WorldWideScience

Sample records for single zinc finger

  1. NMR structure of the single QALGGH zinc finger domain from the Arabidopsis thaliana SUPERMAN protein.

    Science.gov (United States)

    Isernia, Carla; Bucci, Enrico; Leone, Marilisa; Zaccaro, Laura; Di Lello, Paola; Digilio, Giuseppe; Esposito, Sabrina; Saviano, Michele; Di Blasio, Benedetto; Pedone, Carlo; Pedone, Paolo V; Fattorusso, Roberto

    2003-03-03

    Zinc finger domains of the classical type represent the most abundant DNA binding domains in eukaryotic transcription factors. Plant proteins contain from one to four zinc finger domains, which are characterized by high conservation of the sequence QALGGH, shown to be critical for DNA-binding activity. The Arabidopsis thaliana SUPERMAN protein, which contains a single QALGGH zinc finger, is necessary for proper spatial development of reproductive floral tissues and has been shown to specifically bind to DNA. Here, we report the synthesis and UV and NMR spectroscopic structural characterization of a 37 amino acid SUPERMAN region complexed to a Zn(2+) ion (Zn-SUP37) and present the first high-resolution structure of a classical zinc finger domain from a plant protein. The NMR structure of the SUPERMAN zinc finger domain consists of a very well-defined betabetaalpha motif, typical of all other Cys(2)-His(2) zinc fingers structurally characterized. As a consequence, the highly conserved QALGGH sequence is located at the N terminus of the alpha helix. This region of the domain of animal zinc finger proteins consists of hypervariable residues that are responsible for recognizing the DNA bases. Therefore, we propose a peculiar DNA recognition code for the QALGGH zinc finger domain that includes all or some of the amino acid residues at positions -1, 2, and 3 (numbered relative to the N terminus of the helix) and possibly others at the C-terminal end of the recognition helix. This study further confirms that the zinc finger domain, though very simple, is an extremely versatile DNA binding motif.

  2. The Arabidopsis SUPERMAN protein is able to specifically bind DNA through its single Cys2-His2 zinc finger motif.

    Science.gov (United States)

    Dathan, Nina; Zaccaro, Laura; Esposito, Sabrina; Isernia, Carla; Omichinski, James G; Riccio, Andrea; Pedone, Carlo; Di Blasio, Benedetto; Fattorusso, Roberto; Pedone, Paolo V

    2002-11-15

    The Arabidopsis SUPERMAN (SUP) gene has been shown to be important in maintaining the boundary between stamens and carpels, and is presumed to act by regulating cell proliferation. In this work, we show that the SUP protein, which contains a single Cys2-His2 zinc finger domain including the QALGGH sequence, highly conserved in the plant zinc finger proteins, binds DNA. Using a series of deletion mutants, it was determined that the minimal domain required for specific DNA binding (residues 15-78) includes the single zinc finger and two basic regions located on either side of this motif. Furthermore, amino acid substitutions in the zinc finger or in the basic regions, including a mutation that knocks out the function of the SUP protein in vivo (glycine 63 to aspartate), have been found to abolish the activity of the SUP DNA-binding domain. These results strongly suggest that the SUP protein functions in vivo by acting as a DNA-binding protein, likely involved in transcriptional regulation. The association of both an N-terminal and a C-terminal basic region with a single Cys2-His2 zinc finger represents a novel DNA-binding motif suggesting that the mechanism of DNA recognition adopted by the SUP protein is different from that described so far in other zinc finger proteins.

  3. The Arabidopsis SUPERMAN protein is able to specifically bind DNA through its single Cys2–His2 zinc finger motif

    Science.gov (United States)

    Dathan, Nina; Zaccaro, Laura; Esposito, Sabrina; Isernia, Carla; Omichinski, James G.; Riccio, Andrea; Pedone, Carlo; Di Blasio, Benedetto; Fattorusso, Roberto; Pedone, Paolo V.

    2002-01-01

    The Arabidopsis SUPERMAN (SUP) gene has been shown to be important in maintaining the boundary between stamens and carpels, and is presumed to act by regulating cell proliferation. In this work, we show that the SUP protein, which contains a single Cys2–His2 zinc finger domain including the QALGGH sequence, highly conserved in the plant zinc finger proteins, binds DNA. Using a series of deletion mutants, it was determined that the minimal domain required for specific DNA binding (residues 15–78) includes the single zinc finger and two basic regions located on either side of this motif. Furthermore, amino acid substitutions in the zinc finger or in the basic regions, including a mutation that knocks out the function of the SUP protein in vivo (glycine 63 to aspartate), have been found to abolish the activity of the SUP DNA-binding domain. These results strongly suggest that the SUP protein functions in vivo by acting as a DNA-binding protein, likely involved in transcriptional regulation. The association of both an N-terminal and a C-terminal basic region with a single Cys2–His2 zinc finger represents a novel DNA-binding motif suggesting that the mechanism of DNA recognition adopted by the SUP protein is different from that described so far in other zinc finger proteins. PMID:12433998

  4. Conversion of Human Fibroblasts to Stably Self-Renewing Neural Stem Cells with a Single Zinc-Finger Transcription Factor

    Directory of Open Access Journals (Sweden)

    Ebrahim Shahbazi

    2016-04-01

    Full Text Available Direct conversion of somatic cells into neural stem cells (NSCs by defined factors holds great promise for mechanistic studies, drug screening, and potential cell therapies for different neurodegenerative diseases. Here, we report that a single zinc-finger transcription factor, Zfp521, is sufficient for direct conversion of human fibroblasts into long-term self-renewable and multipotent NSCs. In vitro, Zfp521-induced NSCs maintained their characteristics in the absence of exogenous factor expression and exhibited morphological, molecular, developmental, and functional properties that were similar to control NSCs. In addition, the single-seeded induced NSCs were able to form NSC colonies with efficiency comparable with control NSCs and expressed NSC markers. The converted cells were capable of surviving, migrating, and attaining neural phenotypes after transplantation into neonatal mouse and adult rat brains, without forming tumors. Moreover, the Zfp521-induced NSCs predominantly expressed rostral genes. Our results suggest a facilitated approach for establishing human NSCs through Zfp521-driven conversion of fibroblasts.

  5. Zinc-finger nucleases: a panoramic view.

    Science.gov (United States)

    Carroll, Dana

    2011-02-01

    Zinc-finger nucleases (ZFNs) are emerging as very powerful tools for directed genome modifications. Their key features are: a DNA-binding domain comprised of zinc fingers that can be designed to favor very specific targets; a nonspecific cleavage domain that must dimerize to cut DNA--this requirement enhances specificity and minimizes random cleavage. ZFNs have been shown to be effective in a wide range of organisms and cell types. This article reviews discoveries that led to the development of ZFNs, cites examples of successes in genome engineering, and projects how ZFNs may be used in the future, particularly in applications to humans.

  6. substitute for Zn(II) in zinc fingers?

    Indian Academy of Sciences (India)

    Zinc finger domains consist of sequences of amino acids containing cysteine and histidine residues tetrahedrally coordinated to a zinc ion. The role of zinc in a DNA binding finger was considered purely structural due to the absence of redox chemistry in zinc. However, whether other metals e.g. Co(II) or Cd(II) can substitute ...

  7. Genome editing with engineered zinc finger nucleases.

    Science.gov (United States)

    Urnov, Fyodor D; Rebar, Edward J; Holmes, Michael C; Zhang, H Steve; Gregory, Philip D

    2010-09-01

    Reverse genetics in model organisms such as Drosophila melanogaster, Arabidopsis thaliana, zebrafish and rats, efficient genome engineering in human embryonic stem and induced pluripotent stem cells, targeted integration in crop plants, and HIV resistance in immune cells - this broad range of outcomes has resulted from the application of the same core technology: targeted genome cleavage by engineered, sequence-specific zinc finger nucleases followed by gene modification during subsequent repair. Such 'genome editing' is now established in human cells and a number of model organisms, thus opening the door to a range of new experimental and therapeutic possibilities.

  8. Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains

    International Nuclear Information System (INIS)

    Vallee, B.L.; Auld, D.S.; Coleman, J.E.

    1991-01-01

    The authors recognize three distinct motifs of DNA-binding zinc proteins: (i) zinc fingers, (ii) zinc clusters, and (iii) zinc twists. Until very recently, x-ray crystallographic or NMR three-dimensional structure analyses of DNA-binding zinc proteins have not been available to serve as standards of reference for the zinc binding sites of these families of proteins. Those of the DNA-binding domains of the fungal transcription factor GAL4 and the rat glucocorticoid receptor are the first to have been determined. Both proteins contain two zinc binding sites, and in both, cysteine residues are the sole zinc ligands. In GAL4, two zinc atoms are bound to six cysteine residues which form a zinc cluster akin to that of metallothionein; the distance between the two zinc atoms of GAL4 is ∼3.5 angstrom. In the glucocorticoid receptor, each zinc atom is bound to four cysteine residues; the interatomic zinc-zinc distance is ∼13 angstrom, and in this instance, a zinc twist is represented by a helical DNA recognition site located between the two zinc atoms. Zinc clusters and zinc twists are here recognized as two distinctive motifs in DNA-binding proteins containing multiple zinc atoms. For native zinc fingers, structural data do not exist as yet; consequently, the interatomic distances between zinc atoms are not known. As further structural data become available, the structural and functional significance of these different motifs in their binding to DNA and other proteins participating in the transmission of the genetic message will become apparent

  9. Prediction of DNA-binding specificity in zinc finger proteins

    Indian Academy of Sciences (India)

    2012-06-25

    Jun 25, 2012 ... respective DNA can help to generate engineered zinc fingers for therapeutic purposes involving genome targeting. Exploring the structure–function relationships of the existing zinc finger–DNA complexes can aid in predicting the probable zinc .... tered to a defined family based on binding data. How-.

  10. In-depth study of DNA binding of Cys2His2 finger domains in testis zinc-finger protein.

    Directory of Open Access Journals (Sweden)

    Chun-Chi Chou

    Full Text Available Previously, we identified that both fingers 1 and 2 in the three Cys2His2 zinc-finger domains (TZD of testis zinc-finger protein specifically bind to its cognate DNA; however, finger 3 is non-sequence-specific. To gain insights into the interaction mechanism, here we further investigated the DNA-binding characteristics of TZD bound to non-specific DNAs and its finger segments bound to cognate DNA. TZD in non-specific DNA binding showed smaller chemical shift perturbations, as expected. However, the direction of shift perturbation, change of DNA imino-proton NMR signal, and dynamics on the 15N backbone atom significantly differed between specific and non-specific binding. Using these unique characteristics, we confirmed that the three single-finger segments (TZD1, TZD2 and TZD3 and the two-finger segment (TZD23 non-specifically bind to the cognate DNA. In comparison, the other two-finger segment (TZD12 binding to the cognate DNA features simultaneous non-specific and semi-specific binding, both slowly exchanged in terms of NMR timescale. The process of TZD binding to the cognate DNA is likely stepwise: initially TZD non-specifically binds to DNA, then fingers 1 and 2 insert cooperatively into the major groove of DNA by semi-specific binding, and finally finger 3 non-specifically binds to DNA, which promotes the specific binding on fingers 1 and 2 and stabilizes the formation of a specific TZD-DNA complex.

  11. Effect of the linkers between the zinc fingers in zinc finger protein 809 on gene silencing and nuclear localization

    Energy Technology Data Exchange (ETDEWEB)

    Ichida, Yu, E-mail: ichida-y@ncchd.go.jp; Utsunomiya, Yuko; Onodera, Masafumi

    2016-03-18

    Zinc finger protein 809 (ZFP809) belongs to the Kruppel-associated box-containing zinc finger protein (KRAB-ZFP) family and functions in repressing the expression of Moloney murine leukemia virus (MoMLV). ZFP809 binds to the primer-binding site (PBS)located downstream of the MoMLV-long terminal repeat (LTR) and induces epigenetic modifications at integration sites, such as repressive histone modifications and de novo DNA methylation. KRAB-ZFPs contain consensus TGEKP linkers between C2H2 zinc fingers. The phosphorylation of threonine residues within linkers leads to the inactivation of zinc finger binding to target sequences. ZFP809 also contains consensus linkers between zinc fingers. However, the function of ZFP809 linkers remains unknown. In the present study, we constructed ZFP809 proteins containing mutated linkers and examined their ability to silence transgene expression driven by MLV, binding ability to MLV PBS, and cellular localization. The results of the present study revealed that the linkers affected the ability of ZFP809 to silence transgene expression. Furthermore, this effect could be partly attributed to changes in the localization of ZFP809 proteins containing mutated linkers. Further characterization of ZFP809 linkers is required for understanding the functions and features of KRAB-ZFP-containing linkers. - Highlights: • ZFP809 has three consensus linkers between the zinc fingers. • Linkers are required for ZFP809 to silence transgene expression driven by MLV-LTR. • Linkers affect the precise nuclear localization of ZFP809.

  12. Solution structure and DNA binding of the zinc-finger domain from DNA ligase IIIalpha.

    Science.gov (United States)

    Kulczyk, Arkadiusz W; Yang, Ji-Chun; Neuhaus, David

    2004-08-13

    DNA ligase IIIalpha carries out the final ligation step in the base excision repair (BER) and single strand break repair (SSBR) mechanisms of DNA repair. The enzyme recognises single-strand nicks and other damage features in double-stranded DNA, both through the catalytic domain and an N-terminal domain containing a single zinc finger. The latter is homologous to other zinc fingers that recognise damaged DNA, two in the N terminus of poly(adenosine-ribose)polymerase and three in the N terminus of the Arabidopsis thaliana nick-sensing DNA 3'-phosphoesterase. Here, we present the solution structure of the zinc-finger domain of human DNA ligase IIIalpha, the first structure of a finger from this group. It is related to that of the erythroid transcription factor GATA-1, but has an additional N-terminal beta-strand and C-terminal alpha-helix. Chemical shift mapping using a DNA ligand containing a single-stranded break showed that the DNA-binding surface of the DNA-ligase IIIalpha zinc finger is substantially different from that of GATA-1, consistent with the fact that the two proteins recognise very different features in the DNA. Likely implications for DNA binding are discussed.

  13. Functional promoter variant in zinc finger protein 202 predicts severe atherosclerosis and ischemic heart disease

    DEFF Research Database (Denmark)

    Frikke-Schmidt, R.; Nordestgaard, Børge; Grande, Peer

    2008-01-01

    Objectives This study was designed to test the hypotheses that single nucleotide polymorphisms ( SNPs), in zinc finger protein 202 ( ZNF202), predict severe atherosclerosis and ischemic heart disease ( IHD). Background ZNF202 is a transcriptional repressor controlling promoter elements in genes...

  14. FYVE zinc-finger proteins in the plant model Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Jensen, R B; La Cour, T; Albrethsen, J

    2001-01-01

    Classic FYVE zinc-finger domains recognize the phosphoinositide signal PtdIns3P and share the basic (R/K)(1)(R/K)HHCR(6) (single-letter amino acid codes) consensus sequence. This domain is present in predicted PtdIns3P 5-kinases and lipases from Arabidopsis thaliana. Other Arabidopsis proteins...

  15. Prediction of DNA-binding specificity in zinc finger proteins

    Indian Academy of Sciences (India)

    2012-06-25

    Jun 25, 2012 ... Support Vector Machine (SVM) is a state-of-the-art classifica- tion technique. Using canonical binding model, the C2H2 zinc finger protein–DNA interaction interface is modelled by the pairwise amino acid–base interactions. Using a classification framework, known examples of non-binding ZF–DNA pairs.

  16. Can Co (II) or Cd (II) substitute for Zn (II) in zinc fingers?

    Indian Academy of Sciences (India)

    Zinc finger domains consist of sequences of amino acids containing cysteine and histidine residues tetrahedrally coordinated to a zinc ion. The role of zinc in a DNA binding finger was considered purely structural due to the absence of redox chemistry in zinc. However, whether other metals e.g. Co(II) or Cd(II) can substitute ...

  17. Interaction of cisplatin with a CCHC zinc finger motif.

    Science.gov (United States)

    Castiglione Morelli, Maria Antonietta; Ostuni, Angela; Cristinziano, Pier Luigi; Tesauro, Diego; Bavoso, Alfonso

    2013-04-01

    The interaction between cisplatin and an 18-residue CCHC zinc finger motif derived from a retroviral nucleocapsid protein (PyrZf18) has been studied using UV-visible, CD and (1)H NMR spectroscopies and ESI-MS spectrometry. Cisplatin irreversibly blocks the cysteine zinc binding groups in the free peptide and is able to slowly eject zinc from the zinc-peptide complex. The observed end product of the reaction with cisplatin is a complex in which only one ammonia molecule is coordinated to platinum. After an initial binding with two cysteine residues and the formation of the (PyrZf18)-platinum-(NH3)2 complex, a release of one ammonia molecule occurs because of trans-labilization, and the third cysteine is coordinated, leading to a mixture of isomers and/or conformers of the (PyrZf18)-platinum-NH3 complex. The results are discussed with respect to the potential antiretroviral activity of platinum(II) compounds and to the possible interaction of cisplatin with the cellular nucleic acid binding proteins. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.

  18. What history tells us XLIV: The construction of the zinc finger ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 42; Issue 4. What history tells us XLIV: The construction of the zinc finger nucleases. MICHEL MORANGE. Series Volume 42 Issue 4 ... Keywords. CRISPR-Cas9; homologous recombination; meganucleases; protein domains; restriction enzymes; synthetic biology; zinc finger ...

  19. A gene encoding 22 highly related zinc fingers is expressed in lymphoid cell lines.

    OpenAIRE

    Lovering, R; Trowsdale, J

    1991-01-01

    A cDNA was isolated from a T cell library using an oligonucleotide probe corresponding to a sequence conserved in proteins with multiple zinc fingers of the C2H2 type. The predicted protein structure of this cDNA (ZNF43) showed that it contained 22 of the Krüppel type of zinc finger motifs in tandem. The amino acid sequence was strongly conserved between each of the finger domains of this cDNA, except for variable residue positions within the putative DNA binding site. Within the zinc finger ...

  20. ZifBASE: a database of zinc finger proteins and associated resources

    Directory of Open Access Journals (Sweden)

    Punetha Ankita

    2009-09-01

    Full Text Available Abstract Background Information on the occurrence of zinc finger protein motifs in genomes is crucial to the developing field of molecular genome engineering. The knowledge of their target DNA-binding sequences is vital to develop chimeric proteins for targeted genome engineering and site-specific gene correction. There is a need to develop a computational resource of zinc finger proteins (ZFP to identify the potential binding sites and its location, which reduce the time of in vivo task, and overcome the difficulties in selecting the specific type of zinc finger protein and the target site in the DNA sequence. Description ZifBASE provides an extensive collection of various natural and engineered ZFP. It uses standard names and a genetic and structural classification scheme to present data retrieved from UniProtKB, GenBank, Protein Data Bank, ModBase, Protein Model Portal and the literature. It also incorporates specialized features of ZFP including finger sequences and positions, number of fingers, physiochemical properties, classes, framework, PubMed citations with links to experimental structures (PDB, if available and modeled structures of natural zinc finger proteins. ZifBASE provides information on zinc finger proteins (both natural and engineered ones, the number of finger units in each of the zinc finger proteins (with multiple fingers, the synergy between the adjacent fingers and their positions. Additionally, it gives the individual finger sequence and their target DNA site to which it binds for better and clear understanding on the interactions of adjacent fingers. The current version of ZifBASE contains 139 entries of which 89 are engineered ZFPs, containing 3-7F totaling to 296 fingers. There are 50 natural zinc finger protein entries ranging from 2-13F, totaling to 307 fingers. It has sequences and structures from literature, Protein Data Bank, ModBase and Protein Model Portal. The interface is cross linked to other public

  1. Modular Synthetic Inverters from Zinc Finger Proteins and Small RNAs.

    Directory of Open Access Journals (Sweden)

    Justin Hsia

    Full Text Available Synthetic zinc finger proteins (ZFPs can be created to target promoter DNA sequences, repressing transcription. The binding of small RNA (sRNA to ZFP mRNA creates an ultrasensitive response to generate higher effective Hill coefficients. Here we combined three "off the shelf" ZFPs and three sRNAs to create new modular inverters in E. coli and quantify their behavior using induction fold. We found a general ordering of the effects of the ZFPs and sRNAs on induction fold that mostly held true when combining these parts. We then attempted to construct a ring oscillator using our new inverters. Our chosen parts performed insufficiently to create oscillations, but we include future directions for improvement upon our work presented here.

  2. Enhanced protein production by engineered zinc finger proteins.

    Science.gov (United States)

    Reik, Andreas; Zhou, Yuanyue; Collingwood, Trevor N; Warfe, Lyndon; Bartsevich, Victor; Kong, Yanhong; Henning, Karla A; Fallentine, Barrett K; Zhang, Lei; Zhong, Xiaohong; Jouvenot, Yann; Jamieson, Andrew C; Rebar, Edward J; Case, Casey C; Korman, Alan; Li, Xiao-Yong; Black, Amelia; King, David J; Gregory, Philip D

    2007-08-01

    Increasing the yield of therapeutic proteins from mammalian production cell lines reduces costs and decreases the time to market. To this end, we engineered a zinc finger protein transcription factor (ZFP TF) that binds a DNA sequence within the promoter driving transgene expression. This ZFP TF enabled >100% increase in protein yield from CHO cells in transient, stable, and fermentor production run settings. Expression vectors engineered to carry up to 10 ZFP binding sites further enhanced ZFP-mediated increases in protein production up to approximately 500%. The multimerized ZFP binding sites function independently of the promoter, and therefore across vector platforms. CHO cell lines stably expressing ZFP TFs demonstrated growth characteristics similar to parental cell lines. ZFP TF expression and gains in protein production were stable over >30 generations in the absence of antibiotic selection. Our results demonstrate that ZFP TFs can rapidly and stably increase protein production in mammalian cells. (c) 2006 Wiley Periodicals, Inc.

  3. Genome editing in plant cells by zinc finger nucleases.

    Science.gov (United States)

    Weinthal, Dan; Tovkach, Andriy; Zeevi, Vardit; Tzfira, Tzvi

    2010-06-01

    Gene targeting is a powerful tool for functional gene studies. However, only a handful of reports have been published describing the successful targeting of genome sequences in model and crop plants. Gene targeting can be stimulated by induction of double-strand breaks at specific genomic sites. The expression of zinc finger nucleases (ZFNs) can induce genomic double-strand breaks. Indeed, ZFNs have been used to drive the replacement of native DNA sequences with foreign DNA molecules, to mediate the integration of the targeted transgene into native genome sequences, to stimulate the repair of defective transgenes, and as site-specific mutagens in model and crop plant species. This review introduces the principles underlying the use of ZFNs for genome editing, with an emphasis on their recent use for plant research and biotechnology.

  4. Critical parameters for genome editing using zinc finger nucleases.

    Science.gov (United States)

    Camenisch, Todd D; Brilliant, Murray H; Segal, David J

    2008-06-01

    The possibility to make precise modifications to the genome at high frequency holds tremendous potential for biotechnology, conventional drug development and gene therapy. Homologous recombination is a powerful method for introducing such modifications in organisms such as mice. However, in mammals and plants, the frequency of gene modification by homologous recombination is quite low, precluding the therapeutic use of this methodology. In the past few years, tremendous progress has been made in overcoming one of primary barriers to efficient recombination, namely the introduction of a targeted double-strand break near the intended recombination site. This review will discuss the advances in engineering custom zinc-finger nucleases and their application in stimulating homologous recombination in higher eukaryotic cells at efficiencies approaching 1 in 2 cells.

  5. [Cloning and structure analysis of zinc finger protein gene in Populus euphratica Oliv].

    Science.gov (United States)

    Wang, Jun-Ying; Yin, Wei-Lun; Xia, Xin-Li

    2005-03-01

    Zinc finger proteins belong to a family of nuclear transcription factors which function is to regulate gene expression in both prokaryotic and eukaryotic cells. A pair of primers was designed after analyzing the conservation of salt-tolerant zinc protein Alfin-1 in such diverse plants as alfalfa and Arabidopsis. The zinc finger protein gene is isolated from total RNA with RT-PCR in aquaculture leaves of Populus euphratica . Its full cDNA length is 924bp. Analysis of its amino acid sequence showed it has a typical Cys(2)/His(2) zinc finger structure and a G-rich promoter binding site GTGGGG, starting from position 556. Since transcrptional factors which have the same function show conservation in structure and amino acid sequence of DNA binding region, the structure analysis in this paper indicates the cloned zinc finger protein gene may have functional correlation to Alfin-1.

  6. Co(II) Coordination in Prokaryotic Zinc Finger Domains as Revealed by UV-Vis Spectroscopy.

    Science.gov (United States)

    Sivo, Valeria; D'Abrosca, Gianluca; Russo, Luigi; Iacovino, Rosa; Pedone, Paolo Vincenzo; Fattorusso, Roberto; Isernia, Carla; Malgieri, Gaetano

    2017-01-01

    Co(II) electronic configuration allows its use as a spectroscopic probe in UV-Vis experiments to characterize the metal coordination sphere that is an essential component of the functional structure of zinc-binding proteins and to evaluate the metal ion affinities of these proteins. Here, exploiting the capability of the prokaryotic zinc finger to use different combinations of residues to properly coordinate the structural metal ion, we provide the UV-Vis characterization of Co(II) addition to Ros87 and its mutant Ros87_C27D which bears an unusual CysAspHis 2 coordination sphere. Zinc finger sites containing only one cysteine have been infrequently characterized. We show for the CysAspHis 2 coordination an intense d - d transition band, blue-shifted with respect to the Cys 2 His 2 sphere. These data complemented by NMR and CD data demonstrate that the tetrahedral geometry of the metal site is retained also in the case of a single-cysteine coordination sphere.

  7. Perceiving fingers in single-digit arithmetic problems

    Directory of Open Access Journals (Sweden)

    Ilaria eBerteletti

    2015-03-01

    Full Text Available In this study, we investigate in children the neural underpinnings of finger representation and finger movement involved in single-digit arithmetic problems. Evidence suggests that finger representation and finger-based strategies play an important role in learning and understanding arithmetic. Because different operations rely on different networks, we compared activation for subtraction and multiplication problems in independently localized finger somatosensory and motor areas and tested whether activation was related to skill. Brain activations from children between 8 and 13 years of age revealed that only subtraction problems significantly activated finger motor areas, suggesting reliance on finger-based strategies. In addition, larger subtraction problems yielded greater somatosensory activation than smaller problems, suggesting a greater reliance on finger representation for larger numerical values. Interestingly, better performance in subtraction problems was associated with lower activation in the finger somatosensory area. Our results support the importance of fine-grained finger representation in arithmetical skill and are the first neurological evidence for a functional role of the somatosensory finger area in proficient arithmetical problem solving, in particular for those problems requiring quantity manipulation. From an educational perspective, these results encourage investigating whether different finger-based strategies facilitate arithmetical understanding and encourage educational practices aiming at integrating finger representation and finger-based strategies as a tool for instilling stronger numerical sense.

  8. Zinc fingers 1, 2, 5 and 6 of transcriptional regulator, PRDM4, are required for its nuclear localisation

    International Nuclear Information System (INIS)

    Tunbak, Hale; Georgiou, Christiana; Guan, Cui; Richardson, William David; Chittka, Alexandra

    2016-01-01

    PRDM4 is a member of the PRDM family of transcriptional regulators which control various aspects of cellular differentiation and proliferation. PRDM proteins exert their biological functions both in the cytosol and the nucleus of cells. All PRDM proteins are characterised by the presence of two distinct structural motifs, the PR/SET domain and the zinc finger (ZF) motifs. We previously observed that deletion of all six zinc fingers found in PRDM4 leads to its accumulation in the cytosol, whereas overexpressed full length PRDM4 is found predominantly in the nucleus. Here, we investigated the requirements for single zinc fingers in the nuclear localisation of PRDM4. We demonstrate that ZF's 1, 2, 5 and 6 contribute to the accumulation of PRDM4 in the nucleus. Their effect is additive as deleting either ZF1-2 or ZF 5–6 redistributes PRDM4 protein from being almost exclusively nuclear to cytosolic and nuclear. We investigated the potential mechanism of nuclear shuttling of PRDM4 via the importin α/β-mediated pathway and find that PRDM4 nuclear targeting is independent of α/β-mediated nuclear import. -- Highlights: •Zinc fingers 1, 2, 5, and 6 are necessary for efficient nuclear localisation of PRDM4. •Zinc fingers 3 and 4 are dispensable for nuclear localisation of PRDM4. •Zinc knuckle is dispensable for nuclear localisation of PRDM4. •PRDM4 nuclear transport is independent of importin α/β-mediated pathway of nuclear import.

  9. Zinc fingers 1, 2, 5 and 6 of transcriptional regulator, PRDM4, are required for its nuclear localisation

    Energy Technology Data Exchange (ETDEWEB)

    Tunbak, Hale, E-mail: h.tunbak@ucl.ac.uk [The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT (United Kingdom); Georgiou, Christiana, E-mail: christiana.georgiou.10@ucl.ac.uk [The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT (United Kingdom); Guan, Cui, E-mail: c.guan@qmul.ac.uk [School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Richardson, William David, E-mail: w.richardson@ucl.ac.uk [The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT (United Kingdom); Chittka, Alexandra, E-mail: a.chittka@ucl.ac.uk [The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2016-05-27

    PRDM4 is a member of the PRDM family of transcriptional regulators which control various aspects of cellular differentiation and proliferation. PRDM proteins exert their biological functions both in the cytosol and the nucleus of cells. All PRDM proteins are characterised by the presence of two distinct structural motifs, the PR/SET domain and the zinc finger (ZF) motifs. We previously observed that deletion of all six zinc fingers found in PRDM4 leads to its accumulation in the cytosol, whereas overexpressed full length PRDM4 is found predominantly in the nucleus. Here, we investigated the requirements for single zinc fingers in the nuclear localisation of PRDM4. We demonstrate that ZF's 1, 2, 5 and 6 contribute to the accumulation of PRDM4 in the nucleus. Their effect is additive as deleting either ZF1-2 or ZF 5–6 redistributes PRDM4 protein from being almost exclusively nuclear to cytosolic and nuclear. We investigated the potential mechanism of nuclear shuttling of PRDM4 via the importin α/β-mediated pathway and find that PRDM4 nuclear targeting is independent of α/β-mediated nuclear import. -- Highlights: •Zinc fingers 1, 2, 5, and 6 are necessary for efficient nuclear localisation of PRDM4. •Zinc fingers 3 and 4 are dispensable for nuclear localisation of PRDM4. •Zinc knuckle is dispensable for nuclear localisation of PRDM4. •PRDM4 nuclear transport is independent of importin α/β-mediated pathway of nuclear import.

  10. Kinetics and thermodynamics of zinc(II) and arsenic(III) binding to XPA and PARP-1 zinc finger peptides.

    Science.gov (United States)

    Huestis, Juliana; Zhou, Xixi; Chen, Li; Feng, Changjian; Hudson, Laurie G; Liu, Ke Jian

    2016-10-01

    Inhibition of DNA repair is an established mechanism of arsenic co-carcinogenesis, and may be perpetuated by the binding of As(III) to key zinc finger (zf) DNA repair proteins. Validated molecular targets of As(III) include the first zinc finger domain of Poly (ADP-Ribose) Polymerase 1 (PARP-1), and the zinc finger domain of Xeroderma Pigmentosum Complementation Group A (XPA). In order to gain an understanding of the thermodynamic and kinetic parameters of the interaction of As(III) with these two zinc finger motifs, a fluorescence based approach was used to investigate Zn(II) and As(III) binding to synthetic model peptides corresponding to the zf motif of XPA and first zf motif of PARP-1, referred to in this paper as XPAzf and PARP-1zf-1, respectively. While XPAzf and PARP-1zf-1 display similar relative affinities for As(III), PARP-1zf-1 shows a potential kinetic advantage over XPAzf for As(III) binding, with a rate constant for the fast phase of formation of As(III)-PARP-1zf-1 approximately 4-fold higher than for As(III)-XPAzf. However, the binding of Zn(II) with either peptide proceeds at a faster rate than As(III). Notably, XPAzf demonstrates comparable affinities for binding both metals, while PARP-1zf-1 shows a slightly higher affinity for Zn(II), suggesting that the relative concentrations of Zn(II) and As(III) in a system may significantly influence which species predominates in zinc finger occupancy. These results provide insight into the mechanisms underlying interactions between zinc finger structures and As(III), and highlight the potential utility of zinc supplementation in mitigating adverse effects of As(III) on zinc finger functions in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. A multiscale approach to simulating the conformational properties of unbound multi-C₂H₂ zinc finger proteins.

    Science.gov (United States)

    Liu, Lei; Wade, Rebecca C; Heermann, Dieter W

    2015-09-01

    The conformational properties of unbound multi-Cys2 His2 (mC2H2) zinc finger proteins, in which zinc finger domains are connected by flexible linkers, are studied by a multiscale approach. Three methods on different length scales are utilized. First, atomic detail molecular dynamics simulations of one zinc finger and its adjacent flexible linker confirmed that the zinc finger is more rigid than the flexible linker. Second, the end-to-end distance distributions of mC2H2 zinc finger proteins are computed using an efficient atomistic pivoting algorithm, which only takes excluded volume interactions into consideration. The end-to-end distance distribution gradually changes its profile, from left-tailed to right-tailed, as the number of zinc fingers increases. This is explained by using a worm-like chain model. For proteins of a few zinc fingers, an effective bending constraint favors an extended conformation. Only for proteins containing more than nine zinc fingers, is a somewhat compacted conformation preferred. Third, a mesoscale model is modified to study both the local and the global conformational properties of multi-C2H2 zinc finger proteins. Simulations of the CCCTC-binding factor (CTCF), an important mC2H2 zinc finger protein for genome spatial organization, are presented. © 2015 Wiley Periodicals, Inc.

  12. Finger millet (Eleucine coracana) flour as a vehicle for fortification with zinc.

    Science.gov (United States)

    Tripathi, Bhumika; Platel, Kalpana

    2010-01-01

    Millets, being less expensive compared to cereals and the staple for the poorer sections of population, could be the choice for fortification with micronutrients such as zinc. In view of this, finger millet, widely grown and commonly consumed in southern India, was explored as a vehicle for fortification with zinc in this investigation. Finger millet flour fortified with either zinc oxide or zinc stearate so as to provide 50mg zinc per kg flour, was specifically examined for the bioaccessibility of the fortified mineral, as measured by in vitro simulated gastrointestinal digestion procedure and storage stability. Addition of the zinc salts increased the bioaccessible zinc content by 1.5-3 times that of the unfortified flour. Inclusion of EDTA along with the fortified salt significantly enhanced the bioaccessibility of zinc from the fortified flours, the increase being three-fold. Inclusion of citric acid along with the zinc salt and EDTA during fortification did not have any additional beneficial effect on zinc bioaccessiblity. Moisture and free fatty acid contents of the stored fortified flours indicated the keeping quality of the same, up to 60 days. Both zinc oxide and zinc stearate were equally effective as fortificants, when used in combination with EDTA as a co-fortificant. The preparation of either roti or dumpling from the fortified flours stored up to 60 days did not result in any significant compromise in the bioaccessible zinc content. Thus, the present study has revealed that finger millet flour can effectively be used as a vehicle for zinc fortification to derive additional amounts of bioaccessible zinc, with reasonably good storage stability, to combat zinc deficiency. Copyright 2009 Elsevier GmbH. All rights reserved.

  13. Can Co(II) or Cd(II) substitute for Zn(II) in zinc fingers?

    Indian Academy of Sciences (India)

    Unknown

    Zinc finger domains consist of sequences of amino acids containing ... acids containing cysteine and histidine residues tetrahedrally coordinated to a zinc ion. .... an inflection at m = 4 (where m is moles of base added per mole of metal ion), followed by a buffer region. This indicates that the sulphur and amino nitrogen, and ...

  14. Sequence-specific DNA binding by glucocorticoid receptor "zinc finger peptides".

    OpenAIRE

    Archer, T K; Hager, G L; Omichinski, J G

    1990-01-01

    Steroid hormone receptors can activate or repress transcription from responsive loci by binding to DNA. We have examined the mechanism of DNA binding by individually synthesizing the putative "zinc finger peptides" from the rat glucocorticoid receptor. Atomic absorption studies show that the peptides will bind zinc on an equimolar basis, and circular dichroism experiments demonstrate a significant alteration in secondary structure in the presence of zinc. The results from a series of experime...

  15. Zinc to cadmium replacement in the A. thaliana SUPERMAN Cys₂ His₂ zinc finger induces structural rearrangements of typical DNA base determinant positions.

    Science.gov (United States)

    Malgieri, Gaetano; Zaccaro, Laura; Leone, Marilisa; Bucci, Enrico; Esposito, Sabrina; Baglivo, Ilaria; Del Gatto, Annarita; Russo, Luigi; Scandurra, Roberto; Pedone, Paolo V; Fattorusso, Roberto; Isernia, Carla

    2011-11-01

    Among heavy metals, whose toxicity cause a steadily increasing of environmental pollution, cadmium is of special concern due to its relatively high mobility in soils and potential toxicity at low concentrations. Given their ubiquitous role, zinc fingers domains have been proposed as mediators for the toxic and carcinogenic effects exerted by xenobiotic metals. To verify the structural effects of zinc replacement by cadmium in zinc fingers, we have determined the high resolution structure of the single Cys₂ His₂ zinc finger of the Arabidopsis thaliana SUPERMAN protein (SUP37) complexed to the cadmium ion by means of UV-vis and NMR techniques. SUP37 is able to bind Cd(II), though with a dissociation constant higher than that measured for Zn(II). Cd-SUP37 retains the ββα fold but experiences a global structural rearrangement affecting both the relative orientation of the secondary structure elements and the position of side chains involved in DNA recognition: among them Ser17 side chain, which we show to be essential for DNA binding, experiences the largest displacement. 2011 Wiley Periodicals, Inc.

  16. Zinc-finger antiviral protein inhibits XMRV infection.

    Directory of Open Access Journals (Sweden)

    Xinlu Wang

    Full Text Available BACKGROUND: The zinc-finger antiviral protein (ZAP is a host factor that specifically inhibits the replication of certain viruses, including Moloney murine leukemia virus (MoMLV, HIV-1, and certain alphaviruses and filoviruses. ZAP binds to specific viral mRNAs and recruits cellular mRNA degradation machinery to degrade the target RNA. The common features of ZAP-responsive RNA sequences remain elusive and thus whether a virus is susceptible to ZAP can only be determined experimentally. Xenotropic murine leukemia virus-related virus (XMRV is a recently identified γ-retrovirus that was originally thought to be involved in prostate cancer and chronic fatigue syndrome but recently proved to be a laboratory artefact. Nonetheless, XMRV as a new retrovirus has been extensively studied. Since XMRV and MoMLV share only 67.9% sequence identity in the 3'UTRs, which is the target sequence of ZAP in MoMLV, whether XMRV is susceptible to ZAP remains to be determined. FINDINGS: We constructed an XMRV-luc vector, in which the coding sequences of Gag-Pol and part of Env were replaced with luciferase-coding sequence. Overexpression of ZAP potently inhibited the expression of XMRV-luc in a ZAP expression-level-dependent manner, while downregulation of endogenous ZAP rendered cells more sensitive to infection. Furthermore, ZAP inhibited the spreading of replication-competent XMRV. Consistent with the previously reported mechanisms by which ZAP inhibits viral infection, ZAP significantly inhibited the accumulation of XMRV-luc mRNA in the cytoplasm. The ZAP-responsive element in XMRV mRNA was mapped to the 3'UTR. CONCLUSIONS: ZAP inhibits XMRV replication by preventing the accumulation of viral mRNA in the cytoplasm. Documentation of ZAP inhibiting XMRV helps to broaden the spectrum of ZAP's antiviral activity. Comparison of the target sequences of ZAP in XMRV and MoMLV helps to better understand the features of ZAP-responsive elements.

  17. The role of C2H2 zinc finger proteins in plant responses to abiotic stresses.

    Science.gov (United States)

    Wang, Ke; Ding, Yanfei; Cai, Chong; Chen, Zhixiang; Zhu, Cheng

    2018-03-23

    Abiotic stresses are important factors affecting plant growth and development and limiting agricultural production worldwide. Plants have evolved complex regulatory mechanisms to respond and adapt to constantly changing environmental conditions. C2H2 zinc finger proteins form a relatively large family of transcriptional regulators in plants. Recent studies have revealed that C2H2 zinc finger proteins function as key transcriptional regulators in plant responses to a wide spectrum of stress conditions, including extreme temperatures, salinity, drought, oxidative stress, excessive light and silique shattering. Here, we summarize recent functional analysis on C2H2 zinc finger proteins in plant responses to abiotic stresses and discuss their roles as part of a large regulatory network in the perception and responses by plants to different environmental stimuli. This article is protected by copyright. All rights reserved.

  18. Solution NMR characterization of Sgf73(1-104) indicates that Zn ion is required to stabilize zinc finger motif

    International Nuclear Information System (INIS)

    Lai, Chaohua; Wu, Minhao; Li, Pan; Shi, Chaowei; Tian, Changlin; Zang, Jianye

    2010-01-01

    Zinc finger motif contains a zinc ion coordinated by several conserved amino acid residues. Yeast Sgf73 protein was identified as a component of SAGA (Spt/Ada/Gcn5 acetyltransferase) multi-subunit complex and Sgf73 protein was known to contain two zinc finger motifs. Sgf73(1-104), containing the first zinc finger motif, was necessary to modulate the deubiquitinase activity of SAGA complex. Here, Sgf73(1-104) was over-expressed using bacterial expression system and purified for solution NMR (nuclear magnetic resonance) structural studies. Secondary structure and site-specific relaxation analysis of Sgf73(1-104) were achieved after solution NMR backbone assignment. Solution NMR and circular dichroism analysis of Sgf73(1-104) after zinc ion removal using chelation reagent EDTA (ethylene-diamine-tetraacetic acid) demonstrated that zinc ion was required to maintain stable conformation of the zinc finger motif.

  19. Chemical Approach to Biological Safety: Molecular-Level Control of an Integrated Zinc Finger Nuclease

    DEFF Research Database (Denmark)

    Németh, Eszter; Asaka, Masamitsu N; Kato, Kohsuke

    2018-01-01

    Application of artificial nucleases (ANs) in genome editing is still hindered by their cytotoxicity related to off-target cleavages. This problem can be targeted by regulation of the nuclease domain. Here, we provide an experimental survey of computationally designed integrated zinc finger...... nucleases, constructed by linking the inactivated catalytic centre and the allosteric activator sequence of the colicin E7 nuclease domain to the two opposite termini of a zinc finger array. DNA specificity and metal binding were confirmed by electrophoretic mobility shift assays, synchrotron radiation...

  20. The unique N-terminal zinc finger of synaptotagmin-like protein 4 reveals FYVE structure.

    Science.gov (United States)

    Miyamoto, Kazuhide; Nakatani, Arisa; Saito, Kazuki

    2017-12-01

    Synaptotagmin-like protein 4 (Slp4), expressed in human platelets, is associated with dense granule release. Slp4 is comprised of the N-terminal zinc finger, Slp homology domain, and C2 domains. We synthesized a compact construct (the Slp4N peptide) corresponding to the Slp4 N-terminal zinc finger. Herein, we have determined the solution structure of the Slp4N peptide by nuclear magnetic resonance (NMR). Furthermore, experimental, chemical modification of Cys residues revealed that the Slp4N peptide binds two zinc atoms to mediate proper folding. NMR data showed that eight Cys residues coordinate zinc atoms in a cross-brace fashion. The Simple Modular Architecture Research Tool database predicted the structure of Slp4N as a RING finger. However, the actual structure of the Slp4N peptide adopts a unique C 4 C 4 -type FYVE fold and is distinct from a RING fold. To create an artificial RING finger (ARF) with specific ubiquitin-conjugating enzyme (E2)-binding capability, cross-brace structures with eight zinc-ligating residues are needed as the scaffold. The cross-brace structure of the Slp4N peptide could be utilized as the scaffold for the design of ARFs. © 2017 The Protein Society.

  1. Engineering zinc finger protein transcription factors : The therapeutic relevance of switching endogenous gene expression on or off at command

    NARCIS (Netherlands)

    Gommans, WM; Haisma, HJ; Rots, MG

    2005-01-01

    Modulating gene expression directly at the DNA level represents a novel approach to control cellular processes. In this respect, zinc finger protein DNA-binding domains can be engineered to target virtually any gene. Coupling of a transcription activation or repression domain to these zinc fingers

  2. DUF581 is plant specific FCS-like zinc finger involved in protein-protein interaction.

    Directory of Open Access Journals (Sweden)

    Muhammed Jamsheer K

    Full Text Available Zinc fingers are a ubiquitous class of protein domain with considerable variation in structure and function. Zf-FCS is a highly diverged group of C2-C2 zinc finger which is present in animals, prokaryotes and viruses, but not in plants. In this study we identified that a plant specific domain of unknown function, DUF581 is a zf-FCS type zinc finger. Based on HMM-HMM comparison and signature motif similarity we named this domain as FCS-Like Zinc finger (FLZ domain. A genome wide survey identified that FLZ domain containing genes are bryophytic in origin and this gene family is expanded in spermatophytes. Expression analysis of selected FLZ gene family members of A. thaliana identified an overlapping expression pattern suggesting a possible redundancy in their function. Unlike the zf-FCS domain, the FLZ domain found to be highly conserved in sequence and structure. Using a combination of bioinformatic and protein-protein interaction tools, we identified that FLZ domain is involved in protein-protein interaction.

  3. Fear-of-intimacy-mediated zinc transport controls the function of zinc-finger transcription factors involved in myogenesis.

    Science.gov (United States)

    Carrasco-Rando, Marta; Atienza-Manuel, Alexandra; Martín, Paloma; Burke, Richard; Ruiz-Gómez, Mar

    2016-06-01

    Zinc is a component of one-tenth of all human proteins. Its cellular concentration is tightly regulated because its dyshomeostasis has catastrophic health consequences. Two families of zinc transporters control zinc homeostasis in organisms, but there is little information about their specific developmental roles. We show that the ZIP transporter Fear-of-intimacy (Foi) is necessary for the formation of Drosophila muscles. In foi mutants, myoblasts segregate normally, but their specification is affected, leading to the formation of a misshapen muscle pattern and distorted midgut. The observed phenotypes could be ascribed to the inactivation of specific zinc-finger transcription factors (ZFTFs), supporting the hypothesis that they are a consequence of intracellular depletion of zinc. Accordingly, foi phenotypes can be rescued by mesodermal expression of other ZIP members with similar subcellular localization. We propose that Foi acts mostly as a transporter to regulate zinc intracellular homeostasis, thereby impacting on the activity of ZFTFs that control specific developmental processes. Our results additionally suggest a possible explanation for the presence of large numbers of zinc transporters in organisms based on differences in ion transport specificity and/or degrees of activity among transporters. © 2016. Published by The Company of Biologists Ltd.

  4. Expression of putative zinc-finger protein lcn61 gene in lymphocystis disease virus China (LCDV-cn) genome

    Science.gov (United States)

    Yan, Xiuying; Sun, Xiuqin

    2009-05-01

    An open reading frame ( lcn61) of lymphocystis disease virus China (LCDV-cn), probably responsible for encoding putative zinc-finger proteins was amplified and inserted into pET24a (+) vector. Then it expressed in E. coli BL21 (DE3), and His-tag fusion protein of high yield was obtained. It was found that the fusion protein existed in E. coli mainly as inclusion bodies. The bioinformatics analysis indicates that LCN61 is C2H2 type zinc-finger protein containing four C2H2 zinc-finger motifs. This work provides a theory for functional research of lcn61 gene.

  5. Zinc(II) and the single-stranded DNA binding protein of bacteriophage T4

    International Nuclear Information System (INIS)

    Gauss, P.; Krassa, K.B.; McPheeters, D.S.; Nelson, M.A.; Gold, L.

    1987-01-01

    The DNA binding domain of the gene 32 protein of the bacteriophage T4 contains a single zinc-finger sequence. The gene 32 protein is an extensively studied member of a class of proteins that bind relatively nonspecifically to single-stranded DNA. The authors have sequenced and characterized mutations in gene 32 whose defective proteins are activated by increasing the Zn(II) concentration in the growth medium. The results identify a role for the gene 32 protein in activation of T4 late transcription. Several eukaryotic proteins with zinc fingers participate in activation of transcription, and the gene 32 protein of T4 should provide a simple, well-characterized system in which genetics can be utilized to study the role of a zinc finger in nucleic acid binding and gene expression

  6. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases

    DEFF Research Database (Denmark)

    Chen, Fuqiang; Pruett-Miller, Shondra M; Huang, Yuping

    2011-01-01

    Zinc-finger nucleases (ZFNs) have enabled highly efficient gene targeting in multiple cell types and organisms. Here we describe methods for using simple ssDNA oligonucleotides in tandem with ZFNs to efficiently produce human cell lines with three distinct genetic outcomes: (i) targeted point...... mutation, (ii) targeted genomic deletion of up to 100 kb and (iii) targeted insertion of small genetic elements concomitant with large genomic deletions....

  7. Zinc Finger Nuclease: A New Approach to Overcome Beta-Lactam Antibiotic Resistance

    OpenAIRE

    Shahbazi Dastjerdeh, Mansoureh; Kouhpayeh, Shirin; Sabzehei, Faezeh; Khanahmad, Hossein; Salehi, Mansour; Mohammadi, Zahra; Shariati, Laleh; Hejazi, Zahra; Rabiei, Parisa; Manian, Mostafa

    2016-01-01

    Background: The evolution of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) has been accelerated recently by the indiscriminate application of antibiotics. Antibiotic resistance has challenged the success of medical interventions and therefore is considered a hazardous threat to human health. Objectives: The present study aimed to describe the use of zinc finger nuclease (ZFN) technology to target and disrupt a plasmid-encoded ?-lactamase, which prevents horizontal...

  8. Knockout of Myostatin by Zinc-finger Nuclease in Sheep Fibroblasts and Embryos

    OpenAIRE

    Zhang, Xuemei; Wang, Liqin; Wu, Yangsheng; Li, Wenrong; An, Jing; Zhang, Fuchun; Liu, Mingjun

    2016-01-01

    Myostatin (MSTN) can negatively regulate the growth and development of skeletal muscle, and natural mutations can cause “double-muscling” trait in animals. In order to block the inhibiting effect of MSTN on muscle growth, we transferred zinc-finger nucleases (ZFN) which targeted sheep MSTN gene into cultured fibroblasts. Gene targeted colonies were isolated from transfected fibroblasts by serial dilution culture and screened by sequencing. Two colonies were identified with mono-allele mutatio...

  9. Zinc finger protein 148 is dispensable for primitive and definitive hematopoiesis in mice.

    Directory of Open Access Journals (Sweden)

    Anna Nilton

    Full Text Available Hematopoiesis is regulated by transcription factors that induce cell fate and differentiation in hematopoietic stem cells into fully differentiated hematopoietic cell types. The transcription factor zinc finger protein 148 (Zfp148 interacts with the hematopoietic transcription factor Gata1 and has been implicated to play an important role in primitive and definitive hematopoiesis in zebra fish and mouse chimeras. We have recently created a gene-trap knockout mouse model deficient for Zfp148, opening up for analyses of hematopoiesis in a conventional loss-of-function model in vivo. Here, we show that Zfp148-deficient neonatal and adult mice have normal or slightly increased levels of hemoglobin, hematocrit, platelets and white blood cells, compared to wild type controls. Hematopoietic lineages in bone marrow, thymus and spleen from Zfp148 (gt/gt mice were further investigated by flow cytometry. There were no differences in T-cells (CD4 and CD8 single positive cells, CD4 and CD8 double negative/positive cells in either organ. However, the fraction of CD69- and B220-positive cells among lymphocytes in spleen was slightly lower at postnatal day 14 in Zfp148 (gt/gt mice compared to wild type mice. Our results demonstrate that Zfp148-deficient mice generate normal mature hematopoietic populations thus challenging earlier studies indicating that Zfp148 plays a critical role during hematopoietic development.

  10. The role of the DNA-binding One Zinc Finger (DOF) transcription factor family in plants.

    Science.gov (United States)

    Noguero, Mélanie; Atif, Rana Muhammad; Ochatt, Sergio; Thompson, Richard D

    2013-08-01

    The DOF (DNA-binding One Zinc Finger) family of transcription factors is involved in many fundamental processes in higher plants, including responses to light and phytohormones as well as roles in seed maturation and germination. DOF transcription factor genes are restricted in their distribution to plants, where they are in many copies in both gymnosperms and angiosperms and also present in lower plants such as the moss Physcomitrella patens and in the alga Chlamydomonas reinhardtii which possesses a single DOF gene. DOF transcription factors bind to their promoter targets at the consensus sequence AAAG. This binding depends upon the presence of the highly conserved DOF domain in the protein. Depending on the target gene, DOF factor binding may activate or repress transcription. DOF factors are expressed in most if not all tissues of higher plants, but frequently appear to be functionally redundant. Recent next-generation sequencing data provide a more comprehensive survey of the distribution of DOF sequence classes among plant species and within tissue types, and clues as to the evolution of functions assumed by this transcription factor family. DOFs do not appear to be implicated in the initial differentiation of the plant body plan into organs via the resolution of meristematic zones, in contrast to MADS-box and homeobox transcription factors, which are found in other non-plant eukaryotes, and this may reflect a more recent evolutionary origin. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Myocardial ischemic preconditioning upregulated protein 1(Mipu1):zinc finger protein 667 - a multifunctional KRAB/C{sub 2}H{sub 2} zinc finger protein

    Energy Technology Data Exchange (ETDEWEB)

    Han, D.; Zhang, C. [Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province (China); Fan, W.J. [Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province (China); The Second Affiliated Hospital, University of South China, Hengyang City, Hunan Province (China); Pan, W.J.; Feng, D.M.; Qu, S.L.; Jiang, Z.S. [Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province (China)

    2014-10-31

    Myocardial ischemic preconditioning upregulated protein 1 (Mipu1) is a newly discovered upregulated gene produced in rats during the myocardial ischemic preconditioning process. Mipu1 cDNA contains a 1824-base pair open reading frame and encodes a 608 amino acid protein with an N-terminal Krüppel-associated box (KRAB) domain and classical zinc finger C{sub 2}H{sub 2} motifs in the C-terminus. Mipu1 protein is located in the cell nucleus. Recent studies found that Mipu1 has a protective effect on the ischemia-reperfusion injury of heart, brain, and other organs. As a nuclear factor, Mipu1 may perform its protective function through directly transcribing and repressing the expression of proapoptotic genes to repress cell apoptosis. In addition, Mipu1 also plays an important role in regulating the gene expression of downstream inflammatory mediators by inhibiting the activation of activator protein-1 and serum response element.

  12. Identifying key interactions stabilizing DOF zinc finger-DNA complexes using in silico approaches.

    Science.gov (United States)

    Hamzeh-Mivehroud, Maryam; Moghaddas-Sani, Hakimeh; Rahbar-Shahrouziasl, Mahdieh; Dastmalchi, Siavoush

    2015-10-07

    DOF (DNA-binding with one finger) proteins, a family of DNA-binding transcription factors, are members of zinc fingers unique to plants. They are associated with different plant specific phenomena including germination, dormancy, light and defense responses. Until now, there is no report of experimentally solved structure for DOF proteins, making empirical investigation of DOF-DNA interaction more challenging. It has been shown that comparative modeling can be used to reliably predict the three-dimensional (3D) model of structurally unknown proteins whenever a suitable template is available. Furthermore, current molecular mechanics force fields allow prediction of interaction energies for macromolecular complexes. Therefore, the approaches considered in this work were to model the 3D structures of DOF zinc fingers (ZFs) from Arabidopsis thaliana complexed with DNA molecule, to calculate their binding energies, to identify key interactions established between ZFs and DNA, and to determine the impact of the different interactions on the binding energies. The results were used to predict the binding affinities for the novel designed ZFs and may be used in engineering DNA binding proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Selection-independent generation of gene knockout mouse embryonic stem cells using zinc-finger nucleases.

    Directory of Open Access Journals (Sweden)

    Anna Osiak

    Full Text Available Gene knockout in murine embryonic stem cells (ESCs has been an invaluable tool to study gene function in vitro or to generate animal models with altered phenotypes. Gene targeting using standard techniques, however, is rather inefficient and typically does not exceed frequencies of 10(-6. In consequence, the usage of complex positive/negative selection strategies to isolate targeted clones has been necessary. Here, we present a rapid single-step approach to generate a gene knockout in mouse ESCs using engineered zinc-finger nucleases (ZFNs. Upon transient expression of ZFNs, the target gene is cleaved by the designer nucleases and then repaired by non-homologous end-joining, an error-prone DNA repair process that introduces insertions/deletions at the break site and therefore leads to functional null mutations. To explore and quantify the potential of ZFNs to generate a gene knockout in pluripotent stem cells, we generated a mouse ESC line containing an X-chromosomally integrated EGFP marker gene. Applying optimized conditions, the EGFP locus was disrupted in up to 8% of ESCs after transfection of the ZFN expression vectors, thus obviating the need of selection markers to identify targeted cells, which may impede or complicate downstream applications. Both activity and ZFN-associated cytotoxicity was dependent on vector dose and the architecture of the nuclease domain. Importantly, teratoma formation assays of selected ESC clones confirmed that ZFN-treated ESCs maintained pluripotency. In conclusion, the described ZFN-based approach represents a fast strategy for generating gene knockouts in ESCs in a selection-independent fashion that should be easily transferrable to other pluripotent stem cells.

  14. Mutations in the zinc finger protein gene, ZNF469, contribute to the pathogenesis of keratoconus.

    Science.gov (United States)

    Vincent, Andrea L; Jordan, Charlotte A; Cadzow, Murray J; Merriman, Tony R; McGhee, Charles N

    2014-08-05

    Mutations in the zinc finger protein gene ZNF469 cause recessive brittle cornea syndrome, characterized by spontaneous corneal perforations. Genome-wide association studies (GWAS) have implicated common variants in this gene as a determinant for central corneal thickness (CCT). We investigated the contribution of ZNF469 in a sample set of keratoconus patients. Forty-three patients with keratoconus (49% Māori or Pacific [Polynesian]) were recruited. If a family history was present, family members were recruited. Participants underwent comprehensive examination, and a DNA sample was collected. Mutational analysis of ZNF469 was undertaken using Sanger sequencing, including an ancestrally matched Polynesian control population. Bioinformatic databases of exome variation and protein prediction software were used to determine presence and frequency and the pathogenicity for each observed change. Fourteen nonsynonymous missense single nucleotide polymorphisms (SNPs) were observed in ZNF469. Of the 43 probands, at least one probable disease-causing variant was detected in 20 (46%) (16/32 sporadic, 4/11 familial) and two variants in 5 (11.6%) (3/32 sporadic, 2/11 familial). Only heterozygous changes segregated with disease. Three "deleterious" changes observed in the Polynesian controls were removed from analysis; therefore pathogenic variants occurred in 10/43 (23.3%). Rare missense mutations in ZNF469, predicted to be pathogenic, occurred heterozygously, at a frequency of 23% in a keratoconus population. ZNF469 is associated with CCT in GWAS and is therefore likely to play a role in the synthesis and/or organization of corneal collagen fibers. The pathogenic changes observed either genetically predispose toward a "thin" cornea, which then becomes keratoconic, or are directly pathogenic. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  15. Zinc finger nuclease and homing endonuclease-mediated assembly of multigene plant transformation vectors.

    Science.gov (United States)

    Zeevi, Vardit; Liang, Zhuobin; Arieli, Uri; Tzfira, Tzvi

    2012-01-01

    Binary vectors are an indispensable component of modern Agrobacterium tumefaciens-mediated plant genetic transformation systems. A remarkable variety of binary plasmids have been developed to support the cloning and transfer of foreign genes into plant cells. The majority of these systems, however, are limited to the cloning and transfer of just a single gene of interest. Thus, plant biologists and biotechnologists face a major obstacle when planning the introduction of multigene traits into transgenic plants. Here, we describe the assembly of multitransgene binary vectors by using a combination of engineered zinc finger nucleases (ZFNs) and homing endonucleases. Our system is composed of a modified binary vector that has been engineered to carry an array of unique recognition sites for ZFNs and homing endonucleases and a family of modular satellite vectors. By combining the use of designed ZFNs and commercial restriction enzymes, multiple plant expression cassettes were sequentially cloned into the acceptor binary vector. Using this system, we produced binary vectors that carried up to nine genes. Arabidopsis (Arabidopsis thaliana) protoplasts and plants were transiently and stably transformed, respectively, by several multigene constructs, and the expression of the transformed genes was monitored across several generations. Because ZFNs can potentially be engineered to digest a wide variety of target sequences, our system allows overcoming the problem of the very limited number of commercial homing endonucleases. Thus, users of our system can enjoy a rich resource of plasmids that can be easily adapted to their various needs, and since our cloning system is based on ZFN and homing endonucleases, it may be possible to reconstruct other types of binary vectors and adapt our vectors for cloning on multigene vector systems in various binary plasmids.

  16. The Promyelocytic Leukemia Zinc Finger Protein: Two Decades of Molecular Oncology

    International Nuclear Information System (INIS)

    Suliman, Bandar Ali; Xu, Dakang; Williams, Bryan Raymond George

    2012-01-01

    The promyelocytic leukemia zinc finger (PLZF) protein, also known as Zbtb16 or Zfp145, was first identified in a patient with acute promyelocytic leukemia, where a reciprocal chromosomal translocation t(11;17)(q23;q21) resulted in a fusion with the RARA gene encoding retinoic acid receptor alpha. The wild-type Zbtb16 gene encodes a transcription factor that belongs to the POK (POZ and Krüppel) family of transcriptional repressors. In addition to nine Krüppel-type sequence-specific zinc fingers, which make it a member of the Krüppel-like zinc finger protein family, the PLZF protein contains an N-terminal BTB/POZ domain and RD2 domain. PLZF has been shown to be involved in major developmental and biological processes, such as spermatogenesis, hind limb formation, hematopoiesis, and immune regulation. PLZF is localized mainly in the nucleus where it exerts its transcriptional repression function, and many post-translational modifications affect this ability and also have an impact on its cytoplasmic/nuclear dissociation. PLZF achieves its transcriptional regulation by binding to many secondary molecules to form large multi-protein complexes that bind to the regulatory elements in the promoter region of the target genes. These complexes are also capable of physically interacting with its target proteins. Recently, PLZF has become implicated in carcinogenesis as a tumor suppressor gene, since it regulates the cell cycle and apoptosis in many cell types. This review will examine the major advances in our knowledge of PLZF biological activities that augment its value as a therapeutic target, particularly in cancer and immunological diseases.

  17. Why zinc fingers prefer zinc: ligand-field symmetry and the hidden thermodynamics of metal ion selectivity.

    Science.gov (United States)

    Lachenmann, Marcel J; Ladbury, John E; Dong, Jian; Huang, Kun; Carey, Paul; Weiss, Michael A

    2004-11-09

    The zinc finger, a motif of protein-nucleic acid recognition broadly conserved among eukaryotes, is a globular minidomain containing a tetrahedral metal-binding site. Preferential coordination of Zn(2+) (relative to Co(2+)) is proposed to reflect differences in ligand-field stabilization energies (LFSEs) due to complete or incomplete occupancy of d orbitals. LFSE predicts that the preference for Zn(2+) should be purely enthalpic in accord with calorimetric studies of a high-affinity consensus peptide (CP-1; Blasie, C. A., and Berg, J. (2002) Biochemistry 41, 15068-73). Despite its elegance, the general predominance of LFSE is unclear as (i) the magnitude by which CP-1 prefers Zn(2+) is greater than that expected and (ii) the analogous metal ion selectivity of a zinc metalloenzyme (carbonic anhydrase) is driven by changes in entropy rather than enthalpy. Because CP-1 was designed to optimize zinc binding, we have investigated the NMR structure and metal ion selectivity of a natural finger of lower stability derived from human tumor-suppressor protein WT1. Raman spectroscopy suggests that the structure of the WT1 domain is unaffected by interchange of Zn(2+) and Co(2+). As in CP-1, preferential binding of Zn(2+) (relative to Co(2+)) is driven predominantly by differences in enthalpy, but in this case the enthalpic advantage is less than that predicted by LFSE. A theoretical framework is presented to define the relationship between LFSE and other thermodynamic factors, such as metal ion electroaffinities, enthalpies of hydration, and the topography of the underlying folding landscape. The contribution of environmental coupling to entropy-enthalpy compensation is delineated in a formal thermodynamic cycle. Together, these considerations indicate that LFSE provides an important but incomplete description of the stringency and thermodynamic origin of metal-ion selectivity.

  18. Characterization of the SUMO-binding activity of the myeloproliferative and mental retardation (MYM-type zinc fingers in ZNF261 and ZNF198.

    Directory of Open Access Journals (Sweden)

    Catherine M Guzzo

    Full Text Available SUMO-binding proteins interact with SUMO modified proteins to mediate a wide range of functional consequences. Here, we report the identification of a new SUMO-binding protein, ZNF261. Four human proteins including ZNF261, ZNF198, ZNF262, and ZNF258 contain a stretch of tandem zinc fingers called myeloproliferative and mental retardation (MYM-type zinc fingers. We demonstrated that MYM-type zinc fingers from ZNF261 and ZNF198 are necessary and sufficient for SUMO-binding and that individual MYM-type zinc fingers function as SUMO-interacting motifs (SIMs. Our binding studies revealed that the MYM-type zinc fingers from ZNF261 and ZNF198 interact with the same surface on SUMO-2 recognized by the archetypal consensus SIM. We also present evidence that MYM-type zinc fingers in ZNF261 contain zinc, but that zinc is not required for SUMO-binding. Immunofluorescence microscopy studies using truncated fragments of ZNF198 revealed that MYM-type zinc fingers of ZNF198 are necessary for localization to PML-nuclear bodies (PML-NBs. In summary, our studies have identified and characterized the SUMO-binding activity of the MYM-type zinc fingers in ZNF261 and ZNF198.

  19. The Zinc Finger of Prolyl Hydroxylase Domain Protein 2 Is Essential for Efficient Hydroxylation of Hypoxia-Inducible Factor α.

    Science.gov (United States)

    Arsenault, Patrick R; Song, Daisheng; Chung, Yu Jin; Khurana, Tejvir S; Lee, Frank S

    2016-09-15

    Prolyl hydroxylase domain protein 2 (PHD2) (also known as EGLN1) is a key oxygen sensor in mammals that posttranslationally modifies hypoxia-inducible factor α (HIF-α) and targets it for degradation. In addition to its catalytic domain, PHD2 contains an evolutionarily conserved zinc finger domain, which we have previously proposed recruits PHD2 to the HSP90 pathway to promote HIF-α hydroxylation. Here, we provide evidence that this recruitment is critical both in vitro and in vivo We show that in vitro, the zinc finger can function as an autonomous recruitment domain to facilitate interaction with HIF-α. In vivo, ablation of zinc finger function by a C36S/C42S Egln1 knock-in mutation results in upregulation of the erythropoietin gene, erythrocytosis, and augmented hypoxic ventilatory response, all hallmarks of Egln1 loss of function and HIF stabilization. Hence, the zinc finger ordinarily performs a critical positive regulatory function. Intriguingly, the function of this zinc finger is impaired in high-altitude-adapted Tibetans, suggesting that their adaptation to high altitude may, in part, be due to a loss-of-function EGLN1 allele. Thus, these findings have important implications for understanding both the molecular mechanism of the hypoxic response and human adaptation to high altitude. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. ZFNGenome: A comprehensive resource for locating zinc finger nuclease target sites in model organisms

    Directory of Open Access Journals (Sweden)

    Voytas Daniel F

    2011-01-01

    Full Text Available Abstract Background Zinc Finger Nucleases (ZFNs have tremendous potential as tools to facilitate genomic modifications, such as precise gene knockouts or gene replacements by homologous recombination. ZFNs can be used to advance both basic research and clinical applications, including gene therapy. Recently, the ability to engineer ZFNs that target any desired genomic DNA sequence with high fidelity has improved significantly with the introduction of rapid, robust, and publicly available techniques for ZFN design such as the Oligomerized Pool ENgineering (OPEN method. The motivation for this study is to make resources for genome modifications using OPEN-generated ZFNs more accessible to researchers by creating a user-friendly interface that identifies and provides quality scores for all potential ZFN target sites in the complete genomes of several model organisms. Description ZFNGenome is a GBrowse-based tool for identifying and visualizing potential target sites for OPEN-generated ZFNs. ZFNGenome currently includes a total of more than 11.6 million potential ZFN target sites, mapped within the fully sequenced genomes of seven model organisms; S. cerevisiae, C. reinhardtii, A. thaliana, D. melanogaster, D. rerio, C. elegans, and H. sapiens and can be visualized within the flexible GBrowse environment. Additional model organisms will be included in future updates. ZFNGenome provides information about each potential ZFN target site, including its chromosomal location and position relative to transcription initiation site(s. Users can query ZFNGenome using several different criteria (e.g., gene ID, transcript ID, target site sequence. Tracks in ZFNGenome also provide "uniqueness" and ZiFOpT (Zinc Finger OPEN Targeter "confidence" scores that estimate the likelihood that a chosen ZFN target site will function in vivo. ZFNGenome is dynamically linked to ZiFDB, allowing users access to all available information about zinc finger reagents, such as the

  1. Control of Hepatic Gluconeogenesis by the Promyelocytic Leukemia Zinc Finger Protein

    Science.gov (United States)

    Chen, Siyu; Qian, Jinchun; Shi, Xiaoli; Gao, Tingting; Liang, Tingming

    2014-01-01

    The promyelocytic leukemia zinc finger (PLZF) protein is involved in major biological processes including energy metabolism, although its role remains unknown. In this study, we demonstrated that hepatic PLZF expression was induced in fasted or diabetic mice. PLZF promoted gluconeogenic gene expression and hepatic glucose output, leading to hyperglycemia. In contrast, hepatic PLZF knockdown improved glucose homeostasis in db/db mice. Mechanistically, peroxisome proliferator-activated receptor γ coactivator 1α and the glucocorticoid receptor synergistically activated PLZF expression. We conclude that PLZF is a critical regulator of hepatic gluconeogenesis. PLZF manipulation may benefit the treatment of metabolic diseases associated with gluconeogenesis. PMID:25333514

  2. Transcriptional activation capacity of the novel PLAG family of zinc finger proteins.

    Science.gov (United States)

    Kas, K; Voz, M L; Hensen, K; Meyen, E; Van de Ven, W J

    1998-09-04

    We have isolated and characterized two novel cDNAs encoding C2H2 zinc finger proteins showing high sequence homology to PLAG1, a protein ectopically activated by promoter swapping or promoter substitution in pleomorphic adenomas with chromosomal abnormalities at chromosome 8q12. PLAG1 and the two new PLAG1 family members (PLAGL1 and PLAGL2) constitute a novel subfamily of zinc finger proteins that recognize DNA and/or RNA. To examine the potential of the three human proteins to modulate transcription, we constructed several PLAG/GAL4 DNA binding domain fusion proteins and measured their ability to activate transcription of a reporter gene construct in different mammalian cell lines and in yeast. Although the carboxyl-terminal part of PLAGL1 shows strong overall transcriptional activity in mesenchymal (COS-1) and epithelial cells (293), both PLAG1 and PLAGL2 transactivate in mesenchymal cells only if depleted from a repressing region. This effect is less profound in epithelial cells. These data suggest that the activation in pleomorphic adenomas of PLAG1 most likely results in uncontrolled activation of downstream target genes.

  3. Functional analysis of a novel KRAB/C2H2 zinc finger protein Mipu1

    International Nuclear Information System (INIS)

    Jiang, Lei; Tang, Daolin; Wang, Kangkai; Zhang, Huali; Yuan, Can; Duan, Dayue; Xiao, Xianzhong

    2007-01-01

    A novel rat gene, Mipu1, encodes a 608 amino acid protein with an amino-terminal KRAB domain and 14 carboxyl-terminal C 2 H 2 zinc finger motifs. Mipu1 is localized to the nucleus through its KRAB domain or the linker adjacent to its zinc finger region. Using the GST-Mipu1 bound to glutathione-Sepharose beads, a consensus putative DNA binding site (5'-TGTCTTATCGAA-3') was extracted from a random oligonucleotide library. EMSA and target detection assay showed that the probe containing the putative site can bind to purified GST-Mipu1 fusion protein. The oligonucleotide containing the putative site was inserted into the pGL3-promotor vector to produce a reporter construct. The expression of reporter gene was repressed by overexpression of Mipu1 in a dose-dependent manner. Mutation analysis of the consensus sequence indicated that the repression mediated by Mipu1 is sequence-dependent. These results suggest that Mipu1 is a nuclear protein, which functions as a transcriptional repressor

  4. [Molecular cloning and expression analysis of a SUPERMAN-like zinc finger protein gene in upland cotton].

    Science.gov (United States)

    Yang, Yu-Wen; Ni, Wan-Chao; Zhang, Bao-Long; Shen, Xin-Lian; Zhang, Xiang-Gui; Xu, Ying-Jun; Yao, Shu

    2006-04-01

    The zinc finger proteins belong to the largest family of regulatory transcription factors, which play an important role in growth and development in animal and plant systems. SUPERMAN-like zinc finger protein gene has only one "finger like" motif. A pair of degenerate primers was designed according to the conserved regions, and 3 kinds of EST of this family were isolated from cotton through RT-PCR. The full length of one SUPERMAN-like zinc finger protein also has been acquired. The entire coding region is 744 bp and encodes a polypeptide of 248 amino acids with 40% homology to RBE protein of Arabidopsis deposited in the GenBank. This gene was designated as GZFP. It has the conserved zinc finger domain and the leucine rich region at the carboxyl terminus but no intron in the coding region. GZFP also has the plant nuclear localization signal. GZFP shows a more expression pattern in floral buds, ovaries, petals and roots than in phloem, xylem, fibers, leaves and seeds of cotton by RT-PCR, although it has a very low detection level and there is not any homologous ESTs found in the GenBank. Analysis of the 5' flanking sequence shows there are several regulatory elements responsible for pollen and root expression, four core sites required for binding of Dof proteins and four light-regulated elements.

  5. Zinc finger protein 521 antagonizes early B-cell factor 1 and modulates the B-lymphoid differentiation of primary hematopoietic progenitors

    NARCIS (Netherlands)

    Mega, Tiziana; Lupia, Michela; Amodio, Nicola; Horton, Sarah J.; Mesuraca, Maria; Pelaggi, Daniela; Agosti, Valter; Grieco, Michele; Chiarella, Emanuela; Spina, Raffaella; Moore, Malcolm A. S.; Schuringa, Jan Jacob; Bond, Heather M.; Morrone, Giovanni

    2011-01-01

    Zinc finger protein 521 (EHZF/ZNF521) is a multi-functional transcription co-factor containing 30 zinc fingers and an N-terminal motif that binds to the nucleosome remodelling and histone deacetylase (NuRD) complex. ZNF521 is believed to be a relevant player in the regulation of the homeostasis of

  6. Structural and functional organization of the HF.10 human zinc finger gene (ZNF35) located on chromosome 3p21-p22

    DEFF Research Database (Denmark)

    Lanfrancone, L; Pengue, G; Pandolfi, P P

    1992-01-01

    We report the structural and functional characterization of the HF.10 zinc finger gene (ZNF35) in normal human cells, as well as a processed pseudogene. The HF.10 gene spans about 13 kb and it is interrupted by three introns. All 11 zinc finger DNA-binding domains are contiguously encoded within...

  7. Comprehensive analysis of CCCH zinc finger family in poplar (Populus trichocarpa

    Directory of Open Access Journals (Sweden)

    Chai Guohua

    2012-06-01

    Full Text Available Abstract Background CCCH zinc finger proteins contain a typical motif of three cysteines and one histidine residues and serve regulatory functions at all stages of mRNA metabolism. In plants, CCCH type zinc finger proteins comprise a large gene family represented by 68 members in Arabidopsis and 67 in rice. These CCCH proteins have been shown to play diverse roles in plant developmental processes and environmental responses. However, this family has not been studied in the model tree species Populus to date. Results In the present study, a comprehensive analysis of the genes encoding CCCH zinc finger family in Populus was performed. Using a thorough annotation approach, a total of 91 full-length CCCH genes were identified in Populus, of which most contained more than one CCCH motif and a type of non-conventional C-X11-C-X6-C-X3-H motif was unique for Populus. All of the Populus CCCH genes were phylogeneticly clustered into 13 distinct subfamilies. In each subfamily, the gene structure and motif composition were relatively conserved. Chromosomal localization of these genes revealed that most of the CCCHs (81 of 90, 90 % are physically distributed on the duplicated blocks. Thirty-four paralogous pairs were identified in Populus, of which 22 pairs (64.7 % might be created by the whole genome segment duplication, whereas 4 pairs seem to be resulted from tandem duplications. In 91 CCCH proteins, we also identified 63 putative nucleon-cytoplasm shuttling proteins and 3 typical RNA-binding proteins. The expression profiles of all Populus CCCH genes have been digitally analyzed in six tissues across different developmental stages, and under various drought stress conditions. A variety of expression patterns of CCCH genes were observed during Populus development, of which 34 genes highly express in root and 22 genes show the highest level of transcript abundance in differentiating xylem. Quantitative real-time RT-PCR (RT-qPCR was further performed to

  8. Comprehensive analysis of CCCH zinc finger family in poplar (Populus trichocarpa).

    Science.gov (United States)

    Chai, Guohua; Hu, Ruibo; Zhang, Dongyuan; Qi, Guang; Zuo, Ran; Cao, Yingping; Chen, Peng; Kong, Yingzhen; Zhou, Gongke

    2012-06-18

    CCCH zinc finger proteins contain a typical motif of three cysteines and one histidine residues and serve regulatory functions at all stages of mRNA metabolism. In plants, CCCH type zinc finger proteins comprise a large gene family represented by 68 members in Arabidopsis and 67 in rice. These CCCH proteins have been shown to play diverse roles in plant developmental processes and environmental responses. However, this family has not been studied in the model tree species Populus to date. In the present study, a comprehensive analysis of the genes encoding CCCH zinc finger family in Populus was performed. Using a thorough annotation approach, a total of 91 full-length CCCH genes were identified in Populus, of which most contained more than one CCCH motif and a type of non-conventional C-X(11)-C-X(6)-C-X(3)-H motif was unique for Populus. All of the Populus CCCH genes were phylogeneticly clustered into 13 distinct subfamilies. In each subfamily, the gene structure and motif composition were relatively conserved. Chromosomal localization of these genes revealed that most of the CCCHs (81 of 90, 90 %) are physically distributed on the duplicated blocks. Thirty-four paralogous pairs were identified in Populus, of which 22 pairs (64.7 %) might be created by the whole genome segment duplication, whereas 4 pairs seem to be resulted from tandem duplications. In 91 CCCH proteins, we also identified 63 putative nucleon-cytoplasm shuttling proteins and 3 typical RNA-binding proteins. The expression profiles of all Populus CCCH genes have been digitally analyzed in six tissues across different developmental stages, and under various drought stress conditions. A variety of expression patterns of CCCH genes were observed during Populus development, of which 34 genes highly express in root and 22 genes show the highest level of transcript abundance in differentiating xylem. Quantitative real-time RT-PCR (RT-qPCR) was further performed to confirm the tissue-specific expression and

  9. Predicting success of oligomerized pool engineering (OPEN for zinc finger target site sequences

    Directory of Open Access Journals (Sweden)

    Goodwin Mathew J

    2010-11-01

    Full Text Available Abstract Background Precise and efficient methods for gene targeting are critical for detailed functional analysis of genomes and regulatory networks and for potentially improving the efficacy and safety of gene therapies. Oligomerized Pool ENgineering (OPEN is a recently developed method for engineering C2H2 zinc finger proteins (ZFPs designed to bind specific DNA sequences with high affinity and specificity in vivo. Because generation of ZFPs using OPEN requires considerable effort, a computational method for identifying the sites in any given gene that are most likely to be successfully targeted by this method is desirable. Results Analysis of the base composition of experimentally validated ZFP target sites identified important constraints on the DNA sequence space that can be effectively targeted using OPEN. Using alternate encodings to represent ZFP target sites, we implemented Naïve Bayes and Support Vector Machine classifiers capable of distinguishing "active" targets, i.e., ZFP binding sites that can be targeted with a high rate of success, from those that are "inactive" or poor targets for ZFPs generated using current OPEN technologies. When evaluated using leave-one-out cross-validation on a dataset of 135 experimentally validated ZFP target sites, the best Naïve Bayes classifier, designated ZiFOpT, achieved overall accuracy of 87% and specificity+ of 90%, with an ROC AUC of 0.89. When challenged with a completely independent test set of 140 newly validated ZFP target sites, ZiFOpT performance was comparable in terms of overall accuracy (88% and specificity+ (92%, but with reduced ROC AUC (0.77. Users can rank potentially active ZFP target sites using a confidence score derived from the posterior probability returned by ZiFOpT. Conclusion ZiFOpT, a machine learning classifier trained to identify DNA sequences amenable for targeting by OPEN-generated zinc finger arrays, can guide users to target sites that are most likely to function

  10. A Novel Strategy for Controlling the Metastatic Phenotype: Targeting the SNAG Repression Domain in the SNAIL Zinc-Finger Protein

    Science.gov (United States)

    2007-07-01

    A. H., Ganss, B., Cheifetz, S. & Sodek, J. (2001). Characterization of a novel KRAB/C2H2 zinc finger transcription factor involved in bone ...peritoneal mesothelial cells. Int J Artif Organs 28:164-9. 2. Ancelin, K., U. C. Lange, P. Hajkova, R. Schneider, A. J. Bannister, T. Kouzarides, and M. A

  11. Knockout of Myostatin by Zinc-finger Nuclease in Sheep Fibroblasts and Embryos

    Directory of Open Access Journals (Sweden)

    Xuemei Zhang

    2016-10-01

    Full Text Available Myostatin (MSTN can negatively regulate the growth and development of skeletal muscle, and natural mutations can cause “double-muscling” trait in animals. In order to block the inhibiting effect of MSTN on muscle growth, we transferred zinc-finger nucleases (ZFN which targeted sheep MSTN gene into cultured fibroblasts. Gene targeted colonies were isolated from transfected fibroblasts by serial dilution culture and screened by sequencing. Two colonies were identified with mono-allele mutation and one colony with bi-allelic deletion. Further, we introduced the MSTN-ZFN mRNA into sheep embryos by microinjection. Thirteen of thirty-seven parthenogenetic embryos were targeted by ZFN, with the efficiency of 35%. Our work established the technical foundation for generation of MSTN gene editing sheep by somatic cloning and microinjection ZFN into embryos.

  12. An engineered split M.HhaI-zinc finger fusion lacks the intended methyltransferase specificity

    International Nuclear Information System (INIS)

    Meister, Glenna E.; Chandrasegaran, Srinivasan; Ostermeier, Marc

    2008-01-01

    The ability to site-specifically methylate DNA in vivo would have wide applicability to the study of basic biomedical problems as well as enable studies on the potential of site-specific DNA methylation as a therapeutic strategy for the treatment of diseases. Natural DNA methyltransferases lack the specificity required for these applications. Nomura and Barbas [W. Nomura, C.F. Barbas 3rd, In vivo site-specific DNA methylation with a designed sequence-enabled DNA methylase, J. Am. Chem. Soc. 129 (2007) 8676-8677] have reported that an engineered DNA methyltransferase comprised of fragments of M.HhaI methyltransferase and zinc finger proteins has very high specificity for the chosen target site. Our analysis of this engineered enzyme shows that the fusion protein methylates target and non-target sites with similar efficiency

  13. Knockout of Myostatin by Zinc-finger Nuclease in Sheep Fibroblasts and Embryos

    Science.gov (United States)

    Zhang, Xuemei; Wang, Liqin; Wu, Yangsheng; Li, Wenrong; An, Jing; Zhang, Fuchun; Liu, Mingjun

    2016-01-01

    Myostatin (MSTN) can negatively regulate the growth and development of skeletal muscle, and natural mutations can cause “double-muscling” trait in animals. In order to block the inhibiting effect of MSTN on muscle growth, we transferred zinc-finger nucleases (ZFN) which targeted sheep MSTN gene into cultured fibroblasts. Gene targeted colonies were isolated from transfected fibroblasts by serial dilution culture and screened by sequencing. Two colonies were identified with mono-allele mutation and one colony with bi-allelic deletion. Further, we introduced the MSTN-ZFN mRNA into sheep embryos by microinjection. Thirteen of thirty-seven parthenogenetic embryos were targeted by ZFN, with the efficiency of 35%. Our work established the technical foundation for generation of MSTN gene editing sheep by somatic cloning and microinjection ZFN into embryos. PMID:27189642

  14. Automatic polymerase chain reaction product detection system for food safety monitoring using zinc finger protein fused to luciferase

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Wataru; Kezuka, Aki; Murakami, Yoshiyuki; Lee, Jinhee; Abe, Koichi [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Motoki, Hiroaki; Matsuo, Takafumi; Shimura, Nobuaki [System Instruments Co., Ltd., 776-2 Komiya-cho, Hachioji, Tokyo 192-0031 (Japan); Noda, Mamoru; Igimi, Shizunobu [Division of Biomedical Food Research, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan); Ikebukuro, Kazunori, E-mail: ikebu@cc.tuat.ac.jp [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan)

    2013-11-01

    Graphical abstract: -- Highlights: •Zif268 fused to luciferase was used for E. coli O157, Salmonella and coliform detection. •Artificial zinc finger protein fused to luciferase was constructed for Norovirus detection. •An analyzer that automatically detects PCR products by zinc finger protein fused to luciferase was developed. •Target pathogens were specifically detected by the automatic analyzer with zinc finger protein fused to luciferase. -- Abstract: An automatic polymerase chain reaction (PCR) product detection system for food safety monitoring using zinc finger (ZF) protein fused to luciferase was developed. ZF protein fused to luciferase specifically binds to target double stranded DNA sequence and has luciferase enzymatic activity. Therefore, PCR products that comprise ZF protein recognition sequence can be detected by measuring the luciferase activity of the fusion protein. We previously reported that PCR products from Legionella pneumophila and Escherichia coli (E. coli) O157 genomic DNA were detected by Zif268, a natural ZF protein, fused to luciferase. In this study, Zif268–luciferase was applied to detect the presence of Salmonella and coliforms. Moreover, an artificial zinc finger protein (B2) fused to luciferase was constructed for a Norovirus detection system. In the luciferase activity detection assay, several bound/free separation process is required. Therefore, an analyzer that automatically performed the bound/free separation process was developed to detect PCR products using the ZF–luciferase fusion protein. By means of the automatic analyzer with ZF–luciferase fusion protein, target pathogenic genomes were specifically detected in the presence of other pathogenic genomes. Moreover, we succeeded in the detection of 10 copies of E. coli BL21 without extraction of genomic DNA by the automatic analyzer and E. coli was detected with a logarithmic dependency in the range of 1.0 × 10 to 1.0 × 10{sup 6} copies.

  15. The Effect of Salts in Promoting Specific and Competitive Interactions between Zinc Finger Proteins and Metals

    Science.gov (United States)

    Li, Gongyu; Yuan, Siming; Zheng, Shihui; Chen, Yuting; Zheng, Zhen; Liu, Yangzhong; Huang, Guangming

    2017-12-01

    Specific protein-metal interactions (PMIs) fulfill essential functions in cells and organic bodies, and activation of these functions in vivo are mostly modulated by the complex environmental factors, including pH value, small biomolecules, and salts. Specifically, the role of salts in promoting specific PMIs and their competition among various metals has remained untapped mainly due to the difficulty to distinguish nonspecific PMIs from specific PMIs by classic spectroscopic techniques. Herein, we report Hofmeister salts differentially promote the specific PMIs by combining nanoelectrospray ionization mass spectrometry and spectroscopic techniques (fluorescence measurement and circular dichroism). Furthermore, to explore the influence of salts in competitive binding between metalloproteins and various metals, we designed a series of competitive experiments and applied to a well-defined model system, the competitive binding of zinc (II) and arsenic (III) to holo-promyelocytic leukemia protein (PML). These experiments not only provided new insights at the molecular scale as complementary to previous NMR and spectroscopic results, but also deduced the relative binding ability between zinc finger proteins and metals at the molecular scale, which avoids the mass spectrometric titration-based determination of binding constants that is frequently affected and often degraded by variable solution conditions including salt contents. [Figure not available: see fulltext.

  16. Revisiting and re-engineering the classical zinc finger peptide: consensus peptide-1 (CP-1).

    Science.gov (United States)

    Besold, Angelique N; Widger, Leland R; Namuswe, Frances; Michalek, Jamie L; Michel, Sarah L J; Goldberg, David P

    2016-04-01

    Zinc plays key structural and catalytic roles in biology. Structural zinc sites are often referred to as zinc finger (ZF) sites, and the classical ZF contains a Cys2His2 motif that is involved in coordinating Zn(II). An optimized Cys2His2 ZF, named consensus peptide 1 (CP-1), was identified more than 20 years ago using a limited set of sequenced proteins. We have reexamined the CP-1 sequence, using our current, much larger database of sequenced proteins that have been identified from high-throughput sequencing methods, and found the sequence to be largely unchanged. The CCHH ligand set of CP-1 was then altered to a CAHH motif to impart hydrolytic activity. This ligand set mimics the His2Cys ligand set of peptide deformylase (PDF), a hydrolytically active M(II)-centered (M = Zn or Fe) protein. The resultant peptide [CP-1(CAHH)] was evaluated for its ability to coordinate Zn(II) and Co(II) ions, adopt secondary structure, and promote hydrolysis. CP-1(CAHH) was found to coordinate Co(II) and Zn(II) and a pentacoordinate geometry for Co(II)-CP-1(CAHH) was implicated from UV-vis data. This suggests a His2Cys(H2O)2 environment at the metal center. The Zn(II)-bound CP-1(CAHH) was shown to adopt partial secondary structure by 1-D (1)H NMR spectroscopy. Both Zn(II)-CP-1(CAHH) and Co(II)-CP-1(CAHH) show good hydrolytic activity toward the test substrate 4-nitrophenyl acetate, exhibiting faster rates than most active synthetic Zn(II) complexes.

  17. Investigating the DNA-binding ability of GATA-1-N-terminal zinc finger

    International Nuclear Information System (INIS)

    Wong, R.; Newton, A.; Crossley, M.; Mackay, J.

    2001-01-01

    Erythroid transcription factor GATA-1 interacts with both DNA and other proteins through its zinc finger domains (ZnFs). While it has been known for me time that the C-terminal ZnF binds DNA at GATA sites, only recently has it been observed that the N-terminal finger (NF) is capable of interacting with GATC sites. Further, a number of naturally occurring mutations in NF (V205M, G208S, R216Q, D218G) that lead to anaemia and thrombocytopenia have been identified. We are interested in characterising the NF-DNA interaction and determining the effects of mutation upon this interaction. Using nuclear magnetic resonance (NMR) spectroscopy, we have observed an interaction between recombinant NF and a 16-mer DNA duplex containing a core GATC sequence. This result forms the basis from which residues in NF involved in DNA binding can be identified, and work is being carried out to improve the quality of the NMR data with the aim of determining the solution structure of the NF-DNA complex. The DNA-binding affinity of both wild-type and mutant NFs mentioned above is also being investigated using isothermal titration calorimetry. These data suggest that the strength of the interaction between NF and the 16-mer DNA duplex is in the sub-micromolar range, and comparisons between the DNA-binding affinities of the NF mutants are being made. Together, these studies will help us to understand how GATA-1 acts as a transcriptional regulator and how mutations in NF domain of GATA-1 may lead to blood disorders

  18. Specific reactivation of latent HIV-1 with designer zinc-finger transcription factors targeting the HIV-1 5'-LTR promoter.

    Science.gov (United States)

    Wang, P; Qu, X; Wang, X; Zhu, X; Zeng, H; Chen, H; Zhu, H

    2014-05-01

    HIV-1 latency remains the primary obstacle to the eradication of this virus. The current latency-reversing agents cannot effectively and specifically eliminate latent HIV-1 reservoirs. Therefore, better approaches are urgently needed. In this study, we describe a novel strategy to reactivate latent HIV-1 using zinc-finger transcription factors composed of designer zinc-finger proteins and the transcriptional activation domain VP64. For the first time, we demonstrate that ZF-VP64 with HIV-1 long terminal repeat (LTR) promoter-specific affinity could significantly reactivate HIV-1 expression from latently infected cells without altering cell proliferation or cell cycle progression. We also provide evidence that the reactivation of HIV-1 by ZF-VP64 occurs through specific binding to the 5'-LTR promoter. Our results demonstrate the potential of this novel approach for anti-HIV-1 latency therapy.

  19. Size-fitting of Intravaginal Rings for Macaques and in vitro Release Kinetics of Zinc Finger Inhibitors

    OpenAIRE

    Malcolm, Karl; Smith, James M.; Appella, Ettore; Schito, Marco; Hayashi, Ryo; Lanier, Nattawan; Otten, Ronald; Butera, Sal; McConville, Christopher; Woolfson, David

    2008-01-01

    Background: Small molecule inhibitors of the zinc finger domain (ZFI) in the nucleocapsid protein (NCp7) of HIV-1 are potent inhibitors of HIV and SIVreplication and may have utility as topical products to prevent infection. Furthermore, intravaginal rings (IVRs) were developed as coitally-independent,sustained release devices which could be used for administration of HIV microbicides. The aims of these studies were to demonstrate that IVRs sized formacaques are practical and compatible with ...

  20. An effective approach for generating a three-Cys2His2 zinc-finger-DNA complex model by docking

    Directory of Open Access Journals (Sweden)

    Rajasekaran M

    2010-06-01

    Full Text Available Abstract Background Determination of protein-DNA complex structures with both NMR and X-ray crystallography remains challenging in many cases. High Ambiguity-Driven DOCKing (HADDOCK is an information-driven docking program that has been used to successfully model many protein-DNA complexes. However, a protein-DNA complex model whereby the protein wraps around DNA has not been reported. Defining the ambiguous interaction restraints for the classical three-Cys2His2 zinc-finger proteins that wrap around DNA is critical because of the complicated binding geometry. In this study, we generated a Zif268-DNA complex model using three different sets of ambiguous interaction restraints (AIRs to study the effect of the geometric distribution on the docking and used this approach to generate a newly reported Sp1-DNA complex model. Results The complex models we generated on the basis of two AIRs with a good geometric distribution in each domain are reasonable in terms of the number of models with wrap-around conformation, interface root mean square deviation, AIR energy and fraction native contacts. We derived the modeling approach for generating a three-Cys2His2 zinc-finger-DNA complex model according to the results of docking studies using the Zif268-DNA and other three crystal complex structures. Furthermore, the Sp1-DNA complex model was calculated with this approach, and the interactions between Sp1 and DNA are in good agreement with those previously reported. Conclusions Our docking data demonstrate that two AIRs with a reasonable geometric distribution in each of the three-Cys2His2 zinc-finger domains are sufficient to generate an accurate complex model with protein wrapping around DNA. This approach is efficient for generating a zinc-finger protein-DNA complex model for unknown complex structures in which the protein wraps around DNA. We provide a flowchart showing the detailed procedures of this approach.

  1. A Novel Prokaryotic Green Fluorescent Protein Expression System for Testing Gene Editing Tools Activity Like Zinc Finger Nuclease

    OpenAIRE

    Sabzehei, Faezeh; Kouhpayeh, Shirin; Dastjerdeh, Mansoureh Shahbazi; Khanahmad, Hossein; Salehi, Rasoul; Naderi, Shamsi; Taghizadeh, Razieh; Rabiei, Parisa; Hejazi, Zahra; Shariati, Laleh

    2017-01-01

    Background: Gene editing technology has created a revolution in the field of genome editing. The three of the most famous tools in gene editing technology are zinc finger nucleases (ZFNs), transcription activator-like effector nucleases, clustered regularly interspaced short palindromic repeats (CRISPR), and CRISPR-associated systems. As their predictable nature, it is necessary to assess their efficiency. There are some methods for this purpose, but most of them are time labor and complicate...

  2. The phytochrome-interacting vascular plant one-zinc finger1 and VOZ2 redundantly regulate flowering in Arabidopsis.

    Science.gov (United States)

    Yasui, Yukiko; Mukougawa, Keiko; Uemoto, Mitsuhiro; Yokofuji, Akira; Suzuri, Ryota; Nishitani, Aiko; Kohchi, Takayuki

    2012-08-01

    The timing of the transition to flowering in plants is regulated by various environmental factors, including daylength and light quality. Although the red/far-red photoreceptor phytochrome B (phyB) represses flowering by indirectly regulating the expression of a key flowering regulator, FLOWERING LOCUS T (FT), the mechanism of phyB signaling for flowering is largely unknown. Here, we identified two Arabidopsis thaliana genes, VASCULAR PLANT ONE-ZINC FINGER1 (VOZ1) and VOZ2, which are highly conserved throughout land plant evolution, as phyB-interacting factors. voz1 voz2 double mutants, but neither single mutant, showed a late-flowering phenotype under long-day conditions, which indicated that VOZ1 and VOZ2 redundantly promote flowering. voz1 voz2 mutations suppressed the early-flowering phenotype of the phyB mutant, and FT expression was repressed in the voz1 voz2 mutant. Green fluorescent protein-VOZ2 signal was observed in the cytoplasm, and interaction of VOZ proteins with phyB was indicated to occur in the cytoplasm under far-red light. However, VOZ2 protein modified to localize constitutively in the nucleus promoted flowering. In addition, the stability of VOZ2 proteins in the nucleus was modulated by light quality in a phytochrome-dependent manner. We propose that partial translocation of VOZ proteins from the cytoplasm to the nucleus mediates the initial step of the phyB signal transduction pathway that regulates flowering.

  3. Enhanced chromatin accessibility of the dosage compensated Drosophila male X-chromosome requires the CLAMP zinc finger protein.

    Science.gov (United States)

    Urban, Jennifer; Kuzu, Guray; Bowman, Sarah; Scruggs, Benjamin; Henriques, Telmo; Kingston, Robert; Adelman, Karen; Tolstorukov, Michael; Larschan, Erica

    2017-01-01

    The essential process of dosage compensation is required to equalize gene expression of X-chromosome genes between males (XY) and females (XX). In Drosophila, the conserved Male-specific lethal (MSL) histone acetyltransferase complex mediates dosage compensation by increasing transcript levels from genes on the single male X-chromosome approximately two-fold. Consistent with its increased levels of transcription, the male X-chromosome has enhanced chromatin accessibility, distinguishing it from the autosomes. Here, we demonstrate that the non-sex-specific CLAMP (Chromatin-linked adaptor for MSL proteins) zinc finger protein that recognizes GA-rich sequences genome-wide promotes the specialized chromatin environment on the male X-chromosome and can act over long genomic distances (~14 kb). Although MSL complex is required for increasing transcript levels of X-linked genes, it is not required for enhancing global male X-chromosome chromatin accessibility, and instead works cooperatively with CLAMP to facilitate an accessible chromatin configuration at its sites of highest occupancy. Furthermore, CLAMP regulates chromatin structure at strong MSL complex binding sites through promoting recruitment of the Nucleosome Remodeling Factor (NURF) complex. In contrast to the X-chromosome, CLAMP regulates chromatin and gene expression on autosomes through a distinct mechanism that does not involve NURF recruitment. Overall, our results support a model where synergy between a non-sex-specific transcription factor (CLAMP) and a sex-specific cofactor (MSL) creates a specialized chromatin domain on the male X-chromosome.

  4. Physical and functional sensitivity of zinc finger transcription factors to redox change.

    Science.gov (United States)

    Wu, X; Bishopric, N H; Discher, D J; Murphy, B J; Webster, K A

    1996-01-01

    Redox regulation of DNA-binding proteins through the reversible oxidation of key cysteine sulfhydryl groups has been demonstrated to occur in vitro for a range of transcription factors. The direct redox regulation of DNA binding has not been described in vivo, possibly because most protein thiol groups are strongly buffered against oxidation by the highly reduced intracellular environment mediated by glutathione, thioredoxin, and associated pathways. For this reason, only accessible protein thiol groups with high thiol-disulfide oxidation potentials are likely to be responsive to intracellular redox changes. In this article, we demonstrate that zinc finger DNA-binding proteins, in particular members of the Sp-1 family, appear to contain such redox-sensitive -SH groups. These proteins displayed a higher sensitivity to redox regulation than other redox-responsive factors both in vitro and in vivo. This effect was reflected in the hyperoxidative repression of transcription from promoters with essential Sp-1 binding sites, including the simian virus 40 early region, glycolytic enzyme, and dihydrofolate reductase genes. Promoter analyses implicated the Sp-1 sites in this repression. Non-Sp-1-dependent redox-regulated genes including metallothionein and heme oxygenase were induced by the same hyperoxic stress. The studies demonstrate that cellular redox changes can directly regulate gene expression in vivo by determining the level of occupancy of strategically positioned GC-binding sites. PMID:8622648

  5. The Drosophila Zinc Finger Transcription Factor Ouija Board Controls Ecdysteroid Biosynthesis through Specific Regulation of spookier.

    Directory of Open Access Journals (Sweden)

    Tatsuya Komura-Kawa

    2015-12-01

    Full Text Available Steroid hormones are crucial for many biological events in multicellular organisms. In insects, the principal steroid hormones are ecdysteroids, which play essential roles in regulating molting and metamorphosis. During larval and pupal development, ecdysteroids are synthesized in the prothoracic gland (PG from dietary cholesterol via a series of hydroxylation and oxidation steps. The expression of all but one of the known ecdysteroid biosynthetic enzymes is restricted to the PG, but the transcriptional regulatory networks responsible for generating such exquisite tissue-specific regulation is only beginning to be elucidated. Here, we report identification and characterization of the C2H2-type zinc finger transcription factor Ouija board (Ouib necessary for ecdysteroid production in the PG in the fruit fly Drosophila melanogaster. Expression of ouib is predominantly limited to the PG, and genetic null mutants of ouib result in larval developmental arrest that can be rescued by administrating an active ecdysteroid. Interestingly, ouib mutant animals exhibit a strong reduction in the expression of one ecdysteroid biosynthetic enzyme, spookier. Using a cell culture-based luciferase reporter assay, Ouib protein stimulates transcription of spok by binding to a specific ~15 bp response element in the spok PG enhancer element. Most remarkable, the developmental arrest phenotype of ouib mutants is rescued by over-expression of a functionally-equivalent paralog of spookier. These observations imply that the main biological function of Ouib is to specifically regulate spookier transcription during Drosophila development.

  6. Epigenetic regulation of puberty via Zinc finger protein-mediated transcriptional repression.

    Science.gov (United States)

    Lomniczi, Alejandro; Wright, Hollis; Castellano, Juan Manuel; Matagne, Valerie; Toro, Carlos A; Ramaswamy, Suresh; Plant, Tony M; Ojeda, Sergio R

    2015-12-16

    In primates, puberty is unleashed by increased GnRH release from the hypothalamus following an interval of juvenile quiescence. GWAS implicates Zinc finger (ZNF) genes in timing human puberty. Here we show that hypothalamic expression of several ZNFs decreased in agonadal male monkeys in association with the pubertal reactivation of gonadotropin secretion. Expression of two of these ZNFs, GATAD1 and ZNF573, also decreases in peripubertal female monkeys. However, only GATAD1 abundance increases when gonadotropin secretion is suppressed during late infancy. Targeted delivery of GATAD1 or ZNF573 to the rat hypothalamus delays puberty by impairing the transition of a transcriptional network from an immature repressive epigenetic configuration to one of activation. GATAD1 represses transcription of two key puberty-related genes, KISS1 and TAC3, directly, and reduces the activating histone mark H3K4me2 at each promoter via recruitment of histone demethylase KDM1A. We conclude that GATAD1 epitomizes a subset of ZNFs involved in epigenetic repression of primate puberty.

  7. Molecular cloning and expression analysis of a zebrafish novel zinc finger protein gene rnf141

    Directory of Open Access Journals (Sweden)

    Wenqian Deng

    2009-01-01

    Full Text Available ZNF230 is a novel zinc finger gene cloned by our laboratory. In order to understand the potential functions of this gene in vertebrate development, we cloned the zebrafish orthologue of human ZNF230, named rnf141. The cDNA fragment of rnf141 was obtained by rapid amplification of cDNA ends (RACE. The open reading frame (ORF encodes a polypeptide of 222 amino acids which shares 75.65% identity with the human ZNF230. RT-PCR analysis in zebrafish embryo and adult tissues revealed that rnf141 transcripts are maternally derived and that rnf141 mRNA has a broad distribution. Zygotic rnf141 message is strongly localized in the central nervous system, as shown by whole-mount in situ hybridization. Knockdown and over expression of rnf141 can induce abnormal phenotypes, including abnormal development of brain, as well as yolk sac and axis extendsion. Marker gene analysis showed that rnf141 may play a role in normal dorsoventral patterning of zebrafish embryos, suggesting that rnf141 may have a broad function during early development of vertebrates.

  8. Zinc finger protein 598 inhibits cell survival by promoting UV-induced apoptosis.

    Science.gov (United States)

    Yang, Qiaohong; Gupta, Romi

    2018-01-19

    UV is one of the major causes of DNA damage induced apoptosis. However, cancer cells adopt alternative mechanisms to evade UV-induced apoptosis. To identify factors that protect cancer cells from UV-induced apoptosis, we performed a genome wide short-hairpin RNA (shRNA) screen, which identified Zinc finger protein 598 (ZNF598) as a key regulator of UV-induced apoptosis. Here, we show that UV irradiation transcriptionally upregulates ZNF598 expression. Additionally, ZNF598 knockdown in cancer cells inhibited UV-induced apoptosis. In our study, we observe that ELK1 mRNA level as well as phosphorylated ELK1 levels was up regulated upon UV irradiation, which was necessary for UV irradiation induced upregulation of ZNF598. Cells expressing ELK1 shRNA were also resistant to UV-induced apoptosis, and phenocopy ZNF598 knockdown. Upon further investigation, we found that ZNF598 knockdown inhibits UV-induced apoptotic gene expression, which matches with decrease in percentage of annexin V positive cell. Similarly, ectopic expression of ZNF598 promoted apoptotic gene expression and also increased annexin V positive cells. Collectively, these results demonstrate that ZNF598 is a UV irradiation regulated gene and its loss results in resistance to UV-induced apoptosis.

  9. Targeted genome editing by lentiviral protein transduction of zinc-finger and TAL-effector nucleases.

    Science.gov (United States)

    Cai, Yujia; Bak, Rasmus O; Mikkelsen, Jacob Giehm

    2014-04-24

    Future therapeutic use of engineered site-directed nucleases, like zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), relies on safe and effective means of delivering nucleases to cells. In this study, we adapt lentiviral vectors as carriers of designer nuclease proteins, providing efficient targeted gene disruption in vector-treated cell lines and primary cells. By co-packaging pairs of ZFN proteins with donor RNA in 'all-in-one' lentiviral particles, we co-deliver ZFN proteins and the donor template for homology-directed repair leading to targeted DNA insertion and gene correction. Comparative studies of ZFN activity in a predetermined target locus and a known nearby off-target locus demonstrate reduced off-target activity after ZFN protein transduction relative to conventional delivery approaches. Additionally, TALEN proteins are added to the repertoire of custom-designed nucleases that can be delivered by protein transduction. Altogether, our findings generate a new platform for genome engineering based on efficient and potentially safer delivery of programmable nucleases.DOI: http://dx.doi.org/10.7554/eLife.01911.001. Copyright © 2014, Cai et al.

  10. Reactive Oxygen Species Regulate the Inflammatory Function of NKT Cells through Promyelocytic Leukemia Zinc Finger.

    Science.gov (United States)

    Kim, Yeung-Hyen; Kumar, Ajay; Chang, Cheong-Hee; Pyaram, Kalyani

    2017-11-15

    Reactive oxygen species (ROS) are byproducts of aerobic metabolism and contribute to both physiological and pathological conditions as second messengers. ROS are essential for activation of T cells, but how ROS influence NKT cells is unknown. In the present study, we investigated the role of ROS in NKT cell function. We found that NKT cells, but not CD4 or CD8 T cells, have dramatically high ROS in the spleen and liver of mice but not in the thymus or adipose tissues. Accordingly, ROS-high NKT cells exhibited increased susceptibility and apoptotic cell death with oxidative stress. High ROS in the peripheral NKT cells were primarily produced by NADPH oxidases and not mitochondria. We observed that sorted ROS-high NKT cells were enriched in NKT1 and NKT17 cells, whereas NKT2 cells were dominant in ROS-low cells. Furthermore, treatment of NKT cells with antioxidants led to reduced frequencies of IFN-γ- and IL-17-expressing cells, indicating that ROS play a role in regulating the inflammatory function of NKT cells. The transcription factor promyelocytic leukemia zinc finger (PLZF) seemed to control the ROS levels. NKT cells from adipose tissues that do not express PLZF and those from PLZF haplodeficient mice have low ROS. Conversely, ROS were highly elevated in CD4 T cells from mice ectopically expressing PLZF. Thus, our findings demonstrate that PLZF controls ROS levels, which in turn governs the inflammatory function of NKT cells. Copyright © 2017 by The American Association of Immunologists, Inc.

  11. Regulation of hedgehog signaling by Myc-interacting zinc finger protein 1, Miz1.

    Directory of Open Access Journals (Sweden)

    Jiuyi Lu

    Full Text Available Smoothened (Smo mediated Hedgehog (Hh signaling plays an essential role in regulating embryonic development and postnatal tissue homeostasis. Aberrant activation of the Hh pathway contributes to the formation and progression of various cancers. In vertebrates, however, key regulatory mechanisms responsible for transducing signals from Smo to the nucleus remain to be delineated. Here, we report the identification of Myc-interacting Zinc finger protein 1 (Miz1 as a Smo and Gli2 binding protein that positively regulates Hh signaling. Overexpression of Miz1 increases Gli luciferase reporter activity, whereas knockdown of endogenous Miz1 has the opposite effect. Activation of Smo induces translocation of Miz1 to the primary cilia together with Smo and Gli2. Furthermore, Miz1 is localized to the nucleus upon Hh activation in a Smo-dependent manner, and loss of Miz1 prevents the nuclear translocation of Gli2. More importantly, silencing Miz1 expression inhibits cell proliferation in vitro and the growth of Hh-driven medulloblastoma tumors allografted in SCID mice. Taken together, these results identify Miz1 as a novel regulator in the Hh pathway that plays an important role in mediating Smo-dependent oncogenic signaling.

  12. Advances in genetic modification of farm animals using zinc-finger nucleases (ZFN).

    Science.gov (United States)

    Petersen, Bjoern; Niemann, Heiner

    2015-02-01

    Genome editing tools (GET), including zinc-finger nucleases (ZFN), transcription activator-like endonucleases (TALENS), and meganucleases possess long recognition sites and are thus capable of cutting DNA in a very specific manner. These genome editing tools mediate targeted genetic alterations by enhancing DNA mutation frequency via induction of double-strand breaks at a predetermined genomic site. Compared to conventional homologous recombination based gene targeting, GETs can increase gene targeting and gene disruption via mutagenic DNA repair more than 10,000-fold. Recently, a novel class of genome editing tools was described that uses RNAs to target a specific genomic site. The CRISPR/Cas9 system is capable of targeting even multiple genomic sites in one shot and thus could be superior to ZFNs or TALEN. Current results indicate that these tools can be successfully employed in a broad range of organisms which renders them useful for improving the understanding of complex physiological systems, producing transgenic animals, including creating large animal models for human diseases, creating specific cell lines, and plants, and even for treating human genetic diseases. This review provides an update on the use of ZFNs to modify the genome of farm animals, summarizes current knowledge on the underlying mechanism, and discusses new opportunities for generating genetically modified farm animals.

  13. Knockout of targeted gene in porcine somatic cells using zinc-finger nuclease.

    Science.gov (United States)

    Hisamatsu, Shin; Sakaue, Motoharu; Takizawa, Akiko; Kato, Tsubasa; Kamoshita, Maki; Ito, Junya; Kashiwazaki, Naomi

    2015-02-01

    Targeted genome editing is a widely applicable approach for efficiently modifying any sequence of interest in animals. It is very difficult to generate knock-out and knock-in animals except for mice up to now. Very recently, a method of genome editing using zinc-finger nucleases (ZFNs) has been developed to produce knockout rats. Since only injection of ZFNs into the pronuclear (PN) embryo is required, it seems to be useful for generating gene-targeted animals, including domestic species. However, no one has reported the successful production of knockout pigs by direct injection of ZFNs into PN embryos. We examined whether ZFN works on editing the genome of porcine growth hormone receptor in two kinds of cell lines (ST and PT-K75) derived from the pig as a preliminary study. Our data showed that pZFN1/2 vectors were efficiently transfected into both ST and PT-K75 cells. In both cell lines, results from Cel-I assay showed that modification of the targeted gene was confirmed. We injected ZFN1/2 mRNAs into the nucleus of PN stage embryos and then they were transferred to the recipients. However, pups were not delivered. Taken together, ZFN can be an available technology of genome editing even in the pig but further improvement will be required for generating genome-modified pigs. © 2014 Japanese Society of Animal Science.

  14. Cloning and characterization of SmZF1, a gene encoding a Schistosoma mansoni zinc finger protein

    Directory of Open Access Journals (Sweden)

    Souza Paulo R Eleutério de

    2001-01-01

    Full Text Available The zinc finger motifs (Cys2His2 are found in several proteins playing a role in the regulation of transcripton. SmZF1, a Schistosoma mansoni gene encoding a zinc finger protein was initially isolated from an adult worm cDNA library, as a partial cDNA. The full sequence of the gene was obtained by subcloning and sequencing cDNA and genomic fragments. The collated gene sequence is 2181 nt and the complete cDNA sequence is 705 bp containing the full open reading frame of the gene. Analysis of the genome sequence revealed the presence of three introns interrupting the coding region. The open reading frame theoretically encodes a protein of 164 amino acids, with a calculated molecular mass of 18,667Da. The predicted protein contains three zinc finger motifs, usually present in transcription regulatory proteins. PCR amplification with specific primers for the gene allowed for the detection of the target in egg, cercariae, schistosomulum and adult worm cDNA libraries indicating the expression of the mRNA in these life cycle stages of S. mansoni. This pattern of expression suggests the gene plays a role in vital functions of different life cycle stages of the parasite. Future research will be directed to elucidate the functional role of SmZF1.

  15. Abnormal behaviors and developmental disorder of hippocampus in zinc finger protein 521 (ZFP521 mutant mice.

    Directory of Open Access Journals (Sweden)

    Nobutaka Ohkubo

    Full Text Available Zinc finger protein 521 (ZFP521 regulates a number of cellular processes in a wide range of tissues, such as osteoblast formation and adipose commitment and differentiation. In the field of neurobiology, it is reported to be an essential factor for transition of epiblast stem cells into neural progenitors in vitro. However, the role of ZFP521 in the brain in vivo still remains elusive. To elucidate the role of ZFP521 in the mouse brain, we generated mice lacking exon 4 of the ZFP521 gene. The birth ratio of our ZFP521Δ/Δ mice was consistent with Mendel's laws. Although ZFP521Δ/Δ pups had no apparent defect in the body and were indistinguishable from ZFP521+/+ and ZFP521+/Δ littermates at the time of birth, ZFP521Δ/Δ mice displayed significant weight reduction as they grew, and most of them died before 10 weeks of age. They displayed abnormal behavior, such as hyper-locomotion, lower anxiety and impaired learning, which correspond to the symptoms of schizophrenia. The border of the granular cell layer of the dentate gyrus in the hippocampus of the mice was indistinct and granular neurons were reduced in number. Furthermore, Sox1-positive neural progenitor cells in the dentate gyrus and cerebellum were significantly reduced in number. Taken together, these findings indicate that ZFP521 directly or indirectly affects the formation of the neuronal cell layers of the dentate gyrus in the hippocampus, and thus ZFP521Δ/Δ mice displayed schizophrenia-relevant symptoms. ZFP521Δ/Δ mice may be a useful research tool as an animal model of schizophrenia.

  16. Post-transcriptional regulation of the trypanosome heat shock response by a zinc finger protein.

    Directory of Open Access Journals (Sweden)

    Dorothea Droll

    Full Text Available In most organisms, the heat-shock response involves increased heat-shock gene transcription. In Kinetoplastid protists, however, virtually all control of gene expression is post-transcriptional. Correspondingly, Trypanosoma brucei heat-shock protein 70 (HSP70 synthesis after heat shock depends on regulation of HSP70 mRNA turnover. We here show that the T. brucei CCCH zinc finger protein ZC3H11 is a post-transcriptional regulator of trypanosome chaperone mRNAs. ZC3H11 is essential in bloodstream-form trypanosomes and for recovery of insect-form trypanosomes from heat shock. ZC3H11 binds to mRNAs encoding heat-shock protein homologues, with clear specificity for the subset of trypanosome chaperones that is required for protein refolding. In procyclic forms, ZC3H11 was required for stabilisation of target chaperone-encoding mRNAs after heat shock, and the HSP70 mRNA was also decreased upon ZC3H11 depletion in bloodstream forms. Many mRNAs bound to ZC3H11 have a consensus AUU repeat motif in the 3'-untranslated region. ZC3H11 bound preferentially to AUU repeats in vitro, and ZC3H11 regulation of HSP70 mRNA in bloodstream forms depended on its AUU repeat region. Tethering of ZC3H11 to a reporter mRNA increased reporter expression, showing that it is capable of actively stabilizing an mRNA. These results show that expression of trypanosome heat-shock genes is controlled by a specific RNA-protein interaction. They also show that heat-shock-induced chaperone expression in procyclic trypanosome enhances parasite survival at elevated temperatures.

  17. Brittle cornea syndrome associated with a missense mutation in the zinc-finger 469 gene.

    Science.gov (United States)

    Christensen, Anne E; Knappskog, Per M; Midtbø, Marit; Gjesdal, Clara G; Mengel-From, Jonas; Morling, Niels; Rødahl, Eyvind; Boman, Helge

    2010-01-01

    To investigate the diverse clinical manifestations, identify the causative mutation and explain the association with red hair in a family with brittle cornea syndrome (BCS). Eight family members in three generations underwent ophthalmic, dental, and general medical examinations, including radiologic examination of the spine. Bone mineral density (BMD) and serum levels of vitamin D, parathyroid hormone, and biochemical markers for bone turnover were measured. Skin biopsies were examined by light and transmission electron microscopy. Molecular genetic studies included homozygosity mapping with SNP markers, DNA sequencing, and MC1R genotyping. At 42 and 48 years of age, respectively, both affected individuals were blind due to retinal detachment and secondary glaucoma. They had extremely thin and bulging corneas, velvety skin, chestnut colored hair, scoliosis, reduced BMD, dental anomalies, hearing loss, and minor cardiac defects. The morphologies of the skin biopsies were normal except that in some areas slightly thinner collagen fibrils were seen in one of the affected individuals. Molecular genetic analysis revealed a novel missense mutation of ZNF469, c.10016G>A, that was predicted to affect the fourth of the five zinc finger domains of ZNF469 by changing the first cysteine to a tyrosine (p.Cys3339Tyr). Both affected individuals were homozygous for the common red hair variant R151C at the MC1R locus. BCS is a disorder that affects a variety of connective tissues. Reduced BMD and atypical dental crown morphology have not been reported previously. The results confirm that BCS is associated with mutations in ZNF469. The association with red hair in some individuals with BCS is likely to occur by chance.

  18. Zinc finger transcription factors displaced SREBP proteins as the major Sterol regulators during Saccharomycotina evolution.

    Directory of Open Access Journals (Sweden)

    Sarah L Maguire

    2014-01-01

    Full Text Available In most eukaryotes, including the majority of fungi, expression of sterol biosynthesis genes is regulated by Sterol-Regulatory Element Binding Proteins (SREBPs, which are basic helix-loop-helix transcription activators. However, in yeasts such as Saccharomyces cerevisiae and Candida albicans sterol synthesis is instead regulated by Upc2, an unrelated transcription factor with a Gal4-type zinc finger. The SREBPs in S. cerevisiae (Hms1 and C. albicans (Cph2 have lost a domain, are not major regulators of sterol synthesis, and instead regulate filamentous growth. We report here that rewiring of the sterol regulon, with Upc2 taking over from SREBP, likely occurred in the common ancestor of all Saccharomycotina. Yarrowia lipolytica, a deep-branching species, is the only genome known to contain intact and full-length orthologs of both SREBP (Sre1 and Upc2. Deleting YlUPC2, but not YlSRE1, confers susceptibility to azole drugs. Sterol levels are significantly reduced in the YlUPC2 deletion. RNA-seq analysis shows that hypoxic regulation of sterol synthesis genes in Y. lipolytica is predominantly mediated by Upc2. However, YlSre1 still retains a role in hypoxic regulation; growth of Y. lipolytica in hypoxic conditions is reduced in a Ylupc2 deletion and is abolished in a Ylsre1/Ylupc2 double deletion, and YlSre1 regulates sterol gene expression during hypoxia adaptation. We show that YlSRE1, and to a lesser extent YlUPC2, are required for switching from yeast to filamentous growth in hypoxia. Sre1 appears to have an ancestral role in the regulation of filamentation, which became decoupled from its role in sterol gene regulation by the arrival of Upc2 in the Saccharomycotina.

  19. Zinc-finger protein 418 overexpression protects against cardiac hypertrophy and fibrosis.

    Directory of Open Access Journals (Sweden)

    Liming Pan

    Full Text Available This study aimed to investigated the effect and mechanism of zinc-finger protein 418 (ZNF418 on cardiac hypertrophy caused by aortic banding (AB, phenylephrine (PE or angiotensin II (Ang II in vivo and in vitro.The expression of ZNF418 in hearts of patients with dilated cardiomyopathy (DCM or hypertrophic cardiomyopathy (HCM and AB-induced cardiac hypertrophy mice, as well as in Ang II- or PE-induced hypertrophic primary cardiomyocytes was detected by western blotting. Then, the expression of ZNF418 was up-regulated or down-regulated in AB-induced cardiac hypertrophy mice and Ang II -induced hypertrophic primary cardiomyocytes. The hypertrophic responses and fibrosis were evaluated by echocardiography and histological analysis. The mRNA levels of hypertrophy markers and fibrotic markers were detected by RT-qPCR. Furthermore, the phosphorylation and total levels of c-Jun were measured by western blotting.ZNF418 was markedly down-regulated in hearts of cardiac hypertrophy and hypertrophic primary cardiomyocytes. Down-regulated ZNF418 exacerbated the myocyte size and fibrosis, moreover increased the mRNA levels of ANP, BNP, β-MHC, MCIP1.4, collagen 1a, collagen III, MMP-2 and fibronection in hearts of AB-treated ZNF418 knockout mice or Ang II-treated cardiomyocytes with AdshZNF418. Conversely, these hypertrophic responses were reduced in the ZNF418 transgenic (TG mice treated by AB and the AdZNF418-transfected primary cardiomyocytes treated by Ang II. Additionally, the deficiency of ZNF418 enhanced the phosphorylation level of c-jun, and overexpression of ZNF418 suppressed the phosphorylation level of c-jun in vivo and in vitro.ZNF418 maybe attenuate hypertrophic responses by inhibiting the activity of c-jun/AP-1.

  20. Zinc-finger protein 418 overexpression protects against cardiac hypertrophy and fibrosis

    Science.gov (United States)

    Huang, Zirui; Zhu, Zhilin; Xu, Chunli; Teng, Lin; He, Ling; Gu, Chen; Yi, Cai

    2017-01-01

    Background This study aimed to investigated the effect and mechanism of zinc-finger protein 418 (ZNF418) on cardiac hypertrophy caused by aortic banding (AB), phenylephrine (PE) or angiotensin II (Ang II) in vivo and in vitro. Methods The expression of ZNF418 in hearts of patients with dilated cardiomyopathy (DCM) or hypertrophic cardiomyopathy (HCM) and AB-induced cardiac hypertrophy mice, as well as in Ang II- or PE-induced hypertrophic primary cardiomyocytes was detected by western blotting. Then, the expression of ZNF418 was up-regulated or down-regulated in AB-induced cardiac hypertrophy mice and Ang II -induced hypertrophic primary cardiomyocytes. The hypertrophic responses and fibrosis were evaluated by echocardiography and histological analysis. The mRNA levels of hypertrophy markers and fibrotic markers were detected by RT-qPCR. Furthermore, the phosphorylation and total levels of c-Jun were measured by western blotting. Results ZNF418 was markedly down-regulated in hearts of cardiac hypertrophy and hypertrophic primary cardiomyocytes. Down-regulated ZNF418 exacerbated the myocyte size and fibrosis, moreover increased the mRNA levels of ANP, BNP, β-MHC, MCIP1.4, collagen 1a, collagen III, MMP-2 and fibronection in hearts of AB-treated ZNF418 knockout mice or Ang II-treated cardiomyocytes with AdshZNF418. Conversely, these hypertrophic responses were reduced in the ZNF418 transgenic (TG) mice treated by AB and the AdZNF418-transfected primary cardiomyocytes treated by Ang II. Additionally, the deficiency of ZNF418 enhanced the phosphorylation level of c-jun, and overexpression of ZNF418 suppressed the phosphorylation level of c-jun in vivo and in vitro. Conclusion ZNF418 maybe attenuate hypertrophic responses by inhibiting the activity of c-jun/AP-1. PMID:29065170

  1. Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases.

    Directory of Open Access Journals (Sweden)

    Tatiana Flisikowska

    Full Text Available Rabbits are widely used in biomedical research, yet techniques for their precise genetic modification are lacking. We demonstrate that zinc finger nucleases (ZFNs introduced into fertilized oocytes can inactivate a chosen gene by mutagenesis and also mediate precise homologous recombination with a DNA gene-targeting vector to achieve the first gene knockout and targeted sequence replacement in rabbits. Two ZFN pairs were designed that target the rabbit immunoglobulin M (IgM locus within exons 1 and 2. ZFN mRNAs were microinjected into pronuclear stage fertilized oocytes. Founder animals carrying distinct mutated IgM alleles were identified and bred to produce offspring. Functional knockout of the immunoglobulin heavy chain locus was confirmed by serum IgM and IgG deficiency and lack of IgM(+ and IgG(+ B lymphocytes. We then tested whether ZFN expression would enable efficient targeted sequence replacement in rabbit oocytes. ZFN mRNA was co-injected with a linear DNA vector designed to replace exon 1 of the IgM locus with ∼1.9 kb of novel sequence. Double strand break induced targeted replacement occurred in up to 17% of embryos and in 18% of fetuses analyzed. Two major goals have been achieved. First, inactivation of the endogenous IgM locus, which is an essential step for the production of therapeutic human polyclonal antibodies in the rabbit. Second, establishing efficient targeted gene manipulation and homologous recombination in a refractory animal species. ZFN mediated genetic engineering in the rabbit and other mammals opens new avenues of experimentation in immunology and many other research fields.

  2. Knockout of exogenous EGFP gene in porcine somatic cells using zinc-finger nucleases

    International Nuclear Information System (INIS)

    Watanabe, Masahito; Umeyama, Kazuhiro; Matsunari, Hitomi; Takayanagi, Shuko; Haruyama, Erika; Nakano, Kazuaki; Fujiwara, Tsukasa; Ikezawa, Yuka; Nakauchi, Hiromitsu

    2010-01-01

    Research highlights: → EGFP gene integrated in porcine somatic cells could be knocked out using the ZFN-KO system. → ZFNs induced targeted mutations in porcine primary cultured cells. → Complete absence of EGFP fluorescence was confirmed in ZFN-treated cells. -- Abstract: Zinc-finger nucleases (ZFNs) are expected as a powerful tool for generating gene knockouts in laboratory and domestic animals. Currently, it is unclear whether this technology can be utilized for knocking-out genes in pigs. Here, we investigated whether knockout (KO) events in which ZFNs recognize and cleave a target sequence occur in porcine primary cultured somatic cells that harbor the exogenous enhanced green fluorescent protein (EGFP) gene. ZFN-encoding mRNA designed to target the EGFP gene was introduced by electroporation into the cell. Using the Surveyor nuclease assay and flow cytometric analysis, we confirmed ZFN-induced cleavage of the target sequence and the disappearance of EGFP fluorescence expression in ZFN-treated cells. In addition, sequence analysis revealed that ZFN-induced mutations such as base substitution, deletion, or insertion were generated in the ZFN cleavage site of EGFP-expression negative cells that were cloned from ZFN-treated cells, thereby showing it was possible to disrupt (i.e., knock out) the function of the EGFP gene in porcine somatic cells. To our knowledge, this study provides the first evidence that the ZFN-KO system can be applied to pigs. These findings may open a new avenue to the creation of gene KO pigs using ZFN-treated cells and somatic cell nuclear transfer.

  3. Zinc Finger Nuclease: A New Approach to Overcome Beta-Lactam Antibiotic Resistance.

    Science.gov (United States)

    Shahbazi Dastjerdeh, Mansoureh; Kouhpayeh, Shirin; Sabzehei, Faezeh; Khanahmad, Hossein; Salehi, Mansour; Mohammadi, Zahra; Shariati, Laleh; Hejazi, Zahra; Rabiei, Parisa; Manian, Mostafa

    2016-01-01

    The evolution of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) has been accelerated recently by the indiscriminate application of antibiotics. Antibiotic resistance has challenged the success of medical interventions and therefore is considered a hazardous threat to human health. The present study aimed to describe the use of zinc finger nuclease (ZFN) technology to target and disrupt a plasmid-encoded β-lactamase, which prevents horizontal gene transfer-mediated evolution of ARBs. An engineered ZFN was designed to target a specific sequence in the ampicillin resistance gene (amp(R)) of the pTZ57R plasmid. The Escherichia coli bacteria already contained the pZFN kanamycin-resistant (kana(R)) plasmid as the case or the pP15A, kana(R) empty vector as the control, were transformed with the pTZ57R; the ability of the designed ZFN to disrupt the β-lactamase gene was evaluated with the subsequent disturbed ability of the bacteria to grow on ampicillin (amp) and ampicillin-kanamycin (amp-kana)-containing media. The effect of mild hypothermia on the ZFN gene targeting efficiency was also evaluated. The growth of bacteria in the case group on the amp and amp-kana-containing media was significantly lower compared with the control group at 37°C (P ampicillin resistance by the targeted disruption of the ampicillin resistance gene, which leads to inactivation of β-lactam synthesis. Therefore, ZFN technology could be engaged to decrease the antibiotic resistance issue with the construction of a ZFN archive against different ARGs. To tackle the resistance issue at the environmental level, recombinant phages expressing ZFNs against different ARGs could be constructed and released into both hospital and urban wastewater systems.

  4. Heritable targeted inactivation of the rainbow trout (Oncorhynchus mykiss) master sex-determining gene using zinc-finger nucleases.

    Science.gov (United States)

    Yano, Ayaka; Nicol, Barbara; Jouanno, Elodie; Guiguen, Yann

    2014-04-01

    Gene targeting is a powerful tool for analyzing gene function. Recently, new technology for gene targeting using engineered zinc-finger nucleases (ZFNs) has been described in fish species. However, it has not yet been widely used for cold water and slow developing species, such as Salmonidae. Here, we present the results of successful ZFN-mediated disruption of the sex-determining gene sdY (sexually dimorphic on the Y chromosome) in rainbow trout (Oncorhynchus mykiss). Three pairs of ZFN mRNA targeted to different regions of the sdY gene were injected into fertilized rainbow trout eggs. Sperm from 1-year-old male founders (parental generation one or P1) carrying a ZFN-induced mutation in their germline were then used to produce F1 non-mosaic animals. In these F1 populations, we characterized 14 different mutations in the sdY gene, including one mutation leading to the deletion of leucine 43 (L43) and 13 mutations at other target sites that had different effects on the SdY protein, i.e., amino acid insertions, deletions, and frameshift mutations producing premature stop codons in the mRNA. The gonadal phenotype analysis of the F1-mutated animals revealed that the single L43 amino acid deletion did not lead to a male-to-female sex reversal, but all other mutations induced a clear ovarian phenotype. These results show that targeted gene disruption using ZFN is efficient in rainbow trout but depends on the ZFN design. We also characterized new sdY mutations resulting in male-to-female sex reversal, and we conclude that L43 seems dispensable for SdY function.

  5. A survey of well conserved families of C2H2 zinc-finger genes in Daphnia

    Directory of Open Access Journals (Sweden)

    Bai Yang

    2010-04-01

    Full Text Available Abstract Background A recent comparative genomic analysis tentatively identified roughly 40 orthologous groups of C2H2 Zinc-finger proteins that are well conserved in "bilaterians" (i.e. worms, flies, and humans. Here we extend that analysis to include a second arthropod genome from the crustacean, Daphnia pulex. Results Most of the 40 orthologous groups of C2H2 zinc-finger proteins are represented by just one or two proteins within each of the previously surveyed species. Likewise, Daphnia were found to possess a similar number of orthologs for all of these small orthology groups. In contrast, the number of Sp/KLF homologs tends to be greater and to vary between species. Like the corresponding mammalian Sp/KLF proteins, most of the Drosophila and Daphnia homologs can be placed into one of three sub-groups: Class I-III. Daphnia were found to have three Class I proteins that roughly correspond to their Drosophila counterparts, dSP1, btd, CG5669, and three Class II proteins that roughly correspond to Luna, CG12029, CG9895. However, Daphnia have four additional KLF-Class II proteins that are most similar to the vertebrate KLF1/2/4 proteins, a subset not found in Drosophila. Two of these four proteins are encoded by genes linked in tandem. Daphnia also have three KLF-Class III members, one more than Drosophila. One of these is a likely Bteb2 homolog, while the other two correspond to Cabot and KLF13, a vertebrate homolog of Cabot. Conclusion Consistent with their likely roles as fundamental determinants of bilaterian form and function, most of the 40 groups of C2H2 zinc-finger proteins are conserved in kind and number in Daphnia. However, the KLF family includes several additional genes that are most similar to genes present in vertebrates but missing in Drosophila.

  6. Nucleolin modulates the subcellular localization of GDNF-inducible zinc finger protein 1 and its roles in transcription and cell proliferation

    International Nuclear Information System (INIS)

    Dambara, Atsushi; Morinaga, Takatoshi; Fukuda, Naoyuki; Yamakawa, Yoshinori; Kato, Takuya; Enomoto, Atsushi; Asai, Naoya; Murakumo, Yoshiki; Matsuo, Seiichi; Takahashi, Masahide

    2007-01-01

    GZF1 is a zinc finger protein induced by glial cell-line-derived neurotrophic factor (GDNF). It is a sequence-specific transcriptional repressor with a BTB/POZ (Broad complex, Tramtrack, Bric a brac/Poxvirus and zinc finger) domain and ten zinc finger motifs. In the present study, we used immunoprecipitation and mass spectrometry to identify nucleolin as a GZF1-binding protein. Deletion analysis revealed that zinc finger motifs 1-4 of GZF1 mediate its association with nucleolin. When zinc fingers 1-4 were deleted from GZF1 or nucleolin expression was knocked down by short interference RNA (siRNA), nuclear localization of GZF1 was impaired. These results suggest that nucleolin is involved in the proper subcellular distribution of GZF1. In addition, overexpression of nucleolin moderately inhibited the transcriptional repressive activity of GZF1 whereas knockdown of nucleolin expression by siRNA enhanced its activity. Thus, the repressive activity of GZF1 is modulated by the level at which nucleolin is expressed. Finally, we found that knockdown of GZF1 and nucleolin expression markedly impaired cell proliferation. These findings suggest that the physiological functions of GZF1 may be regulated by the protein's association with nucleolin

  7. A transcription unit at the ken and barbie gene locus encodes a novel Drosophila zinc finger protein.

    Science.gov (United States)

    Kühnlein, R P; Chen, C K; Schuh, R

    1998-12-01

    We describe a novel Drosophila transcription unit, located in chromosome region 60A. It encodes a zinc finger protein that is expressed in distinct spatial and temporal patterns during embryogenesis. Its initial expression occurs in a stripe at the anterior and the posterior trunk boundary, respectively. The two stripes are activated and spatially controlled by gap-gene activities. The P-element of the enhancer trap line l(2)02970 is inserted in the 5'-region of the transcript and causes a ken and barbie (ken) phenotype, associated with malformation of male genital structures.

  8. The maize INDETERMINATE1 flowering time regulator defines a highly conserved zinc finger protein family in higher plants

    Directory of Open Access Journals (Sweden)

    Colasanti Joseph

    2006-06-01

    Full Text Available Abstract Background The maize INDETERMINATE1 gene, ID1, is a key regulator of the transition to flowering and the founding member of a transcription factor gene family that encodes a protein with a distinct arrangement of zinc finger motifs. The zinc fingers and surrounding sequence make up the signature ID domain (IDD, which appears to be found in all higher plant genomes. The presence of zinc finger domains and previous biochemical studies showing that ID1 binds to DNA suggests that members of this gene family are involved in transcriptional regulation. Results Comparison of IDD genes identified in Arabidopsis and rice genomes, and all IDD genes discovered in maize EST and genomic databases, suggest that ID1 is a unique member of this gene family. High levels of sequence similarity amongst all IDD genes from maize, rice and Arabidopsis suggest that they are derived from a common ancestor. Several unique features of ID1 suggest that it is a divergent member of the maize IDD family. Although no clear ID1 ortholog was identified in the Arabidopsis genome, highly similar genes that encode proteins with identity extending beyond the ID domain were isolated from rice and sorghum. Phylogenetic comparisons show that these putative orthologs, along with maize ID1, form a group separate from other IDD genes. In contrast to ID1 mRNA, which is detected exclusively in immature leaves, several maize IDD genes showed a broad range of expression in various tissues. Further, Western analysis with an antibody that cross-reacts with ID1 protein and potential orthologs from rice and sorghum shows that all three proteins are detected in immature leaves only. Conclusion Comparative genomic analysis shows that the IDD zinc finger family is highly conserved among both monocots and dicots. The leaf-specific ID1 expression pattern distinguishes it from other maize IDD genes examined. A similar leaf-specific localization pattern was observed for the putative ID1 protein

  9. Percutaneous Release of Trigger Fingers: Comparing Multiple Digits with Single Digit Involvement

    Directory of Open Access Journals (Sweden)

    Hossein Saremi

    2016-07-01

    Full Text Available Background: To evaluate safety and efficacy of percutaneous release of trigger finger in multiple digits involvement in comparison with  single digit involvement.   Method: A number of 100 patients (131 fingers were treated by percutaneous release and divided into two groups: single digit (group A and multiple digits (group B. They were followed up for one year. Success rate, pain, complications and duration of analgesic use were studied and then compared in both groups. Results: All patients in both groups were treated successfully without any recurrence in a one-year follow-up. No complication was observed, but postoperative duration of pain was significantly different between the two groups. Period of painkiller use was also different between the two groups. Conclusion: Percutaneous release is a safe and effective treatment for trigger fingers even if multiple digits are involved. It is also safe in thumb and index finger involvement and diabetic patients.

  10. BTB-Zinc Finger Oncogenes Are Required for Ras and Notch-Driven Tumorigenesis in Drosophila.

    Science.gov (United States)

    Doggett, Karen; Turkel, Nezaket; Willoughby, Lee F; Ellul, Jason; Murray, Michael J; Richardson, Helena E; Brumby, Anthony M

    2015-01-01

    During tumorigenesis, pathways that promote the epithelial-to-mesenchymal transition (EMT) can both facilitate metastasis and endow tumor cells with cancer stem cell properties. To gain a greater understanding of how these properties are interlinked in cancers we used Drosophila epithelial tumor models, which are driven by orthologues of human oncogenes (activated alleles of Ras and Notch) in cooperation with the loss of the cell polarity regulator, scribbled (scrib). Within these tumors, both invasive, mesenchymal-like cell morphology and continual tumor overgrowth, are dependent upon Jun N-terminal kinase (JNK) activity. To identify JNK-dependent changes within the tumors we used a comparative microarray analysis to define a JNK gene signature common to both Ras and Notch-driven tumors. Amongst the JNK-dependent changes was a significant enrichment for BTB-Zinc Finger (ZF) domain genes, including chronologically inappropriate morphogenesis (chinmo). chinmo was upregulated by JNK within the tumors, and overexpression of chinmo with either RasV12 or Nintra was sufficient to promote JNK-independent epithelial tumor formation in the eye/antennal disc, and, in cooperation with RasV12, promote tumor formation in the adult midgut epithelium. Chinmo primes cells for oncogene-mediated transformation through blocking differentiation in the eye disc, and promoting an escargot-expressing stem or enteroblast cell state in the adult midgut. BTB-ZF genes are also required for Ras and Notch-driven overgrowth of scrib mutant tissue, since, although loss of chinmo alone did not significantly impede tumor development, when loss of chinmo was combined with loss of a functionally related BTB-ZF gene, abrupt, tumor overgrowth was significantly reduced. abrupt is not a JNK-induced gene, however, Abrupt is present in JNK-positive tumor cells, consistent with a JNK-associated oncogenic role. As some mammalian BTB-ZF proteins are also highly oncogenic, our work suggests that EMT

  11. BTB-Zinc Finger Oncogenes Are Required for Ras and Notch-Driven Tumorigenesis in Drosophila.

    Directory of Open Access Journals (Sweden)

    Karen Doggett

    Full Text Available During tumorigenesis, pathways that promote the epithelial-to-mesenchymal transition (EMT can both facilitate metastasis and endow tumor cells with cancer stem cell properties. To gain a greater understanding of how these properties are interlinked in cancers we used Drosophila epithelial tumor models, which are driven by orthologues of human oncogenes (activated alleles of Ras and Notch in cooperation with the loss of the cell polarity regulator, scribbled (scrib. Within these tumors, both invasive, mesenchymal-like cell morphology and continual tumor overgrowth, are dependent upon Jun N-terminal kinase (JNK activity. To identify JNK-dependent changes within the tumors we used a comparative microarray analysis to define a JNK gene signature common to both Ras and Notch-driven tumors. Amongst the JNK-dependent changes was a significant enrichment for BTB-Zinc Finger (ZF domain genes, including chronologically inappropriate morphogenesis (chinmo. chinmo was upregulated by JNK within the tumors, and overexpression of chinmo with either RasV12 or Nintra was sufficient to promote JNK-independent epithelial tumor formation in the eye/antennal disc, and, in cooperation with RasV12, promote tumor formation in the adult midgut epithelium. Chinmo primes cells for oncogene-mediated transformation through blocking differentiation in the eye disc, and promoting an escargot-expressing stem or enteroblast cell state in the adult midgut. BTB-ZF genes are also required for Ras and Notch-driven overgrowth of scrib mutant tissue, since, although loss of chinmo alone did not significantly impede tumor development, when loss of chinmo was combined with loss of a functionally related BTB-ZF gene, abrupt, tumor overgrowth was significantly reduced. abrupt is not a JNK-induced gene, however, Abrupt is present in JNK-positive tumor cells, consistent with a JNK-associated oncogenic role. As some mammalian BTB-ZF proteins are also highly oncogenic, our work suggests that

  12. Identification and characterization of a salt stress-inducible zinc finger protein from Festuca arundinacea

    Directory of Open Access Journals (Sweden)

    Martin Ruth C

    2012-01-01

    Full Text Available Abstract Background Increased biotic and abiotic plant stresses due to climate change together with an expected global human population of over 9 billion by 2050 intensifies the demand for agricultural production on marginal lands. Soil salinity is one of the major abiotic stresses responsible for reduced crop productivity worldwide and the salinization of arable land has dramatically increased over the last few decades. Consequently, as land becomes less amenable for conventional agriculture, plants grown on marginal soils will be exposed to higher levels of soil salinity. Forage grasses are a critical component of feed used in livestock production worldwide, with many of these same species of grasses being utilized for lawns, erosion prevention, and recreation. Consequently, it is important to develop a better understanding of salt tolerance in forage and related grass species. Findings A gene encoding a ZnF protein was identified during the analysis of a salt-stress suppression subtractive hybridization (SSH expression library from the forage grass species Festuca arundinacea. The expression pattern of FaZnF was compared to that of the well characterized gene for delta 1-pyrroline-5-carboxylate synthetase (P5CS, a key enzyme in proline biosynthesis, which was also identified in the salt-stress SSH library. The FaZnF and P5CS genes were both up-regulated in response to salt and drought stresses suggesting a role in dehydration stress. FaZnF was also up-regulated in response to heat and wounding, suggesting that it might have a more general function in multiple abiotic stress responses. Additionally, potential downstream targets of FaZnF (a MAPK [Mitogen-Activated Protein Kinase], GST [Glutathione-S-Transferase] and lipoxygenase L2 were found to be up-regulated in calli overexpressing FaZnF when compared to control cell lines. Conclusions This work provides evidence that FaZnF is an AN1/A20 zinc finger protein that is involved in the regulation

  13. Identification and characterization of a salt stress-inducible zinc finger protein from Festuca arundinacea

    Science.gov (United States)

    2012-01-01

    Background Increased biotic and abiotic plant stresses due to climate change together with an expected global human population of over 9 billion by 2050 intensifies the demand for agricultural production on marginal lands. Soil salinity is one of the major abiotic stresses responsible for reduced crop productivity worldwide and the salinization of arable land has dramatically increased over the last few decades. Consequently, as land becomes less amenable for conventional agriculture, plants grown on marginal soils will be exposed to higher levels of soil salinity. Forage grasses are a critical component of feed used in livestock production worldwide, with many of these same species of grasses being utilized for lawns, erosion prevention, and recreation. Consequently, it is important to develop a better understanding of salt tolerance in forage and related grass species. Findings A gene encoding a ZnF protein was identified during the analysis of a salt-stress suppression subtractive hybridization (SSH) expression library from the forage grass species Festuca arundinacea. The expression pattern of FaZnF was compared to that of the well characterized gene for delta 1-pyrroline-5-carboxylate synthetase (P5CS), a key enzyme in proline biosynthesis, which was also identified in the salt-stress SSH library. The FaZnF and P5CS genes were both up-regulated in response to salt and drought stresses suggesting a role in dehydration stress. FaZnF was also up-regulated in response to heat and wounding, suggesting that it might have a more general function in multiple abiotic stress responses. Additionally, potential downstream targets of FaZnF (a MAPK [Mitogen-Activated Protein Kinase], GST [Glutathione-S-Transferase] and lipoxygenase L2) were found to be up-regulated in calli overexpressing FaZnF when compared to control cell lines. Conclusions This work provides evidence that FaZnF is an AN1/A20 zinc finger protein that is involved in the regulation of at least two pathways

  14. Electrical and thermal characterization of single and multi-finger InP DHBTs

    DEFF Research Database (Denmark)

    Midili, Virginio; Nodjiadjim, V.; Johansen, Tom Keinicke

    2015-01-01

    This paper presents the characterization of single and multi-finger Indium Phosphide Double Heterojunction Bipolar transistors (InP DHBTs). It is used as the starting point for technology optimization. Safe Operating Area (SOA) and small signal AC parameters are investigated along with thermal...... characteristics. The results are presented comparing different device dimensions and number of fingers. This work gives directions towards further optimization of geometrical parameters and reduction of thermal effects....

  15. Study of zinc electrodes for single flow zinc/nickel battery application

    Science.gov (United States)

    Zhang, Li; Cheng, Jie; Yang, Yu-sheng; Wen, Yue-hua; Wang, Xin-dong; Cao, Gao-ping

    Zinc deposition from alkaline zincate solution in single flow zinc/nickel battery has been investigated. The effect of different substrates such as copper, cadmium and lead were examined by using cyclic voltammetry and cathodic polarization technique. It was found that the cadmium substrate is better than the others. Zinc deposition was carried out by using galvanostatic technique, and the deposits were examined by SEM. The results demonstrated that there is no zinc dendrite on the cadmium substrate in flowing electrolyte. Coulombic and voltage efficiencies of 98 and 88%, respectively, are obtained in a small laboratory cell.

  16. Identification of a novel zinc finger protein gene (ZNF298) in the GAP2 of human chromosome 21q

    International Nuclear Information System (INIS)

    Shibuya, Kazunori; Kudoh, Jun; Okui, Michiyo; Shimizu, Nobuyoshi

    2005-01-01

    We have isolated a novel zinc finger protein gene, designated ZNF298, as a candidate gene for a particular phenotype of Down syndrome or bipolar affective disorder (BPAD) which maps to human chromosome 21q22.3. ZNF298 gene consists of 25 exons spanning approximately 80 kb in a direction from the telomere to centromere. There are four kinds of transcripts that harbor three types of 3' UTR. These four transcripts (ZNF298a, ZNF298b, ZNF298c, and ZNF298d) contain putative open reading frames encoding 1178, 1198, 555, and 515 amino acids, respectively. ZNF298 gene was ubiquitously expressed in various tissues at very low level. The protein motif analysis revealed that ZNF298 proteins contain a SET [Su(var)3-9, Enhancer-of-zeste, Trithorax] domain, multiple C2H2-type zinc finger (ZnF C 2H2) domains, several nuclear localization signals (NLSs), and PEST sequences. Nuclear localization of ZNF298 protein was confirmed by transfection of expression vector of GFP-tagged protein into two human cell lines. Interestingly, this gene crosses over a clone gap (GAP2) remaining in the band 21q22.3. We obtained the DNA fragments corresponding to GAP2 using ZNF298 cDNA sequence as anchor primers for PCR and determined its genomic DNA sequence

  17. New Insights into DNA Recognition by Zinc Fingers Revealed by Structural Analysis of the Oncoprotein ZNF217*

    Science.gov (United States)

    Vandevenne, Marylène; Jacques, David A.; Artuz, Crisbel; Nguyen, Cuong Dinh; Kwan, Ann H. Y.; Segal, David J.; Matthews, Jacqueline M.; Crossley, Merlin; Guss, J. Mitchell; Mackay, Joel P.

    2013-01-01

    Classical zinc fingers (ZFs) are one of the most abundant and best characterized DNA-binding domains. Typically, tandem arrays of three or more ZFs bind DNA target sequences with high affinity and specificity, and the mode of DNA recognition is sufficiently well understood that tailor-made ZF-based DNA-binding proteins can be engineered. We have shown previously that a two-zinc finger unit found in the transcriptional coregulator ZNF217 recognizes DNA but with an affinity and specificity that is lower than other ZF arrays. To investigate the basis for these differences, we determined the structure of a ZNF217-DNA complex. We show that although the overall position of the ZFs on the DNA closely resembles that observed for other ZFs, the side-chain interaction pattern differs substantially from the canonical model. The structure also reveals the presence of two methyl-π interactions, each featuring a tyrosine contacting a thymine methyl group. To our knowledge, interactions of this type have not previously been described in classical ZF-DNA complexes. Finally, we investigated the sequence specificity of this two-ZF unit and discuss how ZNF217 might discriminate its target DNA sites in the cell. PMID:23436653

  18. Molecular phylogeny of OVOL genes illustrates a conserved C2H2 zinc finger domain coupled by hypervariable unstructured regions.

    Directory of Open Access Journals (Sweden)

    Abhishek Kumar

    Full Text Available OVO-like proteins (OVOL are members of the zinc finger protein family and serve as transcription factors to regulate gene expression in various differentiation processes. Recent studies have shown that OVOL genes are involved in epithelial development and differentiation in a wide variety of organisms; yet there is a lack of comprehensive studies that describe OVOL proteins from an evolutionary perspective. Using comparative genomic analysis, we traced three different OVOL genes (OVOL1-3 in vertebrates. One gene, OVOL3, was duplicated during a whole-genome-duplication event in fish, but only the copy (OVOL3b was retained. From early-branching metazoa to humans, we found that a core domain, comprising a tetrad of C2H2 zinc fingers, is conserved. By domain comparison of the OVOL proteins, we found that they evolved in different metazoan lineages by attaching intrinsically-disordered (ID segments of N/C-terminal extensions of 100 to 1000 amino acids to this conserved core. These ID regions originated independently across different animal lineages giving rise to different types of OVOL genes over the course of metazoan evolution. We illustrated the molecular evolution of metazoan OVOL genes over a period of 700 million years (MY. This study both extends our current understanding of the structure/function relationship of metazoan OVOL genes, and assembles a good platform for further characterization of OVOL genes from diverged organisms.

  19. Engineering HIV-resistant human CD4+ T cells with CXCR4-specific zinc-finger nucleases.

    Directory of Open Access Journals (Sweden)

    Craig B Wilen

    2011-04-01

    Full Text Available HIV-1 entry requires the cell surface expression of CD4 and either the CCR5 or CXCR4 coreceptors on host cells. Individuals homozygous for the ccr5Δ32 polymorphism do not express CCR5 and are protected from infection by CCR5-tropic (R5 virus strains. As an approach to inactivating CCR5, we introduced CCR5-specific zinc-finger nucleases into human CD4+ T cells prior to adoptive transfer, but the need to protect cells from virus strains that use CXCR4 (X4 in place of or in addition to CCR5 (R5X4 remains. Here we describe engineering a pair of zinc finger nucleases that, when introduced into human T cells, efficiently disrupt cxcr4 by cleavage and error-prone non-homologous DNA end-joining. The resulting cells proliferated normally and were resistant to infection by X4-tropic HIV-1 strains. CXCR4 could also be inactivated in ccr5Δ32 CD4+ T cells, and we show that such cells were resistant to all strains of HIV-1 tested. Loss of CXCR4 also provided protection from X4 HIV-1 in a humanized mouse model, though this protection was lost over time due to the emergence of R5-tropic viral mutants. These data suggest that CXCR4-specific ZFNs may prove useful in establishing resistance to CXCR4-tropic HIV for autologous transplant in HIV-infected individuals.

  20. Zinc Finger Takes on a Whole New Meaning: Reducing and Monitoring Zinc Blanks in the Isotope Lab

    Science.gov (United States)

    Wilkes, E. B.; Wasylenki, L. E.; Anbar, A. D.

    2010-12-01

    In terms of avoiding contamination, zinc is one of the most difficult elements to study isotopically. The reason for this is that zinc stearate is a very common mold release agent in the production of plastics, including those most often used in isotope geochemistry clean labs. While polyethylene bottles, polypropylene centrifuge tubes, pipette tips, and Kimwipes are all potential sources of contaminant zinc, by far the largest amount of zinc is introduced to the laboratory by gloves. Most items can be effectively rid of zinc by soaking in dilute hydrochloric acid, but gloves cannot be cleaned easily, and use of gloves can quickly lead to contamination on many surfaces throughout the lab. We recently conducted several experiments in which dissolved zinc was partly adsorbed onto synthetic Mn oxyhydroxide particles. The dissolved and adsorbed pools were separated by filtration, purified with ion exchange chemistry, and analyzed for isotope composition by MC-ICP-MS. We used a commercially purchased ICP standard solution both as our standard (delta66/64Zn = 0) and as the source of the zinc in the experiments. Whenever gloves were worn during purification, process blanks contained as much as 150 ng Zn, and both the dissolved and adsorbed pools of zinc came out enriched in heavy isotopes relative to the starting pool, contrary to our expectation of mass balance. When gloves were not worn, blanks were brands of vinyl gloves, including one brand recommended to us for being “low” in zinc, measured +10‰ relative to our standard. We therefore concluded that glove zinc contaminated most of our experimental samples. We were only able to see such clear evidence of contamination because (1) we were doing an experiment in which we expected one light and one heavy pool of zinc compared to our standard, and (2) we happened to use an ICP standard solution for delta = 0 that is strongly enriched in light isotopes relative to both brands of gloves. We caution others who measure

  1. Structural and dynamical characterization of the Miz-1 zinc fingers 5-8 by solution-state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, David; Bedard, Mikaeel; Bilodeau, Josee; Lavigne, Pierre, E-mail: pierre.lavigne@usherbrooke.ca [Universite de Sherbrooke, Departement de Biochimie, Faculte de Medecine et des Sciences de la Sante, Institut de Pharmacologie de Sherbrooke (Canada)

    2013-10-15

    Myc-interacting zinc finger protein-1 (Miz-1) is a BTB/POZ transcription factor that activates the transcription of cytostatic genes, such as p15{sup INK4B} or p21{sup CIP1}. The C-terminus of Miz-1 contains 13 consensus C{sub 2}H{sub 2} zinc finger domains (ZF). ZFs 1-4 have been shown to interact with SMAD3/4, while the remaining ZFs are expected to bind the promoters of target genes. We have noted unusual features in ZF 5 and the linker between ZFs 5 and 6. Indeed, a glutamate is found instead of the conserved basic residue two positions before the second zinc-coordinating histidine on the ZF 5 helix, and the linker sequence is DTDKE in place of the classical TGEKP sequence. In a canonical {beta}{beta}{alpha} fold, such unusual primary structure elements should cause severe electrostatic repulsions. In this context, we have characterized the structure and the dynamics of a Miz-1 construct comprising ZFs 5-8 (Miz 5-8) by solution-state NMR. Whilst ZFs 5, 7 and 8 were shown to adopt the classical {beta}{beta}{alpha} fold for C{sub 2}H{sub 2} ZFs, the number of long-range NOEs was insufficient to define a classical fold for ZF 6. We show by using {sup 15}N-relaxation dispersion experiments that this lack of NOEs is due to the presence of extensive motions on the {mu}s-ms timescale. Since this negatively charged region would have to be located near the phosphodiester backbone in a DNA complex, we propose that in addition to promoting conformational searches, it could serve as a hinge region to keep ZFs 1-4 away from DNA.

  2. Proviral HIV-genome-wide and pol-gene specific zinc finger nucleases: usability for targeted HIV gene therapy.

    Science.gov (United States)

    Wayengera, Misaki

    2011-07-22

    Infection with HIV, which culminates in the establishment of a latent proviral reservoir, presents formidable challenges for ultimate cure. Building on the hypothesis that ex-vivo or even in-vivo abolition or disruption of HIV-gene/genome-action by target mutagenesis or excision can irreversibly abrogate HIV's innate fitness to replicate and survive, we previously identified the isoschizomeric bacteria restriction enzymes (REases) AcsI and ApoI as potent cleavers of the HIV-pol gene (11 and 9 times in HIV-1 and 2, respectively). However, both enzymes, along with others found to cleave across the entire HIV-1 genome, slice (SX) at palindromic sequences that are prevalent within the human genome and thereby pose the risk of host genome toxicity. A long-term goal in the field of R-M enzymatic therapeutics has thus been to generate synthetic restriction endonucleases with longer recognition sites limited in specificity to HIV. We aimed (i) to assemble and construct zinc finger arrays and nucleases (ZFN) with either proviral-HIV-pol gene or proviral-HIV-1 whole-genome specificity respectively, and (ii) to advance a model for pre-clinically testing lentiviral vectors (LV) that deliver and transduce either ZFN genotype. First, we computationally generated the consensus sequences of (a) 114 dsDNA-binding zinc finger (Zif) arrays (ZFAs or ZifHIV-pol) and (b) two zinc-finger nucleases (ZFNs) which, unlike the AcsI and ApoI homeodomains, possess specificity to >18 base-pair sequences uniquely present within the HIV-pol gene (ZifHIV-polFN). Another 15 ZFNs targeting >18 bp sequences within the complete HIV-1 proviral genome were constructed (ZifHIV-1FN). Second, a model for constructing lentiviral vectors (LVs) that deliver and transduce a diploid copy of either ZifHIV-polFN or ZifHIV-1FN chimeric genes (termed LV- 2xZifHIV-polFN and LV- 2xZifHIV-1FN, respectively) is proposed. Third, two preclinical models for controlled testing of the safety and efficacy of either of these

  3. 'Knocking-fingers' chest compression technique in infant cardiac arrest: single-rescuer manikin study.

    Science.gov (United States)

    Jung, Woo Jin; Hwang, Sung Oh; Kim, Hyung Il; Cha, Yong Sung; Kim, Oh Hyun; Kim, Hyun; Lee, Kang Hyun; Cha, Kyoung-Chul

    2018-01-30

    We designed a new chest compression technique, the 'knocking-fingers' chest compression (KF) technique, for a single rescuer in infant cardiac arrest. We compared the effectiveness and feasibility between the KF technique and the two-finger (TF) and two-thumb encircling hands (TT) techniques. A prospective, randomized, crossover study was carried out to compare the quality of chest compression and ventilation between the KF, TF, and TT techniques using a 30 : 2 compression-to-ventilation ratio and mouth-to-mouth ventilation. The area of chest compression, finger(s) pain, and fatigability were measured to compare safety and feasibility. The total frequency of chest compression for 5 min was the highest with the KF technique, followed by the TF and TT techniques. The total frequency of ventilation for 5 min was higher with the KF and TF techniques compared with the TT technique. The total hands-off time was the shortest with the KF technique, followed by the TF and TT techniques. The area of chest compression was the smallest in KF technique. Participants complained of severe finger pain and high fatigability in TF technique. The single-rescuer KF chest compression technique is an effective alternative to the TF or TT techniques for infant cardiac arrest.

  4. ErbB2-Driven Breast Cancer Cell Invasion Depends on a Complex Signaling Network Activating Myeloid Zinc Finger-1-Dependent Cathepsin B Expression

    DEFF Research Database (Denmark)

    Rafn, Bo; Nielsen, Christian Thomas Friberg; Andersen, Sofie Hagel

    2012-01-01

    signaling network activates the transcription of cathepsin B gene (CTSB) via myeloid zinc finger-1 transcription factor that binds to an ErbB2-responsive enhancer element in the first intron of CTSB. This work provides a model system for ErbB2-induced breast cancer cell invasiveness, reveals a signaling...

  5. Zinc finger artificial transcription factor-based nearest inactive analogue/nearest active analogue strategy used for the identification of plant genes controlling homologous recombination

    NARCIS (Netherlands)

    Jia, Qi; van Verk, Marcel C.; Pinas, Johan E.; Lindhout, Beatrice I.; Hooykaas, Paul J.J.; Van der Zaal, Bert J.

    2013-01-01

    In previous work, we selected a particular transcription factor, designated VP16-HRU, from a pool of zinc finger artificial transcription factors (ZF-ATFs) used for genome interrogation. When expressed in Arabidopsis thaliana under control of the ribosomal protein S5A promoter, the RPS5A::VP16-HRU

  6. Zfp-37 is a member of the KRAB zinc finger gene family and is expressed in neurons of the developing and adult CNS.

    NARCIS (Netherlands)

    N. Mazarakis; D. Michalovich (David); A. Karis (Alar); F.G. Grosveld (Frank); N.J. Galjart (Niels)

    1996-01-01

    textabstractThe murine Zfp-37 gene encodes a protein with 12 zinc fingers at its C-terminus (Nelki et al., 1990, Nucleic Acids Res. 18: 3655; Burke and Wolgemuth, 1992, Nucleic Acids Res. 20: 2827-2834). Contrary to the published data, our Northern blot analysis demonstrates not only that the Zfp-37

  7. ZNF322, a novel human C2H2 Krueppel-like zinc-finger protein, regulates transcriptional activation in MAPK signaling pathways

    International Nuclear Information System (INIS)

    Li Yongqing; Wang Yuequn; Zhang Caibo; Yuan Wuzhou; Wang Jun; Zhu Chuanbing; Chen Lei; Huang Wen; Zeng Weiqi; Wu Xiushan; Liu Mingyao

    2004-01-01

    Cardiac differentiation involves a cascade of coordinated gene expression that regulates cell proliferation and matrix protein formation in a defined temporal-spatial manner. The C 2 H 2 zinc finger-containing transcription factors have been implicated as critical regulators of multiple cardiac-expressed genes and are important for human heart development and diseases. Here we have identified and characterized a novel zinc-finger gene named ZNF322 using degenerated primers from a human embryo heart cDNA library. The gene contains four exons and spans 23.2 kb in chromosome 6p22.1 region, and transcribes a 2.7 kb mRNA that encodes a protein with 402 amino acid residues. The predicted protein contains 9 tandem C 2 H 2 -type zinc-finger motifs. Northern blot analysis shows that ZNF322 is expressed in every human tissue examined at adult stage and during embryonic developmental stages from 80 days to 24 weeks. When overexpressed in COS-7 cells, ZNF322-EGFP fusion protein is detected in the nucleus and cytoplasm. Reporter gene assays show that ZNF322 is a transcriptional activator. Furthermore, overexpression of ZNF322 in COS-7 cells activates the transcriptional activity of SRE and AP-1. Together, these results suggest that ZNF322 is a member of the zinc-finger transcription factor family and may act as a positive regulator in gene transcription mediated by the MAPK signaling pathways

  8. A novel zinc-finger-like gene from Tamarix hispida is involved in salt and osmotic tolerance.

    Science.gov (United States)

    An, Yan; Wang, Yucheng; Lou, Lingling; Zheng, Tangchun; Qu, Guan-Zheng

    2011-11-01

    In the present study, a zinc-finger-like cDNA (ThZFL) was cloned from the Tamarix hispida. Northern blot analysis showed that the expression of ThZFL can be induced by salt, osmotic stress and ABA treatment. Overexpression of the ThZFL confers salt and osmotic stress tolerance in both yeast Saccharomyces cerevisiae and tobacco. Furthermore, MDA levels in ThZFL transformed tobacco were significantly decreased compared with control plants under salt and osmotic stress, suggesting ThZFL may confer stress tolerance by decreasing membrane lipid peroxidation. Subcellular localization analysis showed the ThZFL protein is localized in the cell wall. Our results indicated the ThZFL gene is an excellent candidate for genetic engineering to improve salt and osmotic tolerance in agricultural plants.

  9. The Role of Cdkn1A-Interacting Zinc Finger Protein 1 (CIZ1 in DNA Replication and Pathophysiology

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2016-02-01

    Full Text Available Cdkn1A-interacting zinc finger protein 1 (CIZ1 was first identified in a yeast-2-hybrid system searching for interacting proteins of CDK2 inhibitor p21Cip1/Waf1. Ciz1 also binds to CDK2, cyclin A, cyclin E, CDC6, PCNA, TCF4 and estrogen receptor-α. Recent studies reveal numerous biological functions of CIZ1 in DNA replication, cell proliferation, and differentiation. In addition, splicing variants of CIZ1 mRNA is associated with a variety of cancers and Alzheimer’s disease, and mutations of the CIZ1 gene lead to cervical dystonia. CIZ1 expression is increased in cancers and rheumatoid arthritis. In this review, we will summarize the biological functions and molecular mechanisms of CIZ1 in these physiological and pathological processes.

  10. Solution NMR structure of zinc finger 4 and 5 from human INSM1, an essential regulator of neuroendocrine differentiation.

    Science.gov (United States)

    Zhu, Jiang; Wang, Huapu; Ramelot, Theresa A; Kennedy, Michael A; Hu, Rui; Yue, Xiali; Liu, Maili; Yang, Yunhuang

    2017-05-01

    Human INSM1 containing five C-terminal C2H2-type zinc fingers (ZFs), is a key regulator of neuroendocrine development. Previous research reported that full-length INSM1 containing all five ZFs recognized a consensus DNA sequence. Structure elucidation of human INSM1 ZFs is currently insufficient to understand the DNA binding mechanism. Herein, we present the solution NMR structure of ZF4-5, in which the two ZFs adopt a head-to-tail arrangement and each ZF features a canonical ββα fold. NMR titrations and isothermal titration calorimetry experiments showed that ZF4-5 binds weakly to the consensus DNA sequence. Proteins 2017; 85:957-962. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Thiamine-repressible genes in Schizosaccharomyces pombe are regulated by a Cys6 zinc-finger motif-containing protein.

    Science.gov (United States)

    Fankhauser, H; Schweingruber, M E

    1994-09-15

    Our previous genetic data indicate that the product of the Schizosaccharomyces pombe thi1 gene acts as an activator of several thiamine-repressible genes which are involved in the control of thiamine metabolism [Schweingruber et al., Genetics 130 (1992) 445-449; Zurlinden and Schweingruber, Gene 117 (1992) 141-143]. In this communication, we report the cloning and sequencing of thi1 and show that it carries an open reading frame which translates into a 775-amino-acid protein with the characteristics of a Cys6 zinc-finger-motif-containing transcription factor, as typified by Saccharomyces cerevisae GAL4. We, therefore, suggest that the thi1-encoded protein binds to upstream activator sequences of thiamine-repressible genes.

  12. Evolutionary expansion and divergence in a large family of primate-specific zinc finger transcription factor genes

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, A T; Huntley, S; Tran-Gyamfi, M; Baggott, D; Gordon, L; Stubbs, L

    2005-09-28

    Although most genes are conserved as one-to-one orthologs in different mammalian orders, certain gene families have evolved to comprise different numbers and types of protein-coding genes through independent series of gene duplications, divergence and gene loss in each evolutionary lineage. One such family encodes KRAB-zinc finger (KRAB-ZNF) genes, which are likely to function as transcriptional repressors. One KRAB-ZNF subfamily, the ZNF91 clade, has expanded specifically in primates to comprise more than 110 loci in the human genome, yielding large gene clusters in human chromosomes 19 and 7 and smaller clusters or isolated copies at other chromosomal locations. Although phylogenetic analysis indicates that many of these genes arose before the split between old world monkeys and new world monkeys, the ZNF91 subfamily has continued to expand and diversify throughout the evolution of apes and humans. The paralogous loci are distinguished by sequence divergence within their zinc finger arrays indicating a selection for proteins with different DNA binding specificities. RT-PCR and in situ hybridization data show that some of these ZNF genes can have tissue-specific expression patterns, however many KRAB-ZNFs that are near-ubiquitous could also be playing very specific roles in halting target pathways in all tissues except for a few, where the target is released by the absence of its repressor. The number of variant KRAB-ZNF proteins is increased not only because of the large number of loci, but also because many loci can produce multiple splice variants, which because of the modular structure of these genes may have separate and perhaps even conflicting regulatory roles. The lineage-specific duplication and rapid divergence of this family of transcription factor genes suggests a role in determining species-specific biological differences and the evolution of novel primate traits.

  13. An over expression APP model for anti-Alzheimer disease drug screening created by zinc finger nuclease technology.

    Directory of Open Access Journals (Sweden)

    Xiaojing Zhang

    Full Text Available Zinc Finger Nucleases (ZFNs, famous for their ability to precisely and efficiently modify specific genomic loci, have been employed in numerous transgenic model organism and cell constructions. Here we employ the ZFNs technology, with homologous recombination (HR, to construct sequence-specific Amyloid Precursor Protein (APP knock-in cells. With the use of ZFNs, we established APP knock in cell lines with gene-modification efficiencies of about 7%. We electroporated DNA fragment containing the promoter and the protein coding regions of the zinc finger nucleases into cells, instead of the plasmids, to avoid problems associated with off target homologous recombination, and adopted a pair of mutated FokI cleavage domains to reduce the toxic effects of the ZFNs on cell growth. Since over-expression of APP, or a subdomain of it, might lead to an immediately lethal effect, we used the Cre-LoxP System to regulate APP expression. Our genetically transformed cell lines, w5c1 and s12c8, showed detectable APP and Amyloid β (Aβ production. The Swedish double mutation in the APP coding sequence enhanced APP and Aβ abundance. What is more, the activity of the three key secretases in Aβ formation could be modulated, indicating that these transgenic cells have potential for drug screening to modify amyloid metabolism in cells. Our transformed cells could readily be propagated in culture and should provide an excellent experimental medium for elucidating aspects of the molecular pathogenesis of Alzheimer's disease, especially those concerning the amyloidogenic pathways involving mutations in the APP coding sequence. The cellular models may also serve as a tool for deriving potentially useful therapeutic agents.

  14. C. elegans PAT-9 is a nuclear zinc finger protein critical for the assembly of muscle attachments

    Directory of Open Access Journals (Sweden)

    Liu Qian

    2012-05-01

    Full Text Available Abstract Background Caenorhabditis elegans sarcomeres have been studied extensively utilizing both forward and reverse genetic techniques to provide insight into muscle development and the mechanisms behind muscle contraction. A previous genetic screen investigating early muscle development produced 13 independent mutant genes exhibiting a Pat (paralyzed and arrested elongation at the two-fold length of embryonic development muscle phenotype. This study reports the identification and characterization of one of those genes, pat-9. Results Positional cloning, reverse genetics, and plasmid rescue experiments were used to identify the predicted C. elegans gene T27B1.2 (recently named ztf-19 as the pat-9 gene. Analysis of pat-9 showed it is expressed early in development and within body wall muscle lineages, consistent with a role in muscle development and producing a Pat phenotype. However, unlike most of the other known Pat gene family members, which encode structural components of muscle attachment sites, PAT-9 is an exclusively nuclear protein. Analysis of the predicted PAT-9 amino acid sequence identified one putative nuclear localization domain and three C2H2 zinc finger domains. Both immunocytochemistry and PAT-9::GFP fusion expression confirm that PAT-9 is primarily a nuclear protein and chromatin immunoprecipitation (ChIP experiments showed that PAT-9 is present on certain gene promoters. Conclusions We have shown that the T27B1.2 gene is pat-9. Considering the Pat-9 mutant phenotype shows severely disrupted muscle attachment sites despite PAT-9 being a nuclear zinc finger protein and not a structural component of muscle attachment sites, we propose that PAT-9 likely functions in the regulation of gene expression for some necessary structural or regulatory component(s of the muscle attachment sites.

  15. Targeted editing of goat genome with modular-assembly zinc finger nucleases based on activity prediction by computational molecular modeling.

    Science.gov (United States)

    Xiong, Kai; Li, Shanshan; Zhang, Hongxiao; Cui, Ye; Yu, Debing; Li, Yan; Sun, Wenxing; Fu, Yingying; Teng, Yun; Liu, Zhi; Zhou, Xiaolong; Xiao, Peng; Li, Juan; Liu, Honglin; Chen, Jie

    2013-07-01

    Zinc finger nuclease (ZFN) technology can mediate targeted genome modification to produce transgenic animals in a high-efficient and biological-safe way. Modular assembly is a rapid, convenient and open-source method for the synthesis of ZFNs. However, this biotechnology is hampered by multistep construction, low-efficiency editing and off-target cleavage. Here we synthesized and tested six pairs of three- or four-finger ZFNs to target one site in goat beta-lactoglobulin (BLG, a dominant allergen in goat milk) gene. Homology modeling was applied to build the structure model of ZFNs to predict their editing activities targeting at goat BLG gene. Goat fibroblast cells were transfected with plasmids that encoded ZFN pairs, and genomic DNA was isolated 72 h later for genome editing efficiency assay. The results of editing efficiency assay demonstrated that ZFNs with optimal interaction modes can edit goat BLG gene more efficiently, whereas ZFNs with unexpected interaction modes showed lower activities in editing BLG gene. We concluded that modular-assembly ZFNs can provide a rapid, public-available, and easy-to-practice platform for transgenic animal research and molecular modeling would help as a useful tool for ZFNs activity prediction.

  16. Proviral HIV-genome-wide and pol-gene specific Zinc Finger Nucleases: Usability for targeted HIV gene therapy

    Directory of Open Access Journals (Sweden)

    Wayengera Misaki

    2011-07-01

    Full Text Available Abstract Background Infection with HIV, which culminates in the establishment of a latent proviral reservoir, presents formidable challenges for ultimate cure. Building on the hypothesis that ex-vivo or even in-vivo abolition or disruption of HIV-gene/genome-action by target mutagenesis or excision can irreversibly abrogate HIV's innate fitness to replicate and survive, we previously identified the isoschizomeric bacteria restriction enzymes (REases AcsI and ApoI as potent cleavers of the HIV-pol gene (11 and 9 times in HIV-1 and 2, respectively. However, both enzymes, along with others found to cleave across the entire HIV-1 genome, slice (SX at palindromic sequences that are prevalent within the human genome and thereby pose the risk of host genome toxicity. A long-term goal in the field of R-M enzymatic therapeutics has thus been to generate synthetic restriction endonucleases with longer recognition sites limited in specificity to HIV. We aimed (i to assemble and construct zinc finger arrays and nucleases (ZFN with either proviral-HIV-pol gene or proviral-HIV-1 whole-genome specificity respectively, and (ii to advance a model for pre-clinically testing lentiviral vectors (LV that deliver and transduce either ZFN genotype. Methods and Results First, we computationally generated the consensus sequences of (a 114 dsDNA-binding zinc finger (Zif arrays (ZFAs or ZifHIV-pol and (b two zinc-finger nucleases (ZFNs which, unlike the AcsI and ApoI homeodomains, possess specificity to >18 base-pair sequences uniquely present within the HIV-pol gene (ZifHIV-polFN. Another 15 ZFNs targeting >18 bp sequences within the complete HIV-1 proviral genome were constructed (ZifHIV-1FN. Second, a model for constructing lentiviral vectors (LVs that deliver and transduce a diploid copy of either ZifHIV-polFN or ZifHIV-1FN chimeric genes (termed LV- 2xZifHIV-polFN and LV- 2xZifHIV-1FN, respectively is proposed. Third, two preclinical models for controlled testing of

  17. Evolution of C2H2-zinc finger genes and subfamilies in mammals: Species-specific duplication and loss of clusters, genes and effector domains

    Directory of Open Access Journals (Sweden)

    Aubry Muriel

    2008-06-01

    Full Text Available Abstract Background C2H2 zinc finger genes (C2H2-ZNF constitute the largest class of transcription factors in humans and one of the largest gene families in mammals. Often arranged in clusters in the genome, these genes are thought to have undergone a massive expansion in vertebrates, primarily by tandem duplication. However, this view is based on limited datasets restricted to a single chromosome or a specific subset of genes belonging to the large KRAB domain-containing C2H2-ZNF subfamily. Results Here, we present the first comprehensive study of the evolution of the C2H2-ZNF family in mammals. We assembled the complete repertoire of human C2H2-ZNF genes (718 in total, about 70% of which are organized into 81 clusters across all chromosomes. Based on an analysis of their N-terminal effector domains, we identified two new C2H2-ZNF subfamilies encoding genes with a SET or a HOMEO domain. We searched for the syntenic counterparts of the human clusters in other mammals for which complete gene data are available: chimpanzee, mouse, rat and dog. Cross-species comparisons show a large variation in the numbers of C2H2-ZNF genes within homologous mammalian clusters, suggesting differential patterns of evolution. Phylogenetic analysis of selected clusters reveals that the disparity in C2H2-ZNF gene repertoires across mammals not only originates from differential gene duplication but also from gene loss. Further, we discovered variations among orthologs in the number of zinc finger motifs and association of the effector domains, the latter often undergoing sequence degeneration. Combined with phylogenetic studies, physical maps and an analysis of the exon-intron organization of genes from the SCAN and KRAB domains-containing subfamilies, this result suggests that the SCAN subfamily emerged first, followed by the SCAN-KRAB and finally by the KRAB subfamily. Conclusion Our results are in agreement with the "birth and death hypothesis" for the evolution of

  18. Genome-wide analysis of the CCCH zinc finger family identifies tissue specific and stress responsive candidates in chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Pradhan, Seema; Kant, Chandra; Verma, Subodh; Bhatia, Sabhyata

    2017-01-01

    The CCCH zinc finger is a group of proteins characterised by a typical motif consisting of three cysteine residues and one histidine residue. These proteins have been reported to play important roles in regulation of plant growth, developmental processes and environmental responses. In the present study, genome wide analysis of the CCCH zinc finger gene family was carried out in the available chickpea genome. Various bioinformatics tools were employed to predict 58 CCCH zinc finger genes in chickpea (designated CarC3H1-58), which were analysed for their physio-chemical properties. Phylogenetic analysis classified the proteins into 12 groups in which members of a particular group had similar structural organization. Further, the numbers as well as the types of CCCH motifs present in the CarC3H proteins were compared with those from Arabidopsis and Medicago truncatula. Synteny analysis revealed valuable information regarding the evolution of this gene family. Tandem and segmental duplication events were identified and their Ka/Ks values revealed that the CarC3H gene family in chickpea had undergone purifying selection. Digital, as well as real time qRT-PCR expression analysis was performed which helped in identification of several CarC3H members that expressed preferentially in specific chickpea tissues as well as during abiotic stresses (desiccation, cold, salinity). Moreover, molecular characterization of an important member CarC3H45 was carried out. This study provides comprehensive genomic information about the important CCCH zinc finger gene family in chickpea. The identified tissue specific and abiotic stress specific CCCH genes could be potential candidates for further characterization to delineate their functional roles in development and stress.

  19. The Phytochrome-Interacting VASCULAR PLANT ONE–ZINC FINGER1 and VOZ2 Redundantly Regulate Flowering in Arabidopsis[C][W

    Science.gov (United States)

    Yasui, Yukiko; Mukougawa, Keiko; Uemoto, Mitsuhiro; Yokofuji, Akira; Suzuri, Ryota; Nishitani, Aiko; Kohchi, Takayuki

    2012-01-01

    The timing of the transition to flowering in plants is regulated by various environmental factors, including daylength and light quality. Although the red/far-red photoreceptor phytochrome B (phyB) represses flowering by indirectly regulating the expression of a key flowering regulator, FLOWERING LOCUS T (FT), the mechanism of phyB signaling for flowering is largely unknown. Here, we identified two Arabidopsis thaliana genes, VASCULAR PLANT ONE–ZINC FINGER1 (VOZ1) and VOZ2, which are highly conserved throughout land plant evolution, as phyB-interacting factors. voz1 voz2 double mutants, but neither single mutant, showed a late-flowering phenotype under long-day conditions, which indicated that VOZ1 and VOZ2 redundantly promote flowering. voz1 voz2 mutations suppressed the early-flowering phenotype of the phyB mutant, and FT expression was repressed in the voz1 voz2 mutant. Green fluorescent protein–VOZ2 signal was observed in the cytoplasm, and interaction of VOZ proteins with phyB was indicated to occur in the cytoplasm under far-red light. However, VOZ2 protein modified to localize constitutively in the nucleus promoted flowering. In addition, the stability of VOZ2 proteins in the nucleus was modulated by light quality in a phytochrome-dependent manner. We propose that partial translocation of VOZ proteins from the cytoplasm to the nucleus mediates the initial step of the phyB signal transduction pathway that regulates flowering. PMID:22904146

  20. Positive selection and increased antiviral activity associated with the PARP-containing isoform of human zinc-finger antiviral protein.

    Directory of Open Access Journals (Sweden)

    Julie A Kerns

    2008-01-01

    Full Text Available Intrinsic immunity relies on specific recognition of viral epitopes to mount a cell-autonomous defense against viral infections. Viral recognition determinants in intrinsic immunity genes are expected to evolve rapidly as host genes adapt to changing viruses, resulting in a signature of adaptive evolution. Zinc-finger antiviral protein (ZAP from rats was discovered to be an intrinsic immunity gene that can restrict murine leukemia virus, and certain alphaviruses and filoviruses. Here, we used an approach combining molecular evolution and cellular infectivity assays to address whether ZAP also acts as a restriction factor in primates, and to pinpoint which protein domains may directly interact with the virus. We find that ZAP has evolved under positive selection throughout primate evolution. Recurrent positive selection is only found in the poly(ADP-ribose polymerase (PARP-like domain present in a longer human ZAP isoform. This PARP-like domain was not present in the previously identified and tested rat ZAP gene. Using infectivity assays, we found that the longer isoform of ZAP that contains the PARP-like domain is a stronger suppressor of murine leukemia virus expression and Semliki forest virus infection. Our study thus finds that human ZAP encodes a potent antiviral activity against alphaviruses. The striking congruence between our evolutionary predictions and cellular infectivity assays strongly validates such a combined approach to study intrinsic immunity genes.

  1. The Zinc-Finger Thylakoid-Membrane Protein FIP Is Involved With Abiotic Stress Response in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Karina L. Lopes

    2018-04-01

    Full Text Available Many plant genes have their expression modulated by stress conditions. Here, we used Arabidopsis FtsH5 protease, which expression is regulated by light stress, as bait in a yeast two-hybrid screen to search for new proteins involved in the stress response. As a result, we found FIP (FtsH5 Interacting Protein, which possesses an amino proximal cleavable transit peptide, a hydrophobic membrane-anchoring region, and a carboxyl proximal C4-type zinc-finger domain. In vivo experiments using FIP fused to green fluorescent protein (GFP showed a plastid localization. This finding was corroborated by chloroplast import assays that showed FIP inserted in the thylakoid membrane. FIP expression was down-regulated in plants exposed to high light intensity, oxidative, salt, and osmotic stresses, whereas mutant plants expressing low levels of FIP were more tolerant to these abiotic stresses. Our data shows a new thylakoid-membrane protein involved with abiotic stress response in Arabidopsis thaliana.

  2. Generation of knockout rats with X-linked severe combined immunodeficiency (X-SCID) using zinc-finger nucleases.

    Science.gov (United States)

    Mashimo, Tomoji; Takizawa, Akiko; Voigt, Birger; Yoshimi, Kazuto; Hiai, Hiroshi; Kuramoto, Takashi; Serikawa, Tadao

    2010-01-25

    Although the rat is extensively used as a laboratory model, the inability to utilize germ line-competent rat embryonic stem (ES) cells has been a major drawback for studies that aim to elucidate gene functions. Recently, zinc-finger nucleases (ZFNs) were successfully used to create genome-specific double-stranded breaks and thereby induce targeted gene mutations in a wide variety of organisms including plants, drosophila, zebrafish, etc. We report here on ZFN-induced gene targeting of the rat interleukin 2 receptor gamma (Il2rg) locus, where orthologous human and mouse mutations cause X-linked severe combined immune deficiency (X-SCID). Co-injection of mRNAs encoding custom-designed ZFNs into the pronucleus of fertilized oocytes yielded genetically modified offspring at rates greater than 20%, which possessed a wide variety of deletion/insertion mutations. ZFN-modified founders faithfully transmitted their genetic changes to the next generation along with the severe combined immune deficiency phenotype. The efficient and rapid generation of gene knockout rats shows that using ZFN technology is a new strategy for creating gene-targeted rat models of human diseases. In addition, the X-SCID rats that were established in this study will be valuable in vivo tools for evaluating drug treatment or gene therapy as well as model systems for examining the treatment of xenotransplanted malignancies.

  3. Zinc Finger Homeodomain Factor Zfhx3 Is Essential for Mammary Lactogenic Differentiation by Maintaining Prolactin Signaling Activity*

    Science.gov (United States)

    Zhao, Dan; Ma, Gui; Zhang, Xiaolin; He, Yuan; Li, Mei; Han, Xueying; Fu, Liya; Dong, Xue-Yuan; Nagy, Tamas; Zhao, Qiang; Fu, Li; Dong, Jin-Tang

    2016-01-01

    The zinc finger homeobox 3 (ZFHX3, also named ATBF1 for AT motif binding factor 1) is a transcription factor that suppresses prostatic carcinogenesis and induces neuronal differentiation. It also interacts with estrogen receptor α to inhibit cell proliferation and regulate pubertal mammary gland development in mice. In the present study, we examined whether and how Zfhx3 regulates lactogenic differentiation in mouse mammary glands. At different stages of mammary gland development, Zfhx3 protein was expressed at varying levels, with the highest level at lactation. In the HC11 mouse mammary epithelial cell line, an in vitro model of lactogenesis, knockdown of Zfhx3 attenuated prolactin-induced β-casein expression and morphological changes, indicators of lactogenic differentiation. In mouse mammary tissue, knock-out of Zfhx3 interrupted lactogenesis, resulting in underdeveloped glands with much smaller and fewer alveoli, reduced β-casein expression, accumulation of large cytoplasmic lipid droplets in luminal cells after parturition, and failure in lactation. Mechanistically, Zfhx3 maintained the expression of Prlr (prolactin receptor) and Prlr-Jak2-Stat5 signaling activity, whereas knockdown and knock-out of Zfhx3 in HC11 cells and mammary tissues, respectively, decreased Prlr expression, Stat5 phosphorylation, and the expression of Prlr-Jak2-Stat5 target genes. These findings indicate that Zfhx3 plays an essential role in proper lactogenic development in mammary glands, at least in part by maintaining Prlr expression and Prlr-Jak2-Stat5 signaling activity. PMID:27129249

  4. Gene- and protein-delivered zinc finger-staphylococcal nuclease hybrid for inhibition of DNA replication of human papillomavirus.

    Science.gov (United States)

    Mino, Takashi; Mori, Tomoaki; Aoyama, Yasuhiro; Sera, Takashi

    2013-01-01

    Previously, we reported that artificial zinc-finger proteins (AZPs) inhibited virus DNA replication in planta and in mammalian cells by blocking binding of a viral replication protein to its replication origin. However, the replication mechanisms of viruses of interest need to be disentangled for the application. To develop more widely applicable methods for antiviral therapy, we explored the feasibility of inhibition of HPV-18 replication as a model system by cleaving its viral genome. To this end, we fused the staphylococcal nuclease cleaving DNA as a monomer to an AZP that binds to the viral genome. The resulting hybrid nuclease (designated AZP-SNase) cleaved its target DNA plasmid efficiently and sequence-specifically in vitro. Then, we confirmed that transfection with a plasmid expressing AZP-SNase inhibited HPV-18 DNA replication in transient replication assays using mammalian cells. Linker-mediated PCR analysis revealed that the AZP-SNase cleaved an HPV-18 ori plasmid around its binding site. Finally, we demonstrated that the protein-delivered AZP-SNase inhibited HPV-18 DNA replication as well and did not show any significant cytotoxicity. Thus, both gene- and protein-delivered hybrid nucleases efficiently inhibited HPV-18 DNA replication, leading to development of a more universal antiviral therapy for human DNA viruses.

  5. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control.

    Science.gov (United States)

    Huang, Xin-Yuan; Chao, Dai-Yin; Gao, Ji-Ping; Zhu, Mei-Zhen; Shi, Min; Lin, Hong-Xuan

    2009-08-01

    Abiotic stresses, such as drought and salinity, lead to crop growth damage and a decrease in crop yields. Stomata control CO(2) uptake and optimize water use efficiency, thereby playing crucial roles in abiotic stress tolerance. Hydrogen peroxide (H(2)O(2)) is an important signal molecule that induces stomatal closure. However, the molecular pathway that regulates the H(2)O(2) level in guard cells remains largely unknown. Here, we clone and characterize DST (drought and salt tolerance)-a previously unknown zinc finger transcription factor that negatively regulates stomatal closure by direct modulation of genes related to H(2)O(2) homeostasis-and identify a novel pathway for the signal transduction of DST-mediated H(2)O(2)-induced stomatal closure. Loss of DST function increases stomatal closure and reduces stomatal density, consequently resulting in enhanced drought and salt tolerance in rice. These findings provide an interesting insight into the mechanism of stomata-regulated abiotic stress tolerance, and an important genetic engineering approach for improving abiotic stress tolerance in crops.

  6. Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression.

    Science.gov (United States)

    Li, Shuyu; Zhao, Bingran; Yuan, Dingyang; Duan, Meijuan; Qian, Qian; Tang, Li; Wang, Bao; Liu, Xiaoqiang; Zhang, Jie; Wang, Jun; Sun, Jiaqiang; Liu, Zhao; Feng, Yu-Qi; Yuan, Longping; Li, Chuanyou

    2013-02-19

    The phytohormone cytokinin (CK) positively regulates the activity and function of the shoot apical meristem (SAM), which is a major parameter determining seed production. The rice (Oryza sativa L.) Gn1a/OsCKX2 (Grain number 1a/Cytokinin oxidase 2) gene, which encodes a cytokinin oxidase, has been identified as a major quantitative trait locus contributing to grain number improvement in rice breeding practice. However, the molecular mechanism of how the expression of OsCKX2 is regulated in planta remains elusive. Here, we report that the zinc finger transcription factor DROUGHT AND SALT TOLERANCE (DST) directly regulates OsCKX2 expression in the reproductive meristem. DST-directed expression of OsCKX2 regulates CK accumulation in the SAM and, therefore, controls the number of the reproductive organs. We identify that DST(reg1), a semidominant allele of the DST gene, perturbs DST-directed regulation of OsCKX2 expression and elevates CK levels in the reproductive SAM, leading to increased meristem activity, enhanced panicle branching, and a consequent increase of grain number. Importantly, the DST(reg1) allele provides an approach to pyramid the Gn1a-dependent and Gn1a-independent effects on grain production. Our study reveals that, as a unique regulator of reproductive meristem activity, DST may be explored to facilitate the genetic enhancement of grain production in rice and other small grain cereals.

  7. SUMOylation of the KRAB zinc-finger transcription factor PARIS/ZNF746 regulates its transcriptional activity

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Tamotsu, E-mail: nishida@gene.mie-u.ac.jp; Yamada, Yoshiji

    2016-05-13

    Parkin-interacting substrate (PARIS), a member of the family of Krüppel-associated box (KRAB)-containing zinc-finger transcription factors, is a substrate of the ubiquitin E3 ligase parkin. PARIS represses the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), although the underlying mechanisms remain largely unknown. In the present study, we demonstrate that PARIS can be SUMOylated, and its SUMOylation plays a role in the repression of PGC-1a promoter activity. Protein inhibitor of activated STAT y (PIASy) was identified as an interacting protein of PARIS and shown to enhance its SUMOylation. PIASy repressed PGC-1a promoter activity, and this effect was attenuated by PARIS in a manner dependent on its SUMOylation status. Co-expression of SUMO-1 with PIASy completely repressed PGC-1a promoter activity independently of PARIS expression. PARIS-mediated PGC-1a promoter repression depended on the activity of histone deacetylases (HDAC), whereas PIASy repressed the PGC-1a promoter in an HDAC-independent manner. Taken together, these results suggest that PARIS and PIASy modulate PGC-1a gene transcription through distinct molecular mechanisms. -- Highlights: •PARIS can be SUMOylated in vivo and in vitro. •SUMOylation of PARIS functions in the repression of PGC-1a promoter activity. •PIASy interacts with PARIS and enhances its SUMOylation. •PIASy influences PARIS-mediated repression of PGC-1a promoter activity.

  8. Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NF-κB regulation

    Science.gov (United States)

    Tokunaga, Fuminori; Nishimasu, Hiroshi; Ishitani, Ryuichiro; Goto, Eiji; Noguchi, Takuya; Mio, Kazuhiro; Kamei, Kiyoko; Ma, Averil; Iwai, Kazuhiro; Nureki, Osamu

    2012-01-01

    LUBAC (linear ubiquitin chain assembly complex) activates the canonical NF-κB pathway through linear polyubiquitination of NEMO (NF-κB essential modulator, also known as IKKγ) and RIP1. However, the regulatory mechanism of LUBAC-mediated NF-κB activation remains elusive. Here, we show that A20 suppresses LUBAC-mediated NF-κB activation by binding linear polyubiquitin via the C-terminal seventh zinc finger (ZF7), whereas CYLD suppresses it through deubiquitinase (DUB) activity. We determined the crystal structures of A20 ZF7 in complex with linear diubiquitin at 1.70–1.98 Å resolutions. The crystal structures revealed that A20 ZF7 simultaneously recognizes the Met1-linked proximal and distal ubiquitins, and that genetic mutations associated with B cell lymphomas map to the ubiquitin-binding sites. Our functional analysis indicated that the binding of A20 ZF7 to linear polyubiquitin contributes to the recruitment of A20 into a TNF receptor (TNFR) signalling complex containing LUBAC and IκB kinase (IKK), which results in NF-κB suppression. These findings provide new insight into the regulation of immune and inflammatory responses. PMID:23032187

  9. Multiple interferon stimulated genes synergize with the zinc finger antiviral protein to mediate anti-alphavirus activity.

    Directory of Open Access Journals (Sweden)

    Sophiya Karki

    Full Text Available The zinc finger antiviral protein (ZAP is a host factor that mediates inhibition of viruses in the Filoviridae, Retroviridae and Togaviridae families. We previously demonstrated that ZAP blocks replication of Sindbis virus (SINV, the prototype Alphavirus in the Togaviridae family at an early step prior to translation of the incoming genome and that synergy between ZAP and one or more interferon stimulated genes (ISGs resulted in maximal inhibitory activity. The present study aimed to identify those ISGs that synergize with ZAP to mediate Alphavirus inhibition. Using a library of lentiviruses individually expressing more than 350 ISGs, we screened for inhibitory activity in interferon defective cells with or without ZAP overexpression. Confirmatory tests of the 23 ISGs demonstrating the largest infection reduction in combination with ZAP revealed that 16 were synergistic. Confirmatory tests of all potentially synergistic ISGs revealed 15 additional ISGs with a statistically significant synergistic effect in combination with ZAP. These 31 ISGs are candidates for further mechanistic studies. The number and diversity of the identified ZAP-synergistic ISGs lead us to speculate that ZAP may play an important role in priming the cell for optimal ISG function.

  10. Generation of knockout rats with X-linked severe combined immunodeficiency (X-SCID using zinc-finger nucleases.

    Directory of Open Access Journals (Sweden)

    Tomoji Mashimo

    Full Text Available BACKGROUND: Although the rat is extensively used as a laboratory model, the inability to utilize germ line-competent rat embryonic stem (ES cells has been a major drawback for studies that aim to elucidate gene functions. Recently, zinc-finger nucleases (ZFNs were successfully used to create genome-specific double-stranded breaks and thereby induce targeted gene mutations in a wide variety of organisms including plants, drosophila, zebrafish, etc. METHODOLOGY/PRINCIPAL FINDINGS: We report here on ZFN-induced gene targeting of the rat interleukin 2 receptor gamma (Il2rg locus, where orthologous human and mouse mutations cause X-linked severe combined immune deficiency (X-SCID. Co-injection of mRNAs encoding custom-designed ZFNs into the pronucleus of fertilized oocytes yielded genetically modified offspring at rates greater than 20%, which possessed a wide variety of deletion/insertion mutations. ZFN-modified founders faithfully transmitted their genetic changes to the next generation along with the severe combined immune deficiency phenotype. CONCLUSIONS AND SIGNIFICANCE: The efficient and rapid generation of gene knockout rats shows that using ZFN technology is a new strategy for creating gene-targeted rat models of human diseases. In addition, the X-SCID rats that were established in this study will be valuable in vivo tools for evaluating drug treatment or gene therapy as well as model systems for examining the treatment of xenotransplanted malignancies.

  11. Regulation of hippocampus-dependent memory by the zinc finger protein Zbtb20 in mature CA1 neurons.

    Science.gov (United States)

    Ren, Anjing; Zhang, Huan; Xie, Zhifang; Ma, Xianhua; Ji, Wenli; He, David Z Z; Yuan, Wenjun; Ding, Yu-Qiang; Zhang, Xiao-Hui; Zhang, Weiping J

    2012-10-01

    The mammalian hippocampus harbours neural circuitry that is crucial for associative learning and memory. The mechanisms that underlie the development and regulation of this complex circuitry are not fully understood. Our previous study established an essential role for the zinc finger protein Zbtb20 in the specification of CA1 field identity in the developing hippocampus. Here, we show that conditionally deleting Zbtb20 specifically in mature CA1 pyramidal neurons impaired hippocampus-dependent memory formation, without affecting hippocampal architecture or the survival, identity and basal excitatory synaptic activity of CA1 pyramidal neurons. We demonstrate that mature CA1-specific Zbtb20 knockout mice exhibited reductions in long-term potentiation (LTP) and NMDA receptor (NMDAR)-mediated excitatory post-synaptic currents. Furthermore, we show that activity-induced phosphorylation of ERK and CREB is impaired in the hippocampal CA1 of Zbtb20 mutant mice. Collectively, these results indicate that Zbtb20 in mature CA1 plays an important role in LTP and memory by regulating NMDAR activity, and activation of ERK and CREB.

  12. Sequences homologous to the human x- and y-borne zinc finger protein genes (ZFX/Y) are autosomal in monotreme mannals

    Energy Technology Data Exchange (ETDEWEB)

    Watson, J.M.; Frost, C.; Graves, M.J.A. (Latrobe Univ., Bundoora (Australia)); Spencer, J.A. (Beckman Inst. of the City of Hope, Duarte, CA (United States))

    1993-02-01

    The human zinc finger protein genes (ZFX/Y) were identified as a result of a systematic search for the testis-determining factor gene on the human Y chromosome. Although they play no direct role in sex determination, they are of particular interest because they are highly conserved among mammals, birds, and amphibians and because, in eutherian mammals at least, they have active alleles on both the X and the Y chromosomes outside the pseudoautosomal region. We used in situ hybridization to localize the homologues of the zinc finger protein gene to chromosome 1 of the Australian echidna and to an equivalent position on chromosomes 1 and 2 of the playtpus. The localization to platypus chromosome 1 was confirmed by Southern analysis of a Chinese hamster [times] platypus cell hybrid retaining most of platypus chromosome 1. This localization is consistent with the cytological homology of chromosome 1 between the two species. The zinc finger protein gene homologues were localized to regions of platypus chromosomes 1 and 2 that included a number of other genes situated near ZFX on the short arm of the human X chromosome. These results support the hypothesis that many of the genes located on the short arm of the human X were originally autosomal and have been translocated to the X chromosome since the eutherian-metatherian divergence. 34 refs., 3 figs., 2 tabs.

  13. Sequence, expression and tissue localization of a gene encoding a makorin RING zinc-finger protein in germinating rice (Oryza sativa L. ssp. Japonica) seeds.

    Science.gov (United States)

    Arumugam, Thangavelu U; Davies, Eric; Morita, Eugene Hayato; Abe, Shunnosuke

    2007-01-01

    The makorin (MKRN) RING finger protein gene family encodes proteins (makorins) with a characteristic array of zinc-finger motifs and which are present in a wide array of eukaryotes. In the present study, we analyzed the structure and expression of a putative makorin RING finger protein gene in rice (Oryza sativa L. ssp. Japonica cv. Nipponbare). From the analysis of the genomic (AP003543), mRNA (AK120250) and deduced protein (BAD61603) sequences of the putative MKRN gene of rice, obtained from GenBank, we found that it was indeed a bona fide member of the MKRN gene family. The rice MKRN cDNA encoded a protein with four C3H zinc-finger-motifs, one putative Cys-His zinc-finger motif, and one RING zinc-finger motif. The presence of this distinct motif organization and overall amino acid identity clearly indicate that this gene is indeed a true MKRN ortholog. We isolated RNA from embryonic axes of rice seeds at various stages of imbibition and germination and studied the temporal expression profile of MKRN by RT-PCR. This analysis revealed that MKRN transcripts were present at all the time points studied. It was at very low levels in dry seeds, increased slowly during imbibition and germination, and slightly declined in the seedling growth stage. After 6days of germination, an organ-dependent expression pattern of MKRN was observed: highest in roots and moderate in leaves. Similarly to MKRN transcripts, transcripts of cytoskeletal actin and tubulin were also detected in dry embryos, steadily increased during imbibition and germination and leveled off after 24h of germination. We studied the spatial expression profile of MKRN in rice tissues, by using a relatively fast, simple and effective non-radioactive mRNA in situ hybridization (NRISH) technique, which provided the first spatial experimental data that hints at the function of a plant makorin. This analysis revealed that MKRN transcripts were expressed in young plumules, lateral root primordia, leaf primordia

  14. Excitonic polaritons of zinc diarsenide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Syrbu, N.N., E-mail: sirbunn@yahoo.com [Technical University of Moldova, Chisinau, Republic of Moldova (Moldova, Republic of); Stamov, I.G. [T.G. Shevchenko State University of Pridnestrovie, Tiraspol, Republic of Moldova (Moldova, Republic of); Zalamai, V.V. [Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau, Republic of Moldova (Moldova, Republic of); Dorogan, A. [Technical University of Moldova, Chisinau, Republic of Moldova (Moldova, Republic of)

    2017-02-01

    Excitonic polaritons of ZnAs{sub 2} single crystals had been investigated. Parameters of singlet excitons with Г{sub 2}¯(z) symmetry and orthoexcitons 2Г{sub 1}¯(y)+Г{sub 2}¯(x) had been determined. Spectral dependencies of ordinary and extraordinary dispersion of refractive index had been calculated using interferential reflection and transmittance spectra. It was shown, that A excitonic series were due to hole (V{sub 1}) and electron (C{sub 1}) bands. The values of effective masses of electrons (m{sub c}{sup *}=0.10 m{sub 0}) and holes (m{sub v1}{sup *}=0.89 m{sub 0}) had been estimated. It was revealed that the hole mass m{sub v1}{sup *} changes from 1.03 m{sub 0} to 0.55 m{sub 0} at temperature increasing from 10 K up to 230 K and that the electron mass m{sub c}{sup *} does not depend on temperature. The integral absorption A (eV cm{sup −1}) of the states n=1, 2 and 3 of Г{sub 2}¯(z) excitons depends on the A{sub n}≈n{sup −3} equality, which it is characteristic for S-type excitonic functions. Temperature dependences of the integral absorption of ground states for Г{sub 2}¯(z) and Г{sub 2}¯(Ñ…) excitons differ. The ground states of B and C excitons formed by V{sub 3} – C{sub 1} and V{sub 4} – C{sub 1} bands and its parameters had been determined.

  15. Zinc Finger Homeodomain Factor Zfhx3 Is Essential for Mammary Lactogenic Differentiation by Maintaining Prolactin Signaling Activity.

    Science.gov (United States)

    Zhao, Dan; Ma, Gui; Zhang, Xiaolin; He, Yuan; Li, Mei; Han, Xueying; Fu, Liya; Dong, Xue-Yuan; Nagy, Tamas; Zhao, Qiang; Fu, Li; Dong, Jin-Tang

    2016-06-10

    The zinc finger homeobox 3 (ZFHX3, also named ATBF1 for AT motif binding factor 1) is a transcription factor that suppresses prostatic carcinogenesis and induces neuronal differentiation. It also interacts with estrogen receptor α to inhibit cell proliferation and regulate pubertal mammary gland development in mice. In the present study, we examined whether and how Zfhx3 regulates lactogenic differentiation in mouse mammary glands. At different stages of mammary gland development, Zfhx3 protein was expressed at varying levels, with the highest level at lactation. In the HC11 mouse mammary epithelial cell line, an in vitro model of lactogenesis, knockdown of Zfhx3 attenuated prolactin-induced β-casein expression and morphological changes, indicators of lactogenic differentiation. In mouse mammary tissue, knock-out of Zfhx3 interrupted lactogenesis, resulting in underdeveloped glands with much smaller and fewer alveoli, reduced β-casein expression, accumulation of large cytoplasmic lipid droplets in luminal cells after parturition, and failure in lactation. Mechanistically, Zfhx3 maintained the expression of Prlr (prolactin receptor) and Prlr-Jak2-Stat5 signaling activity, whereas knockdown and knock-out of Zfhx3 in HC11 cells and mammary tissues, respectively, decreased Prlr expression, Stat5 phosphorylation, and the expression of Prlr-Jak2-Stat5 target genes. These findings indicate that Zfhx3 plays an essential role in proper lactogenic development in mammary glands, at least in part by maintaining Prlr expression and Prlr-Jak2-Stat5 signaling activity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. VASCULAR PLANT ONE-ZINC FINGER1 (VOZ1) and VOZ2 Interact with CONSTANS and Promote Photoperiodic Flowering Transition.

    Science.gov (United States)

    Kumar, Sushil; Choudhary, Pratibha; Gupta, Mansi; Nath, Utpal

    2018-04-01

    In plants, endogenous and environmental signals such as light control the timing of the transition to flowering. Two phytochrome B-interacting transcription factors, VASCULAR PLANT ONE-ZINC FINGER1 (VOZ1) and VOZ2, redundantly promote flowering in Arabidopsis ( Arabidopsis thaliana ). In the voz1 voz2 mutant, the expression of FLOWERING LOCUS C ( FLC ) was up-regulated and that of FLOWERING LOCUS T ( FT ) was down-regulated, which was proposed to be the cause of late flowering in voz1 voz2 However, the detailed mechanism by which the VOZ genes promote flowering is not well understood. Here, we show that neither the reduced FT expression nor the late-flowering phenotype of voz1 voz2 is suppressed in the voz1 voz2 flc triple mutant. Genetic interaction experiments between voz1 voz2 and constans-2 ( co-2 ) mutants reveal that the VOZs and CO work in the same genetic pathway. Using in vitro pull-down, electrophoretic mobility shift, and bimolecular fluorescence complementation assays, we show that VOZ1 and VOZ2 interact with CO. The voz1 voz2 35S :: CO : YFP plants show suppression of the early-flowering phenotype induced by CO overexpression, suggesting that CO requires VOZ for the induction of flowering. Determination of the VOZ consensus-binding site followed by genome-wide sequence analysis failed to identify any VOZ-binding sites near known flowering time genes. Together, these results indicate that the VOZ genes regulate flowering primarily through the photoperiod pathway, independent of FLC , and suggest that VOZs modulate CO function to promote flowering. © 2018 American Society of Plant Biologists. All Rights Reserved.

  17. Vascular plant one-zinc-finger protein 1/2 transcription factors regulate abiotic and biotic stress responses in Arabidopsis.

    Science.gov (United States)

    Nakai, Yusuke; Nakahira, Yoichi; Sumida, Hiroki; Takebayashi, Kosuke; Nagasawa, Yumiko; Yamasaki, Kanako; Akiyama, Masako; Ohme-Takagi, Masaru; Fujiwara, Sumire; Shiina, Takashi; Mitsuda, Nobutaka; Fukusaki, Eiichiro; Kubo, Yasuyuki; Sato, Masa H

    2013-03-01

    Plants adapt to abiotic and biotic stresses by activating abscisic acid-mediated (ABA) abiotic stress-responsive and salicylic acid-(SA) or jasmonic acid-mediated (JA) biotic stress-responsive pathways, respectively. Although the abiotic stress-responsive pathway interacts antagonistically with the biotic stress-responsive pathways, the mechanisms that regulate these pathways remain largely unknown. In this study, we provide insight into the function of vascular plant one-zinc-finger proteins (VOZs) that modulate various stress responses in Arabidopsis. The expression of many stress-responsive genes was changed in the voz1voz2 double mutant under normal growth conditions. Consistent with altered stress-responsive gene expression, freezing- and drought-stress tolerances were increased in the voz1voz2 double mutant. In contrast, resistance to a fungal pathogen, Colletotrichum higginsianum, and to a bacterial pathogen, Pseudomonas syringae, was severely impaired. Thus, impairing VOZ function simultaneously conferred increased abiotic tolerance and biotic stress susceptibility. In a chilling stress condition, both the VOZ1 and VOZ2 mRNA expression levels and the VOZ2 protein level gradually decreased. VOZ2 degradation during cold exposure was completely inhibited by the addition of the 26S proteasome inhibitor, MG132, a finding that suggested that VOZ2 degradation is dependent on the ubiquitin/26S proteasome system. In voz1voz2, ABA-inducible transcription factor CBF4 expression was enhanced significantly even under normal growth conditions, despite an unchanged endogenous ABA content. A finding that suggested that VOZs negatively affect CBF4 expression in an ABA-independent manner. These results suggest that VOZs function as both negative and positive regulators of the abiotic and biotic stress-responsive pathways, and control Arabidopsis adaptation to various stress conditions. © 2012 The Authors The Plant Journal © 2012 Blackwell Publishing Ltd.

  18. The ZNF75 zinc finger gene subfamily: Isolation and mapping of the four members in humans and great apes

    Energy Technology Data Exchange (ETDEWEB)

    Villa, A.; Strina, D.; Frattini, A. [Consiglio Nazionale delle Ricerche, Milan (Italy)] [and others

    1996-07-15

    We have previously reported the characterization of the human ZNF75 gene located on Xq26, which has only limited homology (less than 65%) to other ZF genes in the databases. Here, we describe three human zinc finger genes with 86 to 95% homology to ZNF75 at the nucleotide level, which represent all the members of the human ZNF75 subfamily. One of these, ZNF75B, is a pseudogene mapped to chromosome 12q13. The other two, ZNF75A and ZNF75C, maintain on ORF in the sequenced region, and at least the latter is expressed in the U937 cell line. They were mapped to chromosomes 16 and 11, respectively. All these genes are conserved in chimpanzees, gorillas, and orangutans. The ZNF75B homologue is a pseudogene in all three great apes, and in chimpanzee it is located on chromosome 10 (phylogenetic XII), at p13 (corresponding to the human 12q13). The chimpanzee homologue of ZNF75 is also located on the Xq26 chromosome, in the same region, as detected by in situ hybridization. As expected, nucleotide changes were clearly more abundant between human and organutan than between human and chimpanzee or gorilla homologues. Members of the same class were more similar to each other than to the other homologues within the same species. This suggests that the duplication and/or retrotranscription events occurred in a common ancestor long before great ape speciation. This, together with the existance of at least two genes in cows and horses, suggests a relatively high conservation of this gene family. 20 refs., 5 figs., 1 tab.

  19. The role of Zic family zinc finger transcription factors in the proliferation and differentiation of retinal progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Watabe, Yui [Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo (Japan); Department of Ophthalmology, Teikyo University School of Medicine, Tokyo (Japan); Division of Orthoptics, Teikyo University School of Medical Care and Technology, Tokyo (Japan); Baba, Yukihiro [Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo (Japan); Nakauchi, Hiromitsu [Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo (Japan); Mizota, Atsushi [Department of Ophthalmology, Teikyo University School of Medicine, Tokyo (Japan); Watanabe, Sumiko, E-mail: sumiko@ims.u-tokyo.ac.jp [Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo (Japan)

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Zic transcription factors expressed early retinal progenitor cells. Black-Right-Pointing-Pointer Zics sustain proliferation activity of retinal progenitor cells. Black-Right-Pointing-Pointer Overexpression of Zic in retinal progenitors perturbed rod differentiation. Black-Right-Pointing-Pointer Fate determination to rod photoreceptor was not affected. -- Abstract: Members of the Zic family of zinc finger transcription factors play critical roles in a variety of developmental processes. Using DNA microarray analysis, we found that Zics are strongly expressed in SSEA-1-positive early retinal progenitors in the peripheral region of the mouse retina. Reverse-transcription polymerase chain reaction using mRNA from the retina at various developmental stages showed that Zic1 and Zic2 are expressed in the embryonic retina and then gradually disappear during retinal development. Zic3 is also expressed in the embryonic retina; its expression level slightly decreases but it is expressed until adulthood. We overexpressed Zic1, Zic2, or Zic3 in retinal progenitors at embryonic day 17.5 and cultured the retina as explants for 2 weeks. The number of rod photoreceptors was fewer than in the control, but no other cell types showed significant differences between control and Zic overexpressing cells. The proliferation activity of normal retinal progenitors decreased after 5 days in culture, as observed in normal in vivo developmental processes. However, Zic expressing retinal cells continued to proliferate at days 5 and 7, suggesting that Zics sustain the proliferation activities of retinal progenitor cells. Since the effects of Zic1, 2, and 3 are indistinguishable in terms of differentiation and proliferation of retinal progenitors, the redundant function of Zics in retinal development is suggested.

  20. A Novel Prokaryotic Green Fluorescent Protein Expression System for Testing Gene Editing Tools Activity Like Zinc Finger Nuclease.

    Science.gov (United States)

    Sabzehei, Faezeh; Kouhpayeh, Shirin; Dastjerdeh, Mansoureh Shahbazi; Khanahmad, Hossein; Salehi, Rasoul; Naderi, Shamsi; Taghizadeh, Razieh; Rabiei, Parisa; Hejazi, Zahra; Shariati, Laleh

    2017-01-01

    Gene editing technology has created a revolution in the field of genome editing. The three of the most famous tools in gene editing technology are zinc finger nucleases (ZFNs), transcription activator-like effector nucleases, clustered regularly interspaced short palindromic repeats (CRISPR), and CRISPR-associated systems. As their predictable nature, it is necessary to assess their efficiency. There are some methods for this purpose, but most of them are time labor and complicated. Here, we introduce a new prokaryotic reporter system, which makes it possible to evaluate the efficiency of gene editing tools faster, cheaper, and simpler than previous methods. At first, the target sites of a custom ZFN, which is designed against a segment of ampicillin resistance gene, were cloned on both sides of green fluorescent protein (GFP) gene to construct pPRO-GFP. Then pPRO-GFP was transformed into Escherichia coli TOP10F' that contains pZFN (contains expression cassette of a ZFN against ampicillin resistant gene), or p15A-KanaR as a negative control. The transformed bacteria were cultured on three separate media that contained ampicillin, kanamycin, and ampicillin + kanamycin; then the resulted colonies were assessed by flow cytometry. The results of flow cytometry showed a significant difference between the case (bacteria contain pZFN) and control (bacteria contain p15A, KanaR) in MFI (Mean Fluorescence Intensity) ( P fluorescence. Our flow cytometry results showed that this ZFN could reduce the intensity of GFP color and colony count of bacteria in media containing amp + kana versus control sample.

  1. Specificity protein 1-zinc finger protein 179 pathway is involved in the attenuation of oxidative stress following brain injury

    Directory of Open Access Journals (Sweden)

    Jian-Ying Chuang

    2017-04-01

    Full Text Available After sudden traumatic brain injuries, secondary injuries may occur during the following days or weeks, which leads to the accumulation of reactive oxygen species (ROS. Since ROS exacerbate brain damage, it is important to protect neurons against their activity. Zinc finger protein 179 (Znf179 was shown to act as a neuroprotective factor, but the regulation of gene expression under oxidative stress remains unknown. In this study, we demonstrated an increase in Znf179 protein levels in both in vitro model of hydrogen peroxide (H2O2-induced ROS accumulation and animal models of traumatic brain injury. Additionally, we examined the sub-cellular localization of Znf179, and demonstrated that oxidative stress increases Znf179 nuclear shuttling and its interaction with specificity protein 1 (Sp1. Subsequently, the positive autoregulation of Znf179 expression, which is Sp1-dependent, was further demonstrated using luciferase reporter assay and green fluorescent protein (GFP-Znf179-expressing cells and transgenic mice. The upregulation of Sp1 transcriptional activity induced by the treatment with nerve growth factor (NGF led to an increase in Znf179 levels, which further protected cells against H2O2-induced damage. However, Sp1 inhibitor, mithramycin A, was shown to inhibit NGF effects, leading to a decrease in Znf179 expression and lower cellular protection. In conclusion, the results obtained in this study show that Znf179 autoregulation through Sp1-dependent mechanism plays an important role in neuroprotection, and NGF-induced Sp1 signaling may help attenuate more extensive (ROS-induced damage following brain injury.

  2. A Novel Prokaryotic Green Fluorescent Protein Expression System for Testing Gene Editing Tools Activity Like Zinc Finger Nuclease

    Directory of Open Access Journals (Sweden)

    Faezeh Sabzehei

    2017-01-01

    Full Text Available Background: Gene editing technology has created a revolution in the field of genome editing. The three of the most famous tools in gene editing technology are zinc finger nucleases (ZFNs, transcription activator-like effector nucleases, clustered regularly interspaced short palindromic repeats (CRISPR, and CRISPR-associated systems. As their predictable nature, it is necessary to assess their efficiency. There are some methods for this purpose, but most of them are time labor and complicated. Here, we introduce a new prokaryotic reporter system, which makes it possible to evaluate the efficiency of gene editing tools faster, cheaper, and simpler than previous methods. Materials and Methods: At first, the target sites of a custom ZFN, which is designed against a segment of ampicillin resistance gene, were cloned on both sides of green fluorescent protein (GFP gene to construct pPRO-GFP. Then pPRO-GFP was transformed into Escherichia coli TOP10F' that contains pZFN (contains expression cassette of a ZFN against ampicillin resistant gene, or p15A-KanaR as a negative control. The transformed bacteria were cultured on three separate media that contained ampicillin, kanamycin, and ampicillin + kanamycin; then the resulted colonies were assessed by flow cytometry. Results: The results of flow cytometry showed a significant difference between the case (bacteria contain pZFN and control (bacteria contain p15A, KanaR in MFI (Mean Fluorescence Intensity (P < 0.0001. Conclusion: According to ZFN efficiency, it can bind and cut the target sites, the bilateral cutting can affect the intensity of GFP fluorescence. Our flow cytometry results showed that this ZFN could reduce the intensity of GFP color and colony count of bacteria in media containing amp + kana versus control sample.

  3. Zinc fingers and homeoboxes 2 inhibits hepatocellular carcinoma cell proliferation and represses expression of Cyclins A and E.

    Science.gov (United States)

    Yue, Xuetian; Zhang, Zhenyu; Liang, Xiaohong; Gao, Lifen; Zhang, Xiaoning; Zhao, Di; Liu, Xiao; Ma, Hongxin; Guo, Min; Spear, Brett T; Gong, Yaoqin; Ma, Chunhong

    2012-06-01

    Zinc-fingers and homeoboxes 2 (ZHX2) represses transcription of several genes associated with liver cancer. However, little is known about the role of ZHX2 in the development of hepatocellular carcinoma (HCC). We investigated the mechanisms by which ZHX2 might affect proliferation of HCC cells. We overexpressed and knocked down ZHX2 in HCC cells and analyzed the effects on proliferation, colony formation, and the cell cycle. We also analyzed the effects of ZHX2 overexpression in growth of HepG2.2.15 tumor xenografts in nude mice. Chromatin immunoprecipitation and luciferase reporter assays were used to measure binding of ZHX2 target promoters. Levels of ZHX2 in HCC samples were evaluated by immunohistochemistry. ZHX2 overexpression significantly reduced proliferation of HCC cells and growth of tumor xenografts in mice; it led to G1 arrest and reduced levels of Cyclins A and E in HCC cell lines. ZHX2 bound to promoter regions of CCNA2 (which encodes Cyclin A) and CCNE1 (which encodes Cyclin E) and inhibited their transcription. Knockdown of Cyclin A or Cyclin E reduced the increased proliferation mediated by ZHX2 knockdown. Nuclear localization of ZHX2 was required for it to inhibit proliferation of HCC cells in culture and in mice. Nuclear localization of ZHX2 was reduced in human HCC samples, even in small tumors (diameter, <5 cm), compared with adjacent nontumor tissues. Moreover, reduced nuclear levels of ZHX2 correlated with reduced survival times of patients, high levels of tumor microvascularization, and hepatocyte proliferation. ZHX2 inhibits HCC cell proliferation by preventing expression of Cyclins A and E, and reduces growth of xenograft tumors in mice. Loss of nuclear ZHX2 might be an early step in the development of HCC. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.

  4. The zinc finger homeodomain-2 gene of Drosophila controls Notch targets and regulates apoptosis in the tarsal segments.

    Science.gov (United States)

    Guarner, Ana; Manjón, Cristina; Edwards, Kevin; Steller, Hermann; Suzanne, Magali; Sánchez-Herrero, Ernesto

    2014-01-15

    The development of the Drosophila leg is a good model to study processes of pattern formation, cell death and segmentation. Such processes require the coordinate activity of different genes and signaling pathways that progressively subdivide the leg territory into smaller domains. One of the main pathways needed for leg development is the Notch pathway, required for determining the proximo-distal axis of the leg and for the formation of the joints that separate different leg segments. The mechanisms required to coordinate such events are largely unknown. We describe here that the zinc finger homeodomain-2 (zfh-2) gene is highly expressed in cells that will form the leg joints and needed to establish a correct size and pattern in the distal leg. There is an early requirement of zfh-2 to establish the correct proximo-distal axis, but zfh-2 is also needed at late third instar to form the joint between the fourth and fifth tarsal segments. The expression of zfh-2 requires Notch activity but zfh-2 is necessary, in turn, to activate Notch targets such as Enhancer of split and big brain. zfh-2 is controlled by the Drosophila activator protein 2 gene and regulates the late expression of tarsal-less. In the absence of zfh-2 many cells ectopically express the pro-apoptotic gene head involution defective, activate caspase-3 and are positive for acridine orange, indicating they undergo apoptosis. Our results demonstrate the key role of zfh-2 in the control of cell death and Notch signaling during leg development. © 2013 Published by Elsevier Inc.

  5. Zinc

    Science.gov (United States)

    ... Consumer Datos en español Health Professional Other Resources Zinc Fact Sheet for Consumers Have a question? Ask ... find out more about zinc? Disclaimer What is zinc and what does it do? Zinc is a ...

  6. The conserved basic residues and the charged amino acid residues at the α-helix of the zinc finger motif regulate the nuclear transport activity of triple C2H2 zinc finger proteins

    Science.gov (United States)

    Lin, Chih-Ying

    2018-01-01

    Zinc finger (ZF) motifs on proteins are frequently recognized as a structure for DNA binding. Accumulated reports indicate that ZF motifs contain nuclear localization signal (NLS) to facilitate the transport of ZF proteins into nucleus. We investigated the critical factors that facilitate the nuclear transport of triple C2H2 ZF proteins. Three conserved basic residues (hot spots) were identified among the ZF sequences of triple C2H2 ZF proteins that reportedly have NLS function. Additional basic residues can be found on the α-helix of the ZFs. Using the ZF domain (ZFD) of Egr-1 as a template, various mutants were constructed and expressed in cells. The nuclear transport activity of various mutants was estimated by analyzing the proportion of protein localized in the nucleus. Mutation at any hot spot of the Egr-1 ZFs reduced the nuclear transport activity. Changes of the basic residues at the α-helical region of the second ZF (ZF2) of the Egr-1 ZFD abolished the NLS activity. However, this activity can be restored by substituting the acidic residues at the homologous positions of ZF1 or ZF3 with basic residues. The restored activity dropped again when the hot spots at ZF1 or the basic residues in the α-helix of ZF3 were mutated. The variations in nuclear transport activity are linked directly to the binding activity of the ZF proteins with importins. This study was extended to other triple C2H2 ZF proteins. SP1 and KLF families, similar to Egr-1, have charged amino acid residues at the second (α2) and the third (α3) positions of the α-helix. Replacing the amino acids at α2 and α3 with acidic residues reduced the NLS activity of the SP1 and KLF6 ZFD. The reduced activity can be restored by substituting the α3 with histidine at any SP1 and KLF6 ZFD. The results show again the interchangeable role of ZFs and charge residues in the α-helix in regulating the NLS activity of triple C2H2 ZF proteins. PMID:29381770

  7. The conserved basic residues and the charged amino acid residues at the α-helix of the zinc finger motif regulate the nuclear transport activity of triple C2H2 zinc finger proteins.

    Science.gov (United States)

    Lin, Chih-Ying; Lin, Lih-Yuan

    2018-01-01

    Zinc finger (ZF) motifs on proteins are frequently recognized as a structure for DNA binding. Accumulated reports indicate that ZF motifs contain nuclear localization signal (NLS) to facilitate the transport of ZF proteins into nucleus. We investigated the critical factors that facilitate the nuclear transport of triple C2H2 ZF proteins. Three conserved basic residues (hot spots) were identified among the ZF sequences of triple C2H2 ZF proteins that reportedly have NLS function. Additional basic residues can be found on the α-helix of the ZFs. Using the ZF domain (ZFD) of Egr-1 as a template, various mutants were constructed and expressed in cells. The nuclear transport activity of various mutants was estimated by analyzing the proportion of protein localized in the nucleus. Mutation at any hot spot of the Egr-1 ZFs reduced the nuclear transport activity. Changes of the basic residues at the α-helical region of the second ZF (ZF2) of the Egr-1 ZFD abolished the NLS activity. However, this activity can be restored by substituting the acidic residues at the homologous positions of ZF1 or ZF3 with basic residues. The restored activity dropped again when the hot spots at ZF1 or the basic residues in the α-helix of ZF3 were mutated. The variations in nuclear transport activity are linked directly to the binding activity of the ZF proteins with importins. This study was extended to other triple C2H2 ZF proteins. SP1 and KLF families, similar to Egr-1, have charged amino acid residues at the second (α2) and the third (α3) positions of the α-helix. Replacing the amino acids at α2 and α3 with acidic residues reduced the NLS activity of the SP1 and KLF6 ZFD. The reduced activity can be restored by substituting the α3 with histidine at any SP1 and KLF6 ZFD. The results show again the interchangeable role of ZFs and charge residues in the α-helix in regulating the NLS activity of triple C2H2 ZF proteins.

  8. Efficient methods for targeted mutagenesis in zebrafish using zinc-finger nucleases: data from targeting of nine genes using CompoZr or CoDA ZFNs.

    Directory of Open Access Journals (Sweden)

    Raman Sood

    Full Text Available Recently, it has been shown that targeted mutagenesis using zinc-finger nucleases (ZFNs and transcription activator-like effector nucleases (TALENs can be used to generate knockout zebrafish lines for analysis of their function and/or developing disease models. A number of different methods have been developed for the design and assembly of gene-specific ZFNs and TALENs, making them easily available to most zebrafish researchers. Regardless of the choice of targeting nuclease, the process of generating mutant fish is similar. It is a time-consuming and multi-step process that can benefit significantly from development of efficient high throughput methods. In this study, we used ZFNs assembled through either the CompoZr (Sigma-Aldrich or the CoDA (context-dependent assembly platforms to generate mutant zebrafish for nine genes. We report our improved high throughput methods for 1 evaluation of ZFNs activity by somatic lesion analysis using colony PCR, eliminating the need for plasmid DNA extractions from a large number of clones, and 2 a sensitive founder screening strategy using fluorescent PCR with PIG-tailed primers that eliminates the stutter bands and accurately identifies even single nucleotide insertions and deletions. Using these protocols, we have generated multiple mutant alleles for seven genes, five of which were targeted with CompoZr ZFNs and two with CoDA ZFNs. Our data also revealed that at least five-fold higher mRNA dose was required to achieve mutagenesis with CoDA ZFNs than with CompoZr ZFNs, and their somatic lesion frequency was lower (<5% when compared to CopmoZr ZFNs (9-98%. This work provides high throughput protocols for efficient generation of zebrafish mutants using ZFNs and TALENs.

  9. CCCH-type zinc finger family in maize: genome-wide identification, classification and expression profiling under abscisic acid and drought treatments.

    Directory of Open Access Journals (Sweden)

    Xiaojian Peng

    Full Text Available BACKGROUND: CCCH-type zinc finger proteins comprise a large protein family. Increasing evidence suggests that members of this family are RNA-binding proteins with regulatory functions in mRNA processing. Compared with those in animals, functions of CCCH-type zinc finger proteins involved in plant growth and development are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: Here, we performed a genome-wide survey of CCCH-type zinc finger genes in maize (Zea mays L. by describing the gene structure, phylogenetic relationships and chromosomal location of each family member. Promoter sequences and expression profiles of putative stress-responsive members were also investigated. A total of 68 CCCH genes (ZmC3H1-68 were identified in maize and divided into seven groups by phylogenetic analysis. These 68 genes were found to be unevenly distributed on 10 chromosomes with 15 segmental duplication events, suggesting that segmental duplication played a major role in expansion of the maize CCCH family. The Ka/Ks ratios suggested that the duplicated genes of the CCCH family mainly experienced purifying selection with limited functional divergence after duplication events. Twelve maize CCCH genes grouped with other known stress-responsive genes from Arabidopsis were found to contain putative stress-responsive cis-elements in their promoter regions. Seven of these genes chosen for further quantitative real-time PCR analysis showed differential expression patterns among five representative maize tissues and over time in response to abscisic acid and drought treatments. CONCLUSIONS: The results presented in this study provide basic information on maize CCCH proteins and form the foundation for future functional studies of these proteins, especially for those members of which may play important roles in response to abiotic stresses.

  10. Cloning and comparative analysis of zinc-finger protein gene on Y-chromosome (ZFY) between Thai Bangkaew dog and other Thai canids

    OpenAIRE

    Ukadej Boonyaprakob; Sommai Homsavart; Jatuporn Noosud; Rongdej Tungtrakanpoung

    2017-01-01

    The Thai Bangkaew dog is a Spitz-type dog that originated in Thailand. Legend has it that the dog is descended from hybrids between a native female dog and a male wild canid. To examine the mysterious story about the ancestry of the Thai Bangkaew dog's paternal lineage, sequence variation was examined for the last intron of the Y-chromosome-specific zinc-finger gene, ZFY, and its X homolog for male Thai Bangkaew dogs and other male Thai canids, including the Thai ridgeback and mixed breed dog...

  11. High-efficiency genome editing via 2A-coupled co-expression of fluorescent proteins and zinc finger nucleases or CRISPR/Cas9 nickase pairs

    DEFF Research Database (Denmark)

    Duda, Katarzyna; Lonowski, Lindsey A; Kofoed-Nielsen, Michael

    2014-01-01

    Targeted endonucleases including zinc finger nucleases (ZFNs) and clustered regularly interspaced short palindromic repeats (CRISPRs)/Cas9 are increasingly being used for genome editing in higher species. We therefore devised a broadly applicable and versatile method for increasing editing...... were minimal, and when occurring, our data suggest that they may be counteracted by selecting intermediate nuclease levels where off-target mutagenesis is low, but on-target mutagenesis remains relatively high. The method was also applicable to the CRISPR/Cas9 system, including CRISPR/Cas9 mutant...... nickase pairs, which exhibit low off-target mutagenesis compared to wild-type Cas9....

  12. In Vivo Zinc Finger Nuclease-mediated Targeted Integration of a Glucose-6-phosphatase Transgene Promotes Survival in Mice With Glycogen Storage Disease Type IA

    Science.gov (United States)

    Landau, Dustin J; Brooks, Elizabeth Drake; Perez-Pinera, Pablo; Amarasekara, Hiruni; Mefferd, Adam; Li, Songtao; Bird, Andrew; Gersbach, Charles A; Koeberl, Dwight D

    2016-01-01

    Glycogen storage disease type Ia (GSD Ia) is caused by glucose-6-phosphatase (G6Pase) deficiency in association with severe, life-threatening hypoglycemia that necessitates lifelong dietary therapy. Here we show that use of a zinc-finger nuclease (ZFN) targeted to the ROSA26 safe harbor locus and a ROSA26-targeting vector containing a G6PC donor transgene, both delivered with adeno-associated virus (AAV) vectors, markedly improved survival of G6Pase knockout (G6Pase-KO) mice compared with mice receiving the donor vector alone (P Ia, as compared with normal littermates, at 8 months following vector administration (P Ia. PMID:26865405

  13. The LSD1-Type Zinc Finger Motifs of Pisum sativa LSD1 Are a Novel Nuclear Localization Signal and Interact with Importin Alpha

    OpenAIRE

    He, Shanping; Huang, Kuowei; Zhang, Xu; Yu, Xiangchun; Huang, Ping; An, Chengcai

    2011-01-01

    BACKGROUND: Genetic studies of the Arabidopsis mutant lsd1 highlight the important role of LSD1 in the negative regulation of plant programmed cell death (PCD). Arabidopsis thaliana LSD1 (AtLSD1) contains three LSD1-type zinc finger motifs, which are involved in the protein-protein interaction. METHODOLOGY/PRINCIPAL FINDINGS: To further understand the function of LSD1, we have analyzed cellular localization and functional localization domains of Pisum sativa LSD1 (PsLSD1), which is a homolog ...

  14. Promiscuous and specific phospholipid binding by domains in ZAC, a membrane-associated Arabidopsis protein with an ARF GAP zinc finger and a C2 domain

    DEFF Research Database (Denmark)

    Jensen, R B; Lykke-Andersen, K; Frandsen, G I

    2000-01-01

    Arabidopsis proteins were predicted which share an 80 residue zinc finger domain known from ADP-ribosylation factor GTPase-activating proteins (ARF GAPs). One of these is a 37 kDa protein, designated ZAC, which has a novel domain structure in which the N-terminal ARF GAP domain and a C-terminal C2...... containing the ZAC-C2 domain bind anionic phospholipids non-specifically, with some variance in Ca2+ and salt dependence. Similar assays demonstrated specific affinity of the ZAC N-terminal region (residues 1-174) for phosphatidylinositol 3-monophosphate (PI-3-P). Binding was dependent in part on an intact...

  15. Zinc Biochemistry: From a Single Zinc Enzyme to a Key Element of Life12

    Science.gov (United States)

    Maret, Wolfgang

    2013-01-01

    The nutritional essentiality of zinc for the growth of living organisms had been recognized long before zinc biochemistry began with the discovery of zinc in carbonic anhydrase in 1939. Painstaking analytical work then demonstrated the presence of zinc as a catalytic and structural cofactor in a few hundred enzymes. In the 1980s, the field again gained momentum with the new principle of “zinc finger” proteins, in which zinc has structural functions in domains that interact with other biomolecules. Advances in structural biology and a rapid increase in the availability of gene/protein databases now made it possible to predict zinc-binding sites from metal-binding motifs detected in sequences. This procedure resulted in the definition of zinc proteomes and the remarkable estimate that the human genome encodes ∼3000 zinc proteins. More recent developments focus on the regulatory functions of zinc(II) ions in intra- and intercellular information transfer and have tantalizing implications for yet additional functions of zinc in signal transduction and cellular control. At least three dozen proteins homeostatically control the vesicular storage and subcellular distribution of zinc and the concentrations of zinc(II) ions. Novel principles emerge from quantitative investigations on how strongly zinc interacts with proteins and how it is buffered to control the remarkably low cellular and subcellular concentrations of free zinc(II) ions. It is fair to conclude that the impact of zinc for health and disease will be at least as far-reaching as that of iron. PMID:23319127

  16. Regulation of Nitrogen Metabolism by GATA Zinc Finger Transcription Factors in Yarrowia lipolytica

    Energy Technology Data Exchange (ETDEWEB)

    Pomraning, Kyle R.; Bredeweg, Erin L.; Baker, Scott E.

    2017-02-15

    ABSTRACT

    Fungi accumulate lipids in a manner dependent on the quantity and quality of the nitrogen source on which they are growing. In the oleaginous yeastYarrowia lipolytica, growth on a complex source of nitrogen enables rapid growth and limited accumulation of neutral lipids, while growth on a simple nitrogen source promotes lipid accumulation in large lipid droplets. Here we examined the roles of nitrogen catabolite repression and its regulation by GATA zinc finger transcription factors on lipid metabolism inY. lipolytica. Deletion of the GATA transcription factor genesgzf3andgzf2resulted in nitrogen source-specific growth defects and greater accumulation of lipids when the cells were growing on a simple nitrogen source. Deletion ofgzf1, which is most similar to activators of genes repressed by nitrogen catabolite repression in filamentous ascomycetes, did not affect growth on the nitrogen sources tested. We examined gene expression of wild-type and GATA transcription factor mutants on simple and complex nitrogen sources and found that expression of enzymes involved in malate metabolism, beta-oxidation, and ammonia utilization are strongly upregulated on a simple nitrogen source. Deletion ofgzf3results in overexpression of genes with GATAA sites in their promoters, suggesting that it acts as a repressor, whilegzf2is required for expression of ammonia utilization genes but does not grossly affect the transcription level of genes predicted to be controlled by nitrogen catabolite repression. Both GATA transcription factor mutants exhibit decreased expression of genes controlled by carbon catabolite repression via the repressormig1, including genes for beta-oxidation, highlighting the complex interplay between regulation of carbon, nitrogen, and lipid metabolism.

    IMPORTANCENitrogen source is

  17. Zinc finger protein 521 antagonizes early B-cell factor 1 and modulates the B-lymphoid differentiation of primary hematopoietic progenitors.

    Science.gov (United States)

    Mega, Tiziana; Lupia, Michela; Amodio, Nicola; Horton, Sarah J; Mesuraca, Maria; Pelaggi, Daniela; Agosti, Valter; Grieco, Michele; Chiarella, Emanuela; Spina, Raffaella; Moore, Malcolm A S; Schuringa, Jan Jacob; Bond, Heather M; Morrone, Giovanni

    2011-07-01

    Zinc finger protein 521 (EHZF/ZNF521) is a multi-functional transcription co-factor containing 30 zinc fingers and an amino-terminal motif that binds to the nucleosome remodelling and histone deacetylase (NuRD) complex. ZNF521 is believed to be a relevant player in the regulation of the homeostasis of the hematopoietic stem/progenitor cell compartment, however the underlying molecular mechanisms are still largely unknown. Here, we show that this protein plays an important role in the control of B-cell development by inhibiting the activity of early B-cell factor-1 (EBF1), a master factor in B-lineage specification. In particular, our data demonstrate that: (1) ZNF521 binds to EBF1 via its carboxyl-terminal portion and this interaction is required for EBF1 inhibition; (2) NuRD complex recruitment by ZNF521 is not essential for the inhibition of transactivation of EBF1-dependent promoters; (3) ZNF521 represses EBF1 target genes in a human B-lymphoid molecular context; and (4) RNAi-mediated silencing of ZNF521/Zfp521 in primary human and murine hematopoietic progenitors strongly enhances the generation of B-lymphocytes in vitro. Taken together, our data indicate that ZNF521 can antagonize B-cell development and lend support to the notion that it may contribute to conserve the multipotency of primitive lympho-myeloid progenitors by preventing or delaying their EBF1-driven commitment toward the B-cell lineage.

  18. Cloning and characterization of a novel human zinc finger gene, hKid3, from a C2H2-ZNF enriched human embryonic cDNA library

    International Nuclear Information System (INIS)

    Gao Li; Sun Chong; Qiu Hongling; Liu Hui; Shao Huanjie; Wang Jun; Li Wenxin

    2004-01-01

    To investigate the zinc finger genes involved in human embryonic development, we constructed a C 2 H 2 -ZNF enriched human embryonic cDNA library, from which a novel human gene named hKid3 was identified. The hKid3 cDNA encodes a 554 amino acid protein with an amino-terminal KRAB domain and 11 carboxyl-terminal C 2 H 2 zinc finger motifs. Northern blot analysis indicates that two hKid3 transcripts of 6 and 8.5 kb express in human fetal brain and kidney. The 6 kb transcript can also be detected in human adult brain, heart, and skeletal muscle while the 8.5 kb transcript appears to be embryo-specific. GFP-fused hKid3 protein is localized to nuclei and the ZF domain is necessary and sufficient for nuclear localization. To explore the DNA-binding specificity of hKid3, an oligonucleotide library was selected by GST fusion protein of hKid3 ZF domain, and the consensus core sequence 5'-CCAC-3' was evaluated by competitive electrophoretic mobility shift assay. Moreover, The KRAB domain of hKid3 exhibits transcription repressor activity when tested in GAL4 fusion protein assay. These results indicate that hKid3 may function as a transcription repressor with regulated expression pattern during human development of brain and kidney

  19. Zinc-fingers and homeoboxes 1 (ZHX1) binds DNA methyltransferase (DNMT) 3B to enhance DNMT3B-mediated transcriptional repression

    International Nuclear Information System (INIS)

    Kim, Sung-Hak; Park, Jinah; Choi, Moon-Chang; Kim, Hwang-Phill; Park, Jung-Hyun; Jung, Yeonjoo; Lee, Ju-Hee; Oh, Do-Youn; Im, Seock-Ah; Bang, Yung-Jue; Kim, Tae-You

    2007-01-01

    DNA methyltransferases (DNMT) 3B is a de novo DNMT that represses transcription independent of DNMT activity. In order to gain a better insight into DNMT3B-mediated transcriptional repression, we performed a yeast two-hybrid analysis using DNMT3B as a bait. Of the various binding candidates, ZHX1, a member of zinc-finger and homeobox protein, was found to interact with DNMT3B in vivo and in vitro. N-terminal PWWP domain of DNMT3B was required for its interaction with homeobox motifs of ZHX1. ZHX1 contains nuclear localization signal at C-terminal homeobox motif, and both ZHX1 and DNMT3B were co-localized in nucleus. Furthermore, we found that ZHX1 enhanced the transcriptional repression mediated by DNMT3B when DNMT3B is directly targeted to DNA. These results showed for First the direct linkage between DNMT and zinc-fingers homeoboxes protein, leading to enhanced gene silencing by DNMT3B

  20. Preparation of zinc sulfide nanocrystallites from single-molecule precursors

    Science.gov (United States)

    Palve, Anil M.; Garje, Shivram S.

    2011-07-01

    Zinc sulfide nanocrystallites were prepared using Zinc(II) thiosemicarbazone complexes of the types Zn(L) 2 and ZnCl 2(LH) 2 (where, LH=thiosemicarbazones of cinnamaldehyde, 4-chlorobenzaldehyde, indol-3-carboxaldehyde and thiophene-2-carboxaldehyde) as single source precursors by solvothermal decomposition in ethylene glycol and ethylene diamine in few cases. The materials were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction, energy dispersive X-ray analysis and UV-vis and IR spectroscopy. Solvothermal decomposition in ethylene glycol resulted in the formation of hexagonal ZnS (JCPDS: 36-1450) as evident from the XRD patterns. However, XRD shows formation of hybrid material, ZnS 0.5EN in case of solvothermal decomposition in ethylenediamine. Infrared spectra authenticate the capping of ethylene glycol and ethylenediamine on ZnS and ZnS 0.5EN, respectively. TEM images showed formation of spherical nanoparticles for the materials obtained from ethylene glycol, whereas plate-like morphology is observed in case of materials obtained from ethylene diamine. The blue shift of absorption bands compared to bands of bulk materials in the UV-vis spectra supports the formation of smaller particles.

  1. Arabidopsis thaliana VOZ (Vascular plant One-Zinc finger) transcription factors are required for proper regulation of flowering time.

    Science.gov (United States)

    Celesnik, Helena; Ali, Gul S; Robison, Faith M; Reddy, Anireddy S N

    2013-04-15

    Transition to flowering in plants is tightly controlled by environmental cues, which regulate the photoperiod and vernalization pathways, and endogenous signals, which mediate the autonomous and gibberellin pathways. In this work, we investigated the role of two Zn(2+)-finger transcription factors, the paralogues AtVOZ1 and AtVOZ2, in Arabidopsis thaliana flowering. Single atvoz1-1 and atvoz2-1 mutants showed no significant phenotypes as compared to wild type. However, atvoz1-1 atvoz2-1 double mutant plants exhibited several phenotypes characteristic of flowering-time mutants. The double mutant displayed a severe delay in flowering, together with additional pleiotropic phenotypes. Late flowering correlated with elevated expression of FLOWERING LOCUS C (FLC), which encodes a potent floral repressor, and decreased expression of its target, the floral promoter FD. Vernalization rescued delayed flowering of atvoz1-1 atvoz2-1 and reversed elevated FLC levels. Accumulation of FLC transcripts in atvoz1-1 atvoz2-1 correlated with increased expression of several FLC activators, including components of the PAF1 and SWR1 chromatin-modifying complexes. Additionally, AtVOZs were shown to bind the promoter of MOS3/SAR3 and directly regulate expression of this nuclear pore protein, which is known to participate in the regulation of flowering time, suggesting that AtVOZs exert at least some of their flowering regulation by influencing the nuclear pore function. Complementation of atvoz1-1 atvoz2-1 with AtVOZ2 reversed all double mutant phenotypes, confirming that the observed morphological and molecular changes arise from the absence of functional AtVOZ proteins, and validating the functional redundancy between AtVOZ1 and AtVOZ2.

  2. Splice Variants of the Human ZC3H14 Gene Generate Multiple Isoforms of a Zinc Finger Polyadenosine RNA Binding Protein

    Science.gov (United States)

    Leung, Sara W.; Apponi, Luciano H.; Cornejo, Omar E.; Kitchen, Chad M.; Valentini, Sandro R.; Pavlath, Grace K.; Dunham, Christine M.; Corbett, Anita H.

    2009-01-01

    The human ZC3H14 gene encodes an evolutionarily conserved Cys3His zinc finger protein that binds specifically to polyadenosine RNA and is thus postulated to modulate post-transcriptional gene expression. Expressed sequence tag data predicts multiple splice variants of both human and mouse ZC3H14. Analysis of ZC3H14 expression in both human cell lines and mouse tissues confirms the presence of multiple alternatively spliced transcripts. Although all of these transcripts encode protein isoforms that contain the conserved C-terminal zinc finger domain, suggesting that they could all bind to polyadenosine RNA, they differ in other functionally important domains. Most of the alternative transcripts encode closely related proteins (termed isoform 1, 2, 3, and 3short) that differ primarily in the inclusion of three small exons, 9, 10, and 11, resulting in predicted protein isoforms ranging from 82 to 64 kDa. Each of these closely related isoforms contains predicted classical nuclear localization signals (cNLS) within exons 7 and 11. Consistent with the presence of these putative nuclear targeting signals, these ZC3H14 isoforms are all localized to the nucleus. In contrast, an additional transcript encodes a smaller protein (34 kDa) with an alternative first exon (isoform 4). Consistent with the absence of the predicted cNLS motifs located in exons 7 and 11, ZC3H14 isoform 4 is localized to the cytoplasm. Both EST data and experimental data suggest that this variant is enriched in testes and brain. Using an antibody that detects endogenous ZC3H14 isoforms 1-3 reveals localization of these isoforms to nuclear speckles. These speckles co-localize with the splicing factor, SC35, suggesting a role for nuclear ZC3H14 in mRNA processing. Taken together, these results demonstrate that multiple transcripts encoding several ZC3H14 isoforms exist in vivo. Both nuclear and cytoplasmic ZC3H14 isoforms could have distinct effects on gene expression mediated by the common Cys3His zinc

  3. Zinc

    Science.gov (United States)

    ... fertility problems and enlarged prostate, as well as erectile dysfunction (ED). Zinc is taken by mouth for osteoporosis, ... who are not receiving zinc under medical supervision: adults 19 years and older (including pregnancy and lactation), 40 mg/day. The ...

  4. Structure and expression of major histocompatibility complex-binding protein 2, a 275-kDa zinc finger protein that binds to an enhancer of major histocompatibility complex class I genes

    NARCIS (Netherlands)

    Veer, L.J. van 't; Lutz, P.M.; Isselbacher, K.J.; Bernards, R.A.

    1992-01-01

    We have isolated a cDNA encoding a transcription factor that binds to the enhancer of major histocompatibility complex (MHC) class I genes. MHC-binding protein 2 (MBP-2) is a 275-kDa protein, containing two sets of widely separated zinc fingers and a stretch of highly acidic amino acids, a

  5. The ken and barbie gene encoding a putative transcription factor with a BTB domain and three zinc finger motifs functions in terminalia development of Drosophila.

    Science.gov (United States)

    Lukacsovich, Tamas; Yuge, Kazuya; Awano, Wakae; Asztalos, Zoltan; Kondo, Shunzo; Juni, Naoto; Yamamoto, Daisuke

    2003-10-01

    Mutations in the ken and barbie locus are accompanied by the malformation of terminalia in adult Drosophila. Male and female genitalia often remain inside the body, and the same portions of genitalia and analia are missing in a fraction of homozygous flies. Rotated and/or duplicated terminalia are also observed. Terminalia phenotypes are enhanced by mutations in the gap gene tailless, the homeobox gene caudal, and the decapentaplegic gene that encodes a TGFbeta-like morphogen. The ken and barbie gene encodes a protein with three CCHH-type zinc finger motifs that are conserved in several transcription factors such as Krüppel and BCL-6. All defects in ken and barbie mutants are fully rescued by the expression of a wild-type genomic construct, which establishes the causality between phenotypes and the gene. Copyright 2003 Wiley-Liss, Inc.

  6. Engineered zinc-finger transcription factors inhibit the replication and transcription of HBV in vitro and in vivo.

    Science.gov (United States)

    Luo, Wei; Wang, Junxia; Xu, Dengfeng; Bai, Huili; Zhang, Yangli; Zhang, Yuhong; Li, Xiaosong

    2018-04-01

    In the present study, an artificial zinc-finger transcription factor eukaryotic expression vector specifically recognizing and binding to the hepatitis B virus (HBV) enhancer (Enh) was constructed, which inhibited the replication and expression of HBV DNA. The HBV EnhI‑specific pcDNA3.1‑artificial transcription factor (ATF) vector was successfully constructed, and then transformed or injected into HepG2.2.15 cells and HBV transgenic mice, respectively. The results demonstrated that the HBV EnhI (1,070‑1,234 bp)‑specific ATF significantly inhibited the replication and transcription of HBV DNA in vivo and in vitro. The HBV EnhI‑specific ATF may be a meritorious component of progressive combination therapies for eliminating HBV DNA in infected patients. A radical cure for chronic HBV infection may become feasible by using this bioengineering technology.

  7. Activating human genes with zinc finger proteins, transcription activator-like effectors and CRISPR/Cas9 for gene therapy and regenerative medicine.

    Science.gov (United States)

    Gersbach, Charles A; Perez-Pinera, Pablo

    2014-08-01

    New technologies have recently been developed to control the expression of human genes in their native genomic context by engineering synthetic transcription factors that can be targeted to any DNA sequence. The ability to precisely regulate any gene as it occurs naturally in the genome provides a means to address a variety of diseases and disorders. This approach also circumvents some of the traditional challenges of gene therapy. In this editorial, we review the technologies that have enabled targeted human gene activation, including the engineering of transcription factors based on zinc finger proteins, transcription activator-like effectors and the CRISPR/Cas9 system. Additionally, we highlight examples in which these methods have been developed for therapeutic applications and discuss challenges and opportunities.

  8. A Family of Zinc Finger Proteins Is Required forChromosome-specific Pairing and Synapsis during Meiosis in C.elegans

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Carolyn M.; Dernburg, Abby F.

    2006-06-07

    Homologous chromosome pairing and synapsis are prerequisitefor accurate chromosome segregation during meiosis. Here, we show that afamily of four related C2H2 zinc-finger proteins plays a central role inthese events in C. elegans. These proteins are encoded within a tandemgene cluster. In addition to the X-specific HIM-8 protein, threeadditional paralogs collectively mediate the behavior of the fiveautosomes. Each chromosome relies on a specific member of the family topair and synapse with its homolog. These "ZIM" proteins concentrate atspecial regions called meiotic pairing centers on the correspondingchromosomes. These sites are dispersed along the nuclear envelope duringearly meiotic prophase, suggesting a role analogous to thetelomere-mediated meiotic bouquet in other organisms. To gain insightinto the evolution of these components, wecharacterized homologs in C.briggsae and C. remanei, which revealed changes in copy number of thisgene family within the nematode lineage.

  9. Molecular Imaging of Human Embryonic Stem Cells Stably Expressing Human PET Reporter Genes After Zinc Finger Nuclease-Mediated Genome Editing.

    Science.gov (United States)

    Wolfs, Esther; Holvoet, Bryan; Ordovas, Laura; Breuls, Natacha; Helsen, Nicky; Schönberger, Matthias; Raitano, Susanna; Struys, Tom; Vanbilloen, Bert; Casteels, Cindy; Sampaolesi, Maurilio; Van Laere, Koen; Lambrichts, Ivo; Verfaillie, Catherine M; Deroose, Christophe M

    2017-10-01

    Molecular imaging is indispensable for determining the fate and persistence of engrafted stem cells. Standard strategies for transgene induction involve the use of viral vectors prone to silencing and insertional mutagenesis or the use of nonhuman genes. Methods: We used zinc finger nucleases to induce stable expression of human imaging reporter genes into the safe-harbor locus adeno-associated virus integration site 1 in human embryonic stem cells. Plasmids were generated carrying reporter genes for fluorescence, bioluminescence imaging, and human PET reporter genes. Results: In vitro assays confirmed their functionality, and embryonic stem cells retained differentiation capacity. Teratoma formation assays were performed, and tumors were imaged over time with PET and bioluminescence imaging. Conclusion: This study demonstrates the application of genome editing for targeted integration of human imaging reporter genes in human embryonic stem cells for long-term molecular imaging. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  10. Gain, loss and divergence in primate zinc-finger genes: a rich resource for evolution of gene regulatory differences between species.

    Directory of Open Access Journals (Sweden)

    Katja Nowick

    Full Text Available The molecular changes underlying major phenotypic differences between humans and other primates are not well understood, but alterations in gene regulation are likely to play a major role. Here we performed a thorough evolutionary analysis of the largest family of primate transcription factors, the Krüppel-type zinc finger (KZNF gene family. We identified and curated gene and pseudogene models for KZNFs in three primate species, chimpanzee, orangutan and rhesus macaque, to allow for a comparison with the curated set of human KZNFs. We show that the recent evolutionary history of primate KZNFs has been complex, including many lineage-specific duplications and deletions. We found 213 species-specific KZNFs, among them 7 human-specific and 23 chimpanzee-specific genes. Two human-specific genes were validated experimentally. Ten genes have been lost in humans and 13 in chimpanzees, either through deletion or pseudogenization. We also identified 30 KZNF orthologs with human-specific and 42 with chimpanzee-specific sequence changes that are predicted to affect DNA binding properties of the proteins. Eleven of these genes show signatures of accelerated evolution, suggesting positive selection between humans and chimpanzees. During primate evolution the most extensive re-shaping of the KZNF repertoire, including most gene additions, pseudogenizations, and structural changes occurred within the subfamily homininae. Using zinc finger (ZNF binding predictions, we suggest potential impact these changes have had on human gene regulatory networks. The large species differences in this family of TFs stands in stark contrast to the overall high conservation of primate genomes and potentially represents a potent driver of primate evolution.

  11. GhZFP1, a novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5.

    Science.gov (United States)

    Guo, Ying-Hui; Yu, Yue-Ping; Wang, Dong; Wu, Chang-Ai; Yang, Guo-Dong; Huang, Jin-Guang; Zheng, Cheng-Chao

    2009-01-01

    * Zinc finger proteins are a superfamily involved in many aspects of plant growth and development. However, CCCH-type zinc finger proteins involved in plant stress tolerance are poorly understood. * A cDNA clone designated Gossypium hirsutum zinc finger protein 1 (GhZFP1), which encodes a novel CCCH-type zinc finger protein, was isolated from a salt-induced cotton (G. hirsutum) cDNA library using differential hybridization screening and further studied in transgenic tobacco Nicotiana tabacum cv. NC89. Using yeast two-hybrid screening (Y2H), proteins GZIRD21A (GhZFP1 interacting and responsive to dehydration protein 21A) and GZIPR5 (GhZFP1 interacting and pathogenesis-related protein 5), which interacted with GhZFP1, were isolated. * GhZFP1 contains two typical zinc finger motifs (Cx8Cx5Cx3H and Cx5Cx4Cx3H), a putative nuclear export sequence (NES) and a potential nuclear localization signal (NLS). Transient expression analysis using a GhZFP1::GFP fusion gene in onion epidermal cells indicated a nuclear localization for GhZFP1. RNA blot analysis showed that the GhZFP1 transcript was induced by salt (NaCl), drought and salicylic acid (SA). The regions in GhZFP1 that interact with GZIRD21A and GZIPR5 were identified using truncation mutations. * Overexpression of GhZFP1 in transgenic tobacco enhanced tolerance to salt stress and resistance to Rhizoctonia solani. Therefore, it appears that GhZFP1 might be involved as an important regulator in plant responses to abiotic and biotic stresses.

  12. Genotoxicology: Single and Joint Action of Copper and Zinc to ...

    African Journals Online (AJOL)

    Michael Horsfall

    possible ecological risk of heavy metals. REFERENCES. ATSDR (Agency for Toxic Substances and Disease. Registry) (1990): Toxicological Profile for Zinc,. ATSDR/TP. Bagdonas E. and Vosyliene, M.Z (2006). A Study of. Toxicity and Genotoxicity of Copper, Zinc and their. Mixture to Rainbow Trout (Oncorhynchus mykiss).

  13. Turn-off failure in multi-finger SOI-LIGBT used for single chip inverter ICs

    Science.gov (United States)

    Zhang, Long; Zhu, Jing; Zhao, Minna; Huang, Xuequan; Chen, Jiajun; Sun, Weifeng; Ding, Desheng

    2017-11-01

    In this paper, the clamped inductive turn-off failure of the Silicon-on-Insulator Lateral Insulated Gate Bipolar Transistor (SOI-LIGBT) with multiple fingers under high-voltage and high-current conditions is investigated. First, the measured turn-off waveforms combining with the on-state I-V characteristics of the failed device are discussed to distinguish the probable cause of the failure. Then, two-dimensional (2-D) electrothermal simulations are performed to reproduce the failure by using Sentaurus TCAD. The failure is originated from an inhomogeneous depletion behavior among the paralleled fingers during the turn-off, which gives rise to the non-uniform current-sharing and the subsequent current crowding in single finger. As a result, the latch-up of the device takes place. The simulation indicates that the current crowding is formed mainly through an internal path in the silicon. In order to verify the failure mechanism, an improved device with deep-oxide trenches arranged between the adjacent fingers is fabricated. The measured results demonstrate that no failure occurs when the improved device turns off under high-voltage and high-current conditions.

  14. Single motor unit firing behavior in the right trapezius muscle during rapid movement of right or left index finger

    DEFF Research Database (Denmark)

    Søgaard, Karen; Olsen, Henrik B; Blangsted, Anne K

    2014-01-01

    of a general multi joint motor program, while a generally increased and continuous firing rate would support the attention related muscle activation. METHOD: Twelve healthy female subjects were seated at a computer work place with elbows and forearms supported. Ten double clicks (DC) were performed with right......BACKGROUND: Computer work is associated with low level sustained activity in the trapezius muscle that may cause development of trapezius myalgia. Such a low level activity may be attention related or alternatively, be part of a general multi joint motor program providing stabilization...... of the shoulder joint as a biomechanical prerequisite for precise finger manipulation. This study examines single motor unit (MU) firing pattern in the right trapezius muscle during fast movements of ipsilateral or contralateral index finger. A modulation of the MU firing rate would support the existence...

  15. Structures of three members of Pfam PF02663 (FmdE) implicated in microbial methanogenesis reveal a conserved α+β core domain and an auxiliary C-terminal treble-clef zinc finger

    International Nuclear Information System (INIS)

    Axelrod, Herbert L.; Das, Debanu; Abdubek, Polat; Astakhova, Tamara; Bakolitsa, Constantina; Carlton, Dennis; Chen, Connie; Chiu, Hsiu-Ju; Clayton, Thomas; Deller, Marc C.; Duan, Lian; Ellrott, Kyle; Farr, Carol L.; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Kumar, Abhinav; Lam, Winnie W.; Marciano, David; McMullan, Daniel; Miller, Mitchell D.; Morse, Andrew T.; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Puckett, Christina; Reyes, Ron; Sefcovic, Natasha; Tien, Henry J.; Trame, Christine B.; Bedem, Henry van den; Weekes, Dana; Wooten, Tiffany; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2010-01-01

    The first structures from the FmdE Pfam family (PF02663) reveal that some members of this family form tightly intertwined dimers consisting of two domains (N-terminal α+β core and C-terminal zinc-finger domains), whereas others contain only the core domain. The presence of the zinc-finger domain suggests that some members of this family may perform functions associated with transcriptional regulation, protein–protein interaction, RNA binding or metal-ion sensing. Examination of the genomic context for members of the FmdE Pfam family (PF02663), such as the protein encoded by the fmdE gene from the methanogenic archaeon Methanobacterium thermoautotrophicum, indicates that 13 of them are co-transcribed with genes encoding subunits of molybdenum formylmethanofuran dehydrogenase (EC 1.2.99.5), an enzyme that is involved in microbial methane production. Here, the first crystal structures from PF02663 are described, representing two bacterial and one archaeal species: B8FYU2-DESHY from the anaerobic dehalogenating bacterium Desulfitobacterium hafniense DCB-2, Q2LQ23-SYNAS from the syntrophic bacterium Syntrophus aciditrophicus SB and Q9HJ63-THEAC from the thermoacidophilic archaeon Thermoplasma acidophilum. Two of these proteins, Q9HJ63-THEAC and Q2LQ23-SYNAS, contain two domains: an N-terminal thioredoxin-like α+β core domain (NTD) consisting of a five-stranded, mixed β-sheet flanked by several α-helices and a C-terminal zinc-finger domain (CTD). B8FYU2-DESHY, on the other hand, is composed solely of the NTD. The CTD of Q9HJ63-THEAC and Q2LQ23-SYNAS is best characterized as a treble-clef zinc finger. Two significant structural differences between Q9HJ63-THEAC and Q2LQ23-SYNAS involve their metal binding. First, zinc is bound to the putative active site on the NTD of Q9HJ63-THEAC, but is absent from the NTD of Q2LQ23-SYNAS. Second, whereas the structure of the CTD of Q2LQ23-SYNAS shows four Cys side chains within coordination distance of the Zn atom, the structure

  16. Trigger finger

    Science.gov (United States)

    ... digit; Trigger finger release; Locked finger; Digital flexor tenosynovitis ... cut or hand Yellow or green drainage from the cut Hand pain or discomfort Fever If your trigger finger returns, call your surgeon. You may need another surgery.

  17. Single motor unit firing behaviour in the right trapezius muscle during rapid movement of right or left index finger.

    Directory of Open Access Journals (Sweden)

    Karen eSøgaard

    2014-11-01

    Full Text Available Computer work is associated with low level sustained activity in the trapezius muscle that may cause myalgia. The activity may be attention related or part of a general multijoint motor program providing stabilization of the shoulder girdle for precise finger manipulation. This study examines single motor unit (MU firing pattern in the right trapezius muscle during fast movements of ipsi or contralateral index finger. Modulated firing rate would support a general multi joint motor program, while a generally increased and continuous firing rate would support attention related activation. 12 healthy female subjects were seated at a computer work place with elbows and forearms supported. Ten double clicks (DC were performed with right and left index finger on a computer mouse instrumented with a trigger.Surface EMG was recorded from right and left trapezius muscle. Intramuscular EMG was recorded with a quadripolar wire electrode in the right trapezius.Surface EMG was analysed as %MVE. The intramuscular EMG was decomposed into individual MU action potential trains. Instantaneous firing rate (IFR was calculated from inter-spike interval with ISI shorter than 20 ms defined as doublets. IFR was averaged across 10 DC to show IFR modulation.Surface EMG in both right and left trapezius was 1.8-2.5%MVE. During right hand DC a total of 32 MUs were identified. Four subjects showed no activity. Four showed MU activity with weak or no variations related to the timing of DC. Four subjects showed large modulation in IFR with temporal relation to DC. During left hand DC 15 MUs were identified in 4 subjects, for two of the subjects with IFR modulations related to DC. Doublets was found as an integrated part of MU activation in the trapezius muscle and for one subject temporarily related to DC. In conclusion, DC with ipsi- and contralateral fast movements of the index finger was found to evoke biomechanically as well as attention related activity pattern in the

  18. Reduction of bradykinesia of finger movements by a single session of action observation in Parkinson disease.

    Science.gov (United States)

    Pelosin, Elisa; Bove, Marco; Ruggeri, Piero; Avanzino, Laura; Abbruzzese, Giovanni

    2013-01-01

    Action observation influences motor performance in healthy subjects and persons with motor impairments. To understand the effects of action observation on the spontaneous rate of finger movements in patients with Parkinson disease (PD). Participants, 20 with PD and 14 healthy controls, were randomly divided into 2 groups. Those in the VIDEO group watched video clips showing repetitive finger movements paced at 3 Hz, whereas those in the ACOUSTIC group listened to an acoustic cue paced at 3 Hz. All participants performed a finger sequence at their spontaneous pace at different intervals (before, at the end of, 45 minutes after, and 2 days after training); 8 participants with PD were recruited for a sham intervention, watching a 6-minute video representing a static hand. Finally, 10 patients participated in the same protocol used for the VIDEO group but were tested in the on and off medication states. Both VIDEO and ACOUSTIC training increased the spontaneous rate in all participants. VIDEO intervention showed a greater effect over time, improving the spontaneous rate and reducing the intertapping interval to a larger extent than ACOUSTIC 45 minutes and 2 days after training. Action observation significantly influenced movement rate in on and off conditions, but 45 minutes after training, the effect was still present only in the on condition. No effect was observed after sham intervention. These findings suggest that the dopaminergic state contributes to the effects of action observation, and this training may be a promising approach in the rehabilitation of bradykinesia in PD.

  19. Arabidopsis KHZ1 and KHZ2, two novel non-tandem CCCH zinc-finger and K-homolog domain proteins, have redundant roles in the regulation of flowering and senescence.

    Science.gov (United States)

    Yan, Zongyun; Jia, Jianheng; Yan, Xiaoyuan; Shi, Huiying; Han, Yuzhen

    2017-12-01

    The two novel CCCH zinc-finger and K-homolog (KH) proteins, KHZ1 and KHZ2, play important roles in regulating flowering and senescence redundantly in Arabidopsis. The CCCH zinc-finger proteins and K-homolog (KH) proteins play important roles in plant development and stress responses. However, the biological functions of many CCCH zinc-finger proteins and KH proteins remain uncharacterized. In Arabidopsis, KHZ1 and KHZ2 are characterized as two novel CCCH zinc-finger and KH domain proteins which belong to subfamily VII in CCCH family. We obtained khz1, khz2 mutants and khz1 khz2 double mutants, as well as overexpression (OE) lines of KHZ1 and KHZ2. Compared with the wild type (WT), the khz2 mutants displayed no defects in growth and development, and the khz1 mutants were slightly late flowering, whereas the khz1 khz2 double mutants showed a pronounced late flowering phenotype. In contrast, artificially overexpressing KHZ1 and KHZ2 led to the early flowering. Consistent with the late flowering phenotype, the expression of flowering repressor gene FLC was up-regulated, while the expression of flowering integrator and floral meristem identity (FMI) genes were down-regulated significantly in khz1 khz2. In addition, we also observed that the OE plants of KHZ1 and KHZ2 showed early leaf senescence significantly, whereas the khz1 khz2 double mutants showed delayed senescence of leaf and the whole plant. Both KHZ1 and KHZ2 were ubiquitously expressed throughout the tissues of Arabidopsis. KHZ1 and KHZ2 were localized to the nucleus, and possessed both transactivation activities and RNA-binding abilities. Taken together, we conclude that KHZ1 and KHZ2 have redundant roles in the regulation of flowering and senescence in Arabidopsis.

  20. Genome-wide analysis of the DNA-binding with one zinc finger (Dof) transcription factor family in bananas.

    Science.gov (United States)

    Dong, Chen; Hu, Huigang; Xie, Jianghui

    2016-12-01

    DNA-binding with one finger (Dof) domain proteins are a multigene family of plant-specific transcription factors involved in numerous aspects of plant growth and development. In this study, we report a genome-wide search for Musa acuminata Dof (MaDof) genes and their expression profiles at different developmental stages and in response to various abiotic stresses. In addition, a complete overview of the Dof gene family in bananas is presented, including the gene structures, chromosomal locations, cis-regulatory elements, conserved protein domains, and phylogenetic inferences. Based on the genome-wide analysis, we identified 74 full-length protein-coding MaDof genes unevenly distributed on 11 chromosomes. Phylogenetic analysis with Dof members from diverse plant species showed that MaDof genes can be classified into four subgroups (StDof I, II, III, and IV). The detailed genomic information of the MaDof gene homologs in the present study provides opportunities for functional analyses to unravel the exact role of the genes in plant growth and development.

  1. Activation of Fetal γ-globin Gene Expression via Direct Protein Delivery of Synthetic Zinc-finger DNA-Binding Domains

    Directory of Open Access Journals (Sweden)

    Mir A Hossain

    2016-01-01

    Full Text Available Reactivation of γ-globin expression has been shown to ameliorate disease phenotypes associated with mutations in the adult β-globin gene, including sickle cell disease. Specific mutations in the promoter of the γ-globin genes are known to prevent repression of the genes in the adult and thus lead to hereditary persistence of fetal hemoglobin. One such hereditary persistence of fetal hemoglobin is associated with a sequence located 567 bp upstream of the Gγ-globin gene which assembles a GATA-containing repressor complex. We generated two synthetic zinc-finger DNA-binding domains (ZF-DBDs targeting this sequence. The -567Gγ ZF-DBDs associated with high affinity and specificity with the target site in the γ-globin gene promoter. We delivered the -567Gγ ZF-DBDs directly to primary erythroid cells. Exposure of these cells to the recombinant -567Gγ ZF-DBDs led to increased expression of the γ-globin gene. Direct protein delivery of ZF-DBDs that compete with transcription regulatory proteins will have broad implications for modulating gene expression in analytical or therapeutic settings.

  2. Expression Profiling and Functional Implications of a Set of Zinc Finger Proteins, ZNF423, ZNF470, ZNF521, and ZNF780B, in Primary Osteoarthritic Articular Chondrocytes

    Directory of Open Access Journals (Sweden)

    Maria Mesuraca

    2014-01-01

    Full Text Available Articular chondrocytes are responsible for the maintenance of healthy articulations; indeed, dysregulation of their functions, including the production of matrix proteins and matrix-remodeling proteases, may result in fraying of the tissue and development of osteoarthritis (OA. To explore transcriptional mechanisms that contribute to the regulation of chondrocyte homeostasis and may be implicated in OA development, we compared the gene expression profile of a set of zinc finger proteins potentially linked to the control of chondrocyte differentiation and/or functions (ZNF423, ZNF470, ZNF521, and ZNF780B in chondrocytes from patients affected by OA and from subjects not affected by OA. This analysis highlighted a significantly lower expression of the transcript encoding ZNF423 in chondrocytes from OA, particularly in elderly patients. Interestingly, this decrease was mirrored by the similarly reduced expression of PPARγ, a known target of ZNF423 with anti-inflammatory and chondroprotective properties. The ZNF521 mRNA instead was abundant in all primary chondrocytes studied; the RNAi-mediated silencing of this gene significantly altered the COL2A/COL1 expression ratio, associated with the maintenance of the differentiated phenotype, in chondrocytes cultivated in alginate beads. These results suggest a role for ZNF423 and ZNF521 in the regulation of chondrocyte homeostasis and warrant further investigations to elucidate their mechanism of action.

  3. Klf1, a C2H2 zinc finger-transcription factor, is required for cell wall maintenance during long-term quiescence in differentiated G0 phase.

    Directory of Open Access Journals (Sweden)

    Mizuki Shimanuki

    Full Text Available Fission yeast, Schizoaccharomyces pombe, is a model for studying cellular quiescence. Shifting to a medium that lacks a nitrogen-source induces proliferative cells to enter long-term G0 quiescence. Klf1 is a Krüppel-like transcription factor with a 7-amino acid Cys2His2-type zinc finger motif. The deletion mutant, ∆klf1, normally divides in vegetative medium, but proliferation is not restored after long-term G0 quiescence. Cell biologic, transcriptomic, and metabolomic analyses revealed a unique phenotype of the ∆klf1 mutant in quiescence. Mutant cells had diminished transcripts related to signaling molecules for switching to differentiation; however, proliferative metabolites for cell-wall assembly and antioxidants had significantly increased. Further, the size of ∆klf1 cells increased markedly during quiescence due to the aberrant accumulation of Calcofluor-positive, chitin-like materials beneath the cell wall. After 4 weeks of quiescence, reversible proliferation ability was lost, but metabolism was maintained. Klf1 thus plays a role in G0 phase longevity by enhancing the differentiation signal and suppressing metabolism for growth. If Klf1 is lost, S. pombe fails to maintain a constant cell size and normal cell morphology during quiescence.

  4. Tamarix hispida zinc finger protein ThZFP1 participates in salt and osmotic stress tolerance by increasing proline content and SOD and POD activities.

    Science.gov (United States)

    Zang, Dandan; Wang, Chao; Ji, Xiaoyu; Wang, Yucheng

    2015-06-01

    Zinc finger proteins (ZFPs) are a large family that play important roles in various biological processes, such as signal transduction, RNA binding, morphogenesis, transcriptional regulation, abiotic or biotic stress response. However, the functions of ZFPs involved in abiotic stress are largely not known. In the present study, we cloned and functionally characterized a ZFP gene, ThZFP1, from Tamarix hispida. The expression of ThZFP1 is highly induced by NaCl, mannitol or ABA treatment. To study the function of ThZFP1 involved in abiotic stress response, transgenic T. hispida plants with overexpression or knockdown of ThZFP1 were generated using a transient transformation system. Gain- and loss-of-function studies of ThZFP1 suggested that ThZFP1 can induce the expression of a series of genes, including delta-pyrroline-5-carboxylate synthetase (P5CS), peroxidase (POD) and superoxide dismutase (SOD), leading to accumulation of proline and enhanced activities of SOD and POD. These physiological changes enhanced proline content and reactive oxygen species (ROS) scavenging capability when exposed to salt or osmotic stress. All the results obtained from T. hispida plants were further confirmed by analyses of the transgenic Arabidopsis plants overexpressing ThZFP1. These data together suggested that ThZFP1 positively regulates proline accumulation and activities of SOD and POD under salt and osmotic stress conditions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. VASCULAR PLANT ONE-ZINC FINGER1 and VOZ2 repress the FLOWERING LOCUS C clade members to control flowering time in Arabidopsis.

    Science.gov (United States)

    Yasui, Yukiko; Kohchi, Takayuki

    2014-01-01

    Floral transition is regulated by environmental and endogenous signals. Previously, we identified VASCULAR PLANT ONE-ZINC FINGER1 (VOZ1) and VOZ2 as phytochrome B-interacting factors. VOZ1 and VOZ2 redundantly promote flowering and have pivotal roles in the downregulation of FLOWERING LOCUS C (FLC), a central repressor of flowering in Arabidopsis. Here, we showed that the late-flowering phenotypes of the voz1 voz2 mutant were suppressed by vernalization in the Columbia and FRIGIDA (FRI)-containing accessions, which indicates that the late-flowering phenotype of voz1 voz2 mutants was caused by upregulation of FLC. We also showed that the other FLC clade members, MADS AFFECTING FLOWERING (MAF) genes, were also a downstream target of VOZ1 and VOZ2 as their expression levels were also increased in the voz1 voz2 mutant. Our results suggest that the FLC clade genes integrate signals from VOZ1/VOZ2 and vernalization to regulate flowering.

  6. Vascular plant one-zinc-finger protein 2 is localized both to the nucleus and stress granules under heat stress in Arabidopsis.

    Science.gov (United States)

    Koguchi, Misaki; Yamasaki, Kanako; Hirano, Tomoko; Sato, Masa H

    2017-03-04

    VASCULAR PLANT ONE-ZINC FINGER (VOZ)1/and VOZ2 have an ability to bind to the specific cis-element in the AVP1 promoter of Arabidopsis, which function on the PhyB-dependent flowering and possibly in various stress responses as potential transcription factors, although nuclear localization of VOZ proteins is still unclear. In this study, we found that VOZ2 is dispersed throughout the cytoplasm under normal growth conditions, whereas VOZ2 is transferred not only to the nucleus but also to the cytoplasmic foci under heat stress conditions. The VOZ2 foci predominantly co-localized with a marker of stress granules (SGs), which were cytoplasmic granular structures for mRNA storage and decay under abiotic stress conditions. We also demonstrated that GFP-VOZ2 with a nuclear localization signal was rapidly degraded via the ubiquitin/proteasome pathway under the heat stress conditions. Also, stress-related expression of DREB2A in the voz1voz2 mutant was significantly upregulated by heat stress as compared with that in the wild-type Arabidopsis. Our results suggest that VOZ2 is localized to SGs and nucleus under heat stress conditions, and functions as a transcriptional repressor of DREB2A in Arabidopsis.

  7. Zinc finger protein 668 suppresses non-small cell lung cancer invasion and migration by downregulating Snail and upregulating E-cadherin and zonula occludens-1.

    Science.gov (United States)

    Zhang, Xiupeng; Jiang, Guiyang; Wu, Jingjing; Zhou, Haijing; Zhang, Yong; Miao, Yuan; Feng, Yangyang; Yu, Juanhan

    2018-03-01

    Zinc finger protein 668 (ZNF668) is a recently discovered protein and its expression levels, as well as its involvement in the invasion and metastasis of non-small cell lung cancer (NSCLC), are largely unknown. In the present study, immunohistochemical analysis demonstrated that ZNF668 protein expression was decreased in lung tumors (51/167, 30.5%) compared with adjacent normal lung tissues (43/62, 69.4%; P<0.001). Subsequent statistical analysis revealed that ZNF668 expression was negatively associated with increased tumor-node-metastasis stage (P=0.019) and lymph node metastasis (P=0.002). Following ZNF668 downregulation by transfection of a ZNF668 -expressing plasmid or small interfering RNA, it was demonstrated that ZNF668 inhibited the invasion and migration of NSCLC cells. Furthermore, restoration of ZNF668 expression downregulated the expression of Snail and increased the protein levels of epithelial (E-)cadherin and zonula occludens-1 (ZO-1). The results of the present study suggest that ZNF668 is downregulated in human NSCLC. Furthermore, restoration of ZNF668 expression was demonstrated to decrease the expression of Snail and increase the expression of E-cadherin and ZO-1, suppressing the invasion and migration of NSCLC cells.

  8. Cloning and comparative analysis of zinc-finger protein gene on Y-chromosome (ZFY between Thai Bangkaew dog and other Thai canids

    Directory of Open Access Journals (Sweden)

    Ukadej Boonyaprakob

    2017-06-01

    Full Text Available The Thai Bangkaew dog is a Spitz-type dog that originated in Thailand. Legend has it that the dog is descended from hybrids between a native female dog and a male wild canid. To examine the mysterious story about the ancestry of the Thai Bangkaew dog's paternal lineage, sequence variation was examined for the last intron of the Y-chromosome-specific zinc-finger gene, ZFY, and its X homolog for male Thai Bangkaew dogs and other male Thai canids, including the Thai ridgeback and mixed breed dogs, Asiatic jackals (Canis aureus and a dhole (Cuon alpinus. A 1075-bp ZFY segment from DNA samples of Thai Bangkaew dogs was found to be 100% identical to the domestic dog ZFY and (if gaps are allowed showed 81% and 92% identity to jackal ZFY and dhole ZFY, respectively. However, if gaps were treated as missing data, the 1045-bp ZFY sequence for the Thai Bangkaew dogs was 100% identical to domestic dog ZFY and 99.5% to jackal ZFY and dhole ZFY, respectively. In addition, the 959-bp Thai Bangkaew ZFX fragments were identical and showed 100% identity to domestic dog ZFX. These genetic data suggest that the Thai Bangkaew dogs still present today share a common male ancestor with modern dogs, rather than being the descendants of dhole or jackal/dog hybrids.

  9. A conserved function of the zinc finger transcription factor Sp8/9 in allometric appendage growth in the milkweed bug Oncopeltus fasciatus.

    Science.gov (United States)

    Schaeper, Nina D; Prpic, Nikola-Michael; Wimmer, Ernst A

    2009-08-01

    The genes encoding the closely related zinc finger transcription factors Buttonhead (Btd) and D-Sp1 are expressed in the developing limb primordia of Drosophila melanogaster and are required for normal growth of the legs. The D-Sp1 homolog of the red flour beetle Tribolium castaneum, Sp8 (appropriately termed Sp8/9), is also required for the proper growth of the leg segments. Here we report on the isolation and functional study of the Sp8/9 gene from the milkweed bug Oncopeltus fasciatus. We show that Sp8/9 is expressed in the developing appendages throughout development and that the downregulation of Sp8/9 via RNAi leads to antennae, rostrum, and legs with shortened and fused segments. This supports a conserved role of Sp8/9 in allometric leg segment growth. However, all leg segments including the claws are present and the expression of the leg genes Distal-less, dachshund, and homothorax are proportionally normal, thus providing no evidence for a role of Sp8/9 in appendage specification.

  10. A Zinc-Finger-Family Transcription Factor, AbVf19, Is Required for the Induction of a Gene Subset Important for Virulence in Alternaria brassicicola

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Akhil [Univ. of Hawaii, Manoa, HI (United States); Ohm, Robin A. [USDOE Joint Genome Inst., Walnut Creek, CA (United States); Oxiles, Lindsay [Univ. of Hawaii, Manoa, HI (United States); Brooks, Fred [Univ. of Hawaii, Manoa, HI (United States); Lawrence, Christopher B. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Grigoriev, Igor V. [USDOE Joint Genome Inst., Walnut Creek, CA (United States); Cho, Yangrae [Univ. of Hawaii, Manoa, HI (United States)

    2011-10-26

    Alternaria brassicicola is a successful saprophyte and necrotrophic plant pathogen with a broad host range within the family Brassicaceae. It produces secondary metabolites that marginally affect virulence. Cell wall degrading enzymes (CDWE) have been considered important for pathogenesis but none of them individually have been identified as significant virulence factors in A. brassicicola. In this study, knockout mutants of a gene, AbVf19, were created and produced considerably smaller lesions than the wild type on inoculated host plants. The presence of tandem zinc-finger domains in the predicted amino acid sequence and nuclear localization of AbVf19- reporter protein suggested that it was a transcription factor. Gene expression comparisons using RNA-seq identified 74 genes being downregulated in the mutant during a late stage of infection. Among the 74 downregulated genes, 28 were putative CWDE genes. These were hydrolytic enzyme genes that composed a small fraction of genes within each family of cellulases, pectinases, cutinases, and proteinases. The mutants grew slower than the wild type on an axenic medium with pectin as a major carbon source. This study demonstrated the existence and the importance of a transcription factor that regulates a suite of genes that are important for decomposing and utilizing plant material during the late stage of plant infection.

  11. Zinc finger of Arabidopsis thaliana 6 is involved in melatonin-mediated auxin signaling through interacting INDETERMINATE DOMAIN15 and INDOLE-3-ACETIC ACID 17.

    Science.gov (United States)

    Shi, Haitao; Zhang, Shengmin; Lin, Daozhe; Wei, Yunxie; Yan, Yu; Liu, Guoyin; Reiter, Russel J; Chan, Zhulong

    2018-04-01

    Although accumulating evidence demonstrates the crosstalk between melatonin and auxin as derivatives of tryptophan, the underlying signaling events remain unclear. In this study, we found that melatonin and auxin mediated the transcriptional levels of zinc finger of Arabidopsis thaliana (ZAT6) in a mutually antagonistic manner. ZAT6 negatively modulated the endogenous auxin level, and ZAT6 knockdown plants were less sensitive to melatonin-regulated auxin biosynthesis, indicating its involvement in melatonin-mediated auxin accumulation. Additionally, the identification of INDETERMINATE DOMAIN15 (IDD15) and INDOLE-3-ACETIC ACID 17 (IAA17) in Arabidopsis that interacted with ZAT6 in vivo provided new insight of ZAT6-mediated auxin signaling. Further investigation showed that ZAT6 repressed the transcription activation of IDD15 on the YUC2 promoter, while ZAT6 inhibited the interaction of TRANSPORT INHIBITOR RESPONSE 1 (TIR1) and IAA17 through competitively binding to IAA17. Thus, both auxin synthesis and the auxin response were negatively modulated by ZAT6. Taken together, ZAT6 is involved in melatonin-mediated auxin signaling through forming an interacting complex of auxin signaling pathway in Arabidopsis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. The KRAB Zinc Finger Protein Roma/Zfp157 Is a Critical Regulator of Cell-Cycle Progression and Genomic Stability

    Directory of Open Access Journals (Sweden)

    Teresa L.F. Ho

    2016-04-01

    Full Text Available Regulation of DNA replication and cell division is essential for tissue growth and maintenance of genomic integrity and is particularly important in tissues that undergo continuous regeneration such as mammary glands. We have previously shown that disruption of the KRAB-domain zinc finger protein Roma/Zfp157 results in hyperproliferation of mammary epithelial cells (MECs during pregnancy. Here, we delineate the mechanism by which Roma engenders this phenotype. Ablation of Roma in MECs leads to unscheduled proliferation, replication stress, DNA damage, and genomic instability. Furthermore, mouse embryonic fibroblasts (MEFs depleted for Roma exhibit downregulation of p21Cip1 and geminin and have accelerated replication fork velocities, which is accompanied by a high rate of mitotic errors and polyploidy. In contrast, overexpression of Roma in MECs halts cell-cycle progression, whereas siRNA-mediated p21Cip1 knockdown ameliorates, in part, this phenotype. Thus, Roma is an essential regulator of the cell cycle and is required to maintain genomic stability.

  13. A Zinc Finger Protein Regulates Flowering Time and Abiotic Stress Tolerance in Chrysanthemum by Modulating Gibberellin Biosynthesis[C][W][OPEN

    Science.gov (United States)

    Yang, Yingjie; Ma, Chao; Xu, Yanjie; Wei, Qian; Imtiaz, Muhammad; Lan, Haibo; Gao, Shan; Cheng, Lina; Wang, Meiyan; Fei, Zhangjun; Hong, Bo; Gao, Junping

    2014-01-01

    Flowering time and an ability to tolerate abiotic stresses are important for plant growth and development. We characterized BBX24, a zinc finger transcription factor gene, from Chrysanthemum morifolium and found it to be associated with both flowering time and stress tolerance. Transgenic lines with suppressed expression of Cm-BBX24 (Cm-BBX24-RNAi) flowered earlier than wild-type plants and showed decreased tolerance to freezing and drought stresses. Global expression analysis revealed that genes associated with both photoperiod and gibberellin (GA) biosynthesis pathways were upregulated in Cm-BBX24-RNAi lines, relative to the wild type. By contrast, genes that were upregulated in overexpressing lines (Cm-BBX24-OX), but downregulated in Cm-BBX24-RNAi lines (both relative to the wild type), included genes related to compatible solutes and carbohydrate metabolism, both of which are associated with abiotic stress. Cm-BBX24 expression was also influenced by daylength and GA4/7 application. Under long days, changes in endogenous GA1, GA4, GA19, and GA20 levels occurred in young leaves of transgenic lines, relative to the wild type. Regulation of flowering involves the FLOWERING TIME gene, which integrates photoperiod and GA biosynthesis pathways. We postulate that Cm-BBX24 plays a dual role, modulating both flowering time and abiotic stress tolerance in chrysanthemum, at least in part by influencing GA biosynthesis. PMID:24858937

  14. Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity

    Science.gov (United States)

    Görner, Wolfram; Durchschlag, Erich; Martinez-Pastor, Maria Teresa; Estruch, Francisco; Ammerer, Gustav; Hamilton, Barbara; Ruis, Helmut; Schüller, Christoph

    1998-01-01

    Msn2p and the partially redundant factor Msn4p are key regulators of stress-responsive gene expression in Saccharomyces cerevisiae. They are required for the transcription of a number of genes coding for proteins with stress-protective functions. Both Msn2p and Msn4p are Cys2His2 zinc finger proteins and bind to the stress response element (STRE). In vivo footprinting studies show that the occupation of STREs is enhanced in stressed cells and dependent on the presence of Msn2p and Msn4p. Both factors accumulate in the nucleus under stress conditions, such as heat shock, osmotic stress, carbon-source starvation, and in the presence of ethanol or sorbate. Stress-induced nuclear localization was found to be rapid, reversible, and independent of protein synthesis. Nuclear localization of Msn2p and Msn4p was shown to be correlated inversely to cAMP levels and protein kinase A (PKA) activity. A region with significant homologies shared between Msn2p and Msn4p is sufficient to confer stress-regulated localization to a SV40–NLS–GFP fusion protein. Serine to alanine or aspartate substitutions in a conserved PKA consensus site abolished cAMP-driven nuclear export and cytoplasmic localization in unstressed cells. We propose stress and cAMP-regulated intracellular localization of Msn2p to be a key step in STRE-dependent transcription and in the general stress response. PMID:9472026

  15. In Vivo Zinc Finger Nuclease-mediated Targeted Integration of a Glucose-6-phosphatase Transgene Promotes Survival in Mice With Glycogen Storage Disease Type IA.

    Science.gov (United States)

    Landau, Dustin J; Brooks, Elizabeth Drake; Perez-Pinera, Pablo; Amarasekara, Hiruni; Mefferd, Adam; Li, Songtao; Bird, Andrew; Gersbach, Charles A; Koeberl, Dwight D

    2016-04-01

    Glycogen storage disease type Ia (GSD Ia) is caused by glucose-6-phosphatase (G6Pase) deficiency in association with severe, life-threatening hypoglycemia that necessitates lifelong dietary therapy. Here we show that use of a zinc-finger nuclease (ZFN) targeted to the ROSA26 safe harbor locus and a ROSA26-targeting vector containing a G6PC donor transgene, both delivered with adeno-associated virus (AAV) vectors, markedly improved survival of G6Pase knockout (G6Pase-KO) mice compared with mice receiving the donor vector alone (P < 0.04). Furthermore, transgene integration has been confirmed by sequencing in the majority of the mice treated with both vectors. Targeted alleles were 4.6-fold more common in livers of mice with GSD Ia, as compared with normal littermates, at 8 months following vector administration (P < 0.02). This suggests a selective advantage for vector-transduced hepatocytes following ZFN-mediated integration of the G6Pase vector. A short-term experiment also showed that 3-month-old mice receiving the ZFN had significantly-improved biochemical correction, in comparison with mice that received the donor vector alone. These data suggest that the use of ZFNs to drive integration of G6Pase at a safe harbor locus might improve vector persistence and efficacy, and lower mortality in GSD Ia.

  16. Clinical Scale Zinc Finger Nuclease-mediated Gene Editing of PD-1 in Tumor Infiltrating Lymphocytes for the Treatment of Metastatic Melanoma.

    Science.gov (United States)

    Beane, Joal D; Lee, Gary; Zheng, Zhili; Mendel, Matthew; Abate-Daga, Daniel; Bharathan, Mini; Black, Mary; Gandhi, Nimisha; Yu, Zhiya; Chandran, Smita; Giedlin, Martin; Ando, Dale; Miller, Jeff; Paschon, David; Guschin, Dmitry; Rebar, Edward J; Reik, Andreas; Holmes, Michael C; Gregory, Philip D; Restifo, Nicholas P; Rosenberg, Steven A; Morgan, Richard A; Feldman, Steven A

    2015-08-01

    Programmed cell death-1 (PD-1) is expressed on activated T cells and represents an attractive target for gene-editing of tumor targeted T cells prior to adoptive cell transfer (ACT). We used zinc finger nucleases (ZFNs) directed against the gene encoding human PD-1 (PDCD-1) to gene-edit melanoma tumor infiltrating lymphocytes (TIL). We show that our clinical scale TIL production process yielded efficient modification of the PD-1 gene locus, with an average modification frequency of 74.8% (n = 3, range 69.9-84.1%) of the alleles in a bulk TIL population, which resulted in a 76% reduction in PD-1 surface-expression. Forty to 48% of PD-1 gene-edited cells had biallelic PD-1 modification. Importantly, the PD-1 gene-edited TIL product showed improved in vitro effector function and a significantly increased polyfunctional cytokine profile (TNFα, GM-CSF, and IFNγ) compared to unmodified TIL in two of the three donors tested. In addition, all donor cells displayed an effector memory phenotype and expanded approximately 500-2,000-fold in vitro. Thus, further study to determine the efficiency and safety of adoptive cell transfer using PD-1 gene-edited TIL for the treatment of metastatic melanoma is warranted.

  17. Correction of dystrophin expression in cells from Duchenne muscular dystrophy patients through genomic excision of exon 51 by zinc finger nucleases.

    Science.gov (United States)

    Ousterout, David G; Kabadi, Ami M; Thakore, Pratiksha I; Perez-Pinera, Pablo; Brown, Matthew T; Majoros, William H; Reddy, Timothy E; Gersbach, Charles A

    2015-03-01

    Duchenne muscular dystrophy (DMD) is caused by genetic mutations that result in the absence of dystrophin protein expression. Oligonucleotide-induced exon skipping can restore the dystrophin reading frame and protein production. However, this requires continuous drug administration and may not generate complete skipping of the targeted exon. In this study, we apply genome editing with zinc finger nucleases (ZFNs) to permanently remove essential splicing sequences in exon 51 of the dystrophin gene and thereby exclude exon 51 from the resulting dystrophin transcript. This approach can restore the dystrophin reading frame in ~13% of DMD patient mutations. Transfection of two ZFNs targeted to sites flanking the exon 51 splice acceptor into DMD patient myoblasts led to deletion of this genomic sequence. A clonal population was isolated with this deletion and following differentiation we confirmed loss of exon 51 from the dystrophin mRNA transcript and restoration of dystrophin protein expression. Furthermore, transplantation of corrected cells into immunodeficient mice resulted in human dystrophin expression localized to the sarcolemmal membrane. Finally, we quantified ZFN toxicity in human cells and mutagenesis at predicted off-target sites. This study demonstrates a powerful method to restore the dystrophin reading frame and protein expression by permanently deleting exons.

  18. Simultaneous zinc-finger nuclease editing of the HIV coreceptors ccr5 and cxcr4 protects CD4+ T cells from HIV-1 infection.

    Science.gov (United States)

    Didigu, Chuka A; Wilen, Craig B; Wang, Jianbin; Duong, Jennifer; Secreto, Anthony J; Danet-Desnoyers, Gwenn A; Riley, James L; Gregory, Phillip D; June, Carl H; Holmes, Michael C; Doms, Robert W

    2014-01-02

    HIV-1 entry into CD4(+) T cells requires binding of the virus to CD4 followed by engagement of either the C-C chemokine receptor 5 (CCR5) or C-X-C chemokine receptor 4 (CXCR4) coreceptor. Pharmacologic blockade or genetic inactivation of either coreceptor protects cells from infection by viruses that exclusively use the targeted coreceptor. We have used zinc-finger nucleases to drive the simultaneous genetic modification of both ccr5 and cxcr4 in primary human CD4(+) T cells. These gene-modified cells proliferated normally and were resistant to both CCR5- and CXCR4-using HIV-1 in vitro. When introduced into a humanized mouse model of HIV-1 infection, these coreceptor negative cells engraft and traffic normally, and are protected from infection with CCR5- and CXCR4-using HIV-1 strains. These data suggest that simultaneous disruption of the HIV coreceptors may provide a useful approach for the long-term, drug-free treatment of established HIV-1 infections.

  19. VOZ; isolation and characterization of novel vascular plant transcription factors with a one-zinc finger from Arabidopsis thaliana.

    Science.gov (United States)

    Mitsuda, Nobutaka; Hisabori, Toru; Takeyasu, Kunio; Sato, Masa H

    2004-07-01

    A 38-bp pollen-specific cis-acting region of the AVP1 gene is involved in the expression of the Arabidopsis thaliana V-PPase during pollen development. Here, we report the isolation and structural characterization of AtVOZ1 and AtVOZ2, novel transcription factors that bind to the 38-bp cis-acting region of A. thaliana V-PPase gene, AVP1. AtVOZ1 and AtVOZ2 show 53% amino acid sequence similarity. Homologs of AtVOZ1 and AtVOZ2 are found in various vascular plants as well as a moss, Physcomitrella patens. Promoter-beta-glucuronidase reporter analysis shows that AtVOZ1 is specifically expressed in the phloem tissue and AtVOZ2 is strongly expressed in the root. In vivo transient effector-reporter analysis in A. thaliana suspension-cultured cells demonstrates that AtVOZ1 and AtVOZ2 function as transcriptional activators in the Arabidopsis cell. Two conserved regions termed Domain-A and Domain-B were identified from an alignment of AtVOZ proteins and their homologs of O. sativa and P. patens. AtVOZ2 binds as a dimer to the specific palindromic sequence, GCGTNx7ACGC, with Domain-B, which is comprised of a functional novel zinc coordinating motif and a conserved basic region. Domain-B is shown to function as both the DNA-binding and the dimerization domains of AtVOZ2. From highly the conservative nature among all identified VOZ proteins, we conclude that Domain-B is responsible for the DNA binding and dimerization of all VOZ-family proteins and designate it as the VOZ-domain.

  20. Single crystal X-ray structure of the artists’ pigment zinc yellow

    DEFF Research Database (Denmark)

    Simonsen, Kim Pilkjær; Christiansen, Marie Bitsch; Vinum, Morten Gotthold

    2017-01-01

    been unknown. In this work, zinc yellow was synthesised by precipitation from an aqueous solution of zinc nitrate and potassium chromate under both neutral and basic conditions, and the products were compared with the pigment used in industrial paints. Analyses by Raman microscopy (MRS), scanning...... electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and powder X-ray diffraction (PXRD), showed that the synthesised products and the industrial pigment were identical. Single-crystal X-ray crystallography......The artists’ pigment zinc yellow is in general described as a complex potassium zinc chromate with the empirical formula 4ZnCrO4·K2O·3H2O. Even though the pigment has been in use since the second half of the 19th century also in large-scale industrial applications, the exact structure had hitherto...

  1. Identity of zinc finger nucleases with specificity to herpes simplex virus type II genomic DNA: novel HSV-2 vaccine/therapy precursors

    Directory of Open Access Journals (Sweden)

    Wayengera Misaki

    2011-06-01

    Full Text Available Abstract Background Herpes simplex type II (HSV-2 is a member of the family herpesviridae. Human infection with this double stranded linear DNA virus causes genital ulcerative disease and existing treatment options only serve to resolve the symptomatology (ulcers associated with active HSV-2 infection but do not eliminate latent virus. As a result, infection with HSV-2 follows a life-long relapsing (active versus latent course. On the basis of a primitive bacterium anti-phage DNA defense, the restriction modification (R-M system, we previously identified the Escherichia coli restriction enzyme (REase EcoRII as a novel peptide to excise or irreversibly disrupt latent HSV-2 DNA from infected cells. However, sequences of the site specificity palindrome of EcoRII 5'-CCWGG-3' (W = A or T are equally present within the human genome and are a potential source of host-genome toxicity. This feature has limited previous HSV-2 EcoRII based therapeutic models to microbicides only, and highlights the need to engineer artificial REases (zinc finger nucleases-ZFNs with specificity to HSV-2 genomic-DNA only. Herein, the therapeutic-potential of zinc finger arrays (ZFAs and ZFNs is identified and modeled, with unique specificity to the HSV-2 genome. Methods and results Using the whole genome of HSV-2 strain HG52 (Dolan A et al.,, and with the ZFN-consortium's CoDA-ZiFiT software pre-set at default, more than 28,000 ZFAs with specificity to HSV-2 DNA were identified. Using computational assembly (through in-silico linkage to the Flavobacterium okeanokoites endonuclease Fok I of the type IIS class, 684 ZFNs with specificity to the HSV-2 genome, were constructed. Graphic-analysis of the HSV-2 genome-cleavage pattern using the afore-identified ZFNs revealed that the highest cleavage-incidence occurred within the 30,950 base-pairs (~between the genomic context coordinates 0.80 and 1.00 at the 3' end of the HSV-2 genome. At approximately 3,095 bp before and after the

  2. Zinc finger nuclease-expressing baculoviral vectors mediate targeted genome integration of reprogramming factor genes to facilitate the generation of human induced pluripotent stem cells.

    Science.gov (United States)

    Phang, Rui-Zhe; Tay, Felix Chang; Goh, Sal-Lee; Lau, Cia-Hin; Zhu, Haibao; Tan, Wee-Kiat; Liang, Qingle; Chen, Can; Du, Shouhui; Li, Zhendong; Tay, Johan Chin-Kang; Wu, Chunxiao; Zeng, Jieming; Fan, Weimin; Toh, Han Chong; Wang, Shu

    2013-12-01

    Integrative gene transfer using retroviruses to express reprogramming factors displays high efficiency in generating induced pluripotent stem cells (iPSCs), but the value of the method is limited because of the concern over mutagenesis associated with random insertion of transgenes. Site-specific integration into a preselected locus by engineered zinc-finger nuclease (ZFN) technology provides a potential way to overcome the problem. Here, we report the successful reprogramming of human fibroblasts into a state of pluripotency by baculoviral transduction-mediated, site-specific integration of OKSM (Oct3/4, Klf4, Sox2, and c-myc) transcription factor genes into the AAVS1 locus in human chromosome 19. Two nonintegrative baculoviral vectors were used for cotransduction, one expressing ZFNs and another as a donor vector encoding the four transcription factors. iPSC colonies were obtained at a high efficiency of 12% (the mean value of eight individual experiments). All characterized iPSC clones carried the transgenic cassette only at the ZFN-specified AAVS1 locus. We further demonstrated that when the donor cassette was flanked by heterospecific loxP sequences, the reprogramming genes in iPSCs could be replaced by another transgene using a baculoviral vector-based Cre recombinase-mediated cassette exchange system, thereby producing iPSCs free of exogenous reprogramming factors. Although the use of nonintegrating methods to generate iPSCs is rapidly becoming a standard approach, methods based on site-specific integration of reprogramming factor genes as reported here hold the potential for efficient generation of genetically amenable iPSCs suitable for future gene therapy applications.

  3. Annexin A2 and zinc finger transcription factor Snail expression in glioma tissue and the regulating effect of corresponding siRNA on glioma cells

    Directory of Open Access Journals (Sweden)

    Zheng-Hai Deng

    2016-12-01

    Full Text Available Objective: To study the Annexin A2 and zinc finger transcription factor Snail expression in glioma tissue and the regulating effect of corresponding siRNA on glioma cells. Methods: Glioma and peri-tumor tissue were collected to determine AnnexinA2 and Snail expression; glioma cell lines U373-MG were cultured and transfected with AnnexinA2, Snail and NC siRNA, and then the cell viability, number of migrating and invading cells as well as the expression levels of proliferation and epithelial-mesenchymal transition genes were detected. Results: AnnexinA2 and Snail mRNA levels in glioma tissues were significantly higher than those in peri-tumor tissues; cell viability as well as Ras, Raf, MEK and ERK mRNA levels of AnnexinA2-siRNA group was significantly lower than those of NC-siRNA group, and the migrating cell number and invading cell number as well as E-cadherin, N-cadherin, Vimentin and α-SMA mRNA levels were not significantly different from those of NC-siRNA group; migrating cell number and invading cell number as well as N-cadherin, Vimentin and α-SMA mRNA levels of Snail-siRNA group were significantly lower than those of NC-siRNA group, E-cadherin mRNA level was significantly higher than that of NC-siRNA group, and the cell viability as well as Ras, Raf, MEK and ERK mRNA levels were not significantly different from those of NC-siRNA group. Conclusions: AnnexinA2 and Snail expression levels significantly increase in glioma tissues, highly expressed AnnexinA2 can promote cell proliferation and highly expressed Snail can promote epithelial-mesenchymal transition.

  4. Myeloid Zinc Finger 1 and GA Binding Protein Co-Operate with Sox2 in Regulating the Expression of Yes-Associated Protein 1 in Cancer Cells.

    Science.gov (United States)

    Verma, Narendra Kumar; Gadi, Abhilash; Maurizi, Giulia; Roy, Upal Basu; Mansukhani, Alka; Basilico, Claudio

    2017-12-01

    The transcription factor (TF) yes-associated protein 1 (YAP1) is a major effector of the tumor suppressive Hippo signaling pathway and is also necessary to maintain pluripotency in embryonic stem cells. Elevated levels of YAP1 expression antagonize the tumor suppressive effects of the Hippo pathway that normally represses YAP1 function. High YAP1 expression is observed in several types of human cancers and is particularly prominent in cancer stem cells (CSCs). The stem cell TF Sox2, which marks and maintains CSCs in osteosarcomas (OSs), promotes YAP1 expression by binding to an intronic enhancer element and YAP1 expression is also crucial for the maintainance of OS stem cells. To further understand the regulation of YAP1 expression in OSs, we subjected the YAP1 intronic enhancer to scanning mutagenesis to identify all DNA cis-elements critical for enhancer function. Through this approach, we identified two novel TFs, GA binding protein (GABP) and myeloid zinc finger 1 (MZF1), which are essential for basal YAP1 transcription. These factors are highly expressed in OSs and bind to distinct sites in the YAP1 enhancer. Depletion of either factor leads to drastically reduced YAP1 expression and thus a reversal of stem cell properties. We also found that YAP1 can regulate the expression of Sox2 by binding to two distinct DNA binding sites upstream and downstream of the Sox2 gene. Thus, Sox2 and YAP1 reinforce each others expression to maintain stemness and tumorigenicity in OSs, but the activity of MZF1 and GABP is essential for YAP1 transcription. Stem Cells 2017;35:2340-2350. © 2017 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  5. Zinc finger artificial transcription factor-based nearest inactive analogue/nearest active analogue strategy used for the identification of plant genes controlling homologous recombination.

    Science.gov (United States)

    Jia, Qi; van Verk, Marcel C; Pinas, Johan E; Lindhout, Beatrice I; Hooykaas, Paul J J; van der Zaal, Bert J

    2013-12-01

    In previous work, we selected a particular transcription factor, designated VP16-HRU, from a pool of zinc finger artificial transcription factors (ZF-ATFs) used for genome interrogation. When expressed in Arabidopsis thaliana under control of the ribosomal protein S5A promoter, the RPS5A::VP16-HRU construct led to a 200- to 300-fold increase in the frequency of somatic intrachromosomal homologous recombination (iHR). Because the expression of each ZF-ATF leads to a large number of transcriptional changes, we designed a strategy employing a collection of structurally similar ZF-ATFs to filter out the transcriptional changes relevant to the phenotype by deep sequencing. In that manner, 30 transcripts were found to be consistently induced in plants with enhanced homologous recombination (HR). For 25 of the cognate genes, their effect on the HR process was assessed using cDNA/gDNA expression constructs. For three genes, ectopic expression indeed led to enhanced iHR frequencies, albeit much lower than the frequency observed when a HR-inducing ZF-ATF was present. Altogether, our data demonstrate that despite the large number of transcriptional changes brought about by individual ZF-ATFs, causal changes can be identified. In our case, the picture emerged that a natural regulatory switch for iHR does not exist but that ZF-ATFs-like VP16-HRU act as an ectopic master switch, orchestrating the timely expression of a set of plant genes that each by themselves only have modest effects, but when acting together support an extremely high iHR frequency. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Evaluation of zinc finger E-box binding homeobox 1 and transforming growth factor-beta2 expression in bladder cancer tissue in comparison with healthy adjacent tissue

    Directory of Open Access Journals (Sweden)

    Ali Mahdavinezhad

    2017-03-01

    Full Text Available Purpose: The fifth most common cancer is allocated to bladder cancer (BC worldwide. Understanding the molecular mechanisms of BC invasion and metastasis to identify target therapeutic strategies will improve disease survival. So the aim of this study was to measure expression rate of zinc finger E-box binding homeobox 1 (ZEB1 and transforming growth factor-beta2 (TGF-β2 mRNA in tissue samples of patients with BC and its healthy adjacent tissue samples and their association with muscle invasion, size and grade of the tumor. Materials and Methods: Tissue samples were collected from 35 newly diagnosed untreated patients with BC from 2013 to 2014. Total RNA was extracted from about 50-mg tissue samples using TRIzol reagent. TAKARA SYBR Premix EX Tag II was applied to determine the rate of mRNA expression by real-time polymerase chain reaction (PCR. To obtain final validation, PCR product of ZEB1 and TGF-β2 were sequenced. STATA 11 software was used to analyze the data. Results: The expression level of ZEB1 in tumor samples was significantly more than of in healthy adjacent tissue samples. Up-regulation of TGF-β2 showed a strong association with muscle invasion (p=0.017. There was also demonstrated a relationship between over expression of ZEB1 with the tumor size (p=0.050. Conclusions: It looks ZEB1 and TGF-β2 had a role in BC patients. In this study ZEB1 expression was higher in BC tissues than that of in healthy control tissues. There was demonstrated a markedly association between overexpression of TGF-β2 and muscle invasion. Therefore, they are supposed to be candidate as potential biomarkers for early detection and progression of BC.

  7. Two C3H Type Zinc Finger Protein Genes, CpCZF1 and CpCZF2, from Chimonanthus praecox Affect Stamen Development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Huamin Liu

    2017-08-01

    Full Text Available Wintersweet (Chimonanthus praecox is a popular garden plant because of its flowering time, sweet fragrance, and ornamental value. However, research into the molecular mechanism that regulates flower development in wintersweet is still limited. In this study, we sought to investigate the molecular characteristics, expression patterns, and potential functions of two C3H-type zinc finger (CZF protein genes, CpCZF1 and CpCZF2, which were isolated from the wintersweet flowers based on the flower developmental transcriptome database. CpCZF1 and CpCZF2 were more highly expressed in flower organs than in vegetative tissues, and during the flower development, their expression profiles were associated with flower primordial differentiation, especially that of petal and stamen primordial differentiation. Overexpression of either CpCZF1 or CpCZF2 caused alterations on stamens in transgenic Arabidopsis. The expression levels of the stamen identity-related genes, such as AGAMOUS (AG, PISTILLATA (PI, SEPALLATA1 (SEP1, SEPALLATA2 (SEP2, SEPALLATA3 (SEP3, APETALA1 (AP1, APETALA2 (AP2, and boundary gene RABBIT EAR (RBE were significantly up-regulated in CpCZF1 overexpression lines. Additionally, the transcripts of AG, PI, APETALA3 SEP1-3, AP1, and RBE were markedly increased in CpCZF2 overexpressed plant inflorescences. Moreover, CpCZF1 and CpCZF2 could interact with each other by using yeast two-hybrid and bimolecular fluorescence complementation assays. Our results suggest that CpCZF1 and CpCZF2 may be involved in the regulation of stamen development and cause the formation of abnormal flowers in transgenic Arabidopsis plants.

  8. Down-regulation of the zinc-finger homeobox protein TSHZ2 releases GLI1 from the nuclear repressor complex to restore its transcriptional activity during mammary tumorigenesis

    Science.gov (United States)

    Riku, Miho; Inaguma, Shingo; Ito, Hideaki; Tsunoda, Takumi; Ikeda, Hiroshi; Kasai, Kenji

    2016-01-01

    Although breast cancer is one of the most common malignancies, the molecular mechanisms underlying its development and progression are not fully understood. To identify key molecules involved, we screened publicly available microarray datasets for genes differentially expressed between breast cancers and normal mammary glands. We found that three of the genes predicted in this analysis were differentially expressed among human mammary tissues and cell lines. Of these genes, we focused on the role of the zinc-finger homeobox protein TSHZ2, which is down-regulated in breast cancer cells. We found that TSHZ2 is a nuclear protein harboring a bipartite nuclear localization signal, and we confirmed its function as a C-terminal binding protein (CtBP)-dependent transcriptional repressor. Through comprehensive screening, we identified TSHZ2-suppressing genes such as AEBP1 and CXCR4, which are conversely up-regulated by GLI1, the downstream transcription factor of Hedgehog signaling. We found that GLI1 forms a ternary complex with CtBP2 in the presence of TSHZ2 and that the transcriptional activity of GLI1 is suppressed by TSHZ2 in a CtBP-dependent manner. Indeed, knockdown of TSHZ2 increases the expression of AEBP1 and CXCR4 in TSHZ2-expressing immortalized mammary duct epithelium. Concordantly, immunohistochemical staining of mammary glands revealed that normal duct cells expresses GLI1 in the nucleus along with TSHZ2 and CtBP2, whereas invasive ductal carcinoma cells, which does not express TSHZ2, show the increase in the expression of AEBP1 and CXCR4 and in the cytoplasmic localization of GLI1. Thus, we propose that down-regulation of TSHZ2 is crucial for mammary tumorigenesis via the activation of GLI1. PMID:26744317

  9. Editing of the Luteinizing Hormone Gene to Sterilize Channel Catfish, Ictalurus punctatus, Using a Modified Zinc Finger Nuclease Technology with Electroporation.

    Science.gov (United States)

    Qin, Zhenkui; Li, Yun; Su, Baofeng; Cheng, Qi; Ye, Zhi; Perera, Dayan A; Fobes, Michael; Shang, Mei; Dunham, Rex A

    2016-04-01

    Channel catfish (Ictalurus punctatus) is the most important freshwater aquaculture species in the USA. Genetically enhanced fish that are sterile could both profit the catfish industry and reduce potential environmental and ecological risks. As the first step to generate sterile channel catfish, three sets of zinc finger nuclease (ZFN) plasmids targeting the luteinizing hormone (LH) gene were designed and electroporated into one-cell embryos, different concentrations were introduced, and the Cel-I assay was conducted to detect mutations. Channel catfish carrying the mutated LH gene were sterile, as confirmed by DNA sequencing and mating experiments. The overall mutation rate was 19.7 % for 66 channel catfish, and the best treatment was ZFN set 1 at the concentration 25 μg/ml. To our knowledge, this is the first instance of gene editing of fish via plasmid introduction instead of mRNA microinjection. The introduction of the ZFN plasmids may have reduced mosaicism, as mutated individuals were gene edited in every tissue evaluated. Apparently, the plasmids were eventually degraded without integration, as they were not detectable in mutated individuals using PCR. Carp pituitary extract failed to induce spawning and restoration of fertility, indicating the need for developing other hormone therapies to achieve reversal of sterility upon demand. This is the first sterilization achieved using ZFN technology in an aquaculture species and the first successful gene editing of channel catfish. Our results will help understand the roles of the LH gene, purposeful sterilization of teleost fishes, and is a step towards control of domestic, hybrid, exotic, invasive, and transgenic fishes.

  10. Restriction of IL-22-producing T cell responses and differential regulation of regulatory T cell compartments by zinc finger transcription factor Ikaros.

    Science.gov (United States)

    Heller, Jennifer J; Schjerven, Hilde; Li, Shiyang; Lee, Aileen; Qiu, Ju; Chen, Zong-Ming E; Smale, Stephen T; Zhou, Liang

    2014-10-15

    Proper immune responses are needed to control pathogen infection at mucosal surfaces. IL-22-producing CD4(+) T cells play an important role in controlling bacterial infection in the gut; however, transcriptional regulation of these cells remains elusive. In this study, we show that mice with targeted deletion of the fourth DNA-binding zinc finger of the transcription factor Ikaros had increased IL-22-producing, but not IL-17-producing, CD4(+) T cells in the gut. Adoptive transfer of CD4(+) T cells from these Ikaros-mutant mice conferred enhanced mucosal immunity against Citrobacter rodentium infection. Despite an intact in vivo thymic-derived regulatory T cell (Treg) compartment in these Ikaros-mutant mice, TGF-β, a cytokine well known for induction of Tregs, failed to induce Foxp3 expression in Ikaros-mutant CD4(+) T cells in vitro and, instead, promoted IL-22. Aberrant upregulation of IL-21 in CD4(+) T cells expressing mutant Ikaros was responsible, at least in part, for the enhanced IL-22 expression in a Stat3-dependent manner. Genetic analysis using compound mutations further demonstrated that the aryl hydrocarbon receptor, but not RORγt, was required for aberrant IL-22 expression by Ikaros-mutant CD4(+) T cells, whereas forced expression of Foxp3 was sufficient to inhibit this aberrant cytokine production. Together, our data identified new functions for Ikaros in maintaining mucosal immune homeostasis by restricting IL-22 production by CD4(+) T cells. Copyright © 2014 by The American Association of Immunologists, Inc.

  11. Three zinc-finger RNA-binding proteins in cabbage (Brassica rapa) play diverse roles in seed germination and plant growth under normal and abiotic stress conditions.

    Science.gov (United States)

    Park, Ye Rin; Choi, Min Ji; Park, Su Jung; Kang, Hunseung

    2017-01-01

    Despite the increasing understanding of the stress-responsive roles of zinc-finger RNA-binding proteins (RZs) in several plant species, such as Arabidopsis thaliana, wheat (Triticum aestivum) and rice (Oryza sativa), the functions of RZs in cabbage (Brassica rapa) have not yet been elucidated. In this study, the functional roles of the three RZ family members present in the cabbage genome, designated as BrRZ1, BrRZ2 and BrRZ3, were investigated in transgenic Arabidopsis under normal and environmental stress conditions. Subcellular localization analysis revealed that all BrRZ proteins were exclusively localized in the nucleus. The expression levels of each BrRZ were markedly increased by cold, drought or salt stress and by abscisic acid (ABA) treatment. Expression of BrRZ3 in Arabidopsis retarded seed germination and stem growth and reduced seed yield of Arabidopsis plants under normal growth conditions. Germination of BrRZ2- or BrRZ3-expressing Arabidopsis seeds was delayed compared with that of wild-type seeds under dehydration or salt stress conditions and cold stress conditions, respectively. Seedling growth of BrRZ3-expressing transgenic Arabidopsis plants was significantly inhibited under salt, dehydration or cold stress conditions. Notably, seedling growth of all three BrRZ-expressing transgenic Arabidopsis plants was inhibited upon ABA treatment. Importantly, all BrRZs possessed RNA chaperone activity. Taken together, these results indicate that the three cabbage BrRZs harboring RNA chaperone activity play diverse roles in seed germination and seedling growth of plants under abiotic stress conditions as well as in the presence of ABA. © 2016 Scandinavian Plant Physiology Society.

  12. CH···O Hydrogen Bonds Mediate Highly Specific Recognition of Methylated CpG Sites by the Zinc Finger Protein Kaiso.

    Science.gov (United States)

    Nikolova, Evgenia N; Stanfield, Robyn L; Dyson, H Jane; Wright, Peter E

    2018-03-26

    Many eukaryotic transcription factors recognize the epigenetic marker 5-methylcytosine (mC) at CpG sites in DNA. Despite their structural diversity, methyl-CpG-binding proteins (MBPs) share a common mode of recognition of mC methyl groups that involves hydrophobic pockets and weak hydrogen bonds of the CH···O type. The zinc finger protein Kaiso possesses a remarkably high specificity for methylated over unmethylated CpG sites. A key contribution to this specificity is provided by glutamate 535 (E535), which is optimally positioned to form multiple interactions with mCpG, including direct CH···O hydrogen bonds. To examine the role of E535 and CH···O hydrogen bonding in the preferential recognition of mCpG sites, we determined the structures of wild type Kaiso (WT) and E535 mutants and characterized their interactions with methylated DNA by nuclear magnetic resonance spectroscopy (NMR), X-ray crystallography, and in vitro protein-DNA binding assays. Our data show that Kaiso favors an mCpG over a CpG site by 2 orders of magnitude in affinity and that an important component of this effect is the presence of hydrophobic and CH···O contacts involving E535. Moreover, we present the first direct evidence for formation of a CH···O hydrogen bond between an MBP and 5-methylcytosine by using experimental (NMR) and quantum mechanical chemical shift analysis of the mC methyl protons. Together, our findings uncover a critical function of methyl-specific interactions, including CH···O hydrogen bonds, that optimize the specificity and affinity of MBPs for methylated DNA and contribute to the precise control of gene expression.

  13. The brain-specific neural zinc finger transcription factor 2b (NZF-2b/7ZFMyt1 suppresses cocaine self-administration in rats

    Directory of Open Access Journals (Sweden)

    Vijay Chandrasekar

    2010-04-01

    Full Text Available Brain-specific neural-zinc-finger transcription factor-2b (NZF2b/7ZFMyt1 is induced in the mesolimbic dopaminergic region after chronic cocaine exposure and lentiviral-mediated expression of NZF2b/7ZFMyt1 in the nucleus accumbens results in decreased locomotor activity (Chandrasekar and Dreyer, 2009. In this study the role of NZF2b/7ZFMyt1 in active cocaine seeking and of its interaction with histone deacetylase on the altered behavior has been observed. Localized expression of NZF2b/7ZFMyt1 in the nucleus accumbens resulted in attenuated cocaine self-administration, whereas silencing this transcription factor with lentiviruses expressing siRNAs increased the animal′s motivation to self-infuse cocaine. Low doses of sodium butyrate, a potent inhibitor of histone deacetylase, were sufficient to reverse the NZF2b/7ZFMyt1-mediated decrease in cocaine self-administration. NZF2b/7ZFMyt1 expression resulted in strong induction of transcription factors REST1 and NAC1 and of the dopamine D2 receptor, with concomitant inhibition of BDNF and its receptor TrkB. We show that NZF2b/7ZFMyt1 colocalizes with histone deacetylase-2 (HDAC2, probably overcoming the suppression of transcriptional activity caused by Lingo1. These findings show that molecular adaptations mediated by NZF2b/7ZFMyt1 expression possibly lead to decreased responsiveness to the reinforcing properties of cocaine and play a prominent role in affecting the behavioral changes induced by the drug.

  14. Gene editing using a zinc-finger nuclease mimicking the CCR5Δ32 mutation induces resistance to CCR5-using HIV-1.

    Science.gov (United States)

    Badia, Roger; Riveira-Muñoz, Eva; Clotet, Bonaventura; Esté, José A; Ballana, Ester

    2014-07-01

    To characterize a new zinc-finger nuclease (ZFN) that targets close to the sequence of the 32 bp deletion polymorphism in the CCR5 gene, and to generate cells resistant to HIV-1 strains that use CCR5. CCR5Δ32 is a naturally occurring deletion that provides genetic resistance to R5-tropic HIV-1. The specificity and efficacy of a newly identified target for CCR5 gene editing, near the CCR5Δ32 sequence (ZFNCCR5Δ32), was assessed as well as its ability to generate cells resistant to HIV infection with reduced off-target effects. ZFNCCR5Δ32 activity was evaluated by heteroduplex formation in human K562 cells. Assessment of ZFNCCR5Δ32 specificity was analysed in silico. The yield of ZFNCCR5Δ32 in cell culture was improved by fluorescence-activated cell sorting, and the anti-HIV potency of ZFNCCR5Δ32 was measured in vitro in TZM-bl cells against HIV-1 strains. ZFNCCR5Δ32 effectively recognized the CCR5Δ32 region, inducing a frameshift of the CCR5 coding region that resulted in the complete absence of CCR5 expression of mRNA and of protein at the cell surface. CCR5 knockout cells were refractory to HIV-1 infection by the R5-using strain BaL. Unlike previous CCR5 ZFN studies, the new ZFN has no detectable off-target activity. ZFNCCR5Δ32 is a specific and efficient tool for the generation of CCR5 knockouts. Its ability to mimic the natural CCR5Δ32 phenotype in the absence of relevant off-site cutting events suggests that ZFNCCR5Δ32 might be safe in clinical research. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Comparison of ChIP-Seq Data and a Reference Motif Set for Human KRAB C2H2 Zinc Finger Proteins.

    Science.gov (United States)

    Barazandeh, Marjan; Lambert, Samuel A; Albu, Mihai; Hughes, Timothy R

    2018-01-04

    KRAB C2H2 zinc finger proteins (KZNFs) are the largest and most diverse family of human transcription factors, likely due to diversifying selection driven by novel endogenous retroelements (EREs), but the vast majority lack binding motifs or functional data. Two recent studies analyzed a majority of the human KZNFs using either ChIP-seq (60 proteins) or ChIP-exo (221 proteins) in the same cell type (HEK293). The ChIP-exo paper did not describe binding motifs, however. Thirty-nine proteins are represented in both studies, enabling the systematic comparison of the data sets presented here. Typically, only a minority of peaks overlap, but the two studies nonetheless display significant similarity in ERE binding for 32/39, and yield highly similar DNA binding motifs for 23 and related motifs for 34 (MoSBAT similarity score >0.5 and >0.2, respectively). Thus, there is overall (albeit imperfect) agreement between the two studies. For the 242 proteins represented in at least one study, we selected a highest-confidence motif for each protein, utilizing several motif-derivation approaches, and evaluating motifs within and across data sets. Peaks for the majority (158) are enriched (96% with AUC >0.6 predicting peak vs. nonpeak) for a motif that is supported by the C2H2 "recognition code," consistent with intrinsic sequence specificity driving DNA binding in cells. An additional 63 yield motifs enriched in peaks, but not supported by the recognition code, which could reflect indirect binding. Altogether, these analyses validate both data sets, and provide a reference motif set with associated quality metrics. Copyright © 2018 Barazandeh et al.

  16. Finger pain

    Science.gov (United States)

    Pain - finger ... Nearly everyone has had finger pain at some time. You may have: Tenderness Burning Stiffness Numbness Tingling Coldness Swelling Change in skin color Redness Many conditions, such ...

  17. Single crystal X-ray structure of the artists' pigment zinc yellow

    Science.gov (United States)

    Simonsen, Kim Pilkjær; Christiansen, Marie Bitsch; Vinum, Morten Gotthold; Sanyova, Jana; Bendix, Jesper

    2017-08-01

    The artists' pigment zinc yellow is in general described as a complex potassium zinc chromate with the empirical formula 4ZnCrO4·K2O·3H2O. Even though the pigment has been in use since the second half of the 19th century also in large-scale industrial applications, the exact structure had hitherto been unknown. In this work, zinc yellow was synthesised by precipitation from an aqueous solution of zinc nitrate and potassium chromate under both neutral and basic conditions, and the products were compared with the pigment used in industrial paints. Analyses by Raman microscopy (MRS), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and powder X-ray diffraction (PXRD), showed that the synthesised products and the industrial pigment were identical. Single-crystal X-ray crystallography determined the structure of zinc yellow as KZn2(CrO4)2(H2O)(OH) or as KZn2(CrO4)2(H3O2) emphasizing the μ-H3O2- moiety. Notably, the zinc yellow is isostructural to the recently structurally characterized cadmium analog and both belong to the natrochalcite structure type.

  18. Dissecting CNBP, a zinc-finger protein required for neural crest development, in its structural and functional domains.

    Science.gov (United States)

    Armas, Pablo; Agüero, Tristán H; Borgognone, Mariana; Aybar, Manuel J; Calcaterra, Nora B

    2008-10-17

    Cellular nucleic-acid-binding protein (CNBP) plays an essential role in forebrain and craniofacial development by controlling cell proliferation and survival to mediate neural crest expansion. CNBP binds to single-stranded nucleic acids and displays nucleic acid chaperone activity in vitro. The CNBP family shows a conserved modular organization of seven Zn knuckles and an arginine-glycine-glycine (RGG) box between the first and second Zn knuckles. The participation of these structural motifs in CNBP biochemical activities has still not been addressed. Here, we describe the generation of CNBP mutants that dissect the protein into regions with structurally and functionally distinct properties. Mutagenesis approaches were followed to generate: (i) an amino acid replacement that disrupted the fifth Zn knuckle; (ii) N-terminal deletions that removed the first Zn knuckle and the RGG box, or the RGG box alone; and (iii) a C-terminal deletion that eliminated the three last Zn knuckles. Mutant proteins were overexpressed in Escherichia coli, purified, and used to analyze their biochemical features in vitro, or overexpressed in Xenopus laevis embryos to study their function in vivo during neural crest cell development. We found that the Zn knuckles are required, but not individually essential, for CNBP biochemical activities, whereas the RGG box is essential for RNA-protein binding and nucleic acid chaperone activity. Removal of the RGG box allowed CNBP to preserve a weak single-stranded-DNA-binding capability. A mutant mimicking the natural N-terminal proteolytic CNBP form behaved as the RGG-deleted mutant. By gain-of-function and loss-of-function experiments in Xenopus embryos, we confirmed the participation of CNBP in neural crest development, and we demonstrated that the CNBP mutants lacking the N-terminal region or the RGG box alone may act as dominant negatives in vivo. Based on these data, we speculate about the existence of a specific proteolytic mechanism for the

  19. Effect of zinc acetate addition on crystal growth, structural, optical, thermal properties of glycine single crystals

    Directory of Open Access Journals (Sweden)

    S. Anbu Chudar Azhagan

    2017-05-01

    Full Text Available In the present study, γ-glycine has been crystallized by using zinc acetate dihydrate as an additive for the first time by slow solvent evaporation method. The second harmonic conversion efficiency of γ-glycine crystal was determined using Kurtz and Perry powder technique and was found to be 3.66 times greater than that of standard inorganic material potassium dihydrogen phosphate (KDP. The analytical grade chemicals of glycine and zinc acetate dihydrate were taken in six different molar ratios: 1:0.2, 1:0.4, 1:0.6, 1:0.7, 1:0.8, and 1:0.9 respectively to find out the γ-polymorph of glycine. The lower molar concentration of zinc acetate yield only α-polymorph where as the higher molar concentration of zinc acetate inhibits the γ-polymorph of glycine which was confirmed by single crystal XRD and powder XRD studies. Inductively coupled plasma optical emission spectrometry (ICP-OES was carried out to quantify the concentration of zinc element in the grown glycine single crystals. The concentration of zinc element in the presence of grown γ-glycine single crystal is found to be 0.73 ppm. UV–Visible–NIR transmittance spectra were recorded for the samples to analyse the transparency in visible and near infrared region (NIR. The optical band gap Eg was estimated for γ-glycine single crystal using UV–Visible–NIR study. Functional groups present in the samples were identified by FTIR spectroscopic analysis. Differential scanning calorimetry technique was employed to determine the phase transition, thermal stability and melting point of the grown crystal.

  20. Mechanical characterization and single asperity scratch behaviour of dry zinc and manganese phosphate coatings

    NARCIS (Netherlands)

    Ernens, D.; de Rooij, M. B.; Pasaribu, H. R.; van Riet, E.J.; van Haaften, W.M.; Schipper, D. J.

    The goal of this study is to characterise the mechanical properties of zinc and manganese phosphate coatings before and after running in. The characterization is done with nano-indentation to determine the individual crystal hardness and single asperity scratch tests to investigate the deformation

  1. Zinc Enolate/Sulfinate Prepared from a Single-Run Reaction Using Zinc Dust with O-Tosylated 4-Hydroxy Coumarin and Pyrone

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ueon Sang; Joo, Seong-Ryu; Kim, Seung-Hoi [Dankook University, Cheonan (Korea, Republic of)

    2016-07-15

    We demonstrated the preparation of new zinc complexes, 2-oxo-2H-chromen-4-yloxy tosylzinc (I), and 6-methyl-2-oxo-2H-pyran-4-yloxy tosylzinc (II), by the oxidative addition of readily available zinc dust into the corresponding 4-tosylated coumarin (A) and pyrone (B), respectively. Of special interest, the thus-obtained zinc complexes showed an electrophile-dependent reactivity. The subsequent coupling reactions of I and II with a variety of acid chlorides provided the O-acylation product in moderate yields. More interestingly, it should be emphasized that the thus-prepared zinc complexes (I and II) functioned both as zinc enolate and zinc sulfinate, providing C(3)-disubstituted product (b) and sulfone (c), respectively, from a single-run reaction when I or II was treated with benzyl halides. Even though somewhat low yields were achieved under the nonoptimized conditions, the novel zinc complexes present another potential application for zinc reagents. Versatile applications of this discovery are currently underway.

  2. Zinc (tris) thiourea sulphate (ZTS): A single crystal neutron diffraction ...

    Indian Academy of Sciences (India)

    near IR laser radiations. In this study, the crystal structure of ZTS has been ob- tained in detail by single crystal neutron diffraction technique. Using the structural parameters and an existing formalism [1] based on the theory of bond polarizability, the contributions from each of the structural groups in the unit cell to the total.

  3. Multiple Fingers - One Gestalt.

    Science.gov (United States)

    Lezkan, Alexandra; Manuel, Steven G; Colgate, J Edward; Klatzky, Roberta L; Peshkin, Michael A; Drewing, Knut

    2016-01-01

    The Gestalt theory of perception offered principles by which distributed visual sensations are combined into a structured experience ("Gestalt"). We demonstrate conditions whereby haptic sensations at two fingertips are integrated in the perception of a single object. When virtual bumps were presented simultaneously to the right hand's thumb and index finger during lateral arm movements, participants reported perceiving a single bump. A discrimination task measured the bump's perceived location and perceptual reliability (assessed by differential thresholds) for four finger configurations, which varied in their adherence to the Gestalt principles of proximity (small versus large finger separation) and synchrony (virtual spring to link movements of the two fingers versus no spring). According to models of integration, reliability should increase with the degree to which multi-finger cues integrate into a unified percept. Differential thresholds were smaller in the virtual-spring condition (synchrony) than when fingers were unlinked. Additionally, in the condition with reduced synchrony, greater proximity led to lower differential thresholds. Thus, with greater adherence to Gestalt principles, thresholds approached values predicted for optimal integration. We conclude that the Gestalt principles of synchrony and proximity apply to haptic perception of surface properties and that these principles can interact to promote multi-finger integration.

  4. DPL-1 DP, LIN-35 Rb and EFL-1 E2F act with the MCD-1 zinc-finger protein to promote programmed cell death in Caenorhabditis elegans.

    Science.gov (United States)

    Reddien, Peter W; Andersen, Erik C; Huang, Michael C; Horvitz, H Robert

    2007-04-01

    The genes egl-1, ced-9, ced-4, and ced-3 play major roles in programmed cell death in Caenorhabditis elegans. To identify genes that have more subtle activities, we sought mutations that confer strong cell-death defects in a genetically sensitized mutant background. Specifically, we screened for mutations that enhance the cell-death defects caused by a partial loss-of-function allele of the ced-3 caspase gene. We identified mutations in two genes not previously known to affect cell death, dpl-1 and mcd-1 (modifier of cell death). dpl-1 encodes the C. elegans homolog of DP, the human E2F-heterodimerization partner. By testing genes known to interact with dpl-1, we identified roles in cell death for four additional genes: efl-1 E2F, lin-35 Rb, lin-37 Mip40, and lin-52 dLin52. mcd-1 encodes a novel protein that contains one zinc finger and that is synthetically required with lin-35 Rb for animal viability. dpl-1 and mcd-1 act with efl-1 E2F and lin-35 Rb to promote programmed cell death and do so by regulating the killing process rather than by affecting the decision between survival and death. We propose that the DPL-1 DP, MCD-1 zinc finger, EFL-1 E2F, LIN-35 Rb, LIN-37 Mip40, and LIN-52 dLin52 proteins act together in transcriptional regulation to promote programmed cell death.

  5. Rice A20/AN1 zinc-finger containing stress-associated proteins (SAP1/11) and a receptor-like cytoplasmic kinase (OsRLCK253) interact via A20 zinc-finger and confer abiotic stress tolerance in transgenic Arabidopsis plants.

    Science.gov (United States)

    Giri, Jitender; Vij, Shubha; Dansana, Prasant K; Tyagi, Akhilesh K

    2011-08-01

    • The inbuilt mechanisms of plant survival have been exploited for improving tolerance to abiotic stresses. Stress-associated proteins (SAPs), containing A20/AN1 zinc-finger domains, confer abiotic stress tolerance in different plants, however, their interacting partners and downstream targets remain to be identified. • In this study, we have investigated the subcellular interactions of rice SAPs and their interacting partner using yeast two-hybrid and fluorescence resonance energy transfer (FRET) approaches. Their efficacy in improving abiotic stress tolerance was analysed in transgenic Arabidopsis plants. Regulation of gene expression by genome-wide microarray in transgenics was used to identify downstream targets. • It was found that the A20 domain mediates the interaction of OsSAP1 with self, its close homolog OsSAP11 and a rice receptor-like cytoplasmic kinase, OsRLCK253. Such interactions between OsSAP1/11 and with OsRLCK253 occur at nuclear membrane, plasma membrane and in nucleus. Functionally, both OsSAP11 and OsRLCK253 could improve the water-deficit and salt stress tolerance in transgenic Arabidopsis plants via a signaling pathway affecting the expression of several common endogenous genes. • Components of a novel stress-responsive pathway have been identified. Their stress-inducible expression provided the protection against yield loss in transgenic plants, indicating the agronomic relevance of OsSAP11 and OsRLCK253 in conferring abiotic stress tolerance. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  6. Modeling and simulation of the zinc-nickel single flow batteries based on MATLAB/Simulink

    Directory of Open Access Journals (Sweden)

    Shouguang Yao

    2016-12-01

    Full Text Available Based on the working principle of the zinc-nickel single flow batteries (ZNBs, this paper builds the electrochemical model and mechanical model, analyzes the effect of electrolyte flux on the battery performance and obtains a single cell with a 216 Ah charge-discharge capacity as an example, and thereafter conducts a simulation to obtain several results under the condition of constant current charge and discharge. The simulation results are well matched in comparison with the experimental results. An optimal flux exists during the charge and discharge, which indicates that the model can well simulate the charge and discharge characteristics of the ZNBs under the condition of constant current.

  7. Structural and functional organization of the HF.10 human zinc finger gene (ZNF35) located on chromosome 3p21-p22

    DEFF Research Database (Denmark)

    Lanfrancone, L; Pengue, G; Pandolfi, P P

    1992-01-01

    the last 3' exon. The genomic region surrounding HF.10 exon 1 contains a CpG island and acts as a promoter in vitro. Using transient CAT assay in cotransfection experiments in cultured cells, we have determined that the HF.10 finger protein is a transcriptional transactivator. Restriction enzyme mapping...

  8. Overexpression of a phytochrome-regulated tandem zinc finger protein gene, OsTZF1, confers hypersensitivity to ABA and hyposensitivity to red light and far-red light in rice seedlings.

    Science.gov (United States)

    Zhang, Cheng; Zhang, Fang; Zhou, Jinjun; Fan, Zhongxue; Chen, Fan; Ma, Huiquan; Xie, Xianzhi

    2012-07-01

    Tandem zinc finger proteins (TZFs) in plants are involved in gene regulation, developmental responses, and hormone-mediated environmental responses in Arabidopsis. However, little information about the functions of the TZF family in monocots has been reported. Here, we investigated a cytoplasmic TZF protein, OsTZF1, which is involved in photomorphogenesis and ABA responses in rice seedlings. The OsTZF1 gene was expressed at relatively high levels in leaves and shoots, although its transcripts were detected in various organs. Red light (R)- and far-red light (FR)-mediated repression of OsTZF1 gene expression was attributed to phytochrome B (phyB) and phytochrome C (phyC), respectively. In addition, OsTZF1 expression was regulated by salt, PEG, and ABA. Overexpression of OsTZF1 caused a long leaf sheath relative to wild type (WT) under R and FR, suggesting that OsTZF1 probably acts as a negative regulator of photomorphogenesis in rice seedlings. Moreover, ABA-induced growth inhibition of rice seedlings was marked in the OsTZF1-overexpression lines compared with WT, suggesting the positive regulation of OsTZF1 to ABA responses. Genome-wide expression analysis further revealed that OsTZF1 also functions in other hormone or stress responses. Our findings supply new evidence on the functions of monocot TZF proteins in phytochrome-mediated light and hormone responses. OsTZF1 encodes a cytoplasm-localized tandem zinc finger protein and is regulated by both ABA and phytochrome-mediated light signaling. OsTZF1 functions in phytochrome-mediated light and ABA responses in rice.

  9. Isolation of three B-box zinc finger proteins that interact with STF1 and COP1 defines a HY5/COP1 interaction network involved in light control of development in soybean.

    Science.gov (United States)

    Shin, Su Young; Kim, Seong Hee; Kim, Hye Jin; Jeon, Su Jeong; Sim, Soon Ae; Ryu, Gyeong Ryul; Yoo, Cheol Min; Cheong, Yong Hwa; Hong, Jong Chan

    2016-09-23

    LONG HYPOCOTYL5 (HY5) and STF1 (Soybean TGACG-motif binding Factor 1) are two related bZIP transcription factors that play a positive role in photomorphogenesis and hormonal signaling. In this study, we compared full length STF1 and truncated STF1 overexpression lines and found that the C-terminal 133 amino acids (194-306) possess all the HY5-like function in Arabidopsis. The STF1-DC1 mutant (1-306), with a 20 amino acid deletion at the carboxy terminus, failed to complement the hy5 mutant phenotype, which suggests an intact C-terminus is required for STF1 function. To understand the role of the C-terminal domain in photomorphogenesis we used a yeast two-hybrid screen to isolate proteins that bind to the STF1 C-terminus. We isolated three soybean cDNAs encoding the zinc-finger proteins GmSTO, GmSTH, and GmSTH2, which interact with STF1. These proteins belong to a family of B-box zinc finger proteins that include Arabidopsis SALT TOLERANCE (STO) and STO HOMOLOG (STH) and STH2, which play a role in light-dependent development and gene expression. The C-terminal 63 amino acids of STF1, containing a leucine zipper and the two N-terminal B-boxes, contains the domain involved in interactions between STF1 and GmSTO. In addition, we identified an interaction between soybean COP1 (GmCOP1) and GmSTO and GmSTH, as well as STF1, which strongly suggests the presence of a similar regulatory circuit for light signaling in soybean as in Arabidopsis. This study shows that photomorphogenic control requires complex molecular interactions among several different classes of transcription factors such as bZIP, B-box factors, and COP1, a ubiquitin ligase. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. The stem cell zinc finger 1 (SZF1)/ZNF589 protein has a human-specific evolutionary nucleotide DNA change and acts as a regulator of cell viability in the hematopoietic system.

    Science.gov (United States)

    Venturini, Letizia; Stadler, Michael; Manukjan, Georgi; Scherr, Michaela; Schlegelberger, Brigitte; Steinemann, Doris; Ganser, Arnold

    2016-04-01

    The stem cell zinc finger 1 (SZF1)/ZNF589 protein belongs to the large family of Krüppel-associated box domain-zinc finger (KRAB-ZNF) transcription factors, which are present only in higher vertebrates and epigenetically repress transcription by recruiting chromatin-modifying complexes to the promoter regions of their respective target genes. Although the distinct biological functions of most KRAB-ZNF proteins remain unknown, recent publications indicate their implication in fundamental processes, such as cell proliferation, apoptosis, differentiation, development, and tumorigenesis. SZF1/ZNF589 was first identified as a gene with SZF1-1 isoform specifically expressed in CD34(+) hematopoietic cells, strongly suggesting a role in epigenetic control of gene expression in hematopoietic stem/progenitor cells (HSPCs). However, the function of SZF1/ZNF589 in hematopoiesis has not yet been elucidated. Our study reveals SZF1/ZNF589 as a gene with a human-specific nucleotide DNA-change, conferring potential species-specific functional properties. Through shRNA-mediated loss-of-function experiments, we found that changes in expression of fundamental apoptosis-controlling genes are induced on SZF1/ZNF589 knockdown, resulting in inhibited growth of hematopoietic cell lines and decreased progenitor potential of primary human bone marrow CD34(+) cells. Moreover, we found that the SZF1/ZNF589 gene is differentially regulated during hypoxia in CD34(+) HSPCs in a cytokine-dependent manner, implicating its possible involvement in the maintenance of the hypoxic physiologic status of hematopoietic stem cells. Our results establish the role of SZF1/ZNF589 as a new functional regulator of the hematopoietic system. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  11. Loss of zinc finger MYND-type containing 10 (zmynd10) affects cilia integrity and axonemal localization of dynein arms, resulting in ciliary dysmotility, polycystic kidney and scoliosis in medaka (Oryzias latipes).

    Science.gov (United States)

    Kobayashi, Daisuke; Asano-Hoshino, Anshin; Nakakura, Takashi; Nishimaki, Toshiyuki; Ansai, Satoshi; Kinoshita, Masato; Ogawa, Motoyuki; Hagiwara, Haruo; Yokoyama, Takahiko

    2017-10-01

    Cilia and flagella are hair-like organelles that project from the cell surface and play important roles in motility and sensory perception. Motility defects in cilia and flagella lead to primary ciliary dyskinesia (PCD), a rare human disease. Recently zinc finger MYND-type containing 10 (ZMYND10) was identified in humans as a PCD-associated gene. In this study, we use medaka fish as a model to characterize the precise functions of zmynd10. In medaka, zmynd10 is exclusively expressed in cells with motile cilia. Embryos with zmynd10 Morpholino knockdown exhibited a left-right (LR) defect associated with loss of motility in Kupffer's vesicle (KV) cilia. This immotility was caused by loss of the outer dynein arms, which is a characteristic ultrastructural phenotype in PCD. In addition, KV cilia in zmynd10 knockdown embryos had a swollen and wavy morphology. Together, these results suggest that zmynd10 is a multi-functional protein that has independent roles in axonemal localization of dynein arms and in formation and/or maintenance of cilia. The C-terminal region of zmynd10 has a MYND-type zinc finger domain (zf-MYND) that is important for its function. Our rescue experiment showed that the zmynd10-ΔC truncated protein, which lacks zf-MYND, was still partially functional, suggesting that zmynd10 has another functional domain besides zf-MYND. To analyze the later stages of development, we generated a zmynd10 knockout mutant using transcription activator-like effector nuclease (TALEN) technology. Adult mutants exhibited sperm dysmotility, scoliosis and progressive polycystic kidney. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. The relationship between elastic constants and structure of shock waves in a zinc single crystal

    Science.gov (United States)

    Krivosheina, M. N.; Kobenko, S. V.; Tuch, E. V.

    2017-12-01

    The paper provides a 3D finite element simulation of shock-loaded anisotropic single crystals on the example of a Zn plate under impact using a mathematical model, which allows for anisotropy in hydrostatic stress and wave velocities in elastic and plastic ranges. The simulation results agree with experimental data, showing the absence of shock wave splitting into an elastic precursor and a plastic wave in Zn single crystals impacted in the [0001] direction. It is assumed that the absence of an elastic precursor under impact loading of a zinc single crystal along the [0001] direction is determined by the anomalously large ratio of the c/a-axes and close values of the propagation velocities of longitudinal and bulk elastic waves. It is shown that an increase in only one elastic constant along the [0001] direction results in shock wave splitting into an elastic precursor and a shock wave of "plastic" compression.

  13. Frequency distribution of zinc in leaves with and without zinc-deficiency symptoms, all collected from a single orange tree

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, A. (Univ. of Caifornia, Los Angeles); Alexander, G.V.; Kinnear, J.; Procopiou, J.; Haritou-Andriotaki, A.; Papanicolaou, X.

    1982-07-01

    Leaves with zinc-deficiency symptoms had a lower Zn concentration than corresponding leaves without symptoms and of the same age from the same orange (Citrus senensis L.) tree on sour orange (C. aurantium L.) rootstock grown in Rhodes, Greece. There was considerable overlap, however, with the frequency distribution of each group approximating a normal curve. But both kinds of leaves combined showed a more normal distribution. Some leaves with symptoms had higher zinc concentrations than some without symptoms. There was a threefold range in Zn concentration for each group of leaves. Zinc-deficient leaves had less phosphorus, calcium, and manganese and more iron, aluminum, silicon, and titanium (the so-called dust elements) than did leaves with no deficiency symptoms. Some of these elements gave normal curves for both Zn-deficient and non-Zn-deficient leaves.

  14. Interpretation of single and competitive adsorption of cadmium and zinc on activated carbon using monolayer and exclusive extended monolayer models.

    Science.gov (United States)

    Sellaoui, Lotfi; Dotto, Guilherme L; Lamine, Abdelmottaleb Ben; Erto, Alessandro

    2017-08-01

    In this work, a modeling analysis based on experimental tests of cadmium/zinc adsorption, in both single-compound and binary systems, was carried out. All the experimental tests were conducted at constant pH (around neutrality) and temperature (20 °C). The experimental results showed that the zinc adsorption capacity was higher than that of cadmium and it does not depend on cadmium presence in binary system. Conversely, cadmium adsorption is affected by zinc presence. In order to provide good understanding of the adsorption process, two statistical physics models were proposed. A monolayer and exclusive extended monolayer models were applied to interpret the single-compound and binary adsorption isotherms of zinc and cadmium on activated carbon. Based on these models, the modeling analysis demonstrated that zinc is dominant in solution and more favorably adsorbed on activated carbon surface. For instance, in single-compound systems, the number of ions bound per each receptor site was n (Zn 2+ ) = 2.12 > n (Cd 2+ ) = 0.98. Thus, the receptor sites of activated carbon are more selective for Zn 2+ than for Cd 2+ . Moreover, the determination of adsorption energy through the adopted models confirmed that zinc is more favored for adsorption in single-compound system (adsorption energies equal to 12.12 and 7.12 kJ/mol for Zn and Cd, respectively) and its adsorption energy does not depend on the cadmium presence in binary system. Finally, the adsorption energy values suggested that single-compound and binary adsorption of zinc and cadmium is a physisorption.

  15. Adjustment to finger amputation and silicone finger prosthesis use.

    Science.gov (United States)

    Kuret, Zala; Burger, Helena; Vidmar, Gaj; Maver, Tomaz

    2018-01-11

    Finger amputations are the most common amputations of upper limbs. They influence hand function, general functioning and quality of life. One of the possibilities for rehabilitation after finger amputation is fitting a silicone finger prosthesis. We wanted to evaluate the adjustment to amputation and prosthesis use in patients after finger amputation. We included 42 patients with partial or complete single or multiple finger amputation of one hand who visited the outpatient clinic for prosthetics and orthotics at our institute and received a silicone prosthesis. We assessed their adjustment to amputation and prosthesis with the Trinity Amputation and Prosthesis Experience Scales (TAPES). Most of the patients (28, 67%) had a single finger amputated. The average scores on all TAPES subscales (except adjustment to limitation) were above 50% of the maximum possible score. On average, the scores were the highest on the general adjustment and satisfaction with the prosthesis subscales. Silicone prostheses for finger amputation of upper limb play an important role in the process of adaptation to amputation. They offer aesthetically satisfying results and alleviate social interactions, which influences overall quality of life. Implications for Rehabilitation Silicone prostheses for finger amputation of upper limb offer an aesthetically satisfying result and alleviate problems with social interactions. Their influence on hand function is not optimal, but the prosthesis improves the amputee's quality of life.

  16. Spin magneto-transport in a Rashba-Dresselhaus quantum channel with single and double finger gates

    Science.gov (United States)

    Tang, Chi-Shung; Keng, Jia-An; Abdullah, Nzar Rauf; Gudmundsson, Vidar

    2017-05-01

    We address spin-resolved electronic transport properties in a Rashba-Dresselhaus quantum channel in the presence of an in-plane magnetic field. The strong Rashba-Dresselhaus effect induces an asymmetric spin-splitting energy spectrum with a spin-orbit-Zeeman gap. This asymmetric fact in energy spectrum may result in various quantum dynamic features in conductance due to the presence of finger gates. This asymmetric spin-splitting energy spectrum results in a bound state in continuum for electrons within ultralow energy regime with binding energies in order of 10-1 meV.

  17. Equivalent circuit modeling and simulation of the zinc nickel single flow battery

    Directory of Open Access Journals (Sweden)

    Shouguang Yao

    2017-05-01

    Full Text Available This paper builds the equivalent circuit model for a single cell of zinc nickel single flow battery (ZNB with 300 Ah. According to the experimental data of the single cell under 100 A pulse discharge conditions, the model parameters can be obtained by parameter identification, and the analytical expressions for each model parameter can be obtained by using the method of high degree polynomial fitting and exponential function fitting, then the mathematical model of the stack voltage can be built. The relative error of the simulation results for stack voltage is controlled within 3.2% by experimental comparison, which verifies the accuracy of the model and model parameters. The parameter formulas obtained by fitting method can effectively solve calculation problem of the battery parameters. And under 100 A constant-current discharge condition, the stack voltage of the battery is dropping relatively flat over about 110 minutes after loading current, and dropping dramatically within about 50 minutes at the end of discharge due to the increasing polarization.

  18. Neutron-Phonon Interaction Studies in Copper, Zinc and Magnesium Single Crystals

    International Nuclear Information System (INIS)

    Maliszewski, E.; Sosnowski, J.; Blinowski, K.; Kozubowski, J.; Padlo, L.; Sledziewska, D.

    1963-01-01

    The phonon dispersion relations in copper single crystals has been studied by means of a triple-axis crystal neutron spectrometer. In the [100] direction the transversal branch, not reported in the papers of Cabie and Jacrot, has been found. This branch fits well to the recent data of sound velocity; however, it differs partly from the X-ray results of Jacobsen. For the longitudinal branch in the [100] direction the dispersion curve obtained by Cribier and Jacrot is lying well above the Jacobsen's curve, and the experimental points reported in the present paper support the results of Cribier and Jacrot. The phonon dispersion relations in zinc and magnesium single crystals has been studied using the cold neutron method and by means of a triple-axis crystal neutron spectrometer as well. The scattering surfaces in the [1010] plane were traced, the AT and AL branches found and the phonon dispersion relations in the [001] and [010] directions obtained. The results have been compared with those obtained by Johnson with X-rays. In the [001] direction the present results fit well lo Johnson's foe the AL branch. In the [010] direction for the AT branch a large discrepancy has been found between Johnson's and the present results. Some explanation of this discrepancy is given. Similar measurements in the same directions in magnesium single crystals are under way and will be reported. (author) [fr

  19. Vimentin filament organization and stress sensing depend on its single cysteine residue and zinc binding

    Science.gov (United States)

    Pérez-Sala, Dolores; Oeste, Clara L.; Martínez, Alma E.; Carrasco, M. Jesús; Garzón, Beatriz; Cañada, F. Javier

    2015-01-01

    The vimentin filament network plays a key role in cell architecture and signalling, as well as in epithelial–mesenchymal transition. Vimentin C328 is targeted by various oxidative modifications, but its role in vimentin organization is not known. Here we show that C328 is essential for vimentin network reorganization in response to oxidants and electrophiles, and is required for optimal vimentin performance in network expansion, lysosomal distribution and aggresome formation. C328 may fulfil these roles through interaction with zinc. In vitro, micromolar zinc protects vimentin from iodoacetamide modification and elicits vimentin polymerization into optically detectable structures; in cells, zinc closely associates with vimentin and its depletion causes reversible filament disassembly. Finally, zinc transport-deficient human fibroblasts show increased vimentin solubility and susceptibility to disruption, which are restored by zinc supplementation. These results unveil a critical role of C328 in vimentin organization and open new perspectives for the regulation of intermediate filaments by zinc. PMID:26031447

  20. Genetic analysis of Kruppel-like zinc finger 11 variants in 5864 Danish individuals: potential effect on insulin resistance and modified signal transducer and activator of transcription-3 binding by promoter variant -1659G>C

    DEFF Research Database (Denmark)

    Gutiérrez-Aguilar, Ruth; Froguel, Philippe; Hamid, Yasmin H

    2008-01-01

    CONTEXT: The transcription factor Krüppel-like zinc finger 11 (KLF11) has been suggested to contribute to genetic risk of type 2 diabetes (T2D). Our previous results showed that four KLF11 variants, in strong linkage disequilibrium (LD block including +185 A>G/Gln62Arg and -1659 G>C) were...... study to assess association to T2D and glucose metabolism-related quantitative traits. We studied effects of LD-block variants on KLF11 function and in particular, the effect of -1659G>C on transcriptional regulation of KLF11 using EMSA, chromatin immunoprecipitation, gene reporter assays, and small...... = 0.006, and P = 0.00002, respectively). In addition, binding of signal transducer and activator of transcription (STAT)-3 to the wild-type (-1659G>C) allele stimulated gene transcription, whereas STAT3 did not bind onto the mutant allele. CONCLUSIONS: We showed that KLF11 may interfere with glucose...

  1. Herpes simplex virus induces the marked up-regulation of the zinc finger transcriptional factor INSM1, which modulates the expression and localization of the immediate early protein ICP0

    Directory of Open Access Journals (Sweden)

    Kimura Hiroshi

    2011-05-01

    Full Text Available Abstract Background Herpes simplex viruses (HSVs rapidly shut off macromolecular synthesis in host cells. In contrast, global microarray analyses have shown that HSV infection markedly up-regulates a number of host cell genes that may play important roles in HSV-host cell interactions. To understand the regulatory mechanisms involved, we initiated studies focusing on the zinc finger transcription factor insulinoma-associated 1 (INSM1, a host cell protein markedly up-regulated by HSV infection. Results INSM1 gene expression in HSV-1-infected normal human epidermal keratinocytes increased at least 400-fold 9 h after infection; INSM1 promoter activity was also markedly stimulated. Expression and subcellular localization of the immediate early HSV protein ICP0 was affected by INSM1 expression, and chromatin immunoprecipitation (ChIP assays revealed binding of INSM1 to the ICP0 promoter. Moreover, the role of INSM1 in HSV-1 infection was further clarified by inhibition of HSV-1 replication by INSM1-specific siRNA. Conclusions The results suggest that INSM1 up-regulation plays a positive role in HSV-1 replication, probably by binding to the ICP0 promoter.

  2. Sonic Hedgehog-GLI Family Zinc Finger 1 Signaling Pathway Promotes the Growth and Migration of Pancreatic Cancer Cells by Regulating the Transcription of Eukaryotic Translation Initiation Factor 5A2.

    Science.gov (United States)

    Xu, Xuanfu; Liu, Hua; Zhang, Hui; Dai, Weiqi; Guo, Chuanyong; Xie, Chuangao; Wei, Shumei; He, Shengli; Xu, Xiaorong

    2015-11-01

    The Hh (hedgehog) signaling pathway is still waiting for further studies because its downstream molecular mechanism remains elusive. Because EIF5A2 (eukaryotic translation initiation factor 5A2) gene was up-regulated upon Gli1 (GLI family zinc finger 1) in pancreatic cancer (PC) cells, we speculated that this pathway might promote tumor progression through regulating EIF5A2. We investigated regulation effect of Hh signaling pathway to EIF5A2 gene transcription by Gli1 knockdown or overexpression in PC cell lines first. Then, the regulation mechanism of Gli1 to EIF5A2 gene was studied at transcription level. Finally, we studied cancer-promoting effects of Gli1-dependent EIF5A2 in PC cells. The data showed that Gli1 up-regulated expression of EIF5A2 by promoting transcription via cis-acting elements in PC cells. Moreover, vimentin gene was up-regulated significantly by sonic hedgehog (SHh)/Gli1 expression increasing, and E-cadherin was significantly reduced. The EIF5A2 knockdown partially reversed cell proliferation and migration induced by artificial SHh overexpression and inhibited epithelial mesenchymal transition process in PC cells with SHh overexpression (P cells. Thus, EIF5A2 oncogene effect could be incorporated into cancer-promoting molecular network upon Hh signaling pathway.

  3. Single crystalline wurtzite ZnO/zinc blende ZnS coaxial heterojunctions and hollow zinc blende ZnS nanotubes: synthesis, structural characterization and optical properties

    OpenAIRE

    Huang, X.; Willinger, M.; Fan, H.; Xie, Z.; Wang , L.; Klein-Hoffmann, A.; Girgsdies, F.; Lee, C.; Meng, X.

    2014-01-01

    Synthesis of ZnO/ZnS heterostructures under thermodynamic conditions generally results in the wurtzite (WZ) structure of the ZnS component because its WZ phase is thermodynamically more stable than its zinc blende (ZB) phase. In this report, we demonstrate for the first time the preparation of ZnO/ZnS coaxial nanocables composed of single crystalline ZB structured ZnS epitaxially grown on WZ ZnO via a two-step thermal evaporation method. The deposition temperature is believed to play a crucia...

  4. Robotic hand and fingers

    Science.gov (United States)

    Salisbury, Curt Michael; Dullea, Kevin J.

    2017-06-06

    Technologies pertaining to a robotic hand are described herein. The robotic hand includes one or more fingers releasably attached to a robotic hand frame. The fingers can abduct and adduct as well as flex and tense. The fingers are releasably attached to the frame by magnets that allow for the fingers to detach from the frame when excess force is applied to the fingers.

  5. Genome-wide analysis and expression profiling of DNA-binding with one zinc finger (Dof) transcription factor family in potato.

    Science.gov (United States)

    Venkatesh, Jelli; Park, Se Won

    2015-09-01

    DNA-binding with one finger (Dof) domain proteins are a multigene family of plant-specific transcription factors involved in numerous aspects of plant growth and development. Here, we report a genome-wide search for Solanum tuberosum Dof (StDof) genes and their expression profiles at various developmental stages and in response to various abiotic stresses. In addition, a complete overview of Dof gene family in potato is presented, including the gene structures, chromosomal locations, cis-regulatory elements, conserved protein domains, and phylogenetic inferences. Based on the genome-wide analysis, we identified 35 full-length protein-coding StDof genes, unevenly distributed on 10 chromosomes. Phylogenetic analysis with Dof members from diverse plant species showed that StDof genes can be classified into four subgroups (StDofI, II, III, and IV). qPCR expression analysis of StDof gene transcripts showed the distinct expression patterns of StDof genes in various potato organs, and tuber developmental stages analyzed. Many StDof genes were upregulated in response to drought, salinity, and ABA treatments. Overall, the StDof gene expression pattern and the number of over-represented cis-acting elements in the promoter regions of the StDof genes indicate that most of the StDof genes have redundant functions. The detailed genomic information and expression profiles of the StDof gene homologs in the present study provide opportunities for functional analyses to unravel the genes' exact role in plant growth and development as well as in abiotic stress tolerance. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. Fingers that change color

    Science.gov (United States)

    Blanching of the fingers; Fingers - pale; Toes that change color; Toes - pale ... These conditions can cause fingers or toes to change color: Buerger disease. Chilblains. Painful inflammation of small ...

  7. Solution-processed zinc oxide nanoparticles/single-walled carbon nanotubes hybrid thin-film transistors

    Science.gov (United States)

    Liu, Fangmei; Sun, Jia; Qian, Chuan; Hu, Xiaotao; Wu, Han; Huang, Yulan; Yang, Junliang

    2016-09-01

    Solution-processed thin-film transistors (TFTs) are the essential building blocks for manufacturing the low-cost and large-area consumptive electronics. Herein, solution-processed TFTs based on the composites of zinc oxide (ZnO) nanoparticles and single-walled carbon nanotubes (SWCNTs) were fabricated by the methods of spin-coating and doctor-blading. Through controlling the weight of SWCNTs, the ZnO/SWCNTs TFTs fabricated by spin-coating demonstrated a field-effect mobility of 4.7 cm2/Vs and a low threshold voltage of 0.8 V, while the TFTs devices fabricated by doctor-blading technique showed reasonable electrical performance with a mobility of 0.22 cm2/Vs. Furthermore, the ion-gel was used as an efficient electrochemical gate dielectric because of its large electric double-layer capacitance. The operating voltage of all the TFTs devices is as low as 4.0 V. The research suggests that ZnO/SWCNTs TFTs have the potential applications in low-cost, large-area and flexible consumptive electronics, such as chemical-biological sensors and smart label.

  8. Sensing DNA damage by PARP-like fingers

    OpenAIRE

    Petrucco, Stefania

    2003-01-01

    PARP-like zinc fingers are protein modules, initially described as nick-sensors of poly(ADP-ribosyl)-polymerases (PARPs), which are found at the N-terminus of different DNA repair enzymes. I chose to study the role of PARP-like fingers in AtZDP, a 3′ DNA phosphoesterase, which is the only known enzyme provided with three such finger domains. Here I show that PARP-like fingers can maintain AtZDP onto damaged DNA sites without interfering with its DNA end repair functions. Damage recognition by...

  9. THE EFFECT OF SINGLE NICKEL AND COMBINED NICKEL AND ZINC PERORAL ADMINISTRATION ON HAEMATOLOGICAL PARAMETERS IN RABBITS

    Directory of Open Access Journals (Sweden)

    Jana Emrichová

    2013-06-01

    Full Text Available The aim of this study was to determine the effect of single nickel (NiCl2 and nickel in combination with zinc (ZnCl2 on selected haematological parameters of rabbits: white blood cell, red blood cell, haemoglobin, haematocrit, mean corpuscular volume, mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration, platelets, mean platelet volume, red cell distribution width, lymphocytes, monocytes, eosinophils, neutrophils, basophils. Twenty rabbits of broiler line Californian were used in this experiment. The animals were divided into the five groups, four animals in each ones (control group K and experimental groups E1, E2, E3 and E4. Animals were fed ad libitum using KKV1 feeding mixture (FM with or without nickel and zinc addition for 90 days follows: group E1 received 17.5 g of NiCl2.100 kg-1 FM; group E2 35 g NiCl2.100 kg-1 FM; group E3 17.5 g NiCl2 + 30 g ZnCl2.100 kg-1 FM and group E4 35 g NiCl2 + 30 g ZnCl2.100 kg-1 FM. The parameters were analysed using Advia – 120. Blood was collected into tubes containing anticoagulant agents K – EDTA. Statistical analyse showed a significant changes (P 0.05. Nickel has negative effect on some haematological parameters, but zinc can eliminates its influence.

  10. Nuclear receptors from the ctenophore Mnemiopsis leidyi lack a zinc-finger DNA-binding domain: lineage-specific loss or ancestral condition in the emergence of the nuclear receptor superfamily?

    Directory of Open Access Journals (Sweden)

    Reitzel Adam M

    2011-02-01

    sponges have a similarly restricted NR complement supporting the hypothesis that the original NR was HNF4-like and that these lineages are the first two branches from the animal tree. The absence of a zinc-finger DNA-binding domain in the two ctenophore species suggests two hypotheses: this domain may have been secondarily lost within the ctenophore lineage or, if ctenophores are the first branch off the animal tree, the original NR may have lacked the canonical DBD. Phylogenomic analyses and categorization of NRs from all four early diverging animal phyla compared with the complement from bilaterians suggest the rate of NR diversification prior to the cnidarian-bilaterian split was relatively modest, with independent radiations of several NR subfamilies within the cnidarian lineage.

  11. Unique Features of the Anti-parallel, Heterodimeric Coiled-coil Interaction between Methyl-cytosine Binding Domain 2 (MBD2) Homologues and GATA Zinc Finger Domain Containing 2A (GATAD2A/p66α)*

    Science.gov (United States)

    Walavalkar, Ninad M.; Gordon, Nathaniel; Williams, David C.

    2013-01-01

    The methyl-cytosine binding domain 2 (MBD2)-nucleosome remodeling and deacetylase (NuRD) complex recognizes methylated DNA and silences expression of associated genes through histone deacetylase and nucleosome remodeling functions. Our previous structural work demonstrated that a coiled-coil interaction between MBD2 and GATA zinc finger domain containing 2A (GATAD2A/p66α) proteins recruits the chromodomain helicase DNA-binding protein (CHD4/Mi2β) to the NuRD complex and is necessary for MBD2-mediated DNA methylation-dependent gene silencing in vivo (Gnanapragasam, M. N., Scarsdale, J. N., Amaya, M. L., Webb, H. D., Desai, M. A., Walavalkar, N. M., Wang, S. Z., Zu Zhu, S., Ginder, G. D., and Williams, D. C., Jr. (2011) p66α-MBD2 coiled-coil interaction and recruitment of Mi-2 are critical for globin gene silencing by the MBD2-NuRD complex. Proc. Natl. Acad. Sci. U.S.A. 108, 7487–7492). The p66α-MBD2 interaction differs from most coiled-coils studied to date by forming an anti-parallel heterodimeric complex between two peptides that are largely monomeric in isolation. To further characterize unique features of this complex that drive heterodimeric specificity and high affinity binding, we carried out biophysical analyses of MBD2 and the related homologues MBD3, MBD3-like protein 1 (MBD3L1), and MBD3-like protein 2 (MBD3L2) as well as specific mutations that modify charge-charge interactions and helical propensity of the coiled-coil domains. Analytical ultracentrifugation analyses show that the individual peptides remain monomeric in isolation even at 300 μm in concentration for MBD2. Circular dichroism analyses demonstrate a direct correlation between helical content of the coiled-coil domains in isolation and binding affinity for p66α. Furthermore, complementary electrostatic surface potentials and inherent helical content of each peptide are necessary to maintain high-affinity association. These factors lead to a binding affinity hierarchy of p66α for the

  12. Contamination by human fingers. The Midas touch

    International Nuclear Information System (INIS)

    Gwozdz, R.; Grass, F.

    2004-01-01

    Anthropogenic activity is one of the causes of contamination in the human environment: contamination of air, water, top soils, plants and food products has complex effects on human health problems. Wear and abrasion of various surfaces are constant processes in daily life, and commonly include interaction between human fingers and surfaces of every conceivable material. New methods for investigation of trace transfer processes by human fingers are described. Results of transfer for commonly used metals such as gold, silver, zinc, cadmium, tin, cobalt, nickel, chromium and iron are presented. Relationship between transfer of metals by touch and the general problem of purity in analytical activities is briefly discussed. (author)

  13. The construction of the zinc finger nucleases

    Indian Academy of Sciences (India)

    Michel Morange

    In three previous contributions, I tried to show how complex and tortuous had been the historical process ... First, we must describe two other lines of research and groups of researchers whose results were necessary ... precise position in the mitochondrial genome (Jacquier and. Dujon 1985). One of these endonucleases, ...

  14. The construction of the zinc finger nucleases

    Indian Academy of Sciences (India)

    Michel Morange

    shown to be involved in the immunity against bacteriophages, and the slow development of highly specific ... vasan Chandrasegaran, had the major role. In three articles published between 1992 and 1996 in the .... road was now open to adapt the system to any DNA sequence. 5. The end of the story. The road was not as ...

  15. Tendon displacements during voluntary and involuntary finger movements.

    Science.gov (United States)

    van Beek, Nathalie; Gijsbertse, Kaj; Selles, Ruud W; de Korte, Chris L; Veeger, DirkJan H E J; Stegeman, Dick F; Maas, Huub

    2018-01-23

    In the human hand, independent movement control of individual fingers is limited. One potential cause for this is mechanical connections between the tendons and muscle bellies corresponding to the different fingers. The aim of this study was to determine the tendon displacement of the flexor digitorum superficialis (FDS) of both the instructed and the neighboring, non-instructed fingers during single finger flexion movements. In nine healthy subjects (age 22-29 years), instructed and non-instructed FDS finger tendon displacement of the index, middle and ring finger was measured using 2D ultrasound analyzed with speckle tracking software in two conditions: active flexion of all finger joints with all fingers free to move and active flexion while the non-instructed fingers were restricted. Our results of the free movement protocol showed an average tendon displacement of 27 mm for index finger flexion, 21 mm for middle finger flexion and 17 mm for ring finger flexion. Displacements of the non-instructed finger tendons (≈12 mm) were higher than expected based of the amount of non-instructed finger movement. In the restricted protocol, we found that, despite minimal joint movements, substantial non-instructed finger tendon displacement (≈9 mm) was still observed, which was interpreted as a result of tendon strain. When this strain component was subtracted from the tendon displacement of the non-instructed fingers during the free movement condition, the relationship between finger movement and tendon displacement of the instructed and non-instructed finger became comparable. Thus, when studying non-instructed finger tendon displacement it is important to take tendon strain into consideration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The peculiar effect of forest dislocations on single twin layer development in zinc and beryllium single crystals

    International Nuclear Information System (INIS)

    Lavrentev, F.F.; Bosin, M.E.

    1978-01-01

    This is an investigation of the effect of different types of forest dislocation on the rate of twin layer broadening, Vsub(n), in zinc and beryllium crystals, and on the velocity of the twinning dislocation movement, Vsub(t), in zinc crystals under the action of a constant external shear stress. Increasing the forest basal dislocation density, rhosub(b), was found to result in increasing Vsub(n) and reducing Vsub(t), while increasing the forest pyramidal dislocation density, rhosub(p), causes Vsub(n) to decrease. An analysis in terms of crystal geometry shows that the dualism of the influence of the basal dislocations stems from the fact that they behave as twinning dislocation sources whose density, increasing with rhosub(b) leads to higher Vsub(n). The decrease in the effective stress, tausup(*), with increasing rhosub(b) is estimated. An analysis of the experimental data yielded the relation Vsub(t)(tausup(*)) and an estimate of the activation volume, which amounted to 6 x 10 -21 cm 3 . The close coincidence of the activation volumes as obtained from Vsub(t)(tausup(*)) and Vsub(n)(tau) suggests that the rate-controlling mechanism of the twin layer development in zinc crystals with large forest basal dislocation density is the twinning dislocation inhibition. In Be crystals, the increasing Vsub(n) effect is observed during untwinning. In Be twinned crystals, electron microscopy revealed twinning dislocations with a density of about 10 5 cm -1 at the twin boundaries and a large forest basal dislocation density inside the twin (ca. 10 8 cm -2 ). (Auth.)

  17. Study by X ray topography of dislocation rise and sliding in zinc and cadmium single crystals

    International Nuclear Information System (INIS)

    G'Sell, Christian

    1977-01-01

    After having recalled that dislocation rise with a Burgers vector component located off the base plane has already been observed in zinc and cadmium by transmission electron microscopy and by X-ray topography on very thin crystals (5 microns), and that the Burgers vectors and characteristics of the rising configuration could not be precisely determined, this research thesis addresses the study of this phenomenon of dislocation rise by observing displacements in thicker (100 microns) zinc and cadmium crystals, by using X-ray topography. Rise is firstly observed during temperature variation, and the evolution of the initial configuration of dislocations is determined. The influences of atmosphere nature and of crystal surface condition resulting from different chemical treatments are studied. Dislocation sliding in the base plane is studied by determining different characteristics of sliding induced micro-deformation

  18. Single-Site Active Iron-Based Bifunctional Oxygen Catalyst for a Compressible and Rechargeable Zinc-Air Battery.

    Science.gov (United States)

    Ma, Longtao; Chen, Shengmei; Pei, Zengxia; Huang, Yan; Liang, Guojin; Mo, Funian; Yang, Qi; Su, Jun; Gao, Yihua; Zapien, Juan Antonio; Zhi, Chunyi

    2018-02-27

    The exploitation of a high-efficient, low-cost, and stable non-noble-metal-based catalyst with oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) simultaneously, as air electrode material for a rechargeable zinc-air battery is significantly crucial. Meanwhile, the compressible flexibility of a battery is the prerequisite of wearable or/and portable electronics. Herein, we present a strategy via single-site dispersion of an Fe-N x species on a two-dimensional (2D) highly graphitic porous nitrogen-doped carbon layer to implement superior catalytic activity toward ORR/OER (with a half-wave potential of 0.86 V for ORR and an overpotential of 390 mV at 10 mA·cm -2 for OER) in an alkaline medium. Furthermore, an elastic polyacrylamide hydrogel based electrolyte with the capability to retain great elasticity even under a highly corrosive alkaline environment is utilized to develop a solid-state compressible and rechargeable zinc-air battery. The creatively developed battery has a low charge-discharge voltage gap (0.78 V at 5 mA·cm -2 ) and large power density (118 mW·cm -2 ). It could be compressed up to 54% strain and bent up to 90° without charge/discharge performance and output power degradation. Our results reveal that single-site dispersion of catalytic active sites on a porous support for a bifunctional oxygen catalyst as cathode integrating a specially designed elastic electrolyte is a feasible strategy for fabricating efficient compressible and rechargeable zinc-air batteries, which could enlighten the design and development of other functional electronic devices.

  19. Finger Based Techniques for Nonvisual Touchscreen Text Entry

    OpenAIRE

    Fakrudeen, Mohammed; Yousef, Sufian; Miraz, Mahdi H.; Hussein, AbdelRahman Hamza

    2017-01-01

    This research proposes Finger Based Technique (FBT) for non-visual touch screen device interaction designed for blind users. Based on the proposed technique, the blind user can access virtual keys based on finger holding positions. Three different models have been proposed. They are Single Digit Finger-Digit Input (FDI), Double Digit FDI for digital text entry, and Finger-Text Input (FTI) for normal text entry. All the proposed models were implemented with voice feedback while enabling touch ...

  20. Single crystalline wurtzite ZnO/zinc blende ZnS coaxial heterojunctions and hollow zinc blende ZnS nanotubes: synthesis, structural characterization and optical properties.

    Science.gov (United States)

    Huang, Xing; Willinger, Marc-Georg; Fan, Hua; Xie, Zai-lai; Wang, Lei; Klein-Hoffmann, Achim; Girgsdies, Frank; Lee, Chun-Sing; Meng, Xiang-Min

    2014-08-07

    Synthesis of ZnO/ZnS heterostructures under thermodynamic conditions generally results in the wurtzite (WZ) structure of the ZnS component because its WZ phase is thermodynamically more stable than its zinc blende (ZB) phase. In this report, we demonstrate for the first time the preparation of ZnO/ZnS coaxial nanocables composed of single crystalline ZB structured ZnS epitaxially grown on WZ ZnO via a two-step thermal evaporation method. The deposition temperature is believed to play a crucial role in determining the crystalline phase of ZnS. Through a systematic structural analysis, the ZnO core and the ZnS shell are found to have an orientation relationship of (0002)ZnO(WZ)//(002)ZnS(ZB) and [01-10]ZnO(WZ)//[2-20]ZnS(ZB). Observation of the coaxial nanocables in cross-section reveals the formation of voids between the ZnO core and the ZnS shell during the coating process, which is probably associated with the nanoscale Kirkendall effect known to result in porosity. Furthermore, by immersing the ZnO/ZnS nanocable heterojunctions in an acetic acid solution to etch away the inner ZnO cores, single crystalline ZnS nanotubes orientated along the [001] direction of the ZB structure were also achieved for the first time. Finally, optical properties of the hollow ZnS tubes were investigated and discussed in detail. We believe that our study could provide some insights into the controlled fabrication of one dimensional (1D) semiconductors with desired morphology, structure and composition at the nanoscale, and the synthesized WZ ZnO/ZB ZnS nanocables as well as ZB ZnS nanotubes could be ideal candidates for the study of optoelectronics based on II-VI semiconductors.

  1. Activity patterns of extrinsic finger flexors and extensors during movements of instructed and non-instructed fingers.

    Science.gov (United States)

    van Beek, Nathalie; Stegeman, Dick F; van den Noort, Josien C; H E J Veeger, DirkJan; Maas, Huub

    2018-02-01

    The fingers of the human hand cannot be controlled fully independently. This phenomenon may have a neurological as well as a mechanical basis. Despite previous studies, the neuromechanics of finger movements are not fully understood. The aims of this study were (1) to assess the activation and coactivation patterns of finger specific flexor and extensor muscle regions during instructed single finger flexion and (2) to determine the relationship between enslaved finger movements and respective finger muscle activation. In 9 healthy subjects (age 22-29), muscle activation was assessed during single finger flexion using a 90 surface electromyography electrode grid placed over the flexor digitorum superficialis (FDS) and the extensor digitorum (ED). We found (1) no significant differences in muscle activation timing between fingers, (2) considerable muscle activity in flexor and extensor regions associated with the non-instructed fingers and (3) no correlation between the muscle activations and corresponding movement of non-instructed fingers. A clear disparity was found between the movement pattern of the non-instructed fingers and the activity pattern of the corresponding muscle regions. This suggests that mechanical factors, such as intertendinous and myofascial connections, may also affect finger movement independency and need to be taken into consideration when studying finger movement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Single-pot biofabrication of zinc sulfide immuno-quantum dots.

    Science.gov (United States)

    Zhou, Weibin; Schwartz, Daniel T; Baneyx, François

    2010-04-07

    Quantum dots (QDs) are a powerful alternative to organic dyes and fluorescent proteins for biological and biomedical applications. These semiconductor nanocrystals are traditionally synthesized above 200 degrees C in organic solvents using toxic and costly precursors, and further steps are required to conjugate them to a biological ligand. Here, we describe a simple, aqueous route for the one-pot synthesis of antibody-derivatized zinc sulfide (ZnS) immuno-QDs. In this strategy, easily expressed and purified fusion proteins perform the dual function of nanocrystal mineralizers through ZnS binding sequences identified by cell surface display and adaptors for immunoglobin G (IgG) conjugation through a tandem repeat of the B domain of Staphylococcus aureus protein A. Although approximately 4.3 nm ZnS wurtzite cores could be biomineralized from either zinc chloride or zinc acetate precursors, only the latter salt gives rise to protein-coated QDs with long shelf life and narrow hydrodynamic diameters (8.8 +/- 1.4 nm). The biofabricated QDs have a quantum yield of 2.5% and blue-green ensemble emission with contributions from the band-edge at 340 nm and from trap states at 460 and 665 nm that are influenced by the identity of the protein shell. Murine IgG(1) antibodies exhibit high affinity (K(d) = 60 nM) for the protein shell, and stable immuno-QDs with a hydrodynamic diameter of 14.1 +/- 1.3 nm are readily obtained by mixing biofabricated nanocrystals with human IgG.

  3. Oxygen and zinc vacancies in as-grown ZnO single crystals

    International Nuclear Information System (INIS)

    Wang, X J; Vlasenko, L S; Chen, W M; Buyanova, I A; Pearton, S J

    2009-01-01

    Oxygen and zinc vacancies are unambiguously shown to be formed in as-grown ZnO bulk crystals grown from melt without being subjected to irradiation, from electron paramagnetic resonance (EPR) and optically detected magnetic resonance (ODMR) studies. Concentrations of the defects in their paramagnetic charge states V O + and V Zn - are estimated to be ∼2 x 10 14 cm -3 and ∼10 15 cm -3 , respectively. The V Zn - defect is concluded to act as a deep acceptor and to exhibit large Jahn-Teller distortion by 0.8 eV. The energy level of the defect corresponding to the (2-/-) transition is E v + 1.0 eV. The isolated Zn vacancy is found to be an important recombination centre and is concluded to be responsible for the red luminescence centred at around 1.6 eV. On the other hand, the oxygen vacancy seems to be less important in carrier recombination as it could be detected only in EPR but not in ODMR measurements. Neither isolated V Zn - nor V O + centres participate in the so-called 'green' emission. It is also shown that whereas the concentrations of both defects can be reduced by post-growth annealing, the Zn vacancy exhibits higher thermal stability. The important role of residual contaminants such as Li in the annealing process is underlined.

  4. Trigger Finger (Stenosing Tenosynovitis)

    Science.gov (United States)

    ... a friend * required fields From * To * DESCRIPTION Stenosing tenosynovitis is a condition commonly known as “trigger finger.” It is sometimes also called “trigger thumb.” The tendons that bend the fingers glide easily with ...

  5. Gold finger formation studied by high-resolution mass spectrometry and in silico methods

    NARCIS (Netherlands)

    Laskay, Ü.A.; Garino, C.; Tsybin, Y.O.; Salassa, L.; Casini, A.

    2015-01-01

    High-resolution mass spectrometry and quantum mechanics/molecular mechanics studies were employed for characterizing the formation of two gold finger (GF) domains from the reaction of zinc fingers (ZF) with gold complexes. The influence of both the gold oxidation state and the ZF coordination sphere

  6. Single and Combined Exposure to Zinc- and Copper-Containing Welding Fumes Lead to Asymptomatic Systemic Inflammation.

    Science.gov (United States)

    Markert, Agnieszka; Baumann, Ralf; Gerhards, Benjamin; Gube, Monika; Kossack, Veronika; Kraus, Thomas; Brand, Peter

    2016-02-01

    Recently, it has been shown that exposure to welding fumes containing both zinc and copper leads to asymptomatic systemic inflammation in humans as shown by an increase of blood C-reactive protein. In the present study, it was investigated which metal is responsible for this effect. Fifteen healthy male subjects were exposed under controlled conditions to welding fumes containing either zinc, or copper, or copper and zinc. For each exposure blood C-reactive protein increased. Copper- and zinc-containing welding fumes are able to induce systemic inflammation.

  7. Dynamic analysis of C/C composite finger seal

    Directory of Open Access Journals (Sweden)

    Chen Guoding

    2014-06-01

    Full Text Available A seal device as an important component of aeroengines has decisive influence on performance, reliability, and working life of aeroengines. With the development of aeroengines, demands on the performance characteristics of seal devices are made strictly. Finger seal as a novel kind of sealing device, recently attracts more and more attentions in academic circles and engineering fields at home and abroad. Research on finger seals has been extensively developed, especially on leakage and wear performances under dynamic conditions. However, it is a pity that the work on finger seals has been limited with a single approach that is improving the performance by structural optimization; in addition, the technology of dynamic analysis on finger seals is weak. Aiming at the problems mentioned above, a distributed mass equivalent dynamic model of finger seals considering the coupling effect of overlaid laminates is established in the present paper, the dynamic performance of 2.5 dimension C/C composite finger seal is analyzed with the model, and then the effects of fiber bundle density and fiber bundle preparation direction on finger seal’s dynamic performance are discussed, as well as compared with those of Co-based alloy finger seal. The current work is about dynamic analysis of finger seals and application of C/C composite in this paper may have much academic significance and many engineering values for improving research level of finger seal dynamics and exploring feasibility of C/C composite being used for finger seals.

  8. Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair

    International Nuclear Information System (INIS)

    Sun, Xi; Zhou, Xixi; Du, Libo; Liu, Wenlan; Liu, Yang; Hudson, Laurie G.; Liu, Ke Jian

    2014-01-01

    Inhibition of DNA repair is a recognized mechanism for arsenic enhancement of ultraviolet radiation-induced DNA damage and carcinogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger DNA repair protein, has been identified as a sensitive molecular target for arsenic. The zinc finger domains of PARP-1 protein function as a critical structure in DNA recognition and binding. Since cellular poly(ADP-ribosyl)ation capacity has been positively correlated with zinc status in cells, we hypothesize that arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. To test this hypothesis, we compared the effects of arsenite exposure with zinc deficiency, created by using the membrane-permeable zinc chelator TPEN, on 8-OHdG formation, PARP-1 activity and zinc binding to PARP-1 in HaCat cells. Our results show that arsenite exposure and zinc deficiency had similar effects on PARP-1 protein, whereas supplemental zinc reversed these effects. To investigate the molecular mechanism of zinc loss induced by arsenite, ICP-AES, near UV spectroscopy, fluorescence, and circular dichroism spectroscopy were utilized to examine arsenite binding and occupation of a peptide representing the first zinc finger of PARP-1. We found that arsenite binding as well as zinc loss altered the conformation of zinc finger structure which functionally leads to PARP-1 inhibition. These findings suggest that arsenite binding to PARP-1 protein created similar adverse biological effects as zinc deficiency, which establishes the molecular mechanism for zinc supplementation as a potentially effective treatment to reverse the detrimental outcomes of arsenic exposure. - Highlights: • Arsenite binding is equivalent to zinc deficiency in reducing PARP-1 function. • Zinc reverses arsenic inhibition of PARP-1 activity and enhancement of DNA damage. • Arsenite binding and zinc loss alter the conformation of zinc finger

  9. Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xi; Zhou, Xixi [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Du, Libo [Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Wenlan [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Liu, Yang [Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Hudson, Laurie G. [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Liu, Ke Jian, E-mail: kliu@salud.unm.edu [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States)

    2014-01-15

    Inhibition of DNA repair is a recognized mechanism for arsenic enhancement of ultraviolet radiation-induced DNA damage and carcinogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger DNA repair protein, has been identified as a sensitive molecular target for arsenic. The zinc finger domains of PARP-1 protein function as a critical structure in DNA recognition and binding. Since cellular poly(ADP-ribosyl)ation capacity has been positively correlated with zinc status in cells, we hypothesize that arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. To test this hypothesis, we compared the effects of arsenite exposure with zinc deficiency, created by using the membrane-permeable zinc chelator TPEN, on 8-OHdG formation, PARP-1 activity and zinc binding to PARP-1 in HaCat cells. Our results show that arsenite exposure and zinc deficiency had similar effects on PARP-1 protein, whereas supplemental zinc reversed these effects. To investigate the molecular mechanism of zinc loss induced by arsenite, ICP-AES, near UV spectroscopy, fluorescence, and circular dichroism spectroscopy were utilized to examine arsenite binding and occupation of a peptide representing the first zinc finger of PARP-1. We found that arsenite binding as well as zinc loss altered the conformation of zinc finger structure which functionally leads to PARP-1 inhibition. These findings suggest that arsenite binding to PARP-1 protein created similar adverse biological effects as zinc deficiency, which establishes the molecular mechanism for zinc supplementation as a potentially effective treatment to reverse the detrimental outcomes of arsenic exposure. - Highlights: • Arsenite binding is equivalent to zinc deficiency in reducing PARP-1 function. • Zinc reverses arsenic inhibition of PARP-1 activity and enhancement of DNA damage. • Arsenite binding and zinc loss alter the conformation of zinc finger

  10. Luminescence of single crystals of manganese doped zinc indium binary sulfides

    International Nuclear Information System (INIS)

    Arama, Efim; Vovc, Victor; Gheorghita, Eugene Iv.; Pintea, Valentina

    2013-01-01

    Radiative recombination spectra of Mn-doped ZnIn 2 S 4 single crystals have been analyzed in the work. The emission spectra interval close to its maximum (1,91±0,2) eV contains a number of the special features which were identified by us as intra-center transitions. We attribute the special features observed on the complex emission spectra to this type of transition by their decomposition into simple lines, using Alentsev -Foch method. (authors)

  11. Optical and Electrical Properties of Sn-Doped Zinc Oxide Single Crystals

    Science.gov (United States)

    Haseman, M. S.; Saadatkia, Pooneh; Warfield, J. T.; Lawrence, J.; Hernandez, A.; Jellison, G. E.; Boatner, L. A.; Selim, F. A.

    2018-02-01

    Sn dopant in ZnO may significantly improve the n-type conductivity of ZnO through a characteristic double effect. However, studies on bulk Sn-doped ZnO are rare, and the effect of Sn doping on the optoelectronic properties of bulk ZnO is not well understood. In this work, the effect of Sn doping on the optical and electrical properties of ZnO bulk single crystals was investigated through optical absorption spectroscopy, Hall-effect measurements, and thermoluminescence (TL) spectroscopy. Undoped and Sn-doped ZnO single crystals were grown by chemical vapor transport method and characterized by x-ray diffraction analysis. The Sn doping level in the crystals was evaluated by inductively coupled plasma mass spectroscopy measurements. Hall-effect measurements revealed an increase in conductivity and carrier concentration with increasing Sn doping, while TL measurements identified a few donor species in the crystals with donor ionization energy ranging from 35 meV to 118 meV. Increasing Sn doping was also associated with a color change of single crystals from colorless to dark blue.

  12. Irradiation of zinc single crystal with 500 keV singly-charged carbon ions: surface morphology, structure, hardness, and chemical modifications

    Science.gov (United States)

    Waqas Khaliq, M.; Butt, M. Z.; Saleem, Murtaza

    2017-07-01

    Cylindrical specimens of (1 0 4) oriented zinc single crystal (diameter  =  6 mm and length  =  5 mm) were irradiated with 500 keV C+1 ions with the help of a Pelletron accelerator. Six specimens were irradiated in an ultra-high vacuum (~10‒8 Torr) with different ion doses, namely 3.94  ×  1014, 3.24  ×  1015, 5.33  ×  1015, 7.52  ×  1015, 1.06  ×  1016, and 1.30  ×  1016 ions cm-2. A field emission scanning electron microscope (FESEM) was utilized for the morphological study of the irradiated specimens. Formation of nano- and sub-micron size rods, clusters, flower- and fork-like structures, etc, was observed. Surface roughness of the irradiated specimens showed an increasing trend with the ions dose. Energy dispersive x-ray spectroscopy (EDX) helped to determine chemical modifications in the specimens. It was found that carbon content varied in the range 22.86-31.20 wt.% and that oxygen content was almost constant, with an average value of 10.16 wt.%. The balance content was zinc. Structural parameters, i.e. crystallite size and lattice strain, were determined by Williamson-Hall analysis using x-ray diffraction (XRD) patterns of the irradiated specimens. Both crystallite size and lattice strain showed a decreasing trend with the increasing ions dose. A good linear relationship between crystallite size and lattice strain was observed. Surface hardness depicted a decreasing trend with the ions dose and followed an inverse Hall-Petch relation. FTIR spectra of the specimens revealed that absorption bands gradually diminish as the dose of singly-charged carbon ions is increased from 3.94  ×  1014 ions cm-1 to 1.30  ×  1016 ions cm-1. This indicates progressive deterioration of chemical bonds with the increase in ion dose.

  13. Single coating of zinc ferrite renders magnetic nanomotors therapeutic and stable against agglomeration.

    Science.gov (United States)

    Venugopalan, Pooyath Lekshmy; Jain, Shilpee; Shivashankar, Srinivasrao; Ghosh, Ambarish

    2018-02-01

    Magnetic nanomotors with integrated theranostic capabilities can revolutionize biomedicine of the future. Typically, these nanomotors contain ferromagnetic materials, such that small magnetic fields can be used to maneuver and localize them in fluidic or gel-like environments. Motors with large permanent magnetic moments tend to agglomerate, which limits the scalability of this otherwise promising technology. Here, we demonstrate the application of a microwave-synthesized ferrite layer to reduce the agglomeration of helical ferromagnetic nanomotors by an order of magnitude, which allows them to be stored in a colloidal suspension for longer than six months and subsequently be manoeuvred with undiminished performance. The ferrite layer also rendered the nanomotors suitable as magnetic hyperthermia agents, as demonstrated by their cytotoxic effects on cancer cells. The two functionalities were inter-related since higher hyperthermia efficiency required a denser suspension, both of which were achieved in a single microwave-synthesized ferrite coating.

  14. Individual finger sensibility in carpal tunnel syndrome.

    Science.gov (United States)

    Elfar, John C; Yaseen, Zaneb; Stern, Peter J; Kiefhaber, Thomas R

    2010-11-01

    Sensibility testing plays a role in the diagnosis of carpal tunnel syndrome (CTS). No single physical examination test has proven to be of critical value in the diagnosis, especially when compared with electrodiagnostic testing (EDX). The purpose of this study was to define which digits are most affected by CTS, both subjectively and with objective sensibility testing. A prospective series of 35 patients (40 hands) with EDX-positive, isolated CTS were evaluated preoperatively using 2 objective sensibility tests: static 2-point discrimination (2PD) and abbreviated Semmes-Weinstein monofilament (SWMF) testing. Detailed surveys of subjective symptoms were also collected. Patients identified the middle finger as the most symptomatic over all others (51%). Objective 2PD results of each digit mirrored the subjective data, with higher values for the middle finger (mean 6.07 mm, (p thumb > index > small). Correlations failed between EDX, symptoms, and SWMF results or 2PD in the index finger. Positive but weak correlation (p = .002, r = .42) was found between EDX and 2PD only in the middle fingers. The middle finger is the most likely to show changes in 2PD in patients with positive EDX findings for CTS. Middle finger 2PD is best able to correlate with EDX when compared with 2PD of other digits. The SWMF testing also shows the middle digit testing as more sensitive, but this finding may be difficult to use clinically. Diagnostic I. Copyright © 2010 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  15. Tendon Driven Finger Actuation System

    Science.gov (United States)

    Ihrke, Chris A. (Inventor); Reich, David M. (Inventor); Bridgwater, Lyndon (Inventor); Linn, Douglas Martin (Inventor); Askew, Scott R. (Inventor); Diftler, Myron A. (Inventor); Platt, Robert (Inventor); Hargrave, Brian (Inventor); Valvo, Michael C. (Inventor); Abdallah, Muhammad E. (Inventor); hide

    2013-01-01

    A humanoid robot includes a robotic hand having at least one finger. An actuation system for the robotic finger includes an actuator assembly which is supported by the robot and is spaced apart from the finger. A tendon extends from the actuator assembly to the at least one finger and ends in a tendon terminator. The actuator assembly is operable to actuate the tendon to move the tendon terminator and, thus, the finger.

  16. 21 CFR 888.3230 - Finger joint polymer constrained prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Finger joint polymer constrained prosthesis. 888... constrained prosthesis. (a) Identification. A finger joint polymer constrained prosthesis is a device intended... generic type of device includes prostheses that consist of a single flexible across-the-joint component...

  17. Mixing methods, tasting fingers

    DEFF Research Database (Denmark)

    Mann, Anna; Mol, Annemarie; Satalkar, Priya

    2011-01-01

    This article reports on an ethnographic experiment. Four finger eating experts and three novices sat down for a hot meal and ate with their hands. Drawing on the technique of playing with the familiar and the strange, our aim was not to explain our responses, but to articulate them. As we seek...... words to do so, we are compelled to stretch the verb "to taste." Tasting, or so our ethnographic experiment suggests, need not be understood as an activity confined to the tongue. Instead, if given a chance, it may viscously spread out to the fingers and come to include appreciative reactions otherwise...

  18. Multi-fingered robotic hand

    Science.gov (United States)

    Ruoff, Carl F. (Inventor); Salisbury, Kenneth, Jr. (Inventor)

    1990-01-01

    A robotic hand is presented having a plurality of fingers, each having a plurality of joints pivotally connected one to the other. Actuators are connected at one end to an actuating and control mechanism mounted remotely from the hand and at the other end to the joints of the fingers for manipulating the fingers and passing externally of the robot manipulating arm in between the hand and the actuating and control mechanism. The fingers include pulleys to route the actuators within the fingers. Cable tension sensing structure mounted on a portion of the hand are disclosed, as is covering of the tip of each finger with a resilient and pliable friction enhancing surface.

  19. A Finger Exoskeleton Robot for Finger Movement Rehabilitation

    Directory of Open Access Journals (Sweden)

    Tzu-Heng Hsu

    2017-07-01

    Full Text Available In this study, a finger exoskeleton robot has been designed and presented. The prototype device was designed to be worn on the dorsal side of the hand to assist in the movement and rehabilitation of the fingers. The finger exoskeleton is 3D-printed to be low-cost and has a transmission mechanism consisting of rigid serial links which is actuated by a stepper motor. The actuation of the robotic finger is by a sliding motion and mimics the movement of the human finger. To make it possible for the patient to use the rehabilitation device anywhere and anytime, an Arduino™ control board and a speech recognition board were used to allow voice control. As the robotic finger follows the patients voice commands the actual motion is analyzed by Tracker image analysis software. The finger exoskeleton is designed to flex and extend the fingers, and has a rotation range of motion (ROM of 44.2°.

  20. Mixing methods, tasting fingers

    DEFF Research Database (Denmark)

    Mann, Anna; Mol, Annemarie; Satalkar, Priya

    2011-01-01

    This article reports on an ethnographic experiment. Four finger eating experts and three novices sat down for a hot meal and ate with their hands. Drawing on the technique of playing with the familiar and the strange, our aim was not to explain our responses, but to articulate them. As we seek wo...

  1. Viscoelastic fingering with a pulsed pressure signal

    International Nuclear Information System (INIS)

    Corvera Poire, E; Rio, J A del

    2004-01-01

    We derive a generalized Darcy's law in the frequency domain for a linear viscoelastic fluid flowing in a Hele-Shaw cell. This leads to an analytic expression for the dynamic permeability that has maxima which are several orders of magnitude larger than the static permeability. We then follow an argument of de Gennes (1987 Europhys. Lett. 2 195) to obtain the smallest possible finger width when viscoelasticity is important. Using this and a conservation law, we obtain the lowest bound for the width of a single finger displacing a viscoelastic fluid. When the driving force consists of a constant pressure gradient plus an oscillatory signal, our results indicate that the finger width varies in time following the frequency of the incident signal. Also, the amplitude of the finger width in time depends on the value of the dynamic permeability at the imposed frequency. When the finger is driven with a frequency that maximizes the permeability, variations in the amplitude are also maximized. This gives results that are very different for Newtonian and viscoelastic fluids. For the former ones the amplitude of the oscillation decays with frequency. For the latter ones on the other hand, the amplitude has maxima at the same frequencies that maximize the dynamic permeability

  2. The ascorbate peroxidase APX1 is a direct target of a zinc finger transcription factor ZFP36 and a late embryogenesis abundant protein OsLEA5 interacts with ZFP36 to co-regulate OsAPX1 in seed germination in rice.

    Science.gov (United States)

    Huang, Liping; Jia, Jing; Zhao, Xixi; Zhang, MengYao; Huang, Xingxiu; E Ji; Ni, Lan; Jiang, Mingyi

    2018-01-01

    Seed germination is a vital developmental process. Abscisic acid (ABA) is an essential repressor of seed germination, while ROS (reactive oxygen species) also plays a vital role in regulating seed germination. ABA could inhibit the production of ROS in seed germination, but the mechanism of ABA reduced ROS production in seed germination was hitherto unknown. Here, by ChIP (chromatin immunoprecipitation)-seq, we found that ZFP36, a rice zinc finger transcription factor, could directly bind to the promoter of OsAPX1, coding an ascorbate peroxidase (APX) which has the most affinity for H 2 O 2 (substrate; a type of ROS), and act as a transcriptional activator of OsAPX1 promoter. Moreover, ZFP36 could interact with a late embryogenesis abundant protein OsLEA5 to co-regulate the promoter activity of OsAPX1. The seed germination is highly inhibited in ZFP36 overexpression plants under ABA treatment, while an RNA interference (RNAi) mutant of OsLEA5 rice seeds were less sensitive to ABA, and exogenous ASC (ascorbate acid) could alleviate the inhibition induced by ABA. Thus, our conclusion is that OsAPX1 is a direct target of ZFP36 and OsLEA5 could interact with ZFP36 to co-regulate ABA-inhibited seed germination by controlling the expression of OsAPX1. Copyright © 2017. Published by Elsevier Inc.

  3. Single-pass waveguide amplifiers in Er-Yb doped zinc polyphosphate glass fabricated with femtosecond laser pulses

    NARCIS (Netherlands)

    Fletcher, L.B.; Witcher, J.J.; Troy, N.; Brow, R.K.; Krol, D.M.

    2012-01-01

    We have investigated the direct fabrication of subsurface waveguide amplifiers in Er-Yb zinc polyphosphate glass by utilizing the relationship between the initial glass composition and the resulting changes to the network structure after modification by fs laser pulses. Waveguides, exhibiting

  4. Multi-Finger Interaction and Synergies in Finger Flexion and Extension Force Production

    Directory of Open Access Journals (Sweden)

    Jaebum Park

    2017-06-01

    Full Text Available The aim of this study was to discover finger interaction indices during single-finger ramp tasks and multi-finger coordination during a steady state force production in two directions, flexion, and extension. Furthermore, the indices of anticipatory adjustment of elemental variables (i.e., finger forces prior to a quick pulse force production were quantified. It is currently unknown whether the organization and anticipatory modulation of stability properties are affected by force directions and strengths of in multi-finger actions. We expected to observe a smaller finger independency and larger indices of multi-finger coordination during extension than during flexion due to both neural and peripheral differences between the finger flexion and extension actions. We also examined the indices of the anticipatory adjustment between different force direction conditions. The anticipatory adjustment could be a neural process, which may be affected by the properties of the muscles and by the direction of the motions. The maximal voluntary contraction (MVC force was larger for flexion than for extension, which confirmed the fact that the strength of finger flexor muscles (e.g., flexor digitorum profundus was larger than that of finger extensor (e.g., extensor digitorum. The analysis within the uncontrolled manifold (UCM hypothesis was used to quantify the motor synergy of elemental variables by decomposing two sources of variances across repetitive trials, which identifies the variances in the uncontrolled manifold (VUCM and that are orthogonal to the UCM (VORT. The presence of motor synergy and its strength were quantified by the relative amount of VUCM and VORT. The strength of motor synergies at the steady state was larger in the extension condition, which suggests that the stability property (i.e., multi-finger synergies may be a direction specific quantity. However, the results for the existence of anticipatory adjustment; however, no difference

  5. Finger forces in fastball baseball pitching.

    Science.gov (United States)

    Kinoshita, Hiroshi; Obata, Satoshi; Nasu, Daiki; Kadota, Koji; Matsuo, Tomoyuki; Fleisig, Glenn S

    2017-08-01

    Forces imparted by the fingers onto a baseball are the final, critical aspects for pitching, however these forces have not been quantified previously as no biomechanical technology was available. In this study, an instrumented baseball was developed for direct measurement of ball reaction force by individual fingers and used to provide fundamental information on the forces during a fastball pitch. A tri-axial force transducer with a cable having an easily-detachable connector were installed in an official baseball. Data were collected from 11 pitchers who placed the fingertip of their index, middle, ring, or thumb on the transducer, and threw four-seam fastballs to a target cage from a flat mound. For the index and middle fingers, resultant ball reaction force exhibited a bimodal pattern with initial and second peaks at 38-39ms and 6-7ms before ball release, and their amplitudes were around 97N each. The ring finger and thumb produced single-peak forces of approximately 50 and 83N, respectively. Shear forces for the index and middle fingers formed distinct peak at 4-5ms before release, and the peaks summed to 102N; a kinetic source for backspin on the ball. An additional experiment with submaximal pitching effort showed a linear relationship of peak forces with ball velocity. The peak ball reaction force for fastballs exceeded 80% of maximum finger strength measured, suggesting that strengthening of the distal muscles is important both for enhancing performance and for avoiding injuries. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. In-situ observation of zinc electrodeposition on iron single crystal using synchrotron radiation x-ray diffraction

    CERN Document Server

    Kurosaki, M; Kawasaki, K

    2002-01-01

    Continuous in-situ observations of changes in crystal orientation during zinc electrodeposition were performed using novel electrolysis cell that secure uniform current distribution through thin electrolyte layer. It has been clarified that electrodeposition can be separated into the two regions. First one is epitaxial deposition region in which orientations of deposited zinc and substrate keep following relations; Fe(100)//Zn(10 centre dot 1) Fe(110)//Zn(00 centre dot 2), Fe(111)//Zn(00 centre dot 2). This region continued until the thickness of the deposit became about 0.5 mu m. Second one is bulk deposition region, in which the overpotential settled by electrolysis conditions determines the crystal orientation. Low overpotential leads to promoting Zn(00 centre dot 2) deposition, and higher overpotential Zn(10 centre dot 1) and Zn(11 centre dot 0). Influences of the current density changes on the crystal orientation were also clarified. The use of an adsorbing organic additive influences both on the epitaxi...

  7. Impact of Single or Repeated Dose Intranasal Zinc-free Insulin in Young and Aged F344 Rats on Cognition, Signaling, and Brain Metabolism.

    Science.gov (United States)

    Anderson, Katie L; Frazier, Hilaree N; Maimaiti, Shaniya; Bakshi, Vikas V; Majeed, Zana R; Brewer, Lawrence D; Porter, Nada M; Lin, Ai-Ling; Thibault, Olivier

    2017-02-01

    Novel therapies have turned to delivering compounds to the brain using nasal sprays, bypassing the blood brain barrier, and enriching treatment options for brain aging and/or Alzheimer's disease. We conducted a series of in vivo experiments to test the impact of intranasal Apidra, a zinc-free insulin formulation, on the brain of young and aged F344 rats. Both single acute and repeated daily doses were compared to test the hypothesis that insulin could improve memory recall in aged memory-deficient animals. We quantified insulin signaling in different brain regions and at different times following delivery. We measured cerebral blood flow (CBF) using MRI and also characterized several brain metabolite levels using MR spectroscopy. We show that neither acute nor chronic Apidra improved memory or recall in young or aged animals. Within 2 hours of a single dose, increased insulin signaling was seen in ventral areas of the aged brains only. Although chronic Apidra was able to offset reduced CBF with aging, it also caused significant reductions in markers of neuronal integrity. Our data suggest that this zinc-free insulin formulation may actually hasten cognitive decline with age when used chronically. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Robotic Finger Assembly

    Science.gov (United States)

    Ihrke, Chris A. (Inventor); Bridgwater, Lyndon (Inventor); Diftler, Myron A. (Inventor); Linn, Douglas Martin (Inventor); Platt, Robert J., Jr. (Inventor); Hargrave, Brian (Inventor); Askew, Scott R. (Inventor); Valvo, Michael C. (Inventor)

    2014-01-01

    A robotic hand includes a finger with first, second, and third phalanges. A first joint rotatably connects the first phalange to a base structure. A second joint rotatably connects the first phalange to the second phalange. A third joint rotatably connects the third phalange to the second phalange. The second joint and the third joint are kinematically linked such that the position of the third phalange with respect to the second phalange is determined by the position of the second phalange with respect to the first phalange.

  9. Single-pass waveguide amplifiers in Er-Yb doped zinc polyphosphate glass fabricated with femtosecond laser pulses.

    Science.gov (United States)

    Fletcher, Luke B; Witcher, Jon J; Troy, Neil; Brow, Richard K; Krol, Denise M

    2012-04-01

    We have investigated the direct fabrication of subsurface waveguide amplifiers in Er-Yb zinc polyphosphate glass by utilizing the relationship between the initial glass composition and the resulting changes to the network structure after modification by fs laser pulses. Waveguides, exhibiting internal gain of 1 dB/cm at 1.53 μm when pumped with 500 mW at 976 nm, were directly fabricated using a regenerative amplified Ti:sapphire 1 kHz, 180 fs laser system. Optical properties as well as insertion losses and internal gain are reported.

  10. Hidradenocarcinoma of the finger.

    Science.gov (United States)

    Nazerali, Rahim S; Tan, Cynthia; Fung, Maxwell A; Chen, Steven L; Wong, Michael S

    2013-04-01

    Hidradenocarcinoma is a rare adnexal neoplasm representing the malignant counterpart of hidradenoma derived from eccrine sweat glands. Misdiagnosis of this disease is common due to the wide variety of histological patterns and rarity of this malignancy. We report an 87-year-old man presenting with a rare case of biopsy-proven hidradenocarcinoma of the finger. There is no standard care of treatment of hidradenocarcinoma, especially of those tumors in rare locations such as the fingers, given its rarity, variable tumor behavior and histology. Although limited treatment strategies exist, detailed data including TNM, location, histologic type and grade, and patient age should be gathered for optimal treatment strategy. The literature supports a 3-fold approach to these malignancies involving margin-free resection, sentinel lymph node biopsy to evaluate possible metastasis, and long-term follow-up given high risk of recurrence. Our treatment strategy involved a 4-fold, multidisciplinary approach involving reconstruction to optimize tumor-free remission and hand function.

  11. Visual Foraging With Fingers and Eye Gaze

    Directory of Open Access Journals (Sweden)

    Ómar I. Jóhannesson

    2016-03-01

    Full Text Available A popular model of the function of selective visual attention involves search where a single target is to be found among distractors. For many scenarios, a more realistic model involves search for multiple targets of various types, since natural tasks typically do not involve a single target. Here we present results from a novel multiple-target foraging paradigm. We compare finger foraging where observers cancel a set of predesignated targets by tapping them, to gaze foraging where observers cancel items by fixating them for 100 ms. During finger foraging, for most observers, there was a large difference between foraging based on a single feature, where observers switch easily between target types, and foraging based on a conjunction of features where observers tended to stick to one target type. The pattern was notably different during gaze foraging where these condition differences were smaller. Two conclusions follow: (a The fact that a sizeable number of observers (in particular during gaze foraging had little trouble switching between different target types raises challenges for many prominent theoretical accounts of visual attention and working memory. (b While caveats must be noted for the comparison of gaze and finger foraging, the results suggest that selection mechanisms for gaze and pointing have different operational constraints.

  12. fMRI assessment of somatotopy in human Brodmann area 3b by electrical finger stimulation.

    Science.gov (United States)

    Kurth, R; Villringer, K; Mackert, B M; Schwiemann, J; Braun, J; Curio, G; Villringer, A; Wolf, K J

    1998-01-26

    Functional magnetic resonance imaging (fMRI) is capable of detecting focal brain activation induced by electrical stimulation of single fingers in human subjects. In eight subjects somatotopic arrangement of the second and fifth finger was found in Brodmann area 3b of the primary somatosensory cortex. In four subjects the representation area of the second finger was located lateral and inferior to the fifth finger; in one subject the somatotopy was reversed. In three subjects representation areas of the two fingers in Brodmann area 3b were found overlapping. Additional activated areas were found on the crown of ipsilateral and contralateral postcentral gyrus (Brodmann areas 1 and 2) and posterior parietal cortex.

  13. Creation of giant two-dimensional crystal of zinc oxide nanodisk by method of single-particle layer of organo-modified inorganic fine particles.

    Science.gov (United States)

    Meng, Qi; Honda, Nanami; Uchida, Saki; Hashimoto, Kazuaki; Shibata, Hirobumi; Fujimori, Atsuhiro

    2015-09-01

    In this study, the formation and structure of a single-particle layer of organo-zinc oxide are investigated using surface-pressure-area (π-A) isotherms, out-of-plane X-ray diffraction (XRD) analysis, and atomic force microscopy (AFM). Further, techniques for achieving the solubilization of inorganic fine particles in general solvents have been proposed, and a single-particle layer has been formed using such an inorganic solution as a "spreading solution" for an interfacial film. Surface modification of ZnO is performed using a long-chain carboxylic acid. Accordingly, a regular arrangement of ZnO can be easily achieved in order to overcome the relatively weak van der Walls interactions between inorganic materials. A condensed Langmuir monolayer of these particles is also formed. A multiparticle layered structure is constructed by the Langmuir-Blodgett (LB) technique. Out-of-plane XRD measurement results for a single-particle layer of organo-ZnO clearly show a sharp peak at 42 Å. This peak is attributed to the distance between ZnO layers. The AFM image of this single-particle layer of organo-ZnO shows a particle assembly with a uniform height of 60 nm. These aggregated particles form large two-dimensional crystals. In other words, a regular periodic structure along the c-axis and a condensed single-particle layer had been fabricated using Langmuir and LB techniques. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Finger vein recognition based on finger crease location

    Science.gov (United States)

    Lu, Zhiying; Ding, Shumeng; Yin, Jing

    2016-07-01

    Finger vein recognition technology has significant advantages over other methods in terms of accuracy, uniqueness, and stability, and it has wide promising applications in the field of biometric recognition. We propose using finger creases to locate and extract an object region. Then we use linear fitting to overcome the problem of finger rotation in the plane. The method of modular adaptive histogram equalization (MAHE) is presented to enhance image contrast and reduce computational cost. To extract the finger vein features, we use a fusion method, which can obtain clear and distinguishable vein patterns under different conditions. We used the Hausdorff average distance algorithm to examine the recognition performance of the system. The experimental results demonstrate that MAHE can better balance the recognition accuracy and the expenditure of time compared with three other methods. Our resulting equal error rate throughout the total procedure was 3.268% in a database of 153 finger vein images.

  15. Emotional Communication in Finger Braille

    Directory of Open Access Journals (Sweden)

    Yasuhiro Matsuda

    2010-01-01

    Full Text Available We describe analyses of the features of emotions (neutral, joy, sadness, and anger expressed by Finger Braille interpreters and subsequently examine the effectiveness of emotional expression and emotional communication between people unskilled in Finger Braille. The goal is to develop a Finger Braille system to teach emotional expression and a system to recognize emotion. The results indicate the following features of emotional expression by interpreters. The durations of the code of joy were significantly shorter than the durations of the other emotions, the durations of the code of sadness were significantly longer, and the finger loads of anger were significantly larger. The features of emotional expression by unskilled subjects were very similar to those of the interpreters, and the coincidence ratio of emotional communication was 75.1%. Therefore, it was confirmed that people unskilled in Finger Braille can express and communicate emotions using this communication medium.

  16. Tangential finger forces use mechanical advantage during static grasping.

    Science.gov (United States)

    Slota, Gregory P; Latash, Mark L; Zatsiorsky, Vladimir M

    2012-02-01

    When grasping and manipulating objects, the central controller utilizes the mechanical advantage of the normal forces of the fingers for torque production. Whether the same is valid for tangential forces is unknown. The main purpose of this study was to determine the patterns of finger tangential forces and the use of mechanical advantage as a control mechanism when dealing with objects of nonuniform finger positioning. A complementary goal was to explore the interaction of mechanical advantage (moment arm) and the role a finger has as a torque agonist/antagonist with respect to external torques (±0.4 N m). Five 6-df force/torque transducers measured finger forces while subjects held a prism handle (6 cm width × 9 cm height) with and without a single finger displaced 2 cm (handle width). The effect of increasing the tangential moment arm was significant (p forces (in >70% of trials) and hence creating greater moments. Thus, the data provides evidence that the grasping system as a rule utilizes mechanical advantage for generating tangential forces. The increase in tangential force was independent of whether the finger was acting as a torque agonist or antagonist, revealing their effects to be additive.

  17. [Multiple finger geodes in children].

    Science.gov (United States)

    Hoeffel, J C; Oprisescu, B; Bresson, A; Ploier, R; Vidailhet, M

    1993-06-01

    Three pediatric patients with multiple geodes in the fingers are reported. This condition occurs mainly between one and three years and at seven years of age and is more common in winter. Affected fingers are swollen. Roentgenograms disclose several small lucent defects which are usually located in the middle phalanx. Several fingers are usually involved. The erythrocyte sedimentation rate is increased in virtually every case. Resolution occurs spontaneously within a few weeks or months. There is no tendency towards recurrence. Although the condition is inflammatory, exposure to cold is probably a precipitating factor.

  18. A study of single nucleotide polymorphism of leptin gene effect on serum copper, zinc and iron concentrations in Czech Pied bulls

    Directory of Open Access Journals (Sweden)

    Aleš Pavlík

    2013-01-01

    Full Text Available Leptin, the product of the ob gene, is secreted mainly in adipose tissue. Due to the associations between plasma leptin concentrations and body fat, leptin could be used as an indicator for the in vivo evaluation of carcass composition in breeding programs. Previous studies showed relation between leptin concentrations and some trace elements, suggesting that they might be mediators of leptin production. The present study was designed to evaluate the effect of single nucleotide polymorphism of the leptin gene on concentration of trace elements in the serum of 58 Czech Pied bulls. Three experimental groups of bulls were formed depending on different leptin genotypes: group CC (n = 28, group CT (n = 21 and group TT (n = 9. In all groups, the age (at a mean age of 240 days and the body weight (mean 291 ± 11 kg difference among the chosen animals was non-significant. Blood samples of all bulls in experimental groups were collected from vena jugularis externa between 8.00 and 9.30 h. Concentrations of copper, zinc and iron in the serum of animals were measured. Significantly lower (P TT group (13.21 ± 1.81 µmol·l-1 compared to CC (20.09 ± 1.11 µmol·l-1 and CT group (19.67 ± 1.45 µmol·l-1. In case of copper and iron concentrations in serum of animals, no differences were recorded between the tested groups. This is the first study of its kind in Czech Pied cattle. Based on our results, we may assume that zinc plays some role in the metabolism of adipose tissue, havings an effect on beef quality.

  19. Zinc and cadmium accumulation in single zebrafish ( Danio rerio) embryos — A total reflection X-ray fluorescence spectrometry application

    Science.gov (United States)

    Mages, Margarete; Bandow, Nicole; Küster, Eberhard; Brack, Werner; von Tümpling, Wolf

    2008-12-01

    Trace metals such as Cadmium (Cd) and Zinc (Zn) are known to exhibit adverse effects on many aquatic organisms including early life stages of fish. In contact with contaminated sediment, fish eggs and embryos may be exposed to metals via the water phase as well as via direct contact with contaminated particles. This may result in body burdens that are difficult to predict and may vary according to individual micro scale exposure conditions. The highly sensitive total reflection X-ray fluorescence spectrometry (TXRF) may provide a tool to analyse individual embryos for internal contaminant concentrations and thus helps to develop a better understanding of dose-response relationships. To test this hypothesis, embryos of Danio rerio were exposed to Cd and Zn spiked sediment in different treatments applying an ion exchange resin for modification of bioavailable concentrations. The TXRF analysis indicated individual embryos with dramatically enhanced exposure compared to other individuals despite uniform exposure conditions on a macro scale. Ion exchanger reduced embryo Zn concentrations to values close to control value with a comparably low standard deviation. Cadmium concentrations in embryos were in the range of 4000 to 7000 µg/g with a median of 5740 µg/g. A commercial ion exchanger reduced individual body burdens by a factor 50 to 100. Individual peak body burdens of up to 3160 µg/g were accompanied by reduced weight of the fish eggs due to early death i.e. coagulation. The investigation of exposure and effects on an individual-based scale may significantly help to reduce uncertainty and inconsistencies occurring in conventional analysis of pooled fish embryo samples.

  20. Zinc and cadmium accumulation in single zebrafish (Danio rerio) embryos - A total reflection X-ray fluorescence spectrometry application

    Energy Technology Data Exchange (ETDEWEB)

    Mages, Margarete [UFZ - Helmholtz Centre for Environmental Research, Dept. River Ecology Brueckstr. 3a/39114 Magdeburg/Germany (Germany); University of Lueneburg, Institute of Ecology and Environmental Chemistry, Department Environmental Chemistry, Scharnhorststrasse 1/21335 Lueneburg/Germany (Germany)], E-mail: margarete.mages@ufz.de; Bandow, Nicole [UFZ - Helmholtz Centre for Environmental Research, Dept. Effect Directed Analysis, Permoser Strasse 15/ 04318 Leipzig/Germany (Germany); Kuester, Eberhard [UFZ - Helmholtz Centre for Environmental Research, Dept. Bioanalytical Ecotoxicology, Permoser Strasse 15/ 04318 Leipzig/Germany (Germany); Brack, Werner [UFZ - Helmholtz Centre for Environmental Research, Dept. Effect Directed Analysis, Permoser Strasse 15/ 04318 Leipzig/Germany (Germany); Tuempling, Wolf von [UFZ - Helmholtz Centre for Environmental Research, Dept. River Ecology Brueckstr. 3a/39114 Magdeburg/Germany (Germany)

    2008-12-15

    Trace metals such as Cadmium (Cd) and Zinc (Zn) are known to exhibit adverse effects on many aquatic organisms including early life stages of fish. In contact with contaminated sediment, fish eggs and embryos may be exposed to metals via the water phase as well as via direct contact with contaminated particles. This may result in body burdens that are difficult to predict and may vary according to individual micro scale exposure conditions. The highly sensitive total reflection X-ray fluorescence spectrometry (TXRF) may provide a tool to analyse individual embryos for internal contaminant concentrations and thus helps to develop a better understanding of dose-response relationships. To test this hypothesis, embryos of Danio rerio were exposed to Cd and Zn spiked sediment in different treatments applying an ion exchange resin for modification of bioavailable concentrations. The TXRF analysis indicated individual embryos with dramatically enhanced exposure compared to other individuals despite uniform exposure conditions on a macro scale. Ion exchanger reduced embryo Zn concentrations to values close to control value with a comparably low standard deviation. Cadmium concentrations in embryos were in the range of 4000 to 7000 {mu}g/g with a median of 5740 {mu}g/g. A commercial ion exchanger reduced individual body burdens by a factor 50 to 100. Individual peak body burdens of up to 3160 {mu}g/g were accompanied by reduced weight of the fish eggs due to early death i.e. coagulation. The investigation of exposure and effects on an individual-based scale may significantly help to reduce uncertainty and inconsistencies occurring in conventional analysis of pooled fish embryo samples.

  1. Zinc finger protein 521 overexpression increased transcript levels of ...

    Indian Academy of Sciences (India)

    2016-02-12

    Feb 12, 2016 ... Dulbecco's modified Eagle medium/Ham's-Nutrient Mixture F-12; EB, embryoid body; EBF1, early B-cell factor 1; FITC, fluorescein isothiocyanate;. Fndc5, firbonectin type III domain containing 5; Gapdh, glyceraldehyde-3-phosphate dehydrogenase; LIF, leukemia inhibitory factor; mESCs, mouse embryonic ...

  2. Zinc finger protein 521 overexpression increased transcript levels of ...

    Indian Academy of Sciences (India)

    ... Iran; Department of Biology, School of Sciences, University of Isfahan, Isfahan, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, ...

  3. Zinc finger protein 521 overexpression increased transcript levels of ...

    Indian Academy of Sciences (India)

    2016-02-12

    Feb 12, 2016 ... Zfp521 enhanced transcription levels of both EGFP and endogenous Fndc5. This result was confirmed by overexpression the aforementioned vectors in HEK cells and indicated that Zfp521 functions upstream of Fndc5 expression. It is most likely that Zfp521 may act through the binding to its response ...

  4. The binding of in vitro synthesized adenovirus DNA binding protein to single-stranded DNA is stimulated by zinc ions

    NARCIS (Netherlands)

    Vos, H.L.; Lee, F.M. van der; Sussenbach, J.S.

    1988-01-01

    We have synthesized wild type DNA binding protein (DBP) of adenovirus type 5 (Ad5) and several truncated forms of this protein by a combination of in vitro transcription and translation. The proteins obtained were tested for binding to a single-stranded DNA-cellulose column. It could be shown that

  5. Comparative hazard identification by a single dose lung exposure of zinc oxide and silver nanomaterials in mice

    DEFF Research Database (Denmark)

    Gosens, Ilse; Kermanizadeh, Ali; Jacobsen, Nicklas Raun

    2015-01-01

    O) and a triethoxycaprylylsilane functionalised ZnO NM suspended in water with 2% mouse serum were examined 24 hours following a single intratracheal instillation (I.T.). An acute pulmonary inflammation was noted (marked by a polymorphonuclear neutrophil influx) with cell damage (LDH and total protein) in broncho-alveolar lavage...

  6. Biosorption of chromium, copper and zinc by wine-processing waste sludge: Single and multi-component system study

    International Nuclear Information System (INIS)

    Liu, Cheng-Chung; Wang, Ming-Kuang; Chiou, Chyow-San; Li, Yuan-Shen; Yang, Chia-Yi; Lin, Yu-An

    2009-01-01

    Wine-processing waste sludge (WPWS) has been shown to have powerful potential for sorption of some heavy metals (i.e., chromium, lead and nickel) in single-component aqueous solutions. But although most industrial wastewater contains two or more toxic metals, there are few sorption studies on multicomponent metals by WPWS. This study has two goals: (i) conduct competitive adsorption using Cr, Cu and Zn as sorbates and examine their interaction in binary or ternary systems; and (ii) determine the effects of temperature on the kinetic sorption reaction. The sludge tested contained a high amount of organic matter (38%) and had a high cation exchange capacity (CEC, 255 cmol c kg -1 ). Infrared analysis reveals that carboxyl is the main functional group in this WPWS. The 13 C NMR determination indicates alkyl-C and carboxyl-C are major organic functional groups. At steady state, there are about 40.4% (Cr), 35.0% (Cu) and 21.9% (Zn) sorbed in the initial 6.12 mM of single-component solutions. Only pseudo-second-order sorption kinetic model successfully describes the kinetics of sorption for all experimental metals. The rate constants, k 2 , of Cr, Cu and Zn in single-component solutions are 0.016, 0.030 and 0.154 g mg -1 min -1 , respectively. The sorption of metals by WPWS in this competitive system shows the trend: Cr > Cu > Zn. Ions of charge, hydrated radius and electronic configuration are main factors affecting sorption capacity. The least sorption for Zn in this competitive system can be attributed to its full orbital and largest hydrated radius. Though the effect of temperature on Zn sorption is insignificant, high temperature favors the other metallic sorptions, in particular for Cr. However, the Cr sorption is lower than Cu at 10 deg. C. The Cr sorption by WPWS can be higher than that of Cu at 30 deg. and 50 deg. C.

  7. Diagnostic Performance of a Cadmium-Zinc-Telluride Single-Photon Emission Computed Tomography System With Low-Dose Technetium-99m as Assessed by Fractional Flow Reserve.

    Science.gov (United States)

    Chikamori, Taishiro; Hida, Satoshi; Tanaka, Nobuhiro; Igarashi, Yuko; Yamashita, Jun; Shiba, Chie; Murata, Naotaka; Hoshino, Kou; Hokama, Yohei; Yamashina, Akira

    2016-04-25

    Although stress single-photon emission computed tomography (SPECT) using a cadmium-zinc-telluride (CZT) camera facilitates radiation dose reduction, only a few studies have evaluated its diagnostic accuracy in Japanese patients by applying fractional flow reserve (FFR) measurements. We prospectively evaluated 102 consecutive patients with suspected or known coronary artery disease with a low-dose stress/rest protocol ((99m)Tc radiotracer 185/370 MBq) using CZT SPECT. Within 3 months, coronary angiography was performed and a significant stenosis was defined as ≥90% diameter narrowing on visual estimation, or as a lesion of <90% and ≥ 50% stenosis with FFR ≤0.80. To detect individual coronary stenosis, the respective sensitivity, specificity, and accuracy were 86%, 75%, and 82% for left anterior descending artery stenosis, 76%, 81%, and 79% for left circumflex artery stenosis, and 87%, 92%, and 90% for right coronary artery stenosis. When limited to 92 intermediate stenotic lesions in which FFR was measured, stress SPECT showed 77% sensitivity, 91% specificity, and 84% accuracy, whereas the diagnostic value decreased to 52% sensitivity, 68% specificity, and 58% accuracy based only on visual estimation of ≥75% diameter narrowing. CZT SPECT demonstrated a good diagnostic yield in detecting hemodynamically significant coronary stenoses as assessed by FFR, even when using a low-dose (99m)Tc protocol with an effective dose ≤5 mSv. (Circ J 2016; 80: 1217-1224).

  8. Interaction of zinc and cobalt with dipeptides and their DNA binding ...

    Indian Academy of Sciences (India)

    Unknown

    , characterization and solu- tion studies of complexes mimicking the zinc core in zinc fingers and establishing the DNA binding.14–18. As part of our efforts to create a simple small mole- cule model and its ability to recognize DNA, the in-.

  9. Biosorption of chromium, copper and zinc by wine-processing waste sludge: Single and multi-component system study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cheng-Chung [Department of Environmental Engineering, National Ilan University, Ilan, 260, Taiwan (China); Wang, Ming-Kuang, E-mail: mkwang@ntu.edu.tw [Department of Agricultural Chemistry, National Taiwan University, Taipei, 106, Taiwan (China); Chiou, Chyow-San; Li, Yuan-Shen [Department of Environmental Engineering, National Ilan University, Ilan, 260, Taiwan (China); Yang, Chia-Yi [Department of Chemical and Materials Engineering, Tamkang University, Tamsui, 251, Taiwan (China); Lin, Yu-An [Department of Animal Science, National Ilan University, Ilan, 260, Taiwan (China)

    2009-11-15

    Wine-processing waste sludge (WPWS) has been shown to have powerful potential for sorption of some heavy metals (i.e., chromium, lead and nickel) in single-component aqueous solutions. But although most industrial wastewater contains two or more toxic metals, there are few sorption studies on multicomponent metals by WPWS. This study has two goals: (i) conduct competitive adsorption using Cr, Cu and Zn as sorbates and examine their interaction in binary or ternary systems; and (ii) determine the effects of temperature on the kinetic sorption reaction. The sludge tested contained a high amount of organic matter (38%) and had a high cation exchange capacity (CEC, 255 cmol{sub c} kg{sup -1}). Infrared analysis reveals that carboxyl is the main functional group in this WPWS. The {sup 13}C NMR determination indicates alkyl-C and carboxyl-C are major organic functional groups. At steady state, there are about 40.4% (Cr), 35.0% (Cu) and 21.9% (Zn) sorbed in the initial 6.12 mM of single-component solutions. Only pseudo-second-order sorption kinetic model successfully describes the kinetics of sorption for all experimental metals. The rate constants, k{sub 2}, of Cr, Cu and Zn in single-component solutions are 0.016, 0.030 and 0.154 g mg{sup -1} min{sup -1}, respectively. The sorption of metals by WPWS in this competitive system shows the trend: Cr > Cu > Zn. Ions of charge, hydrated radius and electronic configuration are main factors affecting sorption capacity. The least sorption for Zn in this competitive system can be attributed to its full orbital and largest hydrated radius. Though the effect of temperature on Zn sorption is insignificant, high temperature favors the other metallic sorptions, in particular for Cr. However, the Cr sorption is lower than Cu at 10 deg. C. The Cr sorption by WPWS can be higher than that of Cu at 30 deg. and 50 deg. C.

  10. Detection of zinc oxide and cerium dioxide nanoparticles during drinking water treatment by rapid single particle ICP-MS methods.

    Science.gov (United States)

    Donovan, Ariel R; Adams, Craig D; Ma, Yinfa; Stephan, Chady; Eichholz, Todd; Shi, Honglan

    2016-07-01

    Nanoparticles (NPs) entering water systems are an emerging concern as NPs are more frequently manufactured and used. Single particle inductively coupled plasma-mass spectrometry (SP-ICP-MS) methods were validated to detect Zn- and Ce-containing NPs in surface and drinking water using a short dwell time of 0.1 ms or lower, ensuring precision in single particle detection while eliminating the need for sample preparation. Using this technique, information regarding NP size, size distribution, particle concentration, and dissolved ion concentrations was obtained simultaneously. The fates of Zn- and Ce-NPs, including those found in river water and added engineered NPs, were evaluated by simulating a typical drinking water treatment process. Lime softening, alum coagulation, powdered activated carbon sorption, and disinfection by free chlorine were simulated sequentially using river water. Lime softening removed 38-53 % of Zn-containing and ZnO NPs and >99 % of Ce-containing and CeO2 NPs. Zn-containing and ZnO NP removal increased to 61-74 % and 77-79 % after alum coagulation and disinfection, respectively. Source and drinking water samples were collected from three large drinking water treatment facilities and analyzed for Zn- and Ce-containing NPs. Each facility had these types of NPs present. In all cases, particle concentrations were reduced by a minimum of 60 % and most were reduced by >95 % from source water to finished drinking water. This study concludes that uncoated ZnO and CeO2 NPs may be effectively removed by conventional drinking water treatments including lime softening and alum coagulation.

  11. Differential uptake and oxidative stress response in zebrafish fed a single dose of the principal copper and zinc enriched sub-cellular fractions of Gammarus pulex

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Farhan R., E-mail: f.khan@nhm.ac.uk [Nutritional Sciences Division, King' s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH (United Kingdom); Bury, Nicolas R.; Hogstrand, Christer [Nutritional Sciences Division, King' s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH (United Kingdom)

    2010-09-15

    The sub-cellular compartmentalisation of trace metals and its effect on trophic transfer and toxicity in the aquatic food chain has been a subject of growing interest. In the present study, the crustacean Gammarus pulex was exposed to either 11 {mu}g Cu l{sup -1}, added solely as the enriched stable isotope {sup 65}Cu, or 660 {mu}g Zn l{sup -1}, radiolabeled with 2MBq {sup 65}Zn, for 16 days. Post-exposure the heat stable cytosol containing metallothionein-like proteins (MTLP) and a combined granular and exoskeletal (MRG + exo) fractions were isolated by differential centrifugation, incorporated into gelatin and fed to zebrafish as a single meal. Assimilation efficiency (AE) and intestinal lipid peroxidation, as malondialdehyde (MDA) were measured. There was a significant difference (p < 0.05) between the retention of the MTLP-Zn (39.0 {+-} 6.4%) and MRG + exo-Zn (17.2 {+-} 3.7%) and of this zinc retained by the zebrafish a significantly greater proportion of the MTLP-Zn feed had been transported away from the site of uptake. For {sup 65}Cu, although the results pointed towards greater bioavailability of the MTLP fraction compared to MRG + exo during the slow elimination phase (24-72 h) these results were not significant (p = 0.155). Neither zinc feed provoked a lipid peroxidation response in the intestinal tissue of zebrafish compared to control fish (gelatin fed), but both {sup 65}Cu labeled feeds did. The greater effect was exerted by the MRG + exo (2.96 {+-} 0.29 nmol MDA mg protein{sup -1}) feed which three-fold greater than control (p < 0.01) and almost twice the MDA concentration of the MTLP feed (1.76 {+-} 0.21 nmol MDA mg protein{sup -1}, p < 0.05). The oxidative stress response produced by Zn and Cu is in keeping with their respective redox potentials; Zn being oxidatively inert and Cu being redox active. These results are similar, in terms of bioavailability and stress response of each feed, to those in our previous study in which {sup 109}Cd labeled G

  12. Mesofluidic controlled robotic or prosthetic finger

    Science.gov (United States)

    Lind, Randall F; Jansen, John F; Love, Lonnie J

    2013-11-19

    A mesofluidic powered robotic and/or prosthetic finger joint includes a first finger section having at least one mesofluidic actuator in fluid communication with a first actuator, a second mesofluidic actuator in fluid communication with a second actuator and a second prosthetic finger section pivotally connected to the first finger section by a joint pivot, wherein the first actuator pivotally cooperates with the second finger to provide a first mechanical advantage relative to the joint point and wherein the second actuator pivotally cooperates with the second finger section to provide a second mechanical advantage relative to the joint point.

  13. [Finger extension. II. Materials and methods].

    Science.gov (United States)

    Kuhlmann, J N; Boabighi, A; Laudet, C; Guerin-Surville, H; Baux, S

    1992-06-01

    The study of the extensor apparatus through different methods concerns 200 fingers, the most of fresh cadavers. The dissection through direct observation or with surgical microscope of the dorsal aponeurosis of 30 fingers has been completed by an histological study of 10 fingers. The mechanic properties of each dorsal aponeurotic structure has been tested by extensometry on 12 fingers. The functional study of the role and of the transmission of the different motor components concerns 128 fingers. It has been completed by experimental sections of each aponeurotic structure concerning 20 fingers.

  14. Amniogenesis in Schreiber's long-fingered bat Miniopterus ...

    African Journals Online (AJOL)

    Schreiber's long-fingered bat, Miniopterus schreibersii natalensis is seasonally monoestrous, carrying a single foetus in the right uterine horn. Implantation is superficial, the amnion being a pleuramnion. Lateral folds, originating from the ends of the caudal and cephalic folds, are the main contributors in the formation of the ...

  15. Periodic density functional theory study of structural and electronic properties of single-walled zinc oxide and carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Marana, Naiara L. [Modeling and Molecular Simulations Group, São Paulo State University, UNESP, 17033-360 Bauru, SP (Brazil); Albuquerque, Anderson R. [Federal Institute of Education, Science and Technology of Sertão Pernambucano, 56400-000 Floresta, PE (Brazil); La Porta, Felipe A. [Chemistry Department, Federal Technological University of Paraná, 86036-370 Londrina, PR (Brazil); Longo, Elson [São Paulo State University, Chemistry Institute, UNESP, 14801-907 Araraquara, SP (Brazil); Sambrano, Julio R. [Modeling and Molecular Simulations Group, São Paulo State University, UNESP, 17033-360 Bauru, SP (Brazil)

    2016-05-15

    Periodic density functional theory calculations with the B3LYP hybrid functional and all-electron Gaussian basis set were performed to simulate the structural and electronic properties as well as the strain and formation energies of single-walled ZnO nanotubes (SWZnONTs) and Carbon nanotubes (SWCNTs) with different chiralities as functions of their diameters. For all SWZnONTs, the band gap, strain energy, and formation energy converge to ~4.5 eV, 0.0 eV/atom, and 0.40 eV/atom, respectively. This result suggests that the nanotubes are formed more easily from the surface than from the bulk. For SWCNTs, the strain energy is always positive, while the formation energy is negative for armchair and zigzag nanotubes, therefore suggesting that these types of nanotubes can be preferentially formed from the bulk. The electronic properties of SWCNTs depend on the chirality; all armchair nanotubes are metallic, while zigzag and chiral nanotubes can be metallic or semiconducting, depending on the n and m vectors. - Graphical abstract: DFT/B3LYP were performed to simulate the structural and electronic properties as well as the strain and formation energies of SWZnONTs and SWCNTs with different chiralities as functions of their diameters. - Highlights: • The energies of SWZnONTs converge for chirality with diameters up 20 Å. • SWCNTs electronic properties depend on the chirality. • The properties of SWZnONTs are very similar to those of monolayer surface.

  16. Redetermination of the crystal structure of β-zinc molybdate from single-crystal X-ray diffraction data.

    Science.gov (United States)

    Mtioui-Sghaier, Olfa; Mendoza-Meroño, Rafael; Ktari, Lilia; Dammak, Mohamed; García-Granda, Santiago

    2015-07-01

    The crystal structure of the β-polymorph of ZnMoO4 was re-determined on the basis of single-crystal X-ray diffraction data. In comparison with previous powder X-ray diffraction studies [Katikaneani & Arunachalam (2005 ▸). Eur. J. Inorg. Chem. pp. 3080-3087; Cavalcante et al. (2013 ▸). Polyhedron, 54, 13-25], all atoms were refined with anisotropic displacement parameters, leading to a higher precision with respect to bond lengths and angles. β-ZnMoO4 adopts the wolframite structure type and is composed of distorted ZnO6 and MoO6 octa-hedra, both with point group symmetry 2. The distortion of the octa-hedra is reflected by variation of bond lengths and angles from 2.002 (3)-2.274 (4) Å, 80.63 (11)-108.8 (2)° for equatorial and 158.4 (2)- 162.81 (14)° for axial angles (ZnO6), and of 1.769 (3)-2.171 (3) Å, 73.39 (16)-104.7 (2), 150.8 (2)-164.89 (15)° (MoO6), respectively. In the crystal structure, the same type of MO6 octa-hedra share edges to built up zigzag chains extending parallel to [001]. The two types of chains are condensed by common vertices into a framework structure. The crystal structure can alternatively be described as derived from a distorted hexa-gonally closed packed arrangement of the O atoms, with Zn and Mo in half of the octa-hedral voids.

  17. X-Ray Exam: Finger

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Finger KidsHealth / For Parents / X-Ray Exam: ... Muscles, and Joints Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  18. Zinc homeostasis is involved in unfolded protein response under salt stress

    OpenAIRE

    Wang, Miaoying; Xu, Qiangyi; Yuan, Ming

    2011-01-01

    Accumulation of unfolded protein or misfolded protein causes endoplasmic reticulum (ER) stress. Increased salt concentration activates a stress response pathway in the ER in Arabidopsis thaliana to induce the expression of several salt stress response genes, leading to a more optimal protein folding environment in the ER. In addition, some salt stress-regulated proteins require zinc for their activity, including some zinc-dependent DNA binding proteins and zinc-finger proteins. In a recent st...

  19. Evaluation of Zinc solubilization potential by different strains of ...

    African Journals Online (AJOL)

    Michael Horsfall

    microorganisms. Entl Toxi Chemi 16: 146-153. Chernavina, P (1970). Importance of trace elements in pigment production of microbes. Molekulasnaya Biologiya 6: 340-355. Clarke, ND; Berg, JM (1998). Zinc fingers in. Caenorhabditis elegans: finding families and probing pathways. Science 282. 2018–2022. Claverys J-P.

  20. Comparative assessment of the area of sealer voids in single cone obturation done with mineral trioxide aggregate, epoxy resin, and zinc-oxide eugenol based sealers

    Directory of Open Access Journals (Sweden)

    Anisha Kumar

    2016-01-01

    Full Text Available Introduction: Voids in the sealer mass have the potential to allow leakage through obturation. They are more critical in single cone (SC obturation as the volume of sealer used in this obturation is larger when compared to other obturations. Aim: To compare the area of voids in mineral trioxide aggregate (MTA-based, resin-based, and zinc oxide-eugenol-based sealers when employed with SC obturation technique. Materials and Methods: Fifteen teeth were cleaned and shaped and divided into three groups for SC obturation using MTA Fillapex, AH26, and Pulpdent sealers, respectively. The obturated teeth were sectioned at apical, middle, and coronal third, and area of voids in the sealer was assessed using a stereomicroscope and digital images and image software. The results were statistically analyzed using SPSS software and Kruskal-Wallis and Mann-Whitney tests. Results: The three tested sealers showed voids in all the sections except MTA Fillapex, which was void free in apical and middle sections. There were significant differences between these sealers regarding their section wise area of voids (P < 0.05. Similarly, there were significant differences in their overall area of voids (P < 0.05 with MTA Fillapex showing significantly least area of voids followed by AH26. Conclusions: SC obturation with MTA Fillapex sealer, which showed void free apical and middle third sections, had significantly least area of voids in the sealer followed by the one with AH26 sealer, whereas SC obturation with Pulpdent sealer had significantly most area of voids.

  1. [When doors slam, fingers jam!].

    Science.gov (United States)

    Claudet, I; Toubal, K; Carnet, C; Rekhroukh, H; Zelmat, B; Debuisson, C; Cahuzac, J-P

    2007-08-01

    Epidemiological analysis in a universitary paediatric emergency unit of children admitted after accidental injuries resulting from fingers crushed in a door. Prospective, descriptive cohort study from September 6th, 2004 to July 1st, 2005 included all children admitted for finger injuries crushed in a non-automatic door. included accidents due to automatic doors, toy's or refrigerator doors, families who refused to participate to the study or families who had left the waiting area before medical examination. Collected data were patient and family characteristics, accident characteristics and its management. Three hundred and forty children affected by 427 digital lesions were included. The mean age was 5.5+/-3.8 years (range 4 months - 15.5 years). Male/female ratio was equal to 1.2: 1. Fifty-eight percent of patients belonged to families composed of 3 or more siblings. Ninety-three per cent of families came to hospital within the first 2 hours after the accident (mean delay 99+/-162 min, median range 54 minutes). Location of the accident was: domestic (62%, at home (64%)), at school (17%). Locations within the home were: the bedroom (33%), bathroom and toilets (21%). An adult was present in 75% of cases and responsible for the trauma in 25% of accidents, another child in 44%. The finger or fingers were trapped on the hinge side in 57% of patients. No specific safeguard devices were used by 94% of families. Among victims, 20% had several crushed digits; left and right hand were injured with an equal frequency. The commonest involved digits were: the middle finger (29%), the ring finger (23%). The nail plate was damaged in 60% of digital lesions, associated with a wound (50%), a distal phalanx fracture (P3) (12%). Six children had a partial or complete amputation of P3, 2 children a lesion of the extensor tendon, 1 child had a rupture of the external lateral ligament. Three percent of children required an admission to the paediatric orthopaedic surgery unit. Post

  2. Novel structural features in two ZHX homeodomains derived from a systematic study of single and multiple domains

    NARCIS (Netherlands)

    Bird, L.E.; Ren, J.; Nettleship, J.E.; Folkers, G.E.|info:eu-repo/dai/nl/162277202; Owens, RJ; Stammers, D.K.

    2010-01-01

    Zhx1 to 3 (zinc-fingers and homeoboxes) form a set of paralogous genes encoding multi-domain proteins. ZHX proteins consist of two zinc fingers followed by five homeodomains. ZHXs have biological roles in cell cycle control by acting as co-repressors of the transcriptional regulator Nuclear Factor

  3. [Symmetrical lividity of the fingers].

    Science.gov (United States)

    Kocsard, E; Kossard, S

    1988-07-01

    Symmetric lividity of the soles of the feet was first reported in two children in 1925 by Pernet. The characteristic manifestation of this dermatosis consisted in hyperkeratosis and hyperhidrosis with livid discoloration of the pressure areas of the soles. Later the same name was applied to a similar dermatosis in which the hyperkeratotic and hyperhidrotic patches of skin on the soles had a whitish grey discoloration and the livid color, if present at all, was seen only over the marginal areas not affected by the keratosis. Similar livid keratoses affecting the palmar sides of the fingers have been seen only occasionally. The 17-year-old girl presented in this paper had a 11-year history of emotional hyperhidrosis and is a rare illustration of symmetrical lividity in its original form, localized to the fingers only.

  4. Symptomatic zinc deficiency in experimental zinc deprivation.

    OpenAIRE

    Taylor, C M; Goode, H F; Aggett, P J; Bremner, I; Walker, B E; Kelleher, J

    1992-01-01

    An evaluation of indices of poor zinc status was undertaken in five male subjects in whom dietary zinc intake was reduced from 85 mumol d-1 in an initial phase of the study to 14 mumol d-1. One of the subjects developed features consistent with zinc deficiency after receiving the low zinc diet for 12 days. These features included retroauricular acneform macullo-papular lesions on the face, neck, and shoulders and reductions in plasma zinc, red blood cell zinc, neutrophil zinc and plasma alkal...

  5. Evaluation of Cadmium-Zinc-Telluride Detector-based Single-Photon Emission Computed Tomography for Nuclear Cardiology: a Comparison with Conventional Anger Single-Photon Emission Computed Tomography.

    Science.gov (United States)

    Niimi, Takanaga; Nanasato, Mamoru; Sugimoto, Mitsuo; Maeda, Hisatoshi

    2017-12-01

    The differences in performance between the cadmium-zinc-telluride (CZT) camera or collimation systems and conventional Anger single-photon emission computed tomography (A-SPECT) remain insufficient from the viewpoint of the user. We evaluated the performance of the D-SPECT (Spectrum Dynamics, Israel) system to provide more information to the cardiologist or radiological technologist about its use in the clinical field. This study evaluated the performance of the D-SPECT system in terms of energy resolution, detector sensitivity, spatial resolution, modulation transfer function (MTF), and collimator resolution in comparison with that of A-SPECT (Bright-View, Philips, Japan). Energy resolution and detector sensitivity were measured for Tc-99m, I-123, and Tl-201. The SPECT images produced by both systems were evaluated visually using the anthropomorphic torso phantom. The energy resolution of D-SPECT with Tc-99m and I-123 was approximately two times higher than that of A-SPECT. The detector sensitivity of D-SPECT was higher than that of A-SPECT (Tc-99m: 4.2 times, I-123: 2.2 times, and Tl-201: 5.9 times). The mean spatial resolution of D-SPECT was two times higher than that of A-SPECT. The MTF of D-SPECT was superior to that of the A-SPECT system for all frequencies. The collimator resolution of D-SPECT was lower than that of A-SPECT; however, the D-SPECT images clearly indicated better spatial resolution than the A-SPECT images. The energy resolution, detector sensitivity, spatial resolution, and MTF of D-SPECT were superior to those of A-SPECT. Although the collimator resolution was lower than that of A-SPECT, the D-SPECT images were clearly of better quality.

  6. Current status of ultrasonography of the finger

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seun Ah; Kim, Baek Hyun [Dept. of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan (Korea, Republic of); Kim, Seon Jeong [Dept. of Radiology, Myongji Hospital, Seonam University College of Medicine, Goyang (Korea, Republic of); Kim, Ji Na [Dept. of Radiology, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon (Korea, Republic of); Park, Sun Young [Dept. of Radiology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang (Korea, Republic of); Choi, Kyung Hee [Incheon Baek Hospital, Incheon (Korea, Republic of)

    2016-03-15

    The recent development of advanced high-resolution transducers has enabled the fast, easy, and dynamic ultrasonographic evaluation of small, superficial structures such as the finger. In order to best exploit these advances, it is important to understand the normal anatomy and the basic pathologies of the finger, as exemplified by the following conditions involving the dorsal, volar, and lateral sections of the finger: sagittal band injuries, mallet finger, and Boutonnière deformity (dorsal aspect); flexor tendon tears, trigger finger, and volar plate injuries (volar aspect); gamekeeper’s thumb (Stener lesions) and other collateral ligament tears (lateral aspect); and other lesions. This review provides a basis for understanding the ultrasonography of the finger and will therefore be useful for radiologists.

  7. Prosthetic rehabilitation of an amputated finger

    Directory of Open Access Journals (Sweden)

    Meenu Garg

    2016-01-01

    Full Text Available Amputation of finger causes devastating physical, psychosocial, and economic damage to an individual. The concealment of an amputated part with the help of prosthesis can shield an amputee from social stigma. Prosthesis for such patient must be comfortable to wear lightweight, durable, cosmetically pleasing easy to put on and remove. The restoration of finger amputations depends on the amount of tissue involved, the involvement of bone, the angles and levels of amputation, and the involvement of other fingers. The microsurgical reimplantation helps to save many severely injured and traumatically amputed finger. The prosthetic rehabilitation of an amputated finger is considered when microvascular reconstruction is not possible, unavailable, unsuccessful, or unaffordable. Most accepted material is silicones because of their better esthetics, ease of manipulation, and availability. This paper presents prosthetic rehabilitation of index finger of the right hand with custom made silicon prosthesis.

  8. In the finger it lingers

    Directory of Open Access Journals (Sweden)

    Irfan Mohamad

    2017-08-01

    Full Text Available A previously healthy 80-year-old woman presented with a history of a thorn prick injury over the distal phalange of her left finger obtained while gardening two months ago. She claimed to have a non-healing cut with a nodular lesion, which progressively increased in size, extending upwards towards the region of her left arm. There was no fever or palpable lymph nodes in the axillary region. She had been prescribed antibiotics from the local hospital but her condition did not improve.

  9. Improved Acuity and Dexterity but Unchanged Touch and Pain Thresholds following Repetitive Sensory Stimulation of the Fingers

    Directory of Open Access Journals (Sweden)

    Rebecca Kowalewski

    2012-01-01

    Full Text Available Neuroplasticity underlies the brain’s ability to alter perception and behavior through training, practice, or simply exposure to sensory stimulation. Improvement of tactile discrimination has been repeatedly demonstrated after repetitive sensory stimulation (rSS of the fingers; however, it remains unknown if such protocols also affect hand dexterity or pain thresholds. We therefore stimulated the thumb and index finger of young adults to investigate, besides testing tactile discrimination, the impact of rSS on dexterity, pain, and touch thresholds. We observed an improvement in the pegboard task where subjects used the thumb and index finger only. Accordingly, stimulating 2 fingers simultaneously potentiates the efficacy of rSS. In fact, we observed a higher gain of discrimination performance as compared to a single-finger rSS. In contrast, pain and touch thresholds remained unaffected. Our data suggest that selecting particular fingers modulates the efficacy of rSS, thereby affecting processes controlling sensorimotor integration.

  10. Clinical Aspects of Trace Elements: Zinc in Human Nutrition - Assessment of Zinc Status

    Directory of Open Access Journals (Sweden)

    Michelle M Pluhator

    1996-01-01

    Full Text Available Because the limiting and vulnerable zinc pool has not been identified, it becomes a challenge to determine which of the many zinc pools is most susceptible to deficiency. As a consequence, defining and assessing zinc status in the individual patient is a somewhat uncertain process. Laboratory analysis of zinc status is difficult because no single biochemical criterion can reliably reflect zinc body stores. Many indexes have been examined in the hopes of discovering a method for the assessment of zinc nutriture. None of the methods currently used can be wholeheartedly recommended because they are fraught with problems that affect their use and interpretation. However, these methods remain in use for clinical and research purposes, though their benefits and drawbacks must always be acknowledged. Until an acceptable method of analysis is discovered, clinicians must rely for confirmation of zinc deficiency on a process of supplementing with zinc and observing the patient’s response. The main indexes (plasma/serum, erythrocyte, leukocyte, neutrophil, urine, hair and salivary zinc levels, taste acuity and oral zinc tolerance tests, and measurement of metallothionein levels are reviewed. Measurement of plasma or erythrocyte metallothionein levels shows promise as a future tool for the accurate determination of zinc status.

  11. Touching Textured Surfaces: Cells in Somatosensory Cortex Respond Both to Finger Movement and to Surface Features

    Science.gov (United States)

    Darian-Smith, Ian; Sugitani, Michio; Heywood, John; Karita, Keishiro; Goodwin, Antony

    1982-11-01

    Single neurons in Brodmann's areas 3b and 1 of the macaque postcentral gyrus discharge when the monkey rubs the contralateral finger pads across a textured surface. Both the finger movement and the spatial pattern of the surface determine this discharge in each cell. The spatial features of the surface are represented unambiguously only in the responses of populations of these neurons, and not in the responses of the constituent cells.

  12. Surgical Treatment of Trigger Finger: Open Release

    Directory of Open Access Journals (Sweden)

    Firat Ozan

    2016-01-01

    Full Text Available In this study, open A1 pulley release results were evaluated in patients with a trigger finger diagnosis. 45 patients (29 females, 16 males, mean age 50.7 ± 11.9; range (24-79, 45 trigger fingers were released via open surgical technique. On the 25 of 45 cases were involved in the right hand and 16 of them were at the thumb, 2 at index, 6 at the middle and 1 at ring finger. Similarly, at the left hand, 15 of 20 cases were at the thumb, 1 at the index finger, 2 at middle finger and 2 at ring finger. Average follow-up time was 10.2 ± 2.7 (range, 6-15 months. Comorbidities in patients were; diabetes mellitus at 6 cases (13.3%, hypertension at 11 cases (24.4%, hyperthyroidism at 2 cases (4.4%, dyslipidemia at 2 cases (4.4% and lastly 2 cases had carpal tunnel syndrome operation. The mean time between the onset of symptoms to surgery was 6.9 ± 4.8 (range, 2-24 months. Patient satisfaction was very good in 34 cases (75.4% and good in 11 (24.6% patients. The distance between the pulpa of the operated finger and the palm was normal in every case postoperatively. We have not encountered any postoperative complications. We can recommend that; A1 pulley release via open incision is an effective and reliable method in trigger finger surgery.

  13. Use of twin dorsal middle phalangeal finger flaps for thumb or index finger reconstruction.

    Science.gov (United States)

    Qi, W; Chen, K J

    2013-05-01

    Amputation or degloving injuries of the thumb or index finger are highly disabling. We describe the use of twin dorsal middle finger flaps harvested from the dorsal aspects of the middle and ring fingers, and based on one palmar proper digital artery, its venae comitantes, and the dorsal branches of the palmar digital nerves of the middle and ring fingers, respectively. These flaps offer advantages when large soft tissue defects of the thumb or index finger are present. In this study, twin dorsal middle finger flaps were used in nine patients (six thumbs, three index fingers). All flaps completely survived. At the mean follow-up of 20 months, the appearance of the reconstructed thumbs or index fingers was acceptable, the length was maintained, and the mean static 2-point discrimination values were 10 mm in the palmar flap and 13 mm in the dorsal flap of the reconstructed digit. All patients were satisfied with the appearance and mobility of the donor fingers. All but one donor finger showed normal finger pulp sensibility, with a static 2-point discrimination between 3 and 6 mm.

  14. Production of zinc pellets

    Science.gov (United States)

    Cooper, John F.

    1996-01-01

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries.

  15. Microwave Synthesis of Zinc Hydroxy Sulfate Nanoplates and Zinc Oxide Nanorods in the Classroom

    Science.gov (United States)

    Dziedzic, Rafal M.; Gillian-Daniel, Anne Lynn; Peterson, Greta M.; Martínez-Herna´ndez, Kermin J.

    2014-01-01

    In this hands-on, inquiry-based lab, high school and undergraduate students learn about nanotechnology by synthesizing their own nanoparticles in a single class period. This simple synthesis of zinc oxide nanorods and zinc hydroxy sulfate nanoplates can be done in 15 min using a household microwave oven. Reagent concentration, reaction…

  16. NMR structure of the first PHD finger of autoimmune regulator protein (AIRE1). Insights into autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) disease.

    Science.gov (United States)

    Bottomley, Matthew James; Stier, Gunter; Pennacchini, Danilo; Legube, Gaelle; Simon, Bernd; Akhtar, Asifa; Sattler, Michael; Musco, Giovanna

    2005-03-25

    Mutations in the autoimmune regulator protein AIRE1 cause a monogenic autosomal recessively inherited disease: autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). AIRE1 is a multidomain protein that harbors two plant homeodomain (PHD)-type zinc fingers. The first PHD finger of AIRE1 is a mutational hot spot, to which several pathological point mutations have been mapped. Using heteronuclear NMR spectroscopy, we determined the solution structure of the first PHD finger of AIRE1 (AIRE1-PHD1), and characterized the peptide backbone mobility of the domain. We performed a conformational analysis of pathological AIRE1-PHD1 mutants that allowed us to rationalize the structural impact of APECED-causing mutations and to identify an interaction site with putative protein ligands of the AIRE1-PHD1 domain. The structure unequivocally exhibits the canonical PHD finger fold, with a highly conserved tryptophan buried inside the structure. The PHD finger is stabilized by two zinc ions coordinated in an interleaved (cross-brace) scheme. This zinc coordination resembles RING finger domains, which can function as E3 ligases in the ubiquitination pathway. Based on this fold similarity, it has been suggested that PHD fingers might also function as E3 ligases, although this hypothesis is controversial. At variance to a previous report, we could not find any evidence that AIRE1-PHD1 has an intrinsic E3 ubiquitin ligase activity, nor detect any direct interaction between AIRE1-PHD1 and its putative cognate E2. Consistently, we show that the AIRE1-PHD1 structure is clearly distinct from the RING finger fold. Our results point to a function of the AIRE1-PHD1 domain in protein-protein interactions, which is impaired in some APECED mutations.

  17. Finger wear detection for production line battery tester

    Science.gov (United States)

    Depiante, Eduardo V.

    1997-01-01

    A method for detecting wear in a battery tester probe. The method includes providing a battery tester unit having at least one tester finger, generating a tester signal using the tester fingers and battery tester unit with the signal characteristic of the electrochemical condition of the battery and the tester finger, applying wavelet transformation to the tester signal including computing a mother wavelet to produce finger wear indicator signals, analyzing the signals to create a finger wear index, comparing the wear index for the tester finger with the index for a new tester finger and generating a tester finger signal change signal to indicate achieving a threshold wear change.

  18. Dietary phytate, zinc and hidden zinc deficiency.

    Science.gov (United States)

    Sandstead, Harold H; Freeland-Graves, Jeanne H

    2014-10-01

    Epidemiological data suggest at least one in five humans are at risk of zinc deficiency. This is in large part because the phytate in cereals and legumes has not been removed during food preparation. Phytate, a potent indigestible ligand for zinc prevents it's absorption. Without knowledge of the frequency of consumption of foods rich in phytate, and foods rich in bioavailable zinc, the recognition of zinc deficiency early in the illness may be difficult. Plasma zinc is insensitive to early zinc deficiency. Serum ferritin concentration≤20μg/L is a potential indirect biomarker. Early effects of zinc deficiency are chemical, functional and may be "hidden". The clinical problem is illustrated by 2 studies that involved US Mexican-American children, and US premenopausal women. The children were consuming home diets that included traditional foods high in phytate. The premenopausal women were not eating red meat on a regular basis, and their consumption of phytate was mainly from bran breakfast cereals. In both studies the presence of zinc deficiency was proven by functional responses to controlled zinc treatment. In the children lean-mass, reasoning, and immunity were significantly affected. In the women memory, reasoning, and eye-hand coordination were significantly affected. A screening self-administered food frequency questionnaire for office might help caregiver's identify patients at risk of zinc deficiency. Copyright © 2014 Elsevier GmbH. All rights reserved.

  19. Thermal impedance of multi-finger microelectronic structures: exact analytical model

    Energy Technology Data Exchange (ETDEWEB)

    Vintrou, Sebastien; Laraqi, Najib; Bairi, Abderrahmane, E-mail: nlaraqi@u-paris10.f, E-mail: nlaraqi@gmail.co [Universite Paris Ouest, Laboratoire Thermique Interfaces Environnement (TIE), EA 4415 PST Ville d' Avray, Departement GTE, 50 Rue de Sevres, F92410 Ville d' Avray (France)

    2009-12-21

    An exact analytical expression for the complex thermal impedance Z of multi-finger microelectronic components is presented in this paper. The integral transform technique has been used to obtain this expression and solve the three dimensional heat conduction equation directly in the frequency domain. Calculations were first performed for a single-finger on a single-layer structure in order to compare the results with those available in the literature and hence validate the solution. Generally, the comparison shows good agreement between our results and those given in most publications. When the structures are composed of several layers, the thermal impedance changes with the thermal conductivities and the thicknesses of the different layers. It is also affected by the thermal contact resistance between the layers. Some results illustrate the influence of these parameters. The case of a multi-finger component is then treated and the influence of distances between fingers is investigated. For all cases, the Nyquist diagram (i.e. Im(Z) versus Re(Z) for different pulsation values {omega}) is plotted. Mainly two zones are observed: one for the high frequencies and the other for the lower ones. The substrate dimensions are found to largely influence the scale of the low frequency zone whereas the distance between the fingers influences the higher one. Finally, the solution is applied to a multi-finger device in contact with a heat sink.

  20. Single and combined effects of zinc and cinnamon essential oil in diet on productive performance, egg quality traits, and blood parameters of laying hens reared under cold stress condition

    Science.gov (United States)

    Torki, Mehran; Akbari, Mohsen; Kaviani, Keyomars

    2015-09-01

    This study was conducted to evaluate the effects of adding zinc (Zn), cinnamon essential oil (Ci), or their combination in diet on productive performance, egg quality, and blood parameters of laying hens reared under cold stress condition (8.8 ± 3 °C). Feed intake (FI), feed conversion ratio (FCR), egg weight (EW), egg production (EP), and egg mass (EM) were evaluated during the 56-day trial period using 120 Lohmann LSL-Lite laying hens. Significant interactions between Ci and Zn on FCR, EW, EP, or EM were observed ( P hens fed the diets including Ci and Zn (as single or combined form) compared to those fed the basal diet. There were significant interactions between Ci and Zn on the serum level of glucose and triglycerides as well as plasma concentration of zinc ( P hens fed the diets including Ci and Zn (together) compared to those fed the basal diet. From the results of the present experiment, it can be concluded that diet supplementation by the combined form of Ci and Zn could have beneficial effects on performance and blood parameters of hens reared under cold stress condition.

  1. Zinc and vegetarian diets.

    Science.gov (United States)

    Saunders, Angela V; Craig, Winston J; Baines, Surinder K

    2013-08-19

    Well planned vegetarian diets can provide adequate amounts of zinc from plant sources. Vegetarians appear to adapt to lower zinc intakes by increased absorption and retention of zinc. Good sources of zinc for vegetarians include whole grains, tofu, tempeh, legumes, nuts and seeds, fortified breakfast cereals and dairy products. The inhibitory effects of phytate on absorption of zinc can be minimised by modern food-processing methods such as soaking, heating, sprouting, fermenting and leavening. Absorption of zinc can be improved by using yeast-based breads and sourdough breads, sprouts, and presoaked legumes. Studies show vegetarians have similar serum zinc concentrations to, and no greater risk of zinc deficiency than, non-vegetarians (despite differences in zinc intake).

  2. BWR zinc addition Sourcebook

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Giannelli, Joseph F.; Jarvis, Alfred J.

    2014-01-01

    Boiling Water Reactors (BWRs) have been injecting zinc into the primary coolant via the reactor feedwater system for over 25 years for the purpose of controlling primary system radiation fields. The BWR zinc injection process has evolved since the initial application at the Hope Creek Nuclear Station in 1986. Key transitions were from the original natural zinc oxide (NZO) to depleted zinc oxide (DZO), and from active zinc injection of a powdered zinc oxide slurry (pumped systems) to passive injection systems (zinc pellet beds). Zinc addition has continued through various chemistry regimes changes, from normal water chemistry (NWC) to hydrogen water chemistry (HWC) and HWC with noble metals (NobleChem™) for mitigation of intergranular stress corrosion cracking (IGSCC) of reactor internals and primary system piping. While past reports published by the Electric Power Research Institute (EPRI) document specific industry experience related to these topics, the Zinc Sourcebook was prepared to consolidate all of the experience gained over the past 25 years. The Zinc Sourcebook will benefit experienced BWR Chemistry, Operations, Radiation Protection and Engineering personnel as well as new people entering the nuclear power industry. While all North American BWRs implement feedwater zinc injection, a number of other BWRs do not inject zinc. This Sourcebook will also be a valuable resource to plants considering the benefits of zinc addition process implementation, and to gain insights on industry experience related to zinc process control and best practices. This paper presents some of the highlights from the Sourcebook. (author)

  3. Method of capturing or trapping zinc using zinc getter materials

    Science.gov (United States)

    Hunyadi Murph, Simona E.; Korinko, Paul S.

    2017-07-11

    A method of trapping or capturing zinc is disclosed. In particular, the method comprises a step of contacting a zinc vapor with a zinc getter material. The zinc getter material comprises nanoparticles and a metal substrate.

  4. Finger prosthesis: a boon to handicapped.

    Science.gov (United States)

    Gupta, Ridhima; Kumar, Lakshya; Rao, Jitendra; Singh, Kamleshwar

    2013-08-29

    This is a clinical case report of a 52-year-old male patient with four partially missing fingers of the left hand. The article describes the clinical and laboratory procedure of making prosthesis with modern silicone material. A wax pattern was fabricated using the right hand of the patient. A special type of wax was formulated to make the pattern so that it can be easily moulded and carved. Intrinsic and extrinsic staining was also performed to match the adjacent skin colour. The patient was given the finger prosthesis and was asked to use a half glove (sports) to mask the junction between the prosthesis and the normal tissue. It also provides additional retention to the artificial fingers. The patient felt his social acceptance improved after wearing the finger prosthesis.

  5. Stainless steel quadralatch finger test report

    International Nuclear Information System (INIS)

    Deichelbohrer, P.R.

    1996-01-01

    The design of the quadralatch on the universal samplers was changed in response to flammable gas operating constraints. Additional redesign of the fingers was included to facilitate manufacturability. The new design was tested to assure satisfactory performance. It was shown that the fingers can hold a sampler in place with an upward force of at least 2200 N (500 pounds) and that the mechanical remote latch unit can release the quadralatch under this condition of maximum upward force

  6. Comparative evaluation of the fracture resistance of teeth prepared with rotary system, filled with single cone gutta-percha and laterally condensed with zinc oxide eugenol and resin based (AH26) sealers to that of Resilon.

    Science.gov (United States)

    Vishwanathan, P Kashi; Muliyar, Sabir; Chavan, Prakash; Reddy, P Manoranjan; Reddy, T Praveen Kumar; Nilawar, Sanjay

    2012-11-01

    To compare the fracture resistance of teeth prepared with rotary system and filled with single cone guttapercha followed by lateral condensation with different sealers like zinc oxide eugenol and resin based (AH26) to that of resilon. A total number of 70 extracted intact human permanent maxillary incisors were selected. All prepared samples were divided into one control group (n = 10) and three experimental groups (n = 20 per group). Group 1 control. This group received no obturation; the root canal opening was sealed with a temporary filling material (Cavit, Premier Dental Products, Plymouth Meeting, PA) Group 2: Gutta-Percha and zinc oxide Eugenol sealer. Group 3: Gutta-Percha and AH26 sealer. (DiaDent, Korea) dipped in AH26 sealer. Group 4: Resilon cones and RealSeal Resin Sealer. Obturation was accomplished using a 0.06 taper size 40 gutta-percha master point. All the root samples were stored in 100% humidity at 37 °C for 2 weeks to allow the sealer to set completely. The root samples were then prepared for mechanical testing and the data was recorded and analyzed statistically. One-way ANOVA and Post hoc test (Duncan Multiple range test) were employed to determine possible statistical variation among the groups tested in this study. The force for group 2 was significantly greater than that for the control group 1 (no obturation).The force for group 3 was significantly greater than that for group 2. The force for group 4 was significantly greater than that for group 3. All other groupwise comparisons were not significant at 5% level. Group 4 seemed to have the greatest force among the three groups of interest in the study. Root canals filled with Resilon increased the in vitro resistance of single canal extracted teeth compared to other experimental groups. The mean fracture resistance value for the experimental groups in ascending order was as follows: Root canals instrumented but not filled, filled with gutta-percha and zinc oxide eugenol sealer, filled

  7. Finger replantation: surgical technique and indications.

    Science.gov (United States)

    Barbary, S; Dap, F; Dautel, G

    2013-12-01

    In this article, we discuss the surgical technique of finger replantation in detail, distinguishing particularities of technique in cases of thumb amputation, children fingertip replantation, ring finger avulsion, and very distal replantations. We emphasize the principles of bone shortening, the spare part concept, the special importance of nerve sutures and the use of vein graft in case of avulsion or crushing. However, even if finger replantation is now a routine procedure, a clear distinction should be made between revascularization and functional success. The indications for finger replantation are then detailed in the second part of this paper. The absolute indications for replantation are thumb, multiple fingers, transmetacarpal or hand, and any upper extremity amputation in a child whatever the level. Fingertip amputations distal to the insertion of the Flexor digitorum superficialis (FDS) are also a good indication. Other cases are more controversial because of the poor functional outcome, especially for the index finger, which is often functionally excluded. Copyright © 2013. Published by Elsevier SAS.

  8. Zinc oxide overdose

    Science.gov (United States)

    Zinc oxide is an ingredient in many products. Some of these are certain creams and ointments used ... prevent or treat minor skin burns and irritation. Zinc oxide overdose occurs when someone eats one of ...

  9. Bacitracin zinc overdose

    Science.gov (United States)

    ... Ophthalmic Bacitracin zinc may also be added to animal food. Other products may also contain bacitracin zinc. ... electrocardiogram, or heart tracing) Treatment may include: Activated charcoal Breathing support Intravenous fluids (given through a vein) ...

  10. Finger multibiometric cryptosystems: fusion strategy and template security

    Science.gov (United States)

    Peng, Jialiang; Li, Qiong; Abd El-Latif, Ahmed A.; Niu, Xiamu

    2014-03-01

    We address two critical issues in the design of a finger multibiometric system, i.e., fusion strategy and template security. First, three fusion strategies (feature-level, score-level, and decision-level fusions) with the corresponding template protection technique are proposed as the finger multibiometric cryptosystems to protect multiple finger biometric templates of fingerprint, finger vein, finger knuckle print, and finger shape modalities. Second, we theoretically analyze different fusion strategies for finger multibiometric cryptosystems with respect to their impact on security and recognition accuracy. Finally, the performance of finger multibiometric cryptosystems at different fusion levels is investigated on a merged finger multimodal biometric database. The comparative results suggest that the proposed finger multibiometric cryptosystem at feature-level fusion outperforms other approaches in terms of verification performance and template security.

  11. Finger Replantation in Sanglah General Hospital: Report of Five Cases and Literature Review

    Directory of Open Access Journals (Sweden)

    Agus Roy Rusly Hariantana Hamid

    2016-11-01

    Full Text Available Background: Replantation is the prime treatment for amputated hands and fingers due to functional and aesthetic advantages. The absolute indications for replantation are amputations of the thumb, multiple fingers, trans metacarpal or hand, and any upper extremity in a child, regardless of the amputation level. A fingertip amputation distal to the insertion of the flexor digitorum superficialis (FDS is also a good indication. Indications have been expanded to include amputation at nail level, and when there is a request from the patient, replantation is attempted even for a single finger amputation regardless of the amputation level. Based on the mechanism of injury, a clean-cut sharp amputation is more likely replanted compare to a crush and avulsion injuries. With a proper management of the amputated finger, replantation can be attempted even after 24 hours. This report was written to provide examples of finger replantation cases and the measures that can be taken in a resource-limited hospital in order to conduct a replantation. Case Series: We reported five out of nine digital replantation cases in Sanglah General Hospital between January and July 2014. Two patients were a six and an eleven years old boys who accidentally cut their finger while playing, the rests were male labors between 20-30 years old whose amputations due to machine injuries. Result: A 100% replant survival was achieved. After a period of follow up with occupational therapy, all patients regain good functional and cosmetic results. 

  12. Asymptomatic Papulo-nodules Localized to One Finger

    Science.gov (United States)

    Rambhia, Kinjal D; Khopkar, Uday S

    2015-01-01

    Subcutaneous or deep granuloma annulare is a benign asymptomatic condition characterized by firm asymptomatic nodules in deep subcutaneous tissues that may be associated with intradermal lesions. A 53-year-old female presented with asymptomatic skin-colored, firm nodules over the right ring finger. Histopathology revealed a palisading granuloma with central degenerated collagen and mucin deposition in the dermis suggestive of granuloma annulare. Isolated and unilateral involvement of a single digit with clusters of nodules of subcutaneous granuloma annulare (GA) in an adult is rare and differentiation from its simulator rheumatoid nodule is essential. PMID:26538728

  13. Zinc and cadmium monosalicylates

    International Nuclear Information System (INIS)

    Kharitonov, Yu.Ya.; Tujebakhova, Z.K.

    1984-01-01

    Zinc and cadmium monosalicylates of the composition MSal, where M-Zn or Cd, Sal - twice deprotonated residue of salicylic acid O-HOC 6 H 4 COOH (H 2 Sal), are singled out and characterized. When studying thermograms, thermogravigrams, IR absorption spectra, roentgenograms of cadmium salicylate compounds (Cd(OC 6 H 4 COO) and products of their thepmal transformations, the processes of thermal decomposition of the compounds have been characterized. The process of cadmium monosalicylate decomposition takes place in one stage. Complete loss of salicylate acido group occurs in the range of 320-460 deg. At this decomposition stage cadmium oxide is formed. A supposition is made that cadmium complex has tetrahedral configuration, at that, each salicylate group plays the role of tetradentate-bridge ligand. The compound evidently has a polymer structure

  14. Differential sensitivities of cellular XPA and PARP-1 to arsenite inhibition and zinc rescue.

    Science.gov (United States)

    Ding, Xiaofeng; Zhou, Xixi; Cooper, Karen L; Huestis, Juliana; Hudson, Laurie G; Liu, Ke Jian

    2017-09-15

    Arsenite directly binds to the zinc finger domains of the DNA repair protein poly (ADP ribose) polymerase (PARP)-1, and inhibits PARP-1 activity in the base excision repair (BER) pathway. PARP inhibition by arsenite enhances ultraviolet radiation (UVR)-induced DNA damage in keratinocytes, and the increase in DNA damage is reduced by zinc supplementation. However, little is known about the effects of arsenite and zinc on the zinc finger nucleotide excision repair (NER) protein xeroderma pigmentosum group A (XPA). In this study, we investigated the difference in response to arsenite exposure between XPA and PARP-1, and the differential effectiveness of zinc supplementation in restoring protein DNA binding and DNA damage repair. Arsenite targeted both XPA and PARP-1 in human keratinocytes, resulting in zinc loss from each protein and a pronounced decrease in XPA and PARP-1 binding to chromatin as demonstrated by Chip-on-Western assays. Zinc effectively restored DNA binding of PARP-1 and XPA to chromatin when zinc concentrations were equal to those of arsenite. In contrast, zinc was more effective in rescuing arsenite-augmented direct UVR-induced DNA damage than oxidative DNA damage. Taken together, our findings indicate that arsenite interferes with PARP-1 and XPA binding to chromatin, and that zinc supplementation fully restores DNA binding activity to both proteins in the cellular context. Interestingly, rescue of arsenite-inhibited DNA damage repair by supplemental zinc was more sensitive for DNA damage repaired by the XPA-associated NER pathway than for the PARP-1-dependent BER pathway. This study expands our understanding of arsenite's role in DNA repair inhibition and co-carcinogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Admittance Control of a Multi-Finger Arm Based on Manipulability of Fingers

    Directory of Open Access Journals (Sweden)

    Jian Huang

    2011-09-01

    Full Text Available In the previous studies, admittance control and impedance control for a finger-arm robot using the manipulability of the finger were studied and methods of realizing the controls have been proposed. In this study, two 3-DOF fingers are attached to the end-effector of a 6-DOF arm to configure a multi-finger arm robot. Based on the previous methods, the authors have proposed an admittance control for a multi-finger arm robot using the manipulability of the fingers in this study. Algorithms of the averaging method and the mini-max method were introduced to establish a manipulability criterion of the two fingers in order to generate a cooperative movement of the arm. Comparison of the admittance controls combined with the top search method and local optimization method for the multi-finger arm robot was made and features of the control methods were also discussed. The stiffness control and damping control were experimentally evaluated to demonstrate the effectiveness of the proposed methods.

  16. Robotic finger perturbation training improves finger postural steadiness and hand dexterity.

    Science.gov (United States)

    Yoshitake, Yasuhide; Ikeda, Atsutoshi; Shinohara, Minoru

    2018-02-01

    The purpose of the study was to understand the effect of robotic finger perturbation training on steadiness in finger posture and hand dexterity in healthy young adults. A mobile robotic finger training system was designed to have the functions of high-speed mechanical response, two degrees of freedom, and adjustable loading amplitude and direction. Healthy young adults were assigned to one of the three groups: random perturbation training (RPT), constant force training (CFT), and control. Subjects in RPT and CFT performed steady posture training with their index finger using the robot in different modes: random force in RPT and constant force in CFT. After the 2-week intervention period, fluctuations of the index finger posture decreased only in RPT during steady position-matching tasks with an inertial load. Purdue pegboard test score improved also in RPT only. The relative change in finger postural fluctuations was negatively correlated with the relative change in the number of completed pegs in the pegboard test in RPT. The results indicate that finger posture training with random mechanical perturbations of varying amplitudes and directions of force is effective in improving finger postural steadiness and hand dexterity in healthy young adults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Zinc oxyfluoride transparent conductor

    Science.gov (United States)

    Gordon, Roy G.

    1991-02-05

    Transparent, electrically conductive and infrared-reflective films of zinc oxyfluoride are produced by chemical vapor deposition from vapor mixtures of zinc, oxygen and fluorine-containing compounds. The substitution of fluorine for some of the oxygen in zinc oxide results in dramatic increases in the electrical conductivity. For example, diethyl zinc, ethyl alcohol and hexafluoropropene vapors are reacted over a glass surface at 400.degree. C. to form a visibly transparent, electrically conductive, infrared reflective and ultraviolet absorptive film of zinc oxyfluoride. Such films are useful in liquid crystal display devices, solar cells, electrochromic absorbers and reflectors, energy-conserving heat mirrors, and antistatic coatings.

  18. Reactivity of Cys4 Zinc Finger Domains with Gold(III) Complexes : Insights into the Formation of "Gold Fingers"

    NARCIS (Netherlands)

    Jacques, Aurélie; Lebrun, Colette; Casini, Angela; Kieffer, Isabelle; Proux, Olivier; Latour, Jean-Marc; Sénèque, Olivier

    2015-01-01

    Gold(I) complexes such as auranofin or aurothiomalate have been used as therapeutic agents for the treatment of rheumatoid arthritis for several decades. Several gold(I) and gold(III) complexes have also shown in vitro anticancer properties against human cancer cell lines, including cell lines

  19. Zinc in human serum

    International Nuclear Information System (INIS)

    Kiilerich, S.

    1987-01-01

    The zinc ion is essential for the living organism. Many pathological conditions have been described as a consequence of zinc deficiency. As zinc constitutes less than 0.01 per cent of the body weight, it conventionally belongs to the group of trace elements. The method of atomic absorption spectrophotometry is used to measure the concentration of zinc in serum and urine from healthy persons. The assumptions of the method is discussed. The importance of proteinbinding, diet and the diurnal variation of serum zinc concentration is presented. Serum versus plasma zinc concentration is discussed. Reference serum zinc values from 104 normal subjects are given. Zinc in serum is almost entirely bound to proteins. A preliminary model for the estimation of the distribution of zinc between serum albumin and α 2 -macroglobulin is set up. This estimate has been examined by an ultracentrufugation method. The binding of zinc to a α 2 -macroglobulin in normal persons is appoximately 7 per cent, in patients with cirrhosis of the liver of alcoholic origin approximately 6 per cent, in patients with insulin dependent diabetes mellitus approximately 5 per cent, and in patients with chronic renal failure approximately 2 per cent. It is concluded, therefore, that for clinical purposes it is sufficient to use the concentration of total serum zinc corrected for the concentration of serum albumin. (author)

  20. Gravity Induced Ordering of Frictional Fingers

    Science.gov (United States)

    Eriksen, Jon; Sandnes, Bjørnar; Toussaint, Renaud; Jørgen Måløy, Knut; Flekkøy, Eirik

    2014-05-01

    Experiments on confined two-phase flow systems, involving air and a dense suspension, have revealed highly non-trivial flow morphologies. As the air displaces the suspension, the grains that make up the suspension tend to accumulate along the interface, and can build up force chains that jam the accumulated region. This dynamics will generate "frictional fingers" of air coated by a region of densely packed grains. The fingers have a characteristic width that balances surface tension and frictional forces of the densely packed grains. When these fingers grow under the influence of gravity, they can align either horizontally or vertically, or grow in a random isotropic fashion. The transition between the different modes of finger growth depends on the density of grains, and the gravitational force component. We present an analytic model to account for the transitions between the modes. We further present a numerical scheme that enables us to simulate the dynamics of the process. The numerical and analytic results are in good agreements with the experimental findings. Finally we show how this process could explain patterns that emerge naturally in early stages of dyke formation. These patterns are formed when hot fluid displaces partly molten rocks and packs the hard mineral grains composing it together, thereby forming finger structures that remain frozen in the dyke walls.

  1. Saffman-Taylor fingers with kinetic undercooling

    KAUST Repository

    Gardiner, Bennett P. J.

    2015-02-23

    © 2015 American Physical Society. The mathematical model of a steadily propagating Saffman-Taylor finger in a Hele-Shaw channel has applications to two-dimensional interacting streamer discharges which are aligned in a periodic array. In the streamer context, the relevant regularization on the interface is not provided by surface tension but instead has been postulated to involve a mechanism equivalent to kinetic undercooling, which acts to penalize high velocities and prevent blow-up of the unregularized solution. Previous asymptotic results for the Hele-Shaw finger problem with kinetic undercooling suggest that for a given value of the kinetic undercooling parameter, there is a discrete set of possible finger shapes, each analytic at the nose and occupying a different fraction of the channel width. In the limit in which the kinetic undercooling parameter vanishes, the fraction for each family approaches 1/2, suggesting that this "selection" of 1/2 by kinetic undercooling is qualitatively similar to the well-known analog with surface tension. We treat the numerical problem of computing these Saffman-Taylor fingers with kinetic undercooling, which turns out to be more subtle than the analog with surface tension, since kinetic undercooling permits finger shapes which are corner-free but not analytic. We provide numerical evidence for the selection mechanism by setting up a problem with both kinetic undercooling and surface tension and numerically taking the limit that the surface tension vanishes.

  2. The Essential Toxin: Impact of Zinc on Human Health

    Directory of Open Access Journals (Sweden)

    Laura M. Plum

    2010-03-01

    Full Text Available Compared to several other metal ions with similar chemical properties, zinc is relatively harmless. Only exposure to high doses has toxic effects, making acute zinc intoxication a rare event. In addition to acute intoxication, long-term, high-dose zinc supplementation interferes with the uptake of copper. Hence, many of its toxic effects are in fact due to copper deficiency. While systemic homeostasis and efficient regulatory mechanisms on the cellular level generally prevent the uptake of cytotoxic doses of exogenous zinc, endogenous zinc plays a significant role in cytotoxic events in single cells. Here, zinc influences apoptosis by acting on several molecular regulators of programmed cell death, including caspases and proteins from the Bcl and Bax families. One organ where zinc is prominently involved in cell death is the brain, and cytotoxicity in consequence of ischemia or trauma involves the accumulation of free zinc. Rather than being a toxic metal ion, zinc is an essential trace element. Whereas intoxication by excessive exposure is rare, zinc deficiency is widespread and has a detrimental impact on growth, neuronal development, and immunity, and in severe cases its consequences are lethal. Zinc deficiency caused by malnutrition and foods with low bioavailability, aging, certain diseases, or deregulated homeostasis is a far more common risk to human health than intoxication.

  3. Sorption of zinc on human teeth

    International Nuclear Information System (INIS)

    Helal, A.; Amin, H.; Alian, G.

    1997-01-01

    Zinc containing dental amalgams are sometimes used as fillings by dentists. The freshly mixed mass of the amalgam alloy and liquid mercury packed or condensed into a prepared tooth cavity. Zinc has been included in amalgams alloys up to 2% as an aid in manufacturing by helping to produce clean sound castings of the ingots. Although such restorations have a relatively long service life, they are subject to corrosion and galvanic action, thus releasing metallic products into the oral environment. The aim of this paper is to investigate the uptake (sorption) of Zinc ionic species on human teeth using the radioactive tracer technique. For this purpose the isotope Zn-65 produced from pile-irradiation of zinc metal was used. The various liquids studied were drinking water (tap water), tea, coffee, red tea and chicken soup. Sorption was studied through immersion of a single human tooth (extracted) in each of these liquids

  4. Admittance Control of a Multi-Finger Arm Based on Manipulability of Fingers

    Directory of Open Access Journals (Sweden)

    Takayuki Hori

    2011-09-01

    Full Text Available In the previous studies, admittance control and impedance control for a finger‐arm robot using the manipulability of the finger were studied and methods of realizing the controls have been proposed. In this study, two 3‐DOF fingers are attached to the end‐effector of a 6‐DOF arm to configure a multi‐finger arm robot. Based on the previous methods, the authors have proposed an admittance control for a multi‐finger arm robot using the manipulability of the fingers in this study. Algorithms of the averaging method and the mini‐max method were introduced to establish a manipulability criterion of the two fingers in order to generate a cooperative movement of the arm. Comparison of the admittance controls combined with the top search method and local optimization method for the multi‐finger arm robot was made and features of the control methods were also discussed. The stiffness control and damping control were experimentally evaluated to demonstrate the effectiveness of the proposed methods.

  5. ANALYSIS WITH MSC ADAMS OF A 5-FINGER AND 3-PHALANX /FINGER UNDER-ACTUATEDMECHANICAL HAND

    Directory of Open Access Journals (Sweden)

    Gheorghe POPESCU

    2013-05-01

    Full Text Available This paper studies the analysis with MSC ADAMS of a 5-fingered and 3-phalanx/finger underactuatedmechanical hand, designed by the author to work on industrial robots. Moreover, in order to increasegrasping safety in the automated handling process, the author has fitted each finger with a locking sequence inthe final phase of grasping. Thus, the mechanism of mechanical hand is considered to be a mechanical systemand is treated like a set of rigid bodies connected by mechanical linkages and elastic elements. To model andsimulate this mechanism with MSC ADAMS programme, the author covered the following stages: constructionof the model, testing-simulation, validation, finishing, parameterization, and optimization

  6. Synthesis and characterization of zinc ferrite nanoparticles obtained ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. The self-propagating low-temperature combustion method was used to produce nanocrystalline particles of zinc ferrite. The products were characterized for chemical and phase composition, morphology and magnetic properties. The results obtained showed the formation of single-phase zinc ferrite nanoparticles.

  7. Single injection of the β2-adrenergic receptor agonist, clenbuterol, into newly hatched chicks alters abdominal fat pad mass in growing birds.

    Science.gov (United States)

    Ishimaru, Yoshitaka; Ijiri, Daichi; Shimamoto, Saki; Ishitani, Kanae; Nojima, Tsutomu; Ohtsuka, Akira

    2015-01-15

    Excessive energy is stored in white adipose tissue as triacylglycerols in birds as well as in mammals. Although β2-adrenergic receptor agonists reduce adipose tissue mass in birds, the underlying mechanism remains unclear. The aim of the current study was to examine the effects of a single intraperitoneal injection of the β2-adrenergic receptor agonist, clenbuterol, on the abdominal fat pad tissue development. Thirty-three chicks at 1-day-old were given a single intraperitoneal injection of clenbuterol (0.1mg/kg body weight) or phosphate-buffered saline. At 2 weeks post-dose, the weight of the abdominal fat tissue was decreased in the clenbuterol-injected chicks, and small adipocyte-like cells were observed in the abdominal fat pad tissue of the clenbuterol-injected chicks. Then, the expression of mRNAs encoding genes related to avian adipogenesis was examined in the abdominal fat pat tissue. The expression of mRNAs encoding Krüppel-like zinc finger transcription factor 5 (KLF-5), KLF-15, and zinc finger protein 423 in the abdominal fat pad tissue of the clenbuterol-injected chicks was significantly lower (Pclenbuterol-injected chicks, while clenbuterol injection did not affect FAS activity in liver. These results suggested that a single injection with clenbuterol into newly hatched chicks reduces their abdominal fat pad mass possibly via disrupting adipocyte development during later growth stages. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Task specificity of finger dexterity tests

    NARCIS (Netherlands)

    Berger, M.A.M.; Krul, A.; Daanen, H.A.M.

    2009-01-01

    Finger dexterity tests are generally used to assess performance decrease due to gloves, cold and pathology. It is generally assumed that the O’Connor and Purdue Pegboard test yield similar results. In this experiment we compared these two tests for dry conditions without gloves, and for dry and wet

  9. Task specificity of finger dexterity tests

    NARCIS (Netherlands)

    Berger, M.A.M.; Krul, A.J.; Daanen, H.A.M.

    2009-01-01

    Finger dexterity tests are generally used to assess performance decrease due to gloves, cold and pathology. It is generally assumed that the O'Connor and Purdue Pegboard test yield similar results. In this experiment we compared these two tests for dry conditions without gloves, and for dry and wet

  10. Finger cold-induced vasodilation : A review

    NARCIS (Netherlands)

    Daanen, H. A M

    Cold-induced vasodilation (CIVD) in the finger tips generally occurs 5-10 min after the start of local cold exposure of the extremities. This phenomenon is believed to reduce the risk of local cold injuries. However, CIVD is almost absent during hypothermia, when survival of the organism takes

  11. Treatment Options for Mallet Finger : A Review

    NARCIS (Netherlands)

    Smit, Jeroen M.; Beets, Michiel R.; Zeebregts, Clark J.; Rood, Akkie; Welters, Carlo F. M.

    2010-01-01

    Background: Mallet finger is a common injury. The aim of this review is to give an overview of the different treatment options of mallet injuries and their indications, outcomes, and potential complications. Methods: A literature-based study was conducted using the PubMed database comprising world

  12. Clubbed fingers: the claws we lost?

    NARCIS (Netherlands)

    Brouwers, A.A.M.; Vermeij-Keers, C.; Zoelen, E.J.J. van; Gooren, L.J.G.

    2004-01-01

    Clubbed digits resemble the human embryonic fingers and toes, which took like the digits of a claw. Clubbed digits, thus, may represent the return of the embryonic claw and may even represent the claws man has lost during evolution, if ontogenesis realty recapitulates phylogenesis. We put forward

  13. Finger Search in Grammar-Compressed Strings

    DEFF Research Database (Denmark)

    Bille, Philip; Christiansen, Anders Roy; Cording, Patrick Hagge

    2016-01-01

    random access, that is, given a position in the original uncompressed string report the character at that position. In this paper we study the random access problem with the finger search property, that is, the time for a random access query should depend on the distance between a specified index f...

  14. Designing Fingers in Simulation based on Imprints

    DEFF Research Database (Denmark)

    Wiuf Schwartz, Lukas Christoffer Malte; Wolniakowski, Adam; Werner, Andrzej

    2017-01-01

    Gripper design is nowadays an area of ongoing research activity. The problem of creating a generic and automated gripper design approach tailored for a specific task is still far from solved. In this paper, we propose a new method of generating finger cut-outs aimed at simplifying the design...

  15. Finger cold-induced vasodilation : a review

    NARCIS (Netherlands)

    Daanen, H.A.M.

    2003-01-01

    Cold-induced vasodilation (CIVD) in the finger tips generally occurs 5-10 min after the start of local cold exposure of the extremities. This phenomenon is believed to reduce the risk of local cold injuries. However, CIVD is almost absent during hypothermia, when survival of the organism takes

  16. Cutaneous Microembolism of Fingers and Toes

    OpenAIRE

    Uwe Wollina; André Koch; Birgit Heinig; Georgi Tchernev; Torello Lotti

    2018-01-01

    A macro vascular embolism is a well-known emergency. In contrast, cutaneous microembolism is a lesser known symptom. However, cutaneous microembolism of fingers and toes is a red flag symptom for vascular emergencies. The underlying cause may involve infectious, immunological, metabolic and physical disorders, coagulation disorders and malignancies. Early recognition can help to live safe.

  17. Novel Dexterous Robotic Finger Concept with Controlled Stiffness

    NARCIS (Netherlands)

    Wassink, M.; Carloni, Raffaella; Brouwer, Dannis Michel; Stramigioli, Stefano

    2009-01-01

    This paper introduces a novel robotic finger concept for variable impedance grasping in unstructured tasks. The novel robotic finger combines three key features: minimal actuation, variable mechanical compliance and full manipulability. This combination of features allows for a minimal component

  18. Human finger-prick induced pluripotent stem cells facilitate the development of stem cell banking.

    Science.gov (United States)

    Tan, Hong-Kee; Toh, Cheng-Xu Delon; Ma, Dongrui; Yang, Binxia; Liu, Tong Ming; Lu, Jun; Wong, Chee-Wai; Tan, Tze-Kai; Li, Hu; Syn, Christopher; Tan, Eng-Lee; Lim, Bing; Lim, Yoon-Pin; Cook, Stuart A; Loh, Yuin-Han

    2014-05-01

    Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients can be a good model for studying human diseases and for future therapeutic regenerative medicine. Current initiatives to establish human iPSC (hiPSC) banking face challenges in recruiting large numbers of donors with diverse diseased, genetic, and phenotypic representations. In this study, we describe the efficient derivation of transgene-free hiPSCs from human finger-prick blood. Finger-prick sample collection can be performed on a "do-it-yourself" basis by donors and sent to the hiPSC facility for reprogramming. We show that single-drop volumes of finger-prick samples are sufficient for performing cellular reprogramming, DNA sequencing, and blood serotyping in parallel. Our novel strategy has the potential to facilitate the development of large-scale hiPSC banking worldwide.

  19. Patient-specific prosthetic fingers by remote collaboration--a case study.

    Directory of Open Access Journals (Sweden)

    John-John Cabibihan

    Full Text Available The concealment of amputation through prosthesis usage can shield an amputee from social stigma and help improve the emotional healing process especially at the early stages of hand or finger loss. However, the traditional techniques in prosthesis fabrication defy this as the patients need numerous visits to the clinics for measurements, fitting and follow-ups. This paper presents a method for constructing a prosthetic finger through online collaboration with the designer. The main input from the amputee comes from the Computer Tomography (CT data in the region of the affected and the non-affected fingers. These data are sent over the internet and the prosthesis is constructed using visualization, computer-aided design and manufacturing tools. The finished product is then shipped to the patient. A case study with a single patient having an amputated ring finger at the proximal interphalangeal joint shows that the proposed method has a potential to address the patient's psychosocial concerns and minimize the exposure of the finger loss to the public.

  20. Transition to finger convection in double-diffusive convection

    OpenAIRE

    Kellner, M.; Tilgner, A.

    2014-01-01

    Finger convection is observed experimentally in an electrodeposition cell in which a destabilizing gradient of copper ions is maintained against a stabilizing temperature gradient. This double-diffusive system shows finger convection even if the total density stratification is unstable. Finger convection is replaced by an ordinary convection roll if convection is fast enough to prevent sufficient heat diffusion between neighboring fingers, or if the thermal buoyancy force is less than 1/30 of...

  1. Comparison of conventional and cadmium-zinc-telluride single-photon emission computed tomography for analysis of thallium-201 myocardial perfusion imaging: an exploratory study in normal databases for different ethnicities.

    Science.gov (United States)

    Ishihara, Masaru; Onoguchi, Masahisa; Taniguchi, Yasuyo; Shibutani, Takayuki

    2017-12-01

    The aim of this study was to clarify the differences in thallium-201-chloride (thallium-201) myocardial perfusion imaging (MPI) scans evaluated by conventional anger-type single-photon emission computed tomography (conventional SPECT) versus cadmium-zinc-telluride SPECT (CZT SPECT) imaging in normal databases for different ethnic groups. MPI scans from 81 consecutive Japanese patients were examined using conventional SPECT and CZT SPECT and analyzed with the pre-installed quantitative perfusion SPECT (QPS) software. We compared the summed stress score (SSS), summed rest score (SRS), and summed difference score (SDS) for the two SPECT devices. For a normal MPI reference, we usually use Japanese databases for MPI created by the Japanese Society of Nuclear Medicine, which can be used with conventional SPECT but not with CZT SPECT. In this study, we used new Japanese normal databases constructed in our institution to compare conventional and CZT SPECT. Compared with conventional SPECT, CZT SPECT showed lower SSS (p < 0.001), SRS (p = 0.001), and SDS (p = 0.189) using the pre-installed SPECT database. In contrast, CZT SPECT showed no significant difference from conventional SPECT in QPS analysis using the normal databases from our institution. Myocardial perfusion analyses by CZT SPECT should be evaluated using normal databases based on the ethnic group being evaluated.

  2. Chelators for investigating zinc metalloneurochemistry

    OpenAIRE

    Radford, Robert John; Lippard, Stephen J.

    2013-01-01

    The physiology and pathology of mobile zinc signaling has become an important topic in metalloneurochemistry. To study the action of mobile zinc effectively, specialized tools are required that probe the temporal and positional changes of zinc ions within live tissue and cells. In the present article we describe the design and implementation of selective zinc chelators as antagonists to interrogate the function of mobile zinc, with an emphasis on the pools of vesicular zinc in the terminals o...

  3. Left hand finger force in violin playing: tempo, loudness, and finger differences.

    Science.gov (United States)

    Kinoshita, Hiroshi; Obata, Satoshi

    2009-07-01

    A three-dimensional force transducer was installed in the neck of a violin under the A string at the D5 position in order to study the force with which the violinist clamps the string against the fingerboard under normal playing conditions. Violinists performed repetitive sequences of open A- and fingered D-tones using the ring finger at tempi of 1, 2, 4, 8, and 16 notes/s at mezzo-forte. At selected tempi, the effects of dynamic level and the use of different fingers were investigated as well. The force profiles were clearly dependent on tempo and dynamic level. At slow tempi, the force profiles were characterized by an initial pulse followed by a level force to the end of the finger contact period. At tempi higher than 2 Hz, only pulsed profiles were observed. The peak force exceeded 4.5 N at 1 and 2 Hz and decreased to 1.7 N at 16 Hz. All force and impulse values were lower at softer dynamic levels, and when using the ring or little finger compared to the index finger.

  4. Production of fish finger from sand smelt ( Atherina boyeri , RISSO ...

    African Journals Online (AJOL)

    In this study, changes of chemical, microbiological load and sensory properties of fish fingers prepared from sand smelt (Atherina boyeri, RISSO 1810) were investigated during storage (for 6 months at -18°C). The fish finger nutritional composition changed with the fish finger process. The changes in moisture, crude protein, ...

  5. The Incidence of Finger Ridge Counts among the Christian ...

    African Journals Online (AJOL)

    The present study was attempted to obtain the occurrence total and absolute finger ridge counts from 102 unrelated Christian populations (60 males and 42 females) of Mysore city, Karnataka state of India. Data were collected by biometric scanner (USB finger print reader). The mean values of Total finger ridge count and ...

  6. Association Between Finger Clubbing and Chronic Lung Disease in ...

    African Journals Online (AJOL)

    Finger clubbed patients had higher risk of hypoxemia (46.7%), pulmonary hypertension (46.7%) and advanced disease in WHO stage III/ IV (91.7%) compared to non-finger clubbed patients. Finger clubbed patients had lower CD4 cells count and percentage (median 369cells, 13%) compared to non-clubbed patients ...

  7. Zinc vanadate nanorods and their visible light photocatalytic activity

    International Nuclear Information System (INIS)

    Pei, L.Z.; Lin, N.; Wei, T.; Liu, H.D.; Yu, H.Y.

    2015-01-01

    Highlights: • Zinc vanadate nanorods have been synthesized by a facile hydrothermal process. • The size of zinc vanadate nanorods can be controlled by growth conditions. • Zinc vanadate nanorods show good photocatalytic activities of methylene blue under solar light. - Abstract: Zinc vanadate nanorods have been synthesized by a simple hydrothermal process using zinc acetate and sodium vanadate as the raw materials. The zinc vanadate nanorods have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and solid UV–vis diffuse reflectance spectrum. XRD pattern and HRTEM image show that the zinc vanadate nanorods are composed of single crystalline monoclinic Zn 2 V 2 O 7 phase. SEM and TEM observations show that the diameter and length of the zinc vanadate nanorods are 50–100 nm and about 5 μm, respectively. Sodium dodecyl sulfonate (SDS) has an essential role in the formation of zinc vanadate nanorods. The SDS-assisted nucleation and growth process have been proposed to explain the formation and growth of the zinc vanadate nanorods. Solid UV–vis diffuse reflectance spectrum shows that the zinc vanadate nanorods have a band gap of 2.76 eV. The photocatalytic activities of the zinc vanadate nanorods have been evaluated by the photocatalytic degradation of methylene blue (MB) under solar light irradiation. The MB with the concentration of 10 mg L −1 can be degraded totally under the solar light irradiation for 4 h. It is suggested that the zinc vanadate nanorods exhibit promising application potential for the degradation of organic pollutants under solar light irradiation

  8. Zinc in diet

    Science.gov (United States)

    ... nuts, whole grains, legumes, and yeast. Fruits and vegetables are not good sources, because the zinc in plant proteins is not as available for use by the body as the zinc from animal proteins. Therefore, low-protein diets and vegetarian diets ...

  9. A three-fingered, touch-sensitive, metrological micro-robotic assembly tool

    International Nuclear Information System (INIS)

    Torralba, Marta; Hastings, D J; Thousand, Jeffery D; Nowakowski, Bartosz K; Smith, Stuart T

    2015-01-01

    This article describes a metrological, robotic hand to manipulate and measure micrometer size objects. The presented work demonstrates not only assembly operations, but also positioning control and metrology capability. Sample motion is achieved by a commercial positioning stage, which provides XYZ-displacements for assembly of components. A designed and manufactured gripper tool that incorporates 21 degrees-of-freedom for independent alignment of actuators, sensors, and the three fingers of this hand is presented. These fingers can be opened and closed by piezoelectric actuators through levered flexures providing an 80 μm displacement range measured with calibrated opto-interrupter based, knife-edge sensors. The operational ends of the fingers comprise of a quartz tuning fork with a 7 μm diameter 3.2 mm long carbon fiber extending from the end of one tuning fork tine. Finger-tip force-sensing is achieved by the monitoring of individual finger resonances typically at around 32 kHz. Experimental results included are focused on probe performance analysis. Pick and place operation using the three fingers is demonstrated with all fingers being continuously oscillated, a capability not possible with the previous single or two finger tweezer type designs. By monitoring electrical feedback during pick and place operations, changes in the response of the three probes demonstrate the ability to identify both grab and release operations. Component metrology has been assessed by contacting different micro-spheres of diameters 50(±7.5) μm, 135(±20) μm, and 140(±20) μm. These were measured by the micro robot to have diameters of 67, 133, and 126 μm respectively with corresponding deviations of 4.2, 4.9, and 4.3 μm. This deviation in the measured results was primarily due to the manual, joystick-based, contacting of the fingers, difficulties associated with centering the components to the axis of the hand, and lower contact sensitivity for the smallest sphere

  10. A three-fingered, touch-sensitive, metrological micro-robotic assembly tool

    Science.gov (United States)

    Torralba, Marta; Hastings, D. J.; Thousand, Jeffery D.; Nowakowski, Bartosz K.; Smith, Stuart T.

    2015-12-01

    This article describes a metrological, robotic hand to manipulate and measure micrometer size objects. The presented work demonstrates not only assembly operations, but also positioning control and metrology capability. Sample motion is achieved by a commercial positioning stage, which provides XYZ-displacements for assembly of components. A designed and manufactured gripper tool that incorporates 21 degrees-of-freedom for independent alignment of actuators, sensors, and the three fingers of this hand is presented. These fingers can be opened and closed by piezoelectric actuators through levered flexures providing an 80 μm displacement range measured with calibrated opto-interrupter based, knife-edge sensors. The operational ends of the fingers comprise of a quartz tuning fork with a 7 μm diameter 3.2 mm long carbon fiber extending from the end of one tuning fork tine. Finger-tip force-sensing is achieved by the monitoring of individual finger resonances typically at around 32 kHz. Experimental results included are focused on probe performance analysis. Pick and place operation using the three fingers is demonstrated with all fingers being continuously oscillated, a capability not possible with the previous single or two finger tweezer type designs. By monitoring electrical feedback during pick and place operations, changes in the response of the three probes demonstrate the ability to identify both grab and release operations. Component metrology has been assessed by contacting different micro-spheres of diameters 50(±7.5) μm, 135(±20) μm, and 140(±20) μm. These were measured by the micro robot to have diameters of 67, 133, and 126 μm respectively with corresponding deviations of 4.2, 4.9, and 4.3 μm. This deviation in the measured results was primarily due to the manual, joystick-based, contacting of the fingers, difficulties associated with centering the components to the axis of the hand, and lower contact sensitivity for the smallest sphere

  11. Photoluminescence spectral study of single cadmium selenide/zinc sulfide colloidal nanocrystals in poly(methyl methacrylate) and quantum dots molecules

    Science.gov (United States)

    Shen, Yaoming

    Quantum dots (QDs)and Nano-crystals (NCs) have been studies for decades. Because of the nanoscale quantum confinement, delta shape like energy density states and narrowband emitters properties, they hold great promise for numerous optoelectronics and photonics applications. They could be used for tunable lasers, white LED, Nano-OLED, non-volatile memory and solar cells. They are also the most promising candidates for the quantum computing. The benefits for NCs over QDs is that NCs can be incorporated into a variety of polymers as well as thin films of bulk semiconductors. These exceptional flexibility and structural control distinguish NCs from the more traditional QD structures fabricated using epitaxial growth techniques. In my research of work, I studied the photoluminescence (PL) and absorption character of ensemble NCs incorporated in Polymethyl methacrylate (PMMA). To understand the behavior of the NCs in PMMA, it is important to measure a singe NC to avoid the inhomogenous broading of many NCs. So I particularly studied the behavior of a single NC in PMMA matrix. A microphotoluminescence setup to optically isolate a single nanocrystal is used. Random spectral shift and blinking behavior (on and off) are found. Addition to that, two color spectral shifting, is a major phenomena found in the system. Other interesting results such as PL intensity changes (decreasing or increasing with time) and quenching effect are observed and explained too. From the correlation function, we can distinguish the phonon replicas. The energy of these phonons can be calculated very accurately from the experiment result. The Huang-Rhys factors can be estimated too. Self-assembled semiconductor quantum dots (QDs), from highly strained-layer heteroepitaxy in the Stranski-Krastanow (S-K) growth mode, have been intensively studied because of the delta-function-like density of states, which is significant for optoelectronic applications. Spontaneous formation of semiconductor quantum

  12. Optical constants, single-oscillator modal and refractive index dispersion analysis of lithium zinc bismuth borate glasses doped with Eu{sup 3+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Boda, Ramesh; Srinivas, G.; Komaraiah, D.; Srinivas, B.; Shareefuddin, Md.; Sayanna, R. [Department of physics, Osmania University, Hyderabad-07, Telangana, India. (India)

    2016-05-06

    The glasses of composition xLi{sub 2}O-15ZnO- 20Bi{sub 2}O{sub 3}- (64 - x) B{sub 2}O{sub 3}- 1EuO (ZLB) (where x=0, 5, 10, 15, 20 mole %) prepared by melt-quenching technique. The amorphous nature of the prepared glasses was confirmed by XRD spectra. The UV-Vis optical absorption spectrum was recorded in the wave length range of 200-1000 nm. It is observed that the optical band gap is inversely changing with Urbach energy. The optical constants such as G (a constant proportional to the second-order deformation potential) and E{sub f} (a constant that depends on local coordination and is called as free energy of the glass system). The most significant result of the present work is the refractive index dispersion curves of the ZLB glasses obey the single-oscillator model and oscillator parameters (E{sub o}, E{sub d}) changed with the Li{sub 2}O content. the absorption edge, band gap and Urbach energy is changing nonlinearly with increasing content of Li{sub 2}O, which can be used to calculate the optical, physical, and other constants.

  13. The potential effect of metallothionein 2A -5A/G single nucleotide polymorphism on blood cadmium, lead, zinc and copper levels.

    Science.gov (United States)

    Kayaaltı, Zeliha; Aliyev, Vugar; Söylemezoğlu, Tülin

    2011-10-01

    Metallothioneins (MTs) are low molecular weight, cysteine-rich, metal-binding proteins. Because of their rich thiol groups, MTs bind to the biologically essential metals and perform these metals' homeostatic regulations; absorb the heavy metals and assist with their transportation and extraction. The aim of this study was to investigate the association between the metallothionein 2A (MT2A) core promoter region -5 A/G single nucleotide polymorphism (SNP) and Cd, Pb, Zn and Cu levels in the blood samples. MT2A polymorphism was determined by the standard polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique using the 616 blood samples and the genotype frequencies were found as 86.6% homozygote typical (AA), 12.8% heterozygote (AG) and 0.6% homozygote atypical (GG). Metal levels were analyzed by dual atomic absorption spectrophotometer system and the average levels of Cd, Pb, Zn and Cu in the blood samples were 1.69±1.57 ppb, 30.62±14.13 ppb, 0.98±0.49 ppm and 1.04±0.45 ppm, respectively. As a result; highly statistically significant associations were detected between the -5 A/G core promoter region SNP in the MT2A gene and Cd, Pb and Zn levels (p=0.004, p=0.012 and p=0.002, respectively), but no association was found with Cu level (p=0.595). Individuals with the GG genotype had statistically lower Zn level and higher Cd and Pb levels in the blood samples than individuals with AA and AG genotypes. This study suggests that having the GG genotype individuals may be more sensitive for the metal toxicity and they should be more careful about protecting their health against the toxic effects of the heavy metals. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. A Diabetic Elderly Man with Finger Ulcer.

    Science.gov (United States)

    Mohamad, Noraini; Badrin, Salziyan; Wan Abdullah, Wan Noor Hasbee

    2018-03-01

    Fixed cutaneous sporotrichosis is a differential diagnosis that can be considered in diabetic patients who present with a poorly healing ulcer. Although its prevalence is low, it can occur in patients with immunocompromised status. Here we report a case of a 70-year-old man with diabetes mellitus who presented with a 1-month history of an unhealed ulcer over the tip of his left middle finger. He experienced a cat bite over his left middle finger 1 month prior to the appearance of the lesion. A skin biopsy revealed the presence of Sporothrix schenckii . Oral itraconazole 200 mg twice daily was started empirically and the patient showed marked improvement in the skin lesion after 2 months of therapy.

  15. Botulinum toxin injection of spastic finger flexors in hemiplegic patients.

    Science.gov (United States)

    Rodriquez, A A; McGinn, M; Chappell, R

    2000-01-01

    To assess the outcomes of botulinum toxin injection of spastic finger flexors followed by intensive training of finger extensors. Fourteen subjects with chronic hemiplegia spasticity of the upper limb had electromyographic-guided botulinum toxin injection into the long finger flexors. All patients presented with minimal active finger extension with the wrist flexed, sustained clonus of the finger flexors, functional proximal arm function, and absence of fixed contracture. Cadaver dissections directed selection of two injection sites: the flexor digitorum sublimis and the flexor digitorum profundus. Fifty mouse units of botulinum toxin were injected into each muscle. After injection, the subjects were instructed in a home program of stretching the long finger flexors, upper limb weight bearing with a weight-bearing splint, and exercise to improve finger extension control. Compared with preinjection measures, assessment the first week after the initial injection showed significantly reduced tone, reduced clonus, and greater active finger extension with the wrist in the neutral position. Four months later, the Ashworth scale increased to preinjection levels in the six subjects with repeated injections but was again decreased postinjection. Active finger extension with the wrist in the neutral position and clonus showed a statistically nonsignificant trend toward cumulative improvement after the second injection. The greatest change in finger extension and spasticity reduction occurred after the first injection. Continued significant improvement in finger extension was not observed.

  16. A Parametric Modelling Method for Dexterous Finger Reachable Workspaces

    Directory of Open Access Journals (Sweden)

    Wenzhen Yang

    2016-03-01

    Full Text Available The well-known algorithms, such as the graphic method, analytical method or numerical method, have some defects when modelling the dexterous finger workspace, which is a significant kinematical feature of dexterous hands and valuable for grasp planning, motion control and mechanical design. A novel modelling method with convenient and parametric performances is introduced to generate the dexterous-finger reachable workspace. This method constructs the geometric topology of the dexterous-finger reachable workspace, and uses a joint feature recognition algorithm to extract the kinematical parameters of the dexterous finger. Compared with graphic, analytical and numerical methods, this parametric modelling method can automatically and conveniently construct a more vivid workspace's forms and contours of the dexterous finger. The main contribution of this paper is that a workspace-modelling tool with high interactive efficiency is developed for designers to precisely visualize the dexterous-finger reachable workspace, which is valuable for analysing the flexibility of the dexterous finger.

  17. Finger Search in the Implicit Model

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Nielsen, Jesper Asbjørn Sindahl; Truelsen, Jakob

    2012-01-01

    , and delete in times $\\mathcal{O}(q(t))$, $\\mathcal{O}(q^{-1}(\\log n)\\log n)$, $\\mathcal{O}(\\log n)$, and $\\mathcal{O}(\\log n)$, respectively, for any q(t) = Ω(logt). Finally we show that the search operation must take Ω(logn) time for the special case where the finger is always changed to the element...

  18. Angiolipoma of index finger: A case report

    Directory of Open Access Journals (Sweden)

    Muzaffer Durmus

    2016-04-01

    Full Text Available Angiolipomas are usually found in the upper extremities, shoulder and back. They are seldom found in the hands, face and lower extremities. They usually occur as painful soft tissue masses or they may compress the neighboring structures (e.g. nerves depending on the size and location. In this report we present an angiolipoma case located in the finger and discuss related recent cases described in the literature. [Hand Microsurg 2016; 5(1.000: 22-25

  19. Exploring zinc coordination in novel zinc battery electrolytes.

    Science.gov (United States)

    Kar, Mega; Winther-Jensen, Bjorn; Forsyth, Maria; MacFarlane, Douglas R

    2014-06-14

    The coordination of zinc ions by tetraglyme has been investigated here to support the development of novel electrolytes for rechargeable zinc batteries. Zn(2+) reduction is electrochemically reversible from tetraglyme. The spectroscopic data, molar conductivity and thermal behavior as a function of zinc composition, between mole ratios [80 : 20] and [50 : 50] [tetraglyme : zinc chloride], all suggest that strong interactions take place between chloro-zinc complexes and tetraglyme. Varying the concentration of zinc chloride produces a range of zinc-chloro species (ZnClx)(2-x) in solution, which hinder full interaction between the zinc ion and tetraglyme. Both the [70 : 30] and [50 : 50] mixtures are promising electrolyte candidates for reversible zinc batteries, such as the zinc-air device.

  20. Pacifier Use, Finger Sucking, and Infant Sleep.

    Science.gov (United States)

    Butler, Rachel; Moore, Melisa; Mindell, Jodi A

    2016-01-01

    Few studies to date have investigated the relationship between pacifier use or finger sucking and infant sleep. One hundred and four mothers of infants (ages 0-11 months) completed the Brief Infant Sleep Questionnaire (BISQ). Infants who engaged in finger sucking had fewer night wakings and longer stretches of nighttime sleep, although less daytime sleep. There were no significant differences in sleep patterns between pacifier users and infants who did not engage in nonnutritive sucking. Furthermore, no significant differences were found across groups for sleep ecology, including parental involvement at bedtime and following night wakings. Finally, infants were consistently able to retrieve their pacifiers independently by 7 months of age, although this did not appear to be associated with sleep outcomes. Results suggest that when parents are deciding whether to give their infant a pacifier, sleep may not be a critical factor. In contrast, parents of finger and thumb suckers should be reassured that this nonnutritive sucking is beneficial to sleep, at least in the first year of life.

  1. Palm to Finger Ulnar Sensory Nerve Conduction.

    Science.gov (United States)

    Davidowich, Eduardo; Nascimento, Osvaldo J M; Orsini, Marco; Pupe, Camila; Pessoa, Bruno; Bittar, Caroline; Pires, Karina Lebeis; Bruno, Carlos; Coutinho, Bruno Mattos; de Souza, Olivia Gameiro; Ribeiro, Pedro; Velasques, Bruna; Bittencourt, Juliana; Teixeira, Silmar; Bastos, Victor Hugo

    2015-12-29

    Ulnar neuropathy at the wrist (UNW) is rare, and always challenging to localize. To increase the sensitivity and specificity of the diagnosis of UNW many authors advocate the stimulation of the ulnar nerve (UN) in the segment of the wrist and palm. The focus of this paper is to present a modified and simplified technique of sensory nerve conduction (SNC) of the UN in the wrist and palm segments and demonstrate the validity of this technique in the study of five cases of type III UNW. The SNC of UN was performed antidromically with fifth finger ring recording electrodes. The UN was stimulated 14 cm proximal to the active electrode (the standard way) and 7 cm proximal to the active electrode. The normal data from amplitude and conduction velocity (CV) ratios between the palm to finger and wrist to finger segments were obtained. Normal amplitude ratio was 1.4 to 0.76. Normal CV ratio was 0.8 to 1.23.We found evidences of abnormal SNAP amplitude ratio or substantial slowing of UN sensory fibers across the wrist in 5 of the 5 patients with electrophysiological-definite type III UNW.

  2. Palm to finger ulnar sensory nerve conduction

    Directory of Open Access Journals (Sweden)

    Eduardo Davidowich

    2015-12-01

    Full Text Available Ulnar neuropathy at the wrist (UNW is rare, and always challenging to localize. To increase the sensitivity and specificity of the diagnosis of UNW many authors advocate the stimulation of the ulnar nerve (UN in the segment of the wrist and palm. The focus of this paper is to present a modified and simplified technique of sensory nerve conduction (SNC of the UN in the wrist and palm segments and demonstrate the validity of this technique in the study of five cases of type III UNW. The SNC of UN was performed antidromically with fifth finger ring recording electrodes. The UN was stimulated 14 cm proximal to the active electrode (the standard way and 7 cm proximal to the active electrode. The normal data from amplitude and conduction velocity (CV ratios between the palm to finger and wrist to finger segments were obtained. Normal amplitude ratio was 1.4 to 0.76. Normal CV ratio was 0.8 to 1.23.We found evidences of abnormal SNAP amplitude ratio or substantial slowing of UN sensory fibers across the wrist in 5 of the 5 patients with electrophysiological-definite type III UNW.

  3. Zinc and cognitive development.

    Science.gov (United States)

    Bhatnagar, S; Taneja, S

    2001-05-01

    Cognition is a field of thought processes by which an individual processes information through skills of perception, thinking, memory, learning and attention. Zinc deficiency may affect cognitive development by alterations in attention, activity, neuropsychological behavior and motor development. The exact mechanisms are not clear but it appears that zinc is essential for neurogenesis, neuronal migration, synaptogenesis and its deficiency could interfere with neurotransmission and subsequent neuropsychological behavior. Studies in animals show that zinc deficiency during the time of rapid brain growth, or during the juvenile and adolescent period affects cognitive development by decreasing activity, increasing emotional behavior, impairing memory and the capacity to learn. Evidence from human studies is limited. Low maternal intakes of zinc during pregnancy and lactation were found to be associated with less focused attention in neonates and decreased motor functions at 6 months of age. Zinc supplementation resulted in better motor development and more playfulness in low birth weight infants and increased vigorous and functional activity in infants and toddlers. In older school going children the data is controversial but there is some evidence of improved neuropsychological functions with zinc supplementation. Additional research is required to determine the exact biological mechanisms, the critical periods, the threshold of severity and the long-term effects of zinc deprivation on cognitive development.

  4. Zinc phosphate conversion coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, Toshifumi (Wading River, NY)

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  5. Zinc phosphate conversion coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, T.

    1997-02-18

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  6. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks

    Energy Technology Data Exchange (ETDEWEB)

    Que, Emily L.; Bleher, Reiner; Duncan, Francesca E.; Kong, Betty Y.; Gleber, Sophie C.; Vogt, Stefan; Chen, Si; Garwin, Seth A.; Bayer, Amanda R.; Dravid, Vinayak P.; Woodruff, Teresa K.; O' Halloran, Thomas V.

    2014-12-15

    Fertilization of a mammalian egg initiates a series of 'zinc sparks' that are necessary to induce the egg-to-embryo transition. Despite the importance of these zinc-efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches that resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy-dispersive spectroscopy, X-ray fluorescence microscopy and three-dimensional elemental tomography for high-resolution elemental mapping. We show that the zinc spark arises from a system of thousands of zinc-loaded vesicles, each of which contains, on average, 10(6) zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. The discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes

  7. Zinc supplementation alters airway inflammation and airway hyperresponsiveness to a common allergen

    Directory of Open Access Journals (Sweden)

    Morgan Carrie I

    2011-12-01

    Full Text Available Abstract Background Zinc supplementation can modulate immunity through inhibition of NF-κB, a transcription factor that controls many immune response genes. Thus, we sought to examine the mechanism by which zinc supplementation tempers the response to a common allergen and determine its effect on allergic airway inflammation. Methods Mice were injected with zinc gluconate prior to German cockroach (GC feces (frass exposure and airway inflammation was assessed. Primary bone marrow-derived neutrophils and DMSO-differentiated HL-60 cells were used to assess the role of zinc gluconate on tumor necrosis factor (TNFα expression. NF-κB:DNA binding and IKK activity were assessed by EMSA and in vitro kinase assay. Protein levels of A20, RIP1 and TRAF6 were assessed by Western blot analysis. Establishment of allergic airway inflammation with GC frass was followed by administration of zinc gluconate. Airway hyperresponsiveness, serum IgE levels, eosinophilia and Th2 cytokine production were assessed. Results Administration of zinc gluconate prior to allergen exposure resulted in significantly decreased neutrophil infiltration and TNFα cytokine release into the airways. This correlated with decreased NF-κB activity in the whole lung. Treatment with zinc gluconate significantly decreased GC frass-mediated TNFα production from bone-marrow derived neutrophils and HL-60 cells. We confirmed zinc-mediated decreases in NF-κB:DNA binding and IKK activity in HL-60 cells. A20, a natural inhibitor of NF-κB and a zinc-fingered protein, is a potential target of zinc. Zinc treatment did not alter A20 levels in the short term, but resulted in the degradation of RIP1, an important upstream activator of IKK. TRAF6 protein levels were unaffected. To determine the application for zinc as a therapeutic for asthma, we administered zinc following the establishment of allergic airway inflammation in a murine model. Zinc supplementation decreased airway hyperresponsiveness

  8. C3HC4-type RING finger protein NbZFP1 is involved in growth and fruit development in Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Wenxian Wu

    Full Text Available C3HC4-type RING finger proteins constitute a large family in the plant kingdom and play important roles in various physiological processes of plant life. In this study, a C3HC4-type zinc finger gene was isolated from Nicotiana benthamiana. Sequence analysis indicated that the gene encodes a 24-kDa protein with 191 amino acids containing one typical C3HC4-type zinc finger domain; this gene was named NbZFP1. Transient expression of pGDG-NbZFP1 demonstrated that NbZFP1 was localized to the chloroplast, especially in the chloroplasts of cells surrounding leaf stomata. Virus-induced gene silencing (VIGS analysis indicated that silencing of NbZFP1 hampered fruit development, although the height of the plants was normal. An overexpression construct was then designed and transferred into Nicotiana benthamiana, and PCR and Southern blot showed that the NbZFP1 gene was successfully integrated into the Nicotiana benthamiana genome. The transgenic lines showed typical compactness, with a short internode length and sturdy stems. This is the first report describing the function of a C3HC4-type RING finger protein in tobacco.

  9. Influence of germination and fermentation on bioaccessibility of zinc and iron from food grains.

    Science.gov (United States)

    Hemalatha, S; Platel, K; Srinivasan, K

    2007-03-01

    Food grains such as green gram, chickpea and finger millet are often subjected to traditional processing involving germination and fermentation. This study was designed to assess the effect of germination of these grains on the bioaccessibility of zinc and iron. The effect of fermentation of a cereal-pulse combination as encountered in the preparation of breakfast dishes - idli, dosa and dhokla - on the same was also evaluated. Bioaccessibility measurement was made employing an in vitro simulated digestion method. Zinc bioaccessibility was significantly decreased by germination (48 h) of finger millet (38%) and green gram (44%), while iron bioaccessibility was increased by 62% (green gram), 39% (chickpea) and 20% (finger millet), concomitant with a reduction in tannin content. A fermented batter of rice+black gram - 2:1 (idli) and 3:1 (dosa) - had higher bioaccessibility values for zinc (71 and 50%, respectively), while iron bioaccessibility values were increased in these cases of fermentation to an even greater extent, namely 277 and 127%, respectively. Zinc and iron bioaccessibility was not improved by fermentation of the combination of chickpea, green gram, black gram and rice (1:1:0.5:0.5; dhokla). A fermentation of cereal-legume combinations of idli and dosa batter significantly reduced both phytate and tannin, while in the case of dhokla batter there was a continued significant presence of phytate associated with additional legumes - chickpea and green gram. Germination of food grains improved the bioaccessibility of iron but not that of zinc. Fermentation of a batter of cereal-pulse combination in the preparation of idli and dosa enhanced the bioaccessibility of both zinc and iron, but not that of the combination used for the preparation of dhokla.

  10. The role of fingers in number processing in young children

    Directory of Open Access Journals (Sweden)

    Anne eLafay

    2013-07-01

    Full Text Available The aim of the present study was to investigate the relationship between finger counting and numerical processing in 4- to 7-year-old children. Children were assessed on a variety of numerical tasks and we examined the correlations between their rates of success and their frequency of finger use in a counting task. We showed that children’s performance on finger pattern comparison and identification tasks did not correlate with the frequency of finger use. However, this last variable correlated with the percentages of correct responses in an enumeration task (i.e., Give-N task, even when the age of children was entered as a covariate in the analysis. Despite this correlation, we showed that some children who never used their fingers in the counting task were able to perform optimally in the enumeration task. Overall, our results support the conclusion that finger counting is useful but not necessary to develop accurate symbolic numerical skills. Moreover, our results suggest that the use of fingers in a counting task is related to the ability of children in a dynamic enumeration task but not to static tasks involving recognition or comparison of finger patterns. Therefore, it could be that the link between fingers and numbers remain circumscribed to counting tasks and do not extent to static finger montring situations.

  11. The role of fingers in number processing in young children.

    Science.gov (United States)

    Lafay, Anne; Thevenot, Catherine; Castel, Caroline; Fayol, Michel

    2013-01-01

    The aim of the present study was to investigate the relationship between finger counting and numerical processing in 4-7-year-old children. Children were assessed on a variety of numerical tasks and we examined the correlations between their rates of success and their frequency of finger use in a counting task. We showed that children's performance on finger pattern comparison and identification tasks did not correlate with the frequency of finger use. However, this last variable correlated with the percentages of correct responses in an enumeration task (i.e., Give-N task), even when the age of children was entered as a covariate in the analysis. Despite this correlation, we showed that some children who never used their fingers in the counting task were able to perform optimally in the enumeration task. Overall, our results support the conclusion that finger counting is useful but not necessary to develop accurate symbolic numerical skills. Moreover, our results suggest that the use of fingers in a counting task is related to the ability of children in a dynamic enumeration task but not to static tasks involving recognition or comparison of finger patterns. Therefore, it could be that the link between fingers and numbers remain circumscribed to counting tasks and do not extent to static finger montring situations.

  12. Speed invariance of independent control of finger movements in pianists

    Science.gov (United States)

    Soechting, John F.

    2012-01-01

    Independent control of finger movements characterizes skilled motor behaviors such as tool use and musical performance. The purpose of the present study was to identify the effect of movement frequency (tempo) on individuated finger movements in piano playing. Joint motion at the digits was recorded while 5 expert pianists were playing 30 excerpts from musical pieces with different fingering and key locations either at a predetermined normal tempo or as fast as possible. Principal component analysis and cluster analysis using an expectation-maximization algorithm determined three distinct patterns of finger movement coordination for a keypress with each of the index, middle, ring, and little fingers at each of the two tempi. The finger kinematics of each coordination pattern was overall similar across the tempi. Tone sequences assigned into each cluster were also similar for both tempi. A linear regression analysis determined no apparent difference in the amount of movement covariation between the striking and nonstriking fingers at both metacarpo-phalangeal and proximal-interphalangeal joints across the two tempi, which indicated no effect of tempo on independent finger movements in piano playing. In addition, the standard deviation of interkeystroke interval across strokes did not differ between the two tempi, indicating maintenance of rhythmic accuracy of keystrokes. Strong temporal constraints on finger movements during piano playing may underlie the maintained independent control of fingers over a wider range of tempi, a feature being likely to be specific to skilled pianists. PMID:22815403

  13. Book review: Current perspectives on zinc deposits

    Science.gov (United States)

    Kelley, Karen D.

    2016-01-01

    This book, published in 2015 by the Irish Association for Economic Geology (IAEG), is a compilation of papers and abstracts written by selected authors who attended the ZINC 2010 Conference in Cork, Ireland. Unlike most books produced each decade by the IAEG, which are focused primarily on achievements of the Irish and European mineral sectors, this book has a global perspective of a single commodity—zinc. As stated in the Preface, the theme of the conference and book was quite relevant for the IAEG because Ireland has the highest concentration of zinc per square kilometer on the planet. The book contains 7 full papers and 5 extended abstracts by keynote speakers, followed by 17 extended abstracts by other presenters, plus an Appendix (reprint) of a previously published paper.

  14. The Role of Vision in the Development of Finger-Number Interactions: Finger-Counting and Finger-Montring in Blind Children

    Science.gov (United States)

    Crollen, Virginie; Mahe, Rachel; Collignon, Olivier; Seron, Xavier

    2011-01-01

    Previous research has suggested that the use of the fingers may play a functional role in the development of a mature counting system. However, the role of developmental vision in the elaboration of a finger numeral representation remains unexplored. In the current study, 14 congenitally blind children and 14 matched sighted controls undertook…

  15. Zinc electrode and rechargeable zinc-air battery

    Science.gov (United States)

    Ross, Jr., Philip N.

    1989-01-01

    An improved zinc electrode is disclosed for a rechargeable zinc-air battery comprising an outer frame and a porous foam electrode support within the frame which is treated prior to the deposition of zinc thereon to inhibit the formation of zinc dendrites on the external surface thereof. The outer frame is provided with passageways for circulating an alkaline electrolyte through the treated zinc-coated porous foam. A novel rechargeable zinc-air battery system is also disclosed which utilizes the improved zinc electrode and further includes an alkaline electrolyte within said battery circulating through the passageways in the zinc electrode and an external electrolyte circulation means which has an electrolyte reservoir external to the battery case including filter means to filter solids out of the electrolyte as it circulates to the external reservoir and pump means for recirculating electrolyte from the external reservoir to the zinc electrode.

  16. Torque Control of Underactuated Tendon-driven Robotic Fingers

    Science.gov (United States)

    Abdallah, Muhammad E. (Inventor); Ihrke, Chris A. (Inventor); Reiland, Matthew J. (Inventor); Wampler, Charles W. (Inventor); Diftler, Myron A. (Inventor); Platt, Robert (Inventor); Bridgwater, Lyndon (Inventor)

    2013-01-01

    A robotic system includes a robot having a total number of degrees of freedom (DOF) equal to at least n, an underactuated tendon-driven finger driven by n tendons and n DOF, the finger having at least two joints, being characterized by an asymmetrical joint radius in one embodiment. A controller is in communication with the robot, and controls actuation of the tendon-driven finger using force control. Operating the finger with force control on the tendons, rather than position control, eliminates the unconstrained slack-space that would have otherwise existed. The controller may utilize the asymmetrical joint radii to independently command joint torques. A method of controlling the finger includes commanding either independent or parameterized joint torques to the controller to actuate the fingers via force control on the tendons.

  17. Aspergillus Sydowi Infection of Human Finger Nail

    Directory of Open Access Journals (Sweden)

    A K Barde

    1981-01-01

    Full Text Available A case of Aspergillus sydowi infection of left middle finger nail is described ′ The presence of fungal hypae with phialids and spores on direct microscopy as well as in culture, the colour of the sub-ungual mass of the nail resembling the colour of the fungus in, culture′ repeated isolations of A sydowi from the diseased tissue along with the absence of any established pathogenic species in the specimen are taken as evidences that this fungus was invading the nail tissue.

  18. Finger Injuries in Football and Rugby.

    Science.gov (United States)

    Elzinga, Kate E; Chung, Kevin C

    2017-02-01

    Football and rugby athletes are at increased risk of finger injuries given the full-contact nature of these sports. Some players may return to play early with protective taping, splinting, and casting. Others require a longer rehabilitation period and prolonged time away from the field. The treating hand surgeon must weigh the benefits of early return to play for the current season and future playing career against the risks of reinjury and long-term morbidity, including post-traumatic arthritis and decreased range of motion and strength. Each player must be comprehensively assessed and managed with an individualized treatment plan. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Finger Clubbing Caused by Herbal Tea

    Directory of Open Access Journals (Sweden)

    Saifudin Rashiq

    1996-01-01

    Full Text Available Clubbing of the fingers is often taken to be a sign of serious illness. Its discovery, particularly if there are associated symptoms in the cardiovascular, respiratory or gastrointestinal systems, usually leads to exhaustive investigation. A case is presented in which the etiology of clubbing was found only when a new history of heavy ingestion of herbal tea was obtained, extensive work-up having previously been unhelpful. Other cases appearing in the English-language literature are cited, some universal etiological associations are described, and an attempt is made to explain the phenomenon, based on a recent theory of the cause of clubbing.

  20. SSFSE sequence functional MRI of the human cervical spinal cord with complex finger tapping

    International Nuclear Information System (INIS)

    Xie Chuhai; Kong Kangmei; Guan Jitian; Chen Yexi; He Jiankang; Qi Weili; Wang Xinjia; Shen Zhiwei; Wu Renhua

    2009-01-01

    Purpose: Functional MR imaging of the human cervical spinal cord was carried out on volunteers during alternated rest and a complex finger tapping task, in order to detect image intensity changes arising from neuronal activity. Methods: Functional MR imaging data using single-shot fast spin-echo sequence (SSFSE) with echo time 42.4 ms on a 1.5 T GE Clinical System were acquired in eight subjects performing a complex finger tapping task. Cervical spinal cord activation was measured both in the sagittal and transverse imaging planes. Postprocessing was performed by AFNI (Analysis of Functional Neuroimages) software system. Results: Intensity changes (5.5-7.6%) were correlated with the time course of stimulation and were consistently detected in both sagittal and transverse imaging planes of the cervical spinal cord. The activated regions localized to the ipsilateral side of the spinal cord in agreement with the neural anatomy. Conclusion: Functional MR imaging signals can be reliably detected with finger tapping activity in the human cervical spinal cord using a SSFSE sequence with 42.4 ms echo time. The anatomic location of neural activity correlates with the muscles used in the finger tapping task.

  1. Discrimination of Finger Area of Somatosensory Cortex by NIRS

    Science.gov (United States)

    Xu, Mingdi; Hayami, Takehito; Iramina, Keiji

    We carried out a near-infrared spectroscopy (NIRS) study to observe the hemodynamic responses associated with cortical activation in the primary somatosensory cortex (SI) by finger electrical stimulation. We examined whether NIRS can assist in investigating the somatotopic arrangement of fingers on the SI hand area. We found that although relatively low in spatial resolution, NIRS can to some extent help to discriminate the representations of thumb and ring finger on the SI hand area.

  2. The bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens

    OpenAIRE

    Veldkamp, T.; Diepen, van, J.T.M.; Bikker, P.

    2014-01-01

    Zinc is an essential trace element for all farm animal species. It is commonly included in animal diets as zinc oxide, zinc sulphate or organically bound zinc. Umicore Zinc Chemicals developed zinc oxide products with different mean particle sizes. Umicore Zinc Chemicals requested Wageningen UR Livestock Research to determine the bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens. A precise estimate of the bioavailability of zinc sources is required both for fulf...

  3. Tetanus following replantation of an amputated finger: a case report.

    Science.gov (United States)

    Hayashida, Kenji; Murakami, Chikako; Fujioka, Masaki

    2012-10-08

    Tetanus is an infectious disease caused by tetanus toxin produced by Clostridium tetani and induces severe neurological manifestations. We treated a patient who developed tetanus during hospitalization for replantation of an amputated finger. To the best of our knowledge, this is the first published case report of such an entity. A 49-year-old Japanese man had an amputation of his right middle finger at the distal interphalangeal joint region in an accident at work. His middle finger was successfully replanted, but his fingertip was partially necrotized because of crushing and so additional reconstruction with a reverse digital arterial flap was performed 15 days after the injury. Tetanus developed 21 days after replantation of the middle finger, but symptoms remitted via rapid diagnosis and treatment. In replantation after finger trauma with exposure of nerve and blood vessel bundles, concern over injuring nerves and blood vessels may prevent irrigation and debridement from being performed sufficiently; these treatments may have been insufficiently performed in this patient. It is likely that the replanted middle finger partially adhered, and Clostridium tetani colonized the partially necrotized region. Even when there is only limited soil contamination, administration of tetanus toxoid and anti-tetanus immunoglobulin is necessary when the fingers are injured outdoors and the finger nerves and blood vessels are exposed. The drugs should be administered just after replantation if the finger has been amputated. However, if clinicians pay attention to the possibility of tetanus development, treatment can be rapidly initiated.

  4. Tetanus following replantation of an amputated finger: a case report

    Directory of Open Access Journals (Sweden)

    Hayashida Kenji

    2012-10-01

    Full Text Available Abstract Introduction Tetanus is an infectious disease caused by tetanus toxin produced by Clostridium tetani and induces severe neurological manifestations. We treated a patient who developed tetanus during hospitalization for replantation of an amputated finger. To the best of our knowledge, this is the first published case report of such an entity. Case presentation A 49-year-old Japanese man had an amputation of his right middle finger at the distal interphalangeal joint region in an accident at work. His middle finger was successfully replanted, but his fingertip was partially necrotized because of crushing and so additional reconstruction with a reverse digital arterial flap was performed 15 days after the injury. Tetanus developed 21 days after replantation of the middle finger, but symptoms remitted via rapid diagnosis and treatment. Conclusions In replantation after finger trauma with exposure of nerve and blood vessel bundles, concern over injuring nerves and blood vessels may prevent irrigation and debridement from being performed sufficiently; these treatments may have been insufficiently performed in this patient. It is likely that the replanted middle finger partially adhered, and Clostridium tetani colonized the partially necrotized region. Even when there is only limited soil contamination, administration of tetanus toxoid and anti-tetanus immunoglobulin is necessary when the fingers are injured outdoors and the finger nerves and blood vessels are exposed. The drugs should be administered just after replantation if the finger has been amputated. However, if clinicians pay attention to the possibility of tetanus development, treatment can be rapidly initiated.

  5. Cholinergic vasodilator mechanism in human fingers

    Energy Technology Data Exchange (ETDEWEB)

    Coffman, J.D.; Cohen, R.A.

    1987-03-01

    The effect of a cholinergic agonist and antagonist on finger blood flow (FBF) was studied in 10 normal subjects. Total finger blood flow was measured by venous occlusion, air plethysmography, and capillary blood flow (FCF) by the disappearance rate of a radio-isotope from a fingertip injection. Methacholine in doses of 10-80 ..mu..g/min was given by constant infusion via a brachial artery catheter. Average FBF and vascular resistance were not significantly affected. However, the half time (t/sub 1/2/) of the disappearance rate decreased from 50.8 +/- 13.4 to 11.1 +/- 1.5 min; a decrease occurred in all subjects. In seven subjects, atropine (0.2 mg) had no affect alone but inhibited the effect of methacholine on FCF and prevented the redness and sweating of the forearm and hand that occurs with this agent. This study demonstrates a muscarinic cholinergic vasodilator mechanism in the fingertip that uniquely increase capillary blood flow.

  6. Dermatoglyphic patterns on fingers and gynecological cancers.

    Science.gov (United States)

    Abbasi, Sakineh; Rasouli, Mina

    2018-03-01

    Fingerprints have so far been used for determining the basis of certain malignant diseases, with positive outcomes. Considering the high rates of cancer-related mortality in Iran, this study was conducted for the purpose of examining the dermatoglyphic pattern of fingers in patients with gynecological cancers as compared to healthy people. The present study was conducted on 151 women with gynecological cancers as the case group and 152 healthy women with no history of such cancers as control group. The dematographic details of participants from both control and case groups were collected using a checklist, and the pattern of their fingerprints was prepared and examined. The data were analyzed for their significance using chi-square test and t- test. Odds ratio with 95% confidence intervals were calculated. Dermatoglyphic analysis showed that arch and loop patterns significantly changed in cases group as compared to control. However, the odds ratio suggested that loop pattern in 6 or more fingers might be a risk factor for developing gynecological cancers. Our results showed that there is an association between fingerprint patterns and gynecological cancers and so, dermatoglyphic analysis may aid in the early diagnosis of these cancers. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Oxidation-Mediated Fingering in Liquid Metals

    Science.gov (United States)

    Eaker, Collin B.; Hight, David C.; O'Regan, John D.; Dickey, Michael D.; Daniels, Karen E.

    2017-10-01

    We identify and characterize a new class of fingering instabilities in liquid metals; these instabilities are unexpected due to the large interfacial tension of metals. Electrochemical oxidation lowers the effective interfacial tension of a gallium-based liquid metal alloy to values approaching zero, thereby inducing drastic shape changes, including the formation of fractals. The measured fractal dimension (D =1.3 ±0.05 ) places the instability in a different universality class than other fingering instabilities. By characterizing changes in morphology and dynamics as a function of droplet volume and applied electric potential, we identify the three main forces involved in this process: interfacial tension, gravity, and oxidative stress. Importantly, we find that electrochemical oxidation can generate compressive interfacial forces that oppose the tensile forces at a liquid interface. The surface oxide layer ultimately provides a physical and electrochemical barrier that halts the instabilities at larger positive potentials. Controlling the competition between interfacial tension and oxidative (compressive) stresses at the interface is important for the development of reconfigurable electronic, electromagnetic, and optical devices that take advantage of the metallic properties of liquid metals.

  8. Segregation induced fingering instabilities in granular avalanches

    Science.gov (United States)

    Woodhouse, Mark; Thornton, Anthony; Johnson, Chris; Kokelaar, Pete; Gray, Nico

    2013-04-01

    It is important to be able to predict the distance to which a hazardous natural granular flows (e.g. snow slab avalanches, debris-flows and pyroclastic flows) might travel, as this information is vital for accurate assessment of the risks posed by such events. In the high solids fraction regions of these flows the large particles commonly segregate to the surface, where they are transported to the margins to form bouldery flow fronts. In many natural flows these bouldery margins experience a much greater frictional force, leading to frontal instabilities. These instabilities create levees that channelize the flow vastly increasing the run-out distance. A similar effect can be observed in dry granular experiments, which use a combination of small round and large rough particles. When this mixture is poured down an inclined plane, particle size segregation causes the large particles to accumulate near the margins. Being rougher, the large particles experience a greater friction force and this configuration (rougher material in front of smoother) can be unstable. The instability causes the uniform flow front to break up into a series of fingers. A recent model for particle size-segregation has been coupled to existing avalanche models through a particle concentration dependent friction law. In this talk numerical solutions of this coupled system are presented and compared to both large scale experiments carried out at the USGS flume and more controlled small scale laboratory experiments. The coupled depth-averaged model captures the accumulation of large particles at the flow front. We show this large particle accumulation at the head of the flow can lead to the break-up of the initially uniform front into a series of fingers. However, we are unable to obtain a fully grid-resolved numerical solution; the width of the fingers decreases as the grid is refined. By considering the linear stability of a steady, fully-developed, bidisperse granular layer it is shown that

  9. Band alignment and defects of the diamond zinc oxide heterojunction; Bandstruktur und Defekte der Diamant-Zinkoxid-Heterostruktur

    Energy Technology Data Exchange (ETDEWEB)

    Geithner, Peter

    2008-09-12

    Zinc oxide films were grown on diamond single crystals by rf sputtering of zinc oxide. The valence and conduction band offset was determined by photoelectron spectroscopy. A deep defect occurring in the zinc oxide films on diamond was characterized by cathodoluminescence spectroscopy. (orig.)

  10. Range-extending Zinc-air battery for electric vehicle

    Directory of Open Access Journals (Sweden)

    Steven B. Sherman

    2018-01-01

    Full Text Available A vehicle model is used to evaluate a novel powertrain that is comprised of a dual energy storage system (Dual ESS. The system includes two battery packs with different chemistries and the necessary electronic controls to facilitate their coordination and optimization. Here, a lithium-ion battery pack is used as the primary pack and a Zinc-air battery as the secondary or range-extending pack. Zinc-air batteries are usually considered unsuitable for use in vehicles due to their poor cycle life, but the model demonstrates the feasibility of this technology with an appropriate control strategy, with limited cycling of the range extender pack. The battery pack sizes and the battery control strategy are configured to optimize range, cost and longevity. In simulation the vehicle performance compares favourably to a similar vehicle with a single energy storage system (Single ESS powertrain, travelling up to 75 km further under test conditions. The simulation demonstrates that the Zinc-air battery pack need only cycle 100 times to enjoy a ten-year lifespan. The Zinc-air battery model is based on leading Zinc-air battery research from literature, with some assumptions regarding achievable improvements. Having such a model clarifies the performance requirements of Zinc-air cells and improves the research community's ability to set performance targets for Zinc-air cells.

  11. History of zinc in agriculture.

    Science.gov (United States)

    Nielsen, Forrest H

    2012-11-01

    Zinc was established as essential for green plants in 1926 and for mammals in 1934. However, >20 y would pass before the first descriptions of zinc deficiencies in farm animals appeared. In 1955, it was reported that zinc supplementation would cure parakeratosis in swine. In 1958, it was reported that zinc deficiency induced poor growth, leg abnormalities, poor feathering, and parakeratosis in chicks. In the 1960s, zinc supplementation was found to alleviate parakeratosis in grazing cattle and sheep. Within 35 y, it was established that nearly one half of the soils in the world may be zinc deficient, causing decreased plant zinc content and production that can be prevented by zinc fertilization. In many of these areas, zinc deficiency is prevented in grazing livestock by zinc fertilization of pastures or by providing salt licks. For livestock under more defined conditions, such as poultry, swine, and dairy and finishing cattle, feeds are easily supplemented with zinc salts to prevent deficiency. Today, the causes and consequences of zinc deficiency and methods and effects of overcoming the deficiency are well established for agriculture. The history of zinc in agriculture is an outstanding demonstration of the translation of research into practical application.

  12. Finger-like voids induced by viscous fingering during phase inversion of alumina/PES/NMP suspensions

    KAUST Repository

    Wang, Bo

    2012-07-01

    The formation mechanism of phase-inversion ceramic hollow fibre membranes has not been well understood. In this paper, we report on the formation of finger-like macrovoids during non-solvent-induced phase inversion of alumina/PES/NMP suspensions. A membrane structure without such finger-like macrovoids was observed when the suspension was slowly immersed into pure ethanol or a mixture of 70. wt% NMP and 30. wt% water, whereas finger-like macrovoids occurred when the suspension was slid into the non-solvents at higher speeds. We found that the formation process of finger-like macrovoids could be fully or partially reversed when nascent membranes were taken out from water shortly after immersion, depending on the duration of the immersion. Splitting of the fingers during the formation of the macrovoids was also observed during the phase inversion of two alumina/PES/NMP suspensions. These experimental observations were not predicted by current theories of finger-like macrovoid formation in polymer membranes, but appear to mimic the well-known viscous fingering phenomenon. We therefore propose that in the phase inversion of ceramic suspensions, the viscous fingering phenomenon is an important mechanism in the formation of finger-like voids. © 2012 Elsevier B.V.

  13. Reduction of arsenite-enhanced ultraviolet radiation-induced DNA damage by supplemental zinc

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Karen L.; King, Brenee S.; Sandoval, Monica M.; Liu, Ke Jian; Hudson, Laurie G., E-mail: lhudson@salud.unm.edu

    2013-06-01

    Arsenic is a recognized human carcinogen and there is evidence that arsenic augments the carcinogenicity of DNA damaging agents such as ultraviolet radiation (UVR) thereby acting as a co-carcinogen. Inhibition of DNA repair is one proposed mechanism to account for the co-carcinogenic actions of arsenic. We and others find that arsenite interferes with the function of certain zinc finger DNA repair proteins. Furthermore, we reported that zinc reverses the effects of arsenite in cultured cells and a DNA repair target protein, poly (ADP-ribose) polymerase-1. In order to determine whether zinc ameliorates the effects of arsenite on UVR-induced DNA damage in human keratinocytes and in an in vivo model, normal human epidermal keratinocytes and SKH-1 hairless mice were exposed to arsenite, zinc or both before solar-simulated (ss) UVR exposure. Poly (ADP-ribose) polymerase activity, DNA damage and mutation frequencies at the Hprt locus were measured in each treatment group in normal human keratinocytes. DNA damage was assessed in vivo by immunohistochemical staining of skin sections isolated from SKH-1 hairless mice. Cell-based findings demonstrate that ssUVR-induced DNA damage and mutagenesis are enhanced by arsenite, and supplemental zinc partially reverses the arsenite effect. In vivo studies confirm that zinc supplementation decreases arsenite-enhanced DNA damage in response to ssUVR exposure. From these data we can conclude that zinc offsets the impact of arsenic on ssUVR-stimulated DNA damage in cells and in vivo suggesting that zinc supplementation may provide a strategy to improve DNA repair capacity in arsenic exposed human populations. - Highlights: • Low levels of arsenite enhance UV-induced DNA damage in human keratinocytes. • UV-initiated HPRT mutation frequency is enhanced by arsenite. • Zinc supplementation offsets DNA damage and mutation frequency enhanced by arsenite. • Zinc-dependent reduction of arsenite enhanced DNA damage is confirmed in vivo.

  14. Modelling salt finger formation using the Imperial College Ocean Model

    Science.gov (United States)

    MacTavish, F. P.; Cotter, C. J.; Piggott, M. D.

    2009-04-01

    We present numerical simulations of salt finger formation produced using the Imperial College Ocean Model (ICOM) which is a finite element model using adaptive meshing. Our aim is to validate the model against published data and to develop the capability to simulate salt finger formation using adaptive meshes. Salt fingering is a form of double-diffusion which occurs because heat diffuses more quickly than salt. When an area of warm, salty water overlies an area of colder, fresher water, an initial perturbation can lead to some of the water from the lower layer moving into the top layer. Its temperature then increases more quickly than its salinity, so that the water is less dense than its surroundings and it will rise up more. This process repeats to form salt fingers, with salt fingers also forming in the downward direction. Salt fingers play a role in oceanic mixing, in particular they are responsible for maintaining thermohaline staircases such as the C-SALT staircase which have been observed extensively, particularly in the tropics. The study of salt fingers could therefore improve our understanding of processes in the ocean, and inform the design of subgrid parameterisations in general circulation models. We used the salt finger formation test case of Oezgoekmen et al (1998) in order to validate ICOM. The formation of salt fingers is modelled by solving the Navier-Stokes equations for a two-dimensional rectangular area of Boussinesq fluid, beginning with two layers of water, the top warm and salty and the bottom cold and fresh, with parameters chosen to match the test case of Oezgoekmen et al (1998). The positions of the interfaces between the fingering layer and the mixed layers as well as the finger growth rate and the kinetic energy are plotted against time. The results are compared with those of Oezgoekmen et al (1998). We present results from structured meshes and preliminary results using adaptive meshing.

  15. Insights into structural and functional diversity of Dof (DNA binding with one finger) transcription factor.

    Science.gov (United States)

    Gupta, S; Malviya, N; Kushwaha, H; Nasim, J; Bisht, N C; Singh, V K; Yadav, D

    2015-03-01

    The structural, functional and in-silico studies of Dof transcription factor attempted so far reveals immense opportunity to analyze the plant genomes in terms of number of Dof genes and discuss in light of the evolution. The multiple functions of Dof genes needs to explored for crop improvement. Transcription factors play a very vital role in gene regulation at transcriptional level and are being extensively studied across phylas. In recent years, sequencing of plant genomes has led to genome-wide identification and characterizations of diverse types of plant-specific transcription factor gene family providing key insights into their structural and functional diversity. The DNA binding with one finger (Dof), a class belonging to C2H2-type zinc finger family proteins, is a plant-specific transcription factor having multiple roles such as seed maturation and germination, phytohormone and light-mediated regulation and plant responses to biotic and abiotic stresses. Dof proteins are present across plant lineage, from green algae to higher angiosperm, and represent a unique class of transcription factor having bifunctional binding activities, with both DNA and proteins, to regulate the complex transcriptional machinery in plant cells. The structural and functional diversity of the Dof transcription factor family along with the bioinformatics analysis highlighting the phylogeny of Dof families is reviewed in light of its importance in plant biotechnology for crop improvement.

  16. The study and microstructure analysis of zinc and zinc oxide

    Czech Academy of Sciences Publication Activity Database

    Luptáková, Natália; Pešlová, F.; Kliber, J.

    2015-01-01

    Roč. 54, č. 1 (2015), s. 43-46 ISSN 0543-5846 Grant - others:KEGA(SK) KEGA 007 TnUAD-4/2013 Institutional support: RVO:68081723 Keywords : zinc * production of zinc oxide * microstructure * chemical composition * zinc slag Subject RIV: JG - Metallurgy Impact factor: 0.959, year: 2014

  17. Relationship between maternal serum zinc, cord blood zinc and ...

    African Journals Online (AJOL)

    Background: Adequate in utero supply of zinc is essential for optimal fetal growth because of the role of zinc in cellular division, growth and differentiation. Low maternal serum zinc has been reported to be associated with low birth weight and the later is associated with increased morbidity and mortality in newborns.

  18. relationship between maternal serum zinc, cord blood zinc and birth

    African Journals Online (AJOL)

    FOBUR

    Conclusion: The study outcome suggests that cord serum zinc but not maternal serum zinc predicts birth weight. In spite of low maternal serum zinc level, ... Therefore, in order to ensure optimal fetal growth and development, ... info statistical software version 3.5.3. A 95% confidence interval was used and a p- value of less.

  19. Quantifying forearm muscle activity during wrist and finger movements by means of multi-channel electromyography.

    Directory of Open Access Journals (Sweden)

    Marco Gazzoni

    Full Text Available The study of hand and finger movement is an important topic with applications in prosthetics, rehabilitation, and ergonomics. Surface electromyography (sEMG is the gold standard for the analysis of muscle activation. Previous studies investigated the optimal electrode number and positioning on the forearm to obtain information representative of muscle activation and robust to movements. However, the sEMG spatial distribution on the forearm during hand and finger movements and its changes due to different hand positions has never been quantified. The aim of this work is to quantify 1 the spatial localization of surface EMG activity of distinct forearm muscles during dynamic free movements of wrist and single fingers and 2 the effect of hand position on sEMG activity distribution. The subjects performed cyclic dynamic tasks involving the wrist and the fingers. The wrist tasks and the hand opening/closing task were performed with the hand in prone and neutral positions. A sensorized glove was used for kinematics recording. sEMG signals were acquired from the forearm muscles using a grid of 112 electrodes integrated into a stretchable textile sleeve. The areas of sEMG activity have been identified by a segmentation technique after a data dimensionality reduction step based on Non Negative Matrix Factorization applied to the EMG envelopes. The results show that 1 it is possible to identify distinct areas of sEMG activity on the forearm for different fingers; 2 hand position influences sEMG activity level and spatial distribution. This work gives new quantitative information about sEMG activity distribution on the forearm in healthy subjects and provides a basis for future works on the identification of optimal electrode configuration for sEMG based control of prostheses, exoskeletons, or orthoses. An example of use of this information for the optimization of the detection system for the estimation of joint kinematics from sEMG is reported.

  20. Quantifying forearm muscle activity during wrist and finger movements by means of multi-channel electromyography.

    Science.gov (United States)

    Gazzoni, Marco; Celadon, Nicolò; Mastrapasqua, Davide; Paleari, Marco; Margaria, Valentina; Ariano, Paolo

    2014-01-01

    The study of hand and finger movement is an important topic with applications in prosthetics, rehabilitation, and ergonomics. Surface electromyography (sEMG) is the gold standard for the analysis of muscle activation. Previous studies investigated the optimal electrode number and positioning on the forearm to obtain information representative of muscle activation and robust to movements. However, the sEMG spatial distribution on the forearm during hand and finger movements and its changes due to different hand positions has never been quantified. The aim of this work is to quantify 1) the spatial localization of surface EMG activity of distinct forearm muscles during dynamic free movements of wrist and single fingers and 2) the effect of hand position on sEMG activity distribution. The subjects performed cyclic dynamic tasks involving the wrist and the fingers. The wrist tasks and the hand opening/closing task were performed with the hand in prone and neutral positions. A sensorized glove was used for kinematics recording. sEMG signals were acquired from the forearm muscles using a grid of 112 electrodes integrated into a stretchable textile sleeve. The areas of sEMG activity have been identified by a segmentation technique after a data dimensionality reduction step based on Non Negative Matrix Factorization applied to the EMG envelopes. The results show that 1) it is possible to identify distinct areas of sEMG activity on the forearm for different fingers; 2) hand position influences sEMG activity level and spatial distribution. This work gives new quantitative information about sEMG activity distribution on the forearm in healthy subjects and provides a basis for future works on the identification of optimal electrode configuration for sEMG based control of prostheses, exoskeletons, or orthoses. An example of use of this information for the optimization of the detection system for the estimation of joint kinematics from sEMG is reported.

  1. Neural control of finger movement via intracortical brain-machine interface.

    Science.gov (United States)

    Irwin, Z T; Schroeder, K E; Vu, P P; Bullard, A J; Tat, D M; Nu, C S; Vaskov, A; Nason, S R; Thompson, D E; Bentley, J N; Patil, P G; Chestek, C A

    2017-12-01

    Intracortical brain-machine interfaces (BMIs) are a promising source of prosthesis control signals for individuals with severe motor disabilities. Previous BMI studies have primarily focused on predicting and controlling whole-arm movements; precise control of hand kinematics, however, has not been fully demonstrated. Here, we investigate the continuous decoding of precise finger movements in rhesus macaques. In order to elicit precise and repeatable finger movements, we have developed a novel behavioral task paradigm which requires the subject to acquire virtual fingertip position targets. In the physical control condition, four rhesus macaques performed this task by moving all four fingers together in order to acquire a single target. This movement was equivalent to controlling the aperture of a power grasp. During this task performance, we recorded neural spikes from intracortical electrode arrays in primary motor cortex. Using a standard Kalman filter, we could reconstruct continuous finger movement offline with an average correlation of ρ  =  0.78 between actual and predicted position across four rhesus macaques. For two of the monkeys, this movement prediction was performed in real-time to enable direct brain control of the virtual hand. Compared to physical control, neural control performance was slightly degraded; however, the monkeys were still able to successfully perform the task with an average target acquisition rate of 83.1%. The monkeys' ability to arbitrarily specify fingertip position was also quantified using an information throughput metric. During brain control task performance, the monkeys achieved an average 1.01 bits s -1 throughput, similar to that achieved in previous studies which decoded upper-arm movements to control computer cursors using a standard Kalman filter. This is, to our knowledge, the first demonstration of brain control of finger-level fine motor skills. We believe that these results represent an important step

  2. Neural control of finger movement via intracortical brain-machine interface

    Science.gov (United States)

    Irwin, Z. T.; Schroeder, K. E.; Vu, P. P.; Bullard, A. J.; Tat, D. M.; Nu, C. S.; Vaskov, A.; Nason, S. R.; Thompson, D. E.; Bentley, J. N.; Patil, P. G.; Chestek, C. A.

    2017-12-01

    Objective. Intracortical brain-machine interfaces (BMIs) are a promising source of prosthesis control signals for individuals with severe motor disabilities. Previous BMI studies have primarily focused on predicting and controlling whole-arm movements; precise control of hand kinematics, however, has not been fully demonstrated. Here, we investigate the continuous decoding of precise finger movements in rhesus macaques. Approach. In order to elicit precise and repeatable finger movements, we have developed a novel behavioral task paradigm which requires the subject to acquire virtual fingertip position targets. In the physical control condition, four rhesus macaques performed this task by moving all four fingers together in order to acquire a single target. This movement was equivalent to controlling the aperture of a power grasp. During this task performance, we recorded neural spikes from intracortical electrode arrays in primary motor cortex. Main results. Using a standard Kalman filter, we could reconstruct continuous finger movement offline with an average correlation of ρ  =  0.78 between actual and predicted position across four rhesus macaques. For two of the monkeys, this movement prediction was performed in real-time to enable direct brain control of the virtual hand. Compared to physical control, neural control performance was slightly degraded; however, the monkeys were still able to successfully perform the task with an average target acquisition rate of 83.1%. The monkeys’ ability to arbitrarily specify fingertip position was also quantified using an information throughput metric. During brain control task performance, the monkeys achieved an average 1.01 bits s-1 throughput, similar to that achieved in previous studies which decoded upper-arm movements to control computer cursors using a standard Kalman filter. Significance. This is, to our knowledge, the first demonstration of brain control of finger-level fine motor skills. We believe

  3. Zinc finger protein ZBTB20 expression is increased in hepatocellular carcinoma and associated with poor prognosis

    International Nuclear Information System (INIS)

    Wang, Qing; Wang, Hong-yang; Tan, Ye-xiong; Ren, Yi-bin; Dong, Li-wei; Xie, Zhi-fang; Tang, Liang; Cao, Dan; Zhang, Wei-ping; Hu, He-ping

    2011-01-01

    Our previous studies showed that ZBTB20, a new BTB/POZ-domain gene, could negatively regulate α feto-protein and other liver-specific genes, concerning such as bio-transformation, glucose metabolism and the regulation of the somatotropic hormonal axis. The aim of this study is to determine the potential clinical implications of ZBTB20 in hepatocellular carcinoma (HCC). Quantitative real-time RT-PCR and Western blot analyses were used to detect expression levels of ZBTB20 in 50 paired HCC tumorous and nontumorous tissues and in 20 normal liver tissues. Moreover, expression of ZBTB20 was assessed by immunohistochemistry of paired tumor and peritumoral liver tissue from 102 patients who had undergone hepatectomy for histologically proven HCC. And its relationship with clinicopathological parameters and prognosis was investigated. Both messenger RNA and protein expression levels of ZBTB20 were elevated significantly in HCC tissues compared with the paired non-tumor tissues and normal liver tissues. Overexpressed ZBTB20 protein in HCC was significantly associated with vein invasion (P = 0.016). Importantly, the recurrence or metastasis rates of HCCs with higher ZBTB20 expression were markedly greater than those of HCCs with lower expression (P = 0.003, P = 0.00015, respectively). Univariate and multivariate analyses revealed that ZBTB20 overexpression was an independent prognostic factor for HCC. The disease-free survival period and over-all survival period in patients with overexpressed ZBTB20 in HCC was significantly reduced. The expression of ZBTB20 is increased in HCC and associated with poor prognosis in patients with HCC, implicating ZBTB20 as a candidate prognostic marker in HCC

  4. Expression of Zinc Finger Protein 804A (ZNF804A) in the brain

    DEFF Research Database (Denmark)

    Benedikz, Eirikur

    Schizophrenia is a severe psychiatric disorder with lifetime prevalence between 0.5 and 1%. The disease is characterized by delusions, hallucinations, altered cognition, emotional reactivity and disorganized behavior. Research increasingly suggests that schizophrenia is a subtle disorder of brain...... of ZNF804A in different brain regions and at different ages in rats using qPCR. Our results show that expression of ZNF804A is developmentally regulated and increases significantly in the brain of embryonic day 18 rats (the developmental equivalent of a 9 week old human fetus). In cortex and cerebellum...... the mRNA levels of ZNF804A are high around birth and then decrease to the adult level. The expression of ZNF804A is also developmentally regulated in the hippocampus, but after decreasing from the postnatal levels, the expression increases again in the adult. These results suggest that ZNF804A plays...

  5. RABBIT EARS, encoding a SUPERMAN-like zinc finger protein, regulates petal development in Arabidopsis thaliana.

    Science.gov (United States)

    Takeda, Seiji; Matsumoto, Noritaka; Okada, Kiyotaka

    2004-01-01

    Floral organs usually initiate at fixed positions in concentric whorls within a flower. Although it is understood that floral homeotic genes determine the identity of floral organs, the mechanisms of position determination and the development of each organ have not been clearly explained. We isolated a novel mutant, rabbit ears (rbe), with defects in petal development. In rbe, under-developed petals are formed at the correct position in a flower, and the initiation of petal primordia is altered. The rbe mutation affects the second whorl organ shapes independently of the organ identity. RBE encodes a SUPERMAN-like protein and is located in the nucleus, and thus may be a transcription factor. RBE transcripts are expressed in petal primordia and their precursor cells, and disappeared at later stages. When cells that express RBE are ablated genetically, no petal primordia arise. RBE is not expressed in ap1-1 and ptl-1 mutants, indicating that RBE acts downstream of AP1 and PTL genes. These characteristics suggest that RBE is required for the early development of the organ primordia of the second whorl.

  6. Targeted mutagenesis in the silkworm Bombyx mori using zinc finger nuclease mRNA injection

    Czech Academy of Sciences Publication Activity Database

    Takasu, Yoko; Kobayashi, I.; Beumer, K.; Uchino, K.; Sezutsu, H.; Sajwan, S.; Carroll, D.; Tamura, T.; Žurovec, Michal

    2010-01-01

    Roč. 40, č. 10 (2010), s. 759-765 ISSN 0965-1748 R&D Projects: GA AV ČR IAA500070601; GA ČR GAP305/10/2406; GA MŠk(CZ) LC06077 Institutional research plan: CEZ:AV0Z50070508 Keywords : gene targeting * nonhomologous and joining * Lepidoptera Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.018, year: 2010

  7. Mining the O-glycoproteome using zinc-finger nuclease-glycoengineered SimpleCell lines

    DEFF Research Database (Denmark)

    Steentoft, Catharina; Vakhrushev, Sergey Y; Vester-Christensen, Malene B

    2011-01-01

    -glycopeptides from total cell lysates using lectin chromatography and nanoflow liquid chromatography-mass spectrometry (nLC-MS/MS) with electron transfer dissociation fragmentation. We identified >100 O-glycoproteins with >350 O-glycan sites (the great majority previously unidentified), including a GalNAc O......-glycan linkage to a tyrosine residue. The SimpleCell method should facilitate analyses of important functions of protein glycosylation. The strategy is also applicable to other O-glycoproteomes....

  8. CTCF: Comprehending The Complex Functions of an 11 zinc finger transcription factor

    NARCIS (Netherlands)

    H.E. Heath (Helen Elizabeth)

    2007-01-01

    textabstractIn a multi-cellular organism, every somatic cell nucleus broadly contains the same sequence of DNA, yet clearly most cells are very different to each other. Specific sets of genes encoding proteins become activated whereas others are repressed. Within the genome, independently regulated

  9. Zinc Finger Transcription Factors as Novel Genetic Switches to Modulate Metastatic Progression of Breast Tumors

    Science.gov (United States)

    2008-05-01

    predicted specificity of the individual ZF lexicons. Aminoacids shown in red, blue and pink represent the ZF α-helical positions –1, +3 and +6, which...additive effect, and antagonism , respectively. Statistical Analysis Real-time PCR and viability experiments were repeated thrice using three...2007;1:84–90. 44. Chou TC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies

  10. A DHHC-type zinc finger protein gene regulates shoot branching in ...

    African Journals Online (AJOL)

    hope&shola

    The Actin2 gene (At3g18780) was used as an internal control. PCR products were separated by 1.5% agarose gel electrophoresis. Each experiment was repeated at least three times in three independent trials. Quantitative real time PCR analysis. Quantitative real time PCR (QPCR) was used to further confirm transcript ...

  11. Brittle Cornea Syndrome Associated with a Missense Mutation in the Zinc-Finger 469 Gene

    DEFF Research Database (Denmark)

    Christensen, Anne Elisabeth; Knappskog, Per Morten; Midtbø, Marit

    2010-01-01

    Purpose: To investigate the diverse clinical manifestations, identify the causative mutation and explain the association with red hair in a family with brittle cornea syndrome (BCS). Methods: Eight family members in three generations underwent ophthalmic, dental, and general medical examination...... mapping with SNP markers, DNA sequencing, and MC1R genotyping. Results: At 42 and 48 years of age, respectively, both affected individuals were blind due to retinal detachment and secondary glaucoma. They had extremely thin and bulging corneas, velvety skin, chestnut colored hair, scoliosis, reduced BMD......, dental anomalies, hearing loss and minor cardiac defects. The morphologies of the skin biopsies were normal except that in some areas slightly thinner collagen fibrils were seen in one of the affected individuals. Molecular genetic analysis revealed a novel missense mutation of ZNF469, c.10016G...

  12. Re-engineering the zinc fingers of PRDM9 reverses hybrid sterility in mice.

    Science.gov (United States)

    Davies, Benjamin; Hatton, Edouard; Altemose, Nicolas; Hussin, Julie G; Pratto, Florencia; Zhang, Gang; Hinch, Anjali Gupta; Moralli, Daniela; Biggs, Daniel; Diaz, Rebeca; Preece, Chris; Li, Ran; Bitoun, Emmanuelle; Brick, Kevin; Green, Catherine M; Camerini-Otero, R Daniel; Myers, Simon R; Donnelly, Peter

    2016-02-11

    The DNA-binding protein PRDM9 directs positioning of the double-strand breaks (DSBs) that initiate meiotic recombination in mice and humans. Prdm9 is the only mammalian speciation gene yet identified and is responsible for sterility phenotypes in male hybrids of certain mouse subspecies. To investigate PRDM9 binding and its role in fertility and meiotic recombination, we humanized the DNA-binding domain of PRDM9 in C57BL/6 mice. This change repositions DSB hotspots and completely restores fertility in male hybrids. Here we show that alteration of one Prdm9 allele impacts the behaviour of DSBs controlled by the other allele at chromosome-wide scales. These effects correlate strongly with the degree to which each PRDM9 variant binds both homologues at the DSB sites it controls. Furthermore, higher genome-wide levels of such 'symmetric' PRDM9 binding associate with increasing fertility measures, and comparisons of individual hotspots suggest binding symmetry plays a downstream role in the recombination process. These findings reveal that subspecies-specific degradation of PRDM9 binding sites by meiotic drive, which steadily increases asymmetric PRDM9 binding, has impacts beyond simply changing hotspot positions, and strongly support a direct involvement in hybrid infertility. Because such meiotic drive occurs across mammals, PRDM9 may play a wider, yet transient, role in the early stages of speciation.

  13. DEPSCOR/97-98 Mechanisms and Biomonitoring of Toxicant-Induced Changes in Zinc Finger Proteins

    National Research Council Canada - National Science Library

    Hanas, Jay

    2002-01-01

    .... The goals of this project were to understand alterations in gene expression mechanisms induced by toxic chemicals and to develop biomonitoring assays for such toxicants helpful for risk assessment...

  14. The zinc finger protein ZAT11 modulates paraquat-induced programmed cell death in Arabidopsis thaliana

    NARCIS (Netherlands)

    Qureshi, Muhammad Kamran; Sujeeth, Neerakkal; Gechev, Tsanko S.; Hille, Jacques

    Plants use programmed cell death (PCD) as a tool in their growth and development. PCD is also involved in defense against different kinds of stresses including pathogen attack. In both types of PCD, reactive oxygen species (ROS) play an important role. ROS is not only a toxic by-product but also

  15. The odd-skipped family of zinc finger genes promotes Drosophila leg segmentation.

    Science.gov (United States)

    Hao, Irene; Green, Ryan B; Dunaevsky, Olga; Lengyel, Judith A; Rauskolb, Cordelia

    2003-11-15

    Notch signaling controls formation of joints at leg segment borders and growth of the developing Drosophila leg. Here, we identify the odd-skipped gene family as a key group of genes that function downstream of the Notch receptor to promote morphological changes associated with joint formation during leg development. odd, sob, drm, and bowl are expressed in a segmental pattern in the developing leg, and their expression is regulated by Notch signaling. Ectopic expression of odd, sob, or drm can induce invaginations in the leg disc epithelium and morphological changes in the adult leg that are characteristic of endogenous invaginating joint cells. These effects are not due to an alteration in the expression of other genes of the developing joint. While odd or drm mutant clones do not affect leg segmentation, and thus appear to act redundantly, bowl mutant clones do perturb leg development. Specifically, bowl mutant clones result in a failure of joint formation from the distal tibia to tarsal segment 5, while more proximal clones cause melanotic protrusions from the leg cuticle. Together, these results indicate that the odd-skipped family of genes mediates Notch function during leg development by promoting a specific aspect of joint formation, an epithelial invagination. As the odd-skipped family genes are involved in regulating cellular morphogenesis during both embryonic segmentation and hindgut development, we suggest that they may be required in multiple developmental contexts to induce epithelial cellular changes.

  16. Mutations in human immunodeficiency virus type 1 nucleocapsid protein zinc fingers cause premature reverse transcription.

    Science.gov (United States)

    Thomas, James A; Bosche, William J; Shatzer, Teresa L; Johnson, Donald G; Gorelick, Robert J

    2008-10-01

    Human immunodeficiency virus type 1 (HIV-1) requires that its genome be reverse transcribed into double-stranded DNA for productive infection of cells. This process requires not only reverse transcriptase but also the nucleocapsid protein (NC), which functions as a nucleic acid chaperone. Reverse transcription generally begins once the core of the virion enters the cytoplasm of a newly infected cell. However, some groups have reported the presence of low levels of viral DNA (vDNA) within particles prior to infection, the significance and function of which is controversial. We report here that several HIV-1 NC mutants, which we previously identified as being replication defective, contain abnormally high levels of intravirion DNA. These findings were further reinforced by the inability of these NC mutants to perform endogenous reverse transcription (ERT), in contrast to the readily measurable ERT activity in wild-type HIV-1. When either of the NC mutations is combined with a mutation that inactivates the viral protease, we observed a significant reduction in the amount of intravirion DNA. Interestingly, we also observed high levels of intravirion DNA in the context of wild-type NC when we delayed budding by means of a PTAP((-)) (Pro-Thr-Ala-Pro) mutation. Premature reverse transcription is most probably occurring before these mutant virions bud from producer cells, but we fail to see any evidence that the NC mutations alter the timing of Pr55(Gag) processing. Critically, our results also suggest that the presence of intravirion vDNA could serve as a diagnostic for identifying replication-defective HIV-1.

  17. Disruption of Teashirt Zinc Finger Homeobox 1 Is Associated with Congenital Aural Atresia in Humans

    NARCIS (Netherlands)

    Feenstra, Ilse; Vissers, Lisenka E. L. M.; Pennings, Ronald J. E.; Nillessen, Willy; Pfundt, Rolph; Kunst, Henricus P.; Admiraal, Ronald J.; Veltman, Joris A.; van Ravenswaaij-Arts, Conny M. A.; Brunner, Han G.; Cremers, Cor W. R. J.

    2011-01-01

    Congenital aural atresia (CAA) can occur as an isolated congenital malformation or in the context of a number of monogenic and chromosomal syndromes. CAA is frequently seen in individuals with an 18q deletion, which is characterized by intellectual disability, reduced white-matter myelination, foot

  18. Zinc biofortification of cereals

    DEFF Research Database (Denmark)

    Palmgren, Michael; Clemens, Stephan; Williams, Lorraine E.

    2008-01-01

    The goal of biofortification is to develop plants that have an increased content of bioavailable nutrients in their edible parts. Cereals serve as the main staple food for a large proportion of the world population but have the shortcoming, from a nutrition perspective, of being low in zinc...... and other essential nutrients. Major bottlenecks in plant biofortification appear to be the root-shoot barrier and - in cereals - the process of grain filling. New findings demonstrate that the root-shoot distribution of zinc is controlled mainly by heavy metal transporting P1B-ATPases and the metal...... tolerance protein (MTP) family. A greater understanding of zinc transport is important to improve crop quality and also to help alleviate accumulation of any toxic metals....

  19. Time, touch and temperature affect perceived finger position and ownership in the grasp illusion.

    Science.gov (United States)

    Héroux, Martin E; Bayle, Nicolas; Butler, Annie A; Gandevia, Simon C

    2018-01-15

    The brain's internal model of the body and the sense of body ownership are fundamental to interaction with the world. It is thought that temporally congruent, repetitive multisensory stimuli are required to elicit a sense of body ownership. Here we investigate the ability of static cutaneous stimuli - passively grasping an artificial finger - to induce body ownership and alter perceived body position; we also investigate how physical characteristics of grasped objects alter these senses. We show that static cutaneous stimuli can alter perceived body position and induce an illusion of ownership and also that signals of temperature, texture and shape of grasped finger-sized objects influence body ownership. Thus, these aspects of human proprioception can be altered by a single sustained sensory stimulus and by the physical characteristics of held objects. Perceived body position and ownership are fundamental to our ability to sense and interact with the world. Previous work indicates that temporally congruent, repetitive multisensory stimuli are needed to alter the sense of body ownership. In the present study 30 subjects passively grasped an artificial rubber finger with their left index and thumb while their right index finger, located 12 cm below, was lightly clamped. Fingers with varied physical characteristics were also passively grasped to determine how these characteristics influenced perceived body position and ownership. Subjects immediately felt their hands to be 5.3 cm [3.4-7.3] (mean [95%CI]) closer, a feeling that remained after 3 min (6.0 cm [4.5-7.5]). By the end of the trial, perceived ownership increased by 1.2 [0.6-1.9] points on a 7-point Likert scale, with the group average moving from 'neither agree or disagree' at the start to 'somewhat agree' at the end. Compared to grasping a control rubber finger, grasping a cold, rough, oddly shaped or rectangular shaped finger-like object reduced perceived ownership. These results provide new insights

  20. When Does Return of Voluntary Finger Extension Occur Post-Stroke? A Prospective Cohort Study.

    Directory of Open Access Journals (Sweden)

    Caroline Winters

    Full Text Available Patients without voluntary finger extension early post-stroke are suggested to have a poor prognosis for regaining upper limb capacity at 6 months. Despite this poor prognosis, a number of patients do regain upper limb capacity. We aimed to determine the time window for return of voluntary finger extension during motor recovery and identify clinical characteristics of patients who, despite an initially poor prognosis, show upper limb capacity at 6 months post-stroke.Survival analysis was used to assess the time window for return of voluntary finger extension (Fugl-Meyer Assessment hand sub item finger extension≥1. A cut-off of ≥10 points on the Action Research Arm Test was used to define return of some upper limb capacity (i.e. ability to pick up a small object. Probabilities for regaining upper limb capacity at 6 months post-stroke were determined with multivariable logistic regression analysis using patient characteristics.45 of the 100 patients without voluntary finger extension at 8 ± 4 days post-stroke achieved an Action Research Arm Test score of ≥10 points at 6 months. The median time for regaining voluntary finger extension for these recoverers was 4 weeks (lower and upper percentile respectively 2 and 8 weeks. The median time to return of VFE was not reached for the whole group (N = 100. Patients who had moderate to good lower limb function (Motricity Index leg≥35 points, no visuospatial neglect (single-letter cancellation test asymmetry between the contralesional and ipsilesional sides of <2 omissions and sufficient somatosensory function (Erasmus MC modified Nottingham Sensory Assessment≥33 points had a 0.94 probability of regaining upper limb capacity at 6 months post-stroke.We recommend weekly monitoring of voluntary finger extension within the first 4 weeks post-stroke and preferably up to 8 weeks. Patients with paresis mainly restricted to the upper limb, no visuospatial neglect and sufficient somatosensory function are

  1. Single aromatic residue location alters nucleic acid binding and chaperone function of FIV nucleocapsid protein

    Science.gov (United States)

    Wu, Hao; Wang, Wei; Naiyer, Nada; Fichtenbaum, Eric; Qualley, Dominic F.; McCauley, Micah J.; Gorelick, Robert J.; Rouzina, Ioulia; Musier-Forsyth, Karin; Williams, Mark C.

    2014-01-01

    Feline immunodeficiency virus (FIV) is a retrovirus that infects domestic cats, and is an excellent animal model for human immunodeficiency virus type 1 (HIV-1) pathogenesis. The nucleocapsid (NC) protein is critical for replication in both retroviruses. FIV NC has several structural features that differ from HIV-1 NC. While both NC proteins have a single conserved aromatic residue in each of the two zinc fingers, the aromatic residue on the second finger of FIV NC is located on the opposite C-terminal side relative to its location in HIV-1 NC. In addition, whereas HIV-1 NC has a highly charged cationic N-terminal tail and a relatively short C-terminal extension, the opposite is true for FIV NC. To probe the impact of these differences on the nucleic acid (NA) binding and chaperone properties of FIV NC, we carried out ensemble and single-molecule assays with wild-type (WT) and mutant proteins. The ensemble studies show that FIV NC binding to DNA is strongly electrostatic, with a higher effective charge than that observed for HIV-1 NC. The C-terminal basic domain contributes significantly to the NA binding capability of FIV NC. In addition, the non-electrostatic component of DNA binding is much weaker for FIV NC than for HIV-1 NC. Mutation of both aromatic residues in the zinc fingers to Ala (F12A/W44A) further increases the effective charge of FIV NC and reduces its non-electrostatic binding affinity. Interestingly, switching the location of the C-terminal aromatic residue to mimic the HIV-1 NC sequence (N31W/W44A) reduces the effective charge of FIV NC and increases its non-electrostatic binding affinity to values similar to HIV-1 NC. Consistent with the results of these ensemble studies, single-molecule DNA stretching studies show that while WT FIV NC has reduced stacking capability relative to HIV-1 NC, the aromatic switch mutant recovers the ability to intercalate between the DNA bases. Our results demonstrate that altering the position of a single aromatic

  2. Zinc Phosphide Poisoning

    Directory of Open Access Journals (Sweden)

    Erdal Doğan

    2014-01-01

    Full Text Available Zinc phosphide has been used widely as a rodenticide. Upon ingestion, it gets converted to phosphine gas in the body, which is subsequently absorbed into the bloodstream through the stomach and the intestines and gets captured by the liver and the lungs. Phosphine gas produces various metabolic and nonmetabolic toxic effects. Clinical symptoms are circulatory collapse, hypotension, shock symptoms, myocarditis, pericarditis, acute pulmonary edema, and congestive heart failure. In this case presentation, we aim to present the intensive care process and treatment resistance of a patient who ingested zinc phosphide for suicide purposes.

  3. Experience of Percutaneous Trigger Finger Release under Local ...

    African Journals Online (AJOL)

    Background: Trigger finger is a common disorder of upper extremity. Majority of the patients can be treated conservatively but some resistant cases eventually need surgery. Aim: The aim of this study is to evaluate the results of percutaneous trigger finger release under local anesthesia. Subjects and Methods: This is a ...

  4. Pattern of Trigger Finger among Patients Attending a Musculo ...

    African Journals Online (AJOL)

    Background: Trigger finger is a common finger problem thought to be due to thickening of tendon sheath with or without localized tendon thickening, resulting in a narrowed tunnel for tendon excursion with ultimate restriction of tendon movement. It can be seen in anyone, it is however seen frequently in diabetic patients and ...

  5. Biomimetic finger extension mechanism for soft wearable hand rehabilitation devices.

    Science.gov (United States)

    Kim, Dong Hyun; Heo, Si-Hwan; Park, Hyung-Soon

    2017-07-01

    For the rehabilitation and assistance of the hand functions, wearable devices have been developed, and the interest in tendon driven mechanisms have especially increased since it allows light weight and compact design. The tendon driven hand rehabilitation devices provides grasping force via exo-tendons routed on the dorsal and palmar sides of the hand pulled by remotely located actuators. However, most of the devices were not able to provide natural joint extension sequence of the finger and showed hyperextension of finger joints because the tendons for extension were fixed at the fingertip, concentrating the torque at the distal interphalangeal joint. In this study, a ring-type biomimetic finger extension mechanism was developed, which mimics the origin, structure, and orientation of the extensor tendon. The biomimetic mechanism was evaluated by comparing the motion with voluntary finger extension and the motion made by other conventional tendon driven finger extension mechanisms. The biomimetic extension mechanism provided the same joint extension sequence with voluntary finger extension, and the fully extended posture was most close to the voluntary finger extension among the tendon-driven mechanisms used in the experiments. The joint angle differences between the proposed tendon mechanism and the voluntary finger extension was -1.2 °±3.4 °, -2.9°±2.0°, and -3.1°±8.0° for distal phalangeal, proximal phalangeal, and metacarpo-phalangeal joint, respectively.

  6. A biomechanical study of the finger pulley system during repair.

    Science.gov (United States)

    Amirouche, F; Gonzalez, M; Koldoff, J; Tioco, J; Ham, K

    2002-01-01

    This paper addresses the mechanics of the finger/pulley system when subjected to various excisions and repairs. Several cadaver hands were used to study the finger/pulley's function, finger joint dynamics, and the relationship between tendon excursion and finger joint angles of rotation. By using a method of continuous and simultaneous data acquisition of the entire finger joint's motion, a more detailed analysis was achieved. Our experimental investigation is based on the use of four micro-potentiometers inserted at the finger's joints and a pulley system to simulate tendon excursion. Using this procedure, a detailed kinematic analysis of the entire finger was performed. This included analysis of the intact hand, various pulley excisions, and reconstruction. In addition to introducing a new method of acquisition, a mathematical model was developed for the inverse dynamic analysis of the finger pulley system. From this model, the torques required at the joints for the motion were computed. The results provided new insight into possible ways of characterizing kinematic changes resulting from pulley damage and repair.

  7. Can We Call It "Stinky-finger Syndrome?"

    Science.gov (United States)

    Maqbool, Masood; War, Firdous Ahmed; Kumar, Mohit

    2017-01-01

    Many accounts refer to insertion of finger into anus mostly for gratification from stimulation of prostate gland, but index case Mr. M. continued doing this to get rid of constipation that eventually led to feelings of guilt, stinky fingers, not able to defecate normally, and dysphoric emotions. Further research is needed to find out the phenomenology of this condition.

  8. Environmental risk limits for zinc

    NARCIS (Netherlands)

    Bodar CWM; SEC

    2007-01-01

    Environmental Riks Limits (ERLs) were derived for zinc. ERLs serve as advisory values to set environmental quality standards in the Netherlands. The ERLs for zinc closely follow the outcomes of earlier discussions on zinc within the Water Framework Directive and EC Regulation 793/93. The ERLs refer

  9. Environmental risk limits for zinc

    NARCIS (Netherlands)

    Bodar CWM; SEC

    2007-01-01

    Environmental Riks Limits (ERLs) were derived for zinc. ERLs serve as advisory values to set environmental quality standards in the Netherlands. The ERLs for zinc closely follow the outcomes of earlier discussions on zinc within the Water Framework Directive and EC Regulation 793/93. The ERLs

  10. Zinc electrode in alkaline electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    McBreen, J.

    1995-12-31

    The zinc electrode in alkaline electrolyte is unusual in that supersaturated zincate solutions can form during discharge and spongy or mossy zinc deposits can form on charge at low overvoltages. The effect of additives on regular pasted ZnO electrodes and calcium zincate electrodes is discussed. The paper also reports on in situ x-ray absorption (XAS) results on mossy zinc deposits.

  11. The bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens

    NARCIS (Netherlands)

    Veldkamp, T.; Diepen, van J.T.M.; Bikker, P.

    2014-01-01

    Zinc is an essential trace element for all farm animal species. It is commonly included in animal diets as zinc oxide, zinc sulphate or organically bound zinc. Umicore Zinc Chemicals developed zinc oxide products with different mean particle sizes. Umicore Zinc Chemicals requested Wageningen UR

  12. 78 FR 68907 - Agency Information Collection (Hand and Finger Conditions Disability Benefits Questionnaire...

    Science.gov (United States)

    2013-11-15

    ... Finger Conditions Disability Benefits Questionnaire) Under OMB Review AGENCY: Veterans Benefits... Control No. 2900- NEW (Hand and Finger Conditions Disability Benefits Questionnaire)'' in any... Benefits Questionnaire)''. SUPPLEMENTARY INFORMATION: Title: Hand and Finger Conditions Disability Benefits...

  13. Zinc oxide tetrapod nanocrystal diodes

    Science.gov (United States)

    Newton, Marcus Christian

    Advances in fabrication and analysis tools have allowed the synthesis and manipulation of functional materials with features comparable to fundamental physical length scales. Many interesting properties inherently due to quantum size effects have been observed in nanometre scale structures. It is hoped that these nanoscale structures will play a key role in future materials and devices that exploit their unique properties. Zinc oxide (ZnO) is a wide band-gap transparent and piezoelectric semiconductor material. It also has a large exciton binding energy which allows for stable ultraviolet light emission at room temperature. There are therefore foreseeable applications in optoelectronic devices which include ultraviolet photosensitive devices and light emitting diodes. Nanoscale structures formed from ZnO are interesting as they possess many of the properties inherent form the bulk but are also subject to various quantum size effects that may occur at the nanoscale. To date, the study of ZnO nanostructures is a relatively recent endeavour with the vast majority of reports being made within the last five years. ZnO is unique in that it forms a family of nanoscale structures. These structures include nanoscale wires, rods, hexagons, tetrapods, ribbons, rings, flowers and helixes. This work is focussed on the study of zinc oxide tetrapod crystalline nanoscale structures and their devices. We have synthesised ZnO tetrapods using chemical vapour transport techniques. Photoluminescence characterisation revealed the presence of optically active surface defects that could be quenched with a simple surface treatment. We have also for the first time observed resonant cavity modes in a single ZnO tetrapod nanocrystal. An ultraviolet sensitive Schottky diode was fabricated from a single ZnO tetrapod using focussed ion-beam assisted deposition techniques. The device characteristics observed were modelled and successfully shown to result from an illumination induced reduction in

  14. Zinc-Laccase Biofuel Cell

    Directory of Open Access Journals (Sweden)

    Abdul Aziz Ahmad

    2011-12-01

    Full Text Available A zinc-laccase biofuel cell adapting the zinc-air cell design features is investigated. A simple cell design configuration is employed: a membraneless single chamber and a freely suspended laccase in a quasi-neutral buffer electrolyte. The cell is characterised according to its open-circuit voltage, polarization profile, power density plot and discharge capacity at constant current. The biocatalytic role of laccase is evident from the polarization profile and power output plot. Performance comparison between a single chamber and dual chamber cell design is also presented. The biofuel cell possessed an open-circuit voltage of 1.2 V and delivered a maximum power density of 0.9 mW/cm2 at current density of 2.5 mA/cm2. These characteristics are comparable to biofuel cell utilising a much more complex system design.KEY WORDS (keyword:  Biofuel cell, Bioelectrochemical cell, Zinc anode, Laccase and Oxidoreductase.ABSTRAK: Sel bio-bahan api zink-laccase dengan adaptasi daripada ciri-ciri rekabentuk sel zink-udara telah dikaji. Sel dengan konfigurasi rekabentuk yang mudah digunapakai: ruangan tunggal tanpa membran dan laccase diampaikan secara bebas di dalam elektrolit pemampan quasi-neutral. Sel dicirikan berdasarkan voltan litar terbuka, profil polarisasi, plot ketumpatan kuasa dan kapasiti discas pada arus malar. Peranan laccase sebagai bio-pemangkin adalah amat ketara daripada profil polarisasi dan plot ketumpatan kuasa. Perbandingan prestasi di antara sel dengan rekabentuk ruangan tunggal and dwi-ruangan turut diketengahkan. Seperti dijangkakan, sel dengan rekabentuk ruangan tunggal menunjukkan kuasa keluaran yang lebih rendah jika dibandingkan dengan rekabentuk dwi-ruangan kemungkinan disebabkan fenomena cas bocor. Sel bio-bahan api ini mempunyai voltan litar terbuka 1.2 V dan memberikan ketumpatan kuasa maksima 0.9 mW/cm2 pada ketumpatan arus 2.5 mA/cm2. Ciri-ciri ini adalah sebanding dengan sel bio-bahan api yang menggunapakai rekabentuk sel

  15. Synthesis of zinc sulphide nanoparticles from thermal decomposition of zinc N-ethyl cyclohexyl dithiocarbamate complex

    International Nuclear Information System (INIS)

    Abdullah, Nurul Hidayah; Zainal, Zulkarnain; Silong, Sidik; Tahir, Mohamed Ibrahim Mohamed; Tan, Kar-Ban; Chang, Sook-Keng

    2016-01-01

    Synthesis of nanostructured semiconductor materials from various single source precursors has been massively explored for potential applications in modern technology. Thermal decomposition method has been employed to prepare nanoparticles zinc sulphide from zinc N-ethyl cyclohexyl dithiocarbamate precursor. Effect of heat treatment at different calcination duration on the structural, morphological, compositional and band gap properties of zinc sulphide were investigated. The obtained samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and energy dispersive X-ray (EDX) analysis. XRD showed the precursor was decomposed to hexagonal zinc sulphide after 2–6 h of calcination duration at 400 °C. The sizes of zinc sulphide (ZnS) nanoparticles obtained from TEM analysis were about 6–11 nm. The existence of the hexagonal ZnS phase is not affected by the calcination duration, while only a slight difference in the crystallinity and crystallite size of ZnS is observed from XRD analysis. EDX analyses reveal that the as-prepared ZnS nanoparticles have an approximate composition of Zn and S close to 1:1, giving a possible composition of ZnS. Besides, direct band gap energy of ZnS was found to be around 3.78–3.95 eV. - Highlights: • Zinc N-ethyl cyclohexyl dithiocarbamate was used as single source precursor. • No surfactant was used in the preparation of ZnS nanoparticles. • Pure phase nanostructured ZnS is obtained. • A good stoichiometric sample with an average atomic ratio of Zn:S close to 1:1.

  16. Synthesis of zinc sulphide nanoparticles from thermal decomposition of zinc N-ethyl cyclohexyl dithiocarbamate complex

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, Nurul Hidayah [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Zainal, Zulkarnain, E-mail: zulkar@upm.edu.my [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Silong, Sidik [UiTM Negeri Sembilan, Kampus Kuala Pilah, Pekan Parit Tinggi, 72000 Kuala Pilah, Negeri Sembilan (Malaysia); Tahir, Mohamed Ibrahim Mohamed; Tan, Kar-Ban [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Chang, Sook-Keng [Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2016-04-15

    Synthesis of nanostructured semiconductor materials from various single source precursors has been massively explored for potential applications in modern technology. Thermal decomposition method has been employed to prepare nanoparticles zinc sulphide from zinc N-ethyl cyclohexyl dithiocarbamate precursor. Effect of heat treatment at different calcination duration on the structural, morphological, compositional and band gap properties of zinc sulphide were investigated. The obtained samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and energy dispersive X-ray (EDX) analysis. XRD showed the precursor was decomposed to hexagonal zinc sulphide after 2–6 h of calcination duration at 400 °C. The sizes of zinc sulphide (ZnS) nanoparticles obtained from TEM analysis were about 6–11 nm. The existence of the hexagonal ZnS phase is not affected by the calcination duration, while only a slight difference in the crystallinity and crystallite size of ZnS is observed from XRD analysis. EDX analyses reveal that the as-prepared ZnS nanoparticles have an approximate composition of Zn and S close to 1:1, giving a possible composition of ZnS. Besides, direct band gap energy of ZnS was found to be around 3.78–3.95 eV. - Highlights: • Zinc N-ethyl cyclohexyl dithiocarbamate was used as single source precursor. • No surfactant was used in the preparation of ZnS nanoparticles. • Pure phase nanostructured ZnS is obtained. • A good stoichiometric sample with an average atomic ratio of Zn:S close to 1:1.

  17. Fishing long-fingered bats (Myotis capaccinii) prey regularly upon exotic fish

    DEFF Research Database (Denmark)

    Aizpurua, Ostaizka; Garin, Inazio; Alberdi, Antton

    2013-01-01

    The long-fingered bat Myotis capaccinii is a European trawling bat reported to feed on fish in several Mediterranean locations, but the ecological circumstances of this behavior have not yet been studied. To elucidate the importance of fishing in this bat's diet, we evaluated the frequency...... Gambusia holbrooki. Measuring otoliths, we estimated that the mean size of consumed fish was significantly smaller than the mean measured for available fish, suggesting that the long-fingered bat's relatively small body may constrain its handling of larger prey. Of note, one bat had eaten 15 fish, showing...... that fish may be a locally or seasonally important trophic resource for this species. By capturing 15 bats and radio-tracking the four with the most fish remains in their droppings, we also identified fishing areas, including a single fishing ground comprising several ponds within a golf course. Ponds hold...

  18. Zinc in multiple sclerosis

    DEFF Research Database (Denmark)

    Bredholt, Mikkel; Fredriksen, Jette Lautrup

    2016-01-01

    In the last 35 years, zinc (Zn) has been examined for its potential role in the disease multiple sclerosis (MS). This review gives an overview of the possible role of Zn in the pathogenesis of MS as well as a meta-analysis of studies having measured Zn in serum or plasma in patients with MS...

  19. PML-RARα stabilized by zinc in human acute promyelocytic leukemia NB4 cells.

    Science.gov (United States)

    Zhu, Bo; Wang, Jia-Yu; Zhou, Jun-Jie; Zhou, Feng; Cheng, Wei; Liu, Ying-Ting; Wang, Jie; Chen, Xiao; Chen, Dian-Hua; Luo, Lan; Hua, Zi-Chun

    2017-10-01

    Acute promyelocytic leukemia (APL) is characterized and driven by the promyelocytic leukemia protein-retinoic acid receptor alpha (PML-RARα) fusion gene. Previous studies have highlighted the importance of PML-RARα degradation in the treatment against APL. Considering the presence of two zinc fingers in the PML-RARα fusion protein, we explored the function of zinc homeostasis in maintaining PML-RARα stability. We demonstrated for the first time that zinc depletion by its chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) triggered PML-RARα degradation in NB4 APL cells via the proteasome pathway rather than the autophagy-lysosomal pathway. In contrast, autophagy protected TPEN-mediated PML-RARα degradation in NB4 APL cells. We further demonstrated that crosstalk between zinc homeostasis and nitric oxide pathway played a key role in maintaining PML-RARα stability in NB4 APL cells. These results demonstrate that zinc homeostasis is vital for maintaining PML-RARα stability, and zinc depletion by TPEN may be useful as a potential strategy to trigger PML-RARα degradation in APL cells. We also found that TPEN triggered apoptosis of NB4 APL cells in a time-dependent manner. The relationship between PML-RARα degradation and apoptosis triggered by TPEN deserves further study. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Torque control of underactuated tendon-driven fingers

    Directory of Open Access Journals (Sweden)

    M. E. Abdallah

    2011-02-01

    Full Text Available Given an underactuated tendon-driven finger, the finger posture is underdetermined and can move freely ("flop" in a region of slack tendons. This work shows that such an underactuated finger can be operated in tendon force control (rather than position control with effective performance. The force control eliminates the indeterminate slack while commanding a parameterized space of desired torques. The torque will either push the finger to the joint limits or wrap around an external object with variable torque – behavior that is sufficient for primarily gripping fingers. In addition, introducing asymmetric joint radii to the design allows the finger to command an expanded range of joint torques and to scan an expanded set of external surfaces. This study is motivated by the design and control of the secondary fingers of the NASA-GM R2 humanoid hand.

    This paper was presented at the IFToMM/ASME International Workshop on Underactuated Grasping (UG2010, 19 August 2010, Montréal, Canada.