyond the apex. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Understanding evaporation characteristics of a drop of distilled sulfur mustard (HD) chemical agent from stainless steel and aluminum substrates

    Energy Technology Data Exchange (ETDEWEB)

    Jung, H., E-mail: junghs@add.re.kr; Lee, H.W.

    2014-05-01

    Highlights: • Evaporation rates of HD are obtained from stainless steel and aluminum substrates. • The rates increase with temperature and are linearly proportional to drop size. • HD evaporation from stainless steel follows only constant contact area mechanism. • HD evaporation from aluminum proceeds by a combined mechanism. - Abstract: We report herein the evaporation rates and mechanism of a drop of distilled sulfur mustard (HD) agent from stainless steel and aluminum substrates. For systematic analysis, we used a laboratory-sized wind tunnel, thermal desorption (TD) connected to gas chromatograph/mass spectrometry (GC/MS) and drop shape analysis (DSA). We found that the evaporation rates of HD from stainless steel and aluminum increased with temperature. The rates were also linearly proportional to drop size. The time-dependent contact angle measurement showed that the evaporation of the drop of HD proceeded only by constant contact area mechanism from stainless steel surface. On the other hand, the evaporation of HD from aluminum proceeded by a combined mechanism of constant contact area mode and constant contact angle mode. Our experimental data sets and analysis could be used to predict vapor and contact hazard persistence of chemical warfare agents (CWAs) in the air and on exterior surfaces with chemical releases, which assists the military decision influencing personnel safety and decontamination of the site upon a chemical attack event.

  20. Understanding evaporation characteristics of a drop of distilled sulfur mustard (HD) chemical agent from stainless steel and aluminum substrates

    International Nuclear Information System (INIS)

    Jung, H.; Lee, H.W.

    2014-01-01

    Highlights: • Evaporation rates of HD are obtained from stainless steel and aluminum substrates. • The rates increase with temperature and are linearly proportional to drop size. • HD evaporation from stainless steel follows only constant contact area mechanism. • HD evaporation from aluminum proceeds by a combined mechanism. - Abstract: We report herein the evaporation rates and mechanism of a drop of distilled sulfur mustard (HD) agent from stainless steel and aluminum substrates. For systematic analysis, we used a laboratory-sized wind tunnel, thermal desorption (TD) connected to gas chromatograph/mass spectrometry (GC/MS) and drop shape analysis (DSA). We found that the evaporation rates of HD from stainless steel and aluminum increased with temperature. The rates were also linearly proportional to drop size. The time-dependent contact angle measurement showed that the evaporation of the drop of HD proceeded only by constant contact area mechanism from stainless steel surface. On the other hand, the evaporation of HD from aluminum proceeded by a combined mechanism of constant contact area mode and constant contact angle mode. Our experimental data sets and analysis could be used to predict vapor and contact hazard persistence of chemical warfare agents (CWAs) in the air and on exterior surfaces with chemical releases, which assists the military decision influencing personnel safety and decontamination of the site upon a chemical attack event